
I

Z80-RIO
OPERATING SYSTEM

USER'S MANUAL

REVISION A

1 I

READER'S COMMENTS

Your feedback about this document is important to us: only in this way can we ascertain your
needs and fulfil l them in the future. Please take the time to fill out this question-naire and return
it to us. This information will be helpful to us, and, in time, to the future users of Zilog systems.
Thank you.

Your Name:.

Company Name:.

Address:

Title of this document:.

What software products do you have?.

What is your hardware configuration (including memory size)?_

Does this publication meet your needs? CD Yes CD No
If not, why not?

How do you use this publication? (Check all that apply)
CD As an introduction to the subject?
CD As a reference manual?
CD As an instructor or student?

How do you find the material?
Excellent

Technicality CD
Organization CD
Completeness CD

What would have improved the material?

Good
D
D
D

ial?

Poor

CD
D
n

Other comments, suggestions or corrections:.

If you found any mistakes in this document, please let us know what and where they were:

First Class

Permit No. 475
Cupertino
California
95014

Business Reply Mail

No Postage Necessary if Mailed in the United States

Postage Will Be Paid By

Zilog
Software Department Librarian
10460 Bubb Road
Cupertino, California 95014

\

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION AND OVERVIEW 1

1.1 INTRODUCTION "' 1

1.2 SYSTEM OVERVIEW 3

1.2.1 Hardware Configuration 3
1.2.2 File Systems 3
1.2.3 System Initialization 6
1.2.4 Commands 7
1.2.5 I/O 7

\

CHAPTER 2 - RIO EXECUTIVE 9

2.1 SYSTEM INITIALIZATION 9

2.2 FILE NAME CONVENTIONS 10

2.3 MEMORY MANAGEMENT 12

2.3.1 MEMMGR 13

2.4 COMMAND STRING INTERPRETATION . '.13

2.5 ERROR HANDLING 15

2.6 PROGRAM EXECUTION OF COMMANDS 15

CHAPTER 3 - 1/0 STRUCTURE 16

3.1 OVERVIEW 16

3.2 I/O REQUESTS - SYSTEM CALLS 17

3.3 THE 'ASSIGN' I/O REQUEST 19

3.4 STANDARD RIO I/O DEVICES 21

3.4.1 ZDOS 21
3.4.2 DPS 21
3.4.3 NULL 21
3.4.4 CON 22
3.4.5 PCON 27
3.4.6 FLOPPY 27
3.4.7 DISK 27

CHAPTER 4 - PROGRAM INTERFACE 28

4.1 PROGRAM LOCATION 28

4.2 PARAMETER STRING ADDRESS 29

4.3 PROGRAM STACK SPACE 29

4.4 PROGRAM TERMINATION - ERROR HANDLING ... 29

4.5 SYSTEM CALLS - SYSTEM ENTRY POINT 30

4.6 INTERRUPT STATUS 31

4.7 I/O UNIT UTILIZATION 31

4.8 PROGRAM EXAMPLES 32

CHAPTER 5 - RIO COMMANDS 33

5.1 ACTIVATE 35

5.2 ALLOCATE 37

5.3 BRIEF 39

5.4 CAT 40

5.5 CLOSE 44

5.6 COMPARE 45

5.7 COPY 47

5.8 COPY.DISK 49

- 11 -

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

COPYSD I 51

DATE 53

DEACTIVATE 54

DEALLOCATE 55

DEBUG 56

DEFINE 60

DELETE 63

DISK. FORMAT 67

DISK.REPAIR 70

DISK. STATUS 72

DISPLAY 74

DO 75

DUMP 79

ECHO 80

ERROR 81

ERRORS 82

EXTRACT 83

FORCE 84

FORMAT 85

HELP 88

IMAGE 89

INITIALIZE 90

LADT 91

- m -

5.32 MASTER 92 x—

5.33 MOVE 93

5.34 PAUSE 98

5.35 RELEASE 99

5.36 RENAME 100

5.37 RESTORE_TABS 102
•

5.38 SAVEJTABS 103

5.39 SET 104

5.40 STATUS 109

5.41 VERBOSE Ill

5.42 XEQ 112

5.43 EXPRESSION EVALUATION 113

CHAPTER 6 - ZDOS 114 ^_J

6.0 ZDOS OPERATION 114

6.1 INITIALIZE 122

6.2 ASSIGN 123

6.3 OPEN 125

6.4 CLOSE 132

6.5 REWIND 134

6.6 READ BINARY 135 *

6.7 WRITE BINARY 137

6.8 WRITE CURRENT 139

6.9 DELETE 140

- IV -

6.10 DELETE REMAINING RECORDS 142

6.11 ERASE 143

6.12 READ AND DELETE 145

6.13 READ CURRENT 147

6.14 READ PREVIOUS 149

6.15 READ DIRECT 151

6.16 SKIP FORWARD 153

6.17 SKIP BACKWARD 155

6.18 SKIP TO END 157

6.19 RENAME 158

6.20 UPDATE 160

6.21 SET ATTRIBUTES 162

6.22 QUERY ATTRIBUTES 164
I

CHAPTER 7 - DPS 166

7.1 ZILOG DISK CONTROLLER 166

7.2 DPS OPERATION 168

7.3 SOFTWARE ORGANIZATION 171

7.4 DPS ALLOCATION 172

7.4.1 Sector 0 Format 172
7.4.2 DPS Allocation Algorithm 173

7.5 THE BARE DISK CONTROLLER 174

7.6 CONTROLLER BOOTSTRAP OPERATION 177

7.7 SYSTEM BOOTSTRAPPING on the MCZ-1/35 . . 179

- V -

APPENDICES

APPENDIX A -
APPENDIX B -
APPENDIX C -
APPENDIX D -
APPENDIX E -
APPENDIX F -

APPENDIX G -
APPENDIX H -
APPENDIX I -
APPENDIX J -
APPENDIX K -

RIO/ZDOS/DFS Error Codes
RIO Command Syntax Summary
RIO System Constants
Converting Files to RIO Format
Altering Default RIO
I/O Request Vector Format and
I/O Request Codes

Program Examples
Internal Command Table Contents
RIO Memory Manager
Descriptor Record of Procedure Type File
ZDOS/DFS Command Summary

PREFACE

This manual provides an introduction and user's manual
for the RIO operating system used with Zilog's Micro
(ZDS). Detailed description is provided for system
features, including the bootstrap process, the RIO
Executive, default console drivers, I/O structure,
program interface, and the Zilog Floppy Disk File System,
ZDOS, and the Zilog Hard Disk File System, DFS.

Other pertinent documentation with which the reader may
want to become familiar includes:

Z80-MCZ PROM User's Manual

Z80-ZDS PROM User's Manual

Z80-RIO Relocating Assembler and Linker User's Manual

Z80-RIO Text Editor User's Manual

This manual makes use of the following conventions of
notation:

Optional portions of a modifier are enclosed
in brackets, [].

The symbol for logical or, 'I', is used if either
option can be issued. STATUS [0 I 1...7] means
the command can be issued as STATUS 0, STATUS 1,...
STATUS 7, or simply as STATUS.

Parameters which can be repeated zero or more times
are enclosed in parentheses end followed by an
asterisk - e.g., (filename)*.

Parameters which can be repeated as necessary
but must appear at least once are enclosed in
parentheses and followed by a plus sign - e.g.,
(filename)+.

- VTI -

All memory addresses and constants referring to
memory allocation are given in hexadecimal. Unless
so specified, other constants are given in
decimal. Hexadecimal constants are also indicated
by an 'H' immediately following the hex digits,
e.g., 4FH.

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 INTRODUCTION

* The Z80 Operating System with Relocatable Modules and I/O
Management, or RIO, is a general-purpose computing system
designed to facilitate the development and integration of
user's programs into a production environment. RIO is
available on various Zilog hardware configurations
including the Z80 Micro Computer System (MCZ-1) series and the
Z80 Development System (ZDS). The Z80 Development System
provides extensive hardware debugging aids to assist the
engineer/programmer in Z80-based hardware/software system
design. The user has a choice between a modest environment

i - with a minimum of system support or an enhanced environment
' which provides access to an assortment of system support

utilities including the Zilog Floppy Disk File System,
ZDOS, and the Zilog Hard Disk File System, DFS.

In the modest environment, the user has access to 3K
(1K=1024) bytes of dedicated read-only memory which
contains a program debugger with file manipulation
capability, a floppy disk driver which supports up to eight
disk drives, and a basic console driver with provision for
paper tape operation.

In the enhanced environment, the user also has access to
the RIO Executive, ZDOS, DFS, and a collection of disk-resident

» software including a text editor, macro assembler, and
linker. The RIO Executive provides standardized I/O
management permitting device independent program
development and utilization of alternate or multiple file
systems. ZDOS provides a versatile floppy disk based file
system with variable record length files; up to 16
concurrently active files; management of user-defined
scratch files which are automatically deallocated after
use; and support of up to eight disk drives for over 2.5
megabytes of on-line storage. The hard disk file system,

DPS, supplies similar features on 10 megabyte high speed
disks. The text editor, macro assembler and linker give
the user full support in program development, minimizing
assembly time with relocatable modules while allowing com-
plex memory overlay structures. In addition, a console
driver is provided which allows user definition of character
delete and line delete symbols, automatic insertion of any
number of line feeds, and automatic echo mode to accommodate a
wide range of console devices.

- 2 -

1.2 SYSTEM OVERVIEW

, \

1.2.1 HARDWARE CONFIGURATION

The RIO Operating System is designed to operate with the 4K
PROM in either the Zilog Micro Computer System (MCZ) or
Development System (ZDS) . A minimum configuration of 32K
(1K=1024) of random access memory, one disk drive, and a
console device is required.

MCZ 1/20 Zilog Micro Computer System is equipped with
two floppy disk drives. The left drive is designated drive
"2 1 and the right drive is designated drive '0'. The Zilog
Development System (ZDS) also has two drives, but the
designations are '!' and '0' for left and right, respectively.

The MCZ 1/35 uses hard disk cartridge and fixed platter drives
The usual configuration consists of one fixed platter and one
cartridge drive, designated '0' and '!', respectively. The
system will support up to 8 drives.

1.2.2 FILE SYSTEMS

For systems using floppy disks, ZDOS controls the organization
and allocation of the sectors on a diskette. While the basic unit
of disk allocation is the sector, the fundamental structure within
ZDOS is the "file1. A file consists of zero or more sectors
of data which contain logically-related information. Each
file has a set of attributes including a name of from one
to thirty-two characters, a set of (possibly null)
properties, a type, a subtype, and a record length. The
smallest amount of information that can be read from or
written to the disk is the contents of one sector, but more
efficient operation can often be achieved by grouping from
one to thirty-two contiguous sectors (a complete track)
into one unit which is then read or written together. This
unit is called a 'record' and the number of bytes of date
in the record is the record length. A record may consist
of 1, 2, 4, 8, 16 or 32 sectors; therefore the record
length may be 128, 256, 512, 1024, 2048, or 4096 bytes.

On systems with hard disks, the Disk File System (DPS)
provides a similar file structure. The bulk of the DFS

- 3 -

software runs in the memory of an intelligent disk con-
troller; only a small interface routine resides in the
main system memory, thus resulting in a large memory
space saving. DPS files have the same structure as ZDOS
files, except that multiple-sector records are not sup-
ported. The sector (and record) size is 512 bytes.

The properties of a file are defined by the user and may
include any combination of the following:

1) write protected - may not have contents altered;

2) erase protected - may not have contents deleted;

3) locked attributes - may not have its attributes
changed (a file's attributes include its
properties, type, subtype, and other information
included in the file's 'descriptor record1; see
below);

4) random - file is in a format for random
access;

5) secret - file is not normally found in directory
searches (see below).

When a file is created, the user specifies its type,
which must be exactly one of the following:

1) directory - a file directory (see below);

2) procedure - file contains information which
can be loaded into memory and executed
directly;

3) ASCII - file consists of symbols encoded in
the American Standard Code for Information
Interchange format, such as those produced
by the editor or console input device;

4) binary - data of an unspecified format.

In addition to the file type, the user may define a
subtype, which is a value ranging from 0 (default)
to 15. The subtype is useful to differentiate between
files of a certain type. For instance, RIO requires
all I/O device files to be of type procedure, subtype 1.

- 4 -

The file system maintains a special file on each disk which is
named 'DIRECTORY'. In this file are the names of all files
(including itself) on the disk and the location of the
first record of each file. The first record of each file
is one sector long (regardless of the record length of the file)
and is called the 'descriptor record". All the file attributes
including entry point (where execution may begin), date of
creation, date of last modification, first data record
address, last data record address, record length, and
record count are contained in this record. Each record of
the file contains pointers (disk addresses) to the previous
record and the subsequent record in the file. Note that
records which are logically in order according to file
contents may, in fact, reside in an arbitrary order on the
disk. This 'linked' structure allows maximum utilization
of the disk. The disk allocation algorithm in ZDOS
Attempts to localize the disk sectors used for a single
file. Note that the sectors which comprise a single file
record are physically contiguous on the disk and are
therefore always read or written as a single disk access.

ZDOS maintains a bit map to keep track of allocated vs.
unallocated disk sectors. This map resides on three
sectors of the diskette which are preallocated by the diskette
formatting utility and is read into memory by the Initialize
command or automatically by ZDOS when the diskettes are
exchanged. The map is written from memory to the diskette
when a file is closed following an allocation change.
If the diskette is formatted as a 'system' disk, additional
space is preallocated for the system bootstrap routine and
the GET/SAVE command package (see the Debug command,
section 5.13).

' \

Under DPS, the unallocated hard disk sectors are linked
in 6 free chain. The allocation and deallocation of
sectors is a matter of removing sectors from or adding
sectors to the free chain. System disks contain the
'BOOTSTRAP' file contains the file system that is loaded
at system initialization.

While files created by the RIO Operating System or PROM
debugger on the Development System or Micro Computer System
are compatible, the bootstrap is not. Thus files may be
interchcnged between systems (procedure files are generally
not transferable) but a system disk will bootstrap
correctly only on the system for which it was designed.

- 5 -

1.2.3 SYSTEM INITIALIZATION

Where ZDOS is the primary file system, the bootstrapping
of the operating system is from floppy disks. When a
carriage return is entered as the first character after
pressing RESET, or when the OS command is entered while
in the Debug environment, the PROM monitor reads a 128 byte
minibootstrap from track 17, sector 3 of the disk in drive
0. This program initiates a directory search on drive 0 for
the files OS and ZDOS, which are then read into memory.
Execution is started at the entry point of OS. This is
one of two instances where a disk formatted as a system
disk must be ready in drive 0. The other is when using the
GET or SAVE commands of the PROM Debugger. In all other
cases, while a particular drive search order may be implied,
there is no difference in the utilization of drives.

This process is similar on systems which use DFS as the
primary file system. The file 'BOOTSTRAP' contains the
file system, which the disk controller loads directly
from disk, using the standard disk search sequence of
drive 1, drive 2, ..., drive 0. The PROM monitor then may
communicate directly with the controller to load the file
'OS', again using the standard drive search sequence.

—̂s
When execution of the file OS begins, an initialization
procedure is performed that may or may not involve other
files. A means is provided to read a set of commands from
a file to extend this initialization process. In this way,
a turnkey system can be implemented simply by editing the
external initialization command file. Alternatively, the
file OS can be edited directly to execute a user-defined
command sequence at initialization time (see Appendix E). As
part of the initialization process, memory is sized to determine
the current configuration. If the sizing procedure determines
the end of memory to be at other than a 4K boundary, a
warning message is issued to indicate possible memory
failure, thus providing a frequent diagnostic of system
memory.

After initialization, OS responds with the message 'RIO REL v.cc1

(Where 'v' is the release version and "cc" is the release cycle)
followed by the system prompt character '%'. Any time RIO
is ready to accept command input, this prompt character is
printed.

- 6 -

1.2.4 COMMANDS

Command implementation is in one of two forms: for
'internal' commands, the code which actually implements the
command is a part of the file OS and resides in memory
when OS is loaded; 'external1 commands are simply procedure-
type files which are loaded into memory for execution. If
a command is external, a search is made of all accessible
directories for a file of the given name. In this context,
the available command set is limited only by the particular
files of procedure type which are on the "ready1 drives at
a given moment. Therefore, user extension, modification,
or replacement of the Zilog supplied software is a matter
of file manipulation. For example, replacement of the file
named OS on a system diskette with another file of the
same name results in the automatic bootstrap of a
user-defined software package. The majority of the
standard RIO command set are implemented as external files.
(Internal commands are noted as such in the command

fc description, Chapter 5).
f

1.2.5 I/O

The I/O structure of RIO is designed to facilitate program
development independent of physical device characteristics.
To this end all I/O requests are made with reference to a
'logical unit1 which may correspond to any of a given set
of 'I/O devices'. In this way device modifications can
occur with minimal impact on existing software.

The software required to control a particular hardware
device or set of devices is termed the 'device handler'
(used interchangeably with 'I/O device', 'I/O driver 1,
'device driver 1, or simply 'device'). Before a particular
device can be accessed, its device handler must be loaded
in memory. Initialization procedures may be required, and
it may be desirable for the memory it utilizes to be
protected from concurrent software routines. RIO provides
command level control of these tasks and assumes that once
this is done, the device is ready to handle I/O requests.
This process is referred to as "activating" a device.

The fundamental concept underlying the RIO I/O structure is
that of the 'logical unit' (also referred to as 'unit' or

'I/O unit1) which enables I/O activity independent of a
particular device. Units are 'defined1 by linking or
mapping a unit to a given device. I/O requests may not be
made on undefined units, although some requests inherently
result in unit definition.

Three units are predefined by RIO to handle console input
(unit 1) , console output (unit 2) and high volume printed
output (unit 3). Unit 0 is used by system functions and is
not available to the user. Units 4-20 (in the standard
system) are available for user programming. Units 1, 2,
and 3 have the mnemonics CONIN, CONOUT and SYSLST,
respectively which can be used interchangeably with the
literal unit designations, where applicable.

I/O requests are made with a standard vector format,
containing information such as unit, data transfer address,
data length, completion codes, and an optional supplemental
parameter vector address. I/O requests are made by
providing a pointer to the request vector (see below) and
making a system call.

Note that programs which use the RIO I/O structure can
remain unchanged so long as compatible I/O devices
are provided. For instance, a BASIC system could
immediately utilize a line printer by redefining SYSLST.
No other software changes would be required.

- 8 -

CHAPTER 2

RIO EXECUTIVE

2.1 SYSTEM INITIALIZATION

As part of the system bootstrap procedure, the RIO
Executive (OS) performs a series of initialization tasks.
CON, the system console device, is initialized. The
primary file system (or the master device - see section
3.1) is then initialized to identify the drives which are
available. Memory size is determined by writing and
subsequently reading a known pattern through memory until
the comparison fails. If the last 'good' address is on
other than a 4K boundary, i.e., nFFF, a warning message is
generated to indicate possible memory failure. Memory
occupied by PFOM, OS, ZDOS, and CON is allocated.
If the physical end of memory is other than FFFF, the
nonexistent memory is also allocated (see section 2.3).

Initialization of the console device assigns default values to
the line delete (LINDEL) and character delete (CHRDEL) symbols
and the number of null characters (NULLCT) and line feeds (LFCNT)
to be inserted after every carriage return. These values are
NULLCT=1 (a single null character is sufficient for most CRT'S
at speeds up to and including 19.2 Kbaud), LFCNT=1, LINDEL=7FH
(rubout or delete), and CHRDEL=08H (control-H or backspace). The
automatic line feed insertion mode (AUTOLF) and console
character echo (ECHO) modes are set "on", and full duplex
operation selected.

If the external initialization (EXTINI) bit (bit 2) of the
system flag SYSFLG (see Appendices C and E) is set (=1),
the external initialization command is executed. If the
EXTINI bit is reset (=0) this initialization is not
performed. Zilog-supplied software has this bit set;
the external initialization command consists of
"DO OS.INIT1. This command causes the commands on file
OS.INIT, default drive search sequence, to be executed
as part of the initialization process.

- 9 -

The user may alter the external initialization bit using
the PROM Debugger GET/SAVE commands (see section 5.13) .
See Appendix E for examples. In addition, the user can
alter the initialization procedure by editing the contents
of the file OS.INIT.

After possible redefinition of logical units by the
commands on the external initialization file, the existing
unit definitions are saved as the defaults. Subsequent
unit definitions restoring a unit to its default will
result in the unit definition existing at this point in the
initialization process.

Concluding the bootstrap and initialization procedure, RIO
prints an identifying message, the command prompt character
is sent to the console output unit, and the system waits for
command input.

2.2 FILE NAME CONVENTIONS

In the most general case, file names in RIO consist of
three parts:

1) the device name specifying which device to
search for the named file (e.g. $ZDOS);

2) the drive designation restricting the search
to a particular element of the device (e.g. drive 2)

3) the file name itself.

The file name consists of from one to thirty-two
characters, the first of which must be alphabetic.
Subsequent characters may be alphanumeric ("A1...^1 or
'0'...'9'), or one of the special characters, question mark
('?'), underbar ('_'), or period ('.')• Upper and lower
case characters are interpreted as entered, i.e., 'Status1
is not the same as 'status1.

When a period ('.') is used within a file name, those
characters in the name including and following the period
are referred to as a file name "extension". For instance,
the file name OS.INIT has the extension ".INIT", while the
file name BOOK.CHAPTER.1 has the multiple extensions
'.CHAPTER1 and ".I". The notion of file name extensions is

- 10 -

a useful convention for the user who wishes to categorize
certain files by their names. Some programs such as the
assembler or editor require that file names end with a
particular extension—source files for the assembler must
end in .S, while the editor creates a backup file with the
extension .OLD--however, in general, RIO makes no
distinction concerning extensions. In other words, a
period is treated as any other valid character in a file
name.

The drive designation consists of a single character from
'O1...1?1. In the Zilog Development System, drive '0' is
the right-hand drive, drive '!' is the left-hand drive. In
the standard Zilog Micro Computer System, drive '0' is the
right hand drive, drive '2' is the left-hand drive. The
character '*' denotes a standard search sequence of
drives '!', '2' , . . . '71 , '0'.

Device names are essentially file names prefixed with the
character '$'. This character merely serves as a delimiter
and is not really part of the name itself. In addition,
the device name must have been made known to the system
either by default initialization procedures or by the
Activate command (see section 5.1). The devices known to
OS after initialization are:

ZDOS file system (where floppy diskettes are
the primary file system media)

DPS file system (where hard disks are the
primary file system media)

CON console driver
NULL null operation device (see section 3.4.2)
PCON PROM console driver
FLOPPY PROM floppy disk controller interface
DISK PROM hard disk controller interface

When constructing a file name, the character ':' is used to
separate a device name from a drive designator and the
character '/' is used to separate the drive designator or
device name from the file name.

- 11 -

For example, the command STATUS may be entered as:

STATUS
/STATUS
0/STATUS
:0/STATUS
$ZDOS/STATUS
$ZDOS:0/STATUS

In the first case, the device name and drive designation
are given default values. The default device is designated
by the user to be the source of all "unqualified1 (no
explicit device name) files and is termed the Master
device. Default is ZDOS for floppy disk systems, and DPS
for hard disk based systems, but may be redefined (and also
displayed) by the MASTER command (see section 5.32). The
default drive search order for command files is drive 'O1,
followed by the standard search sequence (designated by
drive '*') if the initial search of drive '0' is
unsuccessful.

All 'qualified1 file names (those with device or drive
designations or the prefix '/') are treated as external
commands. Thus, /DEBUG is not the same as the internal
command DEBUG.

2.3 MEMORY MANAGEMENT

The RIO Executive includes a memory manager which controls
allocation/deallocation for the system. A bit map is used
to reflect the status of each 128 byte segment in the 65K
address space. A set bit (=1) indicates that the segment
in question is allocated. A reset bit (=0) indicates the
segment is available for allocation. During system
initialization, memory which is occupied by the system or
which is nonexistent is marked as allocated. Subsequent
memory utilization should be coordinated with information
supplied by the memory manager, entry point MEMMGR, to
avoid conflicting uses of the same memory segment.

- 12 -

2.3.1 MEMMGR

Subroutine calls to the system entry point MEMMGR can be
used to allocate, deallocate, or determine the status of
designated memory areas. Appendix I gives the details of
these subroutine calls. Alternately, memory segments
may be allocated, deallocated, or the current memory
map displayed from the command level. Refer to Chapter 5
for details of the ALLOCATE, DEALLOCATE, and DISPLAY
commands.

2.4 COMMAND STRING INTERPRETATION

Whenever RIO is ready to accept command input, the prompt
character '%' is printed on the console output device. All
characters entered (up to a maximum of 256, subject to
device driver editing, see section 3.4.3) after the prompt
character, up to and including the first ASCII carriage
return (CR), are entered into the command string buffer.
This input constitutes the command input string. The
command separation character ';' is used to terminate a
command but does not terminate command input. Thus, as
many commands may be entered at one time as can be
contained in the 256 byte command string buffer.

Several characters have special significance to the command
string interpreter. As noted above, carriage return and
semicolon are used to terminate commands and are
therefore referred to as terminators. Space, horizontal
tab (ASCII 09H) , and left and right parentheses can sep-
arate command names from optional parameter lists and
are referred to as delimiters.

There are two modes of providing system information to the
user. In verbose mode, each command is echoed as it is
extracted from the command string buffer. This is useful
to verify input or when entering multiple commands per
command string. In brief mode, commands are not echoed
(except as entered).

After a command has been located in the command input
string, an attempt is made to match it against a list of
internal commands. In doing so, an internal command name
may be abbreviated to the extent to which it is
differentiable from other internal commands. For example,

- 13 -

the strings 'D', 'DE1, 'DEB', 'DEBU', or 'DEBUG1 all
result in entering the PROM Debugger. If the abbreviation
does not identify a unique internal command, then the first
entry will be chosen. For example, 'D' and 'DE1 refers to
DEBUG rather than DEALLOCATE (Appendix H lists the internal
command table contents in order). If no match is found,
the command name is assumed to be the name of a file. The
search order of drive '0', followed by drive '*', is then
used in an attempt to open the file. If the file is located
and is of type procedure, a request is made to the memory
manager to allocate the space required to load the file.
The values LOW_ADDRESS and HIGH_ADDRESS in the file's
descriptor record define the memory which will be altered
as a result of loading, and generally represent the lowest
segment starting address and highest segment ending address,
respectively. Note that since file I/O is not buffered, the
latter is a function of the record size and may not equal
the highest segment ending address. For example, loading a file
consisting of 40 bytes linked at location 5000 having 80 byte
records will affect memory locations 5000-507F rather than
5000-503F since a minimum of one record is required to
contain the file. If the allocating request is successful,
the file is loaded into memory.

After loading the file, two things may inhibit its
execution. If it has a null entry point (=0) or if the
delimiter following the command name is a comma, the
command string interpreter suppresses command execution and
instead processes the remainder of the command input string,
if any. In this way, files may be loaded together and
control passed to any one of them. For example, it may be
desired that a user program and debugger be loaded with
control passing to the debugger where instructions may be
executed one at a time, breakpoints set, or registers given
appropriate values prior to user program execution.

In the event command execution is not inhibited, a stack
may be allocated consistent with the size specified in the
descriptor record by LINK or IMAGE. (If a null (=0) stack
size is requested, dispatch is made to the loaded file
using the system stack space.) When several procedure files
are loaded together, a stack is allocated for the first file
in the command string with a nonnull stack size; no other
stack space is allocated for the files loaded together. Two
attempts are made to allocate the stack area. First the mem-
ory area following the loaded procedure to the end of memory is
searched and, if unsuccessful, a second attempt is made, search-

- 14 -

ing from 0 to the beginning of the loaded file. If both attempts
fail, no stack space is available and command execution cannot
be initialized. Thus, normally the user stack is located im-
mediately after the loaded file.

Since it is more efficient to not repeatedly load a command
file which is to be executed several times in succession,
RIO remembers the entry point of the last loaded file and
provides the internal command XEQ (see section 5.42) to
transfer program execution to that address. Most RIO
commands can be executed repeatedly in this way.

Prior to executing the external command file, the memory
map is examined to identify those segments which were
allocated as a result of loading the file(s) to be
executed. When return to OS is made, these segments will
be deallocated. Note that in the event a file is loaded,
but not executed, the space it occupies will be allocated
until either explicitly deallocated (see the RELEASE
command, section 5.35) or a return to OS is made from any
external command file.

2.5 ERROR HANDLING '1 '

Wherever errors occur in the processing or execution of
system commands, a message is directed to the console
output device. Command processing then continues with the
next command in the command string, if any.

2.6 PROGRAM EXECUTION OF COMMANDS

Any command or user program executable from the system :

console can also be executed from a program. This is
accomplished by making a system call to RIO with reference
to the command string to be executed. In this way programs
can be chained together or complex overlay structures
easily implemented. (See the Relocating Assembler and
Linker manual for details of overlay creation.) System
calls and the RIO system entry point are described in
sections 3.2 and 4.5.

- 15 -

CHAPTER 3

I/O STRUCTURE

3.1 OVERVIEW

The I/O architecture of RIO is designed to a) facilitate
user construction and implementation of device drivers to
service the I/O requests of system or user programs; and b)
simplify and standardize interface to all I/O drivers.
To this end, all I/O requests are made to RIO with
reference to a logical unit. RIO determines the proper
routing for the referenced unit and passes control for
servicing of the I/O request to the appropriate device
driver.

The internal structures supporting this facility include
the Active Device Table (ADT) and Logical File Table (LFT).
The Active Device Table has one entry for every device
known to the system at a given time and includes the device
name and entry point. Devices are made 'known' to the
system via the ACTIVATE command (see section 5.1), or they
may be removed from the ADT by the DEACTIVATE command (see
section 5.11). The current ADT contents can be reviewed with
the LADT command (List Activate Device Table - see section
5.31).

Devices which are known to the system may be used to
qualify a file name, thereby linking a logical unit to the
named device. Unqualified file names (those without a
device name prefix) are given a default routing to the
master device (see MASTER, section 5.32).

The link between a logical unit and a specific device
exists in the Logical File Table, each entry of which
contains the address of the device that the corresponding
unit is linked to. Before I/O requests may be processed via
a logical unit, the unit must be defined. This unit
definition may occur via the 'Assign1 I/O request (see

- 16 -

Section 3.3) or it may occur as a result of the DEFINE
command (see section 5.14).

As a part of system initialization units 1, 2, and 3
are defined as the console input, console output, and
volume output devices, respectively, and are given the
mnemonics CONIN, CONOUT, and SYSLST. Although these
units are available for redefinition by the user, RIO
assumes that these units represent the equivalent devices,

3.2 I/O REQUESTS - SYSTEM CALLS
*

I/O requests are accomplished by making a subroutine call
to the RIO entry point SYSTEM (see Appendix C). The IY
register must hold the address of a request vector, of the
following format:

Byte , [. Contents

IY -> 0 logical unit number
1 . request code
2-3 data transfer address
4-5 data length
6-7 ' completion address
8-9 error return address
A completion code

B-C , supplemental parameter
information

Logical Unit Number
/

The logical unit number is an integer in the range 1 to
MAXLUN (20 in the standard system). Units 1, 2 and 3
are predefined by RIO to be console input, console output,
and volume output.

Request Code

Identifies the operation requested.

- 17 -

Data Transfer Address

The memory address at which data movement will begin.

Data Length

Number of bytes of information in the transfer. This will
be reset by the device to reflect the actual number of
bytes transferred upon completion of the operation.

Completion Return Address

If bit 0 (least significant) of the request code is set
(=1), those devices which are interrupt-driven will return
control to the calling routine as soon as possible and
continue the operation under interrupt control. At the
time that the operation is completed, transfer will be made
to the completion address which should exercise the
responsibilities of an interrupt service routine (i.e., it
must preserve all registers). However, an RETI instruction
should not be executed, since lower-level interrupts are
enabled by the interrupt handler. (If immediate return is
desired, care must be taken not to change any words in the
parameter vector, or use or change the data, until the
operation
indicated (i.e., bit
address is ignored.

is complete.) If return on completion is
0 is reset=0) the completion return

Error Return Address

If nonzero, the error return address will be used as the
return address in the event of an error condition. The
routine thus entered should execute an RET instruction
after processing the error condition. Since the error
condition is detected by the I/O driver, and the call to
the error return address is made there, the programmer
should not make assumptions about the elements on the
stack above the return address.

- 18 -

Completion Code

The completion code is always set by the device and will
indicate completion of the request and any errors. Error
codes are universal (i.e., for all devices to which a given
error applies, the error code is the same). Generally, bit
7=1 is used to signal operation complete, with bit 6=1
indicating an error condition (see Appendix A). All I/O
devices must set this completion code prior to returning to
the calling procedure.

Supplemental Parameter Information (Optional)

The two bytes of supplemental paramater information
may be used to hold either additional data or an
address to a vector supplement. The format of
such an extension is defined by the device for a
given request.

3.3 THE 'ASSIGN' I/O REQUEST " ; ,--

If a system call is made with the request byte equal to the
'ASSIGN1 request code (02), the request is trapped by RIO for
possible unit definition or supplemental parameter vector
manipulation. The exact sequence is controlled by a set of
flags in the first byte of the supplemental parameter
vector .

If bit 7 (the most significant bit) of the flag byte is
reset (=0) , then RIO will format the supplemental parameter
vector (see Appendix F) , including the drive name, file
name length, and file name fields, from information derived
either from the string referenced by the Data Transfer
Address of the request vector (bit 1=0) or from the string
contained in the file name field (bit 1=1).

For example, suppose a user program requires one parameter
which can be a qualified or unqualified file name. The
user may elect to parse this parameter string in order to
determine the device name (if any), drive designation (if
any), file name and file length. Alternatively, a request
vector can be set up with the Data Transfer Address field
referencing the parameter string and the first (flag) byte

- » -

of the supplemental parameter vector with bits 7 and 1
reset to (this file name string must be terminated by a
delimiter). RIO then moves the file name into the file
name field of the supplemental parameter vector and sets
the name length and drive designation. If no name is
given, the name length field is set to zero. If no drive
designation is given, the standard search sequence symbol
'*' is put in the drive designation field. More
importantly, the logical unit referenced in the request
vector is linked to the device specified as part of the
file name string, or the master device, if no device name
is given.

As a second alternative, the user program can set bit 1 of
the flag byte after moving (or assembling) the entire
parameter string into the supplemental parameter vector
file name field. RIO then formats the rest of the
supplemental parameter vector in the same way as before.

If bit 7 of the flag byte is set (=1), the vector (and
supplemental parameter vector) is assumed to be in a
correct format, i.e., all fields hold valid information.
If bit 0 is also set, the unit is linked to the master
device. If bit 0 is reset, unit redefinition does not
occur, maintaining the current unit-device link. In this
last case, previous unit definition must have taken place.
After the preceding steps are taken, the I/O request is
passed to the intended device for processing. Subsequent
I/O requests are routed directly to the device.

The following table summarizes the effects of specific
supplemental parameter vector flag byte values during the
'ASSIGN1 I/O request:

Flag Byte Effect on ASSIGN I/O Request
(hex)

0 (bit 1 reset) RIO formats Supplemental
Parameter Vector, Data Transfer
Address is the address of the
file name string

2 (bit 1 set) RIO formats Supplemental
Parameter Vector, file name
field contains file name
string

- 20 -

80 (bit 7 set and
bit 0 reset)

81 (bit 7 set
and bit 0 set)

RIO passes request directly
to device (previous unit
definition required)

RIO links unit to
master device

3.4 STANDARD RIO I/O DEVICES

Five devices are known to RIO after default system
initialization:

Device Description

ZDOS or DPS
FLOPPY or DISK
NULL
PCON
CON

Primary file system
Interface to device controller
Null device
PROM console driver
System console driver

3.4.1 ZDOS

ZDOS is the file system for RIO on floppy disk based systems
It distinguishes between logical units and supports named
files. Consult Chapter 6 for details of ZDOS request codes
and request vector formats.

3.4.2 DFS

DPS is the ZDOS equivalent for hard disk based systems.
Consult chapter 7 for details of DFS request codes and
request vector formats.

3.4.3 NULL

NULL is a pseudo device driver which responds to all
request codes. In most cases, the operation performed is,
in fact, null—that is, no operation is performed.

- 21 -

Nonetheless, it responds with a completion code implying
completion of operation.

I/O Request Action

READ LINE completion code = C9H (end of
READ BINARY file), data length = 0

All others completion code = 80H
(operation completed)

This device provides a destination to which unwanted output
can be diverted. It also provides a convenient way to
check the integrity of a file. A file that can be copied
to NULL has no record pointer errors, since a complete READ
operation is performed. In the same way, all files on a
disk can be copied to the NULL device with a single
command, thus checking the file structure of the entire
disk.

3.4.4 CON

CON is the default RIO console driver especially designed
for CRT terminals. It is linked as part of the file OS
which is loaded during system bootstrap. It allows the
user to define the line and character delete symbols and
supports arbitrary tab settings within a 134 character
line length. The standard RIO I/O vector format is used
in communicating with CON (see Appendix F).

During READ operations, entering the single character
delete symbol (default = ASCII backspace, 08H) causes the
last character placed in the buffer to be logically
deleted. A backspace, space, backspace sequence is sent to
the console to erase the character from the screen and
reposition the cursor.

The line feed character (ASCII OAH) forces the cursor to
the start of the next line and places a space (ASCII 20H)
in the buffer. This provides a convenient way to force the
cursor or print mechanism to the beginning of the next line
without terminating input. Note that no carriage return is
placed in the buffer, i.e., input is logically a single
line.

- 22 -

The line delete character (default = ASCII rubout or
delete, 7FH) deletes from the console display and the
input buffer all characters back to and including the
previous carriage return. (If linefeeds or backspaces have
been entered, not all of the displayed input string is
erased from the display).

The input delete character (control-X) flushes the input
buffer and echoes a backslash carriage return on the console
display. The effect of the line delete character and the
input delete character differs only when processing read
binary requests (described below).

To input verbatim special characters (like rubout, control-X,
etc.), an escape character (backslash) is provided. So, to
enter 'AB<rubout>' type 'AB\<rubout>'. To enter 'V, type
'\\'. The backslash can be used to enter any character ,.
other than carriage return.

The console driver is not interrupt-driven nor does it
distinguish between logical units. Modes can be set for
linefeed insertion, number of nulls, and character echo.
If in AUTOLF ON mode (default), and the value of LFCNT
is nonzero, then LFCNT linefeeds are output to the console
following every carriage return. After line feed insertion
(if any), and if the value of NULLCT is nonzero, then NULLCT
nulls (ASCII 0) are output to allow time for print head or
cursor repositioning. Default is NULLCT=1, which is sufficient
for CRT operation up to 19.2 Kbaud, and LFCNT=1. If in ECHO ON
mode (default), then each character is echoed back to the ter-
minal as it is read.

The ASCII tab character, control-I (09H), is expanded into
an appropriate number of spaces only when it is output to a
display device, thus compacting symbolic files where
large numbers of spaces are required to improve readability.
Tabs can be set by placing the cursor in the desired
column and entering control-T (ASCII 14H) followed by
"T 1. To clear a tab setting, the cursor is positioned
in the column where the tab exists and the sequence
control-T followed by a 'space1 is entered.

The default tab settings are every eight columns, starting
with the leftmost column as column 0. To change this default
tab setting, the user may use the SET TABSIZE command (see
5.39) .

- 23 -

Tabs can be altered in the file OS (from the PROM Debugger)
to change the default tab settings of every eight
columns. Different tabbing environments can be
established and made into a file so that they may be
altered by command (see Sections 5.37 and 5.38).

The following I/O requests are honored by CON:

INITIALIZE (OOH)

ASSIGN

OPEN

(02H)

(04H)

CLOSE (06H)

FEAD BINARY (OAH)

- Reads the current date into the
default attributes table (see OPEN
below) and sets default status area.

- Null operation returns
operation complete

- If data length = 0: null operation.
Otherwise up to 20 bytes can be
requested from the default set of
attributes including:

Type
Record Count
Record Length
Block Length
Properties
Starting Address
Bytes in last record
Creation Date

20H (ASCII)
0
80H
80H
0
0
0
Current Date

Null operation returns operation
complete

Data length characters are received
from the console. Entering a
control-D (ASCII EOT, 04H) causes
an end-of-file mark (FFH) to be
placed in the buffer and the request
terminated. Data length is reset to
the actual number of characters read,
The parity bit of each character is
reset.

- 24 -

READ LINE (OCH)

WRITE BINARY (OEH)

WRITE LINE (10H)

READ STATUS (4OH)

A maximum of data length characters
is received from the console up to
and including the first carriage
return. Data length is reset to
the actual number of characters read,
The parity bit of each character is
reset.

Data length characters are sent to
the console. An end-of-file mark
(OFFH) results in termination of the
request. Data length is reset to
the actual number of characters
written.

A maximum of data length characters
is sent to the console up to and
including the first carriage return.
Data length is reset to the actual
number of characters written.

Transfers data length bytes of the
CON status area to the area
starting at the data transfer
address. The CONSOL status flags
are defined as follows:

Byte

0 FLAG byte Bit 0 Local Flag
Bit 1 Auto linefeed

insertion (AUTOLF)
On=l (default)
Off=0

Bit 2 Echo On/Off
On=l (default)
Off=0

Bit 3 Temporary Input buffer
(TIB)
Full=l
Empty=0 (default)

Bit 4 Echo carriage return
Off=l
On=0 (default)

Bit 5 Escape pending
Not pending=l
Pending=0 (default)

- 25 -

1
2

3
4
5, 138

reserved
TIB

Cursor Location
reserved
Tabbing Drum

WRITE STATUS

DEACTIVATE

Bit 6 Local flag
Bit 7 Full/Half duplex

Half=l
Full=0 (default)

Holds last character which has
been input from serial
communication port but not yet
transferred by a READ request.

134 positions used to mark tab
settings (nonzero values)

(42H) - Transfers data length bytes
from the data transfer address
to the CON status area
(see above).

(44H) - Null operation returns
operation complete

READ ABSOLUTE (46H) Data length bytes are
received from the console
device. Byte data is ac-
cepted exactly as trans-
mitted. Data length is
unaffected.

WRITE ABSOLUTE (48H) - Data length bytes are sent
to the console device. Byte
data is written exactly as
given. Data length is un-
affected.

All others - returns Invalid request completion code,

During write operations, entering a question mark causes
the operation to pause until a second question mark is
entered. Entering an ESCape always immediately terminates
an I/O request.

- 26 -

3.4.5 PCON

The PROM console driver provides basic console I/O and
becomes the default device for logical units 1 and 2
when OS encounters errors while requesting input from
or output to these units. Refer to the MCZ or ZDS PROM
User's Manual for full details.

3.4.6 FLOPPY

The PROM floppy disk driver is used by ZDOS as the access
primitive for the floppy disk drives. Refer to the MCZ
or ZDS PROM User's Manual for full details.

3.4.7 DISK

DISK is the hard disk controller interface provided for
those utilities requiring access by sector address. Refer
to Chapter 7 for full details.

- 27 -

CHAPTER 4

PROGRAM INTERFACE

4.1 PROGRAM LOCATION

The following table describes the memory utilization for
the standard Microcomputer System (MCZ) and Development
System (ZDS):

PROM
PROM Dedicated RAM
RIO Executive (OS)
Console Driver
ZDOS
User Space

MCZ 1/20

0-FFF
1000-13FF
1400-24FF
2500-29FF
2AOO-43FF
4400-

MCZ 1/35

0-FFF
1000-13FF
1400-24FF
2500-29FF

2AOO-

ZDS (monitor
mode)
0-BFF
COO-FFF
1000-20FF
2100-25FF
2600-3FFF
4000-

RIO commands, and, in fact, all RIO procedure files, are
written as subroutines. That is, the system return address
is pushed on the stack when program execution of the
procedure file begins. Command files are generally
loaded into the low range of the program space for
execution. Entry points and file sizes can be obtained
using the EXTRACT or CAT commands (see Chapter 5).

The minimum requirement for program execution concurrent
with RIO is that it be 'loadable' in the sense that the
space required to read the file into memory be unallocated,
and that sufficient space be available in the system to
allocate a user stack.

The current state of the memory allocation map can be
displayed using the DISPLAY command (see Section 5.19). In the
MCZ 1/20 configuration, memory from 4400H is unallocated and is
available for system or user command execution. The only concern
of the user is to insure that all programs which coexist in memory
form a disjoint memory space--i.e., if a program is to make system
calls which result in execution of external procedure

- 28 -

files, then all programs referenced which reside in memory
concurrently must not occupy the same address space.

4.2 PARAMETER STRING ADDRESS

When the command string interpreter identifies an external
file name and succeeds in loading the procedure file, the
variable INPTR (see Appendix C) is given the address of the
delimiter following the file name. Programs may alter
the subsequent parameter string, if any, up to but not
including the next terminator (carriage return or semicolon)
Prior to program execution, this address is also pushed
on the user stack, followed by the system return address.

4.3 PROGRAM STACK SPACE

To RIO, user programs look like subroutines. Before
execution, the system stack pointer is saved, a user
stack is allocated (if the requested stack size is not
equal to zero), and the parameter string address and
return address in RIO are pushed. Dispatch is then made
to the program at its entry point. The stack size is
determined by LINK or IMAGE, default being 80H bytes.
Programs requiring larger stack space should be LINKed
or IMAGEd with non-default stack sizes (ST=nn option).

4.4 PROGRAM TERMINATION - ERROR HANDLING

In addition, or as a supplement to internal error handling
procedures, user programs may indicate certain errors to
RIO by setting the variable ERCODE. In the RIO convention,
if bit 6 is set, the value is taken to be an error code to
be displayed. If the error code value is one of those
which corresponds to a RIO error message (see Appendix A),
then the message is printed instead of the value.

- 29 -

4.5 SYSTEM CALLS - SYSTEM ENTRY POINT

System calls for program execution of RIO procedure files
is accomplished by making a subroutine call to the system
entry point SYSTEM (see Appendix C) in the same way as an
I/O request: The IY register must hold the address of a
request vector of the following format:

Byte Contents

IY -> 0 zero - indicates request is a system
call rather than an I/O request

1 unused
2-3 command string address
4-7 unused
8-9 error handler address
A completion code

Command String Address

Address of the first byte of command input string.
This string is of indefinite length, but must terminate
with a carriage return. The format for the command string
is the same as if entered on the console input device (see
section 2.3).

Error Handler Address

Address of the routine to which RIO jumps to handle error
conditions. If zero, no jump will be made and error
conditions will not be reported. This applies only to
errors either generated within RIO or reported to it via
ERCODE.

Completion Code

Either the completion code generated internally by RIO or
the ERCODE reported by external file execution, if
applicable, will be returned in this byte. Bit 6 set (=1)
implies an error condition.

- 30 -

*** NOTE ***

When external files make system calls resulting in
execution of other external files, the current state of the
memory map needs to be saved in order to determine what
space to deallocate as a result of program loading. This
map is saved on the user stack occupying a block of
44H bytes. Care must be taken to allocate sufficient
stack sizes for programs using this feature.

4.6 INTERRUPT STATUS

The initialization process associated with system restart
sets interrupt mode 2, and the I register to the base address
of the interrupt vector, with interrupts enabled. Proper
system operation depends on this interrupt status. With
this configuration the 8-bit vector supplied by the
interrupting device is used with the contents of the I
register to form a pointer to the interrupt service routine
starting address. Zilog support devices can be programmed
to supply appropriate interrupt vectors using this space.
If program constraints make it necessary to alter the
interrupt mode or I register, they must restore the proper
conditions before making system calls that result in disk
activity. See Appendix C for the system interrupt vector
address for use in restoring the I register.

4.7 I/O UNIT UTILIZATION

The user is free to redefine all I/O logical units with the
exception of '0'. Unit 0 is restricted to use by RIO.
Units 1, 2 and 3 are predefined to be the console input
device, console output device and system volume output
device. Units 4 through 20 are initialized to be the
master device. Redefinition of these units may result in
abnormal system behavior upon return to RIO. This means
that in the standard RIO configuration which allows 0-20,
17 units may be defined concurrently, with an additional
3 units predefined by RIO for use as console or line
printer I/O devices.

- 31 -

4.8 PROGRAM EXAMPLES

In Appendix G are sample programs which the user is
encouraged to edit, assemble, link, and execute. They
illustrate some of the concepts introduced in previous
sections of the chapter, including console I/O, parameter
string processing, and file I/O.

- 32 -

CHAPTER 5

RIO COMMANDS

The following RIO commands are supplied as procedure type
files which have the properties SECRET and WRITE
PROTECTION. Each section is devoted to one command and has
the following format:

SYNTAX

A description of the syntax of the command, giving
parameter definitions, options and conventions. In all
syntax descriptions, the following notation is used:

Optional parts of a parameter list are enclosed in
brackets, '[...]'.

The symbol for logical or, '!', is used if either
parameter separated by the symbol can be used, but not
both.

Parameters which can be repeated zero or more times
are enclosed in parentheses and followed by an
asterisk, i.e., (param)*.

Parameters which can be repeated as necessary but
must appear at least once are enclosed in parentheses
and followed by a plus sign, i.e., (param)+.

- 33 -

Internal commands are indicated by notation just under
the command name in the upper right hand corner of the
page. In this case, the command as given in the
syntax also indicates the extent to which the command
may be abbreviated. Upper case characters are required
while trailing lower case characters are not.
The command may be entered in either abbreviated
or unabbreviated form, in upper or lower case,
e.g., 'DEB1 is the same as 'd'.

DESCRIPTION

A general description of command operation and definition
of options.

I/O UNIT UTILIZATION
»

The logical units that the command uses for a particular
function. I/O error messages generally refer to the unit
on which the error occurred.

EXAMPLES

Illustrative examples of command invocation, where
appropriate.

Note that the length of the parameter string associated
with any single command is intrinsically limited by the
buffer space associated with the command string. This
imposes a 256 character limit on commands entered via the
console input device and a 512 character limit on commands
created by the editor for execution as part of command
files (see section 5.20). Of course, command files created
by copying the console input device directly to a file are
limited only by available memory when executing the command
file.

- 34 -

5.1
ACTIVATE ACTIVATE

SYNTAX

ACTIVATE device_name [address]

DESCRIPTION

Make a device known to the system by including it in the
Active Device Table (ADT). It can thereafter be used as a
device name in qualified file names. If the optional
address is omitted, the file name referenced by the
device_name will be located on the appropriate device and
loaded if it is a device file (procedure type, subtype 1),
has a non-null entry point, and does not overlay protected
memory. The amount of memory allocated as a result of
loading the file is kept as the SIZE field of the ADT entry
for possible later use by the DEACTIVATE command. If the
optional address is given, the file is assumed to have
been previously loaded in memory. In this case the address
parameter is taken as the device entry point. Since the
memory bounds are unknown, the SIZE field of the ADT entry
is set to a null value (0).

In either case, an Initialize I/O request is sent to the
device to allow preparation for subsequent request
handling.

I/O UNIT UTILIZATION

Unit 0: device file handling
Unit 2: error messages

- 35 -

ACTIVATE

EXAMPLES

ACTIVATE

ACTIVATE $MYDOS

locates file 'MYDOS1 on the master device using
the default drive search sequence. It is then
loaded and given an Initialize request. An
entry is created in the Active Device Table.

ACTIVATE $MYDOS:4/$MY.VIDEO.DRIVER

locates file 'MY.VIDEO.DRIVER1 on device 'MYDOS1,
drive 4. It is then loaded, an Initialize request
sent, and an Active Device Table entry created.

ACTIVATE $MY.PROM.DISK.DRIVER OBFD

creates an Active Device Table entry using OBFDH
as the entry point. An Initialize request is
generated.

- 36 -

5.2
ALLOCATE ALLOCATE

(Internal Command)

SYNTAX

Allocate low_boundary high_boundary block_size

DESCRIPTION

Attempts to allocate block_size bytes (rounded
up to a multiple of 80H bytes) of memory. The search
begins at address low_boundary (rounded down modulo 80H),
and the first block large enough and not extending beyond
high_boundary (rounded up to the next multiple of 80H - 1)
is marked as allocated in the system memory map. If allocation
is not possible, the message INSUFFICIENT MEMORY is given.

I/O UNIT UTILIZATION

None

EXAMPLES

ALLOCATE 0 FFFF 120

starting at memory address 0, a search is made for
a 180H byte (120H bytes rounded up to a multiple of
80H) memory segment.

ALLOCATE 5300 537F 80

attempts to allocate the single 80 byte memory segment
starting at 05300H.

ALLOCATE 7400 8000 400
INSUFFICIENT MEMORY

no 400H byte block is available in the address range
7400-807FH.

- 37 -

ALLOCATE ALLOCATE

ALLOCATE 8EOO 9535 9535-8EOO

use the expression evaluator to determine the
blocksize to be allocated. (780H bytes).

- 38 -

5.3
BRIEF BRIEF

(Internal Command)

SYNTAX

Brief

DESCRIPTION

Enters console Brief mode. Commands are not echoed on the
console output device as interpreted and some command files
suppress execution messages. See Verbose command.

I/O UNIT UTILIZATION

None

EXAMPLES

I B

brief

- 39 -

5.4
CAT CAT

SYNTAX

CAT (match_string I T=type I P=props I D=drive I
F=format I L=listing_disposition I DATE rel date
CDATE rel date)*

DESCRIPTION

Prints a catalog of entries in the file system
directories which match the specified options. Given
without options, all (non-secret) files in each active
drive directory are listed. Options may be given in any
order, and may appear more than once. Where options other
than match strings are specified more than once, the last
one enterecF is used.

match_string

Fully- or partially-specified file names may be given, in
which case only those directory entries which are identical
to one of the fully specified file names or match one of
the partially specified file names, are listed. Partially-
specified refers to the use of the symbol '*' which denotes
an arbitrary character string. For example, '*XYZ' matches
any file which ends in 'XYZ1. 'ABC*XYZ' matches any name
which starts with 'ABC1 and ends with 'XYZ1 but has any (or
no) characters in the middle. The string '*' (which is
equivalent to '**') matches any name. Match strings cannot
be qualified file names, i.e., no device or drive name may
be given (see the 'D=drive' option below).

- 40 -

CAT CAT

T=type

Only files of the given type will be listed. Type must be
one of 'D' (directory), 'A1 (ASCII), 'B1 (binary) or 'P'
(procedure). Subtype may also be specified immediately follow-
ing the type (e.g., 'Pi1 refers to files of procedure type,
subtype 1). If no subtype is given, all subtypes of the specified
type are listed.

P=props

will
'E1

beOnly files with exactly the specified properties
listed. Props must be from 'W (write protected),
(erase protected), 'L' (properties locked), 'S1

(secret), "R" (random), 'F1 (force memory allocation), or
'&'. Use of '&' will allow any file with at least the
specified properties to be listed. One or more properties
may be concatenated in which case only files with exactly
(or at least, if '&' is included) the specified properties
will be listed.

D=drive
?

Only files from the specified drive will be listed. Drive
must be from '()'...'7'. Default is to search directories
from all ready drives on the master device. If a device is
specified without a drive (i.e. D=$DFS), all ready drives on
that device will be searched.

F=f ormat - • - - - - - -

Specifies long (F=L) listing format. The short form
(default) consists of name and drive while the long form
gives name, drive, file type, record count, record length,
file properties, starting address, date of creation, and
date of last modification. Additionally, the number of
files examined, the number of files listed, and the number
of sectors used by listed files are given.

- 41 -

CAT CAT

L=listing_disposition

The listing is normally routed to SYSLST but can be routed
to any device or file. For example, L=$CON would route
output to the console (SYSLST may also be defined as this
device) or L=2/FILELISTING would route the output to file
'FILELISTING' on drive 2 of the master device. All output
generated for the specified device or file will be
buffered, i.e., several lines will be transferred at one
time. While output is active at the console, entering a
'?' character will cause output to stop until another '?'
character is entered. If the ESCape character (ASCII 1BH)
is typed, output will be terminated and control will return
to the Executive. The '?' and ESCape features apply
only to MCZ systems.

CDATE | DATE rel date

where rel is one of the relational operators '=',
'>', '<', '>=', '<='/ or '<>', and date is up to 6
digits or '*' representing a date to be compared against
in 'yymmdd1 form. '*' in a digit position specifies that
that digit will be considered equal to anything. A date
expressed with less than 6 digits is treated as being
filled on the right with '*'s.
DATE refers to the date of last modification. CDATE refers
to the date of creation. The entire option should be
specified with no intervening blanks. For example:

CDATE>=7805

refers to all files created with dates in May of 1978
or later. This is equivalent to

CDATE>=7805**

If the referenced date field of the file descriptor has
a character which is not a digit, it will not match unless
that digit position of the match date has an '*' in it.

- 42 -

CAT CAT

I/O UNIT UTILIZATION

Unit 2: error messages
Unit 3: default listing destination
Unit 4: directories
Unit 5: files listed in directory
Unit 6: non-default listing destination

EXAMPLES

CAT F=L

Lists all (non-secret) files (long format) from
all ready drives.

CAT D=$DFS:2 P=W SYS*

Lists all files (short format) on drive 2 on the device
$DFS (if it is ready) which are write protected (only)
and whose names start with 'SYS1.

CAT F=L *.fa *.L P=E& L=CAT.LIST

Lists all files (long format) which end with either
'.S1 or '.L' and are at least erase protected.
Listing goes to file CAT.LIST on the master device.

CAT F=L P=& DATE>=780301

Lists all files (long format) with at least null
properties that have been last modified on or
since March 1, 1978.

- 43 -

5.5
CLOSE CLOSE

(Internal Command)

SYNTAX

Close u/*

DESCRIPTION

Generates a Close (06) I/O request for (hexadecimal) logical
unit 'u1 or all logical units ('*')• Error returns are ignored.

I/O UNIT UTILIZATION

As noted above

EXAMPLES

CLOSE 5

generates a Close I/O request for logical unit 5.

CLOSE *

generates a Close I/O request for all logical units.

- 44 -

5.6
COMPARE COMPARE

SYNTAX

COMPARE file 1 file 2

DESCRIPTION

Performs a comparison of the contents of file_l and
file_2 (excluding the descriptor record). If the file
contents are identical, no message is given. For each
byte comparison which fails, a message of the form

FILE1: BYTE 01FC RECORD 0003 = B6
FILE2: BYTE 01FC RECORD 0003 = A6

is given.

Pressing the escape key will terminate command execution.
File_l and file_2 may not be the same physical file, though
they can be the same named file on different drives if the
names are appropriately qualified.

I/O UNIT UTILIZATION

Unit 2:
Unit 6:
Unit 7:

error messages
file_l input
file 2 input

EXAMPLES

COMPARE MYFILE YOURFILE

MYFILE and YOURFILE are read and compared,
message implies the files are identical.

No

- 45 -

COMPARE COMPARE

COMPARE AFILE BFILE
I/O ERROR C9 ON UNIT 7

an end of file was reached on BFILE before the
corresponding end of file on AFILE.

COMPARE 0/MYFILE 1/MYFILE

the two files have the same name, but they reside
on different devices.

- 46 -

5.7
COPY COPY

SYNTAX

COPY fileJL file_2 (A | U I 0 | PL=record length
T=type)*

DESCRIPTION

Copies file_l (using a READ BINARY request) to file_2
(using a WRITE BINARY request). Either file_l or
file_2 may be devices or fully qualified names. FILE
attributes of file_l are transferred to file_2
The options A (Append), U (Update), 0 (Output)
are used to specify the type of open request performed
on the destination file, file_2. See Chapter 6 for
details. The default record length and type of file_2
will be the same as file_l. These attributes can be
overridden by specifying one of 80, 100, 200, 400, 800
or 1000 for record length, or one of D (directory),
B (binary), A (ASCII) or P (procedure) for type.
In the event that the destination file or device is unable
to support the record length attribute of the source
file, the message

WARNING: RECORD LENGTH CHANGED

will be issued and the default attributes of the destination
device will be used.

*** WARNING ***

If the record length of the destination file is not the
same as the record length of the source file, either
because the RL=record length option was specified or
due to automatic record length modification (see above),
the BYTE_COUNT field in the source file's descriptor
record is used to determine the number of bytes in
the last record. In the event this value is incorrect,
file truncation may result.

COPY COPY

I/O UNIT UTILIZATION

Unit 2: error messages
Unit 6: source file
Unit 7: destination file

EXAMPLES

COPY MYFILE 2/MYFILE.TOO

Copies MYFILE on the master device, default drive
search, to MYFILE.TOO on the master device, drive 2.
File attributes of MYFILE are transferred to
MYFILE.TOO. Error occurs if MYFILE.TOO all ready
exists.

COPY $ZDOS:2/THE.FILE $MYDOS/THE.FILE RL=400 0

Copies THE.FILE on drive 2 of ZDOS to THE.FILE
on device $MYDOS, default drive search. The
record length of the destination file is 400H and
its previous contents (if any) will be erased.

COPY ANOTHER.FILE $CON

Copies ANOTHER.FILE from the master device,
default drive search to the device CON, the
default RIO console device driver (see section 3.4.3)

COPY $CON 7/TEXT 0

Copies from the device CON (see section 3.4.3) to
the file TEXT on the master device, drive 7. If
TEXT existed previously, its contents will be
erased.

- 48 -

5.8
COPY.DISK COPY.DISK

SYNTAX

COPY.DISK [s drive TO d drive] [V]

DESCRIPTION

3isk in drive s drive (defaul t = 0) to tic
•ive 1

Copies the disk in drive s_drive (default = 0) to the
disk in drive d_drive (default = drive 2 (MCZ) or dr^
(ZDS)). Before starting, the prompt message

DRIVES READY?

is given. Response other than 'Y1 will abort the command.
The disks are read and written directly (through the
drive control ports) one track at a time; thus the previous
contents, if any, are overwritten. It is not necessary
that the destination disk be formatted. After the copy
operation, a verification pass is made during which a track-
by-track comparison is made. At the completion of this
pass, the message

VERFICATION COMPLETE

indicates a successful verify operation. The message

*** 0016 VERIFICATION ERROR(S) ***

indicates the number of compare errors found during the
verification attempt.

If the verification pass only is required, the 'V
option in the command line causes the copy cycle to be
skipped.

- 49 -

COPY.DISK COPY.DISK

I/O UNIT UTILIZATION

Unit 0: FLOPPY or DPS interaction
Unit 1: console interaction
Unit 2: console interaction

EXAMPLES

COPY.DISK
DRIVES READY7Y
VERIFICATION COMPLETE

copies disk in drive 0 onto disk
(for MCZ) or 1 (for ZDS).

in drive 2

COPY.DISK 3 TO 7 V
DRIVES READY7Y
VERIFICATION COMPLETE

verifies the disk in drive 3 is identical
to disk in drive 7.

- 50 -

5.9
COPYSD COPYSD

SYNTAX

- COPYSD file name

DESCRIPTION

Copies a single ZDOS file from one diskette to another
using a single disk drive. The file_name may be fully
or partially qualified. The source and destination diskette
are inserted as many times as necessary to copy the file.
When either of the prompts:

INSERT SOURCE DISK. TYPE ANY KEY TO CONTINUE, ESCAPE TO ABORT:
INSERT DESTINATION DISK. TYPE ANY KEY TO CONTINUE, ESCAPE TO ABORT;

is sent to the console device, the user must place the source
or destination diskette, as specified in the prompt, into the
drive. If the user wishes to abort the command, the ESCape
character (ASCII 1BH) is entered from the console device at
this time; otherwise, any other character is entered. The
file is created on the destination diskette with the same name
and attributes that it has on the source diskette.

I/O UNIT UTILIZATION

Unit 1: console interaction
Unit 2: console interaction
Unit 6: ZDOS interaction

- 51 -

COPYSD COPYSD

EXAMPLE

%COPYSD DATA.FILE
INSERT SOURCE DISK. TYPE ANY KEY TO CONTINUE, ESCAPE TO ABORT:G
INSERT DESTINATION DISK. TYPE ANY KEY TO CONTINUE, ESCAPE TO ABORT:G
%

copies the file DATA.FILE from the source diskette to the
destination diskette.

- 52 -

5.10
DATE DATE

SYNTAX

DATE [yymmdd]

DESCRIPTION

Displays and optionally sets the date field which is used
as the date of creation or date of last modification by
ZDOS. Digits 'yy' specify the year, 'mm1 the month, and
'dd' the day.

The Date command is part of the standard RIO external
initialization command file OS.INIT. Editing the file
manually is required to change the date set at system
initialization.

Users are encouraged to maintain the DATE consistent with
the actual date in order to maximize the utility of the
information and capabilities provided by the file system(s)

I/O UNIT UTILIZATION

Unit 2: output response

EXAMPLES

DATE 780801
AUGUST 1, 1978

Sets and displays current system date.

DATE
AUGUST 1, 1978

Displays current system date.

- 53 -

5.11
DEACTIVATE DEACTIVATE

SYNTAX

DEACTIVATE device_name

DESCRIPTION

Deletes device_name from the Active Device Table (ADT) and thus
makes it unknown to RIO. A Close I/O request is generated
for units linked to the deactivated device and a Deactivate
I/O request is generated for the device itself. If the ADT
size entry is non-null (> 0), the space allocated to the
device handler is deallocated.

Deactivation is inhibited for the last active device, since
there would be no source for further external commands and
therefore no method to activate other device files.
Likewise, the master device cannot be deactivated.

I/O UNIT UTILIZATION

Unit 2: error messages
Others: all units currently linked to device

EXAMPLE

DEACTIVATE $MYDOS

Removes MYDOS from Active Device Table and generates
Close request for all units linked to MYDOS. A
Deactivate request is sent to MYDOS and the space
allocated to it deallocated (if ADT size entry > 0).

- 54 -

5.12
DEALLOCATE DEALLOCATE

(Internal Command)

SYNTAX

DEAllocate block_address block_size

DESCRIPTION

Marks the block_size segment starting at block_address as
unallocated in the system memory map. If any affected
blocks were not previously allocated, the message

MEMORY PROTECTION

is given. Block_address will be rounded down and
block_size will be rounded up to a multiple of 80 bytes.

I/O UNIT UTILIZATION

None

EXAMPLE

DEALLOCATE 5000 1400

deallocates the 1400 byte block starting at 5000
(must have been previously allocated).

DEALLOCATE COOO 180
MEMORY PROTECTION

the 180 byte block starting at COOO was not previously
allocated.

- 55 -

5.13
DEBUG DEBUG

(Internal Command)

SYNTAX

Debug

DESCRIPTION

Enters the RIO PROM debugger (RIO PROM User's Manual).
A 'Q1 command in the debugger will return directly to
OS while an 'OS1 command will first bootstrap (and
reinitialize) the system.

The PROM contains a bootstrap loader which will bring
in the diskette-resident Debug commands, as well as the
full operating system. The following commands use
the bootstrap loader, and, when used with the Zilog
diskette-based operating system, will execute as described
below. These commands require that the system diskette on
drive 0 is not write-protected.

GET filename

Loads a memory image into memory and stores its
starting execution address in the user PC. A memory
image file can be created by the SAVE command or by
the IMAGE or LINK commands. Such files contain in the
descriptor the starting address and length of one or
more segments of contiguous memory which is stored in the
file, as well as the starting address for execution of
the file. The Get command can handle files of up to five
segments of memory, but the segments may be of any size.
If more than five segments are in the file, ONLY the FIRST
FIVE will be loaded.

If any segment contains information in the range 0-13FFH,
the message 'MEMORY PROTECTION1 will be printed and the
load will be aborted.

- 56 -

Page 57 is missing

DEBUG DEBUG

WARNING

SAVE uses diskette allocation information retrieved directly
from the diskette, whereas ZDOS uses a copy of the same
information stored in memory. If ZDOS activities have
been going on immediately preceding the SAVE (e.g., if
the Debug environment is entered via a Break from an
operating system program), or will be going on immediately
following the SAVE (e.g., by Quitting back to the operating
system without rebooting), steps must be taken to make
sure that the diskette copy of the allocation information is in
agreement with the memory copy both before and after the
SAVE operation. The following procedures are recommended:

1) If Debug was entered via a breakpoint and ZDOS is
being accessed by the program in question, do not
issue a SAVE command unless it can be verified that
all ZDOS files are closed.

2) When returning to OS via a Quit command, after a
SAVE has been done, immediately issue an Initialize
command to update the allocation maps.

I/O UNIT UTILIZATION

None

EXAMPLES

%D
>BREAK 5500 ;set a breakpoint
>Q ;return to RIO

- 58 -

DEBUG DEBUG

ID
>GET 0/OS ;get the RIO executive
>D 140E ;display system flag
140E 84 80 Q ;turn off external

Initialization flag
>SAVE 0/OS 1400 2BFF E=17DE RL=400
>OS ;Must rebootstrap after

;getting OS

- 59 -

5.14
DEFINE DEFINE

SYNTAX

DEFINE (unit file_name I unit device_name I unit *
*)+ [A | 0 | U I I I NF | NO]

DESCRIPTION

Links a logical unit (referenced by an integer from 1 to
20) to a currently active device or restores unit to the
default established at system initialization (bootstrap).
(Units 1,2,3 may be referenced by the mnemonics CONIN,
CONOUT, and SYSLST, respectively.) If the unit was
previously defined, a close request is generated. A
file name may optionally be associated with the unit.
Assign and Open requests may be generated for the unit.

Unit file_name

The unit is linked to the specified device if name is
qualified, or to the master device if unqualified. An
Assign request is sent to the device with file_name as a
parameter, followed by an Open request (default open type
is 'open for update1).

Unit device_name

The unit is linked to device_name (must be active). No
other I/O requests are generated.

Unit *

Links unit to the default established at system
initialization.

- 60 -

DEFINE DEFINE

Links all units to their defaults established at system
initialization. The standard RIO system defaults to units
1, 2 and 3 defined as the console device; the remaining
units are linked to the master device.

Options

A open type = Append (See Chapter 6 for
0 open type = Output open types)
U open type = Update
1 open type = Input
NF open type = Newfile
NO Generate No Open request

I/O UNIT UTILIZATION

Unit 2: error messages
Others: parameter dependent

EXAMPLES

DEFINE SYSLST $LPR

Defines the system volume output unit SYSLST (3) to be
device driver LPR, which must be an active device.
Subsequent I/O requests for unit 3 will be directed
to this device.

DEFINE 6 MYFILE

Links unit 6 to the master device. Assign and Open
(for update) I/O requests are then sent to unit 6
with MYFILE as parameter.

- 61 -

DEFINE DEFINE

DEFINE *

Restores all units to the defaults established at
system initialization (after bootstrap). All
defined units are closed prior to being redefined
as their defaults.

DEFINE 12 $YOUR.DOS/YOURFILE NO

Links unit 12 to the device YOUR.DOS (which must
be active). An Assign I/O request is then generated
with YOURFILE as the filename, but no Open request.

- 62 -

5.15
DELETE DELETE

SYNTAX

DELETE (match_string I T=type | P=props | D=drive
Q=query I DATE rel date I CDATE rel date)*

DESCRIPTION

Deallocates all records and deletes name from file
directory of files which match the specified options.
Given without option, all (non-secret) files in each active
unit are deleted. Options may be given in any order, and
may appear more than once. Where options other than
match_strings are specified more than once, the last
entered is used. As matches are made, if in query mode, a
prompt is made to the console of the form:

DELETE drive/filename (Y/N/A/Q)?

One character is accepted as input and must be one of the
following:

'Y1 Yes, delete the named file
'N1 No, do not delete the named file
'A' Yes, delete the named file and all other

files without further query.
'Q1 No, do not delete the named file and discontinue

searching for file matches.

In general, if a file is listed with a given parameter list
using CAT, it will be deleted using the same parameter list
using DELETE.

DELETE DELETE

match_string

Fully- or partially-specified file names may be given, in
which case only those directory entries are deleted which
are identical to one of the fully-specified file names or
match one of the partially-specified file names. Partially-
specified refers to the use of the symbol '*' which denotes
an arbitrary character string. For example '*XYZ' matches
any file which ends in 'XYZ'. 'ABC*XYZ' matches any name
which starts with 'ABC1 and ends with 'XYZ' but has any (or
no) characters in the middle. The string '*' (which is
equivalent to '**') matches any name. Match strings cannot
be qualified file names, i.e., no device or drive name may
be given (see the 'D=' option below).

T=type

Only files of the given type will be deleted. Type must be
one of 'D1 (directory), 'A1 (ASCII), 'B' (binary) or 'P1

(procedure). Subtype may also be specified immediately follow-
ing the type (e.g. 'AO' refers to files of ASCII type, subtype
0). If no subtype is given, all subtypes of the specified type
are deleted.

P=props

Only files with exactly the specified properties will be
deleted. Props may include any of the following:

W write protected
E erase protected
L properties locked
P random
F force memory allocation
& files with at least the specified

properties

One or more properties may be concatenated in which case
only files with exactly (or at least, if '&' is included)
the specified properties, will be deleted.

- 64 -

DELETE DELETE

D=dr ive

Only files from the specified drive will be deleted. Drive
must be from 'O'...1?'. Default is to list all ready
drives.

Q=query

Sets Query mode for delete operations. 'Q=Y' (default)
causes a query before a delete; 'Q=N' suppresses queries.
Note that the 'Q=Y' mode can be overridden by the query
response 'A'.

CDATE | DATE rel date

where rel is one of the relational operators '=',
'>', '<', '>=', '<=', or '<>', and date is up to 6
digits or '*' representing a date to be compared against
in 'yymmdd' form. '*' in a digit position specifies that
that digit will be considered equal to anything. A date
expressed with less than 6 digits is treated as being
filled on the right with '*'s.
DATE refers to the date of last modification. CDATE refers
to the date of creation. The entire option should be
specified with no intervening blanks. For example:

CDATE>=7805

refers to all files created with dates in May of 1978
or later. This is equivalent to

CDATE>=7805**

If the referenced date field of the file descriptor has
a character which is not a digit, it will not match unless
that digit position of the match date has an '*' in it.

I/O UNIT UTILIZATION

Unit 2: error messages
Unit 4: directories
Unit 5: files listed in directories

- 65 -

DELETE DELETE

EXAMPLES

DELETE *.OLD Q=N

Deletes without query all files on all ready drives
which end in '.OLD' (backup files are normally
produced by the text editor).

DELETE T=A CDATE<773112

Deletes (after prompting) all ASCII type
files created before December 31, 1977.

DELETE D=2 P=R *.BASIC Q=N

Deletes without query all random files on drive 2
whose name ends in '.BASIC'.

- 66 -

5.16
DISK.FORMAT DISK.FORMAT

SYNTAX

DISK.FORMAT (S | D=drive | ID='disk_name' I Q=query)*

i

DESCRIPTION

Formats a hard disk cartridge or hard disk fixed platter,
initializes the disk allocation map and utilization statistics,
A directory file is established. When a system disk is
formatted, the file 'BOOTSTRAP1 is copied from the master
device. This file allows file system bootstrap in the disk
controller.

A known pattern is written on each sector; then, each
sector is read back and the initial allocation free chain
is constructed. Any sectors that read back with errors are
assumed to be bad sectors and are counted in a separate
variable and not put in the free chain. The total operation
takes approximately 9 minutes with a 5 megabyte platter.
After the first pass, the message:

WRITE PASS DONE

is sent to the console device. - -

The parameter list specifies the following options:

Determines whether or not the disk is to be
formatted as a system disk. System disks contain
the 'BOOTSTRAP' file.

- 67 -

5.17
DISK.REPAIR DISK.REPAIR

SYNTAX

DISK.REPAIR DFS_drive_number level_number

DESCRIPTION

Attempts to recover lost file data due to software failure
or abnormal program interruption. There are four in-
creasingly drastic levels of repair; level_number is an
integer from 1 to 4 specifying the level of repair to be
used (at present, only level 1 has been implemented). The
repair is attempted on the disk in DPS drive DFS_drive_number.

Level 1 Repair:

When software failure or external interruption prevents the
the free chain of unallocated sectors from being updated,
using the first level of repair will remove any allocated
sectors that may be at the beginning of the free chain.

If the command is effective in retrieving data, the message:

n SECTORS REMOVED FROM FREE CHAIN

is sent to the console device, where n is the decimal number
of sectors the command retrieved from the free chain, restored
to a file, and marked as allocated. If the disk appears to be
undamaged, the message:

FREE CHAIN UNMODIFIED

is sent to the console device. If the disk damage is beyond
the repair capability of level 1, the message:

LEVEL 1 REPAIR NOT SUFFICIENT FOR THIS DRIVE

is displayed at the console.

- 70 -

DISK.REPAIR DISK.REPAIR

I/O UNIT UTILIZATION

Unit 0: disk sector access
Unit 2: execution messages

EXAMPLES

%DISK.REPAIR 3 1
6 SECTORS REMOVED FROM FREE CHAIN

level 1 repair is administered to the disk in drive 3;
6 allocated sectors are removed from the unallocated
sector list.

%DISK.REPAIR 0 1
FREE CHAIN UNMODIFIED

level 1 repair detects no problem with the disk
drive 0.

in

- 71 -

5.19
DISPLAY DISPLAY

SYNTAX

DISPLAY

DESCRIPTION

Displays the current state of the memory allocation map on
the system console.

The memory allocation display is a matrix with one horizontal
row for each 1000H bytes of memory. The point corresponding
to each 80H byte segment of memory is either marked with 'A'
if the segment is allocated, or '.' if it is free.

I/O UNIT UTILIZATION

Unit 2: memory display

- 74 -

5.20
DO DO

SYNTAX

DO command_file [parameter list]

DESCRIPTION

Executes commands from file command_file. The file is read
into a dynamically allocated buffer. Each command line (as
terminated by a carriage return) is then expanded according
to the presence of certain expansion control symbols.

A 'parameter string1 is a group of symbols delimited by
either a blank (20H), comma (2CH), horizontal tab (09H),
left parenthesis (28H), right parenthesis (29H), semicolon
(3BH), or carriage return (ODH).

Simple parameter substitution is made for each occurrence
of the string '#n', where n is an integer less than or
equal to the number of parameters given. If n is greater
than the number of parameters given, a Command Expansion
Error is generated and processing is terminated. For each
'#n', the nth parameter string from the parameter list is
substituted. A maximum of 64 parameter strings may be
passed in this manner. Parameters which are present but
not referenced are ignored.

Conditional expansion of the command line can be controlled
by the symbol pair '[' and ']'. At each occurrence of '[',
the depth of conditional expansion increases by one. If
the resultant depth is greater than the number of
parameters given, the command line is scanned over until
the matching ']' is located. If the resultant depth is not
greater than the number of parameters given, the '[' is
deleted from the command string and expansion continued.
At each occurrence of ']'/ the depth of conditional
expansion decreases by one. Thus, the command string
'AB[C]DE' would expand into 'ABCDE1 only if at least one
parameter were given. Otherwise, the resultant command
string (after expansion) would be "ABDE1. Note that
parameters may control command string expansion regardless

- 75 -

DO DO

of whether or not they are used in that expansion.

After command string editing according to the above rules,
a system call is generated to execute the resultant command
string.

This command is reentrant (and has the 'force allocation"
property) and may call itself up to a depth limited only by
the amount of memory available. That is to say, FILE.X may
contain the command 'DO FILE.Y', which may contain the
command 'DO FILE.Z1, etc., down to a level where insufficient
memory exists to allocate buffer space. For short command
files (a few records) in a 32K system, this depth is
approximately 15, depending on memory requirements for
other command executions.

*** WARNING ***

Due to the force allocation property of this command, it
will over-write the memory where it is loaded, whether or
not the memory is all ready allocated. This command should
be linked to load at an address that will not affect memory
that is preallocated for system use.

I/O UNJT UTILIZATION

Unit 0:
Unit 2:

command file
error messages

EXAMPLES

The examples have the following format:

FILENAME:
Command:
Result:

DO file contents
Command line entered
The expanded file contents which
are to be executed.

- 76 -

DO DO

1) PRINT:

Command;

Result:

ACTIVATE $LPTR;COPY #1 $LPTR;
DEACTIVATE $LPTR

DO PRINT MYFILE

ACTIVATE $LPTR
COPY MYFILE $LPTR
DEACTIVATE $LPTR

Failing to give a parameter would result
in a Parameter Expansion Error.

2) PRINT:

Command:

ACTIVATE $LPTR
[COPY #1 $LPTR[;COPY #2 $LPTR[;COPY #3 $LPTR]]]
DEACTIVATE $LPTR

DO PRINT MYFILE

Result: ACTIVATE $LPTR
COPY MYFILE $LPTR
DEACTIVATE $LPTR

Simple parameter substitution is performed for as
many strings enclosed within brackets as there are
parameters given. Only the parameter 'MYFILE1 was
present, therefore the command after (and
including) the second '[' was ignored.

Command: DO PRINT FILEl FILE2

Result: ACTIVATE $LPTR
COPY FILEl $LPTR;COPY FILE2 $LPTR
DEACTIVATE $LPTR

Two parameters were given so that two levels of
conditional expansion were valid.

- 77 -

DO DO

3) BATCH: EDIT fl[;ASM #1[;LINK $=4400 #![;#!]]]

Command: DO BATCH MYFILE A L X

Result: EDIT MYFILE;ASM MYFILE;LINK $=4400 MYFILE;MYFILE

Command: DO BATCH MYFILE A

Result: EDIT MYFILE;ASM MYFILE

In the first command, four parameters were given
indicating conditional expansion of four levels.
In the second command, only two were given, limiting
expansion to two levels. The characters "A 1, 'L1, and
'X1 could have been any character string although
they serve as symbolic notations for assemble, link,
and execute. This is an example where the number
of parameters controls expansion but the parameters
themselves do not take part in the expansion.

- 78 -

5.21
DUMP DUMP

SYNTAX

DUMP file_name [m[n]]

s

DESCRIPTION

Converts the referenced file into a hexadecimal/ASCII dump
on unit SYSLST. Each byte of the file is displayed in
hexadecimal. In addition, printable characters are
displayed as ASCII symbols, while unprintable characters
are displayed as '.'.

If m and n are specified, the dump starts with record m and
continues through record n. If m and/or n are unspecified,
the dump starts with the first and continues through the
last, respectively.

While output is active at the console, entering a '?' will
cause output to stop until another '?' is entered. If the
ESCape character (1BH) is entered, output will be
terminated.

I/O UNIT UTILIZATION

Unit 3: output listing
Unit 4: file to be dumped

EXAMPLES
*« , ~J

DUMP $MICR0.80:2/DATA

Dumps the file 'DATA' from device MICRO.80,
drive 2 on the system volume output unit.

- 79 -

5.22
ECHO ECHO

SYNTAX

ECHO string

DESCRIPTION

Copies the string following the command name up to, but not
including, the command terminator, to the console output
device. This provides a method to send messages to the
console from the command line.

I/O UNIT UTILIZATION

unit 2: string output

EXAMPLES

ASM MYFILE;LINK $=4400 MYFILE;ECHO <control-G>

This would send a control-G (bell) to the console output
device after completion of the assembly and link.

ECHO is also useful to provide instructions to the user of
the console command file. For example,

COPY,;ECHO INSERT DISKETTES;PAUSE;I;X 4400 #1 #2

can be used to copy files from one diskette to another,
neither of which have the command file COPY on them.

- 80 -

5.23
ERROR ERROR

SYNTAX

ERROR [error_code|*]

DESCRIPTION

Prints the meaning of error_code when returned by RIO or a
device as a completion code. If the optional error_code is
'*', all error_code meanings are displayed. If error_code is
omitted, this description of the ERROR command is printed.

*

I/O UNIT UTILIZATION

Unit 2: output

EXAMPLE

%ERROR 43
43: MEMORY PROTECT VIOLATION

- 81 -

5.24
ERRORS ERRORS

SYNTAX

ERRORS

DESCRIPTION

Prints a summary of the recoverable disk errors which have
occured since system bootstrap. Output is of the form:

THE FOLLOWING RECOVERABLE ERRORS HAVE OCCURRED SINCE SYSTEM RESTART
0000 SEEK ERRORS
0000 SECTOR ADDRESS ERRORS
0000 DATA TRANSFER ERRORS

Reference the Z80-MCZ PROM User's Manual for a detailed
explanation of these errors.

I/O UNIT UTILIZATION

Unit 2: output listing

*** NOTE ***

This command is implemented only with the MCZ 1/20 PROM
date coded 78089 or later, or with the MCZ 1/35 PROM date
coded 780529 or later when ZDOS is used as a secondary
file system.

- 82 -

5.25
EXTRACT . EXTRACT

SYNTAX

EXTRACT file_name

DESCRIPTION

Lists record count, record length, and the number of bytes
in the last record of file_name. If the file is of type
procedure, the file entry point, the lowest and highest
memory addresses affected by the file, and the addresses
of the memory segments which make up the file are also
displayed. For files created by IMAGE, the segment addresses
are those given in the parameter list. However, LINK provides
an optimizing algorithm for segment allocation dependent on
program memory utilization and file record length. Thus,
EXTRACT can be used to determine the best record length for
a procedure file.

I/O UNIT UTILIZATION

Unit 0: file input
Unit 2: output listing, error messages

EXAMPLE

%EXTRACT EXTRACT
RECORD COUNT = 0001 RECORD LENGTH = 0400

NO. OF BYTES IN LAST RECORD = 0400
ENTRY POINT = 4400 LOW ADDRESS = 4400 HIGH ADDRESS = 47FF

STACK SIZE = 0080
SEGMENTS:
4400 45F2

- 83 -

5.26
FORCE FORCE

(Internal Command)

SYNTAX

Force command parameter_l1st

DESCRIPTION

Causes all command files in the current command string to
be loaded regardless of previous memory allocation.
Normally, a procedure file will be loaded only if the
memory space it requires is unallocated. Sometimes it is
convenient to load a file into previously allocated
memory space. Command overlays or recursive program calls
are two examples. As an alternative to using the Force
command, the properties of a file can include F (force
memory allocation), which has the same effect as the
Force command, but only for that file.

I/O UNIT UTILIZATION

None

EXAMPLES

FORCE DISPLAY

loads and executes the procedure file DISPLAY even
if the memory space it requires is preallocated.

F FILEA,FILEB,;FILEC

loads the procedure files FILEA and FILEB, but does
not execute either. FILEC will be loaded (and
executed) only if the memory it requires is
available; i.e., the context of the FORCE does not
extend into subsequent commands.

- 84 -

5.27
FORMAT FORMAT

SYNTAX

FORMAT (S I D=drive I ID='disk_name' I Q=query)*

DESCRIPTION
;

Formats a diskette into 77 tracks of 32 sectors,
initializes the disk allocation map and disk utilization
statistics. An empty (except for one entry for itself)
directory file is established.

Thirteen sectors are allocated for the disk allocation
map (3 sectors) and directory (10 sectors). When a
system disk is formatted, an additional 64 sectors
(2 tracks) are preallocated for the RIO bootstrap

and RIO Debug Get/Save package.

The parameter list specifies the following options:

S

Determines whether or not the disk is to be
formatted as a system disk. Systems disks have
dedicated areas for the bootstrap and GET/SAVE
overlays.

When the 'S1 option is given and the disk is
being formatted on any drive except 0, the
bootstrap and GET/SAVE overlays are read from
the disk in drive 0. If the 'S1 option is
given and the disk is being formatted on
drive 0, a prompt is made for the user to insert
a formatted system disk in drive 0 replacing
the disk being formatted. After this is done,
entering any key will cause the system bootstrap
and the GET/SAVE overlays to be read into
memory and another prompt to be issued. Again
entering any key will result in the bootstrap
and the GET/SAVE overlays being written onto
the disk, thereby making it a 'system1 disk.

- 85 -

FORMAT FORMAT

D=drive

The drive containing the disk to be formatted is
given as 'drive1. If the option is not present,
the query

DRIVE:

will be given, the correct response to which must
be an integer 0...7.

ID='diskname1

Up to 24 characters not including a carriage return
are used to identify the disk. These are written
on the disk and used by ZDOS to determine disk
allocation map validity. If this option is not
given, the query

DISK ID:

will be given.

Q=Query

Normally, before formatting commences, the query

READY?

is given. Any response other than 'Y1 will result
in aborting the format. The generation of this query
may be inhibited by giving the 'Q=N' option. The 'Q=Y'
option is the default and has no effect.

- 86 -

FORMAT FORMAT

NOTE: Diskettes formatted on OS 2.1 software are NOT
compatible with RIO. Refer to Appendix D for
conversion details.

Format interacts with FLOPPY through the system. The
driver $FLOPPY must appear in the Active Device Table.
On floppy disk-based systems, this occurs automatically.
On hard disk-based systems, FLOPPY is part of ZDOS,
and has an entry point two greater than the entry
address for ZDOS. It must be activated separately.
For example, if the ZDOS.60 is being used on a 64K
system, has been renamed to ZDOS, and has an
entry point of EOOOH, than a sequence of commands
such as:

ACTIVATE $ZDOS; X* $FLOPPY E002
would have to have been executed at some time prior to
issuing a FORMAT command.

I/O UNIT UTILIZATION

Unit 0: FLOPPY interaction
Unit 1: console interaction
Unit 2: console interaction
Unit 4: ZDOS interaction

- 87 -

5.28
HELP HELP

SYNTAX

HELP (key_word|'*')*

DESCRIPTION

Prints a description of key_word(s). If the final argument
is *, a list of valid key_words that can be used as further
modifiers of the preceding key_words is displayed. If the
final argument is omitted, a general description of the use
of the preceding modifying key_words is printed.

I/O UNIT UTILIZATION

Unit 2: Help message
Unit 4: File I/O

EXAMPLES

%HELP *

prints a list of all initial key_words for which
there is HELP.

%HELP DELETE

prints a description of the RIO "DELETE1 command.

- 88 -

5 29
IMAGE IMAGE

SYNTAX

IMAGE file_name (first_location last_location)+
[E=entry point] [RL=record length]
[ST=stack size]

DESCRIPTION

Copies memory images to a specified file. The resultant
file will be procedure type/ subtype 0. The first and last
locations of each memory segment, optional entry point
address (default=0), record length (80H, 100H, 200H,
400H, 800H, or 1000H; default=80H bytes) and stack
size (default=80H bytes) are given in hexadecimal. At least
one but no more than 16 segments may be specified. When
writing the file, the exact memory locations, including
first_location and last_location, are copied for each
segment. The lowest and highest memory addresses
referenced by the file are saved in the descriptor record
(refer to Appendix J) and are used by the RIO Executive
when requesting memory allocation prior to loading.

I/O UNIT UTILIZATION

Unit 0: file I/O
Unit 2: error messages

EXAMPLE

IMAGE TWO.BLOCKS 4400 4425 7000 7FFO E=7000

Copies contents of memory locations 4400 to 4425
and 7000 to 7FFO to file TWO.BLOCKS. The file
will contain 33 records of 80H bytes each, with
an entry point = 7000 and stack size = 80H.

- 89 -

5.30
INITIALIZE INITIALIZE

(Internal Command)

SYNTAX

Initialize [device_name [parameter list]]

DESCRIPTION

Sends an Initialize request to the master device or to the
optionally specified device (which must be active). Result
is device dependent. The supplemental parameter address
of the vector points to the delimiter after the command
or device_name, if given.

I/O UNIT UTILIZATION

Unit 0: I/O request

EXAMPLES

INIT $MY.VIDEO.DRIVER BUFFER = COOO

Sends Initialize request to MY.VIDEO.DRIVER,
with a pointer to the space preceding 'BUFFER1.

I

Sends Initialize request to master device.

- 90 -

5.31
LADT LADT

SYNTAX

LADT

DESCRIPTION

Lists the currently active devices, their entry points,
size, and which logical units are linked to each.

A size of zero implies that the device is in PROM or was
activated with a preloaded entry point given. In either
case, no memory is deallocated upon deactivation.

I/O UNIT UTILIZATION

Unit 2yi listing output

EXAMPLE

LADT

DEVICE

ZDOS

CON
NULL
PCON
FLOPPY

ADDRESS

2AOO

252B
214D
OBE8
OBFD

SIZE

1AOO

0500
0000
0000
0000

UNITS

0 4
12 13
1 2

20

5 6 7 8 9 10 11
14 15 16 17 18 19

V 91 -

5.32
MASTER MASTER

SYNTAX

MASTER [device_name]

DESCRIPTION

Displays the current master device or, optionally, makes
another currently active device the default source for
unqualified files. This provides the user with the
potential to easily utilize multiple file systems
concurrently without the burden of always fully specifying
file names.

I/O UNIT UTILIZATION

Unit 2: error messages

EXAMPLES

MASTER $NEW.DOS

Makes NEW.DOS the default device for unqualified
file names.

MASTER
NEW.DOS IS THE MASTER DEVICE

- 92 -

r

5.33
MOVE MOVE

SYNTAX

MOVE (match_string I T=type
D=destination_device I
L=listing_disposition
CDATE rel date)*

I P=props | F=format |
S=source_device I
Q=query | DATE rel date

DESCRIPTION

The directory on the source device is searched and files
which match the specified option are copied from the source
device to the destination device. Default destination and
source devices for MCZ are master device, drive 2, and
master device, drive 0, respectively. For the Development
System, the defaults are drive 1 and drive 0, respectively.

match_string

Fully or partially specified file names may be given, in
which case only those directory entries which are identical
to one of the fully-specified file names or match one of
the partially-specified file names are moved. Partially-
specified refers to the use of the symbol '*' which denotes
an-arbitrary character string. For example, '*XYZ' matches
any file which ends in 'XYZ1. 'ABC*XYZ' matches any name
which starts with 'ABC1 and ends with 'XYZ1 but has any (or
no) characters in the middle. The string '*' (which is
equivalent to '**') matches any name. Match strings cannot
be qualified file names, i.e., no device or drive name may
be given.

- 93 -

MOVE MOVE

T=type

Only files of the given type will be moved. Type must be
one of 'D1 (directory), 'A1 (ASCII), 'B1 (binary) or 'P1

(procedure). Subtype may also be specified immediately follow-
ing the type (e.g. 'PO1 refers to files of prodecure type,
subtype 0). If no subtype is given, all subtypes of the
specified type are moved.

P=props

Only files with exactly the specified properties will be
moved. Props must be from "W (write protected), "E 1

(erase protected), 'L1 (properties protected), 'S1

(secret), 'R' (random), 'F1 (force memory allocation), or
'&'. Use of the '&' will allow any file with at least the
specified properties to be moved. One or more properties
may be concatenated, in which case only files with exactly
(or at least, if '&' is included) the specified properties
will be moved.

D=destination_device

Defines device to which files are copied. Any active
device name or drive designation may be given. Only device
name and drive name are relevant. File names are ignored.
Default is drive 2, master device (MCZ), or drive 1, master
device (ZDS).

S=source_device

Defines device from which files are copied. Any active
device name or drive designation may be given. Only device
name and drive name are relevant. File names are ignored.
Default is drive 0, master device.

- 94 -

MOVE MOVE

F=format

Specifies long (F=L) or short (F=S) listing format. The
short form (default) consists of name and drive while the
long form gives name, drive, file type, record count,
record length, file properties, starting address, date of
creation, and date of last modification. Additionally, the
number of files examined, the number of files moved, and
the number of sectors used by moved files is also given.

L=listing_disposition ' •

The listing is normally routed to SYSLST but can be routed
to any device or file. For example, L=$CON would route
output to the console (SYSLST may also be asigned to this
device) or L=2/FILELISTING would route the output to file
'FILELISTING1 on unit 2 of the master device. All output
generated to the specified device or file will be buffered,
i.e., several lines will be transferred at one time. While
output is active at the console, entering a '?' character
will cause output to stop until another '?' character is
entered. If the ESCape character (ASCII 1BH) is typed,
output will be terminated and control will return to the
Executive.

• • • , " • - r / , -

Q=query r • •- ,-

Permits selective copying of files that match the other
options. Default is Q=N, which moves all files
which match the given criteria. If Q=Y is specified, a
message of the form:

MOVE source_device : source_drive / source_file name TO
destination_device : destination_drive / destination_filename
(Y/N/A/Q)?

response of 'Y(es)' will move the file, 'N(o)' will not move it
and go on to the next file, 'A(ll)' will move the file and
suppress the query for all subsequent files, and 'Q(uit) ' will
not move the file and will terminate the program. Any other
response will cause the query to be repeated.

- 95 -

MOVE MOVE

CDATE I DATE rel date

where rel is one of the relational operators '=',
'>', '<', '>=', '<=', or '<>', and date is up to 6
digits or '*' representing a date to be compared against
in 'yymmdd1 form. '*' in a digit position specifies that
that digit will be considered equal to anything. A date
expressed with less than 6 digits is treated as being
filled on the right with '*'s.
DATE refers to the date of last modification.

the date of creation. The entire option should be
CDATE refers

to
specified with no intervening blanks. For example:

CDATE>=7805

refers to all files created with dates in May of 1978
or later. This is equivalent to

CDATE>=7805**

If the referenced date field of the file descriptor has
a character which is not a digit, it will not match unless
that digit position of the match date has an '*' in it.

I/O UNIT UTILIZATION

Unit 0: directory
Unit 3: default listing destination
Unit 4: source file
Unit 5: destination file
Unit 6: non-default listing destination

EXAMPLES

MOVE D=$NULL F=L P=&

Will copy all files from (default) drive 0 to
the Null device and print a long format list
including the number of files moved and the
number of sectors they occupy. This is a
convenient way to check the integrity of
each file on a disk.

- 96 -

MOVE MOVE

MOVE T=P SYS* L=$LPRINTER S=2 D=0 CDATE<780915

Will copy all procedure files whose names start
with 'SYS' that were created before September 15,
1978, from the master device, drive 2, to the
master device, drive 0. The listing will
be sent to the device LPRINTER.

- 97 -

5.34
PAUSE PAUSE

SYNTAX

PAUSE

DESCRIPTION

Issues successive Read Status requests to unit 1 (CONIN)
until either the ESCape Pending flag or the TIB Full flag is
active (see section 3.4.3). If a character is ready to be input,
it is absorbed and the program executes a normal return. If an
ESCape is pending, subsequent commands in the command
string are ignored.

I/O UNIT UTILIZATION

Unit 1: read request

EXAMPLE

The content of the command file MOVE.IT is:

MOVE,;ECHO INSERT DISKETTES;PAUSE;I;X 4400

This command file will result in the following interaction
when executed (Brief mode):

DO MOVE.IT
INSERT DISKETTES

MOVE is loaded
ECHO is loaded and executed
PAUSE waits for one character
(not ESC) to be entered and
then MOVE is executed (MCZ
address). Entering ESC would
have resulted in direct
return to RIO without executing
MOVE

- 98 -

5.35
RELEASE RELEASE

(Internal Command)

SYNTAX
* i

Release

- S*i ~ ', T r , **̂

DESCRIPTION
(• i r *

As mentioned in Section 4.1, memory required for procedure
file loading is allocated immediately preceding execution,
and deallocated after program completion. In the case
where a file is loaded but no external file is executed
(for example, after examination with the Debugger), it
may be necessary to deallocate the space it occupies.
This command deallocates any memory allocated as a result
of procedure file loading since the last execution of an
external command.

I / O UNIT UTILIZATION • . / « ' ,
I - 7 i- '' >

None .- * * '/• .--

EXAMPLE

%MOVE,
%STATUS
MEMORY PROTECT VIOLATION
%R
%STATUS

DRIVE 0 RIO.MCZ.SYSTEM.DISK
659 SECTORS USED
1805 SECTORS AVAILABLE

- 99 -

5.36
RENAME RENAME

SYNTAX

RENAME (oldfile newfile I deviceidrive ID='new_disk_name')*

DESCRIPTION

For each sequence, "oldfile newfile", changes the name of
"oldfile" to "newfile" on the disk drive specified by
oldfile. If in Verbose mode, the following message will be
printed for each name change.

oldfile >newfile

For each sequence, "device:drive ID=lnew_disk_name1",
the name of the disk in the specified drive is changed to
"new_disk_name". The device must be either $FLOPPY for
diskettes or $DISK for hard disks; no psuedonyms for these
devices may be used. The "new_disk_name" may be up to 24
characters for $FLOPPY or 100 characters for $DISK, and
may include any character except carriage return or
semicolon. If a single quote is to be part of the new
name, it must be immediately followed by a second single
quote. The disk is renamed by first initializing the
allocation maps, reading directly from the disk (via the floppy
or hard disk driver) the map sector on which the disk ID is
saved, altering it, and rewriting the sector. A second
initialization is then made to update the disk name in
memory.

I/O UNIT UTILIZATION

Unit 0: file I/O

- 100 -

RENAME RENAME

EXAMPLES

RENAME SMYDOS/FILE.X FILE.Y

generates Assign and Rename requests for device
MYDOS changing name of FILE.X to FILE.Y.

RENAME $FLOPPY:2 ID='MY NEWEST RIO DISK1

renames the diskette in drive 2.

- 101 -

5.37
RESTORE TABS RESTORE TABS

SYNTAX

RESTORE TABS file name

DESCRIPTION

Replaces the current 134-character console tabbing environment
with the tabs in the specified file. The file_name may be
fully or partially qualified. The referenced file must have
been previously created by the SAVEJTABS command.

I/O UNIT UTILIZATION

Unit 2:
Unit 4:

error messages
file I/O

EXAMPLES

RESTORE_TABS $MYDOS:TAB.ASM

replaces the current console tabbing environment with
the tabs in the file TAB.ASM on device MYDOS.

- 102 -

5.38
SAVE TABS SAVE TABS

SYNTAX -;;<

SAVEJTABS file_name / ' " 1 . . "
• "';•'...-"' ' ' ;' - ' ' ' • • ';,''-' ~t

'• . ' " ••!••.•• '.:.- : •- . - : •-• '~. •'

• ' ^ '- - - . , " . » '

DESCRIPTION : . — '- "-' -'; : * '-" ""'

Stores the current 134-character console tabbing environment
into the specified file for possible later retrieval by the
RESTOREJTABS command. The file_name may be fully or partially
qualified. If the file all ready exists, it is deleted and
recreated.

I/O UNIT UTILIZATION

Unit 2: error message
Unit 4: file I/O

EXAMPLE

:• SAVEJTABS LETTER. TABS •' <'/ • "-'

stores the current console tabbing environment into
' the file LETTER.TABS on the master device.

^:••:••• -• .?<,:, ' --•• : :.,-.. ' • :- ..- i ;«.

- 103 -

5.39
SET SET

SYNTAX

SET (CHRDEL=C I LINDEL=C I NULLCT=n I SPEED=NN | LFCNT = n
ECHO ON | ECHO OFF | AUTOLF ON I AUTOLF OFF |
PROPERTIES OF file_name TO plist I
TYPE OF file_name TO type I
SUBTYPE OF file_name TO subtype I
ENTRY_POINT OF file_name TO nn I
LOW_ADDRESS OF file_name TO |
HIGH_ADDRESS OF file_name TO I
STACK_SIZE OF file_name TO nn I
BYTE_COUNT OF file_name TO nn I
TABSIZE = n)*

DESCRIPTION

Sets a variety of system parameters. Any combination of
the option list can be given in any order with each command
entry.

CHRDEL=c

Sets the console driver single character delete symbol to char-
acter c. For example, typing 'SET CHRDEL=<control-H>' will cause
all control-H's to be interpreted by the console input driver
as a 'delete last character1 command. (The characters '<'
and ">' are not typed, but serve to illustrate that
'control-H1 is a non-printing character.)

LINDEL=c

Sets the console driver line delete symbol to character c.
For example, typing 'SET LINDEL=<rubout>' will cause the console
driver to interpret <rubout> as a 'delete current line1 command.
(The characters '<' and '>' are not typed, but serve to
illustrate that 'rubout1 is a non-printing character.)

- 104 -

SET SET

LFCNT = n

Sets to n the number of linefeed characters (OAH) the console
driver automatically output after each carriage return if in
AUTOLF=ON mode. Note that LFCNT=0 is equivalent to AUTOLF=OFF

NULLCT=n

Sets the number of null characters (ASCII 0) to output by
the system console driver after every carriage return to
decimal value n. One null character is sufficient for CRT
operation up to 19.2 Kbaud. Mechanical devices require
longer head repositioning periods and thus a larger null
count.

SPEED=nn
\

(MCZ only) Changes the serial communication port baud rate
to the value given as nn. This port typically is used for
terminal I/O. Any value from 20 baud to 4800 baud which is
an even divisor of 4800, or 110, 9600, 19200, or 38400, can
be selected.

TABSIZE=n

Redefines all tab settings to be every n columns,
starting with the leftmost column as column 0. The
default is every 8 columns.

PROPERTIES OF file_name TO plist

Sets the properties of 'file_name' to those given in the
properties list plist. This list must be from W (write
protect), E (erase protect), S (secret), L (locked), R
(random), F (force memory allocation), or * (null, i.e.,
no properties). Locked files cannot have their properties
altered.

- 105 -

SET SET

SUBTYPE OF file_name TO subtype

Sets the file subtype of file 'filename1 to value
'subtype1. Only the least significant four bits of the
value entered are used.

TYPE OF file_name TO type

Sets the file type of file 'file_name' to the type given -
must be one of 'D1 (directory), 'A1 (ASCII), 'B' (binary)
or 'P' (procedure).

ENTRY_POINT OF file_name TO nn

Sets the entry point field in the descriptor record of
file_name to nn. This is the address to which control passes when
the RIO Executive loads a procedure type file.

LOW_ADDRESS OF file_name TO nn

Sets to nn the lower boundary of the memory space which
must be allocatable before a file name can be loaded.

HIGH_ADDRESS OF file_name TO nn

Sets to nn the high boundary of the memory space which
must be allocatable before file name can be loaded.

STACK_SIZE OF file_name TO nn

Sets the size of the user stack which will be allocated
before execution of file_name begins. Setting the
stack size to zero will result in no stack allocation;
the system stack will be used instead.

BYTE_COUNT OF file_name TO nn

Sets the 'bytes in last record1 count for file_name to nn.
This field is used by PLZ and BASIC to determine the number
of valid data bytes in the last record of a file.

- 106 -

SET SET

ECHO ON|OFF

Sets or resets the input character echo mode in CON (see
section 3.4.3).

AUTOLF ON|OFF

Sets or resets the automatic line feed insertion mode flag
in CON (see section 3.4.3).

I/O UNIT UTILIZATION

Unit 2: error messages
Unit 4: file I/O

EXAMPLES

SET LINDEL^! CHRDEL=@ NULLCT=2

Sets the line delete symbol to '!', the
character delete symbol to '@', and the
null count to 2.

SET PROPERTIES OF OS TO SWEL

Would give file 'OS1 the properties secret,
write protect, erase protect, and locked.
Therefore it could never be altered or
deleted without reformatting the disk.

SET SUBTYPE OF $DFS/TEXT TO 8

Sets subtype of file TEXT on device MICRO.80
to 8H.

SET ECHO ON AUTOLF OFF

Sets the terminal mode to ECHO ON and AUTOLF OFF.

- 107 -

SET SET

SET SPEED=9600

Sets the serial communication port baud rate to 9600.

SET ENTRY_POINT OF STAR_TREK TO 4419 BYTE_COUNT OF
STARJTREK.S TO 38

Sets the entry point of STARJTREK to 4419H, and the
number of bytes in the last record of STAR_TREK.S
to 38H.

- 108 -

5.40
STATUS STATUS

SYNTAX

STATUS [0|1 ... 6|7]

DESCRIPTION

Lists statistics on how much of the disk on the specified
drive has been used and how much of it remains available
for new files. The default lists statistics on all drives
which are ready.

Two error conditions are detected by the STATUS command.
As part of the disk allocation maps kept on the disk,
the number of free sectors and the number of allocated
sectors are maintained. In the event they do not sum up
to the number of sectors on the disk, the message

WARNING: DISK STATISTICS ARE INCONSISTENT

is printed. If the total number of sectors marked as
unallocated in the sector map do not equal the free
sector count, then the following message is printed:

WARNING: ALLOCATION IS INCONSISTENT

This is somewhat more serious than the previous error
condition and could mean that sectors which are logically
part of a file are marked unallocated in the allocation
map. These errors may result from memory failure, disk
write failure, deleting files with pointer errors, etc.,
and generally indicate reformatting of the diskette.
However, it may still be possible to read all files from
the disk and avoid loss of data.

I/O UNIT UTILIZATION

Unit 2: output listing

- 109 -

STATUS STATUS

EXAMPLES

%STATUS 0

DRIVE 0 RIO MCZ SYSTEM DISK
659 SECTORS USED
1805 SECTORS AVAILABLE

- 110 -

5.41
VERBOSE VERBOSE

(Internal Command)

SYNTAX

Verbose

DESCRIPTION

Enter Verbose mode. Echo command strings as interpreted.
Some commands test this mode before printing non-essential
messages. See Brief command.

I/O UNIT UTILIZATION

None

- Ill -

5.42
XEQ XEQ

(Internal Command)

SYNTAX

Xeq [* I nn [parameter_list]]

DESCRIPTION

Begin execution of last loaded command with optional
parameter list, or begin execution at location nn with
optional parameter list.

I/O UNIT UTILIZATION

None

EXAMPLES

XEQ
X *

Jumps to entry point of last loaded file.

X 5600 pi p2

Jumps to address 5600H with INPTR referencing
delimiter after '5600'.

X * pi p2

Jumps to entry point of last loaded file with
INPTR referencing delimiter after '*'.

- 112 -

5.43
EXPRESSION EVALUATION EXPRESSION EVALUATION

(Internal Command)

SYNTAX

: expression

DESCRIPTION

Evaluates hex constant expressions left to right and
prints result. Allowable operators are +, -, *, and /,
Overflow is not detected.

EXAMPLES

: FDOO-4400/80
0172

: 8732-4400/200
0021

- 113 -

CHAPTER 6

ZDOS

6.0 ZDOS OPERATION

This chapter covers the program interface for the ZDOS-II floppy
disk file access system used under Zilog's RIO operating system.
It describes the general interface structure and calling
sequence, and, for each of the different requests, gives
the details of the interface, a description of the actions
taken, and a list and interpretation of the errors that
could occur with that operation.

ZDOS-II is an improved version of ZDOS, the diskette access
system which runs under earlier versions of Zilog software.
For simplicity, in the remainder of this document ZDOS-II
will be referred to as ZDOS.

ZDOS imposes a file structure on data stored on floppy
disks. Data is stored as a sequence of records. All data
records in a file are of the same length, and the length
must be an integral number of sectors of the diskette media,
and an integral power of two (valid record sizes are 128,
256, 512, 1024, 2048, and 4096 bytes). ZDOS maintains two
pointers which are appended to each record. One is the
disk address of the following record, the other is the
disk address of the preceding record. The file is thus
stored as a doubly-linked list of records.

Files are accessed by name through a directory. The
directory is itself a file, and can be accessed as such by
its name, 'DIRECTORY1, which is the first entry in each
directory. Unlike other files, however, it has a known
first record so that it can be found; that is, it always
begins at a fixed address known to the system. ZDOS
'DIRECTORY' files are type directory, subtype 0.

A scratch file is a slight exception to this. A scratch
file is one which has existence only while it is active.

- 114 -

It is created by opening a file on a logical unit that has
an assignment to a zero-length name (all assignments are
initialized to scratch files, so opening a unit without
making an assignment has the same effect). No directory
entry is created, and the descriptor information is only
stored internally rather than on the diskette. When the file is
closed, any records which have been created on it are
deallocated, and the file ceases to exist. Such a file is
ideal for temporary storage of intermediate data. The
programmer will find it advantageous to use scratch files
whenever an application is suited to them, since opening
them does not involve the directory operations that opening
a named file does, and is therefore faster.

The directory is made up of sectors. Each sector is, in
turn, made up of one or more variable length entries. Each
entry consists of a single byte giving the length of the
name, followed by the characters of the name, and a two
byte pointer to the descriptor record (described below).
The file names can be from 1 to 32 characters in length.
The last entry in a sector is followed by a byte of -1
(OFFH). Directory entries do not span sector boundaries,
so that if a new entry will not fit completely in a sector,
it is put in the next one.

Occasionally, all the entries in a sector will be deleted.
This happens relatively infrequently, and is indicated by
the first byte of the sector (normally a length byte, which
must be from 1 to 32) being the terminator byte, OFFH.

The pointer contained in the directory entry for a file
points to a special record, which is not one of the data
records and is not included in the record count, called
the file descriptor record. As its name indicates, it
contains information describing the file to the system.
Some of the information is also available to the user.
Regardless of the length of the data records, the descriptor
record is always 1 physical sector, or 128 bytes long. Of
these, ZDOS has defined 40 bytes, leaving 88 which are
available for programmer definition. Note, however, that
there are some system conventions on how these remaining
bytes will be used for some files. Most notably, procedure
files contain segment addresses and lengths in this area
(see Appendix J).

- 115 -

The information contained in the descriptor record is as
follows:

Bytes 0-3 Reserved for future expansion
Bytes 4-5 File ID - currently unused
Bytes 6-7 Pointer to directory sector holding

entry for this file
Bytes 8-9 Pointer to first data record of file
Bytes 10-11 Pointer to last data record of file
Byte 12 File type and subtype - see

description with the OPEN request
Bytes 13-14 Record count
Bytes 15-16 Record length
Bytes 17-18 Block length - currently unused,

and set to be same as record length
Byte 19 File properties - see description

with the OPEN request
Bytes 20-21 Starting execution address for

procedure files (entry point)
Bytes 22-23 Number of bytes in last record
Bytes 24-31 Date of creation
Bytes 32-39 Date of last modification
Bytes 40-127 Available for programmer definition

The Date of creation and Date of last modification are moved
to the descriptor from the System Global Variable DATE at the
appropriate times. Thus, if DATE is maintained to indicate
the current date, then the descriptor record can give some
historical information about the file.

The information stored in the descriptor (except for the
first 12 bytes) is available to the program accessing the
file at the time it is OPENed or while it is open by means
of a QUERY ATTRIBUTES request. It can also be supplied at
the time the file is created, or later by a SET ATTRIBUTES
request, or when the file is UPDATED or CLOSED. See the
appropriate request description for details.

Implicit in the description of accessing a file is the
concept of the file pointer. There are actually three
pointers. The one referred to as the pointer is the
"current record pointer", the disk address of the record
considered to be the current one. This is normally the
record last handled, as, for example, in reading or
writing. The "previous record pointer" contains the disk
address of the record preceding the current one in the
sequence of the file. The "next record pointer" contains the

- 116 -

disk address of the record following the current one in the
sequence. A file is said to be active if these pointers
are valid. OPENing a file consists of locating it in a
directory, reading its descriptor record, and initializing
these pointers. | I

A doubly-linked list provides some redundancy in
establishing the sequence of the records. This redundancy
is used when traversing the file to check the file
integrity. For example, the forward pointer of the current
record is used to establish the next record. When the next
record is read, its back pointer is checked to make sure it
indicates the current record. A failure of this or a
similar check is what is referred to as a pointer error.

ZDOS is designed to operate with up to 8 floppy disk
drives, each holding approximately 300 Kbytes. The
standard MCZ has two drives, configured as drive 0 (also
referred to as the system drive), and drive 2. The ZDS
also has two drives configured as drive 0 (referred
to as the system drive), and drive 1. When a file
is to be located, and the drive is not specifically
indicated (equivalent to specifying '*'), the drives are
searched in order, starting with drive 1, and continuing
through the highest disk which is attached and ready, and
finally, if still unsuccessful, concluding with drive 0.

Similarly, if a file is to be created without specifying
which disk it is to be on, it will be created on the first
disk which is attached and ready in the same search order.

Under RIO, all I/O calls pass through the operating system
where they are routed to the required device driver
according to the logical unit being requested and the
current routing for that unit. Calling parameters are
passed to the drivers via a 13-byte "parameter vector"
which is pointed to by the IY register. There are two ways
in which I/O calls are handled by the drivers. The driver
may perform the entire operation, then return to the
calling program (referred to as "return on completion"), or
it may perform only the initial setup necessary, then return
to the calling program and let the operation proceed to
completion under interrupt control (referred to as
"immediate return"). A completion code is provided in the
parameter vector to indicate when the operation is complete
and signal any unusual circumstances of the completion.

- 117 -

The parameter is set up as follows:

(IY)

(IY+1)

(IY+2)

(IY+4)

(IY+6)

(IY+8)

Logical unit number (1 byte) -
identifies the particular dataset
being accessed. Used by OS to
route the call to the correct driver.

Request code (1 byte) - identifies
the action to be taken. Two request
codes are given for each operation
in the following list. One is even,
the other odd. If the first is
used, the return will be on completion
of the operation. If the second is
used, then return will be immediate,
with completion occurring under
interrupt control.

Data transfer area (2 bytes) - gives
the address at which data transfer
is to begin. If no data transfer is
expected for a given request, this
field should be zero.

Length (2 bytes) - gives the length
of the operation. For most operations,
this is the number of bytes to transfer,
but refer to specific operation
descriptions. If no data transfer is
expected, the length should be zero.
On return, this gives the length
actually completed.

Completion return address (2 bytes) -
specifies address to branch to when
the operation completes if the request
code specified immediate return. If
return on completion is specified,
this element is ignored.

Error return address (2 bytes) - if
non-zero, specifies the address to
branch to if an error occurs. The
error will still be indicated in the
completion return code. If the
address is zero, return is as though
there were no error.

- 118 -

(IY+10)

(IY+11)

Completion code (1 byte) - indicates
when the operation is complete.
This byte is set to zero when the
call is made. Bit 7 is set when the
operation is complete. Bit 6 is set
if an error occurred. The remainder
of the byte will contain a code
indicating the nature of the difficulty
or error. A normal completion will
thus contain a code of '80'.

Supplemental parameter information -
some requests require special
information which does not fit into
the general structure of the parameter
vector. This information is supplied
by the supplemental parameter vector.
If two bytes or less (e.g., a disk
address), it is normally put here.
Otherwise an address pointer to an
area containing the information is
placed here.

- 119 -

Following is a list of error codes with their meaning.
They will be discussed in detail under the description of
each operation with which they can occur.

CODE MEANING
(Base 16)

Cl Invalid operation
C2 Not ready
C3 Protection
C4 Sector error
C5 Seek error
C6 Data transfer area
C7 File not found
C8
C9 End of file error
CA Pointer check error
CB File not open
CC Unit already active
CD Assign buffer full
CE Invalid disk drive
CF Logical unit table full
DO Duplicate file
Dl Diskette ID error
D2 Invalid attributes
D3 Disk full
D4 File not in proper

directory record
D5 Beginning of file error
D6 File already open (on

another unit)
D7 Invalid rename
D8 File locked (attempt to

change attributes)
D9 Invalid open request
DA Insufficient memory for

allocation maps

The following are warning codes. They do not have bit 6
(the error bit) set, and do not cause transfer to the error
return address.

81 Directory format error
82 Scratch file created
83 File name truncated
84 Attribute list truncated

- 120 -

There are some errors which are either not associated with
a particular request, or can occur on almost every request,
that are described in detail here. An INVALID OPERATION
error (code Cl) will occur anytime the request code is not
one of the valid operations for the device addressed. ZDOS
will respond with this code to operation READ LINE (OC),
WRITE LINE (10), and WRITE DIRECT (14), as well as
anything 32 or over.

Disk I/O errors can occur on almost any operation. There
are 5 different errors that can occur, though some of them
have other meanings as well. A NOT READY error (code C2)
indicates that an attempt was made to access a drive which
was not asserting its READY signal. This may also signify
designation of an operation to a drive which was recorded
as being not ready at initialization. A WRITE PROTECT
error (code C3) indicates that an attempt was made to write
on a disk which is physically write protected. This could
also indicate a request which would cause a change in a
file which is (software) write protected, or a request
which would remove records from a file which is erase
protected. A SECTOR error (code C4) is always a media or
hardware problem, indicating that the sector header
information read did not agree with the location recorded
on the disk. A TRACK ERROR (code C5) indicates that
there was a hard seek error, or that the sector address
header was destroyed, or else that an invalid track was
requested from the floppy driver (a ZDOS software error!).
A CRC ERROR (code C6) indicates that there was a data
error in transmitting from the disk to memory, or that the
data was written incorrectly on the disk in the first place.

Another error which could conceivably occur almost anytime
is LOGICAL UNIT TABLE FULL (code CF). ZDOS maintains an
internal mapping between the 255 possible logical unit
designations and the 16 for which it has space. The first
reference to a new unit causes it to be entered in this
map. If the unit given is not found in the map, and there
are no empty entries in it, then this error is returned.
An entry is removed from this map when a file is closed, or
when one is found to be not open when it should be. The
table is also cleared when an INITIALIZE request is done.

- 121 -

6.1
INITIALIZE INITIALIZE

Request vector:

Logical unit - ignored
Request code - 00 or 01
Data transfer area - ignored
Length - ignored. Zero will be returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

All 16 logical units are flagged as not open.
The logical unit map is cleared. Memory
is allocated at the top of the available
space for each map, and the maps are read
in from the disk. A flag word is constructed
indicating which drives are ready.

Possible errors:

Disk SECTOR, SEEK, or DATA TRANSFER errors
(C4, C5, or C6). The initialization is not
completed if one of these occur.

INSUFFICIENT MEMORY (code DA) - There was
insufficient memory available to fulfill
one or more of the requests for space for
the allocation maps.

- 122 -

6.2
ASSIGN ASSIGN

Request vector:

Logical unit
Request code - 02 or 03
Data transfer area - ignored
Length - ignored. Zero will be returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - pointer to

area containing the following:
1st byte of area - ignored by ZDOS.

(This byte does control system
functions however. See Section 3.3.)

2nd byte of area - character designating
physical disk drive, either '0' through
'7' , or '*'.

3rd byte of area - length in bytes of file
name. A 0 length name indicates a
scratch file. The maximum length name is
32 characters.

4th and following bytes - the filename.

Action:

The filename given is associated with
(assigned to) the given logical unit for
subsequent I/O operations. Any previous
assignment to the same logical unit is
nullified. The filename is stored in a
buffer for later use when the logical
unit is opened. When the file is
opened, the filename is removed from
the buffer. Thus, if a file is
opened and closed, there must be a
new assignment before it can be
reopened.

- 123 -

ASSIGN ASSIGN

Possible errors:

FILE ALREADY OPEN (code CC) - an attempt
to assign a file to a unit which is
currently active. The assignment is not
made.

INVALID DRIVE (code CE) - some drive is
specified other than '*' or 'O'-'V.

ASSIGN BUFFER FULL (code CD) - the buffer
used for storing filenames after
assignment prior to files being opened is
too full to hold the name assigned. The
assignment is not made.

NAME TOO LONG (code 83) - this
circumstance is only a warning. The name
given was indicated as being longer than
the maximum length and was truncated
accordingly.

- 124 -

6.3
OPEN OPEN

Request vector:

Logical unit
Request code - 04 or 05
Data transfer area - A pointer to an area

containing the attributes that the file is to
be created with, if it gets created, or where
the attributes can be returned if the file
exists. See below for a detailed description
of these attributes. If this pointer is zero,
a set of default attributes will be supplied
if the file is created. Nothing will be
returned if the file is found.

Length - The number of bytes to transfer to/from
the attributes in the data transfer area. If
this is zero, or less than the minimum set of
attributes for a new file, and the file needs
to be created, the balance will be supplied
from defaults. See below for a detailed
description of attributes.

Completion return address
Error return address
Completion code
Supplemental parameter information - Pointer to an

area containing the following:
1st byte of area - designation of the type of

action to be performed on the open. See
below for possibilities.

2nd byte of area - A byte for returning a
character representing the disk drive the
file was opened on. A character 'O'-1?1

will be returned in this byte. If a new
assignment is to be made, such a
character or '*' should be supplied by
the calling program to indicate where
the file is to be searched.

- 125 -

OPEN OPEN

3rd byte of area - length of file name. The
open request can do its own assignment,
removing the necessity for two calls to
ZDOS. If this is done, it will override
any assignment done previously. This
supplemental information should look
exactly like the supplemental information
for an assign request. If no assignment
is to be made, however, this byte should
be -1 (OFFH).

4th byte and following - filename if there is
one.

File attributes:

Each file has a 128-byte record referred to as the file
descriptor record. This contains information concerning
the type of file, where it is on the disk, how it is
organized, etc. Only 40 of the 128 bytes are used by
the system, leaving the remainder for possible use by
the user. When a file is created, the organization,
etc., must be specified by the user, either explicitly
or by default. Similarly, when a file is opened, the
information about the organization may be needed by the
program. In order to accomplish both these ends, that
portion of the file descriptor record which may be of
use to the programmer can be passed back and forth. It
is laid out as follows:

1 Type and subtype. There are 4 types of files
recognized by the system. Each is assigned
one of the top four bits of this word. The
bottom four bits are available for user
defined subtypes.
Bit 7 - procedure type files.
Bit 6 - Directory files.
Bit 5 - ASCII files.
Bit 4 - Data files.

The default is ASCII subtype 0 (20H).

2-3 Record count. Number of records in the file.

- 126 -

OPEN OPEN

4-5 Record length in bytes. The default is 128.
If zero is specified, the default will be
assumed.

6-7 Block length in bytes. This has to do with
logical blocking of records, which is
currently unimplemented. This is therefore
set to the record length.

8 File properties. The following bits are
assigned:
Bit 7 - Write protection - the file cannot be

changed.
Bit 6 - Erase protection - nothing can be

removed from the file. Write
protection implies erase protection,
but not vice versa.

Bit 5 - Locked - No attributes can be
changed.

Bit 4 - Secret - the file will not appear in
normal directory listings.

Bit 3 - Random - file is set up for random
access. This has not been defined at
this time.

Bit 2 - FORCE file loading.
Bit 1 - Reserved for system use.
Bit 0 - Reserved for system use.

9-10 Start address - Address at which execution of
a procedure file should begin. Not used by
ZDOS itself.

11-12 Reserved for system use.

13-20 Date of creation. This is supplied by ZDOS
from the system global DATE.

21-28 Date last written. This is supplied by ZDOS
from the system global DATE.

29-116 Available for user definition.

- 127 -

OPEN OPEN

Types of open requests:

There are several ways the activation of
a file may be handled. These are specified
by the 1st word of the supplemental parameter
information. A file may be opened for either
random or sequential access. Random access
is specified by setting bit 3 of this word.
Currently, a file being open for random
access has two implications. One is that the
READ DIRECT request will be accepted (it
will be refused with an INVALID REQUEST error
otherwise). The other is that in each record
oriented operation, the disk address of the
first record involved will be returned to the
calling program in the supplemental parameter
information field of the parameter vector.

There are five mutually exclusive ways that
the cases of file not found/ file found may
be handled. These are specified in the
bottom 3 bits of this word. They are as
follows:

Open for input - 0 - if the file exists, it will be "—
activated with the pointer ahead of the first
record. If it does not exist, a FILE NOT
FOUND error (code C7) is returned.

Open for output - 1 - If the file exists, it is
activated and all its records are deleted. If
it does not exist, it is created.

Open new file - 2 - (also referred to as open for
nondestructive output) - if the file exists, a
DUPLICATE FILE error (code DO) is returned,
and the file is not activated. If the file
does not exist, it is created.

Open for append - 3 - if the file exists, it is *
activated with the pointer positioned at the
last record. If it does not exist, it is
created.

Open for update - 4 - if the file exists, it is
activated with the pointer ahead of the first
record of the file. If it does not exist, it
is created.

- 128 -

OPEN OPEN

Action:

If a filename assignment is specified (3rd byte
of the supplemental information is not -1),
the ASSIGN subroutine is called as though an
ASSIGN request had been made. If there is a
filename assigned to the unit, i.e., if it is not
assigned to a scratch file, the directory on
the specified drive is searched for the
filename. If the drive is specified as '*', a
check is made to determine the ready status of
all drives, then each ready drive is searched,
from drive 1 to drive 7, followed by drive 0,
until the file is found or all drives have
been searched.
The ID of the diskette which holds or
will hold the file is read into a buffer and
compared against the ID on the corresponding
map in memory. If they do not match, and no
other unit has a file open on the same
physical drive, a new map (and ID) will be
read into memory. If another unit is open on
that drive, a WRONG DISKETTE error will be
returned and the file will not be activated.
If the file is found, its descriptor
record is read, the relevant parts are moved
into the active file table entry for the unit,
and, if requested, moved to the user's data
transfer area. The file is then flagged as
open. If the file is to be created, the
descriptor record is created in a buffer, then
moved to the active file table, and, if
requested, to the user's data area. If the
file is not a scratch (no-name) file, the
descriptor record is written out to the disk
and a directory entry is created.

Possible errors:

All DISK ERRORS are possible. NOT READY (code
C2) may indicate designation of a specific
drive that was recorded as 'not ready1 the
last time the ready status was checked.

- 129 -

OPEN OPEN

PROTECTION (code C3) - may occur as a disk
error if the diskette is wr ite-protected , or
may occur by an attempt to open an existing
file which is write- or erase-protected for
output (thus deleting its records) . In that
case, the file is opened but its records are
not deleted.

UNIT ALREADY OPEN (code CC) - the logical unit
is already active. It must be closed, or an
initialize operation must be performed, before
it can be OPENed again. No action is taken.

WRONG DISKETTE (code Dl) - the disk ID of the
diskette in the drive does not match the ID in
memory. Usually indicates that the disks have
been switched since an INITIALIZE operation
was performed, or that a program has
overwritten the maps in memory. The file is
not opened.

FILE NOT FOUND (code C7) - the open request
was for input, and the file designated does
not exist. /

POINTER ERROR (code CA) - could occur if the
pointers linking the segments of the directory
together have been destroyed or overwritten,
or if the file exists and the pointers for the
descriptor record are incorrect, or, in
deleting the records of an existing file, a
pointer mismatch occurs.

DUPLICATE FILE (code DO) - request to open a
new file when the file already exists. The
file is not activated.

INVALID ATTRIBUTE (code D2) - one of the
attributes specified for the creation of the
file was invalid. This may be that more than
one (or none) of the four mutually exclusive
types was specified, or that an invalid record
size was specified. The file is activated with
the defaults substituted for the erroneous
attributes.

- 130 -

OPEN OPEN

DISK PULL (code D3) - there was no space to
allocate a descriptor record, or a new
directory record if one needed to be
allocated. Can only occur if the file is
being created.

FILE ALREADY OPEN (code D6) - the file
requested to be opened on this unit is already
active on another unit. The unit is not
activated.

PROPERTIES PROTECTION (code D8) - an attempt
to change attributes on a locked file. The
attributes are not changed.

INVALID OPEN REQUEST (code D9) - a type of
open request which was not input, output,
newfile, append, or update was specified. No
action is taken.

INSUFFICIENT MEMORY (code DA) - if additional
disks have been inserted prior to the open
request and insufficient memory is available
for additional allocation maps, this error
will be returned.

The following are warning codes, and will not cause
the error return branch to be taken.

DIRECTORY FORMAT ERROR (code 81) - Indicates
the format of one or more directory records is
erroneous. The record can still be read, but
its data is suspect.

SCRATCH FILE (code 82) - informative message
that a scratch file has been created.

ATTRIBUTES TOO LONG (code 84) - more than 116
bytes of attribute information were requested.
Only 116 bytes were transferred.

In addition, if an assign is implicit in
the open request, any error that can occur
with assign could occur.

- 131 -

6.4
CLOSE CLOSE

Request vector:

Logical unit
Request code - 06 or 07
Data transfer area - a pointer to an area which may

contain attributes to replace those of the
file. The format is the same as for the OPEN
request. If no replacement of attributes is
desired, the data transfer area should be
zero.

Length - Number of bytes to move to the descriptor
record from the data transfer area. If no
data is to be moved, it should be zero. The
maximum is 116 decimal bytes.

Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

If the logical unit is a scratch file, the file
is erased. If there have been any changes in
allocation to the file, or if new attributes
are to be written, its descriptor record is
read, updated, including moving in any new
attributes supplied by the calling program,
and rewritten, and the allocation map is
rewritten. The file is then flagged as being
closed, and indicators are set to indicate an
assignment to a scratch file.

Possible errors:

FILE NOT OPEN (code CB) - the logical unit is
not active. No action is taken.

- 132 -

6.6
READ BINARY READ BINARY

Request vector:

Logical unit
Request code - OA or OB
Data transfer area - the address to which data

should be transferred
Length - the number of bytes to transfer. If this

number is not an integral multiple of the
record size, it will be rounded up until it
is. On return, this will contain the actual
number of bytes transferred.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the first record read will be
returned. Otherwise, it is unused.

Action:

Data is read from the file, starting at the
next record, into the data transfer area. The
pointer is left on the last record read. If
the file is open for random I/O, the disk
address of the first record read is returned
in the field pointed to by the supplemental
parameter information. The third byte of
this address will always be zero.

Possible errors:

All DISK ERRORS except PROTECTION (code C3)
are possible.

- 135 -

6.5
REWIND REWIND

Request vector:

Logical unit
Request code - 08 or 09
Data transfer area - ignored
Length - ignored
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

The file pointer is positioned at the
descriptor record, with the first record as
the next record. This is the position the
file pointer assumes when the file is opened
for other than append, or when it is created.
If there are no records in the file, the next
record pointer is null.

Possible errors:

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 134 -

6.7 t
WRITE BINARY WRITE BINARY

Request vector:

Logical unit
Request code - OE or OF
Data transfer area - the address from which data is

to be transferred.
Length - the number of bytes of data to transfer.

If this number is not an integral multiple of
the record size, it will be rounded up until
it is. On return, this will contain the
actual number of bytes transferred.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the first record written will
be returned. If not, it is unused.

Action:

New records are created and filled with data
from the data transfer area. The new records
are inserted after the current one. The
pointer is left at the last record written.
The next record pointer remains on the same
record it was prior to the operation.

Possible errors:

All DISK ERRORS are possible except CRC (code
C6). PROTECTION (code C3) will also be
returned by ZDOS if the file is write
protected.

- 137 -

READ BINARY READ BINARY

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

END OF FILE (code C9) - the last record of the
file was read and the given length had not
yet been fulfilled. The length returned
reflects the number of bytes actually read.

POINTER ERROR (code CA) - a pointer mismatch
occurred. The reading stops at the point it
is detected. The length returned will include
the record which had the error.

- 136 -

6.8
WRITE CURRENT WRITE CURRENT

Request vector:

Logical unit
Request code - 12 or 13
Data transfer area - the address from which data is

to be transferred.
Length - if the length is zero, no data will be

transferred. Otherwise, one record will be
transferred. On return, length will contain
the number of bytes transferred.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the unit is

open for random I/O, this field should
contain the address of a three-byte area
where the disk address of the record will
be returned. Otherwise, it is unused.

Action:

Data is moved from memory to the file,
replacing the data in the current record. No
new records are created, and the record
pointer is not moved.

Possible errors:

All DISK ERRORS except CRC (code C6) are
possible. PROTECTION (code C3) will also be
returned by ZDOS if the file is write
protected.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 139 -

WRITE BINARY WRITE BINARY

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

DISK FULL (code D3) - there is no room on the
disk to allocate a new record. Records which
will fit are written. The length returned
reflects the number of bytes written before
the disk filled up.

- 138 -

DELETE DELETE

END OF FILE (code C9) - the last record of the
file was deleted, and the length specified had
not yet been exhausted. The number of bytes
returned will indicate the number deleted,
including the last record. The pointer is
left at the record preceding the first one
deleted, with the next record pointer being
null.

POINTER ERROR (code CA) - a pointer mismatch
occurred while traversing the records of the
file in deleting them. Records are deleted up
to the one preceding the mismatch.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 141 -

6.9
DELETE DELETE

Request vector:

Logical unit
Request code - 16 or 17
Data transfer area - ignored.
Length - the number of bytes of data to be removed

from the file. If this number is not an
integral number of records, it will be rounded
up to the next full record. On return, length
will contain the number of bytes deleted.

Completion return address
Error return address
Completion code
Supplemental parameter information - none.

Action:

Starting at the current record, records are
removed from the file, and the space taken up
by them deallocated (made available), until
the given number of bytes have been removed.
The current record pointer is left on the
record preceding those deleted. The next
record pointer is left at the record following
those deleted.
If the file is currently positioned on
the descriptor record (top of the file), the
pointer will be advanced to the first record
before the operation is started. This is not
counted as one of the records deleted. After
the operation, the pointer will again be on
the descriptor record.

Possible errors:

All DISK ERRORS are possible. PROTECTION
(code C3) will also be returned by ZDOS if the
file is either write or erase protected.

- 140 -

6.11 , , .
ERASE , ERASE

Request vector:

Logical unit
Request code - 1A or IB
Data transfer area - ignored
Length - ignored. The total number of bytes

deleted is returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

All records of the file are deallocated (their
space is made available), the descriptor
record is deallocated, and the directory entry
for the file is removed from the directory,
thus rendering the file completely
inaccessible. The file does not have to be
open, but it must have been assigned.

Possible errors:

All DISK ERRORS are possible. In addition,
PROTECTION (code C3) will be returned by ZDOS
if the file is write- or erase-protected. NOT
READY (code C2) will be returned if the
specified drive for the file is not loaded and
ready.

FILE NOT FOUND (code C7) - The named file
cannot be located on the drive specified.
Will not occur if the file is open when the
request is given.

- 143 -

6.10
DELETE REMAINING RECORDS DELETE REMAINING RECORDS

Request vector:

Logical unit
Request code - 18 or 19
Data transfer area - ignored
Length - ignored. The total number of bytes

deleted is returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

All records from the current one to the end of
the file are removed. The pointer is left on
the record preceding those deleted. The next
record pointer is null. If the pointer is on
the descriptor before the operation, it is
moved forward before deletion begins.

Possible errors:

All DISK ERRORS are possible. PROTECTION
(code C3) will also be returned if the file is
write- or erase-protected.

POINTER ERROR (code CA) - will occur if, in
traversing the records of the file, a pointer
mismatch is found. The records will be
deleted up to, but not including, the record
preceding the mismatch.

FILE NOT OPEN (code CB) - the requested
logical unit is not active. No action is
taken.

- 142 -

6.13
READ CURRENT READ CURRENT

Request vector:

Logical unit
Request code - IE or IF
Data transfer area - address to which data should

be read
Length - number of bytes to read. If this is zero,

no data will be transferred. Otherwise, one
record of data will be transferred. The
number of bytes actually transferred will be
indicated here on return.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
address of the current record will be returned.
Otherwise, it is unused.

Action:

Unless the length specification is zero, one
record's worth of data is transferred from the
current record. The pointer is left unmoved.

Possible errors:

All DISK ERRORS except PROTECTION (code C3)
are possible.

POINTER ERROR (code CA) - if the back pointer of
the current record does not indicate the
previous record, a pointer error is reported.
The data is still transferred.

- 147 -

ERASE ERASE

POINTER ERROR (code CA) - A pointer mismatch
occurred either while locating the file or
while traversing the records of the file. All
records beyond the pointer mismatch will
remain allocated and thus be unavailable for
further use.

INVALID DRIVE (code CE) - The drive specified
in the assignment was something other than '0'
- '71. '*' is not a valid specification for a
file being erased.

WRONG DISKETTE (code Dl) - the ID for the
diskette the file is on does not match the ID
in memory for that diskette. Usually
indicates that the diskette has been changed
or that a program has overwritten the ZDOS map
area. The file is not erased.

FILE NOT FOUND IN DIRECTORY (code D4) - this
error indicates that no directory entry for
the file could be found in the segment of the
directory indicated by the descriptor record.
The records will be deallocated, but a
directory entry may remain somewhere else. If
this error occurs, it is best to copy all
remaining files to another diskette and
reformat the one in question, as any further
access to the bad file is liable to cause
pointer errors and other complications.

FILE ALREADY OPEN (ON ANOTHER UNIT) (code D6)
- this error will result from an attempt to
erase on one unit a file which is currently
active on another unit. No action will be
taken.

- 144 -

6.14
READ PREVIOUS READ PREVIOUS

Request vector: ,

Logical unit
Request code - 20 or 21
Data transfer area - address to which data should

be read
Length - number of bytes to read. If this is zero,

no data will be transferred. Otherwise, one
record of data will be transferred. The
number of bytes actually transferred will be
indicated here on return.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the previous record will be
returned. Otherwise, it is unused.

Action:

Unless the length is zero, the record preceding
the current one is read. In either case, the
pointer is backed up one record. The current
record will become the next record, the
previous one the current record, and the one
preceding the previous record will become the
new previous record.

Possible errors:

ALL DISK ERRORS except PROTECTION (code C3)
are possible.

POINTER ERROR (code CA) - if the forward
pointer on the previous record does not
indicate the current one, a pointer error is
reported. The data is still transferred.

- 149 -

READ AND DELETE READ AND DELETE

Possible errors:

All DISK ERRORS are possible. In addition,
PROTECTION (code C3) will be returned by ZDOS
if the file is write- or erase-protected.

END OF FILE (code C8) - the last record of the
file was read without exhausting the length
specification. The number of bytes read is
returned in the length field, and the next
record pointer is null.

POINTER ERROR (code CA) - a pointer mismatch
occurred in going from one record to the next.
The data transfer stops with the record in
error. The length field indicates how many
bytes were transferred prior to the error.

FILE NOT OPEN (code CB) - the logical unit
being requested is not active. No action is
taken.

- 146 -

6.15
READ DIRECT READ DIRECT

Request vector:
in

Logical unit
Request code - 22 or 23
Data transfer area - memory address to which data

is to be transferred.
Length - number of bytes of data to transfer. If

this number is not an integral number of
records, it will be rounded up until it is.
The number of bytes actually transferred will
be reported in this field.

Completion return address
Error return address
Completion code
Supplemental parameter information - a pointer

to a three-byte area containing the disk
address of the first record to be read. The
third byte of this area should be zero. It
is the calling program's responsibility to
be certain this sector is a part of the file
being accessed. This field will be unchanged
on return.

Action:

The record whose disk address is given is read
as though it were the next record, but no
pointer checking is done on it. If more than
one record is specified for the length,
subsequent records are read just as in the
read binary request. This request is only
valid if the file has been opened for random
I/O.

- 151 -

READ CURRENT READ CURRENT

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

BEGINNING OF FILE (code D5) - the pointer is
on the descriptor record, which cannot be
read. No data is transferred, and a null
address is returned if open for random I/O.

- 148 -

6.16
SKIP FORWARD SKIP FORWARD

Request vector:

Logical unit
Request code - 24 or 25
Data transfer area - ignored
Length - the number of records (not bytes) to be

skipped. On return, the number of records
skipped will be reported.

Completion return address
Error return address
Completion code
Supplemental parameter information - if file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the first record skipped will
be returned. Otherwise, none.

Action:

The current record pointer is advanced through
the file by the number of records indicated.
No data is transferred.

Possible errors:

All DISK ERRORS except PROTECTION (code C3)
are possible.

END OF FILE (code C9) - the last record of the
file was reached while there remained records
to skip. The pointer is left at the last
record of the file, with a null pointer for
the next record.

POINTER ERROR (code CA) - a pointer mismatch
occurred while traversing the records of the
file. The current record pointer is left at
the record preceding the mismatch.

- 153 -

READ PREVIOUS READ PREVIOUS

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

BEGINNING OF FILE (code D5) - if the record
indicated is the descriptor record of the
file, the pointer is positioned at the
beginning and a previous record is
meaningless. No action is taken. A null disk
address is returned if the file is open for
random I/O.

- 150 -

6.17
SKIP BACKWARD SKIP BACKWARD

Request vector:

Logical unit
Request code - 26 or 27
Data transfer area - ignored
Length - the number of records (not bytes) to be

skipped. On return, the number of records
skipped will be reported.

Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the record preceding the
current one will be reported. Otherwise, none,

Action;

The current record pointer is moved backward
through the file by the number of records
indicated. No data is transferred.

Possible errors:

All DISK ERRORS except PROTECTION (code C3)
are possible.

POINTER ERROR (code CA) - a pointer mismatch
occurred while traversing the records of the
file. The current record pointer is left
indicating the record following the error.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 155 -

READ DIRECT READ DIRECT

Possible errors:

INVALID REQUEST (code Cl) - if the file is not
open for random I/O, the read direct request
will be rejected with this error.

All the errors of the READ BINARY request
apply for the READ DIRECT request as well.

- 152 -

6.18
SKIP TO END SKIP TO END

Request vector:

Logical unit
Request code - 28 or 29
Data transfer area - ignored
Length - ignored. Zero will be returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - if the file is

open for random I/O, this field should contain
the address of a three-byte area where the
disk address of the last record in the file
will be returned. Otherwise, it is unused.

Action:

The file is positioned with the current pointer
indicating the last record of the file.

Possible errors:

All DISK ERRORS are possible with the
exception of PROTECTION (code C3).

POINTER ERROR (code CA) - the forward pointer
of the last record was not null, indicating it
was not, in fact, the last record.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 157 -

SKIP FORWARD SKIP FORWARD

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 154 -

RENAME RENAME

POINTER ERROR (code CA) - the back pointer
from the descriptor record did not point to
the directory. No further action is taken.

DUPLICATE FILE (code DO) - a file of the same
name as the new name already exists. The file
is not renamed.

DISK FULL (code D3) - it was necessary to
create a new directory record to contain the
new name, and the disk was too full to allow
it, or too full to allow creation of the
descriptor record if renaming a scratch file.

FILE NOT IN PROPER DIRECTORY RECORD (code D4)
- no directory entry for the file exists in
the directory record indicated by its
descriptor. No action is taken.

FILE ALREADY OPEN ON ANOTHER UNIT (code D6) -
the file assigned to the unit being accessed
is currently active on another logical unit.
No action is taken.

INVALID RENAME (code D7) - attempt to rename a
file either to a scratch file (zero length
name) or to a name longer than the maximum
name length (32 characters). The file is not
renamed.

- 159 -

SKIP BACKWARD SKIP BACKWARD

BEGINNING OF FILE (code D5) - the beginning of
the file was reached without exhausting the
given record count. The pointer is left
positioned on the descriptor, with the first
record of the file being next.

- 156 -

UPDATE UPDATE

WRONG DISKETTE (code Dl) - the diskette ID for
the drive for this file does not agree with
the ID in memory for that drive. Usually
indicates the diskette has been changed since
the file was opened, or that a program wrote
across the allocation maps. No action is
taken.

INVALID ATTRIBUTES (code D2) - one or more of
the attributes being supplied either is or was
invalid. The attributes checked are type
(there should be exactly one of the most
significant bits on) and record length. The
attribute which was wrong is left as it was,
and the remainder of the process is carried
on.

PROPERTY PROTECTION (code D8) - if the file is
locked, no attributes are to be changed. An
attempt to do so results in this error.

- 161 -

6.19
RENAME RENAME

Request vector:

Logical unit
Request code - 2A or 2B
Data transfer area - ignored
Length - ignored
Completion return address
Error return address
Completion code
Supplemental parameter information - a pointer to

an area configured as follows
1st byte - length of name
2nd and following bytes - new name

Action:

The file on the unit requested is given the new
name which is contained in the supplemental
parameter vector. The file may be open. If
it is not, there must be a pending assignment
for it, so that it can be opened. If it is
not already open, it will be activated, then
its directory entry removed from the directory
and a new one created. An open scratch file
may be recovered (requiring its descriptor
record to be created) , but a named file cannot
be renamed to a scratch file. Finally, if the
file was not open at the start of the
operation, it is deactivated.

Possible errors:

All DISK ERRORS are possible.

FILE NOT FOUND (code C7) - the unit being
accessed was not open and the file assigned to
it does not exist. Will also occur if the
unit is assigned to a scratch file which has
not yet been created. No action is taken.

- 158 -

SET ATTRIBUTES SET ATTRIBUTES

INVALID ATTRIBUTES (code D2) - one or more of
the attributes being supplied either is or was
invalid. The attributes checked are type
(there should be exactly one of the most
significant bits on) and record length.
The attribute which was wrong is left as it
was, and the remainder of the process is
carried on.

PROPERTY PROTECTION CODE (code D8) - if the
file is locked, no attributes are to be
changed. An attempt to do so results in this
error.

- 163 -

6.20
UPDATE UPDATE

Request vector:

Logical unit
Request code - 2C or 2D
Data transfer area - address of attributes to be

assigned to the file. Format is described
under the OPEN request.

Length - number of bytes of attribute information
to be used.

Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

If there have been any changes to the file, or
if there are attributes to be updated, the
descriptor is read, updated, and rewritten,
and the allocation map is rewritten. The
attributes of the file can be changed with the
update request in the same way as by the close
request. The file remains active.

Possible errors:

All DISK ERRORS are possible.

POINTER ERROR (code CA) - will occur if the
back pointer for the descriptor does not
indicate the directory record for the file.

FILE NOT FOUND (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 160 -

QUERY ATTRIBUTES QUERY ATTRIBUTES

ATTRIBUTE LIST TRUNCATED (code 84) - this code
is a warning and will not cause an error
branch. It indicates that more than 116 bytes
of attribute information were requested.
Only 116 bytes were transferred.

- 165 -

6.21
SET ATTRIBUTES SET ATTRIBUTES

Request vector:

Logical unit
Request code - 2E or 2F
Data transfer area - address of attributes to be

assigned to the file. Format is described
under the OPEN request.

Length - number of bytes of attribute information
to be used.

Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

The descriptor record is read and updated from
the current information and the attributes
supplied and rewritten.

Possible errors:

All DISK ERRORS are possible.

POINTER ERROR (code CA) - will occur if the
back pointer for the descriptor does not
indicate the directory record for the file.

FILE NOT FOUND (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 162 -

The MCZ 1/35 bootstraps directly from DPS. The 4K monitor
proms for this system contain the system resident
portion of the DFS driver and the system bootstrap.
ZDOS is supplied on the disk for use with optional floppy
disk drives and is linked to run at the top of memory.
There is a separate entry point for the FLOPPY driver at
two greater than the entry point for ZDOS. When activating
ZDOS, FLOPPY should be activated with an address in the same
manner as was described above for DISK, i.e.

ACTIVATE $ZDOS;X * $FLOPPY E002

Command files for these systems are normally linked at 2AOO.

- 167 -

6.22
QUERY ATTRIBUTES QUERY ATTRIBUTES

Request vector:

Logical unit
Request code - 30 or 31
Data transfer area - address for return of

attributes of the file.
Length - number of bytes of attribute information

to be returned.
Completion return address
Error return address
Completion code
Supplemental parameter information - none

Action:

This command is used for obtaining attribute
information, such as the record count, while a
file is open. The descriptor record is read,
the current information merged into it, and as
many bytes of attribute information as have
been requested are returned to the user. See
the OPEN request for the format of the
returned bytes.

Possible errors:

All DISK ERRORS except PROTECTION (code C3)
are possible.

POINTER ERROR (code CA) - the back pointer of
the descriptor record does not indicate the
directory record. No data is returned.

FILE NOT OPEN (code CB) - the logical unit
being accessed is not active. No action is
taken.

- 164 -

programs which access the directory, because
there are now 3-byte pointers at the end
of each entry instead of 2-byte pointers. To
facilitate differentiation between the two formats,
the DPS directory file is subtype 1.

4) There are three commands which apply exclusively to DFS
disks. They are described in the following sections
of this manual:

Command Section

DISK.FORMAT 5.16
DISK.REPAIR 5.17
DISK.STATUS 5.18

5) For systems with floppy disks, software updates will be
supplied on floppy diskettes as required. For systems
without diskette drives, software updates are supplied
on disk cartridges at an additional cost.

6) The GET/SAVE Debug commands have not yet been implemented
for DFS hard disks.

7) The user and system operator should be familiar with
the disk manufacturer's recommended operations pro-
cedures provided in separate manuals. These
paragraphs are not intended to substitute for those
documents. Nevertheless, we will briefly discuss
disk start-up and shut-down procedures. These pro-
cedures apply to the Caelus Model 206R front-loading
cartridge disks. Similar procedures would apply to
other drives of the same class.

Prior to bootstrapping the system, turn power on to
the disk drive and disk controller. After a delay
of perhaps 10-15 seconds, the "stop" light on the disk
front panel will be illuminated. At this time open
the door and slide in the cartridge to be used for the
session. Close the door and turn the run/stop switch
to run. After a delay of about a minute, the ready
light will come on. At this point the bootstrap
file from the disk is read into the controller memory.
The disk is now ready for operation. Bootstrap the system.

- 169 -

CHAPTER 7

DPS

7.1 ZILOG DISK CONTROLLER

The interface from a Zilog Z-80 System to high-speed disk
units consists of an intelligent disk controller in a
module separate from the system, and a high speed serial
interface link from the system to the controller. The
controller contains its own Z-80 CPU, sockets for 8K of ROM (of
which only 3K is currently used), 16K of static RAM, Direct Memory
Access (DMA) control circuitry, the data decode/encode interface
circuitry and miscellaneous control signal interface logic. The
interface is to Caelus Model 206R or similar units. It will
support up to four disk drives with appropriate daisy-chained
cabling.

The software for this configuration makes the disk
appear as another file system, functionally identical
to the ZDOS file system which exists for the floppy disks.

The Disk File System (DFS) software is capable of running in
two versions. On the MCZ 1/20, the system is bootstrapped from
the floppy disks as a standard system. The system resident
portion of DFS must be loaded from ZDOS by the command ACTIVATE
$DFS. ZDOS is at 2AOO, immediately above the console driver
for RIO, and DFS is placed at the top of memory.
DFS contains an entry point for DISK, the low level
disk controller used by some utilities; it is 2 greater
than the entry point for DFS, and should be activated
with an address at the same time DFS is activated,
thus:

ACTIVATE $DFS;X * $DISK E002

If DFS is to be run as the master device, then the command
MASTER $DFS should follow these. At this point ZDOS can be
deactivated, thus effecting a large savings in memory space,
unless it is needed for transfers to diskette.

- 166 -

7.3 SOFTWARE ORGANIZATION

The Disk File System driver is divided into two parts to
correspond to the division of the hardware interface.
One part is resident on the host system and contains the
message interface link to communicate with the controller,
It is used to pass I/O requests to the controller and
to send and receive data.

The second, and larger part, is the software which
resides in the memory of the intelligent controller.
Most of this is loaded from the disk whenever the
controller is reset. The software in ROM includes the
initial start-up and serial message interface logic,
the bare disk controller, which gives access to the
disk by sector number for reads and writes, and the
self-bootstrapping logic to read the rest of the file
system from the disk. The disk file system, which
is an adaptation of the ZDOS-II file system, and an
interface for handling the request vector across the
remote serial interface, are loaded from the disk.

There are two entry points to the resident software,
each of which takes a standard I/O vector. One, DFS,
causes the vector to be taken as a request to the Disk
File System on the controller, and the other, DISK
(located at address of DFS + 2), causes it to be
taken as a request to the bare disk controller.

- 171 -

7.2 DPS OPERATION

Except where noted otherwise, the information contained in
Chapter 6 regarding ZDOS also applies to DPS.

The following are the major differences between the two
file systems:

1) The DPS descriptor record differs from the ZDOS des-
criptor record:

Bytes 0-3 Unused
Bytes 4-7 File ID
Bytes 8-10 Pointer to directory sector holding

entry for this file
Bytes 11-13 Pointer to first data record of file
Bytes 14-16 Pointer to last data record of file
Byte 17 File type and subtype
Bytes 18-19 Record count
Bytes 20-21 Record length
Bytes 22-23 Block length - currently unused, and set to

be same as record length
Byte 24 File properties
Bytes 25-26 Starting execution address for procedure

type files (entry point)
Bytes 27-28 Number of bytes in last record
Bytes 29-36 Date of creation
Bytes 37-44 Date of last modification
Bytes 45-132 Undefined by DFS - used by RIO for

procedure files
Bytes 133-511 Available for programmer definition

2) While ZDOS accepts records of several lengths
(multiples of 128 (80H) bytes), the record length
on DFS must be equal to the physical sector length
(512, or 200H bytes). A request to set it to any
other record length results in an invalid attribute
error (code D2H). However, a request for record
length 0 is treated as a request for the default,
or 200H.

3) Because some of the disks to be interfaced to this
system have more than 65535 sectors, three bytes
are used for all disk addresses. This affects

- 168 -

NSECS -- byte 423 — number of sectors per track

SECMAP — bytes 424-487 — sector interlace
map. Used by the disk controller to
optimize track layout for access time.

ERRPTR — bytes 488-490 — pointer to a sector
containing the list of sectors in error
after the initial format.

BTPTR — bytes 491-493 — pointer to the descriptor
record for the bootstrap file. Used by the
bootstrap process to avoid a directory search,

The remainder of the sector is reserved for future use.

7.4.2 DPS ALLOCATION ALGORITHM

FREEfO] is a pointer to a sector whose contents are addresses
of the next 100 elements of the free chain. To allocate a
sector, decrement NFREE, and the new sector is
FREE[NFREE]. If this element is zero, then there are
no sectors left. If NFREE becomes 0, then read the
contents of the designated sector into NFREE and FREE.
To deallocate a sector, if NFREE is 100, copy NFREE and
FREE to the deallocated sector and set NFREE to zero.
Set FREE[NFREE] equal to the sector address and increment
NFREE.

- 173 -

To change disk cartridges during a session, turn the
run/stop switch to stop, wait for the stop light, open
the door, remove the cartridge and insert the new one,
close the door and turn the switch to run, and wait
tor the ready light. The door is always locked except
when the scop light is on. Also, a cartridge must be
in place arid the door closed to spin the disk up.

Any time there is a change in disks or a change in the
ready status, give an Initialize (I) command. This is
necessary to make the controller aware of the new status,

When shutting down for a period of time, as overnight,
it is best to remove the cartridge and close the door,
to prevent dust from gathering in either the cartridge
or the drive.

- 170 -

cylinder 0. Sector 23 will access sector 11, surface 1,
cylinder 0. Sector 1000 will access sector 4, surface 1,
and cylinder 41. The highest addressable sector will be
9743.

The same addresses on drive 1 would access sectors in the
same relative position, but on the removable cartridge
instead of the fixed platter.

The requests which the bare disk controller will
handle are as follows:

INITIALIZE (00) — initializes all controls
and issues a recalibrate request to
each disk. This causes each head to
move to cylinder 0.

READ BINARY (OAH) — transfers data from
the disk starting at the requested
sector until the byte count is
satisfied, then continues to the
end of the sector. The sector
headers are not transferred.

WRITE BINARY (OEH) — transfers data to the
requested sector. The sector
header of the sector preceding
the selected one is read and
checked for consistency before the
sector is written. The first ten
bytes of the data transfer area are
the backward pointer, the forward
pointer, and the file ID of the
sector. They will be written in
the sector header, not in the data
area. Because of the necessity to
provide a new set of pointers and
file ID for each subsequent sector,
only one sector can be written at
a t itne.

- 175 -

7.4 DPS ALLOCATION

7.4.1 SECTOR 0 FORMAT

As opposed to the floppy-disk system, which uses a RAM bit map,
allocation is maintained as a list of free sectors. The first
part of this list, plus the volume ID (Disk ID) and
statistics on disk usage, are maintained on sector 0
of each unit. The format of that sector is as follows:

VOLUME ID — bytes 1-100

MAXSIZ — bytes 101-103 — the total number
of sectors on that unit, and thus
1 more than the highest accessible
sector address.

MAXID — bytes 104-107 — the current highest
file ID. This is incremented every time
a new file is created.

ROOTPT — bytes 108-110 — the pointer to the
root directory descriptor for the unit.

TFREE — bytes 111-113 — the total number of
sectors remaining on the free list.

NERR — bytes 114-116 — the number of sectors
unusable because of errors. This is
generated during the read pass of the
format routine.

<
NUSED — bytes 117-119 — total number of

sectors on the unit which have been
allocated.

NFREE — bytes 120-121 — an index into the
free array to follow.

FREE — bytes 122-421 — an array of 100
3-byte pointers, each to an
unallocated sector.

FMOD — byte 422 — internal use.

- 172 -

7.6 CONTROLLER BOOTSTRAP OPERATION

The bootstrap of the controller occurs after the system is
reset. At reset time a flag is set indicating that the
controller is awaiting bootstrap; any request from the
host system prior to controller bootstrap is answered by
returning with a device not ready (Error C2) completion
code.

All control variables and control ports are initialized.
At this time, if drive 1 is ready, the reading of the
bootstrap starts. If it is not ready, the STATUS PIO is
set up to give an interrupt when drive 1 becomes ready,
and transfer is made up to the wait-for-request loop.
When the interrupt signals that drive 1 has entered the
ready state, the reading of the bootstrap starts.

When reading the bootstrap, interrupts from the SIO are
disabled to prevent any interference with the disk operation.
Any request messages received during this time are ignored,
causing them to be repeated until they are acknowledged.

The first step in reading the bootstrap is to read sector 0
of drive 1 (the removable cartridge) into a buffer. (If an
error occurs at any point in reading the bootstrap from
drive 1, the process is repeated on drive 0.) A variable
in block 0, BTPTR, gives a pointer to the descriptor record
of the bootstrap file. If this pointer is null, the
bootstrap fails on drive 1, and bootstrap from drive 0 is
initiated.

This descriptor record is read into the buffer. For each
segment listed in the descriptor record, successive data
records are read into a buffer and transferred to the
correct address in the controller memory. As each data
record is read in, its back pointer is checked against
the address of the previous record. Any failure to compare
causes failure of the bootstrap read on that drive.

When the last segment has been completely read, the flag
is cleared indicating that the bootstrap has completed. The
starting address from the descriptor is placed in a variable
for indirect jumping on receipt of a DPS request.

- 177 -

7.5 THE BARE DISK CONTROLLER

The bare disk controller is analogous to the subroutine
FLOPPY in floppy-disk based systems. It accepts a
standard RIO vector and reads or writes a sector of
the disk. It accepts only a very limited set of
requests, and requires a supplemental parameter vector
specifying the disk address of the sector and the
disk drive to be accessed. The drive is specified in
the most significant three bits of the 3-byte
disk address. The sectors are addressed by
3-byte integers. Sector 0 is cylinder 0, surface 0,
sector 0. Since disks with various numbers of sectors
per track, various numbers of surfaces, and various
numbers of cylinders can all be used with the same interface,
it is difficult to say on what cylinder, surface, and
sector any given sector address would lie, or what the
highest sector address is. However, with increasing
sector address, the sector number varies most rapidly,
then the surface, then the cylinder.

On drives which have one or more fixed platters and one
removable platter, the removable platter is considered
to be a different physical drive than, and thus to have
a different sector address space from, the fixed
platter or platters. If there are four drives on a
controller, the fixed platters on them will be
referenced as drives 0, 2, 4, and 6. It is not
necessary that any drive have a removable platter, but
if it does, the removable platter is referenced as
drive n+1, where n is the drive by which the fixed
platter is referenced. It is also not necessary that
multiple drives be of the same configuration; i.e.,
the drives need not be in fixed-removable platter pairs.

The typical installation will have a single drive with
one fixed platter, one removable platter, 12 sectors
per track and 406 tracks, and will be connected as
drive 0. This means that drive 0, sector 0 will address
sector 0, surface 0, and cylinder 0 of the fixed
platter. Sector 1 will access sector 1, surface 0,
cylinder 0. Sector 12 will access sector 0, surface 1,

- 174 -

7.7 SYSTEM BOOTSTRAPPING on the MCZ-1/35

Since the entire file system is available in ROM at bootstrap
time, bootstrapping consists of issuing I/O requests to DPS,
as follows:

1) Initialize
2) Open named file */OS for input, returning all

attributes
3) For each segment, issuing read binary requests

for the data address and data length indicated
in the segment table.

4) Close file

and jumping to the entry point given by the attributes.

- 179 -

READ HEADER (32H) — The 24 bytes of the
sector header of the requested sector
are transferred back to the user.
These are as follows:

byte 1 — flag byte, always 80H
byte 2 -- cylinder address, low order
byte 3 — cylinder address, high order
byte 4 -- surface
byte 5 — sector
byte 6-8 — backward pointer
byte 9-11 — forward pointer
byte 12-13 — data length, always 200H
byte 14-17 — file ID
byte 18-19 — header CRC
byte 20-24 — zero

WRITE WITHOUT PRECHECK (34H) -- performs
exactly as a write request, but skips
the check of the header of the
preceding sector. This permits
initial formatting of the disk as well
as repair of a damaged format.

- 176 -

APPENDIX A

RIO/ZDOS/DFS ERROR CODES

RIO

Completion Code

40
41
42
43
44
45
46
47
48
49
4A
4B
4C

Meaning

Invalid Drive Name
Invalid or Inactive Device
Invalid Unit
Memory Protect Violation
Missing or Invalid Operand(s)
System Error
Illegal File Name
Non-existent Command
Illegal File Type
Program Abort
Insufficient Memory
Missing or Invalid File Properties
I/O Error (IY->Vector)

ZDOS/DFS

Completion Code

80
81
82
83
84
Cl
C2
C3
C4
C5
C6
C7
C9
CA
CB
CCwww
CD
CE
CF

Meaning

Operation Complete
Directory Format Error
Scratch File Created
File Name Truncated
Attribute List Truncated
Invalid Operation (Request)
Device Is Not Ready
Write Protection
Sector Address Error
Seek Error
Data Transfer Error
File Not Found
End of File Error
Pointer Check Error
File Not Open

Unit Already Active (Open)
Assign Buffer Full
Invalid Drive Specification
Logical Unit Table Full (>16 Open)

A-l

Should the bootstrap read from drive 1 fail to complete
for any reason (disk error or failure of a required condition),
the entire process will be repeated on drive 0. Should it
also fail on drive 0, it will again try drive 1, continuing
to alternate between drives until the condition corrects
itself or the operator turns off the disk.

- 178 -

APPENDIX B

RIO COMMAND SYNTAX SUMMARY

NAME

ACTIVATE

Allocate

Brief

CAT

Close

COMPARE

COPY

COPY. DISK

COPYSD

DATE

DEACTIVATE

DEAllocate

Debug

DEFINE

PARAMETERS

device name [address]

low boundary high boundary
block size

(match_string I T=type I P=props
D=drive 1 F=format |
L=listing disposition I DATE rel
1 CDATE rel date)*

u|*

fileJL file_2

file 1 file 2 (A | U 1 0 |
RL=record length i T=type) *

[s_drive TO d_drive] [V]

f ile_name

[yymmdd]

device name

block address block_size

(unit file name 1 unit

REFERENCE

5.1

5.2

5.3

1 5.4

date

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

DELETE

DISK.FORMAT

device_name I unit * I *)+
[A | 0 | U | I | NF | NO]
(match_string | T=type I
P=props I D=drive | Q=query I
DATE rel date I CDATE rel date)*

(S I D=drive
Q=query)*

ID='disk name1

5.15

5.16

B-l

RENAME

RESTOREJTABS

SAVEJTABS

SET

STATUS

Verbose

Xeq

(oldfile newfile I
devicerdrive ID="new_disk_name')*

file_name

file_name

(CHRDEL=c I LINDEL=c I NULLCT=n I
SPEED=nn | LFCNT=n | TABSIZE=n I
ECHO ON | ECHO OFF |
AUTOLF ON | AUTOLF OFF I
PROPERTIES OF file_name TO pi1st I
TYPE OF file name TO type I
SUBTYPE OF fTle_name TO subtype I
ENTRY_POINT OF file_name TO nn |
LOW_ADDRESS OF file_name TO |
HIGH_ADDRESS OF file_name TO I
STACK_SIZE OF file_name TO nn I
BYTE_COUNT OF file_name TO nn)*

[Oil ... 6|7]

[* | nn [parameter_list]]

expression

5.36

5.37

5.38

5.39

5.40

5.41

5.42

5.43

B-3

DO
Dl
D2
D3
D4

D5
D6
D7
D8

D9
DA

Duplicate File
Diskette ID Error
Invalid Attributes
Disk Is Full
File Not Found in Proper Directory
Record
Beginning of File Error
File Already Open on Other Unit
Invalid Rename to Scratch File
File Locked (Attempt to Change
Attributes)
Invalid Open Request
Insufficient Memory for
Allocation Maps

A-2

APPENDIX C

RIO SYSTEM CONSTANTS

The following are the current values of RIO symbols.
In some cases, however, address values vary from those
listed below. To be certain you are using the values
appropriate to your system, check the NOTE.TO.USER file
on your system disk.

Symbol

ERKFLG
BRKRTN
CHRDEL
CONIBF
CONIVC
CONOBF
CONOVC
DATE
DEBUG
DISK
ENTRY
ERCODE
EXTRET
FLOPPY
INITIALIZATION

COMMAND AREA
INPTR
INTERRUPT VECTOR
LINDEL
MEMMGR
NULLCT
OUTPTR
PROMPT
PCON
SYSFLG
SYSTEM
SYSTEM REENTRY

POINT

MCZ Address

13CD
13CE
13CC
1189
1293
1103
1288
13AB
OBFA
OBFD
17DE
13BD
13BE
OBFD

18DF
13C4
1300
13CB
1409
13C8
13C6
13CA
OBE8
140E
1403

1400

ZDS Address

OFC4
OFC5
OFC3
OD8A
OECE
OD04
OEC3
OFA2
OBFA
OBFD
13DE
OFB4
OFB5
OBFD

14DF
OFBB
OFOO
OFC2
1009
OFBF
OFBD
OFC1
OBEE
100E
1003

1000

C-l

DISK.REPAIR

DISK.STATUS

DISPLAY

DO

DUMP

ECHO

ERROR

ERRORS

EXTRACT

Force

FORMAT

HELP

IMAGE

Initialize

LADT

MASTER

MOVE

DFS_drive_number level_number

[Oil ... 6|7]

command_file [parameter list]

file_name [m[n]]

string

[error_codeI*]

file_name

command parameter_list

(S I D=drive I ID='disk_name' I
Q=query)*

(key_word|*)*

file_name (first_location
last_location)+ [E=entry point]
[RL=record length] [ST=stack size]

[device_name] [parameter list]]

[device_name]

(match_string I T=type I P=props I
F=format I D=destination_device I
S=source_device I
L=listing_disposition I Q=query I
DATE rel date I CDATE rel date)*
tion | Q=query | DATE rel date I CDATE
rel date)*

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

PAUSE

Release

5.34

5.35

B-2

APPENDIX D

CONVERTING FILES TO RIO FORMAT

Files which have been created by MCZ or ZDS 2.1 System
software (hereafter reference is made only to OS 2.1) are
not compatible with RIO format. File conversion can be
effected in two ways: a series of RIO commands can convert
one or more files, or a Zilog utility program can be used
which converts all files on a given diskette. In either
case, the conversion is non-destructive, that is, the
converted file always resides on a second disk, leaving the
OS 2.1 type disk unaffected.

To manually convert one or more files to RIO format, enter
the following command sequence:

%ACTIVATE $ZDOSI ;Activates the OS 2.1 ZDOS emulator
%COPY, ;Load, but do not execute, COPY

At this point, the diskette containing the file or files
to be converted is inserted in one drive and the formatted
RIO diskette on which the converted file is to reside is
inserted in another. For this example, drive 2 has the RIO
diskette, and drive 0 has the OS 2.1 type diskette.

%I;I $ZDOSI ;Initialize the disk allocation maps
%XEQ * $ZDOSI:0/TEMP.S 2/TEMP.S

The above two commands may be repeated as necessary. The
INITIALIZE command need be executed only when the diskettes
are changed. The last command causes execution of the last
loaded file, which in this case is COPY. (If a formatted
RIO disk was in drive 0 with the COPY command on it, the
user can alternatively enter 'COPY..!.) The first
parameter is the source file name; note that it will always
be qualified with '$ZDOSI' indicating that the OS 2.1 ZDOS
emulator (ZDOSI) is the device on which the file exists.
The second parameter is the destination file name, which
does not have to be the same as the source file name; it may

D-l

APPENDIX E

ALTERING DEFAULT RIO

The file OS contains the resident RIO programs plus the
default system console driver. Altering the file consists
of GETting OS from the 3K Monitor, making the desired
modifications and SAVing it. The examples will use MCZ
addresses; for ZDS addresses, refer to Appendix C.

Example 1: MODIFY SYSTEM FLAG TO INHIBIT EXTERNAL
INITIALIZATION

%SET PROPERTIES OF 0/OS TO * ;remove write protection
from file OS

%D ;enter 3K Monitor Debugger
>GET 0/OS ;load file OS from drive 0
>D 140E ;display and modify SYSFLG
140E 04 0 Q ;turn off EXTERNAL

INITIALIZATION FLAG
>SAV 0/OS 1400 2BFF E=17DE RL=400

;save new OS
>OS ;bootstrap new OS
RIO
%SET PROPERTIES OF 0/OS to SW ;restore protection to file OS

Example 2: MODIFY SYSTEM EXTERNAL INITIALIZATION COMMAND AREA
TO EXECUTE THE COMMAND 'BASIC1 (ONLY) ON EXTERNAL
INITIALIZATION

%SET PROPERTIES OF 0/OS TO * ;remove write protection
%D
>GET 0/OS
>D 140E

140E 00 4 Q
>D 18DF

18DF 44
18EO
18E1
18E2
18E3

42
4F 41
20 53
30 49
2F 43

;enter 3K Monitor Debugger
;load file OS from drive 0
;turn on external initialization
flag

;display and open initialization
message area
;Change to 'B1

; 'A1

E-l

APPENDIX F

I/O REQUEST VECTOR FORMAT

and

I/O REQUEST CODES

I/O Request Vector Format

Byte Contents

0 Logical Unit Number
1 Request Code
2-3 Data Transfer Address
4-5 Data Length
6-7 Completion Address
8-9 Error Return Address
A Completion Code
B-C Supplemental Parameter

Vector Address

ZDOS/DFS Supplemental Parameter Vector

0 Flag Byte (ASSIGN),
Open Type (OPEN)

1 Drive Designation
2 File Name Length
3 File Name

I/O Request Codes

0 Initialize
2 Assign
4 Open
6 Close
8 Rewind
A Read Binary

F-l

or may not be qualified with '$ZDOS' as long as ZDOS is the
master device.

After file conversion and verification of conversion
is concluded, the following command will free the
memory occupied by ZDOSI.

%DEACTIVATE $ZDOSI jRemove ZDOSI from Active Device Table

Alternatively, all files on a diskette may be converted
using the utility program CONVERT. Execution of that
command results in the prompt message,

INSERT DISKS (OLD DISK IN DRIVE 2, FORMATTED RIO DISK
IN DRIVE 0)
TYPE RETURN (OR 'Q1 TO TERMINATE)

The OS 2.1 diskette is inserted into drive 2 and the RIO
diskette is inserted into drive 0, after which carriage
return (or 'Q' to abort) is entered. The names of the
new RIO files will be the OS 2.1 type name concatenated
with the file type as an extension. For example, the 'C'
type file 'ABC' would be named 'ABC.C' on the RIO diskette.
There is no provision to rename files as they are converted.

After all files on the OS 2.1 diskette are converted, the
prompt message is repeated, at which time diskettes may
be changed.

D-2

APPENDIX G

PROGRAM EXAMPLES

Following are sample programs which the user is encouraged
to edit, assemble, link, and execute. They illustrate
some of the concepts introduced in previous sections,
including console I/O, parameter string processing, and
file I/O.

In each case the following commands may be used to edit,
assemble, and link the example program:

%EDIT filename.S
EDIT 1.6
NEW FILE
INPUT

;invoke the editor
;the file does not already
;exist, so it is created
;editor automatically enters
;input mode

>QUIT
%ASM filename (X)
ASM 5.7
PASS 1 COMPLETE
0 ASSEMBLY ERRORS
ASSEMBLY COMPLETE
%LINK $=4400 PRINT
LINK 1.5
LINK COMPLETE

;assemble (w/cross reference option)

;and link

All system addresses are given for MCZ.
Appendix C for ZDS equivalents.

Refer to

6-1

18E4 4F OD Q ;carriage return and quit
>SAV 0/OS 1400 2BFF E=17DE RL=400

;save new OS
>OS ;bootstrapping at this point

will result in execution
of the file BASIC

E-2

SYMBOL VAL M DEFN REFS

AVLUN
AVREQ
CONOUT
LMSG
MSG
SYSTEM
WRTLIN

0008
0009
0002
0024
0013
1403
0010

R
R

R

11
12
24
30
28
23
25

11
15
13
6
12

30

G-3

C Read Line
E Write Binary
10 Write Line
12 Write Current
14 Write Direct
16 Delete
18 Delete Remaining
1A Erase File
1C Read and Delete
IE Read Current
20 Read Previous
22 Read Direct
24 Skip Forward
26 Skip Backward
28 Skip to End
2A Rename
2C Update
2E Set Attributes
30 Query Attributes
40 Read Status
42 Write Status
44 Deactivate

F-2

LOG OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

0034
0036

0000
00

0037

45
46
47
48
49
50
51
52
53
54
55
56
57

AVERA:
AVCC:

SYSTEM:
CONOUT:
WRTLIN:

INPTR:

BUFFER:

DEFW
DEFB

EQU
EQU
EQU

EQU

DBFS
END

0
0

1403H
2
10H

13C4H

80

;ADDRESS
;ERROR RETURN ADDRESS
COMPLETION CODE

;SYSTEM ENTRY POINT
;CONSOLE OUTPUT UNIT
;WRITE LINE REQUEST
; CODE
;PARAMETER LIST POINTER

CROSS REFERENCE
SYMBOL VAL M DEFN REFS

EXAMPLE2.MCZ

ADDCHR
AVCC
AVCRA
AVDL
AVDTA
AVEC
AVERA
AVLUN
AVREQ
BUFFER
CONOUT
INPTR
SCAN
SYSTEM
WRTLIN

0016
0036
0032
0030
002E
002C
0034
002C
002D
0037
0002
13C4
0009
1403
0010

R
R
R
R
R
R
R
R
R
R

R

20
47
44
43
42
39
46
40
41
56
51
54
10
50
52

13

31

33

7
40
5

18
34
41

15

42

6-5

LOG
EXAMPLE1.MCZ

OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

0000
0004
0007

0008
0009
OOOA

OOOC
OOOE

0010
0012

0013
0036

FD210800 R
CD0314
C9

02
10
1300 R

2400
0000

0000
00

454E4F52
OD

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

; EXAMPLE 1 -

AVEC:
AVLUN :
AVREQ:
AVDTA :

AVDL:
AVCRA:

AVERA:
AVCC:

LD
CALL
RET

DEFB
DEFB
DEFW

DEFW
DEFW

DEFW
DEFB

; EQUATES AND

SYSTEM:
CONOUT:
WRTLIN:

MSG:

LMSG:

EQU
EQU
EQU

DEFM
DEFB
EQU

END

— MAKE A i

I Y, AVEC
SYSTEM

CONOUT
WRTLIN
MSG

LMSG
0

0
0

CONSTANTS

1403H
2
10H

1 ENORMO
ODH
$-MSG

; IY -> I/O VECTOR

LOGICAL UNIT NUMBER
REQUEST CODE
DATA TRANSFER
ADDRESS
BYTE COUNT
COMPLETION RETURN
ADDRESS
ERROR RETURN ADDRESS
COMPLETION CODE

; SYSTEM ENTRY POINT
; CONSOLE OUTPUT UNIT
; WRITE LINE REQUEST
; CODE

ENORMOUS CHANGES AT THE LAST MINUTE1

CROSS REFERENCE
SYMBOL VAL M DEFN REFS

AVCC
AVCRA
AVDL
AVDTA
AVEC
AVERA

0012 R
OOOE R
OOOC R
OOOA R
0008 R
0010 R

19
16
15
13
10
18

EXAMPLE1.MCZ

G-2

OBJ CODE M STMT SOURCE STATEMENT ASM 5.1

0041
0044
0047
004A
004D
0050
0052

0055
0058
005A
005C
005E
0060
0063

0066
0068
006B
006E
0071
0074
0076
0077

0079

007B
007E

0080
0083
0084
0085
0086
0089

225101
210100
225301
CD0314
3A5901
CB77
C2D700

3A7F01
E6FO
FE20
2808
3E48
32BD13
C3F900

3EOO
210000
11FFFF
01FFFF
CD0914
OEOO
78
E6FO

2009

CDF900
3E4A

32BD13
C9
47
AF
CD0914
224B01

R 45
46

R 47
48

R 49
50

R 51
52
53
54
55
56

R 57
58
59
60
61
62

R 63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

R 81
82
83
84
85
86
87
88
89
90

R 91

LD
LD
LD
CALL
LD
BIT
JP

;FILE IS OPEN

LD
AND
CP
JR
LD
LD
JP

(AVDTA) ,HL
HL,LASV
(AVDL) ,HL
SYSTEM
A, (AVCC)
6, A
NZ, ERROR

TEST FILE TYPE,

A, (ASVFT)
OFOH
ASCII
Z,PRT100
A,ILLFT
(ERCODE) ,A
CLOSEF

COMPLETION CODE
; ERRORS?

COPY TO SYSLST

;FILE TYPE
; STRIP SUBTYPE
;BETTER BE ASCII

;OR ILLEGAL FILE TYPE

;FILE IS OF TYPE ASCII

PRT100:
LD
LD
LD
LD
CALL
LD
LD
AND

JR

CALL
LD

LD
RET

GETIT: LD
XOR
CALL
LD

A,0
HL,0
DE,-1
BC,-1
MEMMGR
C,0
A,B
OFOH

NZ, GETIT

CLOSEF
A,INSMEM

(ERCODE) ,A

B,A
A
MEMMGR
(BUFFER) ,HL

;ALLOCATE

; LOCATE LONGEST BUFFE

;SEE IF AVAILABLE
;SPACE >= 1000H
;IF SO, ALLOCATE
;IT

; OTHERWISE, OUTPUT
jINSUFF. MEM. ERROR,
;CLOSE FILE AND
; RETURN

;SAVE BEGINNING

LOG
EXAMPLE2.MCZ

OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

0000

0003

0006
0009

OOOA
OOOC
OOOE
0010
0012

0014

0016
0017
0019

001A
001B
001C
001D
001E
001F

0020

0024
0028

002B

002C
002D
002E
0030
0032

2AC413

113700 R

010000
7E

FE3B
2808
FEOD
2804
EDAO

18F3

EB
360D
OB

79
2F
4F
2F
47
03

ED433000 R

FD212COO R
CD0314

C9

02
10
3700 R
0000
0000

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

; EXAMPLE 2
/

/

LD

LD

LD
SCAN: LD

CP
JR
CP
JR
LDI

JR

ADDCHR: EX
LD
DEC

LD
CPL
LD
CPL
LD
INC

LD

LD
CALL

RET

AVEC:
AVLUN: DEFB
AVREQ: DEFB
AVDTA: DEFW
AVDL: DEFW
AVCRA: DEFW

MAKE A SYS1
STRING TO

HL, (INPTR)

DE, BUFFER

BC,0
A, (HL)

1 . 1
/

Z , ADDCHR
ODH
Z, ADDCHR

SCAN

DE,HL
(HL) ,ODH
BC

A,C

C,A

B,A
BC

(AVDL) ,BC

I Y, AVEC
SYSTEM

CONOUT
WRTLIN
BUFFER
0
0

;ADDRESS OF THE
;PARAMETER LIST
;MOVE PARAMETER LIST
;INTO BUFFER
;KEEP A CHARACTER COUNT
;NEXT CHARACTER IN
;PARAMETER STRING
;TEST FOR END

;MOVE CHARACTER AND INC
;POINTERS

;COULD HAVE BEEN A

;GET STRING LENGTH

;DATA LENGTH

;MAKE THE SYSTEM CALL
;TO WRITE IT

;CONSOLE OUTPUT
;WRITE LINE
;DATA TRANSFER ADDRESS
;DATA LENGTH
COMPLETION RETURN

G-4

LOG OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

OOCB

OOCC

OOCE

OODO

OOD3
OOD5

OOD7
OOD9
OODC
OODE
OOE1

OOE4
OOE7

OOEA
OOED
OOFO
OOFS
OOF6

OOF9
OOFB
OOFE
0100
0103
0106

0109
010C
010F

Fl

FEC9

2829

3A5901

CB77
28CO

3EOE
325001
3E02
324F01
214801

3A5901
CD2401

213E01
225101
210DOO
225301
CD0314

3E06
325001
3E04
324F01
210000
225101

225301
225A01
CD0314

R

R

R
R

R
R

R
R

R

R

R

R

R
R

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

POP

CP

JR

LD

BIT
JR

;AN ERROR HAS

AF

EOF

Z, CLOSEF

A, (AVCC)

6, A
Z,READ

OCCURRED, PRINT
; MESSAGE, CLOSE FILE, AND RETURN

ERROR: LD
LD
LD
LD
LD

LD
CALL

LD
LD
LD
LD
CALL

CLOSEF: LD
LD
LD
LD
LD
LD

LD
LD
CALL

A,WRTBIN
(AVREQ) ,A
A,CONOUT
(AVLUN) ,A
HL,EMSGN

A, (AVCC)
BTOHEX

HL,EMSG
(AVDTA) ,HL
HL,LEMSG
(AVDL) ,HL
SYSTEM

A, CLOSE
(AVREQ) ,A
A, 4
(AVLUN) ,A
HL,0
(AVDTA) ,HL

(AVDL) ,HL
(AVSVP) ,HL
SYSTEM

;RESTORE READ
COMPLETION CODE
;DID LAST READ REQUEST
;REACH END OF FILE?

;HAS WRITTEN
;SUCCESSFULLY?

;WRITE BINARY

;TO CONSOLE OUTPUT UNIT

;CONVERT ERROR CODE TO
;ASCII

;PRINT MESSAGE

;CLOSE FILE

;ON UNIT FOUR

;DON'T UPDATE
;DESCRIPTOR RECORD

DEALLOCATE THE
;ALLOCATED SPACE

185

G-9

LOG
EXAMPLES.MCZ

OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

0000
0002
0005
0007
OOOA
OOOB
OOOE

0011
0014

0017
001A

001D

0020
0024
0027
002A
002C

002F
0031
0034
0036
0039

003B
003E

3E02
325001
3E04
324F01
AF
325C01
2AC413

225101
215C01

225A01
210000

225701

FD214F01
CD0314
3A5901
CB77
C2D700

3E04
325001
3EOO
325C01
3EFF

325E01
217F01

R

R

R

R
R

R

R

R

R

R

R

R

R
R

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

;PROGRAM 3 — PRINT — COPY AN ASCII FILE TO SYSLST

;MAKE A SYSTEM CALL TO FORMAT
;VECTOR

LD
LD
LD
LD
XOR
LD
LD

LD
LD

LD
LD

A, ASSIGN
(AVREQ) ,A
A, 4
(AVLUN) ,A
A
(SPVFB) ,A
HL, (INPTR)

(AVDTA) ,HL
HL,SPV

(AVSVP) ,HL
HL,0

LD

LD
CALL
LD
BIT
JP

(AVERA),HL

IY,AVEC
SYSTEM
A,(AVCC)
6,A
NZ, ERROR

SUPPLEMENTAL PARAMETEF

;ASSIGN REQUEST

;ON UNIT 4

/•PARAMETER STRING
;ADDRESS

;-> SUPPLEMENTAL
;PARAMETER VECTOR

;CLEAR ERROR RETURN
;ADDRESS
;FOR NORMAL ERROR
;RETURN

COMPLETION CODE
;ERROR

;OPEN THE FILE AND TEST FILE TYPE

LD
LD
LD
LD
LD

LD
LD

A, OPEN
(AVREQ),A
A,OPNINP
(SPVOR),A

(SPVFNL),A
HL/ASVFT

;OPEN REQUEST

;FOR INPUT

;UNIT PREVIOUSLY
/•ASSIGNED

;REQUEST SOME OF THE
/•DESCRIPTOR RECORD

6-6

LOG OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

013E
0148
014A

014B
014D

014F
0150
0151
0153
0155

0157
0159
015A

492F4F20

OD

0000

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

RDBIN:
WRTBIN:
WRTLIN:
ASSIGN:
OPEN:
CLOSE:

OPNINP:

EOF:
ILLFT:

INSMEM:

ASCII:

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU

EQU

EQU

OAH
OEH
10H
2
4
6

0

OC9H
48H

4AH

2 OH

;RIO ADDRESSES

INPTR:

ERCODE:
SYSTEM:
MEMMGR:

EMSG:
EMSGN:

LEMSG:

BUFFER:
BUFSIZ:

AVEC:
AVLUN :
AVREQ:
AVDTA :
AVDL:
AVCRA:

AVERA:
AVCC:
AVSVP :

SPV:

EQU

EQU
EQU
EQU

DEFM
DBFS
DEFB
EQU

DEFW
DBFS

DBFS
DBFS
DBFS
DBFS
DBFS

DBFS
DBFS
DBFS

13C4H

13BDH
1403H
1409H

'I/O
2
ODH
$-EMS(

0
2

1
1
2
2
2

2
1
2

;READ BINARY
;WRITE BINARY
;WRITE LINE
;ASSIGN
;OPEN
; CLOSE

;OPEN TYPE: OPEN FOR
;INPUT
;EOF ERROR CODE
;RIO ERROR CODE -
;ILLEGAL FILE TYPE
;RIO ERROR CODE -
INSUFFICIENT MEMORY
;ASCII FILE TYPE

;PARAMETER STRING
;POINTER
;ERROR CODE LOCATION
;SYSTEM CALL ADDRESS
;MEMORY MANAGER ADDRESS

;ADD A CARRIAGE RETURN

;READ/WRITE BUFFER

;LOGICAL UNIT NUMBER
;REQUEST CODE
;DATA TRANSFER ADDRESS
;DATA LENGTH
COMPLETION RETURN
;ADDRESS
;ERROR RETURN ADDRESS
COMPLETION CODE
SUPPLEMENTAL PARAMETER
;VECTOR POINTER

;THE SUPPLEMENTAL

G-ll

LOG OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

008C

0090

0093

0097
0099
009C
009E
OOA1
OOA5
OOA8
OOAB
OOAD
OOAF

OOB1
OOB3
OOB6

OOB7
OOB8

OOBA
ODBC
OOBF
OOC1
OOC4
OOC7

OOC8

ED434D01 R

225101 R

ED435301 R

3EOA
325001 R
3E04
324F01 R
FD214F01 R
CD0314
3A5901 R
CB77
280B
FEC9

2024
2A5301 R
7C

B5
283F

3EOE
325001 R
3E03
324F01 R
3A5901 R
F5

CD0314

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

LD

LD

LD

(BUFSIZ) ,BC

(AVDTA) ,HL

(AVDL) ,BC

;READ NEXT BUFFER LOAD

READ : LD
LD
LD
LD
LD
CALL
LD
BIT
JR
CP

JR
LD
LD

OR
JR

;WRITE A BUFFER

WRITE: LD
LD
LD
LD
LD
PUSH

CALL

A,RDBIN
(AVREQ) ,A
ft, 4
(AVLUN) ,A
IY,AVEC
SYSTEM
A,(AVCC)
6, A
Z, WRITE
EOF

NZ, ERROR
HL, (AVDL)
A,H

L
Z,CLOSEF

LOAD TO SYSLST

A,WRTBIN
(AVREQ) ,A
A, SYSLST
(AVLUN) ,A
A, (AVCC)
AF

SYSTEM

;ADDRESS
;SAVE SIZE OF BUFFER

INITIALIZE DATA
;TRANSFER ADDRESS
;LOAD BUFFER SIZE

;READ BINARY

;FROM UNIT 4

;READ ERROR?

;YES, HAS IT AN END
;OF FILE?

;YES, ANY DATA
TRANSFERRED?

;IF NOT, CLOSE FILE

;WRITE BINARY

;ON SYSLST

;SAVE COMPLETION CODE

;DATA TRANSFER ADDRESS
;AND DATA LENGTH WERE
;SET BY THE READ
;OPERATION

G-8

SYMBOL VAL M DEFN REFS

HBTHEX
ILLFT
INPTR
INSMEM
LASV
LEMSG
MEMMGR
OPEN
OPNINP
PRT100
RDBIN
READ
SPV
SPVDRV
SPVFB
SPVFN
SPVFNL
SPVOR
SYSLST
SYSTEM
WRITE
WRTBIN
WRTLIN

0132
0048
13C4
004A
0001
OOOD
1409
0004
0000
0066
OOOA
0097
015C
015D
015C
015F
015E
015C
0003
1403
OOBA
OOOE
0010

R

R

R
R
R
R
R
R
R

R

217
244
253
246
293
262
257
238
241
69
234
103
279
284
282
286
285
281
228
256
125
235
236

205
61
16
82
46

167
74
36
38
60
103
149
19

15

42
39
127
27

111
125

209

90

48

156

191

108 137 169 181

6-13

LOG OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

0112
0115
0116
0117
0119
011D
0120

0123

0124
0125
0126
0127
0128
0129

012C
012D
012E

0131

0132

0134
0136
0138
013A
013C
013D

2A4B01 R
7C
B4
3E01
ED4B4D01 R
C40914
32BD13

C9

F5
IF
IF
IF
IF
CD3201 R

Fl
23
CD3201 R

C9

E60F

FEOA
3802
C607
C630
77
C9

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

LD
LD
OR
LD
LD
CALL
LD

RET

;B T 0 H E X
*
t

BTOHEX: PUSH
RRA
RRA
RRA
RRA
CALL

POP
INC
CALL

RET

;H B T H E X
•
t

HBTHEX: AND

CP
JR
ADD

HB10: ADD
LD
RET

CONOUT: EQU
SYSLST: EQU

;I/0 REQUEST

HI
A
H
A
B<
N:
0

_____ (

sr

A:

HI

A!
H]
HI

i
01

Oi

1
c
A
A
(1

2
3

CODE;

HL,(BUFFER)
A,H
H
A,l
BC, (BUFSIZ)
NZ,MEMMGR
(ERCODE),A

;WAS BUFFER ALLOCATED?

DEALLOCATE

CONVERT 8 BITS OF REG A TO HEX ASCII,
STORE AT (HL)

;SAVE A

HBTHEX

HBTHEX

;CONVERT HIGH ORDER
;4 BITS
;RESTORE A

;CONVERT LOW ORDER 4
;BITS

CONVERT 4-BIT BINARY LOW ORDER 4 BITS
OF REG A TO HEX ASCII CHARACTER AT (HL)

;MASK OFF LOW ORDER 4
;BITS
;DECIMAL CHARACTER?

C,HB10
A,7
A,30H
(HL),A

;NO

;CONSOLE OUTPUT UNIT
;SYSTEM VOLUME OUTPUT
;UNIT

G-10

APPENDIX H

INTERNAL COMMAND TABLE CONTENTS

Debug
Initialize
Brief
Verbose
Xeq
Allocate
DEAllocate
Release
Force
Close
: (expression evaluation)

H-l

LOG OBJ CODE M STMT SOURCE STATEMENT ASM 5.7

015C

015D
015E
015F

017F

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

SPVOR:
SPVFB: DBFS

SPVDRV: DBFS
SPVFNL: DBFS
SPVFN: DBFS

;AREA IN WHICH
;FILE OPEN

ASVFT: DBFS
LASV: EQU

END

1

1
1
32

TO MOVE THE

1
$ -ASVFT

; PARAMETER VECTOR
;OPEN REQUEST TYPE
; ASSIGN REQUEST FLA<
;BYTE
; DRIVE DESIGNATION
;FILE NAME LENGTH
;FILE NAME

DESCRIPTOR RECORD ON THE

CROSS REFERENCE
SYMBOL VAL M DEFN REFS

EXAMPLES.MCZ

ASCII
ASSIGN
ASVFT
AVCC
AVCRA
AVDL
AVDTA
AVEC
AVERA
AVLUN
AVREQ
AVSVP
BTOHEX
BUFFER
BUFSIZ
CLOSE
CLOSEF
CONOUT
EMSG
EMSGN
EOF
ERCODE
ERROR
GETIT
HB10

0020
0002
017F
0159
0155
0153
0151
014F
0157
014F
0150
015A
0124
014B
014D
0006
OOF9
0002
013E
0148
OOC9
13BD
OOD7
0084
013A

R
R
R
R
R
R
R
R
R
R
R
R
R

R

R
R

R
R
R

248
237
292
275
272
271
270
267
274
268
269
276
200
264
265
239
172
227
259
260
243
255
156
88
222

59
10
43
28

47
18
26
24
13
11
21

163
91
93
172
63
158
165
160
112
62
30
79
220

57
49

97
45
107

106
37
180

186
190

81

262

141
86
51

293
109 129 146 162

115 168 179
95 166 177

128 159 175
104 126 157 173

119 143

192
114

6-12

APPENDIX I

RIO MEMORY MANAGER

This appendix describes register contents before and after
a MEMMGR call. Appendix C has the MCZ and ZDS addresses
of MEMMGR. Example 3 of Appendix G includes calls to
MEMMGR to allocate and deallocate buffer space.

ALLOCATE

Before MEMMGR CALL:
A=0 (allocate)

HL = lower address boundary
DE = upper address boundary
BC = required size (bytes)

After MEMMGR CALL:
A=80 (operation complete)

HL = beginning address of hole
DE = ending address of hole
BC = size of hole (bytes)

A=4A (insufficient memory)
HL = beginning of largest hole within boundaries
BC = size of largest hole within boundaries (bytes)

(if BC=0, then HL=undefined)

DEALLOCATE

Before MEMMGR CALL:
A=l (deallocate)

HL = beginning address of hole
BC = hole size (bytes)

After MEMMGR CALL:
A=80 (operation complete)
A=43 (not all blocks in area were allocated)

1-1

APPENDIX J

DESCRIPTOR RECORD OF PROCEDURE TYPE FILE

Byte #

0..3 : Reserved for future expansion

4..5 : File ID - currently unused

6..7 : Pointer to directory sector
holding entry for this file

8..9 : Pointer to first data record of file

10..11 : Pointer to last data record of file

12 : Type of file - see description under
the OPEN request

13..14 : Record count

15..16 : Record length

17..18 : Block length - currently unused,
and set to be same as record length

19 : Protection properties - see
description in OPEN request

20..21 : Starting execution address for
procedure files

22..23 : Number of bytes in the last record
of the file

24..31 : Date of creation

32..39 : Date last written

J-l

APPENDIX K

ZDOS/DFS COMMAND SUMMARY

Name Request Code Ref

ASSIGN 02,03 6.2
CLOSE 06,07w 6.4
DELETE 16,17 6.9
DELETE REMAINING RECORDS 18,19 6.10
ERASE 1A,]B 6.11
INITIALIZE 00,01 6.1
OPEN 04,05 6.3
QUERY ATTRIBUTES 30,31 6.22
READ AND DELETE 1C,ID 6.12
READ BINARY OA,OB 6.6
READ CURRENT IE,IF 6.13
READ DIRECT 22,23 6.15
READ PREVIOUS 20,21 6.14
RENAME 2A,2B 6.19
REWIND 08,09 6.5
SET ATTRIBUTES 2E,2F 6.21
SKIP BACKWARD 26,27 6.17
SKIP FORWARD 24,25 6.16
SKIP TO END 28,29 6.18
UPDATE 2C,2D 6.20
WRITE BINARY OE,OF 6.7
WRITE CURRENT 12,13 6.8

K-l

APPENDIX L

RELINKING RIO COMMANDS

Most RIO commands are linked to execute at the lowest
available memory. Those which may be expected to be
loaded concurrently under some circumstances (i.e.,
when executed from DO) are linked elsewhere. The object
files for these commands (listed below) are provided on
the system disk in order that they may be relinked to
execute elsewhere to fit the user's needs.

DO
ECHO
PAUSE
IMAGE

The command files RELINK.MCZ.COMMAND and RELINK.ZDS.COMMAND
are on the MCZ and ZDS system disks, respectively. These
command files use the specified object file and link
the command at the specified address using system object
files on the system disk.

A command may be linked as follows:

DO RELINK.MCZ.COMMAND #1 #2 #3 #4 #5 #6 #7

or

where

DO RELINK.ZDS.COMMAND #1 #2 #3 #4 #5 #6 #7

#1 is the name of the command to be linked

12 is the address the command is to be linked at

#3,#4,#5,#6,#7 are the optional link parameters
(see RIO Relocating Assembler and Linker User's
Manual for more details).

L-l

40..40+4*n

122..123

124..125

126..127

Where n is the number of segment
descriptors (0 <= n <= 16)
Each segment descriptor is 4 bytes--
the first 2 bytes are the starting
address of the segment and the
second 2 bytes are the length of
the segment in bytes. After the
the last segment descriptor is a
null descriptor where each of the
4 bytes are zero.

Lowest segment starting address
(LOW_ADDRESS)

Highest segment ending address
rounded up to the end of the record
(HIGH_ADDRESS)

Stack size

J-2

f
EXAMPLES

DO RELINK.MCZ.COMMAND DO OCOOO

DO RELINK.ZDS.COMMAND IMAGE OFOOO RL=400

L-2

i
*

