PRELIMINARY

Technical Manual

July 1987

Z280™ MPU
Microprocessor Unit

NEUMULLER

ELEKTRONIK-BAUTEILE

Esch .2 - 8028 Taufkirchen/Miinchen - Tel.089/612080 - Telex 522106

Table of Contents

Chepter 1.

.1 Introduction

1
1.2 MPU Architectural features .

.
.

.
)
NN e W

.
.
- O

.
P - - -]

S L J St S i G T QY
.

* Data Types

System and User Modes
Address Spaces . . .
Addressing Modes . .
Instruction Set . . .
Except ion Conditions
Memory- Management . .
Cache Memory . . «»
Refresh
On-Chip Peripherals .

2280 Architectural Overview

Multiprocessor Mode
Extended Instruction Facility

"1.3 Benefits of the Architecture

_ High Throughput . « . . « . . «

Integration of System Functions

Operating System Support

Code Density
Compiler Efficiency .

1.4 SUMMATY o o ¢ ¢ o o o o o o «

.

1-3
1-4
1-4
1-4
1-4
1-4

Chapter 2. Address Spaces

Introduction

CPU Register File . .
CPU Control Registers
Memory Address Spaces
[/0 Address Space . !

2-1
2-1
2-2
2-3
2-4

Chapter 3.

3.1

3.2 System Configuration Registers

Int roduct ion

«2.1
.2.2
.2.3

3.2.4

WO

CPU Control Registers

D N N)

Bus Timing.and Initialization Register
Bus Timing and Control Register
Local Address Register
Cache Control Register

31
3-1

3-1
3-2
3-3
3-3

iii

Table of Contents (Continued)

3.3 System Status Registers . « . . « ¢ ¢« o o &

1 Master Status Reéister s e e e
2 Interrupt Status Register
3 Interrupt/Trap Vector Table Pointer
.4 I/0 Page Register . . « « + + ¢+ ¢« &
5 Trap Control Register . « « « « + &«
6 System Stack Limit Register

3.4

3-4
3-4
3-5
3-5
3-5
3-6

Chapter 4. Addressing Modes and Data Types

4.1 Introduction . ¢ v ¢ o o o o ¢ o0 o v o o
4.2 Addressing Mode Descriptions . . . « . . &

4.2.1 Register (R, RX) + « & ¢ v ¢ o & &
4,2,2 Immediate (IM) .7,
4.2.3 Indirect Register (IR)
4.2.4 Direct Address (DA) + + « ¢« « &« & &
4.2.5 Indexed (X) o « ¢ ¢ o « « s ¢ o o o
4,2,6 Short Index (SX) + o o o ¢ s o o &
4.2.7 Relative Address (RA) . « . . . « .
4.2.8 Stack Pointer Relative (SR)
4.2.9 Base Index (BX) « ¢ o o v o & o o &

4.3 Data Types .« o « o o o o o o s o o o o & »

4-1
4-1

4-1
41
4-2
4-2
4-3
4-3
44
4-5
4-5

Chepter 5. Instruction Set

5.1 Introduction . o o ¢« v v o ¢ 4 o o 0 0 v v
5.2 Processor Flags . « ¢« ¢ ¢ ¢ ¢ 4 e 0 e e 4

5.2.1- Carry Flag (€C) & « v & v v ¢ o s o &
5.2.2 Add/Subtract Flag (N)
5.2.3 Parity/Overflow Flag (P/V)
5.2.4 Helf-Carry Flag (H) + . « % & o « &
5.2.5
5.2.6
5.2.7

Zero F1ag (Z) o v o o ¢ o o 0 o o
Sign Flag (S) « v o v o @ o o o v @
Condition Codes < « v & o o o &+ » &

5.3 Instruction Execution and Exceptions

5.3.1 Instruction Execution and Interrupts
5.3.2 Instruction Execution and Traps . .

5-1
5-1

5-1

5-1
5-2
5-2
5-2

5-~2
5-3

5-3
5-3

5.4

Instruction Set Functional Groups

5.4.7 8-bit load Group . ¢ ¢ « + o « «
5.4.2 16-bit Load and Exchange Group . .
5.4.3 Block Transfer and Search Group .
5.4.4 8-bit Arithmetic and Logic Group .
5.4.5 16-bit Arithmetic Group
5.4.6 Bit Manipulation, Rotate and Shift
5.4.7 Program Control Group « »
5.4.8 - Input/Output Instruction Group . .
5.4.9 CPU Control Group « ¢ &« « &« o & &

5.4.10 Extended Instruction Grouwp . .

5-4
5-5
5~5
5-6
5-6
5-7
5-7
5-9
5-9
5-10

5-10
5-13

5.5 Notsation and Binary Encoding
5.6 Instruction Set« ¢ s o o ¢ oo
Chapter 6. Interrupts and Traps
6.1 Introduction . + v v o ¢ v o 0 o 0 o o
6.2 Interrupts « o ¢« ¢ o ¢ o s 6 o s e s e s
6.2.1 Interrupt Moade 0
6.2.2 Interrupt Mode 1 . . + « o ¢+ & &
6.2.3 Interrupt Mode 2
6.2.4 interrupt Mode 3
6‘.3 Iraps...;...............
6.3.1 Extended Instruction Trap«
6.3.2 ' Privileged Instruction Trap . . .
6.3.3 System Call Trap . o o o « « « &
6.3.4 Access Violation Trap « « « ¢« « & «
6.3.5 System Stack Overflow Warning Trep
6.3.6 Division Exception Trap
6.3.7 Single-Step Trap . + ¢ & & & « &
6.3.8 Breakpoint-on-Halt Trap
6.4 Interrupt and Trap Handling « . + « « & »
6.4.1 Interrupt Alcknowledge c s e s e
6.4.2 Status Saving + ¢« « ¢« 4 o 0 0 ..
6.4.3 Loading New Program Status . . .
6.4.4 Executing the Service Routine . .
6.4.5 Returning from a Service Routine
6.5 Interrupt/Trap Vector Table . . « « » . &
6.6

The Fatal Condition . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o &

6-1
6-1

6-2
6-2
6-2
6-3

6-4

6-4
6-4
6-5
6-5 .
6-5
6-5
6-5
6-6

6-6

6-6
6-7
6-7
6-9
6-9

6-9
6-11

Table of Contents (Continued)

Chapter 7. Memory Management Unit

7.1 Introduction . ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o »
7.2 MMU Architecture . . . + v o o o«
7.3 Page Description Registers
7.4 Address Translation . « « &+ ¢« « o« ©

7.4.1 Address Translation without

7.4.2 Address Translation with Program/Data

7.5 MMU Control Registers
7.6 Accessing Page Descriptor Registers

7.6.1 - Descriptor Select Port . .
7.6.2 Block Move Port . « + « « «
7.6.3 Invalidation Port

LR

7.7 lInstruction Aborts . . « . & ¢ + .«

Program/Data Separation

Separation .

7-5
7-6

7-6
7-6
7-6

7-7

Chapter 8. On-Chip Memory

8.1 Introduction . . . ¢« . ¢ . ¢ o . .
8.2 Cache Memory Mode + « « « &
8.3 Fixed-Address Mode

8-1
8-1
8-4

Chapter 9. On-Chip Peripherals

9.1 Introduction . . v ¢« v o s ¢ o o &
9.2 Clock Oscillator .« + « o o 0 s o &
9.3 Refresh Conttoller . o « « « « & «
9.4 Counter/Timers . .« « « « ¢ o o o &

9.4.1 Counter/Timer' Operat ing Modes

9.4.2 Gates and Triggers
9.4.3 Terminal Count Condition .
9.4.4 Counter/Timer Registers . .
9.4.5 Linking Counter/Timers . .

9.4.6 Counter/Timer. Sequence of Events

9.5 DMAChannels . o ¢ ¢ ¢ ¢ o o o o o

9.5.1 lypes of DMA Operations . .
9.5.2 . DMA Transfer Modes
9.5.3 End-of-Process
9.5.4. Priority Resolution

5.5 DMA Linking « « ¢ o o o o o
'9.5.6 DMA Registers . « « « o + &
9.5.7 DMA Sequence of Events . .

9.5.8 DMA Programming: Linked DMAs
9.5.9 DMA Programming: DMAs Linked to

UART

9-1
9-1
9-1
9-2

9.3
9-3
9-4
9-4
9.7
9-7

9-9

9-10
9-10
9-11
912
9-12
9-13
9-15
9-16
9-17

vi

966 UART. & o 4o ¢ ¢ o ¢ ¢ ¢ e o 0 5 06 0 0 08 00000 a

9.6.1 Transmitter Operation « « « ¢ ¢ ¢ ¢« o ¢ o o ¢ &
9.6.2 Receiver Operation . . ¢« o ¢ ¢ o o o o o o o &
9.6.3 UART Registers « « « « « o o o o o ¢ o s ¢ s »
9.6.4 UART QOperation . « « o o o o o s o s 0 s 5 s »

.

9.7 UART Bootstrapping OPtion « « o v o e o o v 0 0 s o o s

9-17

9-17
9-18
9-18

921

9-21

Chapter 10. Multiprocessor Configurations

[y

10,1 Introduction . .-u o o v ot v 0 v v 0 b e e ww e
10,2 Slave ProceSSOrS « « « « o o o o ¢ o o o o o s o o s o
10.3 Tightly ‘Coupled Multiple Processors .« , « + « o & & &

10.3.1 The Local Address Register . « « « &+ « ¢ « & &
10.3.2 Bus Request Protocols . . . ¢« « ¢« ¢ ¢ o o & &
10.3.3 Examples of the Use of the Global Bus

10.4 Loosely Coupled Multiple CPUS . & ¢ o ¢ ¢ « o o « o o
10.5 Coprocessors and the Extended Processing Architecture

10.5.1 Extended Instructions+ s v s o o o &
'10.5.2 Extended Instruction Execution Sequence . . .

10-1
10-1
10-2

10-2
10-2
10-4

10-6
10-6

10-6
10-7

Chapter 11. Resst ¢« ¢ o ¢ ¢ o 0 0 s o s 0 ¢ s »

111

11

Chapter 12. 780 Bus External Interface’

12.1 Introduction « o+ « ¢ ¢ ¢ ¢ o o v o ¢ o s ¢ 0 s o o o @
12,2 Bus Operations « o o ¢ o« o s o ¢ o o o ¢ 5 ¢ o ¢ o ¢ o
12.3 Pin Descriptions . « o « o o ¢ o o ¢ o ¢ o o o o s o o
12.4 Bus Configuration and TIMiNG « « o « o « o o o « o o
12,5 Transactions « o o o o o o o o o o s o o o o o o o o o

12.5.1 Memory Transaction8 . « « « ¢ o ¢« ¢ ¢ o ¢ 0.
12,5.2 RETI Transactions . « « o o ¢ o o ¢ a s 0 o

12.5.3 Halt and Refresh Transactions . . « + o« ¢ » o

12.5.4 1/0 Transactions « « o« o o ¢ ¢« o o ¢ ¢ o o o &
12.5.5 Interrupt Acknowledge Transactions . . « . . &
12.5.6 DMA Flyby Transactions . « « v ¢ ¢ ¢ ¢ o s o &

12,6 Requests . + o ¢ s o ¢ o ¢ o o o ¢ 8 s°0 0 0 o 0 s o o
12.6.1 Interrupt Requests . « « « ¢ o+ o ¢« 0o o 0 o o

12.6.2 Llocal Bus Requests « « « « v ¢« ¢ ¢ ¢ ¢ o o o &
12.6.3 Global Bus Requests .« + + « o « « o o o » o

1241

12-2

12-3
12-4
12-4°

12-5
12-9
12-9
12-10
12-12

12-13 .

12-14

. 12~14

12-15
12-15

12

vii

Table of Contents (Continued)

Chapter 13. 2Z-BUS External Interface

13.1 Introduction « ¢ ¢ o o v ¢ s s o s s 0 s b s s s 8 s
13.2 Bus Operations . . . « ¢ v ¢ ¢ ¢ ¢ o ¢ s o o ¢ s o &
13.3 Pin Descriptions . + + « 4+ ¢ o ¢ ¢ ¢ o o s ¢ o o + &«
13.4 Bus Configuration and Timing » « . « . . « &« o ¢ + &
13.5 Transactions . ¢« ¢ o o o o o o o s o o s o o o o o

13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6

Memory Transactions . . . ¢ ¢ ¢« ¢ ¢ ¢ o + &
Halt and Refresh Transactions
I/0 Transactions « « ¢ & & o o o ¢ ¢ o s o &
Interrupt Acknowledge Transactions
Extended Processing Unit (EPU) Transactions
DMA Flyby Transactions . . + « « « « o o & &

13.6 Requests e e e e e e e e e

13.6.1

Intecrrupt Requests & v v v o ¢ 4 4 &

13.6.2 Local Bus Requests . . o « « v ¢ o o« o o o &
13.6.3 Global Bus Requests . . + v o ¢« ¢ o ¢ o o

1341
13-2
13-3
13-4
13-4

13-5

13-10
13-11
13-13
13-14
13-17

13-18
13-19

13-19
13-19

Appeondix
Appendix

A.
B.
C.
0.
E.

F.

780/Z280 Compatibility
7280 MPU Instruction Formats

Instructions in Alphebetic Order

Instructions in Mmeric Order %

Instruction Timing

Compatible Peripheral Families

A-1

F-1

Glossary

Index

G-1

1-1

viii

LIST OF ILLUSTRATIONS AND TABLES

Figure
Number
1-1.
2-1.
2-2.
2-3.
2-4,
3-1.
3-2.
3-3.
3-4.
3-5.°
3-6.
3-7.
3-8.
3-9.
3-10.
5-1.
6-1.
6-2.
6-3.

“Trap Control RegiSter..eeeeescrsensoscoecococsccsasaoasososneslm

Page

Number

Block Diagram.........;......................................1—1

d

Register File 0rganizatioN..cescecosseccssovsconssccnsssceesal=1

CPU Control RegiSterS...ececesesesscescasscesososscvsnsasnseasl=3
Numbering of Bits Within 8 Byte...cceveosesscerscsccscsaossenessl2=3
Formats, Multiple-Byte Data Elements in Memory.....ceceecssss2=-4
Bus Timing and Initialization Register....ceceveevncccccsoanssld=l
Bus Timing and Control RegisSter....ccceeececesancscsssscsccssl=2
Local Address Register.....cceeescessocccecccosnoscosssasasnseld=]
Cache Control REQiSter...eseeesssscsssensoecsosscnsasaasassesd=3
Master Status RegiSter..ceevscecssssscssconcccssscnssccscssssli=l
Interrupt Status Register.....;.......;......................3-5
Interrupt/Trap Vector Table Pointer...ececescsesscscosscosncaldm
I/0 Page RegiSter..veeesesscossonossavossasssssssscnoasensssed=

AV BV IR

System Stack Limit Register......ceeceeececesceccccnassassssneld=b

Flag RegisStereeeeeesececcoossssasosssssnsncsescsscssosnsscssvsed=t

Mode 2 Interrupt Processing...cucesececccescsccccscsssensescssssb=ld

Instruction Execution Sequence....veeeeesvsvcscsssesscscccsssbab

Format of Saved Status on System Stack

Due to a Mode 3 INterrupt.eceeecevescesescsscssssansoscsceccsebeB

Page Descriptor RegiSter.ecseeesscessossovsssncsscoscsssssonsl=2

Address Translation Without Program/Datsa Separatibn..........7;3

Address Translation With Program/Data Separation.cc.cscsssc..7-4

MMU Master Control RegiSter...ccessseescccccccsassocccsssnansl=d

Cache 0rganizatioN.ecesescossesessssnsscnsescssosssasnsosessseB=]

Refresh Rate Register..cccessscecsscecscccscoscocsscsasacnncesd=l

MPU Counter/Timer Block Diagram...ceeceeeecacassacssccsncsoased=2

Counter Operation With Gate Only....ccceececcccsscccsnsncssaad=d

Counter Operation With Trigger Only..cceeerececnossncssossssed-t

Counter Operation With Gate and Trigger.cceccececsssssanasasad=8

Counter/Timer Configuration Register....ccecceccncacsnsssssee¥d=5

Counter/Timer Command/Status Register....eveesoescssisnsenceesd=b

Modes of 0peratioN.cseeecceesesvosssscsscosascssssnssacnsasnesd=ll
DMA Master Control RegiSter....ececessssnasccsssconssassssnnsd=13
Transaction Descriptor Register...cceecessecenscesccccncenacnee?=13
Source & Destination Address Registers Format...cceevvvevees 9-15
General Format, Asynchronous TransmissioN..eeecsccesvssvonsasd=17
Byte Assembled by Receiver for S5-bit Character with Parity...9-18
UART Configuration RegiSter..cevecececececnssonscscsssonnssssd=18
Transmitter Control/Status Register...cocecesceccsccesnecnseed=19
Receiver Control/Status Register.eesccecccecccsncacncsncesaeesd=20
Multiprocessor ConfigurationS.ceeesscecsoceccccasssasoscasnassll=1
Local Address RegiBter...eeecessccscsscssrosscsssssnarconssasll-2
State Diagram for CPU Bus Request Protocol....ceccvevvecnesest0-3
Tightly Coupled Processors With Shared Global MEmMOrYeeaasssss10-4
Tightly Coupled. Processors Without Global Memory......e......10-5
2280 MPU a8 @n I/0 ProcCesS80T.ccsssossessssscsssscsncsasssnsenll=5

ix

- Table of Contents (Continued)

10-7.
10-8.
12-1.

12-2.
12-3.
12-4.
12-5.
12-6.
12-7.
12-8.
12-9.
12-10.
12-11.
12-12.
12-13.
12-14.
12-15.
13-1.

13-2.
13-3.
13-4.
13-5.
13-6.
13-7.
13-8.
13-9.
13-10.
13-11.
13-12.
13-13.
13-14.
13-15.
13-16.
13-17.
13-18.
13-19.

EPU Cornection in Z280 MPU System...ccseecvcecsosescscscsssseasll=6
CPU-EPY Instruction Execution. SEQUENCE..eesecscccsvssscseseasl0=7
Z80 Bus Configuration (Input OPT tied to GND)

8) Pin FuUnctionS..ieeveoeooneasessossssssnonssnssassonssesll=1

B) Pin ASSigNMeNntS..ececseccscncsscesnsssossnnsssasasssnsesl2=1
Memory Read TiminNg.eeeeseveccseesooconcssscsssscossscsssnncannasll=5
Memory Write Timingesseeeceocosoersosersctsetssvsevsncscsssacsncel2Z=6
Memory Read Timing W/One External Wait State.....ceencesesesal2-6
Memory Write Timing W/One External Wait State....eeevecescsos 12-7
Memory Read Timing W/One Internal Wait State....eeeeeeeceesss12-7
RETI Re8d TiMingGeusseessseveoesosnesocscescsncranssanascsasesl2B
Halt TimMingG.eeeeoeseooossssvsccossossssssscssesacsssssssscossesll2=9
Memory Refresh Timingeceeesonscoossecsvooscconsrssnsscscssnsasal2=10
I/0 Read TimMing..eeeeeesecccccoosonovssasancsassassossseaceeesll=t
I/0 Write Timingeeeeeeeveosoosossecnacsssasveerenossonsnssssel2=11
Interrupt Acknowledge SeqUENCE....cecssecssssovsvcaassssssnnal2=12
On-Chip DMA Channel Flyby Memory Read Transaction..e.eoeeceossl12-13
On-Chip DMA Channel Flyby Memory Write Transaction....eevee..12-14
Multiprocessor Mode TiminNg:i..eeeecesecscscossonnonsscssnsnaseal2=-15
Z-BUS Configuration (Input OPT tied to +5V or not connected)

8) Pin FUNCLioNB.eseeeaeseesoeocescacsososcnnsssscsssscnaosld=1

b) Pin ASSignmentS..cceceerceeresanscasccsssossssscsssnnnssld=l
Memory Read Timinge.ceieeeeceveecnvssseoootoasonssccsonosocasneld=b
Memory Write Timingesoeesscsoooooscssoovoscscsscsssssvscnasasld=T
Memory Read Timing With External Wait Cycle..csesesevecscseealld-7
Memory Write Timing With External Wait Cycle....ccocvseeeeessl3=8
Memory Read Timing With Internal Wait Cycle....cceceeceecscssel3-8
Burst Memory Read TimMing..eeeceecsvecsoccsocsnoossssoassosonssensll=9
Halt Timing.eceeesoeoseacecescosatccssssssscsossassnssssncsceesll3=10
Memory Refresh Timing...eesuseecescsencosasosssnsssssncassseslld=1l
I/0 Read TiMiNGeeseseeeososcsosscsonnaonsasocasssssssssssanssaal3=12
I/0 Weite Timingeeeeeceseeeeeeessossssesscassasassasonceannasal3=12
Interrupt Acknowledge Timing.veeeseceosessccscsscassoscansveaesld=13
Memory to EPU Timingeeecessocceosoconcsscoscossssassencnaanseld=1b
EPU Write To MemOry.soesoesessoeessosscscesoosscncsssanssanssasl3=15
EPU To CPU Timingesessecsasececsosssaseccsosscssssensosassssesntld=lb
PAUSE Timingeeseeeeeoeesenasnscssosessossasoscastsasncssosecssosel3=16
On-Chip DMA Channel Flyby Memory Read TransactionN.eeeeescenes13=17
On-Chip DMA Channel Flyby Memory Write Transaction......se...13-18
Multiprocessor Mode Timing.sececseeccesetcsceccansonsnccansaasll=19

Table
Number
3-1.

3~3.

Page

Number

CS Field, Bus Timing & Initialization Register.....eeeec'evecead=1
LM Field, Bus Timing & Initialization Register........ccec0e0ea3-1
1/0 Field of Bus Timing and Control Register....ceceeceveceseel=2
HM Field of Bus Timing and Control Registerseeseecscesecssscess3=2
DC Field of Bus Timing and Control Register.c.ccccececencescneel=2
CONAition COBSeseeeeeeeocaveesscocnenasosssasonanscasssassssad=l
8-Bit Load Group Instructions.....cccevvnccccccncesssevcnnccesd=tt
16-Bit Load and Exchange Group Instructions....cecececostscsss5=5
Block Transfer and Search Group.cecscescccscocscsossosvssscased=5
8-Bit Arithmetic and LogicC GroOUP.cccevesscetscrncccvcsvoesconsssdr=b
16-Bit Arithmetic Operation Instruction8.ceecescscscccaccvsseee 5=7

" Bit Manipulation, Rotate and Shift Groupe.seccesecccsccascessed=B

Program Control Group Instructions...essceveveccnssscescaceanss=8

Input/0Output Instruction Group Instructions.....ecieeececeveeee5=9

CPU Control Groupeceeceeerooscssccssssvscscessccsscsccnnceossesd=10
Extended InstructionNS.ccececscessscovscscsnsancscansecssssssensedr=10
Encoding of B8-Bit Registers in Instruction Opcodes.....ooesase5=-11
Grouping of Maskable Interrupt RequestsS..cccececcecaccnccccasabt

INterrupt MOdeS...cseecerscersssssseannasescennsssenssanncanceboll

Trap TypPeS.ecececececoccscssosssssossscscsossessesasccnssnnasssoanseabe?

Interrupt Acknowledge Encoding for 280 Bus Parts.....ceeeeeseeb-7

Interrupt/Trap Vector Table Format..seeccececsvescscsnsencsseasb6=10
Page Descriptor Register AddressesS...ceecceesscscccsssssscsceel=d

MMU Invalidation POrt.ciecssscscsecancacscscanscnccccscscsasassl=b

I/0 Port Addresses for MMU Control Registers.eccececcccescccess?=6

CPU Accesses to On-Chip Memory as Cache..cceceecccscocncacase.B-2

On-Chip DMA Accesses (Both Flowthrough and Flyby) Effect

on On-Chip Memory as CaCh@eeesorsscssasssacascsassssscscccccscecB=3

DMA/CPU Accesses to On-Chip Memory as Fixed Memory Location...8-4

Encoding, IPA Field in C/T Configuration Registercescecececsssd=5

1/0 Addresses of Counter/Timer Registers..cceesseccccccocceesc9=7

Configuration and Command/Status Registers

for Linked Counter/Timers..cecececcccccoosssacscscsssvssccccsed=B

Encoding of DAD & SAD Fields in DMA Transaction

De8criptor Register.uveesscesecscssocsssssnsscssssssscsnsasscsed=l]

" Encoding of Type Field in Transaction Descriptor Register.....9-14
Encoding of BRP Field in Transaction Descriptor Register......9-14.

Encoding of ST Field in Transaction Descriptor Register,......9-14
1/0 Addresses of DMA RegiSters...sseeeescscesssecsssrtacsscnssd=15
CR Field of UART Configuration Register.....ceeeescssecccccescd=19
BC Field of UART. Control Register.....ceoeeevncscsvccsssccessssd=19
1/0 Addresses of UART RegQisSters...sseeeesescacsssonsassscoesssd=20
Reset Value of UART and DMA Registers

When Bootstrap Mode s Se1eCtedeeeeccceaccnassovessssnsassesaad-2l

xi

Table of Contents (Continued)

10-1.

10-2.

11-1.
11-2.
13-1.
B-1.
8-2.
B-3.
B-4.
E-1.
E-2.
E-3.
E-4.
E-5.
£-6.
£27.
E-8.
E-9.
£-10.
F-1.
F-2.

Bus Transactions Involved in Fetch of

Extended Instruction Template......................‘..........10—8
Sequence of Transactions for Data Transfers

Between an EPU and MemOTY...ceesesoosssorosncnssnsssssasnsesssl0=9
Effect of a Reset on 2280 CPU & MMU Registers...caosescecesossssll=2
Effect of a Reset on 2280 On-Chip Peripheral Registers........11-3
ST Status Line Decode..cesesesceesscssscccesssescasosnscssoscassll=b
Format 1 Instruction ENcodingS.eececececscocoosossoravssosssoesB=2
Format 2 Instruction Encoding8.eceeecescescssossosososssssassssaB=2
Format 3 Instruction EncodingS.eeecscsscecsceosssccsosarncnsnasBe2
Format 4 Instruction Encodings....cieeieeeccincrecenseansneeesB=2
Instruction Execution TimeS..eececeveasscoccasscsonensoscsssecsrab=2
Extended Instruction Execution Times.ceeerenncersesensssanaaasb=11
Interrupt, Trap, and Special Condition Execution Times........E-12
Instruction Fetch and Decode Timing..coeesesescsconcsnssesenacb=13
Data Read TimMinNQg.esoceoescsssassscsoscescscnssansssosanssssssssb=14
Data Write Timingeeeseaesesessesssavssossvenasanssnsecraseansosessb=14
I/0 Read and Write TimingG.ccsoeessseossnsaocccossssasosssnenesE=15
EPU Read and Write Timing.seceeeeevscesosnsnsncsonsoncssasnosssb=15
Interrupt Acknowledge Timinge..eeeeeesesccossscesssssssassonsnsE=15
Miscellaneous Transaction TiminNg.cccevecsccenccioscccoscssessebl=16
78400 Peripheral Family..eeesoooceccosanccevasoanocscsssiocassenef=1
28000/28500 Peripheral Family.oereeenecenceroranencnesnensnnscfF=1l

xii

Chapter 1. __
Z280 Architectural Overview

1.1 INTRODUCTION

The 7280™ microprocessor unit (MPU) features an
advanced 16-bit CPU that is object-code compatible

with the 7Z80%® CPU., The Z280 microprocessor unit:

includes memory management, peripherals, memory
refresh logic, «cache memory, wait state
generastors, and a clock oscillator on the same
integrated circuit as the CPU. The on-chip
peripheral devices include 4 DMA (Direct Memory
Access) channels, 3 counter/timers, end' a UART
(Universal Asynchronous Receiver/Transmitter). A
block diagram of the 7280 MPU is shown in Figure

1-1. This chapter presents some of the features ~

of the 2280 MPU family, with detailed descriptions

of the various aspeclis of the processor provided
in succeeding chapters.

The 2280 MPU has a multiplexed address/data bus
for communication with external wmemory and
peripheral devices. Two different bus structures
are supported by the Z280: an 8-bit data bus that
uses 780 Bus control signals, and a 16-bit data
bus that uses Z-BUS® bus control signals. Zilog's
80 and 78500 families of peripherals are easily
interfaced to the Z80 Bus; Zilog's Z8000® family
of peripherals are easily interfaced to the Z-BUS.

T80 COMPATIBLE 1 3sTMaEPIPELINE
EXECUTION UNIT INSTRUCTION/
DATA CACHE e~
OR MEMORY H
.
-
. .
PAGED s
MEMORY .
oneraL | |l WR0OMAR || et] * CONTAOL
PURPOSE COUNTER o 256 SEQUENCER * BanALs
ALE .
[» H
- :
.
R fr—

i ol — Ly
U b il =

ST,
- . ?
(]
X
cLocx FOUR 16.0T - NYERPT s,
OSCILLATOR OMA CHANNELS REFRESH MEMORY ¥— W
xmo THneE ADORESS coNTROL
v GENERATOR 200 0US
uant . -MT)OR
COUNTER! 288 orT
TIMERS 34-86T SOURCE eam
Py T—— 24-BIT DESTINATION m;-:m. BUSSCALE [-13
AND
16-8IT COUNTER INTERFACE WAIT
Pon— CONTROL GENERATOR PAUBE
v ¥ +* v
L a‘ []
cTN CTo NN DNASTR B &0 ™ [] JURAZX AwAzsl ADgAD;
Aa-Ars
ADg-ADys
Ad definition depends on OPT.
. sheves WA,
+ sheres W/ICT Mg,
* shores WICT 100,
Figure 11. Block Diagram

1.2 MPU ARCHITECTURAL FEATURES

The central processing unit of the 7280 MPU is a
binary-compatible extension of the Z80 CPU
architecture. High throughput rates for the 2280
CPU are achieved by a high clock rate, instruction
pipelining, and the use of on-chip cache memory.
The internal CPU clock can be scaled down to
provide for slower speed bus transaction timing.
A programmable refresh mechanism for dynamic RAMs
and a clock oscillator are provided on-chip.

B

1.2.1 System and Ussr Modes

Two modes of CPU operation, system and user, are
provided to facilitate operaeting system design.
In system mode, all of the instructions can be
executed and all of the CPU registers can be
accessed. This mode is intended for use by
programs performing operating system functions.
In user mode, certain instructions that affect the
state of the machine cannot be executed and the
control registers in the CPU are inaccessible. In
general, user mode is intended for use by
applications programs. This separation of CPU
resources promotes the integrity of the system,
since programs executing in user mode cannot
access those aspects of the CPU that deal with
time-dependent. or system-interface events.

The register = structure has been extended to
include separate Stack Pointer registers, one for
a sgystem-mode stack and one for a user-mode
stack. The system-mode stack is used for saving
program status on the occurrence of an interrupt
or trap condition, thereby ensuring that the user
stack is free of system information. The
isolation of the system stack from user-mode
programs further promotes system integrity.

1.2.2 Address Spaces

Addressing spaces in the 7280 CPU include the CPU
register space, the CPU control register space,
the memory address space, and the I/0 address
space. The CPU register file is identical to the
280 register set, with the exception of the
separate system- and user-mode Stack Pointers.
* The A register acts as an B8-bit accumulator; the
HL register is the 16-bit accumulator. These are

supplemented by four other 8-bit registers (8, C,
D, E) and two other 16-bit registers (IX, IY);
the B-bit registers can be paired for 16-bit
operation, and each 16-bit register can be treated
as two 8-bit registers. The Flag register (F)
contains information about the result of the last
operation. The A, F, B, C, D, E, H, ‘and L
registers are replicated in an auxiliary bank of
registers. These auxiliary registers can be
exchanged with the primary register bank for fast
context switching.

Several CPU control registers determine the
operation of the 27280 MPU. For example, the
contents of control registers determine the CPU
operating mode, which interrupts are enabled, and
the bus transaction timing. The control registers
are accessible in system-mode operation only.

The Z280 CPU's logical memory address space is the
same as that of the 780 CPU: 16-bit addresses are
used to reference up to 64K bytes of memory.
However, the on-chip Memory Management Unit (MMU)
extends the 16-bit logical memory address to a
24-bit physical memory address. Two separate
logical address spaces, one for system mode and
one for user mode, are supported by the CPU and
MMU. Optionally, the MMU can be programmed to
distinguish between instruction fetches and data
accesses; thus, the 7280 CPU can have up to four
memory address spaces: system-mode program,,
system-mode data, user-mode program, and user-mode
data. The logical address space is divided into
pages to facilitate controlled sharing of program
or data among separate processes.

The 7280 CPU architecture also distinguishes
between the memory and I/0 address spaces and,
therefore, requires specific I/0 instructions.
1/0 addresses in the Z280 CPU are 24 bits long,
with the upper 8 bits provided by an I/0 page
register in the CPU, ‘

1.2.3 Data Types

Many data types are supported by the 2280 CPU
architecture. The basic data type is the B-bit
byte, which is also the basic addressable memory
element. The architecture also supports opera-
tions on bits, BCD digits, 2-byte words, and byte
strings. ’

1.2.4 Addresaing Mpdes

The operand addressing mode is the method by which
a data operand's location is specified. The 7280
CPU supports nine addressing modes, including the
five modes available on the 280 CPU. The
addressing modes of the Z280 CPU are:

Register

Immediate

Indirect Register

Direct Address

Indexed (with a 16-bit displacement)
Short Index (with an 8-bit displacement)
Program Counter (PC) Relative

Stack Pointer (SP) Relative

Base Index

All addressing modes are available on the 8-bit
load, arithmetic, and logical instructions; the
8-bit shift, rotate, and bit manipulation
instructions are limited to the Register, Indirect
Register, and Short Index addressing modes. The
16-bit loads on the addressing registers support
all addressing modes except Short Index, while
other = 16-bit operations are 1limited to the
Register, Immediate, Indirect Register, Index,
Direct Address, and PC Relative addressing modes.

1.2.5 Instruction Set

The 2280 CPU instruction set is an expansion of
the 780 instruction set; the enhancements include
support for additional addressing modes for the
280 instructions as well as the addition of new
instructions. The 2280 CPU instruction set
provides a full complement of 8- and 16<bit
arithmetic operations, including signed and
unsigned multiplication and division. Additional
8-bit computational instructions auppoi't logical
and decimal operations. Bit manipulation, rotate,
and shift instructions round out the data
manipulation capabilities of the 2280 CPU. The
Jump, Call, and Return instructions have both
conditional and unconditional versions; Relative
addressing is provided for the Jump and Call

inatructions to support position-independent
programs. Block move, search, and 1/0
instructions provide powerful data movement
capabilities. In addition, special instructions
have been included to facilitate multitasking,
multiple processor configurations, and typical
high-level language and operating system
functions.

1.2.6 Exception Conditibns

The 7280 MPU supports three types of exceptions
(conditions that alter the normal flow of program '
execution): interrupts, traps, and resets.

Interrupts are asynchronous events typically
triggered by peripherals requiring attention. The
7280 MPU interrupt structure has been signi-
ficantly enhanced by increasing the number of
interrupt request lines and by adding an efficient
means for handling nested interrupts. There are
four modes for handling interrupts:

e 8080 compatible, in which the interrupting
device provides the first instruction of the
interrupt routine.

® D=adicated interrupts, in which the CPU jumps to
a dedicated address when an interrupt occurs.

e - Vectored interrupt mode, in which the
interrupting peripheral provides a vector into
a table of jump addresses.

e Enhenced vectored interrupt mode, wherein the.
CPU handles traps and multiple interrupt
sources, saving control information as well as
the Program Counter when an interrupt occurs.

The first three modes are compatible with the 280
CPU interrupt modes; the fourth mode provides more
flexibility, with support for nested .interrupts
and a sophisticated vectoring scheme.

Traps are synchronous events that trigger a
special CPU response when certain conditions occur
during instruction execution. The 2280 CPU
supports a sophisticated complement of traps
_including Divisioen Exception, System Call,
Privileged Instruction, Extended Instruction,
Single-Step, Breakpoint-on-Halt, Memory Access
Violation, aend System Stack Overflow Warning
traps.

Hardware resets occur when the RESET line is
activated and override all other conditions. A
reset causes certain CPU control registers to be
initialized.

1.2.7 Memory Mensgement

Memory menagement consists primerily of dynamic
relocation, protection, and sharing of memory.

Proper memory management ‘can provide a logical
structure to the memory space that is independent
of the actual physical location of data, protect
the user from inadvertent mistakes (such as trying
to exscute data), prevent unauthorized accesses to
memory, and protect the operating system from
disruption by users.

The 16-bit addresses manipulsted by the pro-
grammer, used by instructions, and output by the
CPU are called logical addresses. The on-chip
Memory Management Unit (MMU) transforms the
logical addresses into the corresponding 24-bit
physical addresses required for accessing memory.
This address transformation process is called
relocation, and makes user software independent of
physical memory. Thus, the user is freed from
specifying where information is actually located
in physical memory.

Status information generated by the CPU allows the
MMU to monitor the intended use of each memory
access. Illegal types of accesses, such as writes
to read-only memory, can be suppressed; thus,
areas of memory can be protected from unintended
or unwanted modes of use. Also, the MMU records
which memory areas have been modified and can
inhibit copies of data from being retained in the
on-chip cache,

When a memory access violation is detected by the
MMU, a trap condition is generated in the CPU ard
execution of the current instruction "is auto-
matically aborted. This mechanism facilitates the
easy implementation of virtual memory systems
based on the 7280 MPU.

1.2.8 Cache Momory

Cache memories are small high-gpeed buffers
situated between the processor and main memory.
For each memory access, control logic checks to
gsee if the data at that memory location is
currently stored in the cache. If so, the access
is made to the high-speed cache; if not, the
access is made to main memory, and the cache
itself might be updated. Thus, use of a cache
leads to increased performance with fewer memory
transactions on the system bus.

The 2280 MPU includes on-chip memory that can be
used as a cache for programs, data, or both.
Cache operations, including updating, are
performed automatically and are completely trans-
parent to the user. Optionally, this on-chip
memory can be dedicated to a set of memory
locations that are specified under program
control, instead of being used as a cache,

1.2.9 Refresh

The 7280 MPU has an internal mechanism for
refreshing dynamic memory. This mechanism can be
enabled or disabled under program control. If
enabled, memory refresh operations are performed
periodically at a rate determined by the contents
of a refresh rate register. A 10-bit refresh
address is generated for each refresh operation.

1.2.10 On-Chip Peripherals

Several programmable peripheral devices are
included on-chip in the 7280 MPUs: four DMA
channels, three 16-bit counter/timers, and a
UART. Optionally, one of the DMA channels can be
used with the UART as a bootstrap loader for the
2280 MPU's memory after a reset.

1.2.11 Multiprocessor Mode

A special mode of operation allows the 7280 MPU to
operate in environments that have a global bus,
wherein the 7280 MPU is not the bus master of the
global bus. A set of memory addresses (determined
under program control) is dedicated to a local
bus, which is controlled by the 2280 MPU, and
another set of addresses is used for the global
bus. The 2280 MPU is required to make a bus
request and receive an acknowledgement before
making a memory access to an address on the global
bus. This mode of operation facilitates use of
the 2280 MPU in multiple-processor configura-
tions., For example, a 2280 MPU could be used as
an 1/0 processor in a 2Z80000-, Z8000-, " or
1280-based system.

1.2.12 Extended Instruction Facility

The 2280 MPU architecture has a mechanism for
extending the basic instruction 'set through the
use of external devices called Extended Processing
Units (EPUs). Special opcodes have been set aside
to implement this feature. When the 7280 MPU
encounters an instruction with one of these
opcodes, it performs any indicated address calcu-
lations and data transfers; otherwise, it treats
the "extended instruction" as if it were executed
by the EPU.

If an EPU is not present, the 2280 MPU can be
programmed to trap when an extended instruction is
encountered so that system software can emulate
the EPU's activity.

1.3 BENEFITS OF THE ARCHITECTURE

The features of the Z280 MPU architecture provide
several significant benefits, including increased
program throughput, ‘increased integration of
system functions, support for operating systems,
and improvements in compiler efficiency and code
density. T

1.3.1 High Throughput

Very high throughput rates can be achieved with
. the 2280 MPU, due to the cache memory, instruction
pipelining, and high clock rates achievable with
this processor. The CPU clock rate can be scaled
down to provide the bus clock rate, ellowing the
designer to use slower, less-expensive memory and
I/0 devices, Use of the on-chip cache memory
further incresses throughput by minimizing the
number of accesses to the slower, off-chip memory
devices. The high code density achievable with
the 2280 CPU's expanded instruction set also
contributes to program throughput, since fewer
instructions are needed to accomplish a given
task.

1.3.2 Integration of System Functions

Besides a powerful CPU, the Z280 MPU includes
many on-chip devices that previously had to be

implemented in 1logic external to the micro-
processor chip. These devices include a clock
oscillator, memory refresh logic, wait state

generators, the MMU, cache memory, DMA channels,
counter/timers, and a UART.

reduced parts count in a system design, accom-
panied by -a resulting reduction in design and
debug time, power requirements, and printed
circuit board space. This increased level of
integration also contributes to system throughput,
since the on-chip devices can be accessed quickly
without the need of an external bus transaction.

1.3.3 Operating System Support

Several of the 7280 MPU's architectural features
facilitate the implementation of wmultitasking
operating systems for Z280-based systems.

The inclusion of user and system operating modes
improves operating system organization., User-mode
programs are automatically inhibited from per-
forming operating-system type functions. System-
mode memory can be separated from user-mode memory
and separate stacks can be maintained for system-
mode and user-mode operations. The System Call

Integration of all
these functions onto a single chip results in a -

instruction and the trap mechanism provide a
controlled means of accessing operating system
functions during user-mode execution.

" The interrupt- and trap-handling mechanisms are

well suited for operating system implementations.
Several levels of interrupts are provided,
allowing for separate control of various peripher-
al devices (both on and off the chip). A new
interrupt mode is provided, wherein status infor-
mation about the currently executing task is saved
on the stack and new program status information
for the service routine is automatically loaded
from @ special memory area. :Traps result in the
same type of program status saving. In both
cases, status is aslways saved on the system stack,
leaving the user stack undisturbed.

Allocation of resources within the operating
system can be accomplished using a special Test
and Set- instruction. Other instructions, such as
the Purge Cache instruction, are provided to aid
in task switching and other operating system
chores.

The on-chip MMU supports a multitasking environ- °
ment by providing both a means of quickly
allocating physical memory to tasks as they are
executed on the system and protection mechanisms
to enforce proper memory usage.

1.3.4 Code Density

Code density affects both processor speed and
memory utilization. Code compaction saves memory
space and improves processor speed by reducing the
number of instructions that must be fetched and
decoded. The largest reduction in program size
results from the powerful instruction set, where:
instructions such as Multiply and Divide help
substantially reduce the number of instructions
required to complete a task.

The efficiency of the instruction set is enhanced ~
by the addition of new addressing modes. For
example, all nine addressing modes are available
for all the B8-bit load, arithmetic, and logical
instructions.

1.3.5 Compiler Efficiency

For microprocessor users, the transition from
assembly language to high-level languages allows
greater freedom from architectural dependency and
improves ease of programming. For the 7280 MPUs,
high-level language support is provided through
the inclusion of features designed to minimize
typical compilation and code-generation problems.

1-5

Among these features is the variety and the power
of the 2280 instruction set, allowing the Z280 CPU
to easily handle a large amount and variety of
data types. The 7280 CPU's ability to manipulste
many different data types aids in compiler
efficiency; since data structures are high-level
constructs frequently wused in programming,
processing performance is enhanced by providing
efficient mechanisms for manipulating them.

Examples of commonly used data structures include
arrays, strings, and stacks. Arrays are supported
in the 2280 CPU by the Indirect Register, Index,
and Bese Index addressing modes. Strings are
supported by those same addressing modes and the
Block Move. and Compare instructions; since
compilers and assemblers often must manipulate
character strings, the Block Move and Block
Compare instructions can result in dramatic speed
improvements over software simulations of those
tasks. Numeric strings of BCD data can be
manipulated using the Decimal Adjust and Rotate
Digit instructions. Stacks are supported by the
Push and Pop instructions and the Stack Pointer
Relative, Index, and Base Index addressing modes;
"the Stack Pointer Relative addressing mode is

i

especially useful for accessing parameters- and
local varisbles stored on the stack.

1.4 SUMMARY

The 2280 MPU is a high-performance 16-bit micro-
processor, available with 8- and 16-bit external
bus interfaces. Code~compatible with the 780 CPU,
the 2280 MPU architecture has been expanded to
include features such as multiple memory address
spaces, efficient handling of nested interrupts,
system and user operating modes, and support for

multiprocessor configurations. Additional -
functions such as memory management, clock
generation, wait state generation, and cache

memory are included on-chip, as well as a number
of peripheral devices. The benefits of this
architecture--including high throughput rates, a
high level of system integration, operating system
support, code density, and compiler efficiency--
greatly enhance the power and versatility of the

2280 MPU, Thus, the Z280 MPU provides both a -
growth path for existing Z80-based designs and a
high-performance processor for future
applications.

Chapter 2.
Address Spaces

2.1 INTRODUCTION

The 2280 MPU supports four address spaces corre-
sponding to the different types of locations that
can be addressed, the method by which the logical
addresses are formed, and the translation mecha-

nisms wused to map the logical address into
' physical locat ions. These four address spaces
are:

o CPU register space. This consists of the
addresses of all registers in the CPU register
file,

" @ CPU control register space. This consists of
the addresses of all registers in the CPU
control register file,

i
o Memory address space. This consists of the
addresses of all locations in the main memory.

o I/0 address space. This consists of the
addresses of all 1/0 ports through 'which
peripheral devices are accessed, including
on-chip peripherals and MU registers.

“-augmented by an

2.2 CPU REGISTER SPACE

The 2280 CPU register file is illustrated in
Figure 2-1. The primary register file, consisting
of the A, F, B, C, D, E, H, and L registers, is
auxiliary file containing
duplicates of those registers. Only one set
(either the primary or auxiliary file) can be used
at any one time. Special exchange instructions
are provided for switching between the primary and
auxiliary registers.

The CPU register file is divided into five groups
of registers (an apostrophe indicates a register
in the auxiliary file):)

e Flag and accumulator registers (F, A, F'; A')

® Byte/word registers (8, C, D, E, H, L, B', C',
D', E', "l’ L')

o Index registers (IX, IY)

Stack Pointers (SSP, USP)

e Program Counter, Interrupt
Refresh register (PC, I, R)

register, and

PRIMARY PH.E AUXILIARY FILE
A ACCUMULATOR F FLAG REGISTER A’ ACCUMULATOR F' FLAG REQISTER
l‘ GENERAL PURPOSE C GENERAL PURPOSE B8’ GENERAL PURPOSE €' GENERAL PURPOSE

D GENERAL PURPOSE E GENERAL PURPOSE

D’ GENERAL PURPOSE E' GENERAL PURPOSE

IX INDEX REGISTER
1

T

H QGENERAL PURPOSE L GENERAL PURPOSE H' GENERAL PURPOSE L' GENERAL PURPOSE
g BITE—————|
NOTE: A ls the 8-bit
: HL ia the 18-kt sccumulator.
i INTERRUPY VECTOR [}

1Y INDEX REGISTER
1
" PC PROGRAM COUNTER
$P STACK POINTER .
| SvsTEM 33P)|
|- 16 BITS. —] :
Figure 211. Register File Organization

24

Register addresses are either aspecified explicitly
in the instruction or are implied by the semantics
of the instruction.
[}

The flag registers (F, F') contain eight status
flags. Four can be individually used for control
of program branching, two are used' to support
decimal arithmetic, and two are reserved (see
section 5-2). The sccumulator (A) is the implied
destination (i.e., where the result is stored) for
the 8-bit arithmetic and logical instructions.
Two sets of flag and asccumulator registers exist
in the Z280 CPU, with only one set accessible as
the flag register and the accumulator at any one
time. An exchange instruction allows switching to
the alternate flag register and accumulator.

The byte/word registers can be accessed either as
8-bit byte registers or 16-bit word registers.
Bits within these registers can also be accessed
individually. For 16-hit accesses, the registers
are paired B with C, D with E, and H with L. Two
sets of byte/word registers exist in the 2280 CPU,
although only one set is used as the current
byte/word registers; the other set is accessible
as the alternate group of byte/word registers via
an exchange instruction.

The index registers IX and 1Y can be accessed as’
16-bit registers or their upper and lower bytes
(IXH, IXL, IYH, and IYL) can be individually
accessed. :

The 7280 CPU has two hardware Stack Pointers, one
dedicated to system mode operation and one to user
mode operation. The System Stack Pointer (SSP) is
used for saving information when an interrupt or
trap occurs and for supporting.subroutine calls
and returns in system mode. The User Stack
Pointer (USP) is used for supporting subroutine
calls and returns in user mode.

The Program Counter is used to sequence through

instructions in the currently executing program

and for generating relative addresses. The Inter-
rupt register is used in interrupt mode 2 to
generate a 16-bit logical address from an 8-bit
vector returned by a peripheral during an inter-
rupt acknowledge. The Refresh register is used by
the 280 CPU to indicate the current refresh
address, but does not perform this function in the
2280 CPU; instead, it is another 8-bit register
available for the programmer.

. instructions. The

The explicit or implicit register specified by an
instruction is mapped into the CPU register file
based on the state of three control bits. One of
the three control bits is used to map the flag and
accumulator registers, selecting either F, A or
F', A' whenever the instruction specifies the flag
register or the accumulator. Another control bit
is used to map the byte/word registers, selecting
the B, C, D, E, H, L registers or the B', C', D',
E', H', L' registers. These two control bits are
changed by the Exchange Flag and Accumulator and
the Exchange Byte/Word Registers instructions,
respectively. At any time the program can sense
the state of these control bits by epecial jump
third control bit, the
User/System control bit in the Master Status
register, specifies whether the System Stack
Pointer register or the User .Stack Pointer
register is selected whenever an instruction
specifies the Stack Pointer register. In
addition, the User Stack Pointer register also has
an address in the CPU control register space via a
special Load Contrel instruction.

2.3 CPU CONTROL REGISTER SPACE

The 2280 CPU status and control registers govern
the operation of the CPU. They are accessible
only by the privileged Load Control (LDCTL)
instruction.

Control register addresses are specified by the
contents of the C register. No translation is
performed in mapping this 8-bit logical address
into the control register file location.

The Z280 CPU control registers are the Bus Timing
and Initialization register, the Bus Timing and
Control register, the Master Status register, the
Interrupt/Trap Vector Table Pointer, the I/0 Page
register, the System Stack Limit register, the
Trap Control register, the Interrupt Status
register, the Cache Control register, and the
Local Address register (Figure 2-2). The CPU
control registers are described in detail in
Chapter 3.

f

I INTERRUPT/TRAP VECTOR TABLE POINTER

REQISTERS §
([
|
"ﬂ-l.ﬂnm{

«

| 10 PAGE

I TRAP CONTROL

:

SYSTEM STACK LWUIT

Figure 22. CPU Control Registers

2.4 MENORY ADDRESS SPACES

Two memory address epéces, one for system and one

for user mode operation, are supported by the 7280

MPU, They are selected by the User/System mode
control bit in the Master Status register, which
governs the selection of page descriptor registers
in the MMU during address translation.

Each address space can be viewed as a string of
64K bytes numbered consecutively in ascending
order. The 8-bit byte is the basic addressable
element in the 7280 MPU memory aeddress spaces,
However, there are other addressable data ele-
ments: bits, 2-byte words, byte strings, and
multiple~byte EPU operands. :

The size of the data element being addressed
depends on the instruction being executed. A bit
can be addressed by specifying a byte and a bit
within that byte. Bits are numbered from right to
left, with the least significant bit being bit O,
as illustreted in Figure 2-3.

(ITTITTT]

Figure 23." Numbering of Bits within a Byte

The address of a multiple-byte entity is the same
as the address of the byte with the lowest memory
addreas within the entity. Multiple-byte entities
can be stored beginning with either even or odd
memory addresses.. A word (2-byte entity) is
aligned if its address is even; otherwise it is
unaligned. . Multiple bus transactions, which may
be.required to access multiple-byte entities, can
be mminiied if alignment is maintained.

The formats of multiple byte data types in memory
are given in Figure 2-4,

Note that when a word is stored in memory, the
least significant ' byte precedes the most

‘significant byte of the word, as in the 280 CPU

architecture.

The 16-bit logical addresses generated by a
program can be transleted into 24-bit’ physical
addresses by the on-chip MMU. When the
translation mechanism . is disaebled, the 24-bit
physical address consists of the logical address
for bits Ag-Aq5 and zeros for Aq4-A23-

2-3

60-bit floating-point (EPU instruction only) at address n:

16-bit word at address n:

sign,E10-4 address n

E3-0, F51-48 address n+1
F47-40 address n+2
F39-32 address n+3
F31-24 » address n+4
F23-16 .address n+5
F15-8 address n+6
F7-0 address n+7
<-1byte -> ‘

80-bit floating-point (EPU instructions only) at address n:

sign,E14-8 address n

E7-0 address n+1
F63-56 address n+2
F&5-48 address n+3
F47-40 address n+4
F39-32 address'n+5
F31-24 address n+6
F23-16 address n+7
F15-8 address n+8
F7-0 address n+9

BCD digit strings (EPU instruction only) at address n:
(up to 10 bytes in length; the illustration is for the
- maximum length string)

sign,D18 address n
D17,D16 address n+1
D15,D14 address n+2
D13,D012 addressn+3
D11,D10 address n+4
09,08 address n+5
D706 address n+6-
D5,D4 address n+7
D3,D2 address n+8
D1,D0 address n+9
Figure 2-4,

2.5 1/0 ADDRESS SPACE

1/0 addtesses are generated only by 1/0
instructions. The B8-bit logical port address
specified in the instruction appears on ADg-AD7;
this is concatenated with the contents of the A
register on lines Ag-Aqs for Direct addressing
mode, or by the contents of the B register for
Indirect Register addressing mode or block 1/0
instructions. .The contents of the 1/0 Page
register are appended to this address on lines
A1g-A23. Thus, the 24-bit 1/0 port address

address n
address n+1

least significant byte
most significant byte

32-bit integer (EPU instruction only) at address n:

B31-24 (most significant byte) address n
B23-16 address n+1
B15-8 address n+2
B7-0 (least significant byte) addressn+3
< 1 byte >

64-bit integer (EPU instruction only) at address n:

B63-56 (most significant byte) | address n
B55-48 address n+1
B47-40 address n+2
B39-32 address n+3
B31-24 address n+4
B23-16 address n+5
B15-8 address n+6
B7-0 (least significant byte) addressn+7
< 1 byte >

32-bit floating-point (EPU instruction only) at address n:

sign,E7-1 address n
EOQ,F22-16 address n+1
F15-8 address n+2
F7-0 address n+3
<--1byte ->

Formats of Multiple-Byte Data Elements in Memory

\

consists of the B8-bit address specified in the
instruction, the contents of the A or B register,
and the contents of ‘the 1/0 Page register.

An 1/0 read or write is always one transaction,
regardless of the bus size and the type of I1/0

ingtruction. On-chip peripherals with word
registers are always accessed with word
instructions, regardless of the size of the

external bus.

Chapter 3.
CPU Control Registers

3.1 INTRODUCTION

Several CPU control and status registers apecif)"
the operating mode of the 7280 MPU. There are two
types of CPU control registers: gsystem
~configuration registers and system status regis-
ters. The system configuration registers contain
information about the physical configuration of
the Z280-based system, such as bus timing infor-
mation, Typically, the system configuration

registers are loaded once during system initial-

ization and are not altered during subsequent

operations. The system status registers contain
information that may change during system
operation, such as the current 1/0 page. Access

to the CPU control registers is restricted to
system mode operation only, using the privileged
toad Control (LDCTL) instruction. Resets ini-
tialize the control registers sc that a 280 object
program will execute successfully on the Z280
MPU, (780 programs do not affect these registers,
since the Load Control instruction is not part of
the Z80 CPU's instruction set.) Unused bits in
these registers should always be loaded with
zeros.

3.2 SYSTEM CONFIGURATION REGISTERS

There are four B-bit system configuration regis-
ters: the Bus Timing and Initialization register,
the Bus Timing and Control register, the Locel
Address register, and the Cache Control register.
3.2.1 Bus Timing and Initialization Register

The Bus Timing and Initialization register
controls the scaling of the processor clock for

bue. timing, the duration of bus transactions to’

the lower half of physical memory, and the
enabling of the multiprocessor and bootstrap
modes., Figure 3~1 illustrates the bit fields in
this register.

ooooracal

Figure 3.

Bus Timing and Initialization Register

Clock Scaling (CS) Field. This 2-bit field
governs the scaling of the CPU clock for
generation of bus timing cycles. The state of the
CS field determines the bus clock frequency for
all bus transactions, as per Table 3-1. This
field is initislized during a reset operation, as
described below, and cannot be modified via
software.

Table 31. CS Field of Bus Timing and Initiailzation Reglster

CS Fleld Bus Clock Frequency

00 Bus clock frequency equals 12 CPU clock frequency
(one bus clock cycle for every two CPU clock cycles)

01 Bus clock frequency equals CPU clock'frequency
(one bus clock cycle for every one CPU clock cycle)

10 Bus clock frequency equals 4 CPU clock frequency
(one bus clock cycle for every four CPU clock
cycles)

1 Reserved

Low Memory Wait Ineertion (LM) Field. This 2-bit
field specifies the number of automatic wait
states to insert in memory transactions to the
lower 8 megabytes of physical memory (that is, all
memory locations where bit 23 of the physical
address is a 0), as per Table 3-2, Additional
wait states can still be added to any given memory
transaction via control of the WAIT input.

Table 3-2. LM Fleld of Bus Timing and Initlalization Reglster

Number of Wait States for
LM Field Lower 8M Bytes of Memory
00 0
01 1
10 2
1) 3

Multiprocessor Configurstion Ensble (WP) Bit.
This 1-bit field enables the multiprocessor mode
of operation, wherein the 2280 MPU is connected to
both a local and a global bus. Transactions to -

addresses on the global bus require a speciél bus
request and acknowledgement before the bus trans-
action can occur. (See Chapter 10 for details
concerning this mode of operation.) Setting this
bit to 1 enables the multiprocessor mode, and
clearing this bit to 0 disables this mode.

Bootstrap Mode Enable (BS) Bit. This 1-bit field
enables the bootstrap mode of operation. If the
bootstrap mode is selected during a reset oper-
ation, memory is automatically initialized via the
UART after 'the reset; the UART receiver and DMA
channel 0 are used to transfer 256 bytes of data
into the first 256 memory locations; e)lecution
then begins from memory location 0. (See Chapter
9 for further details.) Setting this bit to 1
enables the bootstrap mode and clearing this bit
to O disables this mode. The BS bit can be set to
t only during a reset operation, as described
below. Writing to this bit via a software command
has no effect. This bit is always a 1 when this
register is read.

Bits 4 and 7 of the Bus Timing and Initialization
register are reserved for special use by Zilog and
should always be loaded with 'a zero when writing
to this register. When this register is read,
bits 4 and 7 may return a 1.

The Bus Timing and Initialization register can be
initialized with either of two methods during a
reset operation. If the MPU's WAIT input is not
asserted during reset, this register is auto-
matically initialized to all =zeros, thereby
specifying a bus clock frequency of one-half the
internal CPU clock, no automatic wait states
during transactions to the lower 8M bytes of
memory, and disabling of the multiprocessor and
. bootstrap modes. If the WAIT input is asserted
during reset, the Bus [iming and Initialization
register is set to the contents of the ADy-AD; bus
lines, ‘as read during the reset operation (see
Chapter 12); this form of initialization is the
only way to specify the bootstrap mode. Once the
CS field has been loaded during reset, it cannot
be modified via software; however, the LM and MP
fields can be written using the LDCTL instruction.

3.2.2 Bus Timing and Control Register

The 8-bit Bus Timing and Control register deter-
mines the timing of bus transactions to the upper
8M bytes of memory and to all 1/0 devices, and the
timing of interrupt acknowledge transactions.
Figure 3-2 indicates the format of this register.

T T%]

Figure 3-2. Bus Timing and Control Register

1/0 Wait Insertion (1/8) Field. This 2-bit field
specifies the number of automatic wait states (in
addition to the one wait state always present
during I/0 transactions) to be inserted during
each I/0 read or write transaction, as per Table
3-3. The specified number of wait states is also
added to the vector read portion of an interrupt
acknowledge cycle.

Table 3-3. 1/O Fleld of Bus TIlﬁIng and Control Register

Number of Wait States
110 Fleld forl/O
00 0
01 1
10 2
1" 3

High Memory Wait Insertion (HM) Field. This 2-bit
field specifies the number of automatic wait
states to be inserted during memory transactions
to the wupper 8M bytes of physical memory
(locetions where address bit 23 of the physical
address is a 1), as per Table 3-4.

Table 3-4. HM Fileld of Bus Timing and Control Register

Number of Wait States for
HM Fileld Upper 8M Bytes of Memory
00 0
o] 1
10 2
1 3

Daisy Chain Timing (DC). This 2-bit field
determines the number of automatic wait states to
be inserted during interrupt acknowledge
transactions while the interrupt acknowledge daisy
chain is settling, as per Table 3-5. Normally,
2.5 bus clock cycles elapse between the assertion
of Address Strobe and the assertion of Data Strobe
during an interrupt acknowledge (for the Z-BUS)

-or between the assertion of MT and ‘the assertion

of TORG (for the 280 Bus). The value of the DC
field determines if any additional clocks are to
be added between the Address Strobe and Data
Strobe (or M1 and TORQ) assertions.

Table 3-5. DC Field of Bus Timing and Control Register

Number of Walt States for
DC Field interrupt Acknowledge
00, 0
01 1
10 2
" 3

3-2

The contents of the Bus Timing and Contrel
register govern the number of automatic wait
states to be inserted during various bus trans-

actions. Additional wait states can be added to
any bus transaction via control of the WATT
input.

The Bus Timing and Control register is set to 30H by a
reset. Bits 4 and 5 should always be written with 0.
when this register is.read, bits 4 and 5 may return a
1.

3.2.3 Local Address Register

The 8-bit Local Address register is used while in
multiprocessor mode to determine which memory
addresses are accessed via the local bus and which
memory addresses are accessed via the global bus.
If the multiprocessor mode is disabled (that is,
if there is a 0 in bit 5 of the Bus Timing and
Initialization register), the contents of the
Local Address Tregister have no effect on MPU
operation. '

If multiprocessor mode is enabled, the MPU auto-
matically uses the Local Address register during
each memory access to determine if the global bus
is required. The Local Address register consists
of a 4-bit match field and a 4-bit base field that
are compared to the upper four bits of the
phyaiéal memory address during memory trans-
actions. The 4-bit match field specifies which
bits of the physical memory address are of
interest; for those bit positions specified in
the match field, if all the corresponding address

' bits match the Local Address register's base field
bits, then the bus transaction can proceed on the
local bus. If there is a mismatch in at least one
of the specified bit positions, then the global
bus is -requested, and the transaction cannot
proceed until the global bus acknowledge signal is
asserted. (See Chapter 10 for further discussion
of the Multiprocessor made.)

The format of the Local Address register is
illustrated in Figure 3-3.

]

Figure 3-3. . Local Address Register

Base bit (B,): For each ME, that is set to 1, the
corresponding value of B, must match the value of
address bit A, in order for the local bus to be
used; otherwise, the transaction requires the use
of the global bus.

.data fetches,

Match Enable bit (ME,): If ME, is set to 1, then
the corresponding physical address bit A, is
compared to base bit B, to determine if the
address requires the use of the global bus, If
ME, is a zero, then any values for A, and By
produce a match, signifying a local bus access.
If every ME, is cleared to 0, then all memory
transactions are performed on the local bus.

The Local Address register is cleared to all zeros
by a reset.

3.2.4 Cache Control Register

The 8-bit Cache Control register controle the
operation of the on-chip memory., The contents of
the Cache Control register determine if the
on-chip memory is to be used as a cache or as
fixed memory locations; if used as a cache, the
cache can be enabled for instruction fetches only,
for data fetches only, or for both instruction and
This register is also used to
determine if burst-mode memory transactions are
supported. (See Chapter 8 for further discussion
of the on-chip memory and Chapter 13 for a
description of the burst mode memory transaction.)

The Cache Control register contains five control
bits, as described below. The format for this
register is shown in Figure 3-4.

|7wé[1| o fmspe] o | 0] :i

Figure 34. Cache Control Register

Memory/Cache (WT) Bit. While this bit is set to
1, the on-chip memory is accessed as physicsal
memory with fixed memory addresses; the user can
programmably select the ranges of memory addresses
for which the on-chip memory will respond. While
this bit is cleared to 0, the on-chip memory is
accessed associatively as a ‘cache.

Cache Instruction Dissble (I) Bit. While this bit
and the M/C bit are cleared to 0, the on-chip
memory is used as a cache during instruction
fetches. While this bit is set to 1, instruction
fetches do not use the cache. If the M/C bit is a
1, the state of this bit is ignored.

Cache Deta Disable (D) Bit. While this bit and
the M/C bit ere cleared to 0, the on-chip memory
is used as a cache during data fetches. While
this bit is set to 1, data fetches do not use the
cache. (The cache can be enabled for both

3-3

instruction and data fetches by clearing both the
1 and D bits.) If the M/C bit is a 1, the state
of this bit is ignored.

Low Memary Burst Capability (LMB) Bit. This 1-bit
field specifies whether burst-mode memory
transactions will occur during memory transactions
to the lower B8M bytes of physical memory
(locations where address bit 23 of the physical
address is a (). Setting this bit to 1 enables
burst-mode iransactions; clearing this bit to 0
disables burst mode transactions.

High Memory Burst Capability (HMB) Bit. This
1-bit field specifies whether burst-mode memory
transactions will occur during memory transactions
to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is & 1). Setting this bit to 1 enables

burst-mode transactions; clearing this bit to 0 .

disables burst-mode transactions.

The Cache Control register is set to a 20y
(hexadecimal) by a reset, enabling the on-chip
memory for use as a cache for instruction fetches
only and disabling burst mode transactions. Bits
0, 1, and 2 of this register are not used.

3.3 SYSTEM STATUS REGISTERS

There are six system status registers in the 2280
CPU: the Master Status register, Interrupt Status
register, Interrupt/Trap Vector Table Pointer, 1/0
Page register, Trap Control register, and System
Stack Limit register.

3.3.1 Master Status Register

The 16-bit Master Status register (MSR) contains
status information about the currently executing
program. Typically, the MSR changes when a new
programming task is dispatched; it changes
automatically when an interrupt or trap occurs.
For all traps and for interrupts processed using
interrupt mode 3, the old value of the MSR is
saved on the system stack and a new MSR is loaded
along with the Program Counter to define the
service routine. (See Chapter 6 for a detailed
discussion of interrupt and trap processing).

The format of the Master Status register is shown
in Figure 3-5. -

15

L] °]";I T FEL R

Figure 3-5.

Master Status Register

User/System (U/5) Bit. While this bit is cleared
to 0, the 7280 MPU is in the system mode of
operation; while set to 1, the MPU is in the user
mode of operation, The current operating mode
determines which Stack Pointer is in use and which
instructions can be executed; privileged
instructions can be executed only while in system
mode.

Breakpoint-on-Halt Enable (BH) Bit. While this
bit is set to 1, the CPU generates a breakpoint
trap whenever a Halt instruction is encountered;
while cleared to 0, the Halt instruction is
executed normally.

Single-Step Pending (SSP) Bit. The CPU checks
this bit prior to the start of an instruction
execution and generates a Single-Step trap if this
bit is set to 1. The Single-Step bit is
automatically copied into this field at the
completion of an instruction. This bit is
automatically cleared when a Single-Step, Division
Exception, Access Violation, Privileged
Instruction, or Breakpoint-on-Halt trap is
executed, so that the saved MSR has a 0 in this
bit position. (For these traps, the PC address of
the trapped instruction is saved for possible
re-execution.)

Single-Step (SS) Bit. This bit is the enable for
the single-step operating mode. While this bit is
set to 1, the CPU is in a single-step mode wherein
a Single-Step trap is generated for each
instruction; if cleared to 0, single-step mode is
disabled.

Interrupt Requeat Ensble (E,) Bit. There are
seven interrupt enable bits in the MSR, one for
each type of maskable interrupt source. The 2280
MPU's interrupt sources, including both the
external interrupt requests and the on-chip
peripherals, are grouped into seven levels of
interrupt requests. While bit E, is set to 1,
interrupt requests from sources at level n are
accepted by the CPU; while E, is cleared to O,
interrupt requests from sources at level n are not
accepted.

The Master Status register is loaded with all
zeros by a reset. Bits 7, 10, 11, 13, and 15 of
the MSR always should be written with zeros.

3.3.2 Interrupt Status Register

The 16-bit Interrupt Status register indicates
which interrupt mode is in effect, which interrupt
requests are pending, and which interrupt requests
are to be vectored. Only the interrupt vector

3-4

enable bits are writeable; all other bits in this

' register are read-only status bits. The fields in
the Interrupt Stetus register are shown in Figure
3-6.

1% 0

{oc] 0] oa e o‘l o w [o]w]iwsieefiws|ir]iei]imo]

Figure 36. Interrupt Status Register

Interrupt Vector- Enable (I,) Bits. These four
bits indicate which of the four external interrupt
inputs are to be vectored. While I, is set to 1,
interrupts on the Interrupt n line are vectored
when the CPU is in interrupt mode 3; while I, is
cleared to 0, that interrupt is not vectored.
These bits are ignored when not in interrupt mode
3.

Interrupt Mode (IM) Field. This 2-bit field
indicates the current interrupt mode in effect,
with a value n in this. field denoting interrupt
mode n.’ This field can be changed by executing
the IM instruction.

Interrupt Request Pending (IP,) Bits. When bit
IP, is a 1, an interrupt request from a source at
-level n is pgnding. ’

On reset, the Interrupt Vector Enable bits are
cleared to all zeros, interrupt mode 0 is in
effect, and the Interrupt Pending bits reflect the
state of the interrupt requests. Bits 7, 10, and
11 of this register are not used.

3.3.3 Interrupt/Trap Vector Table Pointer

The 16-bit Interrupt/Trap Vector Table Pointer

contains the twelve most significant bits of the
physical memory address of the start of the
Interrupt/Trap Vector Table., The Interrupt/Trap
Vector Table is a memory area that holds the
values that are loaded into the Master Status
register and Program Counter during trap and
interrupt processing under interrupt mode 3, as
described in Chapter 6. The twelve low-order bits
of the 24-bit physical address are assumed to be
all zeros: thus, the Interrupt/Trap Vector Table
must start on a 4K byte boundary in physical
memory,’ The low-order four bits of the
Interrupt/Trap Vector Table Pointer must be all
zeros (Figure 3-7).

IM’]A&J‘h[lzojlnlAullnllulhslkulAullul 0 l 0] 0] 0 i

Figure 3-7.

Interrupt/Trap Vector Table Pointer

Inhibit User I/0 (I) Bit.

The contents of the Interrupt/Trap Vector Table
Pointer are wunaffected by a reset and are
undefined after power-up. When this register is
read, bits 3,2,1 and 0 may return a 1.

3.3.4 I/0 Page Register

The 8-bit I1/0 Page register determines the upper
eight bits of the 24-bit peripheral address output
during execution of an I1/0 transaction (Figure
3-8). 1/0 pages FEH and FFH are reserved for

on-chip peripheral addresses,

[An] An] AmJ AaJAnI An l Ay lln

Figure 38. 1/0 Page Register

The contents of the 1/0 Page
cleared to all zeros by a reset.

register are

3.3.5 Trep Control Register

The B8-bit Trap Control register contains the
enables for the maskable traps. Figure 3-9
illustrates the format of this register.

Doooonon,

Figure 39. Trap Control Register

This bit determines
whether or not I/0 instructions are privileged
instructions. While this bit is set to 1, all'1/0
instructions are treated as privileged
instructions, and an attempt to execute an 1/0
instruction while in user mode results in a
Privileged Instruction trap. While this bit is
cleared to 0, 1/0 instructions can be successfully
executed in user mode. 1/0 instructions can
always be executed in system mode, regardless of
the state of this bit.

EPU Enable (E) Bit. This bit indicates whether or
not an Extended Processor Unit (EPU) is available
in the -system for execution of extended in-
structions. If this bit is cleared to O,
indicating that no EPUs are present, ‘the CPU
generates an Extended Instruction trap whenever an
extended instruction is encountered. If this bit

‘'is set to 1, the CPU performs whatever data

transfers are indicated by the extended in-
struction opcode, and assumes that the EPU is
present to execute the instruction.

3-5

System Stack Overflow Warning (S) Bit. This is
the enable bit for the System Stack Overflow
Warning trap. While it is set to 1, Stack
Overflow Warning traps can occur during a stack
access while in system mode, as determined by the
contents of the Stack Limit register. While this
bit is cleared to O, Sfack Overflow Warning traps
are disabled. This bit is automatically cleared
when a System Stack Overflow Warning trap is
generated.

The Trap Control register is cleared to all zeros
by a reset, indicating that I/0 instructions are
not privileged, EPUs are not present in the

system, and Stack Overflow Warning traps are
disabled. Bits 3 through 7 of this register are
not used.

3.3.6 System Stack Limit Register

The 16-bit System Stack Limit register determines
when a System Stack Overflow Warning trap is to be
generated. Pushes onto the system-mode stack
cause the 12 most significant bits of the logical
address of the System Stack Pointer to be compared
to the 12 most significant bits of this register;
a System Stack Overflow Warning trap is generated
if they match. The low-order four bits of this
register must be zeros (Figure 3-10). This
register has no effect on MPU operation if the
System Stack Overflow Warning enable bit in the
Trap Control register is cleared to O.

15 0

1 2 0 0 2 0 O O Y 3 K KR

Figure 3-10. System Stack Limit Register

The contents of the System Stack Limit register
are cleared to zeros by a reset.

3-6

Chapter 4.
Addressing Modes and Data Types

© 4.1 INTRODUCTION

An instruction is a consecutive list of one or
more bytes in memory. Most instructions aect upon
some data; the term operand refers to the data to
be operated upon. For 2280 CPU instructions,
operands can reside in CPU registers, memory
locations, or I/0 ports.
designate the locstion of the operands for an
instruction are called addressing modes. The 2280
CPU supports nine addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Indexed, Short Index, Program Counter Relative
Address, Stack Pointer Relative, and Base Index.

A wide variety of data types can be accessed using .

these addressing modes.

4.2 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions of the
addressing modes = for the 7280 CPU. Each
description explains how the operand's location is
calculated, indicates which address spaces can be
accessed with that particular addressing made, and
gives an example of an instruction using that
mode, illustrating the assembly languege format
for the addressing mode. The examples using
_memory addresses use logical memory addresses; if
the MU is enabled, these logical addresses can be
translated to physical addresses before the
physical memory is accessed, but this process is
not discussed or illustrated here.

4.2.1 Register (R, RX)

When this addressing mode is used, the instruction
processes data taken from one of the 8-bit
reqgisters A, 8, C, D, E, H, L, IXH, IXL, IYH, IYL,
or one of the 16-bit registers BC, DE, HL, 1X, 1Y,
.SP, or one of the special byte registers I or R.

Storing data in a register allows shorter
instructions and faster execution than occur with
instructions that access memory.

The methods used to -

INSTRUCTION REGISTER

| operamion | eaisren bl oreranc |

THE OPERAND VALUE 1S THE CONTENTS OF THE REGIS‘i'ER.

The operand is always in the register address
space. The register length (byte or word) is
specified by the instruction opcode.

Example of R mode:

LD BC,HL ;load the contents of HL into BC

Before instruction execution: After instruction execution:

BC: |A 6B 8 BC:
HL: - |9 A 2 0 HL:

g A20
9 A20

4.2.2 Immediate (IM)

When the IMediate eddressing mode is used, the
data processed is in the instruction.

The Immediate addressing mode is the only mode

. that does not indicate a register or memory

address as the source operand.

INSTRUCTION

OPERATION

'OPERAND

THE QPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate‘ operand is part of the
instruction, it is always located in the program
memory eddress space. Immediate mode is often

.~ used to initialize registers.

Example of IM wode:
LD A,55H sload hex 55 into the accumulator

Before instruction execution: After instruction execution:

A ‘ A @

4.2.3 Indirect Register (IR)

In the Indirect Register addressing mode, the
register specified in the instruction holds the
address of the operand. The data to be processed
is at the location specified by the HL register
for memory accesses or the C register for 1/0 and
control register space accesses. For the Load
Byte instruction, BC and DE can also be used in
addition to HL.

DATA MEMORY,
110 PORT, OR
INSTRUCTION REGISTER CONTROL REGISTER

| opemarion | meaister J—=| acoress |l orenano |

THE OPERAND VALUE {S THE CONTENTS OF THE LOCATION
WHOSE ADDRESS S IN THE REGISTER.

Depending on the instruction, the operand
specified by IR mode is located in either the 1/0
address space (I/0 instructions), control register
space (Load Control instruction), or data memory
address space (all other instructions).

The Indirect Register mode can save space and
reduce execution time when consecutive locations
are referenced or one location is repeatedly
accessed. This mode can also be used to simulate
more complex addressing modes, since addresses can
be computed before the data is accessed.

Example of IR mode:

LD A,(HL) sload the accumulator with the data

;addressed by the contents of HL

Before instruction execution: After instruction execution:

A 0 F A 0B
HL: |1 7 0 C HL: |1 7 0 C

Data memory: .

170C: 0B

4.2.4 Direct Address (DA)

When the Direct Address addressing mode is used,
the data processed is at the location whose memory
or 1/0 port address is in the instruction.

INSTRUCTION _
DATA MEMORY
OPERATION OR 1/0 PORT
ADDRESS —-1 orenano |

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS I8 IN THE INSTRUCTION.

Depending on the instruction, the operanﬁ
spegcified by DA mode is either in the 1/0 address
space (I/0 instructions) or in the data memory
address space (all other instructions).

This mode is. also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value thst is
loaded into the Program Counter.)

Example of DA mode:

LD BC,(5E22H) sload BC with the data in

;address S5£22

Before instruction execution: After instruction execution:

Data memory: .
5E22: o1
5E23: 03

4-2

4.2.5 Indexsd (X)

For this addressing mode, the data processed is at
the location whose address is the address in the
instruction offset by the contents of HL, IX, or
1y.

The indexed address is computed by adding the
address specified in the instruction to a

twos~complement "index" contained in the H., IX or
1Y register, also specified by the instruction.
Indexed addressing allows random access to tables
or other complex data structures where the address
of the base of the table is known, but the
particular element index must be computed by the
program.

DATA
MEMORY

INSTRUCTION REGISTER
OPERATION l REGISTER INDEX
ADDRESS

-

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

Operands specified by X mode are always in the
data memory address space,

Exmwple of X mode:
LD A,(IX + 231AH) sload into the accumulator
jthe contents of the memory

s location whose address
sis 231AH + the value in IX

Address calculation:

231A
+01FE
2518

4.2.6 Short Index (SX)

When the Short Index addressing mode is used, the
data processed is at the location whose address is
the contents of IX or IY offset by an 8-bit signed
displacement in the instruction. (Note that this
.addressing mode was called "Indexed" in the Z80
CPU literature.)

INSTRUCTION

REGISTER

Before instruction execution: After instruction execution:

A 2 3 A 3D
iX: 01 FE IX: 01FE

Data memory:

2518:

The short indexed addrees is computed by adding
the B8-bit twos-complement signed displacement
gpecified in the instruction to the contents of
the IX or IY register, also specified by the
instruction. Short Index addressing allows random
access to tables or other complex data structures
where the address of the base of the teble is
known, but the particular element index must be
computed by the program. ‘

DATA
MEMORY

orsnA'nonJ REGISTER ——[ADDRESS F—o@—'

DISPLACEMENT

}
1

THE OPERAND VALUE I8 THE CONTENTS OF THE LOCATION

WHOSE ADDRESS IS TH

THE INSTRUCTION,

IE ADDRESS IN
OFFSET BY THE CONTENTS OF THE RE! .

Operands specified by SX mode are always in the
data memory address space.

Example of SX mode:

;load into the accumulator the
scontents of the memory location
Iwhose address is one less than
sthe contents of IX

LD A, (IX - 1)

‘A 01 A
IX: 2 0 3 A 1X: -

Before instruction execution: After instruction execution:

ao|
L}
203 A

7

Data memory:

. Y

2039: *

4-3

Address calculation: FfF encoding in the instruc-
tion is sign-extended before

the address calculation,

203A
+FFFF
2039

4.2,7 Program Counter (PC) Relative Address (RA)

For Program Counter Relative Addressing mode, the
data processed is at the location whose address is
the contents of the Program Counter offset by an
8- or 16-bit displacement given in the
instruction.

The instruction specifies a twos-complement signed
displacement that is added to the Program Counter
to form the target address. Except for extended
instructions, the Program Counter value used is
the address of the first instruction following the
currently executing instruction, For extended
instructions, the address used to calculate the
displacement is the address of the template.

« INSTRUCTION [
PROGRAM
OPERATION l ADDRESS MEMORY
DISPLACEMENT OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF PC OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION,

An operand specified by RA mode is’ a'lnays in the
program memory address space.

The Program Counter Relative Addressing mode is
used by certain program control instructions to
specify the address of the next instruction to be
executed (specifically, the result of the addition
of the Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows references forward or backward
from the current Program Counter value; it is used
for program control instructions such as Jumps and
for Loads that access constants in the program
address space.

Example of RA wmode:

LD A,<LABEL> sload the accumulator with the
scontents of the memory location

swhose address is LABEL

This format implies that the assesbler will
calculate the displacement from the current PC
value to the specified label. Alternatively,
slightly different syntaxes can be used for the RA
mode if the actual displacement from the
instruction using this mode is known. Thus, this’
example can also be written in the following
manner :

LD A,<$ + 6> sload the accumulator with the
scontents of the memory location
swhose address is six more than
sthe address of the start of this
;LD instruction

or

LD A,(PC + 2) ' ;load the accumulator with the
scontents of the memory location
swhose address is two more than
sthe current PC, which now points

sto the next instruction
Because the Program Counter is advanced to point
to the next instruction when the address

calculation is performed, the constant that occurs
in the instruction is +2.

Before instruction execution: After instruction execution:

A: 2 3 A: 76
PC. Jo 2 0 2 PC:. [0 2 0 6

Program memory:

0202:
0203:
0204
0205:
0206:
0207:
LABEL: 0208:

instruction

wlo|v]e]|O

~Nlol=jo|lo|~|m

Addresé calculation:

0206
+ 2
0208

4.2.8 Stack Pointer Relative (SR)

fFor the Stack Pointer Relative addressing mode,
the data processed is at the location whose
address is the contents of the Stack Pointer
offset by & 16-bit displacement in the
instruction.

The instruction specifies a twos-complement
digplacement that is added to the contents of the
Stack Pointer register to form the address. An
operand specified by SR mode is always in the data
memory address space.

INSTRUCTION : spP
OPERATION
DISPLACEMENT

The SR addressing mode is used to specify data
items to be found in the stack such as parameters
passed to subroutines. The System Stack Pointer
or User Stack Pointer is selected depending on the
state of the User/System bit in the Master Status
register.

4.2.9 Base Index (BX)

For the Base Index addressing mode, the data
processed is at the location whose address is the

l ADDRESS i ’”‘.}“Jg{"?“
o

Example of SR mode:

LD A,(SP +2) ;load into the accumulator

. sthe contents of the memory
slocation whose address is
stwo more than the contents
.3of SP

Before instruction execution: After instruction execution:

A 69 A [Fs
sp. [200 sp. 8200

Data memory:

Top of stack 8200: A B
8201: o 1
8202: F 3
8203: 28

Address calculation:

8200
+ 2
8202

contents of HL, IX, or IY, offset by the contents
of another of these three registers.

INSTRUCTION REGISTERS ug:ro‘av
| orenanion | aeaisten | neamterz el avoREsS (+)

e | DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADORESS IS THE CONTENTS OF THE ONE REGISTER N
OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

This mode allows access to memory locations whose
physical addresses are computed at run time and
are not fully known at assembly time. An operand
specified by BX mode is alwa’ye in the data memory
address space.

Example of BX mode:
LD A, (HL + IX) s load into the accumulator the

scontents of the memory location
swhose address is the sum of the

scontents of the HL and IX
sregister

Before instruction execution: After instruction execution:

x [50] ~ [77]

HL |1 5 0 2 HL |1 5 0 2
X. |F FFE X |FFFF
Data memory:

1500:

Address calculation:

1502
+FFFE
1500

4.3 DATA TYPES

Many data types are supported by the 2280 MPU
architecture; that is, many data types have =a
hardware representation in a Z280 MPU system and
instructions that directly apply to them. The
7280 MPU supports operations on bytes, words,
bits, BCD digits, and byte strings.

The basic data type is a byte, which is also the
basic addressable element in the register, memory,
and I/0 address spaces. The 8-bit 1load,
arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or
memory. Bytes can be treated as logical, signed
numeric, or unsigned numeric values.

Dperations on two-byte words are also supported.
Sixteen-bit load and arithmetic instructions
operate on words in registers or memory; words
can be treated as signed or wunsigned numeric
values. 1/0 reads and writes can be B8-bit or
16~-bit operations. Sixteen-bit logical memory
addresses can be held and manipulated in 16-bit
registers.

Bits are fully supported and addressed by number
within a byte (see Figure 2-2). Bits within byte
fegisters or byte memory locations can be tested,
set, or cleared.

Operations on binary-coded decimal (BCD) digits

are supported by the Decimal Adjust Accumulator
and Rotate Digit instructions. BCD digits are
stored in byte registers or memory locations, two
per byte. The Decimal Adjust Accumulator in-
struction is used after a binary addition or
subtraction of BCD numbers. The Rotate Digit
instructions are used to sNift BCD digit strings
in memory.

Strfngs of up to 65,536 bytes can be manipulated
by the 7280 CPU's block move, block search, and
block 1/0 instructions. The block move
instructions allow strings of bytes in memory to
be moved from one location to another. Block
search instructions provide for scanning strings

" of bytes in memory to locate a particular value,

The block I/0 instructions-allow strings of bytes
or words to be transferred between memory and a
peripheral device.

Arrays are supported by the Indexed, Short Index,
and Base Index addressing modes. Stacks are
supported by those same modes and the Stack
Pointer Relative addressing mode, and by special
instructions such as Call, Return, Push, and Pop.
A special stack write warning feature aids in the
allocation of system stack memory space.

Strings of up to 16 bytes can be transferred
between memory and an Extended Processing Unit
(EPU) during execution of an extended instruction,

Chapter 5.
Instruction Set

5.1 INTRODUCTION

The 2280 CPU's instruction set is a superset of

the Z80's; the Z28B0 CPU is opcode compatible with
the 280 CPU. Thus, a 280 program can be executed
on a 2280 MPU without modification, The

instruction set is divided into ten groups by
function:

8-bit load

16-bit load and exchange

Block transfer and search

8-bit arithmetic and logical

16-bit arithmetic

Rotate, shift, and bit manipulation
Program control

Input/Output

CPU control

Extended instructions

‘.

This chapter describes the instruction set of the
2280 CPUs. First, flags and condition codes are
discussed in relation to the instruction set.
Then, interruptibility of instructions is
discussed and traps are described. The last part
of this chapter is a detailed description of each
instruction, listed in alphabetic order by
mnemonic. This section is intended to be used as
a reference for 7280 MPU programmers. The entry
for each instruction contains a complete
description of the instruction,
addressing modes, assembly language mnemonics,
instruction opcode formats, and simple examples
illustrating the use of the instruction.

5.2 PROCESSOR FLAGS

The Flag register contains six bits of status
information. that are set or cleared by CPU
operations (Figure 5-1), Four of these bits are
testable (C, P/V, Z, and S) for use with
conditional jump, call, or return instructions.
Two flags are not testable (H, N) and are used for
binary-coded decimal (BCD) arithmetic.

i’s] zTalul o {ev] N]ﬁ
Figure 51.

Flag Register

including -

The flags provide a 1link between sequentially
executed instructions, in that the result of
executing one instruction may alter the flags, and
the resulting velue of the flags can be used to
determine the operation of a subsequent
instruction. The program control instructions
whose operation depends on the state of the flags
are the Jump, Jump Relative, subroutine Call, and
subroutine Return instructions; these instructions
are referred to as conditional instructions.

5.2.1 Carry Flag (C)

The Carry flag is set or cleared depending on the
operation being performed. For add instructions
that generate a carry and subtract instructions
that generate a borrow, the Carry flag is set to
1. The Carry flag is cleared to 0 by an add that .
does not generate a carry or a subtract that
generates no borrow. This saved carry facilitates
software routines for extended precision
arithmetic. The multiply and divide instructions
use the Carry flag to signal information about the
precision of the result. Also, the Decimal Adjust
Accumulator instruction leaves the Carry flag set
to 1 if a carry occurs when adding BCD quantities.

for the rotate instructions, the Carry flag is
used as a link between the least significant and
most significant bits for any register or memory
location. During shift instructions, the Carry
flag contains the last value shifted out of any"
register or memory location. = For logical in-
structions the Carry flag is cleared. The Carry
flag can also be set and complemented with

- explicit instructions .

5.2.2 Add/Subtract Flag (N)

The Add/Subtract flag is used for BCD arithmetic.
Since the algorithm for correcting BCD operations

"is different for addition and subtraction, this

flag is used to record whether an add or subtract
was last executed, allowing a subsequent Decimal
Adjust Accumulator instruction to perform
correctly. See the discussion of the DAA. in-
struction for further information.

5-1

5.2.3 Parity/Overflow Flag (P/V)

This flag is set to a particular state depending
on the operation being performed.

For signed arithmetic, this flag, when set to 1,
indicates that the result of an operation on
twos-complement -numbers has exceeded the largest
number, or is less than the smallest number, that
can be represented using twos-complement
notation. This overflow condition can be
determined by examining the sign bits of the
operands and the result.

The P/V flag is also used with logical operations
and rotate instructions to indicate the parity of
the result. The number of bits set to 1 in a byte
are ¢ounted. If the total is odd, odd parity (P =
0) is flagged. If the total is even, even parity
is flagged (P = 1).

During block search and block transfer
instructions, the P/V flag monitors the state of
the byte count register (BC). When decrementing
the byte counter results in a zero value, the flag
is cleared to 0, otherwise the flag is set to 1.

During the Load Accumulator with I or R register
instructions, the P/V flag is loaded with the
contents of the Interrupt A enable bit in .the
Master Status register.

When inputting a byte to a register from an I/0
device addressed by the C register, the flag is
adjusted to indicate the parity of the data.

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to
0 depending on the carry and borrow status between
bits 3 and 4 of an 8-bit arithmetic operation and
between bits 11 and 12 of a 16-bit arithmetic
operation, This flag is used by the Decimal
Adjust Accumulator instruction to correct the
result of an addition or subtraction operation on
packed BCD data.

5.2.5 Zero Flag (Z)

The Zero flag (Z) is set to 1
generated by the execution of certain instructions
is a zero. ‘

For arithmetic and logical operations, the Zero
flag is set to 1 if the result is zero. If the
result is not zero, the Zero flag is cleared to 0.

if the result

fFor the block search instructions, the Zero flag
is set to 1 if a comparison is found between the
value in the Accumulator and the memory location.
pointed to by the contents of the register pair
HL.

When testing a bit in a register or memory
location, the Zero flag contains the complemented
state of the tested bit (i.e., the Zero flag is
set to 1 if the tested bit .is & 0, and
vice-versa). -

For the block I/0 instructions, if the result of
decrementing B is zero, the Zero flag is set to 1;
otherwise, it is cleared to 0. Also for byte
inputs to registers from 1/0 devices addressed by
the C register, the Zero flag is set to 1 to
indicate a zero byte input.

5.2.6 Sign Flag (S)

The Sign flag (S) stores the state of the most
significant bit of the result. When the 7280 CPU
performs arithmetic operations on signed numbers,
binary twos-complement notation is wused to
represent snd process numeric information. A
positive number is identified by a zero ip the
most significant bit. A negative number is
identified by a 1 in the most significant bit.

When inputting a byte from an 1/0 device addressed
by the C register to a CPU register, the Sign flag
indicates either pesitive (5 = 0) or negative (S =
1) data.

For the Test and Set instruction, the Sign bit is
set ‘to 1 if the tested bit is 1, otherwise it is
cleared to O.

5.2.7 Condition Codes

The Carry, Zero, Sign, and Parity/Overflow flags
are used to control the operation of the con-
ditional instructions. The operation of these in-
structions is a function of the state of one of
the flags. Special mnemonics called condition
codes are used to specify the flag setting to be
tested during execution of a conditional
instruction; the condition codes are encoded into
a 3-bit field in the instruction opcode itself.

Table 5-1 lists the condition code mnemonic, the
flag setting it represents, and the binary
encoding for each condition code.

5-2

]

Table 5-1. Condition Codes

) Flag Binary
Mnemonic Meaning Setting Code
Condition Codes for Jump, Call, and Retumn Instructions
NZ Not Zero Z=0 000
Z Zero Z=1 001
NC No Carry C=0 010
c Carry C=1 011
NV No Overflow V=0 100
PO Parity Odd V=0 .100
\ Overflow V=1 101
PE Parity Even V=t 101
NS No Sign S=0 110
P Plus S=0 110
S Sign S=1 m
M Minus S=1 i

Condition Codes for Jump Relative Instruction

NZ Not Zero Z=0 100
4 Zero Z=1 101
NC - No Carry C=0 110
C Carry C=1 111

5.3 INSTRUCTION EXECUTION AND EXCEPTIONS

Two types of exception conditions, interrupts and
traps, can alter the normal flow of. program
execut ion, Interrupts are asynchronous events
generated by a device external to the CPU;
peripheral devices wuse interrupts to request
service from the CPU. Traps are synchronous
events generated internally in the CPU by
particular conditions that oceur during
instruction execution., Interrupts and traps are
discussed in detail in Chapter 6. This section
examines the relationship between instructions and
the ‘exception conditions.

5.3.1 Instruction Execution and Interrupts

when the CPU receives an interrupt request, and it
is enabled for interrupts of that class, the
interrupt is normally processed at the end of the
current instruction. However, the block transfer
and search instructions are désigned to be inter-
ruptible so as to minimize the length of time it
takes the CPU to respond to an interrupt. If an
interrupt request is received during a block move,
block search, or block I/0 instruction, the in-
struction is suspended after the current iter-
ation. The address of the instruction itself,
rather than the address of the following in-
struction, is saved on the system stack, so that
the same instruction is executed again when the
interrupt handler executes an interrupt return

instruction. The contents of the repetition
counter and the registers that index into the
block operands_ are such that, after each iter-
ation, when the instruction is reissued upon
returning from an interrupt, the effect is the
same as if the instruction were not interrupted.
This assumes, of course, that the interrupt
handler preserved the registers.)

5.3.2 Instruction Execution and Traps

Trabs are synchronous events that result from the
execution of an instruction. The action of the
CPU in response to a trap condition is similar to .
the case of an interrupt in interrupt mode 3 (see
Chapter 6). All " traps except for Extended
Instruction, System Stack Overflow Warning,
Single Step and Breakpoint-on-Halt are nonmask-
able.

The 2280 MPU supports eight kinds of traps:

Division Exception

Extended Instruction

Privileged Instruction

System Call

Access Violation (page fault and write protect)
System Stack Dverflow Warning

Single Step

Breakpoint-on-Halt

The Division Exception trap occurs when executing
a divide instruction if either the divisor is zero
or the result cannot be represented in the
destination (overflow).

The Extended Instruction trap occurs when an
extended instruction ' is encountered, but the
Extended Processor Architecture is disabled,
(the EPA bit in the Trap Control register should
be cleared to 0 if there is no EPU in the system
or if the 2280 MPU is configured with an 8-bit
bus). This allows the same software to be run on
2280 MPU system configurations with or without
Extended Processing Units (EPUs), For systems
without EPUs, the desired extended instructions
can be emulated by software that is invoked by the
Extended Instruction trap. For systems with an
8-bit ‘data bus that also have an EPU, the software
invoked by the Extended Instruction trap can use
I/0 instructions to access the EPU. The
information saved on the system stack during this
trap is designed to facilitate ‘the 8-bit I1/0
interface to an EPU b; providing ‘address
calculation for the operands and by pushing
addresses onto the system stack in the reverse
order from which they will be used by an I/0
interface trap handler.

The Privileged Instruction trap serves to protect
the integrity of a system from erroneous or

unauthorized actions of user mode processes.
Certain instructions, called privileged
instructions, can be executed only in system
mode. An attempt to execute one of these

instructions in user mode causes a Privileged
Instruction trap.

The System Call instruction always causes a trap.
This instruction is used to transfer control to
system mode software in a controlled way,
typically to request operating system services.

The Access Violation trap occurs whenever the 7280
MPU's on-chip MMU detects an illegal memory
access. Access Violation traps cause instructions
to be aborted. When Access Violation traps occur,
the logical address of the instruction is pushed
onto the system stack along with the Master Status
register; part of the logical address that caused
the page fault is latched in the MMU to indicate
which page frame' caused the fault; and the CPU
registers are unmodified, i.e., their ceontents are
the same as just before the instruction execution
began. (For block move, block search, or block
1/0 instructions, the registers are the same as
just before the iteration in which the page fault
occurred.)

The System Stack Overflow Warning trap arises
when pushing information onto the system stack
causes the Stack Pointer to reference a specified
16-byte area of memory., Use of this facility
protects the system from system stack overflow
errors.

The Single Step trap occurs with the execution of
each instruction, provided the Single-Step control
bit in the Master Status register is set to 1.
This facilitates software debugging of programs.

The Breakpoint-on-Halt trap occurs whenever the
Halt instruction is encountered and the
Breakpoint-on-Halt control bit in the Master
Status reqgister is set to 1. This facilitates
software debugging of programs.

5.4 INSTRUCTION SET FUNCTIONAL GROUPS

This section presents an overview of the 2280
instruction set, arranged by functional groups.
(See Section 5.5 for an explanation of the
notation used in Tables 5-2 through 5-11,)

5.4.1 8-Bit Load Group

This group of instructions (Table 5-2) includes
load instructions for transferring data between
byte registers, transferring data between a byte
register and memory, and loading immediste data
into byte registers or memory. All addressing
modes are supported for loading between the
accumulator and memory or for loading immediate
values into memory. Loads between other registers
and memory use the IR and SX addressing modes. An
exchange instruction is available for swapping the
contents of the accumulator with another register
or with memory.

The LDUD and LDUP instructions are available for
loading to or from the user-mode memory address
space while executing in system mode. The CPU
flags are used to indicate if the transfer was
successfully completed. LDUD and LDUP are
privileged instructions. The other instructions
in this group do not affect the flags, nor can
their execution cause exception conditions.

Table 5-2. 8-Bit Load Group Instructions

Addressing Modes Available

instruction Name Format RX M IR DA X SX RA SR BX
Exchange Accumulator EX Asrc . U . . L3 . . .
Exchange H,L EXHL
Load Accumulator LD A,src
LD dSt,A 3 . - 3
Load Immediate LD dst,n . °
Load Register (Byte) LO R,src
LDdst,R . . .
Load in'User Data Space LDUD A,src ° .
LDUD dst,A . .
Load in User Program Space LDUP Asrc . .
LDUP dst,A . .

5-4

5.4.2 16-Bit Load and Exchange Group

This group ¢‘>F load and exchange instructions
(Table 5~3) allows words of data (two bytes equal
one word) to be transferred between registers and
memory. The exchange instructions allow for
switching between the primsry and' alternate
reqister files, exchanging the contents of two
16-bit registers, or exchanging the contents of an
addressing register with the top word on the
stack. The 16-bit loads include transfers between

“except for EX AF, AF'.

reqisters and memory and immediate loads of
registers or memory. The Load Address instruction
facilitates the loading of the address registers
with a calculated address. The Push and Pop stack
instructions are also included in this group.
None of these instructions affect the CPU flags,
The Push instruction can
cause a System Stack Overflow Warning trap;
otherwise, no exceptions can arise from the
execution of these instructions.

Table 53. 16-Bit Load and Exchange Group Instructions

Addressing Modes Avallable
Instruction Name Format R M IR DA X SX RA SR BX
Exchange HL with Addressing Register EX DE,HL
EX XYHL
Exchange Addressing Register with Top of Stack EX (SP),XX
Exchange Accumulator/Flag with Alternate Bank EX AFAF’
‘Exchange Byte/Word Registers with Alternate Bank EXX
Load Addressing Register ’ LD XX,src . . . L . J
. LD dSt,XX . [] [. [
Load Register (Word) LD RR,src U] . .
LD dst,RR . . .
Load Immediate Word LD dst,nn
Load Stack Pointer LD SPsrc *
’ LD dst,SP . . L.
Load Address LDA XX,src . . 1] . .
Pop POP dst
Push PUSH src
*Restricted to an addressing register (HL, IX, or IY).
5.4.3 Block Transfer and Search Group interruptible; this is essential since the
repetition count can be as high as 65,536, The
This group of instructions (Table 5-4) supports instruction can be interrupted after any
block transfer and string search functions. Using iteration, in which case the address of the

these instructions, a block of up to 65,536 bytes
can bé moved in memory or a byte string can be
searched until a given value is found. All the
operations can proceed through the data in either
direction, Furthermore, the operations can be
repeated sutomatically while decrementing a length

counter until it reaches zero, or they can operate

on one storage unit per execution with the length
counter decremented by one and the source and
destination pointer reqisters properly adjusted.
The latter form is useful for implementing more
complex operations in software by adding other
instructions within a loop containing the block
instructions.

Various 2280 MPU registers are dedicated to
epecific functions for these instructions: the BC
register for a counter, the DE and HL registers
" for memory pointers, and the accumulator for
holding the byte value being sought. The repeti-
tive forms of these instructions are

instruction itself, rather than the next one, is
saved on the system stack; .the contents of the
operand pointer registers, as well as the
repetition counter, are such that the instruction
can simply be reissued after returning from the
interrupt without eny visible difference in the
instruction execution.

Table 5-4. Block Transfer and Search Group

Instruction Name Format
Compare and Decrement CPD
Compare, Decrement and Repeat CPDR
Compare and Increment CPI
Compare, Increment and Repeat CPIR
Load and Decrement LOD
Load, Decrement and Repeat LDDR
Load and Increment Ko/ I
Load, Increment,and Repeat LDIR |

5.4.4 B-Bit Arithmetic and Logic Group

This group of instructions (Table 5-5) performs
8-bit arithmetic and logical operations, The Add,
Add with Carry, Subtract, Subtract with Carry,
And, Or, Exclusive Or, Compare, and signed and
unsigned Multiply take one input operand from the
accumulator and the other from a register, from
immediate data in the instruction itself, or from
MEemory . All memory addressing modes are
supported: Indirect Register, Short Index, Direct
Address,PC Relative Address, Stack -Pointer
Relative, Indexed, and Base Index. Except for the

multiplies, which return the 16-bit result to the

HL register, these instructions
computed result to the accumulator.

return the
Both signed

and unsigned division are provided., All memory
addressing modes except Indirect Register can be
used to specify the divisor. ’

The Increment and Decrement instructions operate
on data in a register or in memory; all memory
addressing modes are supported. Three
instructions operate only on the accumulator:
Decimal Adjust, Complement, and Negate. The final
instruction in this group, Extend Sign, takes its
8-bit input from the accumulator and returns its
16-bit result to the HL register.

All these instructions except Extend Sign set the
CPU flags according to the computed result. Only
the Divide instructions can generate an exception.

Table 5-5. 8-Bit Arithmetic and Logic Group

Addressing Modes Available

Instruction Name Format RX IM IR DA X SX RA SR BX
Add With Carry {Byte) ADC A src
Add (Byte) ADD A src . 0 - .
And AND A,src
Compare (Byte) CP Asrc
Complement Accumulator CPL A

Decimal Adjust Accumulator DAA A

Decrement (Byte) DEC dst . O ry .
Divide (Byte) DiV A src
Divide Unsigned (Byte) DIVU A src
Extend Sign (Byte) EXTS A

Increment (Byte) INC dst
Multiply (Byte) MULT A,src . . . 3
Multiply Unsigned (Byte) MULTU A,src
Negate Accumulator NEG A

Or ' OR A,src
Subtract With Carry (Byte) SBC A src Y
Subtract (Byte) SUB A,src
Exclusive OR XOR A,src

5.4.5 16-Bit Arithmetic Operations

This group of instructions (Table 5-6) provides
16-bit arithmetic operations. The Add, Add with
Carry, Subtract with Carry, and Compare
instructions take one input operand from an
addressing register and the other from a 16-bit
register or from the instruction itself; the
result is returned to the addressing register.
The 16<bit Increment and Decrement instructions
operate on data found in a register or in memory;
the Indirect Register, Direct Address or. PC
Relative addressing mode can be used to specify
the memory operand. The instruction that adds the
contents of the accumulator to an addressing
register supports the use of signed byte indices
into tables or arrays in memory.

The remaining 16-bit instructions provide general
arithmetic capability using the HL registec as one
of the input operands. The word Add; Subtract,
Compare, and signed and wunsigned Multiply
instructions take one input operand from the HL
register and the other from a 16-bit register,
from the instruction itself, or from memory using
Indexed, Direct Address, or Relative addressing
mode, The 32-bit result of a multiply is returned
to the DE and H. registers, with the DE register
containing the most significant bits. The signed
and unsigned divide instructions take a 32-bit
dividend in the DE and HL registers (the DE
register containing the most significant bits) and
a 16~bit divisor from a register, from the
instruction, or from memory using the Indexed,
Direct Address, or Relative addressing mode. The

5-6

16-bit quotient is returned to the H register and
the 16-bit remainder- is returned to the DE
register, The Extend Sign instruction takes the
contents of ‘the HL register and delivers the
32-bit result to the DE and HL registers, with the
DE register containing the most significant bits
of the result. The Negate HL instruction negates

the contents of the HL register.

Except. for Increment, Decrement, and Extend Sign,
all the instructions in this group set the CPU
flags to reflect the computed result. The only
instructions that can generate exceptions are the
Divide instructions.

Table 56. 16-Bit Arithmetic Operation Instructions

Addressing Modes Avallable
Instruction Name Format R M IR DA X RA
Add With Carry (Word) ADC XX,src U
Add (Word) ADD XX,src .
Add Accumulator to Addressing Register ADD XX.A
Add Word ADDW HL,src
Compare (Word) CPW HL,src
Decrement (Word) DECW dst . . .] .
Divide (Word) DIV DEHL.,src
Divide Unsigned (Word) DIVU DEHL,src
Extend Sign (Word) EXTS HL
Increment (Word) INCW dst
Multiply (Word) MULT HL,src
Multiply Unsigned (Word) MULTU HL,src
Negate HL NEG HL
Subtract With Carry (Word) SBC XX,src .
Subtract (Word) SUBW HL,src . J . . .

5.4.6 Bit Menipulation, Rotste and Shift Group

Instructions in this group (Table 5-7) test, set,
and reset bitg within bytes and rotate and shift
byte data one bit position. Bits to be
manipulated are specified by a field within the
instruction. Rotation can optionally concatenate
the Carry flag to the byte to be manipulated.
Both left and right shifting is supported. Right
shifts can either shift 0 into bit 7 (logical
shifts) or can replicate the sign in bits 6 and 7
(arithmetic shifts). The Test and Set instruction
is useful in multiprogramming and multiprocessirg
environments for implementing synchronization
mechanisms between processes. All these

instructions except Set Bit and Reset Bit set the)

CPU flags according to the calculated result; the
operand can be a register or a memory location
specified by the Indirect Register or Short
Index addressing modes.

. The RLD and RRD instructions are provided for
manipulating strings of BCD digits; these rotate
4-bit quantities in memory specified by the
indirect register. The low-order four bits of the
accumulator are used as a link between rotations
¢ of successive bytes. !

None of these instructions benerate exceptions.

5.4.7 Program Control Grouwp

This group (Table 5-8) consists of the
instructions that affect the Program Counter (PC)
and thereby control program flow. The CPU
registers and memory are not altered except for
the Stack Pointer and the stack, which play a
significant role in procedures and interrupts.
(An exception is Decrement and Jump if Non-Zero
[DINZ], which uses a register as ‘a loop counter.)
The flags are also preserved except for the two
instructions specifically designed to set and
complement the Carry flag.

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to a new
location if the processor flags satisfy the
condition specified in the instruction. Jump
Relative is a 2-byte instruction that jumps to any
instruction within the range -126 to +129 bytes
from the location of this instruction. Most.
conditional jumps in programs are made to
locaetions only a few bytes away} the Jump
Relative instruction exploits this fact to improve
code compactness and efFiciency.)

A special Jump instruction tests whether the.
primary or auxiliary register file is being used
and branches if the auxiliary file is in use. In

5-7

Table 5-7. Bit Manipulation, Rotate and Shift Group

Addressing Modes Available
Instruction Name Format R IR SX
Bit Test - BIT dst . . .
Reset Bit RES dst . . .
Rotate Left) RL dst . . .
Rotate Left Accumulator RLA
Rotate Left Circular RLC dst . . .
Rotate Left Circular (Accumulator) RLCA
Rotate Left Digit RLD .
Rotate Right RR dst . . .
Rotate Right Accumulator RRA
Rotate Right Circular RRC dst . o .
Rotate Right Circular (Accumulator) RRCA
Rotate Right Digit RRD .
Set Bit SET dst . . .
Shift Left Arithmetic SLA dst . d .
Shift Right Arithmetic SRA dst . . .
Shift Right Logical SRL dst . . .
Test and Set TSET dst . . .

systems that reserve the auxiliary register file
for interrupt handlers only (via a software
convention), this instruction can be used to
decide whether registers must be saved.

Call and Restart are used for calling subroutines;
the current contents of the PC are pushed onto the
processor stack and the effective address
indicated by the instruction is loaded into the
PC. The use of a procedure address stack in this
manner allows straightforward implementation of
nested and recursive procedures. Call, Jump, and
Jump Relative can be unconditional or based on the
setting of a CPU flag.

Jump and Call instructions are available with the
Indirect Register and PC Relative Address modes in
addition to the Direct Address mode. These can be
useful for implementing complex control structures
such as dispatch tables. When using Direct
Address mode for a Jump or Call, the operand is
used as an immediate value that is loaded into the
PC to specify the address of the next instruction
to be executed.

The conditional Return instruction is a companion
to the Call instruction; if the conditiaon
specified in the instruction is satisfied, it
loads the PC from the stack and pops the stack.

Table 5-8. Program Control Group Instructions

Addressing Modes Available
Instruction Name Format IR DA RA
Call CALL cc,dst . . .
Complement Carry Flag CCF
Decrement and Jump if Non-Zero DJNZ dst .
Jump on Auxiliary Accumulator/Flag _ JAF dst .
Jump on Auxiliary Register File in Use JAR dst .
Jump JP cc,dst . . .
Jump Relative JR cc,dst .
Return RETcc
Restart RST p
System Call SC nn
Set Carry Flag SCF

A special instruction, Decrement and Jump if
Non-Zero (DINZ), implements the control part of
the basic Pascal. FOR loop in a one-word
instruction.

System Call (SC) is used for controlled access to
facilities provided by the operating system. It
is implemented identically to a trap or interrupt
in interrupt mode 3: the current program status
is pushed onto the system stack, and a new program
status is loaded from a dedicated part of memory.

5.4.8 Input/Output Instruction Group

This group .(Table 5-9) consists of instructions
for transferring a byte, a word, or a string of
bytes or words between peripheral devices and the
CPU registers or memory. Byte I/0 port addresses
transfer bytes on ADg-AD7 only. Thus in a 16-bit
data bus environment, 8-bit peripherals must be
connected to bus lines ADg-AD7. In an B-bit data
bus environment, word I/0 instructions to external
peripherals should not be used; however, on-chip
peripherals can still. be accessed by word I1/0
instructions.

The instructions for transferring a single byte
(IN, OUT) can transfer data between any 8-bit CPU
register or memory address specified in the
instruction and the peripheral port specified by
the contents of the C register. The IN
instruction sets the CPU flags according to the
input data; however, special cases of ‘these
instructions, restricted to using the CPU
accumylator and Direct Address mode, do not affect
the CPU flags. Another variant tests an input
port specified by the contents of the C register
and sets the CPU flags without modifying CPU
registers or memory.

The instructions for transferring a single word
(INW, OUTW) can transfer data between the HL
register and the peripheral port specified by the
contents of the C register. For word 1[/0, the
contents of H appear on ADy-AD7 and the contents
- of L eppear as ADg-ADq5. These instructions do
] not affect the CPU flags.

The remaining instructions in this group form a
powerful and complete complement of instructions
for transferring blocks of data between I/0 ports
and memory. The operation of these instructions
is very similar to that of the block move instruc-
tions described earlier, with the exception that
one operand is always an I/0 port whose address

remains unchanged while the address of the other

operand (a memory location) is incremented or
decremented. Both byte and word forms of these
instructions are available. The automatically

repeating forms of these instructions are inter-
ruptible,

I/0 instructions are not privileged if the Inhibit
Uger I/0 bit in the Trap Control register is
clear; they can be executed in either system or
user mode, so that 1/0 service routines can
execute in user mode. The Memory Management Unit
and on-chip peripherals' control and status
registers are accessed using the 1/0
instructions. The contents of the 1/0 Page
register are output on AD23-ADj¢g with the 1/0 port
address and can be used by external decoding to
select specific devices. Pages FF and FE are
reserved for on-chip I/0 and no external bus
transaction is generated. 1/0 devices can be
protected from unrestricted access by using the
1/0 Page register to select among 1/0 peripherals.

Table 59. InputOutput Instruction Group Instructions

Instruction Name Format
Input IN dst(C) .
Input Accumulator IN A(n)
Input HL INW HL,(C)
Input and Decrement (Byte) IND

Input and Decrement (Word) INDW
Input, Decrement and Repeat (Byte) INDR
Input, Decrement and Repeat (Word) INDRW
Input and increment (Byte) INI

Input and Increment (Word) ' INIW

Input, Increment and Repeat (Byte) INIR

Input, Increment and Repeat (Word) INIRW
Output OUT (C),src
Output Accumulator OuUT (n),A
Output HL OUTW (C),HL
Output and Decrement (Byte) ouTD
Output and Decrement (Word) ouTDW
Output, Decrement and Repeat (Byte) OTDR
Cutput, Decrement and Repeat (Word) OTDRW
Output and Increment (Byte) ouT!
Output and Increment (Word) OTIRW
Output, Increment and Repeat (Byte) OTIR
Output, Increment and Repeat (Word) OTIRW
Test Input TSTIH(C)

5.4.9 CPU Control Group

The instructions in this group (Table 5-10) -act
upon the CPU control end status registers or
perform other functions that do not fit into any
of the other instruction groups. There are three
instructions used for returning from an interrupt
or trap service routine. Return from Nonmaskable
Interrupt (RETN) and Return from Interrupt (RETI)

5-9

are used in interrupt modes 0,-1, and 2 to pop the
Program Counter from the stack and manipulate the
Intercupt Mask register, or to signal a reset to
28400 Family peripherals. The Return from
Interrupt Long (RETIL) instruction pops a 4-byte
program status from the System stack, and is used
in interrupt mode 3 and trap processing.

Two of these instructions are not privileged: No

Operation (NOP) and Purge Cache (PCACHE). The
remaining instructions are privileged.

Table 510. CPU Control Group

Instruction Name Format
Disable Interrupt DI mask
Enable Interrupt El mask

Halt : HALT

Interrupt Mode Select IMp

Load Accumulator From | or R Register LD Asrc
Load | or R Register From Accumulator LD dst,A
Load Control LDCTL dst,src
No Operation NOP

Purge Cache PCACHE
Return From Interrupt RETI

Return From Interrupt Long RETIL

Return From Nonmaskable Interrupt RETN

5.4.10 Extended Instruction Group

The 2280 MPU architecture contains a powerful
mechanism for extending the basic instruction set
through the use of external co-processors called
Extended Processing Units (EPUs). A group of 22
opcodes is dedicated for the implementation of
extended instructions using this facility. The
extended instructions (Table 5-11) are intended
for use on a 16~-bit data bus; thus, this facility
is available only on the Z-BUS configuration of
the 7280 MPU.

There are four types of -extended instructions in
the 2280 MPU instruction set: EPU internal
operations, data transfers from an EPY to memory,
data transfers from memory to an EPU, anhd data
transfers - between an EPU and the CPU's
accumulator. = The extended instructions that
access memory can use any of the six basic memory
addressing modes (Indexed, Base Index, PC
Relative, SP Relative, Indirect Register, and
Direct Address). Transfers between the EPU and
CPU accumulator are useful when the program must
branch based on conditions generated by an EPU
operation.

A 4-byte long "template" is embedded in each of
the extended instruction opcodes. These templates
determine the operation to. be performed in the EPU
itself. The formats of these templates are
described in the following pages. The
descriptions are from the point of view of the
CPU; that is, only CPU activities are described.
The operation of the EPU is implied, but the full
specification of the instruction template depends
on the implementation of the EPU, and is beyond
the scope of this manual. Fields in the template
that are ignored by the CPU are indicated by
asterisks, and would typically contain opcodes
that determine any operation to be performed by
the EPU in addition to the data transfers
specified by the instruction. A 2-bit
identification field is included in each template,
for use in selecting one of up to four EPUs in a
multiple~-EPU system.

The action taken by the CPU upon encountering an
extended instruction depends upon the EPA control
bit in the CPU's Trap Control register. When this
bit is set to 1, indicating that EPUs are included
in the system, extended instructions are
executed., If this bit is cleared to 0, indicating
that there are no EPUs in the system, the CPU
executes an extanded instruction trap whenever an
extended instruction is encountered; this allows a
trap service routine to emulate the desired
operation in software.

Table 5-11. Extended Instructions

Instruction Name Format
Load EPU From Memory EPUM src
Load Memory From EPU MEPU dst
Load Accumulator From EPU EPUF
EPU Internal Operation EPUI

5.5 NOTATION AND BINARY ENCODING

The rest of this chapter consists of detailed
descriptions of the 2280 MPU instructions,
arranged in alphabetical order by mnemonic. This
section describes the notational conventions used
in the instruction descriptions and the binary
encoding for register fields within instruction's
dperation codes {opcodes). -

The description of each instruction begins on a
new page. The instruction mnemonic and name is
printed in bold letters at the top of esch page to
enable the reader to easily locate 8 desired

description. The assembly langusge syntax is then
given in a single generic form that covers all the
variants of the instruction, slong with a list of
applicable addressing modes. This is followed by
a description of the operation performed by the
instruction, a listing of all the flags that are
affected by the instruction, a listing of ex-
ception conditions that may be caused by execution
of the instruction, illustrations of the opcodes
for all variants of the instruction, and a simple
example of the use of the instruction,

The following notstion is used throughout the
descriptions of the instructions:

(addr) A direct address i

<addr> An address to be encoded using relstive
addressing

b A 3-bit . field specifying the position of
a bit within a byte

BX Base Index addressing mode

ce A condition code specifying whether a
flag is set to 1 or clesred to 0

d An 8-bit signed displacement

DA Direct Address addressing mode *

dd A 16-bit signed displacement

disp The displacement calculated from the
address in relstive addressing

dst Dest ination location or contents

M Immediste addressing mode

IR Indirect Register sddressing mode

MSR The Master Ststus register

n B-bit immediate data

nn 16-bit immediate dats

p An interrupt mode

PC The Progrem Counter

PS The progrem status registers (the Program

Counter and Master Ststus register)

R A saingle B8-bit . register of the set
(A,B,C,D,E,H,L); also, R1 and R2 are used
when two different registers are
specified in the same instruction.
that the R register itself is accessed by
a slngle instruction and violstes this

convention,)

R! The corresponding 8-bit or 16-bit
register in the alternate register file
such as A' '

RA PC Relative Address addressing mode

RR A 16-bit register of the set (BC,DE,
. HL,SP); also, RRA and RRB are used when

two different registers are specified in
the same instruction

RX A single byte in the IX or 1Y registers;
thet is, a register in the set (IXH,IXL,
IYH,IYL); also, RXA and RXB are used when
two different registers sre specified in
the seme instruction

SP ~ The current Stack Pointer in use

SR Stack Pointer Relative addressing mode

(Note

sre Source location or contents

SX Short Index addressing mode-

uspP The User Stack Pointer

X Indexed addressing mode

XX One of the 16-bit addressing registers

HL, IX, or 'I¥; also XXA and XXB sre used
when two different registers sre speci-
fied in the same instruction

Xy One of the 16-bit index registers IX or
Iy

In the binsry encoding of the instruction, lower
case is used for the corresponding encoding of the
assembler syntax.

Brackets ([and]) are used in the assembly
language syntax to indicste an optional field.
For example, the 16-bit addition instruction for
adding word data to the HL register is described
as:

ADDW [HL,lsrc

This format mesns the instruction csen be written
e8:

ADDW HL,src
or
ADDM src ;

Assignment of a value is indicsted by the symbol
"<--". For example,

dst <{-- dst + src

indicetes that the source dats is added to the
destinstion dats and the result is stored in the
destinstion locstion.

The notation "addr(n)" is used to refer to bit "n"
of a given locstion, for example, dst(7).

The register field in the binary encoding of an
instruction opcode is encoded as shown in Table
5-12.)

+ Table 5-12. Encoding of 8-Bit Registers in

Instruction Opcodes
Register Encoding
A 111
B 000
C 001
D 010
E on
H 100
L 101

The remainder of this chapter consists of the
individual descriptions of each 7280 WMPU
instruction.

‘ADC

Add with Carry (Byte)
ADC [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A+A+sc+C
The source operand together with the Carry flag is added to the accumulator and the
sum is stored in the accumulator. The contents of the source are unaffected. Twos-
complement addition is performed. i
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: ADC AR [10]001] 1 |
RX: ADC ARX [11]e11]101][10]001] mx |
IM: ADC An [11foo1]110][. m]
IR: ADC A(HL) [10f001]110]
DA: ADC A,(addr) [11]o11]101] [10]001 [111] [addriow) | [addrthigh) |
~ X ADC A,(XX +dd) [[111]101] [10]001 [xx] [dow) | [dinighy |
SX: ADC AXY + d) [11]e11]301][T0]001[110]| d |
RA: ADC A<addr> {11]111]101] [70]001]000] [displiow) | [disp(high) |
SR: ADC A,SP + dd) (1]o11]101] [10]o01ooa] [ddow) | [dmigh) |
- BX ADC A,(XXA + XXB) [11[ot1]101][10]001] bx |
Field Encodings: &: oOforix 1foriy
~: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + IY)
Example: ADC A(HL) '
Before instruction execution: After instruction execution:
AF: 4 8 . saxhxvn1 AF: 6 1 00x1x000
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:

s 18]

ADC

Add With Carry (Word)
ADC dst,src dst = HL
src = BC, DE, HL, SP
or
dst = IX
src = BC, DE, IX, SP
or
dst = 1Y
src = BC, DE, IY, SP
Operation: dst < dst + src + C

The source operand together with the Carry flag is added to the destination and the sum
is stored in the destination. The contents of the source are unaffected. Twos-complement
addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the
result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Exéeptlons: None
Addressing)
Mode Syntax Instruction Format
ADC HL,RR [11]101]101] [01] « [010]
ADC XY,RR [11]e11]101][11]101][101] [01] m [010]
Field Encodings: &: ofor (X 1forly
m: 001 for BC, 011 for DE, 101 for add register to itseif, 111 for SP
Example: ADC HL,BC
Before instruction execution: After instruction execution:
F: sothxvni F: 00x0x001
BC: 2 3 0 8 BC: 2 3 0 8
HL: F O 3 8 HL: 13 4 1

‘

ADD

Add Accumulator to Addressing Register

Operation:

4

ADD dst,A dst = HL, IX IY
dst < dst + A

The contents of the accumulator are added to the contents of the destination and the
result is stored in the destination. The contents of the accumulator are unaffected. The
contents of the accumulator are treated as a signed binary integer and are sign-
extended to 16 bits; twos-complement addition is performed.

Flags:

8: Set if the result is negative; cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there is a carry from bit 11 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the
result is of the opposite sign from the operands; cleared otherwnse

N: Cleared

C: Set if there is a carry from the most significant bit of the result cleared otherwise

Exceptions:

None

Addressing
Mode

Syntax Instruétlon Format

ADD HLA [11]101]101] [01]101] 101}
ADD XY,A [11]e11]101] [11]101]101] [01] 101 101]

Field Encoding:

o: 0 for IX, 1 for IY

Example:

ADD HLA

Before instruction execution: After instruction execution:

AF: E 2 sochxvne AF: E 2 00x1x001
HL: 2 3 8 4 HL: 2 3 86 6

Computation: accumulator is sign-extended.

FFE2 -
+2384

2366

ADD

Add (Byte)
ADD [A]Jsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A< A + src
The source operand is added to the accumulator and the sum is stored in the ac-
cumulator. The contents of the source are unaffected. Twos-complement addition is
performed. .
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing
Mode Syntax - Instruction Format
R: ADD AR [10[oo0] v |
RX: ADD ARX [11]e11]101] [10]000 [rx | .
[H ADD An [11fooo[110][|
IR: ADD A(HL) [10[000]110]
DA: ADD A,(addr) [11]o11]101] [10]000 [111] [addr(low) | [addrihigh) |
X ADD A (XX +dd) [11]111]101[{10J000 [xx | ["dlow) | [dihigh) |
SX: . ADD A(XY + d) [1i[eni[101] [T0[oee [1i0] [&]
RA: ADD A<addr> [11]111]101] [10]000 Jooo] [disp(iow) | [disp(high) |
SR: ADD A(SP + dd) [A1[o11]01] [16]000 Jooo] [olowy | [amigh) |
BX: ADD A(XXA + XXB) [Fi]e11[101] [10]060 [bx |
Fleld Encodings: ¢: oforix, tfor Iy
: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: ADD "A,(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxvne AF: 6 0 ~ 00x1x000
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:

e [T s [70

ADD

Add (Word)
ADD dst,src dst = HL
src = BC, DE, HL, SP
or
dst = IX
src = BC, DE, IX, SP
or
dst = IY
src = BC, DE, Y, SP
Operation: dst < dst + src
The source operand is added to the destination and the sum is stored in the destination.
The contents of the source are unaffected. Twos-complement addition is performed.
Flags: S: Unaffected
Z: Unaffected
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Unaffected
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Exceptions: - None
Addressing
Mode Syntax Instruction Format
ADD HLRR [00] [001]
ADD XY,RR [11]e11]101] [00] w Joo01]
Fleld Encodings: o: oOforiX, 1forly :
L(H 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP
Example: ADD HL,BC

Before instruction execution:

F: szxhxvne
BC: 2 3 0 8
HL: F O 3 8

After instruction execution:

F: szx0xv01
BC: 2 3 0 8
HL: 13 4 0

ADDW

Add Word
ADDW [HL,]Jsrc src = R, IM, DA, X, RA
Operation: - HL < HL + src
The source operand is added to the HL register and the sum is stored in the HL register.
The contents of the source are unaffected. Twos-complement addition is performed.
Flags: S: Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: ADDW HL,RR {11]101]101} [1] w J110]
ADDW HLXY [11]e11]101] [11]101] 101] [13]100] 110]
IM: ADDW HL,nn (11[111]101] 31101 101] [11]110]110] [nClow byte)] ﬁ-(mgh byte) |
DA: ADDW HL,(addr) {11]o11] 101][11]101]101] [11]010]110] [addr(low) || addr(high) |
X ADDW HL(XY + dd) [11][111]101][11]101]101] [11] xy [110] [alowy | [dmigh) - |
RA: ADDW HL <addr> [11]o11]101][11]101] 101} [11]110]110] [dispiow) | [disphigh) |
IR ADDW HL(HL) [0 Jeo1] [#1]367 [701 | [#1]000] 70 |
Fleld Encodings: o: oOforix, 1forly
[(H] 000 for BC, 010 for DE, 100 for HL, 110 for SP
xy: 000 for (IX + dd), 010 for (IY + dd)
Example: . ADDW HL,DE N
Before instruction execution: After instruction execution:
F: szxhxvne F: 10x0x000
DE: 00 10 DE: 00 10
HL: A1 2.3 HL:|[A 1 3 3

AND

AND
AND [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A < A AND src
A logical AND operation is berformed between the corresponding bits of the source
operand and the accumulator and the result is stored in the accumulator. A 1 bit is
stored wherever the corresponding bits in the two operands are both 1s; otherwise a 0
bit is stored. The contents of the source are unaffected.
Flags: S: Set if the most significant bit of the resuit is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared-
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: AND AR [10i100] ¢ |
RX: AND ARX [11]e11]101] [10]100] o]
IM: AND An [11]100]110][" m]
IR: AND A(HL) [10]100]110].
DA: AND A (addr) [11]o11]101] [10]100[111] [addrgiow)] [Laddrihigh) |
X: AND A(XX +dd) (11]111]101] [10[100] xx | [_dlow) | [amigh)]
sX: AND A(XY + d) [11]e11]101] [10]100]110] [d] '
RA: AND A <addr> [11f111]101] [10] 100]000] [dispiiow) | [dispinigh) |
SR: " AND A(SP + dd) [11]011T101] [10]100]000] | dllow) | [_dmigh) |
BX: AND A(XXA + XXB) {11]o11]101] [10]100] bx]
Field Encodings: o: oforix, tfor Iy
: 100 for high byte, 101 for low byte
XX 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + IY), 011 for (IX + 1Y)
Example: AND A,(HL)
Before instruction execution: After ingtruction execution:
AF: 4 8 szxhxpne AF: 0 8 00x1x000
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:

usa[18 |

BIT

Bit Test
BIT b,dst dst = R, IR, SX

Operatlon: Z < NOT dst(b)
The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if
the specified bit is zero, otherwise the Zero flag is cleared to 0. The contents of the
destination are unaffected. The bit to be tested is specified by a 3-bit field in the instruc-
tion; this field contains the binary encoding for the bit number to be tested. The bit
number must be between 0 and 7.

Flags: $: Unaffected
Z: Set if the specified bit is zero; cleared otherwise
H: Set
P: Unaffected
N: Cleared
C: Unaffected

Exceptlons: None

Addressing
Mode Syntax Instruction Format
R: BIT bR . [11]oo1]o11} [0t b | ¢]
IR: BIT b,(HL) © [11]oo1[o11][01] b [110]
sX: BIT b,(XY + d) [11]e11]101] [11]001[011] | d |[ot]b]110]

Fleld Encoding: ®: OforiX, 1forly

Example: BIT 1,A
Before instruction execution: After instruction execution: .

AF: | 00010110 | saxhxpnc | AF: | 00010110 sOxixpoc |

CALL

Call
CALL [cc Jost dst = IR, DA, RA
Operation: If the cc is satisfied then: SP +-SP — 2
. (SP) <= PC
PC « dst
A conditional call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code ‘‘cc’’ specified in the instruction; an uncondi-
tional call always transfers control to the destination address. The current contents of
the Program Counter (PC) are pushed onto the top of the stack; the PC value used is the
address of the first instruction byte following the Call instruction. The destination address
is then loaded into the PC and points to the first instruction of the called procedure. At
the end of a procedure a return instruction (RET) can be used to return to the original
program. .
Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a call
performed conditionally on the setting of the flag.
When using DA mode with the CALL instruction, the operand is not enclosed in paren-
theses.
Flags: No flags affected
Exceptions: System Stack Overflow Warning
Addressing .
Mode Syntax Instruction Format
IR: CALL cc,(HL) (117017 101][17_ce_100] \
CALL (HL) [11 011 101][11 001 101] , “unconditional call”
DA: CALL cc,addr [11_cc_100][_addriiow) || addriigh) | _ ,
CALL addr {11 001 101]| addriiow) || addrihigh) | - [“unconditional call”
RA: CALL cc.<addr> (317111 101] {11 _cc_100] [cispfiow) | [dispnigh) |
CALL <addr> 117111 101]{11 001 101][dispow) |[dispihigh) | [“unconditional caii”]
Field Encoding: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110 forPor NS, 111 forMor S
Example: CALL 2520H
Before instruction execution: - After instruction execution:
PC: 1 8 3 0 ’ PC: 25 2 0
SP: F F 2 6 SP: F F 2 4
Data memory: Data memory:
FF24: 0.0 FF24: | - 3 3.
FF2s: 00 FF25: 16

CCF

Complement Carry Flag
CCF
Operation: C«<NOTC

The Carry flag is inverted.

Flags: S: Unaffected
Z: Unaffected
H: The previous state of the Carry flag
P: Unaffected ¢
N: Cleared)
C: Set if the Carry flag was clear before the operation; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

CCF [00]111[111]

Example: CCF
Before instruction execution: © After instruction execution:

CP

, - Compare (Byte)
CP [Alsrc. src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A — src
The source operand is compared with the accumulator and the flags are set according-
ly. The contents of the accumulator and the source are unaffected. Twos-complement
subtraction is performed.
Flags: $: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise]
H: Set if there is a borrow from bit 4 of the result; cleared otherwise -
V: Set if arithmetic overflow oceurs, that is, if the operands are of different signs and
the result is the same sign as the source; cleared otherwise
N: Set ‘
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing '
Mode Syntax Instruction Format
R: CP AR (10} 114] ¢]
RX: CP ARX [11fet1]101]] 10f111] = |
IM: CP An [1f11]110][" m |
IR: CP A(HL) [10]111]110]
DA: CP A,(addr) {11]o11]101][10]111]111} [addriow) | [addemigh) |
X: CP AQX +dd) 11 f101] [10[111] xx | [dtow |[dmigh)]
SX: CP AXY + d) [11]e11]101] [10]114[110][d |
RA: CP A<addr> [11]111]101][10]111]000] [displiow) | [dispthigh) |
SR: CP A(SP + dd) [11]ot1]101]{ t0{111]000][dilow)][dmigh) |
BX: CP A(XXA + XXB) | 111011]101][10]111] bx |
Fleld Encodings: o¢: oforix, 1t forly
n: 100 for high byte, 101 for low byte
Xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (X + IY)
Example: CP A(HL) ;
Before instruction execution: After instruction execution:
AF: 4 8 szxhxvne AF: 4 8 00x0x010
HL: 2 4 5 4) HL: 2 4 5 4
Data memory: Data memory:

use 18 | us[18 |

5-23

CPD

Compare and Decrement

CPD
Operation: A-(HL)
HL<HL - 1
BC<BC —~ 1
This instruction is used for searching strings of byte data. The byte of data at the loca-
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. Next the HL register is decremented by one, thus moving the pointer to the
previous element in the string. The BC register, used as a counter, is then decremented
by one. .
Flags: 8: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the
memory byte are equal; cleared otherwise
"H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise -
N: Set
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
CPD : [11101 101] [10[101] 001]
Example:
Before instruction execution:) After instruction execution:
AF: 3 B szxhxvne AF: 3 B 01x0x01¢c
HL: 1.2 15 HL: 1.2 14
BC:- 00 0o 1 BC: 00 0o
Data memory: Data memory:

CPDR

Compare, Decrement and Repeat

CPDR
Operation: Repeat until BC = 0 or match: A = (HL)
HL<HL — 1
BC«BC - 1
This instruction is used for searching strings of byte data, The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac-
cumulator until either an exact match is found or the string length is exhausted. The Sign
and Zero flags are set to reflect the result of the last comparison. The contents of the
accumulator and the memory bytes are unaffected. Twos-compiement subtraction is per-
formed.
After each comparison, the HL register is decremented by one, thus moving the pointer
to the previous element in the string. The BC register, used as a counter, is then de-
cremented by one. If the resuit of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register-are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.
This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction.can be properly resumed. '
Flags: S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating that the contents of the accumulator and
~ the memory byte are equal; cleared otherwise .
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise:
N: Set
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
CPDR [11]101]101] { 10[111]001]
Example: CPDR
Before instruction execution: After instruction execution:
AF: F 3 saoxhxvne AF: F 3 01x0xtic
HL: 11 1 8 HL: 11 15
BC: 00 0 7 BC: 00 0 4
Data memory: Data memory:
11_16: F 3 1116:
mr| oo | 112:
1118: 5§ 2 b 1118: 5 2

CPI

Compare and Increment

CPI
Operation: A-(HL)

HL<HL + 1

BC+BC -1

I3 1l

This instruction is used for searching strings of byte data. The byte of data at the loca-
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed.

Next the HL register is incremented by one, thus moving the pointer to the next element
in the string. The BC register, used as a counter, is then decremented hy one.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the
L, memory byte are equal; cleared otherwise

H: Set if there is a borrow from bit 4 of the result; cleared otherwise

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set

C: Unaffected

Exceptions: ~ None -
Addressing
Mode Syntax Instruction Format
CPI [11]101] 101]{ 10[100] 001 |
Example: CPI
Before instruction execution: _After instruction execution:
AF:[3 B soxhxwne AF:[3 B 01x0x01c
HL: 1 2 15 HL: 1 2 1 6
BC: 00 BC: 00 00
Data memory: Data memory:

CPIR

Compare, Increment and Repeat

Operation:

CPIR

Repeat until BC = 0 or match: A - (HL)
HL<HL + 1
BC < BC - 1

This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac-
cumulator untif either an exact match is found or the string length is exhausted. The
Sign and Zero flags are set to reflect the result of the comparison. The last contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. .

After each comparison, the HL register is incremented by one, thus moving the pointer
to the next element in the string. The BC register, used as a counter, is then de-
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.

This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Flags:

'S: Set if the last result is negative; cleared otherwise

Z: Set if the last result is zero, indicating that the contents of the accumulator and
the memory byte are equal; cleared otherwise

H: Set if there is a borrow from bit 4 of the last result; cleared otherwise

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise

N: Set

C: Unaffected

Exceptions:

None

Addressing
Mode

Syntax

Instruction Format

CPIR

[11]101]101][10]110] 001 }

Example:

CPIR

Before instruction execution:

After instruction execution:

AF: F szxhxvne AF: F 01x0x11c
HL: 18 HL: 1 1B
BC:| o© BC: 0 0 4

Data memory: Data memory:

1118: 2 1118:

1119: 0 ' 1119:

1M1A| F 3 111A:-

5-27

CPL

Complement Accumulator
CPL [A) '
Operation: A< NOTA

The contents of the accumulator are complemented (ones cbmpJement); all 1 bits are
changed to O and vice-versa.

Flags: 8: Unaffected
. Z: Unaffected : .
H: Set -
V: Unaffected
N: Set
C: Unaffected
Exceptlons: None -
Addressing
Mode Syntax Instruction Format
CPL A. [oof101] 111]
Example: CPL A
Before instruction execution: After instruction execution:
AF:| 2 8 | sxhxwne | AR D 7 | saxixvic |

CPW

Compare (Word)
CPW [HL Jsrc src = R, IM, DA, X, RA
Operation: HL — sre
The source operand is compared with the HL register and the flags are set accordingly.
The contents of the source and HL are unaffected. Twos-complement subtraction’is
performed.
Flags: . 8: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the
- result is the same sign as the source; cleared otherwise i
N: Set .
C: ‘Set if there is a borrow from the most significant bit of the result; cleared otherwise
Exceptlons: None
Addressing .
Mode Syntax Instruction Format
R: CPW HL,RR [11]101]101] [11] m [111]
CPW HLXY [11]e11]101] [11]101]}101] [11]100]111] *
IM: CPW HL,nn [13]111]101] [11]301]101] [11]110]117] [ngow byte) | [nMigh byte)]
DA: CPW HL,(addr) [11o11]101] [11]101[101] [11]010]111]| addrllow) || addrihigh) |
X CPW HL,(XY + dd) [nix]a01] [al1o1]101] [11]Joso[111] [atow) |[omight |
RA: CPW HL<addr> [11]o11]101] [11][101]101] [11]110][111] [displlow) || dispibigh) |
IR CPW HL(HL) } T [671 [101 | [#1901 |01 | [T [000]#11
Field Encodings: o: oOforiX 1for Y
) [LH 000 for BC, 010 for DE, 100 for HL, 110 for SP -
anmple: CPW HL,DE
Before instruction execution: After instruction execution:
F: szxhxvne F: 10x0x010
DE: 00 10 DE: 00 t0
HL: A1 2 3 HL: A1 .2 3

5-29

DAA

Decimal Adjust Accumulator

DAA

Operation: A < Decimal Adjust A

The accumulator is adjusted to form two 4-bit BCD digits following a binary,
twos-complement addition or subtraction on two BCD-encoded bytes. The table below
indicates the operation performed for addition (ADD, ADC, INC) or subtraction (SUB, SBC,

DEC, NEG).
Operation of DAA Instruction
Hex Value in Hex Valuein Number
C Before Upper Digit H Before Lower Digit Added CAfter H After
Operation DAA ' (Bits 7-4) DAA (Bits 3-0) toByte DAA DAA
' 0 0-9 0 09 00 0 0
0 0-8 0 A-F 06 0 1
ADD 0 0-9 1 0-3 06 0 0
ADC 0 A-F 0 0-9 60 1 0
INC 0 9-F 0 AF 66 1 1
(N = 0) 0 AF 1 0-3 66 1 0
. 1 0-2 0 0-9 60 1 0
1 0-2 0 AF 66 1 1
1 0-3 1 0-3 66 1 0
SUB 0 0-9 0 0-9 00 0 0
SBC 0 0-8 1 6-F FA 0 1
DEC 1 7-F 0 0-9 AO 1 0
NEG | 1 6-F 1 6-F 9A 1 1
(N=1)
The operation is undefined if the accumulator was not the result of a binary addition or sub-
traction of BCD digits.
Flags: + 8: Set if the most significant bit of the result is set; cleared otherwise
Z: Setifthe result is zero; cleared otherwise
H: Seetable above , '
P: Setif the parity of the result is even; cleared otherwise
N: Not affected '
C: Seetable above
Exceptions: None
Addressing
Mode Syntax Instruction Format
DAA [ooTro[113

Example:

DAA

Before instruction execution:

AF: |

2

| szx0xp01

After instruction execgution:

AF:[88 |

00x0x001

J .

531

DEC

Decrement (Byte)
DEC dst : “dst = R, RX, IR, DA, X, SX, RA, SR, BX
Operation: dst < dst — 1

The destination operand is decremented by one and the result is stored in the destina-
tion. Twos-complement subtraction is performed. .

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 80y; cleared otherwise
N: Set
C: Unaffected
Exceptions: None
Addressing)
Mode Syntax Instruction Format
R: DEC R [o0] r [101] .
RX: DEC RX . [11}et11f101][00] = [101]
IR: DEC (HL) 00] 110] 101]
DA: DEC (addr) [11]o14]101][00]111] 101] ["addr(iow) | ["addr(high) |
X DEC (XX +dd) pii[119]101][o0]xx[101]] diiow][dmigh |
sX: DEC (XY + d) [11]et1]101][oofr10]101][d "]
RA: DEC <addr> ' [11]111]101][00 Jooo] 101]["disp(low)][disp(high) |
SR: DEC (SP + dd) [11]o11]101][00]ooo] 101][alowy][amigh |
BX: DEC (XXA + XXB) [11]o11]101] [00 fbx [101]
Field Encodings: o: 0OforiX 1forly
' : 100 for high byte, 101 for low byte
xx: 001 for(IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: DEC (HL)
Before instruction execution: v Afterinstruction execution:
F: saxhxvne F: 10x0x01¢c
He:| 2 4 5 4 H:| 2 4 5 4
Data memory: Data memory:

DEC[W]

Decrement (Word)
DECIW] dst dst =R
or .
DECW dst dst = IR, DA, X, RA
Operation: dst < dst — 1
. | . .
The destination operand is decremented by one. Twos-complement subtraction is
performed. ‘
Flags: No flags affected _
Exceptions: None
» Addressing
Mode Syntax Instruction Format
R: DECW RR (o] [on1]
' DECW XY [11]e11]101] [oofio1]o11]
IR: DECW (HL) [11{o11] 101] [00]o01] 011
DA: DECW (addr) [11]o11]101] [o0[o11[011] ["adarfion) | ["adarmmign]
X: DECW (XY + dd) [a[a1] 101} {00 xy Jo11] o | [_amigh]
RA: DECW <addr> [oo[111]01%] [disptiow) | ["diepthigh) |
Field Encodings: ®: oforix, 1forty
. mw: 001 for BC, 011 for DE, 101 for HL, 111 for SP
xy: 001 for (X + dd), 011 for (IY + dd)
Example: DECW HL »
Before instruction execution: After instruction execution:

H: [2 3 038] He [2 3 07|

DI

Disable Interrupt

DI mask Mask = Hex value between 0 and 7Fy

Operation: If mask(i) = 1 then MSR(i) < 0
The designated interrupt control bits in the Master Status register (MSR) are cleared to
0, thus disabling all interrupts on these inputs; all other interrupt enables in the MSR are
unaffected. If no mask is present then all interrupts are disabled.
Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven |nterrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i.

Flags: No flags affected -

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format
Dl [11]110]011]
DI mask [11]101]101] [o1]110]111] [mask |
Mask = byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;

mask(7) must be zero.

Example: DI 23H
Before instruction execution: After instruction execution:
MSR:[o0 0 [7 F | MSR:[o0 0 [5 ¢C |

DIV

Divide (Byte)
DIV [HL Jsrc : src = R, RX, IM, DA, X, SX, RA, SR, BX
Operation: A< HL + sfc
L < remainder
The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H registet are unaffected. Both operands are treated as
signed, twos-complement integers and division is performed so that the remainder is of
the same sign as the dividend.
There are three possible outcomes of the DIV instruction, depending on the division and
the resulting quotient:
CASE 1: If the quotient is within the range —27 to 27— 1 inclusive, then the quotient is
left in the accumulator, the Overflow flag is cleared to 0, and the Sign and Zero flags are
set according to the value of the quotient.
CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow fiags are set to 1, and the Sign flag i is cleared to 0 Then the Division Exception
trap is taken.
CASE 3: If the quotient is outside the range —27 to 27—1, the accumulator remains un-
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.
Flags: 8: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected ’
V: Set if the divisor is zero or if the computed quotient lies outside the range from —27
to 271, cleared otherwise
N: Unaffected
C: Unaffected
- Exceptions: Division Exception
Addressing ’
Mode Syntax Instruction Format
R: DIV HLR [11]101] 101][14] r J100]
RX: DIV HL,RX [11]e11]101][13]101]101] [13] = [100]
IM: DIV HL.n [uparor][1101] 101} [1]111]100} [a]
DA: DIV HL,(addr) [11[o11]101] [11]101[301] [11]111]100] [addrlow) | [addrihigh)]
X: DIV HL,(XX +dd) [11[s11]101][11]101]101] [11] xx [106] [ciow)][othigh)]
SX: DIV HLXY + d) [11fet1]101]{ 11]101] 101] [11]310]100] [@]
RA: DIV HL<addr> [11]111]101] [11]101] 101 | [11]ooo]100] [displlow) | [dispthigh)]
SR: DIV HL(SP + dd) [11fo11]101][11]101] 101] [11]ooo]100] [aaiow)][amigh) |
BX: DIV HLOXA + XXB) [11}o11]101][11]101] 101] [11] bx T100]
IR: DIV HL(HL) [41]01]301] []w00]100] -

Fleld Encodings:

[H O for IX, 1 for IY

~: 100 for high byte, 101 for low byte
XX 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Example:

DIV HLC

Before instruction execution:

- AF: [5 5 szxhxvne
C: F E
HL: [F F F D,

After instruction execution:

AF:| 0 1 00xhx0nc
c: F E
H:[F F F F

DIVU

Divide Unsigned (Byte)
DIVU [HL Jsrc src = R, RX, IM, DA, X, SX, RA, SR, BX
Operation: A<« HL + src
L < remainder
The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H register are not affected. Both operands are treated as
unsigned, binary integers.
There are three possible outcomes of the DIVU instruction, depending on the division
and the resulting quotient:
CASE 1: If the quotient is less than 28, then the quotient is Ieft in the accumulator, the
Overflow and Sign flags are cleared to 0 and the Zero flag is set according to the value
of the quotient.
CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1 and the Sign flag is cleared to 0. Then the Division Exception
trap is taken. ’
CASE 3: If the quotient is greater than or equal to 28, the accumulator remains un-
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.
Flags: S: Cleared
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quotient |s greater than or equal to
28; cleared otherwise
N: Unaffected
C: Unaffected
Exceptlons: Division Exception
Addressing
Mode Syntax . " Instruction Format
R: DIVU HLR [11]101]101][11] & J101]
RX: DIVU HL,RX [11]et1]101][11]101]101][11] = [101]
IM: DIVU HL,n . [11f11f101] [11]101]101] [(11[a1 101][n | .
DA: DIVU HL,(addr) [11]o11T101] [11]100 [101] [11]171]101] [addrtiow) | [addrihigh) |
X: DIVU HL,(XX + dd) (f111]101 | [11]101 101] [13] xx J101][doow][dhigh) |
sX: DIVU HL,(XY + d) [11]e11]101][11]101]101] [11]110]101] [d]
RA: DIVU HL<addr> [11{111]101][11]101]101] [11]o00]101 | [displiow) || dispmigh) |
SR: DIVU HL/{SP + dd) " [11Jor1]v01] [11]101 101] (11]oce 101} [atlow) [amigh |
BX: - DIVU HL,(XXA + XXB) 11Jo11]101] [11]101]101 | [11] bx [101]
IR:

DIVU HL,(HL) [111101 J101 | {11 [110 [101 |

Fleld Encodings: ®: OforlX, 1forly
rx: 100 for high byte, 101 for low byte -
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)

Exampile: DI(IU HL,C

Before instruction execution: After instruction execution:

AF:[5 5 saxhxne AR [8 0
c: 0 2 c
HE[0 1 | 0 1 HE{ o 1

o
-

DIVUW

Divide Unsigned (Word)
DIVUW [DEHL,Jsrc src = R, IM, DA, X, RA
Operation: HL < DEHL -+ src
DE < remainder
The contents of the DE and HL registers (with the most significant bits of the dividend in
the DE register) are divided by the source operand (divisor) and the quotiént is stored in
the HL register and the remainder in the DE register. The contents of the source are
“unaffected. Both operands are treated as unsigned, binary integers.
There are three possible outcomes of the DIVUW instruction, depending on the division
and the resulting quotient:
CASE 1: If the quotient is less than 216, then the quotient is left in the HL register and
the remainder is left in the DE register, the Overflow and Sign flags are cleared to 0, and
the Zero flag is set according to the value of the quotient.
CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.
CASE 3: If the quotient is greater than 216 — 1, then the DE and HL registers remain un-
changed, the Overflow flag is set to 1, and the Zero and Sign flags are cleared to 0.
Then the Division Exception trap is taken. ' '
Flags: _ 8t Cleared
: Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected '
V: Set if the divisor is zero or if the computed quotient is greater than or equal to 216;
cleared otherwise '
N: Unaffected : ,
C: Unaffected
Exceptions: Division Exception
Addressing :
Mode Syntax Instruction Format
R: DIVUW DEHL,RR [11] 101 [7101] i11] rro11]
DIVUW DEHLXY [11]e11] 101][11]101] 101 | [11]101] 011] .
IM: DIVUW DEHL,nn [fnm1]do1] [1[101[101] [11]111011][ngowy | [nimighy |
DA: DIVUW DEHL,(addr) [11]o14] 101] [11]101] 101] [11]011] 011 | [addriow) | [addr(high) |
) G DIVUW DEHL(XY + dd) [11]111]101] [13]101]101] [11] xy Jo11] [dispiows | [dispinigh |
RA: DIVUW DEHL, <addr> [11]o11]101][11]101] 101] [11]111] 011] [dispilow)][disp(highy |
IR: DIVUW DEHL,(HL) {1t {ot1] 101] [11 [101 [101] [11 Joo1 [o11]
Field Encodings: o: OforiX 1forly .

fe: 001for BC, 011 for DE, 101 for HL, 111 for SP
xy: 001 for (IX + dd), 011 for (IY + dd) -

Example: DIVUW DEHL6

Before instruction execution: After instruction execution:
F - sazxhxvnc F
DE: 00 0 0 DE: 00
HL: 00 2 2 HL: 00

DIVW

Divide (Word)
DIVW' [DEHL,Jsrc src = R, IM, DA, X, RA
Operation: HL < DEHL + src
DE <« remainder
The contents of the DE and HL registers (with the DE register containing the most signifi-
cant bits of the dividend) are divided by the source operand (divisor) and the quotient is
stored in the HL register. The contents of the source are unaffected. Both operands are -
treated as signed, twos-complement integers and division is performed so that the re-
mainder is of the same sign as the dividend.
There are three possible outcomes of the DIVW instruction, depending on the division
and the resulting quotient:
CASE 1: If the quotient is within the range — 215 to 215~ 1 inclusive, then the quotient is
left in the HL register and the remainder is left in the DE register, the Overflow flag is
cleared to 0, and the Sign and Zero flags are set according to the value of the quotient.
CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken. _
CASE 3: If the quotient is outside the range — 215 to 215— 1, the DE and HL registers re- .
main unchanged, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to
0. Then the Division Exception trap is taken.
Flags: 8: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise
* H: Unaffected)
V: Set if the divisor is zero or if the computed quotient lies outside the range from —215
to 215 — 1, cleared otherwise
N: Unaffected
C: Unaffected
Exceptions: Division Exception
Addressing
Mode Syntax Instruction Format
R: DIVW DEHL,RR (W[3e1]101) [11] w [e10]
) DIVW DEHL,XY { 11]e11] 101][11]101]101]{ 11]101] 010]
IM: DIVW DEHL,nn © [t [1]1e1]101] [11]111]010] [ngow) | [nmmighy |
DA: DIVW DEHL,(addr) [11]o11]101][11]101] 101] [11]011]010]| addeClow) || addrthigh) |
) 8 DIVW DEHL,XY + dd) (] 101] [11]101]101] [11] xy Jo10][dfow) || omigh |
RA: DIVW DEHL,<addr> [11]o11]101]{ 11]101] 101][11]111]010] [displiow) || dispfigh) |
IR DIVW DEHL,(HL) | 11]om [101]] 1]101 101 | | 11 [oo1{ot0 |
Field Encodings: o¢: oforiX 1for I

m: 001 for BC, 011 for DE, 101 for HL, 111 for SP
xy: 001 for (IX + dd), 011 for (IY + dd)

S5-41

Example:

DIVW DEHL6

Before instruction execution:

F.
DE: 00
HL: 00

After instruction execution:

F:

DE: 00

HL: 00

oo
CIES

DJNZ

Decrement and Jump if Non-Zero

DJNZ dst dst = RA

Oboratlon: B«<B-1
if B # 0 then PC < dst
The B register is decremented by one. If the result is non-zero, then the destination ad-

- dress is calculated and theh loaded into the Program Counter (PC). Control then passes

to the instruction whose address is pointed to by the PC. When the B register reaches
.zero, control falls through to the instruction following DJNZ. This instruction provudes a
simple method of loop control.
‘The destination address is calculated using Relative addressing. The displacement inthe
instruction is added to the PC; the PC value used is the address of the instruction following
the DJNZ instruction. The 8-bit displacement is treated as a signed, twos-complement
integer. Thus the branching range from the location of this instruction is — 126 to + 129
bytes.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format
RA: DJNZ addr {oojotofooo]| disp |

Example: DJNZ 1050H

Before instruction execution: After instruction execution:
B: . 2
PC:| 10 | 708 PG: [10 5 0

El

Enable Interrupt
El mask Mask = Hex value between 0 and 7Fy
Operation: If mask(i) = 1 then MSR(i) « 1

The designated control bits in the Master Status register (MSR) are set to 1, thus enabl-
ing interrupts on these inputs; all other interrupt enables in the MSR are unaffected.
Note that during the execution of this instruction and the following instruction, all
maskable interrupts (whether previously enabled or not) are automatically disabled for
the duration of these two instructions. '

Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i. If no mask is present, all interrupts are enabled.

Flags:

No flags affected

.

Exceptions:

Privileged instruction

Addressing
Mode Syntax Instruction Format
El [11]111]o11]
El mask [11[101]101] [ot]111]111] [maek | -
Mask = byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;
mask(7) must be zero. .
Example: El 49H
Before instruction execution: After instruction execution:
MSR:) 00 | o0 o0 | MSR:| 00 | 48 |

EX

Exchange Accumulator/Flag with Alternate Bank

EX AF AF’
Operation: - AF = AF’
The control bit mapping the accumulator and flag registers into the primary bank or the
auxiliary bank is complemented, thus effectively exchanging the accumulator and flag
registers between the two banks.
Flags: Loaded from F’
Exceptions: None
Addressing.
Mode Syntax Instruction Format
EX AFAF’ [00]oo1] 000
Exampile: EX AFAF'
Before instruction execution: After instruction executlon:
AF: 2 3 F 3 AF: 10 B O
AF”: 1 08B0 AF"; 2 3 F 3

EX

Exchange Addressing Register with Top of Stack

EX (SP),dst dst = HL, IX, IY
Operation: (SP) < dst

The contents of the destination register are exchanged with the contents of the top of
stack. That is, the low-order byte contained in the register is exchanged with the con-
tents of the memory address specified by the Stack Pointer (SP), and the high-order byte
of the register is exchanged with the contents of the next highest memory address

(SP + 1).
Flags: + Noflags affected
Exceptions: None
Addressing
Mode - Syntax Instruction Format
EX (SP),HL [11[100]011]

EX (SP)XY [11]e11]101] [11]100]011]

Fleld Encoding: ®: OforIx, tiorly

Example: EX (SP),HL
Before instruction execution: After instruction execution:
HL: 21 9 3 HL: B 3 2 A
SP: 8 2 0 0 SP: 8 2 00
Data memory: Data memory:
8200: [2 A 8200: [9 3
8201: B 3 8201: 2 1

EX

- Exchange Hand L

EX H,L

Operation: He L
The contents of the H and L registers are exchanged. .

Flags: No flags affected

Exceptions: None

Addressing .
Mode Syntax Instruction Format

EX H,L . [11]101] 101 | {11]101]111]

Example: EX H.L
Before instruction execution: After instruction execution:

5-47

EX ,

Exchange HL with Addressing Register

EX src,HL src = DE, IX, IY
Operation: src < HL

The contents of the HL register are exchanged with the contents of the source.

Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
EX DEHL [11]101]011]

EX XY,HL f11]e11]101] {11]101]011]

Fleld Encoding: & OforiX, tforlY

Example: EX DEHL
Before instruction execution: After instruction execution:
DE: 8 2 EO DE: 3 8 F F
HL: 3 8 F F HL: 8 2 E O

EX

Exchange with Accumulator

-

EX Asrc src = R, RX, IR, DA, X, SX, RA, SR, BX
Operation: src + A
The contents of the accumulator are exchanged with the contents of the source. -
Flags: No flags affected
L
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: EX AR {11f101] 101] [00o] v [114]
RX: EX ARX) [1]e11]101] [19]101] 101] [00] = [111]
IR: EX A(HL) | 11}101] 101] [00]110[111]
DA: EX A(addr) [Jon101] [73]701]101] [oo] 111 [313] | addrGow) | [[addrtigh |
X EX A(X + dd) |11|111|1o1||11|1o1|1o1'|Loo]xxh1ﬂ[dgow)]| dmigh)]
SX: EX AXY + d) [1t]e11] 101] [11]101]101] [00]110]111]] d |
RA: EX A<addr> [11[111] 101] [11]101] 101] [00]000] 411] ["dispfiow | [cisptnigh) | -
SR: EX A(SP + dd) {11]o11]101][11]101]101] {00oJooo]111] ["daowr][dmigh |
BX: EX A(XXA + XXB) [11]011] 101] [11]101] 101] [00] bx 111}
Field Encodings: o: . oforix, t1forly ¢
~™: 100 for high byte, 101 for-low byte
XX : 001 for (IX + dd), 010 for Y + dd), 011 for (HL + dd)
- bx: 001 for (HL + DX, 010 for (HL + 1Y), 011 for (X + IV)
Example: ‘ EX AB
Before instruction execution: After instruction execution:
A 0 3 A 8 2
B: 8 2 B: 0 3

5-49

EXTS

Extend Sign (Byte)
EXTS [A]
Operation: LA

If A7) = 0,then H <+ Q0 else H < FF

The contents of the accumulator, considered as a signed, twos-complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the
accumutator are unaffected. This instruction is useful for conversion of short signed

operands to longer signed operands. ’

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax : Instruction Format

EXTS A {11]101]101][01]100] 100]

Example: EXTS A
Before instruction execution: After instruction execution:

A 8 2 A:
HL: 5 5 5§ 5 HL: F F

EXTS -

Extend Sign (Word)

Operatlon:

EXTS HL

if H(7) = 0, then DE < 0000 else DE <« FFFF

The contents of the HL register, considered as a signed, twos-complement integer, are
sign-extended to 32 bits and the resuit is stored in the DE and HL registers, with the DE
register containing the most significant bits. This instruction is useful for conversion of -
signed operands to larger signed operands.

‘Flags: No flags affected

Exceptions: None

Addressing :

Mode Syntax ' Instruction Format

EXTS HL Ii1]1o1|1o1][o1[1o1|1oo]

Example: EXTS HL
Before instruction execution: After instruction execution:
DE: 0 3 2 F DE: F F F F
HL E F 30 HL: E F 30

-EXX

Exchange Byte/Word Registers with Alternate Bank

EXX

Operation: BC < BC'
DE <+ DE’
HL < HL'
The control bit mapping the byte/word registers into the primary or auxiliary bank of the
CPU registers is complemented, thus effectively exchanging the B, C, D, E, H, and L
registers between the two banks.

Flags: No flags affected

Exceptions: None

Addressing)

Mode Syntax Instruction Format

EXX [11]011]001]

Example: EXX
Before instruction execution: " After instruction execution:
BC: 2 3 A0 BC: 3 8 0 F
DE: 1 6 5 3 DE: E 2 00
HL: |2 4 F F HL: 1 F A 3
BC" 380F BC”: 2 3 A0
DE" E 200 DE" 1 6 5 3
HL" 1 F A3 HL" 2 4 F F

HALT

HALT
HALT .
Operation: CPU Halts
The CPU operation is suspended until an interrupt or reset request is received. This in-
struction is used to synchronize the 2280 MPU with external events, preserving its state
until an interrupt or reset request is accepted. After an interrupt is serviced, the instruc-
tion following HALT is executed. While halted, memory refresh cycles still occur, and bus
requests are honored. : '
For the Z80 Bus configuration of the Z280 MPU, the HALT signal is asserted when the
Halt instrtiction is executed and remains asserted until an interrupt or reset request is
accepted. For the Z-BUS configurations of the Z280 MPU, a special Halt bus transaction is
performed when the hatt instruction is executed.
If the Breakpoint-on-Halt control bit in the Master Status register is set to 1, the Hait
instruction is not executed, and Breakpoint-on-Halt trap is taken instead.
Flags: No flags affected
Exceptions: Breakpoint, Privileged Instruction
Addressing
Mode Syntax Instruction Format
HALT 01]110] 110

Interrupt Mode Select

M p p=0123

Operation: Interrupt Mode < p
The interrupt mode of operation is set to one of four modes (see Chapter 6 for a descrip-
tion of the various modes for responding to interrupts). The current interrupt mode can
be read from the Interrupt Status register.
Flags: No flags affected
Exceptions: Privileged Instruction
Addressing
Mode Syntax Instruction Format
IM p [11]101]101] {01] ¢t T110]
p t
mode encoding
0 000
1 010
2 o
3 001
Example: M 3
Before instruction execution: After instruction execution:
Interrupt Status register: ‘ Interrupt Status register:
| Fo | oo] [F3 [oo |

Input

Operation:

IN dst,(C) dst = R, RX, DA, X, RA, SR, BX
dst < (C)

The byte of data from the selected peripheral is loaded into the destination. During the /O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines Ag-Ay5 and the
contents of the /O Page register are placed on address lines Ayg-A23. The byte of data from
the peripheral is then loaded inito the destination.

Flags:

§: Set if the input data is negative; cleared otherwise

Z: Set if the input data is zero; cleared otherwise

H: Cleared

V: Set if the input data has even parity; cleared otherwise
N: Cleared

C: Unaffected

Exceptions:

Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Addressing
Mode

Syntax Instruction Format

R:
RX:
DA:

X:
RA:
SR:

BX:

IN- R,(C) (11]101]101][01] r Jooo]

IN RX,(C) . {11fe11]101] [11]101]101] [01] x Jooo]

IN (addr),(C) [11]o11]101] [11]101] 101] [01]111] 000] " addrgow)] [adcrihigh) |
IN (XX + dd)(C) ([an]01] [#[01 01] (01 xx 000] [atows] [_amigh |
IN <addr>,(C) [11]111]101][11]101] 101] [01]000] 000] | cspliow)] [dispthigh) |
IN (SP + dd)(C) {11Jo11]101]]11{101{101][01]000[000] [dfiow)][dhigh) |
IN (XXA + XXB),(C) [11jo11]101][11]101] 101][01] bx T 000]

Fleld Encodings:

®: 0 for IX, 1 for IY

™: 100 for high byte, 101 for iow byte

XX 001 for (IX + dd), 010 for (IY -+ dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Examble:

IN L(C)
Before instruction execution: After instruction execution:

F: szxhxvne F: 00x0x00c
BC: 186 5§ 0 BC:
HL: 00 2 3 HL:

|-
o|lm
~|n
DO

/O Page register:

Byte 764 available at I/O port 111650

IN

Input Accumulator
IN A(n)
Operation: A<(n)

The byte of data from the selected peripheral is loaded into the accumulator. During the
IO transaction, the 8-bit peripheral address from the instruction is placed on the low
byte of the address bus, the contents of the accumulator are placed on address lines
Ag-Aj5 and the contents of the I/O Page register are placed on address lines A1g—Ag3.
The byte of data from the selected port is written into the accumulator.

Flags: - No flags affected ~
Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)
Addressing .
Mode Syntax Instruction Format |
INA(M) [1fotifor1][m]
Example: IN A(66H)
Before instruction execution: After instruction execution:
A A
11O Page register:

[]

Byte FDy available at /O port 114266

INC

- Increment (Byte)
INC dst dst = R, RX, IR, DA, X,’SX, RA, SR, BX
‘ ; .
Operation: dst+dst + 1
The destination operand is incremented by one and the sum is stored in the destlnatlon
Twos-complement addition is performed.
Flags: S: Set if the result is negative; cleared otherwise
: Z Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise =~ .
V: Set if arithmetic overflow occurs, that is, if the destination was 7Fy; cleared
otherwise
N: Cleared
C: Unaffected
Exceptions: None '
Addressing
Mode Syntax Instruction Format
R: INC R [00] ¢ [100]
T RX: INC RX [11]e11]101] [00] = [100]
IR: INC (HL) [00f110] 100] ‘
DA: INC (addr) {11]011] 101 [00]111]100] [addrgiow) | [addethigh) |
) INC (XX +dd) - [atl111]101] {00] xx [100] [dpow) | [amign |
sX: INC (XY + d) [11]e11]101] {oo[110]100] [o |
~ RA INC <addr> (11]111]101] [00]000] 100] dispiow) | | dispthigh) |
SR: INC (SP + dd) (11]o11{101] [ooovo[100] [afiow) | [ahigh)]
BX: INC (OXA + XXB) [11]o11]01] [00] bx [100]
Fleid Encodings: ¢: oOforix 1forly
' rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (I + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + 1Y)
Example: INC (HL)
Before instruction execution: _ After instruction execution:
F: saxhxwne F: 10x0x00¢c
Hu| 2 4 5§ 4 | H:[24 5 4
Data memory: Data memory:

woe [53] woe [55|

5-57

INC[W]

Increment (Word)
INC[W] dst dst = R
or ,
INCW dst dst = IR, DA, X, RA
Operation: dst < dst + 1

The destination operand is incremented by one. Twos-complement addition is performed.

Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: INCW RR [oo] Jo11]
INCW XY [11]e11] 101]| 00 100] 011]
IR: INCW (HL) [11] 011} 101] [oo]o00]011]
DA: INCW (addr) [11]011] 101][00]o10]011][addrilow) || addrmnigh) |
X INCW (XY + dd) [1i[111]101][oo] xy [o17] [dtowy][amigh) |
RA: INCW <addr> [11]o11]101][0o[110[011][dispilow) | [dispfigh) |
Fleld Encodings: o: OforiX, 1forly
ez 000 for BC, 010 for DE, 100 for HL, 110 for SP
xy: 000 for (IX + dd), 010 for (IY + dd)
Example: INCW BC
Before instruction execution: After instruction execution:
B&:[3 F [12 | Be:| 3 F [13 |

IND

input and Decrement (Byte, Word)

IND
INDW
Operation: (HL) +(©)
B+B-1
HL < AUTODECREMENT HL (by one if byte, by two if word)
This instruction is used for block input of strings of data. During the 1/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—A1s, and the contents of the
11O Page register are placed on address lines Aig—Agg. The byte or word of data from
the selected peripheral is then loaded into the memory location addressed by the HL
register. The HL register is then decremented by one for byte transfers or by two for -
word transfers, thus moving the memory pointer to the next destination for the input. The
B register, used as a counter, is then decremented by one.
Flags: $: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected
Exceptlons: Privileged Instruction (if the inhibit User 1/O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format
IND ' [11]101]101] [10[101]010]
INDW [11]101]101] [10]o01]010]
Example: INDW
Before instruction execution: After instruction execution:
F: saxhxvne F: sOxhxvic
BC: 15 6 4 BC: 1 4 6 4
HL: 5 0 0 2 HL: 5 0 00
11O Page register: ' Data memory:
o
' 5003: 8 D

Word 8D07, available at 1/O port 331564

Note: Example assumes that a 16-bit data bus configuration of the 2280 MPU is used.

et

INDR

Input, Decrement and Repeat (Byte, Word)

Operation:

INDR
INDRW

Repeat untit B = 0: (HL) < (C)
B«<B-1
HL < AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-Ay5, and the contents of the
I/O Page register are placed on address lines Ajg—Aga. The byte or word of data from
the selected peripheral is ioaded into the memory location addressed by the HL register.
The HL register is then decremented by one for byte transfers or by two for word .
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in-
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program -
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags:

8: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions:

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode

Syntax Instruction Format

INDR [11]101]101] [0[111]010]

INDRW 11|1o1|1o1 [10]011|o1o

P

| Example:

INDR

Before instruction execution:

F: saoxhxvne
BC: 03 4 6
HL: 5§ 2 18

O Page register:

7]

Byte A available at
/O port 170346y,
then byte 3By, available at
IO port 170246y,
then byte FF; available at-
1O port 170146,

After instruction execuytion:

F: sixhxvic
BC: 00 4 6
HL: 5 2 15
Data memory:
sz [FF]
sarr.

e TR

INI

Input and increment (Byte, Word)

INi
INIW

Operation: (HL) < (C)

B<B-1

HL < AUTOINCREMENT HL (by one if byte, by two if word)
This instruction is used for block input of strings of data. During the 1/0 transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-Aqs, and the contents of the
I/O Page register are placed on address lines A1g—Aa3. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

INI [11]101]101][10]100] 010 } -
INIW : [11]101]101][10]000]010]

Example: INI
Before instruction execution: After instruction execution:

F: szxhxvne F: sOxhxvic
BC: 15 6 4 BC: 1 4 6 4
HL: 5 0 0 2 HL: 5 0 0 3

/O Page register: Data mémory:

2] oz [74]

Byte 7A, available at
110 port 331564

INIR

Inp@t, Increment and Repeat

Operation:

INIR
INIRW

Repeat until B = 0: (HL) + (C)
B+B ~ 1 _ '
HL <= AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the |/O transactions, the
peripheral address from the C register is placed on the iow byte of the address bus, the

. contents of the B register are placed on address lines Ag-As, and the contents of the

I/O Page register are placed on address lines A1g—A23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in-
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

4

Flags:

S: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions:

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode

Syntax instruction Format

INIR [11]101] 101] [10]110]010]
INIRW ml1o1|1o1][1o]o10]610]

[4

Example: INIRW

Before instruction execution: After instruction execution:

F: szxhxvne F: sixhxvic -
BC: 0 2 55 BC: 00 55
HL: 4 0 0 2 HL: 4 0 0 6

/O Page reéister: Data memory:
[+] woz [7
‘ 4003. 6 6
Word 66D7 available at 4004: F F
1O port 310255y 4005: A 8

then word ABFF available
at /O port 3101554.
Note: Example assumes that a 16-bit data bus configuration of the 2280 MPU is used.

IN[W]

Input HL

IN[W] HL,C)

Operation: HL < (C)
The word of data from the selected peripheral is loaded into the HL register. During the
I/O transaction, the 8-bit peripheral address from the C register is placed on the low byte
of the address bus, the contents of the B register are placed on address lines Ag-Ass
and the contents of the I/O Page register are placed on address lines Ajg—Ap3. Then one
word of data from the selected port is written into the HL register. For 8-bit data buses,
the contents of L are undefined for external peripherals.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Addressing :
Mode Syntax Instruction Format

IN HL(C) [11]101]101] [10]110]411]

Example: INW HL,(C)
Before instruction execution: After instruction execution:

BC:| 2 6 50 BC: 2 6 5§ 0
HL: 3 3 3 3 HL: 8 7 4 D

/0 Page register:
Word 4D87,, available at /0 port 102650y
Note: Example assumes that a 16-bit data bus configuration of the 2;4‘80 MPUisused. | N

JAF

Jump On Auxiliary Accumulator/Flag y

JAF dst dst = RA
Operation: If auxiliary AF then PC < dst
A conditional jump is performed if the auxiliary Accumulator/Flag registers are in use. If
the jump is taken, the Program Counter is loaded with the destination address; otherwise
the instruction following the JAF instruction is executed. This instruction employs an 8-bit
signed, twos-complement displacement from the Program Counter to permit jumps
within the range —125 to +130 bytes from the location of this instruction.
Flags: No flags affected
Exceptions: None
Addressing
Mode - Syntax Instruction Format
RA: JAF addr [11]o11]101] [oo]101J000| [disp |
Example: JAF 5000H
Before instruction execution: After instruction execmion:

Auxiliary Accumulator/Flag in use

pc:[a4 F | E 6 | pc:| 50 | oo |

JAR

Jump On Auxiliary Register File In Use

JAR dst - dst = RA
Operation: If auxiliary file then PC < dst
A conditional jump is performed if the auxiliary register file is in use. If the jump is taken,
the Program Counter is loaded with the destination address; otherwise the instruction
following the JAR instruction is executed. This instruction employs an 8-bit signed, twos-
complement displacement from the Program Counter to permit jumps within the range
—-125 to +130 bytes from the location of this instruction.
Flags: No flags affected
Exceptions: None
~ Addressing
Mode Syntax Instruction Format
RA: JAR addr [11]o11] 101} [00]100{000 || disp |}
Example: JAR 42DOH
Before instruction execution: After instruction execution:

Auxiliary file in use

P;:[42 [F s p:| 42 | Do] N

JP

Jump
JP [cc,]dst dst = IR, DA, RA
Operation: If cc is satisfied then PC < dst
A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code *‘cc” specified in the instruction; an uncondi-
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump instruction is executed. For the Relative Address mode, the PC value
used to calculate the destination address is the address of the next instruction following
the Jump instruction; a 16-bit signed twos-complement displacement from the PC per-
mits jumps within the range —32764 to +32771 bytes from the location of this instruc-
tion.
Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump
performed conditionally on the setting of the flag.
When using DA mode with the JP instruction, the operand is not enclosed in paren-
theses. .
Flags: No flags affected
Exceptions: None
Addressing)
Mode Syntax Instruction Format
IR: JP CC,HL) [11]o11] 101 [11] cc [o10]
JP (HL) 11101001
" JP (XY) [11]e11]101] [11]101]001] “unconditlonal jump”
DA: JP CC,addr [11] ecJ010][addrow) |[addr(high) |
JP addr [11]o00]011] [addr(low)][addrinigh)] “unconditional jump”
RA: JP CC<addr> (1[113]01] [11] cc Jo10] [displiow)][dispmigh) |
JP <addr> [11]111] 101] [11]o00]011 | ["disp(iow)][disp(high)]| “unconditionat jump” |

Field Encodings:

[0 for IX, 1 for tY

cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
* 110 for Por NS, 111 forMor S

\

Example:

JP C,5000H

Bgfore instruction execution: After instruction execution:
F: szxhxvni F:) szxhxvni
PC:| 2 6 8 4 PC:| 5 0 00

JR

Jump Relative
' JR [cc,dst dst = RA

Operation: If the cc is satisfied then PC + dst
A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code *'cc” specified in the instruction; an uncondi-
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump Relative instruction is executed. These instructions employ an 8-bit
signed, twos-complement dispiacement from the PC to permit jumps within the range
—126 to +129 bytes from the location of this instruction.
Either the Zero or Carry flag can be tested and a jump performed conditionally on the
setting of the flag.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format
RA: . JR CC,addr {00} ccJooo]| _disp |

JR addr . [oojo11]000|[disp | [“unconditional jump”]

Fleld Encoding: cc: 100 for NZ, 101 for Z, 110 for NC, 111 for C

Example: JR NZ,6000H
Before instruction execution:) After instruction execution:

F: s0xhxvne F: sOxhxvne
PC:| 5 F D 4 PC:| 6 O 00

LD

Load Accumulator
LD dstsrc dst = R, RX, IR, DA, X, SX, RA, SR, BX
src = A
or
dst = A
src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: ., dst<src

The contents of the source are loaded into the destination. The contents of the source
are not affected. Special instructions are provided so that the BC and DE registers can
also be used in the IR addressing mode.

Flags: No flags affected
Exceptions: None
Load into Accumulator
Adﬂrasslng
Mode Syntax Instruction Format
R LD AR Lo1f111] r |
RX: LD ARX [11]e11]101] [01]111] |
IM: LD An foo]t111]110][n] '
IR: LD A(HL) [o1]111] 110]
LD A(RR) [00{ ra {010
DA: LD A(addr) foo[111J010] [addr(low)][addr(high) |
X LD AXX + dd) [11]111]101] [01]111]xxa] [dGow) - |[dehighy |
sx: LD AXY + d [11Jen1[101][ot]111]110][d |
RA: LD A<addr> [11]111]101][01]111]000 | [_displow) | [disp(high) |
SR: LD A(SP + dd) [11Jo11]101][01]111]oo0 J[ditow)][dihigh) |
BX: LD AQXA + XXB) [A1Joti]01] [0 [111] bx |

Load from Accumulator

Addressing
Mode Symiax instruction Format
R LD RA Lo1] v [111]
RX: - LD RXA [11]er1[101][01] = [111]
R’ LD (HUA [o1[110]111]
LD RRJA [00] b [010]
DA: LD (addn)A [o0o]110]010] [‘addriow) | [addrmigh) |
X LD (X + dd)A [11]101]101] [oo[xxb]o11 | [diiow) | [omhigh) |
sx: LD (XY +)A [Hes[1or][o1f1ie]11][4]
RA: LD <addr>A {11]101]101][00[100[011 | [displiow) | [dispthigh) |
SR: LD (SP + dd)A [11[101]101][00J000011] [dfiow) |[dmhigh) |
BX: LD (XA + XXB)A {11]101]101][00] bx [o11]
Fleld Encodings: ®: OforiX, 1forIY
Tx: 100or high byte, 101 for low byte
ra: 00t for BC, 011 for DE
rrb: 000 for BC, 010 for DE
xxa: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
xxb: 101 for (X + dd), 110 for @Y + dd), 111 for (HL + dd)
bx: 001 for (HL + X), 010 for (HL + 1Y), 011 for (X + 1Y)
Examples: LD A(HL)

Before instruction execution:

A 0 F
HL: 170¢C

Data memory:

e

After instruction execution:

A (0B
HL: 170¢C

Data memory:

me []

LD

Load from | or R Register
LD Asrc src = I, R
Operation: A <grc’ .

The contents of the source are loaded into the accumulator. The contents of the source
are not affected. The Sign and Zero flags are set according to the value of the data
transferred; the Overflow flag is set according to the state of the Interrupt A Enable bit in
the Master Status register. Note: The R register does not contain the refresh address
and is not modified by refresh transactions.

Flags: S: Set if the data loaded into the accumulator is negative; cleared otherwise
Z: Set if the data loaded into the accumulator is zero; cleared otherwise
H: Cleared .
V: Set when loading the accumulator if the interrupt A Enable bit is set; cleared
otherwise
N: Cleared -
C: Unaffected
Exceptions: Privileged Instruction
Addressing ’
‘Mode Syntax Instruction Format
LD A| : {11]101]101][01]o10] 111]
LD AR [11]101]101][01]011]111]
Example: LD AR
Before instruction execution: After instruction execution:
AF: [10 _ szxhxwne AF: | 4 2 00x0x10c
R: 4 2 R: 4 2
MSR: | 4 0 71 F MSR: | 4 0 7 F

LD

Load Immediate (Byte)
LD dstn dst = R, RX, IR, DA, X, SX, RA, SR, BX
Operation: dst < n
The byte of immediate data is loaded into the destination.
Flags: No flags affected
Exceptions: None
Addressing ‘ ,
Mode Syntax Instruction Format
R: LD Rn [oo r T110][" m]
RX: LD RXn 11let1]101] (00l x f110][n]
IR: LD (HL\n [oo[110[110][_n])
DA:. LD (addr)n [11]ot1] 101} [00]111]110]| [eddrow) | [acarmighi | [n |
X LD XX + dd)n [1[133]101] [0 xx [110] [dow) | [oigm J [n]
sX: LD XY + d)n [1tle11f101](ooft10[110][¢][n]
RA: LD <addr>,n [11]111]101] [ooJooo 110 [eptiows | [aispmigm | [n |
SR: LD (SP + dd)n [11]o11] 101] [0o]ooo] 110} [_dgowy } [amigh | [n |
BX: LD (XXA + XXB),n [19]o11] 101 [[00{bx {110} n]
Fleld Encodings: o: . oforiX 1forly
rx: 100 for high byte, 101 for jow byte
Xz 001 for X + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1), 010 for (HL + 1Y), 011 for (X + 1Y)
Example: LD A55H
Before instruction execution: \ After instruction execution:

Al e7 | A 55]

LD

Load Register (Byte)
LD dst,src dst = R
src = R, RX, IM, IR, SX
or
dst = R, RX, IR, SX
src = R
Operation: dst < src

The contents of the source are loaded into the destination.

Flags: No flags affected
Exceptions: None
Load into Register
Addressing ' -
Mode Syntax Instruction Format
R: LD R1R2 (ot r1] r2]
RX: LD R*RX [11le11f101][01]r | m |
LD RXARXB [11]e11]101] [01 [rxa [b |
LD RXR* [11]e11]101][0t [[r* |
IM: LD Rn [oo] r J110][a1
LD RXn [11]o11]101][00] [110][n]
IR: LD R(HL) _ [o1] r [110]
sX: LD RXY + d) [11]e14ft101|jot[r [110][o |
Load from Register
IR: LD (HL)R [o1[x10] .r]
sX: LD XY + d)\R [11JenJ101][o1f110] v || &]
Fleld Encodings: ®: OforlX, 1forlIY
rx: 100 for high byte, 101 for low byte
rxa: 100 for high byte, 101 for low byte
rxb: - 100 for high byte, 101 for low byte
rxa and rxb refer to the same index register
r*: Only registers A, B, C, D, and E can be accessed
ri,r2: See Table 512
Example: LD AB
Before instruction execution: After instruction execution:
A 0 3 _ A 8 2
B: 8 2 B: 8 2

- LD

. Load to | or R Register
LD dstA dst = LR
Operation: dst < A
The contents of the accumulator are loaded into the destination. Note: the R register
does not contain the refresh address and is not modified by refresh transactions.
Flags: No flags affected
Exceptions: Privileged Instruction
Addressing :
Mode Syntax " Instruction Format
LD I,A {11]101]101][o1]000111]
LD RA ' [11]101]101][01]001]111]
Example: LD LA
Before instruction execution: After instruction execution:
A 0D A 0D
k 2 2 ok 0 D

LDA

Load Address

Operation:

LDA dst,src

dst < address(src)

dst
src

HL, IX, IY
DA, X, RA, SR, BX

The address of the source operand is computed and [oaded into the destination. The
contents of the source are not affected. The address translation mechanism in the MMU
is not used to determine if the address is valid.

Flags: No flags affected '
Exceptions: None
Addressing
Mode Syntax Instruction Format
DA: LDA HL(addr) [00] 100] 001] [_addriow} | [addr(nigh)
LDA XY,(addr) [11]e11]101][00]100[001 | [addr(low) | [addr(high) |
X: LDA HL,(XX + dd) [11]101]101][00] xx [o10] [dtow)][dmigh) |
LDA XY, (XX + dd) [11]e11]101][11]101]101 | [00] xx [010] [_dgow)][dhigh) |
RA: LDA HL<addr> [11][101T101] [00]100] 010] [dispttow) | [disp(high) | .
LDA XY, <addr> [11]e11]101][13]101]101] [00]100]010] [disptiow)] [disp(high) |
SR: LDA HL,(SP + dd) [11]101]101][00]o00]010] [dtow)][denigh) |
_ LDA XY,(SP + dd) [11]e11]101][11]101]101] [00]oco]010] [dilow)][dihigh) |
BX: LDA HL,(XXA + XXB) [11]101]101][00 bx 010 |
LDA XY, (XXA + XXB) [11]e11]101][11]101] 101]| [00] bx [010]
Fleld Encodings: &: 0forIX, 1for IY
xx: 101 for (IX + dd), 110 for (I + dd), 111 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (X + IV)
Example: LDA HL(IX + 4)

Before instruction execution:

HL: 2 3 0 8
IX: E 3 2 4
Address calculation:
E324

+ 4

E328

After instruction execution:

HL: E 3 2 8
IX: E 3 2 4

. LDCTL

Load Control
LDCTL dst,src dst = (C), USP
- src = HL, IX, Y
or v
dst = HL, IX, IY
src = (C), USP
" Operation: dst <« src
This instruction loads the contents of a CPU control register into an addressing register,
or the contents of an addressing register into a CPU control register. The contents of the
source are loaded into the destination; the source register is unaffected. The address of
the control register is specified by the contents of the C register, with the exception of
the User Stack Pointer. The various CPU control registers have the following addresses:
: Address

Register (Hexadecimal)

Master Status register (MSR) ! 00

Interrupt Status register ' 16

Interrupt/Trap Vector Table Pointer 06

/O Page register * o8

Bus Timing and Initialization register* FF

Bus Timing and Control register * 02

Stack Limit register 04

Trap Control register * 10

Cache Control register * ' 12

Local Address register * 14

*8-bit control register
When writing to an 8-bit CPU control register, only the low-order byte of the specified
source addressing register is written to the control register. When reading from an 8-bit
CPU control register, the control register«contents are loaded into the low-order byte of
the destination addressing register, and the upper byte of the destination is undefined.
Note that the User Stack Pointer control register is accessed using special opcodes; the
contents of the C register are not used for these opcodes. This form of the Load Control
instruction allows the user-mode Stack Pointer to be accessed while in system-mode
operation.

Flags: No flags affected
Exceptions: Privileged Instruction

Addressing

Mode Syntax Instruction Format
LDCTL HL(C) [11]101]101] [011100 110}
LDCTL XY(C) [11]e11]1011[11]101] 101] [01]100]110
LDCTL (C)HL [11]101]101][01]101]110]
LDCTL (C).XY [11]en1]101][11]101] 101] [01]101]310]
LDCTL HL,USP [11]101]101] [10]000] 111]
LDCTL XY,USP [11]e11]101] [11]101] 101] [10]000]#11]
LDCTL USPHL [11]101]101][10]001]111]
LDCTL USPXY [11]et1]101]| 11]101]101] [10]001]111]

Field Encoding:

[H o for IX, 1 for IY

.

Example:

LDCTL (C)HL
Before instruction execution:

After instruction execution:

W o
>,

(o] 0 8 C:
Hu|[5 6 3 A HE| 5 5
/O Page regAister: /O Page register:

LDD

Load and Decrement , ‘

LDD
Operation: (DE) < (HL)
DE<«DE — 1~
HL<+ HL - 1
BC+<BC -1

This instruction is used for block transfers of strings of data. The byte of data at the ioca-
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then decremented by one, thus moving the
pointers to the preceding elements in the string. The BC register, used as a counter, is
then decremented by one.

Flags: S: Unaffected

Z: Unaffected
‘H: Cleared)
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected
Exceptions: None
Addressing -
, Mode Syntax Instruction Format
LDD | [11]101] 101 [10]101]000 |
Example: LDD .
Before instruction execution: Aftér instruction execution:
F: szxhxvne F: s2x0x00¢c
HL: 11 11 HL: 11 10
DE: 2 2 2 2 DE: 2 2 1
BC: 00 07 BC: 00 0 6
Data memory. i Data memory:
M| 8 8 mM:| 8 8
2222 6 6 2222: 8 8

LDDR

Load, Decrement and Repeat

-LDDR
Operation: Repeat until BC = 0: (DE) < (HL)
DE < DE - 1
HL+HL — 1
BC«BC - 1
This instruction is used for biock transfers of strings of data. The bytes of data starting at the
location addressed by HL are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.
This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the-interrupt request is
accepted, so that the instruction can be properly resurhed.
Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected
Exceptions: None
Addressing :
Mode Syntax Instruction Format
LDDR [11]101 [101] [10[111]000]
Example: LDDR
Before instruction execution: After instruction execution:
F: szxhxvne F: sz2x0x00c
HL: 11 17 HL 11 1 4
DE: 2 2 25 DE: 2 2 2 2
BC: 00 0 3 BC: 00 00
Data memory: Data memory: -
1115; 8 8 1115: 8 8
1116: 3 1116: 3 6
1117: A5 117 A S5
2223: 9 6 2223; 8 8
2224: 11 2224: 3
2225: 2 6 2225: A S

LDl

Load and Increment
' LDI
Operation: (DE) + (HL)
DE < DE + 1
HL < HL + 1
BC+BC - 1
This instruction is used for block transfers of strings of data. The byte of data at the loca-
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then incremented by one, thus moving the
pointers to the next elements in the strings. The BC register, used as a counter, is then
decremented by one.
Flags: S: Unaffected
Z Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared ‘ :
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
LDI : [11]101]101] {10] 100|000 |
EXamplo: LD!
Before instruction execution: After instruction execution:'
F: soxhxwme - F: 82x0x00c
HL: 11 11 HL 1 1 2
DE: 2 2 2 2 DE 2 2 2 3
BC: 0 0 7 BC: 00 0 6
Data memory: ' ‘ Data memory:
1111: 8 8 "t 8
2222: 6 6 v 2222 8 8

LDIR

Load, Increment and Repeat

LDIR
Operation: Repeat until BC = 0: (DE) < (HL)
-DE<DE + 1
HL<+HL + 1
BC<+BC -1
This instruction is used for block transfers of strings of data. The bytes of data starting at
the location addressed by the HL register are loaded into memory starting at the location
addressed by the DE register. The number of bytes moved is determined by the contents
of the BC register. If the BC register contains zero when this instruction is executed,
65,536 bytes are transferred. The effect of incrementing the pointers during the transfer
is important if the source and destination strings overlap with the source string starting
at a higher memory address. Placing the pointers at the lowest address of the strings
and incrementing the pointers ensures that the source string is copied without destroy-
ing the overlapping area.
This instruction can be interrupted after each execution of the basic operation. The Pro-
- gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.
Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected
Exceptions: None
Addressing
Mode Syntax * Instruction Format
LDIR [11]101]101] [10]110]000]

After instruction execution:

Before instruction execution:

LDIR

Example:

DE:
BC:

Data memory:

1125
1126
1127:

2210

2211:

2212

2

HL:

BC:

Datamemory:

1125:
1126
1127:

2210:

2211:

2212

5-83

LDUD

Load in User Data Space (Byte)

Operatlon:

LDUD dst,src dst = A
src = IR or SX in user data space
or
dst = IR or SX in user data space
src = A
dst « src

The destination is loaded with the contents of the source. In loading from the user data
space into the accumulator, the memory-mapping mechanism used in translating logical
addresses for data in user mode operation is used to transiate the source address. In
loading into the user data space from the accumulator, the memory-mapping mechanism
used in translating logical addresses for data in user-mode operation is used to translate

- the destination address. See Chapter 7 for an explanation of this mechanism. The con-

tents of the source are unaffected.

The flags are set to reflect the success or failure of the transfer. If the transfer is un-
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared to 0; if the transfer is unsuccessful, the Carry flag
is set to 1. The other flags are unaffected if the transfer-is successful. If the transfer is
unsuccessful, the vaiue of the Write Protect (WP) bit in the Page Descriptor register.
used by the MMU iis loaded into the Z flag and the value of that Page Descriptor’s Valid
bit is loaded into the V flag.

Flags:

S: Unaffected

Z: For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;
unaffected otherwise

H: Unaffected

V: For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;
unaffected otherwise

N: Unaffected

C: Setif the transfer is unsuccessful; cleared otherwise

Exceptlons:

Privileged Instruction

Load from User Data Space

Addressing '
Mode Syntax Instruction Format
IR:. LDUD A(HL) [11]101]101] {10]000] 110 |
sX:

LDUD AXY + d) [11]#11]101}{11]101]101] [10]000[110] | d]

Load into User Data Space

IR:
SX:

LDUD (HLA [11]101]101] {10]001]110]
LDUD (XY + dA [11]e11]101] [11]101]101] [10]001 [110][@]

Field Encoding: ®: OforlX 1forly

Example: LDUD A,(HL)
Before instruction execution: After instruction execution:
AF: 0 F szxhxvne AF: 5 5
HL: 8 D 0 7 HL: 8 D
User data memory: . User data memory:

sour soor: [55

LDUP

Load in User Program Space (Byte)

Operation:

LDUP dst,src dst
src

A

IR or SX in user program space
or

IR or SX in user program space

A

dst
src

dst < src

The destination is loaded with the contents of the source. In loading from the user pro-
gram space into the accumulator, the memory-mapping mechanism used in translating
logical addresses for program fetches (instructions or data using PC Relative adddress-

.ing mode) in user-mode operation is used to translate the source address. When loading

into the user program space from the accumulator, the memory-mapping mechanism

-used in translating logical addresses for program accesses (instructions or data using

PC Relative addressing mode) in user-mode operation is used to translate the destination
address. See Chapter 7 for an explanation of this mechanism. The contents of the
source are unaffected.

The flags are set to reflect the success or failure of the transfer. If the transfer is un-
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared; if the transfer is unsuccessful, the Carry flag is
set. The other flags are unaffected if the transfer is successful. If the transfer is unsuc-
cessful, the value of the Write Protect (WP) bit in the Page Descriptor register used by
the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid bit is
loaded into the V flag. ’

Flags:

t

: Unaffected

For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;
unaffected otherwise

: Unaffected

For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;
unaffected otherwise

: Unaffected ‘

: Set if the transfer is unsuccessful; cleared otherwise

0Z <I NO

Exceptions:

Privileged Instruction

Load from User Program Space

Addressing :
Mode Syntax Instruction Format
IR: LDUP A(HL) [11]101]101] [10]010]110]
SX: LDUP AXY + d) [11]e11]101] [11]101]101] [10Joto[110] [d |

Load into User Program Space

Addressing .
Mode - Syntax Instruction Format
IR: LDUP (HLA [11}101]101][10]011]110]
SX LDUP (XY + d)A L11]et1f01][11To]101 | [10fotaf110] [a]
Field Encoding: ®: OforlX, 1forlY
Example: LDUP A(HL) .
. Before instruction execution: After instruction execution:
AF: 0 F sothxvne AF: F F szxhxvn0
HL: 5 3 9 0 HL: 5§ 3 9 0
User program memory: . User program memory:

soe: [FF]

soe: 7]

LDW

Load Immediate Word

LD{W}] dst,nn dst
dst

R
IR, DA, RA

or
LDW dst,nn
Operation: dst < nn

The two bytes 6f immediate data are loaded into the destination. For register destina-
tions, the low byte of the immediate operand is loaded into the low byte of the register
and the high byte of the operand is loaded into the high byte of the register. For memory
destinations, the low byte of the operand is loaded into the addressed location and the
high byte of the operand is loaded into the next higher memory byte (addressed location
incremented by one).

Flags: - No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: LDW RR.nn [00] rr Joor][ngow |[ninigh | .
LDW XY,nn [11]e11]101] [00f100]001][nfiow)][nmigh) |
IR: LDW (HL),nn [11]o11]101] [00Jooo001][_nlow)][nmigh)
DA: LDW (addr),nn [11]011]101] [00Jo10[001} [addrtow)][addrthigh) |[nlow)][nehigh) |
RA: LDW <addr>,nn [11]o11]101] [0o[110]001] [displlow) | [dispthigh)][nlow)][nihigh) |

Fleld Encodings: r: 000 for BC, 010 for DE, 100 for HL, 110 for SP
®: Oforix, tforly

Example: LDW {(HL),3825H
Before instruction execution: After instruction execution:
Data memory: Data memory:
2391: 1 E ‘ 2391: 2 5
2392: A 3 2392 3 8

LD[W]

Load Addressing Register

Operation:

LD{W] dst,src

dst < src

dst
src

HL X, IY

IM, DA, X, RA, SR, BX
or:

DA, X, RA, SR, BX

HL, IX, IY

dst
src

The contents of the source are loaded into the destination. The contents of the source
are unaffected. For register-to-memory transfers, the effective address of the memory
operand corresponds to the low byte of the register and the memory byte at the effective
address incremented by one corresponds to the high byte of the register.

Flags:

No flags affected

Exceptions:

None

Load into Addressing Register

Mode Syntax Instruction Format ‘
M LDW HLnn lool100{001][ndow) [navgh) | ~
LDW XY,nn [11]e11]101] [00100 001][_ngow][neign |
DA: LDW HL (addr) {o0[101]010][addraow) |[addrmigh) |
LDW XY (addr) {11]e11]101] | 00]{101]010] | addriow) || addrmigh) |
x © LDW HL(X + dd) [11[101]101] [00] xx [100] [_d0ow)][amigh) |
LDW XY,0XX + dd) [11]e11]101][11]101]101] [00]xx [100][dow)][dmigh) |
RA: LDW HL<addr> [11]101]101][00]100] 100 | [ctspiow) | [dispmigh) |
LDW XY<addr> [13]e11]101] [11]101]101] [00[100]700] " diepaow)] [[ctspthigh |
- SR LDW HL(SP + dd) {11{101]101][00J000]100][dgow) }[dmigh) |
LDW XY,(SP + dd) [11]e11]101][11]101]101] {00]o00] 100} [dgow)][dmmighy |
B LDW HL, 0O(A + XXB)

LDW XY, (XXA + XXB)

[11]101] 101][00] bx [100]

[F[#H[701] [Ti[701]7o7] (G0 x [100]

Load from Addressing Register

Addressing

Mode Syntax instruction Format

DA: LDW (addr),HL 00] 100{ 010] addr(low) | [addr
LDW (addn),XY , [11]e11]101] [00]100] 010] [addrgiow) | [addrihigh) |

X LDW (XX + dd),HL [11]101]101] [00] xx [101][_diow)][dehigh) |

LDW (XX + dd),XY [11Te11]101] [11]101] 101] [00] ex [101] [_dtow)

RA: LDW <addr>,HL [11]101]101][00]100[101] [dispgow)][dispmigh) |
LDW <addr> XY . [11]e11] 101][11]101]101] [00]100[101] [dispgiow) |

SR: LDW (SP + dd),HL [11]101]101] [o0]o00]101][dow)][dinighy | _
LDW (SP + dd) XY [11]e11] 101][11]101]101] [00]o00[101] [dow)][dmnighy |

BX: LDW XA + XXB), HL [11]101] 101][00] bx [101]

LDW (XXA + XXB), XY [11]e11]101][11]101]101] [00] bx 101 |

Field Encodings: o: 0forix, 1foriy
XX : 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + [Y)

Example: LDW HL,HL + IX)
Before instruction execution: After instruction execution:
HL: 1 50 2 HL: 0 3 A 2
X F F FE IX: F F F E|
Data memory: Data memory:
1500: A 2 1500: A 2
1501: 0 3 1501: 0 3

Address calculation:

1502
+FFFE

1600

LD[W]

LD[{W] dst,src

Operation: dst < src

Load Register Word
dst = BC, DE, HL, SP
src = IM, IR, DA, SX
or
dst = IR, DA, X
src = BC, DE, HL, SP

The contents of the source are loaded into the destination. The contents of the source
are unaffected. For transfers between a register and memory, the effective address of
the memory operand corresponds to the low byte of the register and the memory byte at
“the effective address incremented by one corresponds to the high byte of the register.

Flags: No flags affected
Exceptions: None
Load Into Register
Addressing
Mode Syntax Instruction Format
< IM: LDW RRnNn [oo[rraJ001][ntiow)][nmigh |
IR LDW RR,HL) [11]101]101] [00]rra [110]
DA: LDW RR(addr) [11]101]101][01]rrb J011}[“addrflow)][sddrihigh) | (except HL)
SX LDW RRXY + d) [11]e11]101][11]10t[101] [00]rraf110][o |
Load from Register
R LDW (HL),RR [13]101]101] [00] b 110]
DA: LDW (addn),RR [11]101]101][01]rra]011][addriow) | [addrtigh) | (exceptHL)
SX: LDW (XY + d)RR [11fe11]101]{11]101] 101 | [00]rrb[110] [d |

Fleld Encodings: rra: 000 for BC, 010 for DE, 100 for HL, 110 for SP
mrhb: 001 for BC, 011 for DE, 101 for HL, 111 for SP

[H Ofor X, 1 for IY

Example: LDW BC,3824H

Before instruction execution:

BC:

After instruction execution:

o [TEza]

5-91

LD[W]

Load Stack Pointer
LD{W] dstsrc dst = SP
src = HL, IX, 1Y, IM, IR, DA, SX
or
dst = IR, DA, SX
src = SP
Operation: dst < src

The contents of the source are loaded into the destination, where the source or destina-
tion is the Stack Pointer.

Flags: No flags affected
Exceptions: None
Load into Stack Pointer
Addressing
Mode Syntax Instruction Format
R: LDW SPHL [11]111]001]
LDW SPXY [11]e11]101] [11]111]001]
IM: LDW SP,nn 00{110{001]{ n{ilow) nthigh) _|
IR: LDW SP,(HL) [11]101]101][o0]110]110]
DA: LDW SP,(addr) 11]101]101] [01]111]011 | [_addrdow)] [_addrihigh) |
SX: LDW SPXY + d) [11]e19]101][11]101]101 | [00fi0[110)[— ¢ |
Load from Stack Pointer
IR: LDW (HL),SP |11|1o1|1o1||oo|111[11o]
DA:’ LDW (addr),SP ‘ [11]101]101] [01]110]011] [addrlow) | [addrnigh)]
SX LDW (XY + d),SP [11]e11]101] [11]101]101] [00]111T110] [d]

Fleld Encodlng:’ ®: OforIX, 1forly

Example: LDW SPIX
Before instruction execution: After instruction execution:
SP: 2 3 8 D SP; F F F O
X F F FO X F FFO

'MULT

Ve

Muitiply (Byte)
MULT [A lsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: HL < A X src
The contents of the accumulator are multiplied by the source operand and the product is
stored in the HL register. The contents of the accumulator and the source are unaffected.
Both operands are treated as signed, twos-complement integers.
The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds sign-extension data.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected :
C: Set if the product is less than — 27 or greater than or equal to 27; cleared otherwise
Exceptions: None
Addressing .
Mode Syntax Instruction Format
R: MULT AR [11]101]101][11] r Jooo]
RX: MULT ARX [11]e11]101] [11]101] 101] [11] x 000]
IM: MULT An [11]111] 101][11{101] 101 | [11]111] 000] { n |
IR: MULT A(HL) f11]101]101]{11]110] 000]
DA: MULT A (addr) {11]o11]101][11]101] 101] [11[111] 000 | [addrgow) |[addrmigh) |
- X MULT A(XX + dd) [11]111] 101 11]101]101] [11] xxJooo | [dgow][dinigh) |
SX: MULT AXY + d) ~ [11]et1f101]] 11]101] 101][11]110] 000] | d |
RA: MULT A<addr> [11f111]101] [11]101] 101] [11]o00] 000 | [cisp(iow)][disptrigh) |
SR: MULT A(SP + dd) [11]o11]101][11]101[101][{11]0o00] 000][dlow) |[d(high) |
BX: MULT A,(XXA + XXB) [11Jo11]101]{ 41]101] 101]| [11]bx [000]
Flield Encodings: o: 0foriX, 1forly , :
x: 100 for high byte, 101 for low byte
Xx: . 001for (X + dd), 010 for ()Y + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: MULT AH
Before instruction execution: After instruction execution:
AE:[F E szxhxvne "AF:[F E 10xhx0n0
HL: 1 2 00 HL: F F D C

MULTU

Multiply Unsigned (Byte)

MULTU [A]Jsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: HL < A X src

The contents of the accumulator are multiplied by the source operand and the product
is stored in the HL register. The contents of the accumulator and the source are
unaffected. Both operands are treated as unsigned, binary integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register .
merely hoids zero.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 28; cleared otherwise

Exceptions: None
Addressing
Mode Syntax Instruction Format
R: MULTU AR : F11f101] 101][11] r Joo1]
RX: MULTU ARX [11]e11] 101][11]101] 101 | [11] x J001]
IM: MULTU An [11]111] 101] [11]101] 101] [11]111] 001] n__ |
IR: MULTU A(HL) [11]101] 101]{11] 110 001 }
DA: MULTU A(addr) - [11]on1] 101][11]101]101] [11]111] 001 | [‘addrgow) | [addrinigh) | .
X - MULTU A(X + dd) (1] 101][11]101]101] [11]xxJoo1][dttow)][dnigh) | .
sk MULTU AXY + d) [A1]e11[01][41]101[701 [[11]10Jo0r][a | _
RA: MULTU A <addr> [11[111]101] [11]101] 101 | [11]o00] 001] [_cispiow)] [dispnigh) |
SR: MULTU A(SP + dd)- (Aot 01 | [11]701] 701] [11]ooo[0o1 | [_dgow)][dwhighy |
BXx: MULTU AQOA +306) [FTeTH07) [T]T07 01) [o 001

Fleld Encodings: ¢: 0forix, tfor Iy
™ 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + [Y)

Example: MULTU AH
Before instruction execution: After instruction execution:
AF: F E szxhxvne AF: F E 00xhxOn1
HL: 0 2 F B HL: 0 1 F C

5-94

MULTUW

Multiply Unsigned (Word)

MULTUW [HL]Jsrc src = R, IM, DA, X, RA

DEHL < HL X src

Operation:
The contents of the HL register are muitiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as unsigned, binary integers.
The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the resuilt; if the Carry flag is
cleared to 0, the product can be represented correctly in 16 bits and the DE register
merely holds zero.
Flags: S: Cleared
) Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 216; cleared otherwise
Exceptions: None
Addresslng
Mode Syntax Instruction Format
R: MULTUW HL,RR [11]101]101]{ 11] m Jo11]
MULTUW HLXY [11]e11]101] [11]101] 101][11] 100 011]
IM: MULTUW HL,nn [11]111]101} | 11[101[101] [L[ﬂp]ﬂﬂ][niow) [_nmigh |
DA: MULTUW HL,(addr) [11]Jo11]101][11]101] 101 [11]010]011] [addrgow)][addr(nigh) |
X MULTUW HL,XY + dd) [1[119]101][11]101] 101} [11] xy Jo11] [ddow |[dthigh)]
RA: MULTUW HL<addr> [11Jo11[101][11]101]101] [11[110]011] [dispGow) |[disp(high)]
IR: ‘MULTUW HL,(HL) - (ot [H01] [#1]101 [01] [ti Joco Jot1]
Fleid Encodings: ®: Oforix, 1forly
" 000 for BC, 010 for DE, 100 for HL, 110 for 8P
xy: 000 for (IX + dd), 010 for (IY + dd)
Example: MULTUW HL,DE

Before instruction execution: After instruction execution:

F: szxhxvnec F: 00xhxOn0
DE: 00 0 A DE: 0 0 00
HL: 00 3 1 HL: 0 1 E A

MULTW

Multiply (Word)
MULTW [HL, Jsrc src = R, IM, DA, X, RA
Operation: DEHL < HL X src

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as signed, twos-complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in 16 bits and the DE register
merety holds sign-extension data.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected ‘
C: Set if the product is less than — 215 or greater than or equal to 215; cleared
otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: MULTW HL,RR {11[101]101] {11] m Jot0]
MULTW. HL XY [11]e11] t01] [11]101]101] [11]100]010] .
M MULTW HL,nn [11]111]101] [11]101]101] [11]110[010][neow)][nmighy |
DA: MULTW HL (addr) [11]e11]101] [11]101]101] [11]010]010] [addr(low)][addr(high) |
X: MULTW HL(XY + dd) [11[#13]101] [11]101]101] [11] xy [ot10][ddow)][amigh) |
RA: MULTW HL.<addr> [11Jo11]101] [11]101]101] [11]110]010] [disp(tow)][disphigh) |
IR: MULTW HL,(HL) [11 ot [01 {11101 | 101] | 1]o00] 010}

Field Encodings:

o O for IX, 1 for IY
" 000 for BC, 010 for DE, 100 for HL, 110 for SP
Xy : 000 for (IX + dd), 010 for (IY + dd)

Exampia:

MULTW HL,DE
Before instruction execution: After instruction execution:
F: szxhxvne F: 00xhx0n0
DE: 00 0 A DE: 00 00
HL: 00 3 1 HL: 0 1 E A

NEG

Negate Accumulator

Operation:

NEG [A}

A< —A

The contents of the accumulator are negated, that is, replaced by its twos-complement
value. Note that 80y is replaced by itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart for this case,
the Overflow flag is set to 1.

Flags:

S: Set if the result is negative, cleared otherwise
Z: Set if the result is zero, cleared otherwise
H: Set if there was a borrow from the least sugmflcant bit of the hnghorder four blts of
the result (bit 4); cleared otherwise
V: Set if the contents of the accumulator was not 80H
before the operation; cleared otherwise.
N: Set
C: Set if the contents of the accumulator was not 00, before the operation; cleared otherwise.

-

Exceptions:

None

Addressi
Modom

Syntax Instruction Format

NEG A [11]101]101] [o1]oo0[100]

Example:

NEG A .

Before instruction execution: After instruction execution:

AF: [28 | soxtxmc | AR D 8 | 10x0x010 |

NEG

Negate HL

Operation:

NEG HL

"HL< - HL

.

The contents of the HL register are negated, that is, replaced by its twos-complement
value. Note that 8000y is replaced by itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

Flags:

S: Set if the result is negative, cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there was a borrow from the least significant bit of the high-order four bits of
the result (bit 12); cleared otherwise ‘

V: Set if the contents of HL was 8000y before the operation; cleared otherwise

N: Set

C: Set if the contents of HL was not 000}, before the operation; cleared otherwise.

Exceptions:

None

Addressing
Mode

Syntax Instruction Format

NEG HL. [11[101T101Jh:1joo1[1oo]

Example:

NEG HL

Before instruction execution: After instruction execution:

F: szxhxvne F: 10x1x010
Hu| o 1 2 1 H: [F E D F

NOP

No Operation

NOP

Operation: None
No operation.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

NOP ‘

(00[000{000]

OR
OR

OR [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A< AORsrc

A logical OR operation is performed between the corresponding bits in the source
operand and the accumulator and the resuit is stored in the accumulator. A 1 bit Is
stored wherever either of the corresponding bits in the two operands is one; otherwise a
0 bit is stored. The contents of the source are unaffected.

Flags: ' §: Set if the most significant bit of the result is set; cleared otherwise

Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared :
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Cleared
Exceptions: None
Addressing '
Mode . Syntax Instruction Format
R: OR AR (so[50] 1]
RX: OR ARX {11]e11]101] [10[110] =]
M: OR An (tj1of110][n]
IR: OR A(HL) [10[110] 110]
DA: OR A(addr) - [11]o11]101] [10]110]111] [addr(iow) | [addrthigh) |
X OR A(XX + dd) [a[19]101] [10[110] xx][oflow)][omigh) |
sX: OR A(XY + d) [11Jer1]1o1][10[110]190][4]
RA: OR A<addr> [11[111]101][10]110]000] [dispiiow)][disp(nigh) |
SR: OR A,(SP + dd) [11]o11]101][10]110J000 | [diow) |[cimighy |
BX: . OR A(XA + XXB) [11]o11]101][10]110] bx]

Field Encodings: ® 0 for IX, 1 for IY
: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Example: OR A(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxpne AF: 5 8 00x0x000
HL: 2 4 ' 5 4 HL: 2 4 5 4
Data memory: Data memory:

\

5-100

OTDR

Output Decrement and Repeat (Byte, Word)

OTDR
OTDRW

Operation: . Repeat until B = 0: (C) < (HL)
‘ B<B-1
HL < AUTODECREMENT HL (by one if byte, by two if word)

’ This instruction is.used for block output of strings of data. The string of data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—A1s, and the contents of the
/O Page register are placed on address lines Aig—Ag3. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then
decremented by one for byte transfers or by two for word transfers, thus moving the
memory pointer to the next source for the output. If the result of decrementing the B
register is zero, the instruction is terminated, otherwise the output sequence is repeated.
Note that if the B register contalns 0 at the start of the execution of this mstructlon 256
bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: - 8 Unaffected
: Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User 1/0 bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format
OTDR [11]101]101]]10]111]011 |
OTDRW [11]101]101][10]011] 011]

' 5-101

Example: l

OTDR

Before instruction execution:

)

F: szxhxwne
BC: 0 3 4 6
HL: 5 2 1 8

1/O Page register:
Data memory:

5216: A 3
s5217: F F
5218: 9 B

After instruction execution:

F: sixhsvic
BC: 00 4 6
HL|. 5 2 15

Byte 9By written to /O port 1703461,
then byte FF written to I/O port 170246,
then byte A3y written to /0O port 170146.

5-102

OTIR

Output; Increment and Repeat (Byte, Word) .

Operation:

OTIR
OTIRW

Repeat until B = 0: (C) < (HL)
B+<B-1
HL < AUTOINCREMENT (by one if byte, by two if word)

This instruction is used for block output of strings of data. The string of data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the /O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—Aj5, and the contents of the
110 Page register are placed on address lines Ajg—A23. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then in-
cremented by one for byte transfers or by two for word transfers, thus moving the
memory pointer to the next source for the output. If the result of decrementing B is zero,
the instruction is terminated, otherwise the output sequence is repeated. Note that if the
B register contains 0 at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

- Flags:

S: Unaffected
Z Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions::

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode

Syntax " Instruction Format

OTIR . [13]101]101] [10]110]011]
OTIRW [11]101]101][10]010]011]
7

5-103

Example: . OTIRW

Before instruction execution: After instruction execution:

F: szxhxvne F:] sixhxvic
BC: 0 2 4 4 BC: 00 4 4
HL 50 0 4 HL: 5 0 0 8

o Page register: Word 3A90 written to I/O port 310244,

then word B867y written to 1/0 port

Data memory:

5004: 9 0
5005: 3 A
5008: 6 7
5007:| B 8

Note: Example assumes that a 16-bit data bus configuration of the 2280 MPU is used.

5-104

ouT

Output
OUT (C),src : src = R, RX, DA, X, RA, SR, BX
Operation: (C) = src
The byte of data from the source is loaded into the selected peripheral. During the 1/O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines Ag-As1s, and the
contents of the /O Page register are placed on address lines A16—A23 The byte of data
from the source is then loaded into the selected peripheral.
Flags: No flags affected
Exceptions: Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)
Addressing)
Mode Syntax instruction Format
R: OouT OR [11]101] 101 }{01] r Joo1]
RX: OUT (C),RX [11]e11] 101 }[11]101] 101] [01] rx [001 |
DA: OUT (C)(addr) [11]o11]101][11]101] 101] [o1]111]001 | ["addrflow)] [addrinigh) |
X: OUT (C),0X + dd) [1]111]101][11]101] 101 J[o1] xx Joo1][diiowy][ohigh) |
RA: OUT (C),<addr> [11[111]101][11]101]101] [017000] 001 | [atspiiow)] [dispmigh) |
SR OUT (O){SP + dd) [11]Jo11]101][11]101]701] [01]000 001] [dlowy][dinigh) |
BX: OUT (C),0XA + XXB) [A1Joit[1o1][19[%61]701] [oi]bx J0OT]
Field Encodings: ¢: oforiX, 1for Iy ,
rx: . 100 for high byte, 101 for low byte
xx: 001 for (X + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 15, 010 for (HL + 1Y), 011 for (IX + IY)
Example: OUT (C)IXH
Before instruction execution: After instruction-execution:
BC: 16 5 0 Byte FDy written to
x| F D 0 7 110 port 3216501
IO Page register:

5-105

OuT

Output Accumulator
OUT (n)A
Operation: nN)<A

The contents of the accumulator are loaded into the selected peripheral. During the /O
transaction, the 8-bit peripheral address from the instruction is placed on the low byte of
the address bus, the contents of the accumulator are placed on address lines Ag—A1s,
and the contents of the 1/O Page register are placed on address lines Ajg—A23. Then the
contents of the accumulator are written into the selected port.

Flags: No flags affected
Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format

OUT (n),A [1Jot0]o11][n]
Example: OUT (55H),A

Before instruction execution: After instruction execution:

A v Byte 42, written to
/O port 114255y
I/O Page register:

[1] ,

5-106

OouTD

Output and Decrement (Byte, Word)

ouTD
ouTDW

Operation: (C) < (HL)
B«<B -1
HL < AUTODECREMENT HL (by one if byte, by two if word)
This instruction is used for block output of strings of data. During the I/O transaction, the .
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-Ays, and the contents of the /O
Page register are placed on address lines A4g-Az3. The byte or word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The B
register, used as a counter, is decremented by one. The HL register is decremented by one
for byte transfers or by two for word transfers, thus moving the memory pointer to the next
source for the output. '

Flags: $: Unaffected
Z Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected ‘
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User /O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax . Instruction Format

OouTD [11][101]101] [10[101]011]
ouTDW | 11]101[101][10]o01[011]

5-107

Example:

ouTDW

Before instruction execution:

F: - szxhxvnc
BC: 15 6 4
HL: 50 0 6

110 Page register:
Data memory:

sos:

After instruction execution:

F. s0xhxvic
BC: 1 4 6 4
HL: 5§ 0 0 4

Word 8D07H written to
HO port 331564

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5-108

OUTI

Output and Increment (Byte, Word)

ouTl
OuTIW
Operation: (C) ~ (HL)
-B+=B=1
L - AUTOINCREMENT HL (by one if byte, by two if word)
This instruction is Used for block output of strings of data. During the /O transdction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—A1s, and the contents of the
I/O Page register are placed on address lines Ajg—A23. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then incre-
mented by one for byte transfers or by two for word transfers, thus movmg the memory
pointer to the next source for the output
Flags: $: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected :
V: Unaffected
N: Set
C: Unaffected
Exceptions: Privileged Instruction (if the Inhibit User 1/0 bit in the Trap Control register is set to 1)
Addressing '
Mode Syntax Instruction Format
OUTI ‘ [11[101]101] [10]100011]
OuUTIW - [11]101]101] [10]000]011]
Exampie: ouTi
Before instruction execution: After instruction execution:
F: - smxhxvne F: sOxhxvic
BC: 15 6 4 BC: 1 4 6 4
HL: 5§ 0 0 2 HL: 50 0 3
1/0 Page register: Byte 7By written to
' /O port 331564

[]

Data memory:

swoz 73]

5-109

OUT[W]

Output HL

Operation:

OUT[W] (C)HL
(C) < HL

The contents of the HL register are loaded into the selected peripheral. buring the 11O

" transaction, the 8-bit peripheral address from the C register is placed on the low byte of

the address bus, the contents of the B register are placed on address lines Ag—A14s, and
the contents of the I/O Page register are placed on address lines A1g—A23. Then the con-
tents of the HL register are written into the selected port. For 8-bit data buses, only the
contents of the H register are transferred during a single bus transaction.

Flags:

No flags affected

Exceptions:

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode

Syntax |nsth1ctlon Format

OUTW (C)HL - [1[101]s01] [10]111] 111]

Example:

OouUTW (C),HL

Before instruction execution: After instruction execution:
BC: 2 8 5 0 Word 843A written
HL: 3 A 8 4 to I/O port 1726501

110 Page register:

[7]

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5-110

PCACHE

Purge Cache
PCACHE -
!

Operation: All cache entries invalidated
This instruction is used to invalidate all entries in the cache.

Flags: No flags affected -

Exceptions: None

Addressing
Mode Syntax Instruction Format

PCACHE

| 11]101]101][o1]100{101 |

5-111

POP

POP
POP dst dst = BC, DE, HL, AF, IX, IY, IR, DA, RA
Operation: - dst < (SP)
SP<SP + 2
The content of the memory location addressed by the Stack Pointer (SP) are loaded into the
destination. For register destinations, the byte at the memory location specified by the
contents of the SP is loaded into the low byte of the destination register (or Flag register for
AF) and the byte at the memory location one greater than the contents of the SP is loaded
into the high byte of the destination register. The SP is then incremented by two. if the
_destination is a memory location, the destination and the top of the stack must be
non-overlapping.
Flags: No flags affected (unless dst = AF)
Exceptions: None
Addressing ‘
Mode Syntax Instruction Format
R: POP RR [11] rr Joot]
POP XY [11]e11{101]{11]100] 001]
IR: POP (HL) [11]o11]101][11]o00] 001 |
DA: POP (addr) [11]o11]101]{11]o10]001][addrow)][addr(nigh
RA: POP <addr> [11]Jo11]101][11]410]001][disp(iow)][dispinigh)]

Field Encodings: ®: OforIX 1forlY
r: 000 for BC, 010 for DE, 100 for HL, 110 for AF

Example: POP BC

Before instruction execution: After instruction execution:
BC: 2 3 0 8 BC: 0 9 2 3
SP: F E 3 2 ' SP: F E 3 4
Data memory:) Data memory:

FE32: 2 3 ! FE32: 2 3
FE33: 0 9 . FE33: 0 9

5-112

PUSH

Push
PUSH src src = BC, DE, HL, AF, IX, 1Y, IM, IR, DA, RA
Operation: SP+«SP -2
. (SP) < src
The Stack Pointer (SP) is decremented by two and the source is loaded into the location
addressed by the updated SP; the low byte of the source (or Flag register for AF) is load-
. ed into the addressed memory location and the upper byte of the source is loaded into
the addressed memory location incremented by one. The contents of the source are
unaffected. If the source is a memory location, the source and the new top of the stack
must be non-overlapping.
Flags: No flags affected
Exceptlbns: System Stack Overflow Warning
Addressing) : .
Mode Syntax Instruction Format A
R: PUSH RR [93] er [101]
PUSH XY [11[e11] 101} [11]100]101]
IN: PUSH nn [1t[11]r01] [11[1r0]101] [ntows |[nmigh) |
IR: PUSH (HL) [FiJo11]101] [11]oo0]101]
DA: PUSH (addr) [11Jo11]101] [11]o10]101 | [addrgow)][addrigh) |
RA: PUSH <addr> [1t]o11]101] [11]110]101] [displow)][disp(high) |
Fleld Encodings: o: oforixX 1foriy
m: 000 for BC, 010 for DE, 100 for HL, 110 for AF
Example: ° PUSH BC
Before instruction execution: After instruction execution:
BC: 0 8 2 3 BC: 0 9 2 3
SP: F E 3 4 Sp: F E 3 2
Data memory: Data memory:
FE32 0 0 FE32: 2 3
FE33: 0 0 FE33: 0 9

5-113

RES

Reset Bit
RES b,dst _ dst = R, IR, SX
Operation: dst(b) < 0
The specified bit b within the destination operand is cleared to 0. The other bits in the
destination are unaffected. The bit number b must be between 0 and 7.
Flags: No flags affected
Exceptions: None
Addressing)
Modq Syntax . Instruction Format
R: RES bR [11]oo1fot1]{10] b | ¢]
IR: RES b,(HL) [11]oo1]o11] {10] b T110]
sX: RES b,(XY + d) {11fe11{101]|{11Joot]or1][@ |[10] b [110]

Fleld Encoding:

®: 0 for IX, 1 for lY

Example:

RES 1,A
Before instruction execution: After instruction execution:

A 00010110 A: 00010100

5-114

RET

Return
RET [cc]
‘Operation: If the cc is satisfied then: PC < (SP) .
SP+SP + 2 :
/
This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a Call instruction. For a conditional return, one of the Zero, Carry,
Sign, or Parity/Overflow flags is checked to see if its setting matches the condition code
*cc” encoded in the instruction; if the condition is not satisfied, the instruction following the
Return instruction is executed, otherwise a value is popped from the stack and loaded into
the Program Counter (PC), thereby specifying the location of the next instruction to be
executed. For an unconditional return, the return is always taken and a condition code is
not specified.
The following figure illustrates the format of the PC on the stack for the Return instruction:
SP before —~ PC (low) low address
PC (high)
SP after ~ : high address
< 1 byte =~
Flags: No flags affected
Exceptions: None
Addressing '
Mode Syntax Instruction Format
RET cc [11] ec [000 |
RET 11]001] 001 |
Fleld Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110 for Por NS, 111 for Mor S
Example: RET NC
. Before instruction execution: After instruction execution:
F: szxhxvn0 F: szxhxwn0
PC: 25 2 8 PC:! 1 6 3 3
SP: F F . 2 4 SP: F F 2 6
Data memory. Data memory:
FF24: 3 3 : FF24: 3 3
FF25: 186 FF25: 1 6

5-115

RETI

Return from iInterrupt
RETI

Operation: PC « (SP)»
SP+«S8P + 2

This instruction is used to return to a previously executing procedure at the end of a pro-
cedure entered by an interrupt while in interrupt mode 0, 1, or 2. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC).

The following figure illustrates the format of the PC on the stack for the Return from In-
terrupt instruction:

SP before — PC (low) low address
PC (high)
SP after = high address
<« 1 byte >

A special sequence of bus transactions is performed when this instruction is
encountered in order to control Z80 family peripherals; see Chapter 12.

Flags: No flags affected
Exceptions: Privileged Instruction
Addressing)
Mode Syntax Instruction Format
RETI [1ﬂ101[1o1 |[01]001] 101]
Example: RETI
Before instruction execution: After instruction execution:
PC: 8 4 10 PC: 19 7 2
SP: F F C 6 SP: F F 8
Data memory: Data memory:
FFCe: 7 2 FFCe: 7
FFCT: 19 FFCT:

5-116

RETIL

Return from Interrupt Long

RETIL
Operation: PS « (SP)
. : SP<«SP + 4
This instruction is used to return to a previously executing procedure at the end f a pro-
cedure entered by an interrupt while in interrupt mode 3 or a trap. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC)
and Master Status register (MSR).
The following figure illustrates the format of the program status (PC and MSR) on the
system stack for the Return from Interrupt Long instruction: ‘
SP before = | MSR (low) | low address
MSR (high
PC (low)
- PC (high) :
SP after —~ High address
< 1 byte =
Flags: No fiags affected
Exceptions: Privileged Instruction
Addressing .
Mode ~ Syntax instruction Format
RETIL [39]701 701 [61]070] 701 |
Example: RETIL :
Before instruction execution: . After instruction execution:
PC: 8 4 10 PC: 19 7 2
SP; F C 6 SP: F C A
MSR: 0 00 MSR: 4 7 F
Data memory: Data memory:
FFC8: 7 F * FFC8: 7 F
FFCT: 4 0 FFCT: 4 0
FFC8: 7 2 -FFC8: 7 2
FFCe: 19 FFCe: | 1 9

5-117

RETN

Return from Nonmaskable Interrupt

RETN
Operation: PC < (SP)
SP+<SP + 2
MSR(0-7) < IFF(0-7)
This instruction is used to return to a previously executing-procedure at the end of a pro-
cedure entered by a nonmaskable interrupt while in interrupt mode 0, 1, or 2. The con-
tents of the location addressed by the Stack Pointer (SP) are popped into the Program
. - Counter (PC). The previous setting of the interrupt masks in the Master Status register
are restored. ’ .
The following figure illustrates the format of the PC on the stack for the Return from Non-
‘maskable Interrupt instruction:
SP before — PC (low) low address
PC (high) .
SP after = high address
<« 1 byte >
Flags: No flags affected
Exceptions: Privileged. Instruction
Addressing :
Mode Syntax Instruction Format
RETN ~ [11]101]101]{01]000] 101
Example: RETN
' Before instruction execution: After instruction execution:
PC: 8 4 10 PC: 19 7 2
SP: F F cC 6 SP: F F c 8
MSR: 4 0 00 MSR: 4 0 7 F
Shadow Interrupt register:
Data memory: Data memory: ~
FFC6: 7 2 FFCe: 7
FFCT: 19 FFCT:

5-118

RL

! ~ ‘ Rotate Left

RL dst ~ dst = R, IR, SX

Operation: tmp <+ dst o ‘ : ‘
dst(O) ~C ‘ .

« dst(7) Lo
dst(n + 1)« tmp(n)forn = 0t0 6
dst

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated left one bit position. Bit 7 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 0 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwuse
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwnse

Exceptions: None }

Addressing
Mode Syntax Instruction Format
R: RL R , [11]001]011] [oofat0] r]
IR: . RL (HL) {11]001]011] [0ol010] 110 |
sX: RL (XY + d) [afe11f101][11JoorJot1][a4][oofo10]t10]

Field Encoding: ®: OforiX, 1forlY

Example: RL D
Before instruction execution: After instruction execution:

F: " saxhxpn0 N 00x0x101
D: 10001111 _ D: 00011110 | = ,

5-119

RLA

Rotate Left Accumulator

Operation:

RLA

tmp < A .

AQQ)+«C

C+ A7)

An + 1)~ tmp(n)forn = 0to 6 b

A

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated left one bit position. Bit 7 of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit O of the destination.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise
Exceptions: None
Addressing :
Mode Syntax Instruction Format -
R: RLA [00fot10]111]
Example: RLA
Befbre instruction execution: ' After instruction execution:
AF: [01110110 | sazxhxpnt | AF: 11101101 | szx0xp00 |

5-120

RLC

Rotate Left Circular

RLC dst ‘ dst = R, IR, SX

Operation: tmp < dst
C +—dst(7)
dst(0) <« tmp(7)
dst(n + 1) tmp(n)forn = 0 to 6

dst

The contents of the destination operand are rotated left one bit pbsition. Bit 7 of the
destination operand is moved to the bit O position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the Tesult is zero; cleared otherwise .
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format
R: RLC R [11]oo1]o11] [00]oo0] v |
IR: RLC (HL) [11]oo1]011] [00[000] 110]
sX: RLC (XY + d) [11]et1]101]{11]001]o11]] a4 |{oojooo[110]

Fleld Encoding: ®: OforiIX, 1forlY

Example: RLC B .
Before instruction execution: After instruction execution:

F: soxhxpne F: 00x0x101
B: 10001000 B: 00010001

5-121

RLCA

Rotate Left Circular (Accumulator)

RLCA

Operation: tmp < A
C< A
A(Q) < tmp(7)
An + 1)< tmp(n)forn =0to 6

[c] 7-0:|‘

A

The contents of the accumulator are rotated left one bit position. Bit 7 of the
accumulator is moved to the bit O position and also replaces the Carry flag.

Flags: $: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared .
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

RLCA [00[o00[111]

Example: RLCA
Before instruction execution: After instruction execution:

AF: [10001000 [szxhxpnc | AF: 00010001 | szxOxp01 |

5-122

RLD

Rotate Left Digit

RLD

Operation: -tmp(0:3) « AKO:S)
A(0:3) + dst(4:7)
dst(4:7) < dst(0:3)
dst(0:3) « tmp(0:3)
[7 4|3 o] |7 4]3 o]

A dst v

The low digit of the accumnulator is logically concatenated to the destination byte whose mem-
ory address is in the HL register. The resulting three-digit quantity is rotated to the left by one
BCD digit (four bits). The lower digit of the source isvmoved to the upper digit of the source; the _
upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of
the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is
unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the left a
string of BCD digits, thus muitiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RL instruction.

Flags: S: Set if the accumulator is negative after the operation; cleared otherwise
Z Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RLD [#[w0e1101] [er[101]711]

Example: RLD
Before instruction execution: ’ After instruction execution:;

AF: |3 7 soxhxpne | AF: |3 0 00x0x10¢
HL: 5§ 000 HL: 5 000

Data memory: Data memory:

oo [57] o [17]

5-123

RR

Rotate Right

RR dst dst = R, IR, SX
t

Operation: tmp < dst
dst(7) < C
C « dst(0)
dst(n) < tmp{n + 1) for n=0to6
L <]

dst

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated right one bit position. Bit 0 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 7 of the destination.

Flags: S: Set if the most sngnmcant bit of the result is set; cleared otherW|se
Z: Set if the result is zero; cieared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit O was a 1; cleared otherwise

Exceptlons: None

Addressing
Mode Syntax Instruction Format
R: RR R [11]oo1[o11]{00]011] r]
IR: RR (HL) [11]oo1 {011][00[011[110]
sX: RR (XY + d) [i]eti]101][11fo01f011][d |[oo[o11]110]

Fleld Encoding: ®: Oforlx 1forlY

Example: RR B
Before instruction execution: After instruction execution:
F: szxhxpn0 F: 00x0x001
B: 11011101 B: 01101110

5-124

RRA

Rotate Right (Accumulator)

Operation:

RRA

tmp < dst

A7)«C

C+=A0 . .

A(n) < tmp(n + 1)forn = 0to 6

e

A

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated right one bit position. Bit 0 of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 7 of the accumuiator.

Flags:

S: Unaffected

Z: Unaffected

H: Cleared

P: Unaffected

N: Cleared .

C: Set if the bit rotated from bit O was a 1; cleared otherwise

Exceptions:

None

Addressing
Mode

Syntax - Instruction Format

RRA [00[o11]111]

Example:

RRA

Before instruction execution: After instruction execution:

AF: 11100001 | szxhxpno | = AF: 01110000 | s2x0xp01 |

5-125

RRC

Rotate Right Circular

RRC dst dst = R, IR, SX
Operation: tmp < dst

C < dst(0)

dst(7) < tmp(0)

dst(n) < tmp(n + 1)forn-=0to6

o[c]

dst

The contents of the destination operand are rotated right one bit position. Bit O of the
destination operand is moved to the bit 7 position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared "
P: Set if the parity of the result is even; cleared otherwise
N: Cleared -
C: Set if the bit rotated from bit 0 was a 1, cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: RRC R [11]oo1]o11][00Jo01] ¢ |
IR: RRC (HL) [11]oo1]o11} 00Joo1[110]
SX: RRC (XY + d) {11]e11]101][11Joo1Jor1][d][oo]o01]110]
Fleld Enoodlng: ®: OforIX, 1forly
Example: RRC A
Before instruction execution: After instruction execution:
AF: 00110001 | szxhxpnc AF: 10011000 | 10x0x001 |

5-126

RRCA

’ Rotate Right Circular (Accumulator)

Operation: tmp < A

A(7) + temp(0)
» A(n) +tmp(n + t)forn = 0to 6

RSN

dst

The contents of the accumulator are rotated right one bit position. Bit O of the
accumulator is moved to the bit 7 position and also replaces the Carry flag.

Flags: 8: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared . v
C: Set if the bit rotated from bit O was a 1; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
RRCA [00]001] 111]
Example: RRCA
Before instruction execution: After instruction execution:

AF: 00010001 | szxhxpnc J AF: Lwoowoo | s2x0xp01

! 5-127

RRD

Rotate Right Digit.
RRD
Operation: tmp(0:3) < A(0:3)

A(0:3) « dst(0:3)
dst(0:3) « dst(4:7)
dst(4:7) < tmp(0:3)

{7 a]3 o] |7 4]3 of

A dst

The low digit of the accumuiator is logically concatenated to the destination byte whose mem-
ory address is in the HL register. The resulting three-digit quantity is rotated to the right by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of
the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is
unaffected. In muitiple-digit BCD arithnetic, this instruction can be used to shift to the right a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RR instruction.

Flags: 8: Set if the accumulator is negative; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
) H: Cleared :
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
"~ N: Cleared
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
RRD [11]101]101][01]100]111]
Example: RRD
Before instruction execution: After instruction execution:
AF: 0 6 szxhxpne AF: 0 2 00x0x00c
H: 5 0 00 H: 50 0 0
Data memory: Data memory:

oo0:[37] soon [53]

5128

RST

Restart
RST address
Operation: SP <SP — 2
: (SP) <= PC
PC <« address
The current Program Counter (PC) is pushed onto the stack and the PC is loaded with a
constant address encoded in the instruction. Execution then begins at this address. The
restart instruction allows for a call to one of eight fixed locations as shown in the table
below. The table. also indicates the encoding of the address used in the instruction en-
coding. (The address is in hexadecimal, the encoding in binary.)
Address t encoding
00n 000
08y 001
104 010
181 011
201 100
28y 101 -
- 301 110
38y 111
Flags: No flags affected
Exceptions: None
Addressing '
Mode Syntax- Instruction Format
RST address [14] ¢ [111]
Field Encoding: t: See table above
Example: RST 18H
' : Before instruction execution: After instruction execution:
PC: 4 6 2 0 PC: 00 1.8
SP: F F C 4 SP: F F cC 2
Data memory: Data memory:
FFC3: F F FFC3: 2 0
FFC4: F F FFC4: 4 6

5-129

SBC

Subtract with Carry (Byte)

SBC [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operalloh: A<A-src—-C
The source operand together with the Carry flag is subtracted from the accumulator and
the difference is stored in the accumulator. The contents of the source are not affected.
Twos-complement subtraction is performed.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise ,
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
and the result is the same sign as the source; cleared otherwise
N: Set. :
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing
Mode Syntax . Instruction Format
R: SBC AR L10[o11] r |
RX: SBC ARX [11]e11[101] [10[011] rx |
IM: SBC An [1fotsfrol[n]
IR: SBC A(HL) [10]o11]110]
DA: SBC A,(addr) { 11]o11{101|[10f011]111] [addrow) || addr(high) |
X SBC A,(XX + dd) [1[1t1]101][10]o11] xx][dilow) [ommigh)]
SX: SBC A(XY + d) [1t[en1]1o1][10[o11]110][4]
RA: SBC A<addr> [11[111]101][10]011]000] [displlow) || disp(igh) |
SR: SBC A(SP + dd) ~[1for1]101][10[011Jo00] [dtow)][dinigh)]
BX: SBC A(XXA + XXB) [11]o11]101][10]011] bx |
Fleld Encodings: - ¢: oforix, 1forty
x: 100 for high byte, 101 for iow byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: SBC A(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxvn1 AF: 2 F 00x1x010
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:

wo T8]

5-130

SBC

Operation:

Subtract with Carry (Word)
SBC dst,src dst = HL
. src = BC, DE, HL, SP
-ooor
dst = IX
src = BC, DE, IX, SP
or
dst = IY
src =

BC, DE, Iy, SP
dst < dst — src -~ C

The source operand together with the Carry flag is subtracted from the destination and
the result is stored in the destination. The contents of the source are not affected. Twos-
complement subtraction is performed.

Flags:

8: Set if the result is negative, cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there is a borrow from bit 12 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, the operands are of different signs and the
result is of the same sign as the source; cleared otherwise

N: Set -

C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.

Exceptions:

None

Addressing
Mode

Syntax Instruction Format

SBC HL,RR [11]101]101] [01] rr Jo10]
SBC XY,RR [11]e11]101] [11]101]101] [0t [w [010]

Fleld Encodings: .

®: Ofor IX, 1 for IY
" 000 for BC, 010 for DE, 100 for subtract register from itself, 110 for SP

Example:

SBC HL,DE

Before instruction execution: } After instruction execution:

F: szxhxvn1 . F: 00x0x010
DE: 1 1 - DE 11
HL: HL E E

olo
-l0
o|e
[-21-4

5-131

SC

System Call
SC nmn
Operation; SP«<SP- 4
(SP) < PS
SP<+<SP - 2
(SP) = nn
PS < System Call Program Status
This instruction is used for controlled access to operating system software in a manner
similar to a trap or interrupt. The current program status is pushed onto the system
stack followed by a 16-bit constant embedded in the instruction. The program status con-
sists of the Master Status register (MSR) and the updated Program Counter (PC), which
points to the first instruction byte following the SC instruction. Next the 16-bit constant in
the System Call instruction is pushed onto the system stack. The system Stack Pointer is
always used regardless of whether system or user mode is in effect. The new program
status is loaded from the Interrupt/Trap Vector Table entry associated with the SC in-
struction. CPU control is passed to the procedure whose address is the PC value con-
tained in the new program status.
The following figure illustrates the format of the saved program status on the system
stack:
SP after = n (low) low address
n (high)
MSR (flow)
MSR (high)
PC (low)
PC (high)
SP before — high address
< 1 byte =
Flags: No flags affected
Exceptions: System Call Trap, System Stack Overflow Warning
Addressing
Mode Syntax Instruction Format
SC nn [11]101]101] [01]110Jo01}[nilow)][ninigh) |

5-132

SC 0155H

Before instruction execution: After instruction execution:
PC: 4 6 20 PC: 9 0 8 8
SP: F F cC 9 SP: F F c 3
MSR: 4 0 7 F MSR: 00 2 3
interrupt/Trap Vector Table Pointer: Data memory:
[38 5 2 | FFC: | 5 5
FFC4: 0 1
Physical memory: FFC5: 7 F
FFC6: 4 0
365250: 2 3 FFCT: 2 0
365251: 00 FFC& 4 8
365252 8 8
365253 9 0

Note: The physical memory addresses are 24-bit addresses emitted by the MMU. The data memory addresses are the
16-bit addresses from the CPU

5-133

SCF

Set Carry Flag

SCF

Operation: C+1

The Carry flag is set to 1.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Unaffected
N: Cleared
C: Set
Exceptions: " None
Addressing :
Mode Syntax Instruction Format
SCF [00]110] #11]
Example: SCF
Before instruction execution: After instruction execution:

o [Comone F:

5-134

SET

Set Bit
SET b,dst dst = R, IR, SX
. Operation: dstb) = 1
The specified bit b within the destination operand is set to 1. The other bits in the
destination are unaffected. The bit to be set is specified by a 3-bit field in the instruction;
this field contains the binary encoding for the bit number to be set. The bit number must
be between 0 and 7. '
Flags: No flags affected
- Exceptions: None
Addressing -
Mode Syntax Instruction Format
R SET bR [11]ootJor1|[11] b | r]
‘IR SET b,(HL) _ |11foo1]Jo11][11] b {110]
SX: SET b(XY + d) "[11fer]101][11Joot]orn][.4 J[11[b]110]
Fleld Encoding: ®: OforIX 1foriy
Example: SET 1A ; ,
Before instruction execution: After instruction execution:

N

A 00010100 A 00010110

5-135

SLA

Shift Left Arithmetic

SLA dst dst = R, IR, SX
Operation: tmp < dst

C « dst(7)

dst(0) <0

dstin + 1) < tmp(n)forn = 0to 6

¢ |e{7-0]=0

dst

The contents of the destination operand are shiﬁed left one bit position. Bit 7 of the -
destination operand is moved to the Carry flag and zero is shifted into bit O of the
destination..

Flags: . 8: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 7 was a 1; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: SLA R [11]oot]o11][00[100] r }]
IR: SLA (HL) [11]oo1]011|{00{100]110]
SX: SLA (XY + d) [11]e11]101][11]oo1[o11] | d] [00] 100 110]
Fleld Encoding: ®: OforlX 1forly
Example: SLA L
Before instruction execution: After instruction execution;
F: ‘szxhxpne F: 00x0x001
L: 10110001) L: 01100010

5-136

SRA

Shift Right Arithmetic

SRA dst © dst = R, IR, SX
Operation: tmp < dst
C < dst(0)
dst(7) + tmp(7)
dst(n) < tmp(n + 1)forn = 0to 6
dst
The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and bit 7 remains unchanged.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared)
C: Set if the bit shifted from bit 0 was 1; cleared otherwise
Exceptions: None
Addressing
Mode Syntax : Instruction Format
R: SRA R [11]o01]011] [0of101] ¢]
IR: SRA (HL) |11Joo1]o11] [00[101]110]
sx: SRA (XY + d) [1ife1iTr01] [11]ootJor1}[a |[c0[101]110]
Field Enoodlhg: ®: OforiX, 1fordy
Example: SRA (IX + 3)
Before instruction execution: . After instruction execution:
F: soxhupne F: " 10x0%000
x| 10 00 x{ 10 00
Data memory: » ~ Datamemory: ,
1003: 10111000 1003: L 11011100
Address calculation:
1000
+ 3
1003

5-137

SRL

Shift Right Logical

SRL dst dst = R, IR, SX
Operation: tmp < dst

C < dst(0)

ds(7) <0

dst(n) < tmp(n + 1)forn = 0to 6

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and zero is shifted into bit 7 of the
destination.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was 1; cleared otherwise
Exceptions: None
Addressing :
Mode Syntax Instruction Format
R: SRL R [11]o01]011 J[00]111] ¢]
IR: SRL (HL) [11]oot]011][00[111]110]
sX: SRL.(XY + d) [11]et11]101][11]oo1Jor4}[" d 1{oo[111]110]
Field Encoding: ®: OforIX, tforly
Example: SRL B
Before instruction execution: After instruction execution:
F: szxhxpne F: 00x0x101
B:) 10001111 ’ B: 01000111

5-138

'SUB"

Subtract

‘SUB [AJsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A<« A — src

The source operand is subtracted from the accumuiator and the difference is stored in
the accumulator. The.contents of the source are unaffected. Twos-complement subtrac-
tion is performed.

Flags: S: Set if the result is negative; cleared otherwise

Z: Set if the result.is zero; cleared otherwise

H: Set if there is a borrow from bit 4 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
and the result is the same sign as the source; cleared otherwise '

N: Set : .

C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None
Addressing
Mode . Syntax Instruction Format
R: SUB AR 10[010] r]
RX: SuB A,RX [11]e11]101][10[010] = |
IM: SUB An [AJoe]i0][m]
IR: SUB A(HL) 10/010]110]
DA: SUB A(addr) . [11]o11]101] [T0[o10[111 | [addriiow) | [addrmighy |
X: SUB A(XX + dd) [111]101[10j010] xx || dllow)][dihigh) |
sX: SUB AXY + d) - [t1]e11]101|[t0]ot0f110][d]
RA: SUB A<addr> [11[111]101 | [10]010]000 | [dispiow) | { dispmigh) |
SR: SUB A(SP + dd) [11]o11]101][10[010]000 | [dfiows][dmight |
BX: SUB A(XXA + XXB) | 11]o11]101]{10]010] bx]
' Fleld Encodings: o: oOforIX tfor Iy
X: 100 for high byte, 101 for low byte
xx: 001 for IX + dd), 010 for (i + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + iY), 011 for (IX + 1Y)
Example: suB A(HL)
Before instruction execution: After instruction execution:
AF:| 4 8 saoxhxvne AF: 30 00x0x010
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:

- 5-139

SUBwW

Subtract (Word)
SUBW [HL,Jsrc src = R, IM, DA, X, RA
Operation: HL < HL — src

The source operand is subtracted from the HL register and the difference is stored in
the HL register. The contents of the source are unaffected. Twos-complement subtrac-
tion is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise - ’ b
H: Set if there is a borrow from bit 12 of the resuit; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
and the result is the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.
Exceptions: - None
Addressing
Mode Syntax Instruction Format
R: SUBW HL,RR [11]101]101][11] er T110]
SUBW HLXY L11]e11] 101][11]101]101] [11]101]110]
IM: SUBW HL,nn [11]111]101] [11]101]101] [11]111]110] [ngow)][nenigh)] .
DA: SUBW HL,(addr) {11]o11]101][11]101]101] [11]o11]110] [addriow)] [addrmigh) |
X: SUBW HL,(XY + dd) {1[1]101][11]101T101 | [11]xy [190] [dilow)][dihigh)]
RA: SUBW HL.<addr> [1t[et1]101][11]101]101] [11]119]110] [dispow) | [disp(high) |
IR SUBW HL,(HL) [nJon] 1] [Tic1 [t01] [71]oo1] 110}
Fleld Encodings: o: oforix, 1forly
r: 001 for BC, 011 for DE, 101 for HL, 111 for SP
xy: 001 for (IX + dd), 011 for (IY + dd)
Example: SUBW HL,DE
Before instruction execution: After instruction execution:
F: szxhxwne F: 10x0x010
DE: 00 10 DE: 00 10
HL: A1 2 3 HL: A 1 1 3

5=-140

TSET

Test and Set
TSET dst dst = R, IR, SX
Operation: S + dst(7)
dst < FFy
Bit 7 within the destination operand is tested, and the Sign flag is set to 1 if the specifiéd
’ bit is 1, otherwise the Sign flag is cleared to 0. The contents of the destination are then
set to all. 1s. For memory operands, the operand is always fetched from the external
memory; on the Z-BUS interface, the status lines indicate a Test and Set operatlon dur-
ing the memory read transaction.
Between the data read and subsequent write transactions, bus request is not granted.
The data is read from memory, even if it is also present in the cache.
Flags: S: Set if bit 7 is 1; cleared otherwise '
Z Unaffected
H: Unaffected
P: Unaffected
N: Unaffected
C: Unaffected
Exceptions: None
Addressing Co SN
Mode Syntax Instruction Format
R TSET R [11[oo1]o11] [0o]110] r }
IR: TSET (HL) |11]001]011] [0of110]110]
SX TSET (XY + d) [11]et1]101] [11oot1]or1][« |[o0{110]110]
Fleld Encoding: ®: OforiX, 1forly
Example: TSET (HL)
Before instruction execution: / After instruction execution:
F:. ' szxhxpne F: Ozxhxpnc
HL:|[o0 3 8 2 H:[o0 3 8 2
Data memory: Data memory:
0382 00010111 0382:

5-141

TSTI

Test input
TSTI (C)

Operation: F < test (C)
During the 1/O transaction, the peripheral address from the C register is placed on the
low byte of the address bus, the contents of the B register are placed on address lines
Ag-Ay5, and the contents of the I/O Page register are placed on address lines A1g—Aga3.
The byte of data from the selected peripheral is tested and the CPU flags set according-
ly. No CPU register or memory location is modified.

Flags: 8: Set if the tested byte is negative; cleared -otherwise
Z: Set if the tested byte is zero; cleared otherwise
H: Cleared ’
P: Set if the parity of the tested byte is even; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: Privileged Instruction (if the inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

TSTI (©) [#]101]701] [01[110]000

Example: TSTI- (C)
Before instruction execution: ' . After instruction execution:

e *
BC:| 5 0 4 6

11O Page register:

[+2 |

Byte 93, available at I/0 port 125046

5-142

XOR

Exclusive OR
XOR [A]Jsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A < A XOR src
A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the accumulator and the result is stored in the accumulator. A 1 bit
is stored wherever the corresponding bits in the two operands are different; otherwise a
0 bit is stored. The contents of the source are unaffected.
Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Cleared
Exceptions: None
- Addressing
Mode - Syntax Instruction Format
R: XOR AR [10]101] ¢] ~
RX: XOR ARX | 11]e11]101]{ 10]101] = |
IM: XOR An [1a{101]110][" m]
IR: - XOR 'A(HL) [10o[101]110]
DA: XOR A,(addr) [11]o11]101][10]101]111] [addrgiow)][addr(nigh) |
X: XOR A,(XX + dd) (t111{101]{10{101] xx][dlow) || dihigh) |
SX: XOR A(XY + d) [11fen1]101][10f101]110}] a4 |
RA: XOR A<addr> [11]111]101][10]101]000 } [dispfiow)][dispthigh) |
SR: XOR A/(SP + dd) [11Jo11]101][10]101J000 }{ dlow [dmigh |
BX: XOR A(XXA + XXB) [11]o11]101][10]101] bx |
Field Encodings: ¢: o0forIX 1foriy
rx: 100 for high byte; 101 for low byte :
xx: 001 for (X + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + IV)
Example: XOR A,(HL)
Before instruction execution: After instruction e)'(ecut’on:
AF: 4 8 szxhxpne - AF: 5§ 0 00x0x100
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:

5-143

EXT ENDED INSTRUCTION

EPU Internal Operation

Operation:

EPU < template

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), and template address. The format of the system stack after the trap is in-

. dicated by the following figure:

new SP = | template address (low) low address
template address (high) v
MSR (low)
MSR (high)
PC (low)
PC (high)
" previous SP > high address
< 1 byte —~>

The format for the EPU template for this instruction is indicated in the following figure:

10001110 low address
****011D

****0000 high address
<« 1 byte =

where ID is the two bit ID number specifying the EPU to process this instruction
and * indicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned.

Flags: No flags affected
Exceptions: Extended Instruction
9
Addressing
Mode Operation Instruction Format
EPU Internal [11[101]101] [10]011] 111]| lomﬁuto 1| [template 2][template 3 |
Operation

The template is a 4-byte field.

5-144

EXTENDED INSTRUCTION

- Load Accumulator from EPU

Operation:

EPU < template’
A< EPU

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
data from the EPU is loaded into the accumulator.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the systemn stack
(in the following order). Program Counter (PC) of the next instruction, Master Status
register (MSR), and template address. The format of the system stack after the trap is in-
dicated by the following figure: '

new SP = | ‘template address (low) | low address
template address (high) .

MSR (low)

MSR (high)

PC (low)
: PC (high)

previous SP —>) high address
< 1 byte =~

The format for the EPU template for this instruction is indicated in the following figure:

10001110 low address
*xx+()0|D :
****0000

****0000 high address
< 1 byte =

where ID is the 2-bit ID number specifying the EPU to process this instruction and * in-
dicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned. The CPU
places the data on ADg~AD1s into the accumulator.

Flags:

S: Set if the byte loaded into the accumulator has a 1 in bit 7; cleared otherwise

Z: Set if the byte loaded into the accumulator is zero; cleared otherwise

H: Cleared :

P: Set if the parity of the byte loaded into the accumulator is even; cleared otherwise
N: Cleared

C: Unaffected

Exceptions:

Extended Instruction’

5-145

Addressing
Mode

Operation Instruction Format
A < EPU [11]101] 101][10]010]111] [1emplate 1]| [template 2] [template 3 |
'

.

The template is a 4-byte field.

5-146

EXTENDED INSTRUCTION

Load EPU from Memory.

Operation:

src = IR, DA, X, RA, SR, BX

EPU <« template k
EPU < src

if the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed on
the input operand. Next the data starting at the memory location determined. by the
source calculation is fetched from memory and loaded into the EPU; successive trans-
fers are performed until the entire operand has been fetched. The number of bytes in the
source operand is encoded in the fourth byte of the template. For PC Relative
addressing mode, the address of the template is used instead of the address of the next
instruction. ’

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the following instruction, Master Status
register (MSR), operand logical address, and template logical address. The format of the
system stack after the trap is indicated by the following figure:

new SP— | template address (low) low address
template address (high)
operand address (low)
operand address (high)
MSR (low)
MSR (high)
PC (fow)
PC (high)
previous SP =~ high address
\ : <« 1byte =~ '

The format for the EPU template for this instruction is indicated in the following figure:

0p001110 low address -
****01ID

deod g dedokode Kk

n—-1 high address
<« 1 byte =

where p encodes whether the data resides in program memory (p = 1; Relative ad-
dressing mode) or data memory; ID is the 2-bit ID number specifying the' EPU to process
this instruction, * indicates bits that encode the operation to be performed, and n
specifies the number of bytes of data to be transferred to the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two word transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers to the EPU.

Flags:

No flags affected

5-147

Exceptions: Extended nstruction

Addressing
Mode Operation Instmetlog\ Format
IR: EPU < (HL) [11]101]101] [10]100] 110] [template 1] [tempiate 2 | [template 3 |
DA: EPU < (addr) [11]101]101][10]100] 111] [addriow) || addr(nigh) | [template 1 |
[tempiate 2 | [template 3 | template 4 |
X EPU < (XX + dd) [19]101]101] (10 xxJ100][ofiow)][cmigh)][template 1]
. template 2 | template 3 H tempiate 4
RA: EPU < <addr> [11[101]101] [10]100] 100 | [isptiow) | [cisptvigh) | [template 1 |
[template 2][tempiate 3 | [template 4 |
SR: EPU < (SP + dd) [11]101]101][10]o00]100 | [dlow)][digh) |[template 1 |
[temptate 2 | [template 3 | [template 4 |
BX: EPU <+ XA + XXB) [11]101]101][10] bx 100 | [template 1 | [tempiate 2 | [template 3]

Fleld Encodings: xx: 101 for (X + dd), 110 for (IY + dd), 111 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (X + IY)

All templates are 4-byte fields.

5-148

EXTENDED INSTRUCTION

Load Memory from EPU

Operation:

dst = IR, DA, X, RA, SR, BX

EPU < template
dst < EPU

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
the data from the EPU is stored into memory starting at the location specified by the
destination address; successive transfers are performed unti! the entire operand has
been stored. The number of bytes in the source operand is encoded in the fourth byte of
the template. For PC Relative addressing mode, the address of the template is used
instead of the address of the next instruction.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), operand address, and template address. The format of the system stack
after the trap is indicated by the following figure:

new SP— | template address (low) | low address
template address (high)
operand address (low)
operand address (high)

MSR (low)

MSR (high)

PC (low)

PC (high) A
previous SP —> _ ' high address
: <+ 1 byte =

The format for the EPU template for this instruction is indicated in the foliowing figure:

0p001110 low address
000011ID

ol ke d ok

n-t high address
< 1 byte —~

where p encodes whether the data resides in program space (p = 1, Relative address-
ing mode) or data memiory; ID is the 2-bit ID number specifying the EPU to process this
instruction, * indicates bits that encode the operation to be performed, and n specifies

the number of bytes of data to be transferred from the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two word transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers from the EPU.

5-149 -

All templates are 4-byte fields.

" Flags: No flags affected
Exceptions: Extended Instruction
' Addressing
Mode Operation Instruction Format
IR: (HL) < EPU {11[101]101] [10101 [110][template 1] [template 2 | [template 3 |
DA: (addr) < EPU [11]101]101][10[101]111] ["addrlow)][addr(nigh) | [temptate 1}
IMPlItQ?] Llomplato 3] [temphlo 4]
X (XX + dd) < EPU [11[101]101][10] xx J101][dlow)][dhigh) |[template 1 |
' [_temptate 2 || template 3 | [template 4 |
RA: <addr> + EPU [11]101]101][10]100]101] [dispiow)][dispihigh) | [tempiate 1 |
[template 2 ” !omplnm[template 4]
SR: (SP + dd) < EPU [11]101]101][10Joo0[101][dtow)][omigh)] [tempiate 1 |
[template 2][template 3 H template ﬂ
BX: (XA + XXB) < EPU [11]101]101}{ 10] bx [101] [template 1 | [tempiate 2 | [template 3 |
'
Field Encodings: xx: 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)

bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

-5-150

Chapter 6. _
Interrupts and Traps

6.1 INTRODUCTION

Exceptions are conditions that can alter the
normal flow of program execution. The 7280 CPU
supports three kinds of exceptions: interrupts,
traps, and resets.

Interrupts are asynchronous events generated by a
device external to the CPU; peripheral devices use
interrupts to request service from the CPU. Traps
are synchronous events generated internally in the
CPU by particular conditions that can occur during
the attempted sxecution of an instruction. Thus,
the difference between traps and interrupts is
their origin. A trep condition is always repro-
ducible by re-executing the program that created
the trap, whereas an interrupt is generally inde-
pendent of the currently executing task.

A hardware reset overrides all other conditions,
ineluding interrupts and traps. It occurs when

the RESET line is activated, and it causes certain’

CPU control registers to be initialized.
are discussed in detail in Chapter 11.

Resets

6.2 INTERRUPTS

Two kinds of interrupts are activated by four dif-
ferent pins on the 2280 MPU. The nonmaskeble
interrupt (NM1) is an interrupt that cannot be
disabled (masked) by software. Typically, NMI is
reserved . for high-priority external events that
need immediate attention, such as an imminent
power failure. Maskable interrupts ara'interrupta
that can be disabled (masked) via software by
clearing the appropriate bits in the Interrupt
Request Enable field of the Master Status regis-
ter. ’

There are seven maskable interrupts in the 7280
MPU architecture. Three of these interrupts are
external inputs to the device (Interrupts A, B,
and C); the other four maskable interrupts are
agsserted by the on-chip peripherals. - The seven
Interrupt Request Enable bits in the Master Status
register control which of the requested interrupts
are accepted. Interrupt requests are grouped as
listed in Table 6-1, with each group controlled by
a separate Interrupt Request Enable bit. The list
is presented in order of decreasing priority, with
sources within a group listed in order of
decreasing priority.

The Enable Interrupt (EI) instruction is used to .

.selectively enable the maskable intar'rupts (by

setting the appropriate bits in the MSR to 1) and
the Disable Interrupt (DI) instruction is used to
selectively disable interrupts (by clearing the

appropriate bits in the MSR to 0). When an
interrupt source has been disabled, the CPU
ignores any requests from that source. Because

maskable interrupt requests are not retained by
the CPU, the request signal on a maskable
interrupt line must be asserted until the CPU
acknowledges the request.

When enabling interrupts with the EI instruction,
all maskable interrupts are automatically disabled
(whether previously enabled or not) for the
duration of the execution of the EI instruction
and the immediately following instruction.

. Interrupts are always accepted between instruc-

tions. The block move, block search, and block
1/0 instructions can be interrupted after any
iteration.

Table 6-1. Grouping of Maskable Interrupt Requests

Members of Interrupt Group

b, Enable bitin MSR

Maskable Interrupt A line
, Counter/Timer 0, DMA Channel 0
Maskabie interrupt B line

Counter/Timer 1, UART Receiver, DMA Channel 1

Maskable interrupt C line
UART Transmitter, DMA Channel 2
Counter/Timer 2, DMA Channel 3

oA WN

6-1

The 7280 CPU has four modes for handling exter-
nally generated interrupts, selectable using the
IM instruction. The first three modes extend the
780 CPU interrupt modes to accommodate the 7280
MPU's additional interrupt inputs in a compatible
faghion. The fourth mude allows more flexibility
in interrupt handling, providing suppoft for
nested interrupts and a sophisticated vectoring
scheme. The on-chip peripherals always use this
fourth interrupt mode, regardiess of which mode is
selected for the external interrupts. The current
interrupt mode in eftect can be read from the
Interrupt Status register.

6.2.1 Interrupt Mode O

Interrupt mode 0 is similar to the 8080 cry
interrupt response mode. For mode 0, an exter-
nally generated interrupt (maskable or nonmask-
able) causes the User/System bit and the Single-
Step bit in the Master Status register to be
cleared to 0, thereby placing the CPU in system
mode with single-stepping disabled. All the
Interrupt Request Enable bits in the MSR are also
cleared to zero, which disables the maskable
interrupts. The previoug condition of the MSR is
not saved. '

For nonmaskable interrupts, the current value in
the Program Counter is saved on the system stack,
using the System Stack Pointer, and the constant
0066y is loaded into the Program Counter. Loca-
tion 0066y in system ‘program memory is, then,
the starting logical address of the nonmaskable
interrupt service routine; this logical address
can, of course, be translated into a physical mem-
ory address by the MMU,

for maskable interrupts, the interrupting device

. must place a Call or Restart instruction opcode on
the data bus during the interrupt acknowledge bus
transaction. The 2280 CPU reads this opcode and
executes it; thus, the interrupting device,
instead of memory, provides the first instruction
of the service routine, Typically, a Restart
instruction is used, since the Restart opcode is
only one byte long, meaning that the interrupting
peripheral needs to supply only one byte of infor-
mation., Alternatively, a 3-byte call to any loca-
tion can be executed.

6.2.2 Interrupt Mode 1

In interrupt mode 1, the 7280 CPU automatically
executes a Restart to a fixed location when an
intercupt occurs. An externally generated inter-
rupt (maskable or nonmaskable) causes the User/
System bit, the Single~Step bit, and all Interrupt

Request fnable bits in the Master Status register
to be cleared to 0, which puts the CPU in system
mode with single-stepping disabled. The previous
condition of the MSR is not saved. The current
vatue in the Program Counter is pushed onto the
system-mode stack. For nonmaskable interrupts,

. the constant 0066y is then loaded into the Pro-

gram Counter; thus, 0066y is the starting
address of the nonmaskable interrupt service rou-
tine. For maskable interrupts, the constant
0038y is loaded into the Program Counter;
0038 will be the starting address of the mask-
able interrupt service routine. These logical
addresses can be converted to physical addresses
by the MMU.

6.2.3 Interrupt Mode 2

Interrupt mode 2 is a vectored ir{tertupt response
mode for maskable interrupts, wherein the inter-
rupting device identifies the starting location of
the service routine using an 8-bit vector read by
the CPU during the interrupt scknowledge cycle.

An externally generated interrupt (maskable or
nonmaskable) causes the User/System bit, the Sin-
gle-Step bit, and the Interrupt Enable Request
bits in the Master Status register to be cleared

to 0, which puts the CPU in system mode with

gingle-stepping disabled. The previous condition
of the MSR is not saved. The current value in the
Program Counter is pushed onto the system mode
stack.

For nonmaskable interrupts, the ‘constant 0066y
is then loaded into the Program Counter; thus,
0066y is the starting address of the nonmaskable
interrupt service routine. For maskable inter-
rupts, the programmer must maintain a table in
memory of the 16-bit starting addresses for every
magkable interrupt service routine. This table
can be located anywhere in the system mode data
memory address space, starting on a 256-byte mem-
ory boundary. When a maskable interrupt is
accepted, a 16-bit pointer into this table is gen-
erated in order to select the starting address of
the appropriate service routine from the table
entries. The peripheral generating the interrupt
places an 8-bit vector on the data bus in response
to the interrupt acknowledge. This vector becomes
the lower eight bits of the pointer into the
table. The upper eight bits of the pointer are
the contents of the I register. This pointer is
treated as an address in the system data memory
space that can be tramslated to a physical address

by the MMU. The actual logical address of the
service routine is found by referencing the word
located at the address formed by concatenating the
I register's cuntents with the vector. Figure 6-1

6-2

iltustrates the sequence of events for processing
mode 2 maskable interrupts. A reset clears the 1
register to all zeros. '

‘cPu , MEMORY

VECTOR
TABLE

® _,{
HIGH ORDER

]l

3
&
L]

CT} @

INTERRUPT
SERVICE ROUTINE
.
@ PERIPHERAL
INTERRUPT VECTOR !
NOTES:
1. vector by is read by CPU during interrupt ’
scknowiedge cycle. -
2. Vector combined with | register contents form 16-bit memory address
pointing to vector table.
1. .Two bytes are read sequentialty from vector table. These two bytes are
read into the PC.
4. controt is to pt service routine and
axecution continues.
Figure 61. Mode 2 Interrupt Processing

The Master Status register is not saved when proc-
essing interrupts under interrupt modes 0, 1, and
2, Lf the 2280 CPU is tunning in the user mode
when an interrupt occurs, the MSR is automatically
changed to system mode when the interrupt is
acknowledged, without recording the previous user
mode of operation. Similarly, the single-step
mode and the maskable interrupts are automatically
digabled during interrupt processing, with no sav-
ing of the previous status. Thus, to resume proc-
28sing of an interrupted user-mode program after
the execution of an interrupt service routine, the
operating system must change the Master Status
register in order to switch back to user mode; the
Return from Interrupt Long instruction can be used
for this purpose.

In interrupt modes 0, 1, and 2, a nonmaskable
interrupt automatically disables =all imaskable
interrupts (as in the 280 CPU). All of the Inter-
rupt Request Enable bits (bits O through 6 in the
MSR) are copied to a special register in the CPU
called the Interrupt Shadow register. The Inter-
rupt Request Enable bits are then cleared to all
zeros. = A Return from Nonmaskable Interrupt
instruction restores the previous settings of the
Interrupt Request Enable bits by copying the con-
tents of the Interrupt Shadow register into bits 0

through 6 of the MSR. The nesting is only one
level deep {again, as in the 280 CPU).

For a Z80 Bus configuration of the 7280 MPY, only
one interrupt line (either Interrupt A, Interrupt
B, or ‘Interrupt C) can be used if intecrupt modes
0, 1, or 2 and the 780 family peripherals are
used; 280 peripherats being serviced on multiple
interrupt lines would all be affected by a Return
from Interrupt (RETI) instruction.

6.2.4 Interrupt Mode 3

Interrupt mode 3 exploits the advanced features of
the 7280 MPU architecture. When .an interrupt
request is accepted (maskable or nonmaskable), the
Master -Status register, Program Counter, and a
16~bit "reason code" are automatically stored on
the systém—mode stack. Next, new values for the
MSR and PC are fetched from a table in memory
called the Interrupt/Trap Vector Table, thereby
determining the operating modes and starting
address of the service routine {see section 6.5).
The reason code for externally generated. inter-
rupts is the contents of the data bus during the
interrupt acknowledge, and is usually supplied by
the interrupting device. For 8-bit data bus con-
figurations of the 2280 MPU, the upper byte of the
reason code is all zeros. For interrupts from the
on-chip peripherals, the reason code is identical
to the vector address in the Interrupt/Trap Vector
Table, thereby identifying the interrupting
device. The Interrupt/Trap Vector Table Painter
register in the CPU is used to reference the
Interrupt/Trap Vector Table during made 3
interrupt processing.

Interrupt mode 3 is the intended mude of operation
when uging the advanced features of the 2280 MPU
architecture, such as system and user modes and
single-ategping, since the Master Status register
of the interrupted task is automatically saved and
another loaded for the service routine. This
allows each gservice routine to be executed in the
appropriate mode without affecting the status of
the interrupted task. Also, vector tables can be
provided for both maskable and nonmaskable inter-
rupts when in mode 3.

Interrupt mode 3 is always used for processing
interrupts from the 2280 MPU's on-chip periph-
erals, regardless of which mode is selected for
the external interrupt requests.

Table 6-2 summarizes intercupt processing for all
four modes. '

6-3

Table 6-2. Interrupt Modes

Interrupt Interrupt Saved Status
Mode Type Information Etfect on MSR Effecton PC
0 Nonmaskable PC System mode, Single-Step Set to 664
and interrupts disabled
0 Maskable * " *
1 Nonmaskable PC " Set to 664
1 Maskable PC " Setto 38y
Nonmaskable PC y Set to 664
Maskable PC ” Fetched from address formedby |
register and interrupt vector
3 Nonmaskable MSR, PC, and Fetched from Interrupt/ Fetched from interrupt/
reason code Trap Vector Table Trap Vector Table
3 Maskable MSR, PC, and " y
reason code

*: Depends on instruction returned by interrupting device during acknowledge cycle.

6.3. TRAPS

The 2280 CPU architecture supports eight types of
traps, all of which are generated internally in
the MPU. The Privileged Instruction, System Call,
Access Violation, and Division Exception traps
cannot be disabled. - I1/0 instructions can be spec-
ified as privileged instructions in the Trap Con-
- trol register. The Extended Instruction, System
Stack Overflow Warning, Single-Step, and
Breakpoint-on-Halt traps can be selectively
enabled or dissbled in the Trap Control register
and MSR.

Traps are processed by saving the current program
status (PC and MSR) on the system stack and load-
ing new program status from the Interrupt/Trap
Vector Table, in a manner similar to interrupts
using interrupt mode 3. The current interrupt
mode has no effect on trap processing. Thus, the
Interrupt/Trap Vector Table must be present in
memory and the Interrupt/Trap Vector Table Pointer
‘in the CPU must be initialized before executing
any instruction that could generate a trap. Traps
can occur only if executing 7280 MPU instructions
that sre not part of the Z80 CPU instruction set
or if trap-generating features of the 2280 CPU
(such as stack overflow warnings) have been
explicitly enabled.

6.3.1 Extended Instruction Trap
The Extended Instruction trap occurs when the 2280

CPU encounters an extended instruction while the
EPU Enable bit in the Trap Control register is a

zero. For instructions that transfer data between
an EPU and memory, the following information is
pushed onto the system stack when processing the
Extended Instruction trap: the address of the next
instruction, the MSR, the address of the memory
operand, and the address of the template portion
of the extended instruction (in that order). For
Load Accumulator from EPU and EPU Internal Opera-
tion instructions, the address of the. next
instruction, the MSR, and the address of the tem-
plate in the extended instruction are saved. The
PC and MSR values for the service routine are then
loaded from the Interrupt/Trap Vector Table. The
Interrupt/Trap Vector Table contains four dif-
ferent entries for Extended Instruction traps, one
for each type of extended instruction,

The Extended Instruction trap allows the program
to simulate (in software) the operation of an EPU
in a trap service routine when no EPUs are present
in the system.

6.3.2 Privileged Instruction Trep

The Privileged Instruction trap occurs when the
2280 CPU encounters a privileged instruction while
in the user mode (the User/System bit in the MSR
is set to 1). 1/0 instructions can be privileged
instructions, depending on the contents of the
Trap Control register. The following information
is saved on the system stack when processing a
Privileged Instruction trap: the address of the
instruction causing the trap and the MSR (in that
order). '

6-4

The Privileged Instruction trap protects the oper-
ating system environment by preventing user mode
programs from executing instructions that could
disrupt the aystem.

6.3.3 System Call Trap

The System Call trap occurs whenever a System Call
ingtruction is executed. The following informa-
tion is saved on the system stack when processing
a System Call trap: the address of the next
instruction, the MSR, and the 16-bit immediate
operand encoded in the System Call instruction (in
that order).

The System Call trap provides a means by which a
user mode program can request an operating system
function, thereby allowing for an orderly transi-
tion between the user and system modes.

6.3.4 Access Yiolation Trep

The Access Violation trap occurs whenever the
2280 MPU's on-chip MMU detects an illegal memory
access. Specifically, this trap occurs when the
MMU's translation mode is snabled and either the
address to be translated implies using a page
descriptor register whose Valid bit is zero or the
access is a write to a page whose Write-Protect
bit is set to 1. The 'f,ollowing information is
saved on the system stack when processing an
Access Vialation trap: the address of the instruc-
tion causing the trep and the MSR (in. that
order). - Information about the 1logical address
that caused the fault is saved in the MMU (see
Chapter 7).

The Access Violation trep fecilitates the imple-
mentation of virtual memory systems using the
Valid bit in the page descriptor registers and
allows information in memory to be write-
protected.

6.3.5 System Stack Overflow Warning Trep

The System Stack Oyerflow Warning trap can occur
only if the Stack Overflow Warning bit in the Trap
Control register is set to 1. If so, then for
each push to the system stack, the 12 most signif-
icant bits of the Stack Pointer are compared to
the contents of the Stack Limit register and a
trap is generated if they match. The following
information is saved on the system stack when
processing a System Stack Overflow Warning trap
(but no second System Stack Overflow Warning trap
is generated): the address of the next instruction
and the MSR (in that order). The Stack Overflow

Warning bit 1;1 the Trap Control register is auto-
matically cleared to 0O when this trap occurs in
order to prevent repeated traps.

The System Stack Overflow Warning trap notifies
the operating system of potential stack overflow
problems.

6.3.6 Division Exception Trap

The Division Exception trap occurs while executing
a Divide instruction if the divisor is zero
(divide by zero case) or the quotient cannot be
represented in the destination precision (over-
flow case); the CPU flags are set to distinguish
betwsen these two situations (see the descriptions

' for the Divide instructions in Chapter 5). The

following information is saved on the system stack
when processing a Division Exception trap: the
address of the Divide jnstruction and the MSR (in
that order).

6.3.7 Single-Step Trap

Two control bits in the Master Status register are
used to control Single-Step traps: the Single-Step
bit (bit 8) and the Single-Step Pending bit (bit
9). The Single-Step trap occurs when the
Single-Step Pending bit in the MSR is set to 1.
To enter single-step mode, whersin a Single-Step
trap is executed after each instruction, the -
Single-Step bit in the MSR is set to 1. At the
beginning of instruction execution, the state of
the Single-Step Pending bit is checked; if it is
set, a Single-Step trap is executed. Then, the
state of the Single-Step bit is copied into the
Single-Step Pending bit and -the instruction is
executed. If the instruction generates another
trap (such as a Privileged Instruction trap), that
trap handling routine is executed before the
Single-Step Pending bit is again checked and the
Single-Step trap is processed. This execution
sequence is illustrated in Figure 6-2. Note that
once the Single-Step bit gets get, a Single-Step
trap does not occur until after the next
instruction, because the Single-Step Pending bit
is checked before being loaded with the state of
the Single-Step bit. Single-Step traps are then-
executed after each instruction until the
Single-Step bit in the MSR is cleared to 0.

The Single-Step Pending bit in the MSR is automat.-
ically cleared by & Division Exception, Access
Violation, Privileged Instruction, or
Breakpoint-on-Halt trap, so that the saved MSR
value put on the stack as a result of trap
processing will have & 0 in bit position 9. Ffor
each of those trap types, the address of the

6~5

1S
SINGLE-STEP-
PENDING BIT
SET

BINGLE-STEP TRAP

CLEAR COPY SINGLE-
SINGLE-STEP STEP BIT INTO
PENDING 8IT ¥

‘ PENDING BIT
EXCEPTION ‘
] PprocEesseo

Figure 62,

Instruction Execution Sequence

actual trapping instruction is saved on the stack
(as opposed to the address of the next
instruction). The trapping instruction can be
re-executed upon returning from the trap service
routine, in which case another Single-Step trap is
not desired before instruction execution.
Similarly, the Single-Step Pending bit is
automatically cleared by s Single-Step trap, to
engure that only one Single-Step trsp occurs per
instruction,

When executing & Return From Interrupt Long
(RETIL) instruction to.return from an interrupt or
trap service routine, the Single-Step Pending bit
in the MSR for the interrupted program is the OR
of the Single-Step Pending bit in the MSR of the
service routine and the Single-Step Pending bit in
the MSR value that was saved during trap proces-
sing. Thus, if the service routine was being exe-
cuted in single-atep mode, a Single-Step trap
occurs after execution of the RETIL instruction,
before resumption of the interrupted program.

The following information is saved on the system
stack when processing a Single-Step trap: the
address of the next instruction and the MSR (in
that order).

The Single-Step trap facilitates the debugging of 2280

CPU code.

The following text explains four methods

for entering single-step operations.

b.

PUSH a PC value for the instruction you wish to
jump to.

PUSK an MSR value with the desired combination of
the Single-Step (SS) and Single-Step Pending
(SSP) bits.

Execute and RETIL instruction.

Execute a LDCTL instruction with the
combination of the SS and SSP bits.

desired

Execute & System Call (SC) with an identifier that
you reserve for a single-step entry.

POP the identifier and branch to the remaining
single-step code routine,

POP the MSR.

Set the desired combinations of SS and SSP.

PUSH the new MSR.

Execute the RETIL instruction.

This method can be used only in the User Mode of
operation. '

d.

Use the "“Breakpoint-on-Halt" trap by substituting
a HALT opcode for the first byte of an instruction
where single-stepping is to start. The trap service
routine should look something like this:

POP the MSR.

Set the desired combinations of SS and SSP.

PUSH the MSR.)

Restore the instruction byte that the HALT opcode .
replaced.

Execute the RETIL instruction.

Both interrupt and trap routines can be single-stepped
by setting the appropriate SS and SSP combination in
the MSR entry in the Interrupt/Trap Vector Table.

Instructions that cause a trap but will be re-executed
(ie: privileged, divide,” page fault) automatically
clear the SSP bit in the PUSHed MSR. This ensures
that only one single-step trap will occur for these
instructions.

Table 8-3. Trap Types

Canbe -/
Disabled

Trap Type

Status Saved

Extended Instruction Yes

Privileged Instruction : No

System Call) No

Access Violation . Né
System Stack Overflow Yes
Division Exception No
Single-Step Yes

Breakpoint-on-Halt Yes

Address of next instruction

MSR value

Address of operand in memory (if applicable)
Address of EPU template

Address of instruction causing trap

MSR vaiue

- Address of next instruction
MSR value ‘
16-bit reason code from SC Instruction

Address of instruction causing trap
MSR value

Address of next instruction
MSR value

Address of instruction causing trap
MSR value

Address of next instruction
MSB value

Address of Halt instruction
MSR value

Table 6-4. interrupt Acknowiedge Encoding
for Z80 Bus Configuration

ADy ADy Interrupt Being Acknowledged

0 0 Interrupt A
(o] 1 Nonmaskable interrupt
1 0 Interrupt B
1 1 Interrupt C

6.3.8 Breakpoint-on-Halt Trep

The Breakpoint-on-Halt trap occurs if a Halt
ingtruction is encountered while the Breakpoint-
on-Halt Enable bit in the MSR is set to 1. The
following information is saved on the system atack
when processing a Breakpoint-on-Halt trap: the
address of the. Halt instruction and the MSR (in
that order).

The Breakpoint-on-Halt trap provides a breakpoint
facility that is useful in debugging environments
in which breskpoints on instruction boundaries are
desired.

The trap types and the status saved during the
processing of each trap are summarized in Table
6-3.

6.4 INTERRUPT AND TRAP HANDLING

The 2280 CPU response to an interrupt request or
trap condition consists of up to five steps:

‘acknowledging the external request (externslly-

generated interrupts only), saving current program
status, loading new program status, executing the
service routine, and returning to the interrupted
program. Interrupts are accepted and processed
between instructions, with the exception of the
block move, search, and I/0 instructions, which
can be interrupted between any iteration. Treps
are detected during instruction execution, with
the exception of the Single-Step trap, as
described previously. Thus, a trap condition is
processed before handling any pending interrupts.

6.4.1 Interrupt Acknowledge

An interrupt acknowledge bus transaction is
required only for externally-generated inter-
rupts. The main effect of the interrupt acknowl-
edge is to establish communication between the
requestor and the 2280 CPU.

For 280 Bus configurations of the 7280 MPU, the
type of interrupt being acknowledged is indicated
on bus lines ADq and AD; while the Address Strobe
is being asserted during the interrupt acknowledge
cycle, as per Table 6-4,

For the 780 Bus configurations of the 7280 MPU, no
external acknowledge cycle is generated for
nonmaskable interrupts in interrupt modes 0, 1,
and 2, or for maskable interrupts in interrupt
mode 1. For maskable - interrupts in interrupt
modes 0, 2, and 3, and for nonmaskable interrupts
in mode 3, B-bit data is read from the ADp-AD; bus
lines during the acknowledge cycle; this data is
used as dictated by the interrupt mode in effect,
as described in section 6.2, For maskable
interrupts in interrupt mode 0, successive bytes
are read on ADp-AD7 until a complete instruction
has been fetched, via repetition of the
acknowledge cycle.

For Z-BUS configurations of the 27280 MPU, any
interrupt from an external source is
acknowledged. The type of interrupt being
acknowledged is indicated by the STp-ST3 status
lines during the acknowledge cycle. A word of
data is read from the address/data bus during the
acknowledge cycle and used as dictated by the
interrupt mode in effect. For interrupt modes 2
and 3, the lower byte of this data is used as the
interrupt vector. For maskable interrupts in
interrupt mode O, successive bytes are read on
ADp~AD7 until a complete instruction has been
fetched, via repetition of the acknowledge cycle.

Acknowledge cycles are always executed in system
mode, regardless of the mode of the interrupted
program. The MSR of the interrupted program is
not affected by this change in mode. The CPU
stays in system mode until the start of execution
of the service routine. In interrupt modes 0, 1,
and 2, the service routine starts in system mode;
in interrupt mode 3, the MSR of the service rou-
tine is determined by the contents of the Inter-
rupt/Trap Vector Table.

Interrupt requests from the on-chip peripherals
‘never generate an acknowledge cycle and are always
processed using interrupt mode 3. Similarly,
traps do not generate acknowledges.

6.4.2 ‘Status Saving

During exception processing, the status of the
interrupted program is saved on the system stack.
In interrupt mode 0, the Program Counter is auto-
matically saved when processing nonmaskable inter-
rupts; the instruction returned by the peripheral
device will determine what status information is

saved when processing maskable interrupts. For
interrupts in interrupt mode 1 or 2, the Program
Counter is sutomatically saved. For interrupts in
interrupt mode 3, the Program Counter and MSR of
the interrupted task are saved, followed by the
"reason code" (Figure 6~3). For external inter-
rupt requests, the reason code is the value read
from the data bus during the interrupt acknowledge
cycle; the upper byte of the reason code is all
zeros for 8-bit data bus (Z80 Bus) configurations
of the 7280 MPU. For interrupts from the on-chip
peripherals, the reason code is the offset address
in the Interrupt/Trap Vector Table that
corresponds to the MSR value entry for that
interrupt type.

SYSTEM STACK LOW ADDRESS
POINTER AFTER ~~—§ REASON CODE
INTERRUPT
MSR
PC
SYSTEM STACK HIGH ADDRESS
POINTER BEFORE ——~
INTERRUPT
j¢———1 WORD ~——9~1
Figure 6-3. Format of Saved Status on

System Stack Due to a Mode 3 Interrupt

The Program Counter value saved during interrupt
processing is the address of the next inmstruction
in the interrupted routine, except for interrupts
during block move, block search, and block I/0
instructions. The block instructions can be
interrupted between any one iteration of their
operation, in which case the PC value saved is the
address of the block instruction itself.

The status saved as & result of a trap depends on
the type of trap being executed, as noted in
Figure 6-3. The PC and MSR values are always
saved during trap processing, along with other
trap-dependent information.

If any memory write operation involved in saving
status information during interrupt or trap proc-
essing causes a memory access violation, a special
"fatal condition" is entered, as described in sec-
tion 6.6.

6-8

6.4.3 Loading New Progrem Status

After saving the status of the interrupted pro-
gram, new program status values (i.e., new values
for the PC and MSR) ure automatically loaded, in
accordance with the interrupt ‘mode and any data
read during the acknowledge cycle, This new pro-
gram status determines the operating modes and
astarting address of the service routine.

for extefnally generated interrupts in interrupt
modes 0, 1, and 2, the Master Status register is
automat ically modified to specify system mode with
the Single-Step trap and all maskable interrupts
disabled. For externally generated interrupts in
interrupt mode 3, all internally generated inter-
rupts, and all traps, the new MSR value is loaded
from the Interrupt/Trap Vector Table,

For externally generated maskable interrupts proc-
essed using interrupt mode 0, the first instruc-
tion of the service routine is supplied by the
interrupting device. This must be a Call or
Restart instruction that loads the PC with the
starting address of the service routine., For non-
maskable. interrupts in interrupt mode 0, the PC is
set to 0066y, and all maskable interrupts are
automatically disabled.

In interrupt mode 1, the PC. is set to 0038y for

externally generated maskable intertupts end to-

0066y for nonmaskable interrupts.

For externally qenerated maskable interrupts in
interrupt mode 2, the PC is fetched from an Inter-
rupt Vector table in system data memory; the logi-
cal address of the fetched PC value is formed by
concatenating the contents of the I register with
the B8-bit vector returned by the interrupting
device during the acknowledge cycle. For nonmask-
able interrupts, the PC is set to 0066y,

For externally generated interrupts in interrupt
mode 3, all internally qenerated interrupts, end
all traps, the PC. and ‘MSR velues for the service
routine are fetched from the Interrupt/Trap Vector
Table (see section 6.5). The new value for the
MSR is at a fixed location in this table. Exter~
nally generated interrupts can be vectored or
nonvectored in interrupt mode 3, as determined by
the contents of the Interrupt Status register.
for nonvectured interrupts and all traps, the new
PC value is at a fixed location in the Inter-
rupt/Trap Vector Table; for vectored interrtupts,
the location of the new PC in the table is depen-
dent on the 8-bit vector read during the acknowl-
edge cycle, I

The _valu:e loaded into the Program Counter during
exception processing is a logical address that can

be translated to a physical address by the MMU
when the CPU fetches the first instruction of the
service routine.

6.4.4 Executing the Service Routine

In interrupt mode 0, the interrupting device pro-
vides the Restart or Call instruction that begins
the service rtoutine; this instruction saves the
Program Counter value of the interrupted routine
and provides the address of the service routine.
In the other interrupt modes and for traps, the
starting address of the service routine is deter- .
mined automatically during interrupt processing,
as described in the preceding section. This pro-
gram is now executed.

For externally gensrated interrupts in interrupt
modes 0, 1, and 2, all maskaeble interrupts_ are
automatically disabled; therefore the service rou-
tine is protected from additional interrupts until
the MSR is altered via a lLoad Control, Enable
Interrupt, Return from Nonmaskeble Intertupt, or
Return from Interrupt Long instruction. Inter-
rupts in mode 3 and all traps cause a new MSR to
be loaded from the Interrupt/Trap Vector Table;
the value of this MSR determines which interrupts
are enabled during the service routine. Service
routines that enable interrupts before exiting
permit interrupts to be handled in a nested fash-
ion.

6.4.5 Returning from a Service Routine
Three different instructions are available for

returning from an interrupt or trap service rou-
tine: Return from Nonmaskable Interrupt, Return

. from Interrupt, and Return from Interrupt Long.

All three are privileged instructions, since they.
must retrieve values from the system stack.

The Return Ffrom Nonmaskable Interrupt (REIN)
instruction is uged to return from nonmaskable
interrupts in interrupt modes 0, 1, and 2. This
instruction pops the word on the top of the stack
into the Program Counter, restoring the Program
Counter value present before the interrupt, and
loads the Interrupt Request Enable bits in the MSR
with the contents of the Interrupt Shadow regis-
ter, '

The Return from JInterrupt (RETI) instruction is
used to return from externally generated maskable
interrupts in interrupt modes 0, 1, and 2. This
instruction pops the word on the top of the stack
into the Program Counter, which restores the Pro-
gram Counter value present before the interrupt.
The RETI instruction also causes a special bus

6-9

transaction that fetches this instruction from
external memory (regardless of whether it is con-
tained io the on-chip cache), with the appropriate
bus control and status signals to indicate that an
instruction fetch is occurring; this is used to
reset the interrupt 1logic of the Z80 femily
peripherals.

The Return from Interrupt Long (RETIL) instruction
is used to rteturn Ffrom interrupts in interrupt
mode 3 and all traps, since it causes both the MSR
and PC values to be popped from the stack. If
this instruction is used to return from an inter-
rupt processed with another intertupt mode (e.g.,
if RETIL is used to return from a mode 2, instead
of a mode 3, interrupt), an MSR value must be
pushed onto the stack in the service routine prior
to execution of the RETIL. For interrupts in
interrupt mode 3 and all traps,
routine must pop . the reason code or other
trap-dependent information- off the stack before
executing RETIL, Unlike RETI, RETIL causes no
special bus activity and, therefore, cannot be
used to automatically reset Z80 family periph-
erals.

6.5 INTERRUPT/TRAP VECTOR TABLE

During interrupt processing under interrupt mode 3
and all trap processing, thg PC and MSR values
that determine the starting location and operating
modes of the appropriate service routine are
fetched from a table in memory called the Inter-
tupt/Trap Vector Table. This table holds an MSR
and PC value for the service toutine for every
possible type of interrupt and trap. The particu-
lar values fetched from the table during exception
processing are a function of the type of exception
that occurred and, for vectored external inter-

. rupts, the vector returned by the peripheral dur-
ing the acknowledge cycle. The format of the
Interrupt/Trap Vector Table is given in Table
6-5, Each entry in the Interrupt/Trap Vector
Table consists of two words--an MSR value followed
by a PC value. 1If an external interrupt is vec-
tored, as determined by the contents of the Inter-
rupt Status register, the B-bit vector returned by
the peripheral is used as an index into a list of
up to 128 possible PC values for the ‘service
routine;. only even-valued vectors are supported by
the 72280 CPU architecture. Thus, for a vectored
interrupt, there is only one starting MSR value
for all the possible service toutines, but up to
128 potential PC values. The NMI and Interrupt A
requests share the same vectors.

for example, suppose an interrupt is requegted by
the on-chip counter/timer 0. If that interrupt

the service -

request is enabled (bit 1 in the MSR is set to 1),
the interrupt is processed as follows: the current
PC and MSR values are saved on the system stack;
an identifier word with ‘the value 14, is saved
on the system stack; a new-value for the MSR is
fetched from location 14y in the Interrupt/Trasp

Vector Table; a new value for the PC is fetched

from location 164 in the Interrupt/Trap Vector
Table; execution of the service routine is. begun.

If an interrupt request is rteceived ‘from an
external source on interrupt line A under
interrupt mode 3 and that inteirupt request is
enabled (bit O in the MSR is set to 1), then
interrupt processing proceeds as follows:

® An. acknowledge cycle is executed, during which
data is read from the external data bus.

e The current PC and MSR values are saved on the
system stack

e The data read from the bus during the
acknowledge cycle is saved un the system stack
as the identifier word.

® A new value for the MSR
location 08y in the
Table

is fetched from
Intertupt/Trap Vector

® A new value for the PC is fetched either from
location OA in the Interrupt/Trap Vector Table
(if bit 13 of the Interrupt Status register is
0, indicating that Interrupt A is not vectored)
or from the location in the Interrupt/Trap
Vector Table found by adding the lower byte of
the data read Ffrom the bus during the
acknowledge cycle (the interrupt vector) to
704 (if bit 13 of the Interrupt Status
register is 1, indicating that Interrupt A is
vectored).

o Execution of the service routine is begun.

for vectored interrupts, the interrupt vector
returned: during the acknowledge cycle must be
even-valued in order to reference a valid PC value
in the Interrupt/Trap Vector Table.

The ‘Interrupt/Trap Vector Table Pointer register
must be initialized to hold the moust significant

12 hits of the startinq physical address of the

Interrupt/Trap Vector Table, The Interrupt/Trap
Vector Table must start on a 4K byte boundary in
physical memory (that is, a memury address whose
12 least significant bits are all zeros).

Table 6-5. Interrupt/Trap Vector Table Format

Address in Table
(Hexadecimal) Contents
00 Reserved
04 NMI vector
08 Interrupt line A vector
oC Interrupt line B vector
10 Interrupt line C vector
14 Counter/Timer 0 vector
18 Counter/Timer 1 vector
iC Reserved .
20 Counter/Timer 2 vector :
24 DMA channel O vector
28 DMA channel 1 vector
2C DMA channel 2 vector
30 DMA channel 3 vector
34 UART receiver vector
38 UART transmitter vector
3C Single-Step trap vector
40 Breakpoint-on-Halt trap vector
44 Division Exception trap vector
48 Stack Overflow Warning trap vector
4C Access Violation trap vector
50 System Call trap vector
54 Privileged Instruction trap vector
58 EPU « Memory Extended Instruction trap vector
5C Memory + EPU Extended Instruction trap vector
60 A « EPU Extended Instruction trap vector
64 EPU Internal Operation Extended Instruction trap vector B
68-6C Reserved
70-16E 128 Program Counter values for NMI and interrupt line A vectors (MSR values from position 04 and
08 in this table, respectively)
170-26E 128 Program Counter values for interrupt line B (MSR value from position OC in this table) .
270-36E 128 Program counter values for interrupt line C (MSR value from position 10 in this table)

6.6 THE FATAL CONDITION

During interrupt and trap processing, the CPU
automatically attempts to save status information
about the interrupted program on the system
stack. If the MMJ is enabled, an access violation
can occur during the status saving process if a
write is attempted to an invalidated page or to a
page that is write-protected. Detection of an
access violation during the status saving process
causes the Z280 CPU to enter a special fatal con~

dition; the following steps are taken automati~
cally when the fatal condition occurs: the current
PC contents are written to the HL register, the
current MSR contents are written to the DE regis-
ter, all the Interrupt Request Enable. bits in the
MSR are cleared to 0, and the CPU enters a Halt
state. This Halt state is identical to the Halt
state caused by the execution of a Halt instruc-
tion, with one exception: a Halt state induced by
a fatal condition can be exited only by a reset.

6-11

-type of memory access beinq made;

Chapter 7.
Memory Management Unit

7.1 INTRODUCTION Co-

The 2280 MPUs include an on-chip paged Memory Man-
agement Unit (MMU), which allows the MPUs to
address more than 64K bytes of physical memory.
Memory management with the MMU involves two
issues: memory allocation and memory protection.
The allocation of memory is controlled by allowing
the MMU to translate the 16-bit logical addresses
from the 2280 CPU into the 24-bit physical
addresses output by the MPU, Thus, a given
progremming task can be relocated to any area of
physical‘ memory, Tregardless of the logical
addresses used by that task. During this
translation process, the MMU also monitors the
the MMU can
inhibit accesses or write-protect memory areas,
thereby allowing memory to be protected from
unwanted or unintended modes of use,

The MMU partitions the 64K logical address space
of the 7280 CPU into fixed-sized memory pages and
maps 'those pages into the physical address space.
Separate mapping facilities are available for the
system and user modes of operation; translation
can be performed in either one or in both modes.
Optionally, the MMU provides for separating
instruction fetches frum data references, which

"allows the user to define up to four different

logical address spaces: system mode program, sys-
tem mode data, user mode program, and user mode
data. If the program and data address spaces are
separated, the MMU uses a page size of 8192 (8K)
bytes; if not, the page size is 4096 (4K) bytes.

The MMU is programmed via 1/0 references to its
control registers. The MMU records which pages
have been modified and can inhibit the cache mech-
anism to prevent the writing of data to the
on-chip cache. Access Violation traps are gener-
ated when an error condition is detected (such as
an attempted write to a read-only page). Access
violations cause the currently executing instruc-
tion to be aborted, and allow that instruction to
be restarted in a manner compatible with virtual
memory requirements. Upon reset, the MMU is dis-
abled, allowing logical addresses to pass through
to physical memory without translation.

7.2 MU ARCHITECTURE

The 2280 MMU consists of two sets of 16 page
descriptor registers, used to translate addresses
and assign memory attributes on a page-by-page
Basis, and a Master Control register that governs
MMU -operation. There is one page descriptor reg-
ister associated with each logical page of mem-
ory. One set of 16 page descriptor registers is
dedicated to system mode operation and the other
set to user mude operation. The MMU registers are
accessed using 1/0 instructions.

When translation is enabled for a particular mode
(system or user), as determined by the contents of
the MMU Master Control register, the MMU trans-
lates memory addresses whenever the CPU is operat-
ing in that mode, using the set of page descriptor
registers dedicated to that mode. However, there
are two exceptions to that rule:

» When the CPU is fetching program status infor-
mation from the Interrupt/Trep Vector Table in
response to an interrupt under interrupt mode 3-
or a trap, the Interrupt Trap Vector Table
Pointer register is used to determine the phys-
ical address of the program status information.

o The Load in User Prugram (LDUP) and Load in
User Data (LDUD) instructions are executed in
gystem mode but use the user mode page descrip-
tor registers to translate the data operand's
address.

Memofy addresses generated by the. on-chip DMA
channels are 24-bit physical addresses that are
not translated by the MMU. Only memory addresses,
and not 1/0 addresses, are translated by the MMU.

While an address is being translated, any attri-
butes associated with the logical page containing
that address are checked. The attributes for a
page are determined by the contents of that page's
page descriptor register. Pages can be write-
protected and/or made non-cacheable using these
attributes. A non-cacheable page is one whose
contents cannot be copied into the on-chip cache
during program execution; thus, accesses to loca-

7-1

tions in non-cacheable pages always use the exter-
nal bus. This attribute is useful in multiproces-
sor systems with shared memory areas, where each
processor must be able to access the most current
version of the informetion in the shared memory
area, or 1in systems with memory-mapped 1/0
devices, The MMU also maintains a status bit for
each page, which indicates if that page has been
modified.

Each page descriptor register contains a Valid
bit, which indicates if that descriptor contains
valid information. Attempts to access an address
contained in a page with an invalid descriptor and
attempts to write to an address in a page that is
write-protected generate Access Violation traps.
An Access Violation trap causes the currently exe-
cuting instruction to be aborted, facilitating the
development of virtual memory systems. A special
I/0 port in the MMU (Invalidation I/0 port) is
available for resetting the valid bits in a whole
group of page descriptur registers with a single
1/0 instruction.

For system mode operation, user mode operation, or
both, the MMU can be configured to separate
instruction fetches frum data fetches, therefore
separating the program address space from the data
address space. This allows a 2280 MPU program to
contain up to 64K bytes of code and opérate on up
to 64K bytes of data. With the program/data sep-
aration mode in effect, the 16 page descriptor
registers for that mode are partitioned into two
sets of eight descriptors: one set for instruction
fetches and one set for data fetches. An instruc-
tion fetch or data reference using the PC relative
addressing mode is translated using the page
descriptor registers associated with the program
address space; data accesses using other addres-~
sing modes and . accesses to the interrupt vector
table under interrupt mode 2 use the page descrip-
tor rtegisters associated with the data address
space. In this mode, pages are 8K bytes lung.
Two control bits in the MMU Master Control regis-
ter specify independently whether program/data
separation is in effect for system mode and
whether program/data separation is in effect for
user mode.

When translation is disabled for a particular mode
(system or user), the MMU does not translate mem-
ory addresses or perform attribute checking while
the CPU is operating in thst mode. For a memory
access when the MMU is disabled, the logical mem-
ory address passes through the MMU without trans-
lation to physical address outputs Ag-Aqg and
physical address outputs Aj14-A23 are all zeros.
When the MMU is disabled all memory is assumed to
be both writeable and cacheable.

7.3 PAGE DESCRIPTOR REGISTERS

There are two sets of 16 page descriptor registers
in the MMU, one set for system mode operation and
one set for user mode operation. Each page
descriptor registser is 16 bits long, consisting of
a 12-bit page frame address field and a 4-bit
attribute field (Figure 7-1).

‘0
O TN

Figure 71. Page Descriptor Register

The paée frame address field contains the most
significant 12 bits (if program/data separation is
not in effect) or most significant 11 bits (if
prugram/data separation is in effect) of the
starting physiral address for that page. The low-
order hits of the page's base physical address are
assumed to be all zerus; thus, pages always start
on 4K byte boundaries in physical memory without
program/data separation, or 8K byte boundaries

~with program/data separation.

The least significant four bits of each page
descriptor register are attribute and status bhits
for that page, as described below:

Modified Bit (M). This status bit is autDMatér
cally set to 1 whenever a write is successfully
performed to a logical! address in the page; it can
be cleared to 0 only by writing to the page
descriptor register via a software command. If
the Valid bit is 0, the contents of this bit are
undefined.

Cacheable Bit (C). When this bit is set to 1,
information from the page can be stored in the
on-chip cache memory. When this bit is cleared to
0, the cache control mechanism is inhibited from
retaining a copy of information from the page.

Write-Protect Bit (WP). When set to 1, write
operations to addresses in the page generate an
Access Violation trap and the write is inhibited,
When this bit is cleared to O, all valid accesses
to the page are allowed.

Valid Bit (V). This bit is set to 1 to indicate
that the page descriptor register contains valid
information about the page. When cleared to O,
all accesses to addresses in the page are
inhihited and generate Access Violation traps.

7.4 ADDRESS TRANSLATION

If -address translation is enabled, -logical
addresses are translated to physical addresses in
une of two ways, depending on the program/data
separation mode, ‘as specified in the MMU Master
Control register. The format of the page descrip-
tor registers is independent of which mode is in
effect.,

7.4.1 Address Translation Without Progrem/Deta
Separation

When program/data separaﬁun is not in effect, the
16-bit logical address from the CPU is divided
into two fields, a 4-bit index field used to
select one of the 16 page descriptor registers,

and a 12-bit offset field that forms the lower 12
bits of the resulting physical address. The upper
12 bits of the physical address are provided by‘
the page frame address field of the selected page
descriptor register. The pages are 4K bytes
long. This translation mechanism is illustfated
in figure 7-2, Page descriptor register 0 is the

descriptor for logical - addresses 0000y to
. OFFFy, page descriptor register 1 +s the
descriptor for logical addresses 1000H to

FFfy, and so on. Thus, the index portion of
the logical .address selects the page descriptor
register. The page frame address field of that
page descriptor register then determines the
actual starting address for that page in physical
memory; the low-urder 12 bits of the logical
address specify the offset within that 4K byte
page.

15 1214 0
LOGICAL
t I woex | OFFSET | } ADDRESS
18 43
15 o)
PAGE FRAME k
ATTRIBUTE PAGE DESCRIPTOR
ADD |~ USER REGISTERS
’/ SYSTEM
Ve
[
. T J
2 1211 PHYSICAL
i PAGE FRAME ADDRESS 1 OFFSET] ? aporass

Figure 72. Address Translation without Program/Data Separation

7-3

7.4.2 Address Translation With Program/Data
' Separation

When program/data separation is in effect, the
16-bit 1logical address from the CPU is divided
into'a 3-bit index and a 13-bit offset. A Pro-
gram/Data address control signal from the CPU
becomes the most significant bit of the 4-bit
index that selects the appropriate page descriptor
register; ‘the three most significant bits of the
ldgical address furm the least significant bits of
this index. The upper 11 bits of the page frame
address field in the selected page descriptor reg-
ister provide the upper 11 bits of the resulting
physicel address, The least significant 13 bits
of the logical address form the low order 13 bits
of the physical address, as 'illustrated in Figure
7-3. Page descriptor register 0 is the descriptor
for logical addresses 00004-1FFFy in the data

address space, Page descriptor register 1 is the
descriptor for logical addresses 2000y-3FFFy
in the data address space, and so on through page
descriptor register 7; page descriptour register 8
is the descriptor for logical = addresses
0000y-1FFFy in the program address space, page
descriptor reqister 9 is the descriptor for loqi-
cal addresses 2000y-3FFFy in the .program
address space, and so on. Thus, each page is 8K
bytes long, where the starting address of the page
in physical memory is determined by the page frame _
address field in the selected page descriptor reg-
ister, and the 13 1least significant bits of the.
logical address specify the offset within that 8K
byte page. In this mode, the least significant
bit of the page frame address field in each page
descriptor register is not used; this bit is modi-
fied by translation, and values read from it are
Jnpredictable.

PROGRAM/
DATA BIT w ‘
1
2 o 16-BIT LOGICAL PROGRAM
[_oex | OFFSET] OR DATA ADDRESS
3 0
15 5 43)
15 p o
° 1
o
Wistipve o PROGRAM PAGE
PAGE FRAME ATTRIBUTE
ADDRESS 0 DESCRIPTOR REGISTERS
| 0
0
| s 0
L. ° .
- 0
) 0 USER
I DATA 0 v
I PAGE FRAME atTRiBUTE | L DATA PAGE
ADDRESS ° of Ps SYSTEM DESCRIPTOR REGISTERS
- 0 |1
0
0 0
ol 0]
2 1312 0
| PAGE FRAME ADDRESS | OFFSET] } %ﬁ:‘}:’x‘mg;loolllﬂ

Figure 7.3. Address Translation with Program/Data Separation

7.5 /) CONTROL REGISTERS

Besides the twou sets of 16 page descriptor regis-
ters, the MMU contains a Master Control register
and a Page Descriptor Register Pointer. The

- 16-bit Master Control register controls the opera-
tion of the MMU; the B-bit Pege Descriptor Regis-
ter Pointer is used to select a particular page
descriptor register during 1/0 accesses to the
descriptors.

The 16-bit MMU Master Control register is shown in
Figure 7-4. This register consists of four con-
trol bits and a 5-bit status field; the fields in
this register are described below:

-

isrslurnl 11 lsrelspnl 11. 1] fi] : e |

Figure 4. MMU Master Control Register

Uset Made Translate Enable (UTE). When this bit
is set to 1, logical memory addresses generated
during user-mode operation are translated to phys-
ical addresses with attribute checking. When this
bit is cleared to 0, the logical addresses are
passed through the MU to the address outputs with
zerus in the most significant bits and no attri-
bute checking or modified bhit setting ‘is per-
formed,

User Mode Program/Data Separation Ensble (UPD).
when this bit is set to 1, instruction fetches and
data accesses using the PC Relative addressing
mode use user-mode Page Descriptor registers 8
through 15, and dsta references using other
addressing modes use user-mode Page Descriptor
registers 0 through 7; the page size is 8K bytes.
When this bit is cleared to 0, both instruction
and data fetches use user-mode Page Descriptor
registers 0 through 15 and the page size is &K
bytes.

System Mode Translate Enable (STE). When this bit
is set to 1, logical memory addresses generated
during system-mode operation sre translated to
physical addresses with attribute checking. When
this bit is cleared to 0, the lugical addresses
are passed through the MMU to the address outputs
with zeros in the most significant hits and no
attribute checking or modified bit setting is per-
formed.

System Mode Program/Data Seperation Enable (SPD).
when this bit is set to 1, instruction fetches and
data accesses using the PC Relative addressing
mode use - system-mode Page Descriptor registers 8

'00y through 1Fy.

thrqugh 15, and dsta references using other
addressing modes use system-mode Page Descriptor
registers 0 through 7; the page size is 8K bytes,
When this bit is cleared to 0, both instruction
and data fetches. use system-mode Page Descriptor
registers 0 through 15 and the page size is &
bytes. ‘

Page Fault Identifier (PFI) Field. This S5-bit
status field latches an identification number that
indicates which Page Descriptor register was being
accessed when an access violation was detected.
The encoding used is given in Table 7-1,

The MMU Master Control register is programmed via
a word output instruction to I/0 port address
FFxxFOy (where "x" indicates a "don't care") and

. is read via a word input instruction to that same

port. A reset clears this register to all zeros,
thereby disabling address trenslation and attri-
bute checking in the MMU, Bits 5 through 9, 12,
and 13 in this register are not used.

The Page Descriptor registers in the MMU are
sccessed using the Page Descriptor Register
Pointer (PDR Pointer). The B-bit PDR Pointer con-
tains the address of one of the Page Descriptor
registers; the encoding is given in Table 7-1,
The permissible contents of the PDR Pointer are
The PDR Pointer is accessed
via byte I/0 instructions to port address
FFxxF1y.

Table 7-1. Page Descriptor Register Addresses

" PDR Pointeror Selected Page
PFI1 Fleld Descriptor Register
00 User Page Descriptor 0
01 User Page Descriptor 1
L] L]
» .
L] L]
OE User Page Descriptor 14
OF User Page Descriptor 15
10 System Page Descriptor 0
il System Page Descriptor 1
L] L]
L] L]
* L]
1E System Page Descriptor 14
1F System Page Descriptor 15

7-5

7.6 ACCESSING PAGE DESCRIPTOR REGISTERS

Data is read or written to the Page Descriptor
registers via I/0 instructions. Three different
types of accesses are allowed, each of which is
implemented with its own unique 1/0 port address.

7.6.1 Descriptor Select Port

Moves of one word of data to or from a Page
Descriptur register are accomplished through 1/0
port address FFxxfF5y, the Descriptor Select
Port. The Page Descriptor register accessed is
the one addressed by the PDR Pointer; the PDR
Pointer itself is unaffected. Any word I/0
instruction can be used. :

7.6.2 Block Move Port

Block moves of data into and out of Page Descrip-
tor registers are accomplished by word accesses to
1/0 port address FFxxF4,., The Page Descriptor
register accessed is the one addressed by the PDR
Pointer. Any word I/0 instruction can be used.
After the access, the contents of the PDR Pointer
are automatically incremented by one; thus, a sin-
gle block I/0 instruction can be used to access
several successive Page Descriptor registers. For
example, if the PDR Pointer is injtialized to 00,
the execution of an INIRW instruction to I/0 port
FFxxFly causes data from successive Page
Degscriptor registers starting with user Page
Descriptor register 0 to be loaded into memory.

For accesses to the Page Descriptor registers
using the Descriptor Select port or the Block Move
port, the permissible contents of the PDR Pointer

are the addresses for the Page Descriptors given’

in Table 7-1: 00y to 1Fy. Execution of an 1/0
instruction to ports FFxxF4y or FFxxF5y when
the contents of the PDR Pointer are outside of
this permitted range will have unpredictable
results.

7.6.3 Invalidation Port

The Valid bits in the Page Descriptor registers
can be cleared to 0 via byte writes to 1/0 port
address FFxxF2y, thereby invalidating the con-
tents of the Page Descriptor registers. Individ-
ual Valid hits can subsequently be set by writing
to individual Page Descriptor registers using the
Descriptor Select port or the Block Move port.
The Page Descriptor registers invalidated by a
write to port FFxxF2y depend on the data written

f

to that port, as delineated in Table 7-2. When
writing to the invalidation port only the 1least
significant four bits are sampled;
four bits are not used.

returns unpredictable data.

the upper
Reading port FFxxfF2y

Table 7-2. MMU Invalidation Port

 Data Written to
Port FFxxF2 Page Descriptor Reglsters
(Hexadecimal) Invalidated

o1 System Page Descriptor Registers 0-7
02 System Page Descriptor Registers 8-15
03 System Page Descriptor Registers 0-15
04 User Page Descriptor Registers 0-7
08 User Page Descriptor Registers 8-15
oc User Page Descriptor Registers 0-15

The 1/0 port.addresses for the MMU®registers are
listed in Table 7-3.

Table 7-3. 1/0 Port Addresses for MMU Control Registers

Port
Address Register
FFxxFOH Master Control Register
FFxxF1H Page Descriptor Register Pointer
FFxxF5n Descriptor Select Port
FFxxF4y Block Move Port
FFxxF2y Invalidation Port

Changing an MMU control register . or Page
Descriptor register does not cause a flush of the
CPU instruction pipeline. While an instruction
that changes an MMU register is executing, up to
two subsequent instructions can be pre-fetched
into the CPU pipeline; execution of thesé
subsequent instructions must have benign results.
In other words, when changing an MMU register, up
to two subsequent instructions can be fetched
before the change to the MMU register is
guaranteed to take effect. (However, no data
accesses are pre-fetched.) Therefore, when
initially enabling the MU - for address
translation, the instruction that enables the MMU
and the next two ingtructions must be in a page
whose logical addresses are identical to physical
addresses (so that it is immaterial exactly when
the MMU begins the translation process for those
instruction Fetches). When altering a page
descriptor register while translation is enabled,
neither of the next two instructions should reside
in the page associated with the Page Descriptor
reqister being changed.

7.7 INSTRUCTION ABORTS

Detection of a page fault (due to an attempted
access to an invalidated page) ur a write-protect
violation (due to an attempted write to a write-
protected page) causes the currently executing
instruction to be immediately aborted and
ngenerates an Access Violation trap. The starting
address of the instruction that caused the
violation and the current MSR value are
automatically saved on the system stack when
processing an Access Violation trap. Furthermore,
the MMU latches the address of t:.he referenced Page
Descriptor register in the PFI field of the MMU
Master Control register whenever a violation
OCCUrS. .

for most instructions, the CPU registers are not
modified during the execution of aborted instruc-
tions; i.e., their contents are the same as before
the aborted instruction began. The exceptions are
the block move, block search, and block 1/0
instructions; when aborted, the CPU registers are
the same as just before the iteration of the
instruction in which the violation occurred. In
either case, no modification of CPU registers is
necessary. before restarting the aborted instruc-
tion.

The instruction abort mechanism of the 7280 MPU
facilitates the implementation of virtual memory
in 7280-based systems.,. In a virtual memory sys-
tem, a cleared Valid bit in the Page Descriptor
register can be used to indicate when a memory
page is not currently mapped into main memory. If
an access is attempted to such a page, the
instruction is aborted and the Access Violation
trap service routine is invoked. The service rou-
tine can determine which Page Descriptor register
is involved by reading the PFI field of the MMU
Master Control register, swap the appropriate page
from the secondary storage device into main mem-
ory, adjust the appropriate Page Descriptor regis-
ters, ‘and then restart the aborted instruction.
The aborted instruction is automatically restarted
by using the Return from Interrupt Long instruc-
tion to retrieve the original PC and MSR values
from the system stack. No adjustments to other
CPU registers are required. During the swapping
process, the modified status bit in the page
descriptor register can be used to determine if a
page has been modified since the last time it was
copied to a secondary storage device.

7-7

Chapter 8.
On-Chip Memory

8.1 INTRODUCTION

The 7280 MPU has 256 bytes of on-chip memory.
This on~chip memory can operate in either of two
modes, as determined by the contents of the Cache
Control register (see Chapter 3). In one mode,
the on-chip memory is dedicated to fixed physical
memory locations; the memory addresses that are
mapped into the on-chip memory are determined
under program control. In the other mode, the
on-chip memory acts as a cache for either instruc-
tions, data, or both. When acting as a cache, the
set of memory locations mapped into the on-chip
memory at a given time is determined by the action
of the executing program; the memory locations
that were most recently accessed are stored in the
cache. Memory sccesses to locations mapped into
the on-chip memory do nut generate external bus
transactions and, therefore, = are faster than
accesses to” external memory; thus, use of the
on-chip memory leeds to faster, more efficient
program execution. On reset, the on-chip memory
is automatically enabled for use as a cache for
instructions only.

8.2 CACHE MEMORY MOIDE

If the M/T bit in the Cache Control register is
cleared to 0, then the 256 bytes of on-chip memory
are treated as a cache. Cache memories are small,
high-speed memory buffers situated between the
processor and main memory. (Main memory is the

semiconductor memory accessed via bus transac-
tions.) For each memory access, control logic in
the MPU checks if the memory location involved is-
currently stored in the cache. If so, the access
is made to the cache, usually without generating
an external bus transaction; if not, the access is
made to main memory and the contents of the cache
may be updated.

7280 MPU cache organization is illustrated in
Figure 8-1. * The cache is arranged as 16 lines of
16 bytes each. Each line of the cache can hold a
copy of sixteen consecutive bytes of memory in
physical memory locations whose 20 most signifi-
cant address bits are identical. Thus, for exam-
ple, one line of the cache could hold the data
from physical memory locations -~ 1538204 to
15382Fy. The 20 bits of physical address asso-
ciated with one line of 16 bytes in the cache is
called the tag address for that line. Each line
of the cache also has 16 valid bits associated
with it; each byte in the line is associated with
one valid bit, The valid bit is used to indicate
if the corresponding byte in the cache holds a
valid copy of the memory contents at the asso-
ciated physical memory location.

Lines in the cache are allocated using a Least-
Recently Used (LRU) algorithm. If a read access
is made to a physical memory address not currently
stored in the cache (a cache "miss"), and the MMU
does not assert cache inhibit, the line in the

20 BITS 16 BITS 10 x8 BITS
—
et N, et e, P -
VALID
LINE O TAGO BITS CACHE DATA
VALID
LINE 1 TAG1 BITS CACHE DATA
VALID
LINE 2 TAG 2 8ITS CACHE DATA
[] [L] L]
[] L (] L]
k]
L L] [4 e .
VALID
LINE 18 TAG 18 TS CACHE DATA

an-mnmbmmwmhn
Valld bits = 16 bits that indicate which byles in the cache contain valid data

Cache dats = 18 bytes

Figure 8-1.

Cache Organization

8-1

cache that has been least recently accessed is
selected to hold the newly read data. All bytes
in the selected line are marked invalid except fur
the bytes containing the newly accessed data. A
cache miss on a data write does not cause a line
to be allocated to the memory location accessed.

On a cache miss during a memory read, one or two
bytes (depending on the bus size) are fetched from
main memory and written to the cache. The cache
does not prefetch beyond the currently requested
byte or word, with one exception; if burst mode
operations are specified in the Cache Contrul reg-
ister, burst mode transactions are used when
fetching instructions.

The cache can be configured to hold only instruc-
tions, only data, or both instructions and data,
ag determined by the contents of the Cache Control
register. . If the cache contains data, writes to
data at 1locations in the cache also generate
external bus transactions to update the appro-
priate memory locations; thus, external memory is
always guaranteed to contain valid information.

~ister in use.

Tables 8~-1 and 8-2 summarize cache operation.
Whether ur not a given memory operation ‘accesses
the cache depends on a number of factors: the
type of access being made (program read, data
read, or data write), whether the cache is enabled
for that type of access, the type of instruction
being executed, whether the MMU asserts cache
inhibit, and whether the CPU or a DMA device ini-
tiates the transaction. The Cache Control regis-
ter determines if the cache is used for instruc-
tion fetches or data accesses or both. Execution
of the Test and Set (TSET) inmstruction, Return
from Interrupt (RETI) instruction, and the
extended instructions force external bus transac-
tions, regardless of the contents of the cache, as
described below. If the MMU is enabled, the
access can be cacheable or noncacheable, as deter-
mined by the contents of the page descriptor reg-
If the MMU is not enabled, all
transactions are considered to be cacheable. Both
the CPU and on-chip DMA channels can access the
cache. For DMA operations, only data read and
data write transactions can occur. The state of
the Cache Data Disable control bit in the Cache

Table 8-1. CPU Accesses to On-Chip Memory as Cache

CaohelMomory
Cache Cache Activity Bus Supplies
Operation Hit/Miss Instruction Cache Data Contents LRU Transaction Information
MMU Cache Inhibit ~ Cacheable Transaction
Instruction Read Hit Disabled Don't care Updated No change Yes Memory
Enabled Don't care No change Updated None Cache
Miss Disabled Don't care Updated* No change Yes Memory
Enabled Don’t care Updated Updated Yes Memory
Data Read Hit Don't care Disabled Updated No change Yes Memory
(non Test & Set) Don't care Enabled No change Updated None Cache
Miss . Don’tcare Disabled Updated* No change Yes Memory
Don’t care Enabled Updated Updated Yes Memory
Data Read Don't care Don’t care Don't care Updated* No change Yes Memory
(Test & Set)
Data Write Hit " Don't care Disabled Updated No change Yes -
Don't care Enabled Updated Updated Yes —_
Miss Don’t care Disabled No change No change Yes —
Don't care Enabled No change No change Yes —_
EPU-to-Memory Don't care Don't care Don't care Updated* No change Yes EPU
Memory-to-EPU Don’t care Don’t care Don't care No change No change Yes Memory
EPU Template Don’t care Don't care Don't care No change No change Yes Memory
RETI Opcode Don'tcare ‘ Don'tcare Don't care No change No change Yes Memory
MMU Cache Inhibit —~ Noncacheable Transaction
Don't care Don't care Don't care Don’t care Updated* . No change Yes Memory

*Updated if a cache line contains the accessed location, otherwise unaffected.

- . transactions;

-

Control register is ignored during DMA
therefore, an on-chip DMA device
always updates the cache contents during DMA write
operations to memory locations thet are currently

mapped into the cache.

For read operations, a cache "hit" is a reference
to a location with s valid entry in the cache, and
a cache "miss" is a reference to 'a location that
has no valld entry in the cache. In the general
case (and assuming the transaction is cacheable),
read operations that are cache hits cause the data
to be read from the cache without generating an
external bus transaction. Read operations that
are cache misses cause the data to be read from
the external memory via an external bus cycle and
update the cache contents. Updating the cache
contents may involve replacing the teast-recently
used line of the cache with a new line that
contains the read location. For write operations,
a cache hit is a write to a location in the cache,
aven if the destination byte is marked as invalid
in the cache, and a cache miss is a write to a
location that is not in the cache. Write
operations thet are cache hits cause both the
cache and external memory to be updated, and write
operations that are cache misses have no effect on
the cache, Memory write operations always gener-
ate external bus transactions.

Exceptions to the above rules include the Test and
Set, Return from Interrupt, and extended instruc-
tions. Data read operations during execution of a
Test and Set instruction always read the data from
the main memory with an externel bus transaction,
reqardless of whether or not the location read is
valid in the cache. This ensures that the most
 recent value for a semaphure is read from external
memory in the case that the semaphore is in shared
memory in a multiprocessor system; another proces-
sor may have changed the semaphore after it was
last read into the MPU's cache.

If an RETI opcode is fetched frum the cache, the
instruction fetch cycles are repeated with
axternal bus transactions; this ensures that Z80
family peripherals connected to the 2280 MPU with
an interrupt request daisy chain can detect the
RETI opcude fetch (a requirement four the proper
operation of the Z80 family peripherals).

If extended instructions are resident in the
cache, the EPU template portion of those
ingtructions is always read using external bus
transactions. This ensures that an Extended
Processing Unit (EPU) that is monitoring the
external bus can detect and read the template
during those instruction fetch cycles. If the
extended instruction results in a transfer of data
between the EPU and memory, all the involved data
transactions occur on the external bus. Cache
hits during EPU-to-memory write transactions
result in the updating of cache contents as well
as external memory.

For .memory reads, the LRU algorithm logic is
updated to reflect that the associated cache line
is the must-recently accessed line if the read was
an instruction fetch in a ceche enabled for
instructions or a data fetch in a cache enabled
for data. For data writes, the LRU algorithm
logic is updated only for a cache hit in a cache
" that is enabled for data.

When the on-chip DMA controllers transfer data to
memory, cache contents ere modified if the write
is to a location mapped into the cache, but the
LRU algorithm is unaffected, EPU-to-memory
transactions have the same effect. The cache is
not affected by the activity of external DMA
controllers.

On reset, all the valid bits in the cache are
cleared to 0, marking all ceche entries as
invalid, and the on-chip memory is confiqured as a
cache for instructions only.

Table 8-2. On-Chip DMA Accesses (Both Flowthrough and Fiyby)

Effect on On-Chip Memory as Cache
Cache/Memory
Memory Cache Cache Activity Bus Supplies
Operation Hit/Miss Instruction Cache Data Contents LRU Transaction Information

Read Hit Don’t care Don't care Updated No change Yes Memory

Miss Don’t care Don’t care Updated* No change Yes Memory
Write Hit Don’t care Don’t care Updated No change Yes -—_

Miss Don't care Don't care No change No change Yes _

*Updated if a cache line contains the accessed location, otherwise unaffected.

8-3

8.3 FIXED-ADDRESS MODE

when the M/ bit in the Cache Contrul register is
set to 1, the on-chip memory is treated as fixed
physical memory locations. Accesses to these mem-
ory locations never generate external bus transac-
tions and, therefore, are Ffaster than memory
accesses that use the external bus (Table 8-3).

In this mode, the on-chip memory is still organ-
ized as 16 lines of 16 bytes each, with a 20-bit
taq address that specifies the 16 physical memory
locations in each line. All locations are assumed
to contain valid information, whether or not they
have been initialized; the individual valid bits
associated with each byte in the line are ignored
in this mode. The Cache Data Disable and Cache
Instruction Disable bits in the Cache Control reg-
ister are also ignored in this mode, and no dis-
tinction is made as to whether the CPU is acces-
sing instructions or data.

Before entering this mode, the user must initial-
ize the taq addresses for all 16 lines of on-chip
memory. The values for these tags determine the
256 physical memory addresses that are mapped into

the on-chip memory. This is accomplished by ena-
bling the on-chip memory as a cache for data only,
reading data from 16 physical memory locations
that are in different cache lines, and then set-
ting the M/C bit in the Cache Control register to
1 to enable the fixed-address mode for the on-chip
memory. Altering the M/€ bit in the Cache
Control reqister does not affect the contents of
the on~-chip memory, including the tag addresses.

Note that each line of the on-chip memory must be
assigned a unique tag address befure entering this
mode so that no unpredictable addresses are mapped
into the on-chip memory. If instructions are to
be fetched from-the on-chip memory while in this
mode, Return from Interrupt (RETI) instructions
and the templates within extended instructions
should never be resident in the on-chip memory; in
sach case, the operation of devices external to
the MPU depends on these instructions being
fetched with external bus transactions, as men-
tioned in section 8.2, Data to be transferred to
or from an EPU cannot be resident in on-chip mem-
ory either, since this data must be transferred to
the EPU over the external bus.

Table 8-3. DMA/CPU Accesses to On-Chip Memory as leed Memory Location

. Cache/Memory
Memory ~ Cache - Cache Actlvity Bus Supplies
Operation Hit/Miss Instruction Cache Data Contents LRU Transaction information
Read Hit Don't care Don't care No change No change No Cache '
) Miss Don't care Don't care No change No change Yes Memory
Write Hit Don't care Don't care Updated No change No —_
Miss Don't care Don’t care No change No change Yes —

Chapter 9.
On-Chip Peripherals

9.1 INTRODUCTION

The 2280 MPU features a number of peripheral

devices on-chip in addition to the CPU, MMU, and -

cache memory. These peripheral devices include a
clock oscillator, dynamic RAM refresh controller,
four direct memory access (DMA) controllers, three
counter/timers, and a universal asynchronous
receiver/transmitter (UART),

The DMA channels, counter/timers, and UART are .

user-programmable devices that can be confiqured
to operate in several different modes. These
devices are accessed using 1/0 instructions;
howsver, no external I/0 bus transactions are
generated when the on-chip peripherals are
accessed by the CPU. These devices can generate
interrupt requests to the 2280 MPU, as described
below and in Chapter 6. Interrupts from these
on~chip peripherals are always processed using
interrupt mode 3, reqardless of which interrupt
mode is used for externally. generated interrupts.

9.2 CLOCK OSCILLATOR

The 2280 MPU has an on-chip clock oscillator/ -

generator that can be connected directly to a
crystal or any other suitable clock source. The
frequency of the processor clogk is one-half of
the frequency of the external clock source or
crystal. The processor clock can be Further
divided by a factor of 1, 2, or 4 to_ provide the
bus timing clock, as specified by the contents of
the Bus Timing and Initialization register (see
Chapter 3). The bus timing clock is output by the
MPU for use by the rest of the system.

The on-chip clock oscillator, & high-gain amplifier, is
enabled by either connecting a crystal across the
Clock/Crystal Input (XTAL1) and Crystal Output (XTALO)
pins or connecting 8 clock input to the Clock/Crystal
Input pin. The crystal must be a parallel resonant
fundamental type.

9.3 REFRESH CONTROLLER

An on-chip memory refresh controller in the Z280
MPU is available for generating memory refresh
operations in systems utilizing dynamic: RAMs.
Operation of this mechanism is controlled by the
Refresh Rate register, which is located in the
7280 MPU's 1/0 address space. If enabled, memory
refreshes are performed at a rate specified by the
contents of this register.

The format of the 8-bit Refresh Rate register is
shown in Figure 9-1. This register enables the
refresh mechanism and determines the frequency of
refresh transactions. The fields in this register
are described below.

14
Lelel w1

Figure 81. Refresh Rate Register

Refresh Ensble (E) bit. When this bit is set to
1, the refresh mechanism is enabled. When this
bit is cleared to 0, the refresh mechanism is
disabled and refresh transactions are not
generated.

Refresh Rate field. The contents of this 6-bit
field determine the frequency of refresh
transactions if the Refresh Enable bit is set to
1. A value of n (0 < n < 63) in this field
specifies a refresh rate of once every 4n
processor clock cycles; a value of O in this field .
indicates a refresh rate of every 256 processor
clock cycles. ‘

The Refresh Rate register is accessed via byte 1/0
operations to I/0 port address FFxxE8y (where x
means "don't care"). Bit 6 of this register is
not used. On reset, the Refresh Rate register is
initialized to 88y, thereby ensbling memory
refresh at a rate of 32 processor clock cycles per
refresh. This register can be read at any time to

9-1

determine if refresh is enabled and the current
refresh rate.

A 10-bit refresh address is output on address
lines Ag-Ag during a refresh transaction. This
refresh address is incremented by one for 780 bus
(8-bit data bus) configuration and by two for
Z-BUS (16-bit data bus) configuration of the 2280
MPU between refresh transactions. The refresh
address is not accessible by the programmer and is
not affected by a reset.

During instruction execution, the actual refresh
transactions are generated as soon as possible
after the refresh period has elapsed. Generally,
the refresh transaction is executed after the last
clock cycle of the bus transaction in progress at
the time that the refresh period elapsed. If the
CPU receives an interrupt request during that same
bus transaction, the refresh transaction is
inserted before processing the interrupt. When
the 7280 MPU does not have control of the bus due
to a bus request, refresh transactions cannot be
executed; while the MPU is in this state, internal
circuitry records the number of refresh periods
that have elapsed (that is, the ‘number of "missed”
refresh transactions). When the Z280 MPU regains
control of the bus, the refresh mechanism
automatically issues the missed refresh cycles.
Similarly, if the refresh period elapses while the
MPU is in a wait state (due to WAIT being
asserted) during a bus transaction, the number of
missed refresh transactions is recorded
internally, and those refresh cycles are issued
after WAIT is deactivated and the bus transaction
is completed. The internal circuitry can record
up to 256 such missed refresh operations. ’

Pgeudo-static memories and some peripheral devices
(such as the 78000 family of peripherals) require
a minimum transaction rate on the bus for correct
operation. If the refresh mechanism is disabled
by clearing the Refresh Enable bit in the Refresh
Rate register, the rate field in this register is
used to determine the minimum transaction rate on
the bus. In this mode, if the refresh timer
reaches 0 and no external bus transaction bhas
occurred since the last time the refresh timer
elapsed, then a refresh transaction will be
generated. Thus, in a system that does not
require, memory refresh transactions, the Refresh
Rate field in the Refresh Rate register must be
initialized to an appropriate value even if memory
refresh operations are disabled.

9.4 COUNTER/TIMERS

The 7280 MPU's three on-chip 16-bit counter/timers
can be configured to satisfy a broad range of

counting and timing applications, including event
counting, interval timing, watchdog timing, and
ctock generation. Each counter/timer is compesed
of a 16-bit downcounter, a 16-bit time constant

register, and two 8-bit control and status
registers (the Counter/Timer Configuration
register and the Counter/Timer Command/Status
register). The three independent devices are

referred to as counter/timer 0 (C/T 0), counter/
timer 1 (C/T 1), and counter/timer 2 (C/T 2).
Figure 9-2 is a block diagram of a Z280 MPU
counter/timer,

(=

MPU TIME)
DATA CONSTANT PRttt
BUS REGISTER

je— CT10

jo—— CTIN

CONTROL
LOGIC

+4

f

INTERRUPT CPU
TOCPU CLOCK

Figure 9-2. Counter/Timer Block Diagram

C/T 0 and C/T 1 can be programmably linked to form
a 32-bit counter/timer.

Two external connections are available for each
counter/timer: a Counter/Timer 1/0 pin (C/T 1/0)
that can act as a gate or trigger input or a
counter/timer output, and a Counter/Timer Input
pin (C/T IN) that can serve as a count, gate,
trigger, or gate/trigger input. The contents of
the Counter/Timer Configuration register determine
the pin functions for a given application.
!

The counter/timers can operate in counter mode or
jn timer mode. In counter mode, the downcounter
decrements the count on the occurrence of an
external event; specifically, the counter is
clocked by a rising edge on the Counter/Timer
Input pin. In timer mode, the downcounter is
clocked by an internal signal-~the CPU clock
divided by four.

9-2

Gate. and trigger inputs to the downcounter can be
used to control counter/timer activity. Both
hardware and software gate and trigger signals are
available., Either retriggerable or nonretrigger-
able modes can be specified.

The counter/timer's "terminal count" condition is
when the downcounter holds a count of 0. This
terminal count conditioa can be used to generate
an interrupt request to the CPU. Counter/timers
can generate a counter/timer output signal when
the terminal count is reached. Upon reaching
terminal count, a counter/timer can be programmed
either to discontinue counting (single-cycle mode)
or to reload the initial time constant value and
continue counting (continuous mode).

9.4.1 Counter/Timer Operating Modes

The counter/timers have two basic operating modes,
distinquished by the clocking signal to the
duwncounter: counter mode and timer mode. The
current mode for counter/timer operation is

determined by the contents of the Counter/Tgmer y

Confiquration reqister.

In counter mode operation, the counter/timer
moniturs an external input 1line and records
low-to~high transitions on that line. The
Counter/Timer Input pin is used as the counter's
input signel; if the appropriate "enabling
conditions are met, a low-to-high transition on
that pin will cause the contents of the down-
counter to be decremented by one. The decrement
operation in the downcounter is actually performed
on the first rising edge of the scaled processor
clock (CPU clock divided by 4) after the
low-to-high transition on the C/T IN signal.
Typicall'y. counter mode is used in event-counting
types of applications.

In timer mode operation, . the counter/timer
monitors the internal CPU clock scaled by four for
low-to-high transitions. If the appropriate
enabling conditions are met, such a transition
causes the contents of the downcounter to be
decremented by one. No external inputs are

required in the timer mode of operation. Timer
mode is used in applications such as delay
interval ‘timing, watchdog timing, and clock
generation.

In either mode, the maximum count frequency is the CPU
clock divided by four.

9.4.2 Gates and Trigoers

Gate and triqqer- inputs are used to control
counter/timer sctivity in either counter mode or -
timer mode.

Gate signals are wused in applications where
counting ur timing is to occur only during certain
specified intervals; the counter/timer will count
or time only while the gating condition is met.
For applications where an external pin is
confiqured as a qate input, counting or timing
operations are performed only while the gate input
is high. A software qate bit (one bit of the
Counter/Timer Command/Status register) is, used as
a filter for the gate input; while the software
gate bit is cleared to 0, the gating condition is
not met reqgardless of the state of the gating
line. In other words, the gating condition is a
logical AND of the hardware and software gates;
both the gate input must be high and the software’
gate bit must be set to 1 for the counter/ timer
to be operating. If no external pins are
confiqured as a qating sianal, then the software
gate bit must be set to 1 to satisfy the gating
condition.

Figure 9-3 illustrates the gating facility in an
application where the counter/timer is in counter
mode with both the gate and the count signals
coming from external pins. This example assumes
that the software gate bit has been set to 1. The
contents of the downcounter are decremented on a
low-to-high transition of the count input only if
the gate input is high.

If trigqger mode is selected, a countdown sequence
for a counter/timer beqins only after a triggering
condition ocecurs; a counting or timing uperation
can beqin only after a low-to-high transition is
detected on the trigger. If an external input is
used as a trigger, that line is monitored by the
counter/timer. Alternatively, @ software triqger
bit (one bit in the Counter/Timer Command/Status
reqister) can be set to 1 from a previously
cleared value to activate the cdunter/timer. The

COUNTITIME
REGISTER .
DECREMENTED

Figure 9-3. 00unt0f-0peratbn with Gate Only

trigger coundition is a logical OR of the hardware
and software triggers; that is, either a hardware
or software trigger will activate an enabled
counter/timer.

Figure 9-4 illustrates trigger operation in an
application where the counter/timer is in the
counter mode with both the triager and count
inputs provided by external pins. This example
assumes that the software trigger bit does not
make a low to high transition. The contents of
the downcounter are decremented on a low-tu-high
transition of the count input only after a
low-to-high transition on the trigger input has
been detected.

Either a retriggerable or nonretriggerable
operation can.be specified. In the retriggerable
mode, the pccurrence of a trigger condition causes
the counter/timer tou reload its initial time
constant value regardless of the current contents

of the downcounter. This mode is wused in
applications such as watchdog timers. In the
nonretriggerable mode, after the First triqger
condition starts counter/timer activity,
subsequent trigger conditions are ignored.

Nonretriqgerable mode is used in applications such
as delay counters that measure a fixed delay from
a given event.

Gate and trigger operations can be combined in a
single counter/timer. Separate gate and trigger
inputs ({either hardware or software) can be
specified, or one external input can be used as
both a qate and a trigger. In the latter case, a
low-to-high transition on the input acts as a
trigger that starts counter/timer activity, and
then counting or timing continues only as long as

the input signal remains high. Again, either
retriggerable or nonretriggerable modes are
available. Figure 9-5 illustrates counter/timer
TRIGGER
INPUT

COUNTER
Ling

Imh

operation in an application where counter mode is
selected, wne inpu@ is a count input, and the
other input is used as both the trigger and gate.

9.4.3 Terminal Count Condition

During operation, the counter/timer counts down
from a preset time constant value. The time
constant value can range from 0 to 65535. The
terminal count condition is reached with the
transition from a count of 1 in the downcounter to
a count of O, The counter/timers can be
programmed to interrupt the CPU and/or generate a
counter/timer output signal when the terminal
count is reached.

Another set of operating modes determines
counter/timer activity upon reaching the terminal
count. Whether in counter or timer mode, a
counter/timer can be confiqured for single-cycle
mode or continuous mode. In single-cycle mode,
the\ counter/timer halts operation upon reaching
terminal count; a new triqger is required to

‘reload the time constant and initiate another

countdown sequence. In continuous mode, the
counter/timer is automatically reloaded with the
time constant upon reaching terminal count; the
downcounter 1s reloaded on the next count input
after reaching terminal count. fFor example, a
counter/timer in continuous mode with a 3 in its
Time Constant reqister will be reloaded on every
fourth count input.

An interrupt enable bit in the Counter/Timer
Confiquration reqister determines if an interrupt
request is generated at the terminal count. This
request will be processed by the CPU if the appro-
priate Interrupt Request Enable bit in the CPU's
Master Status register is set to 1 (see Chapter
6).

N I

[1L_1T1

COUNT/TIME
REQISTER
DECREMENTED

*
*

Figure 9-4. Counter Operation with Trigger Only

GATE

GATE

COUNTER
LING

-
M

L

M___ri

ot K
l E

COUNTITIME
REQISTER .
DECREMENTED

Figure 9-5,

Counter Operation with Gate and Trigger

9-4 .

The CTI0 pin can be configured as a counter/timer
output signal, Reaching the terminal count
condition causes a low-tu-high transition on the
CII0 pin; this signal remains high as long as the
downcuunter holds a value of zeru (that is, until
a non-zero time constant is loaded into the
downcounter due to a trigger condition).

9.4.4 Counter/Timer Registers

Each counter/timer has two B-bit command and
status renisters and two 16-hit count registers.
The 8-bit Counter/Timer Configuration and
Counter/Timer Command/Status reqisters determine
the counter/timer's operating modes and provide
status information about the current operation.

If C/T 0 - and C/T 1 are linked to form a 32-bit
counter/timer, the functionality of these
registers. is affected, as described in section
9.4.5. = The 16-bit Time Constant register holds
the initialization value for the counter/timer,
and the 16-bit Count-Time register contains the
value of the current count in progress.

9.4.4.1 Counter/Timer Configuration Register

The Counter/Timer Configuration register, shown in
Figure 9-6, specifies the counter/timer's mode of
operation. The five fields in this register are
described below.

R

“CYC is present on counteritimer 0 only.

Figure 98. Counter/Timer Configuration Register

Continuoue/Single Cycle (C/5). While this bit is
get to 1, the downcounter is automatically
realoaded with the contents of the Time Constant
register on the next count input signal after
terminal count is redched, and the counting or
timing operation continues. While this bit is
cleared to 0, no automatic reloading occurs when
terminal count is reached.

Retrigger Ensble (RE). While this bit is set to
1, the value of the Time Constant register is
loaded into the downcounter - whenever a trigger
input is received (retriggerable mode). While
thia bit is 0, trigger conditions do not cause
reloading of the downcounter.

Interrupt Ensble (IE). While this bit is set to
1, the counter/timer generates an interrupt
request to the 2280 CPU upon reaching terminal

count. While this bit is cleared to 0, no
interrupt requests can be genersted by the
counter/timer.

Counter/Timer Cascade (CIC). For C/T 0, this is
the enable bit for linking to C/T 1 in order to
form a 32-bit counter/timer (see section 9.4.5).
The state of this bit has no effect in C/T 1 and
c/T 2.

Input Pin Assigrments (IPA). The contents of this
4-bit field determine the operating mode of the

counter/timer (counter or timer mode) and the -

functionality of the external pins associated with
that counter/timer. The four bits in this field
are associated with enabling the generation of an
output pulse (EQ), selecting the counter or timer
mode (C/T), enabling the qating facility (G), and
enabling the trigqering facility (7). Table 9-1

" shows the encoding of this field.

Table 9-1. Encoding of the IPA Field in the Counter/Timer Configuration Register

IPA Fleid Pin Functionality
EO CT G T Counter/Timer /O CounterfTimer Input Mode
0 0 0 0 Unused Unused Timer
0 0 0 1 Unused Trigger Timer
0 0 1 0 Gate Unused Timer
0 0 1 1 Gate Trigger Timer
0 1 0 0 Unused Input Counter
0 1 0 1 Trigger Input Counter
0 1 1 0 Gate Input Counter
0 1 1 1 Gate/Trigger Input Counter
" 0 0 0 Output Unused Timer
1 0 0 1 Output Trigger Timer
1 0 1 0 Output Gate Timer
10 1 1 Output Gate/Trigger Timer
1 1 0 0 Output Input Counter
1 1 0 1 Unused Unused ' Reserved
1 1 1 0 Unused Unused Reserved
1 1 1 1 Unused Reserved

Unused

IPA field is
counter/timner

If a reserved encoding of the
apecified fur any counter/timer,
operation is unpredictable.

The Counter/Timer Confiquration
cleared to all zerus by a reset.

reqisters are

9.4.4,2 Counter/Timer Command/Status Register

The Counter/Timer Command/Status register provides
for software control of counter/timer operation
and reflects the current status of the counter/
timer. Three control bits and three status bhits
are included in the Command/Status register. The
format for this renister is illustrated in Fiqure

9-7.
7 .

[
enfar|ra| 1 | 1 [ew| ccleord
Figure 9-7. Counter/Timer Command/Status Register

Enable (EN). While this bit is set to 1, the
counter/timer is enabled; operation begins on the
first trising edge of the processor clock following
the setting of this bit from a previously cleared
state. Writing @ 1 to this bit when its previous
value was a 1 has no effect. While this bit is
cleared to 0, the counter/timer is disabled and
performs no counting or timing operations. While
in the disabled state, the contents of the Time
Constant register are continuously loaded into the
_ downcounter.

Software Gate (Gf). While the counter/timer is
enabled (the EN bit is a 1), downcounter uperation
begins on the rising edqe of the first scaled
processor clock following the setting of this bit
from a previously cleared value, ~ Writing
a 1 to this bit when the previous value was a 1
has no effect. While this bit is cleared to O,
the counting or timing sequence is halted.

Softwers Trigger (TR). While the counter/timer is
enabled (the EN bit is a 1), the trigger condition
is qenerated on the rising edgqe of the first
scaled processor clock following the setting of
this bit from a previously cleared value. If a
previous trigger condition has not occurred, the
contents of the Time Constant reqister are toaded
into the downcounter and the counting or timing
sequence begins. If a hardware or software
trigger has already occurred and the Retrigger
Enable bit is set to 1, the counter/timer will be
retriggered. If a trigger has already occurred,
the Retriqger Enable bit is cleared to 0, and a
counting or timing ouperation is in progress (that
is, the downcounter holds a count other than 0),
then setting the TR bit has no effect on
counter/tiner operation. Clearing this bit to O
also has no effect on counter/timer operation."‘

Count in Progress (CIP). This status bit
indicates if. a counting or timinq operation is in

progress. While this bit is a 1, the counter/timer
has a time constant loaded and the downcounter holds a
non-zero value. while this bit is & 0, the
counter/timer is not operating. The state of this bit
is determined by control logic in the counter/timer
and cannot be altered by a write operation to this
register.

End-of-Count Condition Has Been Reached (CC).
This status bit is set to 1 by contrel logic in
the counter/timer when the end-of-count condition
is reached (that is, the duwncounter has been
decremented to zero in the single-cycle mode or
the downcounter thas been reloaded in the
continuous moude). ~While this hit is a 0, the
downcounter has not been decremented to 0 since
the last time that this bit was cleared by
software. This bit can be read or written under
proqram control.

Count Overrun (COR). This status bit is set to 1
by control logic in the counter/timer if the
end-of~count condition is reached while the CC bit
is already set to 1, thereby indicating a count
over-run condition, If this bit is a 0, the
end-of-count condition has not been reached while
the CC bit is a 1 since the last time the CC bit
was cleared by software. This bit can be read or
written under progqram control.

The Counter/Timer Command/Status register 1is
cleared to all zeros by a reset. Bits 3 and 4 of
this register are not used, and should always be
written with zeros (however, when bits 3 and 4 are
read back, they will be 18 regardless of whether
they were written with zeros or ones).

9.4.4.3 Time Constant and Count-Time Registers

The 16-bit Time Constant register holds the value
to be loaded into the downcounter when counter/
timer operation begins. The downcounter is loaded
with the contents of the Time Constant reqister
when the counter/timer is initially triggered to
beqin counter/timer operation, each time the
end-of-count condition is reached if the
continuous mode is selected, and at the occurrence
of each trigger condition if retriqgerable moude is
selected. By loading the Time Constant reqister,
the user can specify counts ranging from 1 to
65536, The contents of the Time Constant register
are continuously loaded into the downcounter while
the counter/timer is disabled (the EN bit is 0).

The 16-bit Count-Time reqister holds the current
value in the downcounter and can be read at any
time without affecting counter/timer uperation.
Writes to this register have no effect.

Both the Time Constant and Count-Time reqisters
hold unpredictable values after a reset.

9-6

fable 9-2 lists the 1/0 port addresses associated
with each of the counter/timers' reqisters. The
Counter/Timer Configuration register and Counter/
Timer Command/Status reqister are accessed with
byte 1/0 instructions and, with the exception of
the read-only CIP bit, can be read or written. The
Time Constant and Count-Time reqisters are
accessed with ward 1/0 instructions. The Time
Constant register can be read or written; the
Count-Time register is read-only.

Table 9-2. 1/0 Addresses of Counter/Timer Registers

Counter/Timer
Register CITO . CIT1 CiT2
Configuration FExxEQ FExxE8 FExxF8
Command/Status ~ FExxE? FExxEQ FExxF9
Time Constant - FExxE2 FExxEA FExxFA
Count-Time FExxE3 FExxEB FExxFB

All addresses are in hexadecimal.
“x" means “don't care”.

[}
9.4,.5 Linking Counter/Timers

Under software control, two 2280 MPU counter/
timers can be linked to form a 32-bit counter/
timer. C/T O ¢an be linked with C/T 1. This
linking function is controlled by the CIC bit in
the Counter/Timer Configuration reqister in C/T
0. While the CTC bit in C/T O%s Confiquration
register is set to 1, C/T 0 and C/T 1 are linked
together.

Linking the two counter/timers together affects ‘

the functionality of the counter/timers'
registers. If C/T 0 and C/T 1 are linked to form
a 32-bit counter, C/T 1's Time Constant reqister
holds the upper 16 bits and C/T 0's Time Constant
register holds the lower 16 bits of the 32-bit
count to be loaded into the downcounter when a
counter/timer operation begins. Similarly, C/T
1's Count-Time reqister holds the upper 16 bits
and C/T 0's Count-Time reqister holds the lower 16
bits of the current count.

The effact of linking counter/timers on the Con-
fiquration and Command/Status reqisters is
summarized in Table 9-3. The confiquration of the
32-bit counter/timer is determined by the state of
the C/S, RE, and IPA fields in the Configuration
reqister of the more significant counter/timer
(C/T 1), Any external connections specified in the
IPA field of the C/T 1 Configuration register use
the pins associated with C/T 1. The controls in
the Confiquration register for C/T 0 are ignored,
with the exception of the CTC, 1E, end EO bits.
The CTC bit in C/T O is used to specify linking of

the counter/timers. If the IE bit in the more
significant counter/timer (C/T 1) is set to 1, an
interrupt request is qenerated when the 32-bit
counter reaches end-of-count, using the interrupt
request signal from C/T 1; if the IE bit in the
leas significant counter/timer (C/T 0) is set to
1, an interrupt request is generated when the
lower 16 bhits of the 32-bit downcounter reach 0
(in other words, when C/T 0 reaches end-of-count),
using the interrupt teqdest signal from C/T 0. If
the OE bit in C/T O is set, the C/T I/0 signal
associated with C/T 0 ques high whenever the lower
half of the 32-bit down-counter holds a 0 (in
other words, when C/f 0's downcounter holds a 0).

Similarly, the Command/Status register in the mure
significant counter/timer (C/T 1) contains the
control and status bits for the linked 32-bit
counter/timer. However, the status bits in the
less significant counter/timer (C/T 0) hold valid
status for the lower-half of the 32-bit
counter/timer (that is, the status of C/T O
itself).

9.4.6 Counter/Timer Sequence of Events

Before starting a counting or timing sequence, the
counter/timer must be confiqured Ffor the par-
ticular application by loading its Eonfiguration
reqister. Next, the starting value for the
downcounter is specified by loading the Time
Constant reqister; initial values ranqing from 0
to 65535 can be gpecified for the downcounter.
Lastly, the enable (EN) bit in the Command/Status
reqister is set to 1 to enable counter/timer
operation.

While the EN bit is cleared to 0, the counter/
timer cannot be triggered, interrupt requests from
the counter/timer cannot be generated, end the
downcounter holds the value in the Time Constant
reqister. However, clearing the EN bit does not
clear any pending interrupt requests--it only
prevents new interrupt requests from being
qenerated,

Once the EN bit is set to 1, the countdown
sequence heains when the counter/timer is
triqaered, causing the contents of the Time
Constant reqister to be loaded into the down
counter. The downcounter is loaded on the rising
edge of the external triqger input- (if an external
trigger was specified in the Configuration
register) or by writing a 1 into the TG bit of the
Command/Status register. The EN and TG bits can
both be set to 1 during the same write operation
to the Command/Status tegister to both enable and
trigeer a counter/timer (assuming thet the TG bit
was a zero previously, so that a low-to~high

9.7

Table 9-3. Configuration and Command/Status Registers for Linked Counter/Timers

Bit Activa/ignored

Comments

CIT 1 Configuration Register

(o7) Active Specifies continuous or single-cycle mode for 32-bit counter/timer.
RE Active Specifies retriggerable or nonretriggerable mode for 32-bit counterfiimer. .
IE Active Interrupt.enable for 32-bit counter/timer.
- CTC ignored
EO Active , Enable output for 32-bit counterftimer; C/T 1's output pin is used.
cr o ~ Active Specifies counter or timer mode for 32-bit counteritimer.
G Active Enable gate input for 32-bit counterftimer; C/T 1’s input pin is used.
T Active Enable trigger input for 32-bit counterftimer; C/T 1’s input pin is used.
CIT 0 Configuration Register
cis Ignored
RE Ignored
E Active Interrupt enable for lower half of 32-bit counter/timer.
CTC Active Set to 1 to link counter/timers.
EO Active Enable-output for lower half of 32-bit counter/timer (C/T 0 only).
(o723 Ignored
G Ignored
T - Ignored

CIT 1 Command/Status Register

EN Active Enable controt for 32-bit counter/limef.

GT Active Software gate for 32-bit counter/timer.

TG Active Software trigger for 32-bit counter/timer.

CiPp - Active Count-in-Progress status bit for 32-bit counter/timer.

cC . Active End-of-Count Has Been Reached status bit for 32-bit counterftimer.

COR Active Count Overrun status bit for 32-bit counter/timer.

CIT 0 Command/Status Register

EN lgnored

GT Ignored

TG Ignored

CIP Active Count-in-Progress status bit for lower half of 32-bit countertimer.’

cC Active End-of-Count Has Been Reached status bit for lower half of 32-bit
counter/timer.

COR Active Count Overrun status bit for lower half of 32-bit counter/timer.

transition on the triqqer is detected). The
trigger condition is a logical NR of the externatl
trigger input (if specified) and ‘the TG bit.

Once triagered, the rate at which the downcounter
counts is determined by the mode of the counter/
timer. In the timer mode, the downcounter is
clocked internally by a signal that is one-fourth
the frequency of the CPU clock (one-eighth the
frequency of the external clock source). In the
counter mode, the downcounter is clocked by a
rising edge on the count input signal (this edge
is internally synchronized with the scaled CPU
clock).

In counter mode, the first low-to-high transition
on the count input should occur a minimum of four
internal CPU clock cycles after the trigger
event. Count inputs occurring within four CPU
clock cycles of the trigger may or may not be
recognized by the downcounter.

Once the downcounter is loaded, the countdown
sequence continues towards the terminal count
condition as 1long as the counter/timer's gate
input is high. The gate input to the counter/
timer is the logical AND of the external gate
input (if an external gate was specified in the
Configuration -register) and the GT bit in the

Command/St atus register. If the gate input goes
tow, the countdown halts, and then resumes when
the gate input goes high again. The gate function
does not affect the frigger function.

The reaction to triggers during the countdown
operation depends on the state of the RE bit in
the Configuration register. If RE is a O,
retriggers are ignored and the countdown sequence
continues normally. If RE is a 1, each occurrence
of a trigger condition causes the downcounter to
be reloaded from the Time Constant register and
the countdown sequence starts over again.

The: current state of the downcounter can be
determined by polling the status bits in the
Command/Status register and by reading the current
count from the Count-Time register. Reading these
registers does not affect the current countdown
sequence,

The state of the C/5 bit in the Configuration
register controls the operation of the counter/
timer upon reaching terminal count. If the C/S
bit is a 1, specifying the continuous mode of
operation, the downcounter is reloaded from the
Time Constant register on the next count input
after reaching terminal count, and a new countdown
sequance begins. The Time Constant register can
be programmably altered during counter/timer
operation without affecting the current countdown
sequence. If the C/S bit is -0, specifying
single-cycle operation, the downcounter halts upon
reaching terminal count until the next occurrence
of a trigéer condition reloads the downcounter.

If the IE bit in the Configuration register is a
1, an interrupt request is generated upon reaching
the terminal count. If a counter/timer output
gignal is sgpecified in the IPA field of the
Configuration register, reaching terminal count
causes 8 low-to-high transition on the output
‘gignal; this signal then remains high until the
downcounter is reloaded with a non-zero value due
to a trigger condition or disabling of the
counter/timer with a non-zero value in the Time
Constant register. Note that the counter/timer
output line can be forced high by disabling the
counter/timer with all zeros loaded into the Time
Constant gegister.

9.5 DMA CHANNELS

The 2280 MPU has four on-chip Direct Memory Access
(DMA) transfer controllers for high-bandwidth
data transmissions within a 2280-based system.
Each DMA channel is capable of controlling high
speed memory~to-memory, memory-to-peripheral,
peripheral-to-memory, or peripheral-to-peripheral
data transfers.

_address

- channel.

All four DMA channels, referred to as DMAO, DMA1,
DMA2, sand DMA3, are capable of controlling
"flowthrough" type data transfers, whersin data is
temporarily stored in the DMA device between
reading from the source and writing to the
destination. Two of the channels, DMAO and DMAI,
also support "flyby" mode data transfers, wherein
the data is read from the source and written to
the destination during a single bus transaction.
Otherwise, the four DMA controllers are identical,
although they have different priorities with
respect to interrupt and bus requests.

Two external signals provide the interface between
the DMA channels and external memory or peripheral
devices. The READY (RDY) input is used by an
external device to request activity by a DMA
channel. The DMA STROBE (DMASTB) output is used
to signal the 1/0 port when a flyby transaction is
in progress; DMASTB is available only for DMAQ
and DMA1.

Two 24-bit addresses are generated by the DMA for
each’ flowthrough transaction, and one 24-bit
for each flyby transaction. These
addresses can he physical memory addresses or 1/0
port addresses. The addresses are automatically
generated for each transaction, and can be fixed,
incrementing, or decrementing. Two readable
registers, the Source Address register and
Destination Address register, hold the current
address of the source and destination ports.

During a DMA-controlled transaction, the DMA
channel assumes control of the system's address
and data buses. The on-chip DMA channels behave
as if they were external bus requestors with
respect to acquiring, using, and relinquishing the
bus. The DMA channels are arranged in a priority
daisy chain with the external Bus Request input
signal being the "next lowest bus requestor" on
the chain. Data can be transferred as bytes or
words, using the same memory and 1/0 timing as the
CPU for bus transactions (as determined by the
contents of the Bus Timing and Initialization
register).

Two DMA devices can be programmably linked, where
one DMA channel is used to program the second DMA
DMA3 can be linked to DMA1 and DMA2 can
be linked to DMAO in this manner. DMAO can slso
be programmably 1linked to the on-chip UART's
receiver, and OMA1 can be linked to the on-chip
UART's transmitter.

The DMA Master Control register specifies the
general configuration of all four DMA channels,
including the linking of OMA channels to the
UART. Each DMA channel has its own Transaction
Descriptor register that determines the operating

9-9

modes for that channel, Source Address and
Destination Address registers that hold the
addresges for the DMA transfers, and a Count
register that controls the number of transfers to
be performed. All DMA registers are accessed via
1/0 instructions.

9.5.1 Types of DMA Operations

The 2280 MPU's on-chip DMA channels are capable of
two basic types of operations: flowthrough mode
data transactions and flyby mode data
transactions.

All four on-chip DMA channels support flowthrough
mode data transactions. In flowthrough mode, each
DMA-controlled data transfer involves two bus
operations: a read cycle to obtain the data from
the source and a write cycle to transfer the data
to the destination. The data is temporarily
stored in the DMA device between the read and
write operations. Fflowthrough mode transactions
use the same address, data, and control signals as
CPU-initiated transactions and, therefore, require
no additional external logic in a Z280-based
aystem. Memory-to-memory, memory-to-peripheral,
peripheral-to-memory, or peripheral-to-peripheral
transfers are possible using flowthrough mode.

Flyby mode data transactions are supported only by
DMAD and DMA1. - In a flyby mode transaction, the
data is read from the source and written to the

destination in a single bus operation. There are
two types of flyby trensactions: memory-to-
peripheral and peripheral-to-memory. ., Ffor a

memory-to-peripheral transaction, the DMA channel
generates a memory read bus cycle and notifies the
1/0 device that a flyby transaction is in progress
by activating the DMASTE output. The data must be
written to the 1/0 device during the memory read
operation, For a peripheral-to-memory flyby
transaction, the DMA channel generates a memory
write bus cycle while activating the DWASTE
output; the data must be read from the 1/0 device
during the memory write transaction. In other
words, during flyby mode transactions, the DMA
channel generates the bus signals' needed to
control the memory access, and DMASTE is used to
notify the peripheral device when to read data
from the bus (for memory-to-peripheral transfers)
or when to put data onto the bus (for
peripheral-to-memory transfers.) Thus, flyby mode
trangactions require additional external logic to
activate the appropriate ‘peripheral device when

DMASTE is active. However, flyby mode
transactions are faster than flowthrough mode
transactions, since only one bus cycle is needed

to complete a data transfer.

9.5.2 DMA Transfer Modes

When transferring data under DMA control. (with
either flowthrough or flyby transactions), one of
three transfer modes can be selected: single
transaction, burst, or continuous mode. Once DMA
activity has been initiated, the transfer mode
determines how many DMA-controlled data transfers
are to occur before the DMA channel relinquishes
the bus to the CPU or another DMA channel.

In the single transaction mode, the DMA controller
transfers only one byte or word of data at a
time. Control of the system bus is returned to
the CPU between each DMA transfer; the DMA must
make a new request for the bus before performing
the next data transfer.

In the burst mode, once the DMA channel gains
control of the bus, it continues to transfer data
until the ROY input goes inactive. When the RDY
line becomes inactive, the DMA releases khe system
bus; bus control then returns back to the CPU or
to the next lower-priority DMA channel with a bus
request pending.

In the continuous mode, the DMA channel retains
control of the system bus until the entire block
of data has been transferred. 1f the RDY line
goes inactive before the entire daeta block is
transferred, the DMA simply waits until FRDY
becomes active again, without releasing the bus.
This mode is the fastest mode since it has the
least response-time overhead when the RDY line
momentarily goes inactive and returns active
again. However, this mode does not allow any CPU
activity for the duration of the transfer. Figure
9-8 summarizes the DMA transfer modes. ‘

In any tfansfer mode, once a DMA-controlled data
transfer begins, that transaction is completed in
an orderly fashion, tegardless of the state of the

RDY input.

DMAO and DMA1 include a software RDY signal in the
DMA Master Control register. - The RDY input to
these DMA channels is the logical OR of the RDY
pin and the software-controlled RDY signal.

A DMA channel can be programmed to perform data
transfers on a byte (8-bit), word (16-bit), or
long word (32-bit) basis. If a DMA's port address
is a memory address that is auto-incremented or
auto-decremented after each transfer, the size of
the data transfer determines whether the memory
address is incremented or decremented by a factor
of 1, 2, or 4, For word and long word transfers
to or from memory locations, the memory address:
must be even-valued (that is, the least
significant bit of the memory address must be 0).

9-10

Figure 9-8a. Single Transaction Mode

Figure 9-8b. Burst Mode

INTERRUPY
RELEASE BUS

Figure 98c. Continuous Mode

Figure 98. Modes of Operation

Trangfers of unaligned data on 16-bit buses can be
accomplished via byte transfers only. Long word
transfers are used in applications where the 7280
MPU is acting as a. DMA controller for a system
with a 32-bit bus, such as a Z80,000-based
system. During long word transactions, the 2280
MPU's DMA channel provides only 24 bits of the
address; the upper 8 bits of the 32-bit address
have to be generated with external logic. Long
word transfers are supported only in the flyby
mode with the on-chip cache programmably disabled.

9.5.3 End-of-Process

An enable bit in the DMA Master Control register
allows the Interrupt A input to be used as an
end-of-process (EOP) input during DMA trans-
actions. When enabled, transfers by DMA channels
can be prematurely terminated by a low on the FOP
(Interrupt A) line. Recognition of the EOP signal
is not affected by the state of the Interrupt
Request Enable bit for Interrupt A in the CPU's
Master Status register.

If the EOP signal goes active during the read
portion of a flowthrough transaction, the DMA
activity is aborted before the write portion of
that treansaction. If EOF becomes active during
the write portion of a flowthrough transaction or
during. a flyby transaction, that transfer is
completed before stopping the DMA operation.

. channel

when an active EOP signal terminates a DMA
operation, the FOP Signaled (EPS). status bit in
that channel's Transaction Descriptor register ‘is
automatically set to 1 and the Enable bit in that
same register is cleared to 0. If that chanrel's
Interrupt Enable bit is set to 1, an interrupt
request to the CPU is generated.

The EOP signal is level-sensitive and shared by
all four on-chip DMA channels. Thus, if an active
FOF signal terminates the activity of one DMA
and another DMA channel immediately
requests the bus, the second DMA's activity is
terminated before any transactions can be
generated if EOP is still active. In other words, .
the second OMA channel alsu recognizes the EOP
signal, and so on. Therefore, in order for the
currently active OMA channel to be the .only

_ channel whose activity is terminated, EDP should

be asserted for only one bus clock cycle in
systems where the bus clock frequency is equal to
or one-half of the processor clock frequency; EOP
should be asserted for one-half of a bus clock
cycle in systems where the bus clock frequency is
one-fourth of the processor clock frequency.

1If the end-of-process capability is enabled, a
single input to the 2280 MPU can act as both the
Interrupt A and the EOP signal; -it acts as the
Interrupt A Request line when the CPU controls the
bus and as the EOP line when a DMA channel
controls the bus. If an EOP signal terminates a

9-1

DMA operation, and that signal is still asserted
when the CPU reqgains control of the bus, then the
signal is interpreted as an interrupt request.

. Thus, a single signal can be used to stop DMA
activity and generate an interrupt, if so
desired. Note that the interrupt request
generated by the DMA channel and the interrupt
request generated by an active signal on the
Interrupt A line are different interrupt requests,
each with its own priority and its own enabling
bit in the CPU's Master Status register.

9.5.4 Priority Resolution
Prioritization of the four on-chip DMA channels is

implemented via an internal "service request"
latch. A DMA channel generates a service request,

indicating that the channel needs to gain control -

of the bus, if that channel's Enable bit in the
Transaction Descriptor register is set to 1 and an
active RDY signal is asserted. This service
request signal is latched in the service request
latch only if all preceding service requests have
already been serviced (that is, there are no
service requests active in the latch). DOnce a
gervice request is latched, the service request
latch is "closed" to all other service requests
until the current requests are serviced; the
latched requests are serviced in priority order,
where DMA channel 0 has highest priority and DMA
channel 3 has lowest priority. When all latched
service requests have been gerviced, the latch is
"opened" so that new service requests can be
latched.

This service request mechanism provides for
non-preemptive prioritization of DMA activity.
For example, if DMA channel 1 requires servicing

while the other channels are quiescent (that is,

not currently controlling the bus or making a

gervice request), channel 1's service request is

latched and the service request latch is closed.

Thus, no other channel can preempt channel 1's
activity. If channels 0 and 2 activate service
requests .while channel 1 is being serviced, both
those requests will be latched after channel 1's
activity is completed, and channel 0 will be
gerviced next, followed by channel 2. No new
service requests are latched until both channels
0 and 2 have been serviced, and so on.

All-gervice requests from the on-chip DMA channels
have priority over bus requests made via the
BUSRET input by external DMA controllers.

9.5.5 OMA Linking

The 2280 MPU's on-chip DMA devices can be linked
together to provide for DMA transfers to
non-contiguous memory locations. In a linked
configuration, one channel, called the master DMA,
controls the actual data transfers to the memory
and/or peripheral devices; the second channeil,
called the linked DMA, is used to load the master
DMA's control registers from memory when ’the
master DMA completes an operation. The master DMA
signals the linked DMA when a transaction is
completed via an internal "ready" input to the
linked DMA. The 1linked DMA then initiates the
trahsfers that load the master DMA's control
registers from memory, allowing the master DMA to
perform multiple data transfer operations without
any CPU intervention.

Control bits in the DMA Master Control register
allow DMA3 to be linked to DMA1, with DMA1 the
magter DMA and DMA3 the linked DMA, and DMA2 to be
linked to DMAD, with DMAD the master DMA and DMA2
the linked DMA.

When the linked DMA loads the master DMA's
registers, the registers ~are written in the

following order:

» Destination Address register (least significant
word)

e Destination Address register (most significant

word)

e Source Address register (least aignificant
word) :

» Source Address register (most significant
word) .

o Count register
e Transaction Descriptor register

After the six words have been written to the
master DMA, the master DMA deasserts the ready
signal to the linked DMA and begins the new
transfer operation, For Z-BUS confiqurations of
the 7280 MPU, the linked DMA wuses six word
transactions on the bus to program the master DMA;
for 280 Bus confiqurations, the linked DMA uses
twelve byte transactions to program the master
DMA, with the least significant byte of each word
being transferred first.

9-12

Control bits in the DMA Master Control reaqister
also allow DMAD to be programmably linked to the
on-chip UART's receiver and DMA1 to be linked to
the UART's transmitter. If so linked, an internal
"ready" siqnal to DMAQ is automatically generated
when the UART's receive buffer is full,
Similarly, an internal "ready" signal to DMAl! is
automatically generated when the UART's .transmit
buffer is empty. The external ROV inputs are
ignored while in this configuration.

9.5.6 DMA Registers

. DMA reqgisters consist of a DMA Master Control
reqister that specifies the qeneral confiquration
~of all four channels, and a Transaction Descriptor
register, Source Address reqister, Destination
Address reqister, and Count register for each DMA
channel. All DMA reqisters are accessed using
word 1/0 instructions.

9.5.6.1 DMA Master Control Register
The 16-bit DMA Master Control register is illus-

trated in Fiqure 9-9. The bit fields within this
register are described below.

“Ff' [0 ° [ofe]e]s I“'l'"lwl'“*lnlmlm;

‘Figure 99. DMA Master Control Register

DMAO to Receiver Link (DOR). . While this bit is
set to 1, DMAD is linked to the on-chip UART's

. receiver.

DMA1 to Transmitter Link (D1T). While this bit is
set to 1, DMAl is linked to the on-chip UART's
transmitter.

DMAZ Link (D2L). While this bit is set to 1, DMA2
is linked to DMAD.

OMA3 Link (D3L). While this bit is set to 1, DMA3
is linked to DMA1,

End-of-Process (EOP). While this bit is set to 1,
the Interrupt A input acts as an End-of-Process

input for the active DMA channel during DMA .

operations.

Software Ready for DMAO (SRO). While this bit is
set to 1, DMAO requests use of the system bus if
enabled. i

Software Ready for DMA1 (SR1). While this bit is
set to 1, DMA1 requests use of the gystem bus if
enabled.

The DMA Master Control register is cleared to all
zeros by a reset, unless bootstrap mode is enabled
during the reset operation (see sections 3.2,1 and
9.7). Bits 7 through 15 of this register are not
used.

9.5.6.2 DMA Transaction Descriptor Register

Each DMA channel has its own 16-bit Transaction
Descriptor register. The Transaction Descriptor
register (Figure 9-10) describes the type of DMA
transfer to be performed and contains control and
status information.

=Tl =
Figure 810. Transaction Descriptor Register

End-of-Process Signaled (EPS). This status bit is

et to 1 automatically when an active End-of-
Process signal prematurely terminates a DMA
transfer. This bit can be set to 1 or cleared to

0 under software control.

Destination Address Descriptor (DAD). This 3-bit
control field determines the type of location
(memory or 1/0) to be accessed as the destination
port during DMA transfers, and whether the desti-
nation address is to be incren‘nanted, decremented,
or left unchanged between transfers, as shown in
Table 9-4. When memory addresses are auto-
incremented or auto-decremented, the incrementing
or decrementing value is determined by the size of
the data transfer, as apecified in the ST field.
1/0 port addresses are always auto-incremented and
auto-decremented by 1.

Table 9-4. Encoding of DAD and SAD Flelds In DMA

Transaction Descriptor Register
Encoding Address Modification Operation
000 Auto-increment memory location
001 Auto-decrement memory location
010 Memory address unmodified by transaction
on, Reserved
100 Auto-increment 1/0 location
101 Auto-decrement {/O location
110 110 address unmodified by transaction
m Reserved

Transfer Complete (TC). This status bit is set to
1 automatically when the Count register has
reached zero. This bit can:be set to 1 or cleared
to 0 under software control.

9-13

Transaction Type (Type). This 2-bit control field

specifies the type of OMA operation to be
performed, as shown in Table 9-5.
Table 8-5. Encoding of Type Fleld In
Transaction Descriptor Reglster
Encoding DMA Operation
00 Flowthrough
01 Reserved
10 Flyby write (peripherai-to-memory)
1 ~ Flyby read (fnemory-to-peripheral)

Bus Request Protocol (BRP). This 2-bit control
field determines the transfer mode for the DMA
operation, as shown in Table 9-6.

Tabile 9-8. Encoding of BRP Field In
Transaction Descriptor Register

Encoding DMA Transfer Mode
00 Single transaction
01 Burst
10 Continuous
1 Reserved

Size of Transfer (ST). This 2-bit control field
specifies the size of the entity to be transferred
during each DMA-controlled transaction, as shown
in Table 9-7. If auto-increment or auto-decrement
of a source or destination memory address is
aspecified in the SAD or DAD fields, then the state
of this field determines the size of the increment
or decrement operation.

Table 8-7. Encoding of ST Field in

Transaction Descriptor Reglster
Slze of Number to Increment
Encoding Transfer or Decrement By
00 Byte 1
0t Word ’ 2
10 Long word 4
1 Reserved

\

Interrupt Enable (IE). While this bit is set to
1, the DMA channel generates an interrupt request
to the CPU either when the Count register goes to

zevo, indicating the completion of a DMA
operation, or when an End-of-Process signal
prematurely terminates a DMA operation. While

this bit is cleared to 0, no interrupt request is
generated.

Source Address Descriptor (SAD). This 3-bit
control field determines the type of location
(memory "or- 1/0) to be accessed as the source port
during DMA transfers, and whether the source
address is to be incremented, decremented, or left
unchanged between transfers, as shown in Table
9-4,

DMA Enable (EN). While this bit is set to 1, the
DMA channel is enabled; while enabled, the DMA can
request control of the system bus and, upon
becoming bus master, initiate transactions on the
bus. While this bit is a 0, the DMA channel is
disabled and cannot request control of the bus.
The DMA registers can be accessed regardiess of .
the state of this bit.

For DMAD, a reset loads a 0100y into the Trans-
action Descriptor register. Ffor the remaining
three channels, the &N, IE, TC, and EPS bits are
all cleared to 0 by a reset, and the remaining
fields are unaffected.

9.5.6.3 Count Register

Each channel has a 16-bit Count register that is
programmed to contain the number of DMA transfers
to be performed. When the contents of the Count
register reach zero (terminal count), further
requests on the RDY line are ignored, and, if the
IE bit in the Transaction Descriptor register is
get to 1, an interrupt request is generated.

A reset loads a 0100y into DMAD's Count
register; the other channels' Count registers are
unaffected by a reset.

9.5.6.4
Registers

Source Address and Destination Address

The 24-bit Source Address register and Destination
Address register hold the port addresses used
during DMA transfers. These are physical
addresses that are not translated by the MMU. In
flyby mode, only one of these registers is used to
supply the address for the transaction, as
determined by the Type field in the Transaction
Descriptor register. The contents of these
registers can be automatically incremented or

" decremented by each DMA transaction, as determined

by the SAD and DAD field in the Transaction
Descriptor register.

The entire 24-bit Source Address or Destination
Address register is read and written via two word

b

accesses to the register. Twelve. bits of the
address are accessed by each word I/0 operation;
the format used when accessing these registers is
shown in Figure 9-11.

18 . [
IJ111[A“0000000000~,]

ch_..o.<otooo-A|g[111ii

Figure 8-11. Source and Destination
Address Registers Format

' DMAO's Destination Address register is cleared to
0 by a reset; all other Source and Destination
Address registers are unaffected by a reset. '

All DMA registers are located in 1/0 page FFy.
The DMA Master Control register is accessed at 1/0
port address FFxx1F. Table 9-8 lists the 1/0 port
addresses for the other DMA registers. All DMA
registers can be read or written using word 1/0
instructions.

Table 9-8. 1/0 Addresses of DMA Registers

DMA Channel
Register DMAO DMAT1 DMA2 DMA3
Destination FFxx00 FFxx08 FFxx10 FFxx18
Address
(bits 0-11)
Destination FFxx01 FFxx09 FFxx11 FFxx19
Address
(bits 12-23)
Source Address FFxx02 FFxx0A FFxx12 FFxx1A
(bits 0-11)
Source Address FFxx03 FFxxOB FFxx13 FFxx1B
(bits 12-23) ‘
Count FFxx04 FFxxOC FFxx14 FFxx1C
Transaction FFxx05 FFxx0D FFxx15 FFxx1D
Descriptor

All addresses are in hexadecimal.
“x" means “don't care”.

No checking is performed by the hardware to deter-
mine if an invalid configuration is specified in
the DMA registers, such as specifying word trans-
actions on 8-bit data bus configurstion of the
2280 MPU; in such cases, DMA behavior is
unpredictable.

9.5.7 DMA Sequence of Events

This section describes a typical sequence of
events when a DMA channel is used in flowthrough
or flyby mode to control data transfers.

Before a DMA channel can begin operation, that DMA
channel must be configured for the particular
applicetion by loading its Destination Address,
Source Address, Count, and Transaction Descriptor
registers. DMA operations cannot take place while

“the EN bit in the Transaction Descriptor register

is cleared to O. Thug, the EN bit should be
cleared to zero white configuring the DMA channel,
and set to 1 as the last step in the configuration
process; the EN bit can be set at the same time
that the other bit fields in the Transaction
Deacriptor register are specified.

Once the EN bit is set to 1, the DMA channel
requests use of the system bus only after an
active FDY signal is received. The ROY signal is
sampled by the DMA on the rising edge of each
processor clock cycle. For DMAD and DMA1, the DY
signal is the logical OR of the external RDY input
and the software RDY bit in the DMA Master Control
register. .

When the system bus is available for DMA
transfers, the highest priority DMA channel with a
request pending becomes the bus master, The
priority of the on-chip DMA channels from highest
to lowest is DMAD, DMA1, DMA2, and DMA3. The
external Bus Request input has the next lowest
priority after the on-chip DMA channels.

The number of data transfers performed by a DMA
that has gained control of the bus is determined
by the current transfer mode (single transaction,
burst, or continuous) and the contents of the
Count register. A DMA channel in single trana-
action mode relinquishes the bus after a single
data transfer; a DMA channel in burst mode
relinguishes the bus when RDY is deasserted or
when terminal count is reached; a DMA channel in
continuous mode relinquishes the bus when the
terminal count is reached. Regardless aof the
transfer mode, a DMA channel will relinquish the
bus if an EDP is signalled -or the terminal count
is reached.

If the destination for a ODMA-controlled data
transfer is a memory location that corresponds to
an entry in the on-chip memory (in either the
cache or fixsd-address mode), the on-chip memory
is updated to reflect the new contents of that
memory location.

9-15

Far each DMA-controlled data transfer on the bus,
that DMA's Count register is decremented by 1,
regardless of the size of the data transferred.
The Destination Address and Source Address
registers might also be incremented or decre-
mented, as determined by the DAD, SAD, and ST
fields in the Transaction Descriptor register.
When a DMA operation reaches completion, either by
assertion of an FOP signal or by reaching terminal
count (a count of D) in the Count register, the N
bit in the Transaction Descriptor register is
automatically cleared to 0. If the IE bit is set
to 1, an interrupt request to the CPU is
generated. - If the DMA operation terminated due to
an active FOP signal, the EPS status bit is set to
1; if the DMA operation terminated due to reaching
terminal count, the TC status bit is set to 1.

9.5.8 DMA Programming: Linked DMAs

When two OMA channels are linked together, the
master DMA's registers are written via
memory~to-peripheral data transfers initiated by
the linked DMA. Thus, to begin DMA operations, the
linked DMA must be programmed to load the master
DMA. While the Yinked DMA is. being configured,
the master DMA must be piohibited from asserting a
RDY signal to the linked DMA. The 'internal RDY
signal from the master DMA to the linked DMA is
controlled by the TC status bit of the master DMA;
therefore, before configuring the linked DMA, the
TC bit of the master DMA's Transaction Descriptor
register should be written with a 0. Then, the
linked DMA is configured by writing to its
registers. Finally, the TC bit in the master DMA
should be set to 1; this csuses the internal RDY
gignal to the linked DMA to .go active, which in
turn causes the linked DMA to request the bus and,
upon acknowledgement of that request, initiates
the transactions that program the master DMA.

The linked DMA must be configured for flowthrough-
type date transfers. The transfer size must match
the size of the external data bus {that is, byte
for 280 bus configurations and word for Z-BUS
configurations). The Source Address register is
loaded with the starting address of the memory
block that holds the data to be written to the
master DMA's registers; for the Z-BUS, this
starting address must be even-valued (AD=0). The
SAD field of the Transaction Descriptor register
should specify an auto-increment or auto-decrement
of the memory address. The Destination Address
register must be set to FFxx00y when DMA2 is the
linked DMA, or FFxx0By when DMA3 is the linked
DMA ("x" means don't care). The DAD field in the
linked DMA's Transaction Descriptor register

should be 8et to 100y (asuto-increment 1/0
address). Burst mode transactions must be
specified. The contents of the Count register
vary depending on the number of times that the
linked DMA is required to reconfigure the master
DMA.

When the master DMA has completed a transaction
(terminal count is reached), an internal ROV
signal to the linked DMA is activated. If the
linked DMA is enabled, the 1linked DMA will
generate the transactions that program the master
DMA's registers. (The linked DMA's extetnal FDY
input is ignored when DMA linking is specified.)

When the 1linked DMA 1losds the master DMA's
registers, the vregisters are written in the
following order:

e Destination Address register (least significant
word) '

e Destination Address register (most significant
word)

e Source Address (1least

word)

register significant

e Source Address register {most significant word)
o Count register
o Transaction Descriptor register

After the six words have been written to the
magter DMA, the master DMA deasserts the ready
signal to the linked DMA and begins the new
trangfer operation. For Z-BUS configurations “of
the 2280 MPU, the linked OMA uses six word
transactions on the bus to program the master DMA;
for 280 Bus configurations, the linked DMA uses
twelve byte transactions to program the master
DMA, with the least significant byte of each word
being transferred first. :

Both the master and linked DMAs can be programmed
to generate an interrupt request to signal the end
of DMA activity. 1If the IE bit of the master DMA
is set, an interrupt request is generated when the
master DMA reaches terminal count and the linked
DMA's TC bit is set (that is, when the last block
has been transferred), or if EOF is asserted. If
the IE bit in the linked DMA is set, an interrupt
request is generated when the linked DMA reaches
terminal count (that is, when the last block
transfer has been programmed into the master DMA),
or if FOPF is asserted.

"9.5.9 DMA Programming: DMAs Linked to UART

The DOR and DI bits of the DMA Master Control
register specify whether DMAD is linked to the
UART receiver and DMA1 is linked to the UART
tranemitter, respectively.

When DMAD is linked to the UART receiver, the
state of the Source Address register and the 5AD
field in the Transaction Descriptor register do
not affect DMA operation. The Destination Address
register is programmed with the starting address
of the memory area or the address of the 1/0
device that will be used to sture the received
data; if the destination’ port is a memory block,

‘the DAD field should specify an auto-increment or

auto~decrement of the ‘memory address.
Flowthrough-type transactions ‘and the byte
transfer size must be specified. Single, burst,
or continuous mode operation can be used.

When DMA1 is linkgd to the UART transmitter, the
Source Address register is programmed with the
starting address of the memory area or the address
of the I/0 device that holds the data to be
transmitted; if the source is a memory area, the
SAD field should specify an auto-increment or
auto-decrement of the memory address. The
Destination Address register must be set to
xxxx18y, and the DAD fijeld to a 1104
Flowthrough type 'transacti.ons and the byte
transfer size must be specified. Single, burst,
or.continuous mode operation can be used.

9.6 UART

The on-chip universal asynchronous receiver/
transmitter (UART) provides the 2280 MPU with
serial [/0 capability. The full-duplex UART
transmits and receives serial data using any
common asynchronous data communication protocol.

Fiqure 9-12 illustrates the general format for an
asynchronous transmission using the Z280 MPU's
UART, Characters can contain five, six, seven, or

.eight bits, plus- an optional even or odd parity

bit. The transmitter can supply one or two stop
bits per character. Break outputs can be produced
by the transmitter at any time under program
control; the receiver can detect breaks as well
as parity errors, framing errors, and overrun

STARI’—I PARITV—l STAR'I’—I PANITV—l
wmane | [[T 1= 1T L
.srop—] . sroP—]

Figure 912. General Format for an
Asynchronous Transmission

errors. Iransmission and reception are performed

independently.

The UART uses the same clock frequency for both the
transmitter and the receiver. The UART's clock input
can be generated externally or internally. For
externally generated clocks, Counter/Timer 1's input
line is used as the source of the UART's clock in
addition to being an input to the counter/timer. The
maximum external clock frequency is the CPU clock
divided by 4. Alternately, the UART's clock can be
provided by the output pulse from Counter/Timer 1,
allowing the internal processor clock to be used for.
bit rate generation. The UART's clock input is
further scaled by a factor of 1, 16, 32, or 64 for,
clocking the transmitter and receiver.

The UART can be used in an interrupt-driven or
polled environment. If enabled, separate transmit
and receive interrupt requests are generated by
the UART, Transmit interrupts occur when the
transmitter's data buffer is emptied, and receive
interrupts occur when an entire character is
received or an error is detected. In polled
environments, status bits in UART reqisters can be
read to determine if the transmit buffer is empty
or veceive buffer is full. As described in
section 9.5.9, DMA channel 0 can be linked to the
receiver and DMA channel 1 to the transmitter to
provide for DMA-controlled transfers between the
UART and memory.

The UART uses two external pins, Transmit (Tx) and
Receive (Rx). Data that is to be transmitted is
placed serially on the Transmit pin and data that
is to be received is read from the Receive pin.

The UART contains five reqisters. UART operation
is controlled by three reqisterss the UART
Confiquration register, which contains controls
for both the transmitter and receiver, the
Transmitter Control/Status register, and the
Receiver Control/Status reqgister. Received data
is ‘read from the Receive.Data register, and data
to be transmitted is written to the Transmit Data
reqgister.

~

9.6.1 Transmitter Operation

Transmit operations are performed only when the
Trangmitter Enable bit in the Transmitter
Control/Status register is set to 1. In order to
trangmit data, the data character is written to
the Transmit Data reqister. The UART automati-
cally adds the start bit, the programmed parity
bit (if so specified), and the programmed number
of stop bits to the data.character to be trans-
mitted. The number of bits per character, the
number of stop b.i’ts per character, and the type of

9-17

parity (even, odd, or none) is determined by the
contents of the UART Confiquration register. When
the transmit character size is five, six, or seven
bits, the unused most siagnificant bhits in the
Transmit Data reqister are ignured by the UART.

Serial data is shifted out of the transmitter on
the Tx pin at a rate equal to 1, 1/16th, 1/32nd,
or 1/64th of the clock signal supplied to the
UART, as determined by the contents of the UART
Confiquration register. Serial data is shifted on
the falling edge of the clack input.

The Tx output line is held high (marking) when the
transmitter has no data to send or is disabled.
If transmit interrupts are enabled, an interrupt
request is qenerated when the Transmit Data
register is emptied. Under program control, break
conditions can be qenerated, wherein the Tx line
is held low (spacing) until the break command is
cleared.

9.6.2 Receiver Operation

Receive operations are performed only when the
Receiver Enable hit in the Receiver Control/Status
register is set to 1. A low (spacing) condition
on the Receive input line indicates a start bit;
if the low persists for at least one-half of a bit
time, the start bit is assumed to be valid and the
data input is sampled at mid-bit times until the
entire character is assembled. Thus, reception is
protected from transients on the input line by
checking for a valid start bit one-half bit time
after detecting a high-to-low transition on the
Receive input; if the low does not persist (as
with a transient), the character assembly process
is not started. If the bit time is one clock
period (the x1 clock mode), bit synchronization
must be accomplished externally; received data is
sampled on the rising edgqe of the clock.

Received characters are read from the Receive Data
reqister. If parity is enabled, the parity bit is
assembled as part of the character for character
lengths other then eight bits. If the resulting
character is still less than eight bits, 1's are
appended in the unused high-order bit positions.
For example, Figure 9-13 illustrates how the
character 1is assembled in the Receive Data
reqister when receiving 5-bit characters with
parity.

[T EEEER

Figure 913. Byte Assembled by Receiver .
for 5-bit Character with Parity

for each character assembled by the receiver,

error flags in the Receiver Control/Status
reqgister indicate if an error condition was
detected. These flags are loaded when the

character assembly prucess is completed--that is,
when the character is loaded into the Receive Data
register from the receiver's shift register. The
receiver checks for parity errors, framing errors,
and overrun errors for sach received character.

A parity error occurs when- the parity bit of the
received character does not match the programmed
parity, as determined by the contents of the UART
Confiquration reqister.

[}

A framing error occurs if a character is assembled
without any stop bits (that is, if a low level is
detected for the stop bit). A built-in checking
process prevents a framing error from being
interpreted as a new start bit; detection of a
framing error results in the addition of one-half
of a bit time to the point at which the search for
a new start bit is begun.

An overrun serror occurs if a new character is
assembled and loaded into the Receive Data
register before the previous character has been
read from that reqgister. Since the reteiver is
buffered by the Receive Data register in addition
to the receiver shift register, ample time is
available for responding to a receiver interrupt
and accepting a received character before the next
character is asgsembled by the receiver.

9.6.3 UART Registers

UART operation is controlled by three 8-bit
reqisters: the UART Configuration register,
Transmitter Control/Status regqister, and Receiver
Control/Status register. Data to be transmitted

. is8 written to an 8-bit Transmit Data reqister, and

received data is read from an 8-bit Receive Data
register. All UART registers are accessed using
byte 1/0 instructions.

9.6.3.1 UART Configuration Register

The 8-bit UART Configuration reqister (Figure
9-14) contains control information for both the
receiver and transmitter. The control fields
within this register are described below.

CTEETE

Figure 9-14. UART Configuration Register

Loop Back Engble (LB). When set to 1, the UART is
in local loopback mode; in this mode, the internal
transgmit data line is tied to the internal
receiver input 1line and the external receiver
input pin is igrnoured. Thus, all transmitted data
is automatically received. when this bit is
cleared to 0, the transmitter and receiver operate
independently.

Clock Rate (CR). This 2-bit field determines the
multiplier between the UART clock and data rates
(that is, the number of clocks per bit time), as
specified in Table 9-9. The same data rate is
used by both the transmitter and receiver. If the
X1 clock rate is selected, bit synchronization
must be accomplished externally. In the X1 mode,
the transmitter sends data on the falling edge of
the clack and the receiver samples data on the
rising edge of the clock.

Table 9-9. CR Fleid of UART

' Configuration Register
CRFleld UART Clock Rate
00 X1
o1 X16
0 X32
1 X84

Clock Select (£S). The state of this bit
specifies the clock input for the UART. When this
bit is set to 1, counter/timer 1's output pulse
supplies the UART clock. When this bit is cleared
to 0, counter/timer 1's clock input pin provides
the UART clock signal, thus allowing the use of an
externally-qenerated clock. The content of the
IPA field of C/T 1's Configuration reqister does
not affect these UART clocking modes.

Parity (P). When set to 1, an additional bit
position (in addition to the number of bits per
character specified in the BC field) is added to

. each transmitted character and expected in each

received character; this additional bit is the
parity bit. Parity bits in received characters
are assembled as part of the character for
character lengths of less than 8 bits.

Parity Even/0dd (E/0). If parity is specified (P
= 1), this bit determines whether an odd or even
parity bit is added to transmitted characters and
whether odd or even parity is checked for in
received characters. E/0 = 1 specifies even
parity and E/0 = O specifies odd parity. If P =
0, then this bit is ignored.

Bits per Character (B/C). This 2-bit field
determines the number of bits per character in
both the transmitter and receiver, as specified in

Table 9-10. If this field is changed while a
character is being transmitted or received, the
results are unpredictable.

., Table 8-10. BC Field of UART Control Register

BC Fleld Bits per Character
00) 5
ot 6
10 7
A | 8

A reset clears the UART Confiquration register to
all zeros, unless bootstrap mode is selected (sse
section 9.7). g

9.6.3.2 Transmitter Control/Status Register
The B-bit Transmitter Control/Status register,

shown in Fiqure 9-15, specifies the operation of
the UART transmitter, as described below.

CoODZ=ro)

Figure 915. Transmitter Control/Status Register

Transmitter Buffer Empty (BE). This status bit is
automatically set to 1 whenever the Transmit Data
reqister becomes empty and cleared to 0 whenever a
character is loaded into the Transmit Data
reqister. The BE bit is controlled by the UART
circuitry; it cen be read via an 1/0 read but is
unaffected by an I/0 write to this register. A
reset loads a 1 into this bit.

Value (VAL). This bit determines the value of the
bits transmitted by the UART when the FRC bit is
set to 1 and "dummy" characters are loaded into
the Transmit Data reaister. When the VAL bit is
set to 1, a mark character (all 1s) is
transmitted; when the VAL bit is cleared to 0, a
break character (all Os) is transmitted.

Force Character (FRC). When this bit is get to 1,
writing a character to the Transmit Data register
causes the transmitter output to be held high or
low (depending on the state of the VAL bit) for
the length of time required to transmit the
character. Note that characters written to the
Transmit Data reqister are not themselves trans-
mitted while FRC is set to 1. When FRC is cleared
to 0, the transmitter operates normally, sending
characters that are written to the Transmit Data
register.

9-19

Send Break (BRK). When this bit is set to 1, the
transmitter is forced into the spacing condition,
wherein the transmit data output is forced te O.
When this bit is cleared to 0, normal transmitter
operation resumes.

Stop Bits (SB). The state of this bit determines
the number of stop bits appended to each character
by the transmitter. Setting this bit to 1
gpecifies two stop bits per character; clearing
this bit to 0 specifies one stop bit per
character.

Transmitter Interrupt Enable (IE). When this bit
is set to 1, an interrupt request is generated
whenever the Transmit Data register is emptied.
When this bit is cleared to 0, no tranmsit inter-
rupts are generated.

Transmitter Enable (EN). When this bit is cleared
to 0, the transmitter is disabled and the
transmitter output line is held high (markinag).
When this bit is set to 1, the transmitter is
enabled and operates as specified by the UART
Confiquration register and the Transmitter
Control/Status register. If this bit is cleared
while a character is in the process of bheing
" transmitted, transmission of that character is
completed.

Transmitter Control/Status
Bit 5 of this reqgister is

A reset sets the
reaister to a Oly. .
not used.

9.6.3.3 Receiver Control/Status Register

The 8-bit Receiver Control/Status register, shown
in Figure 9-16, specifies the operation of the
UART receiver, as described below.

fm] €] o]u]rsl»s[ov:]znni

Figure 916. Recelver Control/Status Register

Receiver Error (ERR). This bit is the logical OR
of the PE, OVE, and FE bits.

Framing Error (FE). This bit is automatically set
to 1 if the receiver detects a framing error when
agsembling the received character. Detection of a
framing error adds an additional one-half bit time
to the character to ensure that the framing error
is not interpreted as a new start bit., This bit
is not latched; once set, it remains set only
until a new character is assembled and shifted
into the Receive Data register.

Parity Error (PE). When parity is enabled (P = 1
in the UART Configuration register) this bit is
automatically set to 1 if a character is received
without the specified parity. This bit is
latched; once set, it remains set until cleared
via software.

Receiver Overrun Error (OVE). This bit is
automatically set to 1 if a new character is
assembled and loaded into the Receive Data

‘register before the previous character has been

read from that register. Only the most recently
teceived character is flagged with this error, but
once this character is read, the OVE bit remains
latched until cleared via software.

Receiver Character Available (CA). This bit is
automatically set to 1 wheh a received character
is available in the Receive Data register and
automatically cleared to 0 when the Receive Data
register is read. This bit is controlled by UART

circuitry; it can be read ‘via an 1/0 read but
cannot be altered by an [/0 write to this
register.

Receiver Interrupt Ensble (IE). When this bit is
get to 1, an interrupt request is ~generated
whenever the receiver has a character available in
the Receive Data register or when a receiver error
is detected.

Receiver Enable (EN). When set to 1, receiver
operation is enabled. This bit should be set
after programming the UART Configuration register.

The Receiver Control/Ststus register is cleared
to all zeros by a reset, unless bootstrap mode is
selected (see section 9.7). Bit 5 of this
register is not used.

All UART registers are .in I/0 page FE and are
accessed via byte I/0 instructions. Table 9-11
lists the 1I/0 port addresses for the UART
registers.

Table 9-11. 1/0 Addresses of UART Registers -

1/0 Port
Reglster Address
UART Configuration Register FExx10
Transmitter Control/Status Register FExx12
Receiver Control/Status Register FExx14
Receive Data Register FExx16
Transmit Data Register

FExx18

t .
All addresses are In hexadecimal.
“x"” means “don’t care”.

9-20

9.6.4 UART Operstion

Operation of the UART's trensmitter and receiver
are enabled by the Transmitter Enable snd Receiver
Enable control bits in their respective
control/status registers. Before ensbling the
UART by setting one of those bits, the UART 's
configuration must be determined by programming
the UART Configurastion register. If the UART
Configurstion register is to be saltered during
© system operation, the trensmitter and receiver

should be dissbled before writing to the
Configuration register, and then re-enabled
afterwards.

r
Once - enabled, the UART can be wused in an
interrupt-driven or polled environment. Separate
transmit end receive interrupts sre controlled by
the interrupt enable bits in the control/status
i'egisters. Receive interrupts are genérated
wvhenever a new character is availsble in the
Receive Data register or when en error is
detected. Tranamit interrupts are generated
whenever the Trsnasmit Dsta register is emptied.

For polled environments, the Character Available
bit in the Receiver Control/Status register must
be monitored to determine when a character is to
be read from the Receive Data register; this bit
is automatically cleared when the received data is
read, For transmitting characters, the Tranamit
Buffer Empty flag should be checked before writing
to the Tranemit Data register to prevent the
overwriting of transmitted data.

The error flags -in the Receiver Control/Status
register are loaded at the same time that the
received deta character is moved from the
receiver's shift register to the Receive Data
register. Since the parity and receiver overrun
"error flags are latched, the error status reflects
any errors in the current character in the Receive
Data register plus any parity or overrun errors
that have been detected since the last write to
the Receiver Control/Status register. To maintain
correspondence between the state of the error
flags and the data in the Receive Data register,
the flags in the Receiver Control/Status register
should be read before the data.

Once the transmitter has been énabled, there are
two ways to produce a break output on the transmit
data line, Setting the BRK bit in the Transmitter
Control/Status register forces a break condition
on the transmit data output until that bit is
cleared. Alternatively, setting the FRC bit to 1

.rate.

and clearing the VAL bit to 0 causes a break
condition on the transmit deta output each time a
character is loaded into the Transmit Data
register; this break output persists for the same
amount of time that it would have taken to
transmit the data written to the Transmit Data
register had the FRC bit been 0. Note that the
characters written to the Trensmit Dsta register
while the FRC bit is set to 1 are not actually
transmitted.

9.7 UART BOOTSTRAPPING OPTION

The on-chip UART and DMA Channel O can be used to
automatically initialize the 7280 MPU's memory
with values received by the UART following a
reset. This system bootstrapping capability
permits ROMless system configurations, where
memory is initialized using a serial link prior to
the first 7280 MPU instruction fetch after the
reset.

As described in Section 3.2.1 and Chapter 11,
bootstrap mode is selected by driving WAIT low and
ADg high while RESET is asserted. The appropriate.
UART and DMA registers are automatically
programmed as shown in Table 9-12 as a result of
selecting bootstrap mode, The UART is initiaslized
to receive dats in 8-bit charactera with odd
parity, an external clock source, and a x16 clock
DMA Channel 0 is initialized with the 1link
to the UART receiver and end-of-process capability
enabled, and set up for flowthrough byte transfers
in continuous mode. The destination address
starts at memory location 0, with an autoincrement
after each transfer, and a transfer count of 256

(100).

Table 9-12. Reset Vajue of UART and DMA
Registers When Bootstrap Mode Is Selected

Initial Hex
Regilster Value
UART Registers
UART Configuration register . E2
Recelver Control/Status register 80
DMA Registers
DMA Master Control register 0011
Channel 0 Transaction Descriptor register 8100
Channel 0 Destination Address register 000000
Channel 0 Source Address register Undefined
Channel 0 Count register 0100

9-21

If bootstrap mode is specified, the 2280 CPU
automatically enters an idle state when RESET is
deasserted. A minimum of 15 processor ctlock
cycles must elapse after REGET is deasserted
before tranmission of data to the UART receiver
begins. DMA Channel 0 is then used to transfer
characters received by the UART into memory. The
data received is placed in memory starting at

physical address 0. If an error is detected by
the UART receiver, the Transmit Output (Tx) line
is driven low; external circuitry can use this
signal to restart the initialization procedure, if
so desired. After 256 bytes of data have been
received and transferred to memory, the 7280 CPU
automatically begins execution with an instruction
fetch from memory location 0. ’

Chapter 10.
Multiprocessor Configurations

10.1 INTRODUCTION

The 2280 MPU architecture provides support for

(Figure 10-1): slivé processors, tightly coupled
multiple CPUs, loosely coupled multiple CPUs, and
COProcessors.

four types of multiprocessor configurations
MEMORY |— MEMORY }——
LOCAL BUS
wu — weu |
GAEG
L ’_’EE Wt Wy —
T GACK |aLOBAL BUS
BUSACK BUS ARBITER L1 MEMORY Fi0 PAUSE
TACTK
DMA LT
wea| +~[A9] i
PERIPHERAL |—| L . MPU PERIPHERAL —
LOCAL BUS
MEMORY MEMORY MEMORY |— MEMORY |—

a) SLAVE PROCESSOR b) TIGHTLY COUPLED
MULTIPLE

¢} LOOSELY COUPLED
MULTIPLE CPU

d) COPROCESSOR

Figure 101. Mutltiprocessor Configurations

10.2 SLAVE PROCESSORS

Slave processors, such as the 78016 DMA Transfer
Controller or other DMA devices, perform dedicated
functions asynchronously to the CPU. The CPU and
slave processors share a local bus, where the CPU
is the default bus master. In order for a slave
processor to use the bus, it must request control
of the bus from the CPU and receive - an
acknowledgement of that request.

Two 2280 MPU signals are provided for supporting
slave processors: BUSREQ and BUSACK. A bus
request is initiated by pulling the BUSREQ input
low. Several bus requestors may be wire-ORed to
the BUSREQ pin; priorities are resolved external
to the MPU, usually by a priority daisy chain.,
The external BUSREQ signal generates an internal,
synchronous BUSREQ. If this signal is active at
the beginning of any bus cycle, the 7280 MPU will
relinquish the bus at the end of that bus

cycle (with the exception of the TSET instruction,
where the read-modify-write cycle is atomic). The
MPU suspends execution of the current instruction
and gives up control of the bus by 3-stating all
address, address/data, bus timing, and bus status
output pins., The BUSACK output is then asserted,
signaling that the bus request has been accepted
and the bus is free for use by the slave
processor. The 7280 MPU remains in the bus

disconnect state until BUSREQ is deasserted.

The BUSREQ input is sampled during each processor
clock period by the external bus interface logic
of the 2280 MPU. If BUSREQ is sampled active low
while the 7280 MPU is involved in an internal
operation, the external bus is relinquished to the
bus requestor immediately. Internal processing
can continue until a transaction involving the
external bus:is required; the MPU then suspends
activity until regaining control of the bus. If
BUSREQ is sampled active during a CPU-generated

10-1

transaction on the external bus, the bus is not
relinquished nor CPU'activi‘ty suspended until the
current transaction is completed.

The 2280 MPU regains control of the bus after
BUSREQ rises, continuing execution from the point
at which it was suspended. Any bus requestor
desiring control of the bus must wait at least two
bus cycles after BUSREQ has risen before asserting
BUSREQ again.

In the case of simultaneous bus requests from
multiple sources, the on-chip DMA channels have
higher priority than external slave processors in
2280 MPU systems. After reset, the 7280 MPU
acknowledges an active BUSREQ signal before
performing any transactions.

10.3 TIGHILY COUPLED MULTIPLE PROCESSORS

Tightly coupled multiple CPUs execute independent
instruction streams from their own (local). memory
locations and communicate through shared memory
locations on a common (global) bus., Each CPU is
the default master of its local bus, but the
global bus master is chosen by an external
arbiter.

The 7280 MPU's multiprocessor mode of operation
supports tightly coupled multiple CcPU
configurations. This mode is also useful when
configuring the 2280 MPU as an 1/0 processor in a
distributed processing system. Multiprocessor
mode is selected by setting the Multiprocessor
Configuration Enable (MP) bit in the Z280 CPU's
Bus Timing and Initialization register (see
Section 3.2.1). While in the multiprocessor mode,
the 7280 MPU is able to support both a local bus
and a global bus. The Z280 CPU is the default bus
master of the local bus, but must make a request
and receive an acknowledgement before performing
transactions on the global bus, Only memory
transactions can be performed on the global bus;
1/0 transactions always use the local bus. The
range of memory addresses dedicated to the global
and local buses is determined by the contents of
the CPU's Local Address register.

While in the multiprocessor mode, Counter/Timer,
.0's I/0 and IN pins are used as global bus request
(GREQ) and global bus acknowledge (GACK) signals,
respectively. GREQ is a three-state output; an
active low signal on this line requegts use of the
global bus. An active low level on the GACK input
acknowledges a global bus request.

10.3.1 The Local Address Register

During each memory transaction while in multi-
processor mode, the 2280 CPU uses the Local
Address register to determine if that transaction
is to occur on the local or global bus., The Local
Address register includes a 4-bit Base field and a
4-bit Match Enable field (Figure 10-2). For each
bus traensaction, the four most-significant bits of
the physical address (address bits Ap through
A23) are compared with the 4-bit Base field; the
Match Enable field specifies which bits are going
to, be used during this comparison, If all the
corresponding address bits match the Base field in
the bit positions specified by the Match Enable
field, then the bus transaction can proceed on the
local bus without requesting the global bus. If
there is a mismatch in at least one specified bit
position, then the global bus is requested and the
bus transaction does not proceed until the global
bus acknowledge signal is asserted. (See section
3.2.3.)

ZZZZoo0D)

Figure 10-2. Local Address Register

10.3.2 Bus Request Protocols

While in the multiprocessor mode, the BUSREQ and
BUSACK signals control use of the local bus in the
same manner as described in section 10.2. When a
local bus request is granted, as indicated by an
active BUSACK signal, the CPU places all output
signals, including GREQ, in the high-impedance
state.

When in control of its local bus, a 7280 CPU can
initiate transactions with devices on the global
bus that are shared with other CPUs. At any one
time, only one CPU can control transactions on the
global bus. Control of the global bus is
arbitrated by external circuitry. Before
initiating a transaction on the global bus, the
CPU requests control of the global bus from the
external arbiter circuitry by asserting GREQ and
waiting for an active GACK in response. (The
timing diagrams for global bus requests are shown
in Figures 12-15 and 13-19.) The GACK input is
asynchronous to the CPU clock; the 7280 CPU
synchronizes GACK internally. Once GACK is
asserted, the CPU performs the transaction on the
global bus. The CPU then deasserts GREQ and waits

10-2

for the arbiter circuit to deassert GACK. The CPU
always relinquishes the global bus by deasserting
GREQ after each global transaction is completed,
except during execution of a Test and Set (TSET)
instruction (both the data read - and write are
completed before relinquishing the glebal bus) or

during a burst-mode memory transfer (the entire
sequence of burst-mode memory reads is completed

before relinquishing the global bus).

A state diagram of the bus request protocol is

shown

in Figure 10-3,

y
STATE O
GREQ = H
. BUSACK = H
7o} BUS = 2ST
%’5%52 " Ly (BUSREG = H)e{GACK = H) s
(NEED_GBUS = H)
A B| Gack = L c :
¥ ‘ Y
STATE 1 ERROR
GREQ = 3ST STATE?] SREG =L
BUSACK = L BUSACK = H
BUS = 35T BUS = 2ST
(GACK = 1) «
SUSAEG = H D E ¢ (GACK = L)+(BUSREQ = H) Fy (BUSREQ = L)
= STATE [STATE 4
GREQ = L " GREQ = H
BUSACK = H}——0 »1 BUSACK = H
BUS = 25T | (GACK = L)+ BUS = 25T
(BUSREQ = L)
+(NEED_GBUS = L))
Glm o t| GAck = 1
ERROR

NOTES: Inloﬂaqo signals are High (H), Low (L), High or Low (2ST), or 3-stated (3ST).

NEED_Géus is an active High signal internal to the CPU.

Transition Legend

State Legend

A . A local bus request occurs.

B The global bus arbiter grants control of the
global bus when no global bus request is
psz\ding. Thisis an error. The CPU remains in

te 0.

€ The CPU requests the global bus in response
to the internally generated signal
NEED__GBUS.

. D 'The local bus master refinquishes the bus.

E Theglobal bus arbiter grants the global bus
to the CPU while no local bus request is
pehding.

F Theglobal bus arbiter grants the global bus
to the CPU while a local bus request is pend-
igg. The local bus request has preempted the

PU.

G The global bus arbiter reclaims the global
bus before the CPU relinquishes the global
bus. This is an error. The CPU's response to
this error is undefined.

H The CPU relinquishes control of the global
bus when it no longer needs the global bus
or in response to a local bus request.

] The global bus arbiter reclaims the global
bus.

State 0

State 1

State 2

State 3

State 4

The CPU controls the local bus and is
neither requesting nor controlling the
global bus.

The CPU can perform transactions on
the local bus.

The CPU has granted the local bus.
The CPU cannot perform transactions.
The CPU controls the local bus and is
requesting the global bus.

The CPU cannot perform transactions.
The CPU controls the local and global
buses.

The CPU can perform transactions on
the giobal bus.

The CPU controls the local bus and is
relinquishing control of the global bus.
The CPU cannot perform transactions.

Figure 10-3. - State Diagram for CPU Bus Request Protocol

10-3

While a 7280 CPU is asserting GREQ and waiting for
an active GACK, if BUSREQ is asserted before GACK,
the CPU releases the global bus request after

GACK is asserted without performing any
transactions.

The on-chip DMA channels may also initiate
transactions on the glabal bus. During each
OMA-controlled transaction, memory addresses
generated by a DMA channel are compared to the
contents. of the Local Address register to

determine if the global bus is to be requested, in
the -same manner as CPU-controlled bus
transactions. .

If the automatic memory refresh mechanism is
enabled, refresh cycles are inhibited while. either
the CPU or a DMA channel has requested the global
bus but not yet received the global bus
acknowledge. No refresh transactions are ever
performed on the global bus.

10.3.3 Examples of the Use of the Global Bus

: B
The 7280 MPU's multiprocessor -mode of operation
facilitates the development of tightly coupled
multiprocessor systems and systems using the 2280
MPU as a front-end 1/0 processor. ’

Figure 10-4 is a block diagram illustrating the
use of multiple 7280 MPUs as tightly-coupled
processors. Access to the global memory via the
global bus is controlled by a centralized bus
arbitration circuit. The GACK circuit controls
the buffers that connect or isolate the global bus
from each MPU's local bus. FEach 2280 MPU can
access its local memory independent of the other
MPU's activity. Only one MPU at a time can access
the shared global memory. Note that memory-mapped
1/0 devices could also be shared using the global
bus.

GLOBAL BUS
BUFFER ARBITER BUFFER
TR TR
LOCAL BUS JREG GREQ LoCAL 8US

MPY MPY

LOCAL LOCAL

MEMORY MEMORY

Wo Vo
DEVICE oEvice

Figure 10-4. Tightly Coupled Processors with Shared Global Memory

Figure 10-5 shows a tightly coupled multiple 7280
MPU system without a global memory, where each
processor can directly access the local memory of
the other processor. For this system, priority
regolution logic would control both the local and
global bus requests. ' A global bus request from

one processor is used to generate a local bus
request to the other processor. When one
processor generates a global bus request, an
active GACK' gignal is not returned to that
procegsor until the other processor's local bus is
available, as indicated by BUSACK.

10-4

Il

= =
, w.‘—-l [
=1 =

Figure 10-5. Tightty Coupled Processors wighout Global Memory

Although both Figure 10-4 and 10-5 show only two

tightly coupled processors, more processors could
be added to these systems in a similar manner.

Figure 10-6 illustrates the use of a 7280 MPU as

72680 MPU's GREQ signal is used as the bus request
signal to the Z8000 CPU; the Z8000 CPU's BUSACK
signal is input directly to the 7280 MPU's GACK,
as well as controlling the buffers that normally
isolate the 7280 MPU's local bus from the 78000

an I/0 processor in a Z8000-based system. The CPU's bus.
28000
cru
GLOBAL BUS MEMORY
BUSACK
l—» BUSREG
BUFFER
GREG
SREK
LOCAL BUS MEMORY
z280
MPU
vo
DEVICE

Figure 10-6. Z280 MPU as an 1/O Processor

10-5

10.4 LOOSELY COUPLED MULTIPLE CPUS

Loosely coupled multiple CPUs generally
communicate through & multiple-port peripheral,
such as the 28038 FIO (FIFO .buffer 1/0 unit). The
2280 MPU's I/0 and interrupt facilities and the
on-chip DMA channels support loosely coupled
multiprocessing with the 2280 MPU.

10.5 COPROCESSORS AND THE EXTENDED PROCESSING
ARCHITECTURE

The Zilog Extended Processing Architecture (EPA)
provides a flexible and modular approach to
expanding the capabilities of the 72280 MPU through
the use of coprocessors called Extended Processing
Units (EPUs). The Extended Processing Architec-
ture is available on the Z-BUS configurations
of the 7280 MPU, but not the Z80 Bus
configurations. Up to four EPUs can be connected
to & single 7280 MPU.

An Extended Processing Unit is a coprocessor that

EPU

| |

can be used to execute complex, time-consuming
tasks in order to unburden the CPU, EPUs connect
directly to the Z-BUS; no extra external logic is
required to interface an EPU to s Z7280-based
system (Figure 10-7). As the 2280 CPU fetches and
sxecutes instructions, the EPU continuously
monitors the instruction stream on the bus. A
special group of instructions, called extended
instructions, are processed by EPUs. When the
1280 CPU encounters an extended instruction, it
performs any specified datas transactions, but
otherwise assumes that the instruction will be
recognized and handled by an EPU, (In systems
without EPUs, extended instructions can be used to
generate a trap condition.) Thus, when EPUs are
added to a system, the instruction set is expanded
to include the extended instructions applicable to
those EPUs, thereby boosting the processing power
of the whole system. The 7280 CPU and EPUs work
together like a single central processor; a
system with EPUs can be thought of as a system
whose central processor consists of 1.+ N separate
devices, where N is the number of EPUs in the
system.

MEMORY

Z-BUS

1o

Figure 10-7. EPU Connection in Z280 MPU System

The underlying philosophy of the Extended
Processing Architecture is that the CPU is an
instruction processor; that is, the CPU fetches
an instruction, fetches data associated with that
instruction, performs the specified operation, and
stores the result. Extending the number of
operations that can be performed does not affect
the instruction fetch and address calculation
portion of the CPU activity. The extended
instructions exploit this feature. The CPU is
regponsible for fetching instructions, performing
address calculations, and generating the timing
signals for bus transactions; however, the actual
data manipulation for extended instructions is
handled by an EPU. Both the CPU and EPUs are,
therefore, controlled via a single instruction
atream, eliminating many significant system
software and bus contention problems that can
occur with other multiprocessing configurations.

10.5.1 Extended Instructions

Extended Processing Units connect directly to the
Z-BUS and continuously monitor the instruction
stream. When the template portion of an extended
instruction is fetched from memory, the
appropriate EPU will detect that the instruction
is meant for it and respond to the instruction.
The CPU is always responsible for fetching
instructions and delivering operands to the EPUs,
The EPUs recognize the extended instruction
templates and execute them, using data supplied
with the template and/or data already within
internal EPU registers.

There are four types of extended instructions in
the 7280 instruction set: data transfers from
memory to an EPU, data transfers from an EPU to
memory, data transfers from an EPU to the CPU's

10-6

accumulator register, and- €PU internal
operations. Twenty-two instruction opcodes are
used to implement these operations. Each extended
instruction opcode includes two parts: a two- or
four-byte instruction opcode used by the 2280 CPU
to determine its activity and the ‘address of the
memory. operand, and a four-byte instruction
"template” that specifies the EPU activity. Six
operand addressing modes are supported by - the
instructions that specify transfers between EPU

registers and main “memory: Direct Address,
Indirect Register, Indexed, Stack Pointer
.Relative, Program Counter Relative, and Base
Index. (See section 5.4.10 for a description of

the extended instructions.)

In addition to the hardware-implement ed
capabilities of'the EPA, there is an extended
instruction trep mechanism that permits software
simulation of EPU functions. The state of the EPU
Enable bit "in the CPU's Trap Control register
indicates whather EPUs are present in the system
(see section 3.3.5). If the EPU Enable bit is
cleared to 0, indicating that there are not EPUs
in the system, the CPU will execute an Extended
Instruction trap if an extended instruction is
encountered in the instruction stream. The
service routine for this trap could perform a
software simulation of an EPU's functions. This
trap mechanism facilitates the design of systems
in which EPUs are not present but may be added
later. Initially, the "extended" function is

crul YES PAUSE
N PAUSE ACTIVE
STATE ?

templates,

executed as the Extended Instruction trap service
routine; when EPUs are added to the system, the
trap routine is eliminated and the EPU Enable bit
is set to 1. This change would be transparent to
applications programs. (The Extended Instruction
trap is described in section 6.3.1.)

10.5.2 Extended Instruction Execution Sequence

The CPU and EPU instruction execution sequence is
diagrammed in Figure 10-8. When the CPU fetches

.an extended instruction, the EPU Enable bit in the
If the EPU

Trap Control register is examined.
Enable bit is a 0, an Extended Instruction trap is
executed. If the EPY Enable bit is a 1,
indicating that there is- an EPU in the system,
then the CPU fetches the four-byte instruction
template from memory. The fetching of the
template is indicated by the ST3~5Tg status lines
from the CPU. EPUs must continuously monitor the
address/data bus and ST3-STg status lines for its
A 2-bit identification field in the
template can select one of up to four EPUs for
execution of a given extended instruction. If the
extended instruction calls for the transfer of
data between the CPU and EPU or between the EPU
and memory, the CPU generates the appropriate bus
transaction cycles. These transactions are
identified by unique encodings of the ST3-STg
status lines. The EPU monitors the status and

f

SET PAUSE
LINE AY CPU
UNTIL EPU
FREE

Figure 10-8. CPU-EPU Instruction Execution Sequence

10-7

timing signals output by the CPU to determine when
to participate in the data transaction; the EPU
supplies or captures the data when DS is active.
for transactions between an EPU and memory, the
CPU 3-states its address/data lines while DS is
active so that the EPU or memory can supply the
data. (See section 13.5.5 for a description of the
bus transaction timing.) '

The number and type of bus cycles required to
fetch the extended \instruction template depends on
whether the template is aligned on an even address

. the CPU's external bus interface,

boundary. The four-byte long template can be
fetched with two word transactions if the template
begins on an even memory address or with one byte
and two word transactions if the template begins
at an odd memory address, as described in Table
10-1. (In the case of an odd starting address for
the template, the EPU captures only the upper byte
from the bus during the second word transaction.)
The template is always fetched from memory using
regardless of
the current state of the on-chip cache memory.

Tabie 10-1. Bus Transactions Involved in Fetch of Extended Instruction Template

Address at Address
Template Start Bus Cycle from 2280 Byte/Word ST3-STy
Even 1 n Word 1101
2 n+2 Word 1100
Oad 1 n Byte 1101
2 n+1 Word 1100
3 n+3 Word 1100

If the extended instruction specifies an internal
EPU operation, the Z280 CPU can proceed to fetch
and execute subsequent instructions. Thus, the
CPU and EPUs may be processing in parallel. The
PAUSE signal is used to synchronize CPU-EPU
activity in the case of overlapping extended
instructions. If the CPU fetches another extended
instruction template intended for an EPU that is
otill executing a previous instruction, the EPU
activates the PAUSE input to the CPU to halt
further CPU activity until the EPU can finish the
original operation. While PAUSE is asserted, all
CPU activity is suspended except responses to
refresh requests, bus requests, and resets.

CPU activity following the fetch of the extended
instruction template is governed by the type of
extended instruction being processed. In the case
of an EPU internal operation, no further bus
transactions are required by the extended
instruction, so the CPU will proceed to fetch the
next instruction. However, the CPU will still
honor an active PAUSE input and suspend execution
until PAUSE is released.

In the case of an EPU-to-CPU transfer instruction,
the next non-refresh transaction following the
fetch of the template (and after an active PAUSE
signal is deasserted) will be the EPU-to-CPU bus
transaction, EPU-to-CPU bus transactions are

identified by a 1110 status code on the ST3-STg
status lines and are word transactions. The
address emitted by the CPU during this cycle is
the memory address of the previous transaction
(that is, the address used during the last fetch
of the instruction template).

In the case of EPU-to-memory or memory-to-EPU
transfer instructions, the next one to sixteen
non-refresh transactions following the fetch of
the template (and after an active PAUSE signal is
deasserted) will be the appropriate data transfer
cycles, Up to 16 bytes of data may be transferred
as the result of a single extended instruction;
the number of data transfers to be performed is
encoded in the instruction template. The 1010
status code on the ST3-STp status lines identifies
bus cycles that transfer data between an EPU and
memory. The EPU must supply the data for write
operations or capture the data for read. operations
during each transaction, just as if it were part
of the CPU. The number and type of transactions
generated also depends on whether the starting
memory address of the data block to be moved is an
even-valued address, as defined in Table 10-2.
The case where only one byte is transferred is
degenerate and shown separately in Table 10-2 for
clarity. These transfers are always performed on
the 2280 MPU's external bus, regardless of the
current state of the on-chip cache memory.

10-8

Table 10-2. Sequence of Transactions for Data Transfers between an EPU and Memory

Starting Memory Number of Byte/Word Status of Type of Total Number of
Address Bytes (n) Transfers Addresses Transactions

Even Even word, word.,...,word All even n/2
Even Odd word, word,...,word, byte Alleven . {n+1)2
Even " One byte Even 1
Odd Even byte, word,...,word, byte First odd, (n+2)/2

’ others even
Odd Odd byte, word,...,word, word First odd,; (n+1)2

' others even

Odd One byte Odd 1

10-9

Chapter 11.

"Reset

Hardware resets are asserted by an active RESET
input and place the Z280 MPU in a known state.
Optionally, the Bus Timing and Initialization reg-
ister can be initialized to a system specifiable
value during a reset. The RESET input is
internally synchronized to the clock and then
sampled at the end of every processor clock
cycle. When an active RESET line is detected, the
current bus transaction is allowed to be completed

before starting the reset process. A reset
overrides all other operations, including
interrupts, traps, and bus requests. A hardware

reget must be used to initialize the 7280 MPU as
part of the power-up sequence.

The RESET input must be asserted for a minimum of
128 processor clock cycles. Within this time the
7280 MPU lines assume their reset values: the
address and address/data lines are 3-stated and
all control lines are forced High. While RESET is
asserted, the clock output line (CLK) is the proc-
essor clock frequency divided by four. :

when RESET is sampled high (deasserted), the state of the
_WATY input is sampled. If WAIT is asserted, the contents
of the ADq-AD, Lines are sampled on the falling edge of
the processor clock and loaded into the Bus Timing and
Initialization register;
is chosen, Ab7mstbea1andAD,.mstbe30uhenthe
bus is sampled, and the state of the AD, line determines
whether the bootstrap mode option is selected. WAIT must
be asserted for at least two processor clock cycles after
RESET is deasserted in order for the Bus Timing and
Initialization register, thereby specifying a bus clock
frequency of one-half the processor clock, no sutomatic
wait states when accessing the lower 8M bytes of memory,
and disabling the multiprocessor mode of operation.

Table 11-1 delineates the effect of a reset on
other CPU registers. A reset places the CPU in

if this method of initialization

interrupt mode O0; thus, the IM field in the
Interrupt Status register will be a 0. The
Interrupt Vector Enable bits in the Interrupt
Status register also are cleared to 0 by a reset,
and the Interrupt Pending bits will reflect the
current status of the interrupt requests. All
other CPU and . MU registers, including the
remaining registers in the CPU register file, the
MMU page descriptor registers, and the
Interrupt/Trap Vector Table Pointer are unaffected
by a reset.

~The effect of a reset on the on-chip peripherals'

programmable registers is shown in Table 11-2,
The on-chip counter/timers are always disabled by
a reset. The on-chip DMA channels and UART are
also disabled by a reset, unless bootstrap mode is
selected (see Section 9.7). The counter/timers'

Time Constant and Count-Time registers are
unaffected by a reset. The DMA channels'
Destination Address, Source Address, and Count

registers also are unaffected by a reset, except
for DMA Channel 0's Destination Address and Count
registers. .

In a multiprocessing system employing multiple
2280 MPUs with a shared bus, the internal
processor clocks for the 7280 MPUs need to be
synchronized. The processor clock is generated by
dividing the XTAL1 input by two. The falling edge
of RESET is used internally to synchronize the
processbr clock, and can be used to synchronize
processor clocks in a multiprocessing system. If
all the 7280 MPUs in the system have identical
XTAL1 and RESET input signals, their internal
procesgor clocks will be initislized in the same
manner by a reset.

If an active bus request is detected on the rising
edge of RE_SET, the 7280 MPU grants the bus before
fetching the first instruction from location 0.
Thus, an external DMA device can initialize RAM
memory before execution begins. If bus request is
not asserted, the CPU begins execution with a
fetch from locetion 0 unless bootstrap mode is in
effect. ’

11-1

Table 11-1. Effect of a Reset on Z280 MPU and MMU Registers

Value Loaded on Reset

Register {Hexadecimal) Comments

Program Counter 0000

Systemn Stack Pointer 0000

| 00

R 00

Master Status 0000 System mode, Single-Step disabled, Breakpoint-on-Hait
disabled
All maskable interrupts disabled

Bus Timing and Control 30 No autohatic wait states for KO, upper 8M bytes of
pemory, or interrupt acknowledges

Bus Timing and Initialization 80 CLK output 2 x processor clock period, no automatic wait
states for lower 8M bytes of memory, bootstrap mode
disabled

1O Page 00 YO Page 0 in use

Cache Control 20 Cache enabled for instructions
All valid bits cleared to 0
Burst mode disabled

Trap Control 00 EPA trap disabled, VO not privileged

System Stack Limit 0000 System Stack Overflow Warning trap disabled

Local Address 00 All memory transactions are made to local bus

Interrupt Status 00xx Interrupt mode 0, nonvectored interrupts, current state of
interrupt requests (indicated by xx) '

Interrup¥Trap Vector Table Pointer Unaffected

CPU Registers AF, BC, DE, HL, IX, IY, I

AF’, BC’, DE', HL' Unaffected

User Stack Pointer Unaffected

MMU Master Control 0000 MMU disabled

MMU Page Descriptor Register, Page

Descriptor Register Pointer Unaffected

Table 11-2. Effect of a Reset on 2280 On-Chip Peripheral Registers

Value Loaded on Reset
Register {Hexadecimal) Comments
Refresh 88 Refresh enabled, rate =32
Counter/Timers:
Configuration 00 Timer mode, single-cycle mode
Command/Status 00 Timer disabled
DMA Channels:
Master Control 0000 No DMA linking, EOP disabled, Software Ready disabled
DMAQ Transaction Descriptor 0100™ DMAQ disabled, continuous mode .
DMA1/2/3 Transaction Descriptor — EN, IE, TC, and EPS fields cleared, other fields unaffected
DMAQ Destination Address 000000
DMAO Count 0100
UART:
Configuration 00* 5 bits/character, parity disabled, external clock, x 1 clock
rate, loop back disabled
Transmitter Control/Status o1 Transmitter disabled, transmit buffer empty
Receiver Control/Status 00* Receiver disabled

*Unless bootstrap mode is selected.

Chapter 12.
Z280 Bus External Interface

12.1 INTRODUCTION

The 2280 MPU is typically only one component in a
system that may include memory, peripherals, slave
processors, coprocessors, and other CPUs, all
connected via a system bus. Two different
component~interconnect bus schemes are available
with the 7280 MPU: the 780 Bus and the Z-BUS.

This chapter describes the external manifestations
(that is, the activity on the pins) that result
from CPU or on-chip peripheral activity for the.
780 Bus configurations of the 2280 MPU. (The
I-BUS external interface is described in Chapter
13.) Since the pins are connected to the system
bus, most of this discussion will center on the
bus and bus operations.

The condition of the OPT signal pin determines the
configuration of the bus interface for the 7280
MPU; the 780 Bus configuration is selected by
applying a logical 0 (ground) level on the OPT
pin. '

The 280 Bus on the 2280 MPU includes a 24-bit
address bus, 8-bit data bus, and associated status
and control signals. The data bus is multiplexed
with the low-order 8 bits of the address bus.
Figure 12-1a shows the pin functions for the .
280 Bus configuration of the 2280 MPU, The
280 bus described here is compatible with Zilog's
78400 and 28500 families of peripheral devices.

I ey

&%§-f - "'..7."31 |~”--“““II. o
pu——- Y i e 1 - »
mm{o—- A:::‘ m?: 1; L] :Va
— - [e BUETS; | 13 o7 an
—| W N ' '; . - :'
wrennvers ¢ | N e - .
. P SEfs se | aD,
—1 e [§ kL | oo
I H— ::}m sv]n e 2| neseaven
on-ce —:uqcnum An | n: : : I:w
rumonanaLs | <ouef ciodmes ::: cnoy |23 o] ax
" fae el
‘I:ﬂﬂ . ::: c:";: - :
¢@¢&0£9’ ff"&&'ﬂ& v 2720 29 30 3132 33 34 36 26 37 30 3 & 41 2 &3
R’ Lo
IHHHHJEHH @{‘léofﬁ“’ﬁ?f’v
“Miiipotund with CTIOy AND STATUS

Figure 121a. Pin Functions

Figure 121. Z80 Bus Configuration (Input OPT tied to GND)

Figure 1211b. Pin Assignments

12.2 BUS OPERATIONS

Two kinds of operations can occur on the Z80 Bus:
transactions and requests. At any given time only
one device (either the CPU or a bus requestor such

as a DMA channel) can be in control of the bus; .

this device is called the bus master. Trans-
actions are always initisted by the bus master and
are responded to by some other device on the hus.
Only one transaction can proceed &t s time.
Requests can be initiated by a device that does
not have control of the bus.

Seven types of transactions can occur on the
780 Bus, as described below:

Memory transaction. CPU- or DMA-controlled
transfer of dats to or from a memory location.

RETI transsction. CPU-initiated transaction used
in cohjunction with the interrupt logic of 28400
family peripherals.

Halt transsction. Transaction indicsting that the
CPU is entering the Halt state due to the
execution of a HALT instruction or a fatal
sequence of traps.

Refresh. Transaction that refreshes dynamic
memory; refresh transactions do not involve a
transfer of data.

1/0 trensaction. CPU- or DMA-controlled transfer
of data to or from a peripheral device.

Interrupt Acknowledge. CPU-controlled transaction
ugsed to acknowledge an interrupt and read dats
from the interrupting device.

DMA Flyby trenssction. A DMA-controlled trans-
action that transfers data between a memory
location and a periphersl device.

Two types of requests can occur on the Z80 Bus, as
described below:

Interrupt request. A request initiated by a
peripheral device to gain the attention of the
CPU.

Bus request. A request by an external device
(typically a DMA channel) to gain control of the
bus in order to initiate transactions.

A request is answered by the CPU according to its
type: for interrupt requests, an interrupt
acknowledge sequence is generated; for bus
requests, the CPU relinquishes the bus and
activates an acknowledge signal.

12.3 PIN DESCRIPTIONS

The pin functions for the Z80 Bus configuration
of the 7280 MPU are illustrated in Figure
12-1a. The pin assignments are shown in Figure
12-1b. A functional description of each pin is
given below:

Ag-Ap3. Address (output, active High, 3-state). 'These
address lines carry /O addresses and memory addresses
during bus transactions.

ADg-AD;. Address/Data (bidirectional, active High, 3-state).
These eight multiplexed Data and Address lines carry /O
addresses, memory addresses, and data during bus
transactions. i

AS. Adaress Strobe (output, active Low, 3-state). The rising
edge of AS indicates the beginning of a transaction and
shows that the address is valid.

BUSACK. Bus Acknowledge (output, active Low). A Low on
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.

BUSREQ. Bus Request (input, active Low). A Low on this
line indicates that an external bus requester has obtained or
is tfying to obtain control of the bus.

CLK. Clock Output (output). The frequency of the processor
timing clock is derived from the osciliator input (external
oscillator) or crystal frequency (internal oscillator) by
dividing the crystal or external oscillator input by two. The
processor clock is further divided by one, two, or four (as
programmed) and then output on this line.

CTIN. Counter/Timer Input (input, active High). These lines
receive signals from external devices for the counterftimers.

CTI0. Counter/Timer I/O (bidirectional, active High,
3-state). These /O lines transfer signals between the
counter/timers and external devices.

DMASTB. DMA Flyby Strobe (output, active Low). These
lines select peripheral devices for flyby transfers.

EOP. £nd of Process (input, active Low). An external source
can terminate a DMA operation in progress by driving EOP
Low. EOP always applies to the active channel; if no channel
is active, EOP is ignored.

GACK. Global Acknowledge (input, active Low). A Low on
this fine indicates the CPU has been granted control of a
global bus.

GREQ. Global Request (output, active Low, 3-state). A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.

GND. Ground. Ground reference.

HALT, Halt (output, active Low, 3-state). This signal indicates
that the CPU is in the Halt state and is awaiting an interrupt
before operation can resume,

IE. Input Enable (output, active Low, 3-state). A Low on this
line indicates that the direction of transfer on the
Address/Data lines is toward the MPU.

_ TNT. Maskable Interrupts (input, active Low). A Low onthese
- lines requests an interrupt.

TORQ. /Input/Output Request (output, active Low, 3-state).
This signal indicates that ADg-AD7 and A4g-A23 of the
‘ address bus hold a valid /O address for an /O read or write
operation. AnTORQ signal is also generated 'with an
M7 signal when an interrupt is being acknowledged, to
indicate that an interrupt response vector can be placed on
. the data bus.

MT. Machine Cycle One (output, active Low, 3-state). This
signal indicates that the current transaction is the opcode
fetch cycle of a RET} instruction execution. M1 also occurs
with IgRG to indicate an interrupt acknowledge cycle. -

MREQ. Memory Request (output, active Low, 3-state). This
signal indicates that the address bus holds a valid address
for a memory read or write operation.

NMI. Nonmaskable Interrupt (input, falling-edge activated).
A High-to-Low transmon onthis line requests a nonmaskable
‘ interrupt.

OE. Output Enable (output, active Low, 3-state). A Low on
this line indicates that the direction of transfer on the
Address/Data lines is away from the MPU.

OPT. Bus Option (input). This signal establishes the bus
option during reset.

OPT - Bus Interface
0 280 Bus, 8-bit
1 Z-BUS, 16-bit

PAUSE. MPU Pause (input, active Low). While this line is
Low the MPU refrains from transferring data to or from an
Extended Processing Unit in the system or from beginning
the execution of an instruction.

RD. Read (output, active Low, 3-state). This signal indicates
that the CPU or DMA peripheral is reading data from
memory or an I/O device.

RDY. DMA Ready (input, active Low). These lines are
monitored by the DMAs to determine when a peripheral

.device associated with a DMA port is ready for a read or

write operation. When a DMA port is enabled to operate, its
Ready line indirectly controls DMA activity; the manner in
which DMA activity is controlled by the line varies with the
operating mode (single-transaction, burst, or continuous).

RESET. Reset (input, active Low). A Low on this line resets
the CPU and on-chip peripherals.

RFSH. Refresh (output, active Low, 3-state). This signal
indicates that the lower ten bits of the Address bus contain a
refresh address for dynamic memories and the. current
MREQ signal should be used to perform a refresh to all
dynamic memories.

RxD. UART Receive (input, active High). This line receives
serial data at standard TTL levels.

WxD. UART Transmit (output, active High). This line transmits
serial data at standard TTL levels.

WARIY. Wait (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a .
transaction.

WR. Write (output, active Low; 3-state). This signal indicates
that the bus holds valid data to be stored at the addressed
memory or /O location.

XTALI. Clock/Crystal Input (time-base input). Connects a
parallel-resonant crystal or an external single-phase clock to
the on-chip oscillator.

XTALO. Crysta/ Output (time-base output). Connects a
parallel-resonant crystal to the on-chip oscillator.

+ 8V. Power Supply Voltage. (+ 5 nominal).

12.4 BUS CONFIGURATION AND TIMING

Four 2280 CPU control registers specify certain
characteristics of the 7280 MPU's external
interface and determine bus timing: the Bus
'Timing and Initialization register, Bus Timing and
Control register, Local Address register, and
Cache Control register.

Bus timing is determined by the frequency of the
7280 MPU's external clock source or crystal and
the contents of the Bus Timing and Initialization
register, which receives its initial values as
part of the reset process (see section 3.2.1).
The frequency of the processor clock is one-half
of the frequency of the external clock source or
crystal. The processor clock can be further
divided by a factor of 1, 2, or 4 to provide the
bus timing clock, as specified by the contents of
the Clock Scaling field in the Bus Timing and
Initialization register. The bus timing clock is
output by the MPU as the CLK signal. In the
logical timing diagrams that follow, signal
transitions on the bus are shown in relation to
the bus clock, CLK.

The number of automatic wait 'states included in a
given transaction is determined by the contents of
the Bus Timing and Initialization and Bus Timing
and Control registers. The physical memory
address space is divided into two sections based
on the most significant physical address bit,
A3 Up to three automatic wait states can be
added to transactions to the lower half of memory
(sddresses where Ay3 = 0); similerly, up to three
automatic wait states can be added to transactions
to the upper half of memory (Az3 = 1), to all 1/0
transactions, and to interrupt acknowledge
transactions.

The sgtate of the Multiprocessor ‘Configuration
Enable bit in the Bus Timing and Initialization
register and the contents of the Local Address
register determine which memory transactions
require use of a global bus, as described in
section 10.3. The contents of the Cache Control
register and the state of the address tags and
valid bits in the cache memory determine which
transactions employ the cache memory and which
trangactions use the external bus interface, as
described in Chapter 8.

12.5 TRANSACTIONS

At any given time, one device (either the CPU or a

_ bus requester) has control of the bus and is known

as the bus master. A transaction is initiated by
the bus master and is responded to by some other
device on the bus. Information transfers {both
instructions and data) to and from the 7280 MPU
are accomplished through the use of transactions.
All transactions start when Address Strobe (AS) is
driven low and then raised high.

If the transaction requires an address, the
address is valid on the rising edge of AS. AS can
be used to latch 2280 MPU addresses to de-
multiplex the 2280 Address/Data lines. If an
address is generated, the Output Enable (OE) line
is activated coincident with AS assertion.

The Read (RD) and Write (WR) lines are used to
time the data transfers. For transsctions that do
not involve the transfer of data (Refresh and
Halt transactions), neither RD nor WR is
activated. For write operations, & low on WR
indicates that valid data from the bus master is
on the AD lines. The Output Enable line continues
to be asserted until WR is deasserted. For read
operations, the bus master drives the RD line low
when the addressed device is. to put its data on
the bus. Coincident with the assertion of ﬁﬁ, the
AD lines are 3 stated by the bus master and OE is
deasserted; Input Enable (IE) is asserted one-half
clock cyele later. The bus master samples the
data on the falling clock edge just before
deasserting RD and IE. The rising edge of RD or
WR marks the end of the transaction.

The 2280 MPU's WAIT input provides a mechanism
whereby the timing of a particular transaction can
be extended to accommodate a memory or peripheral
device with a long access time. The WAIT line is
sampled on the falling clock edge when data is to
be sampled (i.e. just before RD or WR rises)
during a transaction. If the WAIT line is low,
another bus clock cycle is added to the
transaction before dats is sampled (RD or WR
rises). In this added cycle, and all subsequent
cycles added due to WALT being low, the WAIT line
is sampled on the falling edge of the clock and,
if it is low, another cycle is added to the
transaction before data is sampled. In this way,

the transaction can be extended by external logic

to an arbitrary length, in increments of one bus
clock cycle.

~

The WAIT input is synchronous, and must meet the
specified setup and hold times in order for the
7280 MPU to function correctly. This requires
asynchronously generated ~WAIT signals to be
synchronized to the CLK output before they are
input into the 2280 MPU. Automatic wait states
can also be generated by programming the Bus
Timing and Control register and Bus Timing and
[nitialization register; these are inserted in
the transaction before the external WAIT signal is
sampled.

12.5.1 Memory Tramsactions

Memory transactions move instructions or data to
or from memory when a bus master makes & memory
access., Thus, they sre generated during program
execution to fetch instructions from memory and to
fetch "and store memory data. They are also
generated to store old program status and fetch
new program status during interrupt and trap
handling, and to transfer information during DMA-
controlled memory accesses. A memory transaction
is three bus cycles long unless extended with
hardware- and/or software-generated wait states,
as explained previously.

Memory transaction timing is illustrated in
figures 12-2 and 12-3. During the first bus cycle,

_A_S is asserted to indicate the beginning of a

transaction; Output Enable (OE) is also asserted
at this time. The MREQ signal goes active during
the second half of this bus cycle, which indicates
a memory transaction. for a Read operation
(Figure 12-2), RD is activated during the first
half of the second bus cycle, after the bus master
has 3-stated the AD lines; Of is deasserted at
the beginning of the second cycle and Input Enable
(TE) is asserted during the second half of the
second cycle. The bus master samples the infor-
mation returned from memory on the Address/Data
bus on the falling edge of the clock during the
third bus cycle; after the dats is sempled, RD,
MREQ, and IE are deasserted. For a Write oper-
ation (Figure 12-3), the WR line is asserted
during the second half of the second cycle, after
the bus master has placed the data to be written
on the AD lines, and OE stays active throughout
the transaction.

The WATT input is also sampled on the falling edge
of the clock during the third clock cycles; if
WAIT is low, another bus clock cycle is added
before sampling the data. Wait states can also be-

‘added through programming of the Bus Timing and

Initialization reqister and Bus Timing and Control
reqister. For example, Figures 12-4, 12-5, and
12-6 illustrate memory transactions with one wait -
state.

o _|

ADo-ADy o= ADDRESS

l ML L.r
“‘NTA'

As-Az3 X

— X

| /1

Figure 12.2. Memory Read Timing

12-5

HIGH

Figure 12-3. Memory Write Timing

|

j

Il

S D ¢

: I‘_'
N/
—\

~\

\ /

=

\

Figure 12-4. Memory Read Timing with One External Wait State

| _
| | |
ADG-ADy = -(ADDRESS X ’ DATA VALID
I | l |
As-Ass X ADDRESS

ST

ADg-AD7 ==

WAIT

Figure 12.6. Memory Read Timing with One Internal Wait State

12-7

Bujwi) pesy 134 “2-ZL einbiy

/ _ / \
/T \ / /n_l
\ [\ / |
/ \ / \

/ \ / L

/ __ / |

. paman

X ssaucav X D& ssauaav -

\l—lg/ \r/ \I—% :

1 I J L_J 1 i1 L L I
o e A M

12-8

12,5.2 RETI Transactions

RETI transactions (Figure 12-7) are similar to
memory read transactions with two exceptions: M
is asserted throughout each read transaction,
falling early in the first bus cycle, and MREQ,
Mi, RD, and IE are deasserted on the rising edqe
of the clock following the third cycle. Each of
the read transactions is followed by a minimum of
three hus c¢ycles of inactivity, These trans-
actions are invoked whenever an REII instruction
is encountered in the instruction stream; they
are used to re-fetch the instruction from external
memory so that interrupt logic within 78400 family
peripherals that monitor the bus for this
instruction will function correctly.

12,5.3 Halt and Refresh Transactions

There are two types of bus transactions that do
not transfer data: Halt and Refresh transactions.
These transactions are similar to memory
transactions, except that RD and WR remain high,
the WAIT input is not sampled, and no data is
transferred.

Halt transactions (Figure 12-8) are identical to
memory read transactions except that HALT is
asserted throughout the transaction, falling
during the second half of the first bus cycle, and
remains asserted after the transaction s
completed. This transaction is invoked when a
HALT instruction. is executed or a fatal -sequence
of traps occurs. for Halt transactions genersted
by the HALT instruction, once the Halt transaction
is completed, all - subsequent CPU activity is
. suspended until an active interrupt request or
reset is detected. After Halt transactions
generated due to a fatal condition, .all CPU
activity is suspended until an active reset is
detected (see section 6.6). The HALT line remains
asserted until the interrupt request is
acknowledged or the reset is received. Refresh
transactibns or DMA transfers may occur while HALT
is asserted; also, the bus can be granted. The
address put out during the address phase of the
_Halt transaction is the address of the Halt
instruction or the instruction that initiated the

fatal sequence of traps.
A

P

e | L

ADg-ADy ===

1. 1 1r

Ag-Az3

ADDRESS*

KD AND WR

HIGH

—/
-\
AN

* Address of HALT Instrection.

/T

Figure 12-8. Halt Timing

12-9

A memory refresh transaction (Figure 12-9) is
generated by the 2280 MPU refresh mechanism and
can occur immediately after the final clock cycle
of any other transaction. The memory refresh
counter's 10-bit address is output on ADg-AD7, Ag,
and Ag when AS is asserted; the remaining address
lines are undefined. The RFSH line is activated
concurrent with MREQ. This transaction can be
used to generate refreshes for dynamic RAMs.
Refreshes may occur while the CPU is in the Halt
state.

12.5.4 1/0 Transactions

1/0 transactions move date to or from peripherals
and are generated during the execution of 1/0
instructions or during DMA-controlled transfers.
1/0 transactions to devices in 1/0 pages FEy and
FFY do not generate external bus transactions.

e

Figures 12-10 snd 12-11 illustrate 1/0 transaction
timing. 1/0 transactions are four clock cycles
long at a minimum, and, like memory transactions,
may be lengthened by the addition of wait cycles.
1/0 transaction timing is similar to memory
transaction timing with one automatic wait state.

The IORQ line indicates that an 1/0 transaction is
taking place. The 1/0 address is found on ADg-AD7
and Ag-Ap3 when AS rises. For read operations, RD
and IE are asserted during the second clock cycle,
and input data from the peripheral is sampled by
the bus master during the fourth cycle (unless
additional wait states are inserted in the
transaction). For write operations, WR is
asserted during the second cycle with OF. remaining
asgerted; output data to the peripheral is placed
on the bus at this time.

i

aoness* X

S
-

ADo-ADy == /TE"'-\
acas X
= IN_/
W |\
a1\ /

| /]

*10 loast significant bite are Retresh address, he rest are undefined.
Figure 12.8. Memory Refresh Timing

12-10

ou o |
ADo-AD7y wmwwee ADDRESS DATA)
Ag-As3 X ADDRESS X

o \ T
" /1
wn A w—
ey

. \ /T

Figure 1210. 1/O Read Timing

b S—

L

X X

" HIGH

" Figure 1211, 1/O Write Timing

12-11

12.5.5 Interrupt Acknowledge Transactions
Interrupt acknowledge transactions acknowledge an
interrupt end read information from the device
that generated the interrupt. These transactions
are generated eutomatically by the CPU when an
interrupt request is detected.

Interrupt acknowledge transactions are five cycles
long at a minimum, with two automatic wait cycles
(Figure 12-12). The wait cycles are used to give
the interrupt priority daisy chain (or other
priority resolution devices) time to settle before
the identifier or vector is read. Additional
automatic wait states can be generated by
programming the Bus Timing and Control register.

T,

" There are two places where the WAIT

The interrupt acknowledge transsction is indicated
by an M1 assertion without MREQ during the first
cycle. The ADy and AD, address lines indicate the
type of interrupt being acknowledged when AS is
asserted {see Table 6-4); the remaining address
lines are undefined. The IDRG signal becomes
active during the third cycle to indicate that the
interrupting device can place an 8-bit identifier
or vector on the bus. It is captured from the AD
lines on the falling clock edge before IORQ is
raised high.

line is
sampled and, thus, where wait states can be
inserted by external circuitry. The first, during
12, serves to ‘delay the falling edge of IORQ -to

T

Ty

|‘_—Tus T

L}

]
L1 1

Ta 1

LI

chl}llJ’lﬂ

e By e
b By

| |

w_ |/

=

UNDEFINED®

X
Hl l |

\
ADo-AD7 7

DATA

Ag-A23 X

UNDEFINED

= _/
\

H

:
\
/

ox \ /
. \

°AD, and AD, indicate type of interrupt being acknowledged.

Figure 12-12. interrupt Acknowledge Sequence

12-12

allow the daisy chain a longer time to settle;
the second, during 73, serves to delay the point
at which the identifier or vector is read.
Softwars-generated wait states can also be added
at sither time via programming of the DC and /0
fields in the Bus Timing and Control register. As
alw&ys, software-generated wait states are
inserted into the transaction before the external
WAIT signal is sampled. '

12.5.6 DMA Flyby Transections

On-chip DMA channels 0 and 1 can transfer data
between memory and peripheral devices using flyby
type transfers; external OMA controllers in 7280
MPU systems may also have this capability. The
timing of flyby transactions is
memory transaction timing, with the exception that
the DMA Flyby Strobe (DMASTB) signal is activated;
the DMASTB signal is used to select the partici-
pating 1/0 device that must capture or supply the
‘data during the memory access transaction.

Flyby transactions controlled by the on-chip DMA
channels always include one automatic wait state
(Figures 12-13 and 12-14)., As with all memory

identical to

transactions, other hardware- and software-
generated wait states can be added to the trans-
action. The external WAIT signal is sampled at
two different times: during the automatic wait
state and during 13.

For flyby transactions that read from memory and
write to a peripheral (Figure 12-13), DMASTB
is asserted during the automatic wait state and
any subsequent weit states added by an active WAIT
signal sampled during the automatic wait state.
Thus, if the WAIT input is asserted during the
automatic wait state, the additional wait states
extend the width of the DMASTB pulse. Wait states
added via the sssertion of WAIT during T3 (after
DMASTE is deasserted) stretch the RD signal
without affecting DMASTB.

For flyby transactions that read from a peripheral
and write to memory (Figure 12-14), DMASTB is
assertad at the beginning of T2 and remains
asserted until the second half of T3. The WR
signal is asserted only during the automatic wait
state and any subsequent wait states added by
sempling WAIT during the automatic wait state.
Wait states added via the assertion of WAIT during
13 stretch the DMASTB signal without affecting WR.

L3
L]

LI

—r—

I
| |

j).........

= N_/
W [\

\

—t

I3 . .

Figure 1213. On-Chip DMA Channel Fiyby Memory Read Transaction

12-13

—

1J;|l—

L1

DATA VALID)__.._

ADo-AD7 _(ADDRESS

As-A23

ADDRESS

)|

. WD T
a1\

xS \

yas .

Figure 1214. On-Chip DMA Channel Fiyby Memory Write Transaction

12.6 REQUESIS

The 2280 MPU supports three types of request
signals: interrupt requests, local bus requests,
and global bus requests. A request is answered
according to its type. Interrupt requests are
'generated by peripheral devices; the 7280 MPU
responds with an Interrupt Acknowledge trans-
action. Local bus requests are initiasted by an
external potential bus master; the 12280 W™PU
responds by relinquishing the bus and generating
an active Bus Acknowledge signal. Global bus
requests are generated by the 2280 CPU or an
on-chip DMA channel to access a global bus; the
2280 MPU rteceives a Global Bus Acknowledge signal
in response to the request.

12.6.1 Interrwt Requests

The 2280 CPU supports two types of interrupts,
maskable INT and normaskable (NMI). The interrupt
request line from a device capable of generating
interrupts can be tied to the 7280 MPU's INT o-

NMI inputs; several devices can be connected to
one interrupt request input, with interrupt

_ priorities established via external logic or a

priority daisy chain. However, all 78400 family
peripherals in a 2280-based system will respond to
the RETI transaction. Therefore, either all Z8400
family peripherals should use the same interrupt

request line or, alternatively, no nesting of
interrupts should be allowed among the 78400
peripherals wusing different interrupt request
lines.

Nonmaskable interrupt requests are edge-triggered,
but maskable interrupts are level-triggered. Any
high-to-low transition on the NMI input is
asynchronously edge-detected, and an internal NMT
latch is set. At the beginning of the last clock
cycle duripg ‘execution of an instruction, the
maskable interrupt inputs are sampled along with
the state of the internal NMI 1atch. If an’
interrupt is detected, and that interrupt |is
enabled in the Master Status register, interrupt
processing proceeds in accordance with the current
interrupt mode, as described in Chapter 6.

12-14

12.6.2 Local Bus Requests

To generate transactions on the bus, a potential
bus master (such as a DMA controller) must gain
control of the bus by making & bus request. A bus
request is initiated by pulling BUSREQ low; the
2280 MPU responds by 3-stating its address, data,
bus control, and bus status outputs and asserting
an active BUSACK, as described in section 10.2.
The CPU regains control of the bus after BUSREQ
rises. The on-chip DMA channels have higher
priority than external devices requesting the bus
via BUSREQ.

12.6.3 Globsl Bus Rsqusats

If the multiprocessor mode is specified in the Bus
Timing and Initialization register, then the
contents of the Local Address register determine
the range of memory addresses dedicated to the

shared global bus. Before accessing an address on
the global bus, the 7280 MPU must issue a Global
Bus Request (GREQ) and receive en active Global
Bus Acknowledge (GACK) signal, as described in
Section 10.3.

Figure 12-15 illustrates the timing of the global
bus request/acknowledge sequence. When the 2280
MPU needs to access a location on the global bus,
GREQ is asserted in order to request use of the
global bus. GATK is then sampled on each
successive rising edge of the clock; when GACK
becomes active (and if BUSREQ is not asserted),
the memory transaction proceeds as described in
section 12.5.1. GREQ is deasserted in the bus
clock cycle immediately following the end of the
memory transaction (except when executing the Test
and Set instruction, where both the memory read
and write operations are executed before
deasserting GREQ).

-

I
|
cu(_JI

g

ADDRESS/ X - ADDRESS
DATA e
—
r gy 4
Cdr 4
is u
AD or WR o f
HIGH
7 L
A
BUSRED \
L L
A d
GREQ \ P
/ ra
L
S
GACK \

Figure 12:15. Multiprocessor Mode Timing

12-15

Chabter 13.
Z-BUS External Interface

13.1 INTRODUCTION

The 2280 MPU is typically only one component in a
asystem that may include memory, peripherals, slave
processors, coprocessors, and other CPUs, all
connected gystem bus. Two different
component-interconnect bus schemes are available
with the 2280 MPU: the Z80 Bus and the Z-8BUS.

via a

This chapter describes the external manifestations
(that is, the activity on the pins) that result
from CPU or on-chip peripheral activity for the
-Z-BUS - configurations of the 2280 MPU. (The
280 Bus external interface is described in Chapter
12,) Since the pins are connected to the system
bus, most of this discussion will center on the
bus and bus operations.

The condition of the OPT pin determines the
configuration of the bus interface for the 2280
MPU; the Z-BUS configuration is selacted either by

TITITIT L

. ¥t et et et WPy &%99'\"‘1’
AD; ja-o
s L. ADy ft-b
wrsmeers § Z o ol
— T ADy Loeen
z200 A0 fae
—{ nxp Laad ADs Lo
w—dq TXD ADs Lot
ADy Lot
on-cine _L CTMRER * ADys o
rernonmraLs |] croames [T P
. :1: fatma
T . i poe
sedlorocse £ F8E
IR AR
S e
< tvphenad o CTIOY S araTus contmoL
Figure 13-1a. Pin Functions

)

applying a 1logical 1 (VCC) level on the OP1 pin
or by leaving the OPI pin disconnected.

The Z-BUS on the 17280 MPU includes a 24-bit
address bus, 16-bit data bus, and associated
gtatus and control signals. The data bus is
multiplexed with the low-order 16 bits of the
address bus. The Z-BUS configuration of the 7280
MPU supports the use of Extended Processing Units
and burst-mode memories. figure 13-1 ghows the
pin functions and pin assignments for the Z-8US
configuration of the 2280 MPU. The Z-8US
described here is compatible with Zilog's 28000
family of peripheral devices. Other Z-BUS
compatible components include the 78000 family of
CPUs. Refer to Zilog's Component Data Book for a
complete description of the Z-BUS Component
Interconnect convention.

¥ 0 o FP 0 gt 0

~

stuecgg:§3§

/ % & 7 6 5 4 3 2 1 006768 6564 83 0261
AW § 10 | Aoy
DNASTE, [1 ™
M 12 s | WOV,
DNASTS; | 12 st | amy
ore [14 | WOV,
T |18 o | NV,
OE]te "
A . & [
esv e 2800 2
’DAVA vl ey -
cho, | »
shin . -
|2 -
cnoy |0 L
2L -
cTmy |28 -
Wic In -
27 20 20 30 31 32 33 34 35 20 37 30 30 40 41 2 &

?’jf{ﬁ&f&‘iﬁ?f##ﬁ‘rr

Figure 131b. Pin Assignments

Figure 13-1. Z:BUS Configuration (Input OPT tied to + 5V or not connected)

A

13-1

13.2 BUS OPERATIONS

Two kinds of operations can occur on the Z-BUS:
transactions and requests. At any given time only
one device {either the CPU or a bus requestor' such
as a DMA channel) can be in control of thes bus;
this device is called the bus master. Trans-
actions are always initiated by the bus master and
are responded to by some other device on the bus.
Only one transaction can procesd at a time.
Requests can be initiated by a device that does
not have control of the bus.

Seven types of transactions can occur on the
2-8US, as described below:

Memory trensaction. CPU- or DMA-controlled
transfer of data to or from a memory location.

Halt trensaction. Transaction indicating that
the CPU is entering the Halt state due to
execution of a HALT instruction or a fatal
sequence of traps.

Refresh. Transaction .that refreshes dynamic
memory; refresh transactions do not involve a
transfer of data.

1/0 trensaction. CPU- or DMA-controlled transfer
of data to or from a peripheral device.

Interrupt Acknowledge. CPU-controlled
transaction used to acknowlsdge an interrupt and
read data from the interrupting device,

EPU transaction. A transfer of data from an
. Extended Processing Unit (EPU) to the CPU.

DMA Flyby transaction. A DMA-controlled
transaction that transfers data between a memory
location and a peripheral device.

Two types of requests can occur on the Z-BUS, as
described below:

Interrupt request. A request initiated by a
peripheral device to gain the attention of the
CPU.

Bus request. A request by an external device
(typically a DMA channel) to gain control of the
bus in order to initiate transactions.

A request is answsred by the CPU according to its

type: for interrupt requests, an interrupt
acknowledge sequence is generated; for bus
requests, the CPU relinquishes the bus and

activates an acknowledge signal.

13.3 PIN DESCRIPTIONS

The pin functions and assignments for the Z-BUS
configuration of the Z280 MPU are illustrated in
Figure 13-1. A functional description of each pin
is given below:

Aqg-A23. Address (output, active High, 3-state). These
address lines carry /O addresses and memory addresses
during bus transactions.

ADg-AD.5. Address/Data (bidirectional, active .High,
3-state). These 16 multiplexed address and data lines carry
/0 addresses, memory addresses, and data during bus
transactions.

AS. Address Strobe (output, active Low, 3-state). The rising
edge of Address Strobe indicates the beginning of a
transaction and shows that the address, status, R/W, and
B/W signals are valid.

BUSACK. Bus Acknowledge (output, active Low). A Low on
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.

BUSREQ. Bus Request (input, active Low). A Low on this
line indicates that an external bus requester has obtained or
is trying to obtain control of the bus.

B/W. Byte/Word (output, Low = Word, 3-state). This signal
indicates whether a byte or a word of data is to be
transmitted during a transaction. ‘

CLK. Clock Output (output). The frequency of the processor
timing clock is derived from the oscillator input (external
oscillator) or crystal frequency (internal oscillator) by
dividing the crystal or external oscillator input by two. The
processor clock is further divided by one, two, or four (as
programmed), and then output on this line.

CTIN. Counter/Timer Input (input, active High). These lines
receive signals from external devices for the counter/timers.

CTIO. Counter/Timer I/O (bidirectional, active High,
3-state). These |/O lines transfer signais between the
counter/timers and external devices.

DMASTB. DMA Flyby Strobe (output, active Low). These
lines select peripheral devices for DMA flyby transfers.

DS. Data Strobe (output, active Low, 3-state). This signal
provides timing for data movement to or from the bus
master.

EOP. £nd of Process (input, active Low). An external source
can terminate a DMA operation in progress by driving EOP
Low. EOP always applies to the active channel; if no channel
is active, EOP is ignored.

GACK. Global Acknowledge (input, active Low). A Low on
this line indicates the CPU has been granted control of a
giobal bus.

13-2

GREQ. Global Request (output, active Low, 3-state). A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.

TE. Input Enable (output, active Low, 3-state). A Low on this
fine indicates that the direction of transfer on the
Address/Data lines is toward the CPU.

INT. Maskable Interrupts (input, active Low). A Low on these
lines requests an interrupt.

NMI. Nonmaskable Interrupt (input, falling-edge activated).
A High-to Low transition on this line requests a nonmaskable
interrupt.

OE. Output Enable (output, active Low, 3-state). A Low on
this line indicates that the direction of transfer on the
Address/Data lines is away from the MPU.-

OPT. Bus Option (input). This signal establishes the bus

option during reset as follows:

OoPT Bus Interface
0 . Z80-Bus, 8-bit
1 Z-BUS, 16-bit

PAUSE. CPU Pause (input, active Low). While this line is Low
the CPU refrains from transferring data to or from an
Extended Processing Unit in the system or from beginning
the execution of an instruction.

RDY. DMA Ready (input, active Low). These lines are
monitored by the DMA channels to determine when a
peripheral device associated with a DMA channel is ready
for a read or write operation. When a DMA channel is

enabled to operate, its Ready line indirectly controls DMA
activity; the manner in which DMA activity is controlled by
the line varies with the operating mode (single-transaction,
burst, or continuous).

RESET. Reset (input, active Low). A Low on this line resets
the CPU and on-chip peripherals.

R/W. Read/Write (output, Low = Write, 3-state). This signal

- determines the direction of data transfer for memory, I/0, or

EPU transfer transactions.

RxD. UART Receive (input, active High). This line recewes
serial data at standard TTL levels.

ST¢-ST3. Status (output, active High, 3-state). These four
lines indicate the type of transaction occurring on the bus
and give additional information about the transaction.

TxD. UART Transmit (output, active High). This line transmits
serial data at standard TTL levels.

WAIT. Wait (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a
transaction.

XTALL. Clock/Crystal Input (time-base input). Connects a
parallel-resonant crystal or an external single-phase clock to
the on-chip clock oscillator.

XTALO. Crystal Output (time-base output). Connects a
parallel-resonant crystal to the on-chip clock oscillator.

+ 5V. Power Supply Voltage. (+ 5 nominal).
GND. Ground. Ground reference.

~

13.4 BUS CONFIGURATION AND TIMING

Four 2280 CPU control registers specify certain
characteristics of the 27280 MPU's external
interface and determine bus timing: the Bus
Timing and Initialization register, Bus Timing and
Control register, Local Address register, and
Cache Control register.

Bus timing is determined by the frequency of the
7280 MPU's external clock source or crystal and
the contents of the Bus Timing and Initialization
register, which receives its initial values as
part of the reset process {(see section 3.2.1).

The frequency of the processor clock is one-haif
of the frequency of the external clock source or
crystal. The processor clock can be further
divided by a factor of 1, 2, or 4 to provide the
bus timing clock, as specified by the contents of
the Clock Scaling field in' the Bus Timing and
Initialization register. The bus timing clock is
output by the MPU as the CLK signal. In the
logical timing diagrams that follow, signal
trangitions on the bus are shown in relation to
the bus clock, CLK.

The number of automatic wait states inciuded in a
given transaction is determined by the contents of
the Bus Timing and Initielization and Bus Timing
and Control registers. The physical memory
address space is divided into two sections based
on the most significant physical address bit,
Az3z. Up to three automatic wait states can be
added to transactions to the lower half of memory
(addresses where A3 = 0); similarly, up to three
automatic wait states can be added to transactions
to the upper half of memory (A3 = 1), to all 1/0
transactions, and to interrupt acknowledge
trangactions.

The' state of the Multiprocessor Configuration
Enable bit in the Bus Timing and Initialization
register and the contenté of the Local Address
register determine which memory transactions
require use of a global bus, as described in
gection 10.3. The contents of the Cache Control
register and the state of the address tags and
valid bits in the cache memory determine which
transactions employ the cache memory and which
transactions use the external bus interface, as
described in Chapter 8.

- signals are

13.5 TRANSACTIONS

At any given time, one device (either -the CPU or a
bus requester) has control of the bus and is known
as the bus master. A trensaction is initisted by
the bus master and is responded to by some other
device on the bus. Information transfers (both
instructions and data) to and from the 7280 MPU
are accomplished through the use of transactions.
All transactions start when Address Strobe (AS) is
driven low and then raised high.

On the rising edge 4f A5, the bus status signals
(STp-ST3, R/W, and B/W) are valid. The STg-ST3
status lines indicate the type of transaction
being performed (Table 13-1). Typically, these
decoded and used to enable the
appropriate buffers, drivers, and chip select
logic necessary for proper completion of the data
transfer.

Table 13-1. ST Status Line Decode

Status Lines
3eep Type of Transaction

0000 Reserved

0001 Refresh

0010 1/O transaction

0011 Halt

0100 Interrupt acknowledge line A

010+ NMI acknowledge

0110 Interrupt acknowledge line B

0111 Interrupt acknowledge line C

1000 Transfer between CPU and memory, cacheable

1001 Transfer between CPU and memory,
non-cacheable

1010 Data transfer between EPU and memory

1011 Reserved

1100 EPU Instruction fetch, template, subsequent
words |

1101 EPU Instruction fetch, template, first word

1110 Data transfer between EPU and CPU

1111 Test and Set (data transfers)

If the transaction requires an address, the
address is valid on the rising edge of AS. Thus,
AS can be used to latch 7280 MPU addresses to
de-multiplex the Address/Data lines. No address
is required for EPU-CPY or Interrupt Acknowledge
transactions; the contents of the A and AD lines
are undefined while AS is asserted doring these
transections. If an address is generated for a
transaction, the Output Enable (OE) signal is
activated coincident with AS assertion.

The Z-BUS MPUs use Data Strobe (DS) to time the
transfer of data. For transactions that do not
involve the transfer of data (Refresh and Halt
transactions), DS is not activated. Ouring write
operations (R/W = low), a low on DS indicates that
valid data from the bus master is on the
Address/Data lines. The Output Enable line
continues to be asserted until DS is deasserted.
for Read Operations (R/W = high), the bus master
drives D5 low when the addressed dsvice is to put
its data on the bus. Coincident with the
assertion of DS during a read operation, the AD
lines are 3-stated by the bus master, OF is
dsasserted, and Input Enables (IE) is asserted.
The bus mester samples the data on the falling
clock edge just before deasserting D5 and IE.

The Z280 MPU's WAIT input provides a mechanism
whereby the timing of a particular transaction can
be extended to accommodate a memory or peripheral
device with a long access time. The WAIT line is
sampled on the falling clock edge when data is to
be sampled (i.e. just before DS rises) during a
transaction. If the WAIT line is low, another bus
clock cycle is added to the tranasaction before
data is sampled end DS rises. In this added
cycle, and all subsequent cycles added due to WAIT
being low, the WAIT line is sampled on the falling
edge of the clock and, if it is low, another cycle
is added to the transaction. In this way, the
transaction can be extended by external logic to
an arbitrary length, in increments of one bus
clock cycle.

The WAIT input is synchronous, and must meet the
specified setup and hold times in order for the
7280 MPU to function correctly. This requires
asynchronously-generated WAIT signals to be
synchronized to the CLK output before they are
input into the 2280 MPU. Automatic wait states
can also be generated by programming the Bus
Timing and Control register and Bus Timing and
Initialization register; these are inserted in
the transaction before the external WAIT signal is
sampled.

13.5.1 Memory Transactions

Memory transactions move instructions or data to
or from memory when a bus master makes a memory
access. Thus, they are generated during program
execution to fetch instructions from memory and to
fetch and store memory data. They are also
qenerated to store old program status and fetch
new program status during interrupt and trap
handling, and to transfer information during DMA-
controlled memory accesses. A memory transaction
is three bus cycles long unless extended with
hardware- and/or software-generated wait states,
as explained previously.

During memory transactions, the ST3-STg status
lines indicate that a memory transaction is
occurring and provide the following information:

e Vhether the memory access is cacheable (ST3-STq
= 1000) or nencacheable (ST3-STg = 1001),

® Whether the memory access is a fetch of an
extended instruction's template intended for an
EPU (ST3-STg = 1100 or 1101).

o Whether the date is supblied or captured by an
Extended Processor Unit while executing an
extended instruction (S13-Slg = 1010).

o Whether the memory access is part of an atomic
read-modify-write operation during the
execution of a Test and Set instruction
(5[3—5T0 = 1111).

A memory read is distinguished from a memory write
via ths R/W signal.

13.5.1.1 Byts/Word Organization

The byte is the basic addressable memory eslement
in 7280 MPU systems. However, although memory is
addressed as bytes, the Z-BUS configuration of the
2280 MPU has a 16-bit data path, and memory trans-
actions can be byte or word transfers. Each
16-bit word in memory is made up of two B8-bit
bytes, where the least-significant byte preceeds
the moat-significant byte of the word, as in the
780 CPU architecture. For example, the word at
memory location 5000y has its low-order byte at
location 5000y and its high-order byte at
location 5001y.

Bytes transferred to or from odd memory locations
(address bit 0 = 1) are always transmitted on
lines ADg-AD;. Bytes transferred to or from even
memory locations (address bit 0 = 0) are always
transmitted on lines ADg-ADq15. For byte reads B/W
= high, R/W = high), the CPU or on-chip OMA
channel uses only the byte whose address it put
out on the bus. In other words, for a byte read
with an odd address, the CPU or DMA channel will
only rsad the lower half of the bus; for a byte
read with an even address, the CPU or DMA channel
will only read the upper half of the bus. For
byte writes (B/W = high, R/W = low), the CPU or
on-chip DMA channel (flowthrough mode) places the
byte to be written on both halves of the bus, and
the proper byte must be selected in the memory
control logic by testing address bit O.

For word transfers (B8/W = low), all 16 bits are
captured by the CPU or DMA channnel during reads
(R/W = high) or stored by the memory during writes

13-5

(R/W = low). The most-significant byte of the
word is transferred or ADg-ADy and the least-
significant byte on ADg-AD15; thus, the bytes of
data will appear swapped on the bus, with the most
significant byte on the lower half of the bus and
the least significant byte on the upper half of
the bus. Word transfers always use even-valued
addresses (address bit 0 = 0) and result in an
access to the byte at the even address and the
next congsecutive byte at the followina odd
address, For example, a word access to location
5000, would access the byte at location S5000H
(transferred on ADg-AD15) and the byte at location
5001y (transferred on ADg-AD7).

Instruction fetches are always executed as word
transactions. However, instruction opcodes need
not be aligned on even-address boundaries; the
CPU will use only one byte of the fetched word if
appropriate,

Data accesses may be byte or word accesses. Data
words aligned at even-address memory boundaries
are accessed via one word transaction. Data wovrds
on odd-address boundaries are accessed via two
consecutive byte transactions.

13.5.1.2 Memory Transaction Timing

Memory transaction timing is iltlustrated in
figures 13-2 and 13-3. During the first bus cycle,
AS is asserted to indicate the beginning of a
transaction; Output Enable (0F) is also asserted
at this time, All address and status information
is quaranteed valid on the rising edge of AS. The
STg~ST3 status lines indicate that a memory trans-
action is occurring. For a read operation (Fiqure
13-2), DS is activated during the first half of
the second bus cycle, after the bus master has
3-gtated the AD lines; OF is deasserted at the
beqinning of the second cycle and Input Enable
(T€) is asserted during the second half of the
second cycle. The bus master samples the
information returned from memory on the Address/
Data bus on the falling edge of the clock during
the third bus cycle; after the data is sampled,
DS and TE are deasserted. For a write operation
(Figure 13-3), DS is asserted during the second
half of the second cycle, after the bus master has
placed the data to be written on the AD lines, and
ot stays active throughout the transaction.

w L L
ADo-ADys —={ AbDRESS @

= _/

55 /|
wa A

a /

" /T

Figure 13-2. Memory Read Timing

13-6

l.__

l. .

}
]
1
ADDRESS |‘Xi DATA VALID

1

ST

_] |
A

STATUS VALID

| X<

\|__ /]

/ \

HIGH

Figure 13-3. Memory Write Timing

T T

X

2l fgh

A\

Figure 134. Memory Read Timing with External Walt Cycle

13-

o _'i‘ 'I

ADg-AD g wm— ADDRE!

A1s-Az3
as

STATUS
.
W =1

WAIT

< < 1

STATUS VALID

| X<

HIGH

Figure 13-5. Memory Write Timing with External Wait Cycle

DATA

A

ADDRESS

\/

A

STATUS VALID

\

Ve

\

—

Figure 13-6. Memory Read Timing with Internal Wait Cycle

The WAIT input is also sampled un the fallina edge
of the clock during the third clock cycle; if
WAIT is low, another bus clock cycle is added
before sampling the data. Wait states can also be
added through proqramming of the Bus Timing and
Initislization register and Bus Timing and Control
register. For sxample, Figures 13-4, 13-5, and
13-6 illustrate memory transactions with one wait
state.

13.5.1.3 Burst Mesory Imictians

The Z-BUS configuration of the 7280 MPU supports a
special kind of memory transaction called a "burst
memory transaction” for use in systems employing
burst-mode memory devices. Control bits in the
Cache Control register indicate whether portions
of the memory system can support burst
transactions; burst mode can be specified for
either the upper half of memory (A3 = 1), the
" lower half of memory (A3 = 0), or both. ’

Burst memory transactions are used only during
instruction fetches to ‘“prefetch" instructions
into the on-chip cache. In a burst memory read,
four consecutive words of memory are read. If a
byte is to be read from a portion of external

memory that supports burst transactions, and that
read operation is cacheable, the CPU reads the
four words that contain the desired byte of the
instruction with a single burst transaction. The
address of the first word read during a burst
transaction has zeros in the three least
significant bits. The CPU reads a total of eight
bytes via four word transfers, where the last byte
read has all ones in the three least significant
bits of its address. This effectively increases
the bus bandwidth by prefetching a cache block on
a cache miss. .Burst - transactions are not used
when fetching templates in extended instructions.

The timing of a burst transaction is illustrated
in Figure 13-7. During burst transactions, four
Data Strobes are generated with a single Address
Strobe. Timing for the first data transfer is
identical to that for e single memory read,
including the insertion of automatic wait states.

This first transfer is immediately followed by
three more transfers in the next three bus clock
cycles. The WAIT input is sampled during each
transfer and any resulting wait states, thereby
allowing wait states to be added before any of the
transfers. However, automatic wait states are
added only before the first transfer.

{
' >t >

T | 1 | T
|

s b
pomd

w 1 T

L I

ho— et
p—
——
ot
e

-

-(DATAF-(u‘rA\)—-(DATA)——

Aqe-Ass X ADDRESS
= N_/
g'!A Eu: x STATUS VALID ‘ : X

/N NS

_/

n_/ \

VAR VAR

\

Figure 13-7. Burst Memory Read Timing

13.5.1.4 Test and Set Memory Transactions

The Test and Set (TSET) instruction provides a
locking mechanism that can be used to synchronize
suftware processes in a multitasking or multi-
processor system where exclusive access to certain
resources is required. TSET tests and sets
semaphores that control access to
resources. Execution of TSET involves a memory
read followed immediately by a memory write; the
memory read followed by the memory write is one
indivisible operation. The testing and setting of
a gemaphore requires the semaphore to be read from
memory, modified, then written back into the same
memory location. During the first of these two
memory operations, the "1111" sgtatus code is
placed on the ST3-5Tg status lines. This is
particularly useful in & multiple microprocessor
environment with semaphores in a shared memory
area. The Test and Set status code can be used to
control external circuitry that precludes memory
access by another processor during the Test and
Set semaphore operation. Furthermore, the BUSREQ
input is disabjed during a Test and Set operation
to ensure that the semaphore is tested and set
without any intervening accesses.

shared .

13.5.2 Halt and Refresh Transactions

There are two kinds of bus transactions that do
not transfer data: Halt and Refresh transactions.
These transactions are similar to memory
transactions, except that DS remains high, the
WAIT input is not sampled, and no data is
transferred.

The Halt transaction (Figure 13-8) is generated
when a HALT instruction is encountered or a fatal
sequence of traps occurs. The "0011" gtatus code
on the ST3-STg lines identifies the Halt
transaction. For Halt transactions generated by
the HALT instruction, once the Halt transaction is
executed, all subsequent CPU activity is suspended
until an active interrupt request or reset is
detected. After Halt transactions generated due
to a fatal condition, all CPU activity is
suspended until an active reset is detected (see
gection 6.6). However, Refresh transactions or
DMA transfers may occur while the CPU is in the
Halt state; also, the bus can bes granted. The
address emitted during the address phase of the
Halt transaction is the address of the Halt
instruction or the instruction that initiated the
fatal sequence of traps.

cLx l l

i._

ADo-AD g = ADDRESS*

Atg-Azs

AoDRESS® X

1

STATUS VALID X

gy
L/
NG

HIGH

*Address of Halt instruction.

. /T

Figure 13-8. Halt Timing

13-10

A memory refresh transaction (Figure 13-9) is
generated by the Z280 MPU refresh mechanism and
can occur immediately after the final clock cycle
of any other transaction. The memory refresh
counter's 10-bit address is emitted on ADg-ADg
when AS is. asserted; the contents of the
remaining address lines are undefined. The "0001"
status code on the ST3-S5Tg lines identifies the
Refresh transaction. This transaction can be used
to generate refreshes for dynamic RAMs. Refreshes
may occur while the CPU is in the Halt state.

13.5.3 1/0 Treneactions

1/0 Transactions move data to or from peripherals
and are generated during the execution of 1/0
instructions or during DMA-controlled transfers.
1/0 trensactions to devices in 1/0 pages FEy and
FFy do not generate external bus transactions.

Figures 13-10 and 13-11 illustrate 1/0 transaction
timing. 1/0 transactions are four clock cycles
long at a minimum, and, like memory transactions,
may be lengthened by the addition of wait cycles.
1/0 transaction timing is similar to memory

transaction timing with one automatic wait state.
The "0010" status code on the ST3-Slg lines
indicates that an 1/0 transaction is taking place,
and the R/W line indicates the direction of the
data transfer. The I1/0 address is found on
ADG-ADys5 and ‘Aqg-Ap3 when AS rises. for read
operations, D5 and It are asserted during the
second clock cycle, and input data from the
peripheral is sampled by the bus master during the
fourth cycle (unless additional wait states are
inserted in the transaction). Note that DS falls
near the middle of T2 for 1/0 read transactions
(as opposed to the beginning of T2 for memory
reads); this provides peripheral control logic
with additional time for address decoding. ' For
write operations, DS is asserted during the second
cycle with OF remaining asserted; output data to
the peripheral is placed on the bus at this time.

For byte 1/0 operations (B/W = high), the byte of
data is always transferred on the ADg-AD7 bus
lines, regardless of the address of the psripheral
device. For word 1/0 operations, the . most
significant byte of data is transfesrred on ADg-AD7
and the least significant byte on ADg-AD¢5, as
with word memory transactions.

cix __i] |

ADo-AD¢g =

Aqe-As3

UNDEFINED ' X

STATUS
W =0

STATUS VALID X

W = 1

X

= N_/
X
N\

e

*10 lesst-significant bits are Refresh address.

| /T

Figure 13-8. Memory Refresh Timing

13-11

ADDRESS

I <

\

|
-1
- Gy

Figure 1341, /O Write Timing

13-12

13.5.4 Interrupt Acknowlsdge Transactions

Interrupt Acknowledge transactions acknowledge an
interrupt and read an identifier from the device
that generated the interrupt. These transactions
are generated automatically by the CPU when an
interrupt request is detected. ,

Interrupt Acknowledge transactions are five cycles
long at a mimimum, with two automatic wait cycles
(Figure 13-12). The wait cycles are used to give
the interrupt priority daisy chain (or other
priority resolution devices) time to ssttle before
the identifier is read. Additional automatic wait
states cdn be generated by programming the Bus
Timing and Control register.

The S13-5Tg status lines indicate the type of

interrupt being acknowledged. No address is
generated, so the contents of the address bus are

undefined when AS is asserted. The R/W line
indicates read (high), and the B/W line indicates
word (low). The identifier is sampled by the CPU
on the AD lines at the falling clock edge before
D5 is raised high.

There are two places whers the WAIT line is
sampled and, thus, where wait states can be
inserted by external circuitry. The first, during
12, serves to delay the falling edge of D5 to
allow the daisy chain a longer time to settle;
the second, during T3, serves to delay the point
at which the identifier is read. Software-
generated wait states can also be added st either
time via programming of the DC and 1/0 fields in
the Bus Timing and Control register. As always,
software-generated wait states are inserted into
the transaction before the external WAIT signal is
sampled,

[Tuast Ty

“ L1

[S A
—

Ry —1—
—
Ly T

4

UNDEFINED

ADo-AD15

Y

|

|

|
X

T

X

Age-Azs

uNDEFINED X

STATUS
llg =0 STATUS VALID
W = 1
; S

\

Figure 1312, Interrupt Acknowledge Timing

13-13

13.5.5 Extended Processing Unit (EPU)
Transactions

2280 MPUs in the Z-BUS configuration can operate

in conjunction with one or more Extended
Processing Units (EPUs). Functioning as a
coprocessor, the EPU monitors the status and

timing signals output by the CPU so that it knows
when to participate in a transaction. The 7280 MPU
provides the address, status, and timing signals
while the EPU supplies or captures data. FEach of
the four possible types of transactions that
require EPU participation are signalled by the
2280 MPU ST3-STg outputs. CPU and EPU interaction
is fully described in section 10.5.

13.5.5.1 EPU Instruction Fetch

When the
instruction,

7280 CPU encounters an extended
the state of the EPU Enable bit in
the Trap Control register is examined. If the EPU
fnable bit is zero, the 2280 generates an
Extended Instruction trap. If the EPU Enable bit
is set to 1, then the four-byte EPU template is

fetched from memory using memory transactions and
captured by both the CPU and EPU. The "1101"
status code on the ST3-Sfg lines indicates when
the first word of the template is fetched, and the
"1100" status code indicates fetches of the
subsequent template word or words, depending on
the alignment. The CPU fetches the template from
external memory using two word transactions if the
template is aligned (that is, starts on an even
address) or a byte transaction followed by two
word transactions if the template is unaligned.
The opcode and addressing mode portion of the
extended instruction may be executed from cache,
but the template will always be fetched from
external memory.

In a multiple EPU sgystem, the EPU that is to
participate in the execution of an extended
instruction is selected implicitly by an
identification code in the instruction template.
Thus, there is no indication on the bus as to
which EPU is cooperating with the CPU at any given
time,

Ty

cu(_j | J|

Aqe-A23

ADDRESS

s

avo-aore —__ hooness)

STATU!

EID

STATUS VALID

:

-

:

|

/

il

O\

Figure 13-13. Memory to EPU Timing

13-14

13.5.5.2 Memory-£PU Trensactions

If an extended instruction involves a read or
write to memory, then the transfers of data
between memory and the EPU are the next
non-refresh transactions performed by the CPU
following the fetch of the template. The timing
of memory-EPU data trensfers is shown in Figures
13-13 and 13-14. The EPU must supply the data
during write operations (R/W = low) or capture the
data during read operations (R/W = high), just as
if it were part of the CPU. In both cases, the
CPU 3-states its AD lines while data is being
transferred (DS = low). EPU reads from memory are
three cycles long unless extended by wait states.
EPU writes to memory are 8ix cycles long unless
extended by wait states.

13.5.5.3 EPU-CPU Traneactions

If an extended instruction involves a transfer
from the EPU to the 2280 CPU, the next non-refresh
transaction following the fetch of the template is
the EPU-to-CPU data transfer (Figure 13-15).

EPU-to-CPU transactions have the same form as 1/0
read transactions and thus are four clock

cycles long, unless extended by wait states,
Although AS is asserted, no address is generated
and the contents of the address bus are
undefined. The "1110" status code on the $T3-STg
lines indicate an £PU-to-CPU transaction.

13.5.5.4 PAUSE Timing

The PAUSE signal is used to synchronize CPU-EPU
activity in the csse of overlapping extended
instructions. The CPU samples the PAUSt signal
within one bus clock period of the completion of
the fetch of an extended instruction's template
(Figure 13-16). If PAUSE is active when sampled,
the CPU enters an idle state wherein all CPU
activity is suspended. While in this idle state,
the CPU samples the PAUSE input each processor
clock cycle until PAUSE is deasserted. The CPU
then resumes operation at the point at which it
was suspended, either by executing the data
transactions associated with the extended
instruction (in the case of an extended
instruction specifying an EPU-memory or CPU-EPU
data transfer) or by starting the fetch of the
next ingtruction (in the case of an extended
instruction specifying an internal EPU operation).

l.——r. { S —= Tw ; Tw = A —{ T v{
« [L T LI LI 1 I v
| |
ADe-AD1g == Avoncss) j\ EPUCATA WALID)-
l]
AveAss X ADORESS X
= _/
= suua w - 100 X
s _|_ /|
r /O

Figure 13-14. EPU Write to Memory

13-15

« L LT 1

ADo-AD (g

Aqe-A2a

. | T |

UNDEFINED

<

e
_/

STATUS VALID

>

\

\ -

Figure 1315. EPU to CPU Timing

]

as

e

L
1

[

PAUSE

\
\

\
N

\ NEXT BUS
- | TRANSACTION

—_——_———f—-—4

FETCH OF
LAST WORD
OF TEMPLATE

Figure 13-16. PAUSE Timing

ed

L

13-16

13.5.6 DMA Flyby Transsctions

On-chip DMA channels 0 and 1 can transfer data
between memory and peripheral devices using flyby
type transfers; external DMA controllers in 7280
MPU systems (such as the Z8016 DIC) may also have
this capability. The timing of flyby transactions
is similar to memory transaction timing, with the
exception that the DMA Strobe (DMASTB) signal is
activated; the DMASTB signal is used to aelest
the participating 1/0 device that must capture or
supply the data during the memory access.

I

e 1 L1 |

. generated wait

et oo

FlyBy transactions controlled by the on-chip DMA
channels always include one automatic wait state
(Figures 13-17 and 13-18). As with all memory
transactions, other hardware- and software-
states can be added to the
transaction. The external WAIT signal is sampled
at two different times: during the automatic wait
state and during T3.

]
[1 LI

I
—— (,...JT) o
aerss X provem
2 _/
wr_ X X
=TT\ /T
w 7 7\
" \ /T
s |/ |

Figure 1317. On-Chip DMA Channel Flyby Memory Read Transaction

13-17

For flyby transactions that read from memory and
write to a peripheral (Figure 13-17), DMASTB is
asserted during the automatic wait state and any
subsequent wait states due to an active WAL
signal. Thus, if the WAIT input is assertad
during the automatic wait state, the additional
wait states extend the width of the DMASTE pulse.
Wait states added via the assertion of WAIT during
13 (after DMASIB is deasserted) stretch the D%
signal without affecting DMASTB.

For flyby transactions that read from a peripheral
and write to memory (Figure 13-18), DMASTB is
asserted at the beginning of T2 and remains
asserted until the second half of 13, The DS
signal is asserted only during the automatic wait
state. Wait states added via the assertion of
WAIT stretch the DMASTB signal without affecting
Ds.

ex | L1

lJllr—II_

ADg-AD¢s —-(ADDRESS)—(

DATA VALID

Vo —
| |

|
Ate-Aza X

e X

= N_/

.TA::J'! X

X

/1 \

Figure 13-18. On-Chip DMA Channel Fiyby Memory Write Transaction

13.6 REQUESTS

The 2280 MPU supports three types of request
gignals: interrupt requests, local bus requests,
and globasl bus requests. A request is answered
according to its type. Interrupt requests are
generated by peripheral devices; the 2280 MPU
responds with an Interrupt Acknowledge
transaction. Local bus requests are initiated by

an external potential bus master; the 2280 MPU
responds by relinquishing the bus and generating
an active Bus Acknowledge signal. Global bus
requests are generated by the 2280 CPU or an
on-chip DMA channel to access a global bus; the
7280 MPU receives a Global Bus Acknowledge signal
in response to the request.

13-18

13.6.1 Interrupt Requests

The Z280 CPU supports two types of interrupts,
maskeble and nonmaskeble (NMI). The interrupt
request line from a device cspsble of gensrating
interrupts can be tied to the 7280 MPU's WI or
maskable = interrupt request inputs; several
devicas can be connected to one interrupt request
input, with interrupt priorities established via
external logic or a priority daisy chein.

Nonmaskable interrupt requests are edge-triggered,
but maskeble interrupts are level-triggered. Any
high-to-low trensition on the NMI input is
asynchronously edge-detected, and an internal [T
latch is set. At the beginning of the last clock
cycle during execution of an instruction, the
maskable interrupt inputs are sampled slong with
the state of the internal NMI latch. If an
interrupt is dstected, and that interrupt is
enablsd in the Master Status register, interrupt
processing proceeds in accordance with the current
_interrupt mode, as deacribed in Chapter 6.

13.6.2 Local Bus Requests

To generate transactions on the bus, s potential
bus master (such as a DMA controller) must gain
control of the bus by making a bus request. A bus
request is initisted by pulling BUSREQ low; the
7280 MPU responds by 3-stating its address, data,
bus control, and bus status outputs and asserting

t

an active BUSACK, as described in section 10.2.
The CPU regains control of the bus after BUSREQ
rises, The on-chip DMA channels have higher
priority than extsrnal devices requesting the bus
via BUSREQG.

13.6.3 Global Bus Requests

If the multiprocessor mode is specified in the Bus
Timing and Initiaslization register, then the
contents of the Local Address register determine
the range of memory addresses dedicated to the
ghared global bus. Before accessing an address on
the global bus, the Z280 MPU must issus a Global
Bus Request (GREQ) end receive an active Global
Bus Acknowledge (GACK) signal, as described in
Section 10.3.

Figure 13-19 illustrates the timing of the global
bus request/acknowledge sequsnce. When the 2280
MPU needs to access a location on the global bus,
GREQ is asserted in order to request use of the
global bus, GACK is then sampled on each
successive rising esdge of the clock; when GACK
becomes active (and if BUSREQ is not asserted),
the memory transaction proceeds as described in
section 13.5.1, GREQ is deasserted in the bus
cycle immediately following the snd of the memory
transaction (except when executing the Test and
Set instruction, where both the memory read and
write operations are sxscuted bsfore deasserting

GRED).

—

Ll

f—r
|
l |

1 M1 I
| |

o X, e X)}
i e \ /T
= L WaH

X X
" T [1

7 | -
-\, |
o f \

Figure 13-19. Multiprocessor Mode Timing

13-19

Appendix A.
Z280/2280 Compatibility

The 2280 MPU architecture is an upward-compatible
extension of the 280 CPU architecture. This
compat ibility extends to -the instruction set,
register architecture, interrupt structure, and
bus structure of the 7280 MPU and 280 CPU.

The 280 CPU's instruction set is a subset of the
7280 MPU's instruction set. Thus, the 2280 MPU is
completely binary-compatible with 280 code.
However, since some 280 instructions, such as
HALT, are privileged instructions in the 7280 MPU,
complete compatibility is achieved only when the
1280 MPU is executing in the system mode. All 780
software will execute successfully on a 2280 MPU
running in system mode, provided that the software
contains no timing dependencies, does not modify
itself, and does not use any of the Z80's reserved
instruction encodings.

Since the 7280 MPU is binary-code compatible with
the 780 CPU, the 2280 MPU's general-purpose
register set is the same as the 280 CPU's, with
the exception of the Stack Pointer. The 7280 MPU
contains both a System Stack Pointer and a User
Stack Pointer, whereas the 280 CPU has only one
Stack Pointer register. 1In the 280 CPU, the R
register is used to indicate the next refresh
address; in the 7280 MPU, the R register is not
involved with the refresh logic and may be used by
the programmer as a general-purpose storage
register.

The 2280 MPU's interrupt structure is also an
upward-compat ible extension of the Z80 CPU's. The
1280 MPU supports all three interrupt modes found
on the 780 CPU, as well as a fourth interrupt mode
new to the 7280 MPU,

The 280 Bus configurations of the 7280 MPU are
also bus-compatible with the 780 CPU, generating
the same RD, WR, IORA, and MREQ bus control and
status signals. However, Mi is asserted during
every instruction fetch and interrupt acknowledge
cycle in the 280 CPU; for the Z280 MPU, Mi is
asserted only during the, special RETI bus
transaction and interrupt acknowledge cycles. The
28400 family of peripherals interface directly to

both 280 CPUs and ZB0 bus configuration of the
2280 MPUs.

Following a reset, the 2280 MPU takes on a
configuration that is fully compatible with Z80
code. The Memory Management Unit is disabled,
meaning that the 16-bit logical addresses from the
7280 CPU are routed directly to the 16
least significant address pins on the external
bus. The User/System bit in the Master Status
register specifies system-mode operation, allowing
execution of privileged instructions and enabling
the System Stack Pointer. The I/D Psge register
is cleared to all 0s and Interrupt Mode 0 is
selected. The Trap Control register is cleared to
all zeros, disabling System Stack Overflow Warning
traps and designating that I/0 instructions are
not privileged. All 780 instructions can be
successfully executed (and may execute from the
on-chip memory that is enabled as an instruction-
only cache upon reset). The Z280 MPU will remain
in a Z80-compatible configuration as long as 280
code is executed, since the Load Control
instruction that acts on the 7280 MPU's control
registers is not part of the Z80 instruction set.

The software routine shown below can be used to
determine if code is executing on a 280 CPU or
7280 MPU, This facilitates development of
programs that can execute on either processor, but
contain special routines invoked only when
executing on a 7280 MPU and, therefore, allowing
use of 7280 MPU features not available on the 280
CPU. The routine differentiates the 280 CPU from
the 2280 MPU by executing the instruction with
machine code CB37y. This instruction code is
reserved in the 280 CPU, and results in logically
shifting the A register one bit to the left while
shifting a 1 into the least significant bit. For
the 7280 MPU, CB374 is the code for the Test and
Set instruction. If the A register holds a 40y
before executing this instruction code, the A
register holds an 81y and the Sign flag is set
to 1 after executing the instruction on a 780 CPU;
the A register holds an FFy and the Sign flag is
cleared to 0 after executing the instruction on a
7280 MPU,

Code to Dist inguish Execution on a 780 CPU and 2260 MPU

e e e

ws e

This instruction sequence exploits the difference when executing the CB37y
machine code on the 780 CPU and Z280 MPU, to allow a program to determine which
processor it is executing ‘on. This instruction sets the S flag on the 780 CPU
and clears the S flag on the Z280 MPU. The A and F registers are used by the
routine. ‘

LD A, 40, s Initialize the operand.
DEFB 0CBy,037y ; This instruction will set the S flag on the
s 280 CPU and clear the S flag on the 2280 MPU.
Jp M,280 s Now test the flag and jump.
or
JP P,2280

Appendix B.
2280 MPU Instruction Formats

Four formats are used to generate the machine-
language bit encodings for the 7280 MPU
instructions. Three formats are wused for
instructions that are executed solely by the 2280
CPi, (These same three formats are used for 280
CPU instruction encoding.) A fourth format is
dedicated to instructions that involve Extended
Processing Units (EPUs).

The bit encodings of the 2280 MPU instructions are
partitioned into bytes, Every instruction encoding
contains one byte dedicated to specifying the type
of operation to be performed; this byte is
referred to as the instruction's operation code
(opcode). Besides specifying a particular
operation, opcodes typically include bit encodings
specifying the operand addressing mode for the
instruction and identifying any general-purpose
registers used by the instruction. Along with the
opcode, instruction encodings masy include bytes
that contain an address, displacement, and/or
immediate value used by the instruction, and
special bytes called "escape codes" that determine
the meaning of the opcode itself.

By themselves, one byte opcodes would allow the
encoding of only 256 wunique instructions.
Therefore, special "escape codes" that precede the
opcode in the instruction encoding are used to
expand the number of possible instructions. There
are two types of escape codes: addressing mode
escape codes and opcode escape codes. Escape
codes are one byte in length.

Three of the instruction formats are
differentiated by the opcode escape value used;
the fourth format is for instructions that include
an EPU template. Format 1 is for instructions
without an opcode escape byte, Format 2 is for
instructions whose opcode escape byte has the
value EDy, and Format -3 is for instructions
whose opcode escape byte has the value CBy.
Instructions that support EPUs use Format 4 and
always have the opcode escape byte with value
EDy as the first byte of the instruction

encoding, In formats 2 and &4, the opcode escape
byte immediately preceeds the opcode byte itself.

In Format 3, a 1-byte displacement may be between
the opcode escape byte and opcode itself. Opcode
escape bytes are used to distinguish between two
different instructions with the same opcode byte,
thereby allowing more than 256 unique
instructions. Ffor example, the 01y opcode, when
alone, specifies a form of the Load Register Word
instruction; when preceded by the CBy escape
byte, the opcode 01y specifies a Rotate Left
Circular instruction.

Addressing mode escape codes are used to determine
the type of encoding for the addressing mode field
within an instruction's opcode, and can be used in
instructions with and without opcode escape
values. An addressing mode escape byte can have
the value DDy or FDy. The addressing mode
escape byte, if present, is always the first byte
of the instruction's machine code, and is immedi-
ately followed by either the opcode (Format 1) or
the opcode escape byte (Formats 2 and 3). For
example, the 79 opcode, when alone, specifies a
Load Accumulator instruction using Register
addressing for the source operand; when preceded
by the DDy escape byte, the opcode 79y
specifies a Load Accumulator instruction using
Base Index addressing for the source operand.

The four instruction formats are shown in Tables
B-1 through B-4. Within each format, several
different configurations are possible, depending
on whether the instruction involves addressing
mode escape bytes, addresses, displacements, or
immediate data. In Tables B-1 through B-4, the
symbol "A.esc" is used to indicate the presence of
an addressing mode escape byte, "disp." is an
abbreviation for displacement, "addr." is an
abbreviation for address, and "temp." is an
abbreviation for template. Templates in EPU
instructions are four-byte fields that include the
bit encodings that specify EPU operation.

8-1

Table B-1. Format 1Instruction Encodings

Example instruction

Instruction Format Assembly Machine Code (Hex)
opcode LDAC 79
opcode 2-byte address LD A, (addr) 3A addr(low) addr(high)
opcode 1-byte displacement DJNZ addr 10 disp
opcode immediate LDE,n IEn
Aesc opcode LD A,(HL + IX) DD 79
A.esc opcode 2-byte address LD IX,(addr) DD 2A addr(low) addr(high)
A.esc opcode 1-byte displacement LD A(IX + d) DD 7E disp
A.esc opcode 2-byte displacement LD A(IX + dd) FD 79 d(low) d(high)
A.esc opcode immediate LD IX,nn DD 21 n({low) n(high)
A.esc opcode 2-byte address immediate LD (addr),n DD 3E addr(low) addr(high) n
A.esc opcode 1-byte displacement immediate LD (IY + d),n FD36dn ’
A.esc opcode 2-bytedisplacement immediate LD <addr>,n FD 06 disp(low) disp(high) n
Table B-2. Format 2 Instruction Encodings
Example instruction
Instruction Format Assembly Machine Code (Hex)
ED opcode MULT AB EDCO
ED opcode immediate SC nn ED 71 n(low) n(high)
ED opcode 2-byte address LD BC,(addr) ED 4B addr{low) addr(high)
ED opcode 2-byte displacement LD (HL + dd),A ED 3B d(low) d(high)
A.esc ED opcode MULT AlY FDEDES8
Aescc ED opcode 2-byte address MULT A,(addr) DD ED F8 addr({low) addr(high)
A.esc ED opcode 1-byte displacement MULT A(lY + d) FDEDF8d
A.esc ED opcode 2-byte displacement LD XY + dd) DD ED 34 d(low) d(high)
A.esc ED opcode 2-byte immediate MULTUW HL,nn FD ED F3 n(low) n(high)
Table B-3. Format 3 Instruction Encodings
Example Instruction
Instruction Format Assembly Machine Code (Hex)
CB opcode RLC (HL) CB06
A.esc CB 1-bytedisplacement opcode RCL(IX + d) DD CBd 06
Table B-4. Format 4 Instruction Encodings
Example Instruction
Instruction Format Assembly Machine Code (Hex)
ED opcode 4-byte template EPU « (HL) ED A6 temp1 temp2 temp3 temp4
ED opcode 2-byte displacement 4-byte template EPU <« (HL + dd) ED BC d(low) d(high) temp1 temp2 temp3 temp4
ED opcode 2-byte address 4-byte template EPU +(addr) ED A7 addr(low) addr(high) temp1 temp2 temp3 temp4

Appendix C.
Instructions in Alphabetic Order

SOURCE CODE
ADC A,(HL)

ADC A, (HL+IX)
ADC A,(HL+lY)
ADC A,(HL+1122H)
ADC A,(IX+1Y)
ADC A, (IX+55H)
ADC A,(IX+1122H)
ADC A,(IY+55H)
ADC A,(IY+1122H)
ADC A,(PC+1122H)
ADC A,(SP+1122H)
ADC A,(3344H)
ADC AA

ADC AB

ADC AC

ADC AD

ADC AE

ADC AH

ADC A,XH

ADC A,IXL

ADC A|IYH

ADC A,YL

ADC AL

ADC' A,66H

ADC HL,BC

ADC HL,DE

ADC HLHL

ADC. HL,SP

ADC IX,BC

ADC IX,DE

ADC IX,IX

ADC IX,SP

ADC IY,BC

ADC IY,DE

ADC IV,IY

ADC IY,SP

ADD A,(HL)

ADD A,(HL+IX)
ADD A,(HL+Y)
ADD A (HL+1122H)
ADD A,(IX+lY)
ADD A, (IX+55H)
ADD A,(IX+1122H)
ADD A,(IY+55H)
ADD A,(IY+1122H)
ADD A,(PC+1122H)
ADD A,(SP+1122H)
ADD A,(3344H)
ADD AA

ADD AB

ADD AC

OBJECT CODE SOURCE CODE OBJECT CODE
8E ADD AD 82
DD89 ADD AE 83
DD3A ADD AMH 84
FD8B2211 ADD A,IXH DD84
DDSB ADD A,XL DD85
DDSES5 ADD A|YH FD84
FD892211 ADD AYL FD85
FDSESS5 ADD AL 85
FD8A2211 ADD A,66H C666
FD882211 ADD HLA ED6D
DD882211 ADD HL,BC 09
DD8F4433 ADD HL,DE 19
8F ADD HLHL 29
88 ADD HL,SP 39
89 ADD XA DDED6D
- 8A ADD IX,BC DDO09
8B ADD IX,DE DD19
8C ADD IX,IX DD29
DDSC ADD IX,SP DD39
DD8D ADD IY,A FDED6D
FDSC ADD IY,BC FD09
FDSD ADD IY,DE FD19
8D ADD IY,IY FD29
CE66 ADD IV, SP FD39
ED4A ADDW HL,(HL) DDEDC6
ED5A ADDW HL,(IX+1122H) FDEDC6221i
EDGA ADDW HL,(IY+1122H) FDEDD62211
ED7A ADDW HL,(PC+1122H) DDEDF62211
DDED4A ADDW HL,(3344H) DDEDD64433
DDEDSA ADDW HL,BC EDC6
DDED6A ADDW HL,DE EDD6
DDED7A ADDW HL,HL EDE6
FDED4A ADDW HL,IX DDEDE6
FDEDSA ADDW HL,IY FDEDE6
FDED6A ADDW HL,SP EDF6
FDED7A ADDW HL,3344H FDEDF64433
86 AND A,(HL) A6
DD81 AND A, (HL+IX) DDA1
DD82 AND A,(HL+lY) DDA2
FD832211 AND A,(HL+1122H) FDA32211
DD83 AND A,(IX+1Y) DDA3
DD8655 AND A, (IX+55H) DDAG655
FD812211 AND A,(IX+1122H) FDA12211
FD8655 AND A,(IY+55H) FDAG55
FD822211 AND A,(IY+1122H) FDA22211
FD802211 AND A,(PC+1122H) FDAO02211
DD802211 AND A,(SP+1122H) DDA02211
DD874433 AND A,(3344H) DDA74433
87 AND AA A7
80 ‘AND AB A0
81 AND AC AL

SOURCE CODE

AND
AND
AND
AND
AND
AND
AND .
AND
AND
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT .
BIT .
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

AD
AE
AH
A,IXH
AIXL
AIYH
AlYL
AL

- A,66H

0,(HL)
0,(IX+55H)
0,(IY+55H)
0A
0B

0,C

0D

0E

0H

oL

1,(HL)
1,(1X+55H)
1,(IY+55H)
1A

1,8

1,¢

1,0

1,E

1,H

1L

2,(HL)
2,(1X+55H)
2,(IY+55H)
2,A

2,8

2,C

2D

2E

2H

2L

3,(HL)
3,(1X+55H)
3,(1Y+55H)
3A

3B

3.C

3D

3E

3H

3L

4,(HL)
4,(1X+55H)
4,(1Y+55H)
4A

4B

4C

4D

4E

4H

4L

5,(HL)

OBJECT CODE
A2

A3

A4

DDA4
DDAS
FDA4
FDAS

A5

E666

CB46
DDCB5546
FDCB5546
CcB47
CB40
CB41

CB42
CB43
CB44
cB45
CB4E
DDCBS54E
FDCB554E
CB4F

. CB48

CB49
CB4A
CB4B
cB4C
CB4D
CBS6
DDCB5556
FDCB5556
CBS57
CB50
CBS1
CB52
CBS53
CBS4
CBS5
CBSE
DDCBSS55E
FDCBS55E
CBSF
CB58
CB59
CBSA
CBSB
CB5C
CBSD
CB66
DDCB5566
FDCBE566
CcB67
CB60
CB61
CB62
CB63
CB64
CB65
CB6E

SOURCE CODE

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT -

BIT
BIT
BIT
BIT
BIT
BIT
BIT
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

- CALL

5,(IX+55H)
5,(1Y+55H)
5,A

6,(IX+55H)
6,(1Y+55H)

6L
7,(HL)

" 7,(1X+55H)

7,(1Y+55H)

7A

78

7.C

7.D

7E

7H

7L

(HL)
(PC+1122H)
C,(HL)
C,(PC+1122H)
C,3344H
M,(HL)
M,(PC+1122H)
M,3344H
NC,(HL)
NC,(PC+1122H)
NC,3344H
NZ,(HL)
NZ,(PC+1122H)
NZ,3344H
P,(HL)
P,(PC+1122H)
P3344H
PE,(HL)
PE,(PC+1122H)
PE,3344H

PO, (HL)
PO,(PC+1122H)
PO,3344H
Z,(HL)
Z,(PC+1122H)
Z,3344H

3344H

A,(HL)
A,(HL+IX)
A,(HL+1Y)

OBJECT CODE
DDCBS556E
FDCB556E

CB6F

CB68

'CB69

CB6A
CB6B
CB6C
CB6D
CB76 .
DDCB5576
FDCB5576
CB77
CB70
CB71
CBT2
CB73
CB74
CB7S
CB7E
DDCB5S7E
FDCBSS7E
CBTF
cB78
CB79
CB7A

.CB7B

CB7C
CB7D
DDCD
FDCD2211
DDDC
FDDC2211
DC4433
DDFC
FDFC2211
FC4433°
DDD4
FDD42211
D44433
DDC4
FDC42211
C44433
DDF4
FDF42211
F44433
DDEC
FDEC2211
EC4433
DDE4
FDE42211
E44433
DDCC
FDCC2211
CC4433
CD4433

SOURCE CODE

CP A,(HL+1122H)
CP A(IX+IY)

CP A{IX+55H)
CP A,(IX+1122H)
CP A(IY455H)
CP A,(IY+1122H)
CP A,(PC+1122H).
CP A,(SP+1122H)
CP A,(3344H)

P AA

CcP AB

P AC .

CP AD

CP AE

CP AH

CP AJXH

P AJXL

CP AJYH

P AIVL

P AL

CP AG6H

cPD

CPDR

cPl

CPIR

CcPL

CPW HL,(HL)

CPW HL,(IX+1122H)
CPW HL,(IY+1122H)
CPW HL,(PC+1122H)
CPW HL,(3344H)
CPW HL,BC

CPW HL,DE

CPW HLHL

CPW HL,X

CPW HLJIY

CPW HLSP

CPW HL,3344H
DAA

DEC (HL)

DEC (HL+IX)

DEC (HL+lY)

DEC (HL+1122H)
DEC (IX+1Y)

DEC (IX+55H)
DEC (IX+1122H)
DEC (IY+55H)
DEC (IY+1122H)
DEC (PC+1122H)
DEC (SP+1122H)
DEC (3344H)

DEC A

DEC B

DEC BC

DEC C

DEC D

DEC DE

DEC E

DEC H

DEC HL

OBJECT CODE
FDBB2211
DDBB

DDBES5
FDB92211
FDBE55
FDBA2211
FDB82211
DDB82211
DDBF4433

FDEDC72211
FDEDD72211 -
DDEDF72211
DDEDD74433
EDC7

EDD?7

EDE?7
DDEDE?
FDEDE7
EDF7
FDEDF74433

FD1D2211
DD1D
DD3555
FDOD2211
FD3555
FD152211
FD052211
DD052211
DD3D4433

SOURCE CODE
"DEC IX '

_ DEC IXH
DEC IXL
DEC IY
DEC IYH
DEC IYL
DEC L
DEC SP
DECW (HL)
DECW (IX+1122H)
DECW (IY+1122H)
DECW (PC+1122H)
DECW (3344H)
DECW BC
DECW DE
DECW HL
DECW IX
DECW IY
DECW SP
DI
DI 66H
DIV HL,(HL)
DIV HL,(HL+IX)
DIV HL,(HL+lY)
DIV HL,(HL+1122H)
DIV HL,(IX+Y)
DIV HL,(IX+55H)
DIV HL,(IX+1122H)
DIV HL,(IY+55H)
DIV HL,(IY+1122H)
DIV HL,(PC+1122H)
DIV HL,(SP+1122H)
DIV HL,(3344H)
DIV HLA
DIV HLB
DIV HLC
DIV HLD
DIV HLE
DIV HLH
DIV HLIXH
DIV HL,XL
DIV HLIVH
DIV HLIVL
DIV HLL
DIV . HL,66H
DIVU HL,(HL)
DIVU - HL,(HL+IX)
DIVU HL,(HL+1Y)
DIVU HL,(HL+1122H)
DIVU HL,{IX+Y)
DIVU HL,(IX+55H)
DIVU HL,(IX+1122H)
DIVU HL,(IY+55H)
DIVU HL,(IY+1122H)
DIVU HL,(PC+1122H)
DIVU HL,(SP+1122H)
DIVU HL,(3344H)
DIVU HL,A
DIVU HL,B
DIVU HLC

OBJECT CODE

DD2B
DD25
DD2D
FD2B
FD25

FD2D
20

. 3B

DDOB

FD0B2211
FD1B2211
DD3B2211
DD1B4433

DDEDD4
FDEDDC2211
DDEDDC
DDEDF455
FDEDCC2211
FDEDF455
FDEDD42211
FDEDC42211
DDEDC42211
DDEDFC4433
EDFC

EDC4

EDCC

EDD4

EDDC

EDE4
DDEDE4
DDEDEC
FDEDE4
FDEDEC
EDEC
FDEDFC66
EDFS5
DDEDCD
DDEDDS
FDEDDD2211
DDEDDD
DDEDF555
FDEDCD2211
FDEDF555
FDEDDS52211
FDEDC52211
DDEDC52211
DDEDFD4433
EDFD

EDC5

EDCD

C-3

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
DIVU HLD EDD5 EX A,(PC+1122H) FDEDO72211
DIVU HLE EDDD EX A,(SP+1122H) DDED072211
DIVU HLH EDES EX A,{3344H) DDED3F4433
DIVU HL,IXH DDEDES EX AA ED3F
DIVU HL,IXL DDEDED EX AB EDO7
DIVU HL,IYH FDEDES EX AC EDOF
DIVU HL,IVL ' FDEDED EX AD ED17
DIVU HLL. EDED EX AE EDIF
DIVU HL,66H FDEDFD66 EX AH ED27
DIVUW DEHL,(HL) DDEDCB EX AJXH DDED27
DIVUW DEHL,(IX+1122H) FDEDCB2211 "EX AJXL DDED2F
DIVUW DEHL,(IY+1122H) FDEDDB2211 " EX AJIYH . FDED27 -
DIVUW DEHL,(PC+1122H) DDEDFB2211 EX AIYL FDED2F
DIVUW DEHL,(3344H) DDEDDB4433 EX AL ED2F
DIVUW DEHL,BC EDCB EX AFAF 08

DIVUW DEHL,DE EDDB EX DEHL EB

DIVUW DEHL,HL EDEB EX HL EDEF
DIVUW DEHL,IX DDEDEB EX IXHL DDEB
DIVUW DEHL,IY FDEDEB EX IV,HL FDEB
DIVUW DEHL,SP EDFB EXTS A ED64
DIVUW DEHL,3344H " FDEDFB4433 EXTS HL ED6C
DIVW DEHL,(HL) DDEDCA EXX D9

DIVW DEHL,{IX+1122H) FDEDCA2211 HALT 76

DIVW DEHL,(IY+1122H) FDEDDA2211 M 0 ED46
DIVW DEHL,(PC+1122H) DDEDFA2211 M1 ED56
DIVW DEHL,(3344H) DDEDDA4433 M 2 EDSE
DIVW DEHL,BC EDCA M 3 ED4E
DIVW DEHL,DE EDDA IN (HL+IX),(C) DDED48
DIVW DEHL,HL EDEA IN (HLHIY),(C) DDED50
DIVW DEHL,IX DDEDEA IN (HL+1122H),(C) FDED582211
DIVW DEHL,IY FDEDEA IN (1X41Y),(C) DDED58
DIVW DEHL,SP EDFA IN (IX+1122H),(C) FDEDA482211
DIVW DEHL,3344H FDEDFA4433 IN (IY+1122H),(C) FDED502211
DJNZ 77H 1075 IN (PC+1122H),(C) FDED402211
El FB IN (SP+1122H),(C) DDED402211
El 66H ED7F66 IN (3344H),(C) DDED784433
EPUF ED97 IN A{C) ED78

EPUI ED9F IN A,(66H) DB66
EPUM (HL) EDA6 IN B,(C) ED40
EPUM (HL+IX) EDSC IN C(C) ED48
EPUM (HL+1Y) ED94 IN D) ED50
EPUM (HL+1122H) EDBC2211 IN E(C) ED58
EPUM (IX+1Y) ED9C IN H,(C) ED60
EPUM (IX+1122H) EDAC2211 IN HL(C) EDB7
EPUM (IY+1122H) EDB42211 IN IXH,(C) DDED60
EPUM (PC+1122H) EDA42211 IN IXL,(C) DDED68
EPUM (SP+1122H) ED842211 IN IYH,(C) FDED60
EPUM (3344H) EDA74433 IN IYL(C) FDED68
EX (SP),HL E3 IN L(C) ED68

EX (SP),IX DDE3 INC (HL) 34

EX. . (SP)Y FDE3 INC (HL+IX) DDOC

EX A,(HL) ED37 INC (HL+1Y) DD14

EX A,(HL+IX) DDEDOF INC (HL+1122H) FD1C2211
EX A,(HL+1Y) DDED17 INC (IXHIY) DD1C

EX A,(HL+1122H) FDED1F2211 INC (IX+55H) DD3455
EX A(IX+IY) DDED1F INC (IX+1122H) FDOC2211
EX A,(IX+55H) DDED3755 INC * (IY+55H) FD3455

EX A,(IX+1122H) FDEDOF2211 INC (IY+1122H) FD142211
EX A,(IY+55H) FDED3755 INC (PC+1122H) FDO042211
EX A(IY+1122H) FDED172211 INC (SP+1122H) DD042211

SOURCE CODE

INC (3344H)
INC A
INC B
INC BC
INC C
INC D
INC DE
INC E
INC H
INC HL
INC IX
INC IXH
INC IXL
INC 1Y
INC IYH
INC VL
INC L
INC SP
INCW (HL)

INCW (IX+1122H)
INCW (IY+1122H)
INCW (PC+1122H)
INCW (3344H)

INCW BC
INCW DE
INCW HL
INCW IX
INCW 1Y
INCW SP

IND

INDR

INDRW

INDW

INI

INIR

INIRW

INIW

INW HL,(C)
JAF 7TH

JAR TTH

» o (HL)
B (X

» ()

P (PC+1122H)
JP C(HL)
JP C,(PC+1122H)
JP C3344H
JP M,(HL)
JP M, (PC+1122H)
JP M,3344H
JP NC,(HL)

JP NC,(PC+1122H)
JP NC,3344H

JP NZ,(HL)

P NZ,(PC+1122H)
JP NZ,3344H

JP P,(HL)

JP P,(PC+1122H)
JP P3344H

P PE,(HL)

OBJECT CODE
DD3C4433
3C

04

03
0C

DDO03

FD032211
FD132211
DD332211
DD134433

FDE9
FDC32211
DDDA
FDDA2211
DA4433
DDFA
FDFA2211
FA4433
DDD2
FDD22211
D24433 .
DDC2
FDC22211
C24433
DDF2
FDF22211
F24433
DDEA

SOURCE CODE

P PE,(PC+1122H)
JP PEZ3344H

JP . PO,(HL)

JP PO,(PC+1122H)
JP PO3344H

P Z,(HL)
I Z,(PC+1122H)
I Z3344H
JP 3344H
JR CIMH
JR NC7TMH
JR NZ7TH
JR Z7MH
JR TMH

LD (BC)A
LD (DE)A
LD (HL)A
LD (HL),B
LD (HL),BC
LD (HL),C
LD (HL),D
LD (HL),DE
LD (HL)E
LD (HL)H
LD (HL),HL
LD (HL)L
LD (HL),SP
LD (HL),66H

LD (HL+IX),A

LD (HL+IX)HL
LD (HL+IX),IX

LD (HL+IX))Y

LD (HL+IX),66H
LD (HL+IY),A

LD (HL+IY)HL
LD (HLHIY),IX

LD (HLHIY)lY

LD (HL+IY),66H
LD (HL+1122H),A
LD (HL+1122H)HL
LD (HL+1122H),IX
LD (HL+1122H)lY
LD (HL+1122H),66H
LD (IXHY)A

LD (IX+IY)HL

LD (IX+Y),IX

LD (IX+Y),lY

LD (IX+1Y),66H
LD (IX+55H),A

LD (IX+55H),B

LD (IX+55H),BC
LD (IX+55H),C

LD (IX+55H),D

LD (IX+55H),DE
LD (IX+55H),E

LD (IX+55H),H

LD (IX+55H),HL
LD (IX+55H),L

LD (IX+55H),SP
LD (IX+55H),66H

OBJECT CODE
FDEA2211
EA4433
DDE2
FDE22211
E24433
DDCA
FDCA2211
CA4433
C34433
3875

3075

2075

2875

1875

02

DD1666
ED3B2211
ED3D2211
DDED3D2211
FDED3D2211
FD1E221166
ED1B

EDID
DDED1D
FDED1D
DD1E66
DD7755
DD7055
DDEDOE55
DD7155
DD7255
DDED1ESS
DD7355
DD7455
DDED2ES5
DDT7555
DDED3ES5
DD365566

SOURCE CODE

LD
LD

(1X+1122H),A
(IX+1122H),HL
(IX+1122H),1X
(1X+1122H),1Y
(IX+1122H),66H
(IY+55H),A
(1Y+55H),B
(1Y+55H),BC
(1Y+55H),C
(1Y+55H),0
(1Y+55H),DE
(1Y+55H),E
(IY+55H),H
(1Y+55H),HL
(1Y+55H),L
(1Y+55H),5P
{1Y+55H),66H
(1Y+1122H),A
(1Y+1122H) HL
(IY+1122H),IX
{IY+1122H), 1Y
(1Y+1122H),66H
(PC+1122H),A
(PC+1122H) HL
(Pc+1122H) 1X
(PC+1122H),IY
(PC+1122H),66H
(SP+1122H),A
(SP+1122H) HL
(SP+1122H),1X
(SP+1122H) I
(SP+1122H),66H
(3344H),A
(3344H),BC
(3344H),DE
(3344H) HL
(3344H),1X
(3344H),1Y
(3344H),sP
(3344H),66H
A,(BC)

A,(DE)

A,(HL)
A,(HL+IX)
A,(HL+1Y)
A,(HL+1122H)
A,(IX+1Y)

A, (IX+55H)
A,(IX+1122H)
A,(1Y+55H)
A,(1Y+1122H)
A,(PC+1122H)
A,(SP+1122H)
A,(3344H)

AA

AB

AC

AD

AE

AH

OBJECT CODE
ED2B2211
ED2D2211
DDED2D2211
FDED2D2211
FDOE221166
FD7785
FD7055
FDEDOES5
FD7155
FD7255
FDED1E55
FD7355
FD7455
FDED2ES5
FD7555
FDED3E55
FD365566
ED332211
ED352211
DDED352211
FDED352211
FD16221166
ED232211
ED252211
DDED252211
FDED252211
FD06221166
ED032211
ED052211
DDEDO052211
FDED052211
DD06221166
324433
ED434433
ED534433
224433
DD224433
FD224433
ED734433
DD3E443366

DD7A
FD7B2211
DD78B
DD7ES5
FD792211
FD7E55
FD7A2211
FD782211
DD782211
3A4433

SOURGE CODE
LD Al

LD AJIXH

LD AIXL

LD AJYH

LD ANVL

LD AL

LD AR

LD A66H

LD B,(HL)

LD B,(IX+55H)
LD B,(IY+55H)
LD ,

LD BB

LD BC

LD BD

LD BE

LD BH

LD B,IXH

LD B,IXL

LD B,YH

LD B,YL

LD BL

LD B,66H

LD BC,(HL)
LD BC,(IX+55H)
LD BC,(IY+55H)
LD BC,(3344H)
LD BC,3344H
LD C,(HL)

LD C,(IX+55H)
LD C,(IY+55H)
LD CA

LD ¢B

LD ¢c

LD ¢D

LD CE

LD CH

LD C,IXH

LD CIXL

LD C,IYH

LD CivL

LD cL

LD C,66H

LD D,(HL)

LD D,(IX+55H)
LD D,(IY+55H)
LD DA

LD DB

LD DC

LD DD

LD DE

LD DH

LD D,IXH

LD D,IXL

LD D,IYH

LD D,IYL

tb DL

LD D,66H

LD DE,(HL)

LD DE,(IX+55H)

OBJECT CODE
ED57

DDIC

DD7D

FD7C

FD7D

. 1D

ED5F
3E66

46
DD4655
FD4655

ED06
DDED0655
FDEDO0655
ED4B4433
014433

AE
DDA4ES55
FD4ESS

DD5655

DDED1655

C-6

SOURCE CODE

DE,
DE,
DE,

(1Y+55H)
(3344H)
3344H

E,(HL)
E,(1X+55H)

E(l

Y-+55H)

H,66H
HL,(HL)

HL,
HL,
HL,
HL,
HL,
HL,
HL,
HL,
HL,
HL,

(HL+1X)
(HL+1Y)
(IX+1Y)
(1X+55H)
(1X+1122H)
(1Y+55H)
(1Y+1122H)
{PC+1122H)
(SP+1122H)
(3344H)

HL,3344H

LA
X,
X,

X,

HL+IX)
HL+1Y)
HL+1122H)
IX+1Y)
IX+1122H)
1¥+1122H)
PC+1122H)
SP-+1122H)

,(3344H)

1X,3344H

IXH
IXH
IXH
IXH

A
,B
,C
D

IXH,E

IXH
IXH
IXH

JIXH
JIXL
,66H

OBJECT CODE
FDED1655
ED5B4433
114433 '

ED26

EDOC

ED14

ED1C
DDED2655
ED2C2211
FDED2655
ED342211
ED242211
ED042211
2A4433
214433

ED47
DDEDOC -
DDED14
DDED3C2211
DDED1C
DDED2C2211
DDED342211
DDED242211
DDED042211
DD2A4433
DD214433
DDé67

DD60

DD61

DD62

DD63

'DD64

DD65
DD2666

SOURCE CODE

LD IXLA

LD IXLB

LD IXLC

LD IXLD

LD IXLE

LD IXL,IXH

LD IXLIXL

LD IXL,66H

LD IY,(HL+IX)

LD IY,(HL+IY)

LD IY,(HL+1122H)
LD IV,(IX+1Y)

LD 1Y,(IX+1122H)
LD 1Y,(IY+1122H)
LD IY,(PC+1122H)
LD IV,(SP+1122H)
LD 1Y,3344H

LD IYHA

LD IYHB

LD IYHC

LD IYHD

LD IYHE

LD IYH,IYH

LD IYHIYL

LD IYH,66H

LD IYLA

LD VLB

LD IVLC

LD IvLD

LD IYLE

LD IYLIVH

LD IYLiYL

LD IYL,66H

LD L,(HL)

LD L,(IX+55H)

LD L,(IY+55H)

LD LA

LD LB

LD LC

LD LD

LD LE

LD LH

LD L

LD L,66H

LD RA

LD SP,(HL)

LD SP,(IX+55H)
LD SP,(IY+55H)
LD SP,(3344H)

LD SPHL

LD SPX

LD SPIY

LD SP,3344H

LDA HL,(HL+IX)
LDA HL,(HL+lY)
LDA HL,(HL+1122H)
LDA HL,(IX+lY)
LDA HL,(IX+1122H)
LDA HL,(IY+1122H)
LDA HL,(PC+1122H)

OBJECT CODE

DD6F

DDé68

DD69

DD6A

DD6B

DD6C

DD6D
DD2E66
FDEDOC
FDED14
FDED3C2211
FDED1C
FDED2C2211
FDED342211
FDED242211
FDED042211
FD214433
FD67

FD60

FD61

FD62

FD63

FD64

FD65
FD2666
FDGF

FD68

FD69

FD6A

FD6B

FD6C

FD6D
FD2E66

ED36
DDED3655
FDED3655
ED7B4433
F9

DDF9
FDF9
314433
EDOA
ED12
ED3A2211
ED1A
ED2A2211
ED322211
ED222211

Cc-7

SOURCE CODE
LDA HL,(SP+1122H)
LDA HL,(3344H)
LDA IX,(HL+IX)
LDA IX,(HL+1Y)
LDA IX,(HL+1122H)
LDA IX,(IX+1Y)
LDA IX,(IX+1122H)
LDA IX,(IY+1122H)
LDA IX,(PC+1122H)
LDA IX,(SP+1122H)
LDA IX,(3344H)
LDA IY,(HL+IX)
LDA 1Y,(HL+IY)
LDA IY,(HL+1122H)
LDA IY,(IX+lY)
LDA IY,(IX+1122H)
LDA 1Y,{IY+1122H)
LDA IY,(PC+1122H)
LDA IY,(SP+1122H)
LDA 1Y,(3344H)
LDCTL (C),HL
LDCTL (C),IX
LDCTL (C),lY
LDCTL HL,(C)
LDCTL HL,USP
LDCTL I1X,(C)
LDCTL IX,USP
LDCTL IY,(C)
LDCTL IY,USP
LDCTL USP,HL
LDCTL USP,IX
LDCTL USPY
LDD

LDDR

LDI

LDIR '

LDUD (HL),A
LDUD (IX+55H),A
LDUD (IY+55H),A
LDUD A,(HL)

LDUD A, (IX+55H)
LDUD A, (IY+55H)
LDUP (HL),A
LDUP {IX+55H),A
LDUP (IY+55H),A
LDUP A,(HL)

LDUP A, (IX+55H)
LDUP A,(IY+55H)

LDW (HL),BC
LDW (HL),DE
LDW (HL),HL
LDW (HL),SP

LDW (HL),3344H
LDW (HL+IX),HL
LDW (HL+IX),IX
LDW (HL+IX))Y
LDW (HL+IY),HL
LDW (HL-+HY),IX
LDW (HL+IY),lY
LDW (HL+1122H)HL

OBJECT CODE
ED022211
214433
DDEDOA
DDED12
DDED3A2211
DDED1A
DDED2A2211
DDED322211
DDED222211
DDED022211
DD214433
FDEDOA
FDED12
FDED3A2211
FDED1A
FDED2A2211
FDED322211
FDED222211
FDED022211
FD214433
EDG6E
DDED6E
FDEDSGE
ED66

ED87
DDED66
DDED87
FDEDG6
FDEDS7
EDSF
DDEDSF
FDEDSF
EDAS

EDBS8

EDAO

EDBO

EDSE
DDEDSESS
FDEDSES55
ED86
DDED8655
FDEDB655
ED9E
DDED9YE5S
FDEDYESS
ED96
DDED9655
FDED9655
EDOE

ED1E

ED2E

ED3E
DD014433
EDOD
DDEDOD
FDEDOD
ED15
DDED15
FDED15
ED3D2211

SOURCE CODE

LDW (HL+1122H),IX
LDW (HL+1122H),lY
LDW (IX+IY),HL
LDW (IX+IY),IX
LDW (IX+lY),IY
LDW (IX+55H),BC
LDW (IX+55H),DE
LDW (IX+55H),HL
LDW (IX+55H),SP
LDW (IX+1122H),HL
LDW (IX+1122H),IX
LDW (IX+1122H),IY
LDW (IY+55H),BC
LDW (IY+55H),DE
LDW (IY+55H),HL
LDW (IY+55H),SP

LDOW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDwW
LDW
LDW
LDW
LDW
LbwW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW

(1Y+1122H),HL
(IY+1122H),1X
(IY+1122H) 1Y
(PC+1122H),HL
(PC+1122H),IX
(PC+1122H),IY
(PC+1122H),3344H
(SP+1122H),HL
(SP+1122H),IX
(SP+1122H),IY
(3344H),BC
(3344H),DE
(3344H) HL
(3344H),1X
(3344H),lY
(3344H),sP
(3344H),8899H
BC,(HL)
BC,(IX+55H)
BC,(IY+55H)

'BC,(3344H)

BC,3344H
DE,(HL)

DE, (IX+55H)
DE, (IY+55H)
DE, (3344H)
DE,3344H
HL,(HL)

HL, (HL+IX)
HL, (HL+1Y)
HL,(HL+1122H)
HL, (IX+1Y)

HL, (IX+55H)
HL, (1X+1122H)
HL,(1Y+55H)
HL, (1Y+1122H)
HL,(PC+1122H)
HL,(SP+1122H)
HL,(3344H)
HL,3344H

X, (HL+1X)
IX,(HL+1Y)
IX,(HL+1122H)
X, (IX+1Y)

OBJECT CODE
DDED3D2211
FDED3D2211
ED1D
DDEDID
FDED1D
DDEDOE55
DDED1E55
DDED2E55
DDED3E55
ED2D2211
DDED2D2211
FDED2D2211
FDEDOE5S
FDED1ES5
FDED2E55
FDED3E55
ED352211
DDED352211
FDED352211
ED252211
DDED252211
FDED252211
DD3122114433
EDO052211
DDED052211
FDED052211
ED434433
ED534433
224433
DD224433
FD224433
ED734433
DD1144339988
EDO6
DDED0655
FDEDO0655
ED4B4433
014433

ED16
DDED1655
FDED1655
ED5B4433
114433

ED26

EDOC

ED14
ED3C2211
EDIC
DDED2655
ED2C2211
FDED2655
ED342211
ED242211
ED042211
2A4433
214433
DDEDOC
DDED14
DDED3C2211
DDED1C

SOURCE CODE
LDW IX,(IX+1122H)
LDW IX,(IY+1122H)
LDW IX,(PC+1122H)
LDW IX,(SP+1122H)
LDW IX,(3344H)
LDW IX,3344H
LDW IY,(HL+IX)
LDW 1Y, (HL+IY)
LDW IY,(HL+1122H)
LDW IY,(IX+1Y)
LDW 1Y, (IX+1122H)
LDW IY,(IY+1122H)
LDW IY,(PC+1122H)
LDW IY,(SP+1122H)
LDW IY,(3344H)
LDW 1Y,3344H
LDW SP,(HL)

LDW SP,(IX+55H)
LDW SP,(IY+55H)
LDW SP,(3344H)
LDW SPHL

LDW SP,IX

LDW SPIY

LDW SP,3344H
MEPU (HL)

MEPU (HL+IX)
MEPU (HL+1Y)
MEPU (HL+1122H)
MEPU (IX+lY)
MEPU (IX+1122H)
MEPU (1Y+1122H)
MEPU (PC+1122H)
MEPU (SP+1122H)
MEPU (3344H)
MULT A,(HL)

MULT A,(HL+IX)
MULT A,(HL+1Y)
MULT A,(HL+1122H)
MULT A,(IX+Y)

MULT A, (IX+55H)
MULT A, (IX+1122H)
MULT A,(IV455H)
MULT A,(IY+1122H)

MULT A,(PC+1122H)
MULT A,(SP+1122H)
MULT A,(3344H)
MULT AA

MULT AB

MULT AC

MULT AD,

MULT ‘AE

MULT AH

MULT A,IXH

MULT A,IXL

MULT A,IYH

MULT AIYL

MULT AL

MULT A,66H
MULTUA,(HL)

'OBJECT CODE

DDED2C2211
DDED342211
DDED242211
DDED042211
DD2A4433
DD214433
FDEDOC
FDED14
FDED3C2211
FDED1C
FDED2C2211

' FDED342211
FDED242211%

FDED042211

. FD2A4433

FD214433
ED36
DDED3655
FDED3655
ED7B4433

F9

DDF9

FDF9

314433

EDAE

EDSD

ED95
EDBD2211
ED9D
EDAD2211
EDB52211
EDA52211
ED852211
EDAF4433
EDFO
DDEDCS
DDEDDO
FDEDD82211
DDEDD8
DDEDF055
FDEDC82211
FDEDF055
FDEDDO02211
FDEDC02211
DDEDC02211
DDEDF84433
EDF8-
EDCO

EDC8

EDDO

EDDS8

EDEO
DDEDEO
DDEDES
FDEDEO
FDEDES
EDES
FDEDF866
EDF1
DDEDC9

SOURCE CODE
MULTU A,(HL+1Y)
MULTU A,(HL+1122H)
MULTU A, (IX+Y)
MULTU A, (IX+55H)
MULTU A,(IX+1122H)
MULTU A,(IY455H)
MULTU A,(IY+1122H)
MULTU A,(PC+1122H)
MULTU A,(SP+1122H)
MULTU A,(3344H)
MULTU AA

MULTU AB

MULTU AC

MULTU AD

MULTU AE

MULTU AMH

MULTU A,XH
MULTU A,IXL
MULTU A,IYH
MULTU AJVL
MULTU = AL

MULTU A,66H
MULTUW HL,(HL)
MULTUW HL,(IX+1122H)

MULTUW
MULTUW
MULTUW
MULTUW
MULTUW
MULTUW
MULTUW
MULTUW
MULTUW
MULTUW
MULTW
MULTW
MULTW
MULTW
MULTW
MULTW
MULTW
MULTW
MULTW
MULTW
MULTW
MULTW
NEG

NEG

HL,(IY+1122H)
HL,(PC+1122H)
HL,(3344H)
HL,BC

HL,DE"

HLHL

HL,IX

HLIY

HL,SP
HL,3344H
HL,(HL)
HL,(IX+1122H)
HL,(1Y+1122H)
HL,(PC+1122H)
HL,(3344H)
HL,BC

HL,DE

HL,HL

HL,IX

HLIY

HL,SP
HL,3344H

A

HL

A,(HL)
A,(HL+1X)
A,(HL+1Y)
A,(HL+1122H)
A,(IX+1Y)
A,(IX+55H)

A, (IX+1122H)
A,(IY455H)
A,(IY+1122H)
A,(PC+1122H)
A,(SP+1122H)

OBJECT CODE

DDEDD1
FDEDD92211
DDEDD9
DDEDF155
FDEDC92211
FDEDF155
FDEDD12211
FDEDC12211
DDEDC12211
DDEDF94433
EDF9
EDC1
EDC9
EDD1
EDD9
EDE1
DDEDE1
DDEDE9
FDEDE1
FDEDE9Y
EDE9
FDEDF966
DDEDC3
FDEDC32211
iFDEDD32211
DDEDF32211
DDEDD34433
EDC3
EDD3
EDE3
DDEDE3
FDEDE3
EDF3
FDEDF34433
DDEDC2
FDEDC22211
FDEDD22211
DDEDF22211

~ DDEDD24433

EDC2
EDD2
EDE2
DDEDE2
FDEDE2
EDF2 '
FDEDF24433
ED44
EDAC

00

B6

DDB1
DDB2
FDB32211
DDB3
DDB655
FDB12211
FDB655
FDB22211
FDB02211
DDB02211

MULTUA, (HL+IX)

SOURCE CODE
OR A,(3344H)

OR AA
OR AB
OR AC
OR AD

_OR AE
OR AH
OR A,XH
OR A,XL
OR A|YH
OR AL
OR AL
OR A,66H
OTDR
OTDRW
OTIR
OTIRW

OUT (C),(HL+IX)
OUT (C),(HL+IY)
OUT (C),{HL+1122H)
OUT (C),{IX+Y)
OUT (C),(IX+1122H)
OUT (C),(IV+1122H)
OUT (C),(PC+1122H)
OUT (C),(SP+1122H)
OUT (C),(3344H)

OUT (C),A
ouT (C),B
ouT ()€
ouT ()0
OUT (C)€
OUT (C)H
OUT (C)HL
OUT (C),IXH
ouT (C),IXL
OUT (C),IYH
oUT (C),IvL
ouT (C)L
OUT (66H),A
ouTD
ouTDW

ouTI

ouTiw

OUTW (C),HL
PCACHE

POP (HL)

POP (PC+1122H)
POP (3344H)

POP AF
POP BC
POP DE
POP HL
POP IX
POP IY
PUSH (HL)

PUSH (PC+1122H)
PUSH (3344H)
PUSH AF

PUSH BC

PUSH DE

OBJECT CODE
DDB74433

FDED592211
DDED59

FDED492211
FDED512211
FDED412211
DDED412211

DDED794433

ED79
ED41
ED49
ED51
ED59
ED61
EDBF
DDED61
DDED69
FDED61
FDED69
ED69
D366
EDAB
EDSB
EDA3
ED83
EDBF
EDG5
DDC1
DDF12211
DDD14433

DDC5
DDF52211
DDD54433
F5

5

D5

SOURCE CODE

PUSH HL
PUSH IX

PUSH 1Y

PUSH 3344H
RES 0,(HL)
RES 0,(IX+55H)
RES 0,(IV+55H)
RES 0A

RES 0,8

RES 0,C

RES 0D

RES O

RES OH

RES oL

RES 1,(HL)
RES 1,(IX+55H)
RES 1,(IY+55H)
RES 1,A

RES 1,B

RES ~ 1,C

RES 1,D

RES 1,E

RES 1H

RES 1L

RES 2,(HL)
RES 2,(IX+55H)
RES 2,(IY+55H)
RES 2,A

RES 2B

RES 2,

RES 2,0

RES 2

RES 2H

RES 2L

RES 3,(HL)
RES 3,(IX+55H)
RES 3,(IY+55H)
RES 3,A

RES 3B

RES 3,C

RES 3D

RES 3,E

RES 3H

RES 3L

RES 4,(HL) -
RES 4,(IX+55H)
RES 4,(IY+55H)
RES - 4,A

RES 48

RES 4,C

RES 4D

RES 4F

RES 4H

RES 4L

RES 5,(HL)
RES 5,(IX+55H)
RES 5,(IY+55H)
RES 5,A

RES 5,8

RES 5,C

OBJECT CODE
E5

DDE5
FDES
FDF54433
CB86
DDCB5586
FDCB5586
CcB87

CcB80

CB81

CB82
cB83

CB84

CB85
CBSE
DDCBS58E
FDCB55SE

' CBSF

CB8s
B89
CBSA
CB3B
cBsC
CBSD
CB96
DDCB5596
FDCB5596
CB97
CB90
B9t
CB92
CB93
CB94
CB9S
CBYE
DDCBS59E
FDCBS559E
CBOF
CB9S
CB99
CBYA
CB9B
CBOC
CB9D
CBA6
DDCB55A6
FDCB55A6
CBA7
CBAO
CBA1
CBA2
CBA3
CBA4
CBAS
CBAE
DDCB55AE
FDCBS5AE
CBAF
CBA8
CBA9

SOURCE CODE OBJECT CODE , SOURCE CODE OBJECT CODE
RES 5D CBAA ‘ RR (IX+55H) DDCBS51E-
_RES S5, CBAB RR (IV+455H) FDCB551E
RES 5H CBAC RR A ' CBIF
RES 5L CBAD RR B CB18
RES 6,(HL) CBBS6 RR C CB19
RES 6,(IX+55H) DDCB55B6 RR D CB1A
RES 6,(IY+55H) FDCB55B6 RR E CB1B
RES . 6,A CBB7 RR H cBIC
RES 6,8 CBBO - RR L CBID
RES 6,C CBB1 RRA 1F

RES 6D cBB2 RRC (HL) CBOE
RES -6, .CBB3 RRC (IX+55H) DDCB550E
RES 6H CBB4 : RRC (IY+55H) FDCBS550E
RES 6L CBBS RRC A CBOF
RES 7,(HL) CBBE RRC B CBO8
RES 7,(1X+55H) DDCBS5BE RRC € CB09
RES 7,(IY+55H) FDCBS5SBE RRC D CBOA
RES 7,A CBBF RRC E cBoOB
RES 7,8 cBB8 RRC H CBOC
RES /7,C CBBY RRC L CBOD
RES 7,0 CBBA RRCA OF

RES 7,E CBBB RRD ED67
RES 7H cBBC " RST OOH 7

RES 7.l - CBBD RST O8H CF

RET 9 RST - 10H D7

RET C D8 RST 18H DF

RET M F8 RST 20H E7

RET NC DO RST 28H EF

RET NZ co RST 30H F7

RET P FO RST 38H FF

RET PE “E8 SBC A,(HL) 9E

RET PO’ EO . SBC A,(HL+IX) DD99
RET Z cs SBC A,(HL+lY) DD9A
RETI ED4D SBC A,(HL+1122H) FD9B2211
RETIL EDS5 SBC A, (IX+1Y) DD9B
RETN ED45 SBC A,(IX+55H) DDYES5
RL (HL) CB16 SBC A,(IX+1122H) FD992211
RL (IX+55H) DDCB5516 SBC A,(IV+55H) FDYESS5
RL . (IY+55H) FDCB5516 SBC A,(IV+1122H) FD9A2211
RL A cB17 SBC A,(PC+1122H) FD982211
RL B CB10 SBC A,(SP+1122H) DD982211
RL C CBi1 , SBC A,(3344H) DDYF4433
RL D CB12 SBC AA 9F

RL E CB13 SBC AB 98

RL H CB14 _ SBC AC 99

RL L CB15 SBC AD 9A

RLA 17 SBC AE 9B

RLC (HL) CBO6 SBC AM 9C

RLC (IX+55H) DDCBS506 SBC AJXH DDYC
RLC . (IY+55H) FDCB5506 - SBC AXL DD9D
RLC A CcBO7 SBC A|IYH FDOC
RLC B CB00 SBC A|YL FD9D
RLC C cBo1 SBC AL 9D

RLC D CB02 SBC A,66H DE66
RLC E cB03 SBC HL,BC ED42
RLC H CBO4 SBC HL,DE EDS2
RLC L CBO5 f SBC HLHL ED62
RLCA o7 SBC HL,SP ED72
RLD ED6F SBC IX,BC DDED42
RR (HL) CBI1E SBC IXDE . - ~ DDED52

c-1

SOURCE CODE

SBC
SBC
SBC
SBC
SBC
SBC
sC

SCF
SET
SET
SET

SET

SET
SET
SET
SET
SET
SET
SET
SET

SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

IX,1X

IX,SP
IY,BC
IY,DE
Iv,lY

IY,SP
3344H

0,(HL)
0,(1X+55H)
0,(1Y-+55H)
0,A

0,8

0,¢

0,0

0,E

0,H

oL

1,(HL)
1,(IX+55H)
1,(1Y+55H)
1,A

1,8

1,€

1,0

1,E

1,H

1,L

2,(HL)
2,(IX+55H)
2,(1Y+55H)
2,A

28

2,C

2,0

2,E

2H

2L

3,(HL)
3,(IX+55H)

© 3,(1Y+55H)

3L

4,(HL)
4,(1X+55H)
4,(1Y+55H)
4A

4B

4,C

5,(1X+55H)

OBJECT CODE
DDED62
DDED72
FDED42
FDEDS2
FDED62
FDED72
ED714433
37

CBC6
DDCB55C6
FDCB55C6
CBC7
CBCO
CBC1
cBC2
CBC3
CcBC4
CBCS
CBCE
DDCB55CE
FDCB55CE
CBCF
CBCS
CBCY
CBCA
CBCB
cBCC
CBCD
CBDS6
DDCB55D6
FDCB55D6
CBD7
€BDO
CBD1
CBD2
CBD3
CBD4
CBD5
CBDE
DDCB55DE
FDCB55DE
CBDF
CBDS
CBD9
CBDA
CBDB
€BDC
CBDD
CBE6
DDCBS5EG
FDCBS5E6
CBE7
CBEO
CBE1
CBE2
CBE3
CBE4
CBES
CBEE

‘DDCB5SEE

SOURCE CODE
SET 5,(IY+55H)
SET 5A
SET 58
SET 5.C
SET 5D
SET 5E
SET 5H
SET 5L
SET 6,(HL)
SET 6,(IX+55H)
SET 6,(IY+55H)
SET 6,A
SET 68
SET 6,C
SET 6D
SET 6E
SET 6H
SET 6L
SET - 7,(HL)
SET 7,(1X+55H)
SET . 7,(IY+55H)
SET 7A
SET 7B
SET 17.C
SET 7.0
SET 7
SET 7H
SET 7L
SLA (HL)

SLA _ (IX+55H)
SLA ~ (IY+55H) -
SLA A
SLA B
SLA C
SLA D
SLA E
SLA H
SLA L
SRA (HL)
SRA (IX+55H)
SRA (IY+55H)
SRA A
SRA B
SRA C
SRA D
SRA E
SRA H
SRA L
SRL (HL)
SRL (IX+55H)
SRL {IY+55H)
SRL A
SRL B
SRL €
SRL D
SRL E
SRL H
SRL L
SUB A,(HL)
. SUB A,(HL+IX)

OBJECT CODE
FDCBS5EE
CBEF
CBES
CBE9
CBEA
CBEB
CBEC
CBED
CBF6
DDCBS55F6
FDCBS55F6
CBF?
CBF0
CBF1
CBF2
CBF3 -
CBF4
CBFS
CBFE
DDCBSSFE
FDCBS5FE
CBFF
CBF8
CBF9
CBFA.
CBFB
CBFC
CBFD
CB26
DDCB5526
FDCB5526
cB27
CB20
cB21
CB22
cB23
cB24
CB25
CB2E
DDCBS52E
FDCBS552E
CB2F
CB28
CB29
CB2A
CB2B
CB2C
CB2D
CB3E
DDCBS553E
FDCBSS3E
CB3F
CB38
CB39
CB3A
cB3B
C€B3C
CB3D

9%

DD91

s ey

T RS TERER, Vhean RS TN LT W TERE Y

SOURCE CODE

sus
suBe
suB
suB
suB
sus
suB
suB
sus
suB
sus
sus
suB
sus
suB
sus
sus
suB
sus
suB
suB
SuUB
susw
suBw
susw
suBw
SUBwW
SuBw
susw
SuBw
susw
SUBW
suBw
suBw
TSET

A,(HL+1Y)
A,(HL+1122H)
A(IX+1Y)
A,(IX-+55H)
A,(IX+1122H)
A,(IY+55H)
A,(IV+1122H)
A,(PC+1122H)
A,(SP+1122H)
A,(3344H)

AB

AC

AD

AE

AH

AIXH

AIXL

AIYH

AYL

AL

A,66H
HL,(HL)
HL,(IX+1122H)
HL,(1Y+1122H)
HL,(PC+1122H)
HL,(3344H)
HL,BC

HL,DE

HL,HL

HL,IX

HL,IY

HL,SP
HL,3344H

(HL)

OBJECT CODE
DD92
FD932211
DD93
DDY655
FD912211
FD9655
FD922211
FD902211
DD902211
DD974433
97

DDEDCE
FDEDCE2211
FDEDDE2211
DDEDFE2211
DDEDDE4433
EDCE

EDDE

EDEE
DDEDEE
FDEDEE
EDFE
FDEDFEA4433
CB36

SOURCE CODE

TSET
TSET
TSET
TSET
TSET
TSET
TSET
TSET
TSET
TSTI
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR -
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR

(1X+55H)
(1Y+55H)

A,(HL+1Y)
A,(HL+1122H)
A,(IX+1Y)
A,(IX+55H)
A,(IX+1122H)
A,(IY+55H)
A,(IY+1122H)
A,(PC+1122H)
A,(SP+1122H)
A,(3344H)

AA

AB

AC

AD

AE

AH

AJXH

AIXL

AIYH

AJYL

AL

A,66H

OBJECT CODE

DDCB5536
FDCB5536
CB37
CB30
cB31
cB32
CB33
CB34
CB35
ED70

AE

DDA9
DDAA
FDAB2211
DDAB
DDAES5
FDA92211
FDAESS
FDAA2211
FDA82211
DDAB82211
DDAF4433

C-13

TP NI S e s - R L oERTE e ey ey . S e ravmomaes e yeRgn St e

Appendix D.
Instructions in Numeric Order

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
00 NoOP 29 ADD HLHL
014433 LD BC3344H 2A4433 LD HL,(3344H)
014433 LDW BC,3344H 2A4433 LDW HL,(3344H)
02 LD (BC)A 2B DEC HL

03 INCW BC 2B DECW HL

03 INC BC 2¢ INC L

04 INC B 2D DEC L

05 DEC B 2E66 LD L,66H
0666 LD B,66H F cPL

07 RLCA 3075 JR NC7TTH
08 EX AFAFP 314433 LD SP,3344H
09 ADD HL,BC 314433 LDW SP,3344H
0A LD A(BC) 324433 LD (3344H),A
0B DEC BC 33 INC SP

0B DECW BC 33 INCW SP

0C INC C M INC (HL)

oo DEC ¢ 35 DEC (HL)
0E66 LD C,66H 3666 LD (HL),66H
OF RRCA 37 SCF

1075 DINZ 77TH 3875 JR . CIH
114433 LD DE,3344H 39 ADD HL,SP
114433 LDW DE,3344H 3A4433 LD A,(3344H)
12 LD (DE)A 3B DEC SP

13 INC DE 3B DECW SP

13 INCW DE 3c INC A

14 INC D 3D DEC A

15 DEC D 3E66 LD ASG6H
1666 LD D,66H F CCF

17 RLA 40 LD BB
1875 JR TH 4 LD BC

19 ADD HL,DE 2 LD BD

1A LD A,(DE) 3 LD BE

18 DEC DE “ LD BH

1B DECW DE 45 LD BL

1c INC E 46 LD B,(HL)
1D ' DEC E a7 LD BA
1E66 LD E66H 48 LD CB

1F RRA 49 LD ¢cC
2075 JR NZITH 4A LD ¢pD
214433 LD HL,3344H 48 LD CE
214433 LDA HL,(3344H) ic LD CH
214433 LDW HL,3344H) b cL
224433 LD (334H)HL 4E LD C,(HL)
224433 LDW (3344H) HL aF LD CA

23 INCW HL 50 LD DB

23 INC HL 51 LD DC

T} INC H 52 LD DD

25 DEC H 53 : LD DE
2666 LD H,66H 54 LD DH

27, DAA 55 LD DL
2875 JR Z7H 56 , LD D,(HL)

OBJECT CODE
57

SOURCE CODE
LD ,

LD EB
LD EC
LD ED
LD EE
LD EH
LD EL
LD E(HL)
LD EA
LD HB
LD HC
LD HD
LD HE
LD HH
LD HL
LD H,(HL)
LD HA
LD LB
LD LC
LD LD
LD LE
LD LH
LD Lt

LD L,(HL)
LD LA
LD (HL),B
LD (HL),C
LD (HL),D
LD (HL)E
LD (HL)H
LD (HL)L
HALT

LD (HL),A
LD AB
LD AC
LD AD
LD AE
LD AH
LD AL
LD A,(HL)
LD AA
ADD AB
ADD AC
ADD AD
ADD AE
ADD AMH
ADD AL
ADD A,(HL)
ADD AA
ADC AB
ADC AC
ADC AD
ADC AE
ADC AH
ADC AL
ADC A,(HL)
ADC AA
SUB AB
SUB AC
SUB AD

OBJECT CODE
93

94
95

SOURCE CODE
SUB AE
SUB AH
SUB AL
SUB A,(HL)
SUB AA
SBC AB
SBC AC
SBC AD
SBC AE
SBC AH
SBC AL
SBC A,(HL)
SBC AA
AND AB
AND AC
AND AD
AND AE
AND AH
AND AL
AND A,(HL)

"AND A,
XOR AB
XOR AC
XOR AD
XOR AE
XOR AH
XOR AL
XOR A,(HL)
XOR AA
OR AB
OR AC
OR AD
OR AE
OR AH
OR AL
OR A,(HL)
OR A
CP AB
P AC
CP AD
CP AE
P AH
P AL
CP A,(HL)
CP AA
RET NZ
POP BC
JP NZ,3344H
JP 3344H
CALL NZ,3344H
PUSH BC
ADD A,66H
RST 00H
RET 2z
RET
JP Z,3344H
RLC B
RLC C
RLIC D
RLC E

v

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE

CBO4 RLC H CB40 . BIT 0B
CBOS RLC L . CB41 BIT 0C
CB06 RLC (HL) cB42 BIT 0D
CBO7 RLC A CB43 BIT 0
CBO8 RRC B CBM4 BIT OH
CB09 RRC € ‘ CB45 BIT 0L
CBOA RRC D CB46 BIT 0,(HL)
CBOB RRC E CB47 BIT O0A°
CBOC RRC H CB43 BIT 1B
CBOD RRC L CB49 BIT 1C
CBOE RRC (HL) " CB4A BIT 1D
CBOF RRC A CB4B . BIT 1E
CB10 RL B CB4C BIT 1H
CB11 RL € ' CB4D BIT 1t
CB12 RL D CB4E . BIT 1,(HL)
CB13 RL E CB4F BIT 1A
CB14 RL H CB50 BIT 2B
CB15 RL L cB51 BIT 2C
CB16 RL (HL) CB52 BIT 2D
CB17 RL A CB53 BIT ~2E
CB18 RR B CBS4 o BIT 2H
CB19 RR C CBS55 BIT 2L
CBIA RR D CBS6 BIT 2,(HL)
CBiB RR E cBS7 BIT 2A
CBIC RR H cB58 BIT 3B
CB1D RR L €B59 BIT 3¢
CB1E RR (HL) . CB5A BIT 3D
CBYF ' RR A CB5B BIT 3
CB20 : SLA B CBSC BIT 3H
cB21 SLA C CBSD BIT 3L
CB22 SLA D CBSE BIT 3,(HL)
CB23 : SLA E CBSF BIT 3A
cB24 SLA H CB60 BIT 4B
CB2S SLA L CB61 _ BIT 4C
CB26 - , SLA (HL) CB62 BIT 4D
cB27 SLA A CB63 , BIT 4E
cB28 SRA B CB64 BIT 4H
€B29 SRA € CB65 BIT 4L
CB2A SRA D CB66 BIT 4,(HL)
cB2B SRA E CB67 BIT 4A
cB2C SRA H CB68 BIT 58
CB2D SRA L CB69 BIT 5C
CB2E SRA (HL) CB6A "BIT 5D
CB2F SRA A CB6B ~ BIT 5E
CB30 TSET B CB6C BIT S5H
CB31 TSET ¢ CB6D v BIT 5L
€B32 . TSET D CB6E BIT 5,(HL)
€B33 TSET E - CB6F BIT 5A
CB34 TSET H CB70 BIT 68
B35 TSET L CBT1 BIT 6,C
CB36 TSET (HL) - CB72 BIT 6D
CB37 TSET A CB73 BIT 6E
cB38 SRL B CB74 BIT 6H
cB39 SRL € CB7S BIT 6L
CB3A SRL D . CB76 BIT 6,(HL)
CB3B SRL E cB77 . BIT 6A
CB3C : SRL H cB18 BIT 7B
€B3D SRL L CBT9 , BIT 7C
CB3E SRL (HL) CB7A BIT 7D
CB3F SRL A : CB7B BIT 7E

\

OBJECT CODE

CB7C
CB7D
CB7E
CB7F
CBs8o
CBs81
cBs82
cBe3
CBs4
CB8s
CB86
cBs87
CB8s
CB89
CBBA
CBsB
CBsC
cB8D
CBSE
CBSF
CB90
CB91
CB92
CB93
CB94
CB95

CB96

cB97
CB9g8
CB99
CB9A
cB9B
CB9C
CB9D
CBYE
CB9F
CBAO
CBA1L
CBA2
CBA3
CBA4
CBAS
CBA6
CBA7
CBAS
CBA9
CBAA
CBAB
CBAC
CBAD
CBAE
CBAF
CBBO
CBB1
cBB2
CBB3

CBB4

CBB5
CBB6
cBB?7

SOURCE CODE
BIT 7H
BIT 7L
BIT 7,(HL)
BIT 7A
RES 0,B.
RES 0,C
RES 0D
RES O
RES OH
RES 0L
RES 0,(HL)
RES 0,A
RES 1,B
RES 1,C
RES 1,0
RES 1,E
RES 1,H
RES 1L
RES 1,(HL)
RES 1,A
RES 2,8
RES ~ 2,C
RES 2,0
RES 2
RES 2,H
RES ' 2,L
RES 2,(HL)
RES 2,A
RES 3,8
RES 3,C
RES 3,0
RES 3,E
RES 3,H
RES 3L
RES 3,(HL)
RES 3,A
RES 4B
RES 4,C
RES 4,D
RES 4,E
RES 4H
RES 4L
RES 4,(HL)
RES 4,A
RES 5,8
RES 5,C
RES 5D
RES 5,E
RES 5H
RES 5.
RES 5,(HL)
RES 5A
RES 6,8
RES 6,C
RES 6,D
RES 6,
RES 6,H
RES 6L
RES 6,(HL)
RES 6,A

OBJECT CODE
CBBS8
CBB9
CBBA
cBBB
CBBC

- CBBD

CBBE
CBBF
CBCo
CBC1
CBC2
CBC3
CBC4
CBC5
CBC6
CBC7
CBC8
CBC9
CBCA
cBCB
CBCC
CBCD
CBCE
CBCF
CBDO
CBD1
cBD2
CBD3
CBD4
CBDS
CBD6
cBD7
CBDS8
CBD9
CBDA
cBDB
CBDC
cBDD
CBDE
CBDF
CBEO
CBE1
CBE2
CBE3
CBE4
CBES
CBE6
CBE7
CBES
CBE9
CBEA
CBEB
CBEC
CBED
CBEE
CBEF
CBFo0
CBF1
CBF2
CBF3

SOURCE CODE
RES 7,8
RES 7,C
RES 7,0
RES 7,E
'RES 7H
RES 7L
RES 7,(HL)
RES 7A
SET 0B
SET 0,
SET 0D
SET OF
SET OH
SET oL
SET 0,(HL) -
SET 0,A
SET 1B
SET 1,
SET 1D
SET 1
SET 1H
SET. 1L
SET 1,(HL)
SET 1A
SET 2B
SET 2
SET 2D
SET 2E
SET 2H
SET 2L
SET 2,(HL)
SET 2A
SET 38
SET 3,C
SET 3,0
SET 3
SET 3H
SET 3L
SET 3,(HL)
SET 3A
SET 4B
SET 4,C
SET 4D
SET 4E
SET 4H
SET 4L
SET 4,(HL)
SET 4,A
SET 5B
SET 5,
SET 5D
SET 5,E
SET 5H
SET 5L
SET 5,(HL)
SET S5A
SET 6B
SET 6,C
SET 6D
SET 6,E

D-4

OBJECT CODE
CBF4
CBF5
CBF6
CBF7
CBF8

DC4433
DD014433
DDO3
DD042211
DD052211
DD06221166
DD09
DDOB
DDoC
DDOD
DDOE66 .
DD1144339988
DD134433
DD14
DD15
DD1666
DD19
DD1B4433
DD1C
DD1D
DD1E66
DD2074
DD214433
DD214433
DD214433
DD224433
DD224433
DD23
DD23
DD24
DD25
DD2666

SOURCE CODE
SET 6H
SET 6L
SET 6,(HL)
SET 6,A
SET 17,B
SET 7.C
SET 7D
SET 7,E
SET T7H
SET 7L
SET 7,(HL)
SET T7,A
CALL Z,3344H
CALL 3344H
ADC A,66H
RST 08H
RET NC
POP DE

JP NC3344H
“OUT (66H),A
CALL NC,3344H
PUSH DE

SUB A,66H
RST 10H
RET ¢

EXX

JP C33M4H
IN A,(66H)

LDW (HL),3344H
INCW (HL)

INC (SP+1122H)
DEC (SP+1122H)

LD (SP+1122H),66H

ADD IX,BC
DECW (HL)
INC (HL+IX)
DEC (HL+IX)

LD (HL+IX),66H
LDW (3344H),8899H
INCW (3344H)

INC (HL+lY)

DEC (HL+lY)

LD (HL+Y),66H

ADD IX,DE
DECW (3344H)

INC {(IXHY)
DEC (IX+lY)

LD (IX+lY),66H
JAR TTH

LD IX,3344H
LDA IX,(3344H)
LDW 1X,3344H

LD (3344H),IX
LDW (3344H),IX

INC X
INCW IX

INC IXH
DEC IXH

LD 1XH,66H

OBJECT CODE
DD2874
DD29
DD2A4433
DD2A4433
DD2B

DD2B

DD2C

DD2D
DD2E66
DD31221144
DD332211
DD3455
DD3555
DD365566

" DD39

DD3B2211
DD3C4433
DD3D4433
DD3E443366
DD44
DD45
DD4655
DD4C
DD4D
DDA4ES5
DD54
DD55
DD5655
DD5C
DD5D
DDS5ESS
DD60
DD61
DD62
DD63
DD64
DD65
DD6655
DD67
DD68
DD69
DD6A
DD68B
DD6C
DD6D
DD6ES5S5
DD6F
DD7055
DD7155
DD7255
DD7355
DD7455
DD7555
DD7755
DD782211
DD79
DD7A
DD7B
DD7C
DD70

SOURCE CODE
JAF TTH

ADD IX,IX

LD IX,(3344H)
LDW IX,(3344H)

DEC IX
DECW IX

INC IXL
DEC IXL

LD IXL,66H

LDW (PC+1122H),3344H
INCW (PC+1122H)

INC (IX+55H)

DEC (IX+55H)

LD (IX+55H),66H

ADD IX,SP
DECW "(PC+1122H)
INC ' (3344H)

DEC (3344H)
LD (3344H),66H

LD B,XH

LD B,XL

LD B,(IX+55H)
LD CIXH

LD Xt

LD C,(IX+55H)
LD D,XH

LD DXL

LD D,(IX+55H)
LD EJXH ‘
LD EIXL

LD E,(IX+55H)
LD IXHB

LD IXHC

LD IXHD

LD IXHE

LD IXH,IXH
LD IXH,IXL

LD H,(IX+55H)
LD IXHA

LD IXLB

LD IXL,C

LD IXLD

LD IXLE

LD IXLIXH

LD IXLIXL

LD L,(IX+55H)
LD IXLA

LD (IX+55H),B
LD (IX+55H),C
LD (IX+55H),D
LD (IX+55H),E
LD (IX+55H),H
LD (IX+55H).L
LD (IX+55H),A
LD A,(SP+1122H)
LD A,(HL+IX)
LD A,(HL+IY)
LD A,(IX+Y)
LD A|IXH

LD AJXL

D-5

OBJECT CODE
DDTES5 ’

DD802211
DD81
DD82
DD83
DD34
DD85
DD8655
DD874433

- DD882211

DD89
DD8A
DD8B
DD8C
DD8D .
DDSES5”
DD8F4433
DD902211
DD91
DD92
DD93
DD94
DD95 :
DD9655 -
DD974433
DD982211
DD99
DD9A
DD9B
DD9C
DD9D
DD9E5S5
DD9F4433
DDA02211
DDA1
DDA2
DDA3
DDA4
DDAS
DDAG655
DDA74433
DDA82211
DDA9
DDAA
DDAB
DDAC
DDAD
DDAESS
DDAF4433
DDB02211
DDB1
DDB2
DDB3
DDB4
DDBS |
DDB655
DDB74433
DDB82211
DDB9
DDBA

SOURCE CODE

LD A,(IX+55H)
 ADD A,(SP+1122H)

ADD A,(HL+IX)

ADD A,(HL+lY)

ADD A,(IX+lY)

ADD A,IXH

ADD A,XL

ADD A, (IX+55H)

ADD A,(3344H)

ADC A,(SP+1122H)

ADC A,(HL+IX)

ADC A,(HL+IY)

ADC A,(IX+lY)

ADC AIXH

ADC AJXL

ADC A, (IX+55H)

ADC A,(3344H)

SUB A,(SP+1122H)

SUB A,(HL+IX)

SUB A,(HL+IY)

SUB A,(IX+1Y)

SUB A,XH

SUB A,XL

SUB A,(IX+55H)

SUB A,(3344H)

SBC A,(SP+1122H)

SBC A,(HL+IX)

SBC A,(HL+lY)

SBC A,(IX+lY)

SBC A,IXH

SBC A,IXL

SBC A, (IX+55H)

SBC A,(3344H)

AND A,(SP+1122H)

AND A,(HL+IX)

AND A,(HL+lY)

AND A, (IX+1Y)

AND A,IXH

AND AJIXL

AND A, (IX+55H)

AND A,(3344H)

XOR A,(SP+1122H)

XOR A,(HL+IX)

XOR A,(HL+lY)

XOR A, (IX+1Y)

XOR AIXH

XOR A,IXL

XOR A,(IX+55H)

XOR A,(3344H)

OR A,(SP+1122H)

OR A,(HL+IX)

OR A,(HL+lY)

OR A,(IX+IY)

OR A,XH

OR AJXL

OR A,(IX+55H)

OR A,(3344H)

CP A,(SP+1122H)

CP A,(HLHIX)

CP A,(HLHY)

OBJECT CODE
DDBB
DDBC
DDBD
DDBES5
DDBF4433
DDC1
DDC2
DDC4
DDC5
DDCA
DDCB5506
DDCBS550E
DDCB5516
DDCB551E
DDCB5526
DDCB552E
DDCB5536
DDCBS553E
DDCB5546
DDCB554E
DDCB5556
DDCBS555E
DDCB5566
DDCB556E
DDCB5576
DDCB557E
DDCB5586
DDCB558E
DDCB5596
DDCB559E
DDCB55A6
DDCBS55AE
DDCB55B6
DDCB55BE
DDCB55C6
DDCBS5CE

- DDCB55D6

DDCB55DE
DDCB55E6
DDCB5SEE
DDCB55F6
DDCB55FE
DDCC
DDCD
DDD14433
DDD2
DDD4
DDD54433
DDDA
DDDC
DDE1
DDE2
DDE3
DDE4
DDES
DDE9
DDEA
DDEB
DDEC

DDEDO022211

SOURCE CODE
CP A,(IX+IY)
CP AJXH
CP AMXL

CP A,(IX+55H)
CP A(3344H)
POP (HL)

JP NZ,(HL)
CALL NZ,(HL)
PUSH (HL)

WP Z,(HL)
RLC (IX+55H)
RRC (IX+55H)
RL (IX+55H)
RR (IX+55H)
SLA (IX+55H)
SRA (IX+55H)
TSET (IX+55H)
SRL (IX+55H)
BIT 0,(IX+55H)
BIT 1,(IX+55H)
BIT 2,(IX+55H)
BIT 3,(IX+55H)
BIT 4,(IX+55H)
IT 5,(1X+55H)
BIT 6,(IX+55H)
BIT 7,(IX+55H)
RES 0,(IX+55H)
RES 1,(IX+55H)
RES 2,(IX+55H)
RES 3,(IX+55H)
RES 4,(IX+55H)
RES 5,(IX+55H)
RES 6,(IX+55H)
RES 7,(IX+55H)
SET 0,(IX+55H)
SET 1,(1X+55H)
SET 2,(1X+55H)
SET 3,(IX+55H)
SET 4,(IX+55H)
SET .5,(IX+55H)
SET 6,(IX+55H)
SET = 7,(IX+55H)
CALL Z,(HL)
CALL (HL)
POP (3344H)
P NC,(HL)
CALL NC,(HL)
PUSH ({3344H)
P C,(HL)
CALL C,(HL)
POP IX

P PO,(HL)
EX (SP),IX
CALL PO,(HL)
PUSH IX

P (1x)

JP PE,(HL)
EX IXHL
CALL - PE,(HL)
_LDA IX,(SP+1122H)

OBJECT CODE
DDEDO042211
DDED042211
DDED052211
DDEDO052211
DDEDO0655
DDED0655
DDED072211
DDEDOA
DDEDOC
DDEDOC
DDEDOD
DDEDOD
DDEDOESS
DDEDOES5
DDEDOF
DDED12
DDED14
DDED14
DDED15
DDED15
DDED1655
DDED1655
DDED17
DDED1A
DDED1C
DDED1C
DDED1D
DDED1D
DDED1E55
DDED1ES55
DDED1F
DDED222211
DDED242211
DDED242211
DDED252211
DDED252211
DDED2655
DDED2655
DDED27
DDED2A2211
DDED2C2211
DDED2C2211
DDED2D2211
DDED2D2211
DDED2ES5
DDED2ES55
DDED2F
DDED322211
DDED342211
DDED342211
DDED352211
DDED352211
DDED3655
DDED3655
DDED3755
DDED3A2211
DDED3C2211
DDED3C2211
DDED3D2211
DDED3D2211

SOURCE CODE

LD IX,(SP+1122H)
LDW IX,(SP+1122H)
LD (SP+1122H),IX
LDW (SP+1122H),IX
LD BC,(IX+55H)
LDW BC,(IX+55H)
EX A,(SP+1122H)
LDA IX,(HL+IX)

LD IX,(HL+IX)
LDW IX,(HL+IX)

LD (HL+IX),IX
LDW (HL+IX),IX

LD (IX+55H),BC
LDW (IX+55H),BC
EX A,(HL+IX)
LDA IX,(HL+IY)

LD IX,(HL+IY)
LDW IX,(HL+IY)

LD (HLHIY)X
LDW (HLHIY),IX

LD DE,(IX+55H)
LDW DE,(IX+55H)
EX A,(HL+IY)
LDA IX,(IX+IY)

LD IX,(IX+Y)
LDW IX,(IX+Y)

LD (IX+IY),X
LDW (IX+IY),IX

LD (IX+55H),DE
LDW (IX+55H),DE
EX A(IX+lY)

LDA IX,(PC+1122H)
LD IX,(PC+1122H)
LDW IX,(PC-+1122H)
LD (PC+1122H),IX
LDW (PC+1122H),IX
LD HL,(IX+55H)
LDW HL,(IX+55H)
EX AJIXH

LDA IX,(IX+1122H)
LD IX,(IX+1122H)
LDW IX,(IX+1122H)
LD (IX+1122H),1X
LDW (IX+1122H),1X
LD (IX+55H),HL
LDW (IX+55H),HL
EX AIXL

LDA IX,(1Y+1122H)
LD IX,(IY+1122H)
LDW IX,(IY+1122H)
LD (IY+1122H),X
LDW (IY+1122H),IX
LD SP,(IX+55H)
LDW SP,(IX+55H)
EX A,(IX+55H)
LDA IX,(HL+1122H)
LD IX,(HL+1122H)
LDW IX,(HL+1122H)
LD (HL+1122H),iX
LDW (HL+1122H),IX

OBJECT CODE
DDED3ESS5
DDED3ESS
DDED3F4433
DDED402211
DDED412211
DDED42
DDED48
DDED49
DDED4A
DDEDS50
DDEDS51
DDED52
DDEDS58
DDED59
DDEDSA
DDED60
DDED61
DDED62
DDED66
DDED68
DDED69
DDED6A
DDED6D
DDEDGE
DDED72
DDED784433
DDED794433
DDED7A
DDED8655
DDED87
DDEDSESS
DDEDSF
DDED9655
DDEDYES5S5
DDEDCO02211
DDEDC12211
DDEDC2
DDEDC3
DDEDC42211
DDEDC52211
DDEDC6
DDEDC7
DDEDC8
DDEDC9
DDEDCA
DDEDCB
DDEDCC
DDEDCD
DDEDCE
DDEDDO
DDEDD1
DDEDD24433
DDEDD34433
DDEDD4
DDEDD5
DDEDD64433
DDEDD74433

' DDEDD8

DDEDD9
DDEDDA4433

SOURCE CODE

LD (IX+55H),SP
LDW (IX+55H),SP
EX A,(3344H)

IN (SP+1122H),(C)
OUT (C),(SP+1122H)
SBC IX,BC

IN (HL+IX),(C)
OUT (C),(HL+IX)
ADC IX,BC

IN (HL+1Y),(C)
OUT (C),(HL+Y)
SBC IX,DE

IN (IXHY),(C)
OUT (C),(IX+lY}

ADC IX,DE
IN IXH,(C)
OUT (C),IXH
SBC IX,IX
LDCTL IX,(C)
IN IXL,(C)
OUT (C).IXL
ADC IX,IX
ADD IX,A
LDCTL (C),IX
SBC IX,SP

IN (3344H),(C)
OUT (C),(3344H)
ADC IX,SP

LDUD A, (IX+55H)
LDCTL IX,USP

LDUD (IX+55H),A
LDCTL USP,IX

LDUP A, (IX+55H)
LDUP (IX+55H),A
MULT A,(SP+1122H)
MULTUA,(SP+1122H)
MULTW HL,(HL)
MULTUW HL,(HL)
DIV HL,(SP+1122H)
DIVU HL,(SP+1122H)
ADDW HL,(HL)

CPW HL,(HL)
MULT A,(HL+IX)
MULTUA, (HL+IX)
DIVW DEHL,(HL)
DIVUW DEHL,(HL)

DIV HL,(HL+IX)
DIVU HL,(HL+IX)
SUBW HL,(HL)
MULT A,(HL+1Y)
MULTUA,(HL+1Y)

MULTW HL,(3344H)
MULTUW HL,(3344H)

DIV HL,(HL+lY)
DIVU HL,(HL+lY)
ADDW HL,(3344H)
CPW HL,(3344H)
MULT A, (IX+1Y)
MULTUA, (IX+1Y)
DIVW DEHL,(3344H)

D-7

OBJECT CODE
DDEDDB4433
DDEDDC
DDEDDD
DDEDDE4433
DDEDEO
DDEDE1
DDEDE2
DDEDE3
DDEDE4
DDEDES
DDEDE6
DDEDE?
DDEDES
DDEDE9
DDEDEA
DDEDEB
DDEDEC
DDEDED
DDEDEE
DDEDF055
DDEDF155
DDEDF22211
DDEDF32211
DDEDF455
DDEDF555
DDEDF62211
DDEDF72211
DDEDF84433
DDEDF94433
DDEDFA2211
DDEDFB2211
DDEDFC4433
DDEDFD4433
DDEDFE2211
DDF12211
DDF2

DDF4
DDF52211
DDF9

DDF9

DDFA

DDFC

DE66

ECA4433

ED022211
ED032211
ED042211

SOURGE CODE
DIVUW DEHL,(3344H)
DIV HL,(IX+1Y)
DIVU HL,(IX+1Y)
SUBW HL,(3344H)
MULT A,IXH
MULTUA,IXH
MULTW HL,IX
MULTUW HL,IX
DIV HL,IXH
DIVU HL,IXH
ADDW HL,IX

CPW HL,IX

MULT A,IXL
MULTUA,IXL

DIVW DEHL,IX
DIVUW DEHL,IX

DIV HL,XL

DIVU HL,IXL
SUBW HL,IX

. MULT A,(IX+55H)

MULTU A, (IX+55H)

MULTW HL,(PC+1122H)
MULTUW HL,(PC+1122H)
DIV HL,(IX+55H)

DIVU HL,(IX+55H)

ADDW HL,(PC+1122H)

CPW HL,(PC+1122H)
MULT A,(3344H)
MULTU A, (3344H)

DIVW DEHL,(PC+1122H)
DIVUW DEHL,(PC+1122H)

DIV HL,(3344H)

DIVU HL,(3344H)

SUBW HL,(PC+1122H)

POP (PC+1122H)

JP P,(HL)
CALL P,(HL)
PUSH (PC+1122H)
LDW SP,X
LD SP,X
P M(HL)
CALL M, (HL)
SBC A,66H
RST 18H
RET PO
POP HL

JP PO,3344H
EX (SP),HL
CALL PO,3344H
PUSH HL
AND A,66H
RST 20H
RET PE

P (HY

JP PE,3344H
EX DEHL

CALL PE,3344H

LDA HL,(SP+1122H)
LD (SP+1122H),A
LD HL,(SP+1122H)

OBJECT CODE
ED042211
ED052211
ED052211
ED06
EDO6
EDO7
EDOA
EDOB
EDOC
EDOC
EDOD
EDOD
EDOE
EDOE
EDOF
ED12
ED13
ED14
ED14
ED15
ED15
ED16
ED16
ED17
ED1A
ED1B
ED1C
EDIC
ED1D
EDID
EDIE
EDIE |
EDIF
ED222211
ED232211
ED242211
ED242211
ED252211
ED252211
ED26
ED26
ED27
ED2A2211
ED2B2211
ED2C2211
ED2C2211
ED2D2211
ED2D2211
ED2E
ED2E
ED2F
ED322211
ED332211
ED342211
ED342211
ED352211
ED352211
ED36
ED36
ED37

SOURCE CODE

LDW HL,(SP+1122H)
LD (SP+1122H)HL
LDW (SP+1122H),HL

LD BC,(HL)
LDW BC,(HL)
EX AB

LDA HL,(HL+IX)
LD (HL+IX),A

LD HL,(HL+IX)
LDW HL,(HL+IX)
LD (HL+IX)HL
LDW (HL+IX),HL

LD (HL),BC
LDW (HL),BC
EX AC

LDA HL,(HL+lY)
LD (HL+IY)A

LD HL,(HL+lY)
LDW HL,(HL+lY)
LD (HL4IY)HL
LDW (HL+IY),HL

LD DE,(HL)
LDW DE,(HL)
EX - AD

LDA HL,(IX+1Y)
LD (IX+Y),A

LD HL,(IX+lY)
LDW HL,(IX+1Y)
LD (IX+IY),HL
LDW (IX+IY),HL

LD (HL),DE
LOW (HL),DE
EX AE

LDA HL,(PC+1122H)
LD (PC+1122H),A

LD HL,(PC+1122H)
LDW HL,(PC+1122H)
LD (PC+1122H)HL
LDW (PC+1122H)HL

LD HL,(HL)
LDW HL,(HL)
EX AMH

LDA HL,(IX+1122H)
LD (IX+1122H),A

LD HL,(IX+1122H)
LDW HL,(IX+1122H)
LD (IX+1122H),HL
LDW (IX+1122H),HL

LD (HL)HL
LDW (HL)HL
EX AL

LDA HL,(IY+1122H)
LD (IY+1122H),A

LD HL,(IY+1122H)
LDW HL,(IY+1122H)
LD (IY+1122H),HL
LDW (1Y+1122H),HL

LD SP,(HL)
LDW SP,(HL)
EX A,(HL)

OBJECT CODE
ED3A2211
ED3B2211
ED3C2211
ED3D2211
ED3D2211
ED3E
ED3E
ED3F
ED40
EDA1
ED42
ED434433
EDA434433
ED44
ED45
ED46
ED47
ED4S
ED49
ED4A
ED4BA433
ED4B4433
EDAC
EDAD
EDAE
EDAF
ED50
ED51
ED52
ED534433
ED534433
EDSS
ED56
EDS?

EDSS8
ED59
EDSA
ED5B4433
ED5B4433
EDSE
EDSF
ED60
ED61
ED62
ED64
ED65
ED66
ED67.
ED6S
ED69
ED6A
ED6C
ED6D
EDGE
EDGF
ED70 -
ED71443
ED72
ED734433
ED734433

SOURCE CODE
LDA HL,(HL+1122H)
LD (HL+1122H)A
LDW HL,(HL+1122H)
LD (HL+1122H)HL
LDW (HL+1122H),HL
LD (HL)SP
LDW (HL),SP
EX AA

IN B,(C)

ouT (C)8

SBC HL,BC

LD (3344H),BC
LDW (3344H),BC
NEG A

RETN

M 0

LD 1A

IN Q)

ouUT (C)C

ADC HLBC

LD BC,(3344H)
LDW BC,(3344H)
NEG HL

RETI

M 3

LD RA

IN. D,C)
ouT (C),D

SBC HL,DE

LD (3344H),DE
LDW (3344H),DE
RETIL

M1

LD Al

IN E(Q)

OUT (C)E

ADC HL,DE

LD DE,(3344H)
LDW DE,(3344H)
M 2

LD AR

IN H,(C)
OUT (C)H

SBC HLHL
EXTS A
PCACHE

LDCTL HL,(C)
RRD

IN L(C)

ouT ()L

ADC HLHL
EXTS HL

ADD HLA
LDCTL (C),HL
RLD

TSTI ()

SC 334H
SBC HL,SP

LD (3344H),SP
LDW (3344H),SP

OBJECT CODE
ED7766
ED78
ED79
ED7A
ED7B4433
ED7B4433
ED7F66
EDS2
EDS3
ED842211
ED852211
ED86
EDS?
EDSA
EDSB
EDSC
EDSD
EDSE
EDSF
ED92
ED93
ED94
ED95
ED9
ED97
ED9A
ED9B
ED9C
EDSD
EDSE
ED9F
EDAO
EDA1
EDA2
EDA3
EDA42211
EDA52211
EDA6 -
EDA74433
EDAS
EDA9
EDAA
EDAB
EDAC2211
EDAD2211
EDAE
EDAF4433
EDBO
EDB1
EDB2
EDB3
EDB42211
EDB52211
EDB7
EDB7
EDBS
EDB9
EDBA
EDBB

SOURCE CODE
DI 66H

IN A(S)
OUT (C),A
ADC HL,SP

LD SP,(3344H)
LDW SP,(3344H)
Bl 66H

INIW

ouTiw

EPUM (SP+1122H)
MEPU (SP-+1122H)
LDUD A,(HL)
LDCTL HL,USP
INDW

OoUTDW

EPUM (HL+IX)
MEPU (HL+IX)
LDUD (HL),A
LDCTL USP,HL
INIRW

OTIRW

EPUM (HL+IY)
MEPU (HL+1Y)
LDUP A,(HL)
EPUF

INDRW

OTDRW

EPUM (IX+Y)
MEPU (IX+1Y)
LDUP (HL),A
EPUI

LDI

CPI

INI

ouTI

EPUM (PC+1122H)
MEPU (PC+1122H)
EPUM (HL)
EPUM (3344H)
LDD

CPD

IND

ouTD

EPUM (IX+1122H)
MEPU (IX+1122H)
MEPU (HL)
MEPU (3344H)
LDIR

CPIR

INIR

OTIR

EPUM (IY+1122H)
MEPU (IY+1122H)
IN HL(C)
INW HL,(C)
LDDR

CPDR

INDR

OTDR

EPUM (HL+1122H)

EDBC2211

D-9

t OBJECT CODE
EDBD2211
EDBF
EDBF
EDCO
EDC1
EDC2
EDC3
EDC4
EDC5
EDC6
EDC7
EDCS8
EDC9
EDCA
EDCB
EDCC
EDCD
EDCE
EDDO
EDD1
EDD2
EDD3
EDD4
EDD5
EDD6
EDD7
EDDS8
EDD9
EDDA
EDDB
EDDC
EDDD
EDDE
EDEO
EDE1
EDE2
EDE3
EDE4
EDES
EDE6
EDE7
EDES
EDE9
EDEA
EDEB
EDEC
EDED
EDEE
EDEF
EDFO
EDF1
EDF2
EDF3
EDF4
EDF5
EDF6
EDF7
EDF8
EDF9
EDFA

SOURCE CODE
MEPU (HL+1122H)
OUT (C)HL
OUTW (C),HL

MULT A,B
MULTUA,B

MULTW HL,BC
MULTUW HL,BC
DIV HLB

DIVU HL,B
ADDW HL,BC

CPW HL,BC
MULT AC
MULTUA,C

DIVW DEHL,BC
DIVUW DEHL,BC

DIV HLC

DIVU HL,C

SUBW HL,BC
MULT AD
MULTUA,D

MULTW HL,DE
MULTUW HL,DE
DIV HLD

DIVU HL,D
ADDW HL,DE

CPW HL,DE
MULT AE
MULTUA,E

DIVW DEHL,DE
DIVUW DEHL,DE

DIV HLE

DIVU HLE

SUBW HL,DE
MULT AH
MULTUAH

MULTW HL,HL
MULTUW HL,HL
DIV HLH

DIVU HLH
ADDW HL,HL

CPW HLHL
MULT AL
MULTUAL

DIVW DEHL,HL
DIVUW DEHL,HL

DIV HLL

DIVU HLL

SUBW HL,HL

EX HL

MULT A,(HL)
MULTUA,(HL)
MULTW HL,SP
MULTUW HL,SP
DIV HL,(HL)
DIVU HL,(HL)
ADDW HL,SP

CPW HL,SP
MULT AA
MULTUA,A

DIVW DEHL,SP

OBJECT CODE
EDFB
EDFC
EDFD
EDFE
EE66

FC4433
FD032211
FD042211
FD052211
FD06221166
FD09
FD0B2211
FD0C2211
FDOD2211
FDOE221166
FD132211
FD142211
FD152211
FD16221166
FD19
FD1B2211
FD1C2211
FD1D2211
FD1E221166
FD214433
FD214433
FD214433
FD224433
FD224433
FD23
FD23
FD24
FD25
FD2666
FD29
FD2A4433
FD2B
FD2B
FD2C
FD2D
FD2E66
FD3455
FD3555
FD365566
FD39
FD44

SOURCE CODE
DIVUW DEHL,SP
DIV HLA
DIVU HLA
SUBW HL,SP
XOR A,66H
RST 28H
RET P

POP AF

P P,3344H
DI

CALL P,3344H
PUSH AF

OR A66H
RST 30H
RET M

LDW SP,HL
LD SPHL
JP M,3344H
El

CALL M,3344H
INCW (IX+1122H)
INC (PC+1122H)
DEC (PC+1122H)
LD (PC+1122H),66H
ADD 1Y,BC

DECW (IX+1122H)
INC (IX+1122H)
DEC (IX+1122H)
LD (IX+1122H),66H
INCW (IY+1122H)
INC (IY+1122H)
DEC (IY+1122H)
LD (IY+1122H),66H
ADD IY,DE

DECW (IY+1122H)
INC (HL+1122H)
DEC (HL+1122H)
LD (HL+1122H),66H

LD IY,3344H
LDA IY,(3344H)
LDW 1V,3344H

LD (3344H),lY
LDW (3344H),lY

INC Y
INCW 1Y

INC IVH
DEC IYH

LD IYH,66H
ADD IY,lY
LDW IY,(3344H)
DEC 1Y
DECW 1Y

INC VL
DEC IYL

LD IYL,66H

INC (IY+55H)
DEC (IY+55H)

LD (IY+55H),66H
ADD 1Y,SP

LD BJIYH

D-10

OBJECT CODE
FD45

FD4655

FD4C

FD4D

FDA4ES5

FD54

FD55

FD782211
FD792211
FD7A2211
FD7B2211 .
FDTC
FD7D
FD7E55
FD802211
FD812211
FD822211
FD832211
FD84
FD85
FD8655
FD882211
FD892211
FD8A2211
FD8B2211
FD8C
FD8D
FDBESS
FD902211
FD912211
FD922211
FD932211
FD94

SOURCE CODE

LD B,YL

LD B,(IY+55H)
LD C,iYH

LD CivL

LD C,(IY+55H)
LD D,UYH

LD DL

LD D,(IY+55H)
LD ENVH

LD EMVL

LD E,(IY+55H)
LD IYHB

LD IYHC

LD IYHD

LD IYHE

LD IYH,IYH

b IYHIVL
LD H,(IY+55H)
LD IYHA

LD IVLB

LD IYLC

LD YLD

LD IYLE

LD IVLIYH

LD IYLYL

LD . L,(IY+55H)
LD IVLA

LD (IY+55H),B
LD (IV455H),C
LD (IY+55H),D
LD (IY+55H),E
LD (IV+55H),H
LD (IY+55H),L
LD (IV+55H),A
LD A,(PC+1122H)
LD A{IX+1122H)
LD A,(IY+1122H)
LD A,(HL+1122H)
LD AIVH

LD AJYL

LD A,(IY+55H)
ADD A,(PC+1122H)
ADD A, (IX+1122H)
ADD A, (IY+1122H)
ADD A,(HL+1122H)
ADD A(VH

ADD AVL

ADD A,(IY+55H)
ADC A,(PC+1122H)
ADC A, (IX+1122H)
ADC A, (IY+1122H)
ADC - A,(HL+1122H)
ADC AIYH

ADC ANVL

ADC A,(IY+55H)
SUB A,(PC+1122H)
SUB A,(IX+1122H)
SUB A,(IY+1122H)
SUB A,(HL+1122H)
sus

AYH

OBJECT CODE
FD95

'FD9655

FD982211
FD992211
FD9A2211
FD9B2211
FD9C
FDOD
FD9E55
FDA02211
FDA12211
FDA22211
FDA32211
FDA4
FDAS
FDAG55
FDAS82211
FDA92211
FDAA2211
FDAB2211
FDAC
FDAD
FDAESS
FDB02211
FDB12211

© FDB22211

FDB32211
FDB4,
FDB5
FDB655
FDB82211
FDB92211
FDBA2211
FDBB2211
FDBC
FDBD
FDBES5S5
FDC22211
FDC32211
FDC42211
FDCA2211
FDCB5506
FDCBS50E
FDCB5516
FDCBS51E
FDCB5526

. FDCB552E

FDCB5536
FDCBS53E"
FDCB5546
FDCBS554E
FDCB5556

-FDCB555E

FDCB5566
FDCBS556E
FDCB5576
FDCBS57E
FDCB5586

- FDCBS558E

FDCB5596

SOURCE CODE
SUB AYL

SUB A,(IY+55H)
SBC A,(PC+1122H)
SBC A, (IX+1122H)
-SBC A,(IY+1122H)
SBC A,(HL+1122H)
SBC AJIYH

SBC A,YL

SBC A, (IY+55H)
AND A,(PC+1122H)
AND A, (IX+1122H)
AND A,(IY+1122H)
AND A (HL+1122H)
AND AIYH -
AND AL

AND A,(IY+55H)
XOR A,(PC+1122H)
XOR A, (IX+1122H)
XOR A,(IY+1122H)
XOR A,(HL+1122H)
XOR A|IYH

XOR AL

XOR A,(IY+55H)
OR A,(PC+1122H)
OR A,(IX+1122H)
OR A,(IY+1122H)
OR A,(HL+1122H)
OR AIVH

OR AJYL

OR A,(IY+55H)
CP - A,(PC+1122H)
CP A,(IX+1122H)
CP A,(IY+1122H)
CP A,(HL+1122H)
CP AlVH

P ANL

CP A,(IY+55H)
JP NZ,(PC+1122H)
P (PC+1122H)
CALL NZ,(PC+1122H)
P Z,(PC+1122H)
RLC (IY+55H)
RRC (IY+55H)

RL (IY455H)

RR (IY4+55H) -
SLA (IY455H)
SRA (IY+55H)
TSET (IY+55H)
SRL (IY+55H)
BIT 0,(IY+55H)
BIT 1,(IY+55H)
BIT 2,(1Y+55H)
BIT 3,(IV455H)
BIT 4,(IY+55H)
BIT 5,(IY+55H)
BIT 6,(IY+55H)
BIT 7,(1Y+55H)
RES 0,(IY+55H)
RES 1,(IY+55H)
RES 2,(IY+55H)

D-11

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE

FDCB559E RES 3,(IY+55H) FDED222211 LDA IY,(PC+1122H)
FDCB55A6 RES 4,(1Y+55H) FDED242211 LD - IY,(PC+1122H)
FDCB5SAE RES 5,(Y+55H) FDED242211 LDW IY,(PC+1122H)
FDCB55B6 RES 6,(IY+55H) FDED252211 LD (PC+1122H)IY
FDCB55BE RES 7,(Y+55H) FDED252211 LDW (PC+1122H)lY
FDCB55C6 : SET 0,(IY+55H) FDED2655 LD HL,{IY+55H)
FDCB55CE SET 1,(IY+55H) FDED2655 LDW HL,{IY+55H)
FDCB55D6 I SET 2,(IY+55H) FDED27 EX AIYH
FDCB55DE SET 3,(IY+55H) FDED2A2211 LDA IY,{IX+1122H)
FDCBS5EG SET 4,(IY+55H) FDED2C2211 LD IY,(IX+1122H)
FDCBSSEE SET 5,(IY+55H) FDED2C2211 LDW 1Y,(IX+1122H)
FDCB55F6 SET 6,(IY+55H) FDED2D2211 LD (IX+1122H),IY
FDCBSS5FE SET 7,(IY+55H) FDED2D2211 LDW (IX+1122H),IY
FDCC2211 CALL Z,(PC+1122H) FDED2ES5 LD (IY+55H),HL
FDCD2211 CALL (PC+1122H) FDED2ES55" . LDW (IY455H),HL
FDD22211 JP NC,(PC+1122H) FDED2F EX AL
FDD42211 CALL NC,(PC+1122H) FDED322211 LDA IY,(IY+1122H)
FDDA2211 JP C,(PC+1122H) FDED342211 LD IY,(iY+1122H)
FDDC2211 CALL C,(PC+1122H) FDED342211 LDW 1Y, (tY+1122H)
FDE1 . POP IY FDED352211 LD (IY+1122H),1Y
FDE22211 JP PO,(PC+1122H) FDED352211 LDW (IY+1122H),lY
FDE3 EX (SP)lY FDED3655 LD SP,(IY+55H)
FDE42211 . CALL PO,(PC+1122H) FDED3655 LDW SP,(IY+55H)
FDES PUSH 1Y FDED3755 EX A,(IY+55H)
FDE9 P) FDED3A2211 LDA IY,(HL+1122H)
FDEA2211 JP PE/{(PC+1122H) FDED3C2211 LD 1VY,(HL+1122H)
FDEB EX IYHL FDED3C2211 LDW IY,(HL+1122H)
FDEC2211 CALL PE,(PC+1122H) FDED3D2211 LD (HL+1122H),IY
FDED022211 LDA IY,(SP+1122H) FDED3D2211 LDW (HL+1122H),lY
FDED042211 LD IY,(SP+1122H) FDED3ES5 LD (IY+55H),SP
FDED042211 LDW IY,(SP+1122H) FDED3ES5 LDW (IY+55H),SP
FDED052211 LD (SP+1122H),IY FDED402211 IN (PC+1122H),(C)
FDED052211 " LDW (SP+1122H),lY FDED412211 OUT (C),(PC+1122H)
FDEDO655 LD BC,(IY+55H) FDED42 SBC 1Y,BC
FDEDO0655 LDW BC,(IY+55H) FDED482211 IN (IX+1122H),(C)
FDEDO72211 EX A,(PC+1122H) FDED492211 OUT (C),(IX+1122H)
FDEDOA LDA 1Y,(HL+IX) FDED4A ADC 1Y,BC
FDEDOC LD IY,(HL+IX) FDED502211 IN (IY+1122H),(C)
FDEDOC LDW 1Y,(HL+IX) FDED512211 OUT (C),(1IY+1122H)
FDEDOD LD (HL+IX),)Y FDED52 $BC IY,DE
FDEDOD : LDW (HL+IX),lY FDED582211 IN (HL+1122H),(C)
FDEDOESS LD (IY+55H),BC FDED592211 : OUT (C),(HL+1122H)
FDEDOESS. LDW (IY+55H),BC FDED5A ADC IY,DE
FDEDOF2211 EX A,(IX+1122H) FDED60 IN IYH,(C)
FDED12 LDA IV, (HL+HY) FDED61 OUT (C),IYH
FDED14 LD IY,(HL+IY) FDED62 SBC IY,IY

FDED14 LDW 1Y,(HL+IY) FDED66 LDCTL 1Y,(C)

FDED15 S LD (HLHY)Y FDED68 - CINIYL,(C)
FDED15 LDW (HL+IY),lY FDED69 ' OUT (C)IYL
FDED1655 LD . DE,(IY+55H) FDED6A ADC 1YY
FDED1655 LDW DE,(IV+55H) FDED6D ADD IY,A
FDED172211 EX A,(IY+1122H) FDEDGE LDCTL (C),I¥
FDED1A LDA IY,(IX+1Y) FDED72 . SBC IY,SP
FDED1C LD 1Y, (IX+1Y) FDED7A ADC IY,SP
FDED1C LDW 1Y, (IX+1Y) FDED8655 LDUD A,(IY+55H)
FDED1D LD (IX+IY),Y FDEDS7 LDCTL IY,USP
FDED1D LDW (IX+IY),IY FDEDSES5 LDUD (IY+55H),A
FDED1E55 LD (IY+55H),DE FDEDSF LDCTL USP,IY
FDED1ES55 LDW (IY+55H),DE FDED9655 LDUP A,(IY+55H)
FDED1F2211 EX A,(HL+1122H) FDED9E5S5 LDUP (IY+55H),A

D-12

OBJECT CODE
FDEDC02211
FDEDC12211
FDEDC22211
FDEDC32211
FDEDC42211
FDEDC52211
FDEDC62211
FDEDC72211
FDEDC82211
FDEDC92211
FDEDCA2211
FDEDCB2211
FDEDCC2211
FDEDCD2211
FDEDCE2211
FDEDDO02211
FDEDD12211
FDEDD22211
FDEDD32211
FDEDD42211
FDEDD52211
FDEDD62211
FDEDD72211
FDEDD82211
.FDEDD92211
FDEDDA2211
FDEDDB2211
FDEDDC2211
FDEDDD2211
FDEDDE221%
FDEDEO
FDEDE1
FDEDE2
FDEDE3
FDEDE4

. SOURCE CODE

MULT A,(PC+1122H)
MULTU A, (PC+1122H)
MULTW HL, (IX+1122H)
MULTUW HL, (1X+1122H)
DIV HL,(PC+1122H)
DIVU HL,(PC+1122H)
ADDW HL,(1X+1122H)

CPW HL,(IX+1122H)
MULT A, (IX+1122H)
MULTU A, (IX+1122H)

DIVW DEHL,(IX+1122H)
DIVUW DEHL,(IX+1122H)

DIV HL,(IX+1122H)

DIVU HL,(IX+1122H)
SUBW HL,(IX+1122H)

MULT A,(IY+1122H)
MULTUA, (IY+1122H)
MULTW HL,(1Y+1122H)
MULTUW HL,(IY+1122H)
DIV HL,(IY+1122H)

DIVU HL,{IY+1122H)
ADDW HL,(1Y+1122H)

CPW HL,(IY+1122H)
MULT A,(HL+1122H)
MULTU A, (HL+1122H)

DIVW DEHL,(IY+1122H)
DIVUW DEHL,(IY+1122H)

DIV HL,(HL+1122H)
DIVU HL,(HL+1122H)
SUBW HL,(IY+1122H)

MULT A,IYH

MULTUA,IYH

MULTW HLIY
MULTUW HL,IY

DIV HLIYH

OBJECT CODE

FDEDES
FDEDEG
FDEDE7
FDEDES
FDEDE9
FDEDEA
FDEDEB
FDEDEC
FDEDED
FDEDEE
FDEDF055
FDEDF155
FDEDF24433
FDEDF34433
FDEDF455
FDEDF555
FDEDF64433
FDEDF74433
FDEDF866
FDEDF966
FDEDFA4433
FDEDFB4433
FDEDFC66
FDEDFD66
FDEDFE4433
FDF22211
FDF42211
FDF54433
FDF9

FDF9
FDFA2211
FDFC2211
FE66

FF

SOURCE CODE
DIVU HLIYH
ADDW HL,IY

CPW HL,IY
MULT A,IYL
MULTUA,IYL

DIVW DEHL,IY
DIVUW DEHL,IY

DIV HL,IYL
DIVU HL,IYL
SUBW HL,)Y

MULT A,(IY+55H)
MULTUA,(IY+55H)
MULTW HL,3344H
MULTUW HL,3344H
DIV HL,(IY+55H)
DIVU HL,(IY+55H)
ADDW HL,3344H
CPW HL,3344H
MULT A,66H
MULTUA,66H

DIVW DEHL,3344H
DIVUW DEHL,3344H
DIV HL,66H
DIVU HL,66H
SUBW HL,3344H

JP P,(PC+1122H)
CALL P,(PC+1122H)
PUSH 3344H

LD SPIY

LDW SP|IY

P M,(PC+1122H)
CALL M,(PC+1122H)
CP AB6H '
RST 38H

D-13

Appendix E.
Instruction Timing

The Z280 CPU processes instructions using a three-
stage pipeline consisting of an instruction
prefetch unit, an instruction decoder, and an
instruction execution unit. Each section of the
pipeline operates autonomously, communicating with
the other stages of the pipeline via handshakes
and local buses. The pipelined architecture of
the 2280 MPU greatly increases program throughput;
as one instruction is being executed, the next
instruction can be decoded, and the instruction
after that can be fetched.

The autonomous operation of the three stages in
the 17280 CPU instruction pipeline makes it
difficult to calculate exact instruction execution
timegs. Furthermore, execution times are affected
by cache activity; the current cache contents
determine the number of external memory
transactions made during the fetch and execution
of a given instruction. In this appendix, three
types of tables are provided for calculation of
instruction timings: instruction execution timing,
instruction fetch and decode timing, and bus
transaction timing. All tables list execution and
transaction timings in terms of CPU clock cycles.

Tables E-1, £-2, and E-3 show the execution times
for -all jinstructions and interrupt and trap
processing., Table E-1 lists the execution times
for all CPU-executed instructions, with the
instructions listed by functional group. Table
£-2 lists the execution times for the extended
instructions., Table E-3 shows execution times for
interrupt and trap events. These tables assume
that the instruction has been fetched, decoded,
and is ready for execution, and that the bus is
idle when the execution unit mekes a request for a
transaction. Thus, the execution times shown in
these tables represent the maximum execution rate
of the machine.' The actual execution rate will be
somewhat lower than this maximum for two reasons:
(1) the execution unit must compete with. the
prefetch unit for use of the external bus, and (2)
gome instructions may take longer to prefetch and
decode than the previous instruction will take to
execute.

Furthermore, the activity of the execution unit
can affect the prefetch unit when certain.
instructions are executed. 1In Tables £-1 and E-2,
an "F" on the right-hand side of the table
indicates that the pipeline is flushed when that
instruction is executed; the pipeline is also
flushed during all interrupt and trap processing.

In these cases, the next instruction must be
completely fetched and decoded before the
execution unit can proceed. The execution times
in these tables do not include the time necessary
to fetch and decode the next instruction if the
pipeline is flushed.

In Tables E-1 through E-3, execution times are
given as the number of absolute CPU clock cycles
plus the number and type of bus transactions. Bua
transaction timings are shown separately in Tables
E~5 through E~10.

Table E-4 contains the instruction fetch and
decode timing, and Tables E-5 through E-10 show
bus transaction timings. The CPU clock is divided
by a factor of 1, 2, or 4 to form the bus clock;
thus, bus transaction timing depends on the
relationship between the CPU clock and bus clock.
All three types of bus timing are shown in the
tables. Furthermore, because of the different
phase relationships between the request for a
transaction and the bus clock, a variable number
of cycles is included in parentheses in Tables £-4
through E-10; the average would be half of the sum
of the minimum and maximum numbers listed in the
parentheses. The notation "w" in these tables
refers to the number of wait states added to the
transaction (either by asserting the WAIT input or
by programming the appropriate CPU control
registers) in addition to any automatically
inserted wait states. Again, the numbers in these
tables assume that the bus is idle when the
transaction request is made.

£-1

Table E-1. instruction Execution Times

Instruction Addressing Modes Execution Time
8-BIT LOAD GROUP
EXA,src src = R,RX,IR,DA X,SX R,RX: 4
RA,SR,BX IR,DA,X,SX,RA,SR,BX: 5 + rd(src) + wr(src)
EXH,L 4
LD dst,src dst=A R,RX: 2
src = R,RX,IM,IR,DAX IR,DA X,SX,RA,SR,BX: 3 + rd(src)
SX,RA,SR,BX (BCWDE): 3 + rd(iR)
(BC),(DE)
or
dst=R,RX,IR,DAX R,RX,IM: 2
SX,RA,SR,BX IR,DA X,SX,RA,SR,BX: 3 + wr(dst)
(BC),(DE) (BC)(DE): 3 + wr(IR)
src=A
LD dst,src dst=R R.RX,IM: 2
src =R,RX,IM,IR,SX IR,SX: 3 + rd(src)
or
dst=R,RX,IR,5X RRX: 2
src=R IR,SX: 3 + wr(dst)
LD dst,n dst=R,RXIR,DAX, RRX:2
SX,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 3 + wr(dst)
LDUD dst,src dst=A 3 + rd(src)
src =IR,SXin user
or
dst=IR,SX in user 3 + wr(dst)
src=A
LDUP dst,src dst=A 3 + rd(src)
src =|R,SXin user
or
dst =IR,SXin user 3 + wr(dst)

src=A

See Table E-1 Note on page E-10.

Table E-1. instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time
16-BIT LOAD GROUP
EXsrc,HL src=DE,IX,IY 5
EX (SP),dst - dst=HLIX,IY 5 + rd(iR) + wr(iR)
EX AFAF’ ' 2
EXX 2
LD[W]dst,src dst=HL,IXIY M: 2
src = IM,DAX,RA,SR,BX DA, X,RA,SR,BX: 3 + rd(src)
or
dst = DAX,RA,SR,BX 3 + wr(dst)
src=HL,IX,Y
LD[W] dst,src dst=BC,DE,HL,SP IM: 2
src = IM,IR,DA,SX IR,DA,SX: 3 + rd(src)
or
dst=1R,DA,SX 3 + wr{dst)
. src = BC,DE,HL,SP
LD[W]dst,nn dst=RR,IR,DA RA RR: 2
IR,DA,RA: 3 + wr(dst)
LD[W]dst,nn dst=RR 2
LD[W] dst,src dst=SP HLIXIY,IM: 2
src = HL,IXIY,iM,IR,DA,SX IR,DA,SX: 3 + rd(src)
or
dst=1R,DA,SX 3 + wr(dst)
src=SP
LDA dst,src dst =HL,IX,IY DA: 2
src = DA X,RA,SR,BX X,RA,SR: 5
BX:6
POP dst dst=RR,IR,DA,RA RR: 9 + rd(IR)
IR,DA,RA: 9 + rd(IR) + wr(dst)
PUSH src src =RR,IM,IR,DARA RR,IM: 8 + wr(IR)

IR,DA,RA: 9 + rd(src) + wr(IR)

See Table E-1 Note on pege E-10.

Table E-1. instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

BLOCK TRANSFER AND SEARCH GROUP

CPD 8 + rd(IR)

CPDR 8 + rd(IR), each iteration

CPI 8 + rd(iR)

CPIR 8 + rd(IR), each iteration

LDD 9 + rd(iR) + wr(IR)

LDDR 9 + rd(IR) + wr(IR), each iteration
LDI 9 + rd(IR) + wr(IR)

LDIR 9 + rd(IR) + wr(IR), each iteration

8-BIT ARITHMETIC AND LOGIC GROUP

ADCI[A Jsrc src =R,RX,IM,IR,DA, R,RX,IM: 2
X,SX,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 3 + rd(src)
ADD [A,Jsrc src =R,RX,IM,IR,DA, R,RX,IM: 2
X,SX,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 3 + rd(src)
AND [A,Jsrc src =R,RX,IM,IR,DA, R,RX,IM: 2
X,SX,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 3 + rd(src)
CP[A Jsrc src = R,AX,IM,IR,DA, R,RX,IM: 2
X,SX,RA,SR,BX IR,DAX,SX,RA,SR,BX: 3 + rd(src)
CPL[A]} 2
DAAJA] 3
DEC dst dst=R,RX,IR,DA X, R,RX: 3
SX,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 4 + rd(dst) + wr(dst)
DIV[HL,]src src =R,RX,IM,DAX, R,RX,IM: 46
SX,RA,SR,BX 4 if divide by zero
20 if overflow
DA X,SX,RA,SR,BX: 47 + rd(src)
5 + rd(src) if divide by zero
21 + rd(src) if overflow
DIVU [HL Jsrc src=R,RX,IM.DAX, R.RX,IM: 34
SX,RA,SR,BX 4 if divide by zero
13 if overflow
DA X,SX,RA,SR,BX: 35 + rd(src)
5 + rd(src) if divide by zero
14 + rd(src) if overflow
EXTS [A) 4
INC dst dst=R,RX,IR,DAX, RRX: 3
SX,RA,SR,BX IR,DA X,SX,RA,SR,BX: 4 + rd(dst) + wr(dst)
MULT [A Jsrc src=R,RX,IM,IR,DA, RRX,IM: 17*

X,SX,RA SR, BX

IR,DA X,SX,RA,SR,BX: 18 + rd(src)'
*add 1ifsrc <0

See Table E-1 Note on page E-10.

E-4

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time
8-BIT ARITHMETIC AND LOGIC GROUP (Continued) .
MULTU {A]Jsrc - src=R,AXIM,IR,DA, R,RX,IM: 17
X,8X,RA,SR.BX IR,DA X,SX,RA,SR,BX: 18 + rd(src)
NEG [A] 3
OR {A,Jsrc . src=R,RX,IM,IR,DA, R,RX,IM: 2
X.SX,RA SR,BX IR,DA X,SX,RA,SR.BX: 3 + rd(src)
SBC [A,]src sic=R,RX,IM,IR,DA, R,RX,IM: 2
X,SX,RA,SR,BX IR,DA,X,SX,RA SR,BX: 3 + rd(src)
SUB [A Jsrc. src=R,RX,IM.IR,DA, RRX,IM: 2
X,SX,RA,SR,BX IR,DA X,SX,RA,SR,BX: 3 + rd(src)
XOR [A,Jsrc src=R,RX,IM,IR,DA, R,RX,IM: 2
X,8X,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 3 + rd(src)
16-BIT ARITHMETIC AND LOGIC GROUP
ADC dst,src dst=HL 3
. src = BC,DE,HL,SP
_oor
- dst=1X . 3
src = BC,DE, IX,SP
or
dst=1Y 3
src =BC,DE,lY,SP
ADD dst,src dst=HL 3
src =BC,DE,HL,SP
or
dst=IX 3
src +BC,DE,IX,SP
or
dst=1Y 3
src=BC,DE;IY,SP
ADD dst,A dst=HL,IX,lY 3
ADDW [HL Jsrc src =RR,IM,DA X,RA RR,IM: 3
DA X,RA: 3 + rd(src)
CPWI[HL,Jsrc src = RR,IM,DA X,RA RR,IM: 3
DAX,RA: 3 + r(src)
DECW dst - dst=RR,IR,DA X,RA RR:3
IR,DAX,RA: 4 + rd(dst) + wr(dst)
DEC{W] dst dst=RR 3
DIVUW [DEHL,Jsrc src =RR,IM,DA,X,RA RR,IM: 51
4 if divide by zero
13 if overfiow

See Table £-1 Note on page E-10. .

DA X,RA: 62 + rd(src)
5 + rd(src) if divide by zero
14 + rd(src) if overflow

Table E-1. Instruction Execution Times (Continued) -

Instruction

Addressing Modes

Execution Time

16-BIT ARITHMETIC AND LOGIC GROUP (Continued)

DIVW [DEHL Jsrc

src=RR,IM,DA X,RA

RR,IM:- 63
4 if divide by zero
20 if overflow
DA X,RA: 64 + rd(src)
5 + rd(src) if divide by zero
21 + rd(src) if overflow

EXTS HL 4
INCW dst dst=RR,IR,DA X,RA RR: 3 .
IR,DAX,RA: 4 + rd(dst) + wr(dst)
INC[W] dst dst=RR 3
MULTUW [HL,]src src=RR,IM,DA X,RA RR,IM: 24*
i DA X,RA: 25 + rdfsrc)”
*add 1ifsrc <0
MULTW [HL]src src=RR,IM,DA X,RA RR,IM: 24
DA X,RA: 25 + rd{src)
NEG HL 3
SBC dst,src dst=HL 3
src=BC,DE,HL,SP
or
dst=1X 3
src=BC,DE IX,SP
or
dst=1Y 3
src =BC,DE||Y,SP
SUBW [HL,]src src = RR,IM,DA X,RA RR,IM: 3

DA X,RA: 3 + rd(src)

See Table E-1 Note on page E-10.

£-6

Table E<1. instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time
BIT MANIPULATION, ROTATE AND SHIFT GROUP ’
BITb,dst dst=R,IR,SX R:2

IR,SX: 3 + rd(dst)
RES b,dst dst=R,IR,5X R:2 }

IR,SX: 4 + rd(dst) + wr(dst)
RLdst dst=R,IR,SX R:2

IR,SX: 4 + rd(dst) + wr(dst)
RLA 2
RLC dst dst=R,IR,SX R2 .

IR,SX: 4 + rc(dst) + wr(dst)

- RLCA 2

RLD 5 + rd(IR) + wr(iR)
RR dst dst=R,IR,SX R:2 .

1R,SX: 4 + ro(dst) + wr(dst)
RRA 2
RRC dst dst=R,IR,SX R:2

IR,SX: 4 + rd(dst) + wr(dst)
RRCA 2
RRD 5 + r(IR) + wr(IR)
SET b,dst dst=R,IR,SX R:2

IR,SX: 4 + rd(dst) + wr(dst)
SLA dst dst=R,IR,SX R:2

IR,SX: 4 +rd(dst) + wr(dst)
SRA dst dst=R,IR,SX R 2

IR,SX: 4 + rd(dst) + wr(dst)
SRL dst dst=R,IR,SX R:2)

IR,SX: 4 + rd(dst) + wr(dst)
TSET dst dst=R,IR,SX R:3

IF!,SX:1 + rd(dst) + wr(dst)

See Teble E-1 Note on page E~10.

€-7

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time
PROGRAM CONTROL GROUP
CALL cc,dst dst=1IR,DA,RA c¢ not true: 3

IR,DA: 11 + wr(IR) F*

RA: 12 + wri(IR) F
CALL dst dst=1IR,DA,RA IR,DA: 11 + wr(IR) F

RA: 12 + wr(IR) F
CCF 2
DJNZ dst dst=RA Bis zero: 6

Bis non-zero: 7 F
JAF dst dst=RA AF'notinuse: 3

AF'inuse: 4 F
JAR dst dst=RA Alternate file not in use: 3 :

Alternate file in use: 4 F
JP cc,dst dst=IR,DA,RA cc not true: 3

cc true: 4 F
JP dst dst=IR,DARA 4 F
JR cc,dst dst=RA cc not true: 3

cctrue: 4 F
JR dst dst=RA 4 F
RET 9 + rd(IR) F
RET cc " ccnot true: 3

cctrue: 9 + rd(IR) F
RST dst dst=DA 9 + wr(IR) F
SCnn 1 + System Call Trap
SCF 2

*“F" indicates that the pipeline is flushed when that instruction is executed.

See Table E-1 Note on page E-10.

Table E-1. instruction Execution Times (Continued) N

Instruction Addressing Modes Execution Time
INPUT/QUTPUT INSTRUCTION GROUP '
IN dst,(C) dst=R,RX,DA,X,RA,SR,BX R,RX: 3 + in()

DA, X,RA,SR,BX: 4 + in() + wr(dst)
INA,(n) 5 +in()
IN[W] HL,(C) 3 +in()
IND 8 +in() + wr(IR)
INDW 8 +in() + wr(IR)
'INDR 8 +in() + wr(IR), each iteration
INDRW 8 + in() + wr(iR), each iteration
INI 8 +in() + wr(iR)
INIW 8 +in() + wr(IR)
INIR 8 +in() + wr(IR), each iteration
INIRW 8 +in() + wr(IR), each iteration
OUT (C).src src=R,RX,DA X,RA,SR,BX R,RX: 3 + out()

DA X,RA,SR,BX: 3 + rd{src) + out()
QUT(n) A’ 5 + out()
OUTIW](C).HL 3 +oul()
OuTD 8 + rd(IR) + out()
ouTDW 8 + r(IR) + out()
OTDR 8 + r(IR) + out(), each iteration
OTDRW 8 + rd(IR) + out(), each iteration
ouTI 8 + rd(IR) + out()
ounw 8 + rd(IR) + out()
OTIR 8 + rd(IR) + out(), each iteration
OTIRW 8 + rd(IR) + out(), each iteration
TSTI(C) 3 +in()

See Table E-1 Note on page E-10.

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time
CPU CONTROL GROUP
DI mask mask = Hex value 3 + out(l)
Ei mask mask = Hex value 3 +out(l)
HALT 11 + rd(halt) minimum
IMp p=0123 3
LD dst,src dst=A 2
src=LR
LD dst,src dst=I,R 2
src=A
LDCTL dst,src dst=(C),USP (©): 4 + out(l) F*
src=HLIXIY USP:2
or
dst=HL,IX)lY (C): 3 +in(l)
src =(C),USP USP: 2
NOP 2
PCACHE 2 F
RETI Z-BUS: 8 + rd(IR) F
Z80: 8 + rd(reti) + rd(IR) F
RETIL 14 + 2*rd(IR) + out(l) F
RETN 7 + rd(IR) F

*“F" indicates that the pipeline is flushed when that instruction is executed.

NOTES:

1. This table assumes that the instruction has been fetched, decoded, and is ready for execution. The execution time for instructions
that cause the pipeline to be flushed do not include the time necessary to fetch and decode the following instruction.

2. This table assumes that the PAUSE input is inactive. If PAUSE is active, the execution unit will wait before beginning the next
instruction.

3. The bus is assumed to be idle when the execution unit makes a request for a transaction.

4. This table assumes that no exceptions occur during instruction execution except where indicated.

Table E-2. Extended instruction Execution Times

Instruction Addressing Modes Execution Time

EXTENDED INSTRUCTION GROUP TEMPLATE FETCH (EPU ENABLE BIT SET TO 1)

Aligned template 7 + epu(ifl) + epu(ifn) + out(l)

Unaligned template 7 + epu(ifl) + 2*epu(iin) + out())
EXTENDED INSTRUCTION GROUP

EPUI (Internal Operation) 4+p F*
EPUF (CPU«ERU) 6 + p + epu(cpy) - F
MEPU dst (Memory+EPU) dst=IR,DA,X,RA,SR,BX 5+ p + K'[3 + epu(wr)] F
EPUM src (EPU«Memory) src =IR,DA X,RA,SR,BX 5 + p + k*'[3 + epu(rd)] F

*“F indicates that the pipeline is flushed when that instruction is executed.

1

NOTES:
. Additional cycles are necessary for address computation in the case of EPU-to-Memory and Memory-to-EPU instructions, as shown
below.
“IR,DA” no additional cycles

. The notation “p” in the tabie is the number of pause cycles added to the bus cycle. -
. The notation “k” in the table is a function of n, the number of bytes to be transferred that is specified in the template, and the address

X,8X,RA,SR 1 additional cycle
BX 2 additional cycles

-

of the source or destination as shown below

nis odd k = (n+1)/2
n is even and aligned k=n2
n'is even and unaligned k = (n=2)2

4. See “Notes” from Table E-1.

Table E-3. Interrupt, Trap, and Special Condition Execution Times

Type Execution Time
INTERRUPTS
NMIin Modes 0, 1,2 13 + iack(hmi012) + in(l) + out(l) + wr(IR)
Mode 0 9 + out(l) + [iack(m0) for each byte of opcode]
Mode 1 13 + iack(m1) + in(l) + wr(iR) + out(l)
Mode 2 16 + iack(m2) + in(l) + wr(IR) + rd(IR) + out(l)
Mode 3 Nonvectored 28 + iack(m3) + in(f) + 3*wr(IR) +2*rd(IR) + out(l)
Mode 3 Vectored 31 + iack(m3) + in{l) + 3*wr(IR) +2*rd(IR) + out(l)
On-Chip (Mode 3) 28 + lack(m3) + in(l) + 3*wr(IR) +2*rd(IR} + out(l)
TRAPS
Single-Step 26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

Breakpoint-on-Halt

26+ in{l) +2*wr(IR) + 2*rd(IR) + out(f)

Division Exception 25 + in{l) +2*wr(IR) + 2*rd(IR) + out(l}
Stack Overflow Warning 26 + in(f) +2*wr(IR) + 2*rd(IR) + out(l)
Access Violation 25 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)
System Call 30 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)

Privileged Instruction

26 + in(ly +2*wr(IR) + 2*rd(IR) + out(l)

EPU +- Memory 38 + in(l) +4*wr(IR) + 2*rd(IR) + out(l)
Memory < EPU 38 + in(ly +4*wr(IR) + 2*rd(IR) + out(l)
A<« EPU 31 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)

EPU Internal Operation

31 + inl) +3*wr(IR) + 2*rd(IR) + out(l)

MISCELLANEOUS
FATAL 15 + out(l) + rd(halt) minimum
RESET 3 + rd(reset) + out(l) minimum -
EPU Data Page Fault 1 + epu(if1) and then Access Violation trap
NOTES: ;
1. Additional cycles are necessary for address computation in the case of EPU-to-Memory and Memory-to-EPU traps, as shown
below.
IR,DA no additional cycles
X,SX,RA,SR 1additional cycle
BX 2 additional cycles

2. The pipeline is flushed at the end of any interrupt or trap sequence.

£-12

Table E-4. Instruction Fetch and Decode Timing

Condition 1x Bus Timing 2x Bus Timing 4% Bus Timing -
First byte, cache 4 4 4

First byte, external 9+w 12+ 2w + (0-1) 17 + 4w + (0-3)
First byte, burst 12+w 18 + 2w + (0-1) 29 + 4w + (0-3)
Subsequent byte, cache 1 1 1

Subsequent byte, externat 5+w 8 + 2w + (0-1) 13 + 4w + (0-3)
Subsequent byte, burst 8 +w 14 + 2w + (0-1) 25 + 4w + (0-3)

NOTES:

1.

2.

The term “first” means the first byte fetched following a flushed pipeline. All other bytes are “subsequent”. With a full pipeline, only
the execution times are necessary.

With a 16-bit external bus, the prefetch unit tries to fetch words from external memory though bytes are transferred to the pipeline.
Bytes other than the ane requested are placed in cache.

. A burst transfer transfers a four-word block starting with the word with the three least significant bits being zero. The appropriate byte

is transferred to the decoder as it is written to the cache. The execution unit of the pipeline can begin execution prior to the burst
transaction completion if the necessary bytes are fetched during the early part of the burst transaction.

. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

be half of the sum of the minimum and maximum numbers in parentheses.

. The notation “w" in the transaction tables is the number of WAIT states added to the bus cycle that are either externally generated or

programrnably added. Wait states that are an integral part of the transaction (e.g., one wait state for YO transactions) should not be
included. ’

. Examples of instruction fetch/decode time (assuming flushed pipeline and 1 x bus timing):

a) Two-byte instruction in cache

b) Two-byte instruction both bytes not in cache

¢) Two-byte instruction, first byte in cache, second not in cache
d) Four-byte instruction in cache

e) Four-byte instruction not in cache, no burst, not cacheable
f) Four-byte instruction not in cache, burst, cacheable

g) Six-byte instruction, burst, first two bytes in cache

{4 + 1] processor cycles
(@+wW)+5+wW)

4+ (5 +w]

4 +1 + 1 + 1] processor cycles

[+ w + 3+ (5 + w)] processor cycles
f1l2+w+1+1+1)
B+1+@B+wW+1+14+1]

E-13

Table E-5. Data Read Timing — rd(src), rd(dst), and rd(IR)

Condition 1x Bus Timing 2x Bus Timing 4 x Bus Timing
Byte Hit 5 5 5
Byte Miss 8 +w 11+ 2w + (0-1) 16 + 4w + (0-3)
Aligned Word Hit 5 5 5
Aligned Word Miss 8 +w 11 + 2w + (0-1) 16 + 4w + (0-3)
Unaligned Word Hit Hit 9 9 9
Unaligned Word Miss Hit 124w 15 + 2w + (0-1) 20 + 4w +(0-3)
Unaligned Word Hit Miss 12+w 15 + 2w + (0-1) 20 + 4w + (0-3)
Unaligned Word Miss Miss 15 +w 21 + 2w +(0-2) 31 + 4w + (0-6)
TSET (cache) 8+w 11 + 2w + (0-1) 16 + 4w + (0-3)
TSET (fixed memory) 6 6 6
Page Fault 4 + Access Violation trap 4 + Access Violation trab 4 + Access Violation trap
NOTES:
1. Additional cycles are necessary for address computation, as shown below.

IR,DA no additional cycles

X,SX,RA,SR 1 additional cycle

BX 2 additional cycles

. Aword is aligned if the address is even and the transfer is over a 16-bit bus. It is otherwise unaligned.
. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

be half of the sum of the minimum and maximum numbers in parentheses.

. The notation “w" in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

Table E-8. Data Write Timing — wr(src), wr(dst), and wr(IR)

Condition 1x Bus Timing 2 x Bus Timing 4 x Bus Timing
Byte 5 5 5

Aligned Word 5 5 5

Unaligned Word 9+w

12 + 2w + (0-1) 17 + 4w +(0-3)

Page Fault 4 + Access Violation trap 4 + Access Violation trap 4 + Access Violation trap
NOTES:
1. Additional cycles are necessary for address computation, as shown below.

IR,DA no additional cycles

X,SX,RA,SR 1 additional cycle

BX 2 additional cycles

A WN

. Aword is aligned If the address is even and the transfer is over a 16-bit bus. it is otherwise unaligned.
. The pipeline is flushed whenever a byte being written is valid in the cache.
. In the unaligned word case where the first byte is valid in cache, the execution time is 10 cycles with zero or one wait states and

9 + wcycles for two or more wait states.

. The number in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
" be half of the sum of the minimum and maximum numbers in parentheses.
. The notation “w"” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for 1/O transactions) should not be
included.

Table E-7. /O Read and Write Timing

Type 1x Bus Timing 2x Bus Timing - 4'x Bus Timing
in() 5 5 5 '
in() 9+ w 13 + 2w + (0-1) 20 + 4w + (0-3)
~wr(l} 5 . 5 5
wr() 5 . 5 5

NOTES:)

. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

. The notation “w" in the transaction tables is the number of wait states added to the bus cycle that are either extemally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for IO transactions) should not be
included.

. in(l) and wr(}) are performed intemally within the Z280 MPU.

Table E-8. EPU Read and Write Timing

Type 1 x Bus Timing 2 x Bus Timing 4 x Bus Timing
epu(if1) 8 +w 11 + 2w + (0-1) 16 + 4w + (0-3)
epu(ifn) 8 +w 11 + 2w + (0-1) 16 + 4w + (0-3)
epulcp) 9+w 13 + 2w + (0-1) 20 + 4w + (0-3)
epu(wr) 10+w’ 15 + 2w + (0-1) 24 + 4w + (0-3)
epu(rd) 8 +w 11 + 2w + (0-1) 16 + 4w + (0-3)

NOTES:

1. The numbers in parentheses depend on the phase relationshib between the transaction request and the bus clock. The avefage will

be half of the sum of the minimum and maximum numbers in parentheses.

" 2. The notation “w" in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for YO transactions) should not be

included.
Table E9. interrupt Acknowledge Timing
Type 1x Bus Timing 2x Bus Timing 4 x Bus Timing
iack(nmi012) 4 4 4
iack(m0) 8 +w 13 + 2w + (0-1) 22 + 4w + (0-3)
iack(m1) 10 +w 15 + 2w + (0-1) 24 + 4w + (0-3)
iack(m2) 10 +w 15 + 2w + (0-1) 24 + 4w + (0-3)
iack(m3) 10 +w 15 + 2w + (0-1) 24 + 4w + (0-3)
NOTES:

. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

be half of the sum of the minimum and maximum numbers in parentheses.

. The notation “w" in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for YO transactions) should not be

included. " .

. iack(nmi012) is for NMI in modes 0, 1, and 2.

iack(moO) is for mode 0 interrupts.

£-15

Table E-10. Miscelianeous Transaction Timing

Type 1x Bus Timing 2 x Bus Timing 4 x Bus Timing

HALT Transaction 5 5 : 5

RESET Transaction 6 ' 6 6

RETI Transaction 214w 31 + 2w + (0-2) 49 + 4w + (0-6)
NOTES:

1. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

2. The notation “w” in the transaction tables is the number of WAIT states added to the bus cycle in addition to any automatically
inserted WAIT states. This includes any WAITs added under program control.

Appendix F |
Compatible Peripheral Families

The 7280 MPU supports two different types of bus
interface: the Z80-Bus and the Z-BUS. Families
of peripheral devices are available for both types
of component interconnect buses.

The Z80 Bus configurations of the Z280 ‘MPU have
two compatible peripheral families: the 28400 and
78000/28500 peripheral femilies (Tables F-1 and
F-2). The 28400 family of devices were originally
designed to support the 780-Bus. The 28000 series
of peripherals are designed for systems employing
multiplexed address/data buses, and are also

easily interfaced to Z80-Bus 28000 MPU systems. -

The 28500 peripheral family is identical to the

278000 family, except the devices are configured to
interface to non-multiplexed buses: the Z8500
series devices can be used in 7280 MPU systems
where the address/data bus is de-multiplexed
external to the processor.

The Z-BUS versions of the 2280 MPU are supported
by the 28000/28500 peripheral family (Tasble F-2).
These devices interface directly to the Z-8US.

Refer to the Zilog Components Data Book, for
further information regarding these peripheral
families.

Table F-1. Z8400 Peripheral Family

Part Number

Description

, 28410
28420
28430
Z8440/1/2
28470

DMA Direct Memory Access Controller
PIO Parallel Input/Output Controlier
CTC Counter/ Timer Circuit

S10 Serial Input/Output Controller
DART Duai Asynchronous

Receiver/Transmitter

Table F-2. 28000/28500 Peripheral Family

Part Number

Description

Z78016/28516

DTC Direct Memory Access Transfer Controlier

28030/28530 SCC Serial Communications Controller
Z8036/28536 CIlO Counter/Timer and Parallel /0O Unit

28038 Z-F10 FIFO Input/Output Interface Unit
28060 Z-FIFO Buffer Unit and Z-FIO Expander
28065 BEP Burst Error Processor

28068 Z-DCP Data Ciphering Processor

28090/Z8590 UPC Universal Peripheral Controller

(ROM-based)

78094/28594 UPC Universal Peripheral Controller

(RAM-based)

Glossary

access protection: A function of memory manage-
ment that controls read, write, and execute access
to memory 1locations, protecting proprietary or
operating system memory areas from tampering by
unauthorized users.

access protection violation: An incorrect or for-
bidden attempt to access a memory location; for
example, an attempt to write to a read-only page.
An access violation causes the CPU to abort the

current instruction and generate an Access
Violation trap.
accumulator: A register withih a central

processing unit (CPU) that can hold the result of
an arithmetic or logical operation.

address spsce: A set of addresses that are
accessed in a similar manner. The 2280 MPU
contains four types of address spaces: CPU
register, CPU control register, memory, and 1/0.
The memory space can be divided into four separate
memory address spaces: system-mode program,
system-mode data, user-mode program, and user-mode
data.

addressing mode: The way in which the location of

-an operand is specified. There are nine addressing
modes in the 2280 MPU: Register, Immediate,
Register Indirect, Direct Address, Indexed, Short
[ndex, Base Index, Relative Address, and Stack
Pointer Relative.

address tag: The portion of certain associative
memories that is compared against a referenced
address to determine whether the matching value is
found. The address taq for a cache block ia the
physical memory address.

sddress translation: The process of mapping log-
ical addresses into physical addresses.

aligned address: An address that is a multiple of
an operand's gize in bytes. Aligned word
addresses are a multiple of two.

associative memory: A memory in which data is
accessed by specifying a value rather than a
location. The cache is an associative memory.

autodecrement: The operation of decrementing an
address in a register by the operand's size in
bytes. The decrement amount is one for byte
operands, two for word operands.

astoincrement: The operation of incrementing an
address in a register by the operand's size in
bytes. The increment amount is one for byte
operands, two for word operands.

base address: The address used, along with an
index and/or displacement value, to calculate the
effective address of an operand. The base address
is located in a register, the Program Counter, or
the instruction.

Base Index (BX) addressing mode: In this mode,
the contents of the base register and index regis-
ter are added to obtain the effective address.

burst transaction: The transfer of geveral con-
secutive items of data in one memory transaction.

bus master: The device in control of the bus.

bus requast: A request for control of the bus
initiated by a device other than the bus master.

byte: A data item containing eight contiguous
bits. A byte is the basic data wunit for
addressing memory and peripherals.

cache: An on-chip buffer that automatically
stores copies of recently used memory locations
(both instructions and data), allowing fast access
for memory fetches.

Contral Processing Unit (CPU): The primary
functioning unit of a computer, consisting of an
ALY, control logic for decoding and executing
instructions and controlling program flow, and
registers.

coprocessor: A processor that works synchronously
with the CPU to execute a single instruction
stream using the Extended Processing Architecture
(EPA),

destinstion: The register, memory locaiion, or
device to which data are to be transferred.

G-1

Glossary

Direct Address (DA) addressing mode:
mode, the effective address is contained in the
instruction.

displacement: A constant value located in the
instruction that is used for calculating the
effective address of an operand.

effective address: The logical memory address of
an operand, calculated by adding the base address,
an optional index value, and an optional
displacement.

EPU internal operation: An EPU-handled operation
that controls EPU operations but does not transfer
data.

A condition or event that alters the
The Z280

exception:

usual flow of instruction processing.

MPU supports three types of exception: reset,
interrupts, and traps.
Extended Processing Architecture (EPA): A CPU

facility that allows the operations defined in the
architecture to be extended by hardware or
software. If enabled, the CPU transfers EPA
instructions to an Extended Processing Unit (EPU)
for execution; if disabled, the CPU traps EPA
instructions for software emulation.

Extended Processing Unit (EPU): An external
device, that handles Extended Processing
Architecture instructions (such as floating-point
arithmetic). ’

flowthrough transaction: A DMA-initiated -data
transfer consisting of separate read and write

transactions. Data is temporarily stored in the
DMA channel between the read and write
transactions.

flyby traneaction: A transaction controlled by
the bus master, but in which another device
transfers data to the responding device.

frame: A block of physical memory used by the
memory management mechanism to map logical memory
pages.

global bus: A bus shared by tightly coupled,
multiple CPUs; the bus master is chosen by san
external arbiter device.

hit: A hit occurs when a associative memory is
gearched for a value and a match is found.

jdentifier word: A 16-bit code saved on the
gsystem stack during exception processing that
provides information about the cause of the
exception.

In this.

Tmmadiate (IM) addressing mode: In this mode, the
operand is contained in the instruction.

index: A value located in a register used for
calculating the effective address of an operand.
The index value usually specifies the calculated
offset of an operand from the orgin of an array or
other data structure.

Indexed (X) addressing mode: In this mode, the
contents of an index register are added to a base
address contained in the instruction to obtain the
effective address.

Indirect Register (IR) addressing mode: In this
mode, the effective address is contained in a
register.

interrupt: An asynchronous exception that occurs
when an NMI or INT line is activated, usually when
a peripheral device needs attention.

least recently used (LRU): The CPU records the
order of use for cache blocks. When a tag miss
occurs, the CPU replaces the least recently used
block.

local bus: The bus controlled by the CPU and
shared with slave processors.

logical address: The address manipulated by the

proqram. The memory management mechanism
translates logical addresses to physical
addresses.

loosely coupled CPlus: CPUs that execute

independent instruction streams and communicate
through a multi-ported peripheral, such as a 28038
FI0 I/0 interface unit.

Master Status register: A 16-bit CPU control
register that contains status information

describing the current operating states of the
CPU.

memory management: The process of translating
logical addresses into physical addresses, plus
certain protection functions. In the 7280 MPY,
memory management is integrated into the chip.

memory-mepped 1/0: An 1/0 device accessed in the
memory address space.

miss: A miss occurs when an associative memory is
searched for a value and no match is found.

normaskable interrupt: The
interrupt; cannot be disabled.

highest priority

G-2

Glossary

page: A logical memory unit mapped by the memory
management mechanism to a physical memory frame.

paged translation: A method of address
tranglation in which the logical and physicsl
address spaces are divided into fixed, equal-sized
units called pages and frames, respectively,
During address translation, a logical page is
mapped to an arbitrary physical frame.

physicsl address: The 24-bit address required for
accessing memory and peripherals, obtained by the
CPU's address translation hardware.

pipeline: A computer design technique in which an
instruction is executed in a sequence of stages by
different functional units. The functional units
can be operating on several different instructions
simultaneously, similiar to an automobile assembly
line.

prefetching: Ability of the CPU to fetch an
instruction ‘or operand before the previous
instructions have been completed.

privileged instruction: An instruction that
performa 1/0 operations, accegses control
. registers, or performs some other operating system
function. Privileged instructions execute in
gsystem mode only.

Program Counter (PC): One of the two Program
Status registers; it contains the address of the
current instruction.

Program Status registers: The two registers
(Program Counter and Master Status register) that
contain the Program Status. The Program Status is
automatically saved during exception processing.
protection: See access protection.

resd sccess: The type of memory access used by
the CPU: for fetching data operands other than
those specified by Immediate addressing mode.

refresh: To restore information that fades away
if left alone. For example, dynamic memories must
be refreshed periodically in order to retain their
contents.

Register (R) addressing mode: In this mode, the
operand is in a genetal—purpose/ register.

Relative Address (RA) addressing mode: In this
mode, the displacement in the instruction is added
to the contents of the Program Counter to obtain
the effective address.

relocation: The process of mapping a logical
address to a different physical address, so that
multiple processes can use the same logical
address for distinet physical memory locations.

rogquest: A signal or message used by a device to
indicate the need for some action or rdsource.

reset: A CPU operating state or exception that
results when a reset request is signaled on the
RESET 1line.

responder: The device to which bus transactions
transfer data.

self-modifying program: A program that stores to
a location from which a subsequent instruction is
fetched. . L

semaphore: A storage locstion used as a Boolean
variable to synchronize the use of resources among
multiple programming tasks. A semaphure ensures
that a shared resource is allocated to only one
task at any given time. :

service routine: ’Program code that is executed in

. response to an interrupt or trap.

Short Index addressing mode: In this made, the
contents of the IX or 1Y reqister are added to an
8-bit displacement corftained in the instruction to
obtain the effective address of the operand. '

slave processor: A processor, such as a Direct
Memory Access transfer controller, that performs
dedicated functions asynchronously to the CPU,

source: The reqister, memory location, or device
from which data are being read.

gpatial locality: The characteristic of program
behavior whereby consecutive memory references
often apply to closely locsted addresses.

stack: An area of memory used for temporary
storage and subroutine linkages. A stack uses the
first-in, 1last-out method for storing and
retrieving data; the last data written onto the
gtack will be the first data read from the stack.

Stack Pointer (SP): A register indicating the top
(lowest address) of the processor stack used by
Call and Return instructions for linking
procedures. User and system modes of operation
use separate Stack Pointers, the Uger Stack
Pointer (USP) and System Stack Pointer (55P).

G-3

Glossary

gystem mode: A CPU mode of operation, used for’

operating system functions. In this mode, the CPU
can execute . privileged (and all other)
instructions.

System Stack Pointer (SSP): The Stack Pointer
used while the CPU is in system mode. . User mode
programs cannot access the SSP,

tag hit: "On a memory reference, a tag hit occurs
when the cache address tags are searched for the
referenced address and a match is found.

teg miss: On a memory reference, a tag miss
occurs when the cache address tags are searched
for the referenced address and no match is found.

temporal locality: The characteristic of program
behavior whereby memory references often apply to
a location that has been referred to recently.

tightly coupled CPUs: CPUs that execute
independent instruction streams and communicate
through shared memory on a common {qlobal) bus.

tranesaction:
transfer of one byte or word of data between the
CPU and a memory or peripheral device.

trap: An exception that occurs when certain
conditions, such as an " access protection
violation, are detected during execution of an
instruction.

A bagic bus operation involving the ‘

\nautmod address: An address that is not a
maultiple of an operand's size in bytes. 0Odd
addresses are unaligned for words.

user mode: A CPU mode of aoperation, generally
used for application programs. In this mode, the
CPU cannot execute privileged instructions or
access protected memory locations.

User Stack Pointer (USP): The Stack Pointer used
while the CPU is in user mode. System mode
programs can access the USP with the Load Control
instruction. ’

vectored interrupt: A interrupt that uses the
low-order byte of the identifier word as a vector
to an interrupt service routine; can be disabled,

virtual memory: A memory management technique in
which the system's logical memory address space is
not necessarily the same as, and can be much
larger than, the available physical memoty.

wait state: A clock period that is added to a
memory or 1/0 transaction due to an active WAIT
signal. Wait states are used to prolong memory
and 1/0 transactions to devices with long access
times.

word: A data item containing sixteen contiguous
bits!

write acceas: The type of memory access used by
the CPU for storing data operands.

G-4

Index

-A-
Access violation, 1:4, 7:5 -
Access violation trap, 1:3, 5:3;4, 6:4,5, 7:1,2,7
Add/Subtract flag, S5:1
Address spaces, 1:2,6, 4:1,6
' CPU control register space, 1:2, 2:1,2, 4:2,6
CPU register space, 1:2, 2:1,2, 4:6
I/0 address space, 1:2, 2:1,4, 4:2,6
Memory address space, 1:2, 2:1,3, 4:1-6
Address translation, 2:3, 7:1-6
with program/data separation, 7:1,2,4
without program/data separation, 7:2,3
Addressing modes, 1:3, 4:1-6, 5:1,6,10, 7:2,5
Base Index (BX), 1:6, 4:1,5,6, 5:6,10, 10:7, B:1
Direct Address (DA), 1:3, 2:4, 4:1,2, 5:6-10, 10:7
Immediate (IM), 1:3, 4:1
Indexed (X), 1:3,6, 4:1,3,6, 5:6,10, 10:7
Indirect Register (IR), 1:3,6, 2:4, 4:1,2, S:
Program Counter Relative (RA), 1:3, 4:1,4, 5:
Register (R, RX), 1:3, 4:1
Short Index (SX), 1:3, 4:1,3,6, 5:4,6,7)
Stack Pointer Relative (SR), 1:3,6, &4:1,5, 5:6,10, 10:7

4,6-8,10, 10:7
6,8,10, 7:2,5, 10:7

\

-B-
Base Index (BX) addressing mode, 1:3,6 4:1,5,6, 5:6,10, 10:7 B:1
Bit manipulation, rotate and shift instructions, 1:3, 5:1,7
.Block move port, 7:6 ‘ i :
Block transfer and search instructions, 1:3, 4:6, 5:1-5
Bootstrap mode, 3:2, 9:20-22, 11:1
Breakpoint-on-Halt trap, 1:3, 3:4, 5:3,4, 6:4-6
Burst mode, 3:3,4, B8:2, Y:10,15-17, 10:3, 12:3, 13:1,3,9, E:13
Bus configuration and timing
Z-8US, 1:1, 9:12,16, 12:1, 13:4
Z80 Bus, 1:1, 9:12,16, 12:1,2,4, A:1
Bus request, 1:4, 9:9,10, 10:1-5,8, 11:1, 12:2-3
Bus request protocols, 10:2,3
Bus Timing and Control register, 2:2, 3:1-3, 12:4,5,12,13, 13:4,5,9,13
Bus Timing and Initialization register, 2:2, 3:1, 9:1,9, 10:2, 11:1,2,
12:2-5,15, 13:2,4,5,9,19 ’
Byte/Word registers, 2:1

f -C-

Cache Control register, 2:2, 3:1,3,4, B8:1-4, 12:4, 13:4,9

Csche; 1:4-6, 3:3,4, 6:9,-7:1,2, 8:1-4 9:1,15, 10:8, 12:4, 13:4,9,14, A:1, E:1,13-14
Fixed-Address mode, B8:4
Memory mode, 3:3,4, 831~
Organization, 3:3,4, B8:1

Carry flag, 5:1-3,7,8

Clock oscillator, 1:1,2,5, Y:1,2

Condition codes, 5:1-3

Continuous mode, Y:10,15,17,21, 12:3, 13:3

3

Coprocessors, 10:1,6, 12:1, 13:14
"and Extended Processing Architecture, 10:6
Count register, 9:9,12-16, 11:1
Count-Time register, Y:2-6, 11:1,3
Counter/Timer registers, 6:9,10 9:4,4
Counter/Timer Command/Status register, 9:2,3,5-9
Counter/Timer Configuration register, 9:2-5,7-9,19
Count-Time register, 9:2-6, 11:1,3
1/0 addresses of, 9:7
Time Constant register, 9:2,4-7,9, 11:1
Counter/Timers, 1:4,5, 9:1-9,17,19, 10:2, 11:1,3, 12:3, 13:2
Gates and triggers, 9:2-9
Linking counter/timers, 9:5,7
Operating modes, 9:3-5
Sequence of events, 9:7,8
Terminal count condition, 9:3-5,8,9,15,16
Count-Time register, 9:2-6
CPU control instructions, 5:1,9,10
CPU control register space, 1:2, 2:1,2
CPU Control registers, 3:1-6, 6:1
CPU register file, 2:1,2
Byte/Word registers, 2:1,2
Flag and accumulator registers, 2:1,2
Index registers, 2:2
Interrupt register, 2:2
Program Counter, 2:1,2
Refresh register, 2:1,2
Stack Pointers, 2:1,2
CPU register space, 1:2, 2:1,2

-D-
Daisy chain timing, 3:2,3, 8:3
Data types, 1:2,6, 2:4, 4:6
Descriptor Select port, 7:6
Destination Address register, 9:9,10,12-14,16,17, 11:1
Direct Address (DA) addressing mode, 1:3, 2:4, 4:1,2, 5:6-8,10, 10:7
Division Exception trap, 1:3, 3:4, 5:3, 6:4,5
DMA channels, 1:1,4,5, 3:2, 7:1, 8:2, 9:1,9-17,21, 10:2,4,6, 11:1,3,
12:2,3,13-15, 13:4,5,17,18,19 -
DMA linking, 9:9,12,13
DMA programming, DMAs linked to UART, 9:9,13,17,21,22
DMA programming, linked DMAs, 9:9,13,16
DMA registers, 9:12,13,15,16,21
DMA sequence of events, 9:15,16
DOMA transfer mode, 9:10,11%
End-of-process, Y:11-16,21, 13:2
Priority resolution, 9:12
Types of DMA operations, 9:10
DMA Flowthrough transaction, 9:9-11,15-17,21, 13:5;17
DMA Flyby transaction, 9:9-11,14,15 12:2,13, 13:2
DMA modes of operation, Y:10,11,14, 12:3, 13:3
burst mode, 9:10,15-17,y 12:3, 13:3,9, E:13
continuous mode, Y:10,15,17,21, 12:3, 13:3
single transaction mode, Y:10,17, 12:3, 13:3
DMA registers, 9:12,13,15,16,21
Count register, 9:10,12,13,14,16, 11:1,3
Destination Address register, 9:9,10,12,13,15-17, 11:1,3
DMA Master Control register, 9:9-13,15,17
DMA Trapnsaction Descriptor register, 9:9,11-17
Source Address register, 9:9,10,12-17, 11:1

End-of-Process, Y:11-16,21, 12:3, 13:2
Exception conditions, 1:3, 5:3,4, 6:1
intercupts, 1:3,5,6, 2:2, 3:4,5, 5:3,9,10, 6:1-4,6-11, 7:1
resets, 1:3, 3:1-6, 6:1,3,11 '
traps, 1:3-5, 2:2, 3:4,5, 5:3,4,9,10, 6:1,4-11, 7:1
Extended instructions, 1:4, 3:5, 5:1,3,10, 6:4, B8:2,3, 10:6-Y, 13:5,9,14,15
execution sequence, 10:7
Extended Instruction trap, t:3, 3:5, 5:3,10, 6:4, 10:7, 13:14
Extended Processing Units (EPUs), 1:4, 2:3, 3:5,6, 4:6, 5:3,10, 6:4, B:3,4,
10:6-9, 13:14,15, B:1
EPU transaction, 13:2-4,14

-F -
Fixed Address mode, 9:15
Flag register, 1:2, 2:1,2, 5:2
Flowthrough mode, 9:9-11,15-17, 13:5
Flyby mode, 9:9-11,14,15, 12:2,13, 13:2,17,18,
framing error, 9:18,20

-H-
Half-Catry flag, 5:2

P o
Immediate (IM) addressing mode, 1:3, 4:1,
Index registers, 2:1,2
Indexed (X) addressing mode, 1:3,6, 4:1,3,6, 5:6,7,10, 10:7
Indirect Register (IR) addressing mode, 1:3,6, 2:4, 4:1,2, 5:4,6-8,10, 10:7
Input/Output instruction group, 1:3, 5:1,9
Instruction aborts, 7:7
Instruction Execution, 5:3,4
and exéeptions, 5:3
and interrupts, 5:3,4
and traps, 5:3,4
Instruction set, 1:3,6, 5:12-172
binary encoding, 5:10,11
functional groups, 5:4
Block Transfer and Search group, 1:3, 4:6, 5:1-5
CPU Control group, 5:1,9,10
Extended Instruction group, 5:1,10, 10:6,7, 13:5,9,14,15
Input/Output group, 1:3, 5:1,9
Program Control grouwp, 5:1,7,8
Rotate, Shift, and Bit Manipulation group, 1:3, 5:1,7
8-bit Arithmetic and Logical group, 1:3, 5:1,6
8-bit Load group, 5:1,4
16-bit Arithmetic Group, 1:3, 5:1,6,7
16-bit toad and Exchange group, 5:1,5
notation, 5:10,11
Interrupt Acknowledge, 2:2, 3:2, 6:2,3,6-8, 12:2,3,12,14, 13:2-4,13,18, A:1
Interrupt and Trap handling, 1:2,5
Interrupt Mask register, 5:10
Interrupt Modes, 3:4,5, 6:1,4,6,8,9, A:1l
0: 3:5, 5:10, 6:1-3,7-9, 11:1, 12:14, 13:19, A:1
1: 5:10, 6:1-3,7-9
2: 2.2, 5:10, 6:2,3,7-9, 7.2 i
3s 3:4,5, 5:3,9,10, 6:1,3,4,7-10, 7:1, 931

Interrupt request, 3:4,5, 5:3, 6:1-3,6,7,9 8:3, 9:1-5,7,11,12,14,16-18,20,
12:2,3,9,12,14, 13:2,10,13,19
Interrupt register, 2:2
Interrupt Shadow register, 6:3,9
Interrupt Status register, 2:2, 3:4,5, 6:2,8-10, 11:1
Interrupt/Trap Vector Table, 6:3,4,7-9, 7:1
Interrupt/Trap Vector Table Pointer, 2:2, 3:4,5, 6:3,4,11, 7:1, 11:1,2
Interrupts, 1:3,5,6, 2:3, 3:4,5, 5:3,9,10, 6:1-4,6-11, 7:1, 9:1, 11:1,2,
12:5,12,14, 13:3,5,19, E:1,12-13
maskable, 3:4, 6:1-3,7-9, 12:3,14, 13:3,19
nonmaskable, 5.4.9, 6:2,3,7-9, 12:3,14, 13:3,19
Invalidstion port, 7:6
I/0
address space, 1:2, 2:1,4, 4:2,6, 9:1
Page register, 2:2,4, 3:4,5, A:1
transaction, 3:2,5%, Y:1, 10:2, 12:2,4,10, 13:2,3, €:9,16

-L-
Local Address register, 2:2, 3:1,3, 10:2,4, 12:10,15, 13:4,19
Loosely coupled multiple CPUs, 10:1,6

M-
Master Status register (MSR), 2:2,3, 3:4,5, 4:5, 5:2,4, 6:1-11, 7:7, Y:4,12,
12:14, 13:19, A:1
Memory Access Violation trap 1:3, 5:3,4, 6:4,5, 7:1,2,7
Memory Address space, 1:2, 2:1-4
System, 2:3
User, 2:3
Memory manasgement, 1:1,3,4, 7:1
Memory transaction, 12:2,5,10,13, 13:2-11,14,17,19
MMU, 1:2,4,5, 2:3, 4:1, 5:9, 6:2,5,8,11, 7:1,2,5-7, B:2, 931,14, 11:1,2, A:1
Architecture, 7:1,2
Control registers, 7:1,5,6
MMU Master Control register, 7:1,3,5,7 .
Page Descriptor register, 2:3, 6:5, 7:1-7, 8:2, 11:1,2
Page Descriptor Register Pointer, 7:5,6
Multiprocessor
configurations, 1:4, 3:1
mode, 1:4, 3:1,3, 10:2,4, 11:1, 12:15, 13:19

-0-
Overrun error, Y:18,20,21

“P

Page Descriptor register, 2:3, 6:5, 7:1-7, 8:2
Page Descriptor Register Pointer, 7:5,6
Page Fault trap, 3:4, 5:4
Parity error, 9:18,20,21
Parity/Overflow flag, 5:2,3, 9:21
Peripheral families, 1:1, F:1
Pin descriptions,

Z-BUS, 13:1-3

280 BUS, 12:1-3
Privileged instructions, 3:4-6, 5:3,4,10, 6:4,5, A:1
Privileged Instruction traep, 1:3, 3:4,5, S5:4, 6:4,5
Processor flags, 5:1,7,9, 6:5

Add/Subtract flag, 5:1

Carry flag, 5:1,7,8
Half-Carry flag, 5:2)
Parity-Overflow flag, 5:2
Sign flag, 5:2
lero flag, 5:2
Program Control instructions, 5:1,7,8 .
Program Counter, 2:1,2, 3:4,5, 5:7,8,10, 6:2-4,7-11, 7:7, 10:7
Program Counter Relative (RA) addressing mode, 1:3, 4:1,4, 5:6-8,10, 7:2,5,

-R-
Reason code, 6:3,8,9
Refresh, 1:2,4,5, 10:4, 12:2-4,9,10, 13:2,4,10, A:1
Refresh controller, 9:1t,2 ’ ’
Refresh Rate register, 1:4, 9Y:1,2
Refresh register, 2:1,2, Azl
Register (R, RX) addressing mode, 1:3, 4:1, B:1
Reset, 1:3, 3:1,3-6, 5:10, 6:1,3,11, 7:5, 11:1, 12:1,3,4,9, 13:3,4,10, A:1
RETI transaction, 5:9,10, 6:3,9, 8:2-4, 12:2,9,14, E:10
Rotate, Shift, and Bit Manipulation instructions, 1:3, 5:1,7
\
-5

. Short Index (SX) addressing mode, 1:3, 4:1,3,6, 5:4,6,7,
Sign flag, 5:2,3
. Single-Step trap, 1:3, 3:4, 5:3,4, 6:4-6,8 ’ ,
Single transaction mode, 9:10,17, 12:3, 13:3
Slave processors, 10:1,2, 12:1
Source Address register, 9:9,10,12-17, 11:1
Stack Limit register, 6:5
Stack Pointer registers, 1:2, 2:1,2, 3:4, 5:3,4, 6:5, A:1

System, 2:2, Azl !

" User, 232, A:1

Stack Pointer Relative (SR) addressing mode, 1:3,6, 4:1,5,6, 5:6,10, 10:7
System Call trap, 1:3, 5:4, 6:4,5 .
System Configuration registers, 3:1

Bus Timing and Control register, 3:1,3

Bus Timing and Initialization register, 3:1

Cache Control register, 3:1,3,4

Local Address register, 3:1,3 . .
System mode, 1:2,3,5,6, 2:2,3, 3:1,4-6 5:4,9, 6:2,3,5,7,8, 7:1,2,5, A:1
System Stack Limit register, Z:2, 3:4-6 '
System Stack Overflow Warning trap, 1:3, 3:6, 5:4,5, 6:4,5
System Stack Pointer (SSP), 2:1,2, 3:6, 4:5, 6:2, A:1
System Status registers, 3:1,4

Interrupt Status register, 3:4,5

Intercupt/Trap Vector Table Pointer, 3:4,5

1/0 Page register, 3:4,5 ,

Master Status register (MSR), 3:4

System Stack Limit register, 2.2, 3:4-6

Trap Control register, 3:4-6

T~
Terminal count condition, 9:3-5,8,9,15,16
Tightly coupled multiple processors, 10:1,2,4,5
Time Constant register, 9:2,4-7,9, 11:1
Trap Control register, 2:2, 3:4-6, 5:9,10, 6:4,5, 10:7, 13:14, Az1
Traps, 1:3-5, 2:2, 3:4,5, 5:1,3,4,7-10, 6:1,4-11, 7:1, 10:6, 11:1,2, 12:5,
13:2,5, E:1,12 .

Access Violation, 136, 5:3,4, 6:4-6, 7:1,2,7

Breakpoint -on-Halt, 1:6, 3:4, 5:3,4, 6:4-6

Division Exception, 1:6, 334, 5:3, 6:4,5,

10

Extended Instruction, 1:6, 3:5, 5:3,10, 6:4, 10:6-9, 13:14
Page Fault, 3:4, 5:3,4

Privileged Instruction, 1:6, 3:4-6, $5:3,4, 6:4,5
Single-Step, 1:6, 3:4, 5:3,4, 6:4-6,8

System Call, 1:6, 5:3,4, 6:4,5 ,

System Stack Overflow Warning, 1:6, 3:5,6, 5:3-5, 64,5, Azl

-U-

UART, 1:1,4,5, 3:1,2, 9:1,17-22, 11:1,3, 12:3, 13:3
bootstrapping option, 332, 9:20-22
operation, 9:21
registers, 9:17,18,20
1/0 addresses of, Y:20
Receive Data register, Y:17,18,20,21
Receiver Control/Status register, 9:17,18,20,21
Transmit Data register, 9:17-21
Transmitter Control/Status register, 9:17-21
UART Configuration register, 9:18,19,21
receiver operation, %:18,20, 12:3, 13:3
transmitter operation, 9:17-20, 12:3, 13:3
User mode, 1:2,5,6, 2:2,3, 3:4,5, 5:4, 6:3-5, 7:1,2,5
User Stack Pointer (USP), 2:1,2, 4:5, 5:9, A:1

-1-

Z-8US, 1:1, 9:2,12,16, 10:6, 12:1, 13:1-19, Fs1
bus confiquration and timing, 9:12,16, 12:1, 13:4
bus operation, 13:2
external interface, 12:1
pin descriptions, 13:1-3
requests, 13:2,18

global, 13:18,19
interrupt, 13:2,18,1Y
local, 13:18,19
transactions, 13:2-5,9-16
DMA flyby, 13:2,17
Extended Processing Unit (EPU)}, 10:6, 13:2-4,14
Halt, 13:2,4,10
1/0, 13:2,3,11
Interrupt Acknowledge, 13:2-4,18
Memory, 13:2-11,14,18,19
Refresh, 13:2,4,10

180 Bus, 1:1, Y:2,12,16, 10:6, 12:15, 13:1, F:1
bus configuration and timing, 9:12,16, 12:4, A:1l
bus operation, 12:2
external interface, 12:1
pin degcriptions, 12:1-3
requests, 12:2,14

global, 12:14,15
interrupt, 12:2,14
local, 12:14,15
transactions, 12:2,4,5,9,10,12,15
DMA flyby, 12:2,13
Halt, 12:2,9,10
1/0, 12:2,10
Interrupt Acknowledge, 12:2,12,14
Memory, 12:2,5,10,13
Refresh, 12:2,9,10
RETI, 12:2,9,14
lero flag, 5:2,3-

NOTES

'READER COMMENTS

Zilog

Your comments concerning this publication are important to us.
Please take the time to complete this questionnaire and return it to
Zilog.

Title of Publication:

Document Number:

Your Hardware Model and Memory Size:

Describe your likes/dislikes concerning this document:

Technical information:

Supporting Diagrams:

Ease of Use:

Your Name:

Company and Addroés:

Your Position/Department:
03-8224-01

j(’a%vz eV/ ID\/ | |
Jr 2

\/

ZILOG DOMESTIC SALES OFFICES INTERNATIONAL SALES OFFICES
AND TECHNICAL CENTERS

CANADA
CALIFORNIA Toronto 416-673-0634
Agoura 818-707-2160
Campbell 108-370-8016 GERMANY
Costa Mesa 714-261-1281 Munich 49-89—612—-6046
COLORADO JAPAN
Boulder 303-494-2905 Tokyo. 81-3-587-0528
FLORIDA HONG KONG
Largo 813-585-2533 Kowloon 85237238979
GEORGIA R.O.C.
Atlanta 404-451-8425 Taiwan 886—2—731—2420
ILLINOIS UNITED KINGDOM
Schaumb 312-885-8080 Maidenhead 44-628-39200
MASSACHUSETTS
Burling 617-273-4222
MINNESOTA
Edina. 612-831-7611
NEW JERSEY
Hasbrouck Heights 201-288-3737
Mt. Laurel 609—778-8070
OHIO
Seven Hills. 216-447-1480
TEXAS
Richard 2142319090

Z280 is a trademark of Zilog, Inc.
280, Z8000 and Z—BUS are registered trademarks of Zilog, Inc.

©1987 by Zilog, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
prior written permission of Zilog.

The information contained herein is subject to change without
notice. Zilog assumes no responsibility for the use of any
circuitry other than circuitry embodied in a Zilog product. No
other circuit patent licenses are implied.

All specifications (parameters) are subject to change without

notice. The applicable Zilog test documentation will specify
which parameters are tested.

Zilog, Inc. 210 Hacienda Ave., Campbell, California 95008-6609
Telephone (408)370-8000 TWX 910-338-7621

03-8224—02 Printed in USA

	TOP
	Table of Contents
	LIST OF ILLUSTRATIONS AND TABLES

	Chapter 1. Architectural Overview
	1.1 INTRODUCTION
	1.2 MPU ARCHITECTURAL FEATURES
	1.2.1 System and User Modes
	1.2.2 Address Spaces
	1.2.3 Data Types
	1.2.4 Addressing Modes
	1.2.5 Instruction Set
	1.2.6 Exception Conditions
	1.2.7 Memory Management
	1.2.8 Cache Memory
	1.2.9 Refresh
	1.2.10 On-Chip Peripherals
	1.2.11 Multiprocessor Mode
	1.2.12 Extended Instruction Facility

	1.3 BENEFITS OF THE ARCHITECTURE
	1.3.1 High Throughput
	1.3.2 Integration of Systeai Functions
	1.3.3 Operating System Support
	1.3.4 Code Density
	1.3.5 Compiler Efficiency

	1.4 SUMMARY

	Chapter 2. Address Spaces
	2.1 INTRODUCTION
	2.2 CPU REGISTER SPACE
	2.3 CPU CONTROL REGISTER SPACE
	2.4 MEMORY ADDRESS SPACES
	2.5 I/O ADDRESS SPACE

	Chapter 3. CPU Control Registers
	3.1 INTRODUCTION
	3.2 SYSTEM CONFIGURATION REGISTERS
	3.2.1 Bus Timing and Initialization Register
	3.2.2 Bus Timing and Control Register
	3.2.3 Local Address Register
	3.2.4 Cache Control Register

	3.3 SYSTEM STATUS REGISTERS
	3.3.1 Master Status Register
	3.3.2 Interrupt Status Register
	3.3.3 Interrupt/Trap Vector Table Pointer
	3.3.4 I/O Page Register
	3.3.5 Trap Control Register
	3.3.6 System Stack Limit Register

	Chapter 4.Addressing Modes and Data Types
	4.1 INTRODUCTION
	4.2 ADDRESSING MODE DESCRIPTIONS
	4.2.1 Register (R9 RX)
	4.2.2 Immediate (IN)
	4.2.3 Indirect Register (IR)
	4.2.4 Direct Address (DA)
	4.2.5 Indexed (X)
	4.2.6 Short Index (SX)
	4.2.7 Program Counter (PC) Relative Address (RA)
	4.2.8 Stack Pointer Relative (SR)
	4.2.9 Base Index (BX)

	4.3 DATA TYPES

	Chapter 5. Instruction Set
	5.1 INTRODUCTION
	5.2 PROCESSORR FLAGS
	5.2.1 Carry Flag (C)
	5.2.2 Add/Subtract Flag (N)
	5.2.3 Parity/Overflow Flag (PA)
	5.2.4 Half-Carry Flag (H)
	5.2.5 Zero Flag (Z)
	5.2.6 Sign Flag (S)
	5.2.7 Condition Codes

	5.3 INSTRUCTION EXECUTION AND EXCEPTIONS
	5.3.1 Instruction Execution and Interrupts
	5.3.2 Instruction Execution and Traps

	5.4 INSTRUCTION SET FUNCTIONAL GROUPS
	5.4.1 8-Bit Load Group
	5.4.2 16-Bit Load and Exchange Group
	5.4.3 Block Transfer and Search Group
	5.4.4 8-Bit Arithmetic and Logic Group
	5.4.5 16-Bit Arithmetic Operations
	5.4.6 Bit Manipulation, Rotate and Shift Group
	5.4.7 Progran Control Group
	5.4.8 Input/Output Instruction Group
	5.4.9 CPU Control Group
	5.4.10 Extended Instruction Group

	5.5 NOTATION AND BINARY ENCODING
	ADC Add with Carry (Byte)
	ADC Add With Carry (Word)
	ADD Add Accumulator to Addressing Registe
	ADD Add (Byte)
	ADD Add (Word)
	ADDW Add Word
	AND AND
	BIT Bit Test
	CALL Call
	CCF Complement Carry Flag
	CP Compare (Byte)
	CPD Compare and Decrement
	CPDR Compare, Decrement and Repeat
	CPI Compare and Increment
	CPIR Compare, Increment and Repeat
	CPL Complement Accumulator
	CPW Compare (Word)
	DAA Decimal Adjust Accumulator
	DEC Decrement (Byte)
	DEC[W] Decrement (Word)
	DI Disable Interrupt
	DIV Divide (Byte)
	DIVU Divide Unsigned (Byte)
	DIVUW Divide Unsigned (Word)
	DIVW Divide (Word)
	DJNZ Decrement and Jump if Non-Zero
	El Enable Interrupt
	EX Exchange Accumulator/Flag with Alternate Bank
	EX Exchange Addressing Register with Top of Stack
	EX Exchange H and L
	EX Exchange HL with Addressing Register
	EX Exchange with Accumulator
	EXTS Extend Sign (Byte)
	EXTS Extend Sign (Word)
	EXX Exchange Byte/Word Registers with Alternate Bank
	HALT HALT
	IM Interrupt Mode Select
	IN Input
	IN Input Accumulator
	INC Increment (Byte)
	INC[W] Increment (Word)
	IND Input and Decrement (Byte, Word)
	INDR Input, Decrement and Repeat (Byte, Word)
	INI Input and Increment (Byte, Word)
	INIR Input, Increment and Repeat
	IN[W] Input HL
	JAF Jump On Auxiliary Accumulator/Flag
	JAR Jump On Auxiliary Register File In Use
	JP Jump
	JR Jump Relative
	LD Load Accumulator
	LD Load from Accumulator
	LD Load from I or R Register
	LD Load Immediate (Byte)
	LD Load Register (Byte)
	LD Load to I or R Register
	LDA Load Address
	LDCTL Load Control
	LDD Load and Decrement
	LDDR Load, Decrement and Repeat
	LDI Load and Increment
	LDIR Load, Increment and Repeat
	LDUD Load in User Data Space (Byte)
	LDUP Load in User Program Space (Byte)
	LDW Load Immediate Word
	LD[W] Load Addressing Register
	LD[W] Load Register Word
	LD[W] Load Stack Pointer
	MULT Multiply (Byte)
	MULTU Multiply Unsigned (Byte)
	MULTUW Multiply Unsigned (Word)
	MULTW Multiply (Word)
	NEG Negate Accumulator
	NEG Negate HL
	NOP No Operation
	OR
	OTDR Output, Decrement and Repeat (Byte, Word)
	OTIR Output, Increment and Repeat (Byte, Word)
	OUT Output
	OUT Output Accumulator
	OUTD Output and Decrement (Byte, Word)
	OUTI Output and Increment (Byte, Word)
	OUT[W] Output HL
	PCACHE Purge Cache
	POP POP
	PUSH Push
	RES Reset Bit
	RET Return
	RETI Return from Interrupt
	RETIL Return from Interrupt Long
	RETN Return from Nonmaskable Interrupt
	RL Rotate Left
	RLA Rotate Left Accumulator
	RLC Rotate Left Circular
	RLCA Rotate Left Circular (Accumulator)
	RLD Rotate Left Digit
	RR Rotate Right
	RRA Rotate Right (Accumulator)
	RRC Rotate Right Circular
	RRCA Rotate Right Circular (Accumulator)
	RRD Rotate Right Digit
	RST Restart
	SBC Subtract with Carry (Byte)
	SBC Subtract with Carry (Word)
	SC System Call
	SCF Set Carry Flag
	SET Set Bit
	SLA Shift Left Arithmetic
	SRA Shift Right Arithmetic
	SRL Shift Right Logical
	SUB Subtract
	SUBW Subtract (Word)
	TSET Test and Set
	TSTI Test Input
	XOR Exclusive OR
	EXTENDED INSTRUCTION EPU Internal Operation
	EXTENDED INSTRUCTION Load Accumulator from EPU
	EXTENDED INSTRUCTION Load EPU from Memory
	EXTENDED INSTRUCTION Load Memory from EPU

	Chapter 6. Interrupts and Traps
	6.1 INTRODUCTION
	6.2 INTERRUPTS
	6.2.1 Interrupt Mode 0
	6.2.2 Interrupt Mode 1
	6.2.3 Interrupt Mode 2
	6.2.4 Interrupt Mode 3

	6.3 TRAPS
	6 .4 INTERRUPT AND TRAP HAIDLING
	6.3.1 Extended Instruction Trap
	6.3.2 Privileged Instruction Trap
	6.3.3 System Call Trap
	6.3.4 Access Violation Trap
	6.3.5 System Stack Overflow Warning Trap
	6.3.6 Division Exception Trap
	6.3.7 Single-Step Trap.
	6.3.8 Breakpoint-on-Halt Trap

	6.4 INTERRUPT AND TRAP HANDLING
	6.4.1 Interrupt Acknowledge
	6.4.2 Status Saving
	6.4.3 Loading New Program Status
	6.4.4 Executing the Service Routine
	6.4.5 Returning from a Service Routine

	6.5 INTERRUPT/TRAP VECTOR TABLE
	6.6 THE FATAL CONDITION

	Chapter 7. Memory Management Unit
	7.1 INTRODUCTION
	7.2 MMU ARCHITECTURE
	7.3 PAGE DESCRIPTOR REGISTERS
	7.4 ADDRESS TRANSLATION
	7.4.1 Address Translation Without Program/Data
	7.4.2 Address Translation With Program/Data Separation

	7.5 MMU CONTROL REGISTERS
	7.6 ACCESSING PAGE DESCRIPTOR REGISTERS
	7.6.1 Descriptor Select Port
	7.6.2 Block Move Port
	7.6.3 Invalidation Port

	7.7 1 INSTRUCTION ABORTS

	Chapter 8. On-Chip Memory
	8.1 INTRODUCTION
	8.2 CACHE MMORY MODE
	8.3 FIXED-ADDRESS MODE

	Chapter 9. On-Chip Peripherals
	9.1 INTRODUCTION
	9.2 CLOCK OSCILLATOR
	9.3 REFRESH CONTROLLER
	9.4 COUNTER/TIMERS
	9.4.1 Counter/Tinter Operating Modes
	9.4.2 Gates and Triqqers
	9.4.3 Terminal Count Condition
	9.4.4 Counter/Timer Registers
	9.4.4.1 Counter/Timer Configuration Register
	9.4.4.2 Counter/Timer Command/Status Register
	9.4.4.3 Time Constant and Count-Time Registers

	9.4.5 Linking Counter/Timers
	9.4.6 Counter/Timer Sequence of Events

	9.5 DMA CHANNELS
	9.5.1 Types of DMA Operations
	9.5.2 DMA Transfer Modes
	9.5.3 End-of-Process
	9.5.4 Priority Resolution
	9.5.5 DMA Linking
	9.5.6 DMA Registers
	9.5.6.1 DMA Master Control Reqister
	9.5.6.2 DMA Transaction Descriptor Register
	9.5.6.3 Count Register
	9.5.6.4 Source Address and Destination Address Registers

	9,5.7 DMA Sequence of Events
	
	

	9.6 UART
	9.6.1 Transmitter Operation
	9.6.2 Receiver Operation
	9.6.3 UART Registers
	9.6.3.1 UART Configuration Reqister
	9.6.3.2 Transmitter Control/Status Register
	9.6.3.3 Receiver Control/Status Register

	9.6.4 UART Operation

	9.7 UART BOOTSTRAPPING OPTION

	Chapter 10. Multiprocessor Configurations
	10.1 INTRODUCTION
	10.2 SLAVE PROCESSORS
	10.3 TIGHTLY COUPLED MULTIPLE PRROCESSORS
	10.3.1 The Local Address Register
	10.3.2 Bus Request Protocols
	10.3.3 Examples of the Use of the Global Bus

	10.4 LOOSELY COUPLED MULTIPLE CPUS
	10.5 COPROCESSORS AND THE EXTENDED PROCESSING ARCHITECTURE
	10.5.1 Extended Instructions
	10.5.2 Extended Instruction Execution Sequence

	Chapter 11. Reset
	Chapter 12. Z280 Bus External Interface
	12.1 INTRODUCTION
	12.2 BUS OPERATIONS
	12.3 PIN DESCRIPTIONS
	12.4 BUS CONFIGURATION AND TIMING
	12.5 TRANSACTIONS
	12.5.1 Memory Transactions
	12.5.2 RETI Transactions
	12.5.3 Halt and Refresh Transactions
	12.5.4 I/O Transactions
	12.5.5 Interrupt Acknowledge Transactions
	12.5.6 DMA Flyby Transactions

	12.6 REQUESTS
	12.6.1 Interrupt Requests
	12.6.2 Local Bus Requests
	12.6.3 Global Bus Requests

	Chapter 13. Z-BUS External Interface
	13.1 INTRODUCTION
	13.2 BUS OPERATIONS
	13.3 PIN DESCRIPTIONS
	13.4 BUS CONFIGURATION AND TIMING
	13.5 TRANSACTIONS
	13.5.1 Memory Transactions
	13.5.1.1 Byte/Word Organization
	13.5.1.2 Memory Transaction Timing
	13.5.1.3 Burst Memory Transactions
	13.5.1.4 Test and Set Memory Transactions

	13.5.2 Halt and Refresh Transactions
	13.5.3 I/O Transactions
	13.5.4 Interrupt Acknowledge Transactions
	13.5.5 Extended Processing Unit (EPU)Transactions
	13.5.5.1 EPU Instruction Fetch
	13.5.5.2 Memory-EPU Transactions
	1 3.5.5.3 EPU-CPU Transactions
	13.5.5.4 PAUSE Timing

	13.5.6 DMA Flyby Transactions

	13.6 REQUESTS
	13.6.1 Interrupt Requests
	13.6.2 Local Bus Requests
	13.6.3 Global Bus Requests

	Appendix A. Z80/Z280 Compatibility
	Appendix B. Z280 MPU Instruction Formats
	Appendix C. Instructions in Alphabetic Order
	Appendix D. Instructions in Numeric Order
	Appendix E. Instruction Timing
	Appendix F. Compatible Peripheral Families
	Glossary
	Index
	Bottom

