
A
(Ada) Compiler

User's Manual
Release 3.00

Copyright © 1984 by
Maranatha Software Systems

and

SuperSoft, Inc.

Ada is a trademark of the Department of Defense (Ada Joint Program Office)

Copyright © 1984
Maranatha Software Systems

All Rights Reserved Worldwide

No part of this publication or the A compiler may be reproduced, transmit-
ted or translated into any language, in any form or by any means, electronic, mechani-
cal, optical, chemical, manual or otherwise, in whole or in part without the prior consent
of SuperSoft, Inc. or Maranatha Software Systems. The software computer program(s)
described in this manual are furnished to the purchaser under a license for use on a sin-
gle computer system, and may not be used in any other manner, except as may other-
wise be provided in writing by SuperSoft, Inc. or Maranatha Software Systems.

/
Disclaimer

SuperSoft, Inc. and Maranatha Software Systems make no representations or
warranties with respect to the contents herein. While every precaution has been taken
in the preparation of this manual, no responsibility is assumed for errors or omissions.
Further, no liability is assumed for damages resulting from the use of this product. Su-
perSoft, Inc. and Maranatha Software Systems reserve the right to revise this publica-
tion and to make changes from time to time without obligation to notify any person of
such revision or changes.

SOFTWARE NON-DISCLOSURE AGREEMENT

As with all SuperSoft software, acceptance of this or other products, both in machine and human
readable form, implies agreement with the principles and concepts below.

1. All software is sold on an individual CPU basis. Usage on secondary machines without permission
constitutes a violation of this agreement.

2. Five (5) backup copies may be made by the user. These are for the protection of user's investment
only.

3. The ideas, concepts and machine/human interface of software are all considered the property of
SuperSoft Inc. and its authors.

4. The user agrees to non-disclosure of the following:

• Underlying concepts
• Documentation
• Code and code fragments (in both source and object)
« User Interface
• Any and all aspects of software which SuperSoft developed.

5. All software is non-transferable and may not be re-sold without permission.
6. User modification of software completely removes SuperSoft Inc. from any liability regarding the

operation or reliability of the software.

STATEMENT OF WARRANTY

SuperSoft disclaims all warranties with regard to the software contained on diskette, tape, or in
printed form, including all warranties of merchantability and fitness; and any stated express warranties
are in lieu of all obligations or liability on the part of SuperSoft for damages, including, but not limited
to special, indirect or consequential damages arising out of or in connection with the use or
performance of the software licensed.

Title and ownership shall at all times remain with SuperSoft and its authors.

Guide to the A Software Package

• What you get
i

In your Maranatha A package you should have recieved this Guide, a User's
Manual, a Language Reference Manual, the government document MIL-STD-1815A, and
2 or more disks containing the soft-ware outlined in section 1.2 of the User's Manual

« How to use this Package

You should first buy a good book on Ada; I recommend "Software Engineer-
ing with Ada" by Grady Booch (see bibliography, Appendix B of the User's Manual).
While writing an Ada program, you will probably be referring to your book, the A
Language Reference Manual, and (to a lesser extent) the MTL-STD-1815A While com-
piling and linking programs, you only need to refer to the User's ManuaL

• Optimization Hints

The following bints are provided for those who wish their programs to run as
fast as possible, or take up as little space as possible. Note that, in some eases, these
hints go against many good programming practices, and so they should be used with
caution. They are listed here so users may take advantage of the particular way A has
been implemented.

• Use the pragma RECURSION(off). This may have a disastrous effect when
used with a recursive subprogram such as a factorial program, so be sure that none of
the subprograms are recursive. It does provide excellent results in that variables can be
accessed more efficiently.

• Use the pragma OPTIMIZE(tixne). This, in effect, forces the optimizer to to
optimize the intermediate code twice. Sometimes this will have no effect, other times it
will have only a minimal effect. The only trade-off is compile-time versus run-time, so
for those programs you do not expect to have to re-compile often, use of this pragma
can't hurt.

• Use address specifications for arrays. Because of the way arrays are imple-
mented, the RECURSION pragma cannot place arrays in the local data area. Use an
address specification to declare the start location of an array that is used often. Be sure
it does not interfere with the program or system (CP/M) code!

• Use declared constants instead of attributes. For example, use declared con-
stants instead of array'first..array'last to loop through an array. The attribute takes up
run-time to evaluate, whereas the constant does not.

• Re-write TEXT_IO. The present TEXT_IO package contains more code than
you will probably use. For example, a short program to print "hello" will link in the en-
tire TEXT JO package, including all file i/o operations (over 16K!). Write a new I/O
package that contains only those procedures you will need for your program. Alterna-
tively, the i/o operations from version 2 of the compiler are still embedded in the system
(for compatibility). For such short programs, which only do minimal:i/o (i.e., integer or
string input/output), it is entirely possible to leave out the "with TEXTJO" at the be-
ginning of the program, since these inherent routines are contained in ADALIB. This is
bad programming practice, of course, since it goes against the philosophy of Ada pack-
ages. These routines will be removed sometime in the future without notice, but may
be used temporarily.

• Avoid numerous procedure calls. Because of the large amount of overhead in
calling a subprogram, avoid them when possible. A must keep track of a large amount
of data when a subprogram is called such as return addresses, exception data, dynamic
and static links, return values, heap pointers, etc. Again, this is bad programming prac-
tice; so only use this technique when you are desperate for speed or space. u ,

% .
• The Prime Number Benchmark , ,-,, i '

The prime number benchmark program appears as a sample program, and is
taken from the Byte prime number benchmark article(s). I've worked very hard to pro-
vide as much optimization as possible, and the result is a benchmark that ranks among
the top languages available for CP/M systems. On a Z80 system running at 4 MHz, the
benchmark clocks in at 17.5 seconds! Compare this to your favorite language; A does
fairly well.

i

• The Maranatha Bulletin Board System

A computerized bulletin-board system has been set up dedicated to Marana-
tha A in Seattle, Washington. It is currently on-line 24 hours/day, 7 days a week (300
baud only). It is an RCPM/RBBS system with 2 600K floppies filled with Ada informa-
tion. I hope to create a public domain database of Ada programs compatible with
Maranatha A. Send in your favorite program and help me to make this service a suc-
cess. Dial (206)939-6179.

— David Norris
— Author, Maranatha A

COPY THE MASTER DISK
As with all master disks the first thing you should do is make copies of the original Factory Master
Disks you received from SuperSoft then use the copy not the original disk

You are allowed under the user agreement to make a maximum of 5 working copies for your use
only. Put the factory disk 4fj£y after making copies and only get it out again if something disasterous
happens to your working disk

Make the copy on a new and freshly formatted disk If you have programs that check the integrity
of the surface media, such as the Disk Doctor set of utilities offered by SuperSoft, use those be-
fore copying

Then format the new disk and copy the system tracks from your own master onto the new disk

CARE OF FLOPPY DISKS
Floppy disks are durable, long-lasting and are among the most reliable mass storage devices
known They are something of a cross between a phonograph record and a cassette tape, with the
speed of the former and the sensitivity and ease of use of the tape But they require careful handling
Do NOT-

—touch the magnetic surface
—bend the disks, even though they are pliable
—expose them to excessive heat or cold
—allow them to come near magnetic substances or fields such as those generated by television

sets, transmitters, or medium sized electric motors
—leave them out of their protective sleeves for any longer than necessary
—store them in a dirty or dusty environment, as motes of dust can permanently damage the

disk surface

If you want to write on a disk cover, use a soft-tip pen, it's a much better idea to write on the self-
stick label that comes with new disks before putting the label on the disk

"BACK1NG-UP" DATA DISKS
If this program uses continuing data disks which are regularly updated, as is the practice in most
business and financial programs, it is a prudent and useful process to make back-up copies of those
disks.

A number of completely uncontrollable events can cause irreparable damage to a disk, such as a
line surge while the disk drives are active, a power outage during certain internal memory manipu-
lations, a bad sector on disk media, accidental disconnect of the machine, (or some helpful soul
turning it off because it didn't appear to be doing anything) and similar occurences that have noth-
ing to do with the integrity of your machine or the quality of the software you are using.

In all of the above cases, the data probably will be lost forever and the time and expense of recon-
structing it may be almost prohibitive.

Making regular back-up copies of your updated files takes no longer than photocopying an import-
ant document. Get in the habit of making back-up copies of your working disks regularly, at the end
of each computer session, or even every half-hour or so during a long session where much data is
being entered.

It is also a good idea to produce hard-copy (paper) printouts of key data files as another form of
back-up.

Preface

Thank you in advance for purchasing this our third major release of the
Maranatha A compiler. Additions to this version include:

Packages
Subunits
Linking Loader
Separate Run-time Library
Relocatable Run-time modules
Exceptions
Shorter Run-time programs
Faster, more optimized programs
Upgraded to ANSI Standard Ada syntax (MIL-STD-1815A)
Membership Tests
Short-circuit conditionals
Reformatter

Maranatha A (Ada) User's Manual

Table of Contents Page -N

Preface 3

Table of Contents . .4

1.0 Introduction 5
1.1 Forward 5
1.2 Contents of the Distribution Disk 6 ,

2.0 Compiler Operation 7
2.1 Compile Time System Requirements 7 ;
2.2 Run Time System Requirements 7 ...-.
2.3 Invocation , 7 ,

2.3.1 Lexical Analyzer , f ,, «.
2.3.2 Parser ' .., ; ",'•,':. ;K • \ ' • - - • ; $ '. - . ' '"'.". . •
2.3.3 Optimizer '"''"" E 8 ^,
2.3.4 Code Generator 8 ^J

3.0 Linking Loader Operation 10
3.1 Invoking the Linker 10
3.2 Loader Switches . 10
3.3 Order of Elaboration 12

4.0 Refonnatter Operation 14
4.1 Refonnatter Invocation 14
4.2 Options 14
4.3 Examples of Reformatting 15 '

A. Error Messages 16

8. Selected Bibliography 29

C. Unimplemented ANSI Standard Ada 31

D. Format of Relocatable (.REL) files 32

E. Writing assembly language programs 33

4
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

1.0 Introduction

The User's Manual describes the Maranatha Software Systems implemenia-
tion of the Ada language for microcomputers in the CP/M operating system environ-
ment; i.e., how to compile, load and run an Ada program. While this manual does
describe what standard Ada constructs are not yet implemented in this release, it is not
intended to serve as a tutorial to the Ada programming language. Users are referred to
the bibliography section for tutorial and historic information on the subject. The
Language Reference Manual describes specifically what has been implemented and gives
some examples.

1.1 Forward

In 1975, the Department of Defense, plagued with ballooning software
development costs began a program to create a new language for all embedded military
software systems. Many other languages were evaluated and none were found that
could fill all of the DOD's rigid requirements; included in the languages tested were Pas-
cal, Algol, PL/I, Jovial, Fortran and Cobol. The new language was named Ada in honor
of Augusta Ada Byron, the first computer programmer.

Ada has many problems despite its backing by the U.S. Government and
years of language development behind it. Ada is one of the largest languages (in terms
of syntax) of any language yet developed; its sheer size makes it a language difficult to
implement, especially on a microcomputer. Some say Ada is too loose and inefficient for
the purpose for which it was created. The input/output facilities are extremely awk-
ward for formatted I/O. Even so, its strong support from the DoD, its accomplishment
of a recognized standard and the fact that it is a well-rounded language for use in sys-
tems programming and structured language instruction will make Ada the language of
the 1680's.

Maranatha Software Systems is dedicated to making our implementation one
of the most complete and usable Ada language systems for CP/M computers. This, the
third major release, contains most of the constructs which make A & usable language
system and stand out from other microcomputer languages such as Pascal and Basic.

5
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

1.2 Content* Of The Distribution Dbk

On the distribution disk you will find the following compiler tools:

ACOM
A2.COM
A3.COM
A4.COM
L.COM
PUTREL.COM
REFORMAT.COM

• A lexical analyzer (scanner)
• A syntactical/semantical analyzer (parser)
• A optimizer
• A 8080/8O code generator
• A Linking Loader
• Relocatable file printer
• the Ada source text reformatter

The following compiler programs are also required:

ADALIB.REL
ERRORS.TXT
INIT.REL

• The A Standard Library
• text file containing A error messages
• The initial start-up module

The following libraries and demonstration programs have been included in
source form, and need to be compiled before use:

ASCH.ADA
CALCADA
FACT.ADA
IOEXCEPT.ADA
MATHBODY.ADA
MATHLIB.ADA
PRIMES.ADA
QUEENS.ADA
SHELL .ADA
SORT.ADA
STRINGS.ADA
TERMIO.ADA
TERMBODY.ADA
TtLX.TBODY.ADA
TEXTIO.ADA
TOUPPER.ADA
TOWERS .ADA

. limited package with ASCII constants
• RPN calculator program
• function to compute n!
• The package IOJEXCEPTIONS
• Ada math library package body
• Ada library of math functions (used by CALC ADA)
• Ada benchmark program
• solves "Eight Queens" problem
• badly formatted program (demo for Reformatter)
. demonstration of three sorting techniques in Ada
• demonstrates Ada string manipulation capability
• Terminal i/o driver package specification
• Terminal i/o driver package body (Televideo 950)
• The package body TEXTJO
• The package specification TEXT_IO
• program that prints any text file in upper case
• solves "Towers of Hanoi" problem

6
Copyright <c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

2.0 Compiler Operation

2.1 Compile-Time System Requirements

The A compiler requires an 8080, 8085 or Z80 CPU running the CP/M
operating system. The four main compiler files (ACOM, A2.COM, A3.COM,
and A4.COM) should all be resident on the current disk, although source files may
exist on other disks. The A error file "ERRORS.TXT" should be with the main com-
piler files but is optional. If it is not on the same disk as the main compiler, only the er~
ror number will be printed, along with the offending line number (check Appendix A for
the error numbers and corresponding explanations). The compiler itself requires 50K of
transient program area. A 64K system is recommended, although small programs can
be compiled in as little as a 56K system.

For systems with extremely limited disk space, the four compiler passes can
be executed separately. Each pass will output an error when it is finished if the next
pass is not on the disk, but will leave the intermediate file (.TOKj JNT, or .OPT) in-
tact. Run the next pass with the intermediate file as an argument, Le.:

A>A2 TEST.TOK

2.2 Run-Time System Requirements

The code generator indicates the number of bytes of object code it has gen-
erated. The total program contains code generated by the main subprogram, packages
and subunits, plus various routines as needed from the A library ADALEB. Note that
the amount of "white space" (comments, blank lines, etc.) in the source code does not
affect the amount of actual coae produced, since Ada comments are filtered during pars-
ing and produce no run-time code. Variable storage is allocated within the stack which
is automatically set at the top of the transient program area (TPA) and is not included
in the above figure.

2.3 Compiler Invocation

To execute the A compiler type:

A <filename>[JU>A]

Examples:

B>A CALC

A>A B:TOWERSADA

A>B:A TEST ; This it invalid, the compiler will abort after the first past!

Note that the file extension "ADA" b automatically appended unless anoth-
er file extension has been provided by the user. The only compiler toggles presently
available are through pragmas and no compiler switches are available in the command
line.

7
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

2.3.1 Lexical Analyser (A.COM)

The first pass lexically analyzes the source text and divides it into lexical
chunks called tokens (see Figure 1) such as the Ada keywords, identifiers, special sym-
bob, etc. The output is placed into a ".TOR" file. The lexical analyzer is responsible
for processing all pragmas. This pass has its own set of error messages for lexical errors;
they are described in Appendix A.

""* *

2.3.2 Parser (A2.COM)

The stream of tokens in the ".TOK" file is then processed by the parser.
The parser is the workhorse of the compiler, checking for syntax and semantic errors. It
produces a ".INT* intermediate code file. The errors which may be produced by the
parser are luted in Appendix A The parser may have to read symbol tables generated
by other program units; these files have CP/M extensions of ".SYM."

2.3.3 Optimizer (A3.COM)

The intermediate code, which resembles the Forth language, is processed by
the optimizer. The optimizer searches through the code generated by the parser and at-
tempts to reduce redundant operations, eliminate unneeded code, and increase the speed
and efficiency of the resulting program. Normally, once the compiler has reached this
pass, they code is considered error-free, and no error messages should occur. However,
both the optimizer and the code generator contain code that checks the internal opera-
tion of the compiler to insure there are no internal errors. If a message such as "Inter-
nal compiler error" is printed, contact us. Note that the optimizer will not be executed
if the optimize pragma has been turned off.

2.3.4 Code Generator (A4.COM)

The file produced by the optimizer (".OPT*) is processed by the code gen-
erator to produce a relocatable object ".REL" file. The code generator converts the op-
timized intermediate code into machine code, attempting to make the best use of the
8080/8085/Z80 register set. The code generator may print a table overflow error if the
program is too large, in which case it will have to be broken down into smaller chunks.
The first pass of the code generator resolves all internal references and completes inter-
nal tables. The second pass actually outputs the object code and requires more time
than any of the other compiler phases.

8
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Ada source program

ACOM
(lexical analysis)

lexical units (.TOK file)

Library unit symbol tables
(.SYM files)

A2.COM
(Syntactical analysis)

intermediate code (.INT file)

A3.COM
(Optimization)

optimized intermediate code
(.OPT files)

A4.COM
(Code Generation)

Relocatable Object
Module

(.REL file)

Figure 1.
A Compiler Operation

9
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

3.0 Linking Loader Operation

The Maranatha A compiler generates .REL files which are not executable.
To create an executable file, you need to invoke the Linking Loader and link the result-
ing ".REL" file with a number of other ".REL" files in a particular order to produce an
executable ".COM" object file.

i -

3.1 Invoking the Loader

To invoke the loader, type "L" followed by a carriage return. The linking
loader will print a sign-on message, then the prompt "*". Commands to the loader con-
sist of strings of filenames and switches separated by commas; i.e.:

*filename/2\vitch,filename,filename/switch,/switch etc.

When a filename is used, that file is loaded from the disk into memory (a de- /
fault extension of .REL is assumed). The file can optionally be searched (as in ADALDB)
by using the /S switch.

3.2 Loader Switches

There are several switches available to specify actions which affect the load-
ing process:

/E - Exit the Linker and return to CP/M. If the /N switch has been
used, the .COM file will be written to the disk before exit.

/M - List global data map of defined and undefined globals.

/N - If < filename >/N is entered, the program will be saved on the disk
with the specified name (with a default extension of .COM if no
extension has been provided) when the Linker is exited.

th t

/R - Reset the Linker to its initial state. "̂

/S - If <filename>/S is entered, the file specified by <filename> will
be searched, loading only those modules which are currently
undefined.

/U - List undefined globals, origin and end of the program.

10
Copyright © 1984, Maranatha Software Systems

%T^^?.̂ gT^5^^ y.̂ -'S^^y^ T^'P^-'V-^^iV^n^^-T''" •

Maranatha A (Ada) User' s Manual

Relocatable Object
Modules

(.REL files)

^
t

L.COM
(Linking Loader)

\
Executable Object

Module
(.COM file)

Figure 2.
Linking Loader Operation

11
Copyright <c) 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

3.3 Order of Elaboration

The order in which A relocatable modules are loaded is all-important. Pack-
ages must be elaborated before they are used or undesirable side-effects will occur. For
the simplest program, which is not dependent on any packages, the following link se-
quence can be used:

*IMT, <program> ,ADALIB/S

* < program > /N/E

INIT must always be the first module loaded. It is the kernel Ada program
which sets up the stack and initializes the environment for all Ada programs. ADAIJB
must always be the last link item loaded (or searched). It contains all of the run-time
math routines, relational subroutines, stack and heap manipulation routines, etc. Note
that all ADAIJB modules begin with a dollar sign; i.e., $IML (integer multiply).

••N
In a more complicated example, let's compile and link the demo program J

CALC. Since CALC requires four packages (TEXTJO, TERM JO, ASCII, and
MATHJjIB), they must be compiled first. The following tree shows the dependency
between the units; the names in parentheses indicate the CP/M file name corresponding
to the package body of a particular package:

CALC

TERM IO
(TERMBODY)

ASCH MATHLffi
(MATHBODY)

TEXTJO
(TEXTBODY)

KLEXCEPTIONS
This order requires us to compile IO EXCEPTIONS first, then TEXT IO,

and then TERMJO, ASCII, and MATHJJB in~any order (the package bodies can be
compiled after all of the specifications have been compiled). CALC is compiled last. To
link the entire program together, the following order should be used:

*INIT
*IOEXCEPT
*TEXTIO,TEXTBODY

. *TERiVnO,TERMBODY,MATHLIB,MATHBODY
*CALC
*ADALffi/S
*CALC/N/E

12
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Why this order? INIT must always be loaded first. TEXTJO cannot be
loaded next because it is dependent on the package IOJEXCEPTIONS. Since
IO_EXCEPTIONS does not depend on another package, it can be loaded. Packages
that do not depend on other packages can be loaded in any order. Since the package
TEXTJO has two parts, the specification and the body, the specification TEXTIO must
be loaded first, because the body depends on it. Next the package body TEXTBODY
can be loaded. Next, the package specifications TERM JO, ASCII, and MATHJLEB can
be loaded in any order, followed by their respective package bodies (ASCII has no pack-
age body). Since all of the required packages have been loaded, the main subprogram
CALC can be loaded. As of this release, a subprogram that is a library unit is automat-
ically considered the main program. Lastly, the A library (ADALIB) is searched for
undefined externals and the .COM file created. Observe carefully the undefined symbols
during loading to insure the correct loading sequence and that all required packages
have been loaded. The only undefined globals that should appear are ADALIB modules
(begin with a dollar sign), and labels belonging to as yet unlinked sub units. If an
undefined global appears that belongs to a package, the loading order is incorrect and
the entire linking process must be done over. Such undefined globals always begin with
the name of the package.

In this particular case, the package specification ASCII does not actually
have to be loaded, because it contains extraneous code. Package specifications which
contain only subprogram declarations or constant declarations (where the initialization
expression is a single primary) do not need to be loaded.

Subunits may be loaded after everything else has been loaded, but before
ADALIB has been searched. If a subunit has been declared, but never used, the Linker
does not require that it be loaded.

13
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

4.0 Reformatter

The reformatter is a language design tool that is similar to other "pretty-
printer" utilities. It takes as input any Ada program, and produces as output the same
program re-justified, following the informal indentation rules presented in the MIL-
STD-1815A-

1) Reserved words appear in lower case , t

2) Identifiers appear in upper case
* j

3) Indentation follows examples presented in Ada LRM

The reformatter can be an invaluable tool to point out hard-to-find syntax
errors and make plain embedded "nesting" mistakes which may cause the compiler to
print an erroneous error message in the wrong place. The Ada program does not have
to be syntactically correct, although an incorrect program may cause some unexpected
results.

/• *

4.1 Invocation . . ,
' V * "•" f

To invoke the reformatter, type:

REFORMAT sourceJile_name[ADA] [Soptionsl

Examples: . , |, i '
A>reformat sqrt.ada

B> reformat c:towers $t2

The default file extension is "ADA" and need not be included. The last ex-
ample demonstrates the use of one of the reformatter options.

4.2 Options

To use a reformatter option, use the dollar ($) sign following the reformatter
invocation, followed by any of the following:

Tn - Define n as tab length (default = 4)
For indentation purposes (Le, between begin-end), this
option defines the number of spaces to be used for tabs. .

N - Print nest level
Instructs reformatter to print nest level at the beginning
of each line of source text. A valid Ada program will
have a nest level of "1" for the last line of text.

14
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

4.3 Examples of Reformatting

The following valid Ada program appears on the distribution disk as
SHELL.ADA (not meant to be directly compiled). This program is an actual portion of
Ada source code, and is "included" in the demonstration program SORT ADA with the
INCLUDE pragma:

A> type shell.ada

procedure shell_sort(a : in out sort_array) is done : boolean; jump : integer;
begin jump := a'length; while jump > a'first loop jump := jump/2; loop
done := true; for j in a'first..a'length-jump loop declare
i : integer := j-f-jump; begin if a(j)>a(i) then swap(a(j),a(i)); done := false;
end if; end; end loop; exit when done; end loop; end loop; end shell_sort;

Now, if you are prone to write programs in this way, you probably deserve
what you get. At any rate, it would obviously be difficult to find the "mis-matched
end" types of errors in a program that is so badly formatted. The Refonnatter can
make plain the begin-end relationships:

A>reformat shell.ada

procedure SHELL SORT(A : in out SORT ARRAY) is
DONE : BOOLEAN;
JUMP : INTEGER;

begin
JUMP := A'LENGTH;
while JUMP>ATIRST loop

JUMP := JUMP/2;
loop

DONE := TRUE;
for J in ATIRST.A'LENGTH-JUMP loop

declare
I: INTEGER := J+JUMP;

begin
if A(J)>A(I) then

SWAP(A(JIA(I));
DONE := FALSE;

end if;
end;

end loop;
exit when DONE;

end loop;
end loop;

end SHELL.SORT;

The output of the Reformatter clearly shows the logical flow of the program,
and the "end" constructs are easily matched up with their identically indented counter-
parts. Errors in control flow will become much more evident.

15
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix A
Error Messages -

Lexical analyzer error messages:

Invalid digit -
A digit '0'..'9' was expected in a numeric literal.

Letter or digit expected following '_' -
Identifiers cannot end with an underscore.

Invalid character -
A character was read that does not conform to the basic graphic
character set. A likely cause of this error is text produced by
a word processing program that sets the 8th bit of a character.

Digit expected following underscore -
Numbers cannot end with an underscore.

; ' . - • . - . . • • --. • • . • .

Single quote expected following character literal -
A character literal must be followed by a quote.

Pragma identifier expected -
Self-explanatory.

Include file name expected -
A file name is required for the include pragma.

Left parenthesis expected - J

Self-explanatory. .

Unable to open include f i le - • • ? , , . . ' . - • ! • -
Self-explanatory.

Identifier expected -
Self-explanatory.

Illegal pragma argument-
Self-explanatory. 1 '• - •

• • ? ' . ,
Right parenthesis expected - ..

Setf-explanatory.

Semicolon expected - o
Self-explanatory. •

18
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

The syntax/semantic errors are contained in the file "ERRORS.TXT." If
this file is not present on the same disk as the compiler, only the offending line number
and error number will be printed.

2. Intermediate file not found -

This error should not normally appear; it means the compiler was unable to
Cod the output of the previous pass. If you invoked the parser directly with a tokenized
file (".TOK"), insure the name was correct or that the file actually existed.

3. Discrete type__mark expected for discrete..range -

When the form "type_mark [range..constraint]" is used for a discrete_range,
the type_mark must be discrete; that is, an enumeration or integer type.

4. Label already exists -

You have tried to re-define a label which already exists in the current se-
quence of statements.

5. "»" Expected -

Self-explanatory.

6. Left parenthesis expected -

Self-explanatory.

7. Record must have at least one component -

Self-explanatory.

8. Right parenthesis expected -

Self-explanatory.

9. Semicolon expected -

Self- explanatory.

10. Subtype_indication expected -

Self-explanatory.

11. Package not visible -

For a use_clause, the given package not has not been used in a with_clause
or does not appear in a visible declarative part.

17
Copyright © 1984, Maranatha'Software Systems

Maranatha A (Ada) User's Manual

12. Procedure or function expected -

A subprogram must begin with one of these keywords. You probably have
either misspelled the keyword, or have submitted a non-Ada program for compilation.

13. "Is" expected -

Self-explanatory.

14. "End" expected -

Self-explanatory.

15. Designator or semicolon expected -

Following the final "end" of a subprogram, the subprogram designator or a
terminating semicolon should be used.

16. No return statement found within subprogram body -

Every function must have at least one return statement.

17. Mis-match of begin and end designators -

The subprogram designator used after the terminating "end" does not match
the initial designator. If you are sure it does, insure there are the correct number of
"ends" within the program. The Reformatter may help.

18. Ellipsis (..) expected -

Self-explanatory.
> \ < •

19. Constraint error -

A range_constraint can only be used on an enumerated or integer type.

20. Not enough index constraints -

When constraining an array type, all of the indices must be constrained. In-
sure that an index_constraint exists for each index.

21. Index type mismatch -

The type of the index_constraint did not match the type of the correspond-
ing index of the array type you are constraining.

1 . •
22. Illegal index constraint for this type -

You cannot constrain an array type that has already been constrained.

18
Copyright <c) 1984, Maranatha Software Systems

\
I

Maranatha A (Ada) User's Manual

23. Too many index constraints (5 maximum) -

Maranatha A allows for a maximum of 5 indices.

24. Comma or colon expected -

Self-explanatory.

25. Too many identifiers in identifier list -

You have tried to do too much at once by using too many identifiers in the
same declaration. Break the declaration into two or more separate declarations.

26. Identifier expected -

Self-explanatory.

27. Undeclared type -

You have tried to use a type_mark which has not been declared.

28. Expression type mismatch -

The type of a processed expression did not match the required type.

29. Two different logical operators used within expression -

You may not mix logical operators. Use parentheses to resolve ambiguities.

30. Boolean relation expected -

Logical operators can only work on boolean operands.

31. Simple expression type mismatch in relation -

Simple expressions used as operands in a relation must have the same type.

32. Invalid relational operator, use "/==" instead -

You are probably a Pascal programmer. "<>" is the Pascal symbol for ine-
quality, Ada uses "/=". The "<>" is called a "box" in Ada and has different uses.

33. Invalid relational operator for this type -

The relational operator is not defined for the operand type used.

34. Invalid unary operator for this type -

The unary operator is not defined for the operand type used.

19
Copyright © 1984, Maranatha- Software Systems

'

Maranatha A (Ada) User's Manual

35. Boolean term expected following unary NOT - . .

Following the unary NOT operator, the type of the term must be boolean.

36. Invalid adding operator for this type -

The adding operator is not defined for the operand type used.

37. Invalid operands for concatenation -

Self-explanatory.

38. Invalid multiplying operator for this type -

The multiplying operator is not defined for the operand type used.

39. Integer factors expected for MOD and REM -

MOD and REM are defined only for integer factors. ^

40. Invalid type for exponentiation -

The " **" operator can only be used on integer and floating point numbers.

41. Invalid primary -

A primary must be an integer, real, character, or string constant, begin with
a left parenthesis, or start with a non-keyword identifier. Otherwise it is invalid.

42. Integer constant illegally used - •

The integer constant does not match the existing expression type.

43. Floating point constant illegally used -

The floating point constant does not match the existing expression type. \

44. String constant illegally used -

The string constant does not match the existing expression type.

45. Character constant illegally used -

The character constant does not match the existing expression type.

46. Name type mismatch -

A name processed in a primary must be a function, variable or constant.

20
Copyright (c) 1984, Maranatha Software Systems

- 3 - . , . .

Maranatha A (Ada) User's Manual

47. Invalid identifier used in name processing -

The first identifier in a name must be a variable, constant, type_mark, or
function name.

48. Left parenthesis or single quote expected following type name -

Following a type_mark used in a name, a left parenthesis (indicating
type_conversion) or a single quote (indicating qualified expression) must be used.

49. Left parenthesis or identifier expected -

Self-explanatory.

50. Enumerated literal type mismatch -

The enumerated literal used did not match the existing expression type.

51. Undeclared identifier •

Self-explanatory.

52. Invalid type conversion -

Conversion to the type_mark given in the type conversion is not allowed or
is not defined.

53. Function not found -

A function used in a primary was not declared. Check the designator spel-
ling, the number and types of parameters.

54. Comma or right parenthesis expected -

Self-explanatory.

55. Illegal attribute -

The attribute identifier used is not implemented or is not defined. See Ap-
pendix A for a list of implemented attributes and how to use them.

56. Invalid attribute -

The attribute is not defined for the object it is used against. See Appendix
A

57. Invalid left parenthesis -

Self-explanatory.

21
Copyright <c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

58. Too many indices -

You have used too many indices in an indexed component. Check the de-
claration of the array.

59. Comma or left parenthesis expected -

Self-explanatory.

60. Comma expected, not enough indices -

You have not indexed the array sufficiently. Check the array declaration.

61. Invalid selected component •

You cannot select the component of the record given. Either the object is
not a record or the selected component was not declared in the record type declaration.

62. Designator expected -

Self-explanatory.

63. Invalid binding modes for function parameters -

Only "IN" mode parameters are allowed for functions.

64. Subtype indication expected in function specification -

A return clause is expected to declare the type of a function.

65. Invalid subtype indication found in procedure specification -

Procedures do not return values and do not have return clauses.

66. Right parenthesis or semicolon expected -

Self-explanatory.

67. Bad order in declarative part -

In the declarative_part, declarative_items precede
representation^specifications, which are then followed by program components. You
have mixed the order of the declarative_part.

68. Invalid declarative item -

A declarative item begins with the reserved word "TYPE" or "SUBTYPE",
or a non-keyword identifier which begins an object_declaration.

22
Copyright © 1984, Maranatha Software Systems

. , •; , •** -~ •>

Maranatha A (Ada) User's Manual

69. Semicolon or ":=" expected -

Self-explanatory.

70. Identifier expected -

Self-explanatory.

71. Invalid type definition -

The type_definition used has not yet been implemented or is not defined.

72. Identifier expected for enumeration literal -

Self-explanatory.

73. Index expected -

In an array_type_definition, an index cannot be followed by a dbcrete_range.
The array indices must all be unconstrained.

74. Discrete range expected -

In an array_type_definition, when an index_constraint is used, an index can-
not be substituted for a discrete_range. All of the indices must be constrained.

75. Illegal goto -

The goto statement illegally tried to goto this label. See section 5.9 for rules
regarding gcto statements.

76. "OP expected -

Self-explanatory.

77. "Record" expected -

Self-explanatory.

78. Recursive record type definition not allowed -

A component of a record_type_definition cannot be the record type itself.

79. Statement expected -

In every sequence_of_statements, at least one statement must appear. If no
action is to be performed, use the null statement.

80. Syntax error -

You have used an unrecognizable token to begin a statement.

23
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

81. Illegal function call as statement -

Only procedure calls may be used as statements; functions return values and
are used in expressions.

82. Block or loop expected following block/loop identifier -

A block/loop identifier was used (identifier.) without a block or loop state-
ment.

83. Invalid assignment to constant -

Assignments to constants are not allowed. Loop identifiers are considered
constants, as are "IN" mode parameters.

84. Assignment operator expected -

Self-explanatory.

85. "Then" expected -

Self-explanatory.

88. "End if expected -

Self-explanatory.

87. "End loop" expected -

Self-explanatory.

88. Mis-match of begin and end loop identifier -

The loop identifier given following the terminating end does not match the
initial label.

89. Loop identifier or semicolon expected -

Self-explanatory.

00. Loop identifier not declared for this loop statement -

A loop identifier was given following the terminating end, but none was pro-
vided at the start of the loop.

91. Loop identifier expected -

The loop identifier given at the start of the loop statement must appear fol-
lowing the terminating end.

24
Copyright © 1984, Maranatha Software Systems

* -* r~* - '

Maranatha A (Ada) User's Manual

92. "Loop"5 expected -

Self-explanatory.

93. "In" expected -

Self-explanatory.

94. "Begin" expected -

Self-explanatory.

95. Block name expected -

The block identifier given at the start of the block must appear following the
terminating end.

96. Mis-match of begin and end block identifier -

The block identifier given following the terminating end does not match the
initial label.

97. Loop identifier, "when*", or semicolon expected -

The token following the keyword "exit" is invalid.

98. '"When" or semicolon expected -

The token following "exit loop.Jdentifier" is invalid.

99. No enclosing loop for exit statement -

An exit statement was used without an enclosing loop statement.

100. Loop identifier not found -

The loop identifier given in the exit statement was not found.

101. Labels referenced but not declared -

In the sequence of statements of the preceding subprogram body, a goto
statement referenced a label that was not declared (or not visible).

102. Return expression expected for function -

Aa expression must follow the return statement used within a function which
has the type of the function.

103. Return expression not expected for procedure -

An expression was illegally used for a return statement used within a pro-
cedure, which does not return a value.

25
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

104. Discrete type expected for case expression -

The type of the expression in a case statement must be discrete; that is,
enumerated or integer.

105. "=>" or "|" expected -

Self-explanatory.

106. "End case" expected - " ~

Self-explanatory.

107. Invalid "when" found after choice "others" used -

You may not use any more choices in a case statement after the choice oth-
ers has been used; it must be the last choice in the case statement construct.

108. Procedure not found -

" Self-explanatory.

109. Semicolon or left parenthesis expected -

Self-explanatory.

110. GET undefined for this type -

Self-explanatory.

111. PUT undefined for this type -

Self-explanatory.

112. READ undefined for this type -

Self-explanatory.

113. Comma expected -

•Self-explanatory.

114. WRITE undefined for this type -

Self-explanatory. x

115. ABS undefined for this type -

Self-explanatory.

26
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

116. Unexpected end of file -

The compiler unexpectedly ran out of source text. Insure each procedure,
function, and compound statement have a proper terminating end. The Reform atter
may help to find such errors.

117. Fatal error - compilation aborted -

The compiler is unable to continue at this point. Correct the offending
errors) and re-compile.

118. Incomplete type definition for declaration -

An unconstrained array cannot be used in an object declaration; it must be
constrained first.

110. Illegal actual parameter modes in procedure call -

The modes of the actual parameters did not match the binding modes of the
formal parameters.

120. Symbol table overflow •

You have overflowed the symbol table. You need to get more memory,
reduce the number of declarations in your program, or go buy a CRAY-1.

121. A3.COM (Optimizer) not found -

The optimizer was not found on the current disk. If it was aceidently
erased, you can continue compilation by using a backup copy and typing "ADAS
progname!NT."

122. Illegal prior reference to this label -

A goto statement used earlier in the program used this label illegally. See
section 5.9 for rules regarding goto's.

123. "Use" expected -

Self-explanatory.

124. "AT" expected •

Self-explanatory.

125. Integer literal expected -

Self-explanatory.

127. "OTHERS" must be its^only choice -

• In case statements or in an exception handler, other choices may not be used
in conjunction with OTHERS. It must be used alone.

27
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

128. Exception name expected -

Self-explanatory.

129. Package body is not a basic declarative item •

A package body may not appear in a package specification.

130. Invalid address specification -

Address specifications can only be used with variables and constants.

131. Subunit not found -

Self-explanatory. *

132. Subprogram body not found for subprogram declaration(s) -

Subprogram body or bodies were not found for corresponding subprogram
declarations in this declarative part (or package specification if in a package body).

133. Package specification required before package body -

Package specifications must be compiled before package bodies.

134. Undefined package body or bodies hi declarative part -

One or more package specifications exist which require package bodies to
fulfill subprogram declarations. The package bodies were not found.

135. Package bodies may not be separate. •

Self-explanatory.

136. Symbol table for ancestor unit not found -

The library unit of a subunit must be compiled before the subunit so its
symbol table file may be accessed. Either the unit has not been compiled, or the symbol
table file has been misplaced.

28
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix B
Selected Bibliography

The following is a list of selected textbooks and articles on Ada. While this
list is for end-user information only and appearance in the list does not necessarily con-
stitute endorsement, we strongly recommend Booch's book, "Software Engineering with
Ada."

Barnes, J.G.P.
Programming in Ada
Addkon-Wesley, 1982
(ISBN 0-201-13793-3, hardback)
(ISBN 0-201-13793-5, paperback)

Booch, Grady
Software Engineering with Ada
Benjamin/Cummings, 1983
(ISBN 0-8053-0600-5, paperback)

"Computer" magazine
June 1981
(Issue devoted to Ada)

Downes, Valerie A. and Goldsack, Stephen
Programming Embedded Systems with Ada
(both of the University of London)
400 pp., illustrated (April 1982)
Price: appr. $16.95

Freedman, Roy S.
Programming Concepts with the Ada Language
Petrocelli Books, Inc.
1101 State Road, Princeton, NJ 08540
Price: $12.00
(ISBN 089433-190-6)

Gehani, Narain H.
Ada: An Advanced Introduction
Prentice-Hall, 1983
Price: $18.95

Habermann, A. N., and Perry, DeWayne E.
Ada for Experienced Programmers
Addison-Wesley, 1983
(ISBN 0-201-11481-X, paperback)

Hibbard, P.; Hisgen, A.; Rosenberg, JL; Shaw, M. and Sherman, M.
Studies in Ada Style
Springer-Veriag, 1981
$11.20
(ISBN 0-387-90628-2)

29
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Katzan, Harry Jr.
Invitation to Ada & Ada Reference Manual (July 1980)
Petrocelli Books, New York, 1982
(ISBN 089433-132-9)

Ledgar, Henry
Ada: An Introduction
Springer-Verlag
$12.95

Lewis, William E.
Problem Solving Principles for Ada Programmers: Applied Logic,
Psychology, and Grit
Mail Request:
Dept. #CD 82
Hayden Book Company, Inc.
50 Essex St. Rochelle Park, NJ 07662 >
(Ada version, request #5211) *-s
Price:. $9.95
(Toll free: 1-800-631-0856)

Mayoh, Brian
Problem Solving with Ada
John Wiley & Sons, Ltd., 1982
(ISBN 0-471-10025-0)

Pyle, Ian C.
The Ada Programming Language
Prentice-Hall International, 1981
(ISBN 0-13-003921-7)

Stratford-Collins, Michael J.
Ada A Programmer's Conversion Course
John Wiley & Sons, New York, 1982
(ISBN 0-85312-250-4)

Wegner, Peter
Programming with Ada: An Introduction by Means of Graduated Examples
Prentice-Hall, January 1980
(ISBN 0-13-73-0697-0)

Wiener, Richard and Sincovec, Richard
Programming in Ada
John Wiley & Sons, New York, 1983
(ISBN 0-471-87089-7, hardback)

Young, S.J.
An Introduction to Ada
Ellis Horwood, Chichester, 1983
(ISBN 0-85312-535-X, paperback)

30
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix C
Unimplemented ANSI Standard Ada

Currently, Maranatha A fully implements 63% of the MIL-STD-1815A
language, partially implementing another 1%, more than any other Ada compiler avail-
able for CP/M based microcomputers. The unimplemented syntax is broken down as
follows:

10% - Generics

9% - Tasking

3% - Representation Specifications

3% - Variant Records and Discriminants

3% - Floating/fixed point implementation

2% - Access types

The remaining catagories each total 1% or less and include renaming de-
clarations, aggregates, operator overloading, deferred constant declarations, private type
declarations and slices.

These figures are based on the number of the Backus-Naur productions of
the language that have been implemented. There are 342 such productions in standard
Ada; Maranatha A fully implements 215 and partially implements 4. In comparison,
Unix (tm) V7 "C" has 166 total productions, most standard Pascal implementations
have about 100, and Modula-2 has 82. Appendix E of the Language Reference Manual
mirrors Appendix E of the MEL-STD-1815A; compare the two for yourself.

31
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix D
Format of Relocatable (.REL) files

The relocatable modules produced by the Maranatha A compiler are similar
but not identical to the Microsoft relocatable format. Differences between the two are:

1) The Maranatha Linker cannot accept all of the link items introduced in
the full relocatable format, including: C>

item 1 - Select COMMON block
item 3 - Request library search
item 4 - Extension link items
item 5 - Define COMMON size
item 8 - External - offset
item 9 - External + offset
item 12 - Chain address

N
\

2) For link items requiring a "B-field", names with 1..7 characters are as the ^
standard; however, since very long names may be required by the nature of Ada pro-
grams, long identifiers are used by declaring the "zzz" field to be zero (0), followed by
the ASCII characters of the symbol and terminated by 16#FF#.

In spite of these differences, the format is very close. In fact, if your Ada
program has a short program name and does not depend on any packages with long
names, it is entirely possible to use the Microsoft or Digital Research linking loaders.
(See note in Appendix E about using assembly language routines)

32
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix E
Writing Assembly Language Programs

Using assembly language programs with Maranatha A can best be demon-
strated by example. Given the following program:

procedure t is
y : integer;
function inp(port : integer) return integer is separate;

begin
loop

get(y);
put(inp(y));

end loop;
end t;

If rinp" is to be an assembly language program which returns the value of
the input port specified by the parameter "port", a suitable assembly language program
would appear as follows.

Unfortunately, this method requires that the program name and function name have a
combined length of only 4 or 5 characters. This is because standard CP/M assemblers
only allow 6 or 7 characters for labels, and the A compiler adds two characters to create
special labels for these routines. This will be remedied in a future release, probably by
implementing the code statement.

33
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

; function inp(port : integer) return integer,
; begin
; return m port;
; end inp;

'; ROM-able code to fetch value from input port,

public t.inp,t.mp?,t.inp$

extra $rtp,$base

t.inp:
Ihld
Ixi
dad
mov
inx
mov
xchg
mov h,m

Sbase
d,-6
d
e,m
h
d,m

start of routine

fetch pointer to port number

; fetch port number

; construct "mini-routine" on stack: IN <port>; RET

Ixi d,OOC9H
push d
mvi 1,ODBH
push h

h,0
sp
d,inpl

Ixi
dad
Ixi
push d
pchl

inpl: Ihld $base
Ixi d,4
dad d
mov m,a
inx h
mvi m,0

; return from function

t.inp?:
mvi a,l
call $rtp

F

t.inpS:

_2

end

construct RET; NOP

construct IN <port>; !

compute calling address of mini-routine

create return address from mini-routine
"call" mini-routine

hi -> return value

stuff return value
into function return value location

exception handler address (no exceptions)

return from the function

<name>$ contains the 2's complement of the
amount of storage needed.
storage space required (one parameter)

34
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

We must first declare the symbols used externally in the program. $RTP is
a routine in the A standard library (ADALIB.REL) which accomplishes a return from a
procedure, recovering stack space, resetting links, etc. $BASE is a global variable that
points to the static link in the current subprogram's activation record, and is used as an
offset to all parameters and variables.

Using SBASE, we find the pointed) the input port by subtracting an onset
corresponding to the parameter, using the formula:

offset = -4 - (2 * pointer #)

Scalar values have one pointer; composite values (arrays and records) have
two pointers, one to data and the other to & special component which describes the
data. To compute the pointer number, you must add up the number of pointers re-
quired by any previous parameters. Since our routine only has one scalar parameter, it
will be the first pointer.

After we have the pointer to the parameter, we can fetch the port number
into the H register (most significant byte ignored).

The next few lines use a programming trick to create ROM-able yet self-
modifying code. The code to input from the port number given in the H register is
stored onto the stack and called like a subroutine. An artificial return address is also
stored on the stack. Upon return, the value from the input port is in the A register.

After fetching the contents of the input port, it is stored into the return
value of the function. This address is computed by adding 4 to the value of $BASE.
You must ALWAYS return from a subprogram by using the $RTP instruction. Using
a "ret" will cause your program to crash.

Three external symbols are provided by the routine. All begin with the
name of the procedure in selected form: <parent_name>.<subunitjiame>. This
form by itself forms the label for the program. The name followed by & question mark
indicates the exception handler for the program; for assembly language programs this
should be used immediately before the exit sequence. The name followed by a dollar
sign indicates a label pointing to the two's complement of the amount of storage re-
quired for parameters and local variables. For assembly language programs, only the
amount of storage space for parameters need be included here, since there will be no lo-
cal variable lookup.

Note: when writing assembly language routines, be careful not to use constructs that
will create link items unacceptable to the Linking Loader, such as "external plus offset"
operands. The Linker will report an error message when it finds such a construct. See
Appendh, i) for a list of link items that cannot be processed.

Example:

Ixi h,$base-f4 ; invalid, external + offset

35
Copyright (c) 1684, Maranatha Software Systems

J

A
(Ada) Compiler

Language Reference Manual
Release 3.00

Copyright © 1984 by
Maranatha Software Systems

and

SuperSoft Inc.

Ada is a trademark of the Department of Defense (Ada Joint Program Office)

Copyright © 1984
Maranatha Software Systems

All Rights Reserved Worldwide

of this publication or the A compiler may be reproduced, transmit-
ted or translarea into any language, in any form or by any means, electronic, mechani-
cal, optical, chemical, manual or otherwise, in whole or in part without the prior consent
of SuperSoft, Inc. or Maranatha Software Systems. The software computer program(s)
described in this manual are furnished to the purchaser under a license for use on a sin-
gle computer system, and may not be used in any other manner, except as may other-
wise be provided in writing by SuperSoft, Inc. or Maranatha Software Systems.

Disclaimer

SuperSoft, Inc. and Maranatha Software Systems make no representations or
warranties with respect to the contents herein. While every precaution has been taken
in the preparation of this manual, no responsibility is assumed for errors or omissions.
Further, no liability is assumed for damages resulting from the use of this product. Su-
perSoft, Inc. and Maranatha Software Systems reserve the right to revise this publica-
tion and to make changes from time to time without obligation to notify any person of
such revision or changes.

--•?•?•

. . , . .

Maranatha A (Ada) Language Reference Manual

Table of Contents Page

1.0 Introduction 6

2.0 Lexical Elements 7
2.1 Character Set 7
2.2 Elements, Separators, and Delimiters 8
2.3 Identifiers 9
2.4 Numeric Literals 9

2.4.1 Decimal Literals 9
2.4.2 Based Literals 10

2.5 Character Literals 10
2.6 String Literals 11
2.7 Comments 11
2.8 Pragmas 12
2.9 Reserved Words 13
2.10 Allowable Replacements of Characters 13

3.0 Declarations and Types 14
3.1 Declarations 14
3.2 Objects and Named Numbers 15

3.2.1 Object Declarations 15
3.3 Types and Subtypes 16

3.3.1 Type Declarations 16
3.3.2 Subtype Declarations 17
3.3.3 Classification of Operations 17

3.4 Derived Types 18
3.5 Scalar Types 18

3.5.1 Enumeration Types 19
3.5.2 Character Types 19
3.5.3 Boolean Types 19
3.5.4 Integer Types 20
3.5.5 Operations of Discrete Types 20
3.5.6 Real Types 21
3.5.7 Floating Point Types 21
3.5.8 Operations of Floating Point Types 21

3.6 Array Types 22
3.6.1 Index Constraints and Discrete Ranges 23
3.6.2 Operations of Array Types 23
3.6.3 The Type String 23

3.7 Record Types 24
3.7.3 Variant Parts 24
3.7.4 Operations of Record Types 24

3.9 Declarative Parts 25

3
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

4.0 Names and Expressions - 26
4.1 Names 26

4.1.1 Indexed Components 26
4.1.3 Selected Components 27
4.1.4 Attributes 27

4.2 Literals 27
4.4 Expressions 28
4.5 Operators and Expression Evaluation 28

4.5.1 Logical Operators and
Short-Circuit Control Forms 29

4.5.2 Relational Operators and Membership Tests 29
4.5.3 Binary Adding Operators 29
4.5.4 Unary Adding Operators 29
4.5.5 Multiplying Operators 2t|.
4.5.6 Highest Precedence Operators 30

4.6 Type Conversions 34
4.7 Qualified Expressions 30

5.0 Statements 31
5.1 Simple and Compound Statements

- Sequences of Statements 31
5.2 Assignment Statement 31

5.2.1 Array Assignments 31
5.3 If Statements 32
5.4 Case Statements 33
5.5 Loop Statements 34
5.6 Block Statements 36
5.7 Exit Statements 37
5.3 Return Statements 37
5.9 Goto Statements 37

6.0 Subprograms 38
6.1 Subprogram Declarations 38
6.2 Formal Parameter Modes 38
6.3 Subprogram Bodies 39

8.3.1 Conformance Rules ' 39
6.4 Subprogram Calls 39

6.4.1 Parameter Associations 40
6.5 Function Subprograms 40
6.6 Parameter and Result Type Profile •

Overloading of Subprograms 40

7.0 Packages 41
7.1 Package Structure 41
7.2 Package Specifications and Declarations 41
7.3 Package Bodies 42

8.0 Visibility Rules 43
8.1 Declarative Region 43
8.2 Scope of Declarations 43
8.3 Visibility 44
8.4 Use Clauses 45
8.6 The Package Standard 45
8.7 The Context of Overload Resolution 45

4
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

10.0 Program Structure and Compilation Issues 46
10.1 Compilation Units - Library Units 46

10.1.1 Context Clauses - With Clauses 46
10.2 Subunits of Compilation Units 46
10.3 Order of Compilation 47
10.4 The Program Library 47
10.5 Elaboration of Library Units 47
10.6 Program Optimization 47

11.0 Exceptions 48
11.1 Exception Declarations 48
11.2 Exception Handlers 48
11.3 Raise Statements 49
11.4 Exception Handling 49

11.4.1 Exceptions Raised During
the Execution of Statements 49

11.4.2 Exceptions Raised During
the Elaboration of Declarations 50

13.0 Representation Clauses and Implementation-Dependent
Features 51
13.1 Representation Clauses 51
13.5 Address Clauses 51

14.0 Input-Output 52
14.1 External Files and File Objects 52"
14.2 Sequential and Direct Files 52

14.2.1 File Management 53
14.3 Text Input-Output 55

14.3.4 Operations on Columns, Lines, and Pages 55
14.3.5 Get and Put Procedures 57
14.3.6 Input-Output of Characters and Strings 58
14.3.7 Input-Output for Integer Types 60
14.3.8 Input-Output for Real Types 61
14.3.10 Specification of the Package Text_IO 62

14.4 Exceptions in Input-Output 65
14.5 Specification of the Package lOJExceptions 65

Annexes

A. Predefined Language Attributes 66

B. Predefined Language Pragmas 68

C. Predefined Language Environment 69

Appendices

D. Glossary 72

E. Syntax Summary 75

F. Implementation Dependent Characteristics 85

5
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

1.0 Introduction

This manual describes the Ada language as implemented in the Maranatha
Software Systems A Compiler. The numbering system corresponds to the one used in
the ANSI MIL-STD-1815A Ada Reference Manual, dated February 17, 1983. For those
cases where no paragraph exists, the language feature is as yet not implemented. For
instructions on the use of the compiler, linker, or other tools, refer to the User's Manual.

6
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

2.0 Lexical Elements

2.1 Character Set

All of the ASCII character set is acceptable to the compiler. These include
graphic characters (those which are visible) and "format effectors", which include tabs,
carriage return/line feeds, etc.

graphic_character ::= basic_graphic_character
| lower_case_letter | other_special_character

basic_graphic_character ::=
upper__ease_letter | digit

j special_character | space_character

basic_character ::=
basic_graphic_character | fonnat_efifector

The basic graphic character set includes the following:

(a) upper case letters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

(b) digits:

0 1 2 3 4 5 6 7 8 9

(c) special characters:

" # & ' () * + , - . / : ; < = > _ !

(d) the space character

The remaining categories of graphic characters include:

(e) lower case letters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

(f) other special characters:

! $ % ? © [] " ' { } "

Remember that just because a character is in the character set does not
necessarily mean it is legal in the context in which it is used. The names of each of the
special characters (plus, tilde, etc.) are defined in the MIL-STD-1815A.

7
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

2.2 Lexical Elements, Separators, and Delimiters

The first pass of the compiler (ADA.COM) divides the source text into logi-
cal parts called lexical units or "tokens". Most editors available for CP/M insert a car-
riage return-line feed (CRLF) combination at the end of each line of text. The A com-
piler keeps track of the line number it is on by counting the number of carriage returns
received. Users should be wary of word processing editors that may output special con-
trol characters which are not recognizable by the compiler and will produce an invalid
character message. Definitions of the compound delimiters are in the MTL-STD.

8
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

2.3 Identifiers

Identifiers are implemented per the standard,

identifier ::== letter {[underline] letter_or_digit}

letter_or_digit ::= letter | digit

letter ::= upper_case_letter j lower_case_Jetter

Remember that when naming objects, types or subprograms, all identifiers
•which differ only in the use of corresponding upper and lower case letters are considered
the same, so "IdEnTiFiEr" and "iDeNtlfleR" refer to the same thing. In Maranatha A
the first 10 characters (including underlines) are significant, although an identifier can be
any length. Users are cautioned about using identifiers with similar names such as
ARRAY_OF_INTEGBRS and ARRAY_OFJDEAS, which are identical
(ARRAYJ3FJ).

2.4 Numeric Literals

There are two kinds of numeric literals, decimal literals and based literals.

numeric_literal ::== decimal_literal | based_literal

2.4.1 Decimal Literals

Underscore characters may be inserted between adjacent digits of a decimal
number for clarity, but may not precede or follow the number.

decimal_literal ::= integer [.integer] [exponent]

integer ::= digit {[underline] digit)

exponent ::= E [4-] integer | E - integer

Examples:

1 000 000 - one million
371416" - pi
10e2 — one hundred
l.Oe+6 — one million

Examples of common mistakes in decimal literals:

12345_ — illegal number, digit must follow underline
100. — illegal number, digit must follow decimal point
.25 — illegal number, should be 0.25
10 + 3.4 — illegal mismatch of integer and real types

9
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

2.4.2 Based Literals

Numbers may be represented with a base other than ten with a based
number, which can have a base from 2 to 16:

based—literal ::= base # based_integer [.based_integer] # [exponent]

base ::= integer

based_integer ::= extended_digit {[underline] extended_digit}

extended_digit ::= digit | letter

An exponent may be used to indicate the power of the base by which the
preceding number is to be multiplied. Both the base and the exponent is in base ten.

Examples:

2#1111_1111# - 255
16#FF# - 255
16#F.FF#E2 - 4095.0
2#101.11# - 5.75

2.5 Character Literals

A character literal is formed by enclosing any of the printable ASCII charac-
ters within single quotes. The single quote maj itself be used in this manner, represent-
ed as '", and not with four single quotes as with some assemblers. Also keep in mind
that there is a difference between a character literal and a string literal, and assignment
from one to the other is illegal.

character_literal ::= 'graphic_character'

Examples:

'A' '+' — ascii characters
'" — single quote

- blank
'q' — lower case character

10
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

2.6 String Literals

A. string literal is zero or more printable ASCII characters prefixed and ter-
minated by a string bracket character. The string bracket character can be either the
double quote (r) or the percent sign (%). Remember that the same string bracket must
be used to terminate the sequence as the one used to prefix it. To enclose the string
bracket character itself within a string it must be written twice.

string_literal ::= "{graphic_character}"

Examples:

"The percent sign (%) may appear in this string"

%String using percent signs as delimiters^

"He said, ""Hello, there!"""

"Example of an ILLEGAL string% — does not end with double quote

2.7 Comments

Comments start with two hyphens (dashes) and continue to the end of the
line. Therefore, comments may not be embedded within a line of Ada source text.
Comments are filtered out by the lexical analyzer and have no effect on the program
whatsoever, except in one case: if the print pragma has been turned on, comments are
passed through all compilation phases. They do not affect code generation, however.

Examples:

— this is a comment

for I in — badly placed comment — 1..10 loop

— in the above example, the "1..10 loop" will be treated as
— part of the entire comment. Comments are ONLY ended by the
— end of a line. This statement will not compile correctly.

yes, this is a comment
the first two hyphens start
the comment

11
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

2.8 Pragmas

Pragmas are compile-time switches which allow the user to convey informa-
tion to the compiler itself.

pragma ::= pragma identifier(argument_association);

argument_association ::= name

Most pragmas may appear anywhere within a program; some are restricted
to the declarative part. The pragmas are outlined in Appendix B.

12
Copyright © 1984, Maranatha Software Systems

**.-<-^ -v •

i --% -- ~ - - • 7 " " j ~f . ~ -" ' -- ' " ^ ^ - - t " » * • " " • • J2_ -, ^ ,. „ - * - , _ » fc ~ i i,
•i--t_»*..r i^jr»--3 _>i. i.*. _ «- . -.•* —--_.^-T_--L.- _ Jw A —^••a*.*-**"——.- -- A* j- -^_ ^*tJ&-r._^ »•». ,..fc __=_'*_ "" »j -l.«j *» * ,* —.•. % »^.^,^ J^<'-»^,JB*->-. '̂̂ — * .̂ «. — *^-._<l«—- -w.̂ .̂ . M .̂«._V <* —_ - - -^-^_i

Maranatha A (Ada) Language Reference Manual

2.9 Reserved Words

The identifiers listed below are called reserved words. Identifiers declared by
the user may not be reserved words. In this manual, reserved words appear in bold face
as in the MIL-STD-1815A. In Maranatha A, all of the standard Ada reserved words are
recognized, but not all of them (i.e., renames, terminate) are implemented. Thus,
renames, although not implemented, nevertheless cannot be used as an identifier.

abort
abs
accept
access
all
and
array
at

begin
body

case
constant

declare
delay
delta
digits
do

else
elsif
end
entry
exception
exit

for
function

generic
goto

if
in
is

limited
loop

mod

new
not
null

of
or
others
out

package
pragma
private
procedure

raise
range
record
rem
renames
return
reverse

select
separate
subtype

task
terminate
then
type

use

when
while
with

xor

2.10 Allowable Replacements of Characters

The vertical bar character |, which appears on some terminals as a broken
bar, may be replaced by the exclamation mark ! as a delimiter.

Example:

case day is
when monday ! Wednesday =>

The double quote character used as a string bracket may be replaced by a percent char-
acter (see String_Literals, section 2.6).

The pound sign may be replaced by a colon in based numbers (see
Based_Literals, section 2.4.2.)

13
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.0 Declarations and Types ,N

3.1 Declarations

Named entities in Ada can be numbers, enumerated literals, objects, record
components, loop parameters, exceptions, types, subtypes, attributes, subprograms,
packages, named blocks, named loops, or parameters of a subprogram.

A declaration associates an identifier with a declared entity. Only block and
loop identifiers may be used without being declared; they are declared implicitly by their
use. Also, labels are implicitly declared at the end of the declarative part of the subpro-
gram in which they are used. Currently six forms of a basic__declaration have been im-
plemented:

basic_declaration ::=
obj ect_declaration
subtype_declaration
package^declaration

type-declaration
subprogram_declaration
exception_declaration

14
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.2 Objects and Named Numbers

An object is an entity that contains a value of a given type.

object_declaration ::=
identifier_list : [constant! subtype_indication (:== expression);

| identifier_list : [constant] constrained_array_definition [:= expression];

identifier_list ::= identifier {, identifier}

3.2.1 Object Declarations

All user defined variables and constants must be described in an object de-
claration before they are used. An object is considered a variable unless the reserved
word constant appears following the colon. Usually a type must be predefined before it

f _ can be used in an object declaration; however, an array type definition is allowed which
creates a new "unnamed" type for the variables in that identifier list. Assignment to or
from that object, when it is not another variable from the same identifier list, must be
done via a type conversion. Remember every type definition introduces a new type, so
in the following example

A : array(L.lO) of INTEGER;
B : array(1.. 10) of INTEGER;

The types of A and B appear identical, but Ada treats these two variables as
having distinct and separate types. If the object is initialized by an optional expression,
all identifiers in the identifier list are assigned that expression, so for

X,Y,Z : BOOLEAN := FALSE;

X, Y, and Z are all equal to false.

Examples:

' ; THERMOMETER.READING : FLOAT := 32.0;
YOUR AGE : INTEGER;
FINISHED : BOOLEAN := FALSE;
MATRIX : array(1..10,1..10) of INTEGER;

15
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.3 Types and Subtypes

A data "type" determines a set of values which may be taken by data ob-
jects of the data type and a set of operations applicable to objects of the data type.
Ada has some predefined data types including INTEGER, BOOLEAN, CHARACTER,
and FLOAT. A programmer may introduce a new data type by using a type declara-
tion.

/

3.3.1 Type Declarations

type_declaration ::= full_type_declaration

full_type_declaration ::= type identifier is type_definition;

A type declaration introduces a new type using a previously declared type or
set of types in a unique fashion. A new type can be derived from a previous simple data
type such as INTEGER. These types are called scalar types and include integer and
real numbers, characters, truth values (BOOLEAN) and other user-defined enumeration
types. Data types also include a number of components all of the same type; this com-
posite type is an array. The most complex data type is the record which can have any
number of components, each with its own separate data type. In Maranatha A, types
can be broken down in the following manner:

TYPE

SCALAR COMPOSITE

I 1 1 I
DISCRETE REAL ARRAY RECORD

ENUMERATED INTEGER
(character)
(boolean)

A type definition is defined as follows:

type_definition ::=
enumeration__type__definition integer_type_definition
array_type_definition record_type_definition
derived_type_definition

16
Copyright (g) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.3.2 Subtype Declaration

Often a programmer may wish to define a subset of values of a given type,
and it may be more convenient to represent the new type as a subtype of the original
type rather than introduce a totally distinct data type. This type is called a subtype
and is defined as follows:

subtype_declaration ::= subtype identifier is subtype_indication;

subtype^indication ::= type_mark [constraint]

type_mark ::= fype_name | *tt6<jfpc_name

constraint ::= range_constraint | index^constraint

It is important to point out that a subtype does NOT introduce a new type,
but rather a constrained form of its base type. So for the following declarations

subtype OVENJTEMPERATURE is INTEGER range 200..500;
TEMP : OVENJTEMPERATURE;

The subtype OVENJTEMPERATURE is not a distinct type and objects
such as TEMP are of the type INTEGER, but constrained to the range 200 to 500, in-
clusive.

3.3.3 Classification of Operations

A basic operation is defined as:

• An assignment, membership test, or short-circuit control form

• A selected component or an indexed component

• A qualification (in qualified expressions) or a type conversion

• A numeric literal, string literal or an attribute

17
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.4 Derived Types

There are times when we would like to use the distinct typing rules of Ada
to make a distinction between values of a similar type. We can use the classic example
of apples and oranges:

type APPLES is new INTEGER;
type ORANGES is new INTEGER;

A : APPLES := 5;
B : ORANGES := 4;

In this example, the expression "A+B" would be illegal as we would be using
the addition operator on two distinct types (It doesn't make sense to add apples and
oranges). We can use a type conversion to forcibly convert from apples to oranges (see
4.6) and this will force the programmer to realize the distinction he has made. Another
point to be made from this example is the use of literal integers in the assignments; in
Ada, literals are treated as being of the types universal_jnteger and universal^real and
can be assigned to a derived type such as this. The formal definition of a derived type
is as follows:

derived_type_definition ::= new subtype_indication

3.5 Scalar Types

Scalar types include real numbers and discrete types. A range constraint
may be used to specify the allowable range of a scalar type or subtype.

range_constraint ::= range range

range ::= simple_expression .. simple_expression

Examples:

type CENTS is range 0..99;
type SECONDS is new INTEGER range 0..59;

18
Copyright © 1984, Maranatha Software Systems

Maranatka A (Ada) Language Reference Manual

3.5.1 Enumeration Types

Enumerated types are used to more accurately describe a set of possibilities,
such as a stoplight or a deck of cards. The position number of the first literal is zero.

Examples:

type CARD.SUIT is (CLUB, DIAMOND, HEART, SPADE);

type STOPLIGHT is (RED, AMBER, GREEN);

type CARD_COLOR is (RED, BLACK);

In the above definitions, the enumerated literal RED is overloaded. In ex-
pressions where the type of the literal cannot be determined from the context a qualified
expression can be used to resolve this type ambiguity (see 4.7). The syntax for an
enumeration type definition is given below.

enumeration_type_definition ::=
(enumeration_literalmspecification

{, enumeration_literaL,specification})

enumeration_literal_jspecification ::== enumeration_literal

enumeration_Iiteral ::= identifier

3.5.2 Character Types

A character type is considered an enumeration type in Ada which contains
character literals. The predefined type CHARACTER contains the 128 values of the
ASCII character set, including control characters. Control characters can easily be used
by using the VAL attribute discussed in 3.5.5; the unprintable characters have been thus
defined in the package ASCII.

3.5.3 Boolean Types

The predefined type BOOLEAN is defined as

type BOOLEAN is (FALSE, TRUE);

Thus, BOOLEAN'POS(FALSE) = 0 and BOOLEAN'POS(TRUE) = 1. Un-
like other languages, the logical operators and, or and xor will only work with boolean
operands and not with integers.

19
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.5.4 Integer Types

An integer type definition introduces a set of consecutive integers using the
bounds of a range constraint:

integer_type—definition ::== range_constraint

Integers in Maranatha A are implemented as a 15 bit value with a 1 bit sign.
The definition of integer in the package STANDARD is

type INTEGER is range -32768 .. 32767;

NOTE: Arithmetic errors (underflow, overflow^ divide by zero) will not pro-
duce a run time error (except in the case of divide by zero which prints an appropriate
error message), since the predefined exceptions are not implemented.

. . - - • " ' • • ' • " ' ' ' . ' : "•-•)'':. .

3.5.5 Operations of Discrete Types

For every discrete type, the attributes POS, VAL and IMAGE have been im-
plemented and are defined as follows:

T'POS(X) - The parameter X must be of type T; the result of the
attribute is the position number of X in the series and
is of type universal_jnteger.

TrVAL(N) - The parameter N must be a value of an integer type;
the result is a value of the type T whose position
number is N. No constraint error is raised if N is not
within the range of T.

TfIMAGE(N) - The parameter N must be a value of an integer type; the
result is a value of type STRING.

Examples:
: , • ^

STOPLIGHT'VAL(O) = RED <

BOOLEAN'POS(TRUE) = 1

CARD_SUITVAL(2) = HEART • . , , .

LINE_FEED : constant CHARACTER := CHARACTER'VAL(IO);

PUT(INTEGER'IMAGE(10)); ^

20
Copyright © 1984, Maranatha Software Systems

C?T :̂̂

Maranatha A (Ada) Language Reference Manual

3.6 Array Types

Arrays are data values with a number of distinct components all of the same
type. The components are distinguished by an index which must be a discrete type (in-
teger or enumerated, including character and boolean). The elements of the array can
be of any type, including record types or another array type. Note that the element
type of an array must be a type__mark. Preliminary Ada allowed subtype indications to
be used in the array definition; now they must be declared in a separate type or subtype
declaration.

array _type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition {,index_subtype_definition}) of

componen<_subtype_indication

constrained_array_definition ::=
array index_constraint of eompon«nfjsubtype_indication

index_subtype_definition ::= type_mark range < >

index_constraint ::= (discrete_range {,discrete_range})

discrete_range ::= rfwcre£«_subtype__indication | range

An array__type_definition will produce two kinds of array types, uncon-
strained and constrained. Definitions using an index will be unconstrained, while those
having the index constraint will be constrained. Unconstrained array type definitions
are useful for defining an array where the array bounds are flexible:

type SORT_AKRAY is array (INTEGER range <» of CHARACTER;

These declarations are used in a normal object declaration where the type
mark is that of the unconstrained array and an index constraint is provided. This type
may also be used as the parameter type in a subprogram or return type of a function.
The array bounds are considered to be an integral part of the array itself and are passed
along with the array data. They may be accessed by the attributes FIRST and LAST
(see section 3.6.2).

22
Copyright (c) 1984, Maranatha Software Systems

• ~— **. V«*f *-

Maranatha A (Ada) Language Reference Manual

3.6.1 Index Constraints and Discrete Ranges

An example of using the above unconstrained array declaration follows:

TEST_ARRAY : MATRBC(1..10,1..10);

This is an object declaration with a subtype indication consisting of a type
mark and an index constraint. Use of a constrained array declaration is identical except
the index constraint is omitted.

3.6.2 Operations of Array Types

For an array object or for the type mark of a constrained array type, the fol-
lowing attributes have been implemented:

FIRST The lower bound of the first index
LAST The upper bound of the first index
FIRST(N) The lower bound of the Nth index
LAST(N) The upper bound of the Nth index
LENGTH The number of values of the first index
LENGTH(N) The number of values of the N'th index

No exception will be raised if the value of N does not correspond to an index
of the array. Use of the attributes FIRST and LAST are highly recommended, especial-
ly when looping through the range of the array:

for I in A'FIRST .. ALAST loop

This construct would be more readily implemented as

for I in A'RANGE loop

but since the RANGE attribute has not yet been implemented using FIRST
and LAST can be used. These attributes are useful in procedures whose parameters are
of an unconstrained type such as STRING.

3.6.3 The Type String

The predefined type STRING is an unconstrained one dimensional array of
characters, indexed by a special integer subtype POSITIVE:

subtype POSITIVE is INTEGER range L.INTEGER'LAST;
type STRING is array (POSITIVE range <» of CHARACTER;

String literals are a special aggregate assignable to this type or any one di-
mensional array of characters.

23
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.7 Record Types

Record types introduce a new composite type with any number of distinct
components, each with its own type.

record_type_definition ::=
record

component_list
end record

component_list ::= component_declaration {component_declaration}
| null;

component_declaration ::=
identifier_list : componentj3ubtype_definition;

component_subtype_definition ::= subtype_indication

The components in a record may be any previously declared type including
scalar types, arrays or records, with the exception that the definition may not be recur-
sive (a component may not be the record type itself).

Examples:

type PERSON is record
GENDER : SEX;
AGE : INTEGER;
MARRIED : BOOLEAN;

end record;

3.7.3 Variant Parts

Currently, record variant parts are not implemented. However, the syntacti-
cal construct "choice" is introduced here and implemented in Maranatha A.

choice ::= simple__expression | discretejrange | others

3.7.4 Operations of Record Types

The basic operations of a record type include assignment, membership tests,
selection of record components, qualification and type conversion (for derived types).

24
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.9 Declarative Parts

Declarative parts describe a set of variables, constants, types, subprograms,
and packages available to the main body of a subprogram or block.

declarative_part ::=
{basic_declarative_item} {later_declarative_item}

basic_declarative_item ::=
basic_declaration | representation_clause | use_clause

later_declarative_item ::= body
| subprogram_declaration | package_declaration | use_clause

body ::= proper_body | body_stub

f proper_body ::= subprogram_body | package_body

25
Copyright (c) 1984, Maranatha Software Systems

45 -

Maranatha A (Ada) Language Reference Manual

4.0 Names and Expressions

4.1 Names

At this point il becomes important to distinguish between an identifier and a
name. An identifier is simply a word used by the programmer given to an object such
as the procedure identifier FACTORIAL, or the type identifier STOPLIGHT. In Mara-
natha A, a name is defined syntactically as:

name ::= simple_name
character_literal
selected_component

indexed_component
attribute

simplejname ::= identifier

prefix ::= name | function_call

This is a recursive definition and describes a powerful method to access array
elements, record components, variables and attributes. This release of Maranatha A
does not support selected components fully (i.e., a variable may not be prefaced by its
subprogram name as in FACTORIAL.X). Selected components may be used to access
record components, of course. Normally, names could denote subprograms, packages, ex-
ceptions, labels, block and loop identifiers and operators, as well as variables.

4.1.1 Indexed Components

An indexed component is used to denote an element of an array:

indexed_component ::= prefix(expression {,expression})

Since "name" is a recursive definition, an array of an array must be refer-
enced with two separate indexed components, as shown:

type TEST is array(L.lO) of INTEGER;

TEST_VARIABLE : array(1.. 10) of TEST;

Z := TEST_VARIABLE(2)(8);

Accessing the array test_yariable must be done with one indexed component,
which will reference the second element in test_variable. Since this element is an array
of integers, we use a second indexed component to reference the 8th element, which is
an integer.

28
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

4.1.3 Selected Components

Selected components are used to denote a component of a record.

selected_component ::= prefix.selector

selector ::— simple_name

This definition, like indexed component, is recursive. This can leave us with
such combinations as

Z := RECORD JDBJECT.COMPONENT_ONE(5)AGE

In this case, a selected component is used to reference wcomponent_one" of
that record. It is an array, and we select the fifth element of that array with an indexed
component. Finally, the array has an element type which is a record and we reference a
component "age" of that record.

4.1.4 Attributes

Attributes denote predefined characteristics of certain entities. Appendix A
gives a list of all of the implemented attributes and how and when they may be used.

attribute ::= prefix'attribute_designator

attribute_designator ::= simple_name [(tmiversa/_s/a/ic_expression)]

This definition is similar to indexed component and selected component in
that it is recursive.

4.2 Literals

A literal is either a numeric literal (which can be decimal or based), an
enumeration literal, or a string literal. Numeric literals are the literals of the type
universal^integer and universal^real, overloaded for all numeric types. A string literal
combines a sequence of characters into a value of a one- dimensional array of a charac-
ter type.

27
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

4.4 Expressions

The expression processing mechanism in Ada is complex and defined as fol-
lows:

expression ::=
relation {and relation}
relation (or relation}
relation {xor relation}

relation (and then relation}
€Hation (or else relation}

relation ::=
simple_expression {relational_operator simple_expression}
simple_expression
simple_expression

not] in range
not] in type_mark

simple_expression ::=
[unary _adding_operator] term {binary_adding_operator term}

term ::= factor {multiplying_pperator factor}

factor ::= primary [** primary) | abs primary | not primary

primary ::=
numeric_Jiteral | stringjiteral | name J function_call

| type_conversion | qualified_expression | (expression) '

Expressions are used mainly to calculate a numeric value of a given type, but
may return a boolean result due to a logical operator or other types resulting from type
conversions or the use of attributes.

4.5 Operators and Expression Evaluation

All standard Ada operators have been implemented in Maranatha A:

logical_operator ::= and | or | xor -

relational_operator ::= = J /= | < | <== | > | >=

binary_adding_operator ::= -{- | - | &

unary _adding_operator ::= -f | -

multiplying__operator ::= * | / I mod | rem

highest_precedence_operator ::̂ ** | abs | not

28
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

4.5.1 Logical Operators and Short-Circuit Control Forms

The logical operators and, or and xor are only applicable to operands of a
boolean type and return a boolean result. They are not available to operands of an in-
teger type as in BASIC. The short circuit control forms and then and or else are
defined for two operands of a boolean type a give a boolean result. The left operand
(which is a boolean relation) is evaluated first. If this operand is evaluated as FALSE
with a control form of and then the rest of the expression is not evaluated and the
value of the expression is FALSE. If this operand is evaluated as TRUE with a control
form of or else, the rest of the expression is not evaluated and the value of the expres-
sion is TRUE. Remember that any function calls in any of the right boolean relations
may or may not be evaluated depending on the value(s) of the leftmost boolean
relation(s). This was done to reduce the problems of function side- effects.

4.5.2 Relational Operators and Membership Tests

The predefined relational operators return a boolean value and operate on
operands of the same type. Equality and inequality ("=" and "/=", respectively) are
defined for any type, while the greater-than and less- than operators are defined only for
scalar types or array types with discrete elements. The Pascal inequality operator
<>" is called a "box" in Ada and is incorrect as a relational operator.•n

4.5.3 Binary Adding Operators

The operators "+" and "-" are predefined and operate on any numeric type,
returning a result of the same type. Concatenation ("&") is defined for any one dimen-
sional array type, but is not yet implemented for an array type and its corresponding
element type.

4.5.4 Unary Adding Operators

The unary operators "+" and "-" apply to a single operand and return a
result of the same type.

4.5.5 Multiplying Operators

All of the multiplying operators have been implemented and are predefined
for all numeric types. Mod and rem correspond to integer modulus and remainder
operators. Page 4-19 of the Ada Reference Manual gives a good description of how
these operators work.

29
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

4.5.6 Highest Precedence Operators

The operator abs is predefined for any numeric type and returns the abso-
lute value of the primary which follows it. Note that in the early development of Ada,
abs was considered a function call. Since a primary can be a parenthesized expression,
the form abs(expression) is still legal. The not operator is predefined for any boolean
type and returns the logical negation of the boolean primary which follows it. The ex-
ponentiating operator "**" applies to an integer type, returning the same integer type,
or a floating point type, returning the same floating point type.

4.6 Type Conversions

Type conversions are defined as follows:

type-conversion ::= type_mark(expression)

To convert an integer to floating point, use the form FLOAT(X). To con- _)
vert a floating point number to an integer (this involves rounding), use the form
INTEGER(X). Type conversions are also allowed between derived types and their base
or parent types.

Example:

total_fruit := integer(number_apples) + integer(number_oranges);

4.7 Qualified Expressions

A qualified expression is used to explicitly state the type of an expression en-
closed in parenthesis. This construct is most often used to distinguish between over-
loaded enumeration literals, such as RED in the predefined types stoplight and
card_color in section 3.5.1:

?

MY_CARD_COLOR := CARD COLOR'(RED);
HOLLYWOOD_VINE := STOPLIGHT(RED);

A qualified expression is defined as

qualified_expression ::= type_mark'(expression)

30
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

5.0 Statements

5.1 Sipiple and Compound Statements - Sequences of Statements

The programmer causes actions to be performed by a sequence of statements
in the main subprogram body. A statement may be either simple (indicating a single
action) or compound (which may contain internal sequences of statements). A state-
ment may be labeled with an identifier enclosed by double angle brackets.

sequence_of_statements ::= statement {statement}

statement ::=
{label} simple_statement | {label} compound_statement

simple_statement ::= nuD_statement
assignment_statement
exit_statement
goto_statemen t

procedure_call_statement
return_statement
raise_statement

comppund_statement ::=
ifjstatement

I loop_statement
case__statement
block_statement

label ::= «/a6c/_simple_name»

null_statement ::= null;

In any sequence of statements, at least one statement must appear. In those
cases where the programmer does not want any action to occur, or wants to leave that
section "'blank" and fill it in later, the null statement can be used to indicate no action
is to be performed. The raise statement will be covered separately under exceptions (see
section 11.3).

5.2 Assignment Statement

assignment_statement ::— vartaWe_name :== expression;

The assignment statement is used to change the value of a data item. As-
signments to constants and in mode parameters are not allowed.

5.2.1 Array Assignments

Assignments to an array variable are allowed for data items of the same ar-
ray type, concatenated objects, and strings. Array slices are not yet implemented.

31
Copyright © 1984, Maranatha Software Systems

Maranaiha A (Ada) Language Reference Manual

5.3 If Statements

An if statement is used to execute a selected sequence of statements given a
boolean condition. The if construct in Ada is different than in Algol 60 and its deriva-
tives (i.e., Pascal) in that the "dangling-else" problem has been eliminated. For exam-
ple, take the following Pascal programs:

Program 1: Program 2:

if a then if a then
if b then begin

write('X') if b then write('X')
else end

write('V); else
write('Y')

In Program 1, does the ebe: correspond to the first or the second if? Pascal
resolves the ambiguity by considering the "else" to be attached to the second if state-
ment, requiring A to be true to print X. If the programmer wanted A to be false to
print Y, Program 2 would have to be used. Ada solves this "dangling-else" ambiguity
by using an end if following the sequence of statements of an if construct. The above
programs would be written in Ada as

Program 1: Program 2:

if A then if A then
if B then if B then

PUTCX); PUT('X'); -
else end if;

PUT('V); else
end if; PUT('T);

end if; end if;

The if statement is represented syntactically as

if_statement ::=
if condition then

sequence_of_statements
{ elsif condition then

sequence_of_statements }
[else

sequence of statements]
end if;

condition ::= 6oo/ean__expression;

32
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

5.4 Case Statements

The Ada case statement is used to select a sequence of statements to be exe-
cuted based on a discrete value computed from an expression:

case_statement ::=
case expression is

case_statement_alternative
{ case_statement_alternative}

end case;

case_statement_alternative ::=
when choice {(choice) =>

sequ en ce_of..statements

The case statement is similar to the Algol-60 and "C" "switch", and the
Pascal or Algol-68 case statement. Its usefulness can be seen when comparing a short
program written using the if statement:

if DAY = SUNDAY then
GO_TO CHURCH;

elsif DAY = MONDAY then
LATE.FOR WORK;

elsif DAY in TUESDAY..THURSDAY then
NORMAL_WORK_DAY;

elsif DAY = FRIDAY then
LEAVE WORK.EARLY;

elsif DAY = SATURDAY then
WATCH FOOTBALL;

else
ERROR;

end if;

The same segment written using the case statement would appear as

ease DAY is
when SUNDAY => GO TO CHURCH;
when MONDAY => LATE FOR_WORK;
when TUESDAY..THURSDAY => NORMAL WORK DAY;
when FRIDAY => LEAVE WORK_EARLY;~
when SATURDAY => WATCH.FOOTBALL;
when others => ERROR;

end case;

The code in the branch of a when clause is not limited to one statement,
and the when clause is not limited by a single choice. Any number of choices can be
"or'ed" together into one choice, and a range of values may be defined as in
TUESDAY..THURSDAY. The values do not have to be enumerated as in Pascal.

33
Copyright © 1084, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

5.5 Loop Statements

A loop statement specifies that the embedded sequence of statements is to
be executed any number of times.

loop_statement ::=
[/o0p_simple_name:l

[iteration_scheme] loop
sequence_of_statements

end loop [/oop_simple_namej;

iteration_scheme ::=
while condition

| for loop_parameter_specification

loop_parameter_specification ::=
identifier in [reverse] discrete_range

There are three forms of the loop statement: the basic loop, the while loop,
and the for loop. The basic loop results in an infinite execution of the sequence of
statements, as in the following example:

loop
WAIT FOR.PHONE TO RING;
ANSWER PHONE;
EXECUTE COMPUTERIZED BULLETIN BOARD;
HANG_UP_PHONE; ~ " '

end loop;

This loop will execute indefinitely. Once a loop is entered, there are a
number of ways of exiting:

1 An exit statement; (see 5.7)
A raise statement; (see 11.3)
A return statement; (see 5.8)
Reset the computer.

34
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

When the basic loop is modified by an iteration scheme, producing a •while loop, the
body of tlit ' -•; -s executed as long as the condition of the when clause is true. The
loop will not be executed if the condition is initially evaluated as false.

while TEMPERATURE > 75 loop
AIR.CONDITIONER;

end loop;

The last form of the loop statement is the for loop. In this case, the itera-
tion scheme specifies a set of discrete values which are successively assigned to a loop
parameter:

COMPUTE TOTAL_HOURS:
for I in MONDAY..FRTOAY loop

WEEKLY_HOURS := WEEKLY HOURS + HOURS WORKED(I);
end loop COMPUTEJTOTALJIOURS;

In the last example we have shown the use of a labeled loop statement.

35
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

5.6 Block Statements

A block statement can be considered a miniature subprogram embedded
directly in a sequence of statements. It introduces its own sequence of statements and,
optionally, a declarative part:

block_statement ::=
6/ocArj3imple_name:]
declare

declarative_part]
begin

sequence_of_statements
[exception

exception_handler
{exception_handler}]

end [6/ocfc_simple_namej;

Example:

SWAP:
declare

TEMP : INTEGER;
begin

TEMP:=X;
X:=Y;
Y := TEMP;

end SWAP;

This labeled block (similar to the example on page 5-9 of the Ada Reference
Manual) swaps the integer values of X and Y. Since the variable TEMP is a temporary
variable and is only needed to store the value of X during the swap operation, it is de-
clared as a variable, local to this block, and is only valid for the sequence of statements
of the block. Following the block, the variable TEMP no longer exists.

36
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

5.7 Exit Statements

The exit statement is one method of terminating an enclosing loop:

exit_statemeni ::= exit [/oop_name] [when condition];

An optional loop identifier may be given, either to improve the readability of
the program by formally stating the loop it is exiting or to exit from an outer loop. If
no loop identifier is given, the innermost enclosing loop is assumed. An optional condi-
tion may be included and the exit statement executed on the boolean condition. This
feature is useful to simulate the Pascal "repeat- until" construct:

Pascal "repeat": Ada "exit":

repeat loop
read(ch) GET(CH);

until ch <> ' ' exit when CH /= ";
end loop;

The above program segments will input source text until a non-blank charac-
ter is found.

5.8 Return Statements

A return statement terminates execution of a subprogram. A return state-
ment for a function must include an expression of the same type as the return type of
the function, and a return statement for a procedure must not include a return expres-
sion. A return statement is not required in a procedure if the programmer wishes to exit
upon terminating the procedures sequence of statements. A function, however, must
have a return statement within its sequence of statements and should not return from
the end of the function; doing so will return an unspecified value.

returnjstatement ::= return [expression];

5.9 Goto Statements

Goto statements are provided for in Ada but their usage has been limited. A
goto statement may not transfer control into a compound statement, nor between the
arms of an if or case statement. A goto statement also may not transfer control into or
out of a subprogram. Its basic syntax is

goto_statement ::= goto /a&e/jaame;

37
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

6.0 Subprograms

A subprogram is a program unit, invoked by a subprogram call, which
describes an action. There are two types of subprograms: procedures and functions. A
procedure call is a statement; a function call returns a value and is used in expressions.
A subprogram is externally defined by its subprogram specification. The subprogram
specification tells you what kind of a subprogram it is (procedure or function), the
number, types and modes of the parameters it requires and its return type (in the case
of functions).

6.1 Subprogram Declarations

A subprogram declaration allows the programmer to "forward-reference" a
subprogram, as in Pascal.

subprogram^declaration ::== subprogram_specification;

subprogramjspecification ::=
procedure identifier fformal_part]

| function designator [iormal_partj return type_mark

designator ::= identifier

formal_part ::= (parameter_specification {;parameter_specification})

parameter_specification ::— identifier_list : mode type_mark

mode ::= [in] | in out | out

6.2 Formal Parameter Modes

The formal part of the subprogram specification defines the subprogram's
parameters. A parameter has one of three modes; in (default), out, or in out. These
can be thought of as "read-only", "write-only" and "read-write" objects. If no mode is
given, the parameter(s) are assumed to be read-only (mode in). The Ada language does
not define what mechanism is used for parameter passing. In Maranatha A, for compo-
site types, the formal parameter provides access to the corresponding actual parameter
throughout the execution of the subprogram. This method reduces execution time by
passing only the pointers to the object and not the entire object itself; this method also
saves run-time storage space. The warning on page 6-3 of the Ada Reference manual,
"A program that relies on one particular mechanism is therefore erroneous", applies.

38
Copyright © 1984, Maranatha Software Systems

i . " " — , , _ - . " * * " _ "*~ ~- x " «*"«--. **"—i ~*

Maranatha A (Ada) Language Reference Manual

6.3 Subprogram Bodies

fhe subprogram body defines a subprogram. It includes the subprogram
specification, which contains all information describing the subprogram, a declarative
part, which contains types, objects and subprograms local to the body of the subpro-
gram, and a sequence of statements to be executed when the subprogram is called.

subprogram_body ::=
subprogram_specification is

[declarative__part]
begin

sequence_of_statements
[exception

exception_handler "
{exception_handler}]

end [designator];

8.3.1 Conformance Rules

No variations are allowed where language rules permit the specification of a
subprogram in more than one place; i.e., a forward-referenced subprogram, or a pack-
aged subprogram.

• Since default parameters are not implemented, a numeric literal cannot
appear in a subprogram specification.

• Selected components (for subprogram names) are not implemented.

• Operator symbols are not implemented.

6.4 Subprogram Calls

A subprogram call is either a procedure or a function call and invokes the
execution of that subprogram. At present, there are no actual parameter associations or
default actual parameters.

procedure_call_statement ::=
procedure_name [actual_j>arameter_part];

function_call ::=
[actual_parameter_part]

actualj>arameter_part ::=
(parameter^association {, parameter_association})

parameter_association ::= actual^parameter

actual_parameter ::=
expression | variable_pa.me \ type_mark(var»a6/e_name)

39
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

6.4.1 Parameter Associations

Each actual parameter must have the same type as the corresponding formal
parameter (otherwise the compiler will not be able to find the subprogram with parame-
ters of the wrong type). An actual parameter with a formal parameter of mode in must
be an expression (or "r-value") and evaluated before the subprogram call. An actual
parameter associated with a formal parameter of mode in out or out must be the name
of a variable. The variable is evaluated before the call and passed by reference ("1-
value").

8.5 Function Subprograms

A function is a subprogram that returns a value of any predefined type and
may only have parameters of mode in, to reduce function side effects. If the body of a
function is left by reaching the end of the function, the return value is undefined and
such a program is erroneous.

6.6 Parameter and Result Type Profile « Overloading of Subprograms

In Ada, there may be several subprograms with the same name which may
perform similar actions but with different parameters. A good example of this is the
sample package MATHLIB on the distribution disk which contains the overloaded func-
tion SQRT, one for integer computations, and another for floating point square root
operations. An overloaded subprogram must differ from others with the same identifier
in. at least one respect. For any two subprograms, if the order, number and types of
parameters are the same and (for functions) the result type is the same the two subpro-
grams are equivalent and one subprogram will "hide" the other.

40
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

7.0 Packages

Programs in Maranatha A are composed of subprograms and packages.
Packages allow the programmer to group logically related objects and operations togeth-
er.

7.1 Package Structure

Packages, like subprograms, are divided into a specification and a body.
Every package has a specification, but the package body is not required if there are no
subprogram declarations within the package specification, or if there is no sequence of
statements the package should execute.

package_declaration ::== package_specification;

package_specification ::=
package identifier is

{ basic_declarative_item}
end [pccAra^e_simple_name]

package_body ::=
package body pae£a£e_simple_name is

jdeclarative^part]
[begin

sequence_of_statements
[exception

exception_handler
(exception_handler}]j

end pac^c<7e_simple_name;

The simple name of a package body must match the package specification.
Like subprograms, if a simple name is given at the end of a specification or body, it
must repeat the package simple name.

7.2 Package Specifications and Declarations

The declarations given in a package specification are automatically visible in
the package body; no use clause is required (even if they are separately compiled).
Remember, a subprogram or package body is not a basic declarative item and so cannot
appear in a package specification.

41
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

7.3 Package Bodies

For the subprogram declarations which appear in the specification, a
corresponding subprogram body must appear in the package body. Note that objects
and types declared within the package body are not available outside of the package.
Of course, these items are considered "global" in that, unlike a subprograms local ob-
jects, they do not "go away" after the package has been elaborated; packaged subpro-
grams may continue to reliably use these variables. A package body must be elaborated
before it is used; This is dependent on the order in which it is loaded, a facility outside
of the Ada environment. See the linking loader manual for details on the order of
linking/loading. The exception PROGRAMJERROR has not been implemented and in-
correct linking will result in unknown side effects.

42
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

8.0 Visibility Rules

The rules defining the "scope" of declarations and what identifiers are usable
at various parts of the Ada program are defined here.

8.1 Declarative Region

A declarative region is used for the purposes of determining where certain
identifiers are visible. A declarative region is formed by:

« A subprogram or package declaration, together with its
corresponding body.

• A record type declaration

• A block statement or a loop statement

8.2 Scope of Declarations

For any given declaration, Ada defines a portion of the program called the
scope of that declaration. The scope of any entity is the region of text where its de-
claration has effect. Its immediate scope extends to the end of the declarative -egion,
and for most declarations the scope of the declarations extends beyond the immediate
scope:

• A component declaration

• A parameter specification

43
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

8.3 Visibility

The visibility of a declaration defines where its name can be seen. In all
cases, an entity is only visible within its scope. For each identifier and at each place in
the text, Ada defines the possible meanings of an occurrence of the identifier. In some
cases, the visibility rules determine no possible meaning. Either the identifier was not
declared, is not visible, or we are not within the scope of the identifier. In the following
example, X is not visible because we are outside of its scope:

Example:

declare
X: INTEGER;

begin
null;

end;
X := 5; - illegal (X is not visible)

In other cases, the visibility rules may determine more than one meaning of
an identifier. In these cases the identifier is legal only if one declaration is acceptable,
given the overloading rules in the given context. In the following example, the identifier
RED has more than one meaning (see declarations in 3.5.1), but is legal because the
overloading rules require the expression to have a certain type.

Example: . '

HOLLYWOOD'VINE := RED;

44
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

8.4 Use Clauses

A use clause achieves direct visibility of declarations that appear in the visi-
ble parts of named packages. Since named components are not fully implemented, a use
clause must be given for each package:

use_clause ::= use pacfcape_name {,padba0e_name};

The appearance of a use clause assumes that 1) a nith clause specified this
package was needed in a context specification, or 2) the associated package is already
visible in a preceding declarative part. All potentially visible declarations are made visi-
ble; that is, potentially visible declarations that have the same identifier are automati-
cally made visible regardless of their type, etc. Users are forewarned that this will pro-
duce unexpected errors in rare cases.

8.8 The Package STANDARD

The predefined types and operations are declared in a predefined package
named STANDARD, and is described in Annex C. The package STANDARD forms a
declarative region which encloses every library unit and thus the main program.

8.7 The Context of Overload Resolution

Overloading (in Maranatha A) is defined for subprograms and enumerated
literals, as well as the inherent operations. The appropriate rules in section 8.7 of the
Ada LRM apply.

45
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

10.0 Program Structure and Compilation Issues

10.1 Compilation Units - Library Units

The text of a program must be submitted in one compilation.

compilation ::= compilation^unit

compilation.. unit ::=
context_clause library_unit | context_clause secondary_unit

library_unit ::= package_declaration | subprogram_body

secondary_unit ::= library_unit_body | subunit

library_unit_body ::= subprogram_body | package_body

10.1.1 Context Clauses - With Clauses

A context clause informs the compiler that the named packages are needed
within the following compilation unit.

context_clause ::= {with_clause {use_clause}}

with_clause ::= with uni/^simple^jiame {,tmifjsimple_name};

10.2 Subunits of Compilation Units

A subunit allows subprograms of another program unit to be compiled
separately.

body_stub ::= subprogram_specification is separate;

subunit ::= separate (parenf_tmtijiame) proper^ body

In Maranatha A, only subprograms may be subunits. Further, only subpro-
grams of library units may be subunits (a program may not be a subunit of another
subunit).

Restrictions have been placed on the visibility inside a subunit. A subunit
may not access any subprograms or exceptions declared in the subunit 's parent, with the
exception that a packaged subprogram which is a subunit may access items within the
package specification (including subprograms or exceptions).

46
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

10.3 Order of Compilation

The CP/M environment does not normally allow for time and date stamping
of files, and so the order of compilation of program units is not strictly checked by the
Maranatha A compiler. The compiler does ensure that package specifications are com-
piled before package bodies as the package specification symbol table (.SYM file) must
appear on the disk to compile the package body. Likewise, subunits may not be com-
piled until their p^nt units have also been compiled.

10.4 The Program Library

A normal submission to the compiler consists of only the compilation unit.
A future release will create reference files to ensure the order of compilation is correct.

10.5 Elaboration of Library Units

Before the main subprogram of a program is executed, all packages must
first be elaborated. It is the responsibility of the user to ensure the package
specifications, package bodies and subunits are loaded in the proper order to ensure
correct elaboration. For more information, consult the linking loader manual, which has
examples of program loading.

10.6 Program Optimization

Optimization of the program text is automatically performed by Maranatha
A. If any statements will never be executed, the optimizer will omit the corresponding
machine code. If the print pragma has been turned on, the unr each able source text will
not appear in the listing.

47
Copyright (e) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

11.0 Exceptions

This chapter defines the facilities in Ada for the creation and handling of run
time errors, culled exceptions. The instance of a run-time error is called "raising" the
exception. Presently, only user-defined exceptions exist. The "suppress" pragmas are
considered to be all turned on to increase program execution speed.

11.1 Exception Declarations

An exception declaration declares a name for a user-defined exception. Note
that this name can only appear in a raise statement or an exception handler.

exception_declaration ::= identifierjist: exception;

If an exception declaration should appear in a recursive subprogram, the ex-
ception name denotes the same exception for all invocations of that subprogram (it is
not "redeclared").

11.2 Exception Handlers

Run-time errors are responded to in an exception handler, which may appear
in a subprogram body, package body, or block:

exceptionjiandler ::==
when exception_choice (| exception_choice} =>

sequence_of_statements

exception_choice ::= e:rcepfum_name | others

The exception choice others must appear last and by itself. Note that oth-
ers may be used for exceptions that are not visible at the place of the exception
handler. For example, if an embedded subprogram declares a local exception which is
raised and not handled by that subprogram, it is no longer visible outside of the subpro-
gram but still can be handled by the choice others:

procedure test is
• ••

procedure inner is
error : exception;

begin
raise error;

end;

begin — test
inner;

exception
when others =>

— exception "error" can be handled here...
end test;

48
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

11.3 Raise Statements

A raise statement raises an exception; an example was seen in the last sec-
tion.

raise_statement ::== raise [ezcepfion^namej;

A raise statement without an exception name is allowed only within the se-
quence of statements of an exception handler, and "re-raises" the exception that caused
the execution of this exception handler.

11.4 Exception Handling

When an exception is raised, a set of rules define the exception handler that
is executed, depending on where the exception was raised.

11.4.1 Exceptions Raised During the Execution of Statements

If an exception is raised in a sequence of statements that has an exception
handler, control is transferred to that handler. If the sequence of statements does not
have an exception handler, then the action performed depends on the location in which
the exception was raised:

subprogram_body : exception is re-raised at the point of call of the
subprogram. If the subprogram is the main subprogram
itself, the environment prints an "unbandied exception"
message.

block : exception is re-raised immediately after the block statement.

package_body : if package body is a declarative item, exception is
re-raised after the declarative item. If the package
body is a library unit, the environment prints an
"unhandled exception" message.

An exception that is "re-raised" is said to be propagated. If an exception
handler does not handle the existing exception, it is propagated.

49
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

11.4.2 Exceptions Raised During the Elaboration of Declarations

The elaboration is abandoned if an exception is raised while a declaration is
being evaluated. The next action depends on the location of the declaration:

subprogram_body : the exception is re-raised at the point of call of the
subprogram. If this is the main subprogram, the
environment prints an "unhandled exception" message.

block : the same exception is re-raised immediately following the block.

package_body : the exception is re-raised immediately after the
package body, if it is a declarative item. If in a
library unit, the environment prints an "unhandled •
exception" message.

50
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

13.0 Representation Clauses and Implementation Dependent Features

13.1 Representation Clauses

Representation clauses enable the user to tell the compiler how an entity is
to be implemented. They do not alter the net effect of the program, but may be used to
make a more efficient representation of an entity or to interface with features outside
the domain of the compiler; i.e., the CP/M environment.

representation_clause ::= address_clause

13.5 Address Clauses

An address clause is used to assign an explicit address to an object.

address_clause ::= for simplejname use at integer_literal;

The full implementation of this feature would allow the assignment of an ex-
plicit address to a subprogram or hardware interrupt service routine; these features have
not yet been implemented. Also, a single integer must be used instead of the full
«*afic_simple_expression for the address.

51
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada.) Language Reference Manual

14.0 Input-Output

The input-output facilities provided by Maranatha A, as far as they are im-
plemented, conform to those in the standard Ada language reference manual. They are
provided in source form for those who wish to write their own input-output drivers.
They have been written as a separate part of the compiler in an effort to emphasize the
portability of the code and to try to conform with the spirit of the designers of the Ada
language.

i

14.1 External Files and File Objects

External files are identified by a string (the name), and are documented in
Appendix F. Input-output in human readable form is defined in the non-generic pack-
age TEXT JO.

Before operations can be performed on an object of type FILEJTYPE, it
must be associated with an external file. The association is made by the procedures
"open" and "create". While this association is in effect, the file is said to be open.

A file has a mode, which is a value of the enumeration type

type FILE.MODE is (IN.FILE, OUT_FILE);

Exceptions that can be raised by any of the input-output subprograms are
defined in the package IO_EXCEPTIONS.

14.2 Sequential and Direct Files

Currently, only sequential access is allowed to external files through the
package TEXT JO.

52
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

14.2.1 File Management

Before any file processing can be carried out, a file object within the Ada
source program must be associated with an external CP/M file. When this association
has taken place, the file is said to be "open." This association can take place by the
procedure CREATE or the procedure OPEN.

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE_MODE;
NAME : in STRING);

The procedure CREATE establishes a new external CP/M file
and associates it with the given internal file object.
The given file is left open, and the mode is set to the
given access mode.

The exception STATUSJERROR is raised if the given file is
already open. The exception NAMEL.ERROR is raised if the
string given as NAME does not allow the identification of
an external file.

procedure OPEN(FILE : in out FILE_TYPE;
MODE : in FILE.MODE;
NAME : in STRING);

The procedure OPEN associates the given internal file
object with an existing external file with the given name.
The given file is left open, and the mode is set to the
given access mode.

The exception STATUS_ERROR is raised if the given file is
already open. The exception NAME_ERROR is raised if the
string given as NAME does not allow the identification of
an external file; in particular, this exception is raised
if no external file with the given name exists.

procedure CLOSE(FILE : in out FILEJTYPE);

After processing has been completed on the external file,
the association is severed by the procedure CLOSE. The
internal disk buffers associated with the internal file
will automatically be "flushed" to the disk if the file
mode is OUT_FILE. This procedure need not be used if the
file mode is IN_FILE and the file object will not be used
again (i.e., end of main program).

The exception STATUS_ERROR is raised if the given file is
not open.

53
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

procedure DELETE(FILE : in out FTLEJTYPE);

Deletes the external file. The file is closed, and the
external file ceases to exist.

The exception STATUS JERROR is raised if the file is not
open.

function MODE(FILE : in FILEJTYPE) return FILE_MODE;

Returns the current mode of the given file.

The exception STATUS_ERROR is raised if the given file is
not open.

function NAME(FILE : in out FILEJTYPE) return STRING;

The function NAME returns a string representing the name
of the external file associated with the internal file.
The returning string is of the format "DiFILENAME.TYP",
where "D" is the drive number of the file, "FILENAME" is
the name of the file (up to 8 characters with no embedded
blanks) and "XYP" is the three character extension of the
file name.

The exception STATUS_ERROR is raised if the given file is
not open.

function IS_OPEN(FILE : in FILEJTYPE) return BOOLEAN;

The boolean function ISjOPEN accepts a file object as an
argument and returns true if the internal file is
associated with an external file.

54
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

14.3 Text Input_Output

Many of the procedure in the package TEXT_IO have been reproduced in
the Maranatha A package TEXTIO. Since the source code for this package has been
provided, they may be adapted for your own purposes.

14.3.4 Operations on Columns, Lines, and Pages

The subprograms in 14.3.4 provide for control of line and page structure. In
the absence of the FILE parameter, they act on the console device. The exception
STATUS_ERROR is raised by any of these subprograms if the file to be used is not
open.

procedure NEW_UNE(FILE : in out FILEJTYPE;
SPACING : in POSITIVE COUNT :» 1);

procedure NEW_LINE(SPACING : in POSnTVE_COUNT := 1);

Operates on a file of mode OUTJFILE.

For a SPACING of one: Outputs a carriage-return line-
feed. For a SPACING greater than one, the above action is
performed SPACING times.

The exception MODE_ERROR is raised if the mode is not
OUTJFTLE.

procedure SKIP LINE(FILE : in out FELEJTYPE:
SPACING : in POSITIVE_COUNT := 1);

procedure SKIPJLINE(SPACING : in POSmVE^COUNT := 1);

Operates on a file of mode IN_FILE.

For a SPACING of one, reads and discards all characters
until a line terminator had been read. For a SPACING
greater than one, the above action is repeated SPACING
times.

The exception MODEJERROR is raised if the mode is not
IN_FILE. The exception ENDJSRROR is raised if an attempt
is made to read past the end of the file.

55
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

function END OF JJNE(FILE : in FILEJTYPE) return BOOLEAN;
function END_OFJJNE return BOOLEAN;

Operates on a file of mode IN_FILE, and returns TRUE if a
line terminator or file terminator is next.

The exception MODEJERROR is raised if the mode is not
IN.FILE.

function END OF FILE(FILE : in FILE.TYPE) return BOOLEAN;
function END_OF_FILE return BOOLEAN;

Operates on a file of mode IN_FILE, and returns TRUE if a
file terminator is next.

The exception MODEJERROR is raised if the mode is not
IN_FILE.

56
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

14.3.5 Get and Put Procedures

The procedures GET and PUT for all types are defined in these sections.
GET and PUT for characters and strings work on a character by character basis; GET
and PUT for numeric types treat the items as lexical elements.

All of the GET and PUT procedures have forms with a ED-iE parameter.
Where this parameter is omitted, the console device is assumed. GET procedures
operate on IN_FILE files; PUT procedures operate on OUT_FILE files.

The exception STATUS_ERROR is raised by any of the procedures GET,
GETJLINE, PUT, and PUT LINE if the file to be used is not open. The exception
MODE_ERROR is raised by GET and GET_LINE, and by PUT and PUT LINE if the
file mode is not IN.FILE or OUT_FILE, respectively.

The exception END_ERROR is raised if an attempt is made to read past the
end of a file. The exception DATA_ERROR is raised if an input sequence is not a lexi-
cal element of the input type.

G

57
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

14.3.6 Input-Output of Characters and Strings ~

For an item of type CHARACTER the following procedures are provided:

procedure GET(FILE : in FILEJTYPE;
ITEM : out CHARACTER);

procedure GET(ITEM : out CHARACTER);

After skipping any line terminators, reads the next
character from the input file and returns the value in the
out parameter ITEM.

The exception ENDJERROR is raised if an attempt is made to
skip a file terminator (except in console input).

procedure PUT(FILE : in FILEJTYPE;
ITEM : in CHARACTER);

procedure PUT(ITEM : in CHARACTER);

Outputs the given character to the file.

For items of the type STRING the following procedures are provided:

procedure GET(FILE : in FILE TYPE;
ITEM : out STRING);

procedure GET(ITEM : out STRING);

Performs a number of character GET operations for
successive characters of the string.

procedure PUT(FDLE : in FILE TYPE;
ITEM : in STRING);

procedure PUT(ITEM : in STRING);

Performs the number of character PUT operations equal to
the length of the string.

58
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

procedure GET_LINE(FILE : in FILE TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GET_LINE(ITEM : out STRING;
LAST : out NATURAL);

Replaces successive characters of the string by successive
characters from the file. Reading stops if the end of
line is met or the end of the string is met. Characters
not replaced are left undefined.

If characters are read, returns in LAST the index value of
the last character replaced in the string.

The exception ENDJBRROR is raised if an attempt is made to
read past the end of a file (except console input).

X-
-

procedure PUT LEME(FILE : In FILE TYPE;
ITEM : in STRING);

procedure PUT_LINE(ITEM : in STRING);

Calls the procedures PUT(ITEM) and NEWJJNE(l).

59
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

14.3.7 Input-Output for Integer Types

The following procedures are defined in TEXT JO for the type INTEGER.
Values are output as decimal literals, without underlines or exponents, and preceded by
a minus sign if negative.

procedure GET(FILE : in FILEJTYPE;
ITEM : out INTEGER);

procedure GET(ITEM : out INTEGER);

Skips any leading blanks or line terminators, reads a
minus sign (if present), then according to the syntax of
an integer literal (except based numbers).

Returns, in the parameter ITEM, the value of type INTEGER
that corresponds to the sequence input. j

The exception DATAJSRROR is raised if the input is not
syntactically correct.

procedure PUT(FILE : in FILE TYPE;
ITEM : in INTEGER);

procedure PUT(ITEM : in INTEGER);

Outputs the parameter ITEM as an integer literal, with no
underlines, no exponent, and no leading zeroes (but a
single zero for the value zero), and a preceding minus
sign for a negative value.

80
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

14.3.8 Input-Output for Real Types

The following procedures are defined in the package TEXT IO for the stan-
dard type FLOAT.

procedure GET(FDLE : in FILE TYPE;
ITEM : out FLOAT); "

procedure GET(ITEM : out FLOAT);

Skips any leading blanks and line terminators, reads a
plus or minus sign (if present), then according to the
syntax of a real literal (except based numbers).

Returns, in the parameter ITEM, the value of type FLOAT
that corresponds to the input sequence.

""" The exception DATAJERROR is raised if the sequence input
does have the required syntax.

procedure PUT(FDLE : in FILE_TYPE;
ITEM : in FLOAT);

procedure PUT(ITEM : in FLOAT);

Outputs the value of the parameter ITEM as a decimal
literal in the following format:

O.OOOOOOE+00

If the value is negative, a minus sign is included in the
integer part.

81
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

14.3.10 Specification of the Package TextJO

The following is a listing of the TEXTJKD specification as it appears on the
distribution disk. Note: Because this file was read verbatim from the file textio.ada,
reserved words in this section are not in bold face.

pragma print(on);
with IO EXCEPTIONS; use IO_EXCEPTIONS;
package TEXT JO is

type FILE_MODE is (IN_FILE, OUTJUE);

type FILE_CONTROL_BLOCK is
record

DRIVE : CHARACTER;
NAME : STRING(1..8);
EXTENSION : STRING(1..3);
EXTENT,S1,S2,RC : CHARACTER;
DISK MAP : STRING(1..16);
CR : CHARACTER;
RANDOM : STRING(1..3);

end record;

type OPEN.STATUS is (OPENED, CLOSED);

type FILE_TYPE is
record

FCB : FILE_CONTROL BLOCK;
BUFFER : STRING(1..128);
OPEN : OPEN STATUS;
DATAJPOINTER : INTEGER;
NEEDS FLUSHED : BOOLEAN;
ENDOFFILE : BOOLEAN;
MODE : FILEJVIODE;

end record;

type COUNT is range O.INTEGER'LAST;
subtype POSITIVE.COUNT is COUNT range L.COUNT'LAST;
UNBOUNDED : constant COUNT := 0;

subtype FIELD is INTEGER range 0..10;
subtype NUMBERJBASE is INTEGER range 2..16;

62
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING);

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE.MODE;
NAME : in STRING);

procedure CLOSE (FILE : in out FILE TYPE);
procedure DELETE(FILE : in out FILEJTYPE);
procedure RESET (FILE : in out FILEJTYFE; MODE : in FILE MODE);
procedure RESET (FILE : in out FILEJTYPE);

function MODE (FILE : in FILE TYPE) return FILE MODE;
function NAME (FILE : in FILE.TYPE) return STRING;

function IS_OPEN(FILE : in FILEJTYPE) return BOOLEAN;

— Column, Line, and Page control

procedure NEW LINE(FILE : in out FILE TYPE;
SPACING : in POSITIVEJSOUNT);

procedure NEW LEME(FILE : in out FILEJIYPE);
procedure NEW LINEJSPACING : in POSmVE_COUNT);
procedure NEWJUNE;

procedure SKIP UNE(FILE : in out FILEJTYPE;
SPACING : in POSnTVE_COUNT);

procedure SKIP LINE(FILE : in out FILE TYPE);
procedure SKIP~LINE(SPACING : in POSITIVE COUNT);
procedure SKIP JUNE;

function END_OF_LINE(FILE : in FBLEJTYPE) return BOOLEAN;

function END_OF__FILE(FILE : in FILEJTYPE) return BOOLEAN;

— Character Input-Output

procedure GET
procedure GET
procedure PUT
procedure PUT

FILE : in out FILEJTYPE; ITEM : out CHARACTER);
ITEM : out CHARACTER);
FILE : in out FILE TYPE; ITEM : in CHARACTER);
ITEM : in CHARACTER);

63
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

— String Input-Output

procedure GETfFILE : in out FILEJTYPE; ITEM : out STRING);
procedure GET(ITEM : out STRING);
procedure PUTfFILE : in out FILEJTYPE; ITEM : in STRING);
procedure PUT(ITEM : in STRING);

proced-f№ GET LINE(FILE : in out FILE TYPE;
** ITEM : out STRING; last : out NATURAL);

procedure GET LINEflTEM : out STRING; last : out NATURAL);
procedure PUT LINEfFILE : in out FILEJTYPE; ITEM : in STRING);
procedure PUT_LINE(ITEM : in STRING);

— Input-Output of Integer Types

procedure GET
procedure GET
procedure PUT
procedure PUT

FILE : in out FILE TYPE; ITEM : out INTEGER);
ITEM : out INTEGER);
FILE : in out FILEJTYPE; ITEM : in INTEGER);
ITEM : in INTEGER);

— Input-Output of Real Types

procedure GETfFILE : in out FILE TYPE; ITEM : out FLOAT);
procedure GETflTEM : out FLOAT);
procedure PUT FILE : in out FILE TYPE; ITEM : in FLOAT);
procedure PUTflTEM : in FLOAT);

end text_io;

64
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

14.4 Exceptions in Input-Output

The exceptions which can be raised by input-operations are declared in the
package IO_EXCEPTIONS (see 14.5).

The corresponding section of the Ada LRM describes the conditions under
which input-output exceptions are raised. Only LAYOUT_ERROR is not raised by
COL, LINE or PAGE (since these do not exist), and MODEJ2RROR is not raised by
SETJNPUT, SKIP_PAGE, etc. (because these also do not exist).

14.5 Specification of the package IO_Exceptions

The following package defines the exceptions needed by TEXTJK), and is in-
cluded on the distribution disk. Note: Because this is also a verbatim listing, reserved
words do not appear in bold face.

pragma print(on);
package io_exceptions is

status_error : exception;
mode_error : exception;
name_error : exception;
use_error : exception;
device__error : exception;
end_error : exception;
data_error : exception;
layout_error : exception;

end io_exceptions;

65
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

Annex A
Predefined Language Attributes

P'ADDRESS
For a prefix P that denotes an object, this attribute returns

a number corresponding to the first storage unit occupied by
P. Overloaded on all predefined integer types. This attribute
is useful to pass pointers to strings and file objects using
the BDOS call (see Appendix F).

P'FIMAGE
For a prefix P that denotes a floating point type, this
attribute is a function with a single parameter. The actual
parameter X must be a value of the base type of P. The
result type is the predefined type STRING. The result is the
image of the value of X, without underlines, containing one
leading zero, a decimal point, six digit mantissa, and
exponent.

P'FIRST
The minimum value of P.

P'FIRST
If P is a constrained array or subtype, or an array object,
P'FIRST is the lower bound of the first index.

P'FIRST(J)
Similarly, the lower bound of the J'th index.

P'IMAGE .;.
For a prefix P that denotes an integer type, this attribute
is a function with a single parameter X, which must be of
the base type of P. The result type is the predefined type
STRING. The result is the image of the value of X, without
leading zeroes, exponent, or trailing spaces, but with a one
character prefix that is either a minus sign or a space.

P'LAST
The maximum value of P.

P'LAST
If P is a constrained array or subtype, or an array object,
P'LAST is the upper bound of the first index.

P'LAST(J)
Similarly, the upper bound of the J'th index.

66
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

P'LENGTH
IT ? is a constrained array type or subtype, or an array
object, P'LENGTH is the number of elements in the first
dimension of P.

FLENGTH(J)
Similarly, the number of elements in the J'th dimension.

P'POS
If X is a value of type P, P'POS(X) is the integer position of
X in the ordered sequence of values P'FIRST..P'LAST, the
position of P'FIRST being itself for integer types and zero for
enumeration types.

P'VAL
If J b an integer, P'VAIX J) is the value of enumeration type
P whose POS is J.

67
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

Pragma

OPTIMIZE

PRINT

SYSTEM

INCLUDE

Annex B
Predefined Language Pragmas

Meaning

Takes TIME, SPACE or OFF as argument. This pragma can
only appear in a declarative part and it applies to the
block or body enclosing the declarative part. It
specifies whether time or space is the primary
optimization criterion. The compiler can be directed to
perform no optimization by using OFF as the argument.
SPACE is the default optimization; TIME instructs the
compiler to do as much intermediate code optimization as
possible. Use this when compiling benchmark~programs.

Takes ON or OFF as argument. This pragma may appear
anywhere and directs the compiler to output the source
text as it is being processed by the different compiler
phases. If these listings are not desired, it is suggested
that they not be used. Compile time increases
considerably as the source text must be included with the
code passed from phase to phase.

Takes 8080, 8085, or Z80 as argument. This pragma can
appear anywhere and establishes the name of the object
machine. When code generators are created for different
machines, this pragma will affect the compiler output;
until then the CP/M 8080 code generator is always used.

Takes a string as argument, which is the name of an Ada
text file. This pragma may appear anywhere and causes the
text file to be included where the pragma is used. If a
disk letter is not specified in the name, the default
drive is assumed. Also, the print pragma will have no
effect on the statements of a text file that has been
included; to view these statements another print pragma
must be used within the included text file itself. The
include pragma has no "nesting limit" (but beware of
"cyclic" includes!)

RECURSION
Takes ON or OFF as argument. Normally, all Ada programs
are recursive. Turning recursion off allows the compiler
to store data in a local data area as opposed to a dynamic
stack, thus dramatically increasing the speed of the
resulting object code. Use this pragma when compiling
non-recursive benchmark programs. The pragma can be
turned on and off within a program, so selected embedded
subprograms may use recursion.

Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

Annex C
Predefined Language Environment

package STANDARD is

type BOOLEAN is (FALSE, TRUE);

~ The predefined relational operators for this type are as
— follows:

function "=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
function "/=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
function "<" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
function "<=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
function ">" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
function *>=* (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

— The predefined logical operators and the predefined negation
— operator are defined as follows:

function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
function "xor" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

function "not" (RIGHT : BOOLEAN) return BOOLEAN;

— The universal type vniversal_integer is predefined.

type INTEGER is range -32768 .. 32767;

function "=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
function "/=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
function "<" (LEFT, RIGHT : INTEGER) return BOOLEAN;
function "<=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
function ">" (LEFT, RIGHT : INTEGER) return BOOLEAN;
function ">=" (LEFT, RIGHT : INTEGER) return BOOLEAN;

function "+" (RIGHT : INTEGER) return INTEGER;
function "-" (RIGHT : INTEGER) return INTEGER;
function "abs"(RIGHT : INTEGER) return INTEGER;

function "+" (LEFT, RIGHT : INTEGER) return INTEGER;
function "-" (LEFT, RIGHT : INTEGER) return INTEGER;
function "*" (LEFT, RIGHT : INTEGER) return INTEGER;
function "/" (LEFT, RIGHT : INTEGER) return INTEGER;
function "rem" (LEFT, RIGHT : INTEGER) return INTEGER;
function "mod" (LEFT, RIGHT : INTEGER) return INTEGER;

function "**" (LEFT, RIGHT : INTEGER) return INTEGER;

Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

— The universal type univer8al_float is predefined.

type FLOAT is digits 6 range -3E31 .. 1E38;
•

~ The predefined operators for this type are as follows:

function "=n (LEFT, RIGHT : FLOAT) return BOOLEAN;
function "/=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
function "<" (LEFT, RIGHT : FLOAT/return BOOLEAN;
function "<=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
function ">" (LEFT, RIGHT : FLOAT) return BOOLEAN;
function ">=" (LEFT, RIGHT : FLOAT) return BOOLEAN;

function "+" (RIGHT : FLOAT) return FLOAT;
function "-" (RIGHT : FLOAT) return FLOAT;
function "abs"(RIGHT : FLOAT) return FLOAT;

function "+" (LEFT, RIGHT : FLOAT) return FLOAT;
function "-" (LEFT, RIGHT : FLOAT) return FLOAT;
function "*" (LEFT, RIGHT : FLOAT) return FLOAT;
function "/" (LEFT, RIGHT : FLOAT) return FLOAT;

function "**" (LEFT : FLOAT; RIGHT : INTEGER) return FLOAT;

type CHARACTER is

(nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht, If, vt, ff, cr, so, si,
die, del, dc2, dc3, dc4, nak, syn, etb, , '• »
can, em, sub, esc, fs, gs, rs, us,

*Af >Oy» JOL.I
9 , % , & ,

» > »^» » » > /»

'0', T, '2','3', 'ivsY'i', T,

>/» »\> t^t » . > » > »^» » » > / »
\ > J » » « » » » " > • » / »

' ' ' ' ' ' ' ' ' ' ' ' ' f

'«', 'A, 'B', 'C', 'D', •£', T', 'G',
'H', T, T, 'K', 'L', 'M'? 'N', 'O',
p', 'Q;, 'R', 'S', 'T, 'u;, y, 'W,

»» ' — ' 'U> '«' 'J» '_» '#» >_», a s b , c, d , e, f , g,
'h', T, 'j', 'k', T, 'm\ 'n', V,
'n' 'a' V 's' 't' 'n' V 'w'P ? 4 j » > 3 > ((> l * > v j w >
'Y' V '7* T '!' 'V '~ ' H*»1Vx ? y » z » t . » l > / > > aeij>

CHARACTER use - 128 ASCII c
fn i o Q /< 5 loc ioft IOT^

for CHARACTER use - 128 ASCII character set without holes
(0, 1, 2, 3, 4, 5, ..., 125, 126, 127);

70
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

— Predefined subtypes:

subtype NATURAL is INTEGER range 0 .. INTEGER'LAST;
subtype POSITIVE is INTEGER range 1 .. INTEGER'LAST;

— Predefined string type:

type STRING is array (POSITIVE range <» of CHARACTER;

— The predefined operators for this type are as follows:

function "=" (LEFT, RIGHT : STRING) return BOOLEAN;
function "/=" (LEFT, RIGHT : STRING) return BOOLEAN;
function "<" (LEFT, RIGHT : STRING) return BOOLEAN;
function "<=" (LEFT, RIGHT : STRING) return BOOLEAN;
function ">" (LEFT, RIGHT : STRING) return BOOLEAN;
function ">=" (LEFT, RIGHT : STRING) return BOOLEAN;

function "£" (LEFT, RIGHT : STRING) return STRING;

— other definitions:

procedure BDOS(C : INTEGER; DE : INTEGER);
procedure BDOSJC : INTEGER; FILE : FILE :as UFCB);
function BDOSfC : INTEGER; DE : INTEGER) return INTEGER;
function BDOSJC : INTEGER; FILE : FILE := UFCB) return INTEGER;

function RND(SEED : FLOAT) return FLOAT;

end STANDARD;

71
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

Appendix D
Glossary

The following glossary is a list of Ada terms as they apply to Maranatha
A. For a complete Ada glossary see Appendix D of the Ada Reference
Manual.

Attribute - An attribute is a predefined characteristic of a named
entity.

Body - A body is a program unit defining the execution of a subprogram.

Compilation Unit - a compilation unit is a program unit presented for
compilation as an independent text. A compilation unit in Maranatha A
can t>e a subprogram body, package body or package specification.

Component - A component denotes a part of a composite object. An indexed
component is a name containing expressions denoting indices, and names a
component in an array. A selected component is the identifier of the
component, prefixed by the name of the entity of which it is a component.

Composite type - An object of a composite type comprises several
components. An array type is a composite type, all of whose components
are of the same type and subtype; the individual components are selected
by their indices. A record type b a composite type whose components may
be of different types; the individual components are selected by their x\
identifiers. n ' ;

Constraint - a constraint is a restriction on the set of possible values
of a type. A range constraint specifies lower and upper bounds of the
values of a scalar type. An index constraint specifies lower and upper
bounds of an array index.

Declarative Part - A declarative part is a sequence of declarations and "
related information such as subprogram bodies that apply over the region ^
of a program text.

Derived Type - A derived type is a type whose operations and values are
taken from those of an existing type.

Discrete Type - A discrete type has an ordered set of distinct values.
The discrete types are the enumeration and integer types. Discrete types
may be used for indexing and iteration, and for choices in case
statements.

Elaboration - Elaboration is the process by which a declaration achieves
its effect. For example it can associate a name with a program entity or
initialize a newly declared variable.

72
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

ISiKiU - An entity is anything that can be named or denoted in a program.
Objects, types, values, program units, are all entities.

Enumeration Type - An enumeration type is a discrete type whose values
are given explicitly in the type declaration. In Maranatha A these
values can only be identifiers.

Expression - An expression is a part of a program that computes a value.

Introduce - An identifier is introduced by its declaration at the point
of its first occurence.

Lexical Unit - A lexical unit is one of the basic syntactical elements
making up a program. A lexical unit is an identifier, a number, a
character literal, a string, a delimiter, or a comment.

Literal - A literal denotes an explicit value of a given type, for
example a number, an enumeration value, a character, or a string.

Object - An object is a variable or a constant. An object can denote
any kind of data element, whether a scalar or a composite value.

Overloading - Overloading is the property of literals and identifiers
that can have several meanings within the same scope. For example an
overloaded enumeration literal is a literal appearing in two or more
enumeration types; an overloaded subprogram is a subprogram whose
designator can denote one of several subprograms, depending upon the
names and types of its parameters and its return type.

Parameter - A parameter is one of the named entities associated with a
subprogram. A formal parameter is an identifier used to denote the
named entity in the unit body. An actual parameter is the particular
entity associated with the corresponding formal parameter in a
subprogram call. A parameter mode specifies whether the parameter is
used for input, output, or input-output of data.

Pragma - A pragma is an instruction to the compiler, and may be language
defined or implementation defined.

Qualified Expression - A qualified expression is an expression qualified '
by the name of a type or subtype. It can be used to state the type or
subtype of an expression, for example for an overloaded literal.

Range - A range is a contiguous set of values of a scalar type. A range
is specified by giving the lower and upper bounds for the values.

Scalar Types - A scalar type is a type whose values have no components.
Scalar types comprise discrete types (that is, enumeration and integer
types) and real types.

73
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

Scope - The scope of a declaration is the region of text over which the
declaration has an effect.

Subprograms - A subprogram is an executable program unit, possibly with
parameters for communication between the subprogram and its point of
call. A subprogram body specifies the execution of a subprogram. A
subprogram may be a procedure, which performs an action, or a function,
which returns a result.

Subtype - A subtype of a type is obtained from the type by constraining
the set of possible values of the type. The operations over a subtype
are the same as those of the type from which the subtype was obtained.

Type - A type characterizes a set of values and a set of operations
applicable to those values. A type definition is a language construct
introducing a new type. A type declaration associates a name with a
type introduced by a type definition.

Visibility - At a given point in a program text, the declaration of an
entity with a certain identifier is said to be visible if the entity is
an acceptable meaning for an occurrence at that point of the identifier.

74
Copyright (c) 1984, Maranatha Software Systems

Maranatba A (Ada) Language Reference Manual

Appendix E
Syntax Summary

The following describes the implemented syntax of the Maranatha A com-
piler using a simple variant of Backus-Naur Form (See page 1-5 of the Ada Reference
Manual).

2.1

graphic_character ::= basic_graphic_character
j lower_case_letter | other_special_character

basic__graphic_character ::=
upper_case_character | digit

| speciaLcharacter | space_character

basic_character ::=
basic_graphic_character | format_effector

2.3

identifier ::=
letter {[underline] letter_or_digit}

letter_pr_digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter

2.4

numeric_literal ::= decimal_literal | based.Iiteral

2.4.1

decimaljiteral ::= integer [.integer] [exponent]

integer ::= digit {[underline] digit}

exponent ::= E [+] integer | E - integer

2.4.2

based_literal ::= base # based^integer [,based_integer] # [exponent]

base ::== integer

based_integer ::= extended_digit {[underline] extended_digit}

extended_digit ::= digit | letter

75
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

2.5

characterjiteral ::= 'graphic_character'

2 . 6 _ ; , £ . . , .

string_literal ::== "{graphic_character}"

2.8

pragma ::= ,
pragma identifier (arguxnent_association);

argument_association ::= name

3 . 1 • < . ' ";"' , ; . ; - :? ' ' : : '>• ' . . ' "

basic_declaration ::=
object_declaration | type_declaration , t
subtype_declaration I subprogram_declaration
package_declaration] exception_declaration

3.2

object_declaration ::=
identifier_list : [constant] subtype_mdication |:= expression);

| identifier_list: [constant] constrained_array_aefinition [:= expression);

identifier_list ::== identifier {, identifier}

3.3.1

type^declaration ::= full_type_declaration

full_type_declaration ::= type identifier is type_definition;

typejdefinition ::==
enumeration_type_definition j integer_type_definition

j array_type_definitipn | record_type_definition
J derived_type_definition

78
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.3.2

subtype_declaration ::= subtype identifier is subtype_indication;

subtype_indication ::= type_mark [constraint]

type_mark ::= type_name \ sttfctype_name

constraint ::= range_constraint | index_constraint

3.4

derived_type_definition ::= new subtype_indication

3.5

range_constraint ::= range range

range ::= simple_expression .. simple_expression

3.5.1

enumerationmtype_definition ::===
(enumeration_literal_specification

{, enumeration_literal_specification})

enumeratioD_Iitera)_specification ::= enumeration_literal

enumeration_literal ::= identifier

3.5.4

integer_type_de&nition ::= range_constraint

3.6

array_type_definition ::=
unconstrained_array-.definition | constrained^array^definition

unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of

componen<_subtype_indication

constrained_arraymdefinition ::==
array index^constraint of e0mponenf_subtype.Jndication

index_subtype_definition ::= type_mark range < >

index_constraint ::== (discretejrange {, discrete_range})

discrete^range ::= <fiscrefe_subtype_indication j range

77
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

3.7 .

record_type_definition ::=
record

component_list
end record

component_list ::= component_declaration {component..declaration}
| null;

component_declaration ::=
identifierjlist: component_subtype_definition;

component_subtype_definition ::= subtype_indication

3.7.3

choice ::=s simple_expression | discrete_range | others

3.9

declarative_part ::=
{basic_declarative_item} {later_declarative..iteni}

bas^declarative^item ::=
basic..declaration | representation_clause | use_clause

later_declarative_item ::= body
| subprogram_declaration | package_declaration | use^clause

body ::= proper_body j bodyjstub

proper_body ::= subprogram_body | package_body

4.1

name ::= simple_name
character_literal | indexed_component
selected_component | attribute

simple_name ::= identifier
** } -,

prefix ::= name | function_call ;

4.1.1

indexed_component ::= prefix(expression {, expression})

4.1.3
f

selected_component ::= prefix.selector
• ^"-

selector ::= simple_name

78
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

4.1.4

attribute ::= prefix'attribute_designator

attribute_designator ::= simple_name ((um't;er«fl/_«fa£ie_expression)]

4.4

expression ::=
relation (and relation) | relation {and then relation}

relation (or relation} [relation {or else relation}
relation {xor relation}

relation ::—
simple_expression

simple_expression
simple_expression

[relational_pperator simple_expression]
not] in range
not] in type_mark

simple_expression ::=
[unary_adding_operator] term {binary_addingjoperator term}

term ::=
factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

primary ::=
numeric_literal string^literal | name | function_call

I type_conversion qualified_expression | (expression)

4.5

logical.operator ::= and | or j xor

relational_operator ::= = | /= j < | <= | > j >=

binary^addin^operator ::= + j - j &

unary_adding_operator ::s= -f j -

multiplyingjoperator ::= * | / | mod | rem

highest_precedence_operator ::=ss ** | abs | not

4.6

type_conversion ::= type_mark (expression)

4.7

qualified_expression ::= type_mark'(expression)

79
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

5.1

sequence.. pf_statements ::= statement {statement}

statement ::=s
{label} simplejstatement | {label} compound_statement

isimple_statement ::= null_statement
assignmentjstatement | procedure^call.statement
exit_statement | returnjstatement
goto_statement | raise_statement

compound.. statement ::=
if_statement | case_statement

I loop_statement | block_statement

label ::= «/a6«/_simple_name» J -

null_statement ::= null;

5.2

assignmentjstatement ::== wana6/«_name := expression;

5.3

if_statement ::=
if condition then '

sequence_of_statements
{ elsif condition then

sequence_pf_statements }
[else

sequence of statements 1
end if;

condition ::= 6oo/ean_expression

5.4

^ statement ::=
case expression is

case_statement_alternative
{case_statement_alternative}

end case;

case_statement_alternative ::=
when choice {j choice} =>

sequence_of_statements

80
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

5.5

loop_statement ::=
[/00p_simple_name:]

[iteration_scheme] loop
sequence_of_statements

end loop [/oop_simple_name];

iteration..scheme ::=
while condition

| for loop_parameter_specification

loop_parameter_specificatipn ::=
identifier in [reverse] discrete_range

5.6

block^statement ::=:
[&/0c£_simple_name:]
[declare

declarative_part]
begin

sequence_pf_statements
[exception

exception_handler
{ exception_han dler}]

end [6/oc/r_simple_name];

5.7

exit_statement ::= exit [/oop_name] [when condition];

5.8

return_statement ::= return [expression];

5.9

goto_statement ::= goto /a6e/_name;

81
Copyright © 1684, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

6.1

subprogram_declaration ::= subprogramjspeciScation;

subprogram_specification ::=
procedure identifier [formaLpart]

| function designator [fonnal_j>art] return type_mark

designator ::= identifier

formal_part ::= (parameter_specification {; parameter_specification})

parameterjspecification ::= identifier_list: mode type_mark

mode ::= [in] | In out | out

6.3

subprogram^body ::=
subprogram_specification is

[declarative_part]
begin

sequence_of_statements
[exception

exception_handler '
{exception_handler}]

end [designator];

6.4

procedure_call_statement ::s=s
proc«rf«rc_name [actual.parameter.part];

function_call ::=s
/«nc*t'on_name [actual^parameterjart]

actual.j)arameter_part ::=
(parameter_association {, parameter_association})

parameter_association ::=s actual_parameter

actual_parameter ::==
expression | ttorm6/e_name | type_mark(t;arfa6/«_name)

82
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

7.1

package_declaration ::= package_specification;

package_specification ::=
package identifier is

{basic_declarative_item} ^
end [pacfca0e_siinple_naine]

package_body ::=
package body package_simp\ejaame b

Jd eclarative_part]
[begin

sequence_of_statements
[exception

-' _ exception^handler
(excep tion_handler}] j

end [pccAra^c_simple_name];

8.4

use_clause ::= use pacjba^e_name {,pacfca0__

10.1

compilation ::= compilation_unit

compilation_unit ::=
context_clause Iibrary_unit | context_clause secondary_unit

library_unit ::= package_declaration | subprogram_body

secondary_unit ::= library_unit_body j subunit

j library^unit^body ::= subprogram_body J package_body

10.1.1

context_clause ::= {with_clause {, use_clause}}

with_clause ::= with tmi'f_siinple_name {, ttnt7_simple_name};

10.2

body_stub ::= subprogramjspecification is separate;

subunit ::= separate (parent^tm#_name) proper_body

83
Copyright <£) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

11.1
exception_declaration ::= identifier_list: exception;

11.2 ^

exception_handler ::==
when exception_choice {| exception_choice} =>

sequence..pf_statements

exception_choice ::= cxc«ph'on_name | others

11.3

raise^statement ::= raise [exception^.namej;

13.1

representation_clause ::= address_clause

13.5

address_clause ::= for simple_name use at integer_Uteral;

84
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

Appendix F
Implementation Dependent Characteristics

Three areas of interest particular to the Maranatha implementation of the
Ada programming language are covered in this appendix. These are the predefined sub-
programs BDOS and RND, and a peculiarity with indexes.

BDOS

Direct interface to the CP/M operating system is allowed through the
predefined subprogram BDOS. Formally, it is defined as

procedure BDOS(C : INTEGER; DE : INTEGER);
procedure BDOSfC : INTEGER; FILE : FILE := UFCB);
function BDOS|C : INTEGER; DE : INTEGER)return INTEGER;
function BDOS(C : INTEGER; DE : FILE := UFCB) return INTEGER;

BDOS has two parameters. The first is an integer which is the function
number, stored in the C register. The second is a default parameter and is stored in the
DE register pair. This could be & file control block or another integer passed to the
operating system. The second parameter can be omitted if it is not needed as some
CP/M calls do not require it. If it is required and not supplied, it defaults to the user
file control block (UFCB) at 16#5C#, thus allowing Ada programs to use bdos calls to
access files in the default CP/M file control block. The function BDOS returns an in-
teger from the HL register pair for calls returning a value. BDOS can also be called as a
procedure in •which case any return value is ignored. Great care should be taken in the
use of this function as it is particular to this implementation and while BDOS conforms
to the Ada syntax it is not an inherent part of the language. It should be avoided if
possible.

Because BDOS will only allow integers for the second operand, passing a
string to the BDOS call can be done by using the ADDRESS attribute.

85
Copyright © 1084, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

RND

For users requiring a random number generator, one is supplied as part of
the package STANDARD and is implemented as

function RND(SEED : FLOAT) return FLOAT;

The function returns a random value between 0.0 and 1.0. Seed > 1.0 res-
tarts the random number generator with the given seed. Seed = 0.0 returns the next
value in the sequence.

ARRAY INDEXES
/

Given the following:

type MEMORY is array(INTEGER) of CHARACTER;
for MEMORY use at 0;

The array memory would be an array consisting of 65536 elements of the
type character. Of course, this much memory is not available to create such an array in
the CP/M environment. Maranatha A will actually create an array of components zero
bytes long (or 65538, which in the 8080 "wraps around" to 0). This is due to the
method in which array lengths are computed. Users may define an array consisting of
essentially their memory configuration, allowing access to any memory location.

Copyright (c) 1984, Maranatha Software Systems

