
cobol-
documentation

o

COBOL- and associated software are accompanied by the foiiowing dccumer*s:

1. COBOL- USER'S GUIDE
describes all the procedures associated with running COBOL- , writing COBOL program?.
and running the programs with your hardware.

1 COBOL- REFERENCE MANUAL
provides extensive cescripticns of COBOL- '5 statements, syntax and organization.

1 f UTILITY SOFTWARE MANUAL
describes the use of the MACRO- Assembler. LINK- Linking Loader and LIS- Library
Manager with the COBOL- compiler.

Information in this document is subiect to change without notice and does not represent a
commitment The software described in this document is
furnished under a license agreement or non-disclosure agreement The software may be
used or copied only in accordance with the terms of the agreement.

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

Acknowledgment

"Any organization interested in reproducing the COBOL report and specifications in whole
cr in part, using ideas taken from this report as the basis for an instruction manual or for
any ether purpose is free to do so. However, all such organizations are requested to
reproduce this section as part of the introduction to the document. Those using a short
passage, as in a bock review, are requested to mention, 'COBOL' in acknowledgment of
tre source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company cr group cf
companies, or of any organization or group of organizations.

"No warranty, expressed cr implied, is made by any contributor or by the COBOL
Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the ccmmittes, in
connect!en therewith.

"Procedures have been established fcr the maintenance of COBOL. Inquiries concerning
the procedures for proposing chances should be directed to the Executive Committee of
tre Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted material used herein

FLCW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIV AC (R) I and II, Data Automation
Systems copyricntsd 1953, 1959, by Sperry Rand Corporation;
ISM Commercial Translator, Form No. F29-3C13, copyrighted
1959 by ISM; FACT, DSI 27A526Q-276Q, ccpyrignted I960 by
Minneapoiis-Hcreyweil

•

have specifically authorized the use of this material in whole or in part, in the CC5CL
specification in programming manuals or similar publications."

-from the ANSI COBOL STANDARD
(X3.23-1974)

FUNCTIONAL DFFERENCE5 - Release 3 vs. Release &

The purpose of this section is to aiert people using Release 3 of COBOL- to changes
that may affect your existing systems when you change over to using Release 4. The
following areas are the only ones that should affect the source code for programs that
now compile and execute under Release 3.

Both the compiler and runtime library have increased in size due to the
enhancements and corrections made. This may cause you to run out of
memory during compilation or loading of your programs. However, you
should be able to take advantage of the CHAIN and segmentation features
to work around the memory constraints.

Every CRT driver has 5 new entry points that are needed to succcrt
Release 4. ACCEPT and DISPLAY functions. If you have written your cwn
CRT driver, refer to Apoendix A of the COBOL- User's Guide to see raw
to upgrade your driver module.

The VALUE CF FILE-ID name is now terminated by the first scace
character. If you have used any file names with emoedced spaces, the
names will have to be changed.

File status 91 has been added, as mentioned above under "Enhancements."
You may want to change your programs to cneck for this new status
condition and react accordingly. If your programs have no I-C error
checking at ail, some programs that worked before could possibly
terminate with a runtime error under Release 4, if they manipulate "lies
and the flies have been damaged.

** The size of seme grouo items in the Data Division may be cecreased cue to
the removal cf alignment for OCMP items. You may need to cneck wrecrer
your code cepends en the size cf group items that may have elementary
CQMP items within them.

Corrections to Version 3.02

These corrections are seoarated into compiler and runtime system correcticns.

Compiler Corrections

** In some cases, the division operation, of a COMPUTE statement did not
retain enough digits of accuracy.

** VALUE CF RLE-ID IS literal and VALUE OF FTLE-ID IS data-name In the
same ore-gram did not compile correctly, causing an error at runtime.

' ** DISPLAY of an item with a non-literal subscript generated incorrect object
code, causing an error at runtime.

** DISPLAY and GO TO...DEPENDING statements with too may operands
could cause the compiler to hang.

** ACCEPT of a subscripted item WITH UPDATE caused the comciler to
generate undefined global symbols (named #Gnnnn) that prevented icaciro
of tre Drogram with LINK-

** Use of the LIN or COL special registers as subscripts was not functional.

A VALUE clause given for a grouo item ccuid cause the comciler to hang.

The CN OVERFLOW clause of STRING or UNSTRING could cause
sucsecuent IF statements to function incorrectly.

•*•* A missing or misspelled DIVISION header could cause the ccmciler to rare
cr to fill the cisk with the cbject file and stoo with a Disk Full message.

PERFORM...VARYING followed by a MOVE caused the compiler :;,
generate inccrrect object ccce in some circumstances.

PERFCRM...UNTIL...NUMERIC did not function correctly.

LINAGE clauses that included the optional word "LINES'1 caused a spurious
ccmoiler diagnostic.

DATA DIVISION error recovery was unacceptable in the case of an
inadvertent period placed between clauses. Recovery now occurs at the
next level number.

Version 3.02 Chances to Version 3.01

Tre primary addition to COBOL- Version 3.01 was that of full support for both CP/M
•.ersions 1 and 2 at runtime. This feature is mentioned in the Version 4.0 enhancements. In
additicn to that change, the following runtime corrections were made.

** Use of the COL special register in DISPLAY statements did not work
correctly, causing the cursor to jump to an unpredictable location.

** If the position-spec of a DISPLAY or ACCEPT statement omitted either
the line or rolumn position, the cursor would jump to an unpredictable
location. This was corrected so "that either or both could be omitted and
the effect is that the current line and/or column positicn is left unchanged.
Examples of valid position-specs are (1, 10) (, 10) (1,) and (,).

Versicn 3.01 Chances to Version 3.0
/ *

Ganges listed below are all corrections that were made to the runtime system fcr
7 ersicn 3.01.

A program that executed a very large number of DISPLAY statements, or a
subprogram that executed any DISPLAY statement, terminated at runtime
with an arbitrary error message.

The STCP literal statement did not work.

If a LINE SEQUENTIAL file was opened in EXTEND mode and written tc,
the appended data was in the wrcng format and unreadable by later
programs.

The control characters ceded into SCLIST of a user-written CRT driver
were not recognized.

COBOL- Version 4.0
•

Update Notice

Version 4.0 of COBOL- has been enhanced and upgraded in a number ;T

areas. This Update Notice specifies the modifications that have been made since thr

Version 3.0 release of COBOL- . The changes fall into two categories: enhancements,
which are new features; and corrections, which pertain to bugs in Version 3.0. Also given
here are the functicnal differences between Release 3 and Release 4 of COBOL-

•
ENHANCEMENTS

The new features of Version 4.0 are listed below. They bring CCSCL "to the level
specified in the Reference Manual Appendix VII.

A SCREEN SECTION format has been added to the Data Division uua:
allows a concise description of one or more screen forms, includin^
numerous options for each field and associations between screen fields ar-.
Working-storage icems. Each entire screen form can be manipulatea ay .
single ACCEPT cr DISPLAY statement. The syntax is compatible with thai
used by Data General Interactive COBOL. Refer to the sections en
ACCEPT, DISPLAY, and SCREEN SECTION in the CC5CL- Refersrcs
Manual.

Segmentation ras been i -—elemented to Level I. of the ANSI Standar
to Chapter 10 ;.n the COBOL- Reference Manual.

c.

A CHAIN facility ^as been added that allows a COBOL program to .cad arc
execute any program from disk and to oass parameters in a manner similar
to that used by CALL. Refer to the secticn on CHAIN and the craccar cr
Interprogram Communication in the COBOL- Reference Marjai.

Format 3 of the ACCEPT statement has been enhanced to ailcw 2 large
number of user-defined keys that terminate the ACCEPT. Then, using a
format I ACCEPT statement, a COBOL program can determine exactly
whicn key terminated the previous format 3 ACCEPT. Refer to tre section
on ACCEPT in the COBOL- Reference Manual.

The compiler's error count given at the end of compilation now includes
any low-level diagnostics that were encountered. A high level diagnostic is
produced to provide a reference to the line number that generated tne
error*

01 level data items larger than 4095 bytes may now be defined. Such items
are still prohibited as operands for Procedure Division verbs such as
MOVE, but they can be used to contain tables larger than the eld limit of
4K bytes.

Runtime file handling has been improved. Several bugs *ave been corrected
'see the list below), and some file integrity protection measures have seen
addec. The runtime system will now automatically close ail files that are
open wnen execution of a program terminates due to a STCP RUN
statement, a CHAIN statement, or a runtime error condition. A CLOSE
statement given for a file that is net open is ignored and treated as if the
cicse were successful: the "Redundant Cicse" runtime error is no longer
generated. All CPEN INPUT and CPEN I-O statements for relative and
indexed files check the condition of the file to see whether its structure is
intact. (The file structure can be damaged, for instance, by a system crash
that occurs while the file is open for output). If the file is not intact, the
file status will be set to '91', which is a new status value reserved for this
purpose. Under this condition, CPEN INPUT statements succeed in opening
the file, but CPEN I-O statements do not. This allows a program to recover
any remaining undamaged information from the file. See the section on
File Status Reporting in the COBOL- Reference Manual.

Alignment of COMPUTATIONAL items to even-byte ("word") boundaries
has been removed, possibly decreasing memory requirements, and allowing
better programmer control of record and table sizes.

** The CP/M version of the runtime system has been enhanced to suocort bcth
versions 1 and 2 of CP/M. The primary difference between the versions
with regard to CCSCL- is that CP/M version 2 sucocrts varicus disk
types and files as large as 3M bytes. This enhancement was also available
in version 3.02.

** Support for several additional types of CRTs has been added. Also, the
source cccs fcr all the CRT drivers is now included with each cccy cf
COBOL- . Refer to APPENDIX A of the COBOL- User's Guide.

"RRECTICNS

~~e corrections fcr bugs encountered in Version 3.0 are listed below. First are the
corrections that are new since Version 3.02 was released. Then the differences between
'/=• 'ins 3.02 and 3.01 and between 3.01 and 3.0 are given.

COBOL- VERSION 4.01

UPDATE NOTICE

Version 4.01 of CC6CL- contains several f ixes to problems in version 4.0. It
also contains modifications that allow interfacing with the M/SGRT* sort utility.

COMPILER CORRECTIONS

1. The compiler error message "ERRONEOUS SELECT" no longer over-prints page
headings.

2. The reserved word FOR is now acceptable in the SAME RECORD AREA clause.

3. An undeclared data--ame is now diagnosed in the VALUE OF FILE-ID data-ram^
clause.

4. A 01-level data deciaraticn with an OCCURS clause is new diagnosed as an error.

5. The comciier no longer terminates or "hangs" abnormally when certain level 3{J
conditionals or STRING statement constucts are in the source program.

6. The compiler now diagnoses any failure to group an over lay segment into contiguous
SECTIONS.

7. Prooiems in using cr.e figurative constant ZERO in MCV^ statements -a ^e ceer
resolved.

3. A terminal period is ~cw required after :he COPY statement in crser to reac source
coce from an alternate source file. • '
sg: COPY file-name. _ i

RUNTIME SYSTEM CORRECTIONS

1. The M/SCRi sort utility can now be linked with a COBOL- program -jsirr,-
LINK- , when the SCRT vero is emptied.

2. AH currently open fi les are closed whenever the program terminates due to a
run-time error or STOP RUN statement.

3. A COBOL program new executes correctly wnen a GO TG statement is executed in
an overlay and the cestinaticn is in the root segment. This error caused c.^e
message: "SEG 00 LCAD ERR" to be printed.

CCSCL- LANGUAGE SPECIFICATION CORRECTIONS

1- The CCPY statement r.ow requires a terminating oeriod [. } a f ter tne file-name that
will be used as a seccncary input file. The syntax is now:

CCPY text- f i le .

* M/SGRT is a sort utility from Microsoft that in ter faces *ic-i a COBOL- srccrsm.
it is a product distinct from CCSCL- and is purchased separate ly .

Runtime Svstem Corrections

A large INDEXED file to which several insertions or deletions were being
applied could cause the program to hang in some cases, leaving the file in
an unusable condition.

Records larger than a logical sector (123 bytes for CP/M) inserted into a
' • RELATIVE file caused an incorrect duplicate key error when the position

of the CGBCL record aligned with the beginning of a logical sector.

The boundary violation error status for a RELATIVE or INDEXED file was
set to '34' instead of '24'.

An CPEN statement that was not successful did rot clear the runtime
system's internal "file open" indicator. This caused a subsequent CPEN
statement (without having done a CLOSE) to abort with the "Redundant
Open" runtime error.

After a file ocen in DYNAMIC access mode had been read sequentially to
end-of-file, successful READ, WRITE, and REWRITE operations aid not
enable subsequent READ NEXT statements to access records based en the
new position in the file.

A RELATIVE file created in SEQUENTIAL mode =na later extended in
DYNAMIC mode could cause an incorrect duplicate key error.

A STRING statement INTO an identifier that was larger than 123 bytes
would immediately execute the ON OVERFLOW condition.

ACCEPT of a numeric item '.VITH UPDATE would cause the initial
placement of the cursor in the trailing sign position, forcing the operator
to use rubout or lire-celete before entering data.

+* If an ACCEPT statement was used with a data-item that had a JUSTIFIED
clause, and if no data was entered from the terminal before the return key
was typed, the program would hang.

3.02 bug ONLY
CPEN EXTEND cf a file that was less than 123 bytes long would write the
new record(s) over the existing cne(s).

•/
•f

/

I . cobol-
users
guide

Information in this document is subiect to change without notice and does not represent a
commitment The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

CC6CL- User's Guide

Table of Contents

Section 1 Overview

1.1 Introduction
1.2 Your Distribution Disk
1.3 Getting Started
1.4 Program Development Steps

I
I
3
3

Section 2 Compiling CCBCL Programs

2.1 COBOL- Command Line Syntax
2.2 Compiler Switches
2.3 Output Listings and Error Messages
2.4 Flies Used by CC3OL-

5
7
7
3

Section 3 * Loading COBOL Programs

3.1 LINK- Command Line Syntax
3.2 Subprograms
3.3 Function Libraries

11
12
13

Section 4 Executing CCECL Programs

4.1 The'Runtime System
4.2 Printer File Handing
4.3 Disk File Handling
4.4 CRT Handling
4.5 Runtime Errors

14
14
15
15
16

Appendices

Appendix A Configuring the CRT
*••••

A.I General Instructions
A.2 Terminal Charts ,
A.3 Writing a CRT Driver •• i

Appendix Q Interprogram Communication

B.I Subprogram Calling Mechanism
B.2 CHAIN Parameters
B.3 CHAIN Error Messages

20
21
32

34
35
36

Appendix C Customizations

C.I Source Program Tab Stops 37
C.2 Compiler Listing Page Length 37

.C.3 Runtime DAY, DATE, TIME, LINE NUMBER 37

Appendix O COBOL- with non-CP/M Operating Systems

D.I TRSDOS Model II . 4Q
D.2 ISIS-II 43

CCSCL User's Guide - Release

Section 1

OVERVIEW

1.1 Introduction
••

The purcose of tnis COBOL- User's Guide is to give you practical information about
getting a COBOL- program up and running on your computing equipment. All the stscs
necessary to use COBOL- successfully — compiling, loading, executing, etc. — are
carefully described_in the following pages.

In this guide, examples and r"ile names are given which are based en a CP/M version a*
COBOL- If you are using another operating system, the format of commands an-,
filenames will be silently different. See Appendix D for a description of how CCSCL ^
used with your ooerating system.

1.2 Your Distribution Disk

"he disk you receive from Microsoft contains the following files:

The COBOL Comciler
COBOL.COM
CCBCL1.OVR
CC8CL2.OVR
CCBCL3.OVR <:>

CCBCLXOVR

The Runtime System
CGBLI3.REL — the runtime library
CRT Drivers — file whose names begin with CD

Source - CD .MAC
Object - CD_.REL, CRTDR V.REL

Utility Software
L80.COM - the
LJB.COM - the
M80.CQM - the
CREF80.COM — the

-Miscellaneous Files
SQUARO.CC3
CRTEST.CC3
SEQCVT.COM
CCPCCB.SUB

Linking Loader
Library Manager
Macro Assembler

• Assembly Cross-Referencs Program

COBOL- User's Guide - Release 4
OVERVIEW

112.1 The COBOL Compiler

The compiler consists of a main program and four overlays. These five parts correspond
to the five "phases" of compilation. The main program is alv/ays memory-resident and
controls the transition from each phase to the next. The overlay portion of the main
program compiles the IDENTIFICATION and ENVIRONMENT DIVISIONS. Overlay 1 is
brought in to compile the DATA DIVISION. The PROCEDURE DIVISION is compiled by
overlay 2. These 3 parts constitute the first pass of compilation. Their function is to
create an intermediate version of the program, which is stored on the current disk in a
file named STEXT.INT. Overlay 3 reads the intermediate file and creates the object
code. Finally, overlay 4 allocates the file control blocks and checks certain error
conditions. The intermediate file is then deleted.

1.2.2 The Runtime System

/ B runtime library consists of a group of subroutines that interpret the abject code of
ycur program produced by the compiler. These subroutines will be included with your
object program when you perform the loading step. (See section 3 of this guide). Not all
programs will require all of the library routines. The loader will search the library and
automatically include the portions you need and exclude the ones you don't. The CRT
drivers are provided to enable you to configure your system for the type of CRT terminal
you have. You will need to select the appropriate driver. (See Appendix A of this guide).
Once you have done so, that driver will be automatically included with each program you
load with the linking leader. The driver provides cursor positioning and other functions to
support interactive ACCEPT and DISPLAY statements.

1.2.3 Utility Software

he linking loader is used to link COBOL abject programs with the runtime
system. (See section 3 of this guide). The other utilities are provided for your
convenience. Each of these programs is documented in the Utility Software

1.2.4 Miscellaneous Files

SGUARO.C08 is a COBOL source program that computes the square root of the number
you provide. It is used to verify that you have a working version of the compiler and
runtime system.

CRTEST.COB is a COBOL source program that tests the functions of the interactive CRT
driver (see Appendix A).

SEQCVT.COM is a special utility proaram that converts CCBOL files from LINE
SEQUENTIAL format to SEQUENTIAL format. The COBOL- SEQUENTIAL file format
was changed when version 3«0 was released. SEQUENTIAL organization files created by
earlier versions are in the fcrmat'that is now known as LINE SEQUENTIAL.

CQPCCB.SU8 is a command file Jhat copies the files on your distribution disk to a second
disk. It is provided as a convenience.

COBOL- User's Guide - Release 4
OVERVIEW

••*>_

1.3 Getting Started

The first thing you should do when you receive your disk is to make a copy to use and
the original disk as a backup. This may be done by using the COPCO8 command file
supplied or with some other disk copying facility you may have.

Having done that, you should verify your copy of the compiler and runtime system by
compiling, leading, and executing the test program SGUARO.CO8. To do this, refer to
the examples given below in section 1.4.

Finally, if you intend to use the interactive ACCEPT and DISPLAY facility in your
COBOL program, you must select a CRT driver and configure it into your runtime
system. This procedure need be done only once; thereafter your selected driver will
automatically be included with each of your abject programs. See Appendix A of thie
guide for full instructions.

1.4 Program Development Stsos

Preparation of a COBOL program for execution consists of three basic steps:

1. Creating the source file with a text editor
2. Compiling with the COBOL Compiler
3. Leading with the Linking Loader

The source program is a file which consists of lines of ASCII text terminated by
carriage-return line-feed. You can create it with . EDIT- or any other sditor
that uses 7-bit ASCII character codes. Line numbers may be included in columns 1-6 o > '
each line and these may be 3-bit ASCII codes. The compiler ignores characters other thar,
TAB and carriage return until column 7 is reached. TAB stops assumed by the compiler
are at columns 7, 17, 25, 33, 41, 49, 57, 65, and 73. Ail characters beyond column 73 are

f ignored until a CR is encountered. If you use EDIT- , you automatically begin typing in
v-> column 7 of each inserted line.

Having created the source program file, the next step is to compile it. This is done by
typing a command line that will execute the COBOL compiler and provide the name of
your source file. Under CP/M, you must be logged-in on the disk -that contains the
COBOL compiler, since the compiler overlays are always read from the current disk. The
following example shows a command to compile the test program SGUARO which is
included on your distribution disk, assuming drive A contains a copy of that disk.

A> COBOL SGUARO.REL,TTY:=:SGUARO.COB

This command will compile SGUARO. COB, placing the relocatable object code in a file
named SGUARO.REL ard printing the listing on your terminal. A shorter notation of this
same command line takes advantage of default file-name extensions assumed by the
compiler:

A->CCBCL SGUARC,TTY:=SGUARO

COBOL- User's Guide - Release
OVERVIEW

The shortest notation of all uses a compilation switch to force generation of an object file
that defaults to the filename SQUARO.REL:

A>CO8OL ,TTY:=SGUARO/R

These three example commands all produce exactly the same results. A full description
of the command line syntax is given in section 2,

Once the source program is compiled, the final step before execution is to load the
program with the Linking Loader L80. This step converts your relocatable object program
into an absolute version and combines it with the COBOL- runtime system. This
absolute version is built in memory, where it may then be saved on disk, executed
directly, or both. The following is a command to load SQUARO and execute it without
saving the absolute version.

A>L80 SQUARO/G
•

(' assumes the extension .REL for the file SGUARO that is to be loaded. Once V - <
3GUARC has completed execution, you could not execute it again without performing the
load command, since the absolute version was not saved. To save the absolute version in a
disk file without executing it directly, type:

A>L30 SGUARO/N,SQUARO/E

Then to execute the program, simply type:

A>SGUARO

Since the absolute version is saved, it may be executed at any time without performing
the load step. To combine the 2 examples so that the absolute version is saved and then
executed directly, type:

A>L30 SGUARO/N,SGUARO/G

"-•^er to section 3 of this guide ,and to the. Utility Software Manual for a full
-cripticn of L30 commands.

CCBCL- User's Guice - Release i

Section 2

COMPILING CCBCL PROGRAMS

2.1 CCSOL- Command Line Syntax

The CCSOL- compiler reads your CCSOL source program file as input and produces a
listing and relocatable object version of your program. The command line invokes the
CCBCL Compiler and tells it the names of the 3.files to use. The syntax of the line is to
type CC8CL followed by a space, followed by a command string, as described belcw.
CC3CL- is read from the disk and then examines the command string. If it is OK,
compilation begins. If not, it types the message "?Ccmmand Error" followed by an
asterisk prompt, then waits for another command string, '//hen compilation is complete,
CC3CL- always exits to the operating system.

The format of a CCSOL command string is:

cbjectf He,list file=scurce file

The separator characters are the comma and the equal sign. No spaces are allowed. The
terms used in the format are:

objectfiie
the name of the file to which the object program is to be written

list file
the name of the file to which the program listing is to be written

source file
the name of the CCBCL program source file

Each file can be the name of a disk file or the name of a system device. The full
descrioticn of a file name depends en your operating system. For C?/M, a file description
has the form:

device:filename.extension

COSCL- User's Guide - Release 4
COMPILING CC3CL PROGRAMS

6

Here the separators are the colon and period, and the terms mean:

device
the name of the system device, which can be a disk drive, terminal, line
printer, or other device supported by the operating system. If the device is
a disk, the filename must also be given. If not, the device name itself is
the fuii file description. COBOL- recognizes the following symbolic
device names:

TTY; for the console terminal
LSTs for the system printer

= • RDR: for the high-speed reader

• - filera/ne- '.: , .
the name of the file on disk. If filename is specified without a device, the
current disk is assumed as the device.

.extension
the extension of the
defaults are assumed:

filename given. If not specified, the fallowing

.COS for the source program file

.PRN for the listing file

.REL for the object program file

In the command string, the objectfile, listflle, or both may be omitted. If neither a listing
file ncr an object file .is requested, COBOL- will check for errors and print the total en
the console. If nothing is typed to the left of the equals sign, an object file is written on
the same cevics with the same filename as the source file, but with the default extension
fcr abject files.

Examples:

Command String

Y^PAYRCLL

=PAYRCLL

,TTY:=PAYROLL

PAYCBJ,LST:=PAYRGLL

PAYC8J=3:PAYRCLL

PAYRCLL,PAYRCLL=PAYRCLL

Effect

Compiles the source from PAYRCLL.COB and
produce's only an error count, which is displayed
on the console.

Compiles PAYROLL.COB and places the object
into PAYROLL.REL. No listing is generated.

Compiles the source from PAYRCLL.COB and
places the program listing on the terminal. No
object program is generated.

Compiles the source from PAYRCLL.COS, places
the listing on the printer, and places the object
into PAYGBJ.RELe

Compiles PAYRCLL.CCB from disk 3 and places
the abject into PAYOBJ.REL. No listing is
generated.

Compiles PAYROLL.CC8, olaces the listing into
PAYRGLL.PRN, and places the object into
PAYROLL.REL.

COBOL- User's Guide - Release 4
COMPILING CC8OL PROGRAMS

2.2 Compiler Switches

The command string may be modified by appending one or mere switches, which affect
the compilation procedure as described below. To add a switch, type a slash followed by
the one-character switch name.

Switch Action
R Force the compiler to generate an object file. This shorthand

• notation causes the compiler to write the-object file on the same
disk and with the same filename as the source file, but with the
default extension for object files.

L • Force the compiler to generate a listing file. As with /R, this
notation causes the compiler to write the listing file en the same
disk and with the same filename as the source file, but with the
default extension for listing files.

P Each /P allocates an extra ICO bytes of stack space for the
compiler's use. Use /P if stack overflow errors occur during
compilation (see secticn 2.3 below). Otherwise /P is not neecec.

Examples of command strings using switches:

Command String Is Equivalent To .

,=PAYRCLL/R PAYRCLL=PAYRCLL or =PAYRCLL

,s3:PAYRCLL/L ,3:PAYRCLL=3:PAYRCLL

,=3:PAYRCLL/R/L 3:PAYRCLL,S:PAYRCLL=3:PAYRCLL

=PAYRCLL/L/P PAYRCLL,PAYRCLL=PAYRCLL/P

2.3 Outcut Listings and Error Messages

The listing file output by CC8OL- is a line-by-line account of the source file with page
headings and error messages. The page heading line is printed 3 lines from the top of the
page and is followed by 2 blank lines. Each source line listed is preceded by a consecutive
4~digit decimal number. This is used by the error messages at the end to refer back to
lines in error, and also by the runtime system to indicate what statement has caused a
runtime error after it occurs.

Two classes of diagnostic error messages may be produced during compilation.

CC8CL- User's Guide - Release 4
COMPILING CCSCL PROGRAMS

8

Law level flags are displayed directly below source lines on the listing vhen simple syntax
violations occur. Remedial acticn is assumed in each case, as documented below, and
compilation continues. If a low-level error occurs, a high-level diagnostic will be
-enerated at the end of the listing that refers to the line number attached to the
Tow-level error, so the error count given at the end includes both classes of errors.

Flaa

"GLIT"?

LENGTH?

CHRCTR?

PUNCT?

3ADWCRD

SEQ //

ME?

PIC = X

COL.7?

AREA A?

Reason for Flag

Faulty quoted literal
1. Zero length
2. Improper continuation *
3. Premature end-of-file

(before ending delimiter)

Quoted literal length over 120
characters, or numeric literal
over 18 digits, or 'word1

(identifier or name) over 30
characters.

Illegal character

Improper punctuation
(e.g. comma not fol-
lowed by a space).

Current word is malformed
such as ending in hyphen,
or multiple decimal points
in a numeric literal.

Improper sequence number
(includes case of out-of-
order sequence number).

Name does not begin with
a letter (A - Z).

An improper Picture.

An improper character
appears in source line
character 'column1 7,
where only * - / D are
permissible.

Area A, columns 3-12, is
not blank in a
continuation line.

Remedial Action by Compiler

Ignore and continue.
Assume acceptable.
Assume program end,

Excessive characters
are igncred.

Ignore and continue.

Assume acceptable.

Ignore and continue.

Acceot and continue,

Accept and continue.

PIC X is assumed,

Assume a blank
in column 7.

Ignore contents of
Area A (assume blank).

COBOL- 'Jser's Guide - Release 4
COMPILING CCSCL PROGRAMS

High level diagnostic messages consist of two or three parts:

1. The associated source line number — four digits, followed by a colon (:).

2. An English explanation of the error detected by the compiler. If this text
begins with /W/f then it is only a warning; if not, it is an error sufficiently
severe to inhibit linkage and execution of an object program.

3. (Optional) The program element cited at the point of error is listed. Design of
the high level diagnostic message text is such that no list of 'messages and error
codes' is necessary; the messages are self-explanatory.

Regardless of whether there is a list device, or what the list device may be physically, a
message displaying the total number of errors or warnings is always disolayed en the
console at Che end of compilation. This allows you to make a simple change to a COBOL
program, recompile it without a listing and still know whether the compiler encounters*";
any questionable statements in the program.

Two error messages that occur infrequently and are also displayed on the console must be
noted. One is '^Memory Full" which occurs when there is insufficient memory for ail the
symbols and other information the compiler obtains from your source program. It
indicates that the program is too large and must be decreased in size or split int~
separately compiled rncduies. The symbol table of data-names and procedure-names is
usually the largest user cf space during compilation. All names require as many bytss as
there are characters in the rame, and there is an overhead requirement of about 10 bytes
per data-name and 2 bytss per procedure-name. On the average, each line in the DATA
DIVISION requires about 14 bytes of memory during compilation, and each line in Che
PROCEDURE DIVISION requires about 3 1/4 bytes.

i

The other error message, "?Compiler Error', occurs when the compiler becomes
confused. It is usually caused by one of two problems: either the stack has overflowed, i~
which case using che /P switch will solve it; or Che compiler or one of the overlay files en
the disk has been damaged, [n which case you should try your backup copy. If neither of
these solutions works, you can sometimes determine the cause by compiling increasingly
larger chunks of your program, starting with only a few lines, until the error recurs.
These two error conditions cause immediate termination of compilation.

2.4 Files Used bv CCEGL-

In addition to the source, listing and object files used by COBOL- , the following files
should be noted.

First, there is a file called STEXT.INT which the compiler always places on the current
disk. It is used to hold intermediate symbolic text between pass one and pass two of the
compiler. It is created, written, then closed, read, and then deleted before the comcilsr
exits. Consequently, you should never run into it unless the compilation is aborted.

CCSOL- User's Guide - Release 4 10
COMPILING C08CL PROGRAMS

Another file of concern is the file to be copied due to a COPY verb in the CCBCL
program. (See the discussion of CCPY in the COBOL- Reference Manual). Remember
that copied files cannot have CCPY statements within them and the rest of the line after
a CCPY statement is ignored.

Finally CCSOL programs that use segmentation cause the leader to create a file for each
independent segment of the program. The filenames are formed as follows. The filename
itself is the PROGRAM-ID denned in the IDENTIFICATION DIVISION. The extension is
. Vrn where nn is a two-digit hexadecimal number that is the segment number minus 49.

CC6OL-" User's Guide - Release 4 11

Section 3 •

LOADING COBOL PROGRAMS

The Microsoft Linking Loader LINK- is used to convert the compiled relocatable object
version of your program into an absolute version that is executable. It automatically
combines the required portions of the COBOL runtime system with your abject program.
The loader is also used to link one or more subprograms together with a main program.
These subprograms may be specified individually or extracted from a library, and may be
written in COBOL, FORTRAN- or MACRO- assembly language.

- . 3.1 LINK- Command Lire Syntax

The complete syntax for LINK- commands is given in Chapter 4 of the " Utilit*.
Software Manual. However, some functions described there are not useful when loacing
COBOL programs. This section summarizes use of the loader for COBOL programs.

You may invoke LINK- in one of two ways: either type L80 followed by a carriage
return and enter a command string when the asterisk prompt is typed, or type L30
followed by a space, followed by the command string on the same line.

The command string is a list of filenames separated by commas. Each filename specified
is brought into memory by the loader and placed at the next available memory address.
Switches are used in the command string to specify functions the loader is to perform.
The command string may be brcken jp into many small strings and entered en different
lines. The loader will prompt with an asterisk and wait for more command strings unti;
one with a G or E switch has been processed and the loader exits to the operating system.
Filenames are scecified in the same manner as for the compiler, except that the default

f. extension is always .REL for files to be read by the loader. Such files are ail expected to
'(be in relocatable object format, so they must have been previously compiled (or
~- assembled).

COBOL- User's Guide - Release 4 12
LOADING CC8CL PROGRAMS

Switches most useful when loading OC8OL programs are:

Switch Effect

fiiename/N Directs the loader to save the executable program on disk with
name <filename> when the loading process is complete.

/E Directs the loader to complete the loading process and exit to
the operating system. The loader searches CCBLIB.REL and
CRTDRV.REL to resolve undefined global symbols. The final
step is to save the executable program on disk, provided that the
/N switch was specified.

/G Directs the loader to complete the loading process and begin
execution of the program. As with /E, the COBOL runtime
library is searched, and the executable program is saved if /N .
was specified. (;.;f

*
*

Switches used occasionally when loading COBOL programs are:

Switch Effect

/R Immediately resets the loader to its initial state. The effect is
as if the leader was aborted and then reloaded from disk. . __

»

fiiename/S Directs the loader to search <filename> to resolve undefined
global symoois. This command is used to selectively load
CALLed subroutines from a user-built library.

/M Prints a mao of ail global symbols and their values. Undefined
giobais appear with an asterisk after the name. ' /

s~ /U Prints a list of all undefined global symbols.

CCSCL- User's Guide - Release 4 . 13
LOADING CCBCL PROGRAMS

Examples:

Command String

MYPRCG,SVPRCG/N/E . .
t

Loads MYPRCG.REL, saves the absolute version in SVPRCG.CCM and exits to
the operating system.

MYPRCG/G ' . '

•Loads MYPRCG.REL and begins execution without saving the absolute version

MYPRCG,SUBPR1,3:SU8PR2,MYPRCG/N/E

Loads MYPRCG.REL,SU8PR1.REL, and B:SL'BPR2.R£L. Saves the absolute
version in MYPRCG.CCM and exits to the operating system.

MYPRCG/NVMYPRCG,MYL:3/S/E
Loads MYPRCG.REL searches MYLIB.REL for subroutines referenced by
"CALL" statements, saves the absolute version in MYPRCG.CCM and exits to
the operating system.

3.2 Subprograms
«

If you have organized your program into a main module and one or more subprogram
modules, the loader can combine them into one executable program. Before Loading,
compile (or assemble) all modules so that you have a relocatable object version of each.

(Then execute the loader and'specify in the command string the name of each module you
"*- want to load. The modules may be specified in any order. For example, if you have a

.compiled main program file MAINPG.REL and 2 subprogram files SU8PR1.REL and
SU8PR2.REL, you may load the executable program and save it with any of the following
load commands:

1. L3Q MA^PG/N,MAINPG,31JBPR1,SUBPR2/E

2. L8Q
*MAINPG/N,MAJNPG,SUBPR1,SU8PR2
*/E

3. L30 SUBPR1,SL'EPR2
*MAINPG/N
*MAINPG/E

COBOL- User's Guide - Release 4 14
LOADING CCBCL PROGRAMS ,

3.3 Function Libraries

The Library Manager LIB- (CP/M versions only) allows you to collect any
number of subprograms into a single file (a library) that can be searched by the loader.
For example, if you have six subprograms named SU8PR1.REL through SUBPR6.REL that
are used by different main programs, you could make them into a library with the
following command.

LIB
*USRLIS=SUBPR1,SUSPR2,SU8PR3,SU8PR4,SU8PR5,SUBPR6/E

This will create a library file named USRLIB.REL. (See Section 3 of the' Utility
Software Manual for a full description of LIB- . Then if you have a main program
MAINPG that CALLs SUBPR2 and SUBPR6, the load command:

L8Q MAINPG/N,MAINPG,USRLIB/S/E

A/IU load MAINPG and search USRLIB for SU8PR2 and SU8PR6.

'Mien making a library, you need to make sure that all subprogram ID's are unique. Since
sil COBOL runtime routines in COBLIB have names that begin with dollar sign, you should
avoid the dollar sign in naming your subprograms.

CC8CL- User's Guide - Release 4 15

Section 4

EXECUTING COBOL PROGRAMS

You may execute a CCSCL program in any of three ways. The first is to use the G switch
in the loader command string as described in section 3.1. The second is simply to type the
name of an executable program file as saved by using the N switch in the loader command
string. Finally, you may execute a program directly from within another CCBOL program
by using the CALL or CHAIN statement. Refer to Chapter 5 of the CC8CL- Reference
Manual for an explanation of program CALL and CHAIN.

4.1 The Runtime System

The relocatable object version of your program produced by the ccmciler is not 3CSO or
Z3Q machine code. Instead, it is in the form of a special object language designed
scecifically for COBOL instructicns. The CCBCL- runtime system executes your
program by examining each object language instruction and performing the function
recuirsd. This includes all processing needed to handle CRT, printer, and disk file input
ard output.

The runtime system consists of a number of machine language subroutines collected into a
library named CC8LI3.REL and a CRT driver named CRTDRV.REL. Wren you load your
CCSCL program, CC6LIB is automatically searched by the loader to find and lead
routines that are required to perform the instructicns in your source program. The
number of routines needed depends en the number of CCSCL language features you have
used in your main program and suborcgrams. If DISPLAY or ACCEPT statements are
included in the source program, the loader automatically searches the file CRTDRV.REL
to include the terminal-dependent functions.

The amount of memory required by a CCBOL program at runtime equals the amount
required to store the data items defined in the DATA DIVISION, plus about 500 bytes per
file, plus about 12 bytes per line of the PROCEDURE DIVISION, plus up to 24K bytes for
the runtime system.

4.2 Printer File Handling

Printer files should be viewed simply as a stream of characters going to the printer.
Records should be defined simply as the fields to appear en the printer. No extra
characters are needed in the record for carriage control. Carriage return, line feed and
fcrm feed are sent to the printer as needed between lines. Note however, that blank
characters (spaces) on the end of a print line are truncated to make printing faster.

COBOL- User's Guide - Release 4 . 16
EXECUTING COBOL PROGRAMS

No "VALUE OF" clause should be given for a PRINTER file in the FD, but "LABEL
RECORD IS OMITTED" must be specified. The BLOCK clause must not be used for
printer files.

4-2 Disk File Handling

Disk files must have "LABEL RECORD IS STANDARD" declared and have a "VALUE OF"
clause that includes a File ID. File ID formats are described in the Utility Software
Manual. Block clauses are checked for syntax but have no effect on any type file.

The format of regular SEQUENTIAL organization files is that of a two-byte count of the
record length fallowed by the actual record, for as many records as exist in the file. The
LINE SEQUENTIAL organization has the record followed by a carriage return/line feed
Delimiter, for* as many records as exist in the file. Both organizations pad any remaining
(V ^e of the last physical block with control-Z characters, indicating end-of-file. To
mcKe maximum use of disk space, records are packed together with no unnecessary bytes
in between.

The format of RELATIVE files is always that of fixed length records of the size of the
largest record defined for the file. No delimiter is needed, and therefore none is
provided. Deleted records are filled with hex value '00'. Additionally, six bytes are
reserved at the beginning of the file to contain system bookkeeping information.

The format of INDEXED files is too complicated to include in this document. It is a
complex mixture of keys, data, linear pointers, deletion pointers, and scramoie-funccicn
painters. It is doubtful that the COBOL programmer would require access to such
information.

4.4 CRT Handling

('" . '
£4.1 Terminal Output .

*

All output to the terminal is done by the DISPLAY statement. Characters are sent one at
at time by the DISPLAY runtime module or by the CRT driver. If no cursor positioning
was specified fcr any of the displayed items, a carriage-return and line-feed are sent
following the last displayed item. Otherwise, no assumptions about carriage control are
made by the DISPLAY module.

CC6GL- i User's Guide - Release 4
EXECUTING CCBCL PROGRAMS

,7

4.4.2 Keyboard Input

Ail input from the keyboard is done by the ACCEPT statement. One of two methods or
input are used, depending en the type of ACCEPT being performed.

For a format 2 ACCEPT, a full line of input is typed, using the operating system facilities
fcr character echo and input editing, ending with a carriage return. Fcr this type, the
character cedes denned in the CRT driver have no effect.

For a format 3 or 4 ACCEPT, each character typed is rsad directly by the runtime
ACCEPT mcdule by using a call to the operating system. The ACCEPT module perform?
ail necessary character echo and input editing functions. The editing control character:-,
function keys, and terminator keys are defined in the CRT driver (see Appendix A).

4o5 Runtime Errors

Some programming errors cannot be detected by the comciler but will cause the program
to terminate prematurely when it is being executed. Each of those errors produces a
four-lire synopsis, printed en the console.

** RUN-TIME ERR:
reason (see list below)
line number
program-id

The possible reasons fcr termination, with additional explanation, are listed below.

REDUNDANT OPEN

DATA UNAVAILABLE

'•->- SUBSCRIPT FAULT

INPUT/OUTPUT

NON-NUMERIC DATA

Attempt to open a file that is already open.

Attempt to reference data in a record of a file that is roc
open or has" reached the "AT END" condition.

A subscript has an illegal value (usually, less than' 1). This
aopiies to an index reference such as I - 2, the value of which
must not be less than 1.

Unrecoverable I/O error, with no provision in the user's
COBOL program for acting upon the situation by way of an AT
END clause, INVALID KEY clause, FILE STATUS item,
DECLARATIVE procedure, etc.

Whenever the contents of a numeric item does not conform to
the given PICTURE, this condition may arise. You should
always check input data, if it is subject to error (because
"input editing" has not yet been done) by use of the NUMERIC
test.

COBOL- User's Guide - Release 4
EXECUTING CCBOL PROGRAMS

13

PERFORM OVERLAP

CALL PARAMETERS

ILLEGAL READ

ILLEGAL WRITE

ILLEGAL REWRITE

e; NO READ

REDUNDANT CLOSE

C3J. CCDE ERROR

FEATURE UNIMPL.

GO TO. (NOT SET)

FH «5 LOCKED
•s«

r?*'AD BEYOND EOF

DELETE; NO READ

ILLEGAL DELETE

ILLEGAL START

NO CRT DRIV ER

SEG nn LOAD ERR

An illegal sequence of PERFORMS as, for example, when
paragraph A is performed, and prior to exiting from it another
PERFORM A is initiated.

There is a disparity between the number of parameters in a
calling program and the called subprogram.

Attempt to READ a file that is not open in the input or I-O
mode.

• •
•

Attempt to WRITE to a file that is not open in the output mode
for sequential access files, or in the output or I-O mode for
random or dynamic access files.

Attempt to REWRITE a record in a file not open in the I-O
mode.

Attempt to REWRITE a record of a sequential access file when
the last operation was not a successful READ.

Attempt to close file that is not open.

An undefined object program instruction has been
encountered. This should occur only if the absolute version of
the program has been damaged in memory or en the disk file.

An object program instruction that calls for an unimpiemented
feature has been encountered. This should occur only because
of a damaged object program.

Attempt to execute an uninitialized alterable paragraph
containing only a null GO statement.

Attempt to OPEN after earlier CLOSE WITH LOCX.
J

Attempt to read (next) after already encountering snd-of-file.

Attempt to DELETE a record of a sequential access file when
the last operation was not a successful READ.

. *

Relative file not opened for I-O.

File not opened for input or I-O.

An ACCEPT or DISPLAY statement using cursor positioning is
being executed, but no CRT driver has been selected. (See
Appendix A of this guide.)

An unrecoverable read error has occurred while trying to load
a segment of a segmented program. The two digits nn are the
hexadecimal notation of the segment number minus 49 and
match the name of the file extension (.Vnn) en the disk.

COBOL- . User's Guide - Release 4 19
EXECUTING COBOL PROGRAMS

In the case of program CHAINing, error messages may be generated by the CHAIN
processing module. These errors are of the form "**CHAIN: problem" and also caus?
terminaticn of the program. See Appendix B for the list of CHAIN error messages.

P

CCBCL- User's Guide - Release 4 20

Appendix A

CONFIGURING THE CRT

A.I General Instructions

To enable the interactive ACCEPT and DISPLAY functions, CCSCL- requires a
terminal driver module that provides primitive terminal-dependent functions. The system
expects to find this mcduie under the name CRTDRV.REL when programs are linked with
L3Q.

A mcduie named CRTDRV is provided with each Release 4..CC8GL disk. This is a default
dummy driver that will enable programs to link successfully and will provide support for

O tne ANSI standard ACCEPT and DISPLAY statements. Programs that use curse-.
V^ positioning in ACCEPT or DISPLAY statements and link with the default driver will

run successfully; they will abort with the "NO CRT DRIVER" runtime error message.

he CRTDRV module should be replaced with the driver appropriate to the tyoe of
terminal being used befcre linking any CCSCL programs ccmciled with Release 4. To do
this, simply copy the acpropriate driver to CRTDRV.REL. Mac'osaf-fe- has provided driver
for a wide range of pccular terminals; these are listed below. If none of these Drivers .:-
suitable, one may be constructed; see section A.3: "Writing a CRT Driver".

The CRT driver modules sucoiied by are relocatable object files whose names
begin with the letters CD 'for CRT Driver). The MACRO- source coce for each driver
is also included. Any driver will succort mere than one type of terminal if the termira.3
have compatible control secuences. If your terminal is not listed below, check section A.2
to ccmoare ycur terminal's rurcticn cedes with those of :he supplied terminal drivers, 'f
your terminal matches the code fcr =ny supolied driver, use it. The terminals arc
asscciated drivers are:

1. ANSI standard terminal CD ANSI
2. Lear-Siegier ADM3-A CDADM3
3. Beehive 100, 150 CD8EE
4. Microbee 2 CD8EE
5. Cromemco 3101, 3102 CD8EE
6. SCRCC IQ CDSRCC
7. Hazeitine I5GO CDHZ15
8. Heath WH19 . CDWH19
9. DEC VT52 CDWH19
10. ADOS Regent Terminals * CDADDS
11. Perkin-Elmer • CDPERK
12. Zentec Zephr CDZEPH
13. Intertec Suoerbrain CDIS3
14. IMSAI VIO CDADM3

* Supports ADDS Regent 40, 60, 100, and 200 terminals. The highlight video
codes are not available on the Regent 20 and 25, but the CDADDS driver can
be used if.that cede is removed.

CCBCL- User's Guide - Release 4 ' 21
CONFIGURING Th-E CRT

A. 2 Terminal Charts

The following pages -escribe the characteristics of the terminals for which
crivers are supplied en your distribution disk. There is one page for each
terminal supported.

Section I of each page defines the keys that are recognized by COBOL- to
oerfcrm the functions of ACCEPT. The value listed under the heading "Escape
Code" is the integer that is available using a format 1 ACCEPT.. .FROM
ESCAPE KEY if the key caused termination of a format 3 or format 4
ACCEPT statement. The value listed under the heading "Input Code" is the
hexadecimal code generated by the terminal when that key is typed. The
entry under "Key Label'1 gives the name of the key as shown on the keyboard.

Section II of each page shows the sequences of codes that are sent to the
tr^inal from CCSCL- to perform the functions of DISPLAY and ACCEPT.
£ ' ;s are shown to separate codes in the list, but they are not part of the
sequence sent to the terminal. Each two-digit number represents an absolute
hexadecimal value. All other coces describe standard ASCII character codes,
except for some shorthand abbreviations, which have the following
excianaticns:

Ri The binary row (line) number plus decimal 31,
R2 The row number converted to 2 ASCII digits, sent high digit first.

Cl The binary column number plus decimal 31.
C2 The column number converted to 2 ASCII digits, sent high digit first.
C3 If the column number is less than 32, a decimal 95 is added to the

number. Otherwise, column number minus one is used,

N/A Function not available en this terminal.

5^ If the cursor is at the home position, a clear screen code (hexadecimal
:' V 1A) is used. Otherwise, enough spaces are sent to blank the remainder of

the screen and the cursor is moved back to its original position.
E2 Enough spaces are sent to blank the remainder of the line and the cursor

is moved back to its original position,

Nl Ten null (binary zero) characters..

CCECL- User's Guide - .Release 4 22

CDADOS ADOS Regent Terminals
24 Lines 80 Columns

I. Keyboard Input
A. editing Kays

1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

Incut Code

15
7F
06
08
23
2D

Key Label

CONTROL-U
DEL
CONTRCL-F
CONTROL-H

8. Terminator Keys
1. Backtab
2- Escape
3. Field terminators

a. Tab
b. Carnage Return
c. Line Feed

Escape Code
99
01
00

Incut Code Kev Label
02
13

09
OO
QA

CONTRCL-3
ESC

CCNTRCL-I
NEW LINE
LINE FEED

C. Function Keys
1.
2.
3.

Escace Code
02
03
04

Input Code
01
03
13

Kev Label
CONTRCL-A
CCNTRCL-C
CONTRCL-X

II. Cutout Functions
A. Set Cursor Positicn
3. Backspace Cursor
C. Cursor Cn
D. Cursor Off
E. Erase to End of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Code Secuence
ESC Y Rl Cl
08
N/A
N/A
ESC k
ESC K
07
ESC OP
ESC 0 (3

COBOL- User's Guide - Release 4 23

:OADM3 Lear-Siegler ADM-3A
24 Lines 80 Columns

I. Keyboard Input
A. Eciting Keys

1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Sack Space
5. Plus Sign
6. Minus Sign

Input Code

15
7F

* OC
08
23
20

Key Label

CCNTRCL-U
DEL
CONTRCL-L
CONTRCL-H

/
"

3. Terminator Keys
1. Backtab
2. Escape
3. Field terminators

a. Tab
b. Carriage Return
c. Line Feed

Escape Code
99
01
00

Inout Code Kev Label
02
IB

09
00
OA

CGNTROL-B
ESC

CCNTRCL-I
RETURN
LINE FEED

C. Function K e s Escape Code
02
03
04

Incut Code
01
03
18

Key Label
CCNTRCL-A
CCNTROL-C
CCNTRCL-X

lutixit Functions
A, Sec Cursor Position
3. Backspace Cursor
Co Cursor On
Do Cursor Off
c,» Erase to End of Screen
F. Erase to End of Line
G. Sound Bell
K Set Highlight Mode
L Reset Highlight Mode

Code Sequence
ESC = Rl Cl
OS
N/A
N/A
El
E2
07
N/A
N/A

CCBCL User's Guide - Release 4 24

;ANSI ANSI Standard Terminal
24 lines 80 Columns

I. Kevboard Incut
editing Keys
1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Back Space
5. Pius Sign
6. Minus Sign

Incut Code

15
7F
06
OB
23
2D

Key Label

CCNTRCL-U
DEL, RUB
CCNTRCL-F
CCNTRCL-H

3. Terminator Keys
1. Backtab
2. Escape
3. Field terminators

a. Tab
b. Carriage Return
c. Line Feed

Escape Code
99
01
00

Incut Code Kev Label
Q2
13

09
CO
OA

CGNTRCL-B
ESC

TAB, CCNTRCL-!
RETURN, ENTER
LINE FEED

/•**•

C. Function Keys
i.
2.
3.

Escape Code
02
03
04

Incut Cede
01
03
13

Kev Label
CCNTRCL-A
CCNTRCL-C
CCNTRCL-X

!I. Cutzut Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor Cn
D. Cursor Off
E- Erase to End of Screen
Fc Erase to End of Line
G. Sound 3eii
He Set Highlight Mode
I. Reset Highlight Mode

Code Secuencs
ESC [R2 ; C2 f
08
ESC [> 5 1
ESC [> 5 h
ESC [0 J
ESC [0 K
07
ESC[7 m
ESC [0 m

COBOL- _ - User's Guide - Release 4 25

:DBEE Beehive Terminals
24 lines 80 Columns

Keyboard Incut
A. Editing Keys

1. Line delete/Field delete
2- Character delete
3. Forward Space
4C Back Space
5. Plus Sign
6, Minus Sign

Incut Code

15
7F
06
08
2B
20

Key Label

CONTROL-U
DEL
CONTRCL-F
CGNTROL-H

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators

a. Tab
b. Carriage Return
c. Lire Feed

Escape Code
99
01
00

Input Code
02
18

09
oo
OA

Key Label
CCNTROL-B
ESC

TAB, CCNTRCL-I
RETURN
LINE FEED

G

C« Function Keys

3.

Escape Code
02
03
04

Incut Code
01
03
13

Kev Label
CCNTRCL-A
CCNTROL-C
CCNTROL-X

IT. Cutrut Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
0. Cursor Off
,ra Erase to End of Screen
F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
1. Reset Highlight Mode

Code Sequence
ESC F Rl Cl
08
N/A
N/A
ESC J Nl
ESCK
07
ESC1
ESCm

CCSCL- User's Guide - Release 4 26

CCHZ15 Hazeitine 1500 Series Terminals
24 Lines 80 Columns

I. Keyboard Input
A. Editing Keys

1. Line delete/field delete
2. Character delete
3. Forward Space
4. Sack Space
5. Plus Sign
6. Minus Sign

Incut Code

15
7F
50
08
28
2D

Kev Label

CCNTRCL-U
DEL

BACK SPACE

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators

a. Tab
b. Carriage Return
c. Line Feed

Escace Code
99
OX
00

Input Code Kev Label
\
ESCIB

09
CD
QA

TAB
RETURN
LINE FEED

C. Function Keys
1.
2.
3.

Escace Code
02
03
04

Incut Code
01
03
18

Kev Label
CCNTRCL-A
CCNTRCL-C
CCNTRCL-X

II. Cutout Functions
A. Set Cursor Position
B. Backspace Cursor
C. Cursor On
O. Cursor Off
E« Erase to End of Screen
F. Erase to End of Line
G. Sound Sell
H0 Set Highlight Mode

' I. Reset Highlight Mode

Code Sequence
~ OC1 C3 RI
03
N/A
N/A-
~ CAN
-si
07
"US
"" EM

CC6CL- User's Guide - Release 4 27

CDISS Intertec Superbrain
24 Lines 30 Columns

I. Keyboard Incut
A. Editing Keys

1. Line delete/Field delete
2i Character delete
3. Forward Space
4. Sack Space
5. Plus Sign
6. Minus Sign

Incut Code

18
7F
06

28
2D

Key Label

CCNTRCL-X
DEL
CCNTROL-F
BACK SPACE

B. Terminator Keys
1. Backtab
2. -Escape
3. Field terminators

a. Tab
b. Carriage Return
Co Line Feed

Escape Code
99
01
00

Incut Code Kev Label
02
IS

09
00
OA

CCNTRCL-3
ESC

TAB
RETURN
LINE FEED

O-

C. Function Keys Escace Code
02 .
03
04

Incut Code
01
03
04

Key Label
CCNTRCL-A
CCNTRCL-C
CCNTRCL-D

II. Cutpuc Functions
A. Set Cursor Pcsiticn
3. Backspace Cursor
C. Cursor On

f. Do Cursor Off
\ E. Erase to End of Screen

F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

1

Code Secuencs
ESC Y RI
08
N/A
N/A
ESC "k
ESC -K
07
N/A
N/A

COBOL User's Guide - Release 4 23

CDPERK Perkin - Elmer Terminals
24 Lines 80 Columns

I. Keyboard Incut
A. Editing Keys

1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Sack Space
5» Plus Sign
6. Minus Sign

Inout Code

15
7F
06
08*
23 '
20

Key Label

CCNTRCL-U
DEL
CCNTRCL-F
BACK SPACE

r 3. Terminator Keys
1. Backtab
2« Escape
3. Field terminators

a* Tao
be Carriage Return
c. Line Feed

Escape Code
99
01
00

Incut Code
02
IB

09
GO
OA

Kev Label
CCNTRCL-3
ESC

TAB
RETURN
LINE FEED

C. Function Kes
i.

3.

Escape Code
02
03
04

Incut Coce
01
03
18

Key Label
CCNTRCL-A
CCNTRCL-C
CCNTRCL-X

II. Cutzut Functions
Ac Set Cursor Position
3. Backspace Cursor
C. Cursor Cn
D. Cursor Off
E. Erase to end of screen
F. Erase to end of line
G. Sound 3ell
H. Set Highlight mode
I. Reset Highlight Mode

Code Sequence
ES'C X Rl ESC Y Cl
08
N/A
N/A
ESC J
ESC I
07
N/A
N/A

COBOL- User's Guide - Release 4 29

COSRCC SOROC IQ Terminals
24 Lines 30 Columns

I. Keyboard Incut
A. Editing Keys

1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

Inpjt Code

15
7F
OC
08
2B
20

Key Label

CONTROL-U
DEL
CCNTRCL-L
CONTROL-H

B. Terminator Keys
1. Backtab
2. Escape
3. Field terminators

a. Tab
b. Carriage Return
c. Line Feed

Escape Code
99
01
00

Input Code
02
IS

09
GO
OA

Kev Label
CON'
ESC

•RCL-8

CCNTRCL-I
RETURN
LINE FEED

C. Function Keys
1.
2.
3.

Escaoe Code
02
03
04

Input Code
01
02
18

Kev Label
CCNTRCL-A
CCNTRCL-C
CONTRCL-X

n. Cutsut Functions
A. Set Cursor Position
B. Backspace Cursor
C« Cursor On

' D. Cursor Off
^ E. Erase to End of Screen

F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Code Sequence
ESC = Rl Cl
08
N/A
N/A
ESCY
ESCT
07 '
N/A
N/A

CC6CL- " User's Guide - Release 4 30

CCWH19 Heath WH19/DEC VT52
24 Lines 30 Columns

I. Keyboard Incut
A. Editing Keys

1. Line delete/Field delete
2, Character delete
3« Forward Space
4. Sack Space
5. Plus Sign
6. Minus Sign

Incut Code

15
7F
06.
ca
23
20

Kev Label

CGNTRCL-U
DELETE
CGNTRCL-F
BACK SPACE

3. Terminator Keys
1. Backtab
2« Escape
3. Field terminators

a. Tab
be Carriage Return
c« Line Feed

Escase Code
99
01
00

Incut Code
02
13

09
GO
OA

Kev Label
CGNTRGL-S
ESC

TAB, CONTRCL-I
RETURN
LINE FEEO '

C

C. Function K e s

3.

Escape Code
G2
03
04

Incut Cede
01
03
13

Kev Label
RCL-ACCN

CCNTRCL-C
CCNTRCL-X

II. Cutout Functions
A. Set Cursor Pcsiticn
3. Backspace Cursor
C. Cursor On
0. Cursor Off
£* Erase to End of Screen
F. Erase to End of Line
G. Sound Beii
H. Set Highlight Mode
1. Reset Highlight Mcde

Cede Sequence
ESC Y Rl Cl
08
ESC y 5
ESC x 5
ESC J
ESC K
07
ESC p
ESCq

COBOL- User's Guide - Release 4 31

CDZEPH Zentec Zephr
24 Lines 80 Columns

I. Keyboard Incut
A. Editing Keys

1. Line delete/Field delete
2. Character delete
3. Forward Space
4. Back Space
5. Plus Sign
6. Minus Sign

Input Code

15
7F
06
08
2B
20

Key Label

CONTROL-U'
DEL
CONTRCL-F
CCNTROL-H

8. Terminator Keys
1. Backtab
2. Escape
3. Field terminators

a. Tab
b. Carriage Return
c. Line Feed

Escape Code
99
01
CO

Incut Code Kev Label
02
IB

09
OO
OA

CCNTROL-B
ESC

TAB, CONTROL-!
RETURN
LINE FEED

C. Function Kevs"
1.
2.
3.

Escape Code
02
03
04

Incut Code
01
03
13

Key Label
CCNTRCL-A
CONTRCL-C
CCNTRCL-X

II. Output Functions
A. Set Cursor Position
8. Backspace Cursor
C. Cursor On

' D« Cursor Off
^ E. Erase to End of Screen

F. Erase to End of Line
G. Sound Bell
H. Set Highlight Mode
I. Reset Highlight Mode

Code Sequence
ESC 0 Rl Cl
08
N/A
N/A
ESC Y Nl
ESCT
07
ESC G 4
ESC GO

CCBCL- User's Guide - Release 4 32
CONFIGURING THE CRT

A.3 Writing a CRT Driver

A CRT driver should be written in assembly language and assembled with the
assemoier M80. It consists of 14 entry points that must be declared as global labels b;
using M80 ENTRY statements. The source code of ail drivers is supplied on youi
distribution disk (files named CD .MAC) to serve as examples and reference for the
following explanation.

Once the CRT driver is written, you can test ail the functions and key codes by using the
program CRTE5T that is supplied on your distribution disk. Compile it, link it with your
CRT driver using L3Q, and execute it, foiicwing the instructions it provides.

Five of the entry points simply contain data that describe the terminal and keyboard,
SCRLEN is a byte that contains the number of lines on the terminal and SCRV/ID contain:,
the number of columns. SCL.IST, STLIST and SFLIST are sequences of bytes that define

/"-* keyboard codes that invoke the functions of ACCEPT. Note that these codes are not sen;—
v to the terminal to perfcrm the function; they merely declare the keys that should bW

- recognized by tr.e ACCEPT module. Ail of these codes should be unique.

SCLIST defines the editing keys, which must be specified in the following sequence:

1. Line delete (Field delete)
2. Character delete
3. Forward soace (Curscr forward)
4. Backspace (Curscr back)
5. Plus sign
6: Minus sign , •

The list is terminated by a by:e containing zero.

SFLIST defines function keys that terminate a format 3 or a format 4 ACCEPT
statement. The order of placement of codes in SFLIST determines the ESCAPE KEV
value available to the ACCEPT ... FROM ESCAPE KEY statement.- The first key

(generates a value of 02, the second 03, and so en, up to a maximum value of 39. The iis/
^ is terminated by a byte containing zero. ****

5TLIST defines several keys, ail of which terminate format 3 type ACCEPT statements.
First in the list must be the backtab key. If used in a format 4 ACCEPT, this key causes
termination of the current field and the cursor to move to the previous input field, if one
exists. If used in a format 3 ACCEPT, the backtab key terminates the ACCEPT and sets
an escape code value of 99. Next in the list is the escape key. This key terminates either
a format 3 cr format 4 ACCEPT and sets an escape code value of 01. In addition, it
causes' the program to execute the ON-ESCAPE clause of a format 4 ACCEPT. Finally,
there is a list of normal field terminator keys, terminated by a zero byte. Any key in this
list terminates the current incut field and sets the escape code value to 00. Termination
of the field ends a format 3 ACCEPT, and moves the cursor to the next field in a format 4
ACCEPT. If the cursor was in the last input field, the entire ACCEPT statement is
terminated.

COBOL- User's Guide - Release 4 33
CONFIGURING THE CRT

The remaining 9 entry points are subroutines that perform terminal functions by sending
codes to the terminal. Each code is sent by calling the external routine SCUTCH with the
value in the A register. SCUTCH preserves the values in registers HL and DE.

SSETCR moves the cursor to a specific position on the screen. Upon entry, register H
contains the specified row (line) number and register L contains the column number. Note
that COBOL considers the top lire of the screen to be row 1 and the leftmost column to be
column 1.

SCUR3K moves the cursor to the left one position without disturbing the displayed
character at that position Upon entry, register HL contains the current cursor position in
sequential format (i.e., a number between 1 and n where n is screen width times length).
Most terminals honor the ASCII backspace code to perform this function.

SALARM sounds the terminal's audible tone or bell. Most terminals honor the ASCII bell
/* '•'a to perform this function.
^^
SCUROF and SCURCN instruct the terminal to inhibit cr enable display of the cursor.
Many terminals do not provide this facility, however, and a simple RET instruction is
appropriate for drivers of those terminals.

SERASE clears that portion of the screen from the current cursor position to the end.
The cursor must be left in its original position. Upon entry, register HL contains the
current cursor pcsiticn in sequential fcrmat. Some terminals, such as the ADM-3A, do not
provide an escape sequence to perform this function. The example driver CDADM3
provides a routine that sends enough blanks to clear the screen and then returns the cursor
to its original position. This routine may be used for any terminal that does not provide
its own erase functicn.

SECL clears that portion of the screen from the current cursor -positicn to the end of the
line, without moving the cursor. Upon entry, register H contains the current row number
and L contains the current column.

^ "LIT puts the terminal in reverse video mode 'or some other highlight mode if reverse
is not available).

SLCLIT puts the terminal back in normal mode (cancels the effect of SHILIT).

CCSCL- User's Guide - Release 4 34

Appendix B

INTERPROGRAM COMMUNICATION

This appendix describes the format of parameters passed between a main program and a
suborogram via a CALL USING statement or between two main programs via a CHAIi"
USING statement. This parameter linkage is handled entirely by the COBOL- runtime.
system if both programs are written in COBOL. However, if the CALLed or CHAINed
program is written in assembly language or FORTRAN, sections B.I and B.2 are of
interest.

3.1 Subprogram Calling Mechanism

It is possible for a COBOL program to call COBOL subprograms or to call FORTRAN . . r -
assembler subroutines. However, it is not possible, currently, for a FORTRAN or
assembler program to call a COBOL subroutine. Therefore, this section pertains to
COBOL programs which call FORTRAN or assembler subroutines. The calling sequence
described belcw is identical to that of Microsoft's FORTRAN- as it calls FORTRAN or
assembler subroutines.

The COBOL runtime system transfers execution to a subroutine by means of a machine
language CALL instruction. The subroutine should return via the normal assembler or
FORTRAN return instruction.

Parameters are passed by reference, that is, by passing the address of the parameter. The
mechcd of passing these addresses depends en the number of parameters. If the number of
parameters is less than or equal to 3, they are passed in the registers:

parameter 1 in HL
parameter 2 in DE
parameter 3 in 3C

If the number of parameters is greater than 3, then 1 and 2 are still passed in HL and DE<
but SC points to a contiguous data block in memory which holds the list of parameter
addresses.

The subroutine can expect only as many parameters as are passed, and the calling program
is responsible for passing the correct number of parameters. Neither the compiler nor the
runtime system checks for the correct number of parameters. It is also entirely up to you
to determine that the type and length of arguments passed the calling program are
acceptable to the called subroutine. Note that alphanumeric data is the only type that is
stored in the same format in CCBOL and FORTRAN. None of the numeric types of data
are interchangeable*

CCBOL- " User's Guide - Release 4
INTERPRCGRAM COMMUNICATION

35

The stack space used by a CCBCL program is contained within the program boundaries, so
assembler programs that use the stack must not overflow or underflow the stack. Tne
most certain way to assure safety is to save the CCBCL stack pointer upon entering the
routine and to set the stack pointer to another stack area. The assembler routine must
then restore the saved CCBCL stack pointer before returning to the main program.

To call a subprogram, use the name of the subprogram in the CCBOL CALL statement. If
the subprogram is an assembler or FORTRAN program, the name is defined by an ENTRY,
SUBROUTINE, or FUNCTION statement. The name of a COBOL subprogram is as given
in the PROGRAM-ID paragraph. Then link the subprogram to the main program using
LINK- , as described in section 3.2 of this guide. •

3.2 CHAIN Parameters
'
;r.e parameters passed between programs with a CHAIN USING statement are stored at
the highest available memory address. The memory layout is as follows, starting at the
highest available address and proceeding towards location zero. First, 32 bytss are
reserved fcr stack space. Then the first parameter in the USING list follows, preceded by
its length in bytes. The parameter length is stored in two bytes, high-order byte first.
The parameter itself is stored as a string of bytes in the same order as they were stored in
J-he DATA DIVISION, beginning at the address of the length minus the length itself. Each
Parameter in the USING list follows in order, each preceded by its length. The CHAINed
program must expect the same number and format of parameters as were passed, as no
checking can.be done by the compiler or runtime system.

O-

stack
space
32 bytes

<— highest memory location

length of parameter 1 (high byte)
length of parameter 1 (low byte)
last byte of parameter 1

first byte of parameter 1
length of parameter 2 (high byte)
length of parameter 2 (low byte)
last byte of parameter 2

Figure B-l

CCBCL- User's Guide - Release A
INTERPRCGRAM COMMUNICATION

36

8.3 CHAIN Error Messages

During CHAIN orocessing, the normal mechanism for reporting runtime errors may havs
been overiayed by the new program. Therefore, the CHAIN processor generates its own
error messages, wnich are of the form "*"*CHAIN: problem". The following is a list of
possible "problems" and their causes.

Bad file name

File not found

Out of Memcry

The syntax of the file name that is to be loaded is not valid.

The specified file was not found on the disk.

There was not sufficient memory available to load the new
program. There must be enough memory for the larger cf the
CHAINing and CHAINed program, slus all CHAIN
parameters, plus 256 bytes for the program loader.

COBOL- User's Guide - Release 4 37

APPENDIX C

CUSTOMIZATION

This acoendix is intended for those of you who are handy with a "debugger and/or assembly
language and would like to change some of the built-in parameters of CC8GL-

C.l Source Program Tab

If tab characters (hex 09) are used in the COBOL source program, the compiler converts
them into enough spaces to reach the next tab stop as defined in its internal TAB table.
As delivered, the table defines 9 stops at the following columns (counting from column 1):

7, 17, 25, 33, 41, 49, 57, 65, and 73

These may be changed by patching the table, whose address is 7 bytes from the start of
CCGCL.CGM. There is one byte in the table for each tab stop. You may sucpiy any
values you like, pro viced tne numbers are in order and that there are still exactly 9 steps
ce fired.

Cc2 Comciler Llstina Pace Lencth

;Tuere is one byte in the compiler that defines the listing page length to be 55 'hex 3
lines. Its location is 6 bytes from the start of COBOL.COM and may be patched to any
value between I and 255.

C.3 Runtime Day, Date, Time, Line Number

For ail operating systems that do not provide date or time system calls, COBOL uses
the compiler release date for format 1 ACCEPT statements. For single-user systems,
COBOL always uses 'GO1 for the line number. If you have a multi-user system or access to
a system clock (or would like to use some other fixed date and time), you may replace the
runtime module that performs this function. To do this, write an' assembly language
module according to the instructions given below, assemble it with MACRO- , and place
it into CCBLIB.REL using the library manager. Assuming you name the module
ACPOAT.MAC, a LIB- command to place it in the library is:

COBOL- User's Guide - Release 4 38
SPECIAL CUSTOMIZATICNS

LIB
*NEWLIB=COBLIB<..ACPOAT-1>, ACPDAT
*CCBLIB<ACPCAT+1..>/E

This will create NEV/LIB.REL. You can then save CCBUB.REL and rename NE7iM.IB.REL
to CCBLIB.REL.

ACPOAT Module
• •

*

Entry point: $ACPDT
Externals: $EVAL,$GETGP,$FLAGS,$ESKEY,$MOVE

This module handles the runtime support for the COBOL format 1 ACCEPT source
statement:

" DAY .
DATE

ACCEPT identifier FROM TIME
ESCAPE KEY
LINE NUMBER

It may be changed by modifying the ACLINE routine and by adding ACTIME, ACDAY, and
ACDATE to the skeleton module given beiow. Each of these routines is entered with the
address of the target storage area in the HL register. Each must exit by executing a JMP
5GETCP, as indicated in the skeleton. The individual routines have the following
requirements:

1. ACTTME - move an ASCII string representing the time (in form HHMMSSFF) to
the target area.

2. ACDAY - move an ASCII string representing the Julian date (in form YYJJJ) to
the target area.

(''
._ 3. ACDATE- move an ASCII string representing the date (in form YYMMDO) to

the target area.

4. ACLINE - move 2 ASCII digits representing the line (CRT) number to the target
area.

An external move routine is available to move a string of data from one address to
another. It is used as fallows:

EXT $MOVE
HL = address of source string
DE = address of target area
BC = length of the string in bytes

CALL $MOVE
HL = address of 1st byte beyond source
DE = address of 1st byte beyond target
3C = Q

CCECL- User's Guide - Release 4
SPECIAL CUSTCMIZATICNS

39

Skeleton ACPOAT mcdule:

c

TITLE ACPCAT - ACCEPT DAY/DATE/TIME/ESC KEY/LINE NUM
ENTRY SACPDT
EXT SE V AL,3GETCP,$FLAGS,3ESXEY

SACPDT:

ACESC:

-

ACESCi:

ACLINE:

POP
INX
MOV
INX
ANI
STA
CALL
LDA
CPI
JM
JZ
CPI
JC
JZ

XCHG
LHLD
XCHG
MOV
INX
MO V
JMP

LXI
JMP

H
H
A,M
H
7
SFLAGS
SEVAL
$FLAGS
2
ACDATE
ACDAY
4
ACTIME
ACLINE

SE5KEY

M,D
H
M,E
SGETCP

D,303GH
ACESCI

ACTIME:

JMP SGETOP

;SAVE ACCEPT OPTION
jGET TARGET ADDRESS

;WH1CH OPTION?
;DATE
;DAY

;TIME
;LO^E NUMBER
;E3CAPE KEY CCCE FRCM AC: :EPT

;LINE (CRT) NUMBER - ALWAYS 'CO1

;TIME: HHMMSSFF

ACDAY: ;DAY: YYJJJ

ACDATE:
JMP SGETOP

;DATE: YYMMDD

JMP
END

SGETOP

CC8CL- User's Guide - Release 4 - 40

Appendix D

CC6CL- WITH NON-CP/M OPERATING SYSTEMS

Many of the examples and instructions given in the rest of this document refer to
procedures and file names specific to the CP/M operating system. The syntax of
command strings is the same for ail 'operating sytems; however, the file specifications and
switch separator character may differ. The A> shown in some examples is a prompt that
is typed by CP/M and is not part of the command. If you have a different operating
system, the following sections give descriptions of differences you should note.

D.I TRSOOS Model II
^^•••^^^Mî ^^M^M^ MMM^M«MIB^H^M^H»

,

- •

O.i.l Filename Descriptions

File specifications for CC8GL- and LINK- have the same form as described in the
TRS-8Q Cwners Manual, namely:

filename/ext.password:d(diskette name)

The separator characters are the slash, period, and colon.

D.I.2 Your Distribution Disk " ',
i

The names of the flies en your distribution disk differ from the CP/M names and follow
the TRSOCS file naming conventions. The disk contains the same files as a CP/M disk
with the following exceptions:

*Gniy the CRT driver for the Model II terminal is Included
'

*Some utility programs that are not available on the Model II are not included. They
ares

LIB-
SEQCVT

COBOL- User's Guide - Release 4 41
COBOL- WITH NCN-CP/M OPERATING SYSTEMS

D.1.3 Command Line Syntax

The command string for COBOL- and LINK- have the same form under TRSDOS as
under CP/M. However, the separator character for switches is a hyphen instead of a slash
(since slash is used in TRSDOS file names) and the symbolic names of the console and
printer devices are :TT and :LP respectively. Using the TRSDOS syntax, the following
example shows how to compile, load, and execute the test program SQUARO/CCB.

TRSDOS READY
COBOL ,rTT=SQUARO-R
L80 SGUARO-N,SQUARO-£
SQUARO

The default file extensions assumed by CCEOL- are

^ /COB for the source program file
V_ /LST for the listing file

/REL for the object program file

D.1.4 DATE and TIME

COBOL- uses the date and time suoplied by TRSDOS to time-stamp the compiler listing
page headings and to return the values requested by the ACCEPT TIME and DATE
statements.

D.L5 CRT Handling

Since the Model IT has a built-in keyboard and display monitor, COBOL is delivered
configured for your hardware. You can ignore the description of configuring the CRT
given in Appendix A. Figure D-l shows how to use the keyboard for entering data for a
format 3 or 4 ACCEPT statement and the supervisor calls used for the functions of
"SPLAY. COBOL- uses supervisor call number 8 for all output to the screen except

,-r the cursor position function, which uses supervisor call number 10.

CCSCL- User's Guide - Release 4 42

TRS-30 Mcdei H Terminal

I. Kevbcard Incut
Editing Keys
1. Line delete/Field delete
2. Character delete
3. Forward Space
4. 3ack Space
5. Plus Sign
6. Minus Sign

Incut Code

15
08
ID
1C
23
2D

Kev Label

CCNTRQL-U
BACK SPACE

8. Terminator Keys
1. Backtab
2- Escac-e

"^ 3o Field terminators
a. Tab
b. Carriage Return
c. Line Feed •

Escape Cede
99
01
00

Incut Code Kev Label
JL£
IS

09
00
IF

T
ESC

TAB
ENTER
4,

C,

Co Function Keys Escape Cede
02
03

Incut Code
01
02

Kev Lshei
Fl
F2

II. Cutrut ^'j
A. Set Cursor Position
3. 3ackscac9 Cursor
C. Cursor Cn
D. Cursor Off
E. Erase to End of Screen
F0 Erase to End of Lire
1. Sound Bell
H. Set Highlight Mcde
I. Reset Highlight Mode

Supervisor Call
SVC 10 3=row-l C=col-l CE=QO
SVC 3 3=1C
SVC 3 3=01
SVC 3 3=02
SVC 3 3=13
SVC 3 3=17
SVC 3 3=07
SVC 3 8=1A
SVC 3 3=19

Figure O-l

, 1

\o

-|oqco

Information in this document is subject to change without notice and does not represent a
commitment • The software described in this document is
furnished under a license agreement or non-disclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

X

To report software bugs or errors in'the documentation, please complete and return the
Problem Report at the back of this manual.

Microsoft

CCBCL Reference Manual

1
CONTENTS

Introduction

CHAPTER 1: Fundamental Concepts of CCSCL 3

1.1 Character Set 3
1.2 Punctuation 4
1.3 Word Formation 4
1.4 Format Notation 5
L5 Level Numbers and Data-Names 7
1.6 File-Names 8
L7 Condition-Names 9
1.3 Mnemonic-Names 9
L9 Literals 9
1.10 Figurative Constants • 11
1.11 Structure of a Program 11
1.12 Caaing Rules 14
1.13 Qualification of Names 15
1.14 CCPY Statement 15

CHAPTER 2: Identification and Environment Divisions 17

} 2.1 Identification Division 17
2.2 Environment Division 17

2-2.1 Configuration Section 18
2.2.2 Input-Output Section 19

2.2.2.1 File-Control Entry 19
2.2.2.2 I-O Control Paragraph 21

CHAPTER-3: Data Division 22

3.1 Data Items 22
3.1.1 Group Items ' 22
3.1.2 Elementary Items . • 22
3.1.3 Numeric Items 23

3.2 Data Description Entry 24
3.3 Formats for Elementary Items 25
3.4 USAGE Clause 26
3.5 PICTURE Clause 27
3.6 VALUE Clause 32

* 3.7 REDEFINES Clause ' 33
3.3 OCCURS Clause 34
3.9 SYNCHRONIZED Clause 36
3.10 BLANK WHEN ZERO Clause 36
3.11 JUSTIFIED Clause 36

(^ 3.12 SIGN Clause 36
3.13 Level 38 Condition-Names 37
3.14 File Section, FD Entries 38

(Sequential I-O Only)
3.14.1 LABEL Clause 38
3.14.2 VALUE CF Clause 39
3.14.3 DATA RECORDS Clause 39
3.14.4 BLOCK Clause 40
3.14.5 RECORD Clause 40
3.14.6 CODE-SET Clause 41
3.14.7 LINAGE Clause 41

3.15 Working-Storage Secticn 42
3.16 Linkage Section 42
3.17 Screen Secticn * 43
3.13 Data Division Limitations ' - 46

?

w

CHAPTER 4: Procedure Division 47

4.1 Statements, Sentences, Procedures-Names 47
4.2 Grcanizacicn of the Procedure Division 48
4.3 M O V E Statement 49
4.4 INSPECT Statement 51
4.5 Arithmetic Statements 53

4.5.1 SIZE ERROR Option 54
4.5.2 ROUNDED Option 55
4.5.3 GIVING Option 55
4.5.4 ADD Statement 56
4.5.5 SUBTRACT Statement 56
4.5.6 MULTIPLY Statement • 57
4.5.7 DIVIDE Statement 57
4.5.3 COMPUTE Statement 58

4.6 GO TO Statement 59
4.7 STOP Statement 60
4.3 ACCEPT Statement 60 (' „

4.3.1 Format 1 ACCEPT Statement ' 61
4.8.2 Format 2 ACCEPT Statement 62
4.3.3 Format 3 ACCEPT Statement 64

4.3.3.1 Data Incut Field 64
- 4.3.3.2 Data Input and Data Transfer 66

4.3.3.3 WITH Phrase Summary 70
4.3.4 Examples Using the ACCEPT Statement 72
4.3.5 Format 4 ACCEPT Statement 75

4.9 DISPLAY Statement 76
4.9.1 Pcsiticn-soec 77
4.9.2 Identifier, Literal, and ERASE 73
4.9.3 Screen-name 73

4.10 PERFORM Statement 79
4.11 EXIT Statement 80
4.12 ALTER Statement * 30
4.13 IF Statement 31

4.13.1 Conci "ions 31
> 4.14 OPEN Statement (Sequential I-O) ' 34 ^

4JL5 READ Statement (Sequential I-O) 35
4.16 WRITE Statement (Sequential I-O) 86
4.17 CLOSE Statement (Sequential I-O)
4.13 RE//RITE Statement (Sequential I-O)
4.19 General Note on I/O Error Handling 89
4.20 STRING Statement 89
4.21 UNSTRING Statement 90
4.22 Dynamic Debugging Statements 92

CHAPTER 5: Inter-Program Communication 94

5.1 CALL Statement 94
5.2 EXIT PROGRAM Statement 95
5.3 CHAIN statement 95
5.4 Procedure Division Header with

CALL and CHAIN H

CHAPTER 6: Table Handling by the Indexing Method 97

6.1 Index Names and Index Items 97
6.2 SET Statement 97
6.3 Relative Indexing 9i
6.4 SEARCH Statement - Format 1 99
6.5 SEARCH Statement - Format 2 100

TER 7: Indexed Flies 103
•

7.1 Definition of Indexed File Organization 103
7.2 Syntax Considerations 103

7.2-1 RECCRD KEY Clause 104
7.2.2 File Status Reporting 104

7.3 Procedure Division Statements
for Indexed Files 105

7.4 READ Statement 106
7.5 WRITE Statement 107
7.6 REvVRITE Statement 107
7.7 DELETE Statement 108
7.3 START Statement 108

CHAPTER 3: Relative Files - " 109

8.1 Definition of Relative File
("\ Organization 109

8.2 Syntax Considerations 109
8.2.1 RELATIVE KEY Clause 110

8.3 Procedure Division Statements
for Relative Files 110

8.4 READ Statement 110
8.5 WRITE Statement 111
8.6 RBVRITE Statement • 111
8c7 DELETE Statement 112
8.3 START Statement 112

CHAPTER 9: Declaratives and the Use Sentence 114

CHAPTER 10: Segmentation 116

Appendix I: Advanced Forms of Conditions

Apoendix II: Table cf Permissible MOVE Operands

Appendix [II: Nesting cf IF Statements

Appendix IV: ASCII Character Set

Appendix V: Reserved V/ords

Appendix VI: PERFORM with VARYING and AFTER Clauses

Appendix VII:' COBOL- With Resoect to the ANSI Standard

118

120

121.

123

124

125

127

CC8CL- Reference Manual - Release 4
Introduction

Introduction

CCBOL is based upon American National Standard X3.23-1974.
Elements of the CCBOL language are allocated to twelve different funct ional
processing "modules."

Each mcduie of the CCBOL Standard has two non-null "levels" — Level 1
represents a subset of the full set of capabilities and features contained in 'Level
2.

In order fcr a given system to be called CCBOL, it must provide at least Level 1
of the Nucleus, Table Handling and Sequential I-O Modules.

The following summary specifies the content of CC8CL with respect
to the Standard.

Mcduie Features of CCSCL-

Nucleus All of Level 1, plus these features of Level 2:

CONDITIONS:
Level 33 conditions with value series or range
Use of logical AND/CR/NOT in ccnciticns
Use of algebraic relational symbols (<,>,=)
Imoiied subjecc, or both subject and relation, in relational conditions.
Sign Test
Nested IF statements; parentheses in conditions

VER9S:
Extensions to the functions of ACCEPT and DISPLAY for formattsd
screen handling
ACCEPTance of data from OATE/OAY/TIME
STRING and UNSTRING statements
COMPUTE with multiple receiving fields
PERFCRM VARYING . . . UNTIL

•

IDENTIFIERS:
Mnemonic-names for ACCEPT or DISPLAY devices
Procedure-names ccnsisting of digits only
Qualification of names (in Procedure Division statements only)

COBOL- Reference Manual - Release
Introduction

Module

Sequential
Relative, and
Indexed I/O

Sequential I/O

Relative and
Indexed I/O

i

Library

Inter-Program

Table Handling

Debugging

Features

All of Level 1 plus these features of Level 2:
RESERVE clause
Multiple operands in OPEN & CLOSE, with individual
options per file
VALUE OF RLE-ID IS data-name

EXTEND mode for OPEN
WRITE ADVANCING data-name lines
LINAGE phrase and AT END-OF-PAGE clause

DYNAMIC access mode (with READ NEXT)
START (with key relational EQUAL, GREATER, or
NOT LESS)

Level 1

Communication Level 1

All of Level 1
Full Level 2 formats for SEARCH statement

Special extensions to ANSI-74 Standard providing
convenient trace style debugging.
Conditional Compilation: lines with "D in column 7"
are bypassed unlesss lrMTH DEBUGGING MCDE" is
given in SOURCE -COMPUTER paragraph.

Segmentation Level 1

COBOL Reference Manual - Release 4

CHAPTER 1

Fundamental Concepts of COBOL

1.1 Character Set

The COBOL source language character set consists of the following characters:

Letters A through Z
Blank or space
Digits 0 through 9
Special characters:

* Plus sign
* Minus sign
* Asterisk
= Equal sign
> Relational sign (greater than)
< Relational sign (less than)
$ Dollar sign
, Comma . .
; Semicolon
. Period or decimal point
" Quotation mark
(Left parenthesis
} Right parenthesis
' Apostrophe 'alternate quotation mark)
/ Slash

Of the previous set, the following charac:ers are used fcr words:

0 through 9
A through Z
- (hyphen)

(Left parenthesis
) Rignt parenthesis
, Comma
. Period
; Semicolon

COBOL- Reference Manual - Release 4
Fundamental Concepts of COBOL

The following relation characters are used in simple conditions:

In the case of non-numeric (quoted) literals, comment entries, and comment
lines, the COBOL character set is expanded to include the computer's entire
character set.

1.2 Punctuation

The following general rules of punctuation apply in writing source programs:

1. As punctuation, a period, semicolon, or comma should not be
preceded by a space, but must be followed by a space.

2. At least one space must appear between two successive wcrds
and/or literals- Two or mere successive spaces are treated :s a
single soace, except in non-numeric literals.

3« Relation characters and arithmetic operators should always be
preceded by a space and followed by another space.

4. A comma may be used as a separator between successive operands
of a statement, or between two subscripts.

5c A semicolon or comma may be used to separate a series of
statements cr clauses.

Word Formation

User-defined and reserved words are composed of a combination of not mar;
than 30 characters, chosen from the following set of 37 characters:

Q through 9 (digits)
A through Z (letters)
- (hyphen)

COBOL- Reference Manual - Release 4
Fundamental Concepts of COBOL

Ail words must contain at least one letter or hyphen, except procedure-names
which may consist entirely of digits. A word may not begin or end with a
hyphen. A word is ended by a space or by proper punctuation. A word may
contain more than one embedded hyphen; ccnsecutive embedded hyphens are also
permitted. All words are either reserved words, which have preassigr.ed
meanings, cr programmer-supplied names. If a programmer-supplied name is not
unique, there must be a unique method of reference to it by use of name
qualifiers, e.g., TAX-RATE IN STATE-TABLE. Primarily, a non-reserved word
identifies a data item or field and is called a data-name. Other cases of
non-reserved words are file-names, condition-names, mnemonic-names, and
Drocedure-names.

1.4 Format Notation

Throughout this publicaticn, "general formats" are prescribed for -aricus clauses
and statements to guide the programmer in writing his own statements. They
are presented in a uniform system of notation, explained in the following
paragrapns.

1. Ail words printed entirely in capital letters are reserved words.
These are words that have preassigred meanings. In ail formats,
words in capital letters represent actual occurrences of these //crcs.

2. Ail underlined reserved words are reouired unless the portion a? the
i fcrmat containing them is itself optional. These are key wcrcs. If

any key word is missing or is incorrectly spelled, it is considered an
error in the program. Reserved words net underlined may be
included or emitted at the option of the programmer. These wcrcs
are optional words; they are used solely for improving readability cf
the program.

3. The characters < > = (although not underlined) are required wren
present in statement formats,

4. Ail punctuation and other special characters represent actual
occurrences of those characters. Punctuation is essential where it
is shown. Additional punctuation can be inserted, according to the
rules for punctuation specified in Section 1.2. As separators, all
commas, semicolons and pericds must be followed by a space (or
blank).

COBOL- Reference Manual - Release
Fundamental Concepts of COBOL

5. Words printed in lower-case letters in formats represent generic
terms (e.g., data-names) for which the user must insert a valid entry
in the source program.

6. Any part of a statement or data description entry that is enclosed in
square brackets ([]) is optional. Parts between matching braces ({ })
represent a choice of mutually exclusive options.

7. Certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause" or "Statement." These designate
clauses or statements that are described in other formats, in
appropriate sections of the text.

8. In order to facilitate reference to lower-case words in the
explanatory text, some of them are followed by a hyphen and a digit
or letter. This modification does not change the syntactical
definition of the word.

9. Alternate options may be indicated by separating the mutually
exclusive choices by a vertical stroke, e.g.:

AREA 1 AREAS is equivalent to JAREA [
|AREAS)

10« The ellipsis (...) indicates that the Immediately preceding unit may
occur once, or any number of times in succession. A unit means
either a single lower-case word, or a group cf lower-case words and
one or mere reserved words enclosed in brackets or braces. If a
term, is enclosed in brackets or braces, the entire unit of which it is
part must be repeated when repetition is specified.

11. Optional elements may be indicated by parentheses instead of
brackets, provided the lack of formality represents no substantial

s-^ bar to clarity.

12. Comments, restrictions, and clarification on the use and meaning of
every format are contained in the appropriate sections of this
manual.

CCSCL- Reference Manual - Release
runcamental Concepts of CCSCL

1.5 Level Numbers and Data-Names

For purposes of processing, the contents of a file are divided into logical records,
with level number 01 initiating a logical record description. Subordinate data
items that constitute a logical record are grouped in a hierarchy and identified
with level numcers 02 to ^9, not necessarily consecutive. Additionally, level
number 77 identifies a "stand alone" item in Working Storage or Linkage Sections;
that is, it does not have subordinate elementary items as does level 01. Level 33
is used to define conditicn-names and associated conditions. A level number less
than 10 may be written as a single digit.

i •

Levels allow specification of subdivisions of a record necessary for referring to
data. Once a subdivision is specified, it may be further subdivided to permit
more detailed data reference. This is illustrated by the following weekly
timecard record, which is divided into four major items: name,
employee-number, cate and hours, with mere specific information appearing for
name ana date.

TIME-CARD-

NAME-

EMPLCYEE-NUM

WEEK S-END-DATE-

HCURS-WCRKED

LAST-NAME
-F:RST-INIT
MIDDLE-INI!

•MCNTH
•DAY-NUMBER
•YEAR -

Subdivisions of a record that are net themselves further subdivided are called
elementary items. Data items that contain subdivisions are known as group
items* When a Procedure Division statement makes reference to a group item,
the reference applies to the area reserved for the entire croup. Ail elementary
items must be described with a PICTURE or USAGE IS INDEX clause.
Consecutive logical records (01) subordinate to any given file reoresent implicit
redefinitions of the same area whereas in the Working-Storage section, each
record (01) is the definition of its own memor area.

inclusive grcuos are assigned numerically higher level numbers. Level
numbers of items witnin groups need not be consecutive. A group whose level is
k includes ail groups and elementary items described under it until a level
number less than or equal to k is encountered.

Separate entries are written in the source program fcr each level. To illustrate
level numbers and group items, the weekly timecard record in the previous
example may be described by Data Divisicn entries having the following level
numbers, data-names and PICTURE definitions,

COBOL- Reference Manual - Release 4 8
Fundamental Concepts of COBOL

01 TIME-CARD.
02 NAME.

03 LAST-NAME PICTURE X(18).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.

02 EMPLOYEE-NUM PICTURE 99999.
02 WEEKS-END-OATE.

05 MONTH PIC 99.
05 DAY-NUMBER PIC 99.
05 YEAR PIC 99.

02' HOURS-WORKED PICTURE 99V 9.'
•

A data-name is a word assigned by the user to Identify a data item used in a
program. A data-name always refers to a region of data, not to a particular
value. The item referred to often assumes a number of different values during
the course of a program. . (.>

A data-name must begin with an alphabetic character. A data-name or the key
word FILLER must be the first word following the level number in each Record
Description entry, as shown in the following general format:

level number f data-name
\ FILLER

This data-name is the defining name of the entry and is used to refer to the
associated data area (containing the value of a data item).

If some of the characters in a record are not used in the processing steps of a
program, then the data description of these characters need not include a
data-name. In this case, FILLER is written in lieu of a data-name after the level
number.

1.6 File Names

A file is a collection of data records, such as a printed listing or a region of
floppy disk, containing individual records of a similar class or application. A
file-name is defined by an FD entry in the Data Division's File Section. FD is a
reserved word which must be followed by a unique programmer-supplied word
called the file-name* Rules for composition of the file-name word are identical
to those for data-names (see Section 1.3). References to a file-name appear in
the Procedure Division statements OPEN, CLOSE and READ, as well as in the
Environment Division. CAUTION: File names are not to be confused with file
ID's as described in Section 3.14.2.

CC8GL- Reference Manual - Release 4
Fundamental Concepts of CC8OL

1.7 Condition-Names

A condition-name is defined in level 88 entries within the Data Division. It is a
name assigned to a specific value, set or range of values, within the complete set
of values that a data item may assume. Rules for formation of name words are
specified in Section 1.3. Explanations of condition-name declarations and
procedural statements employing them are given in the chapters devoted to the
Data and Procedure Divisions.

1.8 Mnemonic-Names

A mnemonic-name is assigned in the Environment Division for reference in
ACCEPT or DISPLAY statements. It assigns a user-defined word to an
implementor-chosen name, such as PRINTER. A mnemonic-name is composed
according to the rules in Section 1.3.

1.9 Literals

A literal is a constant that is not identified by a data-name in a program. A
literal is either non-numeric or numeric.

" • *

Non-Numeric Literals

A non-numeric literal must be bounded by matching quotation marks (or
apostrophes) and may consist of any combination of characters in the ASCII set,
except quotation marks (or apostrophe). All spaces enclosed by the quotation
marks are included as part of the literal. A non-numeric literal must not exceed
120 characters in length.

The following are examples of non-numeric literals:

"ILLEGAL CONTROL CARD"

'CHARACTER-STRING'

"QO's & DONTS"

Each character of a non-numeric literal (following the introductory delimiter)
may be any character other than the delimiter. That is, if the literal is bounded
by apostrophes, then quotation (") marks may be included within the literal, and
vies versa. Length of a non-numeric literal excludes the delimiters; minimum
length is one.

COBOL- Reference Manual - Release 4 10
Fundamental Concepts of CC6OL

A succession of two "delimiters" within a literal is interpreted as a single
representation of the delimiter within the literal.

Non-numeric literals may be "continued" from one line to the next. When a
non-numeric literal is of a length such that it cannot be contained on one line of
a coding sheet, the following rules apply to the next line of coding (continuation
line):

1. A hyphen rs placed in column 7 of the continuation line.

2. A delimiter is placed in Area 8 preceding the continuation of the
literal.

3. All spaces at the end of the previous line and any spaces fallowing
the delimiter in the continuation line and preceding the final
delimiter of the literal are considered to be part of the literal.

4. On any continuation line, Area A should be blank.

Numeric Literals

A numeric literal must contain at least one and not more than 13 digits. A
numeric literal may consist of the characters 0 through 9 (optionally preceded by
a sign) and the decimal point. It may contain only cne sign character and only
one decimal point. The sign, if present, must appear as the leftmost character in
the numeric literal. If a numeric literal is unsigned, it is assumed to be positive.

A decimal point may appear anywhere within the numeric literal, except as the
rightmost character. If a numeric literal does not contain a decimal point, it is
considered to be an integer.

The following are examples of numeric literals:

72 +1011 3.14159 .-6 -.333 0.5

By use of the Environment Division specification DECIMAL-POINT IS COMMA,
the functions of the characters period and comma are interchanged, putting the
"European" notation into effect. In this case, the value of "pi" would be 3,1416
when written as a numeric literal.

CC8CL- Reference Manual - Release 4 11
Fundamental Concepts of CCBOL

1.10 Figurative Constants

A figurative constant is a special type of literal. It represents a value to which a
standard name has been assigned. A figurative constant is not bounded by
quotation marks.

ZERO may be used in many places in a program as a numeric literal. Other
figurative constants are available to provide non-numeric data; the reserved
words representing various characters are as follows:

SPACE the blank character represented by "octal11 40

LOW-VALUE the character whose "octal" representation is 00
*

HIGH-VALUE the character whose "octal" representation is 177
*
^^-^ QUOTE the quotation mark, whose "octal" representation is 42

ALL literal one cr more instances of the literal, which must be a
one-character non-numeric literal or a figurative
constant, in which case ALL is redundant but serves for
readability.

The plural forms of these figurative constants are acceptable to the compiler but
are equivalent in effect. A figurative constant represents as many instances of
the associated character as are required in the context of the statement.

A figurative constant may be used anywhere a literal is called for in a "general
format" except that whenever the literal is restricted to being numeric, the only
figurative constant permitted is ZERO.

\, .. 1.11 Structure of a Procram

Every CC8OL source program is divided into four divisions. Each division must
be placed in its proper sequence, and each must begin with a division header.

The four divisions, listed in sequence, and their functions are:

IDENTIFICATION DIVISION, which names the program.

ENVIRONMENT DIVISION, which indicates the computer equipment and
features to be used in the program.

DATA DIVISION, which defines the names and characteristics of data to
be processed.

PROCEDURE DIVISION, which consists -of statements that direct the
processing of data at execution time.

COBOL- Reference Manual - Reiease 4 12
Fundamental Concepts of COBOL

It is very difficult for COBOL to compile source code if the Division headers are
omitted, misspelled, or are accidentally commented out. In this case,
unpredictable events may occur.

The following skeletal coding defines program component structure and order..

COBOL- Reference Manual - Release 4 13
IDENTIFICATION DIVISION.

PROGRAM-ID, pro gram-name.

[AUTHOR, comment-entry ~.]

[INSTALLATION, comment-entry ...]

[DATE-WRITTEN, comment-entry ...]

[DATE-COMPILED, comment-entry ...]

[SECURITY, comment-entry ...]

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER, entry]

[OBJECT-COMPUTER, entry]

[SPECIAL-NAMES, entry]]

[INPUT-OUTPUT SECTION.

FILE-CONTROL, entry ...

[I-O-CCNTRCL. entry ...]]

DATA DIVISION.

[RLE SECTION.

[file description sntry

record description entry ...]...]

[WCRKING-STCRAGE SECTION.

[data item description entry ...]...]

[LINKAGE SECTION.

[data item description entry .,.].«.]

[SCREEN SECTION.

[screen-description-entry ...]...]

PROCEDURE DIVISION [USING [identifier-1] ...].

[DECLARATIVES.

[section-name SECTION. USE Sentence.

[paragraph-name, [sentence]...]...]...
«

END DECLARATIVES.]

[[section-name SECTION, [segment number]]

COBOL- Reference Manual - Release 4 14
Fundamental Ccncepts of COBOL

1.12 Coding Rules

Since COBOL is a subset of American National Standards Institute
(ANSI) COBOL, programs may be written on standard COBOL coding sheets, and
the following rules are applicable.

1. Each line of code should have a six-digit sequence number in
columns 1-6, such that the punched cards are in ascending order.
Blanks are also permitted in columns 1-6.

2°. Reserved words for division, .section, and paragraph headers must
begin in Area A (columns 3-11). Procedure-names must also appear
in Area A (at the point where they are defined). Level numbers may
appear in Area A. Level numbers 01, 77 and level indicator "FD"
must begin in Area A.

^ „ 3, All other program elements should be confined to columns 12-72,
"^ governed by the other rules of statement punctuation.

4. . Columns 73-80 are ignored by the compiler. Frequently, these
columns are used to contain the deck identification.

5. Explanatory comments may be inserted on any line within a source
program by placing an asterisk in column 7 of the line. The line will
be produced en the source listing but serves no other purpose. If a
slash (/) appears in column 7, the associated card is treated as
comments and -will be printed at the top of a new page when the
compiler lists the program.

•

6. Any program element may be "continued" on the following line of a
source program. The rules for continuation of a non-numeric
("quoted") literal are explained in Section 1.9. Any other word or
literal or other program element is continued by placing a hyphen in

, the column 7 position of the continuation line. The effect is
^s concatenation of successive word parts, exclusive of ail trailing

spaces of the last predecessor word and ail leading spaces of the
first successor word on the continuation line. On a continuation

•3

line, Area A must be blank.

7. " Any tab characters in a line are expanded as if there were tab stops
at every eighth column past column 1, except that the first tab stop
is in column 7, just past the six sequence-number columns.
Subsequent tab stops are columns 17, 25, 33, etc. as determined by
the general rule.

COBOL- i Reference Manual - Release 4 15
Fundamental Concepts of COBOL

1.13 Qualification of Names

When a data-name, condition-name or paragraph name is not unique, reference
thereto may be accomplished uniquely by use of qualifier names. For example, if
there were two or mere items named YEAR, the qualified reference

YEAR OF HIRE-DATE
•

might differentiate between YEAR fields .in HRE-OATE and
TERMINATION-DATE.

Qualifiers are preceded by the word OF or IN; successive data-name or
condition-name qualifiers must designate lesser-level-numbered groups that
contain all preceding names in the composite reference, i.e., HIRE-DATE must
be a group item (or file-name) containing an item called YEAR.
Paragraph-names may be qualified by a section-name. The maximum number of
qualifiers is five. File-names and mnemonic-names must be unique.

A qualified name may only be written in the Screen Section or Procedure
Division. A reference to a multiply-defined paragraph-name need net be
qualified when referred to from within the same section.

1.14 COPY Statement

The COPY statement is used to logically embed the text of a disk file Cother
than the source file) in the source code input to the CC8GL-3Q compiler. The
format of the COPY statement is:

CCPY text-name

where text-name is a disk file name in the format required by the operating
system in use. For example, suppose 8DEF.CC8 is a text file containing the
following source code:

05 3.
10 81 PIC X.
10 82 PIC X.

COBOL- Reference Manual - Release 4 16
Fundamental Concepts of COBOL

Then a source file containing

05 A.
10 Al PIC 9.

COPY BDEF.CCB
05 C.

10 Cl PIC Z.

will compile exactly as if the following had been coded:

05 A. -
10 Al PIC ̂ .

. 05 B. •
10 81 PIC X.
10 B2 PIC X.

i / 05 C.
^ 10 Ci PIC Z.

The portion of a source line containing a CCPY statement must contain only
spaces from the end of text-name to the end of the line.

G*.

CC8CL- Reference Manual - Release 4 ' 17

CHAPTER 2

Identification and Environment Divisions

2.1 Identification Division

Every CC8OL program begins with the header: IDENTIFICATION DIVISION.
This division is divided into paragraphs having preassigned names:

•
PROGRAM-ID. program-name.
AUTHOR. . comments.
INSTALLATION. comments.
DATE-WRITTEN. ' comments,
DATE-COMPILED. comments.
SECURITY. comments. '

Only the PROGRAM-ID paragraph is required, and it must be the first
paragraph. Program-name is any alphanumeric string of characters, the first of
which must be alphabetic. Only the first 6 characters of program-name sre
retained by the comoiler. The program-name identifies the object program and
is contained in headings en compilation listings. .

The contents of any other paragraphs are of no consequence, serving only as
documentary remarks.

2«2 Environment Division

The Environment Division specifies a standard method of expressing those
aspects of a COBOL program that are dependent upon physical characteristics of
a specific computer. It is required in every program.

COBOL Reference Manual - Release 4
Identification and Environment Divisions

The general format of the Environment Division is: •

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. Computer-name [WITH DEBUGGING MODE],

OBJECT-COMPUTER. Computer-name
LMEMCRY SIZE integer WORDS I CHARACTERS 1 MODULES]
[PRCGRAM COLLATING SEQUENCE IS ASCII]."

i
SPECIAL-NAMES. [PRINTER IS mnemonic-name] ASCII IS f STANDARD-11

I NATIVE j
[CURRENCY SIGN IS literal] l ;

r [DECIMAL-POINT IS COMMA]. r

j ^
INPUT-OUTPUT SECTION.

RLE-CONTROL, {file-ccntrol-entry}...

I-O-CCNTRCL. ' "

ECORD
[SAME SCRT

SORT-MERGE
AREA FOR file-name...]...

2.2.1 CONFIGURATION SECTION

The CCNFIGURAT1CN SECTION, which has three possible paragrachs, is
optional. The three paragraphs are SOURCE-COMPUTER,
OBJECT-COMPUTER, and SPECIAL- NAMES. The contents of the first two
paragraphs are treated as commentary, except for the clause WITH DEBUGGING
MODE, if present (see Section 4.22). The third paragraph, SPECIAL-NAMES,.
relates implementcr names to user-defined names and changes default editing
characters. The PRINTER IS phrase allows definition of a name to be used in the
DISPLAY statement with UPON,

If the currency symbol is not desired to be the dollar sign, the user may specify a
single character non-numerrc literal in the CURRENCY SIGN clause. However,
the designated character may not be a quote mark, nor any of the characters
defined for PICTURE representations, nor digits (0-9).

The "European" convention of separating integer and fraction positions of
numbers with the comma character is specified by employment of the clause
DECIMAL-POINT IS COMMA.

CC8OL Reference Manual - Release 4 19
Identification and Environment Divisions

Note that the reserved word IS is required in entries for currency sign definition
and decimal-point convention specification.

The entry ASCII IS NATIVE/STANDARD-1 specifies that data representation
adheres to the American Standard code for Information Interchange. However,
this convention is assumed even if the ASCII-entry is not specifically present. In
this compiler, NATIVE and ST^ANDARD-1 are identical, and refer to the
character set representation specified in Appendix IV.

2.2.2 INPUT-OUTPUT SECTION

The second section of the Environment Division is mandatory unless the program
has no data files; it begins with the header:

"̂'^ INPUT-OUTPUT SECTION.

This section has two paragraphs: RLE-CONTROL and I-O-CONTRCL. In this
section, the programmer defines the file assignment parameters, including
specification of buffering.

2.2.2.1 FILE-CONTROL ENTRY (SELECT ENTRY)

*

For each file having records described in the Data Division's File Section, a
Select Sentence-Entry (beginning with the reserved word SELECT) is required in
the FILE-CONTROL paragraph. The format of a Select Sentence-Encry for a
sequential file is:

SELECT file-name ASSIGN TO DISK I PRINTER

[RESERVE integer AREAS { AREA]

f ̂ [FILE STATUS IS data-name-i]
zsr

[ACCESS MODE IS SEQUENTIAL] [ORGANIZATION IS [LINE] SEQUENTIAL].

The SELECT entry must begin to the right of Area A of the source line. All
phrases after "SELECT filename'* can be in any order." Both the ACCESS and
ORGANIZATION clauses are optional for regular sequential input-output
processing. For Indexed or Relative files, alternate" formats are available for this
section, and are explained in the chapters on Indexed and Relative files.

COBOL- Reference Manual - Release 4 * 20
Identification ana Environment Divisions

Two formats are available for sequential disk files. One is the regular form
which is requested by ORGANIZATION IS SEQUENTIAL, and the other is
requested by ORGANIZATION IS LINE SEQUENTIAL. Both forms assume the
records in the file are variable-length. The regular sequential organization is
that of a two-byte count of the record length followed by the actual record, for
as many records as exist in the file. The line sequential organization has the
record followed by a carriage return/line feed delimiter, for as many records as
exist in the file. No CCMP or COMP-3 information should be written into a Line
Sequential file because these data items may contain the same binary codes used
for carriage return and line feed which therefore would cause a problem when
subsequently reading the file. Soth organizations pad any remaining space of the
last physical block with Control-Z characters, indicating end-of-file. All records
are placed in the file with no gaps; they span physical block boundaries.

RESERVE clause is not functional in COBOL- but is scanned for. correct
T.tax. One physical block buffer is' always allocated to the logical record area

assigned to it. This allows logical records to be spanned over physical block
boundaries. For files assigned to PRINTER, the logical record area is used as the
physical buffer as well.

In the FILE STATUS entry, data-name-1 must refer to a two-character
Working-Storage or Linkage Section item of category alphanumeric into which
the run-time data management facility places status information after an I-O
statement. The left-hand character of data-name-1 assumes the values:

fQf fcr successful completion • ,|
'I1 for end-of-file •
*2f fcr invalid key (only for indexed and relative files)
*3' for a non-recoverable I-Q error

The right-hand character of data-name-1 is set to 'Q1 if no further status
information exists for the previous I-O operation. The following combinations of
^aiues are possible:

File Status Left File Status Right Meaning

'Qf ' 'Q' ' O.K.
T " '0' EOF
'3r

' '
3r 'Q1 Permanent error
3' ' - '4' " Disk space full
'?'• : T • File damaged

In an OPEN INPUT or OPEN I-O statement, a File Status of '30' means 'File Not
Found.'

• •

For values of status-right when status-left has- a value of '2% see the chapters on
Indexed or Relative files.

C

CC8CL Reference Manual - Release 4 21
Identification and Environment Divisions

2.2.2.2 I-O-CCNTRCL PARAGRAPH

The SAME AREA clause is optional. Only the SAME RECCRD AREA form is
functional in CCBCL The other forms are checked for correct syntax but do
not cause any sharing of physical buffer space.

\

The SAME RECCRD AREA form causes ail the named files to share the same
logical record area in order to conserve memory space.

The format of the SAME AREA entry is:

"RECCRD
SAME SORT

SORT-MERGE
AREA FOR filename..

A.,'' Ail files named in a given SAME AREA clause need not have the same
'• V_, organization or access. However, no file may be listed in mere than one SAME

AREA clause.

The SORT and SORT-MERGE options are allowed only in those versions of
CC6GL- supporting the SORT facility.

COBOL- Reference Manual - Release 4 22

*'V

CHAPTER 3

Data Division

The, Data Division, which is one of the required divisions in a program, is
subdivided into four sections; File Section, Working-Storage Section, Linkage
Section, and Screen Section. Each is discussed in Sections 3.13-3.16, but first,
aspects of data specification that apply in ail sections will be described.

3.1 Data Items

Several types of data items can be described in COBOL programs. These data
items are described in the following paragraphs.

3.1.1 Group Items

A group item is defined as one having further subdivisions, so that it contains one
or more elementary items. In addition, a group item may contain other groups.
An item is a group item if, and cniy if, its level number is less than the level
number of the immediately succeeding item. If an item is not a grouo item, then
it is an elementary item. Ordinarily, the maximum size of any data item is 4095
bytes. In order to allow tables to exceed this limit, however, level 01 group
items are not checked for length. Such an item longer than 4095 bytes will be
disallowed by the compiler as an operand of a Procedure Division statement such
as MOVE, INSPECT, etc.

3.1.2 Elementary Items

An elementary item is a data item containing no subordinate items.

Alphanumeric Item; An alphanumeric item consists of any combination of
characters, making a "character string" data field. If the associated picture
contains "editing" characters, it is an alphanumeric edited item.

Reoort (Edited) Item; A report item is an edited "numeric" item containing only
digits and/or special editing characters. It must not exceed 30 characters in
length. A report item can be used only as a receiving field for numeric data. It
is designed to receive a numeric item but cannot be used as a numeric item itself.

COBOL- _. Reference Manual - Release 4 23
Data Division

3.1.3 Numeric Items

Numeric items are elementary items intended to contain numeric data only.

External Decimal Item; An external decimal data item is an item in which one
character (byte) is employed to represent one digit. A maximum number of 13
digits is permitted; the exact number of digit positions is defined by writing a
specific number of 9-characters in the PICTURE description. For example,
PICTURE 999 defines a 3-digit item. That is, the maximum decimal value of the
item is nine hundred ninety-nine.

If the PICTURE begins with the letter S, then the item also has the capability of
containing an "operational sign." An operational sign does not occupy a separate
character (byte), unless the "SEPARATE" form of SIGN clause is included in the
item's description. Regardless of the form of representation of an operational
sign, its purpose is to provide a sign that functions in the normal algebraic

,,r N manner.

The USAGE of an external decimal item is DISPLAY (see USAGE clause, Section
3.4).

» *

Internal Decimal Item; An internal decimal item is stcred in packed decimal
format. It is attained by inclusion of the COMPUTATICNAL-3 USAGE clause.

A packed decimal item- defined by n 9fs in its PICTUR.E occupies 1/2 of (n * 2)
(rounded down) bytes in memory. All bytes except the rightmost contain a pair
of digits, and each digit is represented by the binary equivalent of a valid digit
value from Q to 9. The item's low order digit and the operational sign are found
in the rightmost byte of a packed item. For this reason, the compiler considers a
packed item to have an arithmetic sign, even if the original PICTURE lacked an
S-character.

Binary Item; A binary item uses the base 2 system to represent an integer in the
. range -32763 to 32767. It occupies one 16-bit word. The leftmost bit of the

c Deserved area is the operational sign. A binary item is specified by USAGE IS
O COMPUTATIONAL.

Index-Data-Item; An index-data-item has no PICTURE; it is defined by the
USAGE IS INDEX clause. (Refer to Chapter 6, "Table Handling by the Indexing
Method.")

COBOL Reference Manual - Release 4
Data Division

3-2 DATA DESCRIPTION ENTRY

A Data Description entry specifies the characteristics of each field (item) in a
data record. Each item must be described in a separate entry in the same order
in which the items appear in :ne record. Each Data Description entry consists of
a level number, a data-name, and a series of independent clauses followed by a
period. The general format of a Data Description entry is:

level-number
data-name
FILLER (REDEFINES-ciause) (JUSTIFIED-ciause)

9

(PICTURE-clause) (USAGE-clause) (SYNCHRCNlZED-ciause)

(OCCURS-ciause) (BLANK-ciause) (VALUE-ciause) (SIGN-ciause).

When this format is applied to specific items of data, it is limited by the nature
of the data being described* The format allowed for the description of each sat a
type appears below. Clauses that are not shown in a format are specifically
forbidden in that format. Clauses that are mandatory in the description of
certain data items are shown without parentheses. The clauses may appear in
any order except that a REDEFINES-ciause, if used, should come first.

Grouo Item Format

I data-name
level-number [FILLER (REDEFINES-ciause) (USAGE-clause)

(OCCURS-ciause) (VALUE clause) (SIGN-clause).

Example:

01 GROUP-NAME.
02 FIELD-8 PICTURE X.
02 FIELD-C PICTURE X,

NOTE

The USAGE clause may be written at
a group level to avoid repetitious
writing of it at the subordinate
element level.

CC8GL- Reference Manual - Release 4 25
Data Division

3.3 FORMATS FOR ELEMENTARY ITEMS

ALPHANUMERIC ITEM (also called a character-string item)

j data-name
level-number \ FILLER j (REDERNES-clause) (CCCURS-ciause)

PICTURE IS an-form (USAGE IS DISPLAY) (JUSTIFIED-clause)

(VALUE IS ncn-numeric-literal) (SYNCHRCNIZED-ciause).

Examples:

02 MISC-1 PIC XC53).
02 MISC-2 PICTURE BXXXSXXS.

^REPORT ITz.M (also called a numeric-edited item)

f data-name 1
level-number \ FILLER j (REDEFINES-ciause) (OCCURS-ciause)

PICTURE IS repcrt-fcrm (BLANK WHEN ZERO) (USAGE IS DISPLAY;

(VALUE IS non-numeric-literal) (SYNCHRCNIZED-ciause).

Example:

02 XTOTAL PICTURE $999,999.59-.

DECIMAL ITEM

data-name
level-number FILLER (REDEFINES-ciause) (OCCURS-ciause)

PICTURE IS numeric-form (SIGN-ciause)

(USAGE-clause) (VALUE IS numeric-literal) (SYNCHRCNIZED-ciause),

Examples:

02 HOURS-WORKED PICTURE 99V 9, USAGE IS DISPLAY.
02 HOURS-SCHEDULED PIC S99V9, SIGN IS TRAILING.

11 TAX-RATE PIC S99V999 VALUE 1.375, COMPUTATICNAL-3.

CGBOL-otf Reference Manual - Release 4
Data Division

26

BINARY ITEM

f data-name 1
level-number \ FILLER J

PICTURE IS numeric-form

(REDEFINES-ciause) (OCCURS-clause)

USAGE IS COMPUTATIONAL I COMP I INDEX

(VALUE IS numeric-literal) (SYNCHRONIZED-clause).

NOTE•

A PICTURE or VALUE must not be
given for an INDEX Data Item.

Examples:

02 SUBSCRIPT PICTURE 999 COMP, VALUE ZERO.
02 YEAR-TC-DATE PIC S9(5) COMPUTATIONAL.

3.4 USAGE CLAUSE

The USAGE clause specifies the form in which data is represented.

The USAGE clause may be written at any level. If USAGE is not specified, the
item Is assumed to be in "DISPLAY" mode. The general format of the USAGE
clause is:

USAGE IS
COMPUTATIONAL
INDEX
DISPLAY
COMPUTATICNAL-3

INDEX is explained in Chapter 6, Table Handling. CCMPUTATICNAL, which
may be abbreviated COMP, usage defines an integer binary field.
COMPUTATICNAL-3,. which may be abbreviated CCMP-3, defines a packed
(internal decimal) field.

If a USAGE clause is given at a group level, it applies to each elementary item in
the group. The USAGE clause for an elementary item must not contradict the
USAGE clause of a group to which the item belongs.

COBOL- Reference Manual - Release 4 27
Data Division

3.5 PICTURE CLAUSE:

The PICTURE clause specifies a detailed description of an elementary level data
item-and may include specification of special report editing. The reserved word
PICTURE may be abbreviated PIC.

The general format of the PICTURE clause is:

fan-form
PICTURE IS | numeric-form1

[report-form
*

There are three possible types of pictures: An-form, Numeric-form and
Report-form.

r " An-Form Option; This option applies to alphanumeric (character string) items.
:
v* The PICTURE of an alphanumeric Item is a combination of data description
' characters X, A or 9 and editing characters 3, Q and /. An X indicates that the

character position may contain any character from the computer's ASCII
character set. A PICTURE that contains at least one of the combinations:

(a) A and 9, or
(b) X and 9, or
(c) X and A

in any order is considered as if every 9, A or X character were X. The
characters 8, Q and / may be used to insert blanks or zeros or slashes in the
item. This is then called an alphanumeric-edited item.

If the string has only A's and 3's, it is considered alphabetic; if it has only 9's, it
is numeric (see below).

Numeric-form Potion; The PICTURE of a numeric item may contain a valid
-*•""' comoinaticn of the following characters:

"̂ 9 The character 9 indicates that a digit position which must contain a
numeric character. The maximum number of 9's in a PICTURE is 13.

CCBOL- Reference Manual - Release 4 28
Oata Division

V The optional character V indicates the position of an assumed
decimal point. Since a numeric item cannot contain an actual
decimal point, an assumed decimal point is used to provide the
compiler with information concerning the scaling alignment of items
involved in computations. Storage is never reserved for the
character V. Only one V is permitted in any single PICTURE.

S The optional character S indicates that the item has an operational
sign. It must be the first character of the PICTURE. See also, SIGN
clause, Section 3.12.

P The character P indicates an assumed decimal scaling position. It is
used to specify the location of an assumed decimal point when the
point is not within the number that appears in the data item. The
scaling position character P is not counted in the size of the data
item; that is, memory is not reserved for these positions. However,
scaling position characters are counted in determining the maximum
number of digit positions (18) in numeric edited items cr in items
that appear as operands in arithmetic statements. The scaling
positicn cnaracter P may appear only to the left or right of the
other characters in the string as a continuous string of P's within a
PICTURE description. The sign character S and the assumed decimal
point V are the only characters which may accear to the left of a
leftmost string of P's. Since the scaling position character P implies
an assumed decimal point (to the left of the P's if the P's are
leftmost PICTURE characters and to the right of the P's if the P's
are rightmost PICTURE characters), the assumed cecimal point
symbol V is redundant as either the leftmost or rightmost character
within such a PICTURE description.

Report-Form Coticn; This ootion describes a data item suitable as an "edited"
receiving field for presentation of a numeric value. The editing characters that
may be combined to cescribe a report item are as follows:

9 V . Z C R D B , $ * * 3 0 - P /

The characters 9, P and V have the same meaning as for a numeric item. The
meanings of the other allowable editing characters are described as follows:

CCBCL- Reference Manual - Release 4 29
Data Division

The decimal point character specifies that an actual decimal point
is to be inserted in the indicated position and the source item is to
be aligned accordingly. Numeric character positions to the right of
an actual decimal point in a PICTURE must consist of characters of
one type. The decimal point character must not be the last
character in the PICTURE character string. PICTURE character 'Pf

may not be used if '.' is used.

Z The characters Z and * are called * replacement characters. Each
one represents a digit'position. During execution, leading zeros to be
placed in positions defined by Z or * are suppressed, becoming blank
or *. Zero suppression terminates upon encountering the decimal
point (. or V) or a non-zero digit. All digit positions to be modified
must be the same (either Z or *), and contiguous starting from the
left. Z or * may appear to the right of an actual decimal point only
if §il_ digit positions are the same.

" -CR DB CR and DB are called credit and debit symbols and may appear only
at the right end of a PICTURE. These symbols occupy two character
positicns and indicate that the specified symbol is to appear in the
indicated positions if the value of a source item is negative. If the
value is positive or zero, spaces will acoear instead. The PICTURE,
CR, D8, >, and - symbols are mutually exclusive.

, The comma soecifies insertion of a ccmma between digits. Each
inserticn character is counted in the size of the data item, but dees

<• not represent a digit position. The ccmma may also appear in
conjunction with a floating string, as described below. It must not be
the last character in the PICTURE character string.

A floating string is defined as a leading, continuous series of one of either 3 or -
or -, optionally interrupted by one or more • insertion ccmmas and/or decimal
points* For examoie:

/ X 33,333,333

33,333.33

COBOL- Reference Manual - Release 4 30
Data Division

A floating string containing N *• 1 occurrences of $ or * or - defines N digit
positions. When moving a numeric value into a report item, the acpropriate
character floats from left to right, so that the developed report item has exactly
one actual $ or * or - immediately to the left of the most significant nonzero
digit, in one of the positions indicated by $ or *• or in the PICTURE. Slanks are
placed in all character positions to the left of the single developed $ or * or -. If
the most significant digit appears in a position to the right of positions defined
by the floating string, then the developed item contains $ or +• or in the
rightmost position of the floating string, and non-significant zeros may follow.
The presence of an actual or implied decimal point in a floating string is treated
as if all digit positions to the right of the point were indicated by the PICTURE
character 9. In the following examples, b represents a blank in the developed
items.

PICTURE Numeric Value Developed Item

$33999 14 bbSQ14
3333 14 bbb$14
..,—,999 -456 bbobbb-456

A floating string reed not constitute the entire PICTURE of a report item, as
shown in the preceding examples. Restrictions on characters that may follow a
floating string are given later in the description.

When a comma accears to the rignt of a floating string, the string character
floats through the comma in order to be as close to the leading digit as possible.

+• - The character - or - may appear in a PICTURE either singly cr In a
floating string. As a fixed sign control character, the > or - must
appear as the last symbol in the PICTURE. The plus sign indicates
that the sign of the item is indicated by either a plus or minus sign
placed in the character position, depending en the algebraic sign of
the numeric value placed in the report field. The minus sign
indicates Nthat blank or minus is placed in the character position,
depending en whether the algebraic sign of the numeric value placed
in the report field is positive or negative, respectively.

B Each aopearance of 8 in a PICTURE represents a blank in the final
edited value.

7 Each slash in a PICTURE represents a slash in the final edited value.

0 Each appearance of 0 in a PICTURE represents a position in the
final edited value where the digit zero will appear.

COBOL- Reference Manual - Release 4 31
Data Division

Other rules fcr a report (edited) item PICTURE are:

1. The aopearance of one type of floating string precludes any other
floating string.

2. There must be at least one digit position character.

3. The appearance of a 'floating sign string or fixed plus or minus
insertion character precludes the appearance of any other of the
sign control insertion characters, namely •••, -T CR, DB.

4. The characters to the right of a decimal point up to the end of a
PICTURE, excluding the fixed insertion characters +, -, CR, DB (if
present), are subject to the following restrictions:

a« Only one type of digit position character may appear. That
is, Z, *, 9, and floating-string digit position characters 5, •••, -,
are all mutually exclusive.

b. If one of the numeric character positions to the right of a
decimal point is represented by f or - or $ or Z, then ail the
numeric character positions in the PICTURE must be
represented by the same character.

5. The PICTURE character 9 can never appear to the left of a f loat ing
string, or replacement character.

Addit ional notes en the PICTURE Clause:

L A PICTURE clause must only be used at the elementary level.

2. An integer enclosed in parentheses and following X 9 $ Z P > 3 - o r
* indicates the number of consecutive occurrences of the PICTURE
•character.r

£>" 3. Characters V and P are not counted in the space allocation of a
data item. CR and DB occupy two character positions each.

4, A maximum of 30 character positions is allowed in a PICTURE
character string. For example, PICTURE X(39) consists of f ive
PICTURE characters.

5. A PICTURE must contain at least one of the characters A, Z, *, X,
or 9, or at least two consecutive appearances of the +• or - or $
characters.

CC8CL Reference Manual - Release 4
Data Division

32

6. The characters ., S, V, CR, and 08 can appear only once in a
PICTURE.

7. When DECIMAL-POINT IS COMMA is specified, the explanations for
period and camma are understood to apply to comma and period,
respectively.

The examples below illustrate the use of PICTURE to edit data. In each
example, a movement of data is implied, as indicated by the column headings.
(Data value shows contents in storage; scale factor of this source data area is
given by the PICTURE.)

Source Area Receiving Area

PICTURE

9(5)
9(5)
9(5)
9(4) V 9
V9(5)

• 39(5)
39(5)
59(5)
39(5)
9(5)
9(5)
39(5)
S999V99
3999 V 99

Data
Value

12345
00123
OOCCO
12345
12345
00123
-CCOQ1
00123
00001
00123
00123
12345
02345
00004

PICTURE

$$$,$39.99
333,339.99
$33,339.99
333,339.99
333,339.99

.99

.99
,99
,99
,99
.99

•*+•-«•. 9 9CR
zzzvzz
zzzvzz

Edited Data

312,345.00
3123.00

30.00
31,234.50

$0.12
123.00

-1.00
+123.00

l.CO
+123.00

123.00
^12345.00

2345
04

3.6 VALUE CLAUSE

The VALUE clause specifies the initial value of working-storage items. The
format of this clause is:

V ALUE IS literal

The VALUE clause must not be written in a Data Description entry that also has
an OCCURS or REDEFINES clause, or in an entry that is subordinate to an entry
containing an OCCURS or REDEFINES clause. Furthermore, it cannot be used in
the File or Linkage Sections, except in level 38 condition descriptions.

CC6CL- Reference Manual - Release 4 ' 33
Data Division

The size of a literal given in a VALUE clause must be less than or equal to the
size of the item as given in the PICTURE clause. The positioning of the literal
within a data area is the same as would result from specifying a MOVE of the
literal to the data area, except that editing characters in the PICTURE have no
effect en the initialization, nor do 3LANK WHEN ZERO or JUSTIFIED clauses.
The type of literal written in a VALUE clause depends on the type of data item,
as specified in the data item formats earlier in this text. For edited items,
values must be specified as non-numeric literals, and must be presented in edited
form. A figurative constant may be given as the literal.

an initial value is not specified, r.o assumption should be made regarding
the initial contents' of an item in Working-Storage.

The VALUE clause may be specified at the group level, in the form of a
correctly sized non-numeric literal, or a figurative constant. In these cases the
VALUE clause cannot be stated at the subordinate levels with the group.

•

However, -the value clause should not be written for a group containing items
-with descriptions including JUSTIRED, SYNCHRONIZED and USAGE (other than

USAGE IS DISPLAY). CA fcrrn used in level 38 items is explained in Section 3.16)

3.7 REDEFINES CLAUSE

The REDEFINES clause specifies that the same area is to contain different data
items, or provides an alternative grouping or description of the same data. The
format of the REDEFINES clause is:

REDEFINES data-name-2

When written, the REDEFINES clause should be the first clause following the
data-name :hac defines the entry. The data descriotion entry for data-name-2-
should not contain a REDEFINES clause, ncr an OCCURS clause.

When an area is redefined, all descriptions of the area remain in effect. Thus, if
3 and C are two separate items that share the same storage area due to
redefinition, the procedure statements MOVE X TO 3 or MOVE Y TO C could be
executed at any point in the program. In the first case, 3 would assume the
value of X and take the form specified by the description of 3. In the second
case, the same physical area would receive Y according to the description of C.

CCSOL Reference Manual - Release 4 34
Data Division

For purposes of discussion of redefinition, data-name-1 is termed the subject,
and aata-name-2 is called the object. The levels of the subject and object are
denoted by s and t, respectively. The following rules must be obeyed in order to
estaolish a proper redefinition.

1. s must equal t, but must not equal 88.

2. The object must be contained in the same record (01 group level item),
unless s=t=01.

3. Prior to definition of the subject and subsequent to definition of the
object there can be no level numbers that are numerically less than s.

The length of data-name-1, multiplied by the number of occurrences of
data-name-1, may not exceed the length of data-name-2, unless the level of

x(7 data-name-1 is 01 (permitted only outside the File Section). Data-name-1 and
(. entries subordinate to data-name-1 must not contain any value clauses, except in

level 38. In the File Section, multiple level 01 entries subordinate to any given
FD represent implicit redefinitions of the same area.

3.8 OCCURS CLAUSE
^ •̂••̂ ••••̂ •anWÎ B^M^MHe 0M^B^^^^^^^^VMBMM«a» ,

The OCCURS clause is used in defining related sets of reoeated data, such as
tables, lists and arrays. It specifies the number of times, up to a maximum of
IQ23, that a data item with the same fcrmat is repeated. Data Description
clauses associated with sn item whose description includes an CCCURS clause
apoly to each recetiticn of the item being described. '.Vhen the CCCURS clause is
used, the data name that is the defining name of the entry must be subscripted
or indexed whenever it apoears in the Procedure Division. If this data-name is
the name of a group item, then ail data-names belonging to the group must be
subscricted or indexed whenever they are used.

The OCCURS clause must not be used in any Data Description entry having a
level number 01 or 77. The OCCURS clause has the following format:

CCCURS integer TIMES [INDEXED 3Y index-name...]

Since the OCCURS clause can only be used at subordinate levels within a data
reccrd, the maximum size of a table is limited by the rules, for the size of a
group item. See Section 3.1.1 on "Group Items".

COBOL- Reference Manual - Release 4
Data Division

35

Subscripting: Subscripting provides the facility for referring to data items in a
taoie or List that have not been assigned individual aata-names. Subscripting is
determined by the appearance of an OCCURS clause in a data description. If an
item has an CCCURS clause or beicngs to a group having an OCCURS clause, it
must be subscripted or indexed whenever it is used. See the chapter on Taole
Handling for exolanations on Indexing and Index Usage. (Exception: the
table-name in a SEARCH statement must be referenced without subscripts.)

«

A subscript is a positive nonzero integer whose value determines an element to
which a reference, is being made within a table or list. The subscript may be
represented either by a literal or a data-name that has an integer value. Whether
the subscript is represented by a literal or a data-name, the subscript is enclosed
in parentheses and appears after the terminal space of the name of the element.
A subscript must be a decimal or binary item. (The latter is strongly
recommended, for the sake of efficiency.)

At rncst three OCCURS clauses may govern any data item. Consequently, one,
two or three subscripts may be required. 'Mien more than one suoscript is
required, they are written in the order of successively less inclusive dimensions
of the data organization. Multiple subscripts are separated by commas, viz.
ITEM (I, J).

Example:

Cl ARRAY.
03 ELEMENT, OCCURS 3, PICTURE 9(4).

The above examcle would be allocated storage as shown below.

ELEMEN

ELEMENT '2)

cJLEMENT (3)

ARRAY, consisting of twelve
characters; each item has 4
digits.

A data-name may not be subscripted if it is being used for:

L a subscript

2. the defining name of a data description entry

3. data-name-2 in a REDEFINES clause

4. a qualifier

:C8CL Reference Manual - Release 4
iata Division

36

3.9 SYNCHRONIZED CLAUSE

The SYNCHRONIZED clause was designed in order to allocate soace for data in
an efficient manner, with respect to the computer central "memory." However,
in this compiler, the SYNCHRONIZED specification is treated as commentary
only.

The format of this clause is:
«

SYNC i SYNCHRONIZED [LEFT I RIGHT]

3-10 BLANK WHEN ZERO CLAUSE

The 3LANK WHEN ZERO clause specifies that a report Cedited) field is to
contain nothing except blanks if the numeric value moved to it has a value of
zero, '//hen this clause is used with a numeric picture, the field is considered a
reoort field.

:J

3.11 JUSTIFIED CLAUSE

cThe JUSTIFIED RIGHT clause is only applicable to unedited alphanumeri
'character string) items. It signifies that values are stored in a rignt-cc-ieft
fashion, resulting In soace fill on the left when a short field is moved to a longer
JUSTIFIED field, cr in truncation en the left when a icng field is moved to a
snorter JUSTIFIED field. The JUSTIFIED clause is effect ive only when the
associated field is employed as the "receiving" field in a MOVE statement.

The word JUST is a permissible abbreviation of JUSTIFIED.

3.12 SIGN CLAUSE

For an external decimal item, there are four passible manners of representing an
aoerational sign; the choice is controlled by inclusion of a particular form of the
SIGN clause, whose general form iss

[TRAILING]
[SIGN IS] ILEADING } [SEPARATE CHARACTER]

The following chart summarizes the effect of four possible forms of this clause.

SIGN Clause Sign Representation

TRAILING
LEADING
TRAILING SEPARATE
LEADING SEPARATE

Embedded in rightmost byte
Embedded in leftmost byte
Stored in separate rigntmost byte
Stored in separate leftmost byte

CC6OL- Reference Manual - Release 4 37
Data Division

When the above forms are written, the PICTURE must begin with S. If no S
appears, the item is not signed 'and is capable of storing only absolute values),
and the SIGN clause is prohibited. When S appears at the front of a PICTURE but
no SIGN clause is included in an item's description, the "default" case SIGN IS
TRAILING is assumed.

The SIGN clause may be written at a group level; in this case the clause specifies
the sign's format on any signed subordinate external decimal item. The
SEPARATE CHARACTER phrase increases the size of the data item by 1
character. The entries to which the SIGN cteuse apply must be implicitly or
explicitly described as USAGE IS DISPLAY.

* •

(Note: When the CODE-SET clause is specified for a file, all signed numeric data
for that file must be described with the SIGN IS SEPARATE clause.)

3-13 LEVEL §8 CONDITION-NAMES

The level 38 ccnditicn-name entry specifies a value, list of values, or a range of
values that an elementary item may assume, in which case the named conoition
is true, otherwise false. The format of a level 88 item's value clause is

VALUE IS literal-1 [literai-2...]
•

VALUES ARE literal-1 THRU literai-2

A level 38 entry must be preceded either by another level 38 entry 'in the case
of several consecutive conditicn-names pertaining to an elementary item) or by
an elementary item 'which may be FILLER). Index data items should not be
followed by level 38 items.

Every ccnditicn-name pertains to an elementary item in such a way that the
condition-name may be qualified by the name of the elementary item and the
elementary item's qualifiers. A condition-name is used in the Procedure Division
in piacs of a simple relational condition. A condition-name may pertain to an
elementary item (a conditional variable) requiring subscripts. In this case, the
condition-name, when written in the Procedure Division, must be subscripted
according to the same requirements as the associated elementary item. The
type of literal in a condition-name entry must be consistent with the data type
of the conditional variable. In the following example, PAYRCLL-PERIOO is the
conditional variable. The picture associated with'it limits the value of the 38
condition-name to one digit.

02 PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY V ALUE IS 1.
38 SEMI-MONTHLY VALUE IS 2.
38 MONTHLY VALUE IS 3.

COBOL- Reference Manual - Release 4 33
Data Division

Using the above description, the following procedural condition-name test may
be written:

IF MONTHLY GO TO DO-MONTHLY
•

An equivalent statement is:

IF PAYROLL -PERIOD = 3 GO TO DO-MONTHLY.

For an edited elementary item, values in a condition-name entry must be
expressed in the form of non-numeric literals.

A VALUE clause may not contain both a series of literals and a range of literals.

3.14 FILE SECTION, FD ENTRIES (SEQUENTIAL I-O ONLY)

In the FILE SECTION of the Data Division, an FD entry (file description) must
accear for every SELECTed file. This entry precedes the descriptions of the
file's record strLicture(s).

The general fcrmat of an FD entry is:

FD file name LASEL-ciause [V ALUE-CF-clause]

[DATA-RECCRD(S;-ciause] [3LCCX -clause] [RECCRD-ciause]

[CCCE-SET-ciausej [LINAGE clause].

After "FD filename," the order of the clauses is immaterial.

3.14.1 LABEL CLAUSE ' - < • - .

The format of this required FD entry clause is:

RECORD \ flS OMITTED
LABEL |RECORDS t lARSJ | STANDARD]

The OMITTED option specifies that no labels exist for the file; this must be
specified for files assigned to PRINTER.

aj •

The STANDARD option specifies that labels exist for the file and that the labels
ccnfcrm to system specifications; this must be specified for files assigned to
DISK.

CC8OL Reference Manual - Release -i
Data Division

39

3.1X2 V ALUE CF CLAUSE

The VALUE CF clause appears in any FD entry for a DISK-assigned file, and
contains a filename exoressed as a non-numeric literal of at most 16 characters
or as a data-name. The filename is specified according to the rules for
filenames of tre operating system being used. It must not contain any embedded
space characters. If a data-name is specified, the filename it contains may be as
many characters as desired, but it must be terminated by a space character. The
general form is:

' VALUE CF FILE-ID IS

Examples:

V ALUE CF RLE-ID "A:MASTER.ASM" (CP/M)
VALUE CF FILE-ID "EMPLOY/DAT:2fl (TRSDCS Model II)
VALUE OF FILE-ID ":F1:INVNT,LST" (ISIS-H)

A reminder: if a file is ASSIGNed to PRINTER, it is unlabeled and the VALUE
clause must ~ot be induced in the associated FD. If a file is ASSIGNed to DISK,
it is necessary to include both LABEL RECCRDS STANDARD and VALUE
clauses in the associated FD. See the CC6QL-3Q User's Guide for filename
formats for specific ocerating systems.

3.14.3 DATA RECORDS? CLAUSE

The coticnai DATA RECCRDS clause identifies the records in the file by name.
This clause is documentary only, in this and all CCBCL systems, [ts general
format is:

DATA
RECCRD IS

RECCRDS ARE
• data-name-1 [data-name-2...]

The presence of more than one data-name indicates that the file contains more
than one type of data record. That is, two or more record descriptions may
apply to the same storage area. The order in which the data-names are listed is
not significant.

Data-name-1, data-name-2, etc., are the names of data records, and each must
be preceded in its record description entry by the level number 01, following the
appropriate file description (FD) in the File Section.

CC8GL- Reference Manual - Release 4
Data Division

3.14.6 CCDE-SET CLAUSE

The fcrmat of this clause is:

CCCE-SET IS ASCI!
__________^— . — -m — — — — t

The CCCE-SET clause, which should be specified only for non-mass-storage files,
serves only the purposes of documentation in this compiler, reflecting the fact
that both internal and external data are represented in ASCII code. However,
any signed numeric data description entries in the file's records should include
the SIGN IS SEPARATE clause and ail data in the file should have USAGE
DISPLAY.

3.14.7 LINAGE CLAUSE

-.-"or a ^ie assigned to PRINTER, the LINAGE clause provides a means of
specifying the size of the printable porticn of a page, called the "page body.'1 The
numcer. of lines in the page bcdy is soecified along with, optionally, the size of
the tco ard bcttcm margins and the line number within the page body at which a
footing area begins. The general format is:

(data-name-I) (data-name-2
LINAGE IS I I LINES, [WITH FCOTING AT j \]

linteger-1 j (intsger-2

[LINES AT
data-name-3] (data-name-4

] [LINES AT BOTTOM
integer-3 J (integer-4

All data-names must refer to unsigned numeric integer data items. Integer-1
must be greater than zero, and irteger-2 must not be greater than integer-!.

jThe total page size is the sum of the values in each phrase except for FCC TING.
If TCP or BCTTCM margins are not specified, their size is assumed zero. The
footing area comprises that part of the page body between the line indicated by
the FCCTING value, and the last line of the page body, inclusive.

The values in each phrase at the time the file is opened (by the execution of an
OPEN CUTPUT statement) specify the number of lines that comprise each of the
sections of the first logical page. VVhenever a WRITE statement with the
ADVANCING PAGE phrase is executed or a "page overflow" condition occurs
(see the WRITE statement), the values in each phrase, at that time, will be used
to specify the number of lines in each section of the next logical page.

CC8GL Reference Manual - Release 4 . 42
Data Division

A LINAGE-COUNTER is created by the presence of a LINAGE clause. The value
in the LINAGE-CCUNTER at any given time represents the line number at which
the printer is positioned within the current page body. LINAGE-CCUNTER may
be referenced but may not be modified by Procedure Division statements. It is
automatically modified during execution of a WRITE statement, according to the
following rules:

1. When the "ADVANCING PAGE" phrase of the WRITE statement is specified
or a "page overflow" condition occurs (see the WRITE statement), the
LINAGE COUNTER is reset to one.

2. When the "ADVANCING identifier or integer" phrase is specified,
LINAGE-CCUNTER is incremented by the ADVANCING value.

3. When the ADVANCING phrase is not specified, LINAGE-CCUNTER is
^" incremented by one. (v_.1

See the descrioticn of the WRITE statement for additional informaticn about the
effects of LINAGE specifications.

3.15 WORKING-STORAGE SECTION

The second section of the DATA DIVISION begins with the following header:

WORKING-STORAGE SECTION.

This section describes records and ether data which are not part of external data
files but which are developed and processed internally.

Data description entries in this section may employ level numbers Ci-49, as in
the File Section, as well as 77. Value clauses, prohibited in the File Section
(except for level 38), are permitted throughout the Wording-Storage Secticn*

3.16 LINKAGE SECTION

The third section of the Data Division is defined by the header:

LINKAGE SECTION.

In this section, the user describes data by name and attribute, but storage space
is not allocated. Instead, these "dummy" descriptions are applied (through the
mechanism of the USING list on the Procedure Division header) to data whose
addresses are passed into a subprogram by a call upon it from a separately
compiled program. Consequently, VALUE clauses are prohibited in the Linkage
Section, except in level 88 condition-name entries. Refer to Chapter 5,
Inter-Program Communication, for further information.

CC8CL Reference Manual - Release 4
Data Division

3.17 SCREEN SECTION

The fourth section of the Data Division is used to define CRT screen formats and
is composed of screen data description entries. As in the File and
Wording-Storage sections, descriptions may be grouoed through the assignment of
aoprcpriate level numbers. Thus there are two types of screen items.
Elementary screen items define the individual display and/or data entry fields
within the screen layout. Group screen items are used to name any group of
elementary screen items so that they may be ACCEPTed or DISPLAYed with a
single Procedure Division statement. The format of a group screen description
entry is:

level-number screen-name [AUTO] [SECURE].

level number must be an integer in the range 01 through 49. screen-name must
conform to the rules for the formation of names given in section 1.3. The grcuo

Treen description entry must be followed by one or more subordinate screen
rtems as indicated by increasing level-numbers. If AUTO or SECURE is coded
for a group screen item, the effect is as if AUTO or SECURE had been coded fcr
every elementary screen item subordinate to that group screen item.

The format of an elementary screen item is:

level-number [screen-name]
[5LANK SCREEN]
[LINE NUMBER is [PLUS] inteaer-1]
[COLUMN NUMBER IS [.PLUS] integer-23
[3LANK LINE]
[SELL]"

HIGHLIGHT 11
BLINK jj

1 VALUE] IS iiterai-1] '

|literal-2 1
identiner-1 j[•(PICTUR

Li PIC J IS picture -string
E)

J
[FROM (ident i f ier- l)] [TO identifier-2]

[USING identifier-3]

i

[BLANK WHEN ZERO]
(JUSTIFIED)
1 JUST / RIGHT]
[AUTO]
[SECURE]

CC8QL- Reference Manual - Release 4
Data Division

level-number and screen-name are subject to the same rules as in the group screen data
description. The order of clauses in the elementary screen data description entry is not
significant, except that screen-name, if cresent, must immediately follow level-number.
If PICTURE is coded, then either US IMG or at least one of FROM and TO must be
present. A screen item may have both a FROM and TO clause. AUTO, SECURE, BLANK
V/HEN ZERO, and JUSTIFIED may be given only if PICTURE is specified. The maximum
length of an elementary screen item is 80 characters.

The clauses specified with each elementary screen data description can affect data input
and data display operations when ACCEPT and DISPLAY statements are executed at
runtime. The effects of each specification are as follows;

1. BLANK SCREEN causes the entire screen to be erased and the cursor to be
placed at the home position (line 1, column 1).

,("* *L LINE and COLUMN affect the screen location associated with an elementc;-y
• "'̂ screen item. As the SCREEN SECTION is processed at comoile time. 2

current cursor position is maintained so that each elementary screen iurr,
can be identified with a particular region of the screen. When a level 01
screen item is encountered, the current screen position is reset tc lire 1,
column 1. Then, as each elementary screen data Description is Drocessec, t:*s
current position is adjusted for the size of each definition. Therefore, "y
default, successively defined fields appear end to end in successive areas sf
the CRT screen. The position current at the start of any elementary screen
data description may be changed by means of the LINE and COLUMN
specifications. If neither LINE nor COLUMN is coded, the current screen
position is not chanced. If COLUMN is coded without LINE, the current
screen line is not adjusted. If LiNE is coded without COLUMN, COLUMN I is
assumed. The LINE integer or COLUMN integer clause without PLUS causes
the specified integer to be taken as the line or column at wnicn ere current
screen item should start. The LINE PLUS integer or COLUMN PLUS integer
clause causes the specified integer to be added to the current screen lire or
column, and the result to be used as the line or column at whicn the current

(' screen item should start. If LINE (COLUMN) is given without integer-!
"^ (integer-2), LINE PLUS 1 (COLUMN PLUS 1) is assumed.

3. BLANK LINE causes erasure of the screen from the current cursor positicn :o
the end of the current line and leaves the cursor position unchanged.

NOTE

The following functions are always executed in
the order shown below, regardless of the order
in which they are specified.

1. BLANK SCREEN
2. LINE/COLUMN positioning
3. BLANK LINE
4. Display or accept operation

CCBCL- Reference Manual - Release 4 46
Data Division

3.13 DATA DIVISION LIMITATIONS

There is a limitation on the number of items in the Working-Storage, Linkage,
and File sections of the Data Division. In those imolementations of CCBCL-
which have the Communications Level I facility, the number of CDs is relevant
also. The sum:

W+4095
* F * L + C

4096

must be less than or equal to 14, where W is the size of Working-Storage in bytes,
F is the number of files described in the File Section, L is the number of level 01
or 77 entries in the Linkage Section, and C is the number of CD's in the
Communications Section. Furthermore, the maximum number of files which may
be ooen in the same run unit (main program linked together with an arbitrary
number of subprograms) is 14.

CC8CL- Reference Manual

CHAPTER 4

Procedure Division

In this chapter, the basic concepts of the Procedure Division are explained.
Advanced topics (such as indexing of tables, indexed file accessing, interprogram
ccmmunicaticn and declaratives) are discussed in subsequent chapters.

4.1 STATEMENTS, SENTENCES. PROCEDURE-NAMES

The Procedure portion of a source program specifies those procedures needed to
peform a particular data processing function. These steps (computations, logical

f~* decisions, etc.) are expressed in statements similar to English, which employ the
'x^ concept of verbs to denote actions, and statements and sentences to describe

procedures. The Procedure portion must begin with the following header:

" PROCEDURE DIVISION.

A statement consists of a verb followed by appropriate coerands (data-names cr
literals) and other words that are necessary for the compieticn of the
statement. The two types of statements are imperative and ccnditicnal.

Imperative Statements

An imperative statement specifies an unconditional action Ho be taken by
the ooiect program. An imperative statement consists of a verb and its
ooerands, excluding the IF and SEARCH ccnditicnai statements" and any
statemenc which contains an INVALID KEY, AT END, SIZE ERRCR',
OVERFLOW, or ON ESCAPE clause.

f' Conditional Statements • •-^^ !

A conditional statement stipulates a condition that is tested to determine
whether an alternate path of program flow is to be taken. The IF and
SEARCH statements provide this capability. Any I/O statement having an
INVALID KEY or AT END clause is also considered to be conditional.
When an arithmetic statement possesses a SIZE ERROR suffix,, the
statement is considered to be conditional rather than imperative. STRING
or UNSTRING statements having an OVERFLOW clause and ACCEPT with
the ON ESCAPE clause are also conditional.

COBOL- Reference Manual 48
Procedure Division

Sentences

A sentence is a single statement or a series of statements terminated by a
period and followed by a space. If desired, a semi-colon or comma may be
used between statements in a sentence.

ParaGraphs
.

A paragraph is a logical entity consisting of zero, one or more sentences.
Each paragraph must begin with a paragraph-name.

Sections

A section is composed of one or more successive paragraphs, and must
begin with a s.ection-heacer. A section header consists of a section-name '
conforming to the rules for procedure-name formation, followed by the {..
word SECTION, an optional segment number, and a period. A section
header must appear on a line by itself. Each section-name must be unique.

\
V •

4.2 ORGANIZATION CF THE PROCEDURE DIVISION

The procedure part of a program may be subdivided in three possible ways:

1, The 3rocedure Division consists only of paragraphs.

2 The Procedure Division consists of zero or more paragraohs followed
by a number of sections (each section subdivided into one or more
paragraphs).

3. The Procedure Division consists of a DECLARATIVES portion and a
series of sections (each section subdivided into one or more
paragraphs).

The DECLARATIVES portion of the Procedure Division is optional; it provides a
means of designating a orocedure to be invoked in the event of an I/O error. If
Declaratives are utilized, only possibility 3 may be used. Refer to Chapter 9 for
a complete discussion.

CC8CL- Reference Manual
Drocedure Division

4.3 MOVE STATEMENT

The MOVE statement is used to move data from one area of main storage to
another and to perform conversions and/or editing on the data that is moved.
The MOVE statement has the fciiowing format:

MOVE data-name-1
[literal

TO data-name-2 [data-name-3...]

The data represented by data-name-i or the specified literal is moved to the ,
area designated by data-rame-2. Additional receiving fields may be specified
(data-name-3 etc.). Yvhen a group item is a receiving field, characters are moved
without regard to the level structure of the group involved and without editing.

Subscripting or indexing associated with data-name-2 is evaluated immediately
before data is moved cc the receiving field. The same is true for other receiving
fields (data-name-3, etc., if any). Sut for the source field, subscripting or
indexing (associated with data-rame-1) is evaluated only once, before any data is
moved.

To illustrate, consider the statement

MOVE A (3) TO 3, C I'S),

which is equivalent Ho

MOVE A (3) TO temp
MOVE temo TO 3
MOVE temo TO C (8)

where temp is an intermediate result field assigned automatically by the
compiler.

The following consideraticns pertain to moving items:

1. Numeric (external cr internal decimal, binary, numeric literal, ar
ZERO) or aiohanumeric to numeric or report:

a. The items are aligned by decimal points, with generation af
zeros or truncation on either end, as required. If source is
alphanumeric, it is treated as an unsigned integer and should
not be Icnger than 31 characters.

b. When the types of the source field and receiving field differ ,
conversion to the type of the receiving field takes place.
Alphanumeric source items are treated as unsigned integers
with Usage Display.

CC8CL- Reference Manual
Procedure Divisicn

50

2.

c. The items may have soecial editing performed on them with
sucoressicn cf zeros, insertion of a dollar sign, etc., and
decimal ooint alignment, as specified by the receiving area.

d. Ore should not move sn item whose PICTURE declares it to be
aiohabetic or alphanumeric edited to a numeric or report item,
nor is it possible to move a numeric item of any sort to an
alphabetic item though numeric integers and numeric report

• items can be mov.ed to alphanumeric items with or without
editing, but coeraticnai signs are not moved in this case even
if "SIGN IS SEPARATE" has been specified.

» .

Ncn-numeric sourceand destinations!

a. The characters are claced in the receiving area from left to
right, unless JUSTIFIED RIGHT applies.

' be If the receiving field is not completely filled by the data being
moved, the remaining oosicicns are filled with spaces.

Co If the source field is longer than the receiving field, the move
is terminated as scon as the receiving field is filled.

3. When overiapoing fieids are involved, results are not predictable.

4. Acoendix II shows, in tabular form, ail permissible combinations of
source and receiving field types.

5. An icem having USAGE IS INDEX cannot accear as an operand of a
MOVE statement. See SET in Chanter 6, Table Handling.

Examcies of Data Movement (b represents blank;:

i Source Field

'PICTURE

99V 99
99V 99
S9V9
XXX
9V99

Value

1234
1234
12-
A23
123

Receiving Field

PICTURE

S99V99
99V9
99V 999
xxxxx
99.99

Value before MOVE

9876-
987
98765
Y9X3W
37,65

Value after MOVE

1234+
123
01200*
A2Bbb
01.23

"A
ft

COBOL- Reference Manual . 51
Procedure Division

4.4 INSPECT STATEMENT

The INSPECT statement enables the programmer to examine a character-string
item. Options permit various combinations of the following actions:

1. counting appearances of a specified character

2* replacing a specified character with another

3. limiting, the above actions by requiring the appearance of other
specific characters

The format of the INSPECT statement is:

INPECT data-name-i [TALLYING-ciause] [REPLACING-ciause]

where TALLYING-ciause has the format

TALLYING cata-rame-2 FOR

[BEFORE I AFTER INITIAL cperand-4]

and REPLACING-ciause has the format

(CHARACTERS
REPLACING I ALL i LEAD PNG ! FIRST cperand-5

[BEFORE ! AFTER INITIAL operand-7]

CHARACTERS \
ALL i LEADING operand-3j

3Y ocerand-6

Because data-name-1 is to be treated as a string of characters by INSPECT, it
must not be described by USAGE IS INDEX, COMP, or CCMP-3. Data-name-2
must be a numeric data item.

In the acove formats, operand-n may be a quoted literal of length one, a
figurative constant signifying a single character, or a data-name of an item
whose length is one.

TALLYING-ciause and REPLACING-ciause may not both be omitted; if both are
present, TALLYING-ciause must be first.

COBOL- Reference Manual 52
Procedure Division

TALLYING-ciause causes character-by-character comparison, from left to right,
of data-name-1, incrementing data-name-2 by one each time a match is found.
When an AFTER INITIAL operand-4 subclause is present, the counting process
begins only after detection of a character in data-name-1 matching operand-4.
If SEFORE INITIAL operand-4 is specified, the counting process terminates upon
encountering a character in data-name-1 which matches operand-4. Also going
from left to right, REPLACING-ciause causes replacement of characters under
conditions specffied by the REPLACING-ciause. If SEFORE INITIAL operand-7
is present, replacement does not continue after detection of a character in
data-name-1 matching operand-7. If AFTER INITIAL operand-7 is present,
replacement does not commence until detection of a character in data-name-1
matching cperand-7.

With, bounds on data-name-1 thus determined, TALLYING and REPLACING is
done on characters as specified by the following:

^^ 1. "CHARACTERS" implies that every character in the bounded (0-
data-name-1 is to be TALLYed or REPLACEd.

2i "All operand" means that all characters in the bounded data-name-1
which match the "operana" character are to participate in
TALLYing/REPLAClng.'

3. "LEADING operand" specific's that only characters matching
"operana" from the leftmost portion of the bounded data-name-1
which are contiguous (such as leading zeros) are to participate in
TALLYing or REPLACing.

4. "FIRST ooerand" specifies that only the first-encountered character
matching "operand" is to participate in REPLACing. (This option is
unavailable in TALLYing.)

When both TALLYING and REPLACING clauses are present, the two clauses
(behave as if two INSPECT statements were written, the first containing only a
^-^"TALLYING-ciause and the second containing only a REPLACING-ciause. w

In developing a TALLYING value, the final result in data-name-2 is equal to the
tallied count plus the initial value of data-name-2. In the first example below,
the item CCUNTX is assumed to have been set to zero initially elsewhere in the
program.

CC8QL- Reference Manual 53
Procedure Division

INSPECT ITEM TALLYING CCUNTX FCR ALL "L" REPLACING LEADING "A"
BY "E" AFTER INITIAL "L"

Original (ITEM): SALAMI ALABAMA
Result (ITEM): SALEMI ALEBAMA
Final (CCUNTX): 1 1

INSPECT WORK-AREA REPLACING ALL DELIMITER BY TRANSFORMATION
• .

Original (WORK-AREA): NET// YORK N Y (length 16)
Original (DELIMITER): "(space)
Original (TRANSFORMATION): . (period)
Result (WORK-AREA): NE\V,YCRK..N.Y...

NOTE

If any data-name-1 or operand-n is
described as signed numeric, it is treated
as if it were unsicned.

4.5 ARITHMETIC STATEMENTS

There are five^arithmetic statements: ADO, SUBTRACT, MULTIPLY, DIVIDE
and CCMPUTc. Any arithmetic statement may be ei'iher imperative or
conditional. When an arithmetic statement includes an CN SIZE ERRCR
scecificaticn, the entire statement is termed conditional, because the size error
ccnditicn is data-dependent.

An example of a conditional arithmetic statement is:

ADO 1 TO RECORD-COUNT
ON SIZE ERRCR MOVE ZERO TO RECORD-COUNT
DISPLAY "LIMIT 99 EXCEEDED".

If assize error occurs (in this case, it is apparent that
PICTURE 99, and cannot hold a value of 100), both the

RECORD-COUNT has
the MOVE and DISPLAY

statements are executed.

I!?® ^h£fs sta£2m<2nt components that may appear in arithmetic statements
(GIVING option, ROUNDED option, and SIZE ERRCR option) are discussed in
detail later in this secticn.

COBOL- Reference Manual 54
Procedure Division

Basic Rules for Arithmetic Statements

1. All data-names used in arithmetic statements must be elementary
numeric data items that are defined in the Data Division of the
program, except that operands of the GIVING option may be report
(numeric edited) items. Index-names and index data items are not
permissible in these arithmetic statements (see Chapter 6).

2* Decimal point alignment is supplied automatically throughout the
computations.

3. Intermediate result fields generated for the evaluation of arithmetic
expressions assure the accuracy of the result field, except where
high-order truncation is necessary.

•

^ .3.1 SIZE ERRCR CPTICN

If, after decimal-point alignment and any low-order rounding, the absolute value
of a calculated result exceeds the largest value which the receiving field is
capaoie of holding, a space size error condition exists,

The optional SIZE ERROR clause is written immediately after any arithmetic
statement, as an extension of the statement. The format of the SIZE ERRCR
option is:

CN SIZE ERRCR imperative statement ...

If the SIZE ERRCR option is present, and a size errcr condition arises, the value
of tr.e resultant data-name is unaltered and the series of imperative statements
specified fcr the condition is executed.

If the SIZE ERRCR option has not been specified and a size error condition
arises, no assumption should be made about the final result.

An arithmetic statement, if written with the SIZE ERROR option, is not an
imperative statement. Rather, it is a conditional statement and is prohibited in
contexts where only imperative statements are allowed.

CCBCL- Reference Manual
Procedure Division

55

4.5.2 RCUNDED CPTICN

If, after decimal-point alignment, the number of places in the fraction of the
result is greater than the number of places in the fractional part of the data
item that is to be set equal to the calculated result, truncation occurs unless the
ROUNDED option has been specified.

When the RCUNDED option is specified, the least significant digit of the
resultant data-name has its value increased by 1 whenever the most significant
digit of the excess is greater than or equal to 5.

*

Rounding of a computed negative result is performed by rounding the absolute
value of the computed result and then making the final result negative.

The following chart illustrates the relationship between a. calculated result and
the value stored in an item that is to receive the calculated result, with and
without rounding.

Calculated
Result

-12.36
3.432
35.5
' C fO2.O

.QC55

Item to Receive Calculated Result

PICTURE

S99V9
9V 9
99V9
S99V
SV999

Value After
Rounding

-12.4
8.4
35.6
66
.GG6

Value After
Truncating

-12.3
3.4
35.o
65
.005

Illustration of Rounding

When the low order integer positions in a resultant-identifier are represented by
the character P in its PICTURE, rounding or truncation occurs relative to the
rightmost integer position for which storage is allowed.

4.5.3 GIVING CPTICN
*

If the GIVING option is written, the value of the data-name that follows the
word GIVING is made equal to the calculated result of the arithmetic operation.
The data-name that follows GIVING is not used in the computation and may be a
report (numeric-edited) item.

COBOL- Reference Manual - Release 4 56
Procedure Division

4.5.4 ADD STATEMENT

The ADD statement adds two or more numeric values and stores the resulting
sum. The ADD statement general format is:

(numeric-literal!
ADD jdata-name-I)

(TO' 1
I GTV ING}data-name-n [ROUNDED] [SIZE-ERROR-ciause]

Wien the TO option is used, the values of all the data-names (including
data-name-n) and literals in the statements are added, and the resulting sum
replaces the value of cata-name-n. Vvhen the GIVING option is used, at least two
data-names and/or numeric literals must be coded between ADD and GIVING.
The sum of the values of these data-names and literals (not including

,~ data-name-n) replaces the value of data-name-n. . /'

The following are examples of proper ADD statements:

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME O.VERTIME GIVING GROSS-PAY.

The first statement would result in the sum of INTEREST, DEPOSIT, anc
BALANCE being placed at BALANCE, while the second would result in the sum
of REGULAR-TIME and OVERTIME earnings being placed in item GROSS-PAY.

!

4.5.5 SUBTRACT STATEMENT ,

The SUBTRACT statement subtracts one or more numeric data items from a
specifies item and stores the difference.

The SUBTRACT statement general format is:

Ĉr* fdata-name-1)
SUBTRACT Inumeric-literai-lJ ... FROM

jdata-name-m [GIVING data-name-n] j
[numeric literal-m GIVING data-name-n J

[ROUNDED] [SIZE-ERRCR-ciause]

The effect of the SUBTRACT statement is to sum the values of all the operands
that precede FROM and subtract that sum from the value of the item following
FROM.

The result (difference) is stored in data-name-n, if there is a GIVING option.
Otherwise, the result is stored in data-name-m.

CC3CL- Reference Manual - Release 4 57
Procedure Division

4.3.6 MULTIPLY STATEMENT

The MULTIPLY statement multiplies two numeric data items and stores the
product.

The general format of the MULTIPLY statement is:

MULTIPLY fdata-name-1 1
(numeric-literal-ll

BY fdata-name-2 [GIVING data-name-31] 1
lnumeric-literai-2 GIVING data-name-3/

[RCUNCED] [SIZE-ERRCR-clause]

C'
- <^ »Vhen the GIVING option is omitted, the seccnd operand must be a data-name;

the product replaces the value of data-name-2. For example, a new BALANCE
value is computed by the statement MULTIPLY 1.03 BY BALANCE. (Since this
order may seem somewhat unnatural, it is recommended that GIVING always be
written, e.g. MULTIPLY 1.03 BY BALANCE GIVING BALANCE.)

4.5.7 DIVIDE STATEMENT

The DIVIDE statement divides two numeric values and stores the quotient. The
general format of the DIVIDE statement is:

DIVIDE (data-name-i 1 (BY j (data-name-2 1
(numeric-literal-l) (INTO) |numeric-literai-2l

[GIVING data-name-3] [ROUNDED] [SIZE-ERRCR-ciause]
(r ,
-v^-' The BY-form signifies that the first operand Cdata-name-1 or numeric-literal-!}

is the dividend (numerator), and the second operand (data-name-2 or
numeric-literal-2) is the divisor (denominator). If GIVING is not written in this
case, then the first operand must be a data-name, in which the quotient is stared.

The INTC-fcrm signifies that the first operand is the divisor and the second
operand is the dividend. If GIVING is not written in this case, .then the second
operand must be a data-name, in which the quotient is stored.

Division by zero always causes a size-error condition.

COBOL- Reference Manual - Release 4 58
Procedure Division

4.5.3 COMPUTE STATEMENT

The COMPUTE statement evaluates an arithmetic expression and then stores the
result in a designated numeric or report (numeric edited) item.

The general format of the COMPUTE statement is:

COMPUTE data-name-1 [ROUNDED]...* N

(data-name-2
{numeric-literal [SIZE-ERRCR-clause]
(arithmetic-expression,

An example of such a statement is:

COMPUTE GROSS-PAY ROUNDED = BASE-SALARY *

' • Q
^ (1 * 1.5 * (HOURS - 40) / 40).

An arithmetic expression is a proper combination of numeric literals,
data-names, arithmetic operators and parentheses. In general, the data-names in
an arithmetic expression must designate numeric data. Consecutive data-names
(cr literals) must be separated by an arithmetic operator, and there must be one
or more blanks en either side of the operator. The operators are:

+• for addition ~
for subtraction

* for multiplication
• / for division
** for exponentiation to an integral power.

When more than ore operation is to be executed using a given variable or term,
the order of precedence is:

1- Unary (involving one variable) plus and minus

2. Exponentiation

3. Multiplication and Division

4. Addition and Subtraction

Parentheses may be used when the normal order of operations is not desired. •
Expressions within parentheses are evaluated first; parentheses may be nested to
any level. Consider the following expression.

•

A * B / (C - 0 * E)

COBOL- Reference Manual - Release 4 59
Procedure Division

Evaluation of the above expression is performed in the following ordered
sequence:

1. Compute the product D times E, considered as intermediate result Ri.

2. Compute intermediate result R2 as the difference C - RI.

3. Divide B by R2, providing intermediate result R3.

4. The final result is computed by addition of A to R3.

V4thout parentheses, the expression

A ^ 3 / C - D * E

is evaluated as;

Ri = 3 / C
R2 = A 4. RI
R3 = D * E
final result = R2 - R3

Vvhen parentheses are employed, the following punctuation rules should be used:

ie A Left parenthesis is preceded by one or more spaces.

2. A right parenthesis is followed by one or more spaces.

The expression A - 3 - C is evaluated as (A - 3) - C. Unary operators are
permitted, e.g.:

COMPUTE A = +C -r -4.6
COMPUTE X = -Y
COMPUTE A, 3(1) = -C - 0(3)

4.6 GO TO STATEMENT

The GO TO statement transfers control from one portion of a program to
another. It has the following general format: •

GO TO [procedure-name-i [[procedure-name-2] ...DEPENDING ON data-name]]

The simple form GO TO procedure-name-1 changes the path of control to a
designated paragraph or section. If the GO statement is without a
procedure-name, then that GO statement must be the only one in a paragraph,
and must be ALTERed (see 4.12) prior to its execution.

CC8CL- Reference Manual 60
Procedure Division

The more general form designates N procedure-names as a choice of N paths to
transfer to, if the value of data-name is 1 to N, respectively. Otherwise, there
is no transfer of control and execution proceeds in the normal sequence.
Data-name must be a numeric elementary item and have no positions to the right
of the decimal point.

If a GO (ncn-CEPENDING) statement appears in a sequence of imperative
statements* it must be the last statement in that sequence.

4.7 STOP STATEMENT

The STOP statement is used to terminate or delay execution of the object
program.

-{ The format of this statement is:

STOP
RUN
literal

STOP RUN terminates execution of a program, closing all files and returning
control to the operating system. If used in a sequence of imperative statements,
it must be the last statement in that sequence.

The form STOP literal displays the specified literal en the console and suspends
execution. Execution of the program is resumed only after operator
intervention. Presumably, the operator performs a function suggested by the
content of tre literal, prior to resuming program execution by pressing the
carriage return key.

, 4.3 ACCEPT STATEMENT

The ACCEPT statement is used by a processing program to obtain low-volume
input at runtime. Four formats are available:

Format 1;

f DATE
DAY
TIME
LINE NUMBER

Format 2;

ACCEPT identifier-2

I ESCAPE *£

CC8CL Reference Manual
Procedure Division

Format 3:

ACCEPT position-spec identifier-3 [WITH

rSPACE-FILL
ZERC-FILL
LEFT-JUSTIFY
RIGHT-JUSTIFY
TRAILING-SIGN
PRCMPT
UPDATE
LENGTH-CHECK
AUTC-SKIP
BEEP

Format 4:

ACCEPT screen-name [CN ESCAPE imperative-statement]

The function of each form of the ACCEPT statement is to acquire data frcm a
source external to the program and place it in a specified receiving field cr set
of receiving fields. The forms differ primarily in the data source with wnich
they are designed to interface. The format 1 ACCEPT obtains information frcm
system-defined data items. The other formats of the ACCEPT statement
receive data keyed in by an operator at the system console device. Far formac
2. this device Is assumed to be a teletype, a glass teletype, or a CRT terminal in
scrolling mode. For format 3, it is assumed that the input device is a viceo
terminal and that scrolling is not desired. The format 4 ACCEPT receives an
entire data entry form (as defined in the SCREEN SECTION) when it has seen
comoieted by the terminal operator. Note that an ordinary CRT terminal is
sukaoie as an input cevice for a format 2, 3, or 4 ACCEPT, although the scssibie
effects en the appearance of the screen will differ as indicated in the discussion
beiow. The effects of the various WITH phrase options of the format 3 ACCEPT
statement are summarized in Section 4.3.3.3.

4.3.1 FORMAT 1 ACCEPT STATEMENT

Any of several system-defined data items may be obtained at execution time by
use of the format 1 ACCEPT statement.

The formats of the system-defined data items are:

DATE — a six digit value of the form YYMMDD (year, month, day). Example:
July 4, 1976 is 76Q7C4

DAY - a five digit ''Julian date'* of the form YYNNN where YY is the two low
order digits of year and NNN is the day-in-year number between 1 and 366.

CC8OL- Reference Manual 62
Procedure Division

TIME — an eight digit value of the form HHMMSSFF where HH is from 00 to 23,
MM is from CO to 59, SS is from GO to 59, and FF is from 00 to 99; HH is the
hour, MM is the minutes, SS is the seconds, and FF represents hundredths of a
second.

LINE NUMBER — a two digit value that represents the line (terminal) on which
the program is currently running. In the CO8OL-3Q system, the value of LINE
NUMBER is always 00.

ESCAPE KEY — a two digit code generated by the key that terminated the most
recently executed format 3 or format 4 ACCEPT statement. Identifier-! can be
interrogated to determine exactly which key was typed. Input may be
terminated by any of the following keys, and cause the ESCAPE KEY value to be
set as shown:

V

Backtab (terminates only format 3 ACCEPTs) 99
- Escape 01

Field-terminator (of the last 00
field if format 4 ACCEPT is used)

Function key 02-nn

All key codes are defined in the CRT driver for the terminal being used (refer to
Aopendix A of the User's Guide). Cn most terminals, backtab may be entered as
CCNTRGL-3 or ~; escape is the ESCAPE or ALT key; field-terminatcr .nay be
entered as CARRIAGE RETURN, LINE FEED, TAB, ENTER, NET// LINE or
CGNTRCL-I; and the function keys are usually CCNTRCL-A, CCNTRCL-C, and
CCNTRCL-X, generating ESCAPE KEY values of 02, 03, and 04 respectively. If
input is terminated as a result of using the AUTO-SKIP option (i.e., no
terminator key Is struck), the ESCAPE KEY value is set to 00.

identifier-! should be an unsigned numeric integer whose length agrees with the
content of the system-defined data item. If not, the standard rules for a MOVE
govern storage of the source value in the receiving item (identifier-!).

4.3.2 FCRMAT 2 ACCEPT STATEMENT

Format 2 of the ACCEPT statement is used to accept a string of input
characters from a scrolling device such as a teletype or a CRT in scrolling
mode. When the ACCEPT statement is executed, input characters are read from
the console device until a carriage return is encountered, then a carriage
return/line feed pair is sent back to the console. The input data string is
considered to consist of all characters keyed prior to (but not including) the
carriage return.

CCBCL Reference Manual 63
Procedure Division

For a Format 2 ACCEPT with an alphanumeric receiving field, the incut data
string is transferred to the receiving field exactly as if it were being MOV Ed
from an alphanumeric field of length equal to the number of characters in the
string. (That is, left justification, space filling, and right truncation occur by
default, and right justification and left truncation occur if the receiving field is
described as JUSTIFIED RIGHT.) If the receiving field is alphanumeric-edited, it
is treated as an alphanumeric field of equal length (as if each character in its
PICTURE were "X"), so that no insertion editing will occur.

For a Format 2 ACCEPT with a numeric or numeric-edited receiving field, the
input data string is subjected to a validity test which depends on the PICTURE of
the receiving field. (If the receiving field is described as CCMP, its PICTURE is
treated as "59(5)" for purposes of this discussion.) The digits Q through 9 are
considered valid anywhere in the input data string.

,-'• The decimal point character (period or comma, depending on the DECIMAL
i *~s POINT IS clause of the CONFIGURATION SECTION) is considered valid if:

1. it occurs only once in the input data string, and

2. if the PICTURE of the receiving field contains a fractional digit
position, that is, a "9", "Z", "*", or floating insertion character whtcn
aopears to the right of either an assumed decimal point '"V") or an
actual decimal point (".").

The operational sign characters 'V and "-'* are considered valid only as the *trst
or last character of the input string and only if the PICTURE of the receiving
field contains one of the sign indicators "Sff, 'V, "-", "CR", or "C8lf.

Ail other characters are considered invalid. If the input data scrinq is invalid,
the message "INVALID NUMERIC INPUT - PLEASE' RETYPE" is "sent to the
console, and another input data string is read.

r ~" When a valid input data string has been obtained, data is transferred to the
;^~ receiving field exactly as if the instruction being executed were a MOVE to the

receiving field from 3 hypothetical source field with the following
characteristics:

1. a PICTURE of the form S9...9V9...9

2. USAGE DISPLAY

3. a total length equal to the number of digits in the input data string

CC8CL. Reference Manual - Release 4 64
Procedure Division

4. as many digit positions to the right of the assumed decimal point as
there are digits to the ricjit of the explicit decimal point in the input
data string (zero if there is no decimal point in the input data string)

5. current contents equal to the string of digits embedded in the input
data string

. 6. a separate sign with a current negative status if the input data string
contains the character "-", and a current positive status otherwise.

4-3-3 FORMAT 3 ACCEPT STATEMENT

Format 3 of the ACCEPT statement is used to accept data into a field from a
non-scrolling video terminal. The following syntax rules must be observed wnen

' the fcrmat 3 ACCEPT is used:

-^ 1. identifier-3 must reference a data item whose length is less than or ^r

equal to 1920 characters

2. the ooticns SPACE-FILL and ZERO-FILL may not both be specified in
the same ACCEPT statement

3. the options LEFT-JUSTIFY and RIGHT-JUSTIFY may not both be
specified within the same ACCEPT statement

4. if identifier-3 is described as a numeric-edited item, the UPDATE
option must not be specified

5. the TRAILING-SIGN option may be specified only if Identifier-3 is
described as an elementary numeric data item. If identifier-3 is
described as unsigned, the TRAILING-SIGN option is ignored

. 6. for alphanumeric cr alphanumeric-edited identifier-3, the SPACE-FILL
option is assumed if the ZERO-FILL option is not specified, and the
LEFT-JUSTIFY option is assumed if the RIGHT-JUSTIFY option is not
specified

7. for numeric or numeric-edited identifier-3, the ZERO-FILL option is
assumed if the SPACE-FILL option is not specified.

4.8J.1 Data Inout Field

The pcsiticn-soec and receiving field (identifier-3) specifications of the format 3
ACCEPT statement are used to define the location and characteristics of a data
input Held en the screen of the console video terminal.

CC3CL- Reference Manual
Procedure Division

65

c

Location of the Data Incut Field

The position-spec is of the form

LIN integer-1

integer-2

CCL integer-3

integer-4

The opening and closing parentheses and the comma and space separating the
two majcr bracketed groucs are required. The position-spec specifies the
pcsiticn on the console CRT screen at which the data input field will begin. LIN
and COL are CC8CL special registers. Each behaves like a numeric data item
with USAGE COMP, but they may be referenced by every CC8CL prcgram
without being declared in the DATA DI VISION.

If LIN is specified, the data input field will begin on the screen row whose
number is equal to the value of the LIN special register, incremented (or
decremented) by integer-1 if "* integer-I" (or "- intsger-1") is soecified. If
integer-2 is soecified, the data input field will begin on the row whcse number is
integer-2. If neither LIN nor integer-2 is specified, the data input field will
begin en the screen raw containing the current cursor position.

If CCL is specified, the data incut field will begin in the screen column whcse
number is e u a l to the value of the CCL special register, incremented

"- integer-3") is specified.(or
or
Ifdecremented) by integer-3 if "> integer-3

integer-4 is specified, the data input field will begin in the screen column whcse
number is integer -4. If neither CCL nor integer-4 is specified, the data incut
field will begin in the screen column containing the current cursor position.

Characteristics of the Data Incut Field

The characteristics (other than position) of the data input field en the CRT
screen are determined by the receiving field's PICTURE soecification (which is
treated as 59(5) in the case of an item whose USAGE is COMPUTATIONAL). For
alphanumeric or alphanumeric-edited identifier-3, the data input field is simply 3
string of data input character positions starting at the screen location specified
by position-spec. The length of the data input field in character positions is
equal to the length of the receiving field in memory.

CCBCL Reference vtanuai 66
Proceours Division

For numeric cr numeric-edited identifier-3, the data incut field may contain any
cr all of the following: integer digit positions, fractional digit positions, sign
position, Decimal coint position. There will be one digit position for each "9",
"Z", "*", "P", or non-initial floating insertion symbol (a floating insertion symbol
is a "*", "-", or '$" which is not the last symbol in a PICTURE character string)
in the PICTURE of identifier-3. Each digit position in the data input field is a
fractional digit position if the corresoonding PICTURE character is to the right
of an assumed decimal point ("V") or actual decimal point (".") in the PICTURE
of identifier-3. Otherwise it is an integer digit position. There will be one sign
position if identifier-3 is described as signed, and no sign position otherwise.
There will be one decimal point position if there is at least one fractional digit
position, and no decimal point position otherwise.

The data input positions which are defined will occupy successive character
positions on the CRT screen beginning with the position specified by
scsiticn-soec. If TRAILING-SIGN is specified in the ACCEPT statement, the
data input positions will be in the following sequence: integer digit positions 'if
any), decimal point position (if any), fractional digit positions (if any}, sign
position ("if any). If TRAILING-SIGN is not specified, the data inout positions
will be in the following seauence: sign position (if any), integer digit positions 'If
any), decimal point position (if any), fractional digit positions (if any).

X3.3.2 Data Incut and Data Transfer

A character entered into the data incut field by the terminal operator may be
treated either as an editing cnaraccer, a terminaccr key or a aata character.
When a terminator key is typea, the ACCEPT is terminated and the ESCAPE
KEY value is set as described in section a.3.1. This value can be interrogates oy
using a format I ACCEPT statement FRCM ESCAPE KEY.

The editing characters are line-delete, fcrward-scace, backspace, and rubcut.
Cn most terminals, these characters may be entered as controi-U, ccntrcl-F,
cantrcl-H, and DEL (or RUB) respectively. The action of the editing characters
Is described later in this secticn; for now, only data characters will be considered.

See the CCBCL-30 User's Guide for further information on the definition of
editing and terminator characters.

Alphanumeric Receivina Field
^̂ »̂ — •— ̂ ^— «»• '• •• • ••••••• n i ii«iij*i -̂ nwM^w k

Consider first the execution of the format 3 ACCEPT statement with an
alphanumeric or alphanumeric-edited receiving field. An aiohanumeric-edited
receiving field is treated as an alphanumeric field of the same length (as if every
character in its PICTURE were "X"). Specifically, no insertion editing will occur.

4
t

CC8CL Reference Manual 67
Orno»r*iiPP ("jivi^innProcedure Division

The initial appearance of the data input field deaends on the scecificaticns in the
WITH phrase of the ACCEPT statement. If UPDATE is specified, the current
contents of identifier-3 are displayed in the input field. In this case ail data
inout positions will be treated as if they were keyed by the terminal operator. If
UPDATE is rot specified, but PROMPT is specified, a period (".") is displayed in
each input data position. If neither UPDATE nor PROMPT is specified, the data
input field is not changed. The cursor is placed in the first data input position,
and characters are accepted as they are keyed by the operator until a terminator
character (normally carriage return) is encountered. If AUTO-SKIP is specified
in the ACCEPT statement, the ACCEPT will also be terminated if the operator
keys a character into the last (rightmost) data input position.

As each input character is received, it is echoed to the CRT screen, except that
non-displayable characters are echoed as "?". If ail positions of the data incut
field are filled, additional input is ignored until a terminator character cr editing
character (listed aoove) is encountered. If RIGHT-JUSTIFY was soecified in tne
ACCEPT statement, the operator-keyed characters are shifted to the rightmost
positions of the data incut field when the ACCEPT is terminated. All urkeyed
character oositions are filled on termination; the fill character is either soace .'if
SPACE- FILL is in effect) or zero (if ZERO-FILL was specified).

The contents of the receiving field will be the same set of characters as apoear
in the input field; however, the justification of aperatcr-keyed characters *iii re
controlled by the JUSTIFIED specification in the receiving field's caca
cescripticn, not by tne RIGHT- cr LEFT-JUSTIFY option of the ACCEPT.
Excess pcsiticns of the receiving field will be filled-with spaces or zerces based
on the SPACE- or ZERO-FILL specification in the ACCEPT statement.

Numeric Receiving Field

Next, consider the execution of a format 3 ACCEPT statement with a numeric
or numeric-edited receiving field. As described above, the data Incut field on
the console CRT screen may contain integer digit positions, fracticnai digit
pcsiticns, or both. First assume that both are present; the other cases will be
treated as variations.

CC8OL- Reference Manual 63
Procecure Division

As with the alphanumeric ACCEPT, the data input field may be initialized in a
way determined by the WITH options specified in the ACCEPT statement. If
UPDATE is specified (not permitted for a numeric-edited receiving field), the
integer and fractional parts of the data inout field will be set to the integer and
fractional parts of the decimal representation of the initial value of the
receiving field, with leading and trailing zeroes included, if necessary, to fill all
digit positions. Except for leading zerces, these initialization characters are
treated as operator-keyed data. If UPDATE is not specified, but PROMPT is
specified, a zero will be displayed in each input digit position. In either of these
cases (UPDATE or PROMPT) a decimal point will be displayed at the decimal
point position.

If neither UPDATE nor PROMPT is specified, the input field on the screen will
not be initialized, except for the sign position. The sign position is always
initialized positive except when UPDATE is specified, in which case it is

(~'~utiaiized according to the sign of the current contents of the receiving field.
'VVSjn most systems, a positive sign position is shown as a space, and a negative sign

position is shown as a minus sign.

The cursor is initially placed in • the rightmost integer digit position, and
characters are accepted one at a time as they are keyed by the operator. A
received character may be treated in cne of several ways. If the incoming
character is a digit, previously keyed digits are shifted cne position to the left in
the input field and the new digit is displayed in the rightmost Integer digit
position. If all integer digit positions have not been filled, the cursor remains on
the rightmost digit position and another character is acceoted. If the entire
integer part of the input field has been filled and AUTO-SKIP was specified, the
integer part is terminated and the cursor is moved to the leftmost fractional
digit position. If the integer part has been filled and AUTO-SKIP was not
soecified, the cursor is moved to the decimal point position, and any further
digits keyed are ignored until the integer part is terminated with a decimal point.

If the character entered is one of the sign characters 'Vf or "-", the sign position
5 changed to a positive or negative status respectively. Cursor oosition is not

Taffected.

If the character entered is a decimal point character, the integer part is
terminated and the cursor is moved to the leftmost fractional digit position.

If the character entered is a field terminator (normally carriage-return), the
ACCEPT is terminated and the cursor is turned off. Any other character is
ignored.

CCBCL- Reference Manual ' 69
Procedure Division

When the integer part is terminated, the cursor is placed in the leftmost
fractional digit position, and operator-keyed characters are again accepted.
Digits are simply ecnced to the terminal. The sign characters 'V and "-" are
treated exactly as they were while integer part digits were being entered. The
field terminator character terminates the ACCEPT. (If AUTO-SKIP is in effect,
filling the entire fractional part also terminates the ACCEPT,,) Other characters
are ignored. After ail digit positions of the fractional part have been filled,
further digits are also ignored.

If no fractional digit positions are present, the decimal point is ignored as an
input character, and entry of integer part digits may be terminated only by
terminating the entire ACCEPT. If no integer digit positions are present, the
cursor is initially placed in the leftmost fractional digit position and entry of the
fractional part digits proceeds as described above.

•

Cn termination of the format 3 ACCEPT of a numeric cr numeric-edited item,
A '

-^ data is transferred to the receiving field. The exact form of the data in the
receiving field after execution of the ACCEPT is as described in the last
paragraph of the discussion of the format 2 ACCEPT, where the role of tne
"input data string" mentioned in that paragraoh is taken by the string of
cnaracters disoiayed in the data incut field. After termination, if SPACE-FILL
is in effect, Leading zerces in the integer part of the data incut field (not in the
receiving field) will be replaced by spaces, and the leading cceraticnal sign, if
present, will be moved to the rightmost space thus created.

Editing Characters

The editing characters (line-delete, fcrward-soace, backspace, and rubout) may
be used to cnange cata which has already been keyed (cr sucolied by the CCSCL
runtime system as a result of a WITH UPDATE specification). Entering the
lire-ceiete character will cause the ACCEPT to be restarted and ail data keyed
by the ocerator cr initially present in tr.e receiving field to be lost. The cata
incut field en the console screen will be re-initialized if PROMPT is in effect.

^ N Otherwise, the data incut field will be filled with spaces or zerces according to
-L"' the SPACE-FILL or ZERO-FILL specification.

CC8CL Reference Manual 70
Procedure Division

Typing the forward-space cr backspace characters will move the cursor forward
or back one data incut position in the case of an alphanumeric or
alphanumeric-edited receiving field, or one digit positicn in the case of a
numeric or numeric-edited receiving field. In no case, however, will the
forward-space or backspace characters move the cursor outside the range of
positions including (1) the positions already keyed by the operator (or filled by
CC8CL runtime support when WITH UPDATE is specified), and (2) the rightmost
data input positicn which the cursor has occupied during the execution of this
ACCEPT. If the cursor is moved to a position of this range other than the
rightmost, and a legal data character is entered, it is displayed at the current
curscr positicn and the cursor is moved forward one data position (alphanumeric
or alphanumeric-edited) or digit position (numeric or numeric-edited).

Typing the rubout character effectively cancels the last data character entered.
The curscr is moved back one data position (digit positicn if the receiving field is
numeric or numeric-edited) and a fill character (space or zero) is displayed under
:he cursor (excect when the cursor is to the left of the decimal point for a
numeric ACCEPT. Then no fill character is displayed and the curscr is not
moved, but the digit at the curscr position is deleted and ail digits to the left of
it are shifted cne positicn to the right.) The rubout character has no effect
unless the curscr is in position to accect a new data character; in other wares, it
has no effect if backspace character(s) have been used to move the curscr back
over already keyed positions.

X3.3.3 WITH Phrase Summary

The following list summarizes the effects of the WITH phrase specifications for a
format 3 ACCEPT with an aipnanumeric or alphanumeric-edited receiving field:

1. SPACE-FILL causes unkeyed character pcsiticns of the data input
field and the receiving field to be soace-filled when the ACCEPT is
terminated.

2. ZERO-FILL causes unkeyed character positions of the data input
field and the receiving field to be set to ASCII zeroes wnen the
ACCEPT is terminated.

3. LEFT-JUSTIFY is treated by this compiler as commentary.

4. RIGHT-JUSTIFY causes operator-keyed characters to occupy the
rightmost positions of the data input field (on the screen) after the
ACCEPT is terminated. Note that the justification of transferred
data in the receiving field is controlled by the JUSTIFIED declaration
or default of the receiving field's data description, not by the WITH
RIGHT-JUSTIFY phrase.

COBOL- Reference Manual - Release &
Procedure Division

5. PROMPT causes the data input field en the screen to be set to all
periods (".") before input characters are accepted.

6. UPDATE causes the data incut field to be initialized with the initial
contents of the receiving field and the initial data to be treated as
operator-keyed data.

•7. LENGTH-CHECK causes a field terminator character to be ignored
unless every data input position has been filled.

8. AUTO-SKIP farces the ACCEPT to be.terminated when ail data input
positions have been filled. A terminator character explicitly keyed
has its usual effect.

*

9. BEEP causes an audible alarm to sound when 'the ACCEPT is
initialized and the system is ready to accept operator input.

The following list summarizes the effects of the WITH phrase specifications for
the format 3 ACCEPT with a numeric or numeric-edited receiving field:

1. SPACE-FILL causes ink eyed digit positions of the data input field
(not of the receiving field) to the left of the (possibly implied)
decimal point to be space-filled wren the ACCEPT is terminated and
any leading operational sign to be displayed in the rightmost space
thus created.

•

2. ZERO-FILL causes all unkeyed cigit positions of the data incut field
to be set to zero wnen the ACCEPT is terminated.

3. LEFT-JUSTIFY and RIGHT-JUSTIFY have no effect for a numeric or
numeric-edited receiving field.

4» TRAILING-SIGN causes the operational sign to apoear as the
rightmost positicn of the data input field. Ordinarily the sign is the
leftmost position of the field.

5. PROMPT causes the data input field positions to be initialized as
follows before incut characters are accepted: digit positions to zero,
decimal point position (if any) to the decimal point character, and
sign position (if any) to space.

6. UPDATE causes the data input field to be initialized to the current
contents of the receiving field and this initial data to be treated like
operator-keyed data.

COBOL- Reference Manual - Release 4
Procedure Division

72

7. LENGTH-CHECK causes a received decimal point character to be
ignored unless all integer digit positions have been keyed and a field
terminator character to be ignored unless ail digit positions have
been keyed.

8. AUTO-SKIP causes the integer part of the ACCEPT to be terminated
when ail integer digit positions have been keyed and the entire
ACCEPT to be terminated when ail digit positions have been keyed.

• *
9. BEEP causes an audible alarm to sound when the ACCEPT is

initialized and the system is ready to accept operator input.

4,3.4 Examoles Usinq the Format 3 ACCEPT Statement

Examnle 1; c
Receiving Field;

OS RS-DISCOUNT PIC X (8) .

A3C3ErSH

A C C E P T (1, 1) RS-DISCOUNT WITH FROHPT

Set-up
prior to executing

Enters N

N

Operator Enters ONE:

NONE.. • •

Operator Enters Carriae Return

Executing
the ACCEPT

Final Contents
of Receiving Field;

Result

COBCL- Reference Manual - Release
Procedure Division

73

Examnle 2:

Receiving Field;

10 VEND-NAflE PIC XC12)

Initial Contents:

ACCEPT Statement;

ACCEPT (1, 1) VEND-NAflE
WITH -PROHPT UPDATE-

Set-up
prior to executing

At Start of ACCEPT:

ACHEMUIDGETS

(If operator enters carriage
re cum here, the receiving
field will not be changed.)

Operator Enters Line—delete s

XYZ

Operator Enters Carriage Re turn

Executing
the ACCEPT

Final Contents
of Receivin Field; Result

CCSOL- Reference Manual - Release 4
Procedure Division

74

Examole 3:

Receiving Field;

os CREDIT PIC
Initial Contents ;

ACCEPT Statement;

ACCEPT (LIN + 4, COL - 3) CREDI1

WITH PROflPT 7RAILINS-SIGN-

Set-up
prior to executing

At Start of ACCEPT:

Oerator Enters 3

Oerator Enters 7

. 002

oaa?.aa-
Oerator Enters

'«£r Ocerator Enters N

Oerator Enters • :

Operator Enters S ;

Operator Enters Carriage Return

Executin

Final Contents
of Recaivina Field: Result

COBOL- Reference Manual - Release 4 75
Procedure Division

4.3.5 FORMAT 4 ACCEPT STATEMENT

Format 4 of the ACCEPT statement causes a transfer of information from the
operator's console to ail TO and/or USING fields specified in the SCREEN
SECTION definition of screen-name (or screen items subordinate to
screen-name.) Screen items having only a VALUE literal or a FROM clause have
no effect en the operation of the ACCEPT statement. Each transfer consists of
an implicit format 3 ACCEPT of a field defined by the appropriate screen item's
PICTURE followed by an implicit MOVE to the associated TO or USING field.
When the ACCEPT is terminated, the ESCAPE KEY value is set as described
below and in section 4.3.1. This value can be interrogated by using a format 1
ACCEPT statement FROM ESCAPE KEY. Fields are ACCEPTed in the order in
which they are defined under screen-name in the SCREEN SECTION. This order
can be changed by use of the backtab key, as described below, but the positicn of
the field on the screen does not affect the order.

If an escace key is typed during data input, the entire ACCEPT is terminated
without moving the current field to the associated TO or USING item, the
ESCAPE KEY value is set to 01, and the ON ESCAPE statement is executed. If
a function key is typed, the approoriate ESCAPE KEY value is set and the entire
ACCEPT is terminated. If a field-terminator key (carriage return, tab, etc.) is
typed, the ESCAPE KEY value is set to GO and the cursor moves to the next
input field defined under screen-name, if ore exists. If the current field is the
last field, the entire ACCEPT is terminated. If the backtab key is typed, the
current field is terminated ard the cursor moves to the previous input field
defined urder screen-name. If the current field is the first field, the cursor dees
net move from that field. When a field is terminated by a function key,
field-terminator key, or backtab" key, the contents of the current field are moved
to the associated TO or USING item, except in the case where no daca
characters and no editing characters have been entered in that field. This allows
the operator to tab forward cr backward through the input fields without
affecting the contents of the receiving items.

All the editing and validation features described in section 4,3.3.2 for the format
3 ACCEPT apply to the format 4 ACCEPT as well. Several SCREEN SECTION
specifications listed in section 3.17 correspond to the format 3 ACCEPT options:
AUTO corresponds to AUTO-SKIP; BELL corresponds to BEEP; and JUSTIFIED
corresponds to RIGHT-JUSTIFY. Furthermore, if an input field specifies the
USING clause cr both a FROM and TO clause, the ACCEPT will be executed with
the UPDATE option. Format 4 ACCEPT statements always use the PROMPT
and TRAILING-SIGN options when executing the individual format 3 ACCEPTS.

COBOL- Reference Manual - Release 4
Procedure Divis ion

76

If trie screen item's PICTURE specifies a numeric-edited or alphanumeric-edited
input field, the ACCEPT is executed as if the field were numeric or
alphanumeric, rescectively. When the field is terminated the data is edited
according to the PICTURE and redisplayed in the specified screen position. In
this case, the JUSTIFIED clause has no effect.

Moves from screen fields to receiving items follow the standard CCSCL- rules
for MOVE statements, except that moves from numeric-edited fields are
allowed. In this case, the data is input as if the field were numeric and the move
uses only the sign, decimal point and digit characters.

The format 4 ACCEPT dees not cause the display of any text cr prompting label
information. See the discussion of DISPLAY in section 4.9.

'. V
4.9 DISPLAY STATEMENT

The DISPLAY statement provides the capability of outputting low-volume data
at runtime without the overhead of file definit ion. The format cf the DISPLAY
statement is:

DISPLAY [position-spec]
identifier
literal
ERASE

... [UPON mnemonic-name]

[screen-name]

The DISPLAY statement must be coded in accordance with the fol lowing rules:

1. identifier must reference a data item whose length is less than cr
equal to 1920 characters.

2. mnemonic-name must be defined in the PRINTER IS clause of the
SPECIAL-NAMES paragraph- of the CONFIGURATION SECTION

3. screen-name must be defined in the SCREEN SECTION of the DATA
DIVISION.

Q

CCSOL Reference Manual - Release 4
Procedure Division

77

The DISPLAY statement will cause outout to be sent to the system console
device unless L'PCN mnemonic-name is specified, in which case output will be
sent to tne printer, Eacn display-item (that is, each occurrence of identifier,
literal, ERASE, or screen-name) will be processed in turn as described in the
paragrapns below; then, if neither position-spec nor screen-name is coded in the
entire DISPLAY statement, a carriage return/line-feed pair will be sent to the
receiving device.

4,9.1 Position-spec

For each display-item, if position-spec is specified, the cursor is positioned prior
to the transfer of data for the item, position-spec is of the form: ,

LIN integer-1

intecer-2

COL integer-3

integer-4

The opening and closing parentheses and the comma and space separating the
two majcr bracketed groucs are required. Position-spec specifies the pcsiticn an
the console CRT screen at which the cursor will be placed. LIN ana CCL sre
CCSCL sceciai registers. Each behaves like a numeric daca item with USAGE
CCMP, but they may be referenced by every COBOL program without being
declares in the DATA DIVISION.

If LIN is soecified, the cursor will be placed on the screen row whose number is
ecuai to the value of the LIN special register, incremented (or decremencec) sy
integer-1 if "+ integer-]/' (or "- integer-]/') is specified. If integer-2 is specified,
the cursor will be oiaced en the row whose number is integer-2. If neither LIN
nor integer-2 is specified, the cursor will be placed on the screen row containing
the current cursor position.

If CCL is specified, the cursor will be placed in the screen column whose number
is equal to the value of the CCL special register, incremented (or decremented)
by integer-3 if "+. integer-3" (or "- integer-3") is specified. If integer-4 is
specified,-the cursor will be placed in the screen column whose number is
integer-4. If neither CCL nor integer-4 is specified, the cursor will be placed in
the screen column containing the current cursor position.

COBOL Reference Manual - Release 4 78
Procedure Ci vision

4.9.2 Identifier. Literal, and ERASE

If identifier cr literal Is soecified for a given display-item, the contents of
identifier cr the value of literal are sent to the receiving device. Since the data
transfer occurs without conversion or reformatting, it is recommended that
numeric data be moved to numeric-edited fields for purposes of DISPLAY.

If ERA^E is specified and if position-spec is coded for this or a previous
display-item, the console screen. will be cleared from the current cursor position
to the end of tr.e screen. The initial cursor position for the next display-item
will be that specified by the p-csition-spec coded in the ERASE display-item, if
present, cr the position in which the cursor was left by the previous
display-item. If ERASE is specified and no position-spec has been encountered
up to this point in the DISPLAY statement, no action will be taken.

Screen-name

The DISPLAY screen-name statement causes a transfer of information from
screen-name 'or each elementary screen item suocrdinate to screen-name) to the
console CRT screen. For each such screen item having a VALUE, FRCM, or
USING specification, the specified literal or field is the source of the disclayed
data. For a field having only a TO clause, the effect is as if FRCM .̂LL "."
(period) had been specified. The source data is MCVEd implicitly to a temporary
item 'defined by the appropriate screen item's PICTURE (or by the length of the
data in the case of a VALUE literal). Then an implied identifier-type DISPLAY
of the constructed temporary is executed as modified by the pcsiticnir.g and
ccntroi clauses ceded in the definition of the appropriate screen item. See
section 3,17 (SCREEN SECTION).

f
V''

COBOL- Reference Manual - Release 4 79
Procecure Division

4.10 PERFORM STATEMENT

The PERFORM statement permits the execution of a separate body of program
steps. Two formats of the PERFORM statement are available:

Ooticn 1

PERFORM range

Ooticn 2

[integer 1 j
| data-name J TIMESJ

I index-name
PERFORM range [VARYING | data-namei i •«•««——«——^« ^ t

amount-1 3Y amount-2] UNTIL condition.

FROM

(A more extensive version of option 2 is available for varying 2 or 3 items
concurrently, as explained in Appendix VI.)

In the above syntactical presentation, the following definitions are assumed:

1. Range is a paragraph-name, a section-name, or the construct
procedure-name-1 THRU procedure-name-2. (THROUGH is
synonymous with THRU.) If only a paragraph-name is specified, the
return is after the paragraph's last statement. If only a section-name
is soecified, the return is after the last statement cf the last
paragraph of the section. If a range is specified, control is returned
after the appreciate last sentence of a paragraph cr secticn. These
return points are valid only when a PERFORM has been executed to
set them up; in other cases, control will pass right through.

2. The generic operands amcunt-1 and amount-2 may be a numeric
literal, index-name, or data-name. In practice, these amount
specificatiens are frequently integers, or data-names that contain
integers, and the specified data-name is used as a suoscript within
the range.

In Option 1, the designated range is performed a fixed number of times, as
determined by an integer or by the value of an integer data-item. If no "TIMES"
phrase is given, the range is performed once. When any PERFORM has finished,
execution proceeds to the next statement foiiowing the PERFORM statement.

COBOL- Reference Manual - Release 4 80
Procedure Division

In Option 2, the range is performed a variable number of times, in a steo-wise
progression, varying from an initial value of data-name = amount-1, with
increments of amount-2, until a specified condition is met, at which time
execution proceeds to the next statement after the PERFORM.

The condition in an Option 2 PERFORM is evaluated prior to each attemoted
execution of the range. Consequently, it is possible to not PERFORM the range,
if the condition is not met at the outset. Similarly, in Option 1, if data-name £0,
the range is not performed at ail.

At run-time, i't is illegal to have concurrently active PERFORM-ranges whose
terminus points are the same.

4-i:L EXIT STATEMENT

The EXIT statement is used where it is necessary to pro vice an endpoint for a
procedure.

«

The fcrmat fcr the EXIT statement is:

EXIT

EXIT must acoear in the source program as a one-word paragrach preceded by a
paragraoh-name and followed by a period. An exit paragrach provides an
end-point to which preceding statements may transfer control if it is deciced to
bypass seme part of a section.

4.12 ALTER STATEMENT

The ALTER statement is used to modify a simple (non-depending) GO TO
statement elsewhere in the Procedure Division, thus changing the sequence of
execution of program statements.

The ALTER statement general format is:

ALTER paragraph TO [PROCEED TO] procedure-name

Paragraph (the first operand) must be a CO8OL paragraph that consists of only a
simple GO TO statement; the ALTER statement in effect replaces the former
operand of that GO TO by procedure-name. Consider the ALTER statement in
the context of the following program segment.

GATE. GO TO MF-GPEN.
MF-CPEN. OPEN INPUT MASTER-RLE.

ALTER GATE TO PROCEED TO NORMAL.
NORMAL. READ MASTER-RLE, AT END GO TO EOF-MASTER.

-Examination of the above code reveals the technique of "shutting a gate,"
providing a one-time initializing program step.

COBOL- Reference Manual - Release 4 31
Procedure Division

4.13 JF STATEMENT

The IF statement permits the programmer to specify a series of procedural
statements to be executed in the event a stated condition is true. Optionally, an
alternative series of statements may be specified for execution if the condition
is false. The general format of the IF statement is:

IF condition (statement(s)-l
NEXT SENTENCE

ELSE I statement(s)-2 \
\NEXT SENTENCED

The IF statement must be followed immediately by a period.

Examples of IF statements:

1. IF BALANCE = 0 GO TO NOT-FOUND.
iv

^ 2. F T LESS THAN 5 NEXT SENTENCE ELSE GO TO 7-1-4.

. 3. IF ACCOUNT-FIELD = 3sACES OR NAME = SPACES ADO 1 TO
SKP-CCUNT ELSE GO TO BYPASS.

The first series of statements is executed only if the designated condition is
true. The second series of statements (ELSE part) is executed only if the
designated condition is false. Refer to Appendix III for discussion of nestsc IF
statements.

Regardless of whether the condition is true or false, the next sentence is
executed after execution of the appropriate series of statements, unless a GO
TO is contained in the imperatives that are executed, or unless the nominal flow
of program steps is superseded because of an active PERFORM statement.

4.13.1 Conditions

,'^ A condition is either a simple condition or a compound condition. The four
*^ simple conditions are the relational, class, condition-name, and sign condition

tests. A simple relational condition has the following structure:

operand-1 relation operand-2

where "operand" is a data-name, literal, or figurative-constant.

A compound condition may be formed by connecting two conditions, of any sort,
by the logical operator AND or OR, e.g., A < B OR C = D. Refer to Apoendix I
for further permissible forms involving parenthesization, NOT, or "abbreviation."

COBOL- Reference Manual - Release 4
Procedure Division

32

The simplest "simple relations" have three basic forms, expressed by the
relational symbols equal to, less than, or greater than (i.a., = or < or >).

Another form of simple relation that may be used involves the reserved word
NOT, preceding any of the three relational symbols. In summary, the six simple
relations in conditions are:

Relation Meaning

= \ equal to
< less than
> greater than
NOT = not equal to
NOT < greater than or equal to
NOT > less than or equal to

•

It is worthwhile to brief ly discuss how relation conditions can be compounded.
The reserved words AND or OR permit the specification of a series of relational
tests, as follows;

L Individual relations connected by AND specify a compound condition
that is met (true) only if ail the individual relationships are met.

2* Individual relations connected by OR soecify a compound condition
that is met (true) if any one of the individual relationships is met.

The following is an example of a compound relation condition containing both
AND and OR connecters. Refer to Appendix I for formal specification of
evaluation rules.

IF X = Y AND FLAG = 'Z' OR SWITCH = 0 GO TO PROCESSING.

In the above example, execution will be as follows, depending on various data values,

Data Value
X Y FLAG SvVlTCH

10
10
10
10
6
6

10
11
11
10
3
6

'Zf

'Zf

'Z'
p>
-pi
,pi

1
1
0
1
0
1

Does Execution Go
to PROCESSING?

Yes
No
Yes
No
Yes
No

COBOL- Reference Manual - Release 4 33
Procedure Division

Usages of reserved word chrasings EQUAL TO, LESS THAN, and GREATER
THAN are accepted equivalents of = < > respectively. Any form of the relation
may be preceded by the word IS, optionally.

Before discussing class-test, sign-test, and condition-name conditions, methods
of performing comparisons will be discussed.

Numeric Comparisons; The data operands are compared after alignment of their
decimal positions. The results are as defined mathematically, with any negative
values being less than zero, which in turn is less than any positive value. An
index-name or index data item (see Chapter 6) may appear in a comparison.
Comparison of any two numeric operands is permitted regardless of the formats
specified in their respective USAGE clauses, and regardless of length.

Character Comparisons; Non-equal-length comparisons are permitted, with
soaces being assumed to extend the length of the shorter item, if necessary.

^ Relationships are defined in the ASCII code; in particular, the letters A-Z are in
an ascending sequence, and digits are less than letters. Group items are Seated
simoly as character strings when compared. Refer to Appendix IV for ail ASCII
character representations.

Returning to our discussion of simple conditions, there are three additional fcrms
of a simple condition, in addition to the relational form, namely: class test,
condition-name test, and sign test.

A class test condition nas the following syntactical format: i

[NUMERIC
data-name IS [NCT] | ALPHABETIC

* ^m^^mmi^^ ^ ««MM^M^BMI^BMM^MVM«MMM

This condition specifies an examination of the data item content to determine
wnether ail characters are proper digit representations regardless of any
ooerational sign (when the test is for NUMERIC), or only alphabetic or blank
space characters (when the test is for ALPHABETIC). The NUMERIC test is
valid only for a group, decimal, or character item (not having an aiohacetic
PICTURE). The ALPHABETIC test is valid only for a group or character item
(PICTURE an-f arm).

A sign test has the following syntactical format:

data-name IS [NOT] NEGATIVE 1 ZERO ! POSITIVE

This test is equivalent to comparing data-name to zero in order to determine tne
truth of the stated condition.

In a conditicn-name test, a conditional variable is tested to determine wnether
its value is equal to one of the values associated with the condition-name, A
conditicn-name test is expressed by the following syntactical format:

.condition-name

where condition-name is defined by a level 38 Data Division entry.

CC8CL- Reference Manual - Release 4 84
Procedure Division

4.14 CPEN STATEMENT (Sequential I-O)

The CPEN statement must be executed prior to commencing file processing.
The general fcrmat of an CPEN statement is:

•OPEN
INPUT
I-O
CUTPUT
EXTEND

file-name... •••

For a sequential INPUT file, opening initiates reading the file's first records into
memory, so that subsequent READ statements may be executed without waiting.

For an CUTPUT file, opening makes available a record area for development of
(T* one record, which will be transmitted to the assigned output device ucon the
,'s^ execution of a WRITE statement. An existing file which has the same name will V_-

be superceded by the file created with CPEN OUTPUT.

An CPEN I-O statement is valid cnly fcr a DISK file; it permits use of the
REWRITE statement to modify records which have been accessed by a READ
statement. The WRITE statement may not be used in I-O mode for files with
sequential organization. The file must exist on disk at CPEN time; it cannot be
created by CPEN !-O.

When the EXTEND pnrase is specified, the OPEN statement positions :he file
immediately following the last logical record of that file. Subsequent WRITE
statements referencing the file will add records to the end of the file. Thus,
processing proceeds as though the file had been opened with the OUTPUT phrase
and positioned at its end. EXTEND can be used cnly for sequential ar line
sequential files*

Failure to precede (in terms of time sequence) file reading or writing by the
/"" execution of an CPEN statement is an execution-time error which will cause
'•^- abnormal termination of a program run. See the CC8OL- User's Guide.

Furthermore, a file cannot be opened if it has been CLOSEd "WITH LOCK.'1

Sequential files opened for INPUT or I-O access must have been written in the
appropriate format described in the User's Guide for such files.

CBCL- Reference Manual - Release 4. 35
Procedure Division

4.15 READ STATEMENT (Secuential I-O)

The READ statement makes available the next logical data record of the
designated file from the assigned device, and updates the value of the FILE
STATUS data item, if one was specified. The general format pf a READ
statement is:

READ file-name RECORD [INTO data-name]
[AT END imperative statement].

Since at some time the end-of-flle will be encountered, the user should Include
the AT END clause. The reserved word END is followed by any number of
imperative statements, all of which are executed only if the end-of-file situation
arises. The last statement in the AT END series must be followed by a period to
indicate the end of the sentence. If end-of-fiie occurs but there is no AT END
clause en the READ statement, an applicable Declarative procedure is
performed. If neither AT END nor Declarative exists and no FILE STATUS item
is specified for the file, the program is aoorted with a run-time error.

When a data record to be read exists, successful execution of the READ
statement is immediately followed by execution of the next sentence.

When mere than cne level-Ql item is subordinate to a file description, these
records share the same storage area. Therefore, the user must be acie to
distinguish between the types of records that are possible, in orcer to determine
exactly which type is currently available. This is accomplished with a -ata
comparison, using an IF statement to test a field which has a unique value fcr
eacn type of record.

The INTO action permits the user to specify that a copy of the data record is to
be olaced into a designated data neid in addition to the file's record area. The
data-name must not be defined in the File Section.

Also, the INTO phrase should not be used when the file has records of various
sizes as indicated by their record descriptions. Any subscripting or indexing of
data-name is evaluated after the data has been read but before it is moved to
data-name. Afterward, the data is available in both the file record and
data-name.

In the case of a blocked input file (such as disk files), not every READ statement
performs a physical transmission of data from an external storage device;
instead, READ may simply obtain the next logical record from an input buffer.

If the actual record is shorter than the file record area, the file record area is
padded on the right with spaces.

COBOL Reference Manual - Release 4 36
Procedure Division

r

4.16 WRITE STATEMENT ^SeCLential NO)

The general format of a WRITE statement is:

WRITE record-name [FROM data-name-1]

AFTER \ ADVANCING (operand LINE'S) 1
BEFORE) I PAGE j

[AT (END -OF -PAGE | imperative-statement]

1
Ignoring the ADVANCING ooticn for the moment, we proceed to explain the
main functions of the WRITE statement.

In COBOL, file output is achieved by execution of the WRITE statement.
Depending on the device assigned, "written" output may take the form of printed
matter or magnetic recording en a floppy disk storage medium. The associated
file must be open in the OUTPUT or NO mode at time of execution of a WRITE
statement.

Record-name must be cne cf the level 01 records defined for an output file, and
may be qualified by the filename. The execution cf the WRITE statement
releases the logical record to the file and updates its FILE STATUS item, if cne
is defined.

If the data to be outsut has been developed in Working-Storage or in another area
(for example, in an input file's record area), the FROM suffix permits the 'jser to
stiouiate that the designated data (data-name- 1) is to be copied into the
record-name area and then output from there. Record-name and data-name-1
must refer to separate storage areas.

When an attempt is made to write beyond the externally defined boundaries of a
sequential file, a Declarative procedure will be executed (if available) and the
FILE STATUS (if available) will indicate a boundary violation. If neither is
available, a fatal runtime error occurs.

The ADVANCING option is restricted to line printer output files, and, permits
the programmer to control the line spacing on the paper in the printer. Ocerand
is either an unsigned integer literal or data-name; values from Q to 120 are
permitted:

COBOL Reference Manual - Release 4 37
Procedure Division

Integer Carriage Control Action

0 No spacing
1 Normal single spacing
2 Double spacing
3 Triple spacing

• •
* •

Single spacing (i.e., "after advancing 1 line") is assumed if there is no BEFORE or
AFTER option in the WRITE statement.

Use of the key word AFTER implies that the carriage control acticn precedes
r^ printing a line, whereas use of BEFORE implies that writing precedes the
.f carriage control acticn. If PAGE is specified, the data is printed BEFORE or
'- -̂' AFTER the printer is repositioned to the next physical page. However, if a

LINAGE clause is associated with the file, the repositioning is to the first line
that can be written en the next logical page as specified in the LINAGE clause.

If the END-GF-PAGE phrase Is specified, the LINAGE clause must be specified
in the file description entry for the associated file. EOP is equivalent to
END-GF-PAGE.

An end-cf-page condition is reached whenever a WRITE statement with the
END-OF-PAGE phrase causes printing or spacing within the footing area of a
page body* This occurs when such a WRITE statement causes Che
LINAGE-COUNTER to equal or exceed the value specified by the FOOTING
value, if specified. In this case, after the WRITE statement is executed, the
imperative statement in the END-OF-PAGE phrase is executed.

A "page overflow" ccnditicn is reached whenever a WRITE statement cannot be
, fully accommodated within the current page body. This occurs when a WRITE
X^ statement would cause the LINAGE-COUNTER to exceed the value specified as
"•- the size of the page body in the LINAGE clause. In this case, the record is

printed before or after (depending an the phrase used) the printer is repcsiticned
to the first line of the next logical page. The imperative statement in the
END-QF-PAGE clause, if specified, is executed after the record is written and
the printer has been rspcsitioned.

Clearly, if no FOOTING value is specified in the LINAGE clause, or if the
end-of-page and overflow conditions occur simultaneously, then only the
overflow condition is effective.

COBOL Reference Manual - Release 4
Procedure Division

CLOSE STATEMENT (Sequential I-O)

Upon completion of the processing of a file, a CLOSE statement must be
executed, causing the system to make the proper disposition of the file.
Whenever a file is closed, or has never been opened, READ, REWRITE, or WRITE
statements cannot be executed properly; a runtime error would occur, aborting
the run.

•

The general format of the CLOSE statement is:

*

CLOSE {file-name [WITH LOCK]} ...

If the LOCK phrase is used, the runtime system will cause subseuqent OPENs of
the file to fail during the current job. If LOCK is not specified immediately
after a file-name, then that file may be re-OPENed later in the program, if the

f (/ program logic dictates the necessity.

An attempt to execute a CLOSE statement for a file that is not currently open is
a runtime error, and causes execution to be discontinued.

Examples of CLOSE statements:

CLOSE MASTER-RLE-IN WITH LOCK, WORK-FILE;
CLOSE PRINT-FILE, TAX-RATE-FILE, JOB-PARAMETERS WITH LOCK

4.18 REWRITE STATEMENT (Sequential I-O)

The REWRITE statement replaces a logical record on a sequential disk file. The
general format is:

- REWRITE record-name [FROM data-name]

' . Q
Record-name is the name of a logical record in the File Section of the Data
Division and may be qualified. Record-name and data-name must refer to
separate storage areas.

At the time of execution of this statement, the file to which record-name
belongs must be open in the I-O mode (see OPEN, Section 4.14).

If a FROM phrase is included in this statement, the effect is as if MOVE
data-name TO record-name were executed just prior to the REWRITE.

Execution of REWRITE replaces the record that was accessed by the mcst recent
READ statement; said prior READ must have 'been completed successfully. If
the record which is rewriting the record in the file is longer than the file's
record, only as many bytes as will fit are actually rewritten. On the other hand,
if the record which is rewriting the record in the file is shorter than the file's
record, unpredictable information will be written after the record, until the
beginning of the next record in the file.

CO3OL Reference Manual - Release & 89
Procedure Division

GENERAL NOTE CN I/O ERROR HANDLING

If an I/O error occurs, the file's FILE STATUS item, if one exists, is set to the
appropriate two-character code, otherwise it assumes the value "00".

If an I/O error occurs and is of the type that is pertinent to an AT END or
INVALID KEY clause, then the imperative statements in such a clause, if
present on the statement that gave rise to the error, are executed. But, if there
is not an aporopriate ciaus£ (such clauses may not appear on Open or Close, for
example, and are optional for other I/O statements), then the logic of program
flow is as follows:

1. If there is an associated Declaratives ERROR procedure (see Section
9), it is performed automatically; user-written logic must determine
wnat action is taken because of the existence of the error. Upon
return from the ERROR procedure, normal program flow to the next
sentence (following the I/O statement) is allowed.

2- If no Declaratives ERROR procedure is apolicable but there is an
associatea FILE STATUS item, It is presumed that the user may rase
actions uccn testing the STATUS item, so normal flow to the next
sentence isaiiowed.

Only if none of the aoove (INVALID KEY/AT END clause, Declaratives ERROR
procedure, or testaole FILE STATUS item) exists, then tne run-time error
handler receives control; the location of the error (source program line nurrcer)
is displayed en the ccnsoie, and the run is terminated "abnormally."

These remarks acoly to processing of any file, whether organization
sequential, line sequential, indexed cr relative.

is

4.20 STRING STATEMENT

The STRING statement allows concatenation of multiple sending data item
values into a single receiving item. The general format of this statement is:

STRING operand-1... DELIMITED BY <
^operand-2

SIZE

INTO identifier-1 [WTTH POINTER identifier-2]

[CN OVERFLOW imcerative-statsment]

CCBCL Reference Manual - Release 4 90
Procedure Division

In this format, the term operand means a non-numeric literal, one-character
figurative constant, or cata-name. Identifier-1 is the receiving data-item name,
wnicr must be alphanumeric without editing symbols or the JUSTIFIED clause.
Identifier-2 is a counter and must be an elementary numeric integer data item of
sufficient size (plus 1} to point to character positions within identifier-L

If no POINTER phrase exists, the default value of the logical pointer is one. The
logical pointer value designates the beginning position of the receiving field into
which data placement begins. During movement to the receiving field, the
criteria for termination of an individual source are controlled by the
"DELIMITED 3Y" phrase:

ELIMITED 3Y SIZE: the entire source field is moved (unless the
receiving field becomes full)

DELIMITED BY operand-2: the character string specified by operand-2 is a
search pattern which, if found to match a contiguous sequence of senoing
characters, terminates the function for the current sending operand (and
causes automatic switching to the next sending operand, if any). The
matching characters in the sending fields are not moved to identifier-!.

If at any point the logical pointer (which is automatically incremented by one for
eacn character scared into identifier-1) is less than one or greater than the size
of identifier-1, no further data movement occurs, and the imperative statement
given in the OVERFLOW phrase (if any) is executed. If there is no OVERFLOW
phrase, control is transferred to the next executable statement.

There is no automatic space nil into any position of identifier-1. That is,
unaccessed pcsiticns are unchanged upon completion of the STRING statement.

Uocn completicn of tre STRING statement, if there was a POINTER phrase, the
resultant value of identifier-2 equals its original value plus the number of
characters moved curing execution of the STRING statement.

4.21 UNSTRING STATEMENT

The UNSTRING statement causes data in a single sending field to be saoarated
into subflelds that are placed into multiple receiving fields. The general format
of the statement is:

V

UNSTRING identifier-1

[DELIMITED 3Y [ALL] operand-1 [OR [ALL] cperand-2] ...]

INTO {identifier-2 [DELIMITER IN identifier-3]
LCCUNT IN identifier-4]} ...

[WITH POINTER identifier-5]
[TALLYING IN identifier-6]
[ON OVERFLOW imperative-statement]

CC6CL- Reference Manual - Release 4 91
Procedure Division

Criteria fcr seoaration of subfields may be given in the "DELIMITED 3Y"
phrase. Eacn time a succession of characters matches one of the non-numeric
literals, one-character figurative constants, or data-item values named by
operand-i, the current collection of sending characters is terminated and moved
to the next receiving field scecified by the INTO-clause. When the ALL phrase is
specified, more than one contiguous occurrence of operand-i in identifier-! is
treated as one occurrence. The delimiting string is not moved into the current
receiving field.

When two or more delimiters exist, an 'OR' condition exists. Each delimiter is
compared to the sending field in the order specified in the UNSTRING statement.

Identifter-1 must be a grouo or character string (alphanumeric) item. When a
data-item is emoioyed as any operand-i, that operand must also be a group'or
character string item.

Receiving fields (identifier-2) may be any of the following types of items:

1. an unedited alphabetic item

2. a character-string (alonanumeric) item

3. a group item

X an external decimal item (numeric, usage DISPLAY) whose PICTURE
does not contain any P character.

When any examination encounters two contiguous celimitars, the current
receiving area !s sitner space or zero filled deoending en its type. If there '.s a
"DELIMITED 3Y" phrase in the UNSTRING statement, then there may be
"DELIMITER IN" phrases fcilcwing any receiving item (ident:fier-2) menciored in
the INTO clause. In this case, the character(s) that delimit the data movec into
identifier-2 are themselves stored in identifier-3, which should be an
aichanumeric item. Furthermore, if a "COUNT !N" phrase is present, the
numoer of characters that were moved into identifier-2 is moved to identifier-4,
which must be an elementary numeric integer item.

If there is a "POINTER" phrase, then identifier-5 must be an integer numeric
item, and its initial value becomes the initial logical pointer value (otherwise, a
logical pointer value of one is assumed). The examination of source characters
begins at the position in identifier-1 specified by the logical pointer; upon
completion of the UNSTRING statement, the finai logical pointer value will be
cooied back into identifier-5.

If at any time the value of the logical pointer is less than one cr exceeds the size
of identifier-1, then overflow is said to occur and control passes over to the
imperative statements given in the "ON OVERFLOW1 clause, if any.

COBOL- Reference Manual - Release & ' 92
Procedure Division

Overflow also occurs when ail receiving fields have been filled prior to
exhausting the source field.

During the course of source field scanning (looking for matching delimiter
sequences), a variable length character string is developed which, when
completed by recognition of a 'delimiter or by acquiring as many characters as
the size of the current receiving field can hold, is then moved to the current
receiving field in the standard MOVE fashion.

If there is a "TALLYING IN" phrase, identifier-6 must be an integer numeric
item. The number of receiving fields acted upon, plus the initial value of
identifier-o, will be produced in identifier-6 upon completion of the UNSTRING
statement.

Any subscripting or indexing associated with identifer-1, 5, or 6 is evaluated only r
ones at the beginning of the UNSTRING statement. Any subscripting associated --*
wth operands-i cr identifier-2, 3, ^ is evaluated immediately before access to the
data item.

4.22 DYNAMIC DEBUGGING STATEMENTS

The execution TRACE mode .-nay be set or reset dynamically. When set,
procedure-names are printed en the user's console in the order in which they are
executed.

Execution of the READY TRACE statements sets the trace mode to cause
printing of every section and paragraph name each time it is entered. The RESET
TRACE statement inhibits sucn printing. A printed list of procedure-names in
the order of their execution is invaluable in detection of a program malfunction;
it aids in determination of the point at which actual program flow departed from
the expected program flow.

Another debugging feature may be required in order to reveal critical data
values at soecificaily designated points in the procedure. The EXHIBIT
statement provides this facility.

The statement form

EXHIBIT NAMED

>

[position-spec]
tdentifer
literal
ERASE

...[UPON mnemonic-name]

produces a printout of values of the indicated literal, or data items in the format
data-name = value, pcsiticn-spec and the UPON phrase have the same effect as
in the DISPLAY statement.

CCSCL Reference Manual - Release 4 93
Procecure Division

Statements EXHIBIT. READY TRACE and RESET TRACE are extensions co
ANS-7& standard CC6CL designed to provide a convenient aid to program
cebugging.

Programming Note: It is often desirable to include such statements on source
lines that contain D in column 7, so that they are ignores by the compiler unless
WITH DEBUGGING NCDE is included in the SGLRCE-CCMPUTER paragraph.

** "S

'•c

CC5CL- Reference Manual - Release 4 94
•

CHAPTER 5

Inter-Program Communication

Separately compiled CC8CL program modules may be combined into a single
executable program. Inter-program communication is made possible through the
use of the Linkage Section of the Data Division (which follows the
Working-Storage Section) and by the CALL statement and the USING list
appendage to the Procedure Division header of a subprogram module. The
Linkage Section describes data made available in memory from another program
module. Record description entries in the LINKAGE section provide data-names
by which data areas reserved in memory by other programs may be referenced.
Entries in the LINKAGE secticn do not reserve memory areas because the data is

(' ' assumed to be present elsewhere in memory, in a CALLing program.

Any record description clause may be used to describe items in the Linkage
Secticn as Icng as the VALUE clause is not specified for other than level 38
i terns.

The program CHAINing facility allows a CG8CL program to transfer control to
any other executable program and, optionally, to pass data items as parameters
to the CHAINed program.

5.1 CALL STATEMENT

The CALL statement format Is

CALL literal [USING data-name ..,]

Literal Is a. subprogram name defined as the PROGRAM-ID of a separately
compiled program, and is non-numeric. Data names in the USING list are made
available to the called subprogram by passing addresses to the subprogram; these
addresses are assigned to the Linkage Section items declared in the USING list of
that subprogram. Therefore the number of data-names specified in matching
CALL and Procedure Division USING lists must be identical. Information oassing
conventions a£ the machine language level are described in the CC8CL User's
Guide.

NOTE

Correspondence between caller and
caiiee lists is by position, not by
identical spelling of names.

COBOL-30 Reference Manual - Release 4 ' 95
Inter-Program Communication

5.2 EXIT PROGRAM STATEMENT

The EXIT PRCGRAM statement, appearing in a called subprogram, causes
control to be returned to the next executable statement after CALL in the
calling program. This statement must be a paragraph by itself.

5.3 CHAIN STATEMENT

The CHAIN statement is coded according to the following format:

literal
CHAIN

identifier-!
[USING identifier-2...]

Literal and identifier-! must be alphanumeric, and identifier-! must contain a
terminating space. Eacn occurrence of identifier-2 must be defined in the
WORKING-STORAGE or LINKAGE ACTION or in the record area of a file open
at the time the CHAIN statement Is executed.

When the CHAIN statement is executed, the value of literal cr identifier-!, uo to
but not including the first space encountered (or the end of the literal), is
interpreted as the name of an executable program file in the format of the
appropriate operating system. The named program is leaded into memory and
executed. Ail program and data structures of the CHAINing program are
permanently destroyed except tnat the USING clause may be used to transfer
parameters to the CHAINed program. See secticn 5.4 (PRCDECURE DIVISION
Header with CALL and CHAIN).

The CHAINed program need not be a CC8OL program. If it is, it must be a main
program.

CC8CL- Reference Manual - Release 4 96
Inter-Program Communication

5.4 PRCCEDURE DIVISION HEADER WITH CALL AND CHAIN

The PROCEDURE DIVISION header of a main program is written as:

PRCCEDURE DIVISION [CHAINING data-name- 1...].

The PROCEDURE DIVISION header of a subprogram is written as:

PRCCEDURE DIVISION USING [data-name-2...].

The various forms of the PROCEDURE DIVISION header describe the linkage
and parameter initialization requirements of a program. A main program must
be linked by itself or with any number of subprograms. It may then be run
indeoendentiy or invoked by the execution of a CHAIN statement in another
program. A subprogram must be linked with exactly one main program and,
optionally, any numoer of other subprograms. It may only be executed by the
action of a CALL statement. For a description of the linking process, see the
COBOL User's Guide.

A CHAINed or CALLed program should have a CHAINing list or non-emoty
USING list if and only if the invoking CHAIN or CALL statement has a USING
list. Furthermore, the numbers of entries in the lists should be equal, and
positicnally corresccncing entries in the two lists should reference data items of
the same size and USAGE. Failure to conform to these rules will not be
'diagnosed and will cause unpredictable results at runtime.

The values of the data items named in the PROCEDURE DIVISION header are
estaolisned at program initialization time by using the contents of pcsitionaily
correspcnoing data items named in the invoking CALL or CHAIN statement. In
the case of CALL, the identification is made by passing pointers. Therefore, if
the value of a data item named in a PRCCEDURE DIVISION USING clause is
changed curing subprogram execution, the corresponding data item in the
CALLing program will reflect the change after control is returned from the
subprogram.

For a description of the formats in which parameters are passed by the CAL
and CHAIN statements, see the COBCL User's Guide.

L

CCBCL- Reference Manual - Release 4 97

CHAPTER 6

Table Handling by the Indexing Method

In addition to the capabilities of subscripting described in Chapter 3, CCECL
provides the indexing method of table handling.

6.1 INDEX NAMES AND INDEX ITEMS

An index name is declared not by the usual method of level number, name, and
data cescription clauses, but implicitly by appearance in the "INDEXED 3Y
index-name" appendage to an OCCURS clause. An index-name must be unique.

An index data item is an item defined by the USAGE IS INDEX phrase. An index
data item must not have a PICTURE. An index name or index data item may
only be referred Eo by a SET or SEARCH statement, a CALL statement's USING
list or a Procedure header USING list; or used in a relation condition or as the
variation item in a PERFORM VARYING statement, or in place of a subscript.
In all cases the process is ecuivaient to dealing with a binary word integer
subscript. Index-name must be initialized to some value before use via SET,
SEARCH or PERFORM.

6.2 SET STATEMENT

The Sc. i statement permits the manipulation of index-names, index items, or
binary subscripts for table-handling purposes. There are two formats.

Format 1:

SET

Format 2:

SET

index-name-i
index-item-1
data-name-1

TO
index-name-2'
index-item-2
data-name-2
Jnteger-2

index-name-3 JUB
JOOVVN BY

I data-name-4
jinteger-4

Format 1 is equivalent to moving the "TO" value (e.g., integer-2) to muitioie
receiving fields written immediately after the verb SET.

COBOL- Reference Manual - Release 4 98
Table Handling by the Indexing Method

Format 2 is equivalent to reduction (DOWN) or increase (UP) applied to each of
the quantities written immediately after the verb SET: the amount of the
reduction or increase is specified by a name or value immediately following the
word BY.

In any SET statement, data-names are restricted to integer items.

6.3 RELATIVE INDEXING

A user reference to an item in a table controlled by an OCCURS clause is
expressed with a proper number of subscripts (or indices), separated by commas.
The whole is enclosed in matching parentheses, for example:

\(~ TAX-RATE (BRACKET, DEPENDENTS) C\
' ̂ XCCDE (I, 2)

where subscripts are ordinary integer decimal data-names, or integer constants,
or binary integer (COMPUTATIONAL or INDEX) items, or index-names.
Subscripts may be qualified, but not, themselves, subscripted. A subscript may
be signed, but if so, it must be positive. The lowest acceptable value is 1,
pointing Co the first element of a table. The highest permissible value is the
maximum number of occurrences of the item as specified in its OCCURS clause.

A further capability exists, called relative indexing. In this case, a "subscript" is
expressed as

name * integer constant

wnere a space must be on either side of the plus or minus, and "name" may be
any proper incex-name.

s > Example:
v_>- "

XCCDE (1*3, J - 1).

COBOL Reference Manual - Release 4 99
Table Handling by the Indexing Method

H STATEMENT — Format 1

A linear search of a table may be done using the SEARCH statement. The
general format is:

SEARCH table [VARYING identifier I index-name]

[AT END imperative-statement-l]

(WHEN conditional [NEXT SENTENCE
I jimperative-statement-2l

Table is the name of a data-item having an OCCURS clause that includes an
J^CEXED SY list; table must be written without subscripts or indexes because

,•(' the nature of the SEARCH statement causes automatic variation of an
index-name associated with a particular table.

There are four possible VARYING cases:

L NO VARYING phrase — the first-listed index-name for the table is
varied.

2o VARYING index-name-in-a-different-table — the first-listed
index-name in the table's definition Is varied, implicitly, snd the
index-name listed in the VARYING phrase is varied in like manner,

' simultaneously.

3. VARYING index-nsme-defmed-fcr-table — this specific index-name is
the only one varied.

4. VARYING intsger-data-item-name — both this data-item and the
first-listed index-name for table are varied, simultaneously.

f•.^^ The term variation has the following interpretation:

1. The initial value is assumed to have been established by an earlier
statement such as SET*

2- If the initial value exceeds the maximum declared in the applicable
OCCURS clause, the SEARCH operation terminates at once; and if an
AT END phrase exists, the associated imperative statement-1 is
executed.

3. If the value of the irfdex is within the range of valid indexes (1,2,...
up to and including the maximum number of occurrences), then each
WHEN-conditicn is evaluated until one is true or all are found to be
false. If one is true, its associated imperative statement is executed
and the SEARCH operation terminates. If none is true, the index is
incremented by one and step (3) is repeated. Note that incrementation
of index applies to whatever item and/or index is selected according to
rules 1-4.

COBOL- Reference Manual - Release 4 ICO
Taoie Hanaling by the Incexing Metnod

If the taole is subordinate to another table, an index-name must be associated
with eacn dimension of the entire table via INDEXED BY pnrases in ail the
OCCURS clauses. Only the index-name of the SEARCH table is varied (along
with anctner VARYING index-name or data-item). To search an entire two- or
three-aimensicnal table, a SEARCH must be executed several times with the
other incex-names set appropriately eacn time, probably with a PERFORM,
VARYING statement.

The logic of a Format 1 SEARCH is depicted on page 84.

6-5 SEARCH STATEMENT - Format 2

Format 2 SEARCH statements deal with tables of ordered data. The general
format of sucn a SEARCH ALL statement is:

SEARCH ALL table [AT END imperative-statement-!...]

VM-EN condition fimcerative-statsment-2...
INEXT SENTENCE

Only ore 'Art-EN clause is permitted, and the following rules aoply to the
ccnoiticn:

1. Only simple relational conditions or ccnciti en-names may be
emoloyed, and the suoject must be properly indexed by the first
index-name associated with table (along with sufficient other indexes
if multiple OCCURS clauses aopiy). Furthermore, each suoject
cata-name (or the data-name associated with ccn a it: on-name) in the
condition must be mentioned in the KEY clause of the table. The KEY
clause is an appendage to the OCCURS clause having the following
format:

•'
ASCENDING I DESCENDING KEY IS data-name ...

where data-name is the name defined in this Data Description entry
(following level number) or one of the subordinate data-names. If
more than one data-name is given, then all of them must be the names
of entries subordinate to this group item. The KEY phrase indicates
that the repeated data is arranged in ascending or descending order
according to the data-names which are listed (in any given KEY
phrase) in decreasing order of significance. More than one KEY phrase
may be specified.

2. In a simple relational condition, only the equality test (using relation =
or IS EQUAL TO) is permitted.

v 4

COBOL- Reference Manual - Release ^ 101
Table Handling by the Indexing Method

3. Any condition-name variable (Level 38 items) must be defined as
having only a single value.

4. The condition may be compounded by use of the. Logical connecter
AND, but not OR.

5. In a simple relational condition, the object (to the right of the equal
sign) may be a literal or an identifier; the identifier must NOT be
referenced in the KEY clause of the table cr be indexed by the first
index-name associated with the table. (The term i-dentifier means
data-name, including any qualifiers and/or subscripts cr indexes.)

Failure to conform to these restrictions may yield unpredictable results.
Unpredictable results also occur if the table data is not ordered in conformance
to the declared KEY clauses, or if the keys referenced in the W-'EN-ccnciticn
are not sufficient to identify a unique taoie element.

In a Format 2 SEARCH, a ncnserial type of search ooeraticn may take place,
relying upon the declared ordering of data. The initial setting of the index-name
for table is ignored and its setting is varied automatically during the searching,
always within the oounds of the maximum number of occurrences. If the
condition (WHEN) cannot be satisfied for any valid index value, control is passed
to imperative-statement-1, if the AT END clause is present, or to the next
executable sentence in the case of no AT END clause.

If all the simple conditions in the single WHEN-ccnditian are satisfied, the
resultant index value indicates an occurrence that allows those conciticns to be
satisfied, and control passes to imperative-statament-Z. Otherwise the final
setting is not predictaole.

COBOL- Reference Manual - Release 4
Table Handling by the Indexing Mechod

102

Logic Diagram for Format 1 SEARCH

Increment
index(es)

T

r
' rasy be null *

state-
ment (s)-1

stats

executa

rrent(s)-3

A" -.3
v--̂ s

COBOL- Reference Manual - Release 4 103

CHAPTER 7

Indexed Files

7.1 DEFINITION OF INDEXED FILE ORGANIZATION

An indexed-file organization provides for recording and accessing records of a
data file by keeping a directory (called the control index) of pointers that enable
direct location of records having particular unique key values. An indexed file
must be assigned to DISK in its defining SELECT sentence.

A file whose organization is indexed can be accessed either sequentially,
^' dynamically or randomly.

*V

^^ Sequential access provides access to data records in ascending order of RECORD
KEY values.

In the random access mode, the order of access to records is controlled by the
programmer. Each record desired is accessed by placing the value of its key in a
key data item prior to an access statement.

In the dynamic access mode, the programmer's logic may change from sequential
access to random access, and vice versa, at will.

7.2 SYNTAX CONSIDERATIONS

In the Environment Division, the SELECT entry must specify ORGANIZATION IS
INDEXED, and the ACCESS clause format is

ACCESS MCDE IS SEQUENTIAL I RANDOM] DYNAMIC.-~—.̂ __ ' ——-———- i

Assign, Reserve, and File Status clause formats are identical to those specified
in Section 2.2.1 of this manual.

In the FD entry for an INDEXED file, both LA3EL RECORDS STANDARD and a
VALUE OF FILE-ID clause must appear. The formats of Section 3.13 apply,
except that only the DISK-reiated forms are apolicabie.

CC8OL Reference Manual - Release
Indexed Flies

104

A"/

7.2.1 RECORD KEY CLAUSE

The general format of this clause, which is required, is:

RECCRD KEY IS data-name-1

where data-name-1 is an item defined within the record descriptions of the
associated file "description, and is a group item or an elementary alphanumeric
item. The maximum key length is 60 bytes and the key should never be made to
contain all nulls.

If random access mode is specified, the value of data-name-1 designates the
record to be accessed by the next DELETE, READ, REWRITE or WRITE
statement. Each record must have a unique record key value.

\

•7.2.2 FILE STATUS REPORTING

If a FILE STATUS clause appears in the Environment Division for an Indexed
organization file, the designated two-character data item is set after every I-O
statement* The following table summarizes the possible settings.

/•<•*•.
(3

status Uata
Item LEFT
Character

Successful
Completion (0)

At End (1)

Invalid
Key (2)

Permanent
ErrorO)

Special
Cases (9)

No Further
Description
(0)

X

X

X

o

Status Data

Structure
Error
(I)

X

X

Item RIGHT

Duplicate
Key i
(2)

'

X

Character

No Record
Found
(3)

.

X

i

Disk Scace j
Full
(4)

/ *>•̂
X

1

X

File Status '21' arises if ACCESS MODE is SEQUENTIAL when WRITEs do not
occur in ascending sequence for an indexed file, or the key is altered prior to
REWRITE. In an OPEN INPUT or OPEN I-O statement, a File Status of '30'
means 'File Not Found.1 File Status '91' occurs on an OPEN INPUT or OPEN I-O
statement for a relative cr indexed file whose structure has been destroyed (for
example, by a system crash during output to the file). When this status is
returned on an OPEN INPUT, the file is considered to be open, and REACs may
be executed. On an OPEN I-O, however, the file is not considered to be open,
and ail I/O operations fail. The other settings are self-explanatory.

Note that "Disk Space Full" occurs with Invalid Key (2) for indexed and relative
file handling, whereas it occurred with "Permanent Error" (3) for sequential files.

COBOL Reference Manual - Release 4
Indexed Files

105

If an error occurs at execution time and no AT END or INVALID KEY
statements are given and no aporopriate Declarative ERROR section is supplied
and no FILE STATUS is specified, the error will be displayed on the console and
the program will terminate. See Section 4,19.

7J PROCEDURE DIVISION STATEMENTS FOR INDEXED FILES

The syntax of the sequential file OPEN statement (Section 4.14) also applies to
indexed organization files, except that EXTEND is not applicable.

The following table summarizes the available statement types and their
permissibility in terms of ACCESS mcde and OPEN option in effect. Where X
apoears, the statement is permissible, otherwise it is not valid under the
associated ACCESS mcde and CPEN option.

ACCESS
MODE IS

SEQUENTIAL

RANDOM
.

DYNAMIC

Procedure
Statement

READ
WRITE
RE/VRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

CPEN Ooticn in Effect
Input Output

X
X

X

X
X

X
X

X

I-O

X

X
X
X

X
X
X

X

X
X
X
X
X

In addition to the above statements, CLOSE is permissible under ail conditions;
the same format shown in Section 4.17 is used.

COBOL Reference Manual - Release 4 106
Indexed Files

7.4 READ STATEMENT

Format i (Sequential Access):

READ file-name [NEXT] RECORD [INTO data-name-1]

[AT END imperative-statement .,.]

Format 2 (Random or Dynamic Access):

READ file-name RECORD [INTO data-name-1] [KEY IS data-name-2]'

[INVALID KEY imperative-statement...]
•

Format 1 without NEXT must be used for all files having SEQUENTIAL ACCESS
mcde. Format 1 with the NEXT opticn is used for sequential READs of a
DYNAMIC access mode file. The AT END clause is executed when the logical
end-of-nle condition arises. If this clause is not written in the source statement,
an appropriately assigned Declaratives ERROR section is given control at
end-of-file time, if available.

Format 2 is used for files in random-access mcde or fcr files in dynamic-access
mode when records are to be retrieved ran com ly.

*

In format 2, the INVALID KEY clause specifies action to be taken if the access
key value does not refer to ai existing key in the file. If the clause is not given,
the appropriate Declaratives ERROR section, if supplied, is given ccntrol.

The optional KEY IS clause must designate the record key item declared in the
file's SELECT entry. This clause serves as documentation cnly. The user must
ensure that a valid key value is in the designated key field prior to execution of a
random-access READ.

The rules for sequential files regarding the INTO phrase scpiy here as well.' '

COECL- Reference Manual - Release 4 107
Indexed Files

7.5 WRITE STATEMENT
7

The WRITE statement releases a logical record for an output or input-output file;
its general format is:

WRITE record-name [FRCM data-name-1]

[INVALID KEY imperative-statement...]

Just prior to executing the WRITE statement, a valid (unique) value must be in
that portion of the record-name (or data-name-1 if FRCM appears in the
statement) which serves as RECCRD KEY.

«.

•fIn the event of an imprccer key value, the imperative statements are executed i
the INVALID KEY clause appears in the statement; otherwise an appropriate
Declaratives ERROR secticn is invoked, if applicable. The INVALID KEY
condition arises if:

1. fcr sequential access, key values are not ascending from cne WRITE "o
the next WRITE;

2. the key value is not unique;

3. the allocated disk space is exceeded.

7.6 RET.VRITE STATEMENT

The RET/VRITE statement logically replaces an existing record; the format of the
statement is:

R S/VRITE record-name [FRCM data-name]
L IN VALID KEY imperative-statement...]

For a file in sequential-access mode, the last READ statement must have been
successful in order fcr a REWRITE statement to be valid. If the value of the
record key in record-name (or corresponding part of data-name, if FROM
appears in the statement) does not equal the key value of the immediately
previous READ, then the invalid key condition exists and the imperative
statements are executed, if present; other-vise an applicable Declaratives
ERROR secticn is executed, if available.

For a file in a random or dynamic access mode, the record to be replaced is
specified by the record key; no previous READ is necessary. The INVALID KEY
condition exists when the record key's value does not equal that of any record
stored in the file.

COBOL- Reference Manual - Release 4 108
Indexed Files

7.7 DELETE STATEMENT

The DELETE statement logically removes a record from an indexed file. The
general fcrmat of the statement is:

DELETE file-name RECORD [INVALID KEY imperative-statement...]

For a file in the sequential access mode, the last input-output statement
executed for file-name must have been a successful READ statement. The
record that was read Is deleted. Consequently, no INVALID KEY phrase should
be specified for sequential-access mode files.

For a file having random or dynamic access mode, the record deleted is the one
associated with the record key; if there is no such matching record, the invalid
key condition exists, and control, passes to the imperative statements in the
INVALID KEY clause, or to an applicable Declarative ERROR section if no
INVALID KEY clause exists.

7.3 START STATEMENT

The START statement enables an indexed organization file to be positioned for
reading at a specified key value. This is permitted for files open in either
sequential or dynamic access mco'es. The format of this statement is:

START file-name
[GREATER THAN]

KEY IS I NOT LESS THAN data-name

[INVALID KEY imperative statement...]

Data-name must be the declared record key and the value to be matched by a
record in the file must be pre-stored in the data-name. When executing this
statement, the file must be open in the input or I-O mode.

If the KEY phrase is not present, equality between a record in the file and the
record key value is sought. If key relation GREATER or NOT LESS is specified,
the file is^positioned for next access at the first record greater than, or greater
than or equal to, the indicated key value.

If no matching record is found, the imperative statements in the INVALID KEY
clause are executed, or an appropriate Declaratives ERROR section is executed.

CC8CL- Reference Manual - Release 4 109

CHAPTER 3

Relative Files

3.1 DEFINITION CF RELATIVE FILE CRGANIZATION

Relative organization is restricted to disk files. Records are differentiated en
the basis of a relative record number which ranges from 1 to 32,767, or to a
lesser maximum for a smaller file. Unlike the case of an indexed file, where tne
identifying key field occupies a part of the data record, relative record numbers
are conceptual and are not embedded in the data records.

A relative organization file may be accessed either sequentially, dynamically or
randomly. In sequential access mcde, records are accessed in the order of
ascending record numbers.

In random access mcde, the secuence of record access is controlled by the
program, by placing a number in a relative key item. In dynamic access mode,
the program may inter-mix random and sequential access at will.

8.2 SYNTAX CONSIDERATIONS

In the Environment Division, the SELECT entry must specify ORGANIZATION IS
RELATIVE, anc the ACCESS clause format is

ACCESS MCDE IS SEQUENTIAL ! RANDOM ! DYNAMIC.

Assign, Reserve, and File Status clause formats are identical to those used for
sequential or indexed organization files. The values of STATUS Key 2 when
STATUS Key 1 equals '2' are:

'2* for attempt to WRITE a duplicate key

'3' for nonexistent record

'4' for disk space full

In the associated FD entry, STANDARD labels must be declared and a VALUE
CF FILE-ID clause must be included.

Thie first byte of the record area associated with a relative file should not be
described as part of a CCMP or CCMP-3 item by any record description for the
file.

CC8OL- Reference Manual - Release 4 110
Relative Files

3.2.1 RELATIVE KEY CLAUSE

In addition to the usual clauses in the SELECT entry, a clause of the form

RELATIVE KEY IS data-name-1

is required for random .or dynamic access mode. It is also required for
sequential-access mode, if a START statement exists for such a file.

Data-name-1 must be described as an unsigned binary integer item not contained
within any record description of the file itself. Its value must be positive and
nonzero.

3.3 PROCEDURE DIVISION STATEMENTS FOR RELATIVE FILES .

Within the Procedure Division, the verbs OPEN, CLOSE, READ, WRITE,
RET/VRITE, DELETE and START are available, just as for files whose organization
is indexed. (Therefore the charts in Sections 7.2.2 and 7.3 also apoiy to
RELATIVE files.) The statement formats for sequential file OPEN and CLOSE
(see Sections 4.14 and 4.17) are applicable to relative files, except for the
"EXTEND" ohrase.

9.4 READ STATEMENT

Format 1:
READ file-name [NEXT] RECCRD [INTO data-name]

[AT END imperative statement...]

Format 2s
READ file-name RECORD [INTO data-name]

[IN VALID KEY imperative statement...]

Format 1 must be used for ail flies in sequential access mode. The NEXT phrase
must be present to achieve sequential access if the file's declared mode of
access is Dynamic. The AT END clause, if given, is executed when the logical
end-of-file condition exists, or, if not given, the appropriate Declaratives
ERROR section is given control, if available.

•

Format 2 is used to achieve random access with declared mode of access either
Random or Dynamic.

COBOL- Reference Manual - Release 4 ill
Relative Files

If a Relative Key is defined (in the file's SELECT entry), successful execution of
a format 1 READ statement updates the contents of the RELATIVE KEY ite<"
("data-name-1") so as to contain the record number of the record retrieved.

For a format 2 READ, the record that is retrieved is the one whose relative
record number is pre-stored in the RELATIVE KEY item. If no such record
exists, however, the INVALID KEY condition arises, and is handled by (a) th^-
imoerative statements given in the INVALID KEY portion of the READ, or (b) -n
associated Declaratives section.

The rules for sequential files regarding the INTO phrase apply here as well.

3.5 WRITE STATEMENT

The format of the WRITE statement is the same for a relative file as for an
incexed file:

WRITE record-name [FROM data-name]

[INV ALJD imperative statement...]

If access mcde is sequential, then completion of a WRITE statement causes the
relative record number of the record just output to be placed in the RELATIVE
KEY item.

If access mcde is random or dynamic, then the user must pre-set the value cf the
RELATIVE KEY item in order to assign the record an ordinal (relative) numcer.
The INVALID KEY condition arises if there already exists a record having the
specified ordinal number, or if the disk soace is exceeded.

8.6 REWRITE STATEMENT

The format of the R.EWRITE statement is the same for a relative file as for art
indexed file:

RE/vRITE record-name [FROM data-name]

[INVALID KEY imperative statement ...]

For a file in sequential access mode, the immediately previous action must have
been a successful READ; the record thus previously made'available is reoiacsd in
the file by executing REWRITE. If the previous - READ was unsuccessful, a
run-time error will terminate execution. Therefore, no INVALID KEY clause is
ailcwed for sequential access.

COBOL Reference Manual - Release 4 112
Relative Files

For a file with dynamic or random access mode declared, the record that is
replaced by executing RBVRITE is the one whose ordinal number is pre-set in the
RELATIVE KEY item. If no such item exists, the INVALID KEY condition
arises.

8.7 DELETE STATEMENT

The format of the DELETE statement is the same for a relative file as for an
indexed files

DELETE file-name RECORD
\

[INVALID KEY imperative statement...] r

For a file in a sequential access mode, the immediately previous action must
have been a successful READ statement; the record thus previously made
available is logically removed from the file. If the previous READ was
unsuccessful, a run-time error will terminate execution. Therefore, an INVALID
KEY phrase may net be specified fcr sequential-access mode files.

Fcr a file with dynamic or randcm access mode declared, the removal action
certains to whatever record is designated by the value in the RELATIVE KEY
item. If no such numbered record exists, the INVALID KEY condition arises.

3.3 START STATEMENT

The format of the START statement is the same for a relative file as fcr an
incexed file:

START file-name KEY IS
GREATER THAN
NOT LESS THAN
EGUALTO

data-name-1

[INVALID KEY imperative statement...]

Execution of this statement specifies the beginning position for reading
operations; it is permissible only for a file whose access mode is defined as
sequential or dynamic.

Data-name may only be that of the previously declared RELATIVE KEY item,
and the number of the relative record must be stored in it before START is
executed. When executing this statement, the associated file must be currently
open in INPUT or I-Q mcde.

CO8CL- Reference Manual - Release & 113
Relative Flies

If the KEY phrase is not present, equality between a record in the file and the
record key value is sought. If key relation GREATER or NOT LESS is specified,
the file is positioned fcr next access at the first record greater than, or greater
than or equal to, the indicated key value.

If no such relative record is found, the imperative statements in the INVALID
KEY clause are executed, or an appropriate Declaratives ERROR section is
executed.

CCBCL- Reference Manual - Release 4

CHAPTER 9

Declaratives and the Use Sentence

The Declaratives region provides a method of including procedures that are
executed not as part of the sequential coding written by the programmer, but
rather when a condition that cannot normally be tested by the programmer
occurs.

Although the system automatically handles checking and creation of standard
labels and executes errcr recovery routines in the case of input/output errors,
additional procedures may be specified by the CCBCL programmer.

•

Since these procedures are executed only at the time an error In reading or
writing occurs, they cannot 'appear in the regular sequence of procedural
statements. They must be written at the beginning of the Procedure Division in
a subdivision called DECLARATIVES. Related procedures are preceded by a
USE sentence that specifies their function. A declarative section ends with the
occurrence of another secticn-name with a USE sentence cr with the key words
END DECLARATIVES.

The key words DECLARATIVES and END DECLARATIVES must each begin in
Area A and be followed by a seriod.

PRCCEDURE CIVISICN.

DECLARATIVES.

{sect: on -name SECTTCN. USE 3 en ten c

'.paragrach-name. ^sentence;...; ...; ...

END DECLARATIVES.

The USE sentence defines the applicability of the associated section of coding.

COBOL Reference Manual - Release 4 ' 115
Deciaritives and the Use Sentence

A USE sentence, when present, must immediately follow a section header in the
Declarative portion of the Procedure Division and must be followed by a period
followed by a soace. The remainder of the section must consist of zero, one or
more procedural paragraphs that define the procedures to be used. The USE
sentence itself is never executed; rather, it defines the conditions for the
executicn of the USE procedure. The general format of the USE sentence is

USE AFTER STANDARD EXCEPTION I ERROR PROCEDURE

ON {file-name... I INPUT I OUTPUT I I-O I EXTEND}.

The words EXCEPTION and ERROR may be used interchangeably. The
associated declarative section is executed (by the PERFORM mechanism) after
the standard I-Q recovery procedures for the files designated, or after the
INVALID 'KEY or AT END condition arises en a statement lacking the INVALID
KEY or AT END clause. A given file-name may not be associated with more
than one declarative section.

Within a declarative section there must be no reference to any nondeciarative
procecure. Conversely, in the ncndeciarative portion there must be no reference
to procedure-names that appear in the declaratives section, except that
PERFORM statements may refer to a USE statement and its procedures; out in a
range specification (see PERFORM, Section 4.10) if one procedure-name is in a
Declarative Section, then the other must be in the same Declarative Section.

«

An exit from a Declarative Section is inserted by the compiler following the last
statement in the section. Ail logical program paths within the section must lead
to the exit point.

\ **

CCSCL Reference Manual - Release 4 116

CHAPTER 10

Segmentation

The proqram segmentation facility is provided to enable the execution of
CC6OL- programs whic£i are larger than physical memory. When segmentation
is used (that is, when any section header in the program contains a segment
number) the entire PROCEDURE 01 VISION must be written in sections. Each
section Is assigned a segment number by a section' header of the form:

section-name SECTION [segment-number].

segment-number must be an integer with a value in the range from 0 through 99.
If segment-number is omitted, it is assumed to be 0. Declaratives sections must
have segment-numoers less than 50« Ail sections which have the same segment
nurrcer constitute a single program segment and must occur together in the
source program. Furthermore, all segments with numbers less than 50 must
occur together at the beginning of the PROCEDURE DIVISION.

Segments with numbers 0 through 49 are called fixed segments and are aways
resident in memory during execution. Segments with numcers greater than 49
are called independent segments. Each indeoendent segment is 'reatea as a
program overlay. An indeoendent segment is in its initial state when control is
passed to it for the first time during the execution of a program, and also when
control is passed to *hat section (implicitly or explicitly) from another segment
with a different segment number. Soecificaily, an independent segment is in its
initial state when it is reacned by "falling througn" the end of a fixed or
different indecendent segment.

Segmentation causes the following restrictions on the use of the ALTER and
PERFORM statements?

1. A GO TO statement In an independent segment must not be referred
to by an ALTER statement in any other segment.

2. A PERFORM statement in a fixed segment may have within its range
only

a. sections and/or paragraphs wholly contained within fixed
segments, or

b. sections and/or paragraphs wholly contained in a single
independent segment.

COBOL- Reference Manual - Release -i 117
Seomentaticn

3. A PERFORM statement in an independent segment may have within
its ranee only

a. sections and/or paragraphs wholly contained within fixed
segments, or

b. sections and/or paragraphs wholly contained within the same
independent segment as the PERFORM statement. .

t V

CCSCL Reference Manual - Release 4 113

APPENDIX I

Advanced Forms of Conditions

evaluation Rules for Compound Conditions

1. Evaluation of individual simple conditions (relation, class,
condition-name, and sign test) is done first.

2. AMD-connected simple conditions are evaluated next as a single result.

3. OR and its adjacent conditions (or previously evaluated results) are
then evaluated.

EXAMPLES:

A < B C R C = D C R E NOT > F.

The evaluation is eauivalent to (A<3) OR 'C=O) CR (E<F) and is true if
any of the three individual parenthesized simple conditions is true.

2. WEEKLY AND HOURS NOT = 0

The evaluation is equivalent, after exoanding level 38 ccnditicn-name
WEEKLY, to

(PAY-CODE = W? AND [HOURS £ 0)

and is true only if both the simple conditions are true.

3. A s 1 AND 8 = Z AND G > -3

• OR P NOT EQUAL TO "SPAIN"

is evaluated as

[(A = 1) AND (B = 2) AND (G >-3)]
i

CR (P £"SPAIN")

If P s "SPAIN", the compound condition can only be true if ail three of
the following are true:

(C.I) A a 1

(c.2) 8 = 2
Cc.3) G > -3

However, if P is not equal to "SPAIN", the compound condition is true
regardless of the values of A, 3 and G.

COBOL- Reference Manual - Release 4 119
APPENDIX I

Parenthesized Conditions

Parentheses may be written within a compound condition or parts thereof in
order to specify precedence in the evaluation order.

Example:

IF A = 3 AND (A = 5 OR A = 1)
PERFORM PROCEDURE-44.

In this case, PRCCEDURE-44 is executed if A = 5 OR A = 1 while at the same
time A = 3. In this manner, compound conditions may be formed containing
other compound conditions, not just simple conditions, via the use of parentheses.

./T
iy^ Abbreviated Conditions

For the sake of brevity, the user may omit the "subject" when it is common to
several successive relational tests. For example, the condition A = 5 OR A = i
may be written A = 5 OR = 1. This may also be written A = 5 OR i, where both
subject and relaticn being implied are the same.

Another example:

FA = 3 C R < C C R Y

is a shortened form of

FA = 3 0 R A < C C R A < Y

The interpretation applied to the use of the word 'NOT7 in an abbreviated
condition is:

£ 1. If the item immediately following 'NOT is a relational operator, then
'*** the NOT' participates as part of the relational operator;

2. otherwise, the beginning of a new, completely separate condition must
follow 'NOT1, not to be considered part of the abbreviated condition.

Caution: Abbreviations in which the subject and relation are implied are
permissible only in relation tests; the subject of a sign test or class test-cannot
be omitted.

NOT, the Logical Negation Operator
*

In addition to its use as a part of a relation (e-g., IF A IS NOT = 3), "NOT" may
precede a condition. For example, the condition NOT (A = 3 OR C) is true when
(A = 3 OR A = C) is false. The word NOT may precede a level 98 condition
name, also.

-. CC8CL- Reference Manual - Release 4 120

APPENDIX

Table of Permissible MOVE Operands

Source
Goerand

Numeric Integer

Numeric Non-integer

Numeric Edited

Alphanumeric Edited

Aipnanumeric

Group

Receiving Operand in MOVE Statement

Numeric
Integer

OK

OK

GK (C)

CK (3)
!

Numeric
Non-integer

OK

OK

CK (C)

CK :a)

Numeric
Edited

GK

CK

Alphanumeric
Edited

OK (A)

| CK

CK (C)

OK(B)

OK'

CK

OKCB)

Alphanumeric

CK (A)

CK

CK

CK

CK 3)

Grci.

CK

CK

CK

GK *

CK

CK :

r

KEY: (A) Source sign, if any, is ignored

(3) If th'e source operand or the receiving ccerand is a Group Item,
the move is considered to be a Group Move. See Section 4.3 for a
discussion of the effect of a Group Move.

(C) Source is treated as an unsigned integer; source length may not
exceed 31.

NOTE: No distinction is made in the compiler between alphabetic and
alphanumeric; one should not move numeric items to alpnabetic items and
vice versa.

COBOL- Reference Manual - Release 121

APPENDIX 01

Nesting of F Statements

A "nested IF" exists when the verb IF appears more than cnce in a single
sentence. * ••
Example:

IFX = Y
IF A = 3

MOVE"*" TO SvvTTCH
ELSE

MOVE "A" TO SWITCH
ELSE

MOVE S=ACE TO SvVTTCH

The flow of the above sentence may be represented by a tree structure:

r

Sentence

Another useful way of viewing nested IF structures is based en numoering IF and
ELSE verbs to show their priority.

Fl X *

true
actionl:

1
1
1

IF2

ELSE2

A = 8
true-action : MOVE "*" TO SWITCH

faise-action2 : MOVE "A" TO SWITCH

.SE1
false-acticnl : MOVE SPACE TO SWITCH.

COBOL- Reference Manual - Release 4 122
APPENDIX in

The above illustration shows clearly the fact that IF2 is wholly nested within the
true-action side of IF1.

The number of ELSEs in a sentence need not be the same as the number of IFs;
there may be fewer ELSE branches.

Examples:

F M a 1
IF K = 0

GO TO Ml-KO
ELSE

GO TO Ml-KNOTO.

F AMOUNT IS NUMERIC r ~
IF AMOUNT IS ZERO (_•

GO TO CLOSE-CUT.

In the tatter case, IF2 could eaually well have been written as AND.

COEOL Reference Manual - Release 4 123

APPENDIX IV

ASCII Character Set
For ANS-74 COBOL

•X

Character

A
3
C
D
E
F
G
H
I
J
K
L
M
N
0
P
G
R
S
T
U
V
w
X
Y
Z

Octal Value
•̂ W OBHM

101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
13G
131
132

Character

' 0
I
2
3
4
5
6
7
3
9
(SPACE)

1 (non-ANSI)

/
•
y
<
»
>

Octal Value
••» •••

60
61
62
63
64
65
66
67
70
71
40
42
44
47
50
51
52
53
54
55
56
57
73
74
75
76

G

Plus-zero (zero with emoedded positive sign); 173
Minus-zero (zero with embedded negative sign); 175

CGECL- Reference Manual - Release

APPENDIX V

Reserved Words

+• indicates additicnai words required by C
Debug extensions, and packed decimai format

OBOL-

c

ACCEPT
ADVANCING
ALPHABETIC
ALTERNATE
AREA(S)
ASSIGN
AUTO
BEFORE
BLANK
BOTTOM
CANCEL
CH
CHARACTER(S)
CC6CL
COL-
COLUMN
CCMP
COMPUTATIONAL-?-
CONTAINS
CORRESPONDING)
DATA
DATE-WRITTEN
DEEUG-CCNTENTS
OE3UG-NAME
DEBUG-SUB-3
DECLARATIVES
DELIMITER
DESTINATION
OI3PLAY
DOWN
EGI
ENABLE
ENTER
EQUAL
ESCAPE
EXCEPTION
EXTEND
FILF CONTROL
FINAL
FOR
GENERATE
GREATER
HIGH-VALUE(S)
I-O-CONTROL
IN
INITIAL
INPUT-OUTPUT
INTO

ACCESS
AFTER
ALSO
AND
ASCENDING
AT
AUTO-SKIP-
BELL
BLINK
BY
CD
CHAIN
CLOCK-UNITS
COCE
COLLATING
COMMA
CCMP-3-^
COMPUTE
CONTROL(S)
COUNT
DATE
DAY
DEBUG-ITEM
DE3UG-SUB-1
DEBUGGING
DELETE
DEPENDING
DISABLE
DIVIDE
DUPLICATES
ELSE
END
ENVIRONMENT
ERASED
ESI
EXHIBIT*
FD
FILE-ID*
FIRST
FROM
GIVING
GROUP
HIGHLIGHT
IDENTIFICATION
INDEX
INITIATE
INSPECT
IN VALID

for interactive screens,

ADO
ALL
ALTER
ARE
ASCII*
AUTHOR
BEEP*
BLANK
BLOCK
CALL
CF
CHAINING
CLOSE
CODE-SET
COLUMN
COMMUNICATION
COMPUTATIONAL
CONFIGURATION
COPY
CURRENCY
DATE-COMPILED
DE(TAIL)
DEBUG-LINE
DEBUG-SUB-2
DECIMAL-PCINT
DELIMITED
DESCENDING
DISK*
DIVISION
DYNAMIC
EMI
END-CF-PAGE •
EOP
ERROR .
EVERY
EXIT
RLE •
FILLER
FOOTING
FROM
GO
HEADING
I-O
IF
INDEXED
INPUT
INSTALLATION
IS

COBOL- Reference Manual -
oUST(IRED)
LAST
LEFT-JUSTIFY*
LESS
LiNAGE
LINECS)
LOCK
MERGE
MODULES
MULTIPLY
NEGATIVE
NUMBER
OBJECT-COMPUTER
OFF
ON
ORGANIZATION
PAGE
PERFORM
PIC(TURE)
POINTER
PRINTER*
PROCEED
PROMPT*
RANDOM
READY*
REDEFINES
RELATIVE
REMOVAL
REPCRT(S)
RESERVE
REVERSED
RF
RIGHT-JUSTIFY *
SAME
SEARCH
SECURITY
SELECT
SEPARATE
SET
SORT
SOURCE-COMPUTER
SPECIAL-NAMES
START
STRING
SUM
SYNC(HRCNIZED)
TAPE
TEXT
THRU
TO
TRAILING
UNIT
UP
USAGE

. V ALUE(S)
WITH
WRITE

Release 4
KEY
LEADING
LENGTH
LIMIT(S)
LINAGE-COUNTER
LINE-COUNTER
LCW-VALUE(S)
MESSAGE
MOVE
NAMES*
NEXT
NUMBER
OCCURS
OMITTED
OPTIONAL
OUTPUT
PAGE-COUNTER
PF
PLUS
POSITION
PRINTING
PROGRAM
QUEUE
RD
RECEIVE
REEL
RELEASE
RENAMES
REPORTING
RESET
REWIND
RH
ROUND
SCREEN
SECTION
SEGMENT
SEND
SEQUENCE
SIGN
SORT-MERGE
SPACE'S)
STANDARD
STATUS
SUB-QUEUE-1,2,3
SUPPRESS
TABLE
TERMINAL
THAN
TIME
TCP
TRAILING-SIGN*
UNSTRING
UPDATE*
USE
VARYING
WORDS
ZERC(CE)S)

125
LABEL
LEFT
LENGTH-CHECK*
UN*
LINE
LINKAGE
MEMORY
MODE
MULTPLE
NATIVE
NOT
NUMERIC
OF
ON
OR
OVERFLOW
PEN
PH
PLUS
POSITIVE
PROCEDURE(S)
PROGRAM-ID
GUOTE(S)
READ
RECCRD(S)
REFERENCES
REMAINDER
REPLACING
RERUN
RETURN
REWRITE
RIGHT
RUN
SD
SECURE
SEGMENT-LIMIT
SENTENCE
SEQUENTIAL
SIZE
SOURCE
S3 ACE-FILL*
STANDARD-1
STOP
SUBTRACT
SYMBOLIC
TALLYING
TERMINATE
THROUGH
TIMES
TRACE*
TYPE
UNTIL
UPON
USING
WHEN
WORKING-STORAGE
ZERO-FILL*

D"

CC8GL- Reference Manual - Release 4 ' 126

APPENDIX VI

PERFORM with VARYING and AFTER Clauses

PERFORM range

VARYING identifier-1 FRCM amcunt-1 3Y amcunt-2
UNTIL ccnditicn-1

" AFTER identiffer-2 FROM amount-3 3Y amount-4 '
UNTIL ccndition-2

fAFTER identifier-3 FROM amcunt-5 3Y amcunt-6l
.L UNTIL conciticn-3 J.

Identifier here means a data-name or index-name. Amount-1, -3, and -5 may be
a data-name, index-name, or literal. Amount-2, -4, and -6 may be a data-name
or literal only.

The cceraticn of this complex PERFORM statement is equivalent to the
following COSCL statements 'example varying three items):

START-PERFORM.
MOVE amcunt-1 TO identifier-1
MOVE amcunt-3 TO identifier-2
MOVE amcunt-5 TO icentifier-3.

TE3T-OCNDITICN-1.
IF condition-1 GO TO END-PERFORM.

TEST-CGNDITtCN-2.
IF ccnditicn-2

MOVE amount-3 TO identifier-2
ADD amount-2 TO identifier-1
GO TO TE3T-CONOITICN-1.

TEST-CONDITION-3.
IF ccnditicn-3

MOVE amount-3-TO identifier-3
ADD amcunt-4 TO identifier-2
GO TO TEST-CCNOITIGN-Z.

PERFORM range
ADD amount-6 TO identifier-3
GO TO TEST-OONOITICN-3.

END-PERFORM. Next statement.

NOTE

If any identifier above were an index-name, the
associated MOVE would instead be a SET (TO form),
and the associated ADD would be a SET (UP fcrm).

COBOL- Reference Manual - Release 4 127

APPENDIX VII

COSCL-
With Respect to the ANSI Standard

To understand how COBOL- is a 1974 ANSI COBOL, one must know the
structure of that standard. The COBOL ANSI standard is divided into 12
"modules":

1. Nucleus

2. Table handling

C 3. Sequential I/O
•('
' '"̂ 4. Relative I/O

5. Indexed I/O

6. Interprogram communication

7c Library

3. Communicaticn

; i ,
9. Debug . ' ' •

* *

10. Report-Writer

11. Segmentation

12. Sort/Merge

t(!

v*^ Each module has two defined levels of implementation, namely Level I and Level
II (which is a superset of Level I). According to the standard, the first three
modules in the list above should be implemented at least to Level I, but the other
nine modules may cr may not be implemented.

COBOL- Reference Manual - Release 4 128
APPENDIX VH

Referring to the Nucleus and Table Handling modules, Microsoft COBOL-,
includes all Level II features except:

I. GENERAL

L Figurative constant ALL "lit" for literals greater than one character

2. Qualification of names is not allowed in the Environment Division.

' 3. Switch testing facility (actually a Level I feature-)

4. Alphabet-name must be "ASCII" and cannot be defined with a literal
phrase

H. DATA DIVISION
•

1. Occurs depending on ..,

2. Level S3 having list of items intermixed with ranee (either list or
range may be used but rot both at one time)

3. CCMP data Items always require 2 bytes:

- PICTURE 9(5) only allows a range of -32763 to 32767
- PICTURES 9,99,999,9999 are equivalent to PIC 9(5) for CCMP items
— Diagnostic is given wnen more than 5 digits are soecified

4. Unsigned CCMP data items

— PIC 9 is equivalent to PIC S9

5. Renames phrase

m. PROCEDURE DIVISICN

1. MOVE, ADO, SUBTRACT CORRESPONDING

2- Multiple destinations for results of arithmetic statements

3« Division remainders
• •

4. Inspect Level H

5. Arithmetic expressions in conditions

6. ALTER series of procedure names

CC8CL- Reference Manual - Release 4 129
APPENDIX VII

Regarding the file handling modules, CCSCL- includes ail Level H facilities
except Muitipie Index Keys and special language for TAPE handling, that is:

1. optional tape file existence by specifying "SELECT OPTIONAL
filename"

2. buffering of incut/output by allowing a fully functional "RESERVE
Integer AREA(S)" clause

3. multi-file 'taces by specifying the "MULTFLE FILE TAPE
CONTAINS" clause

4. control over blocking of fixed and variable-length records by
allowing fully functional "SLOCK CONTAINS" and "RECORD
CONTAINS" clauses in the FD of tape files

5. multi-reel files, tape reversal, and tape positioning by means of
fully implemented CLOSE and OPEN statements

However, the file handling modules do not include the Level I Rerun facility,
because most microcomputer operating systems have no support for it.

The Intsrprogram Communication and Library modules are impiementsd to Lsvei
I.

The Debug and Rspcrt-Writer modules are not impiementsd at ail, and Microsoft
has no oians for them because they are not very widely used. However,
CCECL- cces induce the ISM CCSOL Oecug facility extensions to the ANSI
standard.

Another extension Microsoft has incorporated in CCECL- is in interactive
screen control by allowing special options to the ACCEPT and DISPLAY
statements. Still another extension is the CCMP-3 data format which allows
numeric data to be packed two digits to the byte so that mass storage
requirements are reduced.

COBOL- Deference Manual - Release 4 130

INDEX

Accsot
9, 43, 44, 60, 61, 75

ACCEPT statement
9, 60

ACCESS clause
19, 103y 109

ADD statement
56

ADVANCING option
86

ALL phrase

• ' 91
\ Alphanumeric Item

"^ 22, 27
Alphanumeric-edited item

27
Alter

SO, 116
ALTER statement

80
ANSI level 1

1, 123
ANSI level 2

1, 128
! Arithmetic sxcrsssicn

58
Arithmetic statements

53
A SCn-entry

19
f" ' . AT END clause
w 47, 35, 105, 106, 110

AUTHOR
13, 17

Auto
43-45, 71, 72, 75

Auto secure
43

Bell
43, 45, 75

Binary item
23, 26

Blank line
43, 44

Blank screen
43, 44

COBOL Reference Manual - Release 4 131
INDEX

Blank when zero
25, 36, 43-45

BLANK WHEN ZERO clause
36

BUnk
43, 45

BLOCK clause
38, 40

Call
94, 96

CALL statement
94

Chain
95, 96

Character comparisons
33

Character set
3

Class test condition
83

Close
2, a, as, 105, no

CLOSE statement
38

CODE-SET clause
38, 41

Column
43, 44

Comments
6, 14, 17

Compound condition
31

COMPUTATIONAL
23,25,26,98

COMPUTATICNAL-3
23, 25, 26

COMPUTE statement
58

Condition
3, 5, 9, 15, 37, 41, 42, 81, 83, 87,
91

Condition-name
5, 9, 15, 37, 81, 33

Condition-name test *
. 3 3

Conditional statements
47, 53

Conditions
1

CONFIGURATION SECTION
13, 18

Continuation line
10, 14

COBOL- Reference Manual - Release 4 132
INDEX

Control index
103

CCUNT IN phrase
91

Crt screen formats
43

CURRENCY SIGN.
13

•

Data description entry
24,42

Data Division
8, 11, 13, 22-46

Data item
7, D, 22, 26

/^ DATA RECORDS clause
39

Data-name
5, 7, 3, 20, 24-26, 34, 35, 39, 41,
49, 51, 56-53, 60, 33, 36, 96, 97,

. 108, 110-112
DATE-CCMPILED

17
DATE-WRITTEN

17
Debugging

2, 13
Decimal item

25, 36
Decimal point

10, 13, 29, 54, 66, 71, 76
DECIMAL-POINT IS COMMA

10, 13
DECLARATIVES

13, 89, 114-116
Declaratives

13, 39, 114-116
DELETE statement

108, 112
DELIMITED BY phrase

90
Display

9, 26, 43-45, 53, 76
DISPLAY statement

76
DIVIDE statement

57

Editing
- 22, 69, 75

Elementary item
7, 22, 25, 26

COBOL- Reference Manual - .Release 4
INDEX

133

Elementary screen items
43

Ellipsis
6

Environment Division
9, 11, 13, 13

Escace
60-62, 75

Escape key
60-62

EXHIBIT statement
93

EXIT PROGRAM statement
95

EXIT statement
30

EXTEND phrase
34

External decimal item
23

FO entry
3, 14, 33

Figurative constants
11

File
5, 7, 3, 13, 15, 19, 20, 22, 38,
34-36, 104

File name
5 , 3

File Section
8, 13, 22, 38

FILE STATUS clause
20, 104

FILE STATUS data item
85

FILE-CONTROL
19

File-name
5,8

FILLER
8, 24

Fixed segments

Floating string
29

Format notation
5

From
10, 43, 45, 52, 56, 78, 86, 38, 107,
111, 116

CC8CL- Reference Manual - Release 4 134
INDEX

General Formats
5

GIVING option
53, 55

GO TO statement
59, 80

Group
7, 22, 24, 26, 34, 43, 49, 83

Group item
7, 22, 24, 34, 49

HIGH-VALUE
11

Highlight
43, 45

r-o
19, 84, 89

I-O CONTROL paragraph
19, 21

I-O error handling
39

Identification Division
11, 13, 17

IF statement
31

Imperative statements
47

Indeoendent segments
X

Index data-item
23, 97

Index-name
79,97

Indexed I-O
2

Indexed-file organization
103

INPUT file
84

INPUT-OUTPUT SECTION
19

INSPECT statement
51

INSTALLATICN
13, 17

Inter-Program Communication
2, 42, 94.96

Internal decimal item
23

INTO option
85

INVALID KEY clause
47, 105-108, 111, 112

CC8OL- Reference Manual - Release 4 135
INDEX

Just
14, 43, 45, 107, 110

Justified
24, 25, 36, 43, 45

Justified
24, 25, 36, 43, 45

JUSTIFIED RIGHT clause
36

KEY clause
ICO

KEY IS clause
106

\
LABEL clause _

3a O
Level 38

1, 7, 37, 101
Level number

7, 3, 14, 22, 24-25, 43, 44
Level-number

7, 3, 14, 22, 24-25, 43, 44
Library

2
LINAGE clause

38, 41
Line • '

19, 43, 44, 60-62, 69, 39
Line number . '

43, 60-62
Linkage section

13, 22, 42, 96
Literals

4,9
LOCK suffix •

LOW-VALUE
11

Main program
96

Memory
18, 28, 36, 116

Memory requirements
116

Mnemonic-name
5, 9, 76

Modules
I

MOVE statement
49

MULTIPLY statement
57

COBOL- , Reference Manual - Release 4 . 136
INDEX

Nested IF
1

Non-numeric literals
9

Nucleus
1

Numeric comparisons
33

Numeric item
23

Numeric literals
10

OBJECT-COMPUTER
18

OCCURS clause
24-26, 34

OMITTED
38

ON QVERFLCW clause
91

Open
30, 34, 105

OPEN statement
84

CRGANIZATICN clause
19

OUTPUT file
84

OVERFLOW
47, 91, 92

Overlays
116

Packed decimal
23

Paragraph-name
13, 48

Paragraphs
48

Parentheses
1, 6, 58 *

Perform
1, 79, SO, 116

PERFCRM statement
79

Pic
8, 43

PICTURE
23-27, 29-32, 35, 43, 45, 50, 33

Picture
23-27, 29-32, 35, 43, 45, 50, 83

PICTURE clause
24

Plus
1, 3, 43, 58, 90, 92

COBOL- Reference Manual - Release 4 - 137
INDEX

POINTER phrase
90

PRINTER
9, 18, 38, 40

Procedure Division
11, 13, ^7-93, 96,

Procedure division header
96

Procedure-name
14, 43, 59, 80

PROGRAM-ID
17

Punctuation
3-5

Qualification
It 15

QUOTE
11

Range (PERFORM)
80

READ statement
35, 106, 110

READY TRACE statement
93

RECORD CCNTAINS clause
40

RECCRD KEY clause
104

Records
7, 39, 40, 109

REDEFINES clause
24-26, 33

Relative I-O
2 f - j

Relative indexing • ^af

98
RELATIVE KEY clause

110
RELATIVE KEY item

110
Relative organization

109
REPLACING clause

51, 52
Report item

22, 25, 28
RESERVE clause

20
Reserved words

4, 5, 14 '
RESET TRACE statement

92, 93
REWRITE statement

88, 107, 111
ROUNDED option

53. 55

COBOL Reference Manual - Release 4 139
INDEX

SPACE
11, 53, 63, 70, 71

SPECIAL-NAMES
18

STANDARD
38, 109

START statement
112

Statements
47, 54

STOP statement
60

STRING statement
• 89

Subprogram
96 r.

Subscripts . ^-
35, 37, 98

SUBTRACT statement
56

SYNCHRONIZED clause
24-26, 36

Table Handling
1, 2, 23, 26, 50, 97-102

TALLYING clause
51, 52

7, 23, 42, 43, 45, 49, 56, 68, 71,
75, 78, 90, 94, 97, ICO, 101

TRACE mode
92

UNSTRING statement
• 90

USAGE clause
24-26

USE sentence
13, 114, 115

Using
13, 38, 42, 43, 45, 75, 85, 94, 100

USING list
42, 94

Validation
75

Value
2, 24-26, 32, 37-39, 42, 43, 45, 50,
92, 97, 107

VALUE IS clause
32, 42

COBOL Reference Manual - Release 4 140
INDEX

VALUE OF clause
38, 39

VARYING
79, 30, 99, 100

Verbs
1,47

WHEN clause
100

Word
3-5

Working-storage section
22, 42

WRITE statement
36, 107, 111

