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Introduction

A few years ago, when microprocessors were first introduced, computer enthusiasts
and electrical engineers were one and the same. Those of us who lived only to solder
kluge after kluge basked in our glory. Now, however, the prices of completely assem-
bled and packaged systems have plummeted. Today anyone with an interest, almost
regardless of technical capabilities, can own and operate a computer. Buying a com-
puter is now similar to purchasing a television set and the ranks of computer en-
thusiasts have swelled accordingly.

With any popular movement, the available literature reflects the concerns of a ma-
jority of the followers. And, consistent with the popularization of computer science,
the technical emphasis on computer bookshelves has shifted away from hardware
design. Other than introductory texts called, say, How Logic Gates Work, most com-
puter books either treat microcomputer hardware simplistically or attempt to be
”catch-all” cookbooks, sometimes omitting tasty ingredients. Often, the only alter-
natives are engineering texts and trade journals, tedious reading at best.

For a number of years, I have been writing a column for BYTE magazine, and reader
response has shown that there still exists a great deal of interest in hardware design and
do-it-yourself projects. At the same time, I've been painfully aware of the lack of
materials for such people. Most queries come from technical or high school students
who have read all the descriptions and studied the block diagrams, but who crave prac-
tical answers and system examples. Unfortunately, there are very few books I can sug-
gest.

Build Your Own Z80 Computer is a book written for technically minded individuals
who are interested in knowing what is inside a microcomputer. It is for persons who,
already possessing a basic understanding of electronics, want to build rather than pur-
chase a computer. It is not an introductory electronics handbook that starts by describ-
ing logic gates nor on the other hand is it a text written only for engineering students.
While serving to educate the curious, the objective of this book is to present a practical,
step-by-step analysis of digital computer architecture, and the construction details of a
complete and functional microcomputer.

The computer to be constructed is called a Z80 Applications Processor—ZAP com-
puter for short. It is based on the industry standard Zilog 280 microprocessor chip.
This chip was chosen on the basis of its availability and low cost, as were the other
components for ZAP. To further help the homebrew enthusiast, and for those ex-
perimenters who prefer to start a book at the back, I have listed in Appendix A a com-
pany that supplies parts and programmed EPROMs (erasable-programmable read-only
memory).

I have structured the book as a logical sequence of construction milestones in-
terspersed by practical discussions on the theory of operation. My purpose is twofold:
to help a potential builder gain confidence, and to make the material more palatable
through concrete examples.

Though this is basically a construction manual, considerable effort is given to the
“why’s” and ”how’s" of computer design. The reader is exposed to various subjects, in-
cluding: the internal architectures of selected microprocessors, memory mapping,
input/output interfacing, power supplies, peripheral communication, and program-
ming. All discussions try to make the reader aware of each individual component's ef-
fect on the total system. Even though I have documented the specific details of the ZAP
computer, it is my intention (and the premise of the book) that the reader will be able
to configure a custom computer. ZAP is an experimental tool that can be expanded to
meet a variety of applications.
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ZAP is constructed as a series of subsystems that can be checked and exercised in-
dependently. The first item to be built is the power supply. This is a good way to test
ability and provide immediate positive reinforcement from successful construction.
The three-voltage supply is both overvoltage and overtemperature protected and has
adequate current for an expanded ZAP system.

Next, the reader learns why the 280 was chosen for ZAP and the architectural con-
siderations that affect component selection on the other subsystems. A full chapter is
devoted to the Z80 chip. Each control signal is explained in detail and each instruction
is carefully documented.

The hardware construction proceeds in stages with intermediate testing in order to
ensure success. The basic elements of the computer are assembled first and then
checked out. The reader selects which peripherals are to be added. The book contains
sections on the construction of a hexadecimal display, keyboard, EPROM program-
mer, RS-232C serial interface, cassette mass storage system, and fully functional CRT
terminal. In addition, a chapter addresses interfacing the ZAP to analog signals. I pro-
vide specific circuits that can convert ZAP into a digital speech synthesizer or a data ac-
quisition system and data logger.

A special 1 K (1024 bytes) software monitor coordinates the activities of the basic
computer system and the peripherals. Software is explained through flow diagrams and
annotated listings. With this monitor as an integral component, ZAP can function as a
computer terminal, a dedicated controller, or a software development system.

Build Your Own Z80 Computer is a book for hardware people. It cuts through the
theoretical presentations on microcomputers and presents a real ”How-to” analysis
suitable for the reader with some electronics experience or for the novice who can call
someone for supervision. From the power supply to the central processor, this book is
written for people who want to understand what they build.

Steve Ciarcia
May 1981
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CHAPTER 1
POWER SUPPLY

It’s not enough to build a central processor card with a little input/output (I/O) and
memory, and call it a computer. From the time you walk over to the computer and flip
the switch, the system is completely dependent upon the proper operation of its power
supply. A book concerned with building a computer system from scratch would be
completely inadequate without a description of how to construct an appropriate power
supply.

Much has been written on the subject of direct current (DC) power supplies. There
are DC to DC and AC (alternating current) to DC converters, switching and shunt
regulators, constant voltage transformers, and so on. It’s not my intention to make a
power supply expert out of everyone. Instead, I will outline the design of the specific
DC power supply which we will use to power the Z80 Applications Processor (ZAP).

In large computers, the DC supplies convert enormous amounts of power to run
thousands of logic chips; by necessity, manufacturers choose the most efficient
methods of power conversion. These state of the art methods would be expensive and
difficult for the hobbyist to build in prototype form. Fortunately, the power demands
for ZAP are much less than those of the large computers; we can take advantage of
established design methods while incorporating the latest advances in regulator
technology. Figure 1.1 is a block diagram of the power supply for ZAP.

Each of the three DC supplies necessary to power ZAP consists of three basic
modules: a transformer section to reduce the 120 VAC line voltage to the lower voltage
used by the computer; an input rectifier/ filter to convert AC to low ripple DC; and a
regulator which stabilizes the output at a fixed voltage level. Overvoltage protection
circuitry will be discussed separately.

WAR 5 AMP
FUSE FUSE

o—J\p— ._.__._4 +5 VOLTS

RECTIFIER OVERVOLTAGE @ “MPS
120 VOLTs AC TRANSFORMER A53 SERIES PROTECTION

'NDUT REGULATOR CIRCUITRY
FILTER

9—— CIRCUIT GND

I AMP
FUSE POSITIVE OVERVOLTAGE

—d'v>-—— SERIES PROTECTION +12 VOLTs
REGULATOR CIRCUITRY (a) 1 AMP

RECTIFIER
AND
INPUT
FILTER UMP

FUSE NEGATIVE OVERVOLTAGE —————o —1 v T
SERIES PROTECTION 2 0L 5
REGULATOR ClRCUlTRY @ 1AMP

Figure 1.1 A block diagram of the basic power supply for the Z80 Applications Processor (ZAP).
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The proper specification of the transformer and input filter is often neglected by hob-
byists who overlook the consequences of a poorly designed filter. This is caused, in
part, by the abundant technical information circulated by semiconductor manufac-
turers extolling the virtues of their regulator circuits. One can easily conclude from this
“publicity gap" that the regulation section of the power supply is the only component
worthy of consideration; and in fact, advances in regulator design and the advent of
high-power, three-terminal regulators have reduced the need for the analog designer in
the application. In the past, 25-0dd components and considerable calculations were
necessary to produce an adequate voltage regulator. Now, however, the majority of
applications can be accommodated with a single, compact device. Even so, an input
filter section should not be taken lightly and still requires thorough consideration and a
modest amount of computation for each application.

There are three supply voltages necessary to operate ZAP. Each supply incorporates
an input filter section. Because the +5 V supply is the most important, it receives the
most attention. For the purposes of this discussion, we will divide the supply into two
sections: transformer/input filter, and output regulator.

A standard input filter block diagram is shown in figure 1.2. In its simplest form, it
consists of three components that function as follows:
0 A transformer that isolates the supply from the power line and reduces the 120 VAC

input to usable, low-voltage AC.
0 A bridge rectifier that converts AC to full-wave DC and satisfies the charging cur-

rent demands of the filter capacitor.
0 A filter capacitor that maintains a sufficient level between charging cycles to satisfy

the regulator input voltage limitations.

Photo 1.1 720 VAC HMS Photo 1.2 Rectifier waveform. Photo 1.3 Ripple waveform at
input/output waveform of a various loads.
saturated transformer.

TRANSFORMER fif/FlER CAPACITOR PM 75/?

>-a s I120 VOLT c, c:
mes? E H § . T ””138 gggJBR-ron

n_ Lu
(0

I I
I

I
I
I
I
I
I
IIIAvila 43$m ::

PRIMARY INPUT VOLTAGE SURGE CURRENT SURGE CURRENT RATING
SECONDARY OUTPUT VOLTAGE CAPABILITY VOLTAGE RATING
CONTINUOUS CURRENT OUTPUT VOLTAGE DROP RIPPLE VOLTAGE
SECONDARY IMPEDANCE CONTINUOUS CURRENT

RATING

Figure 1.2 A block diagram of a standard input filter.
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DESIGNING AN INPUT FILTER
You would think that specifying the transformer would be the first consideration

when designing a power supply. Yes and no. The approximate output voltage can be
determined by rule of thumb, but the exact requirements are deduced only by a
thorough analysis that proceeds from the desired output voltage back. In practice, the
difference between a reasonable guess and a laborious analysis will be important only
to a person capable of manufacturing his own transformer. In most instances, the hob-
byist will have to rely upon readily acquired transformers with standard output
voltages. For this reason, my approach is predicated on the practical aspects of power
supply design rather than on the minute engineering details that have no real bearing
on the outcome.

A 120 VAC RMS (root mean square) sine wave is applied to the primary of the
transformer. Figure 1.2 illustrates the waveforms anticipated at selected points through
the filter section. Photo 1.1 shows that 120 VAC is actually 340 V peak to peak; care
should be used in the insulation and mounting of components.

The secondary output of the transformer will be a similar sine wave, reduced in
voltage. It is then applied to a full-wave bridge and the waveform will appear as in
photo 1.2. You’ll notice a slight flat spot between “humps." As a result of dealing with
actual electronic components rather than mathematical models, we should be aware of
certain peculiarities. Silicon diodes exhibit threshold characteristics and, in fact, have a
voltage drop of approximately 1 V across each diode. This voltage drop becomes
significant in full-wave bridge designs and, as figures 1.3a, 1.3b, and photo 1.2 il-
lustrate, can accumulate as diodes are added in series. The 2 V loss in the bridge is an
important consideration and should be reflected in the calculations.

The voltage regulator requires a certain minimum DC level to maintain a constant
output voltage. Should the applied voltage dip below this point, output stability is

a) b)

Figure 1.3 The direction of the current flow through the full-wave bridge.
a) During the positive half of the AC cycle, current flow is through D. and 0;; D1 and D4

are not conducting. VD, + VD. z 2 volts.
b) During the negative half of the AC cycle, current flow is through Dz and Di; Di and D3

are not conducting. Vm + VD. z 2 volts.
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4 POWER SUPPLY

severely degraded. Thus, a filter capacitor is used to smooth out the “bumps” in the
rectified sine wave. When the diodes are conducting, the capacitor stores enough charge
to maintain the minimum voltage required until the next charge cycle. (In practice, we
wouldn’t want to cut it that close.) The input to the transformer is 60 Hz, but because
of the characteristics of full-wave rectification, the charging cycles occur at 120 Hz.
The capacitor charges up during one 8.3 ms cycle, and, as the regulator draws power
from it to satisfy the load demands, it must continue to provide at least the highest
minimum input voltage required by the regulator until the next charge cycle, 8.3 ms
later. This periodic charge/discharge phenomenon is shown in photo 1.3. The
magnitude of the voltage fluctuation between the two peaks of the cycle is referred to
as ripple. The highest magnitude of the waveform including the ripple is designated as
peak voltage. Both are important to remember and are shown in figure 1.4.

VRIPPLE W/Y

VPEAK Vc

o vous
VPEAK=VR1PPLE+VC

Figure 1.4 Output voltage as a combination of a certain steady-state voltage (Vc) plus a ripple voltage

Given a basic understanding of the individual components at this stage, we can pro-
ceed to the case at hand: a 5 V, 5 A power supply. For reasons we’ll discuss later, the
5 V regulator section of this supply will require an absolute minimum of 8.5 V for
proper operation. This means that whatever the magnitude of VPEAK and Vmpnz, the
final Vc level must not go below 8.5 V, or the regulator will not work. By giving
ourselves some leeway, say Vc = 10 V, we can take a little more poetic license with
the calculations and still produce a good design. Going much above 10 V, while still
satisfying the input criteria, would increase power dissipation and possibly destroy the
regulator. There is an answer to this Vicious circle and that’s to be conservative. Ex-
perience shows that adding a little insurance is worthwhile.

Now that 10 V is the goal, we can appropriately select the other filter components to
meet it. Figure 1.5 is the filter circuit of our 5 V supply. R5 is the resistance of the sec-
ondary winding of the transformer. For a 5 to 8 A transformer, it will average about
0.1 ohms. The first values to recognize follow:

VC = VREGULATOR MINIMUM INPUT VOLTAGE = 10 V
Iour = IREGULATOR LOAD = 5 A

R5 = RTRANSFORMER SECONDARY RESISTANCE = 0-1 Ohms

VPEAK can be any voltage up to the maximum input for which the regulator is rated.
However, this will increase the circuit power dissipation. The rule of thumb I use when
designing supplies of this type is that VPEAK should be approximately 25% higher than
Vc. In this way, the capacitor value will be kept within reasonable limits. The ratio of
Vc to (VPEAK — Vc) is referred to as the ripple factor of the filter capacitor.

_ VPEAK _ Vc __ 12.5 — 10 __
YF _ VC ‘— 10 "' 25%

A ripple factor of 25 % at 5 A will fall well within the acceptable capacitor ripple cur—
rent ratings and eliminate the need for the hobbyist to dig into manufacturers’ specifi-
cations of capacitors. This ripple factor is arbitrary, but it is best to keep it as low as
possible. ‘



Rs Ac FULL-WAVE
BRIDGE

TRANSFORMER
SECONDARY

—‘ :2 RL Vc
REGULA-
TOR
LOAD

> o \I l o

Figure 1.5 The input filter circuit of the 5 V power supply.

SIZING THE CAPACITOR
We now know that the capacitor must sustain 10 V from a peak input of 12.5 V.

VPEAK = 12.5 V

Vc = 10 V } Vc = VPEAK "‘ VRIPPLE

VRIPPLE = 2-5 V

The next consideration is to choose a capacitor that will accomplish this goal. Another
rule of thumb calculation that saves considerable labor is

_ iC — dv I

where C = capacitor value in farads = 7
I = maximum regulator current = 5 A

dt charging time of capacitor = 8.3 ms (120 Hz)
dv allowable ripple voltage = 2.5 V

Plugging in the values of our circuit,

(5)(8.3><10‘3)(2.5) = 16.6)(10'3 faradsC:

or,

C = 16,600 microfarads (,uF)

Generally available commercial electrolytic capacitors have a tolerance of +50 and
—20%. To be on the safe side and to make it easier to find a standard stock compo-
nent, a value of 20,000 [LP is better. The added 3,400 [LF reduces the ripple by another
0.4 V and gives us a little “insurance.” The only other item to consider with the capaci-
tor is operating voltage. Because the design dictates that VPEAK is 12.5 V, this should
be a satisfactory rating. However, experience shows that transformers end up running
at higher output voltages than labeled and that 12.5 V at 115 VAC hits 13.6 V when
the line voltage goes up to 125 VAC. A capacitor voltage of 15 VDC would appear to
satisfy the requirement, but I recommend using the next increased standard value of
20 VDC.

The capacitor is therefore 20,000 [LF at 20 VDC. The rectifier can be a monolithic
full-wave bridge, or it can be four discrete diodes. Note that because a bridge is usual-
ly encapsulated, the four terminals are labeled instead of showing the polarity mark—
ings of the individual diodes. The designations for the four terminals are two AC input
terminals, and a + and — output terminal.

POWER SUPPLY 5



6 POWER SUPPLY

THE RECTIFIER
There are three considerations when choosing a rectifier: surge current rating, con-

tinuous current, and PIV (peak inverse voltage) rating. These choices are not inconse-
‘ quential and must be considered carefully.

When a power supply is first turned on, the capacitor is totally discharged. In fact, it
will instantaneously appear to be a 0 ohm impedance to the voltage source. The only
aspect of the circuit that limits the initial current flow is the resistance of the secondary
transformer windings and the connecting wiring; designers often add a series resistance
to limit surge current.

The surge current in this circuit is

VPEAK 12 .5
1ISURGE = Rs = —0. = 125 A

and the time constant of the capacitor is

T E R; X C E (0.1)(20X10‘3) = 2 ms

As a rule of thumb, the surge current will cause no damage to the diode if ISURGE is less
than the surge current rating of the diode and if

7' < 8.3 ms (which it is)

We can't check surge rating until after we choose a diode bridge, but the other two
parameters can be defined.

The bridge can be either of the following:

Motorola MDA 980-21 ICONT = 12 A, ISURGE = 300 A, PIV = 100 V

Motorola MDA 990-2: Icozvr = 27 A, ISURGE = 300 A, PIV = 100 V

Both of the above bridges have a surge current rating of 300 A, so our surge require-
ment is also satisfied.

PIV
PIV (peak inverse voltage) is the maximum voltage that may appear across the diode

before it self-destructs. Diodes, unlike capacitors, are unforgiving; transients will wipe
them out. It is not unusual to have 400 V transients on the 115 VAC input line. This
causes our 12.5 V to shoot up momentarily to 43 V! The bridge rectifier should there-
fore have a minimum PIV rating of 50 V. For a few pennies more, you can get a bridge
rated for 100 PIV. Remember, insurance costs less than computers.

CONTINUOUS CURRENT
The last consideration is continuous current rating. Whereas the regulator may be

designed for a 5 A output, the particular regulator I have chosen will draw 7 A if
shorted. This is not standard operating procedure, but it can happen. The suggested
standard component would be a 12 A, 50 PIV bridge. A preferred component would be
one rated for 12 A at 100 PIV or, for an additional 15% cost premium, a 27 A at 100
PIV. This last design choice is strictly brute force, but it saves the diode bridge should
the capacitor ever short-out accidentally. A 6 A transformer might put out more than
12 A in a short-circuit mode, but it’s unlikely that it would be capable of 27 A. Either
choice will satisfy the design, but only one saves the design from the builder.

THE TRANSFORMER
Now let’s consider the transformer. We have determined the voltage drops‘across the

various components. The values are used to calculate the required RMS (root mean



square) secondary voltage in the following way:

V + V + V
ncams, =W ncr = Voltage drop across each diode—

(approximately 1 V per diode)
_ 10 + 2.5 + 2.0
_ 1.414

= 10.25 V

In practice, a 10 V, 6 A standard value transformer will be close enough.
The components of the + and —12 V supplies are chosen in a similar manner, with

the exception that required current is only 1 A, and a 200 PIV bridge is recommended
because of the particular rectifier configuration. The finished schematic of the trans-
former and filter section of our computer is illustrated in figure 1.6.

MDA 990-2
AC

|=5 was
vc =10 VOLTS
VRIPPLE =2.5VOLTS

10 VAC
@ 6 AMPS

20,000,;
T20 voc

- GROUND
120 VAC

MDA 970-3

30 VOLT
CENTER TAP
@ 2 AMPS
or.

AC

|=1 LVD

‘—" Vc=15 VOLTS
VRIPPLE= 4 VOLTS

4.
2000yF
25VDC

|=1AMP
. ‘———‘— Vc=—mv0Lrs

VRiPPLE = —4VOLTs

Figure 1.6 A schematic diagram of a transformer and input filter section.

VOLTAGE REGULATORS
The voltage regulator section of our power supply is the next consideration. All

voltage regulators perform the same task: they convert a given DC input voltage into a
specific, stable DC output voltage and maintain this setpoint over wide variations of
input voltage and output load. The typical voltage regulator, as shown in figure 1.7,
consists of the following:

o a reference element that provides a known stable reference voltage
0 a voltage translation element that samples the output voltage level
0 a comparator element that compares the reference and output level to produce an

error signal
0 a control element that can utilize this error signal to provide translation of the input

voltage to produce the desired output

The control element depends on the design of the regulator and varies widely. The
control determines the classification of the voltage regulator: series, shunt, or switch-

POWER SUPPLY 7



8 POWER SUPPLY

ing. For the series regulator, the control element regulates the output voltage by
modulating the series element, usually a transistor, and causes it to act as a variable
resistor (figure 1.8). As the input voltage increases, the series resistance R; also in-

creases, causing a larger voltage drop across it. In this way, the output voltage (Vow) is
maintained at a constant level.

UNREGULATED INPUT SERIES OUTPUT REGULATED
INPUT = CONTROL OUTPUT
VOLTAGE ELEMENT VOLTAGE

“CONTROL

VOLTAGE
raANsEA
TOR

VOLTAGE VREF COMPARATOR
REFERENCE

,7, ,L
Figure 1.7 A block diagram of a typical voltage regulator.
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Figure 1.8 A series control element in the voltage regulator.
a) The series control element acts as a variable resistance, Rs.
b) The series element is most often a transistor.

To accomplish this closed-loop control, a reference comparison and feedback system
is incorporated into the hardware. A fixed and stabilized reference voltage is easily pro-
duced by a zener diode. The current produced is low, however; the device could not

serve as a power regulator by itself.
The voltage translator connected to the output of the series control element produces

a feedback signal that is proportional to the output voltage. In its simplest form, the
voltage translator is a resistor-divider network. The two signals, reference and feed-

back, provide the necessary information to the voltage comparator for closed loop
feedback to occur (figure 1.9). The output of the comparator effectively drives the base
of the series pass transistor so that the voltage drop across the transistor will be main-
tained at a stabilized preset value when subtracted from the input voltage.

Modern power supply designers can still use individual components to construct the
modular elements of a series voltage regulator, but most reserve this laborious
endeavor for specialized applications. The ZAP computer system outlined here re-
quires +5 V, +12 V, and ~—12. V. The combined temperature, stability, and drift



tolerances cannot exceeu i5% on any of the three set points. The easiest way to
minimize risk is to reduce the number of circuit components to the bare minimum.
Other designers had the same idea and thus the three-terminal regulator was invented.
Figure 1.10 is the block diagram of such a device.
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COMPARATOR

VOUT =VIN —VCE THIS IF YOU THINK OFIT AS A TRANSISTOR
AND

VCE ‘ ILOAoll

VOUT = VIN «Mono (Rsi) THIS IF YOU THINK OF IT As A SERIES
RESISTANCE

Figure 1.9 A schematic diagram of a series voltage regulator.
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Figure 1.10 A block diagram of a three-terminal voltage regulator.

Basically, a three-terminal regulator incorporates all the individual transistors,
resistors, and diodes into a single integrated circuit. While simple to use, these devices
have a far more complicated internal structure than the series regulator of figure 1.9.
Only three terminals are necessary in applications where the fixed output is a standard
value such as: i5 V, i6 V, :8 V, i12 V, i15 V or :24 V. The three connections
are unregulated DC from our input filter, a ground reference, and finally, regulated DC
output.
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In a three-terminal regulator, the voltage reference is the mOSt important part
because any abnormality or perturbation will be reflected in the output. Therefore, the
reference must be stable and free from noise or drift. More advanced designs use band-
gap reference circuits rather than zener diodes. Because of its complexity, such an ap-
proach is practical only in the integrated circuit (IC) environment. Essentially, a band-
gap reference voltage is derived from the predictable temperature, current, and voltage
relationships of a transistor base-emitter junction.

Another advantage of the three-terminal regulator is that in monolithic circuits,
stable current sources can easily be realized by taking advantage of the good matching
and tracking capability of monolithic components. Also, as in the previous case, the
designer can add as many active devices as necessary without significantly increasing
the IC circuit area. Operation of the reference circuit at a constant current level reduces
fluctuations due to line-voltage variation. Thus, the output has increased stability. The
error amplifier is also operated at a constant current to reduce line-voltage influence.

The most important consideration for the hobbyist is that these chips incorporate
protective circuitry, guarding the regulator from certain types of overloads. They pro-
tect the regulator against short-circuit conditions (current limit); excessive input/out-
put differential condition (safe operating area); and excessive junction temperatures
(thermal limit). Of course, all this circuitry is designed to protect the regulator, not the
computer.

CHOOSING A REGULATOR
The 5 A uA78I—IOS hybrid voltage regulator has all the inherent characteristics of the

monolithic three—terminal regulator (ie: full protective circuitry). Each hermetically-
sealed TO-3 package contains a pA78M05 monolithic regulator chip driving a discrete
series-pass transistor Q1 and two short-circuit-detection transistors Q2 and Q3 (see
figure 1.11). The pass transistor is mounted on the same beryllium oxide substrate as
the regulator chip, thus insuring nearly ideal thermal transfer between Q1 and the tem-
perature-sensing circuit of the 78M05.
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Figure 1.11 A block diagram of a 5A pA78H05
and M78HGOS hybrid voltage regulator.
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ELECTRICAL CHARACTERISTICS: TJ = 25°C, 'OUT = 2.0 A unless otherwise specified.

uA78H05C
CHARACTERISTICS CONDITIONS UNITS

MIN TYP MAX

Output Voltage 'OUY = 2.0 A. VIN = 10 V 4 8 5.0 5.2 V

Line Regulation VIN = 8 5 to 25 V I0 50 mV

Load Regulation 10 mA S 'OUT S 5.0 A, VIN = IO V 10 50 mV

Outescent Current 'OUT : 0, VIN = VOUT + 5.0 V 10 mA

Ripple RBIECUOH 'OUT = 1.0 A, I = 210 Hz. 5 O V P-P 60 (13

Output Norse 10 Hz ‘5 1:; 100 kHz. VIN '— VOUT t 5 O V 40 #VRMS

I0 = 5 o A 3 o v
Dropout Voltage

lo = 3 o A 2 6 v
Short Circuit Current lll VIN =‘ IO V 7 O Apk

Figure 1.12 Electrical characteristics of the M78H05 voltage regulator.

The output circuit is designed so that the worst-case current requirement of the Q1
base, added to the current through R2, always remains below the current-limit thresh-
old of the 78M05. Resistor R1, in conjunction with Q2 and Q3, makes up a current
sense and limit circuit to protect the series-pass device from excessive current drain.

Safe area protection is achieved by brute force and is designed with the hobbyist in
mind. The series-pass transistor is capable of handling the short-circuit Current at the
maximum input voltage rating of the 78H05. (See figure 1.12 for the electrical charac-
teristics of the 78H05.)

The output of the device is nominally 5.0 V but can vary between 4.8 and 5.2 V. Even
though this falls within the 5.0 V i 15 % tolerance necessary to run the computer, there
might be a problem with the voltage drop in the cabling between the power supply and
the computer. Up to 0.5 V could be lost in the wiring and connectors. Remember that
at 5 A, a resistance of only 0.1 ohms can cause a 0.5 V drop. Unfortunately, the 78H05
is a fixed-output device when referenced to ground. If 4.8 V happens to come out,
”that's all you gets” (sic). But, in a classic case of engineering razzle—dazzle, we can fool
the regulator by making the ground reference adjustable. Figure 1.13 shows the circuit
that makes this possible. A potentiometer sourced from the —12 V supply creates a
relative-ground reference for the 78H05. If the particular device in question had an out-
put of 4.95 V, and we adjusted R1 for a potential of 0.20 V on the common regulator
pin, the output referenced to ground would change to 4.95 + 0.20, or 5.15 V. For the
fanatics in the crowd, this particular circuit also allows a high-output device to be
reduced to 5.00 V by selecting an appropriate negative voltage ground reference pin.

1 2pur IN cw Vourpu‘r
10V pAYBHCSKC +5v¢5°/.

ccvvw
3

;§1ur 120.0 m
‘ 35v 1|—-——wy——>§‘

soup 1K +
TANTALUM 71: IOuF

10vI
I

J7
FROM 12V
REGULATED OUTPUT

Figure 1.13 Adding ”trim adjust" to the ”A 78H05 three-terminal voltage regulator.
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12 POWER SUPPLY

With the 5 V supply complete, our next concern is the +12 V and —12 V supplies.
Other devices within the 7800 family of regulators will satisfy the requirements. The
7812 and a 7912 are 1 A positive and negative regulators respectively; they exhibit the
same protectionwcharacteristics as the 78H05. Figures 1.14 and 1.15 outline the exact
specifications. Because we are dealing with much lower currents than the +5 V supply,
there is considerably less concern over voltage losses through connecting cables, and it
is unnecessary to add trim adjustment circuitry. Figure 1.16 is the finished schematic of
the ZAP power supply. Additional regulator circuit diagrams (figures 1.17a, b, c and
d) are included to demonstrate how the 7800 series of regulators can be used in our ap-
plication. Are we finished yet? Of course not. Close examination of figure 1.16 shows
two items not discussed previously: heat sinks and overvoltage protection. These two
subjects and a short discussion of the importance of correct layout complete the
chapter.

“A7812 5'
ELECYRICAL CHARACTERISTICS: VIN =19 V. 'OUT - 500 mA. —55°C < TJ < 150°C, Cm =0.33 uF, COUT - 0.1MF,

unlessotherwise specifiedi

CHARACTERlSTlCS CONDITIONS MIN TYP MAX UNITS

Outputltage TJ=25°C 11.5 120 12.5 V

Linemguwn “=2“; 145v<vm<3ov 10 120 mV
rsv<vw<22v 30 60 mV

Load Regulation TJ = 25°C 5 ”m < IOUT ‘15 A 12 120 mV
250 mA < IOUT < 750 mA 6.0 60 mV

15.5V < VIN < 27 V

Output Voltage 5mA< lou1< LOA 11.4 12.6 V

‘ P < 15w
Quiescent Current TJ = 25°C 4 3 I 6.0 mA

, wtth line 15V<VW <30V 0.8 mA
Quiescent Current Change

with load 5mA< 'OuT‘ LOA 05 mA

Output Noise Voltage TA ‘ 25°C, 10 Hz < f < 100 RH! 8 40 UV/VOUT

Ripple Rejection 0-120H2,15V<V|N<25V 61 71 63‘

Dropout Voltage log‘r '1.0 A, TJ = 25°C 2.0 2,5 V

Output Resistance is 1 kHz 18 mn

Short Circuit Current TJ ‘ 25°C, VIN - 35 V 0.75 1.2 A

Peak Output Current TJ = 25‘6 1 3 2.2 3,3 A

45%: < n < +25°c 0.4 mVI°CI
Average Temperature Coetficient of Output Voltage ’OUT - 5 mA

+2s°c<n<+tso°c 0.3 VouT

Figure 1.14 Electrical characterlstlcs of the ltA7812 voltage regulator.

“A7912
ELECTRICAL CHARACTERISTICS: V‘N - —19 V,iou1' . 500 mA, Cm - 2HF.C0UT =1uF,—55°C < TJ <150°C. unless otherwise

sneaked.

CHARACTERISTICS CONDITIONS MIN TYP MAX UNITS

Output Voltage TJ - 25°C —11.5 —12.0 —12.5 V
— . < V < _.Line Regulation TJ - 25°C 1‘ 5 V 'N 30 V m 120 mV
—16V<V|N<—22V 3.0 60 mV

5 A < < .
Load Regulation 7_, . 25°C m lour 1 5 A 12 120 mV

250 mA < IQUT < 750 mA 4.0 so mV
—1s.5 v < VIN < —27 v

Output Voltage 5 am < 'OUT < 1.0 A —1114 —12.6 V
p < 15 W

Oumnt Current TJ = 25°C 1.5 3.0 rnA
' h I - V < V _

Quiescent Current Change w“ me ‘5 IN < 30 V 1'0 rnA
WI"! load 5 mA < 'OUT < 1.0 A 0.5 mA

Output No.» Voltage TA-25”C,1o Hz<1< 100 kHz 25 so MV/VOUT
Ripple RIjICYlOfl 0-120 Hz,—15V<V.N <—25V 54 60 dB

Dropout Voltage IOUT‘1.0A,TJ-25°C 1.1 2.3 V

-Peek Ontput Current TJ - 25°C 1.3 2.1 3.3 A

Average Temperature Coeflicient at - a o mVl‘Cl
0mm Von”. IOUT 5 mA. —55 c < TJ < 150 c 0-3 Vour

Short Circuit Current VIN = —35 V, TJ = 25°C 1.2 A

Figure 1.15 Electrical characteristics of the “A 7912 voltage regulator.
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Figure 1.16 A schematic diagram of the finished power supply for the ZAP computer.
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Figure 1.17 Additional voltage regulator crrcwt 1 2 if
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a) A high-current voltage regulator us- __0 33 F 473 ,
ing a 500 mA 78M05 three-terminal d) 1501‘ COMMON

1’regulator. . _ j ‘ 7K ’77
b) A high-current short-crrowt pro- mm

tected voltage regulator, an en-
hanced version of flgure 1.17a. '“NREG ‘“ v 3v

0) Using a 7805 +5 V voltage reg. DUAI. :12 VOLT TRACKING REGULATOR OTJTCI‘: 1 AMP

ulator to produce a higher output
voltage.

d) A dual 1- 12 V tracking voltage reg-
u/ator.
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LAYOUT IS IMPORTANT
Integrated circuit regulators employ wide-band transistors in their construction to

optimize response. As a result, they must be properly compensated to ensure stable
closed—loop operation. Their compensation can be upset by stray capacitance and line
inductance of an improper layout. Circuit lead lengths should be held to a minimum,
and external bypass capacitors in particular should be located as close as possible to the
regulator control circuit.

Figure 1.18a illustrates a typical layout of the components of our supply, and figure
1.18b details the areas that can cause problems. Improper placement of the input ca-
pacitor can induce unwanted ripple on the output voltage. This occurs when the current
flowing in the input circuit influences the common ground line of the regulator. The
voltage drop produced across RZ’ will cause the output of the regulator to fluctuate in
the same manner as the voltage trim circuit we discussed previously. The peak currents
in the input circuit (which consists of the rectifier and filter capacitor) can be tens of
amperes during charge cycles. These high-current spikes can cause substantial voltage
drops on long-lead lengths or thin-wire connections. They can also degrade perfor-
mance to the point that proper input voltage to the regulator cannot be maintained ex-
cept during low—current operation.

The output current loop is also susceptible to circuit layout. In a three-terminal
regulator, the fixed-output voltage VonG, is referenced between “out” and “com-
mon" of the chip. Because the load current flows through R2', R3', and R4’, as well as
the load itself, these combined voltage losses may reduce VOUT to an intolerable level.
Notice that the ground for this circuit is at point C while the present R load is between
points A and B. If another load, more memory for example, is connected to this supply
between points A and C, it would have a different Vow. Adjusting the trim setting of
such a seesaw supply can be dangerous; it’s possible to have one load completely
within tolerance and another over or under voltage. One last point to consider is that
R4’ serves to negate the purpose of the regulator because it continually reduces Vour as
the load current increases.

TRANSFORMER RECTIFIER REGULATOR

IN OUT
COMMON l

a) LOAD
”COIN

H ’ .;RL0ADi

/77

R4. A

W OUT
COMMON 1

v 1 RLOADb) , OUTtREGl a
vH ”N our

"R I |
l’ 2 LOAD

RI. C R3'
"f . a

x77

Figure 1.18 A typical layout of the power supply components and associated problems.
a) A typical layout.
b) Errors contributed by the layout in figure 1.78a.
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Figure 1.19 is the block diagram of a proper layout. All high-current paths should
use heavy wire to minimize resistance and resultant voltage drops. You’ll notice now
that the input and output circuit current paths are separated effectively. Note that the
wires from the rectifier go directly to the capacitor and that two wires from the capaci-
tor send power to the rest of the circuit. If you follow this convention and use two
separate pairs of leads, you can eliminate input-circuit induced errors.

Finally, we need to discuss the concept of the single-point ground. One point in the
power supply must be designated as ground; the grounds of all other supplies and loads
are connected to it. In practical terms, the best way to implement this ground connec-
tion is to use a metal strip or several lengths of heavy wire soldered together. The strip
is a ground bus with such a low resistance that a voltage measured between point A
and any place along the bus will be virtually undetectable. Another +5 V bus should
be connected to the output of the supply so that voltage distribution throughout the
circuit is consistent. Use thick wire in power supplies. Even if zero-resistance wire isn’t
easily obtainable, always remember—there is no such thing as wire that is too thick!

TRANSFORMER RECTIFIER REGULATOR

lN OUT
COMMON

'lN ILOAD
'REG

0 IN
N ‘,RLOAD

/

ILOAD IS HIGH CURRENT PATH

VOUT

I SINCLE PC NTREGIS Low CURRENT PATH 53;. 3 FOR ALL
liN IS HIGH CURRENT PATH gciivec7.ons

Figure 1.19 A b/ock diagram of a proper layout for the power supply components.

THERMAL CONSIDERATIONS
You’ve just built the power supply I've outlined, flipped on the power, and every-

thing works. After a few minutes, something happens and the computer suddenly stops
running. Naturally, you start looking around and touching things. Eventually, your
fingers will end up on the regulator chip. Immediately you scream, jump back, and in
the process knock over the computer and your celebration martini. If you are lucky,
your fingers will be the only thing burned!

When not properly cooled, the regulators will protect themselves from destruction
by reducing their output or completely shutting off. In this case, the system could cease
to function. A more catastrophic problem arises from ICs that use all three voltages for
normal operation. Loss of one or more of these voltages could permanently damage the
device. This will never happen if power dissipation is limited and the proper cooling
methods are employed.

The first step is to check the power dissipation of our design with the ratings of the
particular devices. In practical terms, power, expressed in watts, is volts times
amperes:

PD=EXI

In our 5 V regulator we have Vc = 10 V and VPEAK = 12.5 V at 5 A.

POWER SUPPLY 15 ///
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PD(NOM) = (Vc _ Vour) X 5 A

= (10 — 5) x 5
= 25 W

Po<psm= (mx ~ Vow) X 5 A
= (12.5—5) X 5

= 37.5 W
37.5 + 25

PD(AVERAGE)= —2—_ = 31.25 W

This means that under full load conditions, about 30 W of heat will be produced by the

78H05. The device is fortunately rated for 50 W at 25 OC and is still capable of handling
30 W up to 75°C.

Although the internal power dissipation is limited, the junction temperature must be
kept below the maximum specified temperature (125 CC) in order for the device to func-
tion at all. To calculate the heat sink required, there are specific equations to solve.

The required thermal data and calculations follow:

Typical 01c = 2.0 Maximum 010 = 2.5
Typical 0],, = 32 Maximum 6“ = 38

TnMAX) — TA
PD(MAX) = 91c + 0m for 0m = 005 + 65A

Solving for T1,

T1 = TA + PD(61C + 6m)

or without a heat sink,

T - T
PD(MAX) = “Al/13M A

T] = TA + Poem

where T; = junction temperature
T,. = ambient temperature
PD = power dissipation
9x = junction to case thermal resistance
0],, = junction to ambient thermal resistance
0a.; = case to ambient thermal resistance
6c; = case to heat sink thermal resistance
05A = heat sink to ambient thermal resistance

0 0

9“ = T; PDTA = 1253525‘i15 C = 3.2°C/W

Because 61A as calculated is less than 0],, from the specification sheet, a heat sink is

definitely required, and a TO-3 type heat sink of 3.20C/W is the minimum desired.
Before you size a heat sink for the 78H05, realize that there are two more regulators

and two bridge rectifiers that will need heat sinking. Each 12 V regulator will average
about 5 W dissipation. The diode bridge associated with the +5 V supply (remember
the 2 V drop) dissipates about 10 W while the other is good for 2 W. Therefore, any
heat sinks in the power supply must handle more than 50 W.

WHAT IS THE PRACTICAL METHOD FOR CHOOSING HEAT SINKS?
Choosing a heat sink can be easy or hard depending upon your outlook on rule of



thumb measures. We already know that we need a 50 W heat sink. It’s easy to assume
that buying one ”rated for 50 W" from a local electronics supply will solve the prob-
lem. What this rating usually means, however, is that if 50 W is applied through a tran-
sistor to this sink, and the ambient temperature is 25 0C, the surface temperature of the
sink will climb to 100 oC. Fried eggs anyone?

We must not forget that manufacturers’ specs always refer to limiting maximum
junction temperature, not to keeping the case cool enough to touch. Personally, I hate
red-hot power supplies. To get a heat sink that would take our 50 W and stay about
60-7OOC would probably mean getting one rated for 200-300 W! Remember that heat
sinks are expensive—and big.

The simplest solution is best. I prefer forced air cooling. Put the 50 W on an
economical heat sink of, say, a 100 W rating and put your money into a good fan. You
can still run through all the calculations and determine how many square inches you
need, but the effect of blowing a little air over a heat sink multiplies its capabilities
enormously.

OVERVOLTAGE PROTECTION
The final area to be addressed in the power supply is overvoltage protection. As

designed by manufacturers, regulators protect themselves by reducing output voltage
or complete shutoff. The chances of computer component damage from low voltage is
miniscule by comparison to overvoltage. It is unlikely to happen, but if the 78H05 were
to accidentally short out, as much as 12.5 V would be applied to the +5 V bus. You
could then kiss the computer good-bye!

+5 volt OVP 12 volt OVP
D1 5.6V 1N4734 D1 13V 15.4743
SCR; 50V 25A 2N682 SCR1 50V 8A 2N4441
Fuse 6amp fast-blow Fuse 1.5amp fast-blow

The semiconductor components of this
12 volt OVP are reversed in polarity
for the —12 volt OVP.

REGULATOR!
FUSE

REGULATOR Hv—E—i
OUTPUT —f

TOCOMPU‘TERBUS 4I
I
I
I
II
I
I
I
|I
I
|
I
I G'No ' 0‘7 ' '
L.________________|

’

Figure 1.20 A simple overvoltage protection circuit.

The circuit of figure 1.20 is a simple OVP (over-voltage protector). It can be used as
shown on the 5 V and 12 V supplies. The appropriate components are listed in the
tables of figure 1.20. You’ll notice that the fuses are rated higher than the output we’ve
previously discussed. The fuse is for the CV? and not to protect the regulators. Unfor-
tunately, the nature of fast-blow fuses is not to pass 5 A, if it is a 5 A fuse, but to open
at 5 A. The fuse must have a higher rating in order to allow circuit operation at 5 A.
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A7
OUTPUT

Z1

5603
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Figure 1.21 A schematic diagram of a more complex overvoltage protection circuit. The crowbar sec-
tion of the OVP can be located next to the fuse while the OVP sensor 21 is located at the regulator out-
put. This is a preferred placement of the parts it the sensor and clamp can be adequately separated.
Low-current sensor 21 fires SCH1 in an overvoltage condition. SCHl in turn fires high-current SCRz. The
combination of SCHs allows considerable leeway in the choice of SCHz since the question ofgate cur-
rent becomes less relevant.

Because the short-circuit current of the 78H05 is 7 A, the 25 A silicon—controlled rec-
tifier (SCR) will certainly make short work of the fuse if it triggers. Figures 1.21 and
1.22 are slightly more complex OVP circuits and can also be used.

’5609
NEWAA

A

10K VTRIGGER
ADJUST

5)
2N3904

'

‘2203
:>1/2W

FROM
REGULATOR ‘ ‘ ‘ T0 LOAD

£569
1N914

2N2904

500“

0)

1K

GND

Figure 1.22 Schematic diagrams of adjustable-voltage overvoltage protection circuits.
a) An adjustable-voltage OVP circuit with an internal current amplifier to drive the SCH gate.
b) An alternate circuit for a simple adjustable-voltage OVP circuit.
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What does an OVP (often called an ”overvoltage crowbar") do? It monitors a par-
ticular bus voltage and shuts it down if it goes above a predetermined level. OVP cir-
cuits can be designed to trigger 1 mV above our 5% tolerance band. Such circuits are
not only complicated, but they may also create additional problems through accidental
triggerings. The failure modes that are most likely to occur concern a regulator short or
accidentally tying two buses together, for example the +5 V and +12 V. In either
case, the result is a rapid voltage rise on the output lines. As voltage rises above the
zener value, current flows into the SCR gate. At a certain point, usually below where
any components would have been damaged, the SCR fires and shorts the output line to
ground. The excessive current blows the fuse, eliminating the problem regulator or
regulators (both fuses would blow if the +5 V and +12 V were connected). All this
occurs very fast. The test circuit of figure 1.23 demonstrates what happens when the
+5 V OVP suddenly has + 12 V applied. Test circuits are the only way you ever want
to see the action of an OVP. If your power supply functions properly, it should never
trigger. The SCR never allows the line to go to 12 V before clamping it to ground. Re-
placing the fuse with a 220 ohm resistor allows multiple applications of the push button
without replacing fuses.

+12V

j PUSH BUTTON
'PRESS TO CREATE OVERVOLTAGE'

1009.

22051 OSC‘LLCSCODE
+5V 41v»

W

OV g;
p

0

GND Q

6ND ' \J
VER‘HCAL INPUT
+2V/DIV
1ms/cm

Figure 1.23 A test circuit to demonstrate the action of the overvo/tage protector.
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CHAPTER 2
CENTRAL PROCESSOR
BASICS

There are many different microprocessors on the market and while instruction
nomenclature is somewhat different for each one, the basic logical computing processes
are similar in all devices. The rule to remember the next time a discussion turns to the
capabilities of two computers is that ”a computer is a computer.” I don’t wish to imply
that they are all the same, but similarities abound and I would not like to spend a life—
time analyzing instruction sets and interfacing details before choosing one.

I once had lunch with the designer of one of the largest selling personal computer sys-
tems on the market. Thousands of computers had been sold, generating immense prof-
its for the manufacturer. Our conversation eventually centered on the cost-effective-
ness of his design. I had fanciful thoughts of a design team spending months reducing
component count and analyzing instruction sets to determine minimum memory re-
quirements. In actuality, my designer friend was given two months to come up with a
manufacturable design. The investors' only question was the price and availability of
the particular components he had chosen. Being an avid personal computer enthusiast,
he simply built a computer around the microprocessor he already owned. The eventual
advertising for his system touted the advanced architecture embodied in the central
processor, but no machine-language programming facility was available to the user. It
had only a high—level language BASIC interpreter and was, from an engineering point
of View, simply a black-box computer. He could have used any microprocessor. So
much for textbook engineering design.

Unfortunately, the hobbyist who is building a microcomputer from scratch, and
who won’t be making a black box, has to try to pick a device that is somewhere in the
middle of the performance and capability spectrum. The general rule that all computers
perform similar functions is true, but a printed-circuit board is a luxury. The hobbyist
who has to do all the wiring by hand will surely be interested in efficient design. It’s a
fact that some of the more esoteric microprocessors require very expensive peripheral
circuitry. Even devices that seem quite straightforward, with limited instruction sets,
can require 50 or more ICs as interface elements. The ultimate configuration should be
a trade-off between circuit complexity, ease of testing, and component price.

MICROPROCESSOR ARCHITECTURE
The internal architecture of the microprocessor determines the support devices re-

quired to make a microcomputer system. Perhaps the best place to start is to briefly
discuss the major architectural differences.

Definition: A microcomputer is a logical machine that manipulates binary numbers
(data) and processes this information by following an organized sequence of program
steps referred to as instructions.

All microcomputers, like all computers, have the following features:

1. Input — Facilities must exist to allow the entrance of data or instructions.
2. Memory -— The program sequence must be stored before and after execution, and

resources must be available to store the result of any computations.
3. Arithmetic logic unit — Performs arithmetic Operations on input or stored data.
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4. Control section — Makes decisions regarding program flow and process control
based on internal states of the results of arithmetic computations.

5. Output — The results are delivered to the user or stored in an appropriate
medium.

The microprocessor is the single integrated circuit around which a microcomputer is
constructed. The microprocessor is a device; the microcomputer is a system. In their
least complex form, microprocessors include only the functions of items three and four
and must rely on external devices attached to buses to perform the other tasks. Figure
2.1 is the basic block diagram of an 8-bit microcomputer and shows the interconnec-
tion of these buses and support elements. The computer in figure 2.1 uses six separate
buses: memory address, memory data in and out, I/O address, and data input and out-
put. The microprocessor contains a central processor that consists of the circuitry re-
quired to access the appropriate memory and I/O locations and interpret the resulting
instructions that are also executed in this unit. The central processor also contains the
ALU (Arithmetic and Logic Unit), which is a combination network that performs arith-
metic and logical operations on the data. Additionally, the central processor includes a
control section that governs the operations of the computer, and the various data
registers used for manipulation and storage of data and instructions.

MEMORY
DATA OUT (8)

MEMORY DATA REGISTER MEMORV DATA IN (a)

' MEMORY
MICROPROCESSOR _.

3 MEMORY ADDRESS REGISTER ‘ .' .-
V I; MEMORY ADDRESS

0 (16)
‘-’ ARITHMETIC/LCGlC UNIT

ACC-IV'JLATOR

DATA ouT iI/o DATA IN
\8) (8)

Ct‘=J INPUT

Figure 2.1 A basic block diagram of a microcomputer illustrating the data busing concept. Numbers
in parenrceses are the usual required quantity of physical wires to perform bus functions for an 8-bit
microprocessor.
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Actually few microprocessors support six separate buses. The number of pins that
would be required on the IC is out of the question. Instead, to reduce pinouts, compo-
nent manufacturers often combine the data input and output buses and make them "bi-
directional.” During an output instruction, data flows from the microprocessor to the
output device and vice versa during an input instruction. To further cut the number of
pins required on the central processor, the memory address bus can also serve as the
address bus for input and output devices. During input/output instructions, the ad-
dress present on the address lines references a particular input/output device(s). The
resulting reduced configuration is shown in figure 2.2.

The concept of two buses is easy to understand and, from a hardware point of view,
easy to utilize. The buses are time and function multiplexed. That is, during memory
operations, the bits on the address bus refer to a memory location, and data on the data
bus represent the content of memory. The direction of the data flow (to or from the
central processor) is controlled within the microprocessor. Activities with input/out-
put devices are performed in a similar fashion. During those instructions, input or out-
put data and device addresses occupy the buses.



MICROPROCESSORiv

MEMORY ADDRESS
BUS
(16)

DATA
BUS
(8)

OUTPUT

INPUT

Figure 2.2 A block diagram of a microcomputer utilizing multiplexed bi-directional busing techniques
to reduce pinout.

The number of bus wires can be further reduced by combining both data and address
on the same lines and time multiplexing the data transfer along them. Figure 2.3 il-
lustrates this final configuration. This method requires additional circuit elements to
demultiplex and store pertinent data. The additional external components necessary to
use this architectural feature defeat its purpose and make its use inadvisable for the
hobbyist. There are other microprocessors that are simpler to use.

S‘NELE CCNBiNATlON BPDIRECTIONAL ADDRESS/DATA BUS

MICROPROCESSOR
;

STATUS

,_._________, A—F————.w—~

TIMING — MEMORY v———““—"v
AND
CONTROLLOGIC _.______._JV

OUTPUT ———————-——/

___... '"PUT C:_
DERiVED ADDRESS

Figure 2.3 A block diagram of a microcomputer utilizing a single multiplexed bidirectional bus for
both memory and input/output functions.

When building rather than buying a personal computer, the following criteria must
be carefully considered:

1. Circuit complexity — Keep components to a reasonable minimum. The more com-
ponents in a design, the more likelihood of wiring errors and faulty devices.

2. Cost — While cost is important, it should not be the primary consideration. Any
microprocessor function could be simulated by using small scale integrated logic;
however, indirect costs resulting from using 200 chips to replace 3 or 4 L81 (large
scale integration) devices would negate the value of using cheaper parts initially.
On the other hand, in the semiconductor industry, density means dollars. The
more functions a device can provide, and the fewer components necessary to ac-
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complish these tasks, the higher the price. The level of integration incorporated in
a homebrew computer should fit somewhere in the middle. The ZAP computer
outlined in this book is a prime example of this philosophy. It uses a combination
of cost~effective LSI (large scale integration) and inexpensive 581 (small scale in-
tegration) to produce a computer that the hobbyist can truly build, test, and use.

3. Software compatibility and availability - Building the hardware of a microcom-
puter is only half the job. It must be programmed to perform useful work. Initially,
the builder will by necessity hand code and assemble his own programs. Eventual-
ly, however, the need may arise for the computer to do a task requiring a very
large program which cannot be easily hand assembled. The user must rely upon an
assembler program in a larger machine. The assembler program would, of course,
have to be compatible with the instruction set of the microcomputer.

A further consideration is that personal computer enthusiasts are forever ex-
changing software. It is possible to convert programs to run on any central pro-
cessor, but the effort would be the same as writing the entire program from
scratch. This defeats the purpose of exchanging software. The personal computer
owner should choose a microprocessor that is somewhat compatible with the com-
puters already on the market. My statement that all computers are alike is theoreti-
cally true, but a book on how to build an esoteric one-of—a-kind computer is of lit-
tle practical value.

Each criterion could be analyzed and answered individually, but we must give some
credit to the manufacturers of personal computers for doing some of the thinking for us
already. The fact that so many personal computers are in use has established de facto
standardization of central processor choice. To be compatible with existing software
and to have sufficient documentation available, the builder should consider choosing
among those central processors in commercial use. The four most used microproces-
sors are

Intel 8080A
Motorola 6800
MOS Technology 6502
Zilog Z80P

9
P

!"

As a result of each device's wide following, documentation and software are readily
available. The availability of 8080A compatible software is highest; cost is low, but its
circuit complexity is also the greatest of the above. The 8080A, while described as a
“single-chip computer,” relies on various external drivers and support devices. Its
minimum functional configuration consists of three chips as shown in figure 2.4. Its
central processor bus structure is similar to figure 2.3, but when combined with the
8224 and 8228 support chips, it emulates the more desirable bus architecture outlined in
figure 2.2.

} ADDRESS eus.
8080A
PROCESSOR

8224CLOCK ”W.
BUS »
DRIVER
AND , . . .
CONTROLLER _ :1 > CONTROL BUS

TIMING a Sinus

Figure 2.4 A minimum three-chip 8080A configuration illustrating the necessary support devices. The
control bus contains the timing functions necessary to decode the contents of the data and address
buses.
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The best of both worlds is incorporated within the ZSO. Not only does it execute the
complete instruction set of the 8080A, but it also has additional instructions that serve
to make it a very powerful processor. The 280 bus structure is illustrated in figure 2.5.
The 280 is slightly more expensive than the other processors listed. However, its re-
duced external circuitry results in an effective cost comparison. Further, the ease of in-
terfacing the 280 makes it the natural choice when building a microcomputer from
scratch.

(16)

(8)

‘X . CONTROL BUS
(13)

280

Figure 2.5 A block diagram of the Z/'/og Z80 bus structure.
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CHAPTER 3
THE 280
MICROPROCESSOR

Many books have been written on the software and hardware attributes of the Z80.
Although I am not attempting to duplicate the efforts of other authors, any book
dedicated to the construction of a microcomputer would be incomplete without a sec-
tion describing the processor in some detail. By completely understanding the internal
logic and external control functions of the central processor, you will be able to under-
stand better the way I've designed the rest of the system hardware. You have many op-
tions when constructing a computer from scratch. The deeper your degree of under-
standing, the greater your confidence in the outcome, and it is more likely that you will
add enhancements to your own design.

The ZAP computer allows considerable latitude in the selection of peripheral inter-
facing. The choice depends primarily upon the design philosophy of the system, which
starts with the central processor.

CENTRAL PROCESSOR ARCHITECTURE
The Z80 is a register-oriented microprocessor. Eighteen 8-bit and four 16-bit registers

within the central processor are accessible to the programmer and function as static
programmable memory. These registers are divided into two sets, main and alternate,
each of which contains six general purpose 8-bit registers that may be used either in-
dividually, or as three pairs of 16-bit registers. Also included are two sets of ac-
cumulators and flag registers. Figure 3.1 illustrates the internal architecture of the Z80
central processor. Figure 3.2 shows that within the 280 there are accumulators and flag
registers, along with general and special purpose registers.

280 CPU BLOCK D/AGH’AM
S‘BIT
DATA BUS(:

3

DATA BUS
CONTROL

Z)

INST. .
INSTRUCTION C REG \ INTERNAL DATA BUS? ALU

DECODE U
AND
cpu CPU

<:> CONTROL REGISTERS
13

CPU AND >CPU
SYSTEM CONTROL
CONTROL

ADDRESST T T CONTROL
SIGNALS

+5V GND CLOCK 16-BIT
ADDRESS BUS

CZ
)

Figure 3.1 A block diagram of the internal architecture of the Z80 centra/ processor.
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MAIN REGISTER SET ALTERNATE REGISTER SET
~——-————/¥—-—-_—\ fi \

ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A I: A- F.

. .
C GENERAL 0
5 PURPOSE 9' E!

REGISTERS . ‘
L H L

INTERRUPT MEMORY
IVECTOR REFRESH

R
lND x REGIST R Ix SPECIAL

E E PURPOSE
INDEX REGISTER IY REGISTERS
STACK POINTER SP

PROGRAM COUNTER Pc

Figure 3.2 Z80 central processor register configuration.

The following is a description of the function and structure of the major components
of the central processor.

1. Registers
A. Accumulators and Flag Registers

The central processor contains two independent accumulator and flag-
register pairs, one in the main register set and the other in the alternate
register set. The accumulator receives the results of all 8-bit arithmetic
and logical operations, whereas the flag register indicates the occur-
rence of specific logical or arithmetic conditions in the processor such
as parity, zero, Sign, carry, and overflow. A Single exchange instruc-
tion allows the programmer to select either accumulator or flag-regis-
ter pair.

B. General Purpose Registers
There are two similar sets of general purpose registers. The main regis-
ter set contains six 8-bit registers called B, C, D, E, H, and L; the al-
ternate register set also contains six 8-bit registers referred to as B',
C’, D', E', H', and L’. For 16-bit operations, these registers can be
grouped in 16-bit pairs (BC, DE, HL or BC', DE’, HL'). A Single ex-
change instruction allows the programmer to alternately choose be-
tween the register—pair sets.

C. Special Purpose Registers
1. PC (program counter)

The program counter contains a 16-bit address in memory
from which the current instruction will be fetched. Follow-
ing execution of the instruction, the PC counter is either in-
cremented, if the program is to proceed to the next byte in
memory, or the present PC contents are replaced with a
new value, if a jump or call instruction is to be executed.

2. SP (stack pointer)
The 280 allows several levels of subroutine nesting
through use of a “stack” and a “stack pointer”: when cer-
tain instructions are executed, or when calls to subroutines
are made, the PC counter and other pertinent data can be
temporarily stored on a stack. A stack is a reserved area of
several memory locations, the top of which is indicated by
the contents of the stack pointer. That is to say, the stack
pointer shows the address of the most recently made entry,
because the memory locations are organized as a last-in,
first-out file. By looking at particular entries in the stack,
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D.

the central processor returns to a main program regardless
of the depth of nested subroutines. Theoretically, the stack
could be 64 K bytes long; however, program space must
not be overwritten by an expanding stack.

IX and IY Index Registers
These registers facilitate table data manipulation. They are two in-
dependent 16-bit registers that hold the base addresses used in indexed
addressing modes, and point to locations in memory where pertinent
data is to be stored or retrieved. Incorporated within the indexed in-
structions is a two’s complement signed integer that specifies displace-
ment from this base address.
Interrupt Page Address Register (I)
This is an 8-bit register that can be loaded with a page address of an in-
terrupt service routine. During a mode 2 interrupt program, control
will vector to this page address.
Memory Refresh Register (R)
To enable dynamic memories for the 280, a 7-bit memory refresh
register is automatically incremented after each instruction fetch.

II. Arithmetic and Logic Unit
Arithmetic manipulations and logical operations are handled eight bits at a time
in the 280 ALU (arithmetic and logic unit). The ALU communicates internally
to the central processor registers and is not directly accessible by the program-
mer. The ALU performs the following operations:

LEFT or RIGHT SHIFT
INCREMENT
DECREMENT
ADD
SL'BTRACT
AND
OR
EXCLUSIVE OR
COMPARE
SET BIT
RESET BIT
TEST BIT

III. Instruction Register and Central Processor Control
The instruction register holds the contents of the memory location addressed by
the PC (program counter) and is loaded during the fetch cycle of each instruc-
tion. The central processor control unit executes the functions defined by the in-
struction in the instruction register and generates all control signals necessary to
transmit the results to the proper registers.

IV. Central Processor Hardware
A. Figure 3.3 details the pinout of the 280. It comes in an industry stan-

dard 40 pin dual in-line package. The following is a listing and ex-
planation of the pin functions:

A0 —A15 Three-state output, active high. A0 —A15 constitute a
(Address 16-bit address bus. These signals provide the address for
Bus)

Do—D

memory data exchanges (up to 64 K bytes) and for I/O
device data exchanges. I/O addressing uses the eight
lower address bits to allow the user to directly select up
to 256 input or 256 output ports. A0 is the least signifi-
cant address bit. During refresh time, the lower seven
bits contain a valid refresh address.

7 Three-state input/output, active high. Do—D1 consti-
(Data Bus) tute an 8—bit bi-directional data bus which is used for

M1
data exchanges with memory and I/O devices.
Output, active low. M1 indicates that the current ma-

(Machine chine cycle is the operation-code fetch cycle of an in-
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Cycle One) struction execution. Note that during execution of

MREQ
(Memory
Request)

IORQ
(Input/
Output
Request)

RD
(Memory
Read)

WR
(Memory
Write)

RFSH
(Refresh)

HALT
(Halt
State)

WAIT
(Wait)

INT
(Interrupt)

NMI
(Non-
Maskable

2-byte opcodes, M1 is generated as each opcode byte
is fetched. These 2-byte opcodes always begin with
CBH, DDH, EDH, or FDH.—I\71Talso occurs with
IORQ to indicate an interrupt acknowledge cycle.

Three-state output, active low. The memory request
signal indicates that the address bus holds a valid ad-
dress for a memory-read or memory-write operation.

Three-state output, active low. The IORQ signal indi-
cates that the lower half of the address bus holds a valid
I/O address for an 1/0 read or write operation. An
IORQ signal is also generated with an M1 signal when
an interrupt is being acknowledged to indicate that an
interrupt response vector can be placed on the data bus.
Interrupt acknowledge operations may occur during
Wtime while I/O operations are prohibited.

Three-state output, active lowfRfiindicates that the
central processor wants to read from memory or an I/O
device. The addressed I/O device or memory should use
this signal to gate data onto the central processor data
bus.
Three-state output, active low. WR indicates that the
central processor data bus holds valid data to be stored
in the addressed memory or I/O device.

Output, active low. RFSI—I indicates that the lower
seven bits of the address bus contain a refresh address
for dynamic memories and the current MREQ signal
should be used to do a refresh read to all dynamic
memories.

Output, active low. HALT indicates that the central
processor has executed a HALT instruction and is
awaiting either a nonmaskable or a maskable interrupt
(with the mask enabled) before operation can resume.
While halted, the central processor executes NOPs (no
operation) to maintain memory refresh activity.

Input, active low. WAIT indicates to the 280 central
processor that the addressed memory or I/O devices are
not ready for a data transfer. The central processor con-
tinues to enter wait states as long as WAIT is active;
this signal allows memory of I/O devices to be syn-
chronized to the central processor.
Input, active low. The Interrupt request signal is gener-
ated by I/O devices. A request will be honored at the
end of the current instruction if the internal software
controlled interrupt enable flip-flop is enabled and if the
BUSRQ signal is not active. When the central pro-
cessor accepts the interrupt, an acknowledge signal
(IORQ during M1 time) is sent out at the beginning of
the next instruction cycle. The central processor can re-
spond to an interrupt in the three different modes.

Input, negative edge triggered. The nonmaskable inter-
rupt request line has a higher priority than INT and is
alv‘vays recognized at the end of the current instruction,



Interrupt) regardless of the status of the interrupt-enable flip-flop.
m forces the 280 central processor to restart to loca-
tion 006615. The program counter is automatically saved
in the external stack so that the user can return to the
program that was interrupted. Note that continuous
WAIT cycles can prevent the current instrucfl from
ending, and that a BUSRQ will override an NMI.

A0
A1
A2

SVSTEM A3
CONTROL A4

A5
A6
‘7 ADDRESS
A8 BUS
A9
A10
A11

CPU A12
CONTROL A13

A14
A15

1

CPU BUS \
CONTROL K—‘ DO

D1
D2
03 DATA
D4 BUS
05
06
D7 /

Figure 3.3 Pin configuration for the Z80 microprocessor.

The actual timing of these signals will be discussed in the hardware sections.

V. Z80 Instruction Types
The Z80 can execute 158 separate instructions including all 78 of the 8080A.
They can be grouped as follows:

A. LOAD AND EXCHANGE
Load instructions move data between registers or between registers
and memory. The source and destination of this data is specified
within the instruction. Exchange instructions swap the contents of two
registers.

B. ARITHMETIC AND LOGICAL
These instructions operate on data in the accumulator, a register, or a
designated memory location. Results are placed in the accumulator
and flags are set accordingly. Arithmetic operations include 16-bit ad-
dition and subtraction between register pairs.

C. BLOCK TRANSFER AND SEARCH
The Z80 uses a single instruction to transfer any size block of memory
to any other group of contiguous memory locations. The block search
uses a single command to examine a block of memory for a particular
8-bit character.

D. ROTATE AND SHIFT
Data can be rotated and shifted in the accumulator, a central pro-
cessor register, or memory. These instructions also have binary-coded
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decimal (BCD) handling facilities.
E. BIT MANIPULATION

Bit manipulation includes set, reset, and test functions. Individual bits
may be modified or tested in the accumulator, a central processor, or
memory. The results of the test operations are indicated in the flag
register.

F. JUMP, CALL AND RETURN
A jump is a branch to a program location specified by the contents of
the program counter. The program counter contents can come from
three addressing modes: immediate, extended, or register indirect. A
call is a special form of jump where the address following the call in-
struction is pushed onto the stack before the jump is made. A return is
the reverse of the call. This category includes special restart instruc-
tions.

G. INPUT AND OUTPUT
These instructions transfer data between register and memory to ex-
ternal I/O devices. There are 256 input and 256 output ports avail-
able. Special instructions provide for moving blocks of 256 bytes to or
from I/O ports and memory.

H. CPU CONTROL
These instructions include halting the CPU or causing a NOP (no
operation) to be executed. The ability to enable or disable interrupt in-
puts is a further control capability.

VI. Instruction and Data Formats
Memory for the 280 is organized into 8-bit quantities called bytes (see figure
3.4). Each program byte is stored in a unique memory position and is referenced
by a 16-bit binary address.

Total direct addressing capability is 65,536 bytes (64 K) of memory, which
may be any combination of ROM (read-only memory), EPROM (erasable-pro-
grammable read-only memory), or programmable memory. Data is stored in
the formats of figure 3.5.

D7 06 05 D4 03 DZ D| DO

I | I I I I I
MSB LSB

(MOST SIGNIFICANT BIT) (LEAST SIGNIFICANT BIT)

Figure 3.4 Organization of a data byte in the Z80.

SINGLE-BYTEINSTRUCTIONS THREE-BYTE INSTRUCTIONS

BVTEI D7—————D0 OPCODE BYTEI D7————Do OPCODE

EYTE 2 D7——-——————-—Do DATA ORADDRESS
BYTE 3 D7———-—————-—Do

TWO-BYTEINSTRUCHONS FOUR-BYTEINSTRUCHONS

BYTEI D7-———-———-Do opcoos BYTEI D7——————————Do
ATA on OPCODE

BVTEZ D7——————-———Do XDDRESS BYTEZ D7—————————Do

BYTE3 D7———————-—Do
DATA OR
ADDRESS

Figure 3.5 Machine—language instruction formats for the 280.
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VII. 280 Status Flags
The flag register (F and F’) supplies information to the user regarding the status
of the central processor at any given time. There are four testable and two
nontestable flag bits in each register. Figure 3.6 shows the position and identity
of these flag bits.

BlT7 BITS BITS BIT4 BIT3 BITZ BlTl BITO

8 Z X H X P/V N C

MSB LSB

C=CARRY FLAG
N=ADD/SUBTRACT FLAG
P/V=PAR|TY/OVERFLOW FLAG
H=HALF-CARRY FLAG
Z:ZERO FLAG
S=S|GN FLAG
X=NOT USED

Figure 3.6 Position and identity of status flag bits in the flag register.

Instructions set (flag bit = 1) or reset (flag bit = 0) flags in a manner rele-
vant to the particular operation being executed.

VIII. The 280 Instruction Set
The following symbols and abbreviations are used in the subsequent description
of the 280 instructions:

Symbol

accumulator
address
high-order address
low-order address
data
high-order data
low-order data
port
r, r’
n
nn
d
b
e
cc

XXI-I
qq
ss

Meaning

Register A
A 16-bit address quantity
The most significant 8 bits of the 16-bit address
The least significant 8 bits of the 16-bit address
An 8— or 16-bit quantity
The most significant 8 bits of the 16-bit data
The least significant 8 bits of the 16-bit data
An 8-bit address of an I/O device
One of the registers A, B, C, D, E, H, or L
A 1-byte expression in the range of 0 thru 255
A Z—byte expression in the range of 0 thru 65,535
A 1-byte expression in the range of ~128 to 127
An expression in the range of 0 thru 7
A 1-byte expression in a range of —126 to 129
The state of the flags for conditional JR and JP instructions:

_c_c Condition Relevant Flag
i‘ 000 NZ non zero Z
L 001 Z zero Z
0 010 NC non carry C
3, 011 C carry C
H 100 PO parity odd P/V
Kw 101 PE parity even P/V

110 P sign positive 5
P» 111 M sign negative S

Denotes hexadecimal address value
Any one of the register pairs BC, DE, HL, or AF
Any one of the register pairs BC, DE, HL, or SP
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PP
rr
5
dd
m
(HL)

(nn)

PC
SP
t
C, N, P/V, H, Z, S

|+
<

0
>

l
3

Any one of the register pairs BC, DE, IX, or SP
Any one of the register pairs BC, DE, IY, or SP
Any of r, n, (HL), (IX+d), or (IY+d)
Any one of the register pairs BC, DE, HL, or SP
Any of r, (HL), (IX+d), or (lY+d)
Specifies the contents of memory at the location addressed

by the contents of the register pair HL
Specifies the contents of memory at the location addressed

by the 2-byte expression in nn
Program counter
Stack pointer
An expression in the range of 0 thru 7.
Condition flags:

C
N

P/V
H
Z
S

“is transferred to”
Logical AND
Exclusive OR
Inclusive OR
Addition
Subtraction
“is exchanged with”

Carry
Add/Subtract
Parity/Overflow
Half-Carry
Zero
Sign

EIGHT-BIT LOAD GROUP

LD r, r’
r—r’
The contents of any register r’ are loaded into any other register r.

Cycles:
States:
Flags:

LDr,n
r—n

1
4

I I I I I I I
l4—r—><——r'—>

I I I I I I I
O

none

The 8-bit integer n is loaded into any register r.

Cycles:
States:
Flags:

LD r, (HL)
r — (HL)

2
7

I I I I I I I
0 0"_Y‘—’l 1 0

l I l l l l l

none

The 8-bit contents of memory‘location (HL) are loaded into register r. I?
;I I I I I I I ,y'

1<—~r—>1 1 0
l l I I l l l

f I,
r) /



Cycles: 2
States: 7
Flags: none

LD r, (IX+d)
' r «— (IX+d)

The operand (IX+d) (the contents of the Index Register IX summed with a
displacement integer d) is loaded into register r.

I I l I
1 1 0 1 1I I l I 101

ll

I I I I I I I
0 1‘—Y‘—*l 1 O

Cycles: 5 I I I I I I I

States: 19 I I I I I I I
Flags: none s d ?

LD r, (IY+d)
r ~ (IY+d)
The operand (IY+d) (the contents of the Index Register IY summed with a
displacement integer d) is loaded into register r.

I I I I I I I
1 1 1 1 1 1 0 1

I I I I I I J
I I I I I I I

O 14—r—">1 1 O
Cycles: 5 I I I I I I I

States: 19 I I r I I I I
Flags: none V d >

I I I I I ‘ l I

LD (HL), r
(HL) — r
The contents of register r are loaded into the memory location specified by
the contents of the HI. register pair.

I I I I I I I
O l 1 1 0 <—-Y‘—>

l I I I l I I

Cycles: 2 </‘\
States: 7 “‘I
Flags: none

LD (IX+d), r
(IX+d) ~ r
The contents of register r are loaded into the memory address specified by the
contents of Index Register IX summed with d, which is a two’s complement
displacement integer.

Cycles: 5
States: 19 V l ' d ' >
Flags: none I I I
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LD (IY+d), r
(IY+d) ~ I
The contents of register r are loaded into the memory address specified by the
sum of the contents of the Index Register IY and d, a two’s complement
displacement integer.

I I I I I I I

1 1 1 1 1 1 0 1
I I II I I l

I I I I I I I
O 1 1 1 0“—"I"—>

I I I I I I I
Cycles: 5
States: 19 I I I I I I I
Flags: none I I I l l I I

LD (HL), n
(HL) - n
Integer n is loaded into the memory address specified by the contents of the
HL register pair.

Cycles: 3 n
States: 10
Flags: none

LD (IX+d), n
(lX+cl) - n
The n operand is loaded into the memory address specified by the sum of the
contents of the Index Register IX and the two's complement displacement
operand d. IIIIIII

1101110
I I l J l I I

I I I I I I I

0 O 1 1 0 1 1 OI I I I I I I
I I I I I I I

I | I I I I |
Cycles: 5
States: 19 I I I I I I I
Flags: none I I I I I I I

LD (IY+d), n
(IY+d) .— n
Integer n is loaded into the memory location specified by the contents of the
Index Register IY summed with a displacement integer d.

I I I I I I I

1 1 l 1 1 1 0 1
I I I I I I I
I I I I I I I

0 0 1 1 0 1 1 0
I I I I I
I I I I I I I

‘ (j ‘
I I I I I I I

Cycles: 5
States: 19 A I I I I I I I _
Flags: none I I I n I I I I



LD A, (BC)
A -— (BC)
The contents of the memory location specified by the contents of the BC
register pair are loaded into the Accumulator.

I I I I I I I
0 0 0 0 1 0 1 0

I 1 1 1 1 1 1
Cycles: 2
States: 7
Flags: none

ID A, (DE)
A — (DE)
The contents of the memory location specified by the register pair DE are
loaded into the Accumulator.

I I

LD A, (nn)

I I I I I

O 0 0 1 l 0 0
I I l I I l I

Cycles: 2
States: 7
Flags: none

A «— (nn)
The contents of the memory location specified by the operands nn are loaded
into the Accumulator. The first n operand is the low-order byte of a 2-byte
memory address. 2; A

I I I I Io 0 1 1 1 0 ' 1 I o
l l I I I l I

I I I I I I I

LD (BC), A

< n V
1 1 1 1 1 1 1

Cycles: 4
States: 13 V I I I n I I I I r
Flags: none 1 1 1 1 1 1 1

(BC) ‘- A
The contents of the Accumulator are loaded into the memory location
specified by the contents of the register pair BC.

I I I I I I I

0 0 0 0 0 0 l 0
1 1 1 1l I l

LD (DE), A

Cycles: 2
States: 7
Flags: none

(DE) ~ A
The contents of the Accumulator are loaded into the memory location
specified by the DE register pair.

1 1 1 1 1 1 1
O 0 0 1 O 0 1 O

1 1 1 1 1 1
Cycles: 2
States: 7
Flags: none
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LD (nn),

LD A,I

LD A,R

LD LA
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A
(nn) — A
The contents of the Accumulator are loaded into the memory address
specified by the operands nn. The first 11 operand is the low-order byte of
operand nn.

I I I I I I I
0 O 1 1 0 O 1 0

l I l I I l I

f n =
I I I I I I I

Cycles: 4
States: 13 V I I I n I I I I V
Flags: none I I I I I I I

A -— I
The contents of the Interrupt Vector Register I are loaded into the
Accumulator.

I I I I I I I
1 1 l 0 1 1 0 1

I I I I I I I
I I I I I I I

0 1 O 1 0 1 1 1
Cycles: 2 I I I I I I I
States: 9
Flags: S, Z, H,N,P/V

S: set if I < 0; reset otherwise
2: set if I=O; reset otherwise
H,N: reset
P/V: contains contents of IFFZ

A — R
The contents of Memory Refresh Register R are loaded into the Accumulator.

IIIIIII
11101101

I I l l l I I

I I I I I I I

Cycles: 2 0 1 O 1 1 1 1
States: 9 I I I I I I I
Flags: S,Z,H,N,P/V

5: set if R < 0; reset otherwise
Z: set if R=0; reset otherwise
H,N: reset
P/V: contains contents of IFFZ

I ~— A
The contents of the Accumulator are loaded into the Interrupt Control Vec-
tor Register I.

I I I I I I I

1 1 1 0 1 1 O 1
I l l I I I l

I I I I I I I

Cycles:2 011I010l0l1l1I1
States: 9
Flags: none



LDR,A
R~A
The contents of the Accumulator are loaded into the Memory Refresh
Register R.

Cycles: 2
States: 9
Flags: none

I I I I I I I

1 1 1 O 1 1 O 1
I I I I I I l

I I I I I I I

0 1 0 0 1 1 l l
I I I I I I I

SIXTEEN-BIT LOAD INSTRUCTIONS

LD dd, nn
dd - nn
The Z-byte integer mm is loaded into the dd register pair, where dd defines the
BC, DE, HL, or SP register pairs, assembled as follows in the object code:

fl
BC
DE
I-IL
SP

Cycles: 3
States: 10

d_d
00
01
10
11

Flags: none I

LD IX, nn
IX - nn

I
I I I I I I I

0 0 d CI 0 0 0 l
I I I I I I I
I I I I I I I

I I I I l I I

I I I I I I I

I L I I I I I

Integer nn is loaded into the Index Register IX.

Cycles: 4
States: 14
Flags: none

LD IY, nn
IY ~— nn

I l I I I I I
l l O 1 l 1 0 l

I I I II I I

I I I I I l I
O O l O 0 O 0 l

I Il I I l I

I I I I I I I
V n V

I I I I I I I

I I I I I I |
V n a

L I I l I I I

Integer mm is loaded into the Index Register IY.

Cycles: 4
States: 14
Flags: none

1'1'1'1'1'1'0'1
II I I I I I

0'0'1'0'0'0'0'1
I
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LD HL, (nn)
H — (nn+1), L <— (nn)
The contents of memory address nn are loaded into register L, and the con-
tents of the next highest memory location (nn+1) are loaded into register H.

Cycles:
States:
Flags:

LD dd, (rm)

5
16
none

0'0‘1'0'1'0'1'0

I I I I I I I

I I I I I I I

I I I I I I I

dd” ‘— (nn+1), dd; - (nn)
The contents of address mm are loaded into the low-order portion of register
pair dd, and the contents of the next highest memory address (nn+1) are
loaded into the high portion of dd.

Cycles:
States:
Flags:

LD IX, (nn)

6
20
none

0
1'1’1'0'1'1'0'1

I I I I I I I

I I I I I‘?>I I0 1d d 1011
IIIIIII}

I I I I I I I

V n ‘

I I I I I I I

I I I I | I I

V n t

IXH ¢- (nn+1), IX], — (mm)
The contents of the address nn are loaded into the low-order portion of Index
Register IX, and the contents of the next highest memory address (nn+l) are
loaded into the high-order portion of IX.

Cycles:
States:
Flags:

LD IY, (nn)

6
20
none

1'1'0'1'1‘1' '1
I I I I I I I

0'0'1‘0'1'0‘1'0
I I I I I I I

I | I I I I I

I I I I I I I

I I I I I I I

IY,, ‘— (nn+1), IYL ‘— (mm)
The contents of address nn are loaded into the low-order portion of Index
Register IY, and the contents of the next highest memory address (nn+ 1) are
loaded into the high-order portion of IY.

:LA



LD (rm),

LD (nn),

LD (nn),

LD (nn),

I I I l I I I
l l l 1 l l 0 lI I I I I I I

I I I I
0 0 l 0 1l I I I

I I
0

l

I
l 0l

I I I

Cycles: 6 I I I I I I
States: 20 I I I I I I
Flags: none f :

I I I I I I
HL
(nn+1) ~— H, (nn) ~ L
The contents of register L are loaded into memory address rm, and the con-
tents of register H are loaded into the next highest address location nn+1.

I I I I I I I

0 0 l 0 0 0 l 0
I I I I I I I
I I

I I

I I

Cycles: 5
States: 16 I I I I I A
Flags: none ‘ I I I I I '

dd
(nn+1) ._ dd”, (nn) — ddL
The low-order byte of register pair dd is loaded into memory address nn; the
upper byte is loaded into memory address nn+1.

I I I I I I I
l l l 0 l l 0 l

I I I I I I I

IIIIIII
01dd001l

Cycles: 6 I I I I I I
States: 20 ‘ 'I I I I I I
Flags: none

4 I I I I I IA

I I I I I I 7
IX
(nn+1) ~ IXH, (rm) ~ IXL
The low-order byte in Index Register IX is loaded into memory address mm;
the upper-order byte is loaded into the next highest address nn+1.

1'1'0'1'1'1'0'1
I I l l

IIIIIII
00100010

I I

Cycles: 6 I I I I I I
States: 20 : I I I I I I:
Flags: none

I I I I I I

V I I I I I 1'
IY
(nn+1) ~— IYH, (nn) ~ IYL
The low'order byte in Index Register N is loaded into memory address nn;
the upper-order byte is loaded into memory location nn+1.
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Cycles: 6 I I I I
States: 20 f n g
Flags: none I l ' I I I

LD SP, HL
SP ~ HL
The contents of the register pair HL are loaded into the SP (stack pointer).

I I I I I I I

Cycles:1 1I1I1I1I1I0I0I1
States: 6
Flags: none

LD SP, IX
SP — IX
The 2-byte contents of Index Register IX are loaded into the SP (stack

pointer). I I I I I I I
1 1 0 1 1 1 O 1

I I I I I I I

Cycles: 2 I I I I I I I
States: 10 1 1 1 1 1 0 0 1
Flags: none ' ' ' ‘ ' l '

LD SP, IY
SP ~— IY
The 2-byte contents of Index Register IY are loaded into the SP (stack
pointer).

I I I I I I I

1 1 1 1 1 1 0 1
l I I4! I l I

Cycles: 2 I I I I I I I
States: 10 1 1 1 1 1 0 0 1I I I I I I IFlags: none

PUSH qq
(SP—2) — qqy (SP-1) ~ q
The contents of the register pair qq are pushed into the external memory
LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the
16-bit address of the current “top” of the Stack. This instruction first
decrements the SP and loads the high order byte of register pair qq into the
memory address now specified by the SP; then decrements the SP again and
loads the low order byte of qq into the memory location corresponding to
this new address in the SP.
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Cycles:3 llllqlqlollloll

States: 11 I I I I I l l
Flags: none



PUSH IX

PUSH IY

POP qq

POP IX

(SP-2) ~ IXL, (SP—1) «- IXH
The contents of the Index Register IX are pushed into the Stack. This instruc-
tion first decrements the SP and loads the high-order byte of IX into the
memory address now specified by the SP; it then decrements the SP again
and loads the low-order byte into the memory location corresponding to this
new address in the SP.

llllollllllloll

I l

llllllolollloll

l l l I lCycles: 3 1 |
States: 15
Flags: none

(SP—2) ~ IYL, (SP—1) ~ IYH
The contents of the Index Register IY are pushed into the Stack. This instruc-
tion first decrements the SP and loads the high-order byte of IY into the
memory address now specified by the SP; it then decrements the SP again
and loads the low-order byte into the memory location corresponding to this
new address in the SP.

Cycles: 4 I J 1
States: 15
Flags: none

«1% ;- (SP+1), q - (SF)
The top 2 bytes of the Stack are popped into register pair qq. This instruction
first loads into the low-order portion of qq the byte at the memory location
corresponding to the contents of SP; then SP is incremented and the contents
of the corresponding adjacent memory location are loaded into the high-
order portion of qq, and the SP is now incremented again.

llllqlqlolololl

lllllll

Cycles: 3
States: 10
Flags: none

IXH ~ (SP+1), IXL ~ (SP)
The top 2 bytes of the Stack are popped into Index Register IX. This instruc-
tion first loads into the low-order portion of IX the byte at the memory loca-
tion corresponding to the contents of SP; the SP is incremented and the con-
tents of the corresponding adjacent memory location are loaded into the
high-order portion of IX. The SP is now incremented again.

1'1 [0 [1|1 l1 loll

l | l l l 1 l

1'1 '1 ‘0 '0 '0 '0'1Cycles: 4
States: 14 I I I l I l '
Flags: none
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POP IY
IYH ~ (SP+1), IYL ~— (SF)
The top 2 bytes of the Stack are popped into Index Register IY. This instruc-
tion first loads into the low-order portion of IY the byte at the memory loca-
tion corresponding to the contents of SP; then the SP is incremented and the
contents of the corresponding adjacent memory location are loaded into the
high-order portion of IY. The SP is now incremented again.

I I I I II I

1 1 1 1 1 1 0 1
I l I I I I I

I I I I I I I

Cycles: 4 1 1 1 0 0 O 0 1
States: 14 I I I I ' I '
Flags: none

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

EX DE, HL
DE ~ HL
The 2-byte contents of register pairs DE and HL are exchanged.

I I I I I I I

1 1 1 O 1 O 1 1
| I I l l l I

Cycles: 1
States: 4
Flags: none

EX AF, AF'
AF —- AF’
The Z-byte contents of the register pairs AF and AF’ are exchanged.

I I I I I I I
0 0 0 0 1 0 0 0

I I I I I I I
Cycles: 1
States: 4
Flags: none

EXX
(BC) ~ (BC’), (DE) ~ (1313'), (HL) ~ (HL')
Each 2-byte value in register pairs BC, DE, and HL is exchanged with the
2-byte value in BC’, DE', and HL’ respectively.

I I I I I I I

1 1 O 1 1 O 0 1
l l I l l I I

Cycles: 1
States: 4
Flags: none
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EX (SP), HL
H .. (SP+1), L ~ (SP)
The low-order byte contained in register pair HL is exchanged with the con-
tents of the memory address specified by the contents of register pair SP, and
the high-order byte of HL is exchanged with the next highest memory address
(SP+1).

I I I I I I I

l 1 1 O 0 0 .1 1
I I I I I I I

Cycles: 5
States: 19
Flags: none

EX (SP), IX
IX” .. (SP+1), IXL ~ (SP)
The low-order byte in the Index Register IX is exchanged with the contents of
the memory address specified by the contents of register pair SP, and the
high—order byte of IX is exchanged with the next highest address (SP+1).

l I I I l I I

1 1 O 1 1 1 0 1
I I l Il | I

I I I I I I I

Cycles: 6 1 1 1 O O 0 1 1
States: 23 ' ' ' ' I ' '
Flags: none

EX (SP), IY

LDI

IYH ~ (SP+1), IYL ~ (SP)
The low-order byte in Index Register IY is exchanged with the contents of the
memory address specified by the contents of register pair SP, and the high-
order byte of lY is exchanged with the next highest memory address.

I I I l I I I
1 1 1 1 1 1 0 1

I I I I II I

I I I I I I I

Cycles: 6 1 1 1 O 0 O 1 1
States: 23 I 1 I I I I I
Flags: none

(DE) ~ (HL), DE ‘— DE+1, HL .— HL+1, BC ~ BC—l
A byte of data is transferred from the memory location addressed by the con-
tents of the HL register pair to the memory location addressed by the contents
of the DE register pair. Then both register pairs are incremented and the BC
(byte counter) register pair is decremented.

I I I I I I I

1 1 1 0 1 1 O 1
Il I l I I l

Cycles: 4 1IOI1IOIOIOIOIO
States: 16 I I I I ' ' '
Flags: H,N,P/V

H,N: reset
P/V: set if BC—lqéO; reset otherwise
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LDIR

LDD

LDDR

(DE) ~ (HL), DE — DE+1, HL — HL+1, BC ~— BC—l
This 2-byte instruction transfers a byte of data from the memory location ad-
dressed by the contents of the HI. register pair to the memory location ad-
dressed by the DE register pair. Then, both register pairs are incremented and
the BC (byte counter) register pair is decremented. If decrementing causes the
BC to go to 0, the instruction is terminated. If BC is not 0, the program
counter is decremented by 2 and the instruction is repeated. Note: if BC is set
to 0 prior to instruction execution, the instruction will loop through 64 K
bytes. Also, interrupts will be recognized after each data transfer.

I I I I I I I
1 1 l 0 1 1 O 1

I I I

| I I I I I I
1 O 1 1 0 O O O

I I ll l I l
For BC 7': 0:

Cycles: 5
States: 21

For BC = O:

Cycles: 4
States: 16

Flags: H,N,P/V: reset

(DE) ~— (HL), DE ~ DE—l, HI. -— HL-l, BC ~ BC—l

This Z-byte instruction transfers a byte of data from the memory location ad-
dressed by the contents of the HL register pair to the memory location ad-
dressed by the contents of the DE register pair. Then both register pairs in-
cluding the BC (byte counter) register pair are decremented.

I I I I I I I
1 1 1 O 1 1 0 1

I Ii l l l l

I I | I I I I
l O 1 O 1 O 0 O

I II l l l l

Cycles: 4
States: 16
Flags: H,N,P/V

H, N: reset
P/V: set if BC-lt; reset otherwise

(DE) ~— (HL), DE - DE—1,HL ~— HL—l, BC ‘— BC—l
This Z—byte instruction transfers a byte of data from the memory location ad-
dressed by the contents of the HL register pair to the memory location ad-
dressed by the contents of the DE register pair. Then both registers, as well as
the BC (byte counter), are decremented. If decrementing causes the BC to go
to O, the instruction is terminated. If BC is not 0, the program counter is
decremented by 2 and the instruction is repeated. Note: if BC is set to 0 prior
to instruction execution, the instruction will loop through 64 K bytes. Also,
interrrupts will be recognized after each data transfer.



CPI

CPIR

For BC ¢ 0: L 1 I

Cycles: 5
States: 21

For BC = 0:

Cycles: 4
States: 16

Flags: H, N, P/V: reset

A-(HL), HL ~ I-IL+1, BC ~ BC-l
The contents of the memory location addressed by the HI. register pair are
compared with the contents of the Accumulator. In case of a true compare, a
condition bit is set. Then HL is incremented and the byte counter (register
pair BC) is decremented.

I I I I I I I

l 1 1 O 1 1 0 1
l l I l I ll

I I I ICycles:4 10'1'0 0'001
States: 16 I l l I I I I
Flags: S,Z,H,N,P/V

S: set if result is negative; reset otherwise
Z: set if A=(HL); reset otherwise
H: set if no borrow from bit 4; reset otherwise
N: set
P/V: set if BC—lsto; reset otherwise

A—(HL), HL — HL+1, BC ~ BC—l
The contents of the memory location addressed by the I-IL register are com-
pared with the contents of the Accumulator. In case of a true compare, a con-
dition bit is set. The HL is incremented and the BC is decremented. If
decrementing causes the BC to go to 0 or if A=(HL), the instruction is ter-
minated. If BC is not 0 and if A¢ (HL), the program counter is decremented
by two, and the instruction is repeated. Note: if BC is set to 0 before instruc-
tion execution, the instruction will loop through 64 K bytes, if no match is
found. Also, interrupts will be recognized after each data comparison.

For BC?t O and A¢ (HL):

Cycles: 5
States: 21

For BC=0 or A=(HL):

Cycles: 4
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CPD

CPDR

States:

Flags:
16
S, Z,H,N,P/V

S: set if result is negative; reset otherwise
Z: set if A=(HL); reset otherwise
H: set if no borrow from bit 4; reset otherwise
N: set
P/V: set if BC—latO; reset otherwise

A—(HL), HL «— HL—l, BC «- BC—l
The contents of the memory location addressed by the HL register pair are
compared with the contents of the Accumulator. In case of a true compare a
condition bit is set. The HL and the BC are decremented.

l l l l I | l

1 l 1 O l l OI I I I I Il

l ll I l l I

Cycles:4 llolllOlllOlOl
States: 16
Flags: S,Z,H,N,P/V

S: set if result is negative; reset otherwise
Z: set if A=(HL); reset otherwise
H: set if no borrow from bit 4; reset otherwise
N: set
P/V: set if BC-lt; reset otherwise

A-(HL), HL — HL-l, BC — BC-l
The contents of the memory location addressed by the HL register pair are
compared with the contents of the Accumulator. In case of a true compare a
condition bit is set. The HL and BC register pairs are decremented. If
decrementing causes the BC to go to 0 or if A=(HL), the instruction is ter-
minated. If BC is not 0 and Ash (HL), the program counter is decrementecl by
2 and the instruction is repeated. Note: if BC is set to 0 prior to instruction ex-
ecution, the instruction will loop through 64 K bytes if no match is found.
Also, interrupts will be recognized after each data comparison.

l l l l l l l

lI I I I I I
l O l l l O O lI I I I I I I

For BCatO and A=fi (HL):

Cycles: 5
States: 21

For BC=0 or A=(HL):
Cycles: 4
States: 16

Flags: S,Z,H,N,P/V
S: set if result is negative; reset otherwise
Z: set if A=(HL); reset otherwise
H: set if no borrow from bit 4; reset otherwise
N: set
P/V: set if BC—1¢o; reset otherwise



EIGHT-BIT ARITHMETIC AND LOGICAL GROUP

ADD A, r
A ~— A+r
The contents of register r are added to the contents of the Accumulator, and
the result is stored in the Accumulator.

I I I I I I I
10 0 0 0‘—Y‘—’I I I I I I I

Cycles: 1
States: 4
Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
H: set if carry from bit 3; reset otherwise
N: reset
C: set if carry from bit 7; reset otherwise
P/V: set if overflow; reset otherwise

ADD A, n
A ~ A+n
The integer n is added to the contents of the Accumulator, and the results are
stored in the Accumulator.

I I I I I l I
l l. O O 0 1 1 O

I I I I I Il

Cycles: 2
States: 7
Flags: S,Z,H,N, C,P/V

5: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise
H: set if carry from bit 3; reset otherwise
N: reset
C: set if carry from bit 7; reset otherwise
P/V: set if overflow; reset otherwise

ADD A, (HL)
A — A+(HL)
The byte at the memory address specified by the contents of the HL register
pair is added to the contents of the Accumulator, and the result is stored in
the Accumulator.

I 1 I I I I I
1 0 0 0 0 1 1 0

I I I I I I I

Cycles: 2
States: 7
Flags: 5, Z, H, N, C, P/V

5: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
H: set if carry from bit 3; reset otherwise
N: reset
C: set if carry from bit 7; reset otherwise
P/V: set if overflow; reset otherwise
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ADD A, (IX+d)
A ~ A+(IX+d)
The contents of the Index Register IX are added to a displacement d to point
to an address in memory. The contents of this address are then added to the
contents of the Accumulator, and the result is stored in the Accumulator.

I I I I I I I
1 1 O 1 1 1 0 l

I I l I I ll

I I I I I l I
1 0 0 0 0 1 1 O

I I I l l l l

Cycles: 5
States: 19
Flags: S,Z,H,N,C,P/V

5: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
H: set if carry from bit 3; reset otherwise
N: reset
C: set if carry from bit 7; reset otherwise
P/V: set if overflow; reset otherwise

ADD A, (IY+d)
A ~ A+(IY+d)
The contents of the Index Register IY are added to a displacement d to point
to an address in memory. The contents of this address are then added to the
contents of the Accumulator, and the result is stored in the Accumulator.

I I I I I I |
1 O O O O 1 l O

l I I I l lI

Cycles: 5
States: 19
Flags: S,Z,H,N,C,P/V

8: set if result is negative; reset otherwise
: set if result is O; reset otherwise
: set if carry from bit 3; reset otherwise
: set
: set if carry from bit 7; reset otherwise

P/V: set if overflow; reset otherwise

Z
H
N
C
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ADC A, s
A -- A+s+CY
The s operand is any of r, n, (HL), (IX+d), or (IY+d) as defined for the
analogous ADD instruction. These various possible opcode operand corn-
binations are assembled in the object code as follows:

I I I I
ADC A, r 1 O O O l *—I‘—>
ADC A, n I I I I I

‘ n r
l I I I I I I

I I I I I I I
ADC A, (HL) 1 0 0 O 1 l l 0

I I I I I I I

I I I I I I I
ADC A, (IX+d) 1 l O 1 l 1 0 l

I 1 I I I I I

I I I I | I |
l 0 O O l l l O

I I l l I l l

I I I I I | I

I I

ADCA,(IY+d) 1 1 1'1'1'1'0 1
I I I I I I

The s operand, along with the Carry Flag (”C” in the F register) is added to
the contents of the Accumulator, and the result is stored in the Accumulator.

Instruction Cycles States
ADC A, r 1 4
ADC A, n 2 7
ADC A, (HL) 2 7
ADC A, (IX+d) 5 19
ADC A, (IY+d) 5 19

Flags: 8, Z, H, N, C, P/V
S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise
H: set if carry from bit 3; reset otherwise
N: reset
C: set if carry from bit 7; reset otherwise
P/V: set if overflow; reset otherwise
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SUB s
A :— A—s
The s operand is subtracted from the contents of the Accumulator, and the
result is stored in the Accumulator.

I I I I I I I
SUBr l 0 0 1 O"“Y"—‘>

I l I I I I I
I I I I I I l

SUBn l l 0 l 0 l l 0
I I I I I I I
I I I I I I I

‘ n 5
I I I I I I I
I I l I l I I

SUB(HL) l 0 0 l 0 1 1 O
I I I I I I I
I I I I I I I

SUB(IX+d) llllollllllloll

SUB<IY+d) 1‘1'121'11110'1
l I l I

I I I I I I I
l 0 0 l O 1 l 0

I I I I I I I

- d V
I I l I I I I

115mm 222152 51%
SUB r 1 4
SUB n 2 7
SUB (HL) 2 7
SUB (IX+d) 5 19
SUB (IY+d.) 5 19

Flags: S,Z, H, N, C,P/V
S: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
H: set if no borrow from bit 4; reset otherwise
N: set
C: set if no borrow; reset otherwise
P/V: set if overflow; reset otherwise
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SBC A, s
A ~ A-s-CY
The s operand, along with the Carry Flag (”C" in the F register) is subtracted
from the contents of the Accumulator, and the result is stored in the
Accumulator.

SBC A, r

SBC A, n

SBC A, (HL)

SBC A, (IX + d)

SBC A, (IY+d)

Instruction
SBC A, r
SBC A, n
SBC A, (HL)
SBC A, (IX+ d)
SBC A, (IY+ d)

I l I I I l I

l 0 0 l l<—r—>
l l I I I l l

I I I I I I I

l l 0 1 l l l 0
I I I I I I l

I I I I I I I

l 0 0 l l l l 0I I I I I I I
I I I I I I I

l l 0 1 l 1 0 lI I I I I II

I I I I I I I
l 0 0 .1 l l l OI I I I I I I

I I I I I I I
l l 1 l 1 l 0 l

I I I I I I I

1‘0‘0'1'1‘1‘1‘0

Cycles States

\1
\1

>I
=~

19
19(R

U
IN

N
H

Flags: S, Z, H, N, C, P/V
set if result is negative; reset otherwise
set if result is O; reset otherwise

set

5:
Z:
H: set if no borrow from bit 4; reset otherwise
N:
C: set if no borrow; reset otherwise
P/V: set if overflow; reset otherwise
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AND 5
A ~ AA 5
A logical AND operation, bit by bit, is performed between the byte specified
by the s operand and the byte contained in the Accumulator; the result is
stored in the Accumulator.

I I | I I I I

ANDr llOIJIOIOr—Irf

I I I I I I I

ANDn l l l O O 1 0
I I I I I I I

I I I I I I |

f n >
| I I I I I J

I I I I I I I

AND(HL) 1 O l 0 0 l l O
I I I I I I I

I I I I | I I

AND(IX+d) l l 0 l l 1 0 l
I I I I

‘ d >

ANDaY+m 1'1'1'1'1‘1 o 1
I I I I

‘fi (2] :
I I l l I I I

EEEEEE Elfla 3E5:
ANDr 1 4
ANDn 2 7
AND%&) 2 7
ANDux+d) 5 19
ANDax+w 5 m

Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise
H: set
N: reset
C: reset
P/V: set if parity even; reset otherwise
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ORs
A—Avs
A logical OR operation, bit by bit, is performed between the byte specified
by the s operand and the byte contained in the Accumulator; the result is
stored in the Accumulator.

ORr 1'0'1'1'0L—1r'—>
I I I I I I I

I I I I I I I

OR 11 l 1 1 1 O 1 l 0
I I I I I I I

I I I I I I I

w n
I I I I I I I

I I I I I I I
OR(HL) 1 O 1 l O l l O

I I I I I I I

I I I I I I I

OR(IX+d) l 1 0 1 1 1 O 1
l I I I I I I

I I I I I I I
l 0 1 1 0 l 1 0

I I I I I I I

I | I I I I I
f d V

l I I I I I I

I I I I I I I
OR(lY+d) l 1 1 1 l 1 0 1

i I I | I I I

I I I I I I I

1 O 1 1 O 1 1 O
I I I I I I l

I I I I I I I

t d v
I I I I | I I

Instruction Cycles States
OR r 1 4
OR n 2 7
OR (HL) 2 7
OR (IX+d) 5 19
OR (IY+d) 5 19

Flags: S, Z,H, N, C,P/V
set if result is negative; reset otherwise
set if result is 0; reset otherwise

S:
Z:
1-1: set
N: reset
C: reset
P/V: set if parity even; reset otherwise
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XORs
A — A63 5
A logical exclusive-OR operation, bit by bit, is performed between the byte
specified by the s operand and the byte contained in the Accumulator; the
result is stored in the Accumulator.

I I
XOR r 1 I O 1 O 1 <—- Y‘ —>

I I I I I I I

I I I I I I I
XOR n 1 1 1 O 1 1 1 O

I I I I I I I

I I I I I I I
V n t

I I I I I I I

I I I I I I I
XOR (HL) 1 0 1 O 1 1 1 O

I I I I I I I

I I I I I I I
XOR (IX+d) 1 l O 1 1 1 0 1

I I I I I I I
XOR<IY+d) 1I111I1I1I110I1

: d >
i I I l l l 1

We Qdfi S_tate_s
XOR r 1 4
XOR n 2 7
XOR (HL) 2 7
XOR (IX+d) 5 19
XOR (IY+d) 5 19

Flags: S,Z,H,N,C,P/V
S: set if result is negative; reset otherwise
Z: set if result if 0; reset otherwise
H: set
N: reset
C: reset
P/V: set if parity even; reset otherwise
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CPS
A—s
The contents of the s operand are compared with the contents of the Ac—
cumulator. If there is a true compare, a flag is set.

CPr

CPn

CP (HL)

CP (IX + d)

CP (IY + d)

Instruction
CP r
CP n
CP (HL)
CP (lX+d)
CP (IY+d)

e d r
l l l l l l l

cm 52%
1 4
2 7
2 7
5 19
5 19

Flags: S,Z,H,N,C,P/V
5:
Z:
H:
N:
C:

set if result is negative; reset otherwise
set if result is 0; reset otherwise
set if no borrow from bit 4; reset otherwise
set
set if no borrow; reset otherwise

P/V: set if overflow; reset otherwise

THE 280 MICROPROCESSOR 57



INC r
r - r+1
Register r is incremented.

Cycles:
States:
Flags:

" INC (HL)

I I I I I I I
0 O<—Y‘—>1 0 0

I I I I I I I

1
4
S,Z,H,N,P/V
5: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
I-I: set if carry from bit 3; reset otherwise
N: reset
P/V: set if r was 7FI-I before operation; reset otherwise

(I-IL) ~ (HL) + 1
The byte contained in the address specified by the contents of the HL register
pair is incremented.

Cycles:
States:
Flags:

INC (IX + d)

I I I | I I I
O O 1 l 0 1 0 O

l I | I I l I

3
11
5, Z, H, N, P/V
S: set if result is negative; reset otherwise
2: set if result is O; reset otherwise
I-I: set if carry from bit 3; reset otherwise
N: reset
P/V: set if (HL) was 7FH before operation; reset otherwise

(IX+d) ‘- (IX+d)+l
The contents of the Index Register IX are added to a two’s complement
displacement integer d to point to an address in memory. The contents of this
address are then incremented.

Cycles:
States:
Flags:

INC (IY + d)

I I I I I I I
1 1 0 1 1 1 0 1

I I I I l l I

I I I I I I I
O 0 1 1 0 1 0 0

L I I I I I I

6 I I I I I I I
23
S, Z, H, N, P/V
5: set if result is negative; reset otherwise
2: set if result is 0; reset otherwise
H: set if carry from bit 3; reset otherwise
N: reset
P/V: set if (IX+d) was 7FH before operation; reset otherwise

(IY+d) — (IY+d)+1
The contents of the Index Register IY are added to a two’s complement
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DEC m

displacement integer d to point to an address in memory. The contents of this
address are then incremented.

I I I I I I I1 1 1 1 1 1 0 1
I II l I I I

I I I l I I I
O 0 1 1 0 1 0 0

I I I I I I l

Cycles: 6 I l
States: 23
Flags: S,Z, H,N,P/V

S: set if result is negative; reset otherwise
2: set if result is 0; reset otherwise
H: set if carry from bit 3; reset otherwise
N: reset
P/V: set if (IY+d) was 7FH before operation; reset otherwise

m ~— m-l
The byte specified by the m operand is decremented.

I I I I I I I

DEC r O 0 <— 1” -—-> 1 O 1
l_ I l I I I I

I I I I I I I

DEC (HL) 0 O l 1 0 1 O 1
I I I I I I I

I . I I I I I I

DEC (IX+d) l 1 l 1 l 0 1
I I I I I I I

I I I I I I I

O O 1 O 1 0 1
I I I I I I I

I I I I I I I

: d :
I I I I I I l

I I I I I I I

DEC (IY+d) 1 1 l 1 1 O l
I I I I I I I

I I I I I I I

O O 1 1 O 1 O 1
I I I I I I I

I I I I I I IV d ,
I J I I I I I

Instruction Cycles States
DEC r 1 4
DEC (HL) 3 11
DEC (IX+d) 6 23
DEC (IY+d) 6 23

Flags: S, 2, H, N, P/V
S: set if result is negative; reset otherwise
2: set if result is 0; reset otherwise
H: set if no borrow from bit 4; reset otherwise
N: set
P/V: set if m was 80H before operation; reset otherwise
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GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

CPL

NEG

CCF

SCF

A -— X
Contents of the Accumulator are inverted (1’s complement).

I I I II I I

O O 1 O 1 1 1 1
I l I I I I I

Cycles: 1
States: 4
Flags: H,N

H: set
N: set

A -» O—A
The contents of the Accumulator are negated (two's complement). This is the
same as subtracting the contents of the Accumulator from O.

I I I I I I I

1 1 1 O 1 1 O 1
l I I l l I I

I I I I I I I

Cycles: 2 0 1 O O O 1 0 0
States: 8 1 I l I l I l
Flags: S,Z,H,N,C,P/V

set if result is negative; reset otherwise
: set if result is O; reset otherwise
: set if no borrow from bit 4; reset otherwise
: set
: set if Accumulator was not OOH before operation; reset other-

wise
P/V: set if Accumulator was 80H before operation; reset otherwise

O
Z

E
N

E
”

CY ~ CY
The C flag in the F register is inverted.

I I I I I I I
O 0 1 1 1 1 1 1

| I J I I I I

Cycles: 1
States: 4
Flags: H, N, C

H: previous carry will be copied
N: reset
C: set if CY was 0 before operation; reset otherwise

CY ~— 1
The C flag in the F register is set.

I I I I I I I
O O 1 1 O 1 1 1

II I I I I I

Cycles: 1
States: 4
Flags: H, N, C



H: reset
N: reset
C: set

NOP

The central processor performs no operation during this machine cycle.
I I I I I I I

0 0 0 O O D O 0
I I I l I I I

Cycles: 1
States: 4
Flags: none

DAA

This instruction conditionally adjusts the Accumulator for BCD addition and
subtraction operations. For addition (ADD, ADC, INC) or subtraction (SUB,
SBC, DEC, NEG), the following table indicates the operation performed:

HEX HEX
VALUE VALUE NUMBER

C IN H IN ADDED C
BEFORE UPPER BEFORE LOWER TO AFTER

OPERATION DAA DIGIT DAA DIGIT BYTE DAA
( b i t ( b 1 t;
7 - 4 ) 3 - 0 )

0 0 - 9 0 0 - 9 0 0 0
0 0 - 8 0 A- F 0 6 0
0 O - 9 1 0- 3 0 6 0

AD D O A - F 0 0 - 9 6 0 1
ADC 0 9 - F 0 A— F 6 6 1
IN C O A - F 1 O - 3 6 6 1

1 0 - 2 0 O - 9 6 0 1
1 O - 2 0 A- F 6 6 1
1 O - 3 1 0 - 3 6 6 1

SUB o 0- 9 0 0-9 0 o 0
S B C 0 0 -— 8 1 6 - F FA 0
D EC 1 7 - F 0 O - 9 A 0 1
NEG 1 6 -F 1 6 -F 9A 1

1‘1 CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1.00

Cycles: 1
States: 4
Flags: S,Z,H,C,P/V

S: set if most significant bit of Accumulator is 1 after operation;
reset otherwise

Z: set if Accumulator is 0 after operation; reset otherwise
H: see instruction
0 see instruction
P/V: set if Accumulator is even parity after operation; reset other-

wise
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HALT

DI

EI

IMO

1M1

The HALT instruction suspends the central processor operation until a subse-
quent interrupt or reset is received. While in the halt state, the processor will
execute NOPs to maintain memory refresh logic.

I I I | | I I
O l 1 l O l 1 O

I I I1 I I I

Cycles: 1
States: 4
Flags: none

IFF :— 0
D1 disables the maskable interrupt by resetting the interrupt enable flip-flops
(IFFl and IFFZ). Note: this instruction disables the maskable interrupt during
its execution.

I I I I I I I
l l l l O O l 1

l I I I I I I

Cycles: 1
States: 4
Flags: none

IFF ~ 1
El enables the maskable interrupt by setting the interrupt enable flip-flops
(IFFl and IFFZ). Note: this instruction disables the maskable interrupt during
its execution.

Cycles: 1
States: 4
Flags: none

The IM 0 instruction sets interrupt mode 0. In this mode the interrupting
device can insert any instruction on the data bus and allow the central pro-
cessor to execute it.

I I I I I I I
l l l 0 l 1 0 l

I I I I I I I

I I | I I I I
0 l 0 O O l l 0

I I I I l lL

Cycles: 2
States: 8
Flags: none

The IM 1 instruction sets interrupt mode 1. In this mode the processor will
respond to an interrupt by executing a restart of location 00381-1.



I I I I I I I
l l l 0 l 1 0 l

I I I I Il l

Cycles=2 0‘1'0'110'1'1'0
States: 8 I I I I I I I
Flags: none

IM 2

The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call
to any location in memory. With this mode, the central processor forms a
16-bit memory address. The upper 8 bits are the contents of the Interrupt
Vector Register I and the lower 8 bits are supplied by the interrupting device.

I I l l I I l1 1 1 O 1 1 O 1
l l l l l Il

l l l I l I l
O l O 1 1 1 l

Cycles: 2 | I I I I I I0
States: 8
Flags: none

SIXTEEN-BIT ARITHMETIC GROUP

ADD HL, ss
HL -— HL+ss
The contents of register pair 55 are added to the contents of register pair HL
and the result is stored in HL.

l l l l l l l

00351001
Jllllll

Cycles: 3
States: 11
Flags: H, N, C

H: set if carry out of bit 11; reset otherwise
N: reset
C: set if carry from bit 15; reset otherwise

ADC HL, ss
HL - HL+ss+CY
The contents of register pair 55 are added with the Carry Flag to the contents
of the register pair HL, and the result is stored in HL.

I I I I I I I
1 1 1 O 1 l O 1

I l l l l 1 l

I I I I I II
Cycles:4 Olllslslllolllo
States: 15
Flags: S, 2, H, N, C, P/V

: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise
H: set if carry out of bit 11; reset otherwise
N: reset
C: set if carry from bit 15; reset otherwise
P/V: set if overflow; reset otherwise

U)
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SBC HL, ss
HL ~ HL-ss-CY
The contents of the register pair 55 and the Carry Flag are subtracted from the
contents of register pair HL, and the result is stored in HL.

1'1'1'0‘1'1'0'1
l l I I I I I

4 0'1's's'0'0'1'0
l I l I I I lCycles:

States: 15
Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
H: set if no borrow from bit 12; reset otherwise
N:
C:

set
set if no borrow; reset otherwise

P/V: set if overflow; reset otherwise

ADD IX, pp
IX — IX+pp
The contents of register pair pp are added to the contents of the Index
Register IX, and the results are stored in IX.

1'1'0‘1'1'1'0'1
I I I I I I I

Cycles: 4
States: 15
Flags: H, N, C

H: set if carry out of bit 11; reset otherwise
N: reset
C: set if carry from bit 15; reset otherwise

Dlolplpllloloil

I I I I I I I

ADD IY, rr
IY — IY+rr
The contents of register pair rr are added to the contents of Index Register IY,
and the result is stored in IY.

I I I I I | I
l l 1 l 1 1 O 1

Il I I I I I

I I I I I I I
O O r r 1 O O 1

Cycles: 4 I I I I I 1 I
States: 15
Flags: H, N, C

H: set if carry out of bit 11; reset otherwise
N: reset
C: set if carry from bit 15; reset otherwise

INC ss
55 — ss+1
The contents of register pair 55 are incremented.

0'0's's'0'0'1‘1
I I l I I l
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INC IX

INC IY

DEC 55

DEC IX

DEC IY

Cycles: 1
States: 6
Flags: none

IX -— IX+1
The contents of the Index Register IX are incremented.

I I I I l I I
1 1 O 1 1 1 O 1

I I l

I I I I I I I

Cycles: 2 O O l O O 0 1 1
States: 10 I I I I I I I
Flags: none

IY — IY+1
The contents of the Index Register IY are incremented.

I | I I

Cycles: 2 O O 1 0 0 O 1 1
States: 10 I I I I
Flags: none

ss —— 55—1
The contents of register pair 55 are decremented.

IIIIIII
00851011

I I I I I I I

Cycles: 1
States: 6
Flags: none

IX ~ IX—1
The contents of the Index Register IX are decremented.

I I I I11011'1‘0'1

I

Cycles: 2 O 0
States: 10
Flags: none

IY — IY—l
The contents of the Index Register IY are decremented.

I I I I I I I
0 0 1 0 1 0 1 1

I I I I I I I
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Cycles: 2
States: 10
Flags: none

ROTATE AND SHIFT GROUP

RLCA CY ‘ 7"“:
A

The contents of the Accumulator are rotated left. The content of bit 7 is
copied into the Carry Flag, and also into bit 0.

I I I I I I I

0 0 0 0 0 1 1 1
l I | l I I

Cycles: 1
States: 4
Flags: H, N, C

H: reset
N: reset
C: data from bit 7 of Accumulator

74—0

A
The contents of the Accumulator are rotated left. The content of bit 7 is
copied into the Carry Flag, and the previous content of the Carry Flag is
copied into bit 0.

IIII
00010111

I l I l l l A

Cycles: 1
States: 4
Flags: H,N,C

H: reset
N: reset
C: data from bit 7 of Accumulator.

7->o
A

The contents of the Accumulator are rotated right. The content of bit 0 is
copied into bit 7 and also into the Carry Flag.

I
0 O

II I I I

0 0 1 1 1 1
l I I I I I I

Cycles: 1
States: 4
Flags: H,N,C

H: reset
N: reset
C: data from bit 0 of Accumulator.

7—»0
A

The contents of the Accumulator are rotated right. The content of bit 0 is
copied into the Carry Flag, and the previous content of the Carry Flag is



copied into bit 7.

Cycles: 1
States: 4
Flags: H, N, C

H: reset
N: reset
C: data from bit 0 of Accumulator.

CY 7
RLCr I «0

r

The 8-bit contents of register r are rotated left. The content of bit 7 is copied
into the Carry Flag and also into bit 0.

Cycles: 2
States: 8

I T I I l I I
l l 0 0 l 0 1 1

I I I I Il l

I I I I I I I
O 0 0 O O<—r—->

L I I I I I I

Flags: S,Z,H,N,C,P/V
S: set if result is negative; reset otherwise
2: set if result is 0; reset otherwise
H
N

: reset
: reset

C: data from bit 7 of source register
P/V: set if parity even; reset otherwise

RLC (HL) 7“-—'0

The contents of the memory address specified by the contents of register pair
HL are rotated left. The content of bit 7 is copied into the Carry Flag and also

(HL)

into bit 0.

Cycles: 4
States: 15

I l I
l l 0 0
g l

|

l l

l I l
1 0 l 1

l l l

lllllll
00000110

L I l l I l l

Flags: S,Z,H,N,C,P/V
S:
Z:
H
N
C:

set if result is negative; reset otherwise

reset
reset

set if result is O; reset otherwise

data from bit 7 of source register
P/V: set if parity even; reset otherwise

RLC (IX+d) E:
The contents of the memory address, specified by the sum of the contents of
the Index Register IX and a two’s complement displacement integer d, are
rotated left. The content of bit 7 is copied into the Carry Flag and also into bit
0.

760]

(IX+d)
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RLC (IY+d)

RLm

Cycles
States:
Flags:

The contents of the memory address, specified by the sum of the contents of
the Index Register IY and a two’s complement displacement integer d, are
rotated left. The content of bit 7 is copied into the Carry Flag and also into bit
0.

Cycles:
States:
Flags:

: 6
23

0'0'0'0‘0'1'1‘0
! l J l l l l

5, Z, H, N, C, P/V

(I)

Z:
H: reset
N: reset
C:

: set if result is negative; reset otherwise
set if result is O; reset otherwise

data from bit 7 of source register
P/V: set if parity even; reset otherwise

7‘—‘0

(IY+d)

6
23

1'1'1'1'1'1'0'1
l ll l l l l

1'1'0‘0'1'0'11
l l l I I l l

I I I | I l I

l I l l l l I

0’0'0'0'0'1'1'0
l l l I l l l

S,Z,H, N, C, P/V

3: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
I-I: reset
N: reset
C: data from bit 7 of source register
P/V: set if parity even; reset otherwise

la 7"“0

The contents of the m operand are rotated left. The content of bit 7 is copied
into the Carry Flag and the previous content of the Carry Flag is copied into
bit 0.

m



RLr 1'1‘0'0‘1'0'1'1 RL(IY+d)
I I I I I I I

1111111 111111100010.__r_, 11111101
1111111 IIIIII]

1111111 I111111
RL(HL) 11001011 11001011

1111111 llllll:

O1111111 I||d1111

jololljolllllo ‘IIIIIII

1111111 1111111
RL(IX+d) 11011101 00010110

111111; 1111111

1 I I 1 1 I 1
1 1 0 0 1 0 1 1

l

IIIIIII
00010110

I I l | I l I

Instruction Cycles States
RL r 2 8
RL (HL) 4 15
RL (IX + d) 6 23
RL (IY + d) 6 23

Flags: S,Z,H, N, c, P/V
S: set if result is negative; reset otherwise
2: set if result is O; reset otherwise
H: reset
N: reset
C: data from bit 7 of source register
P/V: set if parity even; reset otherwise

RRCm 7"”
m

The contents of the operand m are rotated right. The content of bit 0 is copied
into the Carry Flag and also into bit 7.

1 1 I 1 1 1 1
RRC r 1 1 O O 1 O 1 1

I I I l I I I

I I I I I I I
0 0 0 0 1+—r—>

I I I I I I I

RRC(HL) 1'1'0'0'1‘0'1'1
I I II I I I

1 1 1 1 1 1 1
0 0 0 O 1 1 1 0

1 1 1 I I I I

1 1 1 1 1 1 1
RC (IX ‘1' d) 1 1 0 1 1 1 O 1.

1
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RRm

RRC (IY + d)

Instruction
RRC r
RRC (HL)
RRC (IX + d)
RRC (IY + d)

Cycles States
2 8
4 15
6 23
6 23

Flags: S,Z, H,N,C,P/V
S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise
Ii: reset
PI: reset
C: data from bit 0 of source register
P/V: set if parity even; reset otherwise

m

The contents of operand m are rotated right. The content of bit 0 is copied in-
to the Carry Flag, and the previous content of the Carry Flag is copied into
bit 7.

RRr

RR (HL)

RR (IX+ d)

7—»0-1

I I I I I I I

1 1 0 O 1 0 1 1
I I l I I l l

I I I I I I I
O 0 0 1 1<—r—>

I I I I I I I

I II I I I l

1 1 O 0 1 0 1 1
I I I I l I I

I I I I I I I
0 0 O 1 1 1 1 0I I I I I I I

I I I I I| I

1 1 O 1 1 1 O 1
I I I I I I I



SLA m

RR(IY+d) 00011110

Instruction Cycles States
RR r 2 8
RR (HL) 4 15
RR (IX + d) 6 23
RR (IY + d) 6 23

Flags: S,Z,H, N, C, P/V
8: set if result is negative; reset otherwise
2: set if result is 0; reset otherwise
H: reset
N: reset
C: data from bit 0 of source register
P/V: set if parity even; reset otherwise

7<——0 4-0
m

An arithmetic shift left is performed on the contents of operand m. Bit 0 is
reset. The content of bit 7 is copied into the Carry Flag.

I I I I I I I
SLAI‘ 1111010111011

1 i

I I I I I I I
O 0 1 0 O<——r—>i I I I l I I

I I I I I I I
SLA<HL) 11110101110111

I

l l l l l l I

O 0 1 O O 1 1 O
l l I l l I l

l | I ll I I

SLA(IX+d) 110I111111011
l l
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I I | I I

1 1 O 0 1 O 1 1
I I I I I I I

II I I I I I
0 0 l 0 O 1 l 0I I I I I I I

I I I I I
SLA(IY+CI) lllllllilllloll

I I I I I I I
1 1 0 0 1 0 l l

I I I I I I I

Instruction Cycles States
SLA r 2 8
SLA (HL) 4 15
SLA (IX + d) 6 23
SLA (IY + d) 6 23

Flags: S,Z, H, N,C,P/V
S: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
H: reset
N: reset
C: data from bit 7
P/V: set if parity even; reset otherwise

7—>0 ->'

m
SRAm

An arithmetic shift right is performed on the contents of operand m. The con-
tent of bit 0 is copied into the Carry Flag, and the previous content of bit 7 is
unchanged.

I I I I I I I

SRAr 1 1 0 O 1 O 1 1
I I I I I I I

I I I I I I I

O O 1 O 1<—-r—>
I I | I I I I

I I I I I I I

SRA(HL) 1 1 O O 1 O 1 1
I l I l I I l

I I I I I I I

A O O 1 O 1 1 1 O
I I I I I I I

I I I I I I I

SRA(IX+d) llllollllllloll
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SRL m

SRA (IY+ d)

Instruction
SRA r
SRA (HL)
SRA (IX+d)
SRA (IY+d)

Cycles States
2 8
4 15
6 23
6 23

Flags: S,Z,H,N,C,P/V
5:
Z:
H:
N:
C:

set if result is negative; reset otherwise
set if result is O; reset otherwise

data from bit 0 of source register
P/V: set if parity even; reset otherwise

0-» 7—90

m

The contents of operand m are shifted right. The content of bit 0 is copied in-
to the Carry Flag and bit 7 is reset.

SRL r

SRL (HL)

SRL (IX + d)

I I I I I I l
1 1 O 0 l O 1 1

I I II I 1 I

I I I I I I I
0 0 1 1 1<-—r—>

I I I I I I I
IIIIIII

11001011
I I I I I I I

I I I I I I I
O O 1 1 1 1 1 O

II I I l I I

I I I I I I I
1 1 O 1 1 1 0 1

I I I I I l I
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RLD

I

SRL(IY+d) 1'1'1'1'1'1'01
I l I I

F I I I I I I
1 1 0 0 1 0 l l.

I l I I I I I

I I I I I I I
0 0 l 1 1 1 1 0

I I I I I I I

IIIIIII
11001011

Instruction Cycles States
SRL r 2 8
SRL (HL) 4 15
SRL (lX+d) 6 23
SRL (IY+d) 6 23

Flags: S,Z, H, N, C,P/V
S: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
H: reset
N: reset
C: data from bit 0 of source register
P/V: set if parity even; reset otherwise

A“III (HL)
. I

The contents of the low-order 4 bits of memory location (HL) are copied into
the high-order 4 bits of that same memory location. The previous contents of
those high-order 4 bits are copied into the low-order 4 bits of the Ac-
cumulator, and the previous contents of the low-order 4 bits of the Ac-
cumulator are copied into the low-order 4 bits of the memory location (HL).
The contents of the high-order 4 bits of the Accumulator are unaffected.

Cycles:
States:
Flags:

I I l l | l I

1 1 1 O 1 1 O 1
l l l I l

I I I I I I I
5 O 1 1 O 1 1 1 1

l I I I I I I
18
5, Z, H, N, P/V
S: set if Accumulator is negative after operation; reset otherwise
2: set if Accumulator is 0 after operation; reset otherwise
H: reset
N: reset
P/V: set if parity of Accumulator is even after operation; reset

otherwise



I
RRD A mlmmu

The contents of the low-order 4 bits of memory location (HL) are copied into
the low-order 4 bits of the Accumulator. The previous contents of the low-
order 4 bits of the Accumulator are copied into the high-order 4 bits of loca-
tion (HL), and the previous contents of the high-order 4 bits of (HL) are
copied into the low-order 4 bits of (HL). The contents of the high-order 4 bits
of the Accumulator are unaffected.

I I I I I I I
1 1 1 0 1 1 O 1

I I I I I I

I I I I I I I

Cycles: 5 O 1 1 O 0 l 1 1
States: 18 I I I I I I I
Flags: 5, Z, H, N, P/V

S: set if Accumulator is negative after operation; reset otherwise
Z: set if Accumulator is 0 after operation; reset otherwise
H: reset
N: reset
P/V: set if parity of Accumulator is even after operation; reset

otherwise

BIT SET, RESET AND TEST GROUP

BIT b, r
Z :— Tb
After execution of this instruction, the Z flag in the F register will contain the
complement of the indicated bit within the indicated register.

I I I I I I I
1 1 0 0 1 0 1 1

I I I I Il I

I I I I I I I
0 14—b—-+4—r‘—~>

I I I I l I ICycles: 2
States: 8
Flags: S,Z,H,N,P/V

S: unknown
Z: set if specified bit is O,- reset otherwise
H: set
N: reset
P/V: unknown

BIT b, (HL)
Z ‘- (HL)b
After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the HL register
pair.

I I I I I I I
1 1 O 0 1 O 1 1

l l l l I l l

I I I I I I I
Cycles: 3 0 1 <—b—> 1 1 0
States: 12 I I I I I I I
Flags: S,Z,H,N,P/V

S: unknown
Z: set if specified bit is O; reset otherwise
H: set
N: reset
P/V: unknown
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BIT b, (IX +d)
Z ~ (IX+d),,
After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory loca—
tion pointed to by the sum of the contents of register pair IX and the two’s
complement displacement integer d.

1'1'0'1'1'1'0'1
Il I l I l I

1'1'0'0'1'0'1'1
I

I l I l I I I
Cycles: 5 O l <— b —>1 1 0
States: 20 I I I 1 l l I
Flags: S,Z,H,N,P/V

S: unknown
Z: set if specified bit is O; reset otherwise
H: set
N: reset
P/V: unknown

BIT b, (IY+d)
Z ~ (IY+d)l,
After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory loca-
tion pointed to by the sum of the contents of register pair IY and the two’s
complement displacement integer d.

1'1'1'1‘1'1'0'1
I I I l I I I

1'1'0'0'1'0'11

Cycles: 5 0 ‘1.__bL_.'1 1 0
States: 20 ' 1 ' ' ‘ ' '
Flags: S,Z,H,N,P/V

S: unknown
2: set if specified bit is O; reset otherwise
H: set
N: reset
P/V: unknown

SETb,r
13-1

Bit b (any bit, 7 thru 0) in register r is set.

1'1'0'0'1'0'1'
I l I I l I I

Cycles: 2 1'1' 'b' L—lr‘l
States:8 ll,,,,,
Flags: none
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SET b, (HL)
(HL)b "
Bit b in the memory location addressed by the contents of register pair HL is
set.

Cycles:
States:
Flags:

SET b, (IX+d)
(IX + d),,
Bit b in the memory location addressed by the sum of the contents of the IX
register pair and the two's complement displacement integer d is set.

Cycles:
States:
Flags:

SET b, (lY + d)
(IY+d)b
Bit b in the memory location addressed by the sum of the contents of the IY
register pair and the two’s complement displacement integer d is set.

Cycles:
States:
Flags:

1

4
15
none

—1

6
23
none

-1

6
23
none

llllololllollll

I II I I I I

1'1L_—'.b—.1 10
I I l I I I l

I I l I I I I
l 1 1 l l 1 0 1

I I I I

I I I I I I I
1 l 0 0 1 0 1

I I I
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RES b, m
51, ‘— 0

Bit b in operand m is reset.

I I I I I I T
RES b, r l 1 0 0 1 O 1 1

Il I I l I I

I I I I I I I
1 O <— —><-—Y‘—>

I I I I I I I

RESb,(I-IL) 1'1'0'0'1'0'1'1
II I I I I I

1'oi.—'b'—.'1 l1 ‘0

RESb,(IX+d) 1 1 0 1 11110,1l I I I

1I I I I I I
l 1 0 0 l 0 l 1

I I I I I I I

I I I I I
RES b, (IY+d) 1 1 1 1 1 1 IO 1

I I I I I I

Instruction Cycles States
RES b, r 4 8
RES b, (HL) 4 15
RES b, (IX+d) 6 23
RES b, (IY+d) 6 23

Flags: none

IUMP GROUP

JP nn
PC ‘— nn
Operand nn is loaded into register pair PC (program counter) and points to
the address of the next program instruction to be executed.
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JP cc, nn

JRe

Cycles:
States:
Flags:

3
10
none

IF cc TRUE, PC - nn
If condition cc is true, the instruction loads operand nn into register pair PC,
and the program continues with the instruction beginning at address nn. If
condition cc is false, the program counter is incremented as usual, and the
program continues with the next sequential instruction.

Cycles: 3
States: 10
Flags: none

PC ~— PC+e
This instruction provides for unconditional branching to other segments of a
program. The value of the displacement e is added to the PC and the next in-
struction is fetched from the location designated by the new contents of the
PC. This jump is measured from the address of the instruction opcode and

l I l I I I l

1 1<—cc—>O l 0
l l l l l I l

l | I I l l |

I l l I l l l

has a range of —126 to +129 bytes.

Cycles:
States:
Flags:

3
12
none

I I I I I I I
0 0 0 l l 0 0 0

I l I I l I l
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IR C, e

JR NC, e

JR Z,e

If C=0, continue
If C=1, PC — PC+e
This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is set,
the value of the displacement e is added to the PC, and the next instruction is
fetched from the location designated by the new contents of the PC. If the
flag is reset the next instruction is taken from the location following this in-
struction.

l l I I I I
0 0 1 l l O O

I J

l

If the condition is met:

Cycles: 3
States: 12

If the condition is not met:

Cycles: 2
States: 7
Flags: none

If C=1, continue
If C=0, PC — PC+e
This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is
reset, the value of the displacement e is added to the PC, and the next instruc-
tion is fetched from the location designed by the new contents of the PC. If
the flag is set, the next instruction to be executed is taken from the location
following this instruction.

I
0 0

1

lllll
11000

I l i l l

I
O

l

If the condition is met:

Cycles: 3
States: 12

If the condition is not met:

Cycles: 2
States: 7

Flags: none

If Z=O, continue
IfZ=1, PC — PC+e
If the Zero Flag is set, the value of the displacement e is added to the PC and
the next instruction is fetched from the location designated by the new con-
tents of the PC. If the Zero Flag is reset, the next instruction to be executed is
taken from the location following this instruction.



I I I I I I I

O 0 1 O l O 0 0
l I L l 1 l l

I I I l I l l

c e—2 V
J I l l l l l

If the condition is met:

Cycles: 3
States: 12

If the condition is not met:

Cycles: 2
States: 7
Flags: none

JR NZ, e
If Z=1, continue
If Z=O, PC — PC+e
If the Zero Flag is reset, the value of the displacement e is added to the PC,
and the next instruction is fetched from the location designated by the new
contents of the PC. If the Zero Flag is set, the next instruction to be executed
is taken from the location following this instruction.

IIIIIII

00100000

If the condition is met:

Cycles: 3
States: 12

If the condition is not met:

Cycles: 2
States: 7
Flags: none

JP (HL)
PC ~— HL
The PC is loaded with the contents of the HL register pair. The next instruc-
tion is fetched from the location designated by the new contents of the PC.

1'1'1'0'1'0'0'1
l I l I l l l

Cycles: 1
States: 4
Flags: none

JP (IX)
PC ._ IX
The PC is loaded with the contents of the 1X Register Pair. The next instruc-
tion is fetched from the location designated by the new contents of the PC.
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1'1'0'1'1'1'0'1
l l I l I l I

IIIIIII
11101001

I l I I l l l

Cycles: 2
States: 8
Flags: none

JP (IY)
PC -— IY
The PC is loaded with the contents of the lY Register Pair. The next instruc-
tion is fetched from the location designated by the new contents of the PC.

I l I I I I I
1 1 1 1 l 1 0 1

I I I I Il l

I I I I I I I

1 l 1 0 1 0 O 1
I I I I I I I

Cycles: 2
States: 8
Flags: none

DJNZ, e

The B register is decremented, and if a non 0 value remains, the value of the
displacement e is added to the PC. The next instruction is fetched from the
location designated by the new contents of the PC. If the result of decrement-
ing leaves B with a 0 value, the next instruction to be executed is taken from
the location following this instruction.

I I I I I I I
O 0 0 1 0 0 0 0

I l I I I I I

: 6—2 ;
I I I I I I I

lstO:

Cycles: 3
States: 13

IfB=O:
Cycles: 2
States: 8

Flags: none

CALL AND RETURN GROUP

CALL nn
(SP—1) ‘- PCH, (SP—2) — PCL, PC ._ nn
After pushing the current contents of the PC onto the top of the external
memory stack, the operands nn are loaded into PC to point to the address in
memory where the first opcode of a subroutine is to be fetched. Note:
because this is a 3-byte instruction, the PC will have been incremented by
three before the push is executed.
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I I I I I I I
1 1 0 0 1 1 0 1

I I I I I I

I I I I I I I

l I I I I I I

I I I I I I I

Cycles: 5
States: 17
Flags: none

CALL cc, nn

RET

RET cc

If cc TRUE: (SP-1) ‘- PC”, (SP—2) — PCL, PC — nn
If condition cc is true, this instruction pushes the current contents of the PC
onto the top of the external memory stack, then loads the operands nn into
PC to point to the address in memory where the first opcode of a subroutine
is to be fetched.

I I I I I I I
l 1<—cc—>1 0 0

I I I l l l I

IIIII.IyI_
‘ n r

I I I I I I I

I I I I I I I
. V n 7

If CC 15 true: I I I I I I I

Cycles: 5
States: 17

If cc is false:

Cycles: 3
States: 10
Flags: none

PCL - (SP), PC" — (SP+1)
Control is returned to the original program flow by popping the previous
contents of the PC off the top of the external memory stack, where they were
pushed by the CALL instruction. On the following machine cycle, the central
processor will fetch the next program opcode from the location in memory
now pointed to by the PC.

I I I I I I I
l l 0 O l 0 0 l

I I I I I I I

Cycles: 3
States: 10
Flags: none

If cc TRUE: PCL — (SP), PCH — (SP+1)
If condition cc is true, control is returned to the original program flow by
popping the previous contents of the PC off the top of the external memory
stack where they were pushed by the CALL instruction. On the following
machine cycle, the central processor will fetch the next program opcode from
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RETI

RETN

RST p

the location in memory now pointed to by the PC. If condition cc if false, the
PC is simply incremented as usual, and the program continues with the next
sequential instruction.

llll—.ICCI IOIOIO

I I I I I I I

If cc is true:

Cycles: 3
States: 11

If cc is false:

Cycles: 1
States: 5

Flags: none

Return from interrupt
This instruction is used at the end of an interrupt service routine to

1. Restore the contents of the PC.
2. Signal an I/O device that the interrupt routine has been completed.

The RETI instruction facilitates the nesting of interrupts allowing higher
priority devices to suspend service of lower priority service routines. This in-
struction also resets the IFFl and IFFZ flip-flops.

l I I I I I I
l l l 0 1 .l 0 l

I I I I I I I

0'1'0'0'1r1'011
II I I I I I

Cycles: 4
States: 14
Flags: none

Return from nonmaskable interrupt
Used at the end of a service routine for a nonmaskable interrupt, the instruc-
tion executes an unconditional return which functions identically to the RET
instruction. Control is now returned to the original program flow; on the
following machine cycle the central processor will fetch the next opcode from
the location in memory now pointed to by the PC. Also, the state of IFFZ is
copied back into IFFl to the state it had prior to the acceptance of the NMI.

I I I I I I I
l l l 0 l 1 0 l

I I I I I I I

I I I I I I I
O l O O 0 l O 1

I l I I I II
Cycles: 4
States: 14
Flags: none

(SP—1) ~ PC”, (SP-2) - PCL, PCH - 0, PCL — p
The current PC contents are pushed onto the external memory stack, and the



page zero memory location given by operand p is loaded into the PC. Pro-
gram execution then begins with the opcode in the address now pointed to by
PC. The restart instruction allows for a jump to one of 8 addresses as shown
in the table below. The operand p is assembled into the object code using the
corresponding t state.

lIl ItI I1

I l I l l

I I
l l

I l

_R_ __t_
00H 000
08H 001
10H 010
18H 011
20H 100
28H 101
30H 110
38H 111

Cycles: 3
States: 11
Flags: none

INPUT AND OUTPUT GROUP

IN A, (n)
A - (n)
The operand n is placed on the bottom half of the address bus to select the
I/O device at one of 256 possible ports. The contents of the Accumulator also
appear on the top half of the address bus at this time. One byte from the
selected port is then placed on the data bus and written into the Accumulator
in the central processor.

‘ {I *
I l | l I l l

Cycles: 3
States: 11
Flags: none

IN r, (C)
r - (C)
The contents of register C are placed on the bottom half of the address bus to
select the I/O device at one of 256 possible ports. The contents of register B
are placed on the top half of the address bus at this time. One byte from the
selected port is then placed on the data bus and written into register r in the
central processor.

Cycles:
States:
Flags:

3
12
5, Z, H, N, P/V

I
1 1

I

I I
1

l l

I I I
O 1 1 O

I I I

I
1

I

L

I I I I I I
O l<—Y‘—>O 0 O

l
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INI

INIR

8: set if input data is negative; reset otherwise
2: set if input data is 0; reset otherwise
H: reset
N: reset
P/V: set if parity is even; reset otherwise

(HL) — (C), B ~— B-l, HL ~ HL+1
The contents of register C are placed on the bottom half of the address bus to
select the 1/0 device at one of 256 possible ports. Register B may be used as a
byte counter, and its contents are placed on the top half of the address bus.
One byte from the selected port is then placed on the data bus and written to
the central processor. The contents of the HL register pair are then placed on
the address bus, and the input byte is written into the corresponding location
of memory. Finally, the byte counter is decremented, and register pair HL is
decremented.

IIIIIII
11101101

L I l l I I I

I I | I I I |

1 O 1 O O 0 1 O
Cycles: 4 I I l I I I I

States: 16
Flags: S, Z, H, N, P/V

S: unknown
Z: set if B—1=0; reset otherwise
I-I: unknown
N: set
P/V: unknown

(HL) ~ (C), B .— B—1,HL — HL+1
The contents of register C are placed on the bottom half of the address bus
to select the I/O device at one of 256 possible ports. Register B is used as
a byte counter, and its contents are placed on the top half of the address
bus. One byte is selected and is placed on the data bus and written into the
central processor. The contents of the HL register pair are placed on the
address, and the input byte is written into the corresponding memory loca-
tion. The byte counter is then decremented and the HL register pair is in-
cremented. If decrementing causes B to go to 0, the instruction is ter-
minated. If B is not 0, the PC is decremented by two and the instruction
repeated. Interrupts will be recognized after each data transfer.

I I I I I I I
1 1 1 0 1 1 O 1

II I I I I I

I I | I I I

1 O 1 1 O 0 1 O
IIf Bat O- I_I I I I I

Cycles: 5
States: 21

If B=02

Cycles: 4
States: 16

Flags: 5, z, H,N, P/V



IND

INDR

S: unknown
Z: set
H: unknown
N: set
P/V: unknown

(HL) «- (C), B <— B-1,HL — HL—l
The contents of register C are placed on the bottom half of the address bus
to select the I/O device. Register B may be used as a byte counter, and its
contents are placed on the top half of the address bus. One byte from the
selected port is placed on the data bus and written to the central pro-
cessor. The contents of the HL register pair are placed on the address
bus, and the input byte is written into the corresponding memory location.
Finally, the byte counter and register pair HL are decremented.

I I I I I l I
1 1 1 0 1 1 0 1

I I I I I I I

1'0'1'0'1'0'1'0Egg; JIM...
Flags: S,Z,H,N,P/V

5: unknown
Z: set if B—1=0; reset otherwise
H: unknown
N: set

P/V: unknown

(HL) — (C), B ~— B-1,HL — HL—l
The contents of register C are placed on the bottom half of the address bus to
select the I/O device. Register B is used as a byte counter, and its contents are
placed on the top half of the address bus. One byte from the selected port is
placed on the data bus and written to the central processor. The contents of
the HL register pair are placed on the address bus and the input byte is writ-
ten into the corresponding memory location. The HL register pair and the
byte counter are then decremented. If decrementing causes B to go to O, the
instruction is terminated. If B is not 0, the PC is decremented by 2, and the in-
struction is repeated. Interrupts will be recognized after each data transfer.

l l I l

IfB¢O: 1 O 1 1 1 0 1 O
I I I I I I I

Cycles: 5
States: 21

lfB=0:

Cycles: 4
States: 16

Flags: S,Z,H,N,P/V
S: unknown
Z: set
H: unknown
N: set
P/V: unknown
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OUT (n), A
(n) ~ A
The operand n is placed on the bottom half of the address bus to select the
I/O device. The contents of the Accumulator appear on the top half of the
address bus. Then the byte contained in the Accumulator is placed on the
data bus and written into the selected peripheral device.

I I I I I I I
1 1 0 1 0 O 1 1I I I I I I

Cycles: 3
States: 11
Flags: none

OUT (C), r

OUTI

(C) ~ r
The contents of register C are placed on the bottom half of the address bus to
select the I/O device. The contents of register B are placed on the top half of
the address bus. The byte contained in register r is placed on the data bus and
written into the selected peripheral device.

l l I l I l l

Cycles: 3
States: 12
Flags: none

(C) ... (HL), B — B—l, HL ~— HL+1
The contents of the HI. register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is tem-
porarily stored in the central processor. After the byte counter (B) is
decremented, the contents of register C are placed on the bottom half of the
address bus to select the I/O device. Register B may be used as a byte
counter, and its decremented value is placed on the top half of the address
bus. The byte to be output is placed on the data bus and written into the
selected peripheral device. Finally, the register pair HL is incremented.

I I I I I I I
1 1 1 O 1 1 0 1

I I I I I I I

I I I I I I I
1 O 1 0 O 0 1 1

I I I I I I
Cycles: 4
States: 16
Flags: S,Z,H,N,P/V

S: unknown
Z: set if B-1=0; reset otherwise
H: unknown
N: set
P/V: unknown



OTIR

OUTD

(C) -— (HL), B — B-l, HI. — HL+1
The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is tem-
porarily stored in the central processor. After the byte counter (B) is
decremented, the contents of register C are placed on the bottom half of the
address bus to select the I/O device. Register B may be used as a byte
counter, and its decremented value is placed on the top half of the address
bus at this time. The byte to be output is placed on the data bus and written
into the selected peripheral device. Then register pair HL is incremented. If
the decremented B register is not 0, the PC is decremented by two and the in—
struction is repeated. If B is 0, the instruction is terminated. Interrupts will be
recognized after each data transfer.

I I I I I I I

1 1 1 O 1 1 O 1
I I JI I l I

I I 1 I I I I
1 O 1 1 0 0 1 1

I I II l I I
If B at O:

Cycles: 5
States: 21

If B = O:

Cycles: 4
States: 16

Flags: S,Z,H,N,P/V
S: unknown
2: set
H: unknown
N: set
P/V: unknown

(C) — (HL), B — B-1,HL — HL—l
The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is tem-
porarily stored in the central processor. Then, after the byte counter (B) is
decremented, the contents of register C are placed on the bottom half of the
address bus to select the 1/0 device. Register B may be used as a byte
counter, and its decremented value is placed on the top half of the address
bus. The byte to be output is placed on the data bus written into the selected
peripheral device. Finally, the register pair HL is decremented.

1‘1'1'0'1'1'0‘1
l l l [4 i I

1'0‘1'0'1'0‘1'1
I l l I I I I

Cycles: 4
States: 16
Flags: S,Z,H,N,P/V

5: unknown
Z: set if B—1=O; reset otherwise
H: unknown
N: set
P/V: unknown
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OTDR
(C) - (HL), B «— B—1,HL — HL—l
The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is tem-
porarily stored in central processors. Then, after the byte counter (B) is
decremented, the contents of register C are placed on the bottom half of the
address bus to select the I/O device. Register B may be used as a byte
counter, and its decremented value is placed on the top half of the address
bus. The byte to be output is then placed on the data bus and written into the
selected peripheral device. Register pair HL is then decremented. If the
decremented B register is not 0, the PC is decremented by 2, and the instruc-
tion is repeated. If register B is 0, then the instruction is terminated. Inter-
rupts will be recognized after each data transfer.

I I I I I I I
l l 1 0 1 1 0 1

l I l I I l l

IIIIIII
10 111I110I11

I I l

If B i O:

Cycles: 5
States: 21

If B = 0:

Cycles: 4
States: 16

Flags: s,z, H,N,P/V
S: unknown
2: set
H: unknown
N: set

P/V: unknown



CHAPTER 4
BUILD YOUR OWN
COMPUTER—Start With
the Basics

The computer to be built from the design described in this book is called ZAP, for
Z80 Applications Processor. Building a computer from scratch is both educational and
utilitarian (and it saves money). I explain each section of the construction process in
detail. Ideally, each step should be tested before proceeding on to the next stage. While
this is not possible in all cases, there is a beneficial side effect in taking this route. Often
good designs fail to work because the level of construction is beyond the ability of the
builder.

I’ve made the assumption that most hobbyists do not possess sophisticated test
equipment, such as oscilloscopes or logic analyzers, and as a result, I’ve kept testing
procedures as simple as possible. By dividing ZAP into logical milestones for checkout
and test (and using proven components), problems can be identified at earlier stages
and rectified more easily.

The initial implementation of ZAP will constitute a minimum operable configura-
tion. It is important that this works before you attempt to add any of the optional pe-
ripherals. Every effort will be made to familiarize the reader with the components of
each section and the philosophy of design. While it is' necessary to assemble all the
components of this minimum configuration completely in order to check proper central
processor operation, comprehensive subassembly pretesting should (I hope) correct
any wiring errors.

The basic ZAP is divided into four major subassemblies: Z80 busing and control,
memory and I/O chip select decoding, memory, and input/output registers. These
major divisions are further divided at the component level. Schematics include a com-
plete explanation of their logical function, and test procedures are outlined after each
construction presentation.

The Processor

Figure 4.1 is a detailed block diagram of the basic ZAP computer.

I. 280 Busing and Control Logic
A. Clock Generation

The ZAP computer runs on a 2.5 MHz TTL clock. Unlike the 8080A, the
280 requires only a single-phase clock and can be driven from DC to
2.5 MHz (the Z80A runs to 4 MHz). Figure 4.2 illustrates the basic timing
cycle of the computer.

Each basic operation (MN) of the computer is completed in three or six
clock periods. Figure 4.2 shows a typical instruction cycle which consists of
three machine cycles: fetch, memory read, and memory write. After the op-
code of the instruction is fetched during M1, the subsequent cycles move the
data between memory and the central processor.

Figures 4.3a and 4.3b illustrate two possible clock designs for the 280. Both
clock circuits have a 330 ohm pull-up to +5 V. This will satisfy both the AC
and DC clock signal requirements, but it is best to use a separate inverter gate
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section to drive the pull-up whatever the oscillation technique.
The crystal controlled circuit of figure 4.3a is preferred if consistent execu-

tion time is to be maintained. Thus, the circuit of figure 4.3b, though other-
wise acceptable, should be avoided if the computer is to be used as an event
timer. It can serve a very useful purpose in the development stages, however,
by allowing the user to slow the clock down (by increasing the values of R
and C) to a rate where it is possible to directly monitor the central processor
operation. Should it ever be necessary to single-step the clock, the circuit in
figure 4.4 should be used. Given the multiple clock cycles necessary to ex-
ecute a single instruction, it would take a lot of button pushes to follow a pro-
gram through execution.

A much easier diagnostic method would be to use an instruction single-
stepping circuit. The circuit, shown in figure 4.5, is not part of the finished
schematic of ZAP because it is necessary only if the builder has a problem
and needs to follow the execution of a program instruction by instruction.
This single—stepping function is accomplished by using the control signals
generated by the Z80 during program execution. The two particular signals
of concern are M1 and WAIT. M1 is an output, and WAIT is an input.
As shown in figure 4.6,Wgoes to a logic 0 level at the beginning of every
instruction fetch cycle. Wsignifies that the computer has completed one in-
struction and is starting on the next. The objective is to stop the microproces—
sor before it executes this next instruction.

The WAIT input to the 280 does just that. A logic 0 level applied to this in-
put will suspend the program execution of the computer and indefinitely hold
it in the M1 cycle. During T2, the central processor samples the WAIT in-
put line with the trailing edge of the clock. If, at this time, WAIT is at a
logic 0 level, an additional wait state will be entered, and the line will be
sampled again. The central processor will hang in this mode until WAIT is
raised to a logic 1. It should be noted that this is not a computer halt com-
mand.

The real purpose behind these signals is to allow the relatively slow mem-
ory and peripherals to be used with a very fast central processor. Extra wait
states should be inserted only when necessary for the central processor to ac-
cess these devices. The effect is to synchronize the timing between the central
processor and its I/O devices. The circuit of figure 4.5 allows us to control
the WAIT state and to execute only one instruction with each press of the
button. The Output at IC 1, pin 8 (the WAIT input) is normally low, causing
an indefinite wait. When the button is pushed, a single debounced pulse
clocks IC 2, which is a D-type flip-flop. The duration of this pulse (the time
you hold the button down) is irrelevant, because the flip-flop is edge trig-
gered and is only concerned with the leading edge. Pressing the button sets
IC 2 and raises the WAIT line. No longer told to wait, the central processor
executes the instruction at full clock speed. As it is about to start the next in-
struction fetch cycle,T/l_1_goes low as before, and triggers the one-shot.
When it fires, IC 3 resets 1C 2 and returns the central processor to a wait con-
dition until the next time the button is pushed.

The single-step feature isn’t of much use in a computer unless there is some
way to monitor the contents of all the registers and to determine what the
computer is trying to do at any one time. To accomplish this, ZAP must be
completely operational and be running a breakpoint-monitor program which
allows the user to single-step with a software routine. We’ll discuss such pro-
grams later.

This fact is of small consolation to a person with a partially debugged com-
puter or hardware error that keeps side-tracking large programs. While it
would be nice to see all the register contents, it is virtually impossible to do so
without having a central processor that can run a dump and display routine.
This cannot be done using the hardware stepping circuit of figure 4.5. It is
possible, however, to look at the contents of the address and data buses while
the central processor is stopped. This should give a good indication as to



whether the computer is operating properly.
Many instruments can be used to read the TTL levels on the buses. A scope

or high-impedance voltmeter can be used, but a visible display of the bus
contents is a better idea. The circuits in figure 4.7 show simple methods to
display the contents of the address and data buses. The circuits are included
as aids and are not necessary for the operation of ZAP.

Basically, the circuit of figure 4.7a is a simple LED driver that is duplicated
16 times for the address bus and 8 times for the data bus. Because the 280
should drive only one TTL load from each output pin (bus driver inputs are
already attached), any display drivers of this type must be attached on the
output side of the bus drivers. This circuit will serve as a rudimentary front
panel for any builders who feel a computer isn't complete without flashing
lights.

Sometimes the need arises to monitor a single point in a circuit and watch
for level changes. While the LED driver of figure 4.7a would detect a slowly
changing level, it would miss short pulses such as—Mf To monitor the occur-
rence of such events, especially if no oscilloscope is available for testing pur-
poses, it is advisable to build the circuit in figure 4.7b. This simple logic
probe is adequate for most applications, but care must be taken in its use. It
cannot detect an open circuit and the pulse detector only triggers on the
negative edge of any transition. Should that present any problems, add the
optional circuit using the 7486; that will allow it to detect either edge.

The logic probe or similar logic level detector (scope, DVM, VOM, etc.) is
necessary to statically test the subassemblies.

POWERCLOCK SJPPU

i

RESET 230
' M‘CRCPRCVESSOR

A

ADDRESS BUS

EXTERNAL
INTERFACES

~
f——"‘—/\—"—\

INPUT OUTPUT

MEMORY >
AND
l/O
ADDRESS Kc)

i DECODERS

27 x: 2

PARALLEL PARALLEL

DATA BUS W

Figure 4.1 A block diagram of a minimum ZAP system.

MbT CYCLE
l | I l | l l |

WM
T1|T2lT3|T4 TllTZITS TllT2lT3

MACHINE CYCLE
M1 M2 7. M3

(OP CODE FETCH) (MEMORY READ) (MEMORY WRITE)

+——_-—-————-—TNSTRUCTION CYCLE __.___—__,.

Figure 4.2 An example of timing during a typical instruction cycle.
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CRYSTAL
2.5MHz

I]

6!)

CLOCK

_ +5v

b) 7404 3300.

3 4 5 6
CLOCK

VALUES OF R AND C
SET OUTPUT FREQUENCY

Figure 4.3 Typical 25 MHz clock circuits for the 280.
a) With crystal control.
b) With a variable-frequency oscillator.

+5V

3303

c a CLOCK

7400

Figure 4.4 A single-cycle clock-generator circuit.
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Figure 4.5 An instruction singlestepping circuit.

INSTRUCTION OPCODE FETCH TIMING

Figure 4.6 Instruct/on operationcode fetch (AT1) timing.
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+5V
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0 LIGHT OFF
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Figure 4.7 Typical LED drivers and a simple logic probe to monitor logic level changes.
a) Visible logic level indicators that can be attached to the address and data buses to provide

a display.
b) A simple logic probe.
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B. Reset Circuit

Often ignored, the reset function is one of the most necessary controls of a
computer. Its importance is immediately recognized when running an incor-
rectly executing program. The reset command on the 280 stops execution and
loads the program counter with 00 hexadecimal (the lowest memory
address). This allows the programmer to restart the program. When com-
bined with the instruction single-stepping circuit previously outlined, pro-
grams may be started, stopped, and started again at any time.

A reset input can be manual, automatic, or a combination of both. Figure
4.8a is a standard push-to—reset circuit. Its output is normally high until the
button is pushed, and then it goes low. The 280 will remain reset for as long
as the button is held and will only begin to execute again when released.
Manual reset is a necessity for initial program checkout, and this circuit is
employed in the basic ZAP.

When computers are used in applications where no human attendant is
present, such as a traffic light controller, the manual reset cannot be used; an
automatic reset must be employed instead. Figure 4.8b is the circuit of a total-
ly automatic power-on reset. When power is first applied to the computer,
the 10 mF capacitor will be completely discharged. The resultant logic 0 level
on the input of the 7404 pin 1 will be maintained for approximately 50 ms,
long after the +5 V supply has powered up the rest of the computer. The
long charging rate of the capacitor will, in turn, generate a logic 0 (a reset
condition) to the computer until the input level rises to approximately 2 V (a
TTL logic 1). Once full power is applied, the time it takes the reset circuit to
reach 2 V will constitute about a 35 ms power-on Reset pulse. Resetting the
machine would require turning the power off.

Manual and automatic reset are combined in figure 4.9. This circuit allows
the computer to start program execution immediately after power is turned
on. The program can be stopped and restarted by pressing the reset button.
Slightly different components and additional functions are included in this
diagram. Schmitt-triggered inverters (7414s) increase the reliability of the de-
sign. When the power is turned off, the use of a diode to discharge the capaciv
tor quickly assures that a pulse will be generated if power is suddenly reap-
plied. Because power line glitches are usually short in duration, the discharge
rate of the capacitor has to be fast enough not to miss generating a reset pulse
once power is restored.

While this reset circuit is not necessary for initial computer check-out, it
should eventually be employed if ZAP is to be expanded to include any of the
options outlined later. To synchronize the central processor and peripherals,
they should be tied into the reset signal from this circuit.

+5V
+5V

2.2K
PUSHBUTTON 7404 14

_J_ __
. l 2 3 4 RESET 280 PIN 26.1 7

+5V

a) I
‘ 15K

0.001
\I1|

+5V

7404

2 3 14 4 ——
1 ARESET 2150 PIN 26

—— lOFF 7
Figure 4.8 Reset circuits. 3;

a) A manual reset circuit.
b) An automatic power-in reset circuit. b)
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+5V
RESET

——-—————-9 TO OTHER
PERIPHERALS

IN914

+5V
10K

PUSH BUTTON l4 —_._
_J_ 9 9 8 ll 10 RESET

I» v v To 250 PIN 26
PUSH T0 RESET + 7414 7

J: 47ILF

RESET
TO OTHER PERIPHERALS

Figure 4.9 A circuit to combine manual and automatic reset functions.

C. Address Bus and Control Output Buffering

The 280 has the ability to directly address 65,536 (often called 64 K) indi-
vidual bytes of program memory and 256 individual input and output ports.
Because the microprocessor is a binary device, it is only natural that this ad-
dress be binary. There are 16 binary address lines labeled A0 thru A15. A0 is
the LSB (least significant bit), and A15 is the MSB (most significant bit).

The logic levels on this bus are not arbitrary. The control section of the
central processor sets the program counter to the next instruction to be ex-
ecuted, and on the fetch cycle, it places the program counter contents on the
address bus. During I/O instructions, additional timing cycles place the I/O
device address on the 8 least significant bits (A0 thru A7). Because this bus
has to drive the inputs of many parallel devices, all of which draw some input
power, the address bus must have an output current that will meet the load
demand. The Z80 by itself can sink 1.8 mA maximum or one TTL load on
each pin. This is no problem if the designer uses low power memories and pe-
ripheral interface chips. These are expensive devices, and their use would not
necessarily serve to educate the builder in the same way as configurations of
less complex circuits.

Using lower density ICs and TTL devices for decoding functions is less ex-
pensive but requires considerably more power from the bus. The following
table lists the input loading of various devices:

Dike, WW

Standard TTL (7404, 7442,6tc) 1.6 mA
Low-power Schottky TTL (74LSO4, etc) 0.18 mA
2708 (1KX8 EPROM) 10 MA
2114 (1KX4 programmable memory) 10 MA
2716 (2KX8 EPROM) 10 MA
2102 (1KX1 programmable memory) 10 uA
8212 (8-bit latch) 0.25 mA
8T97 (6-bit driver) 1.0 mA

It is easy to see that the real power eaters are TTL devices. Low—power
Schottky TTL (LSTTL) devices can be substituted throughout the ZAP com-
puter. They save power at slightly additional cost, but the circuit has suffi-
cient power to support straight TTL. If LSTTL is substituted, it must be sub-
stituted throughout.

The loading caused by memory, especially with only 2 K bytes in the basic
ZAP unit, is insignificant. With 1.8 mA drive current available from the Z80,
we could use LSTTL for the I/O and memory address decoding but would
have to limit the fanout (total input connections) on each address line to 9
LSTTL inputs. This is sufficient for the basic ZAP and would probably be an



acceptable procedure, but it is not recommended.
The first time a user attaches the logic probe (figure 4.7b) to an unbuffered

address line, the computer may die. The load presented by the probe, as well
as by the other circuitry, will exceed the drive capability of the bus. It’s im-
portant that the monitoring devices not impede circuit operation.

Rather than try to optimize the design to a degree that forces the user to be
aware of every uA (microampere) consumed by test probes and LED drivers,
it’s easier to add buffering that increases the bus output power to a point
where loading is not an important factor. This is the philosophy behind ZAP
busing, and as a side benefit, it will provide enough power to expand ZAP to
64 K should the user ever desire to do so. It also allows the user to add his
own TTL circuitry without becoming overly concerned with bus loading.

To achieve high power output from the address bus, a buffering device
(called a non-inverting bus driver) is used. The A0 thru A15 outputs of the
280 make only one connection: to the drivers’ input. All other devices that
use the address are attached to the output of the drivers.

Figure 4.10 is the diagram and truth table of the 8T97 bus driver. (An
equivalent bus driver is the 74367.) This three-state device is capable of sink-
ing 48 mA and can accommodate any combination of TTL, LSTTL, and
memory connections a user would want to make. The final address bus con-
figuration is shown in figure 4.11.

The three-state function of the 8T97 is controlled by the BUSAK signal.
This signal turns over control of the address bus to an external device during
direct memory access operations. In a non-DMA situation, BUSAK is high
and the 8T97 passes all outputs from the 280. When a DMA request is ac-
knowledged, BUSAK goes low, putting the 8T97 in a high impedance output
mode. This facility allows memory to be written into or read by an external
device and is usually reserved for high-speed operations that are faster than
the central processor can achieve.

+5V

T1.
TRUTH TABLE

Vcc
1 BT97 DATA

CONTROL INPUT— 0154 74357 0134 DISZ INPUT OUTPUT
20'54 — 1N1 our13—— o o o o
4 5 o o 1 1

”‘2 “”2 —‘ x 1 x HIGH 2
s 7 1 x x HIGH 2
" 'N3 OUTa — BUFFERED

DA” 'N 1° 9 DATA OUT
12 ”‘4 WM 11 X=DON'T CARE
_ T _ HIGH 2 IS A TRISTATE OUTPUT

14 1N5 W 5 13 CONDITION
: INS OUTS —

CONTROL INPUT— msz
DISZ GND

Figure 4.10 The whom and truth table of an 8T97/74367 bus driver.
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7404 +5V23
BUSAK 30 2 16 8 3 \
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Figure 4.11 The final buffered address bus configuration,

D. Data and Control Bus

The fourth and last area of direct central processor connections is the data
bus and the remaining lines of the control bus. The reason for buffering the
data bus is similar to the argument for the address bus with one exception——
the data bus is bi-directional.

A bi—directional bus means, of course, that data flows in both directions.
When the Z80 is writing a byte of data into a memory location, the data
flows from the central processor to memory. When the central processor is
reading a memory byte, data flows from memory to the central processor.
The bi-directional nature of the data bus requires that the bus drivers be
either bi-directional internally, or attached in such a way that the same func-
tion is performed.

One way of making this bi-directional driver is to use two 82125. The 8212
(figure 4.12) was originally conceived and produced by Intel as an 8—bit
latched input or output port. The 8212 can be latched continuously so that
data flows through it, or it can be turned off to block the flow. It is well
suited to this application because it has a three-state output.

Two 82125 (figure 4.13) are wired in opposite directions. IC 6 directs data
from the central processor toward memory, while 1C 7 channels data into the
Z80. Control is exercised through a single line connected to the T313 control
signal of the central processor. ~13515 normally low except during write oper-
ations. This causes IC 6 to be off, in a three-state mode, and IC 7 on, which
allows data from memory or I/O devices to reach the central processor.
When R_D goes high during a write operation, the process is reversed; IC 6
turns on and IC 7 turns off. It is only necessary to use the if) line to control
data direction. We’re assuming, of course, that when the central processor
isn’t writing data, it must be reading it. While not exactly true, the concept



works well enough in practice, and the two 82123 are connected schemati-
cally as in figure 4.14.

It is not absolutely necessary to use 82125 to perform this function. Either
8T97s or 743675 work equally well but take 41C packages. If you don’t mind
the extra wiring and have a source for 8T97s, they can be wired as illustrated
in figure 4.15.

The final connections to the central processor to be discussed are the con-
trol bus signals, shown in figure 4.16. They coordinate peripherals and chan-
nel data and addresses into and out of the central processor at the proper
times. Each was briefly explained on the 280 pinout. Exact timing will be
detailed when we discuss attachments of memory, I/O, and enhancements to
ZAP. For the time being, unused control inputs are tied high (through
resistors) to inhibit false triggering.

The output lines are buffered for the same reasons as was the address bus.
Furthermore, because this is a development computer, with expansion in
mind, both the inverted and noninverted control signals are brought out to
the user. 82/2

The areas discussed thus far are combined into a single diagram (figure Log/c pug/MM
4.17) called the 280 bus and control diagram.
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Figure 4.14 A schematic diagram of two 8212 8-bit latches configured as bidirectional data bus
drivers.
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E. Testing
Insert all l except the Z80 and turn on the power. Each section is then in-

dividually tested as follows:
Clock — Testing the 2.5 MHz clock of figure 4.3a will require an oscilloscope

or frequency counter to register the exact clock rate. Using the logic
probe from figure 4.7b to monitor this clock rate would light all three
LEDs. This indicates that the clock functions, but it will not indicate the
rate. A similar test can be performed on figure 4.3b.

Single Cycle — The logic probe (without the addition of the 7486 edge
detector) is perfect for checking the single-cycle circuit of figure 4.4.
With the probe on section C pin 8, the indication should be low. Press-
ing and holding the button down should change the indication to a high
level and cause the "pulse" LED to flash once. Releasing the button
should not flash the pulse indicator as it returns to its initial logic condi-
tion.

Single Step - With the switch in the single-step mode position (figure 4.5),
take a clip lead and momentarily ground IC 3, pin 3. The output at
IC 1, pin 8 should be low. Pressing the single-step button will cause this
output to go high. It will stay high until IC 3, pin 3 is momentarily
grounded again. Check out the pushbutton debouncing circuit (which
consists of IC 1 sections a and b) in the same manner as you did the
single-cycle test. Finally, with the switch on the run mode, IC 1, pin 8
should always be high.

Power-on Reset — The circuits of figures 4.8a and 4.8b should have a nor-
mally high output. When power is first applied to figure 4.8b, or the
button pressed in figure 4.8a, the output should go low. Either situation
will cause a logic low level to occur from the circuit of figure 4.9.

Address Bus Drivers - The Z80 should not be inserted! With IC 9, pin 5
grounded, all outputs of ICs 3, 4, and 5 on schematic figure 4.11 should
appear high. In actuality, this will be the three-state output mode and
the proper test equipment will register them as open circuits. Tying
IC 9, pin 5 to +5 V through a 2.2 K resistor will turn on all the bus
drivers. Their outputs will all be logic high levels. Successively ground-
ing the A0 thru A15 lines at the 280 connector should result in a low-
level indication on the respective buffered output line. When all 16 lines
can do this successfully, the address bus Checks out.

Bi-directional Data Bus — The data bus is tested in a similar manner except
that the procedure is done twice—for data flow in either direction.

N Grounding IIC'8, pin 1 (figure 4.14) simulates a read condition. Data
,A should flow from right to left. Applying ground and +5 V (through a

2.2 K resistor) alternately to the data input pins of IC 6 should produce
;\’ similar levels on DOl thru D08 of 1C 6. Raising IC 8, pin 1 to +5 V

allows similar data transfer, but only from left to right this time.

Control Bus — Referring to the schematic of figure 4.16, testing is simply a
case of applying a known logic level to the input side of the series in-
verters and noting the output levels one gate at a time. For example, if
Z80 pin 19 was a logic low, IC 9, pin 2 would be a logic high and con-
versely, IC 9, pin 4 would be low. Each inverter section which the
signal passes through inverts the signal.

‘ II. Memory and I/O Decoding

Before we can utilize the memory or I/O devices we must learn how the Z80 address-
ing works. Remember, the address FF hexadecimal could refer to memory, or an input
or an output port. The computer must have the ability to differentiate among the three
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possible meanings.
The control outputs of the 280 contain the necessary routing information, and by

properly gating them together, the correct signals are obtained. For basic I/O and mem-
ory_operations, the four signals of particular interest are MREQ, IORQ, R—D, and
W—R. Their definitions are as follows:

A. MREQ
Memory Request. Whenever a transaction occurs between the central proces-
sor and memory, the MREQ line goes to a logic 0.

B. IORQ
Input/Output Request. Whenever a transaction occurs between the central
processor and either an input port or an output port, the IORQ line goes to a
logic 0.

C. RD
Read Request. Whenever the central processor reads input data from either
memory or an input port, the RD line goes to a logic 0.

D. WR
Write Request. Whenever the central processor is writing data to either mem-
ory or to an output port, the WR line goes to a logic 0.

To differentiate between input and output ports during I/O instructions, :ORQ,
RD, and W—R are gated together as shown 1n figure 4 18. In a similar manner, MREQ,
RD and WR are gated during memory transfers as shown in figure 4.19. Unlike the
I/O decoding, but similar to the address bus driver discussed earlier, a memory-read
condition does not have to be decoded. It is assumed that when the memory is not in a
write mode, it is in the read state.

The resulting three decoded strobes define the operations of Input Port Read (IORD),
Output Port Write (IOWR), and Memory Write (MEMWR). If only three functions
were required in your particular computer configuration, then no other decoding
would be necessary. Such a computer would have one input port, one output port, and
one bank of memory. To alleviate this problem, additional decoding of HO and
memory is necessary so that these control strobes can serve more than a single device.
With the extra circuitry, the Z80 can independently address 256 input and output ports
and 64 K bytes of memory.

During an I/O request (either input or output), the 8-bit binary address of the par-
ticular I/O port appears on lines A0 thru A7 of the address bus. An explanation of ad-
dress coding is shown in figure 4.20. Additional examples are illustrated in figure 4.21.

Using this information, if an instruction were to designate output port 7 as its
destination, then the circuitry of figure 4.22 could be used. When a code of 007 octal
(07 hexadecimal or 00000111 binary) appears on the address lines with an IOWR
strobe, the signals present on the data bus would be stored in an 8—bit register as output
data.

7404 I
ioao I {>v I ' U

l 7400 I/O WRITE sraoae (Iowa)W I [\ I
V' .|

CPU l :
ssNALs | |

l | .
I | \ ‘Lr

7400 I/O READ STROBE UORD)
R_D I l\.. l

L____J ‘
IORQ GOES TO LOGIC 0 ON AN INPUT/OUTPUT OPERAT’ON

WE GOES To LOGIC 0 WHEN THE cpu ATTEMPTS TO WRITE DATA To AN
OUTPUT on MEMORY
RT) GOES TO LOGIC 0 WHEN THE CPU ATTEMPTS TO READ DATA FROM
MEMORY 0R AN INPUT DEVICE

Figure 4.18 Input/output read and write decoding.
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I/O Decoding

Of course, ZAP needs more than 1 port, even as a basic system. In fact, if it is ex-
panded to include some of the optional peripherals, it will require 6 or 8 ports.
Decoding these additional ports need not require 8 separate circuits like figures 4.20 or
4.21. By incorporating a 4 to 10 line demultiplexer into the design, 8 port strobes can be
derived. The circuit of figure 4.23 can be used for either input or output port decoding
(by selecting—RDor ”W—R) and is addressed for 000 octal to 007 octal. It works by select-
ing either of the two unconnected outputs (1C 3, pin 9 or 10) when an undecodable ad-
dress is presented on the address bus. A3 thru A7 still must be treated in the same man—
ner as that presented in figure 4.20, but A0 thru A2 serve as the 7442 address inputs.
These 3 bits will designate 1 of 8 possible lines when IC 1’s output goes low.

Duplicating this circuit to provide 8 separate input and output stobes (addressed 000
thru 007) would require a total of 7 chips. The number of chips can be reduced to 3 if
we take a little poetic license with the design. So far, we have decoded all 8 bits of the
I/O portion of the address bus, making our decoder select 1 of 256 or, as in the
previous circuit, 8 of 256. In either case, only the designated addresses are of any im-
portance; all others are meaningless. For all practical purposes we could decode lines
A0 thru A2 and ignore the rest. A circuit that does just that is shown in figure 4.24.

The difference between this circuit and those previously described, besides having
fewer Chips, is that this one requires an intelligent user to recognize the advantages and
disadvantages of taking such liberties. As in figure 4.23, this circuit decodes ports 000
octal thru 007 octal. What the user should realize, however, is that it also decodes 010
thru 017 and 020 thru 027, etc. The 3 LSB (least significant bits) repeat every 8 ad-



dresses. This is not a problem as long as the user is aware of repetitive addressing and
watches his programming. Should more than 8 stobes be required, the 7442 can be re-
placed with a 74154 (4 to 16 decoders). This will give 16 I/O port strobes that repeat
every 16 addresses. ‘

IC3
A3 7442

2 0— PORTI

10—— PORTO

OR 9w—R lC4
a 0— PORT 7 ‘U'

D 7 0—— PORT 6 'U 7‘
A2 c 6 0— PORT 5 If

5 o— PORT4 ‘U’
A1 a a o—Ponra 13'
no A SO—PORTZ ‘U'

‘U'
‘U'

Figure 4.23 A formal input/output port address decoding method that decodes all 8 address lines.
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Figure 4.24 A method for decoding input/output Strobes with a reduced amount of circuitry.
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Memory Decoding

Decoding the memory address bus is accomplished in a similar manner. It is inadvis-
able to take the same tack and allow repetitive memory addressing because there is
more likelihood of error. Even though 16 lines are involved, in actual application,
memory decoding turns out to be less complicated. ZAP uses 1 K x 8-bit banks of
programmable memory and 1 K—byte erasable read-only memory. Both of these de-
vices require 10 address lines to define the 1 of 1024 locations in each bank. This leaves
only 6 lines that have to be individually decoded to define any 1 K block of memory.
Figure 4.25 illustrates how this can be accomplished. A 7442 (4- to 10-line decoder) is
used to generate 8 separate chip-select lines. Because the address lines of the 7442 are
tied to A10 thru A12, each strobe pulse will have a boundary of 1 K. It is not by chance
that 1 K X 8 was chosen as the memory capacity of each bank.
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Figure 4.25 Memory bank decoding for 8 K of memory.

.

While the basic configuration of ZAP provides decoding for 8 K of memory and 8 in-
put and output ports, not all of these chip selects and port strobes are used. The extra
lines are left for expansion. Figure 4.26 is a completed schematic of the I/O and mem-
ory decoder for the builder to add to the circuit in figure 4.17.
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Testing

After you have added the components of figure 4.26 to figure 4.17, you are ready to
test the memory and I/O decoding. Insert ICs 10, 11, 12, 13, and 14, but don’t insert
IC 20 yet. ICs 1, 3, and 9 should remain inserted from the previous test. The 280
should still be left out. The logic level at the D address input of each of the 74425 (ICs
12, 13, and 14) should be high. Pulling out ICs 8 and 9 (with power off) will cause this
input to immediately change to a logic low level.

Next, ground pins 30, 31, and 32 and tie 23 high on the 280 socket. With the address
bus buffers enabled, and a 000 address jumpered on A0 thru A2, a chip-select low
should appear on the lowest strobe address. In this case, pin 1 of ICs 13 and 14 should
be low and the other strobe lines high. Changing the 3 jumpers on A0 thru A2 will
enable other device chip-select strobes. The memory bank decoder works the same way
except that the jumpering should be applied to address lines A10 thru A12.

After testing, insert all chips except the 280.
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Figure 4.26 The memory and input/output decoding section of ZAP.
a) Memory bank chip—se/ect strobes. —'
b) Input/output device chip-se/ect strobes.
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III. Memory

Of course, a major consideration for any computer system is memory. Both program
instructions and data must be stored and recalled at the appropriate time so the com-
puter can perform its function. Even though the 280 central processor has a quantity of
8-bit storage registers, these can be only used for temporary manipulation of data and
cannot store program instructions. Program instructions must be stored in external
memory elements.

The external memory may be divided into two broad classes: ROM (read-only mem-
ory) and RWM (read/write memory). ROM is used to store specific, unchanging pro-
gram steps or data. The contents of these memory locations are considered permanent
and cannot be easily changed. Read/write memory, on the other hand, is used to store
data that changes while the computer is operating. Examples would be the results of
calculations or programs that change frequently. For either type of memory, the
ultimate function is still the same: to provide, on demand, either an instruction for ex-
ecution or a location where data may be stored.

Read-Only Memory

ROM (read-only memory) is an important part of the computer system. ROM func-
tions as a memory array whose contents, once set by special programming techniques,
cannot be altered by the central processor. There are few exceptions to this rule.

By its nature, ROM is non—volatile. When power is turned off, the program contents
are not lost. Reapplication of power allows immediate program execution.

Within this basic category of ROMs there are three subcategories — ROM, PROM,
and EPROM — which are defined more by usage and application than their names
might imply.

ROM -— Read-Only Memory
This is storage which can be written into only once. The information is fixed and
cannot be changed. A ROM is usually mask programmed by the manufacturer
and is bought with a preset bit pattern. These types of ROMs are considered to be 1
custom programmed.

PROM —— (User) Programmable Read-Only Memory
This storage can also be written into only once and the information is fixed.
These devices are typically bipolar fusable link PROMs, which are programmed
by the user rather than the manufacturer. ROMS and PROMs do not generally
use the same semiconductor construction technology. Storage is much denser on
a ROM than on a PROM, and cost-per-bit is generally lower on a ROM.

EPROM -—- Erasable-Programmable Read-Only Memory
This device combines the best parts of a ROM and a PROM. When received from
a manufacturer, all storage locations are unprogrammed. Using a special inter-
face, the EPROM can be programmed by the user as a PROM would be, with the
result utilized as a ROM. If the EPROM content must be changed, it can be erased
and reprogrammed. Depending upon the particular device, an EPROM can be
either electronically alterable (often differentiated by the separate abbreviation
EAROM) or ultraviolet erasable. The latter is sometimes called a UVEPROM, but
is more often just called an EPROM. They are easily recognizable because they
have a quartz window over the integrated circuit. This window is transparent to
ultraviolet light and facilitates erasure.

While there can be considerable discussion as to the merits of each option, all ROMs
perform the same ultimate function. For each independently addressable location,
there is specific stored-bit pattern. Only the processor can determine whether this is
data or an instruction. The method of storage is the same in either case. Figure 4.27
details the block diagram of a ROM.

A ROM is simply a logical block which, under program control, provides a preset



pattern. Figure 4.28 is a 3-bit read—only memory. When switch SW1 is closed (the posi-
tion it would take when the central processor wanted the stored information), the 3-bit
code of ”101” would appear at the outputs. The diode grounds the input signals to the
7404 inverters when SW1 is closed. Expanding to more than 3 bits is simply a matter of
adding more diodes, resistors and buffer stages. Such a circuit is referred to as a diode-
matrix ROM and in this case would be a 1-line by n—bit ROM.

A 3-bit memory is not much use. This concept can easily be expanded to 16 bytes by
adding an address decoder as diagrammed in figure 4.29. A completed schematic with
the diodes specifically arranged to perform a simple 9—byte program is illustrated in
figure 4.30. This short test program will be used later during the checkout phase.

The diode-matrix ROM is presented for its educational value only. This is not a
method that should be employed in the ZAP computer. Realizing that there are inte-
grated circuits that would successfully fulfill the requirements in each of three
categories, we must analyze our needs a little more closely.

The pertinent questions are: memory size, and the cost and ease of programming.
The size of a ROM is determined by the user. When power is first applied, how much
effort does the user want to expend to make the computer execute a specific program?
ZAP has no front panel and no banks of address and data switches to toggle in instruc-
tions. This being the case, ZAP must have a program that executes immediately (when
power is applied or the reset button is pushed), and that allows the central processor to
communicate with its peripherals and set itself in a mode that is directly programmable
through these devices. Once power is applied, a simple 50- to 100-byte program can be
written, which facilitates keyboard to memory loading. But perhaps we need to enter a
large program in memory? Are we to enter it all through the keyboard?

High-speed data entry can be accommodated through a serial interface. This can be
added at the expense of another 100 or 200 bytes. Another consideration is the necessi-
ty for some operator address and data display to ease program development.

In conclusion, to incorporate all the functions necessary for a single-board develop-
ment system, the ROM can easily require 500 to 1,000 bytes of storage. Many comput-
er systems use a 64- t0 256-byte ROM to store a bootstrap program. A bootstrap is a
program that coordinates the minimum amount of necessary peripherals to load a
larger program into the computer. In most personal computer systems, this bootstrap
controls a cassette interface, and the program that is subsequently loaded is called a
monitor.

A monitor (explained in Chapter 6) is a very important piece of software that re-
quires about 1 K of program storage. Our decision is whether to make the monitor
totally resident in ROM (ready for immediate execution), or to reduce ROM to the
barest minimum and load the monitor from either a keyboard or a cassette storage sys-
tern.

This is an important consideration for someone building a computer from scratch.
When given a choice, I feel, you should almost always opt for the solution that calls for
the fewest components and you should include the ROM monitor in the hardware. It’s
like putting the cart before the horse to require that a cassette interface be used to load
all the diagnostic software. It’s quite possible that the monitor program, resident in a
1 K ROM, would be required to troubleshoot and align the serial interface and cassette
modem sections. A further consideration is that the ZAP computer can be brought on
line sooner. With a ROM monitor, useful programs can be entered via the keyboard
without having to build a serial interface.

I suggest that the preferred ROM memory size for ZAP be 1 K. As previously men-
tioned, ROM is mask-programmed by the manufacturer. However, let’s not forget that
for a home-built computer, you are the manufacturer. Fusable link PROMs are an ex-
pensive proposition when configured in a 1 K block. As a 64—byte bootstrap loader
they are ideal.

The suggested alternative for the ZAP read-only memory is to use an EPROM that is
programmed by the user. A 1 K EPROM such as the 2708 (or the 2 K 2716) is cost-
effective for the home—built computer. The Intel 2708 ultraviolet erasable read-only
memory is recommended for this application. (The 2716 is a 2 K EPROM with a single
+5 V power supply.)
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Figure 4.27 A block diagram of a read-only memory.
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The EPROM is a read-mostly memory. It is used as a ROM for extended periods of
time, erased occasionally and reprogrammed as necessary. Erasure is accomplished by
exposing the chip substrate, covered by a transparent quartz window, to ultraviolet
light. The EPROM memory element used by Intel in the 2708 is a stored-charge type
called a FAMOS transistor (Floating-gate Avalanche injection Metal Oxide Semicon-
ductor storage device). It is similar to a p-channel silicon gate field-effect transistor
with the lower or ”floating" gate totally surrounded by an insulator of silicon dioxide.
The 1 or 0 storage value of the FAMOS cell is a function of the charge on the floating
gate. A charged cell will have the opposite storage output of an uncharged cell. By ap-
plying a 25 V charging voltage to selectively addressed cells, particular bit patterns that
constitute the program can be written into the EPROM. Surrounded by insulating
material, the charge can last for years. When this silicon dioxide insulator is exposed to
intense ultraviolet light it becomes somewhat conductive and bleeds off the charge on
the floating gate. The result is erasure of all programmed information.

Appendices C1 and C2 detail the pin layout and electrical specifications of the 2708
and the 2716 respectively. Chapter 7 explores various methods to program and test the
chip.
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Read/Write Memory

Read/write memory is just what its name implies. Such memory allows data to be
written into it as well as be read from it. Read/write memory for microcomputers is
generally configured from semiconductor programmable memory devices that retain
data only while the power is on.

ROMS are technically random access devices; however, read/write memory, which
is composed of semi-conductor devices and is primarily intended for use in microcom-
puters, has come to be called RAM (random access memory). From this point on, we
shall refer to RAM as programmable memory.

There are two classes of programmable memories: static and dynamic. Static pro-
grammable memory stores each bit of information in a bi-stable storage cell such as a
flip-flop. This information is retained as long as the power is supplied to the circuit.
Dynamic programmable memories have a simpler internal structure, smaller size, dissi-
pate less power, and are inherently faster. They store information as an electric charge
on the gate to substrate of a MOS transistor. This charge lasts only a few milliseconds
and must be refreshed. This necessity to refresh the stored information is one of the ma-
jor distinctions between static and dynamic programmable memories.

Refreshing dynamic memories can be bothersome, however. The process requires
that all storage cells be addressed at least once every few (usually 2) milliseconds. A
counter circuit is usually incorporated to exercise the memory address lines when the
computer is not accessing memory. In most systems, memory refresh requires addi-
tional external circuitry. The 280 contains this circuitry within the central processor
chip and greatly facilitates the use of dynamic memory. However, this facility is lost
when the ZBO is reset. Therefore, extra refresh circuitry is necessary.

The choice between dynamic and static programmable memory technology is
predicated on cost and convenience. Even with the expense of external refresh circuitry,
dynamic memory is less costly. In a prototype system such as ZAP, however, dynamic
memory is more trouble than it is worth. Once built and operational, dynamic memory
might well be the best answer to memory expansion. But at this point in the building
process, the inclusion of dynamic memory would over-complicate the design. This
book, which emphasizes getting a beginner on-line, deals exclusively with semiconduc-
tor static programmable memory applications.

Static Programmable Memory

Figure 4.31 is a block diagram of a static programmable memory element typical of
the type used in the ZAP computer. There are five basic components of a program-
mable memory: 1) addreSS input lines, 2) data input, 3) data output, 4) chip select,
and 5) a read/write- or write—enable strobe line. The address input lines are connected
to the address bus of the computer. In the case of a N by M bit programmable memory,
where N is the number of words and M is the length of each word, there must be
enough address lines to address all N bytes. For example, in a 1 K programmable mem-
ory it would take 10 bits to address all 1024 bytes within this memory (eg: 21°=1024).
Static programmable memory chips that contain fewer bytes of data, such as a 64-byte
programmable memory, would obviously require fewer address lines. For a 64-byte
memory, only 6 bits of address are necessary.

Because the function of a static programmable memory device is to allow storage
and retrieval of data, provisions must be made for data input and data output from the
device. The data input and data output lines (shown in figure 4.31) are designated as
separate functions.

During the read function, the stored data within the addressed memory cell is avail—
able on the data output lines. During the write function, data that is placed upon the
data input lines would be stored at the address designated by the code on the address
input lines. It is not necessary that static programmable memory devices have indepen-
dent data input and data output lines.

In most cases, these devices are configured with three-state outputs. Data input and
data output can be attached together to a bi—directional data bus, or they can be the



same lines and time multiplexed. Figure 4.31 illustrates a three-state method of data
busing. During a read function, the data input lines are disabled internally within the
memory device. The contents of the memory cell addressed by the address input lines
are available on data out and are fed directly to the bi-directional data bus. During a
write function, the opposite is true. The data output lines are set in the three-state mode
(which you may recall is effectively an open circuit), and draw no current from the bi-
directional data bus. The contents of the bi—directional data bus are stored at the
designated memory cell.

All of these multiplexing functions are dependent upon the read/write and chip-
select lines. No operation can occur without the memory device being selected through
the chip—select line. To select a particular bank, as outlined earlier, it is necessary to
have decoding logic that enables these banks through the chip-select lines. Once a chip
or bank of chips has been selected, the computer determines whether data should be
read from or written into these memory locations. Under normal operation all static
programmable memory is left in the read state, and only enabled during a write com-
mand by setting a level 0 on the write enable. This is called a write-enable strobe.

Figure 4.32 is a detailed timing diagram of the memory read and write cycles. The
write/enable is a combination of memory request and write. A read/enable is a com-
bination of memory request and read. Proper decoding of these signals and the chip
select were discussed previously. In its basic form, ZAP has 8 chip-select lines, each ad-
dressing a 1 K bank of memory.

Figure 4.33 illustrates the memory map of the basic ZAP computer. As initially con-
figured, ZAP contains 3 K bytes of memory. Location 0 thru 3FF is a 1 K EPROM.
Locations 400 thru BFF are static programmable memory locations. The 1 K EPROM is
configured to reside in locations 0 thru 3FF so that ZAP can be easily started with a
power-on reset. Programmable memory located at locations 400 and above is con-
sidered to be user programmable memory. At least 2 K is recommended for satisfac-
tory operation. ZAP will work with 1 K, but 2 K is recommended for basic peripheral
expansion.

Figure 4.33 also shows how memory is attached to the computer. All three banks of
memory are attached in parallel between the address and data buses. Each bank has a
separate decoded chip-select. When the EPROM is enabled and MCSO is at a logic
level 0, EPROM data is impressed upon the data bus lines. The other two banks of
memory are in the three-state mode and have no effect on the bus. When the computer
accesses programmable memory, the chip for that particular bank of memory is set to a
logic 0, and only that bank of memory has access to the data bus.

While all banks of memory would have the same address applied to them, only the
selected bank would be in the active mode. The logic flow is similar for the computer to
write into a bank of memory. You will notice that there are write-enable lines leading to
each of the 1 K static programmable memory banks, but not to the 1 K EPROM. A 1 K
EPROM can only be written into with a special interface. Therefore, the write-enable
strobe is only attached to the programmable memories.

If, for example, the computer were to write into location 400, the chip-select for
bank 1 and the write enable for bank 1 would both have to be at a logic 0 to allow data
on the data bus to be stored into location 400. This type of programmable memory
configuration is both multiplexed and three-state. In the read mode, data flows from
the programmable memory chip; in the write mode it flows into it, and when not se-
lected it’s three-state.

Up to this point, we have discussed block diagrams of static programmable memory.
To produce an operational computer, it’s necessary to configure this memory with ac-
tual parts. Unfortunately, single chip I K by 8-bit programmable memories were ex-
tremely expensive when ZAP was designed. Therefore, these 1 K blocks are designed
from multiple components. Two relatively inexpensive and popular static program-
mable memory chips are the Intel 2102A (Appendix C3) and the Intel 2114 program-
mable memory (Appendix C4).

The 2102A is a 1 K X 1 static programmable memory. Configuring a 1 K X 8 block
of memory requires eight 2102s attached in parallel. By comparison, configuring a
1 K X 8 block with 2114s would require only two chips. This is because the 2114 has a
higher internal density than the 2102. Because the objective of any hand-wired comput-
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er project is to get the device on line easily, 2114s are the recommended programmable
memory devices for ZAP. While 21025 will work, the added wiring necessary to use
these devices far outweighs the additional cost of the 21145.

Figure 4.34 illustrates how two 2114s are attached together to produce a 1 K X 8
programmable memory bank. They share a common chip-select line. The data input
lines are divided so that 4 bits of data are stored on each chip. Because each has a
1024—byte address capability, the 10—bit address lines are commonly shared. To build
the basic ZAP, two circuits of the type illustrated in figure 4.34 should be constructed.
The total memory for the basic computer is 3 K. It can be expanded to 8 K without ad-
ditional address decoding. It is not absolutely necessary to have 2 K of programmable
memory if the user wishes only to check the operation of the system. At a minimum,
the EPROM must be wired as 1 bank of memory.

The 1 K EPROM contains the monitor which allows ZAP to function. This monitor
contains many smaller programs that are called subroutines. When the main program
calls a subroutine, it places the return address on a software stack located in program-
mable memory. At the conclusion of the subroutine, the central processor pulls this ad-
dress from the stack and returns to the main program. Usually the stack requires no
more than 64 bytes. However, it is no less trouble to wire two 2114s for a full 1 K X 8
bank of memory than to try to wire a 64-byte memory.

An additional bank of 1 K, designated as bank 2, could be added at the user’s discre-
tion. This bank is necessary if you plan to write programs that will occupy more than
1 K of memory including the stack. As the computer is presently configured, 1 K may
appear adequate; however, for the additional programs outlined in this book, 2 K is
recommended. This is especially true when a buffer area is required to communicate
with external peripherals. The schematic for the final memory configuration is shown
in figure 4.35. It should be added to the circuitry of figures 4.17 and 4.26.

Unlike the other sections of the computer, the memory cannot be checked except
under program control. Theoretically, the address lines can be preset and data read or
stored, but it’s not worth the effort. Memory checks will occur after the input/output
section is wired. Basically, it will be checked first with EPROM alone, then with the ad-
dition of the programmable memory. I mentioned previously that EPROM and pro-
grammable memory are related yet operate independently. While a program is often
stored in PROM, it usually requires programmable memory for proper execution.

In a short program that loads the accumulator, writes to an output port, and jumps
back to itself again, with no subroutine calls, programmable memory is not necessary.
It can be completely located on EPROM. The exact procedure for this test will be out-
lined at the end of the I/O section.
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WRlTE ENABLE MEMORY

0R DEVICE
IT -----M” W _
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READ/WRITE ——-——>

CHIP SELECT ——-’C

Figure 4.31 A block diagram of a static programmable memory element of N X M bits.
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Figure 4.33 A block diagram of the memory map for the ZAP computer.
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IV. Input/Output

Thus far we have discussed the central processor control and memory decoding. The
input and output functions are equally important. For the computer to display useful
information, it must be ”interfaced” to peripherals. "Interface" is an overworked term
that refers to a capability of communicating with external devices such as keyboards,
video or LED displays, and memory storage systems. Communication can be either
data input or output.

Input data can come from keyboards, audio cassette mass storage, or special data ac—
quisition interfaces. Similarly, output data flows from the computer to peripherals (eg:
video displays, numeric readouts, printers, and external control interfaces). The func-
tion and format of the data communication between the central processor and the pe-
ripherals might vary considerably, but the internal routing of the data is fundamentally
the same.

The 280 microprocessor provides both an input and output instruction. An output
from the processor is logically the same as writing to memory, and receiving an input
from an external device is similar to a memory—read command. They are differentiated
from memory operations by gating the read and write status lines with the I/O request
control line. Logical concurrence of an I/O request and a read or write status output
designates the direction of the communication with the peripheral device. Simulta-
neously with the control signals, the address code (1 of 256) of the subject device is
placed on the address bus. A timing diagram of these signals is shown in figure 4.36.
The decoding logic was detailed in section II of this chapter.

Wiring the I/O ports for ZAP is a two-stage process. When hand wiring a computer,
the most important consideration is to see that the input/output function works by the
least complicated method. A successful test of the ZAP I/O section also indirectly tests
memory. This is so because input and output instructions cannot be exercised except by
a program stored in memory.

280 input and output is handled 8 bits at a time. It does not matter whether the exter-
nal interface configuration is serial or parallel. Data transfer between the central pro-
cessor and 1/0 is 8 bits parallel and basically occurs as follows.

T1 T2 Tw T3 T1

s _i \ i \ i \__l \__i \__
A0-A7 x PCDT :«SDRESS X

__ r—j
DATA BUS m\__J

DATA BUS —'———'( OUT )—

Figure 4.36 A timing diagram of input or output cycles for the Z80.

READ CYCLE

WRITE CYCLE
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Output Instruction

OUT(n), A

When this instruction is executed, the contents of the accumulator A are placed on
the data bus and written into device n. The address of device 11 is located on address
lines A0 thru A7.

If the accumulator contains 40 hexadecimal when the instruction OUT 23, A is ex-
ecuted, 4O hexadecimal will be written into the peripheral device (also called ”port
number") decoded as 23 hexadecimal.

While there are other more complicated output instructions available in the 280 in-
struction set, they all pass data through the data bus to the external device. Because the
data bus is used for transfer of information between the central processor and memory
as well as 1/0, the computer must be allowed to continue executing its program. Data
cannot remain on the data bus waiting for the peripheral (the central processor can be
made to do this but such abstract configurations would be confusing at this time). The
data is valid for only a few clock cycles and must be stored if needed for a longer
period.

Figure 4 37 diagrams a typical 8—bit storage register. It consists of 8 individual stor—
age elements with a common ”store enable" input. In its simplest form, the single stor-
age cells can be D--type flip-flops such as shown in figure 4 38. Input data (ie: the data
bus) IS attached to the D input lines and is only clocked onto the output Iines((Q and
Q) during an I/O write strobe Using 7474s would require 4 chips for an 8-bit word A
better method 15 to use the improved circuits of figure 4 39.

Input Instruction

IN A, (11)
When this instruction is executed, the data from the selected port (11) is placed on the

data bus and loaded into the accumulator.
If the subject external device reads 10 hexadecimal when the instruction IN A, 20 is

executed, the value 10 hexadecimal read from device number 20 hexadecimal would be
loaded into the accumulator.

There are other more complicated input instructions but as was the case with output
instructions, the route for all data is still the data bus. To keep the data bus from being
dominated by a single device attached to it, all input devices (ie: the output from them)
must be three-state. This can be accomplished either by using interface logic such as
UARTs and peripheral interface adapters that are designed to be three-state, or by add-
ing three—state input buffers such as illustrated in figure 4.40 (the block diagram of the
typical 8-bit, parallel-input port).

Whatever is on input lines Bo thru 3, during an 1/0 read instruction will be directed
to the central processor. Using these direct read instructions there is no interaction be-
tween the central processor and the external hardware attached to the input port. Addi-
tional logic is required to coordinate the exact timing between the computer and an ex-
ternal peripheral. The solution is called ”handshaking." Such a capability requires
either more sophisticated input port hardware, connection to the central processor, in-
terrupt logic, or additional I/O ports to coordinate the timing.

Checking out the basic ZAP hardware is best accomplished by using the least com-
plicated hardware. A simple input port is illustrated in figure 4.41 and consists of 2
quad three-state buffers. Should there be any brave experimenters who wish to have
full handshaking on I/O ports or need more than the 8 mA output drive capabilities of
a LSTTL device, input and output ports can easily be configured using Intel 82125. The
specifications described in Appendix C5 demonstrate its versatility.

Input/Output Checkout

Ultimately, ZAP could have a keyboard, R8232 serial CRT terminal, audio cassette
interface, and analog, as well as digital I/O capabilities. Trying to attach all these pe-



ripherals together and checking everything simultaneously is a monumental undertak-
ing. A more methodical approach is to construct the minimum hardware and software
that proves operational and then build upon it. That is the route taken thus far.

With the exception of memory, we have attempted to eliminate any potential prob-
lems by static testing where possible. The simple I/O devices of figures 4.39 and 4.41
lend themselves easily to this situation. To test I/O fully requires one input port and
one output port. It should be wired as shown in figure 4.42. Only port 0 need be con-
nected at this time. The additional circuitry included in this diagram can be ignored.
Only ICs 21 thru 23 are of concern presently. The other devices are enhancements to
the basic ZAP and will be discussed later.

Static Test

With power off, remove all l previously installed. Insert ICs 20, 21, 22, and 23.
Turn on power. Temporarily ground DSOWR and DSORD. This maneuver, impossible
under direct computer control, allows data bus access to both input port 0 and output
port 0 at the same time. With the two ports connected in this manner applied input data
should be available immediately at the output port. With the input lines of ICs 21 and
22 open and power applied, the outputs of IC 23 should be at a high level. Sequential
grounding of input lines B0 thru B7 should be reflected on lines Bo thru B7 of IC 23. A
final test is to disconnect the temporary ground on DSOWR while one of the input lines
of IC 21 and 22 is grounded. The logic 0 output of IC 23 should remain low even when
the input line is no longer grounded. The result is that the data is "latched.” It will re-
main until updated by another write strobe.
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93
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57 BS 85 84 E3 B2 81 Bo
K—‘—\r——j
LATCHED PARALLEL OUTPUT

Figure 4.37 A block diagram of a typical latched parallel output port configured with an 8-bit storage
register.
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Figure 4.38 A block diagram of a latched parallel output port using D-type flip-flops as a storage
register.
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Figure 4.39 Schematic diagrams of 8-bit latched parallel output ports.
.3) Using two 4-bit LSTTL latches.
b) Using a traditional 8-bit TTL latch. Note that non-LSTTL devices can be substituted but

care should be taken to observe the total bus loading.
c)- Using a newer 8—bit LSTTL latch.
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Figure 4.40 A beck diagram of a typical 8-bit parallel input port.
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Figure 4.41 A schematic diagram of an 8‘bit parallel input port for the ZAP computer.
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V. Dynamic Checkout of the Basic Computer

All systems, with the exception of memory, should have successfully passed the
static checkout procedures. The memory wiring should be checked for continuity.
Because ZAP has no front panel or indicator (unless you wish to add one), the full sys-
tem can only be tested by executing a program that dynamically exercises all the system
hardware. This is easier than it sounds. For the computer to output a number to a spe-
cific port address, the central processor must be operational and have reset properly to
execute the instruction. The memory read must work or the central processor wouldn't
know what to do. The memory and I/O decoding must work for the data stored in
memory to arrive at the right output port. And finally, for the data to be read at the
port, the output port must function as well. In short, if you can execute a program, the
computer works. >

We can make the process simpler by using the fewest program steps possible and by
initially eliminating the necessity for programmable memory. Remember, ZAP has
both EPROM and programmable memory. With no monitor or front panel, program-
mable memory cannot be loaded directly to run a test program. The test program must
be already loaded in ROM (in our case EPROM). By carefully selecting the instructions
used in the test program, programmable memory can be left out entirely when we run
the first test. Why complicate matters by having more hardware than is necessary?

Few instructions are required to test the operation of the processor, reset, memory
and I/O. Usually the central processor either works or it doesn’t. Central processor
failure is rarely a case of one of the instructions executing improperly. If ZAP can read
in data at port 0 and output the same value to output port 0, we can assume it all
works. For the data to reach output port 0, it must travel through the central processor
(assuming you have removed the temporary grounds on the I/O strobe lines) under
program control. “v
Such a test program is: 4/ \. r I

OCTAL HEXADECIMAL
IN A, o 333 000 D1300 read port 0 in
OUT 0, A 323 000 D3 00 write to port 0 out
JP NN 303 000 000 C3 00 00 jump to beginning

This 7-byte program will read input port 0 data into the accumulator and then write
this same data to output port 0. The jump instruction will cause the program to repeat
this action continuously. The program requires no programmable memory to store
either intermediate data or the stack pointer. Because only the accumulator is affected,
the 7-byte program can be completely contained in ROM. In this case, ROM can be
either a 2708 EPROM programmed manually as described in Chapter 7 or a simulated
ROM as shown in figure 4.30. If you use a simulated ROM, it may be necessary to
reduce the 2.5 MHz clock rate to compensate for the capacitance of the external cir-
cuitry. Figure 4.30 also includes an output to port 5 that tests a data display to be added
later. Rather than rewrite the EPROM or rewire the pseudo-ROM, you may wish to
add this instruction now.

The final test of the basic ZAP is to exercise a program that uses both programmable
memory and EPROM. Again, the philosophy is that if it can store and retrieve 1 byte
from programmable memory, then all 1 K of that bank should work. A slightly longer
program is used this time. The following program is stored in EPROM and the pro-
grammable memory is used by the central processor to store the stack:

OCTAL HEXADECIMAL
LD SP, nn 061 000 006 31 00 06 set stack pointer to

middle of bank 1
programmable memory

IN A, 0 333 000 DB '33 read port 0 input
CALL TEST 315 014 000 CD100 oo , call program test
OUT 0, A 323 000 D3 00 write data to port 0 out
lP nn 303 000 000 C3 00 00 jump to beginning

TEST RET 311 C9 return to main program
,. ~- ”x .9 rt ti 9
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When assembled, the 14-byte program would be loaded as follows (in hexadecimal):

Location Program
00 /\00 31 00 06

03 DB 00
05 CD 0D 00
08 D3 a 0:

0A C3 00 00
0D C9

The operation of this program is similar to the previous example. A byte is read from
input port 0 and then read back out to output port 0. In between these operations there
is a call to a subroutine that is just a return instruction. When the call is executed, the
location where the program is to resume operation after the call is put on the stack in
programmable memory. At the conclusion of the call (the return instruction), the ad-
dress is popped off the stack and placed in the program counter so that the program can
resume where it left off. The only way for the input data from input port 0 to get to
output port 0 is for this call to be executed properly. Of course, this requires that pro-
grammable memory work properly.

Many other programs that would further enhance the diagnostic checkout pro-
cedures can be written. In my experience, however, if it executes these two programs,
you can count on everything running.

Once these milestones are reached, the experimenter has a truly operational comput-
er. The next step is to expand this basic unit and make ZAP somewhat more versatile
by adding address and data displays, a hexadecimal keyboard, a serial interface, along
with an operating system that coordinates the activities of these peripherals. While the
present system is a computer, these additions are necessary to move beyond an ex-
perimenter’s breadboard project.
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CHAPTER 5
THE BASIC PERIPHERALS

Once the basic ZAP computer has been constructed and tested, we are ready to add a
few necessary peripherals that will greatly increase the system's utility. External periph-
erals facilitate the input and output capabilities of the computer. They include such
items as printers, cathode-ray tubes (CRTs), tape drives, and disks. Peripherals of this
magnitude, however, are usually used on larger systems. For our ZSO-based ZAP,
useful peripherals include a keyboard to ease data and program entry; a visual display
to allow the computer to indicate a logical conclusion in readable form; a serial com-
munications interface, which allows ZAP to ”talk” to another computer; and an inter—
face to an audio cassette mass storage device. These four ingredients are the difference
between an experimental breadboard and a useful personal computer.

The keyboard can be either a small keypad for limited data entry or an alpha-numer-
ic ”typewriter”-style ASCII (American Standard Code for Information Interchange)
keyboard for text editing and high-level language programming. The visual display
could range from a hexadecimal LED readout to a full 24-line by ESQ-character CRT ter-
minal. The serial port, in conjunction with the audio cassette interface, could be used
to cold start the computer and load application programs.

As with the previous circuits in this book, I’ve tried to provide various alternative
designs so that you, the builder, may construct a truly personal system. Each of the
four peripheral devices will be explained in detail and numerous design examples will
be provided; both limited function hexadecimal input and full ASCII keyboards will be
addressed. In the case of the visual display, we will discuss a rudimentary LED octal
and a hexadecimal readout for ZAP. For more sophisticated visual interaction, a CRT
terminal is required. Because this unit is much more complicated than a keyboard or an
LED display, an entire chapter has been dedicated to it. My basic premise is to start
with the essentials, provide a thorough understanding of their applications, then move
to more complex, more useful add-ons.

The expansion of the basic ZAP into an interactive microcomputer system requires
the addition of a software program to synchronize and exercise the new peripherals.
This software is called a monitor and is discussed in a later chapter. Peripherals merely
provide the means for added data entry and display capability.

I. KEYBOARDS
The only way the Z80 can communicate to an external device is through the input/

output bus structure previously described. (While more esoteric methods such as direct
memory access exist, they will be ignored for the present.) When the processor wishes
to signal the user that an event has occurred, it can do so by changing the output level
on one bit of a parallel-output port. For example, the end of program execution can be
designated by bit 7 on port 0 going from a logic 0 to a logic 1. Using this concept, 8
separate elements could be individually designated and controlled from the 8 bits of
output provided on the single ”basic ZAP" port.

Information input is just as simple. The numbers 0 thru 7 could correspond to 8
switches on the 8 input bits of port 0. This is shown graphically in figure 5.1. When
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bit-7 switch is pressed, grounding the input, the logic level transition can signify a nu-
meric entry of 7 to the computer; many microprocessor applications require only these
few bits of 1/0. A traffic light controller, for example, with a single red, yellow, and
green light would need only three bits of output.

The program to control the lights would have been written, assembled, and pro-
grammed into some type of non-volatile storage. However, ZAP must interact with a
human operator in such a way that programs can be developed and tested. The major
difference between the traffic light controller and ZAP would be the peripherals and
not the microprocessor's capabilities.

In our example, we could put 8 switches on an input port. To enter information, we
have only to write a short program that reads the data on port 0 into the accumulator
and then stores or acts upon it. The chapter on monitor software will address these
manipulations, but one problem must be solved first: synchronizing peripherals to the
computer.

How does the computer know when the data on the switches is or is not valid? And,
c0u1d we make a timer in software or hardware that reads the port every second, on the
second? Can you, for example, see yourself trying to flip all the switches in time or to
make the computer wait?

8-BlT INPUT PORT

52 e1 30 e7 86 as 34 ea 32 81 so

I027406
pa sws sws sw4 swa swz sw1 swo

’4LED
TIL-209Armcu . - - - - - -
Fons 0’7

470 1K 1K ‘ZiK ‘flK ‘iix ‘:1K ‘>1K ‘:1K1. <. s. j. <. :» +5V

SWO-SW6 AND PB ARE SPOT

Figure 5.1 A parallel input/output interface with LED readout and switch input.
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The most popular method of synchronizing a peripheral that has slow data input to a
computer with fast program execution is to use “data ready" strobe pulses. (Interrupts
may also be used but they involve complicated programming and will not be con-
sidered here.) The program is written to read and check the logic level of one bit only.
By substituting a push button for one of the eight switches, say bit 7, we can simulate
the strobe. To accomplish this, first set data on the other seven switches; then, with the
program sitting in a loop checking bit 7, press the push button to generate a logic tran-
sition. The program, sensing that a ”data ready" strobe is present, reads in the entire
port and uses the other 7 bits of data.

Frequently, it is not practical to limit ourselves to just 7 symbolic interpretations
when using 7 bits of input. A more logical approach is to code the input and let the 7
bits represent up to 128 individual symbols. The choice between a coded versus a
straight parallel input is governed by the application. If the computer is part of a
burglar alarm, with each input bit representing a door or window switch, then it is im-
portant to know individual and simultaneous bit transitions. In this application, it is
necessary to have parallel signal input. On the other hand, alpha-numeric entry from a
typewriter keyboard is by nature serial, one letter at a time. Therefore, nothing is
gained by using 128 parallel input bits for a 128-key keyboard. A 7-bit code is more
cost-effective.



The most widely used keyboard code is ASCII (American Standard Code for Infor-
mation Interchange). Appendix B lists the code and the characters it represents. Any
homebrew keyboard should reflect this coding to be compatible with commercially
available software such as BASIC.

There are a number of methods that can be used to generate suitable key codes.
Figures 5.2 and 5.3 reflect hardware and software approaches, respectively. The block
diagram outlined in figure 5.2 is a hardware scanning system suitable for a 64-key key-
board. A 6-bit counter progressively enables each column while scanning all rows in
each step. Should any key be pressed, a logic 0 will be routed through the 8—input
multiplexer to the scan control logic. This signal is used to generate a key-pressed
strobe (also called data-ready strobe) to the computer. The row and column address
lines from the counter are read and indicate the binary matrix address of the pressed
key. Compatibility with the ASCII code is simply a matter of placing the proper key at
the correct address within the matrix.

Another suitable encoding method is outlined in figure 5.3. This technique, which
uses software logic to scan the matrix, should be used only when computer program ex-
ecution speed is not critical. While reducing the circuitry to one chip, the trade-off in
this approach requires both an input and output port. It functions in the same way as
figure 5.2. The computer sets a 4-bit column counter code on the decoder. Then it
searches the parallel input port for the row with the logic level 0 signifying a pressed
key. While this may seem to be an easy way to decode 128 keys, there are certain soft-
ware considerations.

3-T0-8 DECODER

85
34
BS

our7 ours ours oum 0UT3 ourz ourl ouro

0UT=1 IF NO KEY
PRESSED

G'BIT
BINARV
COUNTER

OUT =0 IF ADDRESS
COINCIDENT WITH
PRESSED KEY23 KEY

TYPI64)
6-BIT
BINARY
CODE

8-INPUT
MULTIPLEXER

52
BI
BO

KEY
PRESSED
STROBE

'LI-

SCAN CONTROL
LOGIC

CLOCK INPUT

Figure 5.2 A matrix keyboard scanner for a 64-key keyboard.
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. B
4 BITS 74154OF AN
OUTPUT 4'T0'15 DECODER
PORT

1515131211109876543210

17161514131110987654321

TO if.
PARALLEL ‘
iNPUT
PORT

Figure 5.3 A software-driven 128-key encoder circuit.

‘.
The key—pressed or data-ready strobe in any keyboard serves two purposes: it signi-

fies that data is present and ready, and it is timed so the strobe is not generated until
after a mechanical debounce time period has elapsed. The reason for the delay is ob~
vious. Remember, these microprocessors can execute 200,000 instructions a second. A

program written to look for a strobe and read the data would run a hundred times on a
single keypress because of contact bounce. The mechanical making and breaking of the
contact could appear like 100 data-ready strobes if we aren’t careful. A true data-ready
strobe is not generated until after a debounce time-out and then it should be fast-rise-
time (<200 ns) pulse with a rate exceeding the cycle time of the computer. The dura-
tion of the pulse should be long enough to allow the scanning program to catch it even
if it is off doing some other task, and short enough so that the central processor doesn’t
see the same strobe twice.

There are two techniques to combat the problem of strobe duration. One is to set a
flip-flop with the rising edge of the strobe and tie the clear line of the flip-flop to an out-
put bit. After reading in the data, the program can clear the “data-ready" condition by
resetting the flip-flop. This is usually employed in cases where the response time to a
keyboard or other device is variable. This method also guarantees that an event will be
registered and not missed due to time delays. Of course, most keyboard encoders do
not latch their output data. If a key is released, even if the strobe has been set in a flip-
flop, no data will be present when the computer reads the keyboard. There are ways to
get around this but they all involve additional hardware.

Usually the experimenter’s problem is reading a strobe twice rather than not waiting
long enough to acknowledge it. Instead of using a hardware flip-flop, most program-
mers employ a software flag, the second technique in dealing with strobe duration.
When a key-pressed strobe is sensed, the program sets a flag in a memory location,
reads the data, then checks the strobe again. If the strobe is high, the flag is checked
and the data is not read. Only when the strobe returns to a logic zero is the flag reset,
enabling data input the next time.

It’s not easy to construct keyboard encoders for 64— or 128—key ASCII keyboards. It’s
simpler to use a commercially available, scanning, read-only memory encoder such as
the one documented in Appendix C6.

As far as ZAP is concerned, it is important to learn to walk before we run. Most peo-
ple would consider ZAP to be a learning tool that could be eventually expanded into a
full—blown microcomputer system. A full 128-key ASCII keyboard could prove to be as
expensive as the entire ZAP computer. To minimize expense and retain the experimen-



tal qualities of this endeavor, a limited keyboard, suitable for hexadecimal entry, is
suggested as the first level of expansion. With a limited number of keys to encode,
hardwired TTL circuitry offers a reasonable cost advantage over expensive encoder
read-only memories.

Figure 5.4 is a hexadecimal keyboard interface designed specifically for the ZAP soft-
ware monitor. A hexadecimal keyboard allows data and instruction entry as 2 digit
hexadecimal numbers. In addition to the 16 numeric keys, there are 3 command keys
designated "EXEC” (for execute), “NEXT," and "SHIFT.” EXEC and NEXT will be ex~
plained in the monitor section. The SHIFT is similar to a regular keyboard and is used
to double the number of key codes by allowing a SHIFT 1, SHIFT 2, etc. The particular
significance of each code will be explained later.
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Figure 5.4 A hexadecimal keyboard interface.
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The keyboard required to support the ZAP software monitor has 19 keys. The en-
coder in figure 5.4 is a combination scanner and hard-wired parallel output. Encoding
depends upon the particular key pressed. The hexadecimal keys 0 thru F are sensed
through a multiplexed scanner, IC 2 and IC 3. As IC 2 counts, it sequentially places a
logic 0 on each of the 16 output lines of IC 3. If any key is pressed, that low level is
routed back to IC 4 and stops the clock. The counter is then locked on the address of
the particular key being pressed. The same action that stops the clock also triggers a
one-shot IC 5 which generates a key-pressed strobe. The output lines BO thru B3 will
contain the binary value of the pressed key while bit 7 is reserved for the strobe. The
three function keys are directly tied to input bits 4, 5, and 6. Three sections of IC 1
serve to dampen contact bounce. The EXEC and NEXT are tied in so they will generate
a key—pressed strobe when activated. Because the shift key is always used in conjuction
with another key, it is not connected to the strobe circuit.

It is important to recognize that the coding of this 19-key circuit is not ASCII. An
ASCII keyboard cannot be used directly with the software monitor outlined in this
book, unless you use only those ASCII keys that correspond to the coding of figure 5.4,
or rewrite the software monitor to accept ASCII rather than binary codes for each key.

II. ADDING A VISUAL DISPLAY

Once a keyboard has been added to ZAP, we are ready for program development.
The other key ingredient is a visual display that allows the programmer to examine in-
struction statements and data. The least costly configuration is an LED display, prefer-
ably hexadecimal because the software monitor is written that way. For the octal die-
hards, I've also included an octal display.

Hexadecimal displays may seem a trivial addition to an expensive computer system,
but it is sometimes these little helpful add-ons that make program debugging easier. I
don’t intend that it should replace a CRT, but it’s a necessary tool when debugging a
program and a necessity for using the ZAP monitor. It will never replace a stepper or a
break-point-monitor program, but it's great to display keyboard or I/O data quickly
with a single output instruction.

There are many ways to display hexadecimal on a 7-segment LED. Figure 5.5 is an

2N2222
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INPUT CODE 82523 PROGRAM 7—SEGMENT DISPLAY
C D7D6D5D4D3D2D1DO
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Figure 5.5 A possible method for a hexadecimal latch/decoder/driver using a standard 7-segment
LED.

a) This entire circuit would be needed to replace one HP7340. (78 on the 82823 can perform
the blanking function.

b) The program for the 82823 (/0 2).

example of the usual brute force method using a PROM as a hexadecimal decoder. (A
method of programming the 82523 was described in the article in the November 1975
issue of BYTE magazine entitled ”A Versatile Read-Only Memory Programmer," if you
choose to use this circuit.)

However, this approach uses an excessive number of components and most people
would not want to program a PROM. One alternative is to allow the computer to per-
form the decoding and drive the 7-segment display through the transistors directly
from a latched 8-bit output port. Another way puts additional logic around a standard
7-segment decoder driver for the extra requirements. The former case necessitates a
computer program while the latter can involve as many components as figure 5.5.

Fortunately, there is a product on the market that can solve the problem. It is the
HP7340 hexadecimal LED display (from Hewlett Packard; equivalent displays are
available from other manufacturers). These hexadecimal digits depart from the stan-
dard 7-segment format by using dots instead of bars and being capable of displaying a
capital “B” and “D” in hexadecimal. This is accomplished by controlling the corner
dots, which gives the appearance of ”rounding.” This ability discriminates a “B” from
an “8” or a “D" from a “.”0 There are 16 distinctly different characters.

An additional feature of the HP7340 is that each display circuit contains a 4-bit latch
and decoder/driver. This allows the display to be attached directly to the data bus. The
result is a single 8—pin hexadecimal display that successfully accomplishes the function
of all the circuitry of figure 5.5. The specifications of the individual pins are given in
figure 5.6.

5080-7340 PIN CONNECTIONS

REA/9 V/EW F/lV FU/c/OIV

lNPUT B

INPUT 0

INPUT D

BLANK CONTROL (BLANK=+5V)
LATCH ENABLE (LATCH=0V)
GROUND
+5 VOLTS
INPUT A

5082-7340

m
fl
O

t
N

I
-
l

are produced by Diallte and Texas Instruments.
Figure 5.6 The pin layout and functions for the HP7340 BCD to hexadecimal display. Similar displays

THE BASIC PERIPHERALS 135



Figures 5.7 and 5.8 demonstrate how the HP7340 can be configured to function as a
2—digit hexadecimal output port or a 3—digit octal port. An 8-bit latch is not required
because it already contains one. The HP7340s can be attached to the data bus as simply
as any other parallel output port and are strobed from the chip—select decoder outlined
earlier in the section on 1/0 decoding.

To utilize the software monitor properly, 6 hexadecimal displays (separated into 3
single byte displays) are necessary. Three bytes are required to display a particular H
and L address and the data contents of that location. The 6 hexadecimal displays
should have the following decoded strobes:

Output Port # Logic Line Display Parameter IC#

5 DSSWR MSD address field 30, 31
6 DSoWR LSD address field 28, 29
7 DS7WR data field 26, 27

MSD - Most Significant Digit
LSD — Least Significant Digit

A more complete description of each display function is described within the
monitor section, and a completed schematic showing how the 6 displays are attached
to the data bus is illustrated in figure 5.9.

W D 3 0 HP 7340 +5V

BSD—20 I I 7

05 D——1la I I 4

D4 D—iA .___ 5 x77
DECODED ’5moss D—‘—‘—‘5

DaD——i0 Hm ”V 3 D HP 7340 +5V

ozD—-—-—2—c I I J’ 2 c I I 7
__ /77

D! D——ls I I 4 07 [3—1.3 I I 4
B 6no D———- 9—5 5

A /77 06 A — n7
5

' ' - . 3 HP 7340 +5V
Figure 5.7 An HP734O hexadeCIma/ latch/decoder/dhver d/splay. ,71'7— 0 __ I

osD——ZC I I 7
Di D—ie I I 4
03 i:>—“A —— 65 x77

l—————0

3 D HP 7340 +5V

”l7— —' I
02 I:>-—-2-C I 7
01 D—LB I I 4

DO E) 8 A 61r 5 n7
DECODED D l ______

STROBE

Figure 5.8 An HP7340 octal latch/decoder/driver display. The HP5082-7300 can be substituted for the
HP5082-
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7340 in coral display applications. The HP7300 displays numerics only.
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SO

III. SERIAL INTERFACE
A serial communication capability is not absolutely necessary to make ZAP work,

although the software monitor supplied in this book supports a serial interface.
First a word about concept before we pursue the design details. Why would ZAP

need to communicate? When we discuss the serial cassette interface, you will under-
stand that there are more advantages to it than appear presently. If future expansion is
in mind or commercially made peripherals such as a CRT or printer are ever added,
their interface will most likely be serial.

This last sentence is significant. Realize that I said nothing about communicating
with another computer. While talking to another computer over telephone lines re-
quires a serial link, in general, standard peripherals such as CRTs and printers also
“talk” serially. Therefore, by designing a serial port to accommodate a printer, we also
gain the ability to talk with another computer.

Communication is simply the transfer of information from one device to another. In
the case of a CRT display unit, the computer sends character information for screen
display while the keyboard relays the user’s input to the computer. Each end of the full-
duplex communication line must have a transmitter and a receiver. In both cases, the
information being transferred is ASCII data probably consisting of a 7-bit code and, in
some cases, an additional parity bit for error checking. This 7-bit data (ignoring the
parity bit) will appear on the lines of a parallel port. These 7 lines plus a ground
reference and a strobe (remember we have to tell the receiver when the data is valid)
can be brought out to the CRT input. Keeping that as a dedicated line from the comput-
er to the CRT, we now want a similar line between the keyboard output and an 8-bit
parallel port on the computer. This requires an additional 9 lines. To further com-
plicate matters, let’s separate the terminal and the computer by 300 to 400 feet, as
might happen in some commercial computer systems. The result is that 400 feet of 18
lead (17 if you combine ground references) cable will cost more than the terminal. Also
realize that the TTL parallel output should not be used to drive lines longer than 20 feet
withOut special buffers/drivers; otherwise data errors could occur.

The solution to this costly wiring problem is to use serial rather than parallel com-
munication. The parallel data is converted to serial and sent one bit at a time down a
single twisted pair wire. If buffers/drivers are needed for long distances, less are re-
quired with the serial approach. Specially encoded “start” and “stop” bits included in
the serial transmission notify the receiver that valid data is being sent. For the above
example, only two pairs of wire are needed to perform “full-duplex” interaction (see
figure 5.10). In ”half—duplex" mode this can be reduced to a single twisted pair, but syn-
chronization of the shared communication line is more complicated. All serial
transmission references I shall make will be limited to full-duplex operation.

COMPUTER
SERIAL
RECEIVER
AND
TRANSMITTER SI

w. (IS-2320
RS-ZSZC 7 Tu

:g-zazc m
‘_________. TO

TTL RS‘ZSZC

Figure 5.10 A block diagram of a full-duplex RS-2320 communication link.

138 THE BASIC PERIPHERALS



Now that we agree that the communication should be serial, how do we accomplish
the parallel to serial conversion? The answer is a device called a UART (Universal
Asynchronous Receiver/Transmitter). Appendix C7 gives the specification informa-
tion for the SMC COM2017 UART which is equivalent in function to the AY-5-1013A
(General Instruments). To minimize power supply requirements, a single +5 V
AY-3—1015 or TR1602 (Western Digital) can be substituted as I have done. The only
change from the specification sheet is that pin #2 is no longer tied to -12 V.

A UART’s internal structure consists of a separate parallel—to-serial transmitter and
serial-to—parallel receiver joined by common programming pins. This means that the
two sections of the UART can be used independently, provided they adhere to the same
bit format that is hard-wire or software selectable on the chip.

The transmission from the computer to the CRT is done asynchronously and in one
direction only. The computer likewise receives data directly from the keyboard
through a dedicated line. As far as the computer is concerned, after reconversion to
parallel in the UART, this input device is communicating parallel data.

Actual data transmission follows the asynchronous serial format illustrated in figure
5.11. Using the keyboard as an example, when no data is being transmitted, the data
line is sitting at a mark (or “1” level) waiting for a key-pressed strobe. A key-pressed
strobe is a 1 to 5 ms positive pulse (it can be as short as 200 ns) indicating that a key-
board key has been pressed, and that an ASCII code of that key is available for
transmission. This key-pressed strobe, which is attached to the data strobe of the
UART, causes the ASCII data to be loaded into a parallel storage buffer and starts the
UART transmission cycle. The serial output will then make a transition from a 1 to a O.
This mark-to-O start bit is 1 clock period long and indicates the beginning of a serially
transmitted word. Following the start bit, up to 8 bits of data follow, each data bit tak-
ing 1 clock period. At the conclusion of the data bits, parity and stop bits are output by
the UART to signify the end of transmission. If another key is pressed, the process
repeats itself.

START DATAI DATA? DAT/:3 DATAA DATAS DATAS DATA7 DAT/lb PAFHTY STOPl

"1"—_ l—_—_l—______'T_-_i""'__:—_——l_-_T__-T——_

u 0 u .—_______

Figure 5.11 A single data byte as It is transmitted in asynchronous serial format.

On the receiving end, the UART is continuously monitoring the serial input line for
the start bit. Upon its occurrence, the 8 bits of data are slipped into a register and the
parity checked. At the completion of the serial entry, an output signifying data avail-
able is set by the UART and can be used as an input strobe to the computer. The UART
will not process additional serial inputs unless the data available flag is acknowledged,
and the data available reset line is strobed. Actual transmission can include or exclude
parity, have 1 or 2 stop-bits, and data can be in 5- to 8-bit words. These options are pin
selectable.

The following is a pin function description for the AY-5-1013, COM2017, or
AY-3-1015.

Pin # NAME SYMBOL FUNCTION
1 Vcc Power Supply Vcc +5 V Supply
2 Vac Power Supply Vac -12 V Supply (not con-

nected on AY-3-1015)
3 Ground GND Ground
4 Received Data Enable m A logic “0" on the receiver

enable line places the re-
ceived data onto the output

STA RT DATA!
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thru
12

13

14

15

16

17

18

19

20

21

22

Received Data Bits

Parity Error

Framing Error

Over-Run

Status Word Enable

Receiver Clock

Reset Data Available
/\ \

Data Available \

Serial Input

External Reset

”QQTransmitter Buffer Empty

RD8
thru
RDl

PE

FE

OR

SWE

RCP

RDAV

DAV

SI

XR

TBMT

lines.
These are the eight data
output lines. Received char-
acters are right justified; the
LSB always appears on RDl.
These lines have three-state
outputs.
This line goes to a logic ”1"
if the received character
parity does not agree with
the selected parity. Three-
state.
This line goes to a logic ”1"
if the received character has
no valid stop bit. Three-
state.

This line goes to a logic ”1"
if the previously received
character is not read (DAV
line not reset) before the
present character is trans-
ferred to the receiver hold-
ing register. Three-state.
A logic “0” on this line
places the status word bits
(PE, FE, OR, DAV, TBMT)
onto the output lines. Three-
state.
This line should have as an
input a clock whose fre-
quency is 16 times (16X)
the desired receiver data
rate.

A logic “0” will reset the
DAV line.
This line goes to a logic "1"
when an entire character
has been received and trans-
ferred to the receiver hold-
ing register. Three-state.
This line accepts the serial
bit input stream. A marking
(logic “1") to spacing (logic
“0”) transition is required
for initiation of data recep-
tion.
Resets shift registers. Sets
50, FCC, and TBMT to a
logic “1." Resets DAV and
error flags to ”.’O Clears in-
put data buffer. Must be
tied to logic ”0” when not in
use.
The transmitter buffer
empty flag goes to logic “1"
when the data bits holding



23

24

25

26
thru
33
34

35

36

37
38

Data Strobe

End of Character

Serial Output

Data Bit Inputs

Control Strobe

NO Parity

Number of Stop Bits

Number of Bits/
Characters

EOC

SO

BDl
thru
BD8
CS

NP

TSB

N82,
N31

register may be loaded with
another character. Three-
state.

A strobe on this line will
enter the data bits into the
data bits holding register.
Initial data transmission is
initiated by the rising edge
of US. Data must be stable
during entire strobe.
This line goes to a logic ”1”
each time a full character is
transmitted. It remains at
this level until the start of
transmission of the next
character.
This line will serially, bit by
bit, provide the entire trans—
mitted character. It will re-
main at logic ”1" when no
data is being transmitted.
There are up to eight data
bit input lines available.

A logic ”1" on this lead will
enter the control bits (EPS,
NBl, NBZ, TSB, NP) into
the control bits holding
register. This line can be
strobed or hard-wired to a
logic “1" level.
A logic ”1” on this lead will
eliminate the parity bit
from the transmitted and
received character (no PE
indication). The stop bit(s)
will immediately follow the
last data bit. If not used,
this lead must be tied to a
logic “0."
This lead will select the
number of stop bits, one or
two, to be appended im-
mediately after the parity
bit. A logic “0” will insert 2
stop bits. A logic “1” inserts
1 stop bit.
These two leads will be in-
ternally decoded to select
either 5, 6, 7 or 8 data bits/
character.
NBZ NBl Bits/Character

0 0 5
0 1 6
1 0 7
1 1 8
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39 Odd/Even Parity EPS The logic level on this pin
Select selects the type of parity

that will be appended im-
mediately after the data
bits. It also determines the
parity that will be checked
by the receiver. A logic ”0"
will insert odd parity, and a
logic “1” will insert even
parity.

40 Transmitter Clock TCP This line should have as an
input a clock whose fre-
quency is 16 times (16X)
the desired transmitter data
rate.

The final serial interface configuration is shown in figure 5.12. Because a UART is a
three-state device, it can be attached directly to the data bus. Data is written into or
read from it 8 bits parallel as any other l/O port manipulation. To the computer, the
UART appears as one output and two input registers: status, transmitted data, and
received data. As with all data bus manipulations, data transfers are synchronized
through decoded strobes. The ZAP software monitor uses three port addresses to coor-
dinate the hardware and software. To be compatible, they should be wired as follows:

Port # Logic Line Signal
02 INPUT DSZRD READ DATA
03 INPUT DS3RD READ STATUS
02 OUTPUT DSZWR WRITE DATA

The primary focus of this chapter is the hardware section of the serial interface.
When connected directly to the data bus in this manner, there is no way to operate the
UART exCept under program control. Explanation of the protocol and the significance
of each UART register can be found in the section on the ZAP monitor.

There are two remaining hardware considerations: data rate and transmission signal
level. Data rate can be loosely termed as bits per second and refers to the transmission
speed along the twisted pair. Keep in mind that at lower data rates, only 8 of 11 bits of
each transmitted word are data; 1 start bit and 2 stop bits are used. While any transmis-
sion frequency can be set on a UART, by adjusting the clock rate there are eight fre-
quently used standard asynchronous transmission rates:

110 bps
150 bps
300 bps
600 bps

1200 bps
2400 bps
4800 bps
9600 bps

Using a special data rate generator chip and switch selector network shown in figure
5.12, ZAP can accommodate any of these specific frequencies. In normal operation,
most teletypes run at 110 bps, printers such as the DEeiter II at 300 bps, acoustic
telephone modems at 300 bps, and video terminals from 1200 to 19,200 bps. As you
can see, in theory, we can communicate with them.

Transmission rate is only part of inter-communication prerequisites. A computer
could be all TTL level logic while a peripheral used 15 V CMOS. They would be com-
pletely incompatible. Therefore, it is necessary to have one additional standard that
governs the signal level of the transmissions. The most widely accepted and generally
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+5V

Figure 5.13 TTL to HS-232C drivers.
a) Using two transistors as a level shifter.
b) Using an onto-isolator as a level shifter.
c) Using a standard RS-232C line driver.

144 THE BASIC PERIPHERALS

a)

+5 T0 +12V

used standard is EIA RS-232C.
Although TTL levels could be used for communication, they are not suitable for

carrying signals more than 10 or 20 feet. The problem stems from the fact that only 2 V
separates a logic 1 or 0 rather than speed or drive capabilities. With only 2 V immunity
to noise, communication would be susceptible to interference from motors and
switches.

An industrial committee agreed to a standard interface to solve this problem as well
as to suggest standards for the industry. Modem equipment uses EIA RS-232C. This
specification applies not only to the specific voltages assigned to logic 0 and 1, but also
to the type of plug, pin assignments, source and load impedances, as well as to a vari-
ety of other related functions.

The signal levels of RS~232C are bipolar and use a negative voltage between -3 and
—15 V to represent a logic 1 and a positive 3 to 15 V to represent a logic 0. The region
between —3 V and +3 V helps our noise immunity and is a dead region. Even though
+ and -15 V would provide optimum transmission, +3 V and —7 V are also accept-
able. However, try to maintain equal bipolar levels over long distances.

The basic ZAP computer requires +12, +5, and —12 V (-5 V is necessary for the
EPROM memory and is derived from the —12 V supply) supplies for operation. We
can use the positive and negative supplies to generate RS-232C voltage levels in a num-
ber of ways. Figure 5.13 illustrates some RS-232C drivers, and figure 5.14 shows a cou-
ple of receiver circuits. One from each selection would have to be attached to the serial
I/O pins of the UART for it to have complete RS-232C compatibility.

+5V
+5 TO +12V

4709.
2N2219

RS-ZSZC

4N33

—-1
I
I
|
l RS-2320

I
.lr_

__
__

-5V TO -12V IK
TTL

-5V TO ‘lZV

b)

PlNOUT OF MCI488
TTL T0 [RS-2320 DRIVER

TTL
TTL RS-232C f—’\-\



+5V PiNOUT OF MC|489
IRS-2520 TO TTL RECEIVER

b) IRS-2320 CTL TTL RS-232C CTL TTL

RS'23ZC CTL TTL RS'232C CTL TTL
Figure 5.14 HS-2320 to TTL receivers.

a) Using a transistor.
b) Using a standard RS-232C line receiver.

IV. CASSETTE STORAGE INTERFACE
The last but by no means least of the enhancements we should add to ZAP is a cas-

sette interface. With the keyboard and display, an operator will be able to write some
elaborate programs but, unless they are transferred into read—only memory storage,
they will be lost when power is turned off. Of course, the computer's power can be left
on constantly. But what if you want to develop a second program that must occupy the
same memory address space? The preferable solution is to have some medium that tem-
porarily stores large memory blocks.

In large computer systems, this capability is achieved through hard-disk and 9-track
magnetic tape systems. These high-speed, high-volume media are beyond the personal
computing budget, but their value in large systems is obvious. A low price, lower per-
formance alternative is an audio cassette storage system.

In general, a cassette storage interface consists of three major subsystems: a serial
transmitter/receiver; a hardware assembly that converts serial TTL data so it’s audio
cassette compatible, and an application program that keeps track of what’s going out
to tape and can load it back into the correct place. The basic configuration is illustrated
in block diagram form in figure 5.15.

UART CASSETTE INTERFACEr"""""7 r““““““i| |
l I | FIGURE 5.16 I

I I
l PARALLEL | TTL SERIAL | FSK l

m I > yam/1L l OUIPUT ! ‘ DRlVER l
D ‘ I so REcORDER

ZAP :3 I CONVERTER I I I

COMPUTER L: | | 1 I AUX INPUT _
D I I I I V

d l I_. | I |
z; I I I I EARPHONE
C!E I | | FIGURE 5.1? I -
I: i | TTL SERIAL I I
“.3 A | SERIAL | INPUT 1 FSK |
°° V I TO I SI I RECEIVER I

| PARALLEL I I l
I CONVERTER I I I

__ | | l |. I I .| I
Lf'i”f£i£___l L.________.J

Figure 5.15 A block diagram of an audio cassette storage system.
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Q

UART
SERIAL
OUTPUT ,
IC33-25
FIG.5.1Z

4800 Hz

The serial transmitter/receiver section is nothing more than the UART serial inter-
face which we have already added. With MC1488 and 89 converters on its serial lines,
it communicates via a RS-232C. However, if you attach a cassette interface to these
lines, it can double as a storage device. An additional benefit is that serial data gener-
ated by the UART will offer some compatibility between personal computing systems;
standard data rates and standard serial communication protocol will promote this.

The output of the UART is TTL. Even with the RS-23ZC drivers, the logic output is
still a DC level. Because audio recorders cannot record DC, the UART output must be
converted in some way. The solution is FSK (frequency shift keying). The TTL output
from the UART is converted into audio tones. One frequency represents a nic 0, and
a second represents a logic 1.

Figure 5.16 shows a circuit that will produce frequency shift keyed tones. A 4800 Hz
reference frequency is derived from the MC14411 data rate generator previously in-
stalled. IC 2A and 23 function as a programmable divider chain. With a TTL logic 1 on
the input IC 2 divides the 4800 Hz by 2, giving a 2400 Hz output. When the input level
is changed to logic 0, it divides by 4, producing a 1200 Hz output. The FSK frequencies
are generated at a serial output rate of 300 bps and connected directly to the recorder
through the microphone or auxiliary input. (These frequencies and data rate are often
referred to as the Kansas City Standard.)

+5V ,, in
10K -’

3 W +153" 0.01pm
004049 «HF; RECORDER

9 ”l 7 16 INPUTS

2 1c 5 15 6 5 1 47K AUXiNPUT
J O J Q p——> 1 VOLT

PEAK T0 PEAK
IC2A Iczs ,

13 004027 3 c04027 0005*F 210K
.LOCK CLOCK M‘KEINDUT

‘P—’ 01 VOLT‘, PEAK T0 PEAK11 K s K $1K
+5v R n ”L

0 ol/‘F 12 4,,_l3 J7 NOTE;
,77 LOGIC"ONE"IN PRODUCES 2400Hz OUTPUT

4 s LOGIC“ZERO"IN PRODUCESIZOOHZOUTPUT
ic32-2 >
MC14411
FIG. 5.12 CD4049

Figure 5.16 A 300 bps serial output driver to an audio recorder.

Getting the recorded tones off the audio tape requires the circuit shown in figure
5.17. In general, it consists of a pair of band-pass filters and a voltage comparator. The
recorder is set to an output level of approximately 1 V peak to peak. This level is not
critical because it is amplified and limited as it passes through IC 1. IC 2 and IC 3 are
band-pass filters with center frequencies of 2400 Hz and 1200 Hz, respectively. The
output of IC 1 is fed into both of them, but should be passed by only one. IC 4 com-
pares the outputs of the two filters and generates a TTL logic 1 when a 2400 Hz tone is
received and a logic 0 with a 1200 Hz tone. Tuning the interface will be explained later.

The choice of the FSK frequencies and data rate are not left to chance. They are a
function of receiver response speed and recorder bandwidth. Most cassette recorders
have a frequency response of around 8 kHz. Less expensive units can be as low as 5 or
6 kHz. It is unwise to try to record tones at this upper limit. The center of the frequency
range offers more reliability, so the logic “1” FSK tone should be set less than 3 kHz
(2400 Hz in our case). In addition, it takes time for the receiver to recognize a particular
frequency. The circuit of figure 5.17 takes 2 or 3 cycles to respond. This means that at
the low frequency of 1200 Hz, each logic 0 bit will need 3 cycles at 1200 Hz to be recog-
nized.
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If we consider a worst case condition of sending all zeros, the transmission rate
would have to be slower than 400 bps to be accurately received. The closest standard
data rate to this value is 300 bps. Raising the 1200 Hz tone to increase the transmission
speed only complicates the filter design the closer it is to 2400 Hz. This interface has
been tested at 600 bps but it requires precise alignment to achieve faster speeds. The
low frequencies and moderate data rate are chosen specifically to increase the prob-
ability of successful construction rather than to compete with high speed data storage
systems.

The final point to consider is the software that runs the hardware. The ZAP monitor,
as it now stands, does not directly support a cassette interface even though it does han-
dle all the serial housekeeping. Until you write the cassette driver into an EPROM, you
will have to type in a short ”bootstrap" program. To read the cassette, the logic of the
program would follow the flow diagram in figure 5.18.

First, a pointer is set in the H and L registers to designate where the cassette data will
be stored in programmable memory and an address where it will end. Next, taking ad-
vantage of the serial communication routine in the ZAP monitor, we simply call
“SERIAL IN” which returns with a byte of data from the UART. This byte is stored in
memory, and the HL register pair is decremented and compared to a predetermined
stop address. If not equal, it repeats the process of getting another byte of data.

Storing memory is equally straightforward and is diagrammed in figure 5.19. Again,
a pointer is set to the beginning and the memory area to be written to tape. Next, the
”SERIAL OUT” routine is called from the ZAP monitor, which sends the byte of data
to the cassette. Finally, the pointer is decremented and compared to the end address to
see if more data is to be written.

These are relatively easy routines to write and short enough that they may be
squeezed into the few empty bytes within the ZAP monitor EPROM. Whatever the
case, you will soon realize the versatility and capability that such a simple interface
adds to a computer system. The 2 K of programmable memory on the basic ZAP will
become resident program space while the cassette will be a potential megabyte file stor-
age system for it.

SET POINTERS
FOR START AND
END OF READ BLOCK

CALL SERIAL IN
(ZAP MONITOR)

DECREMENT
POINTER REGISTER

Figure 5.18 A flowchart of software to read a cassette.



SET POINTERS
FOR START AND
END OF DATA BLOCK

L

CALL SERIAL OUT
(ZAP MONITOR)

DECREMENT
POINTER REGISTER

POINTER AT

Figure 5.19 A flowchart of software to write a cassette.

TUNING THE CASSETTE INTERFACE
To test the cassette interface, it is necessary first to construct the circuit from figure

5.16. Use a frequency counter to determine that the input to IC 1, pin 5 is 4800 Hz.
With no UART installed, the frequency at pin 1 of IC 2b sh0uld be 2400 Hz. Ground-
ing IC 2b, pin 1 should change this output to 1200 Hz. In both cases, voltages of 1 and
0.1 V should be present on the cassette auxiliary and microphone inputs respectively.

The receiver uses the frequencies generated by the output section previously de-
scribed to set the calibration. With the output section set to 2400 Hz, attach a jumper
from the output interface to the input of the receiver circuit (figure 5.17). Using an
oscilloscope, check that the waveform at 1C 1, pin 6 is a square wave of 2400 Hz. Next,
with the scope attached to IC 2, pin 6, adjust R1 until the voltage at that point is max-
imum. Moving the scope probe to IC 3, pin 6, and changing the input frequency to
1200 Hz, repeat the procedure by adjusting R2 until the voltage peaks.

R3 sets the point at which the comparator switches between logic levels when the in-
put frequencies change. The proper way to set this is to use a function generator on the
input and set R3 to switch at exactly 1800 Hz. The result should be clean logic level
switching at 1C 4, pin 6, as the frequency is cycled between 1200 Hz and 2400 Hz. Gen-
erally speaking, the comparator setting is not especially critical.

THE BASIC PERIPHERALS 149



CHAPTER 6
THE ZAP MONITOR ,
SOFTWARE

The function of an operating system is to provide the programmer with a set of tools
to help him in developing, debugging and executing a program. In general, the operat-
ing system assists the programmer by managing the resources of the computer, and by
eliminating his involvement with repetitive machine-code manipulations. Operating
systems span a broad spectrum of complexity. Small systems, for example, provide
only a rudimentary means for a programmer to enter and read 8-bit data from mem-
ory; large systems, on the other hand, can dynamically manage the allocation of all
memory and peripherals.

Large systems allocate computer resources to more than one user in a multiprogram-
ming, multitasking, or a time sharing environment. A system of this magnitude far ex-
ceeds the capabilities of the computer described in this book. This being the case, what
would be a suitable operating system for the ZAP computer? As previously stated, the
objective of an operating system is to manage the resources of the computer. The ZAP
computer described in the previous chapters, and enhanced with the minimum periph-
erals, contains the following resources:

Z80 microprocessor
1024 bytes of EPROM memory
1024 bytes of programmable memory (2048 optional)
Nineteen-key keyboard
Two-character data display
Four-character address display
UART for serial 1/0

The operating system must provide access to these resources and give the user a way
to manage them during execution of programs. The operating system designed for ZAP
will include the following facilities and functions:

Cold start
Warm start
Memory display and replace
Register display and replace
Execute (begin program execution at a
designated point)

6. Serial input and output

9
"!

“9
’5

"?

Each will be explained in detail concerning its functions and program implementa-
tion.

I. OPERATING SYSTEM FUNCTIONS

Cold Start Operation
The operating system must be available immediately after power is applied to
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the computer. In the past, some systems provided thiscapability by storing, in
read—only memory, a small “bootstrap" routine. This bootstrap routine was then
used to load the operating system into memory from another device, such as a
paper—tape reader or a cassette recorder. New technology eliminates this tedious
step. The operating system for your computer resides permanently on the
EPROM (erasable—programmable read-only memory) chip and is ready to be ex-
ecuted as soon as power is applied and the ”RESET” button is pressed. The
depression and release of the ”RESET” button sets the Z80 PC (program counter)
to zero.

With the next machine cycle, the processor begins execution of the instruction
located at 0016 (location 00 hexadecimal) in memory. The operating system of the
Z80 microprocessor provides the instructions to begin execution. This particular
series of program instructions constitutes a ”cold start” procedure and establishes
the required start up conditions for the operating system. The operating system
then initializes the SP (stack pointer) to an area in programmable memory for
maintaining the "push-down/pop-up" stack. This stack is required for execution
of any of the ”RESTART" and "CALL” instructions provided by the 280 instruc-
tion set. If it were not initialized before the execution of a ”CALL" or “RESTART”
instruction, the effects of the instruction would be unpredictable. In this
operating system, the stack pointer is set to programmable memory location
070116.

Warm Start Operation
After initializing the SP address, the operating system enters a command

recognition module. Before discussing this feature of the operating system, some
of the other restart features should be explained. The 280 gives the user eight
address-vectored "RESTART” instructions (see Chapter 3 for a description of the
instructions). For example, the execution of a RST 0816 will store the current PC
on the "STACK” and program execution will begin at location 0816.

The following ”RESTART” instructions are available within the operating
system:

RST 1015
RST 1816
RST 2016
RST 2816
RST 3016
RST 3815

The execution of any of these instructions causes the operating system to jump
to a location in programmable memory. At that location the user executes a jump
instruction to vector the computer to a new location.

RST 00,6 and RST 08,6 have been reserved for use by the operating system for
special functions and will not result in a jump to a location in programmable
memory. These two RST instructions can be utilized in the debugging of pro-
grams. RST 00.6 will perform the same function as pressing the ”RESET” button;
or it will reinitialize the stack pointer and enter the command recognition module
through execution of the ”cold start” routine.

The execution of a RST 08.6 by the Z80 will result in the ”warm start” module
being entered. This module saves the existing data in all the registers in the ”regis-
ter save area” locatedin programmable memory (see the listing of the ZAP oper-
ating system in Appendix D). The module will also extract from the stack the
user’s restart address and save this in the register save area. The operating system
then enters the command recognition mode to wait for the next command. The
use of this feature allows the programmer to save register, pointer, flag, and pro—
gram counter data, prior to using any additional debugging features in the oper-
ating system. A detailed description of the “warm start” module is provided in
section 11.2 of this chapter.



Program Development and Debugging Services

The cold start and warm start procedures exit to the command input sequence.
With these command procedures, the programmer is able to examine and replace
data in memory or registers, and to begin execution at a user-specified location.
Upon entry to the command input module, the operating system displays ”FFFF"
on the address section, and “FF” on the data section of the six character hexa-
decimal LED display. The user then implements one of the three command func-
tions by holding down the ”SHIFT” key and pressing the ”O," ”1," or ”2” keys. A
“SHIFT O" (the SHIFT key and 0 key are pressed simultaneously) tells the
operating system to enter the memory display and replace function; ”SHIFT 1"
enters the register display and replace function, and a "SHIFT 2.” enters the go ex-
ecute module.

Memory Display and Replace

The memory display and replace function allows the user to examine the con-
tents of both read-only memory and programmable memory. During operation
the address and the contents of that location are shown on the respective dis-
plays.

The memory display and replace function is entered by executing a ”SHIFT 0"
when the system is in the command recognition mode (address display = FFFF
and data display = FF). At this time, the operating system is waiting for the user
to enter an address of one to four hexadecimal digits from the keyboard. As
entered, these shift into the display area sequentially. If more than four digits are
entered, only the last 4-digit value (shown in the address display) will be used as
the address. Inputting of address data is terminated by pressing the "NEXT” key.
This causes the contents of the indicated address to be displayed on the two digit
hexadecimal data display. If the user wishes to display subsequent memory loca-
tions, he need only continue pressing the ”NEXT" key. This will step the memory
display program to the next higher memory location and display the new address
and memory contents. If the user wishes to change the contents of a displayed
memory location, he may enter new data by typing a two-digit value for that
location before hitting the next key. This new value is loaded into the indicated
address when the ”NEXT” key is pressed. Pressing the ”NEXT” key continues the
sequential display of address and data.

Termination of this function is accomplished by pressing the ”RESET” or
”EXEC” buttons. Control is returned to the command recognition portion of the
operating system.

Display Memory Example

Key Address Display Data Display
FFFF FF

“SHIFT 0” 0000 FF
1 0001 FF
A 001A FF
F 01AF FF

”NEXT” 01AF 01
”NEXT" 0180 1C
“RESET” FFFF FF

Memory Replace Example

Key Address Display Data Display
FFFF FF

"SHIFT 0" 0000 FF
4 0004 FF
0 0040 FF
0 04.00 FF
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”NEXT" 0400 01
2 0400 02
1 0400 21

"NEXT" 0401 05
6 0401 06
A 0401 6A

”EXEC”
The results will be: Address Data

0400 21
0401 6A

Register Display and Replace
The register display and replace function allows the user to examine and

change the contents of the saved 280 registers. This is accomplished by executing
a RST 1 (warm start) during the execution of the program. During execution of
this function, the contents of the registers are shown on the address display.
Eight-bit registers will be displayed on the lower two digits of the address display.
(The upper two digits will be zeros during the display of 8-bit registers.) A code
that indicates which register is being displayed is shown on the data display.
Table 6.1 describes the codes that have been assigned to the register display and
replace function, as well as the key that initiates a particular register display se-
quence.

Code 280 Register Initiating Key
(shown on data display) (shown on address display)

02 IX 2
03 IY 3
04 SP 4
05 PC 5
06 I 6
07 R 7
08 L 8
09 H 9
0A A A
OB B B
CC C C
CD D D
0E E E
OF F F
40 L’ “SHIFT 0”
41 H' “SHIFT 1"
42 A’ “SHIFT 2"
43 B' “SHIFT 3”
44 C’ “SHIFT 4”
45 D' ”SHIFT 5”
46 E’ “SHIFT 6"
47 F' ”SHIFT 7"

Table 6.1 Display code/Z80 register/Initiating key correspondence.

The register display and replace function is entered by pressing a “SHIFT 1"
when the system is in the command recognition mode (address display = FFFF
and data display = FF). At this time the operating system is waiting for the pro-
grammer to enter the one-digit register code (see table 6.1). If more than one digit
is entered, only the last code indicated on the data display will be used as the reg-



ister identifier. When the central processor detects that the ”NEXT" key has been
depressed, the contents of the indicated register are displayed on the address dis-
play.

If the user wishes to display subsequent registers he need only press the
“NEXT” key. This causes the next register to come up with the register code and
its contents. To change the contents of a displayed register the value is entered
and loaded when the ”NEXT” key is pressed. For 16-bit registers, the last four
hexadecimal digits will be accepted if more than four characters have been
entered. For 8-bit registers the last two hexadecimal digits will be accepted. When
replacing register data, the ”NEXT” key also causes the register code to be in-
dexed to the next register (see table 6.1) and its contents to be displayed.

The user may terminate this function by pressing the ”EXEC” key. Control is
returned to the command recognition portion of the operating system.

Display Register Example

Key Data Display Address Display
(register code) (register contents)

FF FFFF
”SHIFT 1” OO FFFF

A 0A FFFF
”NEXT” 0A 005C
"NEXT" DB 0063
"RESET” FF FFFF

Register Replace Example

Key Data Display Address Display
(register code) (register contents)

FF FFFF
”SHIFT 1” 00 FFFF

5 05 FFFF
’NEXT” 05 O43A

4 05 0004
2 05 . 0042
C 05 042C

”NEXT" 06 OOFF
”NEXT" 07 0003
”EXEC”

Go Execute (”EXEC")

The “go execute” (”EXEC”) function allows the user to change the contents of
the PC (program counter) register in order to direct execution of instructions at
the user-selected address.

The ”go execute” function is entered by pressing a “SHIFT 2” when the system
is in the command recognition mode. Now the user must enter an address of one
to four hexadecimal digits. If more than four digits are entered, only the value
shown in the address display is used as the address to begin program execution.
Execution begins when the ’NEXT” or ”EXEC” keys are pressed. This causes the
Z80 registers to be stored in the register save area (see the operating system listing
in Appendix D) and execution begins at the user-specified address.
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GO EXECUTE Example

Key Address Display Data Display
FFFF FF

"SHIFT 2" 0000 FF
1 0001 FF
A 001A FF
F 1ACF FF

"NEXT"
or

"EXEC”

Serial I/O Services

. The ZAP computer includes a serial input/output capability that is imple-
mented with a UART. This interface allows serial communication between the
computer and peripheral devices such as a printer or a CRT. To aid the user in
utilizing this capability, the operating system has a UART diagnostic module, a
serial input module, and a serial output module. The input and output modules
are set up as subroutines that can be called during program execution and that are
not necessarily keyboard and display limited.

UART Diagnostic Module
The UART diagnostic module provides a means for checking the performance

of the UART. To utilize this feature the user must first attach the serial output
and input lines together so that data output from the UART may be read by the
same device. The serial diagnostic subroutine is initiated by using the “go
execute” function. Execution starts at O32D15.

Once started, the diagnostic module (UATST) begins by sending data to the
UART and waiting for data to become available. The status of the UART is
checked to verify that no fault conditions are present. In the event that a fault is
detected, the status of the UART is displayed on the two low-order digits of the
address display. (See table 6.2 for error codes.) If there are no errors, the data is
read and displayed on the two—digit—data display. A comparison is made between
the input and output data. If the 2 bytes are equal, the output character is incre-
mented and another byte is sent to the UART to continue the sequence. This pro-
cedure continues until the “RESET” button is pressed, or until an error is
detected. In the event that the input character does not equal the output charac-
ter, a OF“; is displayed in the two lower digits of the address display and the
diagnostic is halted. Figure 6.1 details the logic flow of this software routine.

Displayed Code Error
1215 or 1315 Parity Error
0AM or 0B“; Framing Error
0616 or 0715 Overrun Error

00 Transmitter Buffer Not Empty
0F“ Input Character at Output Character

Table 6.2 UART error codes.



UATST

INITIALIZE
OUTPUT CHARACTER

TRANSMITTER
BUFFER EMPTY

?

NO

YES
7

A —'—’l
OUTPUT CHARACTER
TO UART

DISPLAY STATUS
m LSD SECTION
OF ADDRESS

OUTPUT CHARACTER WSPLAY
TO MSD's OF
ADDRESS DISPLAY I

DISPLAY INPUT
CHARACTER IN
DATA DISPLAY

DATA
AVAILABLE FOR

'-§ EA'A DTSPLAY

:UTPUT
INCREMENT YES iDfCTER= N0 SET STATUS T0
OUTPUT CHARACTER ~-:A_EC:AR- .OF.

9

Figure 6.1 A flowchart of the UART diagnostic module (UATST).

Serial Input Module
The serial input module has been included so the user can read serial data from

external devices. To utilize this capability, the user must set aside a program-
mable memory buffer where the input data is to be stored, and designate the
number of input characters expected. The input buffer address is stored at address
07F916 in memory (see Appendix D), and the number of characters is stored at ad-
dress O7FD16. The communication reception begins when the TTYINP module is
called.

Serial Input Initiation Example
TTYINP EQU O35Fm Address of input module
BUFFER EQU 0713915} Input buffer address
NCHAR EQU 80 Number of characters to be received
TTYIBU EQU 07F916 Operating system address constant
TTYIC EQU 07FD16 Operating system address constant

LD HL, BUFFER Set buffer for operating system
LD (TTYIBU), HL
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OBTAIN USERS
INPUT BUFFER
ADDRESS AND
NUMBER OFINPUT
CHARACTERS

INPUT DATA
AVAILABLE

P

IS
UART STATUS

CLEAR
?

INPUT CHARACTER
FROM UART

SAVE CHARACTER
IN USERS BUFFER

IS
CHARACTER
A CARRIAGE

REEURN

OUTPUT CHARACTER
T0 SENDING DEVICE

NO

LD A, NCHAR Set character count for operating system
LD (TTYIC), A
CALL TTYINP Call UART serial input routine

The data read by the serial input module will be stored in the user-specified
buffer until the input sequence is terminated. When this occurs, control is re-
turned to the user’s program at the next instruction. Termination of the input pro-
cess may be due to any of the following conditions:

0 A status error is detected
0 The number of characters read equals preset count
0 The receipt of a carriage return as an input

character (ASCII 0D”)

In the event that a status error is detected, the A register will be equal to 8016
when control is returned to the user. If termination results from filling the charac-
ter buffer correctly, the A register will be equal to 0016. However, if termination is
the result of a carriage return, the A register will be equal to the number of char-
acters remaining to be input. Figure 6.2 details the logic flow of the TTYINP soft-
ware module.

RETURN
TO USER

Figure 6.2 A serial input module (TTY/NP) flowchart.

OUTPUT A
CARRIAGE RETURN
LINE FEED T0
SENDING DEVICE

HAVE
ALL INPUT

CHARACTERS
BEEN RE-
CEgED

YES

RETURN
TO USER
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Serial Output Module
The serial output module is provided to assist the user in communicating serial

output data to external devices. To use this module, the operator designates an
output data buffer address and the the number of characters (bytes) to be trans-
mitted. The output buffer address must be stored at 07FB16 in memory (see Ap-
pendix D) and the number of characters to be sent is stored at address 07FE16.
Data transmission starts when TTYOUT is called.

Serial Output Initiation Example
TTYOUT EQU O39E15 Address of output module
BUFFER EQU 07FBN Output buffer address
NCHAR EQU 35 Number of characters to be transmitted
TTYOBF EQU O7FBw Operating system address constant
TTYOC EQU 07FE15 Operating system address constant

LD HL, BUFFER Set buffer address for operating system
LD (TTYOBF), HI.
LD A, NCHAR Set character count for operating system
CALL TTYOUT Call UART serial output routine

Control will be returned to the user when

0 The output buffer is empty
0 The transmit buffer does not become available,

indicating an error

In the event that a normal termination occurs, the A register will be equal to
0016 when control is returned to the user. However, if a premature termination
and return are required, the A register will be equal to 01,6. Figure 6.3 details the
logic flow of the serial output software module.

OBTAIN USERS
OUTPUT BUFFER
ADDRESS AND THE
NUMBER OF
CHARACTERS TO
BE OUTPUT

IS
UART

OUTPUT BUFFER
EMZTV

DELAY
COUNT=5

?

GET CHARACTER RETURN
FROM USERS To USER
OUTPUT BUFFER

l
OUTPUT CHARACTER
T0 DEVICE

Figure 6.3 A serial output module (TTYOUT) flowchart.

ALL
CHARACTERS

OUTPUTED
P

RETURN
TO USER

THE ZAP MONITOR SOFTWARE 159



160 THE ZAP MONITOR SOFTWARE

11. Operating System Module Description

11.1 Warm Start Module

The warm start module (WARMl) is responsible for saving all 280 registers in
the register save area allocated in the reserved portion of programmable memory
(see Appendix D). Upon entry, the user’s A, H, and L registers are saved to pro-
vide working registers for the remainder of the module operation. Next, the user's
PC is removed from the stack and is saved in the memory locations reserved for
it.

The AF register pair is pushed onto the stack and popped off into the HL regis-
ter pair. This procedure enables the flag register to be saved in the register save
area. The remainder of the user’s working and alternate registers are examined
and transferred to the register save area. Upon completion of this task, the
module exits to the command recognition module. (See Appendix D for addi-
tional details.) Figure 6.4 details the logic flow of the warm start module.

‘ WARMI l

SAVE USERS
A,H,8 L
REGISTERS

GET USERS PC
ADDRESS FROM
STACK AND
SAVE IN REGISTER
SAVE AREA

SAVE USERS
FLAG REGISTERS
IN REGISTER
SAVE AREA

SAVE USERS
|X,Ifi AND
SP REGISTERS

SAVE USERS
I,R,a,c,o,a
E REGISTERS
IN SAVE AREA

GET USERS
ALTERNATE
REGISTERS AND
SAVE IN REGISTER
SAVE AREA

( WARM2 l

Figure 6.4 A flowchart of the warm start module (WARM 1).



II.2 Command Recognition Module
The command recognition module (WARMZ) is entered after the completion of

a cold or warm start sequence. When initiated, the module clears the keyboard
input buffer and the keyboard flags. This removes ambiguity for future opera-
tions. The module will set the data display to FF and the address display to FFFF.
When completed, the module enters the KEYIN subroutine to get an input charac-
ter from the keyboard. Any input character is checked to see if it corresponds to
one of the three allowable functions. If so, control is transferred to the proper
function; otherwise, the input is ignored and the module waits for the next input
from the keyboard. (See Appendix D for additional details.) Figure 6.5 illustrates
the logic flow of the command recognition module.

‘ WARM2

A

CLDIS

CLEAR DISPLAfl
BUFFER,AND FLAGS

DISPLAY FFFF
ON ADDRESS
DISPLAY a FF
ON DATA DISPLAY

KEYIN

GET REQUEST
FROM KEYBOARD

MEMORY

REGISTER
FUNCTION

9
REGIST

Figure 6.5 A flowchart of the command recognition module (WARM2).
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11.3 Restart Module

The restart module (RESTRT) takes the values stored in the programmable
memory register save area. It then restores the user’s 8- and 16-bit registers before
returning control to the location specified in the PC save area. This procedure
restores the alternate registers, and then the working registers. In either instance,
the flag registers are restored by pushing the data onto the stack and then popping
if off to the F register. In order to exit to the user's restart address, the saved PC is
pushed onto the stack and a ”RET” (return instruction) is executed. (See Appen-
dix D for additional details.) Figure 6.6 details the logic flow of the restart
module.

I RESTRT I

GET USERS
ALTERNATE
REGISTERS
FROM REMSTER
SAVE AREA

RESTORE USERS
FLAG REGISTER
AND WORKING
REGISTERS

RESTORE USERS
STACK POINTER
FROM REGISTER
SAVE AREA

OBTAIN USERS
RESTART ADDRESS
FROM REGISTER
SAVE AREA AND
PLACE ON STACK

RESTORE USERS
H a L REGISTERS

RETURN
TO USER

Figure 6.6 A flowchart of the restart module (RESTRT).
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11.4 Keyboard Input Module
The keyboard input module (KEYIN) provides the primary interface between

the computer and the user. Upon entry, it begins to read data from the keyboard
input port. It stays in a loop, checking the M83 (most significant bit) of the data.
The MSB is the key-pressed strobe. When it goes to a logic one level, the seven
LSBs (least significant bits) of the keyboard input port are retained as the desired
input character. The module then returns to the user’s program with the key-
board character in the accumulator. (See Appendix D for additional details.)
Figure 6.7 details the logic flow of the keyboard input module.

l KEYIN )

A

INPUT DATA
FROM KEYBOARD
lNPUT PORT
(PORT 0)

STROBE BIT (7)

SAVE DATA

IS
STROBE BIT

RESET=O
P

CLEAR STROBE
BIT FROM
INPUT DATA

l RETURN )

Figure 6.7 A flowchart of the keyboard input module (KEYIN).
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11.5 One Character Input Module

The function of this module (ONECAR) is to input one or more characters

from the keyboard. This module also indicates the last character and whether it
was accompanied by a ”NEXT" or “EXEC” key.

Upon entry, the input buffer and keyboard flags are cleared. (The data display
may or may not be cleared depending on the requirements of the calling module.)
The module waits for an input character to be passed to it. When it receives a
character, it checks to see if it is a ”NEXT”, "EXEC", or valid data. In the event

that the input is a ”NEXT" or “EXEC”, the appropriate keyboard flag is set along
with the no data flag and control returned to the user (see figure 6.8).

If an invalid data character is received, the module is reinitiated. Upon receipt
of valid data, the data is stored in a 1-byte input buffer, and the module waits for
the next input character. This character is processed in a manner similar to the
one just described with the following exception: in the event that the input char-
acter is a ”NEXT" or "EXEC”, only the appropriate flag is set before returning
control to the user. (See Appendix D for additional details.) Figure 6.9 shows the

logic flow of the one character input module.

BlT76543210

DEN

L—NEXT FLAG

EXEC FLAG ,

NO DATA FLAG

Figure 6.8 The configuration of the keyboard flags.
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11.6 Two Character Input Module
The function of this module (TWOCAR) is to input one or more characters

from the keyboard and transfer to the user the last two characters when a
”NEXT” or ”EXEC” key is pressed. The module also notifies the user of the type
of termination that took place.

Upon entry, the input buffer and keyboard flags are cleared. (The data display
may or may not be cleared depending on the requirements of the calling module.)
This module calls the keyboard input module to obtain its input data. The first
character is checked to determine if it is a ”NEX " or "EXEC”; the appropriate
keyboard flag is set along with the no data flag, and control is returned to the user
(see figure 6.8). If an invalid character is received, the module is reinitiated.
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The receipt of valid data will cause the module to format the data as a two—digit
value in the keyboard input buffer. It then returns to the user with the ap-
propriate flags set. (See Appendix D for additional details.) Figure 6.10 details the
logic flow of the two character input module.

l TWOCAR )

CLDAT

CLEAR DATA
DISPLAV, FLAGS,
AND INPUT BUFFER

KEVIN

INPUT CHARACTER
FROM KEVBOARD

CHARACTER
='NEXT'

?

SET'NEXT'AND'NO DATA'FLAGS RETURN

CHARACTER
='EXEC'

p

SET'EXEC' AND
'NO DATA' FLAGS

GET F55.
FROM “
AND PCS'
FOR NEW .

ADD IN NEW 2 3. T
TO DATA AND
STORE IN
INPUT DATA 8:
DISPLAY DATA

KEYIN

INPUT CHARACTER
FROM KEYBOARD

CHARACTER
=‘NEXT'

?
SET 'NEXT'FLAG RETURN

CHARACTER
='EXEC'

SET 'EXEC' FLAG

Figure 6.10 A flowchart of the two character input module (TWOCAH).

Il.7 Four Character Input Module
The function of this module (FORCAR) is to input one or more characters from

the keyboard and to transfer to the user the last four characters when a ”NEXT”



or ”EXEC” key is pressed. In the event that less than four characters are input, the
higher order digits will be set to zero. The module also notifies the user via the
keyboard flags (see figure 6.8).

The operation of this module is very similar to the two character input module.
The main difference lies in the manner in which the new data (input from the key-
board) is merged into previous input data from the keyboard. (See Appendix D
for additional details.) Figure 6.11 shows the logic flow of the four character in-
put module.
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I
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SET'NEXT'FLAG ‘ i RETURN I

CHARACTER
BEXEC'

?
SET 'EXEC' FLAG

“65' AND Figure 6.11 A flowchart of the four character input module (FORCAH).
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11.8 Memory Display and Replace Module

The memory display and replace function is one of the three major modules of
the operating system. Upon entry (see command recognition module), this
module (MEMORY) makes a call to FORCAR (four character input module) to
get the base memory address at which to begin displaying the memory contents.
When it returns from FORCAR, the keyboard flags are examined to determine if
the ”EXEC" flag is set (=1). In the event that the "EXEC” flag is set, control is
transferred to the restart module (RESTRT). If the ”EXEC” flag is not set (=0),
the address location and memory contents are output to the appropriate displays.
The TWOCAR (two character input module) is called to obtain new data from
the displayed memory location.
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MEMORY ADDRESS
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DISPLAY CONTENTS
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0N DATA DISPLAY
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P

‘NO DATA'
FLAG SET

YES
WARMZ

GET NEW DATA
FROM INPUT BUFFER
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IS
'EXEC‘FLAG
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?
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WARMZ

NO

INCREMENT BASE
MEMORY ADDRESS

I

Figure 6.12 A flowchart of the memory display and rep/ace module (MEMORY).
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When control is returned from TWOCAR, the module checks the ”no data"
flag in the keyboard flag word. If this flag is set (=1), the “EXEC” flag is exam-
ined. If that is set, control is transferred to the command recognition module
(WARMZ). If, on the other hand, the “EXEC” flag is reset (=0), the user’s
memory address is incremented, displayed on the address display, and its con-
tents are displayed on the data display.

If, on return from TWOCAR, the “no data” flag is reset (=0), the new data is
extracted from the keyboard input buffer and stored in the displayed memory
location. At this time, the module determines if TWOCAR was exited via an
"EXEC” or “NEXT” directive. In the event that the "EXEC" flag is set (=1), con—
trol is transferred to the command recognition module (WARMZ). If, however,
the flag is reset (=0), the user’s memory address is incremented, displayed on the
address display, and its contents are displayed on the data display. Then the two
character input module is called to get the next directive for the memory display
and replace module. (See Appendix D for additional details.) Figure 6.12 shows
the logic flow of the memory display and replace module.

II.9 Register Display and Replace Module

The register display and replace module (REGIST) is one of the three major
modules of the operating system. This module calls the ONECAR (one character
input module) to get the initial register display code from the user (see table 6.1).
Upon return from ONECAR, the "EXEC" flag is checked. If this flag is set (=1),
control is transferred to the command recognition module (WARMZ). If the
"EXEC” flag is reset (=0), the base register display index is calculated from the
user's register display code.

At this time, the register index is checked to see if the register request is an 8- or
16-bit register. If the user requests a 16-bit register, the appropriate register code
is displayed in the data display, and the requested register data is obtained from
the register save area and displayed in the address display. The module then
makes a call to the FORCAR (four character input module) to get new data for
the register. Upon return, the "no data" flag is checked. If this flag is set and the
”EXEC” flag is set, control is transferred to the RESTRT (restart module). If the
”no data" and ”NEXT” flags are set, the register display index is incremented and
displayed in the data display. The new register data is obtained from the register
save area and displayed on the address display.

If an 8-bit register has been requested, the register code (see table 6.1) is dis-
played in the data display, and the appropriate data is obtained from the register
save area and displayed on the address display. At this time, the module calls
TWOCAR to get new data from the displayed register. When the two character
input module returns control, the module determines the mode of execution by
examining the keyboard flags. If the ”no data" and “EXEC" flags are set, control
is transferred to the command recognition module (WARMZ). If the “no data”
and ”NEXT” flags are set, the register index is incremented and the register con-
tents channeled to the appropriate display.

If the “no data” flag is reset, the new register data is obtained from the key-
board input buffer and stored in the appropriate register save location. At this
time the “EXEC” flag is checked and, if set, control is transferred to the command
recognition module (WARMZ). If the “EXEC" flag is reset, the register data is dis-
played and the user directive processed. (See Appendix D for additional details.)
Figure 6.13 details the logic flow of the register display and replace module.
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Figure 6.13 A flowchart of the register display and replace module (REG/ST).

170 THE ZAP MONITOR SOFTWARE



11.10 Go Execute Module

The go execute module (GOREQ) is the last of the three major functions of the
operating system. Upon entry (see command recognition module), this module
calls FORCAR to get the address where execution is to begin. Upon return from
FORCAR, the ”no data” flag is examined to determine the mode of execution. If
this flag is set (=1), control is immediately transferred to RESTRT. This restores
the Z80 registers and resumes execution at the PC address currently contained
from the keyboard input buffer and stored in the PC save location in the register
save area. Control is then transferred to the command recognition module
(WARMZ) which will restore the registers with the saved data, and begin execu-
tion of the user’s program at the specified address. (See Appendix D for addi-
tional details.) Figure 6.14 details the logic flow of the go execute module.

( GOREQ )

FORCAR

GET RESTART
ADDRESS

IS
'NO DATA'
FLAG SET

9

SAVE NEW
RESTART ADDRESS
IN REGISTER
SAVE AREA

i RESTRT )

Figure 6.14 A flowchart of the go execute module (GOREO).
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CHAPTER 7
PROGRAMMING AN
EPROM

The ZAP computer has been designed to be inexpensive, reliable, and easy to con-
struct. To keep costs and complexity to a minimum, some computer features that could
be helpful to a beginner have been eliminated. The most visible of the missing features
are a front panel and display. While this in no way detracts from the operation of the
computer, its inclusion would make initial checkout and program development easier.

To properly test ZAP, a program must be in memory. This program does not have
to be very long—only a few instructions are necessary to determine whether the com-
puter runs at all. The problem arises when the user wishes to run a program of 50 or
100 bytes in length. We end up with a ”catch-22” situation. To effectively enter ma-
chine code into ZAP's programmable memory, a program that coordinates this activity
must be running in EPROM. Such a program is called a monitor and is outlined in
Chapter 6. The catch is that writing the monitor software into an EPROM automatical-
ly requires the monitor to be running the programmer. Fortunately, if one has an alter-
nate way of writing the l K ZAP monitor into EPROM, this is no longer a problem.

Rather than leaving the experimenter to his own devices, this section includes infor-
mation on programming EPROMs. To solve the startup situation, I’ve outlined a de-
sign for a couple of manual EPROM programmers. Loading programs on a manual
programmer is tedious. They are primarily intended for much shorter routines such as
checking basic system operations. However, one manual unit can be modified to load
the full 1 K monitor software. When ZAP is fully operational, you can use it in con-
junction with an automatic programmer. This will help in writing a number of
EPROMs. In the event that you do not wish to write your own EPROM, consult Ap-
pendix A for the availability of preprogrammed EPROMs.

A Quick Review of EPROMs
It is often desirable to have the non-volatility of ROMS but the read/write capa-

bilities of semiconductor programmable memories. An effective compromise is the
EPROM. This is a read-mostly memory. It is used as a ROM for extended periods of
time, occasionally erased and reprogrammed as necessary. Erasure is accomplished by
exposing the chip substrate, covered by a transparent quartz window, to ultraviolet
light. We’ll cover erasure at the end of this chapter.

The EPROM memory element used by lntel and most other manufacturers is a stored
charge type called a FAMOS transistor (Floating-gate Avalanche injection Metal Oxide
Semiconductor) storage device. By selectively applying a 25 V charging voltage to ad-
dressed cells, particular bit patterns that constitute the program can be written into the
EPROM. This charge, because it is surrounded by insulating material, can last for
years. Exposure to intense ultraviolet light drains the charge and results in the erasure
of all programmed information.

There are many EPROMs on the market—2708s, 27165, and 27325 are the major
ones. For the most part, computerists have moved away from the very difficult—to-
program 17025 and have opted for the more easily programmed 27083 and 27165. An
added benefit is their greater storage density. The newer EPROMS on the market are
considerably more expensive than the 2708. All things considered, the 2708 is the best
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buy for the money. At slightly greater expense, you could use the 2758 for a single sup-
ply operation. For these reasons, the EPROM programmer outlined in this chapter is
the 2708.

Figure 7.1 is the circuit for a manual 2708 programmer. IC 5 and two sections of IC 3
provide the +25 V program pulse to the EPROM. IC 5 is set for a duration of 1 ms and
is triggered by a logic 0 to 1 transition at its input. The EPROM both sources and sinks
current through programming pin 18. A combination of devices rather than a simple
open-collector driver is necessary. In the write mode, when—CWWE pin 20 is at
+12 V and between programming pulses, pin 18 has to be pulled down by an active
device because it sources a small amount of current. The programming pulse itself is
about 30 mA and cannot easily be accommodated without emitter-follower configured
Q1. This pulse should be between 25 and 27 V at pin 18. Three 9 V batteries will suf-
fice. (An alternative is to use a commercial encapsulated 24 V, 50 mA power supply.
The encapsulated supply can be resistor trimmed to produce the desired 25 to 27 V.)

To write a byte into the EPROM, a 10-bit address designating which of the 1024
bytes will receive the data is preset on switches SW 1 thru SW 10. To start at location
0, all switches will be in the closed position. Next, the 8 bits that are to be stored are set
on switches SW 12 thru SW 19. This data byte should be reflected on the output dis-
play LED 1 thru LED 8. Finally, to get the programmer in the write mode, switch
SW 11 is set open. Actual insertion of the data occurs when the write pulse pushbutton
PB 1 is pressed. This fires a 1 ms pulse of 25 V into the 2708 program pin. According to
manufacturer's specifications, no single programming pulse should be longer than
1 ms. For maximum data retention, 100 of these programming pulses are recommended
(totalling 100 ms per byte).

Unfortunately, 100 ms cannot be applied to a single address all at once. Manufac—
turers specify that it should be done sequentially and should consist of 100 1-ms ap-
plications. In short, it means that for a 25-byte program, each address should be writ-
ten with one pulse and then the loop repeated up to 100 times. I have never tried to
lengthen the pulse and program a 2708 faster than called for. Experience has shown,
however, that some EPROMS are completely written with as few as 2 or 3 loops. Ob-
viously, for full retention each address should be rewritten on an automatic program-
mer.

Reading back the stored contents of a 2708 is easy on the same manual programmer.
First, all data input switches SW 12 thru SW 19 are opened to the “1" state and then
”read 'write" switch SW 11 is set in the closed or “read” mode. No other pulsing or
clocking is necessary. The output display will show the contents of the byte pointed to
by the address input switches SW 1 thru SW 10. It will remain constant until set to
another address. Reading out the contents is simply a matter of incrementing this 10—bit
address thrOugh the range of program addresses.

A slightly more complex manual programmer is demonstrated in figure 7.2. Three
presettable counters are inserted between the address input switches and the EPROM.
Instead of changing the switch positions for each address, they are now used only to
preset the counters to some beginning address. If we want to program an EPROM start-
ing at hexadecimal 3AA, the switches would be set to that address and the “address
preset” switch pressed. The 10 LEDs, LED A0 thru LED A9, would read 3AA as the ad-
dress. The data to be programmed is set on SW 12 thru SW 19. Pressing the “write
data” push button PBl (the renamed ”address increment”) stores the data from the
switches. Successive memory locations are programmed by setting SW 12 thru SW 19
and pressing PBl. Resetting the address counter to zero is accomplished by pressing the
clear button.

It is easy to see how this manual programmer, while not greatly improving program-
ming time, facilitates reading memory. Put all the data input switches to the logic 1
level, set the interface to the read mode, and preset and load a start address. Readout is
accomplished simply by repeated operation of the address increment button.

An Automatic Programmer

You will need an operational ZAP computer to build an automatic programmer. The
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Figure 7.2 A sr‘né’natic diagram of a self-incrementing manual 2708 programmer. Light-emitting
diodes (LEDs) are to he connected to a// 10 address-input lines of the 2708. For clarity, only one LED
(connected to address line A9) is shown in the diagram. The other LEDs are to be wired in the same
way. ,
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complexity of design can be reduced considerably by taking advantage of decoded, but
to this point unused, I/O strobes provided in the basic ZAP. The circuit shown in
figure 7.3 takes three less chips than the manual programmer in figure 7.2. Its opera-
tions, while similar in operation, are quite different in detail.

Four I/O strobes (input and output port 1, and input and output port 4) synchronize
the hardware and software. Figure 7.4 shows the logic flow for writing an EPROM.
With the EPROM connected directly to the data bus, only the strobes, rather than full-
latched registers, are necessary for this interface.

To write data, the sequence should be as follows: first, an OUT 04 pulses the address
counter clear lines, setting them to 0. Next, the EPROM is set to the program mode,
and the first byte is written into the EPROM with an OUT 01 instruction.

Figure 7.5 shows how the 2708 program mode is selected. The significance of this cir-
cuit is that its output is wired as a 2—bit digital-to-analog converter to control the chip-
select line of the 2708.

When an OUT 04 is executed, the OS pin will see 0 volts enabling the read mode.
When an OUT 01 33 executed, this voltage will be 12 V for program mode. When no
strobe is present, CS will be at +5 V and the 2708 will be three-state.

An OUT 01 fires the 25 V program pulse for 1 ms while the pertinent data is on the
data bus. After that, an IN? 01 is executed, which increments the address counter to
the next address position. We are not actually doing any input function, but instead we
are using the decoded strobe of the INF 01 instruction to mean ”increment address reg-
ister.”

The hardware automatically keeps track of the address, but the software must imple-
ment its own counters to keep track of the O to 1023 positions as well as the_number of
times the complete 102-1 bytes have been programmed. Remember, the manufacturer
suggests 100 1-ms loops.

Reading the EPROXI automatically is also very simple. A flow diagram of the logic is
shown in figure 7.6. The address counter is cleared again by doing an OUT 04. Data is
read by executing an IN? 0-1. This data can be stored and analyzed. Finally, the address
counter is incremented again with an INP 01, and the process is repeated to read the
next byte.

While discussion has centered on the Intel 2708 EPROM as the most cost-effective
choice, there are many other EPROMS on the market. Two devices of particular impor-
tance (should their price and availability improve by the time you read this) are the
Intel 2758 and 2716. These are 1 K and 2 K single supply (+5 V) EPROMs, respective—
ly. The significance for the experimenter is that these parts can be programmed with a
single, 50 ms, 25 V program pulse to each address rather than successive l-ms loops.
The three programmer circuits presented are set up for 27085 but can be easily recon-
figured for these other devices. Changing the one-shot timing pulse from 1 ms to 50 ms
and rewiring a few pins will allow complete programming with just a single run
through the addresses (they don’t have to be successively programmed, either).

Erasing An EPROM
EPROMs bought directly from a manufacturer come completely erased. If you plan

on writing an EPROM program once, and you either don’t want to modify it or you
don't make mistakes, forget about erasing. The majority of computerists will want to
reprogram EPROMs. It then becomes necessary to know how to erase them. We all
know that EPROMs are ultraviolet erasable. However, duration, distance from the
light source, and intensity determine the quality of the erasure.

People concerned about maintaining a manufacturer’s specifications during the pro-
gramming sequence should also be advised of the proper erasing methods. Unlike the
test read—after-write-loop method for programming, EPROMS are usually removed
from the circuit during erasing. Therefore, it is advisable to perform the procedure cor-
rectly, or it will have to be repeated.

The typical 2708 EPROM can be erased by exposure to high intensity shortwave
ultraviolet light, with a wave length of 2537 A. The recommended integrated dose (UV
intensity X exposure time) is 12.5 watt-seconds per square centimeter (Ws/cmz). The
time required to produce this exposure is a function of the ultraviolet light intensity.

PROGRAMMING AN EPROM 177



178 PROGRAMMING AN EPROM

Cost and safety, equally emphasized, should be the guiding factors when selecting an
ultraviolet eraser. A commercial unit not only specifies its intensity (that allows com-
putation of exposure time), but also includes important interlocks. It is conceivable
that some homebrew erasers might have improper shielding that could allow the ultra-
violet light to escape or be accidentally turned on while being viewed. Such possibilities
can lead to permanent eye damage.

One of the more cost-effective erasers on the market is the UVS-llE by Ultra-Violet
Products, Inc, San Gabriel CA, 91776. This unit is made especially for the home com-
puter market and includes some important safety features. The lamp will not operate
unless properly seated, and if lifted from its holding tray, it will automatically shut off.
At the standard exposure distance of 1 inch, the UVS-llE produces an intensity of
5,000 [AW per square centimeter (”W/cmz). Exposure time for the 2708 is easily calcu-
lated.

Exposure time (T5)
T5 = 1+1

Where
I = required erasure density of device
I = incident power density of eraser

For a 2708 which requires 12.5 Ws/cmz
l = 5000 uW/cm2
J = 12.5 Ws/cm2

= 12.5 =T: 5000x106 2500 seconds

or T5 = 41.6 minutes for complete erasure
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Figure 7.3 A schematic d/‘agram of an automatic 2708 programmer.
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CHAPTER 8
CONNECTING ZAP TO
THE REAL WORLD

It’s now obvious that the ZAP computer can be configured in a number of ways.
Depending on your needs, you can go far beyond the basic system I have outlined. If
you want a personal computer that is the equivalent of large commercial microcomput-
er systems, then you must add considerably more memory and peripherals. Accom-
modations must be made for a more powerful operating system and most probably a
high-level language such as BASIC or Pascal. If you intend to use the ZAP computer as
a word processing system, then a video display and printer will be required. This, in
turn, necessitates adding more parallel and serial ports. Whatever the eventual config-
uration, the design considerations that went into constructing the ZAP computer do
not change.

The ZAP computer is intended as a trainer. This book is structured in such a way
that you should be able to lay out a system configuration and build it. I have not
discussed what it takes to design a word processing system, or to add floppy disk stor-
age, because it is beyond the scope of this introductory text. The support material
necessary to adequately cover such an undertaking would be enough for another book.
This does not mean, however, that everything is finished once the ZAP computer is
constructed and you learn how to write and execute a short program. Quite the con-
trary; a more significant application of ZAP is to connect it to something considered
part of the “real world" and have it perform some constructive task. ZAP's “power to
weight" ratio makes it a natural for intelligent control applications. The real key to us-
ing ZAP effectively is learning how to connect it to the real world.

Within the framework of the direct examples I have outlined, the ZAP computer
created from this book should be a single-board computer suitable for use in a variety
of applications. Because it includes a serial port, two parallel ports, PROM monitor,
and programmable memory, ZAP is in many respects equivalent to commercial digital
controllers costing hundreds of dollars more.

Small single-board computers are most often used in data acquisition and intelligent
control applications. Their function is usually to digest certain input parameters and
compute a result. For example, in a 100 HP electric motor control, the inputs would be
voltage, current and RPM, and the control output would be a load factor correction
voltage.

In all probability, a few of these “intelligent controllers" were used by the press that
printed this book. A likely place is the electronic control unit that monitors print densi-
ty and automatically adjusts ink flow. The computer ”reads" the print and decides
whether to increase or decrease the ink flow to the paper. This decision must take into
account various input parameters such as humidity, temperature, paper velocity, and
specific gravity of the ink. The control algorithm written in machine code and stored in
ROM shifts through all the input data and generates its conclusion in the form of a pro-
portional output to an ink-flow valve.

In most cases, computerized functions do not stop with simple control. In any pro-
cess where repeatability and quality control are important, significant process param-
eters are constantly monitored for deviation from preset limits and an alarm is set if the
limits are exceeded. To aid in long-term analysis, the data acquisition function often in-
cludes recording raw-process data from the input sensors at specific intervals and gen-
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erating a permanent log.

THE REAL WORLD
I don’t want to confuse you by discussing too many commercial applications of sin-

gle-board controllers. I doubt there are many web presses hidden in closets to which
you want to add computer control. There are, however, many equally challenging and
less esoteric applications for computer controls around the home. For example, a few
that come to mind include energy management, security, and environmental monitor-
ing. I refer to such systems as real world systems, as opposed to the TTL digital world
of computers.

Because real world is anything outside of the computer, it is generally an analog en-
vironment. The metamorphosis of ZAP into an intelligent controller is dependent
primarily upon effective analog interfacing. For this reason, the rest of this chapter is
dedicated to the design and construction of an economical analog 1/O interface.

But first let's review the basics of D/A (digital-to-analog) conversion and then
discuss a method to use a D/A to perform A/D (analog-to-digital) conversion. In data
acquisition systems, there is often a need to acquire high resolution multiple channels,
and AC as well as DC inputs. This being the case, I will also discuss a circuit which, in
effect, allows ZAP to function as an 8-channel digital voltmeter. Finally, because the
temporal relationship of so many events is significant, ZAP will be configured with a
real-time clock that defines the time at which control operations occur.

DIGITAL-TO-ANALOG CONVERTERS
The D/A ('digital-to-analog) converter can be thought of as- a digitally controlled

programmable potentiometer that produces an analog output. This output value (Vow)
is the product of a digital signal (D) and an analog reference (VHF) and is expressed by
the following equation:

\‘TOL'T = D VREF

To a large extent, no D A or A D converter is very useful without specifying the
type of code used to represent digital magnitude. Converters work with either unipolar
or bipolar digital codes. L'nipolar includes straight binary and binary coded decimal
(BCD). Offset binary, ones or two’s complement and Gray code, is usually reserved
for bipolar operation. However, we will limit our discussion to straight and offset
binary.

It is important to remember that the binary quantity presented by the computer is a
representation of a fractional value to be multiplied by a reference voltage. In binary
fractions, the MSB (most significant bit) has a value of 1/2 or 2“, the next MSB is 1/4
or 22, and [.58 (least significant bit) is 1/2" or 2-” (where n is the number of binary
places to the right of the binary point). Adding up all the bits produces a value that ap-
proaches 1. (The more bits, the closer that value is to 1.) The algebraic difference be-
tween the binary value that approaches 1, and 1, is the quantization error of the digital
system (to be discussed later).

Offset binary is similar to straight binary except that the binary number 0 is set to
represent the maximum negative analog quantity; the MSB is a O for negative analog
values, and a 1 for positive analog values.

The conversion of digital values to proportional analog values is accomplished by
either of two basic conversion techniques: the weighted-resistor D/A converter and the
R-ZR D/A converter. The weighted-resistor D/A converter is by far the simplest and
most straightforward. This parallel decoder requires only one resistor per bit and
works as follows: switches are driven directly from the signals that represent the digital
number D; currents with magnitudes of 1/2, 1/4, 1/8, . . . 1/(2") are generated by
resistors with magnitudes of R, 2R, 4R, . . . 2"R, that are connected by means of
switches between a reference voltage, -VRE;, and the summing point of an operational
amplifier. The various currents are summed and converted to a voltage by an opera-
tional amplifier (see figure 8.1).

While this may appear to be a simple answer to an otherwise complex problem, this
method has some potentially hazardous ramifications. The accuracy of this converter
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is a function of the combined accuracies of the resistors, switches (all switches have
some resistance), and the output amplifier. In conversion systems of greater than
10-bits resolution, the magnitudes of the resistors become exceptionally large and the
resultant current flow is reduced to such a low value as to be lost in circuit thermal
noise.

A reasonable alternative to the weighted-resistor D/A converter is the R-ZR con-
verter. This is often referred to as a resistor-ladder D/A converter and is the most wide-
ly used type even though it uses more components. This circuit (see figure 8.2) also
contains a reference voltage, a set of binary switches, and an output amplifier. The
basis of this converter is a ladder network constructed with two resistor values, R and
2R.

One resistor (2R) is in series with the bit switch, while the other (R) is in the summing
line, so that the combination forms a ”pi" network. This suggests that the impedances
of the three branches of any node are equal, and that a current I, flowing into a node
through one branch flows out as 1/2 through the other two branches. In other words, a
current produced by closing a bit switch is cut by half as it passes through each node on
the way to the end of the ladder. Simply stated, the position of a switch, with respect to
the point where the current is measured, determines the binary significance of the par-
ticular switch closure.

——-—Iv~.
2R swa 1"=Si\"CH CLOSED

‘ . ' / I =:.~ITCH OPEN

4R SW3
Iy—W—w/o—4 V OUT

év REF -v or: —v at: -v REF -v REF
+ VOUT=-[———'—+—'—+——+—-——]RFR 2R 4R 8R

Figure 8.1 A 4-bit weighted-resistor digital-to-ana/og converter. A 4.b/t word ’: sed to control four
single-pole single-throw switches. Each of these switches is in series with a ' s stor. The resistor
values are related as powers of 2, as shown. The other sides of the switches a '5 : : ' vected together at
the summing point of an operational amplifier. Currents with magnitudes if“. e 'se ,1 proportional to the
resistors are generated when the switches are closed. They are summed b y ."e op amp and converted
to a corresponding voltage.

.4

|—-—°‘ sw3 2"?

Rt
LSB ‘

° swa 2R
D

/ 2R

Figure 8.2 A 4-bit R-2H resistor-ladder digital—to-analog converter. This type of D/A converter makes
use of a resistor-ladder network constructed with resistors of value R and 2H. The topology of this net-
work is such that the current flowing into any branch of a 3—branch node will divide itself equally
through the two remaining branches. Because of this, the current will divide itself in half as it passes
through each node on its way to the end of the ladder. The four switches are again related as powers of
2. The position of each switch with respect to its distance from the end of the ladder determines its
binary significance.
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This type of converter is easy to manufacture because only two resistor values are
needed; in fact, one value, R, will suffice if three components are used for each bit.
Keeping matched resistor values with the same temperature coefficients contributes to
a very stable design. Certain trade-offs are required between ladder resistance values
and Current flow to balance accuracy and noise.

One form of the R-ZR ladder circuit is the multiplying D/A converter and is avail-
able with either a fixed or an externally variable reference. Multiplying D/A converters
that utilize external variable analog references produces outputs that are directly pro-
portional to the product of the digital input multiplied by this variable reference. These
devices have either current or voltage output. The current output devices are much
faster because they do not have output amplifiers that limit the bandwidth; therefore,
they tend to cost less than voltage types.

An economical 8—bit multiplying D/A is the Motorola MC1408-8 (see figure 8.3). As
previously mentioned, this monolithic converter contains an R-ZR ladder network and
current switching logic. Each binary bit controls a switch that regulates the current
flowing through the ladder. If an 8-bit digital input of 11000000 (192 decimal) is applied
to the control lines of the illustrated converter, the output current would be equal to
(192/256)(2 mA) or 1.50 mA. Note that when binary 11111111 (255 decimal) is ap-
plied, there is always a remainder current that is equal to the LSB. This current is
shunted to ground, and the maximum output current is 255/256 of the reference
amplifier current, or 1.992 mA for a 2.0 mA reference current. The relative accuracy
for the MC1408-8 version is il/Z the LSB, or 0.19% of full scale (see figure 8.4). This
is more than adequate for most home computer analog control applications.

The final circuit (figure 8.5) is an 8—bit MC1408-8 multiplying DiA converter. As
previously outlined, ”multiplying” means that it uses an external variable reference
voltage. In this case, a 6.8 V zener-diode regulated voltage is passed through a resistor
that sets the current flowing into pin 14 to approximately 2 mA.

T +v REF
‘3 I 14 R14vse . ._

be >— ;1 +v REF -“
07 D—E;2 memos-e ._I our
D6 D—n IO 4 v our

DlGITAL D5 D444 * RL
2 15 R15

'NPUT [MI >——' ;5 -v REF
D3 I >—1' .16 RC ___01

oz Dim 2
1 1D1 D——2‘A8 cow‘s—j:— TYPICAL VALUES

v: _ .L59 c* 5214415» 2.0K
3 v REF= 4.0 VOLTS

mm: 4 C=33pF
"' ENSAT'ON :5 |14=2mA NOMINAL

vac (<0)

I 0UT=A[D1/2 +02/4+03/8+04/16+D5/32+06/64+D7/128+DB/256]

WHERE A E V REF/R14
AND DN=1 FOR HIGH LOGlC LEVEL

DN=0 FOR LOW LOGiC LEVEL

Figure 8.3 A typical 8-bit current-output monolithic multiplying D/A converter. This Motorola in-
tegrated circuit contains an 8-2/3 network like the one in figure 8.2, plus additional current—switching
logic.
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Figure 8.5 A final 8-bit MC? 408-8 multiplying digital—to-ana/og converter with span and offset adjust-
ments.
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An additional resistor, R1 (also in this current leg), allows the current to be varied by
a small percentage and provides the ability to adjust the full-scale range of the D/A
converter. The output is a current that is equivalent to the product of this reference cur-
rent and the binary data on the control lines. The current is converted to a voltage
through IC 9 and can be zero offset through the use of the offset adjustment pot, R2.

Using this circuit with the ZAP computer is simply a matter of connecting the input
lines of IC 1 to a convenient parallel output port on ZAP. Any 8—bit value sent to that
port will be converted to a voltage proportioned to that output.

The digital code presented to the D/A converter must be in offset binary. A binary
value of 00 hexadecimal produces an output of —5 V while FF hexadecimal is
equivalent to +5 V. In offset binary, if the MSB is a 0, the output is negative, and if the
MSB is a 1, the output is positive. Because the converter has a range of 10 V, and is an
8-bit device, the resolution of the converter is 1/256 of 10 V, or approximately 40 mV.
This means that the smallest output increments will be in 40 mV steps. To change this
to finer increments requires a shorter range, such as +2.56 V to -2.56 V. By adjusting
the span and zero pots, any reasonable range may be chosen, but the resolution will
always be equal to the LSB or 1/256 of the range, and accuracy is estimated to be
il/2 the LSB.

Calibration is fairly straightforward. Apply the power, and with a short program
that outputs a value from the accumulator, send a binary 10000000 to the port address
corresponding to the D/A interface board. Using a meter to monitor the output of the
LM301A, adjust the zero pot R2 until the output is O V. With the same program, load
in binary 11111111 to the port address and adjust the span pot R1 for a meter reading
of +5.12 V. A binary setting of 00000000 should produce —5.12 V. If you are unsuc-
cessful at this point, turn the power off and remove the MC1408—8 and the LM301A;
then reapply power and verify that the binary output is correct on the parallel output
port. Nine times out of ten, problems like this can be attributed to choosing an incor-
rect output code.

If the test is successful, you are now ready to generate analog outputs under program
control. A simple test is to designate a section of memory and sequentially output the
values to the D/A. If the table is 256 bytes long with the values ranging from 0 to FF
hexadecimal in 01 increments, the result will be a sawtooth-waveform output. If the
samples are sent to the output rapidly enough, and it is connected to a speaker, the
waveform will be audible. The exact frequency will be a function of the update timing
loop.

The following is a short program that exercises the D/A in such a manner:

START EQU 0400 Memory table start HL address
END EQU 05 Memory table end H address
OPORT EQU 07 D/A output port number
SAMP EQU A0 Sample rate time constant

LD HL, START Load table start address
AGAIN LD A, (HL) Table value to accumulator

OUT OPORT,A Output byte to D/A
CALL DELY Sample time delay
INC HL
LD A,H
CP END Test to see if at end of table
JP NZ,AGAIN If not, output the next sample
HALT

DELY LD B, SAMP Sample rate timing loop
DCR DEC B

JP NZ, DCR
RET

The table can be set to any length. Values in the table can be calculated to produce
any shape waveform.
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ANALOG-TO-DIGITAL CONVERTERS
It's always a good idea to discuss D/A converters first. They are rather straightfor-

ward and there are not an overwhelming number of conversion methods. By introduc-
ing them first, you will become aware of the process of binary conversion and ap-
preciate the concepts of resolution and accuracy. Practically speaking, however, if you
were going to set up the ZAP computer to serve in a data acquisition mode—say,

reading and recording temperatures—you would need an A/D (analog-to-digital) con-
verter before a D/A (digital—to-analog).

An A/D does what its name implies. It converts analog voltages into a digital repre-
sentation compatible with the computer input. As in the case of an 8—bit D/A, an A/D
is subject to the same conversion rules. If you are trying to read a 10 V signal with an ‘
8—bit converter, the resolution will be 1/256 of 10 V (or 40 mV) and the accuracy will
be :L-1/2 the LSB.

For greater resolution more bits are necessary. The number of bits does not set the
range of a converter; it only determines how finely the value is represented. An 8-bit
converter (either A/D or D/A) can be set up just as easily to cover a range of 0 to 1 V
or 0 to 1000 V. Often the same circuitry is used, but a final amplification stage or
resistor-divider network is changed. Understand, of course, that with a range of
1000 V and an 8-bit converter, the resolution is 4 V. Such a unit would be useless on 0
to 10 V signals. The problem can be reconciled in a number of ways, but the easiest
solution is to use a converter with more bits. A 16—bit converter that has 65,536 (2”)
steps instead of 256 (25) would cover the same 1000 V range in 15 mV increments.

For the ZAP computer, the question becomes more one of reasonable price perfor-
mance than nth degree accuracy.

Analog-to-digital conversion is considerably more expensive than D/A—the price is
directly related to resolution and accuracy. There are many ways that A/D conversion
can be accomplished. The range varies from very slow, inexpensive techniques to ultra-
fast, expensive ones. An A. D converter can cost as little as $5 or as much as $10,000.
An A/D converter that scans thermistor probes and provides data to control the tem-
perature in a large supermarket may cost $4.75, but it cannot encode video information
from an optical scanner.

The objective of this book, of course, is to help you to build your own computer; lit-
tle is served by presenting designs that are beyond a reasonable budget and average
construction abilities. For those reasons, I have sifted through a multitude of tech-
niques to select four designs that can easily be built and attached through the ZAP
computer's parallel interface. One of them should meet your basic data acquisition re-
quirements.

Basic analog to pulse width converter
Low cost and low speed 8-bit binary—ramp counter converter
High speed 8—bit successive approximation converter
Eight—channel 31/2-digit 0—200 V AC/DC interface3

;;
n

PULSE WIDTH AND BINARY COUNTER CONVERTERS
Analog to Pulse Width Converter

This converter is one of the most popular open-loop encoders because of its simplici—
ty. A basic block diagram is shown in figure 8.6. This device uses a fixed oscillator in
combination with a circuit that generates a pulse width that is a linear function of the
analog input voltage.

To obtain this variable linear pulse width, designers frequently use a ramp generator
and a Schmitt-trigger circuit. A gating pulse is started at the beginning of the ramp and
a counting circuit starts incrementing at a fixed frequency. When the linear ramp
reaches the same value as the input voltage, the counting is terminated. The value left
in the register at' that point is representative of the analog input.

Figure 8.7 is a schematic of a unipolar analog to pulse width converter that operates
on this principle. IC 1 is configured as a gate controlled linear ramp generator and IC 2
is the input comparator. The process starts when the 7.5 KHZ clock signal fires IC 3 (a
74121 one—shot), and starts its 35 ms period, which is the gate time. At the beginning of
this gate period, a pulse that clears the two 7493s and the ramp generator is generated.
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Figure 8.6 A block diagram of an analog to pulse width encoder.
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Figure 8.7 A schematic diagram of a unipolar analog to pulse width converter.
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This, in turn, enables the clock signal to the counter. The slew rate of the ramp genera-
tor is set to be approximately 10 V per 35 ms. IC 2 continuously compares the input
and ramp voltages. When they are equal, the clock signal to the counter is stopped and
the ramp generator is reset. At the conclusion of the 35 ms gate time, whatever value is
in the counter is transferred to an 8-bit storage register. The value stored in this register
is an 8—bit number proportional to the input voltage. The entire process starts again on
the next clock pulse.

By properly selecting the gate times and the clock rate, you can change the span and
resolution of the circuit. With a gate time of 35 ms and a clock rate of approximately
7500 Hz, 256 clock pulses should be counted during the gate time. The ramp timing ad-
justment pot should be set so that the counter reaches maximum count when 2.56 V is
applied to the input of IC 2. A 10:1 divider attached to this input will allow the same
8-bit count to represent 25.6 V.

This circuit is simple, but its accuracy depends on the stability of the individual sec-
tions of the circuit. To use it, connect the register output to a parallel input port. Sim-
ply read the port when you want the latest value. The circuit automatically updates 28
times a second, hence no reading is older than 35 ms.

Binary-Ramp Counter Converter
The above A/D technique is most often used in slow sampling rate, high-accuracy

measurements. Achieving these results, however, hinges on the use of precision com-
ponents and proper construction. The next most productive approach to consider is the
binary-ramp counter method. In my opinion. this is the best type if you plan to con-
struct an A/D for ZAP. It uses fewer components and, in practice, is much faster and
easier to build than linear-ramp circuits.

Figure 8.8 illustrates the basic block diagram for the binary-ramp counter converter.
The linear-ramp generator of the previous technique has been replaced by a D/A con-
verter. In this case. the DA is used to reconvert the digital output of the binary
counter back to analog for comparison against the analog input. If they are equal. then
whatever code is presently set on the D/A input is also our A/D output.

4
/

N-mT
PARALLEL
OUTPUT

M-mT
BINARY COUNTER

RESET

Figure 8.8 A block diagram of a basic binary-ramp counter A/D converter.
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The simplest way to operate the system is to start the counter initially at O and to
allow it to count until the D/A equals or exceeds the analog input. The only critical
consideration in designing this circuit is that the clock rate cannot be faster than the
response of the comparator and D/A. If it takes 100 [£5 for these components to do
their job, then the maximum clock rate should be 10 KHz. For an 8-bit converter
(counting from O to 256 each sample period), the maximum sample rate is 10,000/256 or
some 39 samples a second. In practice, however, 5 us is a more reasonable settling time,
resulting in about 750 samples per second. For still higher speeds, we use a different
kind of A/D (more on this later).

Figure 8.9 shows a schematic of a binary-ramp counter converter that uses a
MC1408-8 multiplying D/A converter chip. The counter output is connected to the
MC1408-8 to provide a direct analog feedback comparison of the value set on the
counter. Initially, ICs 4 and 5 are cleared, and the D/A output should equal the
minimum input voltage. For a 0 to 5.12 V converter, this would be 0 V. For a —2.56 to
+2.56 V unit, it would be —2.56 V. If the output of IC 1 is less than Vm, the clock
pulses are allowed to reach the counter. As each pulse increments the counter, the out-
put of the D/A keeps rising until eventually it equals or just exceeds V” on the com-
parator. When this happens, additional clock pulses are inhibited. At the end of the
sample period, the count value of ICs 4 and 5 is stored in a separate register. For ZAP
to read this data, it just requires connecting this register to an input port and reading it
directly.
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Using the Computer to Replace the Counter
Figure 8.9 is a stand-alone circuit. It does not require the computer for operation.

The A/D updates itself at a preselected sample rate and loads this value into an 8-bit
latch. As far as the computer is concerned, there is a steady state reading from the con-
verter. Every function required to perform the A/D conversion is constructed from
hardware components.

There are certain advantages to this approach. The A/D can be independently as-
sembled and tested without a computer. For example, a voltage can be applied to the
input and the 8-bit value can be displayed on 8 LEDs. The ability to test each subsystem
independently is the way I’ve tried to present all the hardware in this book. If, on the
other hand, you feel you've mastered the art of programming and would rather not
build elaborate interfaces, much of the hardware of figure 8.9 can be replaced with
software subroutines.

Consider for a moment the major elements of this design. This 8—bit A/D has four
sections: D/A, analog comparator, 8—bit counter, and timing logic. The resistor ladder
and analog comparator are necessary components, but the last two sections are prime
candidates for synthesis through the computer. The combined function of these devices
is to increment an 8-bit count and check the output of the comparator.

The ZAP computer has parallel input and output ports. By incrementing a central
processor register and outputting the value after each increment, the 8 lines from the
port will have all the appearances of a standard 8-bit counter made with 7493s and so
on. By using one bit of an input port to read the status of the comparator, we can also
replace the rest of the timing logic.

The resulting interface has fewer components and is shown in figure 8.10. The DA
remains essentially the same except that rather than being driven from two 4—bit
counters, it is connected to an 8-bit parallel output port. The analog output of the D A
will be whatever value is sent to the output port. Instead of hardwired logic to detect
when the D/A and input voltage are equal,_we attach the comparator output to bit 0 of
an available input port.

+12V IN823A
6.2Vi 4709 I 47°F

1;.LF 4.7K
. / .

"“JE isopF ~
//

2K 5x. -- -, lM585 4 18K ’ _ a / 4
37 D‘— Al I O Hyu—v J—o—awv—i

---.:_ l 6

BSD—3A2 5~~-E ~ ;- ‘
7 101 *_. _ t... BITO

ssD—As “4514084, Ty $1M- ICZ WESTLLEL
5—5" a“uni 64D_A4 m ,77 LMsoiA PORT

C553 “D'—9A5 :5
Peat " ‘VREFfi

52:>—lo—AG $33<
11 .

=13——A7 PC—-O
12 a le:D———As - VINO——

#53 0-2.56V
cweaw v:_

"e 3
33;? +5 céo +12 -12
\' lCl memos-a 13 s

'——0 ICE LMsoiA 7 4
V IC3 LM301A 7 4

Figure 8.10 A softwaredr/ven 8'bit analog-tod/‘g/‘ta/ converter.
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The conversion process is not unlike the hardware version. First, we clear a register
(B, for example) and then output the register value to the port attached to the D/A.
This will set the D/A to its minimum output. Next, we read the input port that has the
comparator attached to it and check bit 0 (a logic 1 indicates that the input and D/A
voltages are equal). If the comparator is low (the voltages are not equal), the register is
then incremented and the process is repeated. Eventually, the register will be in-
cremented to the point where the D/A output and the unknown input voltage are
equal. The comparator will then switch. At this point the program is halted and the
value of the B register is the digital equivalent of the input voltage. The program to ac-
complish this follows:

MVI B Clear B register
OUT 0,B Output B register

AGAIN INC B Increment B register
OUT 0,B Output B register
IN 04 Read comparator port
ANA 01 Isolate bit 0
JNZ AGAIN Continue if voltages not equal
HLT A/D value is in B register

The above program should be repeated each time a new reading is needed and the
sample rate can be adjusted within broad limits. Remember, however, that we still
have to wait for the D/A circuitry to settle and it should not be incremented any faster
than 5 its. Using the 2.5 MHz Z80 should not present a problem. Using a 4 MHZ
crystal the central processor might necessitate a few NOPs in the loop.

There are many variations on this circuit. As described, it takes up to 255 iterations
of the program to find an answer. On a computer with a 2 [.LS average instruction time,
the program could take 3 #5 to finish, limiting us to about 300 samples a second. Add
the other tasks that the computer must perform and you might be limited to 100
samples a second. Execufing counting routines takes time; it will not, however, be a
problem if you are merely monitoring a temperature probe that has a 30-second time
constant.

If you should want to track and record fast changing signals, such as an acoustic
waveform, then a much faster conversion algorithm is required. One method that
speeds up the process is called successive approximation (more later).

The capabilities of this circuit can be expanded in other ways. An additional CMOS
multiplexor can be connected to 3 bits of another output port to turn this simple circuit
into an 8—channel A/D. Also, because this circuit includes a DA, its output is avail-
able as well.

Successive Approximation Converters
More than likely one of the three converters presented thus far will suffice for non-

critical data acquisition. Slowly changing signals can be handled accurately and effi-
ciently. However, there are occasions when the signal in question is not slow or it car-
ries a particular transient that must be captured. For example, detecting a 100 us event
requires a converter with a capability of 20,000 samples per second. In such cases we
need a much faster conversion method.

Figure 8.11 is the schematic of a general purpose high-speed, 8-bit converter. It is
capable of sample rates in excess of 200,000 samples per second. To attain these speeds,
a technique called successive approximation is used. Like the binary-ramp counter con-
verter, this A/D also incorporates a D/A in a feedback loop but replaces the counters
with a special SAR (Successive Approximation Register). The circular logic of suc-
cessive approximation is best explained in the block diagram of figure 8.12.

Initially the output of the SAR and mutually connected D/A are at a zero level. After
a start conversion pulse, the SAR enables the bits of the D/A one at a time starting with
the MSB. As each bit is enabled, the comparator gives an output signifying that the in-
put signal is greater or less in amplitude than the output of the D/A. If the D/A output
is greater than the input signal, a “0" is set on that particular bit. If it is less than the in-
put signal, it will set that bit to ‘1". The register successively moves to the next least
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Figure 8.11 A schematic diagram of an 8-bit successive approximation A/D converter.
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Figure 8.12 A b/cck diagram of a typical 8-bit successive approximation A/D conversion system.

significant bit (retaining the setting on the previously tested bits) and performs the
same test. After all the bits of the D/A have been tried, the conversion cycle is com-
plete. As opposed to the 256 clock pulses of the binary counter method, the entire con-
version period takes only 8 clock cycles. Another conversion would commence on the
next clock cycle when it s in the free-run mode. To retain the 8-bit value between con-
versions, an 8—bit storage register IC 3 has been added. To use this A/D, simply con-
nect the output of this latch to an 8-bit input port.

The components of the D A circuit are changed slightly from previous implementa-
tions to increase the speed, and a faster comparator is used. With a clock rate of
800,000 Hz, the circuit will do 100,000 conversions a second. Because they are auto-
matically loaded into the 8-bit-holding register IC 3, the update is transparent to the
computer and can be read at any speed. The sample rate is a function of the clock rate.
If it is unnecessary to have such a high sample rate, it may be reduced by increasing the
value of C1. High speed A/D converters are susceptible to layout and component selec-
tion. While 200,000 samples per second is attainable, 20,000 samples per second might
be more practical.

A Unique Application for a Fast A/D
When we first considered adding an A/D to ZAP, our thoughts centered on monitor-

ing some process or turning ZAP into an intelligent controller. In most cases, this re-
quires one of the simpler A/D converters I’ve outlined. However, with the addition of
a high speed A/D peripheral, a few more experiments come to mind.

Most often when we think of high speed analog, we want to capture video or other
high bandwidth phenomena that have a voltage level within the range of the A/D. Of
course, the audio frequencies, while much lower than video, may also require a high
performance A/D for proper representation.

The bandwidth of the human voice is about 4000 Hz. These analog signals, when
spoken into a microphone and fed to an A/D, can be digitized just like any other wave-
form. And, if our voice samples are taken quickly enough and stored, the accumulated
data can be used to reconstruct the same voice. This reconstructed voice is called
digitized speech.

In essence, digitized speech is simply the result of a standard data acquisition tech-
nique. When speaking into a microphone and amplifier, your voice results in a fluctu-
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ating waveform, whose frequency rate varies. If this signal is applied to the input of a
high speed A/D, and the conversions stored in memory, the computer couldn’t care
whether the source was speech or a nuclear reaction. The analog fluctuations would be
digitized at discrete sampling intervals and stored. If the stored samples are output to a
D/A at the same rate they were taken, speech will be reproduced. The fidelity of this
reconversion is a function of the sampling rate.

Most of the intelligence or information content of human speech occurs in the fre-
quency region below 1500 Hz. Obviously, sampling this waveform at 25 samples per
second would be useless. It must be sampled very rapidly to retain anything of signifi-
cance.

There is a specific law known as the "Nyquist criterion" that is used to determine the
optimal sampling rate. In theory, this law states that at the very minimum, the sample
rate must be twice the frequency of the input waveform. Thus, if the human voice ex-
tends to 4 Hz, then the minimum rate should be 8000 samples per second. This also
presumes an ideal filter on the output, the existence of which is about as ephemeral as
perpetual motion. In actuality, the sampling rate should be 3 or 4 times the highest in-
put frequency. To digitize voice accurately requires a sampling rate of 12 Hz to 16 Hz.
If, on the other hand, we shoot for just the lower frequencies, we can get by with 3 Hz
or 4 Hz.

The possibility of using this speech technique has to be considered in light of the
’ availability of large amounts of memory. At a 4 Hz sample rate, one second of speech

takes 4000 bytes of memory. If you have added more than the 2 K of memory in the
original configuration of ZAP, then perhaps you'll want to experiment with digitized
speech. Even with just 2 K you should hear something.

A fairly simple program is needed to coordinate the digitization process andstore the
data:

START EQU 400 Memory table start HL address
END EQU COO Memory table end H address
TRIG EQU A8 Input start conversion level
IPORT EQU 04 A/D input port
SAMP EQU 38 Sample-rate time constant

INP IN IPORT Read A/D input value
CP TRIG Compare input to trigger level
JP NZ, INP Loop again if below trigger level
LD HL, START Load table start address

AGAIN IN IPORT Take a sample
LD (HL), A Store sample in memory
CALL DELY Delay between samples
INC I-IL
LD A, H
CP END Test to see if at end of table
JP NZ,AGAIN If not, take another sample
HALT

DELY LD B, SAMP Start delay timer
DCR DEC B

JP NZ,DCR
RET

When the program is executed, it will scan the A/D input port and compare the read-
ing to A8 hexadecimal (about 65% of full scale). When speech is present, the audio
level will presumably exceed this trigger level. When this happens, the program sets the
address of the storage table and starts dumping data samples into it at a rate of about
4000 per second. The rate is determined by the value of “SAMP.” The higher the num-
ber, the lower the sampling frequency. When the table is filled, the program stops and
the memory will contain a digitized representation of whatever was spoken during the
sample time. For 2 K of memory, only 1/2 second of speech will be captured.

To hear this stored data, use the program outlined in the section on D/A converters.
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Set the limits to be the area of the memory table, then choose a time constant that
results in putting out the samples at the same rate that they were taken. (It is also possi-
ble to create a digital reverberation system using this hardware, but for decent fidelity
12- or 14-bit converters are required.)

Because digitized speech is a specialized application, the D/A circuit is modified
slightly to include a low-pass filter. This will improve the sound quality. The modified
circuit is shown in figure 8.13.
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Figure 8.13 A“. 8-bit D/A converter wrn a /ow-pass Wter.

Using ZAP for High Resolution Data Acquisition
Up to this point our discussion has concerned experimenting with ZAP. Some

aspects of these designs are useful in noneducational applications, but for the most part
they are intended more as teaching aids than as replacements for expensive monitoring
equipment. However, it is possible to add more specialized interfacing to ZAP which
allows it to be used in such a manner.

The 8-bit A/D converters presented thus far have limited resolution and are single-
channel devices. They are adequate for measuring temperature in a solar heating sys-
tem, but it is doubtful that they have the resolution to monitor the temperature gra-
dient along a length of heating duct. The sensors used to measure such parameters
would need to have a higher resolution than ambient air temperature sensors. For a
range of -20 to 108°C, an 8-bit A/D could provide 0.5° resolution. In a solar heating
application, considering the variations in air movement, cloud cover, and general
weather patterns, this is as much resolution as you would need. Within the system,
however, there are areas that will require closer measurement.

A solar system is a typical example. After installation the next step is usually to in-
vestigate how to increase its efficiency. Nine times out of ten this requires cutting heat
losses in the pipes and ducts. One way to determine such loss is to place temperature
sensors along the heat distribution path and look for cold spots. The measured dif-
ferences between sensors may be very small, a few tenths of a degree or so, but the
overall losses could be significant. Measuring temperatures to tenths or hundredths of a
degree and maintaining the same dynamic range requires more than 8-bit resolution.
Something between 10 and 12 bits is needed.

The situation is further complicated by the large number of points that may need
monitoring within a system. It’s rare to find only one temperature indicator in the sys-
tem. At the very least there would be six: inside air, outside air, storage tank top, stor-
age tank bottom, collector, and distribution air temperature.
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Very few commercial data acquisition systems use a single channel. Usually they
come with either eight or 16 multiplexed channels. The input of one A/D converter is
switched (usually on a demand basis) between the channels and the results are com-
piled and averaged by the computer. This information can be logged on recording tape,
transmitted serially to another system, or used to run a real-time display. What one
does with the data is a function of the application program.

There are various ways to configure ZAP for high-resolution data acquisition. One
is to simply to replace the 8-bit A/D with a 12-bit binary converter. When the conver-
sion is finished, 12 bits of parallel data are available. Depending upon the converter
chosen, many outboard analog components might still be required, but the process is
straightforward. Unfortunately, these converters are not what you would call inexpen-
sive. Although they are becoming cheaper every day, at this writing they are still con-
siderably more expensive than 8-bit converters of similar speed.

Most 12-bit binary converters are expensive because they are designed to give the ap-
pearance of parallel converters. Toggle the convert enable line and zip, there's 12 bits
of answer. When the computer wants this data, it scans, manipulates, and stores it in a
table for use by other programs. Making the hardware section of an A/D interface less
expensive involves doing less in parallel. Taking the alternative serial approach gener-
ally requires more time and additional data manipulation. We can opt for the ’9west
expense and let-our computer do most of the work. We have already demonstrated
how to eliminate counters and timing logic by doing these functions in software.

An 8-Channel 31/z-Digit AC/DC Interface for ZAP
The solution to the high resolution versus expense question comes in the form of a

31/z-digit multiplexed A» D converter chip. The RICH-133 CMOS integrated circuit is
intended primarily for use in digital voltmeters (DVMS) but enjoys a variety of other
applications because of its versatility. It is a single-channel 11-bit converter, but it is
called 31/2 digits. The Output is BCD ibin ry-coded decimal) and it specifically covers a
range of -1999 to +1999 counts. Basic chip specifications are as follows:

MC14433 31‘;-Digit A/D Converter

Accuracy: :0.05% of reading :1 count
Two voltage ranges: 1.999 V and 199.9 mV
25 conversions per second
1000 MG input impedance
Auto zero
Auto polarity
Over, under, and auto ranging signals available

The MC14433 is a modified dual-ramp integrating A/D converter and is outlined in
figure 8.14. The conversion sequence is divided into two integration periods: unknown
and reference. During the Vm (unknown input) integration sequence, the unknown
voltage is applied to an integrator with a defined integration time constant for a prede-
termined time limit. The voltage output of the integrator then becomes a function of
the unknown input input. The more positive the input, the higher the integrator out-
put.

During the second cycle of the integration sequence, a reference signal of 2.000 V is
connected to Vm. This causes the integrator to move toward zero while the digital cir-
cuitry of the chip keeps track of the time it takes to reach zero. The time difference be-
tween the two integration sequences is then a function of their voltage difference. If
2.000 V were the applied VIN then t1 would equal t,. The unknown voltage is equivalent
to the ratio of the periods times the voltage reference (VHF). This is also known as a
ratiometric converter. The full scale of the converter is determined by VREF- Changing
e to 0.200 V will make the 1999 count output represent 199.9 mV instead of
1.999 V full scale.
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Figure 8.14 A simplified representaticn of a dua/-ramp A/D converter.

The output of the DVM chip is a combination of serial and parallel data. There are 4
digit-select and 4 BCD data lines:

BCD Outgut Lines

Pin 23 Q3 (MSB)
Pin 22 Q2
Pin 21 Q1
Pin 20 Q0

Digit-Select Outputs

Pin 19 D51 (MSD)
Pin 18 D52
Pin 17 D31
Pin 16 D80
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With respect to what the computer sees through 74LSO4 output buffers, the digit
select output is low when the respective digit is selected. The most significant digit (1/2
D51) goes low immediately after an EOC (end-of-conversion) pulse and is followed by
the remaining digits in a sequence from MSD to LSD. The multiplex clock rate is the
system clock divided by 80; two clock periods are inserted between digit outputs.

During D81, the polarity and certain status bits are available. The polarity is on Q2
and the 1/2 digit value is at Q3. If Q2 is a ”1”, then the input voltage is negative, and if
Q3 is a “”0, then the 1/2 digit is a 0.

Figure 8.15 details the schematic of the 8-channel interface board. As shown, it has
the following capabilities:

ZAP 31/2-Digit DVM Interface

0 8 programmable-input channels
0 AC or DC input capability
o Programmable gain of 1, 10, or 100
o Ranges of 0—200 mV, 0—2 V, 0—20 V, or 0—200 V
0 Input overvoltage protection

IC 1 is the MC14433 DVM chip. It is set for approximately 25 conversions a second
and all outputs are buffered. IC 2 is a precision voltage reference chip that supplies the
V”; signal. It is nominally 2.5 V and is trimmed to 2.000 V and 0.200 V with two po-
tentiometers. While a zener diode might provide the same voltage, the temperature
drift associated with such components makes them inadvisable in this application.

IC 5 is configured as a set reset flip-flop. When the conversion is finished, an EOC
signal sets IC 5, indicating to the computer that data is available. When the computer
finishes reading the data, it resets this flip-flop and awaits the next conversion.

ICs 1, 2, 3, and 4 constitute a single-channel 31‘2-digit converter. It has a range of
either 0.200 V or 2.000 V determined by VHF. To achieve multichannel operation and
AC capability, it is necessary to place an input multiplexer and AC to DC converter in
front of 1C 1.
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Figure 8.15 An 8-cnannel 3 Vac/git 0—200 V AC/DC DVM interface (continued on next page).
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Figure 8.16 shows the voltage reference and range selection setup of this interface.
The MC14433 can cover either O—199.9 mV or 0—1.999 V. The ranges depend upon
the level of VHF. When BS of port 1 is low, switches 5 and 6 are in the positions shown.
This would apply 2.000 V to VRE; input and set the integration time constant with an
82 k9 resistor. With BS=O, VREF is 0.200 V, and the integration resistor is 10 k9.

Figure 8.17 illustrates the input subsystem in simplified terms. SW1 and SW2 repre-
sent the gain selection section. As shown, the gain is 1 and no divider network is en-
abled. When an input relay is closed (controlled through IC 9), the input voltage of
that channel is sent directly to the input of IC 1 through a 1 M9 resistor. If the interface
is set for DC and a gain of 1, a 1.400 V input signal at channel 3 would be read directly
as 1.400 V by the DVM chip. If, however, 150 V were suddenly applied, it would be
shunted through 21 and 22, which protect IC 1. The data read by the computer will in-
dicate an out of range condition because the input would be shunted to 4 V.

Closing SW1 or SW2 forms a divider network that allows the computer to read these
higher voltages. A 10:1 divider is formed by closing SW1. The result is a divider net-
work consisting of the 1 M9 resistor R1, and a 111 k9 resistor R2 to ground. An 8 V
input signal would be read as 0.800 V at the input of IC 1. The programmer should
keep in mind that a divider was used on that channel and multiply the answer by 10
when recording it.

Closing SW 2 forms a 100:1 divider. The mathematics is the same except that the
resistor (R3) is now 11.11 k0. An 8 V input would become 0.080 V and a 150 V input
would become 1.500 V. Obviously, proper range selection is necessary to maximize
resolution.

An additional feature of this interface is the ability to accommodate AC inputs. This
is accomplished by simply converting the AC signal to DC after the divider section out-
put. IC 6 and IC 7 function as single-pole, double—throw switches to gate the converter
in or out of the signal path. The actual AC-to-DC converter is shown in figure 8.18.

This device is known as an average RMS (Root Mean Square) converter. if you
apply a 1.0 V peak AC signal to it, it will output 0.707 VDC. This is the technique used
in most digital multimeters. This is also the way we commonly express AC voltages.
For example, household 115 VAC is 115 V average RMS. The peak is about 176 V.
The converter passes both AC and DC because there is no blocking capacitor on the in-
put. If it is inadvertently switched into a DC signal, it will multiply the reading by
1.414.

SW5

0.1].LF
443K 27K .

4 5 We

IR IRC IC 2 5:2,

DUAL—RAMP INTEGRATION VADJLST
TIME-CONSTANT NETWORK fin

2+v REF
SW6
SPDT

MC1403
REFERENCE

4K

(ALL PINS ARE NOT SHOWN) 1 VK ADJUST
MC14433

Figure 8.16 Voltage reference and integration time-constant modification circuitry for the digital
voltmeter.
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L1 INPUTS
o—{I CHANNEL 1

RLZ
o—G CHANNEL 2
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CONVERTER RL3

°—G CHANNEL 3

RL4

T0 o—Cl CHANNEL 4
DVM

INPUT RL5
o—< CHANNEL 5
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1N750A RL6
22 cr—< CHANNELG

SW1 AND SW2 ARE SDST 1N750A

SW3 AND 5M ARE SPOT SW2 5‘“ RU
w—G CHANNEL 7

RLS

o—< CHANNEL 8
\ /\ #

GMN INPUT RELAY
SELECTION OVERVOLTAGE INPUT

PROTECTION MULTIPLEXER

Figure 8.17 D'J'ya’ ”cut conditioning sections.

//VPU7' BUFFER £5-‘5-5: 553-59137 9,855.! $71.75!?

fi \ fi \

+5v

10K
OFFSET
ADJUST 23K

‘5V WV

:00K
5%

1K
1%

‘D—W—

. GA‘N.3\ DTRIM
4._ 10A 1 ADJUST

AC A; -
lNP’uTD A0

LM324 DC
OUTPUT

RESISTORS ME PRE‘ERABLY
1% FOR MAXlMUM ACCURACY

Figure 8.18 A schematic diagram of an AC-to-DC converter.
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Exercising the Interface with a Software Driver
The interface is attached to ZAP through I/O ports. It takes 10 input bits and 8 out-

put bits for full operation. They are arbitrarily chosen as ports 1 and 4 for this descrip-
tion. The actual choice will depend on what addresses you wire when you are configur-
ing ZAP. These ports are not used for anything in the original description and will re-
quire the proper port hardware to be added. Summarizing the 1/0 requirements for the
DVM (digital voltmeter) interface:

Command Output Byte (port 1 output)

B7 EOC enable or disable Disable=1; Enable=0
B6 AC or DC select AC=0; DC=1
B5 2.0 V or 0.2 V range 2.0 V=O; 0.2 V=1
B4 . 0,0 =X1BS gain code 0, 1 =X10

1, 0=X100

B2
B1 channel code channels 0-7 binary
BO

Status Input Byte (port 4 input)

B7
B6
B5 not used
B4
B3
B2
B1 out of range
BO end of conversion

Data Input Byte (port 1 input)

B7 lst digit
B6 2nd digit
B5 3rd digit
B4 4th digit
B3
B2 BCD value
B1
B0
when B7=0 then: B6

B5 not used
B4
B3 1/2 digit value
B2 polarity
B1 not used
B0 autoranging status bit

digit enable

This interface uses a software driver to reduce hardware complexity. The program is
not unlike a communications driver. To obtain data from the interface effectively, the
computer must be synchronized with the DVM chip and must perform a specific se-
quence of operations to demultiplex the input data stream.

The actual program that interfaces to and stores the values from the DVM chip is
written as a subroutine. All the information necessary for proper execution of the
driver is provided in the DE register pair at the time of the call. Its contents will tell the
interface which channel to set, whether it should be AC or DC, and which V”; and
gain to use. One channel is converted every time the driver routine is called.

The information set in the DE register pair at the time of the call is the command out-
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put byte (port 1 output), and each bit has the designations previously listed. The only
difference is that bit 7 (the enable/disable bit to the A/D converter) is sent as a logic 0
when doing a call. The driver will set it to an enable condition after it has pulled in the
proper relay and allowed a 1.3 ms bounce delay.

Demultiplexing the output of the DVM chip is fairly straightforward. Following the
call, the outputs to the interface close the proper switches, and the central processor
hangs in a loop waiting for an end-of-conversion signal. When this happens, the pro-
gram knows that the next 4 digits of data are what it wants. The DVM chip sets each of
the digitselect lines successively, and the program records the values of the 4 BCD data
lines each time. It strips the status and polarity bits from the MSD 1/2-digit byte and
reformats and stores the voltage input value in 4 bytes of memory. The 3 whole digits
are stored in BCD notation and occupy 3 of the bytes. The 1/2 digit, polarity, and out
of range indication are located in the fourth byte. Polarity is indicated by setting the
MSB. A positive reading is a logic 1 and a negative input is a logic 0. The 1/z-digit value
can only be a O or 1 and occupies the LSB of the quantity. Out of range is handled with
a little program manipulation. If the driver detects that the incoming reading is not
within range, it sets the equivalent of +2 in the 1/z-digit byte. Obviously, this is an il-
legal condition for a DVM only capable of counting to 1999. The programmer using
this stored data should check the limits of the data before acting upon it.

When the driver completes its operation, it has acquired a 31, 2-digit reading and
stored it as 4 bytes in a special table in memory. The 8 channels of data constitute a
32-byte table. The location of a particular channel's data is found by a simple expres-
sron:

The 4-byte data starts at memory location L+4(N—1)

where L = starting address of memory table
N = channel number (1 to 8)

Figure 8.19 is the assembly listing of the program that exercises this DVM interface.
When assembled, it occupies less than a page of memory.

Note: One caution should be kept in mind when measuring AC signals with this in-
terface. The ground on the DVM interface is the same as the computers and a potential
short circuit exists unless either the computer power supply or the measured voltage is
isolated.

0100 X
0110 X** MC14433 3 1/2 DIGIT A/fl CONVERTER DRIVER
0130 X
0125 X REV. 1.9
0130 X
0140 DIP EQU 1 DATA INPUT FORT NUMBER
0150 SIP EGU 4 STATUS INPUT PORT NUMBER
0160 COP EQU 1 COMMAND OUTPUT PORT NUMBER

0170 EEOC EQU 200 ENABLE EOC INPUT
0180 EEOC EQU 000 DISABLE EOC INPUT
0190 X
0200 X
0210 X CONVERTED CHANNEL DATA HUFFERS
0220 X
0230 CHQNO nu 000000
0240 UN 000000
0250 CHANI UN 000000
0260 DU 000000
0270 CHQNQ “N 000000
0280 EU 000000
0290 CHHNK DH 000000
0500 13'“ 000000 Figure 8.19 A listing of the assembly-language
0310 CHAN“ 17'” 000000 program that exercises the digital voltmeter.
0330 UN 000000
0330 CHANS UN 000000
0340 EU 000000
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0350
0360
0370
0380
0390
0400
0410
0430
0440
0460
0470
0480
0490
0550
0560
()5337()
0580
0590
0600
0910
0920
0930
0940
0950
0960
0970
0980
0985
0990
1000
1005
1010
1020
1030
1040
1050
1060
1070
1080
1085
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1440
1450
1460
1470
1480
1500
1510
1520
1530

CHANé DU 000000
UH 000000

CHAN7 DH 000000
UH 000000

X
X INTERMEDIATE DATA BUFFERS
)K
CHAN DB 000 CURRENT CHANNEL NUMBER
CCP DU 000000 COMMAND CHANNEL PARAMETER
X
X
XXX START A/D CONVERTER
)K
*
START LD ArE

LU (CCP)!A
AND 007
LU (CHAN)7A
LU IXVCHANO
LU Hy0
L L" E 7 A
SLA E CALCULATE BUFFER OFFSET
SLA E
ADD IXIDE

*
X SELECT CHANNEL AND START CONVERSION
X

LB 3'3 SET CYCLE COUNT
SCSC LU Ar(CCP)

OUT COP SELECT CHANNEL
CALL DELAY
OR EEOC ENABLE EOC OUTPUT
OUT COP COMMAND A/D CONVERTER

*
X WAIT FOR EOC
*
NEOC IN SIP READ CONVERTER STATUS

BIT OvA TEST FOR EOC
JR ZIUEOC JUMP IF NOT READY
DJNZ SCSC
BIT 19A TEST FOR OVERANGE
JR NZyOVER JUMP IF TRUE

*
X CONVERSION UONE§PROCESS FIRST (NSF) DIGIT
X
MSDO LB ByEOO SELECT DIGIT 1

CALL RDIG WAIT AND READ DIGIT 1
CRL
RRCA RIGHT JUSTIFY DIGIT VALUE
RRCA
RRCA
AND 1 ISOLATE
LU E90 INITIALIZE STATUS BYTE
BIT firm TEST PULARITY
JR NZ9M8D3 JUMP IE POSITIVE
LU E9200 LOAD POLARITY SIGN

X
X SAVE M80 AND CURRENT PULARITY
X
M503 OR E ADD PULARITY SIGN TO MSH

LU (IX+0)yA SAVE IN DATA BUFFER
)K
X PROCESS ENH HIBIT
X

RRC B SELECT DIGIT 2 Figure 8.19 continued
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1540 CALL RUIG UAIT AND READ DIGIT
1550 AND 017 ISOLATE
1560 LH (IX+1)9A STORE SECOND DIGIT
1570 X
1580 * PROCESS 3RD HIGIT
1590 X
1600 RRC B SELECT 3RD DIGIT
1610 CALL RUIG NAIT AND READ HIOIT
1620 AND 017 ISOLATE
1630 LE (IXt2)rfi STORE
1640 *
1650 * PROCESS 4TH UIOIT
1660 X
1670 RRC B SELECT 4TH UIOIT
1680 CALL RDIG NOIT AND REQU UIOIT
1590 AND 017 IOOLATE
1700 [O (17+3)yfl STORE
1710 RAPUT RLT
1 7530 *
1730 X LOAD 2.000 OVEREANEE VALUE INTO DATA BUFFER
1740 X
1750 OVER LU 072 LOAD MED VALUE
1760 LU (IX+0)yfi
1770 XOR A
1780 LE (IX+1)yA LOfiD LSD VALUES
1790 LU (IX+2)7A
1800 LH (IX+3)rfi
1810 JR RAPUP
1870 X
1880 X
1890 * HERD PISIT ROUTINE
1900 *
1910 RDIG I” PIP REAU DATA BYTE
1920 CFL CONVERT TO HIGH TRUE LOGIC
1930 LD Dofl SflVE COPY
1940 AND B TEST FOR OTVEN HIGIT READY
1:10 JR ZyFZZS JUMP l? HOT
19:) LB Ark PLJTCRE A REGISTER
1973 RET RETURN TO CALLER
195: DELAY Ln C737
199 T Ikflml INTO C
303$ “ Z
2010 UELl

Figure 8.19 retinued

Potential Applications
I feel that data acquisition is a natural application for ZAP. The interface outlined

above can be used in a solar heating system to monitor and record pertinent data.
Using the facilities of the ZAP monitor and the DVM interface routine, an 8—channel
data logger is practical. In general, all that would be required is a supervisory program
that calls the DVM 8 times to obtain the 8 sensor inputs. It then sets the limits of the
memory table to a serial output subroutine and stores the readings on a cassette. This
could be done continuously or at regular intervals. The ultimate system would include
a real-time clock so that these readings, as well as the times at which they were taken,
could be recorded.

Real-Time Clock
If ZAP is going to be used for critical data acquisition or control functions, consider-

ation should be given to real-time synchronization with process events. A simple defi-
nition of a real-time system is one that responds to the need for action in a period of
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time proportional to the urgency of the need. It boils down to the fact that the comput-
er must be capable of performing a specific action at a specific time. For this to happen,
the computer must be able to “tell time.”

We can accomplish this by using either software or hardware applications. The
simplest technique is to use a clock circuit (figure 8.20) to provide a time tick to the cen-
tral processor's nonmaskable interrupt line. It can be every 60th, 10th, or 1 second, as
suggested in the schematic. When the computer acknowledges the interrupt, it first
saves all the registers from the program it was executing, and then services the real—time
interrupt. Frequently, the first action is to increment an internal counter that keeps
track of elapsed time. Usually it's a value equivalent to the total number of clock ticks,
whether in seconds or milliseconds. Once this regular interval has been established, it is
easy for the computer to perform real-time functions.

Clock resolutions down to milliseconds sound great and make interval timing ex-
tremely accurate. However, I doubt most ZAP builders would want to use such an in-
terface in light of the complex software involved. I much prefer an interface that is
easier to implement and more likely to be used.

Essentially, the kind of real—time system most appealing to ZAP owners has a resolu-
tion of perhaps 1 minute rather than 1 ms. Also, it's best if it can be read directly in
hours and minutes rather than as a total clock count. A direct benefit is reduced over-
head. The computer does not have to acknowledge the clock update or scan status flags
as often. At first glance, it may not seem like much of a saving, but some routines can
use up to 10 percent of the processor time handling a millisecond clock interrupt.

D '7;= :.'.,: '.__-
I1

ll5VAC E :125-1: ~‘--;_::_: ._,
SOHZ 2:5:_. x'\""/'\_._' g 1N5

W _ .

[\fi f ‘ : >c274‘;

"_ -EVEL 12__r 0Astasis: :1.uc1 7414 14 r V ‘ ' U BIN
|C2 7492 5 "

1C3
7490
+10

1C3 7490 5

Figure 8.20 A simple time-base generator for an interrupt-driven rea/-t/me clock.

An Old Clock Chip to the Rescue
The easiest way to provide an hourly and minute-by-minute input is to interface the

computer to an MOS/LSI clock chip similar to that found on most digital clocks or
watches. There are two approaches to the design of a clock interface: one method is to
let the clock circuit operate independently from the computer, attached in such a way
that the computer can monitor the output lines and extract a time value on the fly. The
software necessary for this approach would be very much like the DVM interface
described previously. The other method, which I prefer because it involves less soft-
ware, is to give the computer complete control over the information flow of the clock
in a synchronous manner.
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CRYSTAL
FREQUENCY ' 3.579545 MHx

+12V

Figure 8.21 shows such a clock interface. This circuit, manually preset to keep it sim-
ple, is computer directed. The basic 4—chip circuit consists of an MM5312 4-digit BCD/
7-segment output digital clock chip, an MM5369 time-base generator, and two MOS-
to-TTL buffers to send data to the processor.

Time is set on the chip by grounding the slow and fast set lines, pins 14 and 15. To
know what is being set you must read the interface at the same time, and display the
time on the 4-digit hexadecimal address display, already part of the expanded ZAP.
Time is read from the interface as 4 binary-coded decimal numbers. The 8 input lines to
the computer are attached to an 8-bit parallel input port, and are divided between 4
digit-enable lines, and 4 BCD digit-value lines. Data appear as a digit enable and an
associated BCD number. The tens of minutes data is read on B0 thru B3 when BS is
high (B4, B6, and B7 are low). Similarly, BO thru B3 will hold the tens of hours quantity
when B7 is high. The interface logic will stay on a particular digit until it is instructed to
proceed to the next digit. Sequencing is under program control and uses one output bit
of a convenient parallel port.
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Figure 8.21 A schematic diagram of a real-time clock interface.
a) Using a MOS digital clock chip.
b) With battery backup.
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Figure 8.22 shows how the multiplexer line is controlled in this application. One bit
of an output port is used to pulse multiplexer input pin 22. (All that is required is a 1 ms
pulse. As an alternative, a one-shot could be triggered from a decoded strobe line of an
unwired port.) At any time, 1 of the 4 digit-enable lines will be low and a digit’s value
will be on the BCD output lines. Just determine which digit it is and store the value.
Next we pulse the multiplexer input to enable the next digit and save it as well. Con-
ceivably, it takes only 4 iterations of this procedure to obtain a complete 4-digit
reading. If you prefer a more orderly approach, you can follow the program flow out-
lined in figure 8.23. The only difference is that it waits until the chip cycles to the begin-
ning before storing the readings.

MULTIPLEX TIMING INPUT H H n H [—l

MINUTES (UNITS) "“"'];;/ l I

Figure 8.22 The multiplex timing sequence MINUTES (TENS)
for the display in the circuit of figure 8.21.

HOURS (UN ‘3‘ /—

/

:3 LINES CONTAIN VALID DATA
3 T DURING THIS Peace

- ‘ "ELY zoous SETTLING TIME)

PULSE
DISPLAY MULTIPLEX
INPUT

READ M2 BCD

PULSE
DISPLAY MULTIPLEX
INPUT

M1= MINUTES (UNITSI
M2=MINUTES (TENS)

H2= HOURS (TENS)

PULSE
DISPLAY MULTIPLEX
INPUT

READ H2 BCD I

Figure 8.23 A flowchart of a program for the circuit in figure 8.21.
STORE OR DISPLAY
HOURS AND MINUTES

RETURN 0R
REPEAT
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CHAPTER 9
BUILD A CRT TERMINAL

LOW COST VERSATILE CRT TERMINAL
This chapter describes the design of a low-cost features-oriented cathode-ray tube

(CRT) terminal. Two MOS/LSI devices from Standard Microsystems Corporation
reduce the number of parts required for a CRT terminal yet enhance its capabilities.

The two devices, the CRT 5027 video timer and controller and the CRT 8002 video
display attributes controller, provide virtually all of the circuitry for the display por-
tion of the CRT terminal. (See Appendices C8 and C9 for specifications.)

The terminal is designed to stand alone and communicate via an RS-232C interface
with any computer system. If, in the expanded ZAP, the é—character hexadecimal dis-
play proves inadequate, then the experimenter has only to construct this unit and at-
tach it to the serial port already assembled.

Device Description
The CRT 5327 contains the logic required to generate all of the timing signals (ver-

tical and horizontal synchronization, page refresh memory address, etc.) required by a
CRT terminal. The entire display format including interlace/non-interlace, characters
per row, rows per frame, scans per row, horizontal synchronization pulse width, and
timing are user programmable for all standard and most nonstandard formats.

Although the CRT 5027 is basically structured for use with its own microprocessor,
this design describes a ”dumb terminal" using a low—cost PROM and standard TTL
logic to replace the microprocessor control. While increasing the number of the parts,
this design results in a low-cost, high quality alphanumeric/graphics terminal.

The CRT 8002 provides a 7 X 11 dot matrix, 128 character generator ROM, and a
high—speed video shift register cursor. It includes logic to generate such functions as
underline, blinking, reverse video, blanking, and strike-through. Additional wide and
thin graphics modes allow the creation of line drawings, forms and unique graphic
symbols.

Terminal Description

As with most electronic designs, a CRT terminal involves a large number of perfor-
mance and cost trade-offs. A screen format of 16 rows of 64 characters per row was se-
lected to minimize memory requirements (1 K bytes) and keep the video frequency
within the limits of lower cost video monitors. An 80-character line would have not
only increased the video frequency beyond the bandwidth of many low-cost monitors,
but also would have increased the memory requirements. Similarly, more rows per
page would have increased the memory requirement unless the characters per line were
reduced.

In many microprocessor applications, the page memory is shared with the processor
via a data bus. In this application, the page memory is used strictly by the CRT with
data input synchronously, character-by-character, into the cursor position.

Full graphics or attributes may be selected on a character-by-character basis using
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control words on the input data bus. A block diagram of the terminal is shown in figure
9.1.

ATTRIBUTE/ PAGE
MODE CRT8002MEMORY MEMORY

DOT
COUNTER

CO
LU
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N
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DR
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S
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NT
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S

CRT5027

DECODER/“TC” CURSOR LOGlC

E —* ::'«::;‘ SERIALKEYBOARD > .=- -—§ SERIAL 1/0
KR2376 " BUFFER

Figure 9.1 A block diagram of a :.‘.-:osr cathode-ray tube terminal.

Character Format

The CRT 8002 requires a minimum 8 X 12 character block to form its basic 7 X 11
character and to provide line and character spacing. However, in order to allow fram-
ing a character fully for a reverse video presentation, the horizontal character block
must be increased to 9 or 10 dots. For the same reason, allocating 13 lines per character
allows top and bottom framing as well.

With the standard TV sweep rates of 60 Hz (vertical) and 15,750 Hz (horizontal),
there are 15,750 + 60 = 262.5 lines per frame. As non-interlaced operation requires
an even number of lines, a horizontal frequency of 15,720 Hz is used. The 16 rows
X 13 scan lines per row result in 208 lines of displayed data. The remaining 54 lines
will be automatically blanked by the CRT 5027 and will provide upper and lower
margins.

To allow for left and right margins as well as for retrace time, a total 80 character
times are allocated per line. A good rule of thumb is that the total number of character



times is 25% greater than the actual number of displayed characters.
The video clock frequency is calculated as follows: 10 (dots per character) x 80

(character times per line) X 15,720 Hz (horizontal sweep frequency) = 12.576 MHz.
See the worksheet in table 9.1.

1.HCHARACTERMATRIX(No.ofDots):.. . .. .,._........... .. .1...
2. VCHARACTER MATR1X(No.ofHoriz.Scan Lines): ............... _I/___
3. H CHARACTER BLOCK (Step 1 + Desired Horiz. Spacing = No. in Dots): /0
4. V CHARACTER BLOCK (Step 2+ DeSIred Vertical Spacing = No. in Horiz.

ScanLir‘es):... .. .. ., ., ... .. . ’3

5. VERTICAL FRAME (REFRESH) RATE (Freq. in Hz): A
e. DESIRED NO. OF DATA Rows: i
7. TOTAL NO. OF ACTIVE "VIDEO DISPLAY" SCAN LINES

(Step4xStep6=No.in.Horiz.Scan Lines): . . . .. . .. _J_O_§_

a. VERT. SYNC DELAY (No. In Horiz. Scan Lines): ,. . . . ... .. .... __o26_
9. VERT. SYNC (No. in Horiz. Scan LInes;T=J9L3-us'): ... . ..,... . 3—

1o. VERT. SCAN DELAY (No. in Horiz. Scan Lines; T =_flq_ms')z ... .25
11. TOTALVERTICAL FRAME (Add steps 7 thru 10 = No. in Horiz. Scan Lines): 4163;
12. HORIZONTAL SCAN LINE RATE (Step5x Step11 = Freq. inKHz): 5 7°10
13. DESIRED NO. OF CHARACTERS PER HORIz. Row: 64

14. HOW. SYNC DELAY (No, in CharacterTirre Lang-.1 =_LL_1-5' '1; _6__
15,HORIZ.SYNC1\'OiRCta'ac‘erT ~e x s = 5 5" -2 7

3

80

ra576
G! 576

Table 9.1 A CRT 5027 worksheet for a 64 characters per row, 16 row, no” ":5 ' aced screen format.

Programming the VTAC
The CRT 5027 VTAC (Video Timer and Controller) is user programmable for all

timing and format requirements. The programming data is stored in 9 on—chip regis—
ters. Although a microprocessor can easily provide the programming data, a low-cost
PROM is used in this application. The 9 registers are programmed as follows (see table
9.2):
Register 0: This register contains the number of character times for one horizontal pe-
riod, and is normally 1.25 times the number of characters per line, in this case 64 X
1.25 = 80. As the internal counters are initialized at zero, the actual number in the
register is 80 — 1 = 79.

IOIIIOIOiItIiIIII
Register 0

Register 1: This has 3 fields:
1) bit 7 — one for interlace, zero for non—interlace. In this example, noninterlaced

Operation is selected.
2) bits 3 thru 6 program the number of character times for the width of the horizon-

tal synchronization pulse. This parameter is monitor dependent and is typically
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5 us. Because there are 80 character times for a 63.6 us horizontal scan time
(1 + 15,720), each character time is 0.801 [15; 7 character times will be used to
generate a 5.56 us pulse.

3) bits 0 thru 2 set the horizontal “front porch.” This essentially positions the data
horizontally. The monitor's specification will determine initial programming al-
though some experimentation may be required to center the display exactly. Six
character times were selected for the front porch.

|0|Ol1l1l1|1l1l01
Registerl

ADDREssREG.# A3 A0 FUNCTION BIT ASSIGNMENT HEX. DEC.
0000 HORIZ.L|NECOUNT 80 ° 1 0 ‘1 1 1 1 1 4F 7‘7

0001
0 o 1 1 1 1 1 0 3g 5;

Q»;. 3 ~;—_ 3",? 13

0010 629313153 =3. (:7 63 49

0011 SKEW CHARACTEFS/_ ~r——1 _ W3DATA Rows—IG_ . ‘ ' ' 3”
.2610100 )S(C=ANS{3FRAME O 0101013131.11 03 3

0101 VERTICAL DATA START
= 3 + VERTICAL EGAN DELAY:
§EifisDTEXS¥T 0 ° 0 1 1 1 0 0 1C ~28

0110 -:s:‘;:_;s:1_:A_1vee)D DATA Row x x 11 O 1 1 1 1 OF ’5

Table 9.2 A CRT 5027 regise'c :g'ET“ 1: : (S'eet for a 76 x 64 screen format.

Register 2: This has two fields:
1‘» bits 3 thru 6 (bit 7 is not used set the number of scans per character. In this case,

we have defined the character as 10 X 13, so the binary equivalent of 13 — 1 =
12 is used (all CRT 5027 counters start at zero, not one, so programming of
counters is always one less than the number).

2) bits 0 thru 2 contain a 3-bit code for the number of characters per line. From the
data sheet the code for 64 is 011.

|O|1!10'O 01111‘

Register 2
Register 3: This has two fields:

1) bits 6 and 7 delay the blanking cursor and synchronization timing to allow for
character generator and programmable memory propagation delays. Generally,
one character time will allow for these delays.

2) bits 0 thru 5 define the number of data rows, once again starting with binary zero
for one line. 16 - 1 = 15 will be programmed.

|1l0l01011l1l1l1l
Register 3

Register 4: Register 4 sets the number of raster lines per frame. For the noninterlaced
mode this is derived by the formula (N — 256) + 2 = 3.



WOIOIOIOJOMW
Register4

Register 5: This contains the number of raster lines between the start of the vertical
synchronization pulse and the start of data (vertical synchronization + back
porch). This time must be long enough to allow for the full retrace time of the
monitor and to allow vertical positioning of the display. We will use 28 here. The
front porch will be calculated by the CRT 5027 as 262 — (13 X 16) - 28 = 26.

0001110|0J
Register 5

Register 6: Register 6, the scrolling register, is programmed with the number of the last
data row to be displayed. Since we want to initialize the CRT 5027, this will be
programmed the same as Register 3 (bits 6 and 7 are not used).

WOiOlOliliblfl
Register 6

Register 7 and Register 8: These registers contain the cursor character number and row
number respectively. Since the cursor is to be initially positioned at the top left
corner, both registers will be initialized with all zeros. Subsequent cursor position
changes will be entered as described under ”circuit operation."

Circuit Description

Referring to {irate 92 IC 1A IC 13, IC 4 provide the video dot clock (12.55 Bil—12)
and the charac:er clock DCC, which is the dot clock + 10 (each character is 10 dots
wide . The video do: clock determines the actual video data rate. The charac:er clock
determines the speed each character is addressed. lC 6A buffers the dot clock input of
the CRT 8002. A pull-up resistor is used on the output to guarantee the logic one re-
quirement of the V’DC input.

The LOAD command loads the register information required for programming the
CRT 5027 from the PROM 1C 7 to the CRT 5027. The “self-load” capability of the CRT
5027 is used to automatically scan the PROM addresses. LOAD is automatically gener-
ated on power-on by 1C 1D.

Because of the bus structure of the CRT 5027, cursor position information is loaded
on the same bus as the register data. Three-state data selectors IC 1-1 and IC 15 select
cursor X position data from counter IC 8 and 1C 7 or cursor Y position data from
1C 1D. IC 12 and IC 13 select the address mode for the CRT 5027. Three modes are
used: "nonprocessor self-load" for register loading, load cursor X position, and load
cursor Y position.

1C 16 thru IC 21 decode attribute mode and cursor controls from the ASCII data
bus. If graphics or special attributes are not desired, 1C 16, 17, and 21 are not required.
Similarly, if cursor controls are directly available, decoding them is not necessary.

IC 19 and IC 20 are 256 X 4 PROMs. Their exact programming can be suited to the
user needs. The programming used in this terminal is shown in table 9.3. When a key
designated as an attribute or mode key is depressed, the appropriate control word is
latched in IC 21; all subsequent data entries will have that word loaded in the upper 4
bits of programmable memory. This allows the attribute or mode to be changed on a
character—by-character basis. 1C 18, a 2 to 4 decoder, is enabled when a cursor control

backspace, carriage return/ line feed, or i is decoded and provides the appropriate cur-
sor movement.

TTL or low power TTL can be used throughout. Shottky TTL is recommended for
IC 6 due to the fast rise time requirements of the clock input.
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Figure 9.2 A schematic diagram of a low-cost versatile CRT terminal using the CRT 5027 and CRT
8002 chips (continued on next page).
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Operation
After power-on, Control Q should be depressed to latch the system in the ”normal”

mode. Depressing the space key and the erase key simultaneously will then blank the
screen. All further character entries will be displayed normally. If other attributes or
graphics are desired, the appropriate control code is entered. This character will not be
displayed or cause cursor movement, but will latch the new command. Modes may be
changed for every character desired. Cursor movement may be decoded from the
ASCII input by the control key as indicated in table 9.3.

PROM Programming

Keyboard Entry Function Address PROM 1 Output PROM 2 Output
76543210 D1D2D3D4 D1D2D3D4

Return Carriage Return 00011011 0011 1000
LF Line Feed 00010101 1011 1000
Control H Cursor LEft 00010001 0111 1000

RS Cursor Up 00111101 1111 1000
US Cursor Right 00111111 1111 1010
Control Q Normal Attribute 00100011 1111 1011
Control W Blink 00101111 1011 1011
Control E Underline 00001011 0111 1011
Control R Reverse Video 00100101 0011 1011
Control T External Mode 00101001 1101 1011
Control Y Wide Graphics 00110011 1100 1011
Control U Thin Graphics 00101011 1110 1011
Balance of PROM 0011 1110

Table 9.3 PEO‘J :':_:'a”'n/ng for the circuit of figure 9.2.

The Rest of the System

Figure 9.3 illustrates the balance of the circuitry required to implement a full
RS-ZEZC compatible serial 1. O terminal. L'tilization of MOS LSI reduces the package
court to a bare minimum.

A KR2376 keyboard encoder, IC 1, encodes and de-bounces the keyboard switches
and provides an ASCII data word to the COM 2017 CART lsee Appendices C6 and
C7,. The L'ART, in turn, provides the serial receive transmit interface. The data rate is

programmable by means of the switch cor.:rol.ed input code to a COM80~16 data rate
generator see Appendix C10).

TERMINAL VARIATIONS

The terminal described can easily be modified for a wide variety of other screen for-
mats. The following changes are required for an 80-characters per row, 24-row format:

1. Horizontal sweep rate — to allow for the increased number of displayed lines
(312), the horizontal sweep rate is increased to 20,220 Hz.

2. The video oscillator frequency is calculated as 9 (dots per character) X 100 (char-
acter times per row) X 20,220 = 18.198 MHz. Notice that 9 dots per character
was selected instead of 10, as 10 would have resulted in a clock frequency of
20.2 MHz, which is beyond the CRT 8002A's top frequency. IC 4, therefore,
must be set for divide by 9 rather than 10.

3. An additional 1 K bytes of page memory is required. Figure 9.4 shows the revised
address connections.

4. Register programming for the CRT 5027 follows the worksheet shown in tables
9.4 and 9.5.



TO KEV MATRIX

(X0 X1 X2 X3 X4 X5 X6 X7 V0 V1 Y2 V3 YA V5 Y6 Y7 V8 Y9 Y10$ C‘

TTTTTTTTTTTTTTTTTTTTT
aw3 Ics

Fcc KR2376~ST 5“
100K 2
‘ PC“ as av 55 as 54 e3 92 51 smoae Pl osn HWY ERROR
+5 1 la 17

1 ‘7,
6_]2 3‘ 1 2 3

”‘CS “’5 FRAMING ERROR
TD7

107 gave me
IDS (—-——-6—Ro7 T05
IDS (—-——7-Roe T04
IDA (—Bnns T03
I03 é———9n04 rm:0102 nu: TD]
IDZ #502 ms 3mm
|Dl (—1—2—Rm TS

lCdA ICBD

on 6—33q RS! 1 11
+5 "Ea FE 33K +5 Rs-zaz

Um "Hiya no PARtTV "0
”ib— New

‘6 fi '3 33m
21 ~. . _ novaMR .: 2‘ stop BITS

15 N55“ m
°——‘ _ t I file

E5 Lima? =.a~ bum FULL DUPLEX '_
35 N051 Pc:——<:"Q h ' 2

m w TC? v—O 5"'“ f7comzon n do /,—1 . , .
. K new; 1 Figure 9.3 A schematic dragram of a

.5 ‘5 7'“. L: HS-2320 interface fora terminal.
L}. to I} _ I: .

5 132:” ‘ 5 3 :2
D C 5 ‘ 5 ES

:2 :3 .: . g 2:
L [a : 2:

,7 g f: !/ g .e KR2376-ST

m h m

r \
H0 > ) A0
H1 ) /“
H2 ) , A2
H3 ) > A3

H4 >——————-
.\
3 H5 >——-— ————> ‘4
m \if; H6 ) / A5 5.
0 E
o.. o\DRO , A6 '-

om > A7
‘ F A‘ eaz , A8
1

‘ DR3 }———
LDM )— ———> A9

u 1 ‘—-——9 A10)
+5 14 6 11 I3 5 2

. . 4A 28 3A IE 2A 1A
Figure 9.4 A memory-mapp/ng system Ti 5 1—
for a 24 X 80 screen format. 74Lszs7

8

E 48 38 4V 3V 2Y1Y

151310129 7.4
I I

n? 1,
+5 ::1K

BUILD A CRT TERMINAL 221



.HCHARACTERMATRIX(No.oIDots): .1 .. , , , .. . . .1..._.

2. VCHARACTER MATRIX (No, of Horiz. Scan Lines): 1 . . . , #L.

3. H CHARACTER BLOCK (Step 1 + Desired Horiz. Spacing = No. in Dots): ___9_

4. V CHARACTER BLOCK (Step 2+ DeSIred Vertical Spacing = No in Horiz
Scan Lines)..................... , 1 ._/§__

5. VERTICAL FRAME (REFRESH) RATE (Freq. in Hz): . ,, .. . , 49...

6, DESIRED NO. OF DATA ROWS:. ,. , , . A
7. TOTAL NO. OF ACTIVE “VIDEO DISPLAY” SCAN LINES

(Step4xStep6= No. in Horiz. Scan Lines) , . .......... il—

8. VERT. SYNC DELAY (No. in Horiz. Scan Lines): . , .1 ..... ___3___

9. VERT SYNC(No. in Horiz. Scan Lines T=____W3 3 us'): ., .. .._.3___

10 VERT. SCAN DELAY (No. in Horiz, Scan Lines: T =flLus'); . _/<3__

11, OTTAL" ERT‘C AL F34.': Addsiepsflhru 10 = No In Horiz. Scan Lines): _&

‘i : Freq in KHZ): ....... M

.‘.‘: . . . , _&)__

14, HORIZSYNCDELAYIM Ir- SwaraczsrT ~e D— :sT =/_%,_us“): __3_
15. HORIZ.SYNC(No.inCharacterTimeUnits;T =.L&_#S")I . .. .40.—
16. HORIZ. SCAN DELAY (No. 'In Character Time Units: T =_3_¢_é.‘_#$‘ ')1 ,7

17, TOTAL CHARACTER TIME UNITS IN1(1).HORIZ. SCAN LINE I00
(Add Steps131hru16):.. .. ,. .., __._._

'3 C‘ARACTERRATE(Step12xStep17=Freq.in MHz):.... ,. . 420—232.

:-:-::<-. DOT)RATE(Step3xSIep18=Freq inMHz) .. .. flig—

Table 9.4 A CRT 5027i v": 35: ‘s ' a” 53 characters per row, 24 row, non/nter/aced screen fcrmat.

ADDRESS
=5: = A3 A0 =- :’: E' :23 : “E - —=« DEC.

: 0000 E:‘:_ 2:; T ’00 C < ’ 63 99

2301
53 83

2 :30 SCANS 2:2 ~: I3
CHARACTES 2;“ 80 65 'O/

3 C“ 1 SKEW CHAQ‘C'E =S__l 1 I.
DATARows_~l~r_ 0 I 0 ‘i‘ 1 97 I5I

-~ 3354 c .3 sczANS/SRAME_.__ 0 O 11 1 O 010 018 1+0

5 0131 VERTICAL DATA START
= 3+ VERTICAL SCAN DELAY:
SCAN DELAY____
DATASTART_-1I___ 0 0 0 1 ° 1 l5 5“

6 0110 LASTDISPLAYEDDATA ROW x x 11 1 1 1 ,7 .23

.Table 9.5 A CRT 5027 register-programming worksheet for a 24 x 80 screen format.
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Appendix A

Construction Techniques

CONSTRUCTION TIPS
As a result of building a project every month for my "Ciarcia’s Circuit Cellar” col-

umn in BYTE magazine and of constructing every circuit in this book, I feel I can speak
as an authority on the subject of prototype construction. A prototype is a nice term
that describes the one-of—a—kind kluge that you build from a schematic. This is opposed
to the kit or semi-assembled project that includes a printed circuit board which only re-
quires plugging in components.

Prototyping a circuit is not easy. There are many dos and don'ts, but successful pro-
totyping is primarily a function of experience. And experience comes only by building
something.

The text is purposely laid out with this philosophy in mind. I suggest that you start
with the power supply. Not only is the rest of the computer useless without it, but it
has built-in protective circuitry that is very forgiving if you make mistakes. Also, by
constructing the power supply first, there is less likelihood of destroying the rest of the
computer as you are testing the power supply.

In general, the cardinal rule of prototyping is: be neat. The ZAP computer has high
frequencies. Wiring should be the shortest distance between two conneczions. The
longer the wire, the more of an antenna it becomes. In extreme cases. the c ornputer can
actually cease to function because of induced electrical noise. W121". the relatively
slower digital signals carried by the wiring attached to external input and output ports,
the situation is less critical. Short pulses and high-speed data, such as the signals on the
central processor control and address lines, are more critical. In these cases, it is always
a good idea to use additional protective circuitry such as buffers.

To a certain degree, the ZAP computer can be laid out as you see fit. Figure A.1 sug-
gests one approach: it can be wirewrapped or hand soldered. Almost any board large
enough to accommodate all the chips should suffice. A good choice is a standard 3-100
prototyping card available at most computer stores. There is no particular bus other
than the standard Z80 signals designated for ZAP because it is primarily intended as a
single-board system. The lOO-pin connector provides a convenient I/O and power con-
nector. Care should be taken if you decide to split the computer schematic and assem-
ble the computer on more than one board. The separation should be between logical
subsystems; for maximum success, all signals should be buffered in and out of the
board, e.g., all the memory could be put on a separate card. As outlined in the text, the
address and data lines necessary to this function are already properly buffered.

The question of Wirewrapping versus soldering is the builder’s prerogative. Personal-
ly, I prefer point—to-point hardwiring because it’s easier to modify when troubleshoot-
ing. Wirewrapping might be easier where the ZAP circuit has already been tested and
refined.

'Long power-supply daisy chains should be avoided. Rather than running a single
+5 V and ground wire, it is better to use a double-sided prototyping board so that the
top and bottom sides of the board can be set to ground and +5 V respectively. With
this approach, each chip can be plugged in (using IC sockets) and the power leads
soldered directly to the copper planes. Wirewrapping or not, it is a good idea to solder
the power leads to reduce the potential of intermittent connections. Using the ground
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IO, 8T97/74367 8T97/74367

8212
1010 |C4
7420 8T97/74367

IC11 lClZ
7400 7442 ICI5

/
1021 [€13 2708/2fl6
74Ls125 7442

|c14 1020 lClG
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MC14411/COM8046 ___XTAL

Figure A.1 A typical layout of the basic ZAP computer.

plane for wiring is one of the best ways to reduce noise in computers. If you don't have
a ground plane, then solder heavy wire around the perimeter of the circuit board and
run short jumpers to it.

Decoupling capacitors are another must for computer prototyping. Digital-inte-
grated circuits, while being virtually burn-out proof in most applications, are unfor-
tunately susceptible to noise carried along the power lines. Often, it will cause them to



go into oscillation. By placing a 0-01MF to 0.1pLF capacitor between +5V and ground
about every third IC, the problem is eliminated. Another good idea is to place an elec-
trolytic capacitor at the entrance of any DC power connection to the board. Generally,
capacitors are tantalum and three pieces would be required for ZAP’s three supplies.

Finally, if you like the concept of ZAP but would rather spend more time applying
the finished product than testing your construction techniques, you can look into pur-
chasing various kits and assemblies, including EPROMs programmed for the ZAP
monitor. For the latest price list, write or call: The MicroMint Inc, 917 Midway,
Woodmere NY, 11598. Telephone: (516) 374-6793.

“it?
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Appendix B

ASCII Codes

Parity Control
Space Keybd.

Dec Octal Hex or Character Equiv.

000 000 00 Even NUL @
001 001 01 Odd SOH A
002 002 02 Odd STX B
003 003 03 Even ETX C
004 004 04 Odd EOT D
005 005 05 Even ENQ E
006 006 06 Even ACK F
007 007 07 Odd BEL G
008 010 O8 Odd BS H
009 011 09 Even HT I
010 012 0A Even LF J
011 013 OB Odd VT K
012 014 00 Even FF L
013 015 0D Od CR M
014 016 CE Odd 80 N
015 017 OF Even SI 0
016 020 10 Odd DLE P
017 021 11 Even DC1 Q
018 022 12 Even D02 R
019 023 13 Odd DC3 S
020 024 14 Even DC4 T
021 025 15 Odd NAK U
022 026 16 Odd SYN V
023 027 17 Even ETB W
024 030 18 Even CAN X
025 031 19 Odd EM Y
026 032 1A Odd SUB Z
027 033 1 B Even ESC [
028 034 1C Odd FS \
029 035 10 Even GS ]
030 036 1E Even RS A
031 037 1F Odd US —
032 040 20 Odd SP
033 041 21 Even !
034 042 22 Even “
035 043 23 Odd #
036 044 24 Even $
037 045 25 Odd %
038 046 26 Odd &
039 047 27 Even ’
040 050 28 Even (
041 051 29 Odd )
042 052 2A Odd *
043 053 2B Even +
044 054 20 Odd ,
045 055 2D Even —
046 056 2E Even .
047 057 2F Odd l

Alternate Code Names

NULL, CTRL SHIFT P, TAPE LEADER
START OF HEADER, SOM
START OF TEXT, EOA
END OF TEXT. EOM
END OF TRANSMISSION. END
ENQUIRY. \‘JRU. WHO ARE YOU
ACKNOWLEDGE, RU, ARE YOU
BELL
BACKSPACE, FEO
FORZONTAL TAB, TAB
LINE FEED, NEW LINE, NL
VERTICAL TAB, VTAB
FORM FEED, FORM, PAGE
CARRIAGE RETURN, EOL
SHIFT OUT, RED SHIFT
SHIFT IN, BLACK SHIFT
DATA LINK ESCAPE, DCO
XON, READER ON
TAPE, PUNCH ON
XOFF, READER OFF
TAPE, PUNCH OFF
NEGATIVE ACKNOWLEDGE, ERR
SYNCHRONOUS IDLE. SYNC
END OF TEXT BUFFER, LEM
CANCEL, CANCL
END OF MEDIUM
SUBSTITUTE
ESCAPE, PREFIX
FILE SEPARATOR
GROUP SEPARATOR
RECORD SEPARATOR
UNIT SEPARATOR
SPACE, BLANK

APOSTROPHE

COMMA
MINUS
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Parity Control
Space Keybd.

Dec Octal Hex or Character Equiv. Alternate Code Names

048 060 30 Even 0 NUMBER ZERO
049 061 31 Odd 1 NUMBER ONE
050 062 32 Odd 2
051 063 33 Even 3
052 064 34 Odd 4
053 065 35 Even 5
054 066 36 Even 6
055 067 37 Odd 7
056 070 38 Odd 8
057 071 39 Even 9
058 072 3A Even :
059 073 3B Odd ;
060 074 30 Even < LESS THAN
061 075 3D Odd =
062 076 3E Odd > GREATER THAN
063 077 3F Even ?
064 100 40 Odd @ SHIFT P
065 101 41 Even A
066 102 42 Even B
067 103 43 Odd C
068 104 44 Even D
069 105 45 Odd E
070 106 46 Odd F
071 107 47 Even G
072 110 48 Even H
073 111 49 Odd | LETTER |
074 1 ‘ 2 4A Odd J
075 1‘ 3 48 Even K
076 114 4C Odd L
077 115 4D Even M
078 116 45 Even N
079 117 AF Odd O LETTER 0
080 120 50 Even P
081 121 51 :d O
082 122 52 Odd R
083 123 53 Even S
084 124 54 Odd T
085 125 55 Even U
036 126 56 Even V
C87 127 57 Odd W
C68 130 58 Odd X
069 131 59 Even Y
090 132 5A Even Z
091 133 5B Odd [ SHIFT K
092 134 50 Even \ SHIFT L
093 135 5D Odd ] SHIFT M
094 136 SE Odd A 1, SHIFT N
095 137 5F Even _ o—, SHIFT O, UNDERSCORE
096 140 60 Even ‘ ACCENT GRAVE
097 141 61 Odd
098 142 62 Odd
099 143 63 Even
100 144 64 Odd
101 145 65 Even
102 146 66 Even
103 147 67 Odd

105 151 69 Even
106 152 6A Even
107 153 SB Odd
108 154 60 Even
109 155 6D Odd
110 156 6E Odd
111 157 GP Even
112 160 70 Odd
113 161 71 Even .O

‘U
0

3
3

_
X

‘_
"
_
'3

(O
‘“
C

D
Q

O
U

D
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Parity Control
Space Keybd.

or Character Equiv. Alternate Code Names

Even
Odd
Even
Odd
Odd
Even
Even
Odd
Odd
Even
Odd
Even
Even
Odd

VERWCALSLASH
ALTMODE
(ALTMODE)

EL DELETE,RUBOUTU
ls

w
—

—
»

~
\N

‘<
>

<
E

<
C

"’
m

“

APPENDIX B 231



Appendix C1

intel”
2708

8K (1K x 8) UV ERASABLE PROM
Max. Power Max. Access

2708 BOOmW 450ns

2708L 425mw 450ns
2708-1 800 mW 350ns
2708-6 800mw 550ns

I Low Power Dissipation — 425 mW I Data Inputs and Outputs TTL
Max. (2708L) Compatible during both Read and

. Fast Access Time — 350 ns Max. n'a'“ M°des
(2708-1) I Three-State Outputs — OR-Tie

I Static — No Clocks Required Capability

The Intel® 2708 is an 5‘92~:t ultra. : e: ;*t erasable and electrically reprogrammabie EPFtOM. ideally suited where
fast turnaround and pattern 5::9' *e-ra: :n are important requirements. All data Inputs and outputs are T'i'L cc'n-
patible during both the rea: a‘: :rcg'a'“ nodes. The outputs are three-state, allowing direct interface with cc-imcn
system bus structures.

The 2708L at 425mw is aa a: ' s s’e’s requiring lower power dissipation than from the 2708. A ::.1.e' c 55 :ation
savings of over 50: : a. 1" r ' ‘ sseed is obtained with the 2708L. The 2708L has high 1.1“: as ”—JHIIY
and is specilied at '2:: :; e'ance. A high-speed 2708-1 is also available at aficns ‘er *rc'crccessors
recuiring fast access '. ~

0

The 2708 family is tazricated truth the N-c‘a-nei silicon gate FAMOS technology and is avaiiasie in a 24-: 1 coal in-Iine
pacKage.

PIN CONFIGURATION BLOCK DIAGRAM
cr: :x-ur

A1: 1 v 24 3c C347

AGE: 23:1“ “"IIII

A5: 3 22 3 A9 ‘ l I l I

All: ‘ 21 :1 v3. 65”_ Eggénecr our'ur aurrsns
A3: 5 20 :] Esme
MI: 5 2m '9 3"” A,_.
m: 7 ta 3 PROGRAM 223 ozcooea I trauma

«LsaIAoC a 17 307 iMSBl 3
(L55) on C 9 1s :1 05 $32“ 5—.

01:10 15 :05 ESE: x uxm
o; I: 11 14 :104 23:: ozcoom mom ARRAY

vs;[: 12 13 o;

PIN CONNECTION DURING READ OR PROGRAM

PIN NAMES PIN NUMBER

A0 A, ADDRESS INPUTS I ADDRESS

0. 0s DATA OUTPUTSJINPUTS DATA IIO I INPUTS _

c ME CHIPSELECT/WRITE ENABLE INPUT 9-"- . 1‘8. Vss PROGRAM Von CS/WE Val Vcc
MODE 13.11 I 22. 23 12 1a 19 20 21 24

READ Dom 'LAm GND GND ~12 V“ -5 *5
DESELECT HIGH IMPEDANCE DON’T CARE GND GND +12 \/.H -5 ~5
PROGRAM Dw Am GND PULSED +12 VIHW -5 os

26V
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2708 FAMILY

PROGRAMMING
The programming specifications are described in the Data Catalog PROM/ROM Programming instructions Section.

Absolute Maximum Ratings“
Temperature Under Bias ....................... -25°C to +85°C 'COMMENT
Storage Temperature .......... . .............. -65°C to +1250C Stresses above thoselisted under "Absolute Maximum

VDD With Respect to V53 .................. . . . . . +20V to -0.3V Ra“"95"may cause permanent damage '0 "‘9 device.
VCC and VSS With Respect to VBB ................ +15V10 -0.3V This is a stress rating only and functional operatlon

of the device at these‘or any other conditions above
All Input or Output Voltages With Respect ‘hose indicated in me open-”ion“ sections or this

_to VBB During Read ------------------------ +15V to '043V specification is not implied. Exposure to absolute

CS/WE Input With Respect to V33 maximum rating conditionstor extended periods may

During Programming ........................ +20V to -0.3V affect device reliablI-Iv-
Program Input With Respect to V33 ................ +35V to -0 3V
Power Dissipation .................................. 1.5W

D.C. AND A,C.OPERATING CONDITIONS DURING READ

2708 2708-1 2708-6 2708L

Temperature Range O°C—70°C OTB-70°C 0°C-70'C 0°C—70°C

Vcc Power Supply 5V : 5% 5V 2 5% 5V 2 5% 5V 110%

VDD Power Supply 12V : 5% 12V : 5% 12V 2 5% 12V 110%

VBB Power Supply —5V:5?: 1 —5V:5°/u —5V:5% —5V:10°/a

READ OPERATION
D.C. AND OPERATING CHARACTERISTICS

2708. 2708-1. 2708-6 Limits 2708L llls
Symbol Parameter Units Test Conditions

Mln. TpZI Max. Min. TypIZI Max.

IL. Acres 5' : 3’ : Se ecl Input Sink 1 10 1 10 pA Vm =5.25V or Vm = V“
Cu"e"'

'LO Output .ee-sge 23'5" 1 10 1 10 uA VOUT=5.5V,CSiWE=5‘-‘

IDDISI VDD Su::; C.”e-' 50 65 21 28 mA Worst Case Supply C..-'e"s ‘7

lccl3l Vcc SUDpy 3:1" 6 10 2 4 mA All Inputs High:

lggial v55 Supply CM?" 30 4s 10 14 mA cswe=5v; TA=0‘C
Vii. Input Low Vol'age V55 0,65 V55 0.65 V

. . Input High Voltage 3 3 vccvt 2.2 VCCH V

-;_ Output Low Voltage 045 0.4 v '0L= "6m“ ‘2. 705' ”0—5" 2‘3”};
lOL = 2m (27oaLl

- 1 _- Output High Voltage 2‘ 3.7 V IOH = —100pA

-;_; Output High Voltage : 4 2.4 V IOH = -1mA

=2 =:«er Dissipation 833 325 mW T" =70.C
l 425 mW TA=O'C

NOTES ’sst be applied prior to Vcc and V00 V55 —.5‘ a s: .u ”e as: power supply switched oft
a pas are tor TA=25'C and nominal 5-- es
*ower dissipation is not calculated by s. a' :.s creole ('00. ICC) and laa)mu|tip|ied by their respectlve «or

’2 _ current paths eXIst betweenlheVArlc.s ;:ne‘ 5... es 5”: V55. The IDDv ICC- and 'IB currents should be usec :oceter‘
~ ne’ s_cp!y capacity only.

I 55 'e £‘;BL is specified in the programmed state a“: s ‘5~A '"AX'T‘um tn the unprogrammed state.

2708 FAMILY

2708L 2708, 2708-1, AND 2708-6
RANGE OF SUPPLY CURRENTS RANGE OF SUPPLY CURRENTS

VS. TEMPERATURE VS. TEMPERATURE ACCESS TIME VS. TEMPERATURE
15 5‘” l I l

Voc'55" ALL WISH MRATMG l , t
‘ vpcuxsv CONDIHONS ‘TTL LOAD~IMF i

, huh” y--_55y vac-525v l l l
2° li/l, "//'~ ‘ vim-luv m l 7

/ ANT/i? WW , ,l '3’" -’ V'“ '52“

El Ws-tm ’/ ’1’ 9° 2 / / I," m i I I/
’- -~ i

E g /. // / 59 I '
3 “VE'NIM 3 I i—“1 Y i ‘
=‘ ' . = no l T i. t t l l ,fa \NI 5, l I l 1

'LCM ‘ ‘ ‘
too 1 T I I

l i i
o i I | i

so 60 ~20 o 20 up so so
u ('0 rAl‘c) 1A ('0)
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A.C. CHARACTERISTICS

2708 2708L Limits 2708-1 Limits 2706-6 llts
m I amete ‘

Sy m P“ r Min. Max. Min. Max. Min. Max. Units

IACC Address to Output Delay 450 350 550 ns

too Chip Select to Output Delay 120 120 160 ns

to; Chip Deselect to Output Float 0 120 0 120 0 160 ns

tOH Address to Output Hold 0 0 ns

CAPACITANCE l“ TA = 25°C, f='l MHz A.c. TEST CONDITIONS:
r‘ Output Load: 1 TTL gate and CL = 100 pF

Symbol I Paramemr TYP- i Max Unit. CONUITIOHS Input R se and Fall Times: <20 ns
. I Tina-rt 'zfea-urement Reference Levels: 0.8V andl .. = 3 3

0“ Input CapaCItance 4 i 6 DF ‘ VI ‘ 0V 2.8V for meats, 0 8V and 2.4V for outputs.

5 C5; Output Capacitance 8 j '2 . c-F \‘3V— = 3V Input Pu-se Lees: 0.65V to 3.0V

NOTE: 1. This parameter is periodical y 5am: e: a“: is ':i 730‘: tested

A.C. WAVEFORMS I2]

ADDRESSES X ”5:55;“

:.;; 2'

~\ 1‘
0. ‘~)7//////////

OW t\\\\&\\\\\ ..
NOTES

2 ALL es SHOWN lN PARENTHESES ARE MINiwv M3 A=E \SEC
t._‘v_ESS oweewnse SPECIFIED,

3 cs wv eE DELAYED UP TO tacotco AFTER ADDRESSES A: tAL‘D
v, “.7 lMPACT ON tA

m

4 t3: {SPECIFIED FROM ion ADDRESS CHANGE. WHICr-EIEP OCCURSTFlRS

ERASU R E CHARACTERISTICS

The erasure characteristics of the 2708 family are such that
erasure begins to occur when exposed to light with wave-
lengths shorter than approximately 4000 Angstroms (A). It
should be noted that sunlight and certain types of fluores-
cent lamps have wavelengths in the 3000—4000A range.
Data show that constant exposure to room level fluores-
cent lighting could erase the typical device in approxi-
mately 3 years, while it would take approximately 1 week
to cause erasure when exposed to direct sunlight. If the
2708 is to be exposed to these types of lighting conditions
for extended periods of time, opaque labels are available
from Intel which should be placed over the 2708 window
to prevent unintentional erasure.

The recommended erasure procedure (see Data Catalog
PROM/ROM Programming instructions Section) for the
2708 family is exposure to shortwave ultraviolet light
which has a wavelength of 2537 Angstroms (A). The inte-
grated dose (i.e., UV intensity X exposure time) for erasure
should be a minimum of 15 W-sec/cmz. The erasure time
with this dosage is approximately 15 to 20 minutes using an
ultraviolet lamp with a 12000 uW/cm2 power rating. The
device should be placed within 1 inch of the lamp tubes
during erasure. Some lamps have a filter on their tubes
which should be removed before erasure.
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Appendix CZ

inter 2716
16K (2K x 8) UV ERASABLE PROM

I Fast Access Time I Pin Compatible to lntel® 2732 EPROM
— 350 ns Max. 2716-1
— 390 ns Max. 2716-2
— 450 ns Max. 2716
— 490 ns Max. 2716-5
— 650 ns Max. 2716-6

I Simple Programming Requirements
— Single Location Programming
— Programs with One 50 ms Pulse

I Si“9'° +5V P°‘”°" SUPP” I inputs and Outputs TTL Compatible

I Low Power Dissipation during Read and Program
— 525 mw Max. Active Power
— 132 mw Max. Standby Power I Completely Static

The lntel® 2716 is a 16,384-bit ultraviolet erasable and elect- canv programmao'e read~only memory (EPHOMi T“: 2716

operates from a single 5-volt power supply, has a static standby rrode. and features fast single address locatior z'cg'am-

ming. it makes designing with EPROMs faster, easier and more economical.
mi. -c.

The 2716, with its single 5-volt supply and with an access time up to 350 ns, is ideal for use with the newer h

+5V microprocessors such as Intel’s 8085 and 8086. A selected 2716—5 and 2716—6 is available for slower

The 2716 is also the first EPROM with a static standby mode which reduces the power dissipation Witho.

time, The maximum active power dissipation is 525 mW while the maximum standby power dissmat on s 2' . ‘ ‘

75% savings.

The 2716 has the simplest and fastest method yet devised for programming EPROMs — single ou‘se . e-e :‘cgramming.

No neeo for high voltage pulsing because all programming controls are handled by TTL signals 9' a“. warm at any

time—either individually, sequentially or at random, with the 2716’s single address location pray?" '; '.::ei programming

time for ail 16,384 arts is only 100 seconds.

PlN CONFIGURATlON MODE SELECTiON

2716 2732T
’5 mm C-E y» Vcc OUTPUTS

is izci i i2ll (24] lotus-1n

~ L '5 '5 Dour
_ : ‘Care is .5 High z

=.;::. 3; . _ v”. .25 .5 pm
_ Vii. '75 '5 oour

. VIN ~25 ~5 Hignz

BLOCK DIAGRAM

1Relerto 2732 V , urge-guns
‘6 I

data sheet for ”vb“ P...—

SDECIfications row—a I I I 1 ii I i

02 OUTPUV ENABLE
53 'GM Cm? ENABLE AND

PIN NAMES mm LOGlC our-u! eumus

V IDECODER _-_~ '“m‘r‘
Ao-Aic .__..

ou‘rPur ENABLE aopfitss 'T“
ourPuts mews —-—-_’ x n in“ err

—- osconu - uu mum_.._. .
.

Reprinted by permission of Intel Corporation Copyright © 1980

APPENDIX C 239



1|

240 APPENDIX C

2716

PROGRAMMING
The programming specifications are described in the Data Catalog PH OM/H0M Programming Instructions Section.

Absolute Maximum Ratings*
Temperature Under Bias ............. —10°C to +80°C
Storage Temperature .............. —65°C to +125°C
AH Input or Output Voltages with

Respect to Ground ............... +6V to -0.3V
Vpp Supply Voltage with Respect

to Ground During Program ........ +26.5V to —O.3V

“COMMENT: Stresses above those listed under "Absolute Maxi-
mum Ratings" may cause permanent damage to the clevrce. This is a
stress rating only and functional operation of the device at these or
any other conditions above those indicated in the operational sec-
tions of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device
reliability.

DC and AC Operating Conditions During Read

2716 2716-1 2716-2 2716-5 2716-6

Temperature Range 0°C — 70°C 0°C — 70°C 0°C — 70°C 0°C — 70°C 0°C — 70°C
vcc Power Supplyml 5v :5% 5v :10% 5v :5% 5v :5% 5v :5%
Vp: Power Supplyizi VCC Vcc VCC VCC VC

READ OPERATlON
DC. and Operating Characteristics

Symbol Parameter Min. TVS: Max‘ Unit Conditions

ELI lnput Loa: C-"s‘t ’3 Mt VIN = 5.25V

Lo Output Leakage Cre". 13 pA VOUT = 5.25V

g an $21 v Current 5 mA VPP = 5.25v
l.::.i23 vcc Current (Standby) 10 25 mA c—E=v,H,6E= v.L
‘ l::;»2: Vcc Current (Active) 57 100 mA 55 =CE= VlL
’ V _ Input Low Voltage -0.1 08 V

i i. _ Input High Voltage ‘ 3 ’ vcc+1 v
L ‘. :_ Output Low Voltage 0.45 V IOL = 2.1 mA

\. ;_ Output High Voltage 2 1. V IOH = —400 HA

NOTES: ‘ ‘. - —_s: :_ applied simultaneously or before Vpp and removed SimulV‘EOusl'y’ or a‘:er Vpp.
2 . :a ~2» :9 connected directly to VCC except during programming The supp y Current would tnen be the Sum of lCC and Ham.
3 Ti : :3 .5 .25 are for TA = 25°C and nominal supply voltages.
4 as pa'a'eter ,s only sampled and is not 100% tested.

Typical Characteristics

'CC CURRENT ACCESS TIME ACCESS TIME
VS, V5. V5,

TEMPERATURE CAPACITANCE TEMPERATURE
10 m 79,,

‘° coo son

5° son 500
'2' 40 3 mo E ‘00' a Eis 30 IS 300 .5 300

N zoo 200

10 too 100

o o o
0 IO 20 JD 40 50 $0 70 n o 100 200 300 ‘00 500 600 700 800 0 W 20 JD ‘0 50 60 70 W

TEMPE RAYUIE I C) CL lpFl TEMPERATURE l C)



2716

A.C. Characteristics

Limits (nsi

2716 2716-1 2716—2 2716-5 2716-6 Test

3mm" Paramem Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. c°ndm°ns
IACC Address to Output Delay 450 350 390 450 450 C_E= —E = VIL

iCE E to Output Delay 450 350 390 490 650 CE = viL
105 Output Enable :0 Output Delay 120 120 120 160 200 C? = vIL

IDF Output Enasie High to Output Float 0 100 O 100 0 100 0 100 O 100 CE = V”.

tOH (Eu—tout Hoidfrom Addressesflior O O 0 O O 5E=6E=VIL
OE l‘inic‘never Occurred First

Capacitance [4] TA = 25°C, f =1 MHz A.C. Test Conditions:

' Symbol Parameter Typ. Max. Unit Conditions Output Load: 1 TTL gate and Cl_ = 100 pF
. input Rise and Fall Times: <20 ns

C I , =
[N input CapaCltance 4 6 pF \ ‘ ‘ 0V Input Pulse Levels: 0 8V to 2.2V

COUT Output Capacitance 8 12 pF V347 = 0V

Ou:;u:3 0 EV a”: 2V

A. C. Waveforms [1]

ADDRESSESADDRESSES VALlD ><

r—‘cz—.
6E

_ O U . Q C . . . C I

[5] [6]
l '03 4 to; ,

[5)
[Ace ‘0" ‘—

_.OO .00... .fi

HIGHZ /;;;;;; HlGHZ
OUTPUT VALID OUTPUT }—-'

NOTE' 1. VCC must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.
2. Vpp may be connected directly to VCC except during programming. The supply current would then be the sum of 'CC and Inn.

3. Typical values are for TA = 25°C and nominal supply voltages.
4. This parameter is only sampled and is not 100% tested.
5. DE may be delayed up to ‘ACC - {OE after the falling edge of CE without impact on 1ACC-
6. toy: is specified from OE or CE, whichever occurs first.
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2716

ERASURE CHARACTERISTICS
The erasure characteristics of the 2716 are such that erasure
begins to occur when exposed to light with wavelengths

shorter than approximately 4000 Angstroms (A). It should
be noted that sunlight and certain types of fluorescent
lamps have wavelengths in the 3000—4000A range. Data

show that constant exposure to room level fluorescent
lighting could erase the typical 2716 in approximately 3

years, while it would take approximatley 1 week to cause
erasure when exposed to direct sunlight. If the 2716 is to
be exposed to these types of lighting woo-tons for ex-
tended periods of tme, coacae : as are as able from
Intel which should be eo oier re 2716 v. ndow to
prevent unintentional era rev

The recommended erasure procedure lsee 35:5 C Ag
PROM/ROM Programming Instruction Sec: 0"l ’or t“e
2716 is exposure to shortwave ultraviolet light we c1 has
a wavelength of 2537 Angstroms (A). The integrated dose
(i.e., UV intensity X exposure time) for erasure should be
a minimum of 15 W-sec/cmz. The erasure time with this
dosage is approxmately 15 to 20 minutes using an ultra-
violet lamp With a 12000 pW/cm2 power rating. The 2716
should be placed Within 1 inch of the lamp tubes during
erasure. Some a~:s have a filter on their tubes which
should be remo,:: :e‘:'e erasure.
DEVICE OPERATION
The five modes of cost" ‘ o‘ 2"? 2716 are listed in Table
I. It should be noted :‘ -:.:s ‘or thefive modesare at
TTL levels. The power s.-- “' red are a *SV Vcc and
a Vpp. The VPP power so: . ~ at 25V dcr ng the
three programming modes, ado “-n at 5V -n the other
two modes.

TABLE! MODE SELEC' :s

riNs c‘w (E is: .3
rm 12:- 2‘ :4

vsce

= .- VIL v \ ~ _ —
VIH Den . is e - — ~ ;

PulsedVILtoVIH v.2 ;

i VlL y.L . -

‘ ‘ VlL VlH . — z

no control functions, both of .2“ :* "U51 be
.a in order to obtain data at the CciDuIS.
El is the power control and srccio ce ased
:: :n. Output Enable (GE) is the c-tout
:. d be used to gate data to :re o_::ct

p "s. ‘deoe‘: : of device selection. Assu"i=“=g that
accr .-._e, a::'ess access time “A00 is ec-al to
the be ay from CE to output (tCE). Data is ava :aoe at
the o-touts 120_ns ltggl after the falling edge of OE.
assw ‘9 that CE has been low and addresses have been
stable for at least lAcc — tog.
STANDBY MODE
The 2716 has a standby mode which reduces the active
power drssipation by 75%, from 525 mW to 132 mW. The
2716 is placetfln the standby mode by applying a TTL high
signai to the CE input. When in standby mode, the outputs
are in a high impedance state, independent of the O—E input.

OUTPUT OR-TIEING
Because 2716’s are usually used in larger memory arrays,

Intel has provided a 2 line control function that accomo-

dates this use of multiple memory connections. The two

line control function allows for:
a) the lowest possible memory power dissipation, and

b) complete assurance that output bus contention will
not occur.

To most efficiently use these two control lines, it is recom-
mended that C—IE (pin 18) be decoded and used as the
primary deVice selecting function, while (TE (pin 20) be
mace a common connection to all devices in the array and
ccnrected to the READ line from the system control bus.
Tnis assures that all deselected memory dEYlCES are in their

low power standby mode and that the output p ns are only
active when data is desired from a particular memory

dewce.
PROGRAMMING
Initially, and after each erasure, all bits of the 2716 are in
the "1" state. Data is introduced by selective’y o'og'amA
ming “0’s" into the desired bit locations. Althougn only
“0's" will be programmed, both “1’s” and "0's” ca" be
presented in the data word. The only way to change a ”0"
to a "1" is by ultraviolet light erasure.
The 2716 is in the programming mode when the Van D:‘.‘.‘er
supply is at 25V and (TE is at V“... The data to be pro-
grammed is applied 8 bits in parallel to the data c.23ut
pins The levels required for the address and data inputs are
TTL.

When the address and data are stable, a nsec, active
high, TTL program pulse is applied to the CE/PGM inoat.
A program pulse must be applied at each address location
to be programmed You can program any location at a’iy
time — either individually, sequentially, or at random.
The program pulse has a maximum Width of 55 msec. The
2716 must not be programmed With a DC Signal applied to
the CT/PGM input.
Programming of multiple 27l65 in parallel With the same
data can be easily accomplished due to the slmollcny of
the programming requirements. L l<e inputs of the paral-
leled 27l may be connected together when they are pro-
grammed With the same data. A high level TTL pulse
applied to the (f/PGM input programs the paralleled
2716s.
PROGRAM INHIBIT
Pr gramrning of multiple 2716s in parallel with different
data is also eaSily accomplished Except for (fi/PGM, all
like inputs iincluding O_El of the parallel 2716s may be
cimmon. A TTL level program pulse applied to a 2716’s
CE/PGM inpiflwith Vpp at 25V will program that 2716.
A low level CE/PGM input inhibits the other 2716 from
being programmed.

PROGRAM VERIFY
A verify should be performed on the programmed bits to
determine that they were correctly programmed. The verify
may be performed wth Vpp at 25V. Except during pro-
gramming and program verify, Vpp must be at 5V.
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inter
2102A, 2102AL/8102A-4*
1K x 1 BIT STATIC RAM

Standby Pwr. Operating Pwr. Access
P/N (mW) (mW) (ns)
2102AL-4 35 174 450
2102AL 35 174 350
2102AL-2 42 342 250
2102A-2 —— 342 250
2102A —— 289 350
2102A-4 —— 289 450

- Single +5 Volts Supply Voltage
- Directly TTL Compatible: All

Inputs and Output
- Standby Power Mode (2102AL)
- Three-State Output: OR-Tie

Capability
The Intel® 2102A is a hign s:ee
integrated on a monolithic e"ar
operate. The data is read 0-: r

4.4

.V
A—y

- Inputs Protected: All Inputs
Have Protection Against Static
Charge

- Low Cost Packaging: 16 Pin
Dual-ln-Line Configuration

* :24 word by one bit static random access memory element using N-chacnel MOS devices
it uses fully DC stable (static) circuitry and therefore requires no clocxs or refreshing to
destructively and has the same polarity as the input data.

The 2102A is designed for were", a:: cations where high performance. low cost, large bitstoragei an: s o‘cleinterfacing are
important design objectives. A ow standby power version (2102AL) is also avai/ao/e. It ras a:/ the same operating
characteristics of the 2102A wan the axed feature or35mWmaximumpowerdissipation in stancoy and 174m Win operations.

It is directly TTL compatible in all respects inputs. Output, and a single +5 volt supply. A separate chip enable (Ci) lead allows
easy selection of an individual pacxage when Outputs are OR-tied.

The lntel® 2102A is fabricated with N-channel silicon gate technology. This technology allows the design and production at
high performance easy to use MOS c rcaits and provides a higher functional densny on a monolithic chip than either
conventional MOS technology or P-channel SIIICOn gate technology.

PIN
CONFIGURATION LOGIC SYMBOL

PIN NAMES
——-——1 A0

_ 212 ”W bW DATA INPUT
_ A3 A”, ADDRESSINPUTS ,
———- A. R/W aasowmrs lNPUT
__ :5 E cw ENABLE

5
'— :7 DouT—‘ Dcur DATAOUTPUT

A: VCC POWER lvsvl
R/W cs

TRUTH TABLE

fl R/W om no”, MODE '
H x x ‘fiici-iz NOT SELECTED
L L L L WRITE ”o"
L L H H WRITE"1"
L H x DOW READ

BLOCK DIAGRAM

2
b

3
.3

RM

_\7 I:
. iiiQ

iiii
i

1:

O . nu nun-In: M A:

'— 0._.o v“
AM

Clll
ID“ AIIAV

SFLICVOI 12.0":
n cctuuns

,—

® an.._. comm no cincuirs out"outom
‘°""°‘ ecLum :umon

® (9 ® ® “

'All 8102A-4 speclllcetlons are identical to the 2102A-4 specifications.

Reprinted by permission of Intel Corporation Copyright © 1978
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2102A FAMILY

Absolute Maximum Ratings*
Ambient Temperature Under Bias

Storage Temperature
Voltage On Any Pin

With Respect To Ground
Power Dissipation

-10°C to 80°C
—65°C to +150°C

’COMMENT:
Stresses above those listed under "Absolute Maximum Rating"
may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or
at any other condition above those indicated in the opera-

—0.5V to +7V
1 Watt

tional sections of this specification is not implied. Exposure to
absolute maximum rating conditions for extended periods may
affect device reliability.

D. C. and Operating Characteristics
TA = 0°C to 70°C, VCC = 5V i5% unless otherwise specified.

2102A, ZlOZA-d
ZlUZAL,ZIOZAL-4 2102A-2,2102AL-2

Limits Limits
Symbol Parameter Min. Typl‘” Max. Min. Typi” Max. Unit Test Conditions

IL; lnput Load Current 1 10 l 10 uA VlN = 0 to 5.25V

iLOH Output Leakage Current 1 5 l 5 HA E = 2.0V,
:VOUT = Von

'LOL OutputLeakageCJrent -l -10 ~l -10 uA 0E=2.0V,
VOUT = 0.4V

'CC Power Supply Cu'est 33 NoteZ 45 65 mA All lnputs= 5.25V,
Data Out Open,

‘ TA = 0°C

VlL lnput Low Volta: ~05 0.8 -0.5 0.8 V

Viv-4 Input High Volta; 20 VCC 2.0 VCC V

VOL Output Low Voltage 0.4 0.4 V |0L=2.imA

\‘3. Output High Voltage Ci 2.4 V '0H = ~100pA

Notes 1 Typical values are for TA = 25‘ C =-: 't— -=' sapply voltage.
2 The maxtmum lcc value Is 55"; ‘:' “e s .‘2A and 2102A~4, and 33mA for the 2102AL and 2102AL'4.

Standby Characteristics 2102AL, 2102AL-2, and 2102AL-4 (Available only in the Plastic Package)
TA = on” :: ‘5:

2102AL, 2102ALA4 2102AL-2
Lmts Limits

Symbol Parameter Min. Tvpfl' Max. Min. Typi” Max. Unit Test Conditions

v u: - s 1.5 . 1.5 v
VCESIZ 7:; -:-ea:~ 2.0 T 2.0 l v 2.9xl<l.lag<vccmax_

v ; v v ; 1.5v <a< 20v

lpm S'a‘::. ire". IS 23 20 28 mA i Alllnputs=Vt=L5V

ipDZ S'.a~::v Current 20 30 25 38 1 mA Alllnputs=VpD2=20V

tcp ne 0 O i ns

lam lac i fee 1 ”5

STANDBY WAVEFORMS
NOTES:

STANDBV MODE—’ 1. Typical values are for TA = 25DC.
2. Consider the test conditions as shown: It the stand-

by voltage (Vl is between 5.25 V (VCC Max.) and
20v, then CE must be held at 2.0V Min. Wm). ll
the standby voltage is |ess_than 2.0V but greater than
1.5V (VpD Min.), then CE and standby voltage
must be at least the same value or ,il they are dlf-
ferent. (73 must be the more positive ol the two.

3. in = tRC (READ CYCLE TIME).



2102A FAMILY

A. C. Characteristics TA = 0°C to 70°C, vCC = 5v 15% unless otherwise specified
READ CYCLE

2102A-2, 2102AL-2 2102A, 2102AL 2102A-4, 2102ALv4
Limits (ns) Limits (ns) Limits (ns)

Symbol Parameter Min. Max. Min. Max. Min. Max.

tRc Read Cycle 250 350 450

tA Access Time 250 350 450

tco Chip Enable to Output Time 130 180 230

tOHl Previous Read Data Valid with 40 40 40
Respect to Address

tOHZ Previous Read Data Valid with 0 0 0
Respect to Chip Enable

WRITE CYCLE
twc Write Cycle 5250 350 450
tAw Address to Write Setup Time 20 20 20

twp Write Pulse Width 180 250 300

t-NR Write Recovery Time 0 0 0

tow Data Setup Time :‘3 250 300

tDH Data Hold Time 0 0 0

tCW Chip Enable to Write Sea: 53 250 300
Time

CapacitancemtA =25°c, f=1MHz
A. c. CONDITIONS or TEST SYMBOL TEST M
Input Po se Levels :5 .: t t: 2.0 Volt TVP‘" MAX‘

InputPtse and FailTimes: lonsec CIN INPUT CAPAClT-Z‘VCE , 3 5

TV”; "-‘easurement Inputs 15 Volts (ALL INPUT P ‘.S ‘.' ‘. = CV

Fie‘e'ence Levels Output C E -3 2 O Volts . . t r
C OUTPUT CAPACITA uCE

. , .,.. ,-- - = OUT 1 7 10
Output Load. 1 TTL C _____ L 100 pF VOUT = 0V ‘.

Waveforms

READ CYCLE WRITE CYCLE

ADDRESS i (D

'co—'

ENABLE

‘nc——-——Oi

CHIP

low,
[A ‘-

DAJA '
OUT X ®

(3)
Ct) isvous " ‘0'” ‘—
(‘2\ 2.0 vous
3‘ 0.8 VOLTS

Aoonsss (D

_l

W!“ <

I a
CHIP 1."
ENABLE

I", W—"'——'—’

READ] I
WRITE

-> ‘DH
'Dw——-'—"

DATA DATA CAN
IN CHANGE DATA STABLE

NOTES: 1. Typical values are for TA = 25°C and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.

DATA CAN
CHANGE
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2102A FAMILY

Typical D. C. and A. C. Characteristics
POWER SUPPLY CURRENT VS. POWER SUPPLY CURRENT VS.

AMBIENT TEMPERATURE SUPPLY VOLTAGE
45 l l as

40 vcc MAX. so 1’A = zs‘c /

as 25 ,/
E 3 /TYPICAL
'0 so \\£ 5 20 //
—° ' T PICAL _"\\ " /

25 15 f

20 10

15 5
0 1D 20 30 40 so so 70 1 2 3 4 5 6

TA ('9’ vcc (vous)

OUTPUT SINK CURRENT VS.
VIN LIMITS VS. TEMPERATURE OUTPUT VOLTAGE

1.3 30,

1.6 \' _ I“ '7 . //

.. 20."2 \‘\ - / TYPICAL
5 <= /
3 H ; '5

E ‘ V”. {MAX .5 //

> I I0 T ‘ 25"C

‘2 I I / VZC MIN.
vcc , 5.0V I 5 /

I_ I l o
; w 20 30 40 so a; 7: o 1 2 3

TA ('c) VOL (VOLTS)

ACCESS TIME VS. ACCESS TIME VS.
AMBIENT TEMPERATURE LOAD CAPACITANCE

350 350 ,
. Vcc MIN. TA ' 25":

T m...I cL = wow /

250 I /I—’ 250 1/,”
TYPICALE I //‘ _: //VPICAL

- #T'" 5
J _<

150 150

OUTPUT REF RENCE LEVEL ‘ Von = 2.0V OUTPUT REFERENCE LEVEL = 1.5V
v0L soav

500 10 20 30 do 50 60 7o 500 100 200 300 400 500

TA ('c) cL (OF)
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inter
2114A

1024 X 4 BIT STATIC RAM
2114AL-1 2114AL-2 2114AL-3 2114AL-4 2114A-4 2114A-5

Max. Access Time (ns) 100 120 150 200 200 250

Max. Current (mA) 40 4D 40 40 70 7D

I HMOS Technology I Completely Static Memory - No Clock
or Timing Strobe Required

I Low Power, Hi h S eedg p I Directly TTL Compatible: All inputs
I Identical Cycle and Access Times and Outputs

I Common Data In ut and Out ut Usln
I Single +5V Supply 110% Three-State Outpfits p g

I High Density 18 Pin Package I 2114 Upgrade

The Intel0 2114A is a «396-bit stat : Random Access Memory organized as 1024 words by 4-bits using HMOS. a high per-
formance MOS technology It uses is y DC stacie Istatic) circuitry throughout. in both the array and the decoding therefore it
requires no clocks or retreshmg to operate Data access is particularly simple since address setup times are hot required. The
data is read out nondestructively and has the same polarity as the input data. Common input/output pins are preyided.

The 2114A is designed for memory as: :at 3‘5 where the high performance and high reliability oi HMOS low cost, large bit
storage. and simple interfacing are ”FCC/Ia”! cesign objectives. The 2114A is placed in an 18-pin pacxage tor the highest
possible density.

It is directly TTL compatible in all respects inputs. outputs. and a single +5V supply A separate Chip Select (0—8) lead allows
easy selection of an individual package when Outputs are or-tied.

PIN CONFIGURATION LOGIC SYMBOL
'9

NE‘ 13 :1c _ A:

at: 17:1» — “
Ac: ism. — 2:
A3: . 153A. : A,
An: 5 2114A u ji/o1 _ A.
Mi: 6 1331/0, _

NE? 12:]I/o, _ ”0‘

c‘s‘Ea 11 :ir/o. _
one: 9 to :JWE —

PIN NAMES

Ao—As ADDRESSINPUTS
wane ENABLE

cs CHIP SELECT
l/O1—l/O. DATA INPUT/OUTPUT

vCC POWER (+5w
GND GROUND

BLOCK DIAGRAM

Vcc
& 6ND

ROW MEMonv mm
SELECT 5‘ “0W5

64 CO LUMNS

COLUMN I/O CIRCUITS

COLUMN SELECT

O- m NUMBERS

Reprinted by permission of Intel Corporation Copyright © 1980
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2114A FAMILY

ABSOLUTE MAXIMUM RATINGS"
Temperature Under Blas .................. —10°C to 80°C
Storage Temperature .................... —65°C to 150°C
Voltage on any Pin

With Respect to Ground .................. -3.5V to +7V
Power Dissipation ................................. 1.0W
D.C. Output Current ................................ 5mA

D.C. AND OPERATING CHARACTERISTICS
TA = 0°C to 70°C. V‘cc = 5V 110%, unless otherwise noted.

’COMMENT: Stresses above those listed under "Absolute
Maximum Ratings"may cause permanent damage to the device.
This is a stress rating only and functional operation ofthe device
at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Ex-
posure is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.

2114AL-1/L-2/L-3/L-4 2114A-4/-5
SYMBOL PARAMETER Min. Typ.I‘I Max. Min. Typ.|1l Max. UNIT CONDITIONS

ILI Input Load Current 10 10 IIA VIN = 0 to 5.5V
(All Input Pins)

IILOI l/O Leakage Current 10 IO uA E= VIH
VI/O = GND IO VCC

lcc Power Supply Current 25 40 50 70 mA Vcc = max, II/O = 0 mA,
TA = 0°C

VIL Input Low Voltage —3.0 0.8 -3.0 0.8

VIH Input High Voltage 2.0 6.0 2.0 6.0 V

IOL Output Low Current 2.1 9.0 2.1 9.0 mA VOL = 0.4V

IcH Output High Current -1.0 -2.5 -1.0 -2.5 mA VOH = 2.4V

'osm Output Short Circuit 40 40 mA
Current

NOTE: 1, Typical valuesere for TA 3 25°C and V3; I 50V.
2. Duration not to exceed 30 seconds.

CAPACITANCE
TA = 25°C. I = 1.0 MHz

SYMBOL 5 TEST MAX UNIT CONDITIONS

Clo Input Output Capacitance 5 0F Vl/O = 0V
Cm Input Capacitance 5 pF VIN = 0V

NOTE: This parameter is periodially sampled and 00110036 tested.

A.C. CONDITIONS OF TEST
Input Pulse Levels .......................................... . ........ 0.8 Volt to 2.0 Volt
Input Rlee and Fall Times ...................................................... 10 nsec

Input and Output Timing Levels ..... . .. .............................. . ......... 1.5 Volts

Output Load ............................................... 1 TTL Gate and CL = 100 pF



2114A FAMILY

A.C. CHARACTERISTICS TA = 0°C to 70°C. vcc = 5v 310%. unless otherwise noted.

READ CYCLE [‘1

2114AL-1 2114AL-2 2114AL-3 2114A-4/L-4 2114A-5

SYMBOL PARAMETER Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. UNIT

Inc Read Cycle Time 100 120 150 200 250 ns

tA Access Time 100 120 150 200 250 ms

too Chip Selectionto OutputValid 70 70 7O 7O 85 ns

tcx Chip SelectiontoOutputActiye 10 10 10 10 10 ns

tom Output 3-state from Deselection 30 35 40 50 60 ns

Output Hold fromtom Address Change 15 15 15 15 15 ns

WRITE CYCLE [2]
2114AL-1 2114AL-2 2114AL-3 2114A-4/L-4 2114A-5

SYMBOL PARAMETER Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. UNIT

two Write Cycle Time 100 120 150 200 250 '5

tw Write Time 75 75 90 120 135 *5

twin Write Release Time 0 0 0 0 0 "5

tom Output 3-state from Write 30 35 40 50 6: ns

tow Data to Write Time Overlap 70 70 90 120 135 ns

to... Data Hold from Write Time 0 0 0 0 ns

NOTES: _ _
1. A Read occurs during the overlap of a low£S and a hig_h_WE.
2. A Write occurs during the overlap ot a low 05 and a low WE. tw is measured from theiatterotC§ orfigoing Iowtothe eerily :‘ 3-5 2' TE going high.

WAVEFORMS

READ CYCLE® WRITE CYCLE

ADORES 3 )

ADDRE§

Door

NOTES:
3. W is high for a Read Cycle.
4. lithefi low transition occurs simultaneously with thew-E low

transition, the output butters remain in a high impedance state.
5. WE must be high during all address transitions.

G
0—5

WE©

DOUI’
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inter
8212

8-BIT INPUT/OUTPUT PORT
I Fully Parallel 8-Bit Data Register and Butter
I Service Request Flip-Flop for

Interrupt Generation
I Low Input Load Current — .25mA Max.
I Three State Outputs
I Outputs Sink 15mA

I 3.65V Output High Voltage for
Direct Intertace to 8008, 8080A, or
8085A CPU

I Asynchronous Register Clear
I Replaces Butters, Latches and

Multiplexers in Microcomputer Systems
I Reduces System Package Count

The 8212 input/output port c:"s sis of a" 5-: t etc" w to 3-state output butters along With control and device selection
logic. Also included is a Sehice reouest ‘ o-fioo icr toe generation and control of interrupts to the microprocessor.

The device is multimode in nature, It can be used to implement latches. gated butters or multiplexers. Thus, all oi the
principal peripheral and input output functions of a microcomputer system can be implemented with this devucel

PIN CONFIGURATlON

_ v
05, 1 24 vcc
MD 2 23 WT
on 3 22 1318
00‘ a 21 Do,
012 5 20 or,

Do2 s 19 Do,
3212013 7 18 ms

Do3 a 17 D06
DI. 9 16 015

00,1 10 15 005
sra 11 14 cm

GND 12 13 [)52

PIN NAMES

D». on mm w
00- 00. out: OUT
59105: .ozvgcsssssg-
up moo:
sra ‘ smog: d7 ‘
Fifi . lNYERRUl’fiKCTWE LOW) —
TR ‘CLEAFI (ACTWE LOW)

LOGIC DIAGRAM
SERVICE REQUEST FF

DEVICE SE LEC1ION

11>»?
@032

E>w>
@313

OUTPUT
' BUF‘EF

DUII

005 [E9

006 E)

007.

005 9

IACTIVE lOWi

Reprinted by permission of Intel Corporation Copyright © 1980
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8212

FUNCTIONAL DESCRIPTION
Data Latch
The 8 flip—flops that make up the data latch are of a "D"
type design. The output (0) of the flip-flop will follow the
data input (D) while the clock input (Cl is high. Latching
will occur when the clock (C) returns low.
The Iamd data is cleared by an asynchronous reset
input (CLR). (Note: Clock (C) Overrides Reset (CLR).)

Output Butter
The outputs of the data latch (O l are connected to 3-state.
non-inverting output butters, These buffers have a
common control line 1 EN i: this control line either enables
the butter to transmit the data from the outputs of the data
latch (O) or disables the butter. forcing the output into a
high impedance state. sit—state)
The high-impedance state allows the designer to connect
the 8212 directly onto the m:croprocessor lei-directional
data bus.

Control Logic
The 8212 has control inputs 6’37, 082. MD and STB.
These inputs are used to control device selection. data
latching, output butter state and service requesttlip-llop.

D51, D52 (Device Select)
These 2 Inputs a'e- -s

the selected state
service request flip“

MD (Mode)
This input is used to convel :‘e state of the out:-t :-“er
and to determine the spurce cf the c-cc-i iccst C I: the
cata latch.

i'. ~91 MD is high (output moce".
eca: ed and the source of cic
it" :“e device selection logic
\‘rr “3 is low (input model the c-

~ ’e: by the device select. on A
':e of clock (C) to the da:a la ch is the STB

STB (Strobe)
T” s i": t s .56: as the clock (C) to the data latch forthe
issut mode '33 = O and to synchron0usiy reset the
semce request ‘ :-t as iSR).

Note that the SR‘, p-ticp is negative edge triggered.

Service Request Flip-Flop
The (SR) flip-flop is used to generate and control
interrupts in mic_rocomputer systems. It is asynchron-
ouslysetbytheCLRinputiactive|ow).Whenthe(SR)fiip-
flop is set it is in the non-interrupting state.
The output of the (SR) flip-flop (Q) iS connected to an
inverting input of a “NOR" gate. The other input to the
“NOR" gate is non-invefligg and is connected to the
device selectigfljogic (D81 ' 082). The output of the
“NOR" gate (lNTl is active low (interrupting state) for
connection to active lowinputprioritygenerating circuits.

SERVlCE REQUEST FF

DEVlCt SELlCYION

\DEED Dtrig)
@052 :uwr (Owl

EMU
@318 ’1‘“ “UV

3;a

Dan

()IHALAICN

D37

uo;

‘ ”OED

ACTiVi LUW:

513 MO (05.0511 DATA out EGUALS ricL-R “1375', osziTFa—rkn rwr
o a n a sure 0 3 i ii o a a sure ( 3 i
0 I 0 DATA LATCH ‘ , _\_ c
t I 0 DATA LATCH m ‘ 3 (
o a I DATA LATCH 0 3 (
I 0 ‘ DATA IN
a I 1 M” m P ‘ K" ‘ ‘ ‘l | i mum ‘lNYERNAL sarmnop

CL , RESET: DAYA LA‘rcH
SETSSRFLIFKLOP
1N0 EFFEC‘I ON OUTPUT BUUE‘U

8212

Applications of the 8212 — For
Microcomputer Systems
| Basic Schematic Symbol
II Gated Butter
||l Bi-Directional Bus Driver
lV Interrupting Input Port

1. Basic Schematic Symbols
Two examples of ways to draw the 8212 on system
schematics — (1 l the top being the detailed view showing
pin numbers. and (2) the bottom being the symbolic view

V interrupt Instruction Port
Vl Output Port
Vll 8080A Status Latch
Vlll 8085A Address Latch

showing the system input or output as a system bus (bus
containing 8 parallel lines). The output to the data bus is
symbolic in referencing 8 parallel lines.



BASIC SCHEMATIC SYMBOLS
INPUT DEVICE

——'—'—111
3 5TB 4

TD! DO:

2 _8_
.1 J1.
.11 3212 pi
._I§_ ii
i 49...25? .—T A
_1_40__ MD 23

51 i 052

N w

(DETAILED)

SYSTEM (SV'MBOLIC)

-—-0 cm Tm? D-

I I
GND DATA BUS

OUTPUT DEVICE

111—__.—.
STB

DI DO

lwl~lw
w

aimiw
i

I

a fl m

8212I I

a m uIN e E5
MTN—r cm

MD_
us2 051
I13 I2 ?

Vcc

up I
a

a

BN2

DATA BUS Vcc

II
I

OUTPUT
FLAG

SVSTEM
OUTPUT

II. Gated Buffer (3-State)
The simplest use of the 8212 is that oi a gated bu‘ter By
tying the mode signal low ah“ “e strobe c:.1 h gh the
data latch is acting as a stravg': thugh gate The :.'.Dut
Mers are then enabled fro-i- 1‘6 :euce se ec: c". logic
D51 and 082.

Whenthe device selection logic is ‘a se the :otcdts are 3~

GATED BUFFER

VCC —_-_'_-'__'-__.——""""—1

STB

IN?UT
DATA 3212
(250 AM

OUTPUT
DATA
H$~A

state “‘5" w“
Whenthe device selectionlogmstne t’e c:.tdatatrom ‘-——0 EU?
the system is directly transter'ec to t'e c- t The input cnmc 9 I
data load is 250 micro amps Thecdtm‘ cah sink15 CONTROL cs:
milli amps. The minimum hlgh ouzpct s 3 55 .oits. (bsiooszi ——-~——

8212

III. Bl-Dlrectlonal Bus Drlver Bl-DIRECTIONAL BUS DRIVER

A pair of 8212's wired (back-to-backi can be used as a Vcc
symmetrical drive. bi-directional bus driver. The CSHCES +—
are controlledfl the data bus input control w: ch IS sre
connected to D81 on the first 8212 and to D82 on the
second. One device is active. and acting as a straight
through‘bufi‘er the other is In 3-state mode, This IS a very DATA 8212 DATA
use ul Circwt in small system desrgn. BUS Bus

cL—R
DATA BUS
CONTROL 9 I I
iO= L-RI GND
II = R-—LI r

5TB

8212

——o CLR

._l
GND
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IV. Interrupting Input Port
This use of an 8212 is that of a system input port that

accepts a strobe from the system input source. which in

turn clears the service request flip-flop and interrupts the

processon The processor then goes through a service
routine. identities the port, and causes the device
selection logic to gotrue—enabling the system inputdata
onto the data bus.

INTERRUPTING INPUT PORT
DATA

INPUT BUS
STROBE

STB

SYSTEM
INPUT C> 8212

SYSTEM .— .—RESET —o—oc R INT

PORT

or:
SELECTION-[ GND__ T0 PRIORITY CKT
IDSi-DSZI (ACTIVE LOW)

TO CPU
INTERRUPT INPUT

V. Interrupt Instruction Port
The 8212 can :9 used to gate the interrupt instruction.
normaily RE 3T instructions. onto the data bus. The

device is e-: ‘: "om the interrupt acknowledge signal
fromtherni: ssor andfromaport selection signaii
This SigmaI is "s “ y tied to ground. ificouid be used
to multipiex a ,E' at, of interrupt instruction ports onto a
common Dus

INTEFIRUPT INSTRUCTION PORT

5TB fl

HESTART i

tNSTRUCTION 8212
(EST 0 - EST 7) I

(ET) PORT SELECTION GNU
INTERRUPT ACKNOWLEDGE ——.——

8212

VI, Output Port (WIth Hand-Shaking)

'. .t ”e output strobe 60uld be a hard-
=-:* as reception oidata"fromthedevice

that're s is cstsstting tot |tinturn.caninterruptthe
syste'n sign ‘*, ”g re reception of data The selection of
the port comesfrom tseceviceselectionlogimfi‘DSZI

OUTPUT PORT (WITH HAND-SHAKING)
DATA
BUS

[——«—— ours-or srae

573

8212 :> SYSTEM OUTPUT

m7 Efi 04— sveM RESET

I L.—7 PORT SELECTION
SYSTEM Vcc HiTCt-I CONTROL)
INTERRUPT "_—“"_. ( S‘I-DSZI



Vll. 8080A Status Latch
Here the 8212 is used as the status latch for an 8080A
microcomputer system. The input to the 8212 latch is
directly from the 8080A data bus. Timing showsthat when
the SYNC signal is true. which is connected to the 082

Note: The mode signal istied high so thatthe outputon the
latch is active and enabled all the time.
It is shown that the two areas of concern are the bi—
directional data bus olthe microprocessorandthe control

input and the phase 1 signal is true. which is a TTL level
coming from the clock generator; then, the status data will
be latched into the 8212.

o
m

m
A

u
u

m
o

LATCH

0V

CLOCK GEN
II DRIVER

CC

STATUS

bus.

‘D° 6

10
1
17
19

DBIN

, DATA BUS

Q1

DATA

STATUS

8212

Vlll. 8085A Low-Order Address Latch
The 8085A microprocessor uses a ~, t : exe: address/
data bus that contains the Icy» C'SE' :s c‘ address
information during the first part c‘ a ”a- ,
same bus contains data at a later t ~e a :‘e Cycle, An
address latch enable lALEl sigcai s 2:. : by the
8085Ato be used by the 8212 to latC" ice $55 so that it
may be available through the who e "‘a c - e Note:
Inthiscontiguration.the MODEmpu'. s: - .xeeping
the 8212‘s output buffers turned on at a i 1 ”es.

DATA BUS

11
on STB 001 2

8
1O
15
17
19
21

A0 7
A1
A2
A3
A4
A5

3
5
7
9 LOW ORDER

ADDRESS BUS

A6
A7
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8212

ABSOLUTE MAXIMUM RATINGS‘

Temperature Under Bias Plastic .. ..... 0°C to +70°C
Storage Temperature ~65°Cto +160°C
All Output or Supply Voltages ..... >05 to +7 Volts
AII Input Voltages -1.0t05.5Vo|ts
Output Currents 100mA

'COMMENT
Stresses abovethosellsled under“Absolute Maxrmum Ratmgs"maycause
permanent damage to the devrce Thus 15 a stress ratmg only and Iunctlonal
operaIIon ol the devtce at these or any other condItIons above those
IndIcaIed In the operaIIonal secttons ol thIs specrllcatuon Is not IITIDIIEG
Exposure to absolute maxlmum ratlng condxtlons for extended perlods
may aIIeCt deVIce reIIaDIIIty

D.C. CHARACTERISTICS TA = 0°C to +75°C, vcc = +5V 15%

Symbol Parameter Mln. 13:5 Max. UnIt Test Condltlons

IF Input Load Current. ACK. 032. CR.
DII—Dls Inputs -.25 mA VF = .45V

IF Input Load Current MD Input -.75 mA VF = .45V

IF Input Load Current DSI Input —1.0 mA VF = .45V

In Input Leakage Current. ACK. DS. CR.
DII—Dle Inputs 10 pA VFI S Vcc

In Input Leakage Current MO Input 30 IA VI: 5 V3:

IR Input Leakage Current 08‘ Input 40 IA VR 5 V;g

Vc Input Forward Voltage Camp -1 V lc = -5rnA

VIL Input ”Low" Voltage I .85 V

VIH Input "High” Voltage I 2 O V

VOL I Output "Low" Voltage I .45 v IOL =15r“A

VOH Output "High" Voltage 3 65 4.0 V IOH = -1r“IA

Iso She't CIrcuit Output Current ~15 —75 mA Vo = 0V V:: = 5V

llol 3.1:ut Leakage Current Hugh I
~:e:a":e State 20 IA Vo = .45V 5 25V

Icc I 5:».5' S-:: IC."e*t 90 130 mA

8212

TYPICAL CHARACTERISTICS
INPUT CURRENT V5. INPUT VOLTAGE

vcc - .5 av /II
-50

i ">0 . K,
E rA-oc/ éi 1:;
z I50 i *—

2 m I I
I I

I I
25: I i

I
I I

:9: '2 .2 -| o ‘l -2 ~3
INPUT VOLTAGE IVI

OUTPUT CURRENT VSI
OUTPUT "HIGH" VOLTAGE

x -5 cv

3
EI.2u.
I
‘5
5>-2a
E
5

35 0 'ID 20 30 ll] 50

OUTPUT 'HIGK‘ VOLTAGE IV)

OUTPUT CURRENT VS. OUTPUT "LOW" VOLTAGE
too I I I

vcc nslov I E
I I

so ——~ _,- rww—v — ~—4—'~—~~—+————

2
E
>-
2III
a!a:
D
Q
>-
DI.,.
2o

ourpur "LOW" voumz Iw

DATA TO OUTPUT DELAY
VS. LOAD CAPACITANCE

5° . I I I I
vcc = .5 av I I 1
1A . 25 c I I

40 I
i l4 I I
.I t I
W I la 30 I
L I J,’
E I ’z’
>— ‘u ,/ /
g 20 ’,/’ /'

9 ../’/I/~'< z /
E /
c I

10 I

i
Io |

0 so 100 150 200 250 300
LOAD CAPACITANCE IpF)



DATA TO OUTPUT DELAY
VS. TEMPERATURE

x‘50V
DA

TA
T0

O
UT

PU
T

DE
LA

V
in

s)

0 25 50 75 I00

TEMPERATURE ( CI

‘0

WRITE ENABLE T0 OUTPUT DELAY
VS. TEMPERATURE

vat-50v

g 36
>
<.1\uo 307 -»~— —
’- .
g \ z
3 'z/o 25 - \ .
E "" /STE " / [a

g 052' 2‘37“ -\.
g 20——:_—~»—" 1' v-_— I
w 05‘ /—I—"—\
w
’2
E 15 .

I
10

25 0 2'5 50 75 100

TEMPERATUREI c)

A.C. CHARACTERISTICS TA = o=c to owe. vcc = +5v i 5%

Limits
Symbol Parameter I Unlt Test Conditions

i Min. Typ. Max.

t Pulse Width ‘ 30 ns

tpp Data to Output Deiay 1 30 ns I Note 1

t Write Enabie to Output De 3/ I 4:) ns I Note 1

ISET Data Set Up TIFT‘e 15 ns

IH Data Hold Time 20 ns
ta Reset to Output Ce ay 40 ns Note 1

ts Set to Output Be at 30 ns Note 1

ta Output Enapie C 55: e ‘ ~e 45 ns Note 1

tc Clear to Output Detay 55 ns Note 1

CAPACITANCE‘ F =1MH2, Va A; = 2 V2: = +5v. TA = 25°C
Limits

Symboi Test
Typ. Max

Cw DSt MD Input Capacitance Sc: ‘2:F

CIN 052, OK, ACK, DII-Dia
Input Capacitance 5:: 9:F

Cour DOt-DOB Output Capacitance 82F ‘ZcF

'This parameter is sampled and not 100% tested.

SWITCHING CHARACTERISTICS
Conditions at Test
Input Puise Amplitude = 2.5V Test Load
Input Rise and Fan Times 5ns 15 A fit 30 F
Between 1V and 2V Measurements made at 15V m p
with 15mA and 30pF Test Load Vcc

Note 1:
"1

Test CL' Rt “2
tPD. IWE, ta. 15. tc 30pF soon soon 3% T
ts, ENABLEI 30pF mm mm ‘ ' 'cL- FI2
t5. ENABLE i 30pF soon soon I
ts. DISABLE! 5pF 3000 6000 7 ___

tE. DISABLEI 5pF 10K!) 1m
“INCLUDING JIG a PROBE CAPACITANCE

'lncludes probe and jig capacitance.
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TIMING DIAGRAM

STB Dr $1 - 052

~— ‘wE—m
/___________-

OUTPUT X15"
_________.________/

551.052 15‘ 1.5V
5v

“"5 (SEENOTEBELOW) L‘D ' v v,_——-——————--\L————‘ ’OH
-‘ -, T \—— AH . 7;:— '___.__.__J , VOL

u u m1 <

/———__——__—\
DAM: 15v ‘5"

______/l \_._...__
‘SET ‘H

‘
STBDID_S1-DSZ i 15v 3‘;

|
A IpD .4

/__._.__________.
OUTPUT 15V

.._..___ _. _.__J

573 15v

3 .. I
I

my; ALTERNATIVETESTLOAD " 'n *
Vcc

10K
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Appendix C6

STANDARD MICROSYSTEMS
CORPORATION

35 Matcus Blvd Hauo Y ll787
l516i273 BIOD TW c @- 7-8896

We keep ahead Of our competition 50 YOU can keep ahead of yours

KR2376-XX

Keyboard Encoder Read Only Memory
FEATURES
El Outputs directly compatible with TTL/DTL or

MOS logic arrays.
III External control provided for output polarity

selection.
Cl External control provided for selection of odd

or even parity.
[:1 Two key roll—over operation.
El N-key lockout.
[I Programmable coding with a single mask

change.
CI Self-contained oscillator circuit.
C Externally controlled delay network provided

to elImlnate tne effect of contact bounce.
I One integrated Circuit required for complete

keyboard assembly.
I Ste: C cnarge protection on all inputand

output terminals.
I: Entire circuit protected by a layer of glass

passivation.

PIN CONFIGURATION
V

vcc I: 1 40 3 FrecaencyControlA
Freouency ControI B I: 2 39 :1 X0
Frequency Control 0 E 3 38 :I X‘

SmtttnpuIE 4 37 :1 X2 “we”
Control Input E 5 35 I] X3 Matrix

Partlylnvenlnput E 6 35 :I X4 Quads
Partly Output [: 7 34 :1 X5 I

DataOutputaa C a 33 :l xs I
DataOutpul87 C 9 32 I] “J
Data OulpulBG C 10 at :I V3
Data Outputes E 11 33 II VI
Data Output 84 E 12 29 3 Y2
Data Output as C 13 22 3 V3
Data Output 52 C u 27 :J W Keyboard
Data Output at l: 15 26 :I Y5 Matnx
Strobe Oumul C 16 25 3 Y6 inputs

Ground C 17 24 3 Y7
vcc. I: 18 23 3 Y8

Strobe ControIInputC 19 22 3 V9
DataéSt'ooeC 20 21 HO

Invertlnout

PACKAGE: 40-Pin DIP.

GENERAL DESCRIPTION
The SMC KR2376 XX isa2376 bitRead On y Memory
with all the logic necessary to encode Sl ":‘e _o e
single throw keyboard closures Into a use: e 9- :It

any special interface components.
The KR2376-XX is fabrtcated with low t”

P—channei technology and contains 294/.
code Data and strobe outputsare direct ‘yCC'T‘CalIe enhancement modetransistorsonasmg e” etc
with TTL/DTL or MOS logic arrays wn hcu tne .Ise of chip. available in a40 pin dual-in-Itne pas-tags

TYPICAL CONNECTION OF KR2376-XX
V; w V2 c3 ,4 . w V3 v9 v.0

KR2375- XX ‘: “ I '

1BI_ ———————————— ‘l c2 ‘-
Vac—s—i 40 A .

yew—+114 SOKHz 2 8 L
Vcc 1 OSCILLATOR 3 c 92 ‘ I

I I I msouswcv
l i CONTROL
I it atT ccwaaA'ca l
I CLOCK I
I CONTROL |
: n STAGE RING cow'en I A L . A A. r. L t .. A. 4.

l

' lilillliiil I I "l‘ i ' ' 139 xo
sHII-"I' INPUT 5T :a :;

CONTROL NDUT i t——< a 5” n
sTaceE l 2375 an ROM 1— STAGE ‘ 3: ‘ X4

CONTROL WWT ‘9 DELAY t9 an x as KEYS x 3 MODE) H COUNTER :34 x5
'Rt C1 l 133 ‘ XE

T l ‘— '32 7 x7,
vc» ya; I l l II.| l l l l l I as spsr KEYBOARD SWITCHES

DATA e. srnoee 20 | yo, ‘ J
INVERT INPUT | X6

PAFIITY 5 COMPATIBLE OUTPUCT DRlVERS l / _I‘+ TYPICAL SWITCH
INVERT INPUT I /

L. _____ _ _t- _ ._ _ ._ - __I X? 41
16 101i1213i415— L_,’

‘77

srnoea OUTPUT EXAMPLE
87863534535231

PARITY OUTPUT
Fig 1 DATA OUTPUTS ‘ R1 (6&3m C1 (001M) provtde approx 1 5 ms delay

(see ttgur
R2 (100m). 02 (50pl) provtde SOKHz clock trequency
(see figure 6)

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980
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MAXIMUM GUARANTEED RATINGST
Operating Temperature Range ............................................... O°Cto +70°C

Storage Temperature Range ............................................. —65°Cto +150°C

GND and Vcc, with respect to Vcc ........................................... —20V to +0.3V

Logic |nput Voltages. with respect to Vcc ..................................... —20V to +0.3V

TStresses above those listed may cause
and functional operation of the device at these or at any
the operational sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS

permanent damagetothe device.Thisisastressrating only
other condition above those indicated in

(TA = 0° C to +70° C, Vcc = +5V i0.5V. Vcc = —12V iiOV, unless otherwise noted)

Characteristics Min Typ Max Unit Conditions

CLOCK 20 50 130 KHz see figit footnote i") fortypical
R-C values

DATA lNPUT
Logic "0" Level —O.8 V
Logic ”1" Level Vcc-1.5 V
Input Capacitance tO pf

INPUT CURRENT
’Controi, Shift & Y0
thru Y10 10 100 140 [JA VlN = +5.0V

'Control, Shift & YO
thru Y10 5 30 50 pA Vim=Ground

Data invert, Parity Invert ‘01 1 14A V \ = -50V to +5.0V

DATA OUTPUT & X OUTPUT
Logic “0" Level —C 4 V l:. =1 SMA isee fig 7)
Logic”1" Level Vcc-1.0 V l:- = ‘2: .A

POWER CONSUMPTION 140 223 r Mm 3:3.5' S.;:. Voltages
tees ‘ g c)

83. 'CH CHARACTERlSTlCS
‘ ”tum Switch Closure see timing diagram-figs 2

C : “=ct Closure Resistance
een X1 and Y1 300 "'1

C: Open Resistance
en X1 andY1 1x107 “‘1

- r internal Resistor to Vcc

DESCRIPTION OF OPERATION

The KR2376-XX contains (see Fig, 1), a 2376—bit
ROM, 8—stage and lt—stage ring counters, an 11—bit
comparator, an oscillator circuit. an externally
controllable delay networkforeliminatingtheeffect
of contact bounce, and TTL/DTL/MOS compatible
output drivers.

The ROM portion of the chip is a 264 by 9—bit
memory arranged into three 88-word by 9—bit
groups. The appropriate levels on the Shift and
Control inputs selects one of the three 88—word
groups; the 88-individual word locations are
addressed by the two ring counters.Thus. the ROM

address is formed by combining the Shift and
Control Inputs with the two ring counters.

The external outputs of the 8—stage ring counter
and the external inputs to the 11-bitcomparatorare
wired tothe keyboard to form an X—Y matrix with the
88—keyboard switches as the crosspoints. in the
standby condition, when no key is depressed, the
two ring counters are clocked and sequentially
address the ROM; the absence of a Strobe Output
indicates that the Data Outputs are ‘not valid' at
this time.



Whenakeyisdepressed,asingle path iscompleted
between one output of the 8—stage ring counter
(X0 thru X7) and one input of the 11-bitcomparator
(YO—Y10).Afteranumberofclockcycles,acondition
will occur where a level on the selected path to the
comparator matches a level on the corresponding
comparator input from the 11-stage ring counter.
When this occurs, the comparator generates a
signal to the clock control and to the Strobe Output
(via the delay network). The clock control stopsthe
clocks to the ring counters and the Data Outputs

(81—89) stabilize with the selected 9-bit code,
indicated by a ‘vaIid' signal on the Strobe Output.
The Data Outputs remain stable until the key is
released.

As an added feature two inputs are provided for
external polarity control of the Data Outputs. Parity
Invert (pin 6) provides polarity control of the Parity
Output (pin 7) while the Data and Strobe Invert
Input (pin 20) provides for polarity control of Data
Outputs B1 thru BB (pins 8 thru 15) and the Strobe
Output (pin 16).

SPECIAL PATTERNS

Scce the selected coding of each key is defined
c unng the manufacture of the chip, the coding can
be changed to fit any particular application of the
keyboard. Up to 264 codes of up to 8 bits (plus one
parity bit) can be programmed into the KR2376—XX

ROM covering most popular codes such as A8011.
EBCD1C, Selectric.etc..aswel| as many specialized
codes. The A8011 code is available as a standard
pattern. For special patterns, use Fig. 9.

TIMING DIAGRAM

SWITCH
CLOSURE
i)

, BOUNCE
Vcc

STQCEE CcTPUT

M“. ‘-‘c‘-‘ S‘AI’CH CLOSURE : SWITCH BOUNCE ~'77—

SWITCH
RELEASE
i}

4—H— smoss WIDTH

. :.~v : . BOUNCE ”I

MINIMUM surcn 0-35-:5 —-———>}
as CLOCK CYCLES—h (——

SWITCH 5 533.55 E '9 SWITCH

-+l Sus (<—
DATA
VALID

(55' ‘III ~ STROBE DELAY 0 STROBEWIDTH

QETT
MAXIMUM DETERMINED DETERMINED BY MINIMUM T‘UE
EXPECTED BY FREQUENCY EXTERNAL RC REQUIRE: 5"

OF OPERATION EXTERNAL
(EXT ERNAL RC) CIRCUITRV

Fig. 2

POWER SUPPLY CONNECTIONS FOR
TTL/DTL OPERATION

>12V ’SV Gnd

VGGI Vcc I VGNDI

TTL/DTL 18 ’ ‘7 I TTL/DTL
LOGIC on INPUTS OUTPUTS LOGIC OR
SMC LOW ——-———> KR237E-XX ————> SMC LOW
VOLTAGE VOLTAGE

Mos LOGIC

POWER SUPPLY CONNECTIONS FOR
MOS OPERATION

~17V

Grid
Veo Vcc), VON:

FROM HIGH on ‘5 I ‘7
LOW VOLTAGE (Npuys OUTPUTS To HIGH

M05 05: TTL/DTL ——————) KR2376-Xx ____._> OR LOW
REFERENCED VOLTAGE_ MOS

Fig. 3

OUTPUT DRIVER & “X" OUTPUT STAGE
T0 KEYBOARD

e V53 Venn
I .

I §-—i

.4
IN r—r—fii Hmos LOGIC WC Va

“Y" INPUT STAGE FROM KEYBOARD
Vac

"Y“ TO
KEYBOARD INTERNAL

INPUT GATINGT

STATIC CHARGE vcc COUNTER
PROTECTION DEVICE INPUT

Flg. 4
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TYP. OUTPUT
STROBE OSCILLATOR ON RESISTANCE TYP. POWER
DELAY FREQUENCY VS. GATE CONSUMPTION
VS. C1 VS. Cg BIAS VOLTAGE VS. TEMPERATURE

0025M , t . 200 . I I 160 . I . . I ,
t l . i R ftogm _ I Nom Supp Voltage

w 002M - F I. H I , I 7 ‘ ‘9'“ H ; NornSTJP-pzf’oiage ‘ m E150 —— + I T 52::‘15;
o ‘t t u.- | , z ; E .' “f ._ e *' + ' +'— 5 7 Wit:1 ow +A4—u §ao » i 7 -t ————— g 8 1 r \
‘3 50091- 423229? 7 34o __ 4|»wi I 40 ‘ ‘ 3130 ;_4 4‘» Y: 1 \

t Nom Supp Voltage I .\ I r ’1 I, t ‘ t I
0 I I 0 I I 0 i ‘t I i 120 I i i

o 1 2 3 a o 20 40 so so 100 35 30 25 20 15 10 e o 10 20 so To 50 so 70
DELAY . msec FHEOUENCV - KHz v65 - Votts TEMPERATURE - “C

Fig.5 Fig.6 Fig.7 Fig.8

CODE ASSIGNMENT CHART DATA (31-38) INVERT

8 Bit ASCII, Odd parity bATAssme
nwenrwwr A

(PInZOI
1 t a
o 1 1
1 O I
o c o

r...

STROBE INVERT
TRUTH TABLE

A
...

"‘
3

:
:1

:
3:3

.

A
40

0

PARITY INVERT--
- TRUTH TABLE
- PAFHTV COD PARITY
= INVERTINPUT ASSIGNMENT OUTPUT

(Pin 6) CHART IPInV)

1 1 0g o 1 1
El 1 0 1

0 0 0

MODE SELECTION

EEE
”it?

!
'E

“

tCode representative at key ca:-
tocatton XO-YS and propermoae 5

STANDARD MICROSYSTEMS
CORPORATION

. JL w 25294

mwmmwmwmmmmmm

N = Normal Mode
S = Snttt Mode
C = Control Mode
l t Logo "1" (see data 5138)

‘5 0V
Ground

Logvc
’ LOQIC

Ctrcwt diagrams uttltzmg SMC products are tnctuded as a means of tllustrattng typtcal semtconductor appltca—
trons. consequently complete tntormatton suttrcrent tor constructton purposes IS not necessarny gtven The
Intormatton has been careqy checxed and IS betteved to be enttrely rename However. no responSIbtltty Is
assumed tor maccuracnes Furthermo'e such mtormatton does not convey to the purchaserot the semtconductor
devices described any hcense under the patent rlghtS ot SMC or others SMC reserves the right to make changes
at any ttme m order to Improve deStgn and supply the best product posslbte.
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Appendix C7
STANDARD MICROSYSTEMS
CORPORATION

35 Marcus Blvd. Hauppauge N V 11787
(516)273-3i00 TWX~5iO-227-8898

Welteepaeadotwrcompetitionsoyoucankeepaneadofmrs

COM2502
COM201 7
COM2502/H
COM201 7/ H

Universal Asynchronous Receiver/Transmitter
UART

D Direct TTL Compatibility— no interfacing circuits
required

El Full or Half Duplex Operation— can receive and
transmit simultaneously at different baud rates

I] Fully Double Buffered—eliminates need for precise
external timing

[I Start Bit Verification—decreases error rate

El Fully Programmable—data word length, parity mode,
number of stop bits; one. one and one-half, or two

El High Speed Operation—40K baud, 200ns strobes

El Master Reset— Resets all status outputs

D Tri-State Outputs— bus structure oriented

Pin Configuration
w

Vcc C 1 40 :| TOP
Voo E 2 as 3 POE
Gnd E a 38 war
RUE E 4 37 E N082
R08 [3 5 36 3 N53
nor 6 35 :1 we
R06 7 34 3 cs
R05 C a 33 j T06
RDA C 9 32 :1 T07
R03 C To 31 T06
ncz C it 30% T05
Row 12 29 T04
nee 13 28 :I To:
FIFE 14 27 j T02
non 15 26 :1 T01
SW? C 16 25 3 Tso
RCP 17 24a TEOC

fi‘o—Afi is 23 T155
RDA C19 22 :i TBMT
as C 20 21 Ii ma

PACKAGE:40-Pin D I P.

B Low Power- minimum power requirements

El input Protected—eliminates handling problems

D Ceramic or Plastic Dip Package—easy board insertion

GENERAL DESCRIPTION
The Universal Asynchronous Receiver/Transmitter is
an MOS/LSI monolothic circuit that performs all the
receiving and transmitting functions associated with
asynchronous data communications. This circuit is
fabricated using SM C’s P-channel low voltage oxide-
nitride technology. The duplex mode, baud rate, data
word length, parity mode, and number of stop bits are
independently programmable through the use of exter-
nal controls. There may be 5,6,7 or8 data bits, odd/even
or no parity, and 1, or 2 stop bits or 1.5 stop bits when
utilizing a 5-bit code from the COM 2017 or COM 2017/H.
The UART can operate in either the full or half duplex
mode. These programmable features provide the user
with the ability to interface with all asynchronous
peripherals.

TCP-
cs-

NPB
NSB

NDB2
NDBI

POE

RCP-

RSI

Functional Block Diagram
T01 T02 T03 T04 TCE ’3 T07 T08

TRANSMITTER BCE‘ER REGISTER

TRANSMITTER 25
SHIFT TSO
REGISTER

CONTROL
REGISTER

TIMING AND CONTROL RECEIVER

TEOC
SWE

22
STATUS 3 LEE”warm 4 areBUFFER 5 nonREGISTER 9 RDA
I T_IB.R—§DA

MR

20' RECEIVE
SHIFT
REGISTE

R

R VDD

RECEIVER BUFFER REGISTER

5 6 7 8 9 10 ll 12

.52;

{—12—< Vcc
I 3{— Grid

R08 R07 RDG RD5 R04 R03 R02 R01

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980
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DESCRIPTION OF OPERATION — TRANSMITTER

At start-up the power is turned on. a clock whose
frequency is 16 times the desired baud rate is
applied and master reset is pulsed. Under these
conditions TBMT, TEOC. and T80 are all at a high
level (the line is marking).
When TBMT and TEOC are high. the control bits
may be set. After this has been done the data bits
may be set. Normally. the control bits are strobed
into the transmitter prior to the data bits. However.
as long as minimum pulse width specifications
are not violated. TDS and CS may occur simulta-
neously. Once the date strobe (TDS) has been
pulsed the TBMT signal goes low, indicating that
the data bits buffer register is full and unavailable to
receive new data.
it the transmitter shift register is transmitting pre-
viously loaded data the TBMT signal remains low.
If the transmitter shift register is empty. or when it is
through transmitting the previous character. the
datainthe buffer registerisloadedimmediatelyinto
the transmitter shift register and data transmission

commences. TSO goes low (the start bit). TEOC
goes low. the TBMT goes high indicating that the
data in the data bits buffer register has been loaded
into the transmitter shift register and that the data
bits buffer register is available to be loaded with
new data.
If new data is loaded intothe data bits bufferregister
atthistime.TBMT goes lowand remainSinthisstate
until the present transmission is completed. One
full character time is available for loading the next
character with no loss inspeed oftransmission.This
is an advantage of double buffering.
Data transmission proceeds in an orderly manner:
start bit. data bits, parity bit (if selected), and the
stop bit(s). When the last stop bit has been on the
line for one bit time TEOC goes high. If TBMT is
low, transmission begins immediately. if TBMT is
high the transmitter is completely at rest and, if
desired. new control bits may be loaded priortothe
nextdata transmission.

ODD'EVEN
PAPITV SELECT

CONTROL
STHOBE

TRANSMITTER BLOCK DIAGRAM

DEE DB7 095 DES LJ4 DE! [:52 55‘
l l | l

[—0—— DATA STROBE

: TRANSMITTER
F F BUFFER

S EMPTY

16xT - .- ---CLOCK—4 TlMlNGG:N:-A --

PAFIITV BIT GENERATION LOGIC

SERIAL
OUTPUT

END OF
I CHARACTER

OUTPUT
LOGIC

DESCRIPTION OF OPERATION— RECEIVER

At start-up the power is turned on. a clock whose
frequency is16timesthedesiredbaudrateisapplied
and masterreset is pulsed.Thedataavailable(RDA)
signal is now low. There is one setotcontrol bitsfor
both the receiverand transmitter.
Data reception begins when the serial input line
transitions from mark (high) to space (low). It the
RS! line remains spacing for a 1/2 bittime.agenuine
start bit is verified. Should the line return toa mark-
ing condition priorto a 1/2 bittime. the start bit veri—
fication process begins again. A mark to space
transition must occur in order to initiate start bit
verification. Once a start bit has been verified. data
reception proceeds in an orderly manner: start bit
verified and received. data bits received, parity bit
received (if selected) and the stop bit(s) received.
if the transmitted parity bit does not agree with the
received parity bit. the parity error flip—flop of the
status word buffer register is set high, indicating a
parity error. However. if the no parity mode is se-

lected. the parity error flip-flop is unconditionally
held low. inhibiting a parity error indication. If a
stop bitis not receiveddueto animproperlyframed
character. the framing error flip-flop is set high.
indicating aframing error.
Once a full character has been received internal
logic looks at the data available (RDA) signal. If. at
this instant, the RDA signal is high the receiver
assumes that the previously received character has
not been read out and the over-run flip-flop is set
high. The only way the receiver is aware that data
has been read out is by having the data available
reset low.
At this time the RDA output goes high indicating
that all outputs are available to be examined. The
receiver shift register is now available to begin re-
ceiving the next character. Due to the double buf-
fered receiver, a full character time is available to
remove the received character.



RECEI

R08 RD7 R06 R05 R04 R03 R02 R01

VER BLOCK DIAGRAM

FRAMING
ERROR

OVER RUN PARITY ERROR
TRANSMITTER
BUFFER EMPTY

DATA
AVAILABLE

AND GATE
DATA STATUS

E—NABLE AND GATE _.W0RDENABLE

I DATA BITS HBOLFDIENRG REGISTER F/FFT— 76—7—3335”

CONTROLairs FROM
HOLDINGREGISTER I

seem. STAART BIT PARITV BIT G{VHT RECEIVER SHIFT
INPUT VERlFlCATION CHECKING LOGIC JUST lFY LOGIC CP REGlSTER

‘5‘“ TI NCLOCK —-a1 Ml GGENERATOR

STATUS WOl'ID
HOLDING REGISTER

DESCRIPTION OF PIN FUNCTIONS

PIN NO. SYMBOL NAME FUNCTION

1 Vcc Power Sac: y —5 voit Supply

2 Von Powersuccy —12I:tS,c:Iy

3 GND G'cuod Grcmd

4 R E Rec—awed Data A low-level inputenables the outputs (RDB-RDI) of the
Rams receiver buffer register.

5-12 RD8-RD1 Pe:eI er Data These are the8tri-state data outputs enabled vRDE
O. puts Unused data output lines, as selected by NDEIb Va" : {352.

have a low- level output, and received charac e s a e r gnt
justified. i.e the LSB always appears on the R‘D c cut

13 RPE Fe:eI .er Parity Thistri-state output (enabled by SE s at a ‘ gs- evel if
Error the received character parity bit does ":1 II In the

selected parity.

14 RFE Recener Framing This tri—state output (enabled by SI‘. E s a: a hIgh-level if
Error the received character has no valI: 5:: .2 : t

15 ROR Receiver Over This tri-state output (enabled by SHE I Is at a high- level if
Run the previously received character Is not read (RDA output

not reset) before the present character Is transferred into
the receiver buffer register

16 SWE Status Word A low—level input enables the outputs (RPE. RFE, ROR.
Enable RDA. and TBMT) of the status word butter register.

17 RCP Receiver Clock This input isaclock whosetrequency is16times(16X)the
desired receiver baud rate

18 RDAR Receiver Data A low-level input resets the RDA output to a low-level.
Available Reset

19 RDA Receiver Data This tri-state output (enab+ed by S—WE) is at a high—level
Available when an entire character has been received and transferred

into the receiver buffer register

20 RSI Receiver Serial This input accepts the serial bit input stream. A high-level
Input (mark) to low-level (space) transition is required to initiate

data reception.

21 MR Master Reset This input should be pulsed to a high- level after power
turn--on. This setsTSO TEOC and TBMT toa high--level
and resets RDA. RPE. RFE and ROR to a low- level.
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22 TBMT Transmitter This tri-state output (enabled by SWE) is at a high—level
Butter Empty when the transmitter buffer register may be loaded with

new data.

23 T03 Transmitter A low-level input strobe enters the data bits into the
Data Strobe transmitter buffer register.

24 TEOC Transmitter End This outputappears asahigh-Ieveleachtimeafullcharacter
of Character is transmitted. it remains at this level until the start of

transmission of the next character or for one-half of a TCP
period in the case of continuous transmission.

25 T50 Transmitter This output serially provides the entire transmitted
Serial Output character. TSO remains at a high-level when no data is

being transmitted.

26—33 TD1-TDB Transmitter There are 8 data input lines (strobed by TDSl available.
Data Inputs Unused data input lines, as selected by NDBl and NDBZ.

may be in either logic state. The LSB should always be
placed on T01.

34 CS Control Strobe Ahigh-level inputentersthe control bits (NDB‘ NDBZ.
NSB. POE and NPB) into the control bits ho C n; reg ster.
This line may be strobed or hard wired to a high-.evel,

35 NPB No Parity Bit A high-level input eliminates the parity bit from be “9
transmitted; the stop bit(s) immediately follow the set data
bit. in addition, the receiver requires the stop bit 5 to fellow
immediately afterthe last data bit. Also. the RPE output is
forced to a low-level. See pin 39. POE.

36 N88 Number of Thisihputselectsthe number of stop bits.A low-level input
Stop Bits selects 1 stop bit; a high-level input selects 2 stop bits.

Selection of 2 stop bits when programming a 5 data bit word
generates 1.5 stop bits from the COM 2017 or COM 2017, H.

37-38 NDBZ, Number of Data These2 inputs are internally decoded toselecteither5.6.7.
NDB1 Bits/Character or 8 data bits/character as per the following truth table:

N082 NDBt data bits/character
L L 5
L H 6
H L 7
H H 8

39 POE Odd/Even Parity The logic level on this input, in conjunction with the NPB
Select input, determines the parity mode for both the receiverand

transmitter, as per the following truth table:
NPB POE MODE

L L odd parity
L H even parity
H X no parity

X = don’t care

40 TOP Transmitter This input is a clock whose frequency is 16 times (16X) the
Clock desired transmitter baud rate.

TRANSMITTER TIMING—8 BIT, PARITY, 2 STOP BITS

— i l
TBMT H I

T50 I STARTSXTXE . .. .. IDZT; BJEAEI‘RJ STOP 1 STOP 2 START
_B_"_ _____

TEOC —__l time I

TRANSMITTER START-UP

T” M We “r— —i- 4 l~
TSO :L ‘—'——1__

Upon data transmission initiation. or when not transmitting at 100% line utilization. the start bitwill be placed
on the TSO line at thehigh to low transition at the TCP clock iollowmg the trailing edge at TDS.



RECEIVER TIMING—8 BIT, PARITY, 2 STOP BITS
RSI I START :FDATALE ----- IDATA BIPARITVI STOP 1 STOP 2| START

ERIE?“ I I I I I | I
RDA' ____________________—_>l' l<—l/163uttlme

I

RDA" l
'The RDA line was previously not reset (ROR = high-level).

"The RDA line was prevtously reset (ROR = low-level).

START BIT DETECT/VERIFY
RCP I I l I

M Begin verily L Beg-n verity
RSI S l I

II the RSI Ime remains spacing tor a 1/2 bit time. a genuine start bit is venhed Should the llne return to!
marking condition prior to a 1/2 bit time. the start bit VETIIICBIIOI’I process begins again

MAXIMUM GUARANTEED RATINGS"
Operating Temperature Range ...................................................... 0°Cto +70°C
Storage Temperature Range .................................................... —55°Cto +150°C
Lead Temperature (soldering, 10 sec.) ..................................................... +325°C
Posnive Voltage on any Pin,Vcc ............................................................ +0.3V
Negative Voltage on any Pin. Vcc ............................................................ —25V

‘Stresses above those listed may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these oratanyotherconditionabovethoseindicated intheoperational
sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS (TA = 0° C to 70° C, Vcc = +5V i5%, VDo=—12V :t5°/o, unless otherwise noted)

Parameter Min. Typ. Max. Unit Conditions
D.C. CHARACTERISTICS

INPUT VOLTAGE LEVELS
Low-level, VIL Vco 0.8 V
High-level. VIH Vcc-1.5 Vcc V

OUTPUT VOLTAGE LEVELS
Low-level, VOL 0.2 0.4 V |0L=1.6mA
High-level. VOH 2.4 4.0 V IOH =1OO/4A

INPUT CURRENT
Low-level, IIL 1.6 mA see note4

OUTPUT CURRENT __ _
Leakage, to —1 ,uA SWE=RDE=VIH.OSVourS-5V
Short circuit, los" 10 mA Vour=0V

INPUT CAPACITANCE
All inputs, Cw 5 10 pf VIN=Vcc.f=1Ml-lz

OUTPUT CAPACITANCE __ _
All outputs, Cour 10 20 pt SWE= RDE=VIH.I=1MHZ

POWER SUPPLY CURRENT
Ice 28 mA AIIOUtpUts=VOH.A1I mputs=Voc
lop 28 mA

A.C. CHARACTERISTICS TA=+25°C
CLOCK FREQUENCY

(COM2502, COM2017) DC 400 KHz RCP. TCP
(COM2502H, COM2017H) DC 640 KHz RCP. TCP

PULSE WIDTH
Clock 1 ps RCP, TCP
Master reset 500 ns MR
Control strobe 200 ns Q
Transmitter data strobe 200 ns TDS
Receiver data available reset 200 ns RDAR

INPUT SET-UP TIME
Data bits 20 ns TDl-TD8
Control bits .20 ns NPB,NSB. NDBZ,ND81. POE

INPUT HOLD TIME
Data bits 20 ns TDl-TDS
Control bits 20 ns NPB, NSB, NDBZ. NDBt, POE

STROBETO OUTPUT DELAY L_oa_d=20pf +1 TTLinput
Receive data enable 350 ns RDE: TPD1,TPDO
Status word enable 350 ns 8&5: TPD1,TPDO

OUTPUT DISABLE DELAY 350 ns RDE, SWE
"Not more than one output should be shorted at a time.

NOTES: 1. It the transmitter is inactive (TEOC and TBMTare ata high-level) the start bit will appear on the T80 line within
one clock period (TCP) after the trailing edge of TDS.

2. The start bit (mark to space transition) will always be detected within one clock period of RCP. guaranteeing
a maximum start bit slippage 011/16th of a bit time.

3.Thetri-stateoutputhas3states:1)|owimpedancetcc 2MimpedancetoGND 3)highimpedanceOFFE
10M ohms. The “OFF” state is controlled by the NE and RDE inputs.

4. Under steady state conditions no current flows for TTL or MOS interfacing. (COM 2502 or COM 2502/H)
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.1 U (D

DATA INPUTS
tr =t1= 20 ns
TSET-UP 20
THOLD 20

CS

CONTROL INPUTS

DATA/CONTROL TIMING DIAGRAM

VIH
VIL

TPW
TSET-UP THOLD

VlH
VIL . .

TPW‘

VlH L

VIL 12

TSET-UP 5(— THOLo

VIH
VIL

I

'Input information (Data/Control) need only be valid during
the last TPW, rnin time of the input Strobes (TDS'. CS).

RDE.S E

OUTPUTS
(RDl—RDB. RDA,

RPE. ROR. RFE.TBMT)

OUTPUT TIMING DIAGRAM

Outputs Disabled

<——- Tpm. TPDO

NOTE: Waveform drawings not to scale for clarity.

RDAR

\— VOL

RDA ‘ 300ns



FLOW CHART—TRANSMITTER FLOW CHART—RECEIVER

\ YURN POWER ON 1 TURN POWER ON
2 PULSE EXTERNAL RESEY 2 PULSE EXYERNAL RESET
3 SELECT aAuD HATE- is x CLK 3 SELECT BAUU RATE—16 xCLK

4 SET CONTROL BITS

l
TBMT = i
EOC 5‘
SO ’ l (SYDP BlTl

SET CONTROL BlTS —FULSE CS

HE LINE
YfiANsmONED

FROM MARKlNG To
SPASIN

l5
YHANSMiTTER

SHIFY REGISTER
EMPTY -,
(EOC ; l‘ HAS

lal' rivE
ELAESE: ‘r

'5 I Cm

l LOAD YHANSMlYYER SK!" 9.
H 2 SO’OlSTART Bil;

J EOC ‘ U smrr AND LOAD 0‘“ E ' ~70
RECEIVER SHIFY FEG‘S'E:I

HAS we

us
551 9ARI'Y NO n-ie noose VES SEY 9AfilTV
Efiaon REG|SYER nmrv air areN EnaoH IREGISVEfl
'C‘ ECEJVED 1'00

i __._._J

HA5
i ElT YIME
ELAPSEO9

set KfiAMING ~c
Efifion nsoisrgn
voi

SE! OVER-RUN (S
REGISTER RDA . c
1’0 r 1

TRANSFER DATA El
TO DA“ airs HOL

qTANDARD MICROSYSTEMS Circu t Cla;'a"‘-S utiliZing SMC products are included as a means of illustrating typical semiconductor applica-
" he’s corseuenziy complete information sulhcrent for construction purposes is not necessarily given The

PORATDN infcrmaiior‘ has been carefully checked and is believed to be entirely reliable. However. no responSibility [S

lswnfim WNVH‘B‘
MEI?” in!) M1 SlO 1775896

assume: tor ihaccuraCies Furthermore. such information does not convey to the purchaser of the semiconductor

mwmmwmmmmmmmm at any lime in order lo improve deSIgn and supply the best product possnble.
devices descweed any license underthe patent rights oi SMC or others SMC reserves the right to make changes
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STANDARD MICROSYSTEMS

Appendix C8

w—
CRT Video Timer and Controller“PC FAMILY

VTAC®
FEATURES PIN CONFIGURATION
11 Fully Programmable Display Format V

Characters per data row (1-200) A“ I ‘0 3*“
Data rows pertrame (1-64) A3 C 2 39 3 A2)
Rasterscans per data row (1—15) ESE i is g :3

E) Programmable Mor tor Sync Format H2 E 5 35 3 H2
Raster Scans Frame(256-1023) GNoE 6 35 3 H3
"Front Porch FII d 7 34 3H4
Sync Width Reg 5 333145
“Back Porch" osd 9 321H6
Interlace \zc-‘cterlace LLi/csE 10 31 JH7/DR5
Vertical 8 au "3 vsw C 11 30 3094

[:1 Lock Line l":c RT 5057) ccc E 12 29 3093
1:) Direct Out CRT Monitor V00 5 13 2’8 30“?

Horizc Vcc t: 14 27 mm
HSYN : 15 26 30nd

.—: [CRT 5027,cnr5037) CRV C ‘6 25 305”BL r: 17 24 3081
,, __ DB7E18 233052

vice 056 i: 19 22 3053
US 055 20 21 3034

PACKAGEj40-Pin DI P

D Split-Screen Applications
:eodard CRT MonitorCompatible Horizontal
.50Hz,.., Vertical

E Scrozi -; l: Interlace or Non-lnterlace coe'ation
Sing e_ ”e DTTLCompatibility
MUIIl-I. ”e DBUSOriented

DCursorPcs t DHigh Speed Operation
SCharacterE Tx9.... DCOPLAMOSE N-ChannelSLIicon
D Programme: A” Data Positioning ‘ Gate Technology
D Balanced Bee .; nterlace(CRT 5037) DCompatibIe wnh CRT 8002 VDACTM
DGraphicsComc a :e DCompatible With CRT 7004

GENERAL DESCRIPTION
The CRT Video Timer a”: Coct': er Chip (VTAC)® isa user programmable40-pin COPLAMOSQ nchannel MOS/LSI

device containing the log c ‘.
interlaced and non—interlace: .

s reouired to generate all the timing Signals tor the presentation and formatting ol
data on a standard or non—standard CRT monitor.

With the exception ot the c: u ter which may be clocked at a video frequency above 25 MHz and theretore not
recommendedforMOSimp e on ailirameformatting suchashorizontal vertical and compositesync characters
perdata row data rows per trace and raster scans per data row and perframearetotally userprogrammable. Thedata row
counter has been designed to ‘a: ta e scrol- ing

Programming is effected by cad ng seven 8 bit control registersdirectlyoffan8 bit bidirectionaldata bus Fourregister
address lines and achip select line or: .ce complete microprocessorcompatibility for program controlled setup. Thedevice
can be “self loaded" via an externa DPOM tied on the data bus as described inthe OPERATION section. Formatting canalso
be programmed by a single masx option.

in addition to the seven control registers two additional registers are provided to store the cursor character and data
row addresses for generation of the cursor video Signal, The contents of these two registers can also be read out onto the
bus for update by the program.

Three versions of the VTAC® are available The CRT 5027 provides non-interlaced operation with an even or odd
number of scan lines per data row, or interlaced operation with an even number of scan lines perdata roeheCRT5037
may be programmed foran odd oreven number of scan lines perdata row in both interlaced and non-interlaced modes.
Programming the CRT 5037 for an odd numberofscan lines perdata row eliminates characterdistortion caused bythe
uneven beam current normally associated with odd field/even field interlacing of alphanumeric displays.

The CRT 5057 provides the ability to look a CRT's vertical refresh rate. as controlled by the VTAC's® vertical sync
pulse, to the 50 Hz or 60 Hz line frequency thereby eliminating the so called “swim“ phenomenon. This is particularly
well suited for European system requirements. The line frequency waveform, processed to conform to the VTAC’s®
specified logic levels, is applied to the line lock input. The VTACG will inhibit generation of vertical sync until a zero to
one transition on this input is detected. The vertical sync pulse isthen initiated within one scan lineatterthistransition
rises above the logic threshold of the VTAC.®

To provide the pin required for the line lock input, the composite sync output is not provided in the CRT 5057.

‘FOR FUTURE RELEASE

CRT 5027
35mm CRT 5037
[5161273~3t00 woinraaee CRT 5057*

Welteepaheadofourcompetitionsovoucankeepaheadofyours

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980
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Description of Pin Functions

Input!
Pin No. Symbol Name Output Function

25-18 Den—7 Data Bus IIO Data bus. Input bus for control words from microprocessor or
PROM. Bidirectional bus for cursor address.

3 CS Chip Select I Signals chip that it is being addressed
39.40.1 . 2 Afl-s Register I Register address bits for selecting one of seven control

__ Address registers or either of the cursor address registers
9 US Data Strobe I Strobes DBlJ-7 into the appropriate register or outputs the

cursor character address or cursor line address onto the data bus
12 000 DOT Counter I Carry from off chip dot counter establishing basic character

Carry clock rate. Character clock.
38-32 Hfi-e Character 0 Character counter outputs.

Counter Outputs
7. 5. 4 R1-3 Scan Counter 0 Three most significant bits of the Scan Counter; row select

Outputs inputs to character generator.
31 H7/DR5 H7/DR5 0 Pin definition is user programmable. Output is MSB of

Character Counter if horizontal line count (REG.¢) is E128:
otherwise output is MSB of Data Row Counter.

8 R5 Scan Counter L83 0 Least significant bit of the scan counter. in the inter-
laced mode with an even number of scans per data row.
R0 will toggle at the field rate; for an odd number of
scans per data row in the interlaced mode. RE Will toggle
at the data row rate.

26-30 DWI-4 Data Row 0 Data Flow counter outputs.
Counter Outputs

17 BL B ank O Defines non active portion of h‘brizcntal and vertical scans.
15 HSYN HD' zontal Sync O Initiates horizontal retrace.
11 VSYN Ve". ca‘ Sync 0 Initiates vertical retrace.
10 CSYN/ Cor'::s .e Sync Output/ O/l Composite sync is provided octheCRT 5027 and CRT 5037.

LU Line Leo-t input This outputis activein non-icter‘aced mode only.Providesatrue
IRS-170 composite sync wave term. For the CRT 5057. this pin is
the Line Lock Input. The lice ‘reQuency waveform. processed to
conform to the VTAC'sS soecv'red !ogic levels. is applied to this pin.

16 CRV Cursor Video 0 Defines Cursor locaton in data t ed.
14 Vcc Power Supply PS +5 volt Power Scoo'y
13 V00 Power Supply PS +12 volt Power Supply

U5" DIVA KN
m

omm
m

BLOCK DIAGRAM



Operation
The design philosophy employed was to allow the device to interface effectively with either a microprocessor based or

hardwire logic system. The device is programmed by the user in one of two ways; via the processor data bus as part of the
system initialization routine, or during power up via a PROM tied on the data bus and addressed directly by the Row Select
outputs of the chip. (See figure 4). Seven 8 bit words are required to fully program the chip. Bit assignments for these words
are shown in Table 1. The information contained in these seven words consists of the following:

Horizontal Formatting:
Characters/Data Row A 3 bit code providing 8 mask programmable character lengths from 20 to 132.

The standard devrce will be masked for the following character lengths; 20, 32v
40. 64. 72. 80. 96. and 132.

Horizontal Sync Delay 3 bits assigned providing up to 8 characterlimes for generation of "front porch".

Horizontal Sync Width 4 bits assigned providing up to 15 character times for generation of horizontal
sync width.

Horizontal Line Count 8 bits assigned providing up to 256 charactertimes for total horizontal formatting.

Skew Bits A 2 bit code providing from a O to 2 character skew (delay) between the
horizontal address counter and the blank and sync (horizontal.verticalcomposne)
signals to allow for retiming of video data prior to generation of composrte Video
signal. The Cursor Video signal is also skewed as a function of this code.

Vertical Formatting:
interlaced/Non-interlaced This bit provides for data presentation wrth odd’even ‘ie‘d formatting for inter-

laced systems. It modifies the vertical timing counters as described below.
A logic 1 establishes the interlace mode.

Scans/Frame 8 bits assigned. defined according to the following equations: Let X = value 018
aSSigned bits.
1) in interlaced mode—scans/frame = 2X + 513. Therefore for 525 scans.
program X = 6 (000001 10). Vertical sync wrll occur preCIsely every 2625 scans.
thereby producing two interlaced fields.
Range = 513 to 1023 scans/frame. odd counts only.
2) in non-interlaced mode—scansiframe = 2X + 256. Therefore for 262 scans.
program X = 3 (00000011).
Racge = 256 to 766 scans/frame. even counts only.
in either mode. vertical sync width is fixed at three horizontal scans (5 3H)

Ve". :3 33:2 Ste? 8 : ts defining the number of raster scans from the leading edge :‘ nertical
5;“: until the start of display data. At this raster scan the data r: ::.nter is
set to the data row address at the top of the page.

Data Rows ”re 6 : is assigned providing up to 64 data rows per frame.

Last Data Row 6 : is to allow up or down scrolling via a preload defining the ctr: cf the last
c s: ayed data row.

Scans/Data Row 4 : is assigned providing up to 16 scan lines per data row

Additional Features

Device Initialization:
Under microprocessor control—-The device can be reset under system or program control by presenting a 1 01¢ address

on A30. The device will remain reset at the top of the even field page until a start command is executed by presenting at 1 1%
address on AS-ia.

Via “Self Loading"——ln a non-processor environment. the self loadings_equence is effected by presenting and holding the
1111 address on AIS-0. and is initiated by the receipt of the strobe pulse (08). The 1111 address should be maintained long
enough to insure that all seven registers have been loaded (in most applications under one millisecond). The timing
sequence will begin one line scan after the 1 1 11 address is removed. In processor based systems. self loading is initiated by
presenting the 91111 address to the device. Self loading is terminated by presenting the start command to the device which
also initiates the timing chain.

Scrolling—In addition to the Register 6 storage of the last displayed data row a “scroll“ command (address 1011)
presented to the device will increment the first displayed data row count to facilitate up scrolling in certain applications.
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Horizontal Line Count:
Characters/ Data Row:

Horizontal Sync Delay:
Horizontal Sync Width:

Skew Bits

Scans/Frame

Vertical Data Start:

Data Rows/Frame:
Last Data Row:

Mode:
Scans/Data Row:

Control Registers Programming Chart
Total Characters/Line = N +1, N = 0 to 255 (080 = LSB)
D82 DB1 D80
0 0 0 = 20 Active Characters/Data Row
0 0 1 = 32
0 1 0 = 40
0 1 1 = 64
1 O 0 = 72
1 0 1 = 80
1 1 0 = 96
1 1 1 = 132

N, from 1 to 7 character times (080: L88) (N = O Disallowed)
=N, from 1 to 15 character times (DES: LSB) (N = 0 Disallowed)

Sync/Blank Delay Cursor Delay
DB7 DB8 (Character Times)

0 0 0 0
1 0 1 0
0 1 2 1
1 1 2 2

8 bits assigned. defined according to the following equations:
Let X = value of 8 assigned bits. (080 = L58)
1) in interlaced mode—scans/lrame = 2X + 513.Theretoretor525 scans,
program X = 6 (00000110). Vertical sync will occur precisely every 262.5
scans. thereby producing two interlaced fields.
Range = 513 to 1023 scans/frame, odd counts only.
2) in non-interlaced mode—scans/trame = 2X + 256. Thereioretor262
scans. program X = 3 (00000011).
Range = 256 to 766 scans/frame, even counts only.
in either mode. vertical sync width is fixed at three horizontal scans (= 3H).
N = number of raster lines delay after leading edge of vertical sync 01
vertical start position. (DBO = LSB)
Number of data rows = N +1, N =0 to 63 (080 = LSB)
N = Address of last dsplayed data row. N = 0 to 63. ie; for 24 data rows,
program N = 23. (080 = L88)
Register. 1, DB7=1 establishes Interlace.

Interlace Mode
cm 5027: Scans per Data Row = N +1 where N = programmed number of
cata was :N = Oto 15. Scans per data row must be even counts only.
C -237. CRT 5057: Scans perdata Flow = N +2. N = Oto 14. odd oreven
CC..".‘.$.

Non-Interlace Mode
3 CW 5057:Scans perData Flow = N +1. odd orCRT 5:27 CRT SC 7

3:315.even CC.’11.N =5

SMC
CRT 5027. car 5037

or CRT 5057
vTAc®

Figure 4.
SELF LOADING SCHEME
FOR VTAC® SET-UP32 x 6 PROM

HARRIS HM»7602
OR EQUIVALENT

(from system) . 5

ROW SELECTS
YO CHARAC‘l ER GENERATOR



Register Selects/Command Codes
A3 A2 A1 A6 Select/Command Description
0 O O 0 Load Control Register a
0 0 O 1 Load Control Register 1
0 0 1 0 Load Control Register 2
0 O 1 1 Load Control Register 3 See Table 1
O 1 0 0 Load Control Register 4
O 1 0 1 Load Control Register 5
0 1 1 0 Load Control Register 6
0 1 1 1 Processorlnitiated Self Load Command from processor instructing

VTAC® to enter Self Load Mode (via ex-
ternal PROM)

1 0 O 0 Read Cursor Line Address
1 0 0 1 Read Cursor Character Address
1 0 1 0 Reset Resets timing chain to to left of page. Reset

is latched on chip by D and counters are
held until released by start command.

1 O 1 1 Up Scroll Increments address of first displayed data
row on page. ie: prior to receipt of scroll
command—top line = 0. bottom line = 23.
After receipt of Scroll Command—top line =
1. bottom line = 0.

1 1 0 0 Load Cursor Character Address'
1 1 0 1 Load Cursor Line Address'
1 1 1 0 Start Timing Chain Receipt of this command after a Reset or

Processor Self Load command will release
the timing chain approximately one scan line
later. in applications requiring synchronous
operation of more than one CRT 5027 the
dot gunter carry should be held low during
the DSforthis command.

1 1 1 1 Non-ProcessorSelfLoad Device_will begin self load via PROM
when 08 goes low. The 1111 command
should be maintained on A3-% long
enough to guarantee self load. (Scan
counter should cycle througn a: least
once). Self load is automaticc y termi-
nated and timing chain initiate: when the
all “1's"flndition is removes. indepen-
dent of DS. For synchronous operation
of morethan one VTACE. tce Dot Counter
Carry should be held low wnen the com-
mand is removed.

‘NOTE: During Self—Load t“:— Csrsor Character Address Register (REG 7) and the Cursor s Address
Register (REG 5‘; -
Therefore, Cursor cata n the PROM should be stored at these addresses.

‘ esa: ed during states $111 and 10010 ofthe R3AR@ Scan COuhzer outputs respectively.

TABLE1

BIT ASSIGNMENT CHART
HORlZONTALLiNECOUNT sxrva‘rrs DATAROWSIFRAME LASTDISPLAYEDDATAROW

r‘—_—_-J——_fi I—l——1_.

team l l l l llalmalvl6l51l lllalmsll 15lllllal
MODE INTERLACEDJ HSVNCWlDTH HSYNCDELAY SCANLINES/FRAME CURSORCHARACTERADDRESS
NONINTERLACED ,_—l_——, fl r—g—afi r—’———-—L

neeifilel l |3121Wl Raml7l l l l l l lalmrlfl l l l l l M
SCANS/DATAROW CHARACTERS/DATAROW VERTICALDATASTART cunson now ADDRESS

marital l lslzl lal mslvl l l l l l lfil mam IE] I l i la]
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AC TIMING DIAGRAMS

FIGUREI VIDEOTIMING l'.‘ I‘_ _'II II

I II
DOT COUNTER\CARRY J

Hi7
H SYNC. v swc, BLANK,
CURSOR VIDEO
COMPOSITE SYNC

FIGURE 2 LOADIREAD TIMING

I Tsuw

ADDRESS 7/.
CHIP SELECT

\______________ 4.

Eééw7//////////7/////W/////W ___.J
~—-Touz

EEIII:~///////////////////////W/// L

Tsnun

PW6§

FIGURE 3 SCAN A‘ ‘ 34': =3 IN COUNTER TIMING

HSYNC—/.___\

__________ ._ _ _ - \

0:59:35 I \_—-I-——';.- ~‘

‘Rfi-S and DR¢-5 may Urge :' 3' t: the ‘a ':_edge c‘ H sync

CRT 3057 LINE LOCK

CF. 52' LOGIC
WIRES-OLD LINE

LINE LOCK :

VERTICAL SYNC
O‘JT

SAMPLES LINE
LOCK IN

LINE
LOCK

IN

VETICAL
SYNC

PHOGHNA:SCANS/FRAMETOEWTBIM 1
'LMLoam IH



MAXIMUM GUARANTEED RATINGS”
OperatingTemperatureRange ..........................0°Cto+ 70°C
Storage Temperature Range .............................................................. ~55°C to + 150°C
Lead Temperature (soldering. 10 sec ) ............................................................... +325°C
Positive Voltage on any Pin, with respect to ground .................................................... +18.0V
Negative Voltage on any Pin. with respect to ground .................................................... -O.3V
“Stresses above those listed may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or at any other condition above those indicated in the operational
sections of this specrfication IS not implied.
NOTE: When powering this device from laboratory or system power supplies, it is importantthat
the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies
exhibit voltage spikes or “glitches" on their outputs when the AC power is switched on and off.
In addition, voltage transients on the AC power line may appear on the DC output. For example, the
bench power supply programmed to deliver +12 volts may have large voltage transients when the
AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS (TA: 0°C to 70°C. Vcc= +5V:5°/o. V00: -12V :5%, unless otherwise noted)

Parameter Min. Typ. Max. Unit Comments

D.C. CHARACTERISTICS
INPUT VOLTAGE LEVELS

Low Level. VIL 0.8 V
High Level. VIH Vcc-1.5 Vcc V

OUTPUT VOLTAGE LEVELS
Low Level—VOL for Rfl-3 0.4 V IOL =32ma
Low Level—VOL all others 0.4 V IOL =1.6ma
High Level—Voa for Rfl-S, DEE-7 2.4 |o~=80ua
High Level—VOH all others 2.4 lo~=40ua

INPUT CURRENT
Low Level, IIL (Address, CS only) 250 ”A V.N= 0.4V
Leakage, IiL (All Inputs except Address. CS) 10 pA OSVINSVcc

INPUT CAPACITANCE
D_ata Bus. Cm 10 15 pF
DS. Clock. Cw 25 40 pF
All other. Cw 10 15 pF

DATA BUS LEAKAGE in INPUT MODE
Ice 10 [4A O.4V£V.,£5.25V

POWER SUPPLY CURRENT
too 80 100 mA
I00 40 70 mA

A.C. CHARACTERISTICS T. = 25 C
DOT COUNTER CARRY

frequency 02 4.0 MHz F g 'e 1
PWH 35 ns F ;-'e 1
PWL 215 ns F gxe 1
tr.t)K 10 50 ns n'et

DATA STROBE
PWfi 150ns 1OAAS Fgcre2

ADDRESS. CHIP SELECT
Setup time 125 ns Figure2
Hold time 50 ns Figure2

DATA BUS—LOADING
Set-up time 125 rs Figure 2
Hold time 75 ns Figure 2

DATA BUS—READING
Tom 125 ns Figure 2. CL=50pF
Teen 5 60 ns Figure 2. CL=50pF

OUTPUTS: HIE-7. HS. VS. BL. CRV.
CS-Toeu p! 125 ns Figure 1. CL=20pF
TP ; R ~3. DR -5

OLflELLJJTS at it: 500 ns Figure 3. CL=20pF

'Rfl—S and DRE-5 may change prior to the falling edge of H sync

Restrictions
1. Only one pin is available for strobing data into the device via the data bus. The cursor X and Y coordinates are therefore
loaded into the chip by presenting one set of addresses and outputed by presenting a different set of addresses. Therefore
the standard WRITE and READ control signals from most microprocessors must be “NORed” externally to present a single
strobe (Ii—S) signal to the device.
2. In interlaced mode the total number of character slots assigned to the horizontal scan must be even to insure that vertical
sync occurs precisely between horizontal sync pulses
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General Timing
HORIZONTAL TIMING

_ START OF LINE N START OF LINE N+I _

_I_I I77///////////// // ///,I I | /L
‘ ACTIVE VIDEO:
' CHARACTERS PER DATA LINE

HORIZONTAL SYNC DELAV
(FRONT PORCHI

HORIZONTAL SYNC WIDTH

I.——— HORIZONTAL LINE COUNT=H ‘—'—_.

VERTICAL TIMING

START OF FRAME M OR ODD FIELD START OF FRAME M+1 OR EVEN FIELD
SCAN LINES PER FRAME'___._

_I_I j/7//////////// /// //// 4] I77
i.—_.r——— ACTIVE VIDEO: ————i Lt

VERTICAL DATA 0‘” "0W5 PER FRAME VERTICAL swc
START 5 3a

Composite Sync Timing

"“347 I7 47 I I 5’—

I KRAMEM-i "-

{VER'ICAL 011A sumr so“ = DEC, 5

euwx _LLL£_'_'_'J_' _L‘_'_'J_’_LLL ‘LJJJJJLIJUUULLIJLLLLLL
VisaJ'I‘CcAL :TL I

~.:‘ - - A“‘ =;: = ‘- :I zlaaiaiows IOscaAsIaaimw

Start-up. CRT 5027
When employing microprocessor ecstrc .5: I353”; of the CRT 5027‘s registers‘ the to dining se-
quence of instructions Is necessary:

ADDRESS COMMAND
1 1 1 0 Start Timing Chain
1 0 1 0 Reset
0 0 0 0 Load Registero

0 1 1 0 Load Register6
1 1 1 0 StartTIming Chain

The sequence of START RESET LOAD START is necessary to insure proper initialization of the

registers.
This sequence is not required if register loading is via either of the Self Load modes. This sequence
is optionai IMII'I the CRT 5037 or CRT 5057.

Kandummmmwmum at any time In order to improve deSIgn and suppiy the best produ

STANMRD MlmOSYSTEMS Circuit dIagrams utilizing SMC products are included as a means of illustratmg typical semiconductor applica-
IIOnSL consequenlIy complete IhiormatIon suIiICIent Ior construction purposes Is not necessarily gIven The
InformatIon has been careiuily checked and is believed to be entireiy reiiable However, no fespODSIbIIIIy is

n my assumed tor Inaccuracies, Furthermore, such information does not convey to the purchaserof the semiconductor
m dewces described any IIcense under the patent rights oi SMC or others. SMC reserves the right to make changesEmu-M

ISIGIZYJ Kim M SI: 72' m ct pOSSIbIe.



Appendix 09
STANDARD MICROSYSTEMS

l516l273~3100 TWX-570-227-8598

Weleepaneadofourcompetitionsovoucankeepaheadofvours

CRT 8002
,LLPC FAMILY

CRT Video Display Attributes Controller
Video Generator

VDAC’M
FEATURES PIN CONFIGURATION

[I On chip character generator (mask programmable) VIDEO 1 C V 28 RETBL
128 Characters(alphanumeric and graphic) LDI§R 2t: :27 CURSOR
7x 11 Dot matrix block VDC 3 I: :1 26 Ms¢

[1 On chip video shift register A0 4 t: 3 25 M81
Maximum shift registerirequency A1 5: :24 BUNK

CRT 8002A ZC'Jl-lz
CRT 80028 15'.‘l—lz A2 6 i: :1 23 v sc
CRT 80020 10'.‘,Hz A3 7 C 22 CHAaL
Accesstime ACCns A4 8:: :121 REVID

l3 On chip horizontal anctertical retracevideo blanking A5 9: :1 20 wow
D No descender circuitry recuired A510 [2 :19 STKRU
D Fourmodes ofoperaticn i"terr~*ixable) A711: :1 1a Arres

Internal charactergeneratoriROM) V“ 12C :11, 6.0
Wide graphics R213 i: :16 as
Thin graphics
External inputsifonts dctg'acb'cs) R3 ‘4: ‘5 F”

El On chip attribute logic—Characzer, field
Reverse video
Characterblank
Characterblink
Underline
Strike-thru

[:1 Four on chip cursor modes
Underline
Blinking underline
Reverse video
Blinking reverse video

[I Programmable character blink rate
[3 Programmable cursor blink rate

I] Subscriptable
I] Expandable character set

External fonts
Alphanumeric and graphic
RAM. ROM. and PROM

E] On chip address buffer
{3 On chip attribute buffer
[1 + 5 volt operation
l: TTL compatible
l: MOS N-channel silicon-gate COF—‘LAMOS® process
D CLASP® technology—ROM and options
[3 Compatible with CRT 5027 WAC?)

General Description
The SMC CRT 8002 Video Display Attributes Controller
(VDAC) is an N-channel COPLAMOSE MOS LSl cewce
which utilizes CLASP® technology It contains a
7X11X128 character generator ROM. a wee g'abnics
mode, a thin graphics mode. an external input mode,
character address/data latch, field and or character
attribute logic, attribute latch, four cursor modes. two
programmable blink rates, and a high speed Video
shift register. The CRT 8002 VDAC" is a companion
chip to SMC's CRT 5027 VTAC. Together these two
chips comprise the circuitry required for the display
portion of a CRT video terminal.
The CRT 8002 video output may be connected directly
to a CRT monitor video input. The CRT 5027 blanking
output can be connected directly to the CRT 8002
retrace blank input to provide both horizontal and
vertical retrace blanking of the video output.
Four cursor modes are available on the CRT 8002.
They are: underline, blinking underline, reverse video
block, and blinking reverse video block. Any one of
these can be mask programmed as the cursor func-
tion. There is a separate cursor blink rate which can
be; mask programmed to provide a 15Hz to 1 Hz blink
ra e.

The CRT 8002 attributes include: reverse video, char-
acter blank, blink, under‘ ne, and strike-thru. The
character blink rate is mask programmablefrom 7.5 Hz
to 0.5Hz and has a duty cycle of 75/25. The underline
and strike-thru are smilar but independently con-
trolled functions and can be mask programmed to any
number of raster lines at any position in the character
block. These attributes are available in all modes.
In the wide graphic mode the CRT 8002 produces a
graphic entity the size of the character block. The
graphic entity contains 8 parts, each of which is asso-
ciated with one bit of a graphic byte. thereby provid-
ing for 256 unique graphic symbols. Thus, the CRT
8002 can produce either an alphanumeric symbol or
a graphic entity depending on the mode selected.
The mode can be changed on a per character basis.
The thin graphic mode enables the user to create sin-
gle line drawings and forms.
The external mode enables the user to extend the on-
chip ROM character set and/or the on-chip graphics
capabilities by inserting external symbols. These ex-
ERrnymDOIS can come.from either RAM, ROM or

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980
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MAXIMUM GUARANTEED RATINGS‘”
Operating Temperature Range ...............................................................0°C to + 70°C
Storage Temperature Range .............................................................. —55°C to + 150°C
Lead Temperature (soldering. 10 sec.) ............................................................... +325°C
Positive Voltage on any Pin. with respect to ground .................................................... +8.0V
Negative Voltage on any Pin. with respect to ground .................................................... —0.3V
“Stresses above those listed may cause permanent damage to the device. This is a stress rating only and
functional operation of the device atthese or at any other condition above those indicated in the operational
sections of this specification is not implied.
NOTE: When powering this device from laboratory or system power supplies, it is important that
the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies
exhibit voltage spikes or “glitches" on their outputs when the AC power is switched on and off.
In addition, voltage transients on the AC power line may appear on the DC output. If this possibility
exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ITA=0°C to 70°C. Vcc= + 5V:5%. unless Otherwise noted)

Parameter Min. Typ. Max. Unit Comments

D.C. CHARACTERISTICS
INPUT VOLTAGE LEVELS

Low-level, ViL 0.8 V excluding VDC
High-level. VIH 2.0 V excluding VDC

INPUT VOLTAGE LEVELS-CLOCK
Low-level, V,L 0.8 V
High-level. VIH 4.3 V See Figure 6

OUTPUT VOLTAGE LEVELS
Low-level, VOL 0.4 V ‘ I: =04 r‘A. 74LSXX load
High-IeveI,V°H 2.4 V . |;_=-2:

INPUT CURRENT i
Leakage, l._(Except CLOCK) 10 MA O<V.NSVCC
Leakage,IL(CLOCKOni/) 50 yA I OSJmSi/cc

INDUT CAPACITANCE
Data 10 pF @ 1 MHz
L3 §FI 20 pF @ 1 MHz
0-30 , 25 pF @ 1 MHz

PC ER SUPPLY CURRENT '
c: 103 mA

A.C. CHARACTERISTICS
See Figure 6, 7

CRT 8002A CRT 8 028 CRT 80020
SYMBOL PARAMETER 0 UNITS

MIN. MAX. MIN. MAX. MIN. MAX.

VDC Video DotClock Frequency 1.0 20 1.0 15 1.0 10 MHz

PWH VDC—High Time 150 23 40 ns

PWL VDC—Low Time 150 23 40 ns

tcy LD/S_I3I cycle time 400 533 800 ns
t,. t, Rise, tall time 10 10 10 ns

ts“UP Input set-up time E0 E0 20 ns

tHom Input hold time 15 15 15 ns

tm typo Output propagation delay 15 50 15 65 15 100 ns

t. LD/§R set—up time 10 15 20 ns
t, LD/S_H hold time 15 15 15 ns



ROW ADDRESS
R0»R3

BLOCK DIAGRAM
STRIKE—THRU

SELECT LINE
DECODER

GRAPHIC
LOGIC

UNDERLINE
SELECTAI?

A7
ADDRESS/DATA s

‘NPUTS ADDRESS!
DATALATCHCURSOR

RETRACE BLANK 7x11x128DECODER ROM

ATTRIEUTE ENABLE

Iv‘ ’7 3:
I.‘ C ”u

SELECTfl 6 CB
SELECT 1 L7

REVERSE VIDEO
CHARACTER BLANK

UNDERLINE ATTRIB‘JTE
LATCH ATTRIBUTE

LOGIC
BLINK

STRIKE THRU

C5 C7
A3 A7

SH‘FT
VIDEO DOT CLOCK REG STER 0 VIDEO
LOAD/SHIFT say 8 BIT SR7

v CURSOR RATE
M CHARACTER RATE

t.

4.3V

VDC
Mv

2.0V
LD/§fi

(,xcésrv'ssigfis—HJWW *3 «03%
VIDEO

OUTPUT

HGURET tm
AC TIMING DIAGRAM

D‘BV

2.0V

0,8V

20V

0.4V
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DESCRIPTION OF PIN FUNCTIONS
PIN NO. SYMBOL NAME

INPUT/
OUTPUT FUNCTION

VIDEO Video Output 0 The video output contains the dot stream for the selected row of the alpha-
numeric, wide graphic, thin graphic, or external character after processing by
the attribute logic, and the retrace blank and cursor inputs.
In the alphanumeric mode, the characters are ROM programmed into the
77 dots (7X11) allocated for each of the 128 characters. See figure 5. The top
row (Rid) and rows R12 to R15 are normally all zeros as is column C7. Thus, the
character is defined in the box bounded by R1 to R11 and ClD to CG. When a row
of the ROM, via the attribute logic, is parallel loaded into the 8-bit shift-register.
the first bit serially shifted out is 07 (A zero; or a one in REVID). it is followed
by CG. CS,through CR1.
The timing of the Load/Shift pulse will determine the number of additional
(— —. zero to N) backfill zeros (or ones if in REVID) shifted out. See figure 4.
When the next Load/Shift pulse appears the next character‘s row of the ROM,
via the attribute logic. is parallel loaded into the shift register and the cycle
repeats.

LD/S—FI Load/Shift The 8 bit shift—re ister parallel-in load or serial-out shift modes are established
by the Load/ShiIt input. When low, this input enables the si‘ ‘t register for
serial shifting with each Video Dot Clock pulse. When high, the shift register
parallel (broadside) data inputs are enabled and synchronous icad ng occurs
on the next Video Dot Clock pulse. During parallel loading, ser al data flow

gis inhibited. The Address/Data inputs (Ala-A7) are latched on the negative
trans tion of the Load/Shift input. See timing diagram, figure 7.

VDC Video DotCIock Decency at which video is shifted.
4-11 Afi-A? Address/Data in :‘e Alphanumeric Mode the 7 bits on inputs (AG-A6) are interna‘ y deccced

i see,
AC-A7 isused to insert an 8 bit word from a user defined external ROM, PROM
or =A'.1 hid the on-chip Attribute logic. in the wide Graphic Modes Aft-A7 is
used :3 cefi‘ne one of 256 graphic entities. In the thin Graphic Mode Asa-AZ is

Iuse: is :e‘ine the 3 line segments.
12 Power Supply I _

3‘O\ icowersupply
13,14,15,16

17
13

19 STKRU

Pcrz'Address
G':.hd
Azz' ccte Enabie e level on this input enables data from the Reverse Video, Character

:erime, Strike-Thru, Blink, Mode Select )2), and Mode Select 1 inputs
“ed into the on-chip attribute latch at the negative transition of

‘1 pulse. The latch loading is disabled when this input is low.
att'ibutes will remain fixed until this input becomes high again.
attribute latching on a character by character basis, tie ATTBE
”g diagram,figure 71

”:s‘. is high and RETBL=O, the para 'e‘ in- .5 to the shift register
‘“ gh (SRfi-SR7), providing a solid ice "eht throughout the
:ck. The operation of strike-thru is r“: ‘ Ree'se Video

e In addition, an on-chip ROM program-1: "er 's a'.a"able
e t'e line count on which strike-thru is to be c e we as to

e strike-thru to be 1 to N raster lines h gh. Acica , st' <evt'ru
k programmable) logic allows the striker"; to : '

rent of horizontal lines in the character block. The
e a double line on rows R5 and R6,

)
m

(i
n

U
;

UNDLN Underline s iaout is high and RETBL=0, the parallel inputs to the st ‘t reg ster
ed t‘ gh (SHE—SR7), providing a solid line segment througncst the
, c'ock. The operation of underline is modified by Reverse V :eo
e 1). in addition, an on-chip ROM programmable decoder is ava are

the line count on which underline is to be placed as well as to
. e underline to be 1 to N raster lines high. Actually, the underi ne

r mask programmable) logic allows the underline to be any number
ment of horizontal lines in the character block. The standard under-

.:e a single line on R11.

o
n

u
r

21 X) "I E) Reverse Video n s rput is low and RETBL=0, data into the Attribute Logic is presented
. to the shift register parallel inputs. When reverse video is high data
he Att'rcute Logic is inverted and then presented to the shift register
J "pats. This operation reverses the data and field video. See table 1.

22 ChASL Character Blank ,t‘men :n s i'iDUI is high, the parallel inputs to the shift register are all set low,
'prc» : ‘9 a blank character line segment. Character blank will override blink.
The cce'atlon of Character Blank is modified by the Reverse Video input.
See tab e 1.

23 V SYNC V SYNC This meat is used as the clock input for the two on-chip mask programmable
blink rate dwiders. The cursor blink rate (50/50 duty cycle) will be twice the
character biink rate (75/25 duty cycle). The divisors can be programmed from
-:— 4m + 30 forthe cursor(—:— 8to ~:— 60 for the character).

24 BLINK Brink When this input is high and RETBL=0 and CHABL=0, the character will blink
at the programmed character blink rate. Blinking is accomplished by blanking
the character block with the internal Character Blink clock. The standard
character blink rate is 1.875 H2.

25
26

M51
M86

Mode Select1
Mode Select¢

M81 M50 MODE

O
O

-A
-e

G
A

O
—

A Alphanumeric
Thin Graphics
External Mode
Wide Graphics

These 2 inputs define the four modes of operation of the CRT 8002 as follows:
Alphanumeric Mode— In this mode addresses Alli-A6 (A7=X) are in-
ternally decoded to address 1 of the 128 available ROM characters. The
addressed character along with the decoded row will define a 7 bit output
from the ROM to be loaded into the shift register via the attribute logic.
Thin graphics Mod —In this mode Ala-A2 (A3-A7=X) will be loaded
into the thin graphic logic along with the row addresses. This logic will
define the segments of a graphic entity as defined in figure 2. The top of
the entity will begin on row 0000 and will end on a mask programmable row.



DESCRIPTION OF PIN FUNCTIONS

PIN NO. SYMBOL NAME
iNPUT/
OUTPUT FUNCTION

25

(cent)

External Mode — In this mode the inputs AQ-A7 go directly from the
character latch into the shift register via the attribute logic. Thus the user
may define external character fonts or graphic entities in an external
PROM. ROM or RAM. See figure 3.
Wide Graphics Mode-in this mode the inputs AD-A7 will define a graphic
entity as described in figure 1. Each line of the graphic entity is determined
by the wide graphic logic in conjunction with the row inputs Hill to R3. in
this mode each segment of the entity is defined by one of the bits of the
8 bit word. Therefore, the 8 bits can define any 1 of the 256 possible graphic
entities, These entities can butt up against each other to form a contiguous
pattern or can be interspaced with alphanumeric characters. Each of the
entities occupies the space of 1 character block and thus requires 1 byte
of memory.

These 4 modes can be intermixed on a per character basis.

27 CURSOR Cursor When this input is enabled 1 of the 4 ore-programmed cursor modes will be
activated. The cursor mode is on-chip mask programmable. The standard cur-
sor will be a blinking (at 3.75 Hz) reverse Video block. The 4 cursor modes are:

Underline-tn this mode an underline (1 to N raster lines) at the programmed
underline position occurs.
Blinking Underline—ln this mode the underline blinks at the cursor rate.
Riverse Video Block—In this mode the Character Block is set to reverse
vr eo.
Blinking Reverse Video Block-in this mode the Character Block is set to
reverse video at the cursor blink rate. The Character Block will alternate
between normal video and reverse video.
The cursor functions are listed in table 1.

28 RETBL Retrace Blank When this input is latched high, the shift register parallel inputs are uncon-
ditionall cleared to all zeros and loaded into the shift register on the next
Load/ It pulse. This blanks the video, independent of all attributes. during
horizontal and vertical retrace time.

—

TABLE 1
CURSOR RETBL REVID CHABL UNDLN' FUNCTION

X 1 X X X “0“ SR. All
0 0 0 O 0 D (S.R.)All
0 0 O 0 1 “1" '(S.Ft.)'

D (S.R.)Aliothers
0 0 0 1 X "9” (S.Fi.)Ali
0 0 1 0 0 D (83.) All
0 0 1 0 1 “Q" {S.Ft.)'

D (8.8.) A” others
0 0 1 1 X “1" (8.9.) A I

Underline' 0 0 0 X “1" (831'
D (83.1 All others

Underline' 0 0 1 X “1" (S.R.l'
“ ” (S.R.1Allothers

Underline“ 0 1 0 X “0" (SRJ'
D (SR1 All others

Underline' 0 1 1 X “0" (S.R.)'
“1" 13R.) All others

Blinking" Underline' 0 0 0 X “1” (S.R.)' Blinking
D (8.8.) All others

Blinking" Underline“ 0 0 1 X “1" (S.R.)' Blinking
“O" (S.Fi.)Al| others

Blinking" Underline' 0 1 0 X “9“ (S.Fi.)‘ Blinking
D (S.R.) All others

Blinking" Underline' 0 1 1 X “0" (S.Fi.)' Blinking
“1 " (SR) All others

REVID Block 0 0 0 0 5 (SR) All
REVID Block 0 0 0 1 9‘9" (S.R.)'

D (S.R.) All others
REVID Block 0 0 1 X "1" (S.R.) All
REVlD Block O 0 0 1 “Q" (S.R.)'

D (S.Fi.) All others
FtEVlD Block 0 1 0 O D (S.R.) All
REVID Block 0 1 0 1 "1" (S.R.)“

D (SR) All others
REVID Block 0 1 1 X “0" (8-.R.) All
Blink" REVID Block 0 0 0 0
Blink" REVID Block 0 0 0 1
Blink" REVID Block 0 0 1 X Alternate Normal Video/REVID
Blink" REVID Block 0 1 0 0 AtCursorBlink Rate
Blink" REVID Block 0 1 0 1
Blink“ REVID Block 0 1 1 X

*AtSelected Row Decode
Note: if Character is Blinking at Character Rate, Cursorwill change it to Cursor Blink Rate.

"AtCursor Blink Rate
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FIGURE 1
WIDE GRAPHICS MODE
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"'LENGTH DETERMINED BY LDI§R. VDC TIMING

EXAMPLE: IOCICHO

MSD=fl MS1=0 nu nu.
C7 CE OS C4 CB CZ 01 CE BF BF~~~

R1
R2

A] j

//
R3
R4
R5

//\\A\
g \\/A:>/

R6
R7
R8 // //<\A;\
R9 /w 7%
R12 \ \\\ \
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\
\
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\
\
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/
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/

R13
R14

R15

NOTE: Unselected raster line rows
are always filled with ones.

BF=bacil|

FIGURE 2
THIN GRAPHICS MODE

——~"ews—_.,

—HDWDDOO

-* PROGRAMMABLE
ROW

I X X X X X A2 A1 A9

MSB=H MS1:1

§§
®

\\\
\‘3

\\V
I:

C7 CG CS C4 C3 C2 01 Ci SF SF“.

NOTE1Wher‘ A‘ =
row/mm 5's :9 area.

‘ “He underline

{-33:1L332Esssmw IS MASK PROGRAMMABLE :3:f fl ;;§:;‘f°’“"°'
Toaowoooo

'- LENGTH DEYERMINED av LD/SR. VDC YIMING BF=back MI

FIGURE 3
EXTERNAL MODE

MS¢=1 M5120

C7 C6 05 C4 CS 02 C1 02) BF BF

R5- R15 A7 A6 A5 A4 A3. A2 A1 AID A7 A7

BF=backfiI|
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LD/S—H I

FIGURE 4 TYPICAL VIDEO OUTPUT

{3736? "9-0-07: {'5
FIELDI IF

VIDEO DATA
8 DOT FIELD

VIDEO DATA on ex
QDOT FIELD A7 ‘5

NOTE: C,y
x=characternumber BF=backfill
y = column number

Alphanumeric

External

XTAL

la a l
H351 3 : u. ;

$— occ H swc —'—‘# d
7434 c 74*4‘ 5 t :5: ‘ :3; 9'5 \’==' 02‘ E

J t if Den-7 v smcA 5
v:so DOT ‘ L:::ESS:u 4 "way: ~

LOCK *j‘ Ana-3 csvnc %'—'——o S
c— = SELECT VTAC a“; as g

CS CRT 5027 EL 2
t' T: V :2:c A s 055 ‘ Us l

l S :-$=-‘-C*Eq COLUMN
, I i Fifi-7

"1 ‘ l E c—mmTED now
= on“

_ _, _ - : a: Fla-3 cnv a
' ' ' ' ' ' 1i .- 4 5

: RASTER 8
MICRO- E _ SCAN :o

PROCESSOR i—- — COUNTER ;
- Ascu 7 x»

' ' ' - ' r—[—_—,c'\) o
CATA
eusI VDAC R=T=A‘=I”Tn-auras — ~—

‘ fl) CRT 8002
VlCEO DOT

‘ CLOCK OUTPUT

TlMlNG
_ FROM_ ‘ _‘ DOT couNTER CRT 5021 WAC

. 1‘ ~ OR CRT 8002 VDAC
1‘ “3538;” up CONFIGURATION

:A’vi 5. ROMiron up)

FIGURE 6

O

P EXI’ERNAL

LOAD/SHIFT EXTERNAL— D

Vcc VDC (to chip)

CLK Q————>LD/S_H (to chip)
74874

STANDARD MICROSYSTEMS
CORPORATION

us M mag: N v vim
islslm Jim rwx 5m 22m»

mwmwwmwmmmmmm

Circuit diagrams utilizmg SMC products are Included as a means of illustrating typical semiconductor applica-
tions; consequently complete information suttwient for construction purposes rs not necessarily given The
Information has been carefully checked and Is believed to be entirely reliable However. no responsrbillty IS
assumed for maccuracues. Furthermore such Intormation does not convey to the purchaser ol the semiconductor
devnces described any license under the patent rights 01 SMC or others. SMC reserves the right to make changes
at any time in order to Improve design and supply the best product posssble,



Appendix C10
STANDARD MICROSYSTEMS
CORPORATION

35 Marcus Blvd Hauppauge ”l r 11787
l516l273v3100 TVVX»5‘O-227-BB§B

We keep ahead of our competition so you can Keep ahead of your:

Baud Rate Generator
Programmable Divider

FEATURES
D On chip crystal oscillator or external

frequency input
El Single +5v power
D Choice of 32 outputfrequencies
El 32 asynchronous synchronous baud rates
1:] Direct UART/USRT, ASTRO/ USYNRT

compatibility
El Pie-programmable ROM via CLASP®

technology allows generation of other
frequencies

sunpiy

D TTL, MOS compatible
1:} 1XClockviaf0/16 output
[1 Crystal frequency output Via fx and fx/4

outputs
i1 Output disable via FENA

COM 8046
COM 8046T

PIN CONFIGURATION

XTAL/EXT1 1 U 16 fo
XTAL/EXT2 2 15 A

+5v 3 14 B
fx 4 13 C

GND 5 12 D
fo/16 6 11 ST
FENA 7 10 fx/4

E 8 9 NC

BLOCK DIAGRAM

”—‘i
A> FE:=CSDAMMABLE
B>—- reazcsncr SELECT
c>— LATCH DMDER
D) FIOME>—i

CONTROL
LOGW

I A to
XTAL/EXT1>—— xm

OSC 1@ ~ DiViDER ——<>
XTAL/EXT2)—— BUFFER

-16 r f0/16

FENA\fi

::::>—-—I-fx

+5v GND +4 >—‘fX/4

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980
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General Description

The Standard Microsystems COM 8046 is an en-
hanced version of the COM 5046 Baud Rate
Generator. it is fabricated using SMC's patented
COPLAMOS‘E and CLASP® technologies and em-
ploys depletion mode loads. allowing operation from
a single +5v supply.
The standard COM 8046 is specifically dedicated to
generating the full spectrum of 16 asynchronous/
synchronous data communication frequencies for 1X.
16X and 32X UART/USRT/ASTRO/USYNRT devices.
The COM 8046 features an internal crystal oscillator
which may be used to provide the master reference
frequency. Alternatively, an external reference may be
supplied by applying complementary TTL level sig-
nals to pins 1 and 2. Parts suitable for use only with an
external TTL reference are marked COM 8046T. TTL
outputs used to drive the COM 8046 or COM 8046T
should not be used to drive other TTL inputs. as noise
immunity may be compromised due to excessive
loading.

The reference frequency (fx) is used to provide two
high frequency outputs: one at fx and the other at
fx/4. The fx/4 output will drive one standard 7400
load. while the ix output will drive two 74LS loads.

The output of the oscillator/buffer is applied to the
divider for ge'e'ation of the output frequency fC The
divider is capac e of dividing by any integer from 6

to 2“ + 1. inclusive. if the divisor is even. the output
will be square: otherwise the output will be high
longer than it is low by one fx clock period. The output
of the divider is also divided internally by 16 and made
available at the fO/16 output pin. The fo/16 output will
drive one and the f0 output will drive two standard
7400 TTL loads. Both the f0 and fc/16 outputs can be
disabled by supplying a low logic level to the FENA
input pin. Note that the FENA input has an internal
pull-up which will cause the pin to rise to approx-
imately Vcc if left unconnected.

The divisor ROM contains 32 divisors. each 19 bits
wide, and is fabricated using SMC's unique CLASPF
technology. This process permits reduction of turn-
around-timefor ROM patterns.
The five divisor select bits are held in an. externally
strobed data latch. The strobe input is ieuel sensitive:
while the strobe is high, data is creed directly
through to the ROM. Initiation of a ne.-. “e: escy is
effected within 3.5its of a change in any c‘ 't‘e f've
divisor select bits; strobe activity is not re:. ed.
This feature may be disabled through a CLASS pro-
gramming option causing new frequency‘ in '. at on to
be delayed until the end of the current ‘; "a ‘-:;.:‘e
All five data inputs have pull-ups iden‘. ‘= to :"a.
of the FENA input while the strobe irp}. "a
pull-up.

Description of Pin Functions

Pin No. Symbol Name Function

1 rXTALi’EXTl Crystal or This input is either one pin of the crystal package or one polarity
External |nput1 of the external input.

2 XTAL/EXT2 Crystal or This input is either the other pin of the crystal package or the other
1 External Input 2 polarity of the external input.

3 VCC l Power Supply +5 volt supply
4 x x Crystal/clock frequency reference output
5 GND Gr0und Ground
6 fo/16 fo/16 1X clock output
7 FENA Enable A low level at this input causes the f0 and f0/16 outputs to be

held high. An open or a high level at the FENA input enables the
to and to/16 outputs.

8 E E Most significant divisor select data bit. An open at this input is
eqmvalent to a logic high.

9 NC NC No connection
10 M4 M4 M1 crystal/clock frequency reference output
11 ST Strobe Divisor select data strobe. Data IS sampled when this input is high.

preserved when this input is low.
12-15 D.C,B,A D,C,B,A Divisor select data bits. A= LSB. An open circuit at these inputs

is equivalent to a logic high.
16 f0 f0 16X clock output



ELECTRICAL CHARACTERISTICS COM8046, COM8046T, COM8116, COM8116T, COM8126,
COM8126T, COM8136, COM8136T, COM8146, COM8146T

MAXIMUM GUARANTEED RATINGS"
Operating Temperature Range ............................................................. 0°C to + 70°C
Storage Temperature Range ......................................................... «55°C to +150“C
Lead Temperature (soldering. 10 sec.) . ......................................................... +325”C
Posrtlve Voltage on any Pin. With respect to ground .................................................. + 8.0V
Negative Voltage on any Pin. With respect to ground ............................................ ~0.3V
'Stresses above those listed may cause permanent damage to the devrce This is a stress rating only and
functional operation of the devrce at these or at any other condition above those indicated in the operational
sections oi this specrlicatlon IS not Implied

NOTE: When powering this device from laboratory or system power supplies. it is important that
the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies
exhibit voltage spikes or “glitches" on their outputs when the AC power is swrtched on and oil.
In addition. voltage transients on the AC power line may appear on the DC output. If this possibility
exists it IS suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS (TA:0"C to 70°C. Vcc: * 5V :50’0. unless otherWIse noted)

Parameter - Min. Typ. Max. Unit Comments

D.C. CHARACTERISTICS
INPUT VOLTAGE LEVELS

Low-level. V.t 0.8 V
High-leveI. VIH 2.0 V excluding XTAL inputs

OUTPUT VOLTAGE LEVELS
Lew-level. V0. 0.4 V IO_=1.6mA. for M4. fO/te

0.4 V IC‘=3.2mA. tor lo. fR. fT
0.4 V IOL=0.8mA, for ix

High-level. Vov 3.5 V Io-=—100IIA; for fx. I0M=-50#A
INPUT CURRENT

Low-level. IiL -O.1 mA V-~=GND. excluding XTAL inputs
INPUT CAPACITANCE

AIIinputs.C~ 5 10 pF V-I=GND.excluding XTALispets
EXT INPUT LOAD 8 10 Series 7400 equivalent loads
POWER SUPPLY CURRENT

Ice 50 mA
A.C. CHARACTERISTICS T.= +25°C

CLOCK FREQUENCY. ft» 0.01 7.0 MHz XTAL/EXT. 50% Duty Cy‘e ‘5‘;
COM 8046. COM 8126 C 46

0.01 5.1 MHz XTAL/EXT. 50% Duty C,: e 23%
COM 8116. COM 8136

STROBE PULSE WIDTH. tpw 150 DC ns
INPUT SET—UP TIME

I95 200 ns
INPUT HOLD TIME

Inn 50 ns

STROBE TO NEW FREQUENCY DELAY 3.5 #3 @ fx=5.0 MHz

TIMING DIAGRAM

Irw

VIN E

STROBE
VIL

‘ Ins
Iw

DIVISOR V.”
SELECT

DATA
VII,
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Crystal Operation External Input Operation

5
06

88
MH

z
cr

ys
ta

l

rq
J

COM 8116 COM B116/COM 81161’
COM 8136 COM SUE/COM 8136T

D S 0688 MHZ

crystal

U U
1 18 raxx 1 U 18 74xx 1 ‘8

TTL TTL

74XX—totern pole or open collector output (external
pull-up reststor required)

Crystal Operation External Input Operation
CO'.18126 COM 8126/COM 8126T
CC'JENG COM 8146/COM 8146T
COM 6016 COM sods/COM 8046T

v V‘ v
1 74XX 74XX 1

TTL TTL

r____[-_‘2

74XX—totem pole or open collector output (external
pull-up resrstor required)

FQ' ROM reprogramming 3?: c
need only Supply the we “Cy

S

‘e' program available whereby the customer
and the desrred Output lrequenCIes
automatically generated

Crystal Specifications
User must scec‘y termination (om. wure. olner)

Prefer: HC-18/U or HC-25/ U
Freouency — 5 0688 MHz AT Cut

Temperature range 0 C to 70 C

Series reSIstance 50 12
Series Resonant

Overall tolerance . 01%
or as required

Crystal manufacturers pm a user
Northern Engineering Laboratories
357 BeIOlt Street
Burlington. Wisconsin 53105
(414) 763-3591
Bulova Frequency Control Products
61-20 Woodsrde Avenue
Woodside. New York 11377
(212) 335-6000
CTS Knights inc.
101 East Church Street
Sandwrch. Illinois 60548
(815) 786-8411
Crystek Crystals Corporation
1000 Crystal Drive
Fort Myers. Florida 33901
(813) 936-2109



Divisor
Se1ec1
EDCBA
00000
00001
000‘0
00011
00‘00
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

11
m

m
I!"

u»
:u

4/)
‘

‘
.1

0
0

.»

19200.00

REFERENCE FREQUENCY: 5 06

Cfock
Fac10r

32X
32X
32X
32X
32X
32X
32X
32X
32X
32X
32X
32X
32X
32X
32X
32X
16X
16X
16X
16X
16X
16X
16X
16X
16X
16X
16X
16X
16X
16X
16X
16X

COM 8046
COM 8046T

Table2

Deswred
Frequency

(KHZ) DIV Isor

1 60000 3168
2 40000 21 “-2
3.52000 1143
4 30400 1177
4.80000 1056
6 40000 792
960000 523

19 20000 254
3840000 132
57 60000 88
76 80000 66

115 20000 44
153 60000 33
230 40000 22
307 20000 16
614 40000 8

0 80000 6336

57 60300
76 80000

115 20000
153 60000
30720000

MM, .Eve-0 - .~z

Actual
Baud
Rate
50 00
75 00

110 00
13-1 58
150 00
200 00
330 00
620 00

1200 00
1800.00
2400 00
3600 00
4800.00
7200.00
9900.00

1980000
50.00
75.00

110 00
134.52
150 00
300.00
600 00

1200 00
1800 00
2005 06
2400 00
3600 CO
4800 C0
7200 00
9600 00

19800 00

Actual
Frequency

(KHZ)
1.600000
2 400000
3.520000
4 306542
4800000
6 400000
9600000

19 200000
38.400000
57 600000
76 800033

115 200323

o
rn

h
m

n
)

4
a

m
p

)

0 2-0000
23 800000
32 081013
38 400000
57 600000
76.800000

115 200000
153 600000
316.800000

O
o

m
fi
t

u
r
n

)
:

1
4

1
1

;0
(
1

1
3

0
0

0
o o o o o ‘2

‘0

0016600
0.0000°/o
0.0000%
0,0000%
0.0000°’a
0 OOOOa'o
0.253296
0 0000°o
0 0000°o
0 OOOO°o
0 0000°a
0.0000%
3.125090
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ZAP Operating System

1AY WURT
MAY PORT

CI "‘EK POINTER
JN HUDULh

THE UPI“fiTIHG
7: tHfi THE CUMNQNB Rt

0000 1
0000 30 00 07
0003 03 40 00 JP 00PM01
0000 00 1" 0410 00 2
0000 CE 47 00» 0400 00PM JP 000M1 *RST 1 UP 00PM 81001
0000 /n 0030 08 5
0010 cs 00 0? 0000 RSTEE JP R5120 $001 2 TP0N0PEP
0013 ‘” 0050 03 5
0018 03 C8 07 0000 P013P JP RSTEU *RET a TR000PEP
0013 0070 03 5
00§QnC3 00 07 0000 00100 JP RST4U
0023 ms 5
0028 03 CE 07 RSTSE JP RSTSU *RST 5 TPmH0PEP
0020 03 F
0030 C3 01 07
0033 ~ 00 5
0038 03 04 07 RST?E JP RST7V #RST 7 TRANSFER
0033 0110 00 5
0040 ED 73 00 07 0051 mM01 LU (SPLSAU):SP

HOLD LD SP?SPSTRT $1HITALIZE STfiBK POINTER

$R$T .b TRflNfiPER

RSTéE JP RSTéU #RST 6 TRANSFER

1162 ; ,0 ‘ .01‘1" ; ,:H=g AWEWMDZfi



0044
0047
0047
0047
0047
0047
0047
0047
0047
0049
0043
0045
OOEF
0050
0053
0057
0053
OOEF
0061
0064
0066
0069
0060
006E
006E
OOGF
0070
0071
0072
0073
00?4
OOEEJ
0078
0073
007C
007F
0092
O 0 8 3
0084
0085
0086
0087
0088
0 0 8 (
0089
0089
008?
00E?
0 0 13 C
0 0 E3 1:.
0090
0092
0094
O 0 (,9 7’
0099
009%
0 0 i?- I]
009E
OQQF
0 C) {3| 1"

0 0 E14
0097
00am
Ofififi
QOHA
OOEH
Ofififi
QOQA
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C3 89 00

3?
E'l
’7"?a:
El

E3

ED

1& E7Q?
um
FE
En
EH
3’)

EE

72

7308
F532
22
E1
2?
21
70
23

23
72
23
73

CD
3E
D3
E3
E3
CE
0/
BS
CE
04
B8
C9
04
E8
ffi
C3

”)2

2273
57
HF
5F

EB
E9

EF
EC

F1

05
06
07
03
40

an

1.0
DC}

07

07

07
E7
E9
EB

07

O7
07

O7
O7

O7
O7

00

01

01

03
00

O7
07
07

0552
0560
0570
()"5‘3()
057 0
0600
0610
0530
0530
0640
0650
0660
0&70
0680
0590
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0:3 00
0810
0820
0830
0840
0850
08-50
0870
0880
0890
0900
0910
0920
0930
0940
0950
095 0
O! 70
C: W)

90

1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1160
1190

JP
*
*
*
KNERM START
*ENTERS THE
*FS EISPLAYEE ON THE DATE HHE flEEE
X
wfiRMI Ln

PUP
LE
PUSH
POP
LE
LE
LE
LE
LE
Ln
LE
LE
LE
LE
INC
LE
INC
LE
INC
LE
EX
PUSH
LE
LE
PEP
LE
LE
LB
INC
LE
INC
LE
INC
Ln

*
X

UAEME

SAVES
CUMMANE R

(fiSflU)!fi *EEUE
HL *GET
(PCLSGU)7HL *SEUE
AF
HL
(ESQU)!HL XEAUE
(IXLSQU)!IX *EEUE
(IYLSAU)!IY *EQUE
(QPLSEU395P ESHUE
A91 XSEVE
(ISAU)IG
01R
(RSAU)9Q
HLyBSflU
(HL)7B
HL
(HL)7C
HL
(HL)!E
HL
(HL)yE
AFIfiF

*SAUE

*SfiUE

*SEUE

XEGUE

*SEUE

*sm
xsmva
*SAUE

(HL)yB
HL
(HL)!C
HL
(HL)vE
HL
(HL)1E

*EGUE

XJHW

KSAVE

*SflUE

*lUMHAND hLLUUN1I111 HHUUIL
“ *

CALL
Ln
OUT
OUT
our
CALL
LE
cw
JP
INC
CE
JP
INC
CE
JP
JP

NERIR

EQU

*RESTART RESTORES
KANE RETURNS CONTROL TU

Clfilc

EhTEIB
liEfIN
EyMEM
B
ZrMEMURY
B
B
ZyREGIST
B

XUET

*JUMP

WJUME
B
ZyGDREQ
MARHQ
64E

THE UE”""
THE

“us
*GET US

*SEUE U

*MEMEEY

AEEW

*60 T0 EUMHENE RECOGNITION

THE 1“ “E RFDIXTFP“

‘3 FROM ETAEH
'2 IN EEUE fiEEfi

r“? II-rv“ .

UEEES R

UGEEE B

USERS C

UEERS E

;HNETE REEIETEES

-' 9

INPUT

IE

IF REGISTER

H&L

' FLAGS

E

C

I]

[:2 H r131 R 1'31 [3 T E2. E“

MEMUEY EEEUEET

REQUEST

KEY



GOAA 1240 XE” "HNIED IN THE PC SHUE LUUHTIUN IN THE
' 0 *F SIER fifiUE AREH

'3 *
U hlhI fir(ABSfiU)I *RESTURE HLT IIhIJIIF“

J.| 39H
I
”I'

CORR 3R EC 07

l fiyffiCfifiU)
.. .I I: .v H
"U HHIHUEHU)
"D 39H

”BHU)

flV(HI)flUJ
LVH

7H HL
‘ 9F

HPI'

mom“
()0l

m. CyCHL
INC HL
Ln nyiHL)
INC HL
Ln Ey(HL)
Ln $P;(SI ; .
LU HL!(PCLMHV)
FU::H HL
LU HLy(L8fiU)

*REETURE

*RZSTURE E

'XINTER
”a 5THEH

VB UB 07
ED 0700E?

OOEE EH
OOED 3% E1 07
I.) 0 E 0 {3’-
OOEI

E '9 THE DATA
\ THE “TBUARU BUFF'”

YEUHRD FLAGS

SLUIS LD firZERU
LU (KFLAGS)pfi $i_fifiR FLAGE
Ln (KnfiTfi1)yfi *CLmflR BUFFER

(KHQTI",

1)(_IF '3’ 5:? E1 07
" ”1 07

7 ()7 1. / ‘7') 1111
" . 1WL53 OUT BATH

00F" E 1115 ( 333 13770 OUT P1131112.
0100 D3 06 1780 UUT ADDISE
0102 C9 1790 RET
0103 1800 X
0103 " X
0103 *KEYIN NAITS EUR INPUT FROM THE KEYBOHRD
0103 *UF‘UN DETECTING .UQTQ AT THE INF'LJT W (T (O)
0103 *UIA THE STROBE BIT (7) BEING SET Tl; UflTfl
0103
0103
0103 X
0103 X
0103 DB 00 1890 KEYIN IN KEYPT
Q105 CB ?F 1900 BIT 7vfi
010? DA 05 01 1910 JR ZyHEYIN *LQUF' IF NO Ufi'Tfi 4? K»
0109 33 F4 0'? 1911 LU (TEMP)!H ' *SfiUE LHAhfiLILh

kfllfil BATH FIELD
' 5- HUDLMHI

XCHHRQCTER IS RETURNED TO THE USER IN fl
*IS INPUTyTHE STRDBE BIT CLEfiREUy 9ND THE INPUT

*INF'UI IIATA 1‘“ l\_ 'i ,[A‘

FIELD DISRLQY
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0100
010E
0111
0114.
0117
0119
0110
0110
0110
0110
0110
0110
011m
011F
0121
0122
0123
019.3
0123
0123
0123
0123
0112’
0128
013?
0120
0120
0120
0130
0120
0120
0120
012E
0131
0132-
0133
0133
0133
0133
01$3
0133

0150
0130
0140
0142
0145
0107
014m
0146

o1éfi
0150
o1wu
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......

21
CH
CH
E1

00
7F
on
F4
BF

F1
06
06

09W

21
CE
E1
C9

21
CH
CH
E1
C9

F1
86

01
07

07

O7

07

00
01

01

32 01

01,

07
01

“ 01
F. 01

1912
1913
1914
1915
1920
1930
1940
1950
1950
1970
1930
1990
2000
2010
2020
2030
2040
2050
2");IO
3-2070
2080
2-3090
2100
2110
2190
2130

41/)
”190

NEYINl IN
BIT
JR
LH
RES
RET

*
*
*NFLGOB
*
*
KFLGOB LB

SET
SET
'21! U [3'

RET
X
X
*NFLGO
*
*
NFLGO

SETS

Ln
SET
PUP
RET

*
)K

*1\Fl_[:

*
*-
FF

*
* 1*HFLGl 5*
x
*
NFLGl

X
X
*
KUNECAR
*FRDM THE
*THE USER

OUT

EIT
JR
SUB
JR
000
L0
CfiLL

ONEEml

JR

“”‘N1 CHECKS
fiCTER.

‘1? SETS THE EXEC(1)

C THE EXEC

INPUTS ONE
KEYBOA
IN NDQIHQ

UNECNR CALL
CALL

CQLL

CfiLL

KEYPT
7’10
NZVNEYINI *JUMR IF STRDBE PRESENT
fiyETENF)
7’0 *CLEAR STROKE

SETS THE NEXT(0) 00 ND aa<2) HEYBURRH FLQGS

HLyKFLflGS
01(HL)
2v(HL)
HL

*3 TET NEXT FLfiG

*CLERR RETURN

THE NEXT(O) KEYBONRD FLAG

HL’KFLfiGS
07(HL)
HL

*SET NEXT FLAG
*CLERR RETURN

AND NO 00T0(2) KEYBOARD FLAG

H17KF|.063
.1) 5’ 1..1";I_ }

HL *CLERR RETURN

(1) REYBURRH FLRG

HLyKFLflGB
12(HL) W?“
HL *ULERR

T EXEC FLAG
RETURN

CHQRAC' BY EXEC0 NEXT UR7R FULLOMED

CLDI§
KEYIN
DRTHIS
CRRCKl
érfi
N390NEC01
150
PvflNECHR
161D
(IhfiTfiq)vfi

*JUMR IF
*CHRRACT
*JUMR IF NUT OWE

*SAUE CHfiRflCTER
*GE‘ NEXT CHflRfiCTER

$00 no AGAIN NUT EXEC OR NEXT

NEXT UR EXEC ON AN INITIAL
THE ROUTINE RETURNS T0 CflLLER VIA

FUR A
IF NEXT



*KFLBOEv TF EXEC THE ROUTINE RETURNR TR THE CRLLER
*UIR RFLGIE
X
*
CRRCRI LU BrNEXTC *CHECK FUR NEXT

CR B
JR ZFKFLGQQ #IF NEXT JUMP

D BvEXECC *CHECK FUR EXEC
LR B
JR ZvRFLGIB *IF EXEC JUMP
WW‘ *ELim RETURN

‘EXT UR EXECr SETS THE IIUIH
UF’ R LRI RNU RETURNS TU THE U‘I
l:.‘i El." Tl “ "'IIILJTIIII‘IE RIEECTURNS TU
OF THE F JEST

WE I: .F-‘I Ex

ByHEXTC *CHECR FUR WEXT

*IF NEXT JUMP
*CHELm FUR EXEC

lfllfiFTFFé FRUM THE FFYF”.
T UR ' RNR RETUF W 4'R

IN IiDRTRE
THE

, ._,
2'1"

3'}:
"I" III III I'i‘, Iz’iI Iii: ~L8C3yANH HIERLAY

C8 EXEC

RLC R
RUB 09B *fl -CII8NEw

H . "U OUT DRTBIS *DISIJRF INPUT
0196 F7 3040 LR (HL)vfi $3H«E NEH DATA
0]“? EU 03 01 3050 CALL KEYIN *GET NEXT CHRRACTER

DIRK
0194

Owl -n CU 3m 01 3080 CALL CRRCRB *QHECK FUR TERMINATION
0188 83 80 01 3080 JR TRUCAI 538MR IF NO TERMINATION
0180 3080 X
0130 3090 X
0180 3100 XCLDRT HLEARS THE INFUT BUIItrI083; nun DATA DIS
0150 3110 X
0180 3180 X
0150 38 0 3130 CLDAT Ln AyZERO
OIIW 3140 Ln (KFLAGS)7A
8135 3150 L8 (RDATHQ);A
0108 33 3130 L8 (KHATm1)yA
0188 I? 31') RET
0188 35 00 3:I8; CLRDH Ln ArZERD *CLERR ADDRESS DISPLAY
0188 83 I“ OUT 988181
0180 D3 03 3 I.85 HUT ADDISE
0182 89 5.II34 RET
8183 W3I90
0183
0183
0183

-

av
s'

T
‘I

b
it
-*

0

V

~ ~J .m
..

x.’
x."

.
\.F

\i
\J

F .»I INFMTS FUUR FHtCTFh; FROM THE NEYBDRRD
*IULIUNFH BY A NEXT DR EXEC fiND RETURNS THEI
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QIBK
0133
01B3
OTHK CH
0186 CD
0189 CD
013C n5
OIBE F2
0101 06

F4
F2
F3
67

01C3 32
010A 3A
01C? 21
010E EU
010E O7
OICF 07
OIDO 07
OIDI 0?
01B? E6
01U4
01E?
OIUB
0.1UB

0.1.FI
OIFI
OIFl
OIFI
OIFI
QIFI

“55 iA -M .v23/ 23
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A0
03
5B
10
BE

01
01
01

01

07
07
07

3230 #10 THE USER IN NHATAl
3240 x
3250 X
31260 FORCAR CALL CLDAT
32'70 CALL KEYIN
3280 CALL CARCKI
3290 FURCAI SUB 16H
3<00 JP PvFURCAR

AHD 16H
Ln (TEMP):A
Ln A;(KDAT91)
LU HLyKflATAB
RRH
RLCA
RLCA
RLCA
RLCA
AND 240v
LB HLyTEMP
AHD A!(HL)

'n4 51) l-II lLl , (IiInATwfii?)
34-40 LU (LUA1A1)HH
‘ ‘ Ln (HH’I‘Y)7A

UUT ADUl -
LU 99(1
OUT a
CALL
EALL -
JP FUELAJ

X

MENURT LU
LD
Ln .
CALL N
CALL
LB
HIT
JF
LU
Ln
Ln
Ln
LU
LU
UUT
CALI HM
Lfl Fm \hFlnhx‘
FIT 22A
JR NEZyNEMQ
LU HLv(fi.- ‘"u
LE A1(hfin1nm
LU (HL))yA
Ln Av(KFLAGS)
BIT IIA
JP NZ9NARM?

x MENIQ LB
58?} 0 INC HL
3900 Ln

ANH KDATAE

*CLEAR FLAGS AND BUFFER
)l'i ” INF'UT CHARACTER
*F.HIH1K FUR NEXT OR EXEC

*IHARACTFE OMF
*JUNF' IF NOT 0 F

*SAUE CHARACTER
*AWNSH

*ADJUST DATA FOR NEN CHARACTER

*NASK OFF OLD IHGIT

*AED IN NEN UIGIT
*SAUE NEW ISSUE
*SAUE N|.€H NS 3
*EA”E NEH LSDS
*HIJPLAY LSES

.2 FOR NEXT OF EXEC
YIHHI 11F NUT NEXT UR EXEC

‘ NEMQR
my M

.EM DATA

NO DATA

$REFLAEE bLn DATA

*JUNF' IF FXEF F1.AG SET
HLy(NBASE1) *INC IRAE3E NliN ADD

(NBASE1)yHL



023% ?D
023m
023m
023E
0133 4 O
0243
0245
0248
0243
024$
024$
024B
0248
024E
(.5 23 A B
024B
024B
@243
0243
024B
024B
024B
024B

06

(5
1 '5)
4E
r
C; "‘

33

3Q
F 1
57
S?
E”

F5
”9'7I I

"3 CC
34 06

026%
0269
0250 30
ozan 30
025E
0271

OEP’Z 7'

7% éC

02

()()
02

01
07

00
07
07

02

07. 07

07

nL]!
In m.

" . '~..J /'

. 07

’ 02
0?

07

3901
3902
3903
3904
'3910
3392‘)

$930
3940
3950
3960
39?0
3980
3990
4000
4010
4020
4030
4040
4050
4050
4070
‘3()$3()
4090
4100
4110
4120
4130
4140
4101
4143
4143
4144
4145
4146
4147
4148

MEME

96
-9

6-
35

-9
6-

AIL
GDDISE
fiyH
RDDISI
NEHI
lvfi
NZVNARNQ
MENIE

*JUMR IF EXEC FLAG SET

*REBIST INPUTS fl REGISTER FROM THE KEYBOARH FOLLOUED BY
*DATfi AS DEFINEH BY THE SEQUENCE
* REG(INIT REG)NEXTv(UATfi)NEXT+o.(UATA)EXEC
*REGISTER SEQUENCE IS IXrTYySPyPC!IyRyHyLvhrBICyUIEyF!
*flLvfiHyfiflyflByflCVAflvfiEyfiF
*IF ONLY DATA IS TO BE DISELAYED
* REG€INIT REG)NEXTyNEXT...EXEC
*EXEC
*
*
RESIST DNA-

LB
BIT
JR
LH
LD
BIT
JR
CR
JR
DEC
DEB
mun
JR
INO
INC
LO
LO

REGIO

TUIZ EH1

REGIE

JP

REEIRfi OUT

DP
JP
LB
LU
LU
mun

LU
LD
HUT

WILL RETURN CONTROL TO THE COMMANH

ONEC‘OR
GV(KIHIOGS )
Eva
NZVNRRHQ
éy(KUfiTQE)
(TEMPE)!G
évfi
NZVRE
6
PrREGIl
Q
G
a
REOIQ
a
G
(REHINX)?A
fir<TLVI 3)
10H
MPREGIQfl
5H4
H¢VTTHTfifi

818A

C y I?)
HyZERO
HLyBD

(MHQ
fi¢(HL)
If}! Z“ 11 ‘ h :2‘ }
flyB
RI

\'
\PLfiGS)

NZ ”(13.113
HLy(MBfiSE1)
Av(KDATfil)
(HL)!A
AICHFLGGS)
119

SE1)yHL

RECOGNITION

*GET INITIAL CHARQCTER

*JUHR IF NO DATA FLAG SET
*GET EQSE REGISTER

*CHECK FOR SHIFT
*JUMR IF JHIFT KEY SET

*JUMP IF EIGHT BIT REGISTER

*IW(I~2)*2

*SAUE INDEX

*JUHP IF BIT 6 SET

*UIEFLfiY REGISTER JELECT

'T” IE lé BIT REG
*GET BASE flDU

mun
DATA

TCKAW“ RIKT7 {SRUE
».m H.JL3TER

..HWP'LHT HRTR

NEH DHTA$GET

*JUMP IF MD aa
*GET NEH DATA

*RERLACE OLD DATA
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0204
0207
0204
0200
0200
0201
0202
0204
020?
0209
0200
0205
0201
0203
0204
0209
0204
0200
ORUH
OZEO
02E1
0253
02E4 .
OZES
02E?
02Efi

0303
0304
0305
0308
0300
0300
0310
0310
0310
0310
0310
0310
0310
0310
0310
0310
O 3 1 $5
0316‘
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C2
30
3C
32
30
3C
FE
EH 1
3E
C3\
D6
FR
Cé
C3
21
4F
06
09

02

48
4B
12
6E
H7

00

F6

'T
'IO

L
fi'

T
‘IP

Ifi
'U

(N
U

‘L
U

\j
.L

-‘
D

1
'C

3

.71
:

00
07

07
07

07

TJ
U

C
1

5
)

4413
4400
4421
4422
4423
4430
4440
4400
4440
4470
4400
4490
4500
4510
4520
4530
4040
4350
4500
4570
4580
4390
4600
4610
4620
4630
4640
4630
4660
4670
4680
4710
4720
4730
4700
4750
4?60
4761
4V6?
4763
4770
0780
4790
4 E1 0 O

J
0

I
494
4 ‘1? 2130

JP NZIUARMB *JUMR IF EXEC FLAG SET
REGI3 LU 91(TEMP2) *INCREMENT INDEX

INC A
LD (TEMPE)!A
LU A'CREGINX) *INCREMENT INDEX
INC A
CF 19H
JP MyREGIQ *JUMP IF INDEX 4LT. 19

REGI4 LU fiyTwU *SET INITIAL INDEX
JP REGIO

REGISQ SUB 48H
JR MNREGIST *JUMR IE INVALIH REGISTER
AUU 12H
JR REGIE

XYSR LB HLyIXLSQU
LU C70
LII B ! ZERO
QDU HLVBC *HLmREG SGUE ADDRESS

LD (MBASE1)7HL
LB fiv<HL) *HISFLHY REGISTER DATA
OUT ADUISQ
INC HL
LB A7(HL)
UUT ADDISI
LB 01(REGINX)
INC 0
LD (REGINX37A
CfiLL FURCGR *GET NEH DATQ
LU Av(KFLAGS)
BIT 27A
JP NZyREGIS *JUMR IF NO DATA
LU FL’{ 551) *RERLACE OLD HGTH
LD firikfiflTHQ)
L II (£43-) 7 G
L0 firtLhATAl)
INC HL
LU (HL)yfl
LU 09(KFLRGS)

REBIS BIT 1’9
JR NZyUflRNB *JUMR IF EXEC FLHG SET
J '22- REGL3

USERS RESTART QDDRESS IN THE
R SfiUE fiREA AND EXITS TO THE RESTQRT

”EU CfiLL CLfiUn
CALL FURCHR $UET REETHRT ADDRESS
LD fivFLfiGfi)
HIT Qvfi
JR NKyNflRMQ *IE NO UHTH EXIT
LU fiy(KUflTflQ) *ERUE HEM HDHRESS

x Qfiifi
'UHTAI)

*
*
*

*UfiTfiT IS 0 HART LOOP CHECK ROUTINE
KIT UTILIZF? A LUUR UITH THE OUTPUT
XRURT PAT LB TO THE INPUT PORT
*1] AN E RUR I8 BETECTII THE ERROR Ifi
WUISRLYEH ON THE ABBRESS H15 LHY fiNfl



O3IE
035i:
035E
035F
035E
O35F
O35F
035F
035E
035E
0362
0365
0366
0368
0360
036K
036E
0372
0374
0375
0376
0379
037B
037E
0381
0382 I
0385
0388
0383
0380
038D
038E
0391
0394
0396
0398
039B
039$

039E
O39E

F9
FD

03
4F
66

9B
’3h

91
01

; FE
FE
M
9:22
I- 4

66
9E
02
01
7B

(I m

07
07

03

07
07

07
03
07

03
03

03

*THE CHQRACTER IS DISPLAYED ON THE UATA DISPLAY
*THE UUTFUT CHfiRACTE IS DISFLQYEH ON THE HSH
*UF THE QDHRESS DISPLfiY
*
UATET LU BPZERD *

IN UARTST *GET STATUS
BIT Oyfi
JP KyUfiERl *JUMF IF XMIT BUFFER NOT EMFTY

2 UATSTO LD 693 *GET OUTPUT CHfiRfiCTER
UUT ADDISI
UUT UfiRTID

T UQTETI IN UNRTST

546>0
5470
5480
5490
5500
5510
Cjt.‘\J-xo

55/0
5580
5590
5600

310
5620
5630
it. Q].

5632
5640
5641
5642
5650
5660
5670

BIT lvfi
JP ZVUQTSTI *JUMF IF NU DHTH HVHILHBLE
EMU ICH
JP NEVUHERI *JUHP IF PHRITY ERROR
IN UNRTIU *UET INPUT CHHRHCTER
U U T 13F) T I] I 35
CF H
J” NZVUHERE *JUMF IF INFUToNEoUUTPUT
INC B
JP “HT"T)

UHERI UUT fiflfll Q *UIUFLHY UHRT QTHTUS
IN Ufil *UE INPUT UflTfi
UUT “HTU])
HHET

UGERQ LU fivOFH
UUT (HUDISR)VA
HOLT

*
*
*TTYINFUT UF'IUER
*.[NIUFS UATm INTO THF qlIIIFD BUF
*INF'UT IS linMINA.lfl NHIW 6 [WII' ‘ RETURN
*IB DETECDEU UR THE {JUMBER 0F mF IEH C‘HQRACTERS
*HHUE BEEN INPUTED FROM THE. tPIMJTDJVF UTUILL

FER

*
TTYINF LU HL7(TTYIBF) *GET BUFFER HUUREQC

LU AI(TTYIC) *UET NYMHER UF CHHHHCTERS
Ln B99

TTYINI IN UHRTST *GET UHRT STHTUS
BIT IVA
JP ZITTYINI *JUMP IF NO DATA
AND 1CH
JP N21TTYERR *JUMP IF FHRITY ERROR

IN UHRTIU *GET INPUT CHARACTER
Ln (HL)yfi *SHFE CHHRHCTER IN USERS BUF
CF firOHH
JP Z’TTYINZ *JUMF IF CARRIAGE RETURN
LU fieUNE XSET UUTI2UT [EHHEOCTER COUNT

TTYIN3 LU (TTYUBF)7HL 8LT UUTIDUT BUFI:L AUURLSS

Ln (TTYUC)!A
LU firB
LU (TEMP)!A
CHLL TTYUUT *GU OUTPUT CHHRHCTER
LU fir(TEMP)
Ln Bvfi
DEC B
WET Z *Hl.€TURN IF ALL CHHKOFTLIO IN

JP TTYINl
TTYIN2 Ln HLILF

EH fivTUU
Ln B’ONE
JF TTYIN3

TTYERR RET *RETURN UITH ERROR CUHE IN H

LF DB OUHVOHH *LINE FEED/CARRIAGE RETURN

*GET LINE FEEH AUHRESS

*
*TTY UUTFUT DRIVER
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039E
039E
039E
039E
039E
039E
0301
0304
0305
03A?
0300
0308
030E
0351
OEBQ
0354
OSBS
03B?

0704
07C4
OVCA

00
O?CS
0785
0705
0785
0788
O7CB
O7CE
07U1
Q7U4
07D?
0?H7
07H?
07D?

00
07H8

00
07B?

00
O7DA

OO
07DB

00
07DC

00
07mm

00
07DE

00
07DF
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PB
FE

07
07

m 03

03

03

57505770
5750
5790
5800
5510
5520
5530
5840
58505360
5870
5850
5590
5900
5910
5920
5930
59515040
5950
I‘m-'1 I O

n

60?0
6080
6090
6100
6110

*TTYUUT OUTPUTS DATA FROM THE SPECIFIEH
*USERS BUFFER TO THE UART. THE NUMBER 0F
*USER SPECIFIED CHARACTEU ARE OUTPUT
*ANH CONTROL RETURNED TO THE USER
X
TTYOUT LU HLy(TTYOBF) *GET BUFF ” ABBRESS

LU A!(TTYDC) *GET NUMBER OF CHARACTERS
Lfl ByA

TTYUUl LH CvZERU
Ln DEyZERU

TTYUl IN UARTST *GET STATUS
BIT OrA
JP ZvTTYUUB *JUMF IF BUFFFR NUT EMPTY
LB Ay(HL) *UET CHARACTER
OUT UARTIO *UUTPUT CHARACTER
DEC B
LU AyzERU
RET Z *RFTURN IF BUFFER EMPTY
INC HL
JR TTYUUl

TTYDU? INC HE *TRY AGAIN DELAY
LU AvE
CR ZERO
JR NzyTTYUUB
LB Ayn
CF ZERO
JP NEyTTYUUE
INC C
CF FIVE
JR NZrTTYfll *JUMF IF .LTefi TRTS
LB AvUNE *ELUE RETURN ULTH AMI

7K
ST 704H

*
*FAGE 2 CUNSTANSyJUMF AREAflyANH REUIUTER
*SAVE AREAS

0130 X
6130

6140
5150
6160
6170
6180
6190
5200

6280

6290

6300

6310

6320

6330

6340

SPSTRT DB 0 *BTACH AREA

*
X USER REUTART AREA
X
RSTRU D8 3
RSTKU D8 3
RSTdU D8 3
RSTSU D8 3
RSTéU D8 3
RST7U D8 3
*
*REGIETER SAVE AREA
3K
IXLSAV DB 0

FOR HST
505 RST 5
FOR HST 4
555 RBT 5
FOR 55T 0
FOR HST 7

{'3

0 “-1“ '1

BRANCH
BRANCH
HRANDH ’

*Uk BRANCH

IXHSAU DB

IYLSAU DB

IYHSAU DB

SRLSAU DB

SPHSAU DB

PCLSAU DB

FCHSAU DB

O
O

O
O

O
O

O
O

ISAU DB



00
0750 6350 5540 05 000
0751 6360 5540 05 000
0752 6370 540 00 000
0753 6300 4540 00 000
0754 6390 0540 00 000
0755 6400 0540 00 0

00
0756 6410 0040 00 o00
0757 6420 5540 05 0

00
0755 6430 5540 00 o

00
0759 6440 45540 00 0

00
0754 6450 45540 00 000
0750 6460 44540 00 0

00
0750 6470 40040 00 0

00
0750 6450 45540 00 000
0755 6190 40640 00 0

00
0755 6500 45040 00 0

00
0750 6510 45040 00 000
0751 6520 4
0751 6530 *04T4 ST05405 45540751 6540 4
0751 6550 555458 00 0 455Y50450 5540800
0752 6560 504T41 00 0 *55Y00450 IN5UT 50555000
0753 6570 504T42 05 000
0754 6580 TEMP 05 000
0755 6501 T5552 00 000
0756 6590 M04551 00 0 6045: 055355 400555500
0757 6600 004552,00 000
O7F8 6610 5501Nx 00 o *REGISTER 1N05x00
0759 6620 TTYIBF 0s 2 *TTY TN5UT 0U5555 40055050750 6630 TTY005 0s 2 *TTYOUTPUT 005555 4005500
0750 6640 TTYIC 00 0 *TTY IN5UT 0H4545T55 COUNT00
0755 6650 TTYOC 05 0 *TTY OUTPUT CH4545T55 COUNT00
0755 6660 x0755 6670 5N0

FILE 3000 7323
READY
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Appendix E - Z80 CPU Technical Specifications

Due to wide availability on the Internet, the Z80 CPU Technical Specifications were not 

scanned and included with the rest of this document.

  

Z80 CPU data sheets, technical documentation, and user manuals can be found on

Gaby Chaudry's Z80 site at http://www.z80.info/ , or via a web search.

Appendix E - Z80 CPU Technical Specifications

Due to wide availability on the Internet, the Z80 CPU Technical Specifications were not 

scanned and included with the rest of this document.

  

Z80 CPU data sheets, technical documentation, and user manuals can be found on

Gaby Chaudry's Z80 site at http://www.z80.info/ , or via a web search.

Appendix E - 280 CPU Technical Specifications

Due to wide availability on the Internet, the 280 CPU Technical Specifications were not

scanned and included with the rest of this document.

280 CPU data sheets, technical documentation, and user manuals can be found on

Gaby Chaudry's 280 site at http://www.280.info/ , or via a web search.



GLOSSARY
Accumulator A temporary register where results of calculations may be stored by the
central processor. One or more accumulators may be part of the arithmetic-logical
unit.

Acoustical coupler A device that permits a terminal to be connected to the computer
via a telephone line. It connects to the telephone handset.

Address An identifying number or label for locations in the memory.

Algorithm A step-by-step solution to a problem in a finite number of steps. A specific
procedure for accomplishing a desired result.

ASCII American Standard Code for Information Interchange. Widely used 7-bit
standard code. Also known as USASCII; IBM uses EBCDIC, which has 8 bits.

Assembler A program that converts symbolic instructions into machine macro-
instructions.

Backplane A board equipped with plugs interconnected by buses into which the
modules that make up a computer may be inserted. Also known as a motherboard.

BASIC Beginner's All-purpose Symbolic Instruction Code. Algebraic language devel-
oped at Dartmouth College. The language is easy to learn and use.

Binary A numbering system based on multiples of two using the digits 0 and 1.

Bit Abbreviation of binary digit. A single element in a binary number—either a 0 or a
1. Bits are represented in a microcomputer by the status of electronic switches that can
be either on or off. Four bits equal a nibble; eight bits equal a byte.

Byte A group of adjacent bits, usually eight bits, which is operated upon as a unit by
the central processor.

CMOS Complementary Metal—Oxide Semiconductor. Technology that combines the
component density of p-channel MOS (PMOS) and the speed of n-channel MOS
(NMOS). Power consumption is very low.

Clock A device that generates regular pulses that synchronize events throughout a
microcomputer.

Central processor The central processor controls the operation of a microcomputer.
The central processor can fetch and store data and instructions from memory.

CRT Cathode-Ray Tube. An electronic vacuum tube that can be used for graphic dis-
play. Also refers to a terminal incorporating a CRT.

Compiler A program that translates high-level programming language into machine
language. May produce numerous macro-instructions for each high-level instruction,
unlike an assembler which translates item for item. When using a compiler, one cannot
change a program without recompilation.

Development system A microcomputer system having all the related equipment
necessary for hardware and software development.

Digital Pertaining to discrete integral numbers in a given base which may express all
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the variables occurring in a problem. Represented electronically by 2 (binary) to 16
(hexadecimal) states at the present time. Contrasts with analog, which refers to a con-
tinuous range of voltage or current quantities.

Double density Method of doubling bit density on magnetic storage mediums.

Dynamic memory Storage of data on dynamic chips in which storage of a small
charge indicates a bit. Because the charge leaks over time, dynamic memory must be
periodically refreshed.

EBCDIC IBM's 8-bit code, similar to ASCII.

Editor A program that rearranges text. Permits the addition or deletion of symbols
and changes of format.

EIA-RS—232C Interface standard for data transmitted sequentially that is not syn-
chronous with the central processor.

EPROM Erasable-Progammable Read-Only Memory. A PROM that can be erased
and reprogrammed. Some EPROMs have a quartz window over the chip; data can be
erased by exposure to intense ultraviolet light; other EPROMs may be erased electrical-
ly.

File A set of related records treated as a unit.

Flag A bit attached to a word for identification or for the purpose of signaling some
condition. Typical microprocessors include carry, zero, sign, overflow and half-carry
status flags.

Floating-point package A set of software routines that allows some microcomputers
to perform floating-point arithmetic without the addition of extra hardware.

PSK Frequency Shift Keying. Technique of transforming bits into two different fre-
quencies representing 0 and 1 for transmission over telephone or radio lines. The inter-
face device is called a modern.

Ground Electrical reference point of a circuit.

Hard-copy Printed output on paper.

Hardware The physical components, peripherals, or other equipment that make up a
computer system. Contrast with software.

Hexadecimal A numbering system based on multiples of 16 using the character 0 thru
9 and A thru F. For example, OB hexadecimal equals 0000 1011 binary. One byte may
be encoded in exactly 2 hexadecimal symbols.

High-level language A programming language that is relatively independent of as-
sembler or machine language. The grammar often resembles English and requires a
compiler or interpreter to convert to executable code. Examples: BASIC, FORTRAN,
COBOL, ALGOL, PL/M, APL.

Instruction A step in a program that defines an operation together with the
address(es) of any data needed for the operation.

Interface A common boundary between two systems or devices. The hardware or
software necessary to interconnect two parts of a system.

Interrupt A break in the execution of a program usually caused by a signal from an



external device.

Kansas City standard Refers to a standard for cassette tape recordings of
EIA—RS-23ZC data. Eight cycles of 2400 Hz equals 1, and 4 cycles of 1200 Hz equals 0.

Least significant bit The binary digit occupying the right-most position in a number
or word, ie: 2° or 1.

LIFO Last-In, First-Out. Method of accessing the most recent entry, then the next
most recent, and so on.

Light pen Photosensitive device that can be used to change the display on a CRT by
generating a pulse at the point of contact.

Machine language Sets of binary integers that may be directly executed as instruc-
tions by the microcomputers without prior interpretation.

Mass storage Floppy disks, cassettes or tapes used to store large amounts of data.
Less accessible, but larger than main storage.

Memory Storage device for binary information.

Microcomputer A small computer system capable of performing a basic repertoire of
instructions. Includes a central processor, often contained on a single chip, memory,
l/O devices, and power supply.

Microprocessor A central processor on a chip. A complete processor on a single chip,
manufactured using microminiature manufacturing techniques, known as LSI (large
scale integration).

Modem MOdulator—DEModulator. Device that transforms binary data into fre-
quencies suitable for transmission over telephone lines and back again.

Monitor A program that controls the operation of basic routines to optimize comput-
er time.

Most significant bit The binary digit occupying the left-most position in a number or
word, usually 27 or 128.

Octal A numbering system based on multiples of eight using digits 0 thru 7. Now
largely superseded by the hexadecimal system.

Operating system Software that operates the hardware resources of a microcomput-
er. The operating system may do scheduling, debugging, l/O control, accounting,
compilation, storage assignment, and data management.

Parity An extra bit that indicates whether a computer word has an odd or even num-
ber of 15. Used to detect errors.

Peripheral Any piece of equipment, usually an I/O device, attached to the central
processor.

Programmable memory Storage in which access to new information is independent
of the address previously examined.

Read-only memory (ROM) Storage that cannot be altered. The information is writ-
ten at the time of manufacture.

Register A memory device directly accessible by the central processor used for the
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temporary storage of a computer word during arithmetic, logical, or input/output op-
erations.

5-100 A 100-pin bus used in the popular 8080/Z80 system.

Software Programs that translate high-level languages into machine language, such
as compilers, operating systems, assemblers, generators, library routines, and editors.

Stack A technique of presenting programs sequentially. A stack is a LIFO structure
controlled by PUSH and POP instructions.

Tiny BASIC The BASIC programming language reduced to a simple form that per-
mits integer arithmetic and some string operations. Tiny BASIC usually occupies 4 K
or less bytes of memory.

Three-state Capable of existing in three logical states—O (low), 1 (high), or undefined
(high-impedance), ie: floating.

UART Universal Asynchronous Receiver Transmitter. A transmitter that converts
serial to parallel and vice versa.

Word A set of bits that occupies one storage location and is treated as a unit. May
have any number of bits, but usually 4, 8, or 16.

Word processor A text editor that allows the user to modify text: formats, books, let-
ters, and reports.
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Accumulators, 27, 33
ADC, 51, 63
ADD, 49, 63
Addressing, 29, 32-33, 98, 105

capability, 32
high-order, 32
low—order, 32

AND, 34, 54
Arithmetic and Logic Unit (ALU), 21-22, 29
ASCII, 129, 131, 134, 138, 220
BASIC, 131, 183
Binarywcoded decimal (BCD), 31, 61, 184
BIT, 75
Bits:

flag, 33
least significant (LSB), 184
manipulation, 32, 75
most significant (M58), 184
start and stop, 139

Branching:
conditional, 8O
unconditional, 79

Buffering, 98
address bus, 99
data bus, 100

(I (n ). r) UI ,
l

D L)

bi-directional, 22, 100, 105
drivers, 93, 99-100

testing, 105
power, 98
structures, 22
voltage, 19

Bytes, 32
CALL, 82, 152
Capacitance, 14
Capacitors, 2, 5-6, 97

bypass, 14
charging time, 5
filter, 2, 4, 14

ripple factor of, 4
input, 14
sizing, 5
time constants of, 6

Carry, 28
flag, 51, 80

Cassettes, 121, 129, 145
interface, 113, 145, 148-149
Kansas City Standard, 146
software, 148

CCF, 60
Central processors (see also Microprocessors), 21-22, 27

architecture, 27
control, 29, 32
registers, 27—29
status, 33
synchronizing, 97
testing, 127
timing, 92

Characters, 213
format, 214

Chip select, 116
Circuits:

complexity, 21, 23
integrated, 10, 22
layouts, 14
protective, 10
reset, 97

Clocks, 91, 209
periods, 91
real-time, 208
single-stepping, 92, 105
testing, 105

COM 8046, 220
COM 2017, 220
Communication, 138

asynchronous, 139, 142
parallel and serial, 138

software, 148
signal levels, 142

standard, 144
Cooling, 17
Control section, 22
Controllers, intelligent, 183
Converters:

analog-to-digital, 184, 189
analog to pulse width, 189
binary-ramp counter, 191
successive approximation, 194
31/2-digit AC DC, 199

software, 205
digital-to-analog, 184

calibration, 188
multiplying, 18o
R-ZR, 184
weighted-resistor, 184

Cost, 23
CP, 57
CPD, 48
CPDR, 48
CPI, 47
CPIR, 47
CPL, 60
CRT 8002, 213
CRT 5027, 213
Currents:

continuous, 6
regulator, 5
surge, 6

DAA, 61
Data, 22, 33, 112, 116

acquisition, 198, 208
ASCII, 138
communication, 138
formats, 32
high- and low-order, 33
rates, 142, 148, 220

DEC, 59, 65
Decoding:

hexadecimal, 135
1/0, 91, 105—106, 108
memory, 91, 105-106, 110
testing, 111

Demultiplexers, 108, 206
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DI, 62
Diodes, 3, 5—6, 97

bridges, 5-6, 16
silicon, 3
zener, 8, 10

Direct memory access (DMA), 99, 129
Displays:

cathode-ray tube (CRT), 129, 138, 213
hexadecimal, 134
light-emitting diode (LED), 93, 121, 129, 134, 153
octal, 134
video, 121, 183, 213
visual, 129, 134

DJNZ, 82
Drivers:

bus, 93
display, 93
LED, 93

E1, 62
8080A, 24, 31, 91
8212, 100
EX, 44
EXX, 44
Fanout, 98
Farads, 5
Flags, 33

carry (C), 51, 80
condition, 33-34
status, 33
zero (Z1. 75, 80

Flip-flops. 92, 132
Frequency shift keying (FSK), 146
Full-wave brzdges (see also Rectifiers), 3, 5
Fuses, 17
Grounds, 15

buses, 15
common, 14
references, 11
single-point, 15

HALT, 30, 62
Heat sinks, 16
HP7340, 135
IM, 62
IN, 85, 122
INC, 58, 64
IND, 87
INDR, 87
Inductance, 14
INI, 86
INIR, 86
Input, 21, 85, 122

filters, 2-3
Input/output, 121, 129

decoding, 91, 105
testing, 111

instructions, 32, 85
ports, 98, 105, 108
read, 106
registers, 91
request, 30, 106
testing, 122, 127
write, 106

Instructions, 21
arithmetic and logical, 31

8-bit, 49
general purpose, 60
16-bit, 63

bit manipulation, 32, 75
block transfer and search, 31, 44
call and return, 32, 82, 152
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CPU control, 32, 60
cycle, 91
exchange, 28, 31, 44
execution, 92
fetch cycle, 29, 91-92
formats, 32
input and output, 32, 85, 88, 122
jump, 32, 78
load, 31

8-bit, 34
16-bit, 39

pop, 43
push, 42
restart, 152
rotate and shift, 31, 66
sets, 33
single—stepping, 92

testing, 105
types, 31

Interfaces:
cassette, 145

tuning, 149
clock, 209
RS-232C, 213
serial, 129, 138, 142
31/2-digit AC/DC, 199

testing, 205
Interrupts, 30, 62, 84

non-maskable, 30, 84
page address, 29

JP, 78
IR, 79
Kansas City Standard, 146
Keyboards, 113, 121, 129

ASCII, 129, 134
bounce, 132
encoders, 131-132, 220
hexadecimal, 133
input software, 163

KR2376, 220
LD, 34
LDD, 46
LDDR, 46
LDI, 45
LDIR, 46
Light—emitting diodes (LED), 93, 121

drivers, 93
Loads, 7, 99

TTL, 93
Logic analyzers, 91, 93, 99
Low-power Schottky TTL (LSTTL), 98
Machine cycles, 29, 91
IViemory, 21, 32, 91, 112

addresses, 32, 97, 110
banks, 110, 117
contents, 34
decoding, 91, 105, 110

testing, 111
direct memory access (DMA), 99
display and replace, 151, 153
dynamic, 116
erasable-programmable read-only (EPROM), 112, 115, 152

erasers, 177
programmers, 173

automatic, 174
manual, 173

locations, 28
map, 117
page, 213
programmable, 27, 110



random-access (RAM), 116
read, 30, 91, 106

cycles, 117
read-only (ROM), 110, 112, 173

character-generator, 213
diode—matrix, 113
programmable (PROM), 112

read/write (RWM), 112, 116
refresh, 29-30, 116
request, 30, 116
slow, 92
static, 116
storage, 112, 121, 145
testing, 127
write, 30, 91, 106

cycles, 117
Microcomputers, 21

construction, vii, 27, 91
definition of, 21
design of, 21, 27
single-board, 183
system, 22

Microprocessors (see also Central processors), 21
architecture, 21, 27
common, 24
definition of, 22
280, 24, 27

Monitors (see also Software), 113, 118, 134, 151, 173
cold start, 151
command recognition, 161
execute, 151, 155, 171
keyboard input, 163
memory display and replace, 151, 153, 168
register display and replace, 151, 154, 169
restart, 162
serial input output, 151, 156-157, 159
CART diagnostic, 156
warm start, 151-152, 160

Multiplexers, 22, 117
NEG, 60
No operation (NOP), 30, 32, 61-62
Nyquist criterion, 197
Operands, 35
Operating systems, 151
Operation code, 29
OR, 34, 55
Oscilloscopes, 91, 93
OTDR, 90
OTIR, 89
OUT, 88, 122
OUTD, 89
OUTI, 88
Output, 22, 88, 122
Overflow, 28
Overvoltage protectors, 17
Parity, 28
Pascal, 183
Peak inverse voltages (PIV), 4
Peripherals, 121, 129, 151

synchronizing, 130
POP, 43
Ports, 33, 85, 98, 105, 108

hexadecimal output, 136
octal, 136
parallel and serial, 129, 183

Power dissipation, 4, 15
Power supplies, 1, 15

DC, 1
Printed-circuit boards, 21
Programs:

debugging, 153
development, 153

PUSH, 42
Rectifiers (see also Full-wave bridges), 6, 14

bridge, 2, 5, 16
full-wave, 3, 5

silicon-controlled (SCR), 18-19
Refresh, 29-30, 116
Registers, 27-28

accumulator (A), 27-28, 33
contents, 34
display and replace, 151, 154
8-bit (B, C, D, E, H, L), 27, 112
flag (F), 27-28, 33
general purpose, 28
index (IX, IY), 29
instruction, 29
interrupt page address (I), 29
main and alternate, 28-29
memory refresh (R), 29
pairs, 28, 33, 39
program counter (PC), 28, 32, 78, 82, 152
sets, 27—28
16-bit (BC, DE, HL), 27
special purpose, 28
stack pointers (SP), 28, 42, 152

Regulators, voltage (see Voltages, regulators)
Requests, 106

input/output, 106
memory, 106
read, 106
write, 106

RES, 78
Resets, 62, 97, 152

automatic, 97
manual, 97
testing, 105, 127

Resistance, 4, 6, 15
series, 6, 8
thermal, 16

Resistors, 19, 185
ladder, 18S
variable, 8

Resolution, 184, 187, 198
RET, 83
RETI, 84
RETN, 84
Ripple factor, 4
RL, 68
RLA, 66
RLC, 67
RLCA, 66
RLD, 74
RR, 70
RRA, 66
RRC, 69
RRCA, 66
RRD, 75
RS-232C, 144, 213
RST, 84, 152
Sample rates, 194, 197
SEC, 53, 64
SCF, 60
SET, 76
78H05, 10, 16
7812, 12
7912, 12
Short-circuits, 18
Sign, 28
Sine waves, 3
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6800, 24
6502, 24
SLA, 71
Software (see also Monitors), 24

monitor, 151
single-stepping, 92

SRA, 72
SRL, 73
Stacks, 28, 32, 42, 82, 152
Strobes:

data-ready, 130
duration, 132
key-pressed, 139

SUB, 52
Subroutines, 28, 82, 118
Surge currents, 6
Terminals, 213
Testing:

dynamic, 127
static, 123

Thermal considerations, 15
Timers, 130
Transformers. 1, 6

primary input to, 3
secondary output from, 3-4

Transistor-transistor logic WITH, 93, 98, 217
levels, 142
loads, 93
low-power Schottky (LSTTL‘), 98, 217
outputs, 138, 146

Transistors, 8, 17
PAUL‘S, 115, 173
series-pass, 10
wide-band, 14

2114, 117
2102A, 117
2708, 113, 173
2716, 113, 17

busing and control logic, 91
pinout, 29

280 Applications Processor (ZAP), vii, 1, 91
testing, 123, 127

Zero, 28
flag, 75, 80

Universal synchronous receiver/ transmitter (UART), 139, 220
diagnostic, 155
output, 146
pinout, 139

Voltages:
alternating current, 1
comparators, (-3
control element, 7
direct current DC, 1
drops, 3, 6. 11, 14
input and output, 7, 14
loads, 5
peak, 4, 15
peak inverse Pl\'), 6
reference, 7, 10
regulators, 1, 3-4, 7, 10, 16

choosing, 10
overloads, 10
series, 8
three—terminal, 9-10

ripple, 4-5, 14
root mean square (RMS), 3, 6
sine waves, 2
transients, 6
translators, 7-8
VAC, 1, 3
waveforms, 3-4

Voltmeters, 93, 184, 199
Waits, 30, 92
XOR, 56
280, 24, 27

bus structure, 25
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Build Your Own 280 Computer:
Design Guidelines and Application Notes

”There is a major need for a book such as this. The information is not readily
available elsewhere. Or anywhere. There are dozens (hundreds?) of microprocessor
books. but nearly all deal with software and treat hardware as abstractions or block
diagrams. Ciarcia's book is literally filled with very useful and practical "hands-on"
hardware advice. tips and techniques....The book will do for the reader what no
other microprocessor book or manufacturer's literature I know of does: It will
enable a person to actually buy individual parts and assemble them into a working
microcomputer—with peripherals and options! That's very important. Too bad we
couldn't have had such a book years ago."

—Forrest Mims, III
Contributing Editor of POPULAR ELECTRONICS

"To my knowledge the material covered in this book is not available elsewhere.
There is sufficient detail to enable an individual with previous experience to assemble
a working ZBO-based microcomputer from the component level. The design trade-
offs. the circuits, the software. and the test circuits and procedures are discussed at
a level sufficient for the book to have educational value even if one did not actually
construct a ZSO—based system."

—joseph Nichols
Digital Analysis Corporation

About the Author
Steve is a computer consultant. eleCtrical engineer. author of BYTE magazine's most popular column.
"Ciarcia's Circuit Cellar," and a “national technological treasure."

Is'BN 0-01-0l0962-I
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