Programmer’s Utilities Guide

For the
CP/M® Family of
Operating Systems

10
DIGITAL
RESEARCH"

Programmer’s Utilities Guide

For the
CP/M® Family of
Operating Systems

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publica-
tion may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. ASM, DDT, LIB-80, LINK-80,
MAC, MP/M 11, PL/I-80, RMAC, and SID are trademarks of Digital Research. XREF
is a utility of Digital Research. Intel is a registered trademark of Intel Corporation.
Microsoft is a registered trademark of Microsoft Corporation. Z80 is a registered
trademark of Zilog, Inc.

The Programmer’s Utilities Guide for the CP/M Family of Operating Systems was
prepared using the Digital Research TEX Text Formatter and printed in the United
States of America.

First Edition: September 1982

Foreword

This manual describes several utility programs that aid the programmer and system
designer in the software development process. Collectively, these utilities allow you
to assemble 8080 assembly language modules, link them together to form an execut-
able program, and generate a cross-reference listing of the variables used in a pro-
gram. With these utilities, you can also create and manage your own libraries of
object modules, as well as create large programs by breaking them into separate
overlays.

The Programmer’s Utilities Guide assumes you are familiar with the CP/M® or
MP/M II™ Operating System environment. It also assumes you are familiar with the
basic elements of assembly language programming as described in the 8080 Assembly
Language Programming Manual, published by Intel®,

MAC™, the CP/M macro assembler, translates 8080 assembly language statements
and produces a hex format object file suitable for processing in the CP/M environ-
ment. MAC is upward compatible with the standard CP/M nonmacro assembler,
ASM™. (See the CP/M documentation published by Digital Research.)

MAC facilities include assembly of Intel 8080 microcomputer mnemonics, along with
assembly-time expressions, conditional assembly, page formatting features, and a pow-
erful macro processor compatible with the standard Intel definition. MAC also accepts
most programs prepared for the Processor Technology Software #1 assembler, requiring
only minor modifications. This revision is not compatible with previous versions.

MAC is supplied on a standard disk, along with a number of library files. MAC
requires about 12K of machine code and table space, along with an additional 2.5K
of I/O buffer space. Because the BDOS portion of CP/M is coresident with MAC, the
minimum usable memory size for MAC is about 20K. Any additional memory adds
to the available Symbol Table area, allowing larger programs to be assembled.

Sections 1 through 5 describe the simple assembler facilities of MAC: 8080 mne-
monic forms, expressions, and conditional assembly. These facilities are similar to
those of the CP/M assembler (ASM). If you are familiar with ASM, you might want
to skip Sections 1 through § and begin with Section 6.

Sections 6 through 8 describe MAC macro facilities in detail. Section 7 describes
inline macros, and Section 8 explains the definition and evaluation of stored macros.
If you are familiar with macros, briefly skim these sections, referring primarily to the
examples. Section 9 explains macro applications, common macro forms, and pro-
gramming practices. Skim the examples and refer back to the explanations for a
detailed discussion of each program.

Sections 10 through 13 describe other features of macro assembler operation. Sec-
tion 10 details assembly parameters. Section 11 introduces iterative improvement, a
common debugging practice used in developing macros and macro libraries. Section
12 defines MAC’s symbol storage requirements.

Section 13 explains the differences between MAC and RMAC™, the CP/M Relo-
cating Macro Assembler.

Section 14 details XREF, an assembly language cross-reference program used with
MAC and RMAC.

Section 16 describes LINK-80™, the linkage editor that combines relocatable object
modules into an absolute file ready to run under CP/M or MP/M II. Section 17
describes how to use LINK-80, in conjunction with the PL/I-80™ compiler, to pro-
duce overlays. Section 18 explains how to use LIB-80™, the software librarian for
creating and manipulating library files containing object modules.

The appendixes contain a complete list of error messages output by each of the
utility programs.

iv

5

Table of Contents

Macro Assembler Operationc.oveiiieiiiiiiiiiinniiinnnnn.
Program Format.cuiiniiuiiniintniieeeeneenenesnsnennanns

Forming the Operand

70 N 717 (A
3.2 Numeric CoNnStantsoevereeneneeneneeneaneneseeneannns
3.3 Reserved Wordsovviiiiiiii i e
3.4 String CoONStantsooeueeuneeneeeneeneenneesossoessasans
3.5 Arithmetic, Logical, and Relational Operators
3.6 Precedence of Operatorsv.oeeeeviueeeennneeeennnneennn

Assembler Directives

4.1 The ORG Directive ...ivviiiiiiiiiiiiiiiiiiiiiieeeeeeeinnns
4.2 The END Dir€Ctive . ..uuviiiriiiiieeeteeeiiiiinaneeennnns
4.3 The EQU Dir€Ctive'uutrunrrreeeeeeeeeeeenennnninnnnnnns
4.4 The SET DIrective . ..uviittiriiiiiiieeeeeereninnneennn.
4.5 The IF, ELSE, and ENDIF Directivescovvuuuuunennn..
4.6 The DB DireCtive . .uvvnviiiiiiiiiiieneeeeeeeeeaaannnnns
4.7 The DW DIr€CtiVe .. .vvvieeeeetrriiianeeeeeeennennnnnnnns
4.8 The DS DIreCtIVE v vuviieetttetii ittt ettt iiiianeeeeens
4.9 The PAGE and TITLE Directivesvvvvieeeeeiennnnnnns
4.10 A Sample Program Using Pseudo Operations

Operation Codes

5.1 Jumps, Calls, and Returnscoviiiiieiiinneennnnnnnn.
5.2 Immediate Operand Instructionscovvveeennnnnnn.

Table of Contents (continued)

5.3 Increment and Decrement Instructionscccevveennenn
5.4 Data Movement Instructionsc.ceveueeneenenennencens
5.5 Arithmetic Logic Unit Operationscoeeeeeeeeeeeeenns
5.6 Control INStrUCtIONS . .vvvvvttiieerieeerineeennneeeennnanens

An Introduction to Macro Facilities

Inline Macros

7.1 The REPT-ENDM Groupccoutuiiiiineeeeeeeeeennnnnnns
7.2 The IRPC-ENDM GIOUP +.vvvvtreeeeeerenenennnnnnnneeeeeens
7.3 The IRP-ENDM GIOUDP . .vvviiiittititiiiiinaaaeneeeeenennnns
7.4 The EXITM Statementeeeeeeeeeeeeeennennnnnnnneeens
7.5 The LOCAL Statementeveerunineennneeensneeennnaanns

Definition and Evaluation of Stored Macros

8.1 The MACRO-ENDM GIoupuvvieiiuuerennneeenannneeens
8.2 Calling a Macrovviiiiitieteeennnnneeannanneeeeeeens
8.3 Testing Empty Parametersccoiiiiiiiiiiiiiiiinnnn,
8.4 Nested Macro Definitionscoiiiiiiiiiiinreneeeeeenns
8.5 Redefinition of Macrosevieiiiiiinnnnnnnnnnneeeeens
8.6 Recursive Macro Invocationciiiiiiiieiiiienniennnn
8.7 Parameter Evaluation Conventionscovveeuieeeeennns
8.8 The MACLIB Statementeevveieennnnnneneeeeeeeenns

Macro Applications

9.1 Special Purpose Languagesccoviiiiiiiiiiiirieiaiiaaas
9.2 Machine Emulation ...ttt

10

11

12

13

14

15

Table of Contents (continued)

9.3 Program Control Structuresccciiiiiiiiiiieinnaann
9.4 Operating System Interfaceooiiiiiiiiiiiiiient,

Assembly Parameters
Debugging Macros
Symbol Storage Requirements

RMAC, Relocating Macro Assembler

13.1 RMAC Operationcc.oeeeiuuineeeunnecenneeeenieeennnes

13.2 EXPIESSIONS . .uvvvvuuuunnneneeeseetaennnnseseeeeeeensnnnnnns

13.3 Assembler DIrectivesovivieerriieeenieneernneeennnaennns
13.3.1 The ASEG DIrectivevvvvrririiiieneeeeeennanns
13.3.2 The CSEG DIirective . ..vvvverrrrriiiinnnneeeennnnnns
13.3.3 The DSEG Directiveovvviiinnneeeeeennnnnns
13.3.4 The COMMON Directiveovviiiiiieniieenennnas
13.3.5 The PUBLIC Dir€ctiveccevvurrereeeeeeneennnns
13.3.6 The EXTRN DireCtive ...vvvvrerereeeeennnnnnnnnnnns
13.3.7 The NAME Dir€ctivecviviriiirrireeeeeeeeennnns

XREF

LINK-80

15.1 IntroduCtion . .vvviiiiit ettt

15.2 LINK-80 Operationcvveeieeeenneeeeonesssansesanns

15.3 Multiline Commandscciiiiiiiiii e

vii

Table of Contents (continued)

15.4 LINK-80 Switchesc.ooiiiiiiiiiiiiiiiiiiiiii s 239
15.4.1 The Additional Memory (A) Switch 239

“ 15.4.2 The Data Origin (D) Switch 240
15.4.3 The Go (G) Switch ..., 240
15.4.4 The Load Address (L) Switch 240
15.4.5 The Memory Size (M) Switchcoat. 241
15.4.6 The No List (NL) Switchccoooiiiinn.... 241
15.4.7 The No Recording of Symbols (NR) Switch 241
15.4.8 The Output COM File (OC) Switch 241
15.4.9 The Output PRL File (OP) Switch 241
15.4.10 The Program Origin (P) Switch 241
15.4.11 The ? Symbol (Q) Switch, 242
15.4.12 The Search (S) Switcho, 242

15.5 The $ Switch ... i i i, 242
15.5.1 $Cd—Consoleviiiiiiiiiiiiii i 243
15.5.2 S$ld—Intermediatecciiiiiiiiiiiiiiiia, 243
15.5.3 SLd—Libraryciiiiiiii i i e 243
15.5.4 $Od—Objectiiiiiiiii e e e e 243
15.5.5 $Sd—Symbol ... e 243
15.5.6 Command Line Specificationccovvivinunnnn. 244

15.6 Creating MP/M II PRL Filescccvviiiiiiiiiniennnnnn.. 244
15.7 The Request Itemoiiiiiiiniiiii it iiiieanennns 245
15.8 REL File Formatoiviiiiteiiiiiiiiiiieeiiinaeannns 246
15.9 IRL File Formatoouvtiiiiiieiiiiieeeneineeennnnaneenns 248

16 Overlays

16.1 Introductionovviiiineeeeeiineerenioeeeeniaesenannnaonns 251
16.2 Using Overlays in PL/I Programsccevveeeeeenannnns 252
16.221 Overlay Method 1 ... 252
16.2.2 Overlay Method 2ciiiiiiiiiiiii ittt iiiiieninin, 254

16.3 Specifying Overlays in the Command Line 255
16.4 Sample LINK-80 EXecutionceeeeeviuuerrnninnceennns 256

+ 15.4.2 The BIOS Link Switch - all following got 15.4.(n+1) numbering

fritz
Textfeld
*

fritz
Textfeld

fritz
Textfeld

fritz
Textfeld
*

17

Table of Contents (continued)

16.5 Other Overlay Systemsc.cuuiienireieinirerannnenreeeenns 259
LIB-80

17.1 Introductioniiieiiiiiiiii e e 261
17.2 LIB-80 Operationceuereennerenoeseeeoasstoooassonnnes 261
17.3 LIB-80 SWItChes . .vvvtttttetteriieennnnannnennoasoesesaanns 263

ix

m m O 0O % »

Table of Contents (continued)

Appendixes
MAC/RMAC Error Messages . v.oovvueerennnneennneeeanneenennnaans 265
XREF Error MeSSageSvvvvrneteeneeoneenneeneenneennesnnennnns 269
LINK-80 Error Messagesc.ciieiiieiennrennnnneennnneeannnns 271
Overlay Manager Run-time Error Messagesccccovnvenn.. 275
LIB-80 Error Messagesc.couuiinnneneeeeenronnnnnnnaanenns 277
8080 CPU INStruCtiONSuuvtetiennuterennueeeronueesennnnenns 279

Table of Contents (continued)

List of Tables

8080 Registers and Valuesciiiiiiiiiineeerreeeinnnns 7
() 0= 1o - 9
Equivalent Forms of Relational Operatorsccocvivinn. 12
Pseudo OPerationseeveeeeenurrorsseceerosiossesnnees 13
KDF-11 Operation Codesccvviiniiiiiiieiiiieeennnne, 120
Assembly Parameterscciiiiiiiiiiei ittt 221
LIB-80 Switchesiiviiiiiiiiiiiiiiiiiiineenneonnocanenes 263
MAC/RMAC Error Messagescccveviienseeenenceenensens 265
Terminal Error Conditionsevviiiitivinreeeennnneeecnnnss 267
XREF Error Messagesoveveeenreeneeneeonetosoanssasssansas 269
LINK-80 Error Messagescveveviieierornnennnneasianoees 271
Run-time Error Messagescuueiiiiiiiiinnneeeoaneeccanes 275
LIB-80 Error Messagesccveuveeeennoesonnnsesoanassennns 277
8080 CPU INSEIUCLIONS +\vvvvvrrvereerenrenrennensonnonnoaeenns 279

List of Figures

IRLFile IndeX ...viviniiiriiiiiii ittt ennnneenannnss 248
Tree-structured Overlay Systemccoviiiiiiiiiiinnnnneen., 251
Separate Overlay Systemcccveeeiiveiiiiirioennceneneenns 258

List of Listings

Sample ASM, PRN, SYM, and HEX files from MAC 1
Conditional Assembly with TTY Trueccoiviiiiiiiinnnnn 17
Conditional Assembly with TTY Falseccvviiiiinnnn. 18
Conditional Assembly Using ELSE for Alternate 19
Sample Program Using Nested IF, ELSE, and ENDIF 21
TYPER Program Listingcciviiieinerenernneenernnennnans 26
Assembly Showing Jumps, Calls, Returns, and Restarts 31
Assembly Using Immediate Operand Instructions 33
Assembly Containing Increment and Decrement Instructions 34
Assembly Using Various Register/Memory Moves 36
Assembly Showing ALU Operationscoeeeviirrernnnnnes 38

xi

6-1.
6-2.
7-1.
7-2a.
7-2b.
7-3.
7-4.
7-5a.
7-5b.

Qo
1 T
EOOENAN D RN

\oooooooo.ooooooooo

grEer

\O \O \© \O \© \O
1)))) 1)
@

>

9-5a.
9-5b.
9-6.
9-7.
9-8.
9-9,
9-10.
9-11.
9-12.
9-13.
9-14.
9-15.
9-16.

Table of Contents (continued)

A Sample Macro Library ..ot 43
A Sample Assembly Using the MACLIB Facility 45
A Sample Program Using the REPT Groupcccovn.... 50
Original ((ASM) File with IRPC Example 52
Resulting (.PRN) file with IRPC Example 53
A Sample Program Using IRPcoiiiiiiiiiiineninnennnn. 57
Use of the EXITM Statement in Macro Processing 59
Assembly Program Using the LOCAL Statement 62
Output from Program of Listing 7-53.curuuieeeeeeeenennn. 63
Example of Macro Definition and Invocation 69
Sample Message Printout Macrooovviiiiineinnnennn.. 71
Sample Program Using the NUL Operator 74
Sample Program Showing a Nested Macro Definition 78
Sample Program Showing Macro Redefinition 80
Sample Program Showing a Recursive Macro 83
Macro Parameter Evaluation Exampleoo... 87
Parameter Evaluation Using Bracketed Notation 89
Examples of Macro Parameter Evaluation 91
Macro Library for Basic Intersectioncoovvveeennnnenns 98
Macro Library for Treadle Controlccovvviiiiininn.n. 100
Macro Library for Corner Pushbuttons 100
Traffic Control Algorithm Using -M Option 102
Intersection Algorithm with *M in Effectccovvnun... 103
Algorithm with Generated Instructionscovvevvnune... 104
Library Segment with Debug Facility 106
Sample Intersection Program with Debug 107
Debug Trace Printoutvvvveirerevnnrereennnereeennneens 107
A-D Averaging Program Using Stack Machine 110
Stack Machine Opcode Macrosccovviiiiiininennnnennnn. 111
Averaging Program with Expanded Macros 114
Averaging Program with Debugging Statements 117
Sample Execution of AVER Using DDTcoovviiinininnennnn 119
Stack Machine Macro Librarycciiiiiiiiiiiiiiinnnnnnns 121
Program for Tool Travel Computationccvvvuevennn. 139
Sample Execution of Distance Using DDTccovvvnnnn 143
Partial Listing of Distance with Full Trace 144
Simple I/0 Macro Libraryovviiiiiiiiiiiiniiniennenne. 147
Macro Library for Simple Comparison Operations 148

Xii

9-17a.

9-17b.

9-18.
9-19a

9-1%.

9-20.
9-21a.

9-21b.

9-22.
9-23a.

9-23b.
9-24a.
9-24b.
9-25a.
9-25b.

9-25c¢.
9-26.
9-27.
9-28.
9-29.
9-30.
9-31.
9-32.
16-1.
16-2.

Table of Contents (continued)

Single Character Processing using COMPARE..................... 150
Partial Trace of Listing 9-17a with Macro Generation 152
Expanded NCOMPARE Comparison Operators 153
Sample Program using NCOMPARE Library 156
Segment of Listing 9-19a with +M Optionc....... 157
Macro Library for the WHEN Statement 161
Sample WHEN Program with -M in Effect 162
Partial Listing of Listing 9-21a with +M Option 163
Macro Library for the DOWHILE Statement 165
An Example Using the DOWHILE Statement 167
Partial Listing of Listing 9-23a with Macro Generation 168
Macro Library for SELECT Statementccvvvennn.. 171
Library for SELECT Statementcoiiiiiiinnnnennnn.. 172
Sample Program Using SELECT with -M +S Options 174
Segment of Listing 9-25a with Mnemonics 175
Segment of Listing 9-25a with +M Option 176
Program Using WHEN, DOWHILE, and SELECT 179
Lower- to Upper-case Conversion Program 186
Sequential File Input/Output Library 188
Sample FILE Expansion Segmentccoviiieeennnnn... 202
Program for Line Printer Page Formatting 208
File Merge Programcoiiieiiiiieeinnnieneiiineeeennns. 211
Sample MERGE Disk Filesccoiiiiiiiiiiiiiiiin.... 219
LINK-80 Console Interactionccuviivieninneennnnnn.. 258
Console Interaction with ROOTccoiiiiinneinn... 258

Xiii

Section 1
Macro Assembler Operation

Start MAC with a command of the form:
MAC filename

where filename corresponds to the assembly language file with an assumed filetype
ASM. During the translation process, MAC creates a file called filename.HEX con-
taining the machine code in the Intel hexadecimal format. You can subsequently load
or test this HEX file. (See the LOAD command and the Dynamic Debugging Tool,
DDT™, in the CP/M documentation.) MAC also creates a file named filename.PRN
containing an annotated source listing, along with a file called filename.SYM contain-
ing a sorted list of symbols defined in the program.

Listing 1-1 provides an example of MAC output for a sample assembly language
program stored on the disk under the name SAMPLE.ASM. Type MAC SAMPLE
followed by a carriage return to execute the macro assembler. The PRN, SYM, and
HEX files then appear as shown in the listing. The assembler listing file (PRN)
includes a 16-column annotation at the left showing the values of literals, machine
code addresses, and generated machine code. Note that an equal sign (=) is used to
denote literal values to avoid confusion with machine code addresses. (See Section
4.3.) Output files contain tab characters (ASCII CTRL-I) whenever possible to con-
serve disk space.

Source Program (SAMPLE.ASM)

org 100h itransient Prodram area
bdos equ 000Sh ibdos entry pPoint
wchar eQqu 2 jwrite character function

enter with ccpP’s return address in the stack
write a sindle character (?) and return

-

mui cswchar jwrite character function
mui es’?’ jcharacter to write

call bdos iwrite the character

ret ireturn to the cce

end 100h istart address is 100h

Listing 1-1. Sample ASM, PRN, SYM, and HEX files from MAC

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

] UONDIS

1 Macro Assembler Operation

0100
0005
0002

0100
0102
0104
0107
0108

0E02
1E3F
CD0S00
c9

0005 BDOS

ORG
BDO
WCH

- e

Programmer’s Ultilities Guide

Assembler Listing File (SAMPLE.PRN)

100H iTRANSIENT PROGRAM AREA
S EQU 0005H iBDOS ENTRY POINT
AR EQU 2 FWRITE CHARACTER FUNCTION

ENTER WITH CCP’S RETURN ADDRESS IN THE STACK
WRITE A SINGLE CHARACTER (?) AND RETURN

MUI C+WCHAR SWRITE CHARACTER FUNCTION
MVI Esy'?’ iCHARACTER TO WRITE

CALL BDOS iWRITE THE CHARACTER

RET iRETURN TO THE CCP

END 100H iSTART ADDRESS IS 100H

Assembler Sorted Symbol File (SAMPLE.SYM)

0002 WCHAR

Assembler Hex Output File (SAMPLE.HEX)

:080100000E021E3FCDOS00CIEF
:00010000FF

Listing 1-1. (continued)

End of Section 1

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 2
Program Format

A program acceptable as input to the macro assembler consists of a sequence of
statements of the form

line# label operation operand comment

where any or all of the elements can be present in a particular statement. Each
assembly language statement terminates with a carriage return and line-feed. Note
that the ED program automatically inserts the line-feed when you enter a carriage
return. You can also terminate an assembly language statement by typing the excla-
mation point (!) character. MAC treats this character as an end-of-line. You can
write multiple assembly language statements on the same physical line if you separate
them with exclamation points.

A sequence of one or more blank or tab characters delimits statement elements.
Tab characters are preferred because they conserve source file space and reduce the

listing file size. The tab characters are not expanded until the file is printed or typed
at the console.

The line# is an optional decimal integer value representing the source program
line number. It is allowed on any source line. The assembler ignores the optional
line#.

The label field takes the form:

identifier
or
identifier:
The label field is optional, except where noted in particular statement types.

The identifier is a sequence of alphanumeric characters: alphabetics, question marks,

commercial at-signs, and numbers, the first character of which is not numeric. You

can use identifiers freely to label elements such as program steps and assembler
directives, but identifiers cannot exceed 16 characters in length.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

wn
0]
8]
=
0o
3
N

2 Program Format Programmer’s Utilities Guide

All characters are significant in an identifier, except for the embedded dollar sign
($) that you can use to improve name readability. Further, MAC treats all lower-case
alphabetics in an identifier as though they were upper-case. Note that the colon (:)
following the identifier in a label is optional. The following examples are all valid
labels:

X Xy londgéname

X7 xyl: londer$named$data
Xx1x2 @123: ?7@RBabcDEF

Gamma BGAMMA PAREWEHERE?

x23445678%9012%3456:

The operation field contains an assembler directive (pseudo operation), 8080 machine
operation code, or a macro invocation with optional parameters. The pseudo opera-
tions and machine operation codes are described in Section 5. Macro calls are dis-
cussed in Section 6.

The operand field of the statement contains an expression formed from constant
and label operands, with arithmetic, logical, and relational operations on these oper-
ands. Properly formed expressions are detailed in Section 3.

A leading semicolon character denotes the comment field, which contains arbitrary
characters until the next carriage return or exclamation point character. MAC reads,
lists, and otherwise ignores comment fields. To maintain compatibility with other
assemblers, MAC also treats statements that begin with an asterisk (*) in column one
as comment lines.

The assembly language program is thus a sequence of statements of the form
described above, terminated optionally by an END statement. The assembler ignores
all statements following the END.

End of Section 2

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 3
Forming the Operand

Expressions in the operand field consist of simple operands—Ilabels, constants, and
reserved words—combined into properly formed subexpressions by arithmetic and
logical operators. MAC carries out expression computation as the assembly proceeds.
Each expression produces a 16-bit value during the assembly. The number of signifi-
cant digits in the result must not exceed the intended use. That is, if an expression is
to be used in a byte move immediate (see the MVI instruction), the absolute value of
the operand must fit within an 8-bit field. Instructions for each expression give the
restrictions on expression significance.

3.1 Labels

A label is an identifier of a statement. The label’s value is determined by the type
of statement it precedes. If the label occurs on a statement that generates machine
code or reserves memory space, such as a MOV instruction or a DS pseudo opera-
tion, then the label is given the value of the program address it labels. If the label
precedes an EQU or SET, then the label is given the value that results from evaluat-
ing the operand field. In a macro definition, the label is given a text value, a sequence
of ASCII characters, that is the body of the macro definition. With the exception of
the SET and MACRO pseudo operations, an identifier can label only one statement.

When a nonmacro label appears in the operand field, the assembler substitutes its
16-bit value. This value can then be combined with other operands and operators to
form the operand field for an instruction. When a macro identifier appears in the
operation field of the statement, the text stored as the value of the macro name is
substituted for the name. In this case, the operand field of the statement contains
actual parameters. These are substituted for dummy parameters in the body of the
macro definition. Later sections give the exact mechanisms for defining, calling, and
substituting macro text.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

wn
g
N
=
o
-]
W

3.2 Numeric Constants Programmer’s Utilities Guide

3.2 Numeric Constants

A numeric constant is a 16-bit value in a number base. A trailing radix indicator
denotes the base, called the radix of the constant. The radix indicators are

binary constant (base 2)

octal constant (base 8)

octal constant (base 8)

decimal constant (base 10)
hexadecimal constant (base 16)

IZIOOOw

Q is an alternate radix indicator for octal numbers because the letter O is easily
confused with the digit 0. Any numeric constant that does not terminate with a radix
indicator is assumed to be a decimal constant.

A constant is composed of a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. Binary con-
stants must be composed of 0 and 1 digits. Octal constants can contain digits in the
range 0-7. Decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits and hexadecimal digits A through F, corresponding to the decimal
numbers 10 through 15.

Note that the leading digit of a hexadecimal constant must be a decimal digit to
avoid confusing a hexadecimal constant with an identifier. A leading 0 prevents
ambiguity. A constant composed in this manner produces a binary number that can
be contained within a 16-bit counter, truncated on the right by the assembler. Like
identifiers, embedded $ symbols are allowed within constants to improve readability.

Finally, the radix indicator translates to upper-case if a lower-case letter is encoun-
tered. The following examples are valid numeric constants:

1234 1234D 11008 11114$0000%1111400008B
1234H OFFFEH 33770 338774220
33770 Ofe3h 12344 Offffh

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 3.3 Reserved Words

3.3 Reserved Words

Several reserved character sequences have predefined meanings in the operand field
of a statement. The names of 8080 registers and their values are given in Table 3-1.

Table 3-1. 8080 Registers and Values

symbol value symbol value
A 7 B 0
C 1 D 2
E 3 H 4
L 5 M 6
SP 6 PSW 6

Lower-case names have the same values as their upper-case equivalents. Machine
instructions can also be used in the operand field, resulting in their internal codes.
For instructions that require operands, where the operand is a part of the binary bit
pattern of the instruction (e.g., MOV A,B), the value of the instruction is the bit
pattern of the instruction, with zeros in the optional fields. For example, the statement

LXI H.,MOV

assembles an LXI H instruction with an operand equal to 40H, the value of the
MOV instruction with zeros as operands.

When the $ symbol appears in the operand field—not embedded within identifiers

and numbers—its value is the address of the beginning of the current instruction. For
example, the two statements

X JMP X

and

JMP ¢
produce a jump instruction to the current location. As an exception, the $ symbol at

the beginning of a logical line can introduce assembly formatting instructions. (See
Section 10.) ’

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

3.4 String Constants Programmer’s Ultilities Guide

3.4 String Constants

String constants represent sequences of graphic ASCII characters, enclosed in apos-
trophes (’). All strings must be fully contained within the current physical line, with
the exclamation point (!) character within strings treated as an ordinary string char-
acter. Each individual string must not exceed 64 characters in length, or MAC reports
an error. The apostrophe character can be included in a string by typing two apos-
trophes (”). The assembler reads the two apostrophes as a single apostrophe.

Note that particular operation codes can require the string length to be no longer
than one or two characters. The LXI instruction, for example, accepts a character
string operand of one or two characters. The CPI instruction accepts only a one-
character string. The DB instruction, however, allows strings zero through 64 char-
acters long in its list of operands. In the case of single-character strings, the value is
the 8-bit ASCII code for the character, without case translation. Two-character strings
produce a 16-bit value with the second character as the low-order byte and the first
character as the high-order byte. For example, the string constant ‘A’ is equivalent to
41H. The two-character string ‘AB’ produces the 16-bit value 4142H. The following
are valid strings in MAC statements:

IAI IABI Iabl ICI 1 ¢ s lshe Said llhellolll

Note: You can use the ampersand (&) character to cause evaluation of dummy
arguments within macro expansions inside string quotes. Section 8 details the substi-
tution process.

3.5 Arithmetic, Logical, and Relational Operators

MAC can combine the operands described above in algebraic notation using prop-
erly formed operands, operators, and parenthesized expressions. The operators MAC
recognizes in the operand field are listed below.

a+b produces the arithmetic sum of a and b; +b is b.
a—b produces the arithmetic difference between a and b; —b is 0—b.

a*b is the unsigned multiplication of a by b.

a MOD b is the remainder after division of a by b.

]

[

=

® a/b is the unsigned division of a by b.

]

® a SHL b produces a shifted left by b, with zero right fill.

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

® a SHR b produces a shifted right by b, with zero left fill.
NOT b is the bit-by-bit logical inverse of b.

a EQ b produces true if a equals b, false otherwise.

a LT b produces true if a is less than b, false otherwise.

a GT b produces true if a is greater than b, false otherwise.

a XOR b produces the logical exclusive OR of a and b.
HIGH b is identical to b SHR 8 (high-order byte of b).
LOW b is identical to b AND OFFH (low-order byte of b).

3.5 Operators

a LE b produces true if a is less than or equal to b, false otherwise.

a GE b produces true if a is greater than or equal to b, false otherwise.
a AND b produces the bitwise logical AND of a and b.
a OR b produces the bitwise logical OR of a and b.

The letters a and b represent operands that are treated as 16-bit unsigned quantities
in the range 0-65535. All arithmetic operators produce a 16-bit unsigned arithmetic
result. Relational operators produce a true (OFFFFH) or false (0000H) 16-bit result.
Logical operators operate bit-by-bit on their operands producing a 16-bit result of
16 individual bit operations. The HIGH and LOW functions always produce a 16-
bit result with a high-order byte of zero. Table 3-2 lists arithmetic, logical, and

relational operators.

Table 3-2. Operators

arithmetic relational logical

+ EQ NOT
- LT AND
* LE OR
/ GT XOR

MOD GE

SHL NE

SHR

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

3.5 Operators Programmer’s Utilities Guide

MAC performs all computations during the assembly process as 16-bit unsigned
operations, as described above. The resulting expression must fit the operation code
in which it is used. For example, the expression used in an ADI (add immediate)
instruction must fit into an 8-bit field. Thus, the high-order byte must be zero. If the
computed value does not fit the field, the assembler produces a value error for that
statement.

As an exception to this rule, negative 8-bit values are allowed in 8-bit fields under
the following conditions: if the program attempts to fill an 8-bit field with a 16-bit
value that has all Is in the high-order byte, and the sign bit is set, then the high order
byte is truncated, and no error is reported. This condition arises when a negative
sign is placed in front of a constant. For example, the value -2 is defined and com-
puted as 0-2, producing the 16-bit value OFFFEH, where the high-order byte (OFFH)
contains extended sign bits that are all 1s, and the low-order byte (OFEH) has the
sign bit set. The following instructions do not produce value errors in MAC:

ADI -1 ADI -15 ADI -127 ADI -128 ADI OFF80H

The following instructions produce value errors:

ADI 256 ADI 32768 ADI -129 ADI OFF7FH

The special operator NUL is used in conjunction with macro definition and expan-
sion operations. The NUL operator takes a single operand. NUL must be the last
operator in the operand field.

Expressions can be formed from simple operands such as labels, numeric con-
stants, string constants, and machine operation codes, or from fully enclosed paren-
thesized expressions such as

10420,

10H+37Q

L1/3:

(LZ + 4) SHR 3

(‘a’ and Sfh) + ‘07,

(‘'BB’ + B) OR (PSW + M),
(1+ (2+4C)) shr (A-(B +1))
(HIGH A) SHR 3

where blanks and tabs are ignored between the operators and operands of the
expression.

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 3.6 Precedence of Operators

3.6 Precedence of Operators

MAC assumes operators have a relative precedence of application allowing expres-
sions to be written without nested parentheses. The resulting expression has assumed
parentheses that are defined by this relative precedence. The order of application of
operators in unparenthesized expressions is listed below. Operators listed first have
highest precedence. These are applied first in an unparenthesized expression. Opera-
tors listed last have lowest precedence and are applied last. Operators listed on the
same line have equal precedence and are applied from left to right as they are
encountered in an expression:

/ MOD SHL SHR
+ -
EQ LT LE GT GE NE
NOT
AND
OR XOR
HIGH LO

The following expressions are equivalent:

OR b AND NOT ¢ + d SHL e produces
OR (b AND (NOT (c + (d SHL e))))

a * b + c produces (a * b) + ¢

a+ b % c produces a + (b * c)

a MOD b # ¢ SHL d produces ((a MOD b) % ¢) SHL D
a

a

Balanced parenthesized subexpressions can always override the assumed parenthe-
ses. The last expression above can be rewritten to force application of operators in a
different order, as shown below:

(a OR b) AND (NOT c¢) + d4 SHL e

resulting in the assumed parentheses

(a OR b) AND ((NOT c) + (d SHL e))

Note that an unparenthesized expression is well formed only if the expression that
results from inserting the assumed parentheses is well formed.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

3.6 Precedence of Operators Programmer’s Utilities Guide

Relational operators can be expressed in either of two forms, as shown in Table
3-3.

Table 3-3. Equivalent Forms
of Relational Operators

< LT
<= LE
= EQ
<> NE
>= GE
> GT

End of Section 3

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 4
Assembler Directives

Assembler directives set labels to specific values during assembly, perform condi-
tional assembly, define storage areas, and specify starting addresses in the program.
Each assembler directive is denoted by a pseudo operation that appears in the oper-

w
ation field of the statement. Table 4-1 lists the acceptable pseudo operations. ®
=
3
Table 4-1. Pseudo Operations &
Directive Meaning
ORG sets the program or data origin.
END terminates the physical program.
EQU performs a numeric equate.
SET performs a numeric set or assignment.
IF begins a conditional assembly.
ELSE is an alternate to a previous IF.
ENDIF marks the end of conditional assembly.
DB defines data bytes or strings of data.
DwW defines words of storage (double bytes).
DS reserves uninitialized storage areas.
PAGE defines the listing page size for output.
TITLE enables page titles and options.

In addition to those listed above, several pseudo operations are used in conjunction
with the macro processing facilities. MACRO, EXITM, ENDM, REPT, IRPC, IRP,
LOCAL, and MACLIB are reserved words. They are fully described in Sections 7
and 8. The nonmacro pseudo operations are detailed below.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

4.1 The ORG Directive Programmer’s Utilities Guide

4.1 The ORG Directive
The ORG statement takes the form
label ORG expression

where label is an optional program label—an identifier followed by an optional
colon (:)—and expression is a 16-bit expression consisting of operands defined before
the ORG statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within a
program. There are no checks to ensure that you are not redefining overlapping
memory areas. Note that most programs written for CP/M begin with an ORG 100H
statement that causes machine code generation to begin at the base of the CP/M
Transient Program Area. Programs assembled with RMAC and linked with LINK-80
do not need an ORG 100H statement. (See Sections 13 and 15.)

If the ORG statement has a label, then the label takes on the value given by the
expression. The expression is the next machine code address to assemble. This label
can then be used in the operand field of other statements to represent this expression.

4.2 The END Directive

The END statement is optional in an assembly language program; if present, it
must be the last statement. All statements following the END are ignored. The two
forms of the END statement are

label END
label END expression

where the label is optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expres-
sion is evaluated and becomes the program starting address. This starting address is
included in the last record of the Intel format machine code hex file resulting from
the assembly. Most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H, the beginning of the Transient
Program Area.

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.3 The EQU Directive

4.3 The EQU Directive

The EQU (equate) statement names synonyms for particular numeric values. The
directive takes the form:

label EQU expression

The label must be present, and it must not label any other statement. The assembler
evaluates the expression and assigns this value to the identifier given in the label field.
The identifier is usually a name describing the value in a more human-oriented man-
ner. You can use this name throughout the program as a parameter for certain
functions. Suppose, for example, that data received from a teletype appears on an
input port, and data is sent to the teletype through the next output port in sequence.
The series of equate statements that can define these ports for a particular hardware
environment is shown below.

TTYBASE EQU 10H iBASE TTY PORT
TTYIN EQU TTYBASE iTTY DATA IN
TTYOUT EQU TTYBASE+1 iTTY DATA OUT

At a later point in the program, the statements that access the teletype could appear
as

IN TTYIN iREAD TTY DATA TO A
ouT TTYOUT iWRITE DATA FROM A

making the program more readable than the absolute /O port addresses. If the
hardware environment is later redefined to start the teletype communications ports
at 7FH instead of 10H, the first statement need only be changed to

TTYBASE EQU 7FH iBASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

4.4 The SET Directive Programmer’s Utilities Guide

4.4 The SET Directive
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label, taken as a variable name, can occur on other SET statements
within the program. The expression is evaluated and becomes the current value
associated with the label. Thus, unlike the EQU statement, where a label takes on a
single value throughout the program, the SET statement can assign different values
to a name at different parts of the program. In particular, the SET statement gives
the label a value that is valid from the current SET statement to the point where the
label occurs on the next SET statement. The use of SET is similar to the EQU, except
that SET is used more often to control conditional assembly within macros.

4.5 The IF, ELSE, and ENDIF Directives

The IF, ELSE, and ENDIF directives define a range of assembly language state-
ments to be included or excluded during the assembly process. The IF and ENDIF
statements alone can bound a group of statements to be conditionally assembled, as
shown in the following example:

IF expression
statement#1
statement#2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF. All operands in the expression must be defined ahead of the IF statement. If
the expression evaluates to a nonzero value, then statement#1 through statement#n
are assembled. If the expression evaluates to zero, then the statements are listed but
not assembled.

Conditional assembly is often used to write a single generic program that includes
a number of possible alternative subroutines or program segments, where only a few
of the possible alternatives are to be included in any given assembly. Listings 4-1 and
4-2 give an example of such a program.

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.5 IF, ELSE, and ENDIF

Assume that a console device, either a teletype or a CRT, is connected to an 8080
microcomputer through I/O ports. Due to the electronic environment, the current
loop teletype is connected through ports 10H and 11H, while the RS-232 CRT is
connected through ports 20H and 21H. The program continually loops, reading and
writing console characters. The program shown below operates either with a teletype
or a CRT, depending on the value of the symbol TTY.

Listing 4-1 shows an assembly for the teletype environment. Listing 4-2 shows the
assembly for a CRT-based system. Note that the assembler leaves the leftmost 16
columns blank when statements are skipped due to a false condition.

CP/M MACRO ASSEM 2.0 #001 Teletyrpe Echo Prodram
FFFF = TRUE EQU OFFFFH iDEFINE TRUE
0000 = FALSE EQU NOT TRUE 3DEFINE FALSE
FFFF = TTY EQU TRUE iSET TTY ON
0010 = TTYBASE EQU 10H iBASE OF TTY PORTS
0020 = CRTBASE EQU 20H iBASE OF CRT PORTS
IF TTY iASSEMBLE TTY PORTS
TITLE ‘Teletype Echo Program’
0010 = CONIN EQU TTYBASE iCONSOLE INPUT
0011 = coNouT EQU TTYBASE+1 iCONSOLE OuTt
ENDIF
IF NOT TTY SFASSEMBLE CRT PORTS
TITLE 'CRT Echo Program’
CONIN EQU CRTBASE iCONSOLE IN
CONOUT EQU CRTBASE+1 iCONSOLE OuT
ENDIF
i
0000 DB10O ECHO: IN CONIN iREAD CONSOLE
CHARACTER
0002 D311~ out coNouT iWRITE CONSOLE
CHARACTER
0004 C30000 JMP ECHO
0007 END

Listing 4-1. Conditional Assembly with TTY True

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

4.5 IF, ELSE, and ENDIF Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 CRT Echo Prodram
FFFF = TRUE EQU OFFFFH iDEFINE TRUE
0000 = FALSE EQU NOT TRUE DEFINE FALSE
0000 = TTY EQU FALSE iSET CRT ON
0010 = TTYBASE EQU 10H iBASE OF TTY PORTS
0020 = CRTBASE EQU 20H iBASE OF CRT PORTS
IF TTY iASSEMBLE TTY PORTS
TITLE ‘Teletypre Echo Program’
CONIN EQU TTYBASE iCONSOLE INPUT
CONOUT EQU TTYBASE+1 iCONSOLE 0OuT
ENDIF
IF NOT TTY iASSEMBLE CRT PORTS
TITLE ‘CRT Echo Program’
0020 = CONIN EQU CRTBASE iCONSOLE 1IN
0021 = CONOUT EQU CRTBASE+1 FCONSOLE OuT
ENDIF
i
0000 DB20 ECHO: IN CONIN iREAD CONSOLE
CHARACTER
0002 D321 ouT CONOUT iWRITE CONSOLE
CHARACTER
0004 C30000 JMP ECHO
0007 END

Listing 4-2. Conditional Assembly with TTY False

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

4.5 IF, ELSE, and ENDIF

The ELSE statement can be used as an alternative to an IF statement. The ELSE
statement must occur between the IF and ENDIF statements. The form is

IF expression
statement#1
statement#2
statement#n
ELSE
statement#n + 1
statement#n + 2
statement#m
ENDIF

If the expression produces a nonzero (true) value, then statements 1 through n are
assembled as before. However, the assembly process skips statements n+1 through
m. When the expression produces a zero value (false)) MAC skips statements 1
through n and assembles statements n+1 through m. For example, the conditional
assembly shown in Listings 4-1 and 4-2 can be rewritten as shown in Listing 4-3.

CP/M MACRO ASSEM 2.0 #001
FFFF = TRUE EQU
0000 = FALSE EQU
0000 = TTY EQU
0010 = TTYBASE EOQU
0020 = CRTBASE EOQU

IF
TITLE
CONIN EQU
CONOUT EQU
ELSE
TITLE
0020 = CONIN EQU
0021 = CONOUT EQU
ENDIF
i
0000 DB20 ECHO: IN
0002 D321 ouT
0004 C30000 JMP
0007 END

CRT Echo Prodram

OFFFFH SDEFINE TRUE

NOT TRUESDEFINE FALSE

FALSE iSET CRT ON

10H iBASE OF TTY PORTS

20H iBASE OF CRT PORTS

TTY iASSEMBLE TTY PORTS

‘Teletyre Echo Program’

TTYBASE iCONSOLE INPUT

TTYBASE+1 iCONSOLE OuT
iASSEMBLE CRT PORTS

‘CRT Echo Prodram’

CRTBASE iCONSOLE 1IN

CRTBASE+! iCONSOLE OuT

CONIN iREAD CONSOLE CHARACTER
CONOUT iWRITE CONSOLE CHARACTER
ECHO

Listing 4-3. Conditional Assembly Using ELSE for Alternate

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

19

4.

IF, ELSE, and ENDIF Programmer’s Utilities Guide

roperly balanced IF, ELSE, and ENDIF statements can be completely contained

within the boundaries of outer encompassing conditional assembly groups. The struc-

ture outlined below shows properly nested IF, ELSE, and ENDIF statements:

G

1S

IF exp#1
group#1

IF exp#2
group#2
ELSE
group#3
ENDIF
group#4
ELSE
group#5

IF exp#3
group#6
ENDIF
group#7
ENDIF

oups 1 through 7 are sequences of statements to be conditionally assembled, and

exp#1 through exp#3 are expressions that control the conditional assembly. If exp#1

true, then group#1 and group#4 are always assembled, and groups 5, 6, and 7

are skipped. Further, if exp#1 and exp#2 are both true, then group#2 is also included

in

the assembly. Otherwise, group#3 is included. If exp#1 produces a false value,

groups 1, 2, 3, and 4 are skipped, and groups 5 and 7 are always assembled. If
exp#3 is true under these circumstances, then group#6 is also included with § and

7.
Li

Otherwise, it is skipped in the assembly. A structure similar to this is shown in
sting 4-4, where literal true/false values show conditional assembly selection.

20 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

4.5 IF, ELSE, and ENDIF Programmer’s Utilities Guide

There can be up to eight pending IFs or ELSEs with unresolved ENDIFs at any
point in the assembly, but the assembly usually becomes unreadable after two or
three levels or nesting. The nesting level restriction also holds, however, for pending
IFs and ELSEs during macro evaluation. Nesting level overflow produces an error
during assembly.

FFFF = TRUE EQU OFFFFH iDEFINE TRUE
0000 = FALSE EQU NOT TRUE iDEFINE FALSE
IF FALSE
MUI Al
IF TRUE
MUI A2
ELSE
MVI Ay3
ENDIF
MVI Ad
ELSE
0000 3EO0S MUI AsS
IF TRUE
0002 3E06 MVI A+6
ELSE
MVUI A7
ENDIF
0004 3E08 MVI A8
ENDIF
END

Listing 4-4. Sample Program Using Nested IF, ELSE, and ENDIF

4.6 The DB Directive

The DB directive defines initialized storage areas in single-precision (byte) format.
The statement form is
label DB e#l, e#2, ..., e#n

where the label is optional, and e#1 through e#n are either expressions that produce
8-bit values (the high-order eight bits are zeros, or the high-order nine bits are ones),
or are ASCII strings no longer than 64 characters each. There is no practical restric-
tion on the number of expressions included on a single source line. The assembler
evaluates expressions and places them into the machine code sequentially following
the last program address generated.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

4.6 The DB Directive Programmer’s Ultilities Guide

String characters are similarly placed into memory, starting with the first character
and ending with the last character. Strings longer than two characters cannot be used
as operands in more complicated expressions. They must stand alone between the
commas. Note that ASCII characters are always placed in memory with the high-
order (parity) bit reset to zero. Further, recall that there is no translation from lower
to upper-case within strings. The optional label can be used to reference the data
area throughout the program. The following are examples of valid DB statements:

dataz: DB 041+2+3+44+546
DB data and Offh+5:377Q0,1+2+3+4
sidgnon: DB ‘please tvyPe vour name:’‘scrsl1f 0

DB ‘AB’ SHR 8y ‘C’y ‘DE’ AND 7FH
DB HIGH datas LOW (signon GT data)

4.7 The DW Directive

The DW statement is similar to the DB statement except double-precision (two-
byte) words of storage are initialized. The form of the DW statement is

label DW e#1, e#2, ..., e#n

where the label is optional, and e#1 through e#n are expressions that produce 16-
bit values. Note that ASCII strings one or two characters long are allowed, but
strings longer that two characters are disallowed. In all cases, the data storage is
consistent with the 8080 processor; the least significant byte of the expression is
stored first in memory, followed by the most significant byte. The following are
examples of properly formed DW statements:

doub: DW Offefh, doub+d4, signon-$,255+255
DW ‘a’y 3¢ ‘AB’y ‘CD’y doub LT sidnon

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.8 The DS Directive

4.8 The DS Directive
The DS statement reserves an area of uninitialized memory and takes the form
label DS expression

where the label is optional. The assembler begins subsequent code generation after
the area reserved by the DS. Thus, the DS statement given above has exactly the
same effect as the statement sequences:

label: EQU § ;CURRENT CODE LOC
ORG $+expression ;MOVE PAST AREA

4.9 The PAGE and TITLE Directives

The PAGE and TITLE pseudo operations give you control over the output format-
ting that is sent to the PRN file or directly to the printer device. The forms for the
PAGE statement are

PAGE
PAGE expression

If the PAGE statement stands alone, an ASCII CTRL-L (form-feed) is sent to the
output file after the PAGE statement has been printed. The PAGE command is often
issued directly ahead of major sections of an assembly language program, such as a
group of subroutines, to cause the next statement to appear at the top of the follow-

ing page.

The second form of the PAGE command specifies the output page size. In this case,
the expression following the PAGE pseudo operation determines the number of out-
put lines to be printed on each page. If the expression is zero, there are no page
breaks. The print file is simply a continuous sequence of annotated output lines. If
the expression is nonzero, then the page size is set to the value of the expression.
Form-feeds are issued to cause page ejects when this count is reached for each page.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TG DIGITAL RESEARCH 23

4.9 PAGE and TITLE Directives Programmer’s Utilities Guide

The assembler initially assumes that

PAGE 56

is in effect, producing a page eject at the beginning of the listing and at each 56-line
increment.

The TITLE directive takes the form
TITLE string-constant

where the string-constant is an ASCII string enclosed in apostrophes, not exceeding
64 characters in length. If a TITLE pseudo operation is given during the assembly,
each page of the listing file is prefixed with the title line, preceded by a standard
MAC header. The title line thus appears as

CP/M MACRO ASSEM n.n #ppp string-constant

where n.n is the MAC version number, #ppp is the page number in the listing, and
string-constant is the string given in the TITLE pseudo operation. MAC initially
assumes that the TITLE operation is not in effect. When specified, the title line and
the blank line following the title are not included in the line count for the page. No
more than one TITLE statement is included in a program. Similarly, only one PAGE
statement with the expression option is included.

If a TITLE statement is included, and the Symbol Table is being appended to the
PRN file (see Section 10), then the SYM file also contains the title at the beginning
of the symbol listing with page breaks given by either the default or specified value
of the PAGE statement.

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.10 A Sample Program

4.10 A Sample Program Using Pseudo Operations

The program in Listing 4-5 demonstrates the pseudo operations available in MAC.
The sample program, called TYPER, operates in the CP/M environment by selecting
one of three messages for output at the console. This program is created using the
ED program, assembled using MAC, and then placed into COM file format using
the CP/M LOAD function. After these steps have been accomplished, TYPER exe-
cutes at the Console Command Processor level of CP/M by typing one of the
commands:

TYPER A
TYPER B
TYPER C

to select message A, B, or C for printing. The TYPER program loads under the CCP
and jumps to the label START where the 8080 stack is initialized. The TYPER
program then prints its sign-on message:

‘tvper’ version 1.0

The program then retrieves the first character typed at the console following the
command TYPER. This character should be A, B, or C. If one of these letters is not
specified, then TYPER reboots the CP/M system to give control back to the CCP. If
a valid letter is provided, TYPER selects one of the three messages (MESS@A,
MESS@B, or MESS@C) and prints it at the console before returning to CP/M.

The TITLE and PAGE statements produce a title at the beginning of each page;
page size is 33 lines, excluding the title lines. Form-feeds are suppressed. A number
of EQU statements at the beginning improve program readability. Note that through-
out the program the exclamation point allows several simple assembly language
statements on the same line. Although multiple statements make the program more
compact, they often decrease the overall readability of the source program. Note also
that the program terminates without the END statement. The END statement is
necessary only if a starting address is specified. The END statement is often included,
however, to maintain compatibility with other assemblers.

The DB statements labeled by SIGNON contain simple strings of characters and
expressions that produce single-byte values. The DW statement following TABLE
defines the base address of each string, corresponding to A, B, and C. Finally, the DS
statement at the end of the program reserves space for the stack defined within the
TYPER program.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

4.10 A Sample Program Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 Typer Prodram

TITLE ‘Typer Prodram’

PAGE 33

i PRINT THE MESSAGE SELECTED BY THE INPUT COMMAND AsBs OR C \
000A = VERS EQU 10 FiVERSION NUMBER N.N
0000 = BooT EQU 0000H iREBOOT ENTRY POINT
0005 = BDOS EQU 0005H iBDOS ENTRY POINT
005C = TFCB EQU 005CH iDEFAULT FILE CONTROL BLOCK (GET A:B:s OR C)
0002 = WCHAR EQU 2 FiWRITE CHARACTER FUNCTION
000D = CR EQU ODH iCARRIAGE RETURN CHARACTER
000A = LF EQU 0AH iLINE FEED CHARACTER
0010 = STKSIZ EQU 16 iSIZE OF LOCAL STACK (IN DOUBLE BYTES)

1)
0100 ORG 100H iORIGIN AT BASE OF TPA
0100 C31201 JMP START iJUMP PAST THE MESSAGE SUBROUTINE

)

WMESSAGE:

FWRITE THE STRING AT THE ADDRESS GIVEN BY HL ‘TIL 00

0103 7EB7CB MOV AyM! ORA A! RZ SRETURN IF AT 00
0106 SFOEOZES MOV EsA! MVI C,WCHAR! PUSH H SREADY TO PRINT
010A CDOSOOEL CALL BDOS! POP H iCHARACTER PRINTED: GET NEXT
010E 23C30301 INX H! JMP WMESSAGE

1)

START: SENTER HERE FROM THE CCP, RESET TO LOCAL STACK N’
0112 31C101 LXI SPSTACK iSET TO LOCAL STACK
0115 213701 LXI H+SIGNON iWRITE THE MESSAGE
0118 CD0301 CALL WMESSAGE i‘TYPER' VERSION NN

1
0118 3AS5D0O LDA TFCB+1 iGET FIRST CHAR TYPED AFTER NAME
011E DB41 Sul ‘A’ iNORMALIZE T0 0412
0120 FEO3 CPI TABLEN SCOMPARE WITH THE TABLE LENGTH
0122 D20000 JNC BOOT iREBOOT IF NOT VALID

COMPUTE INDEX INTO ADDRESS TABLE BASED ON A’S VALUE

Listing 4-5. TYPER Program Listing

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Ultilities Guide

0125
0126
0128
0128
012C
012D
012E
012F
0130
0131
0134

0137
0147
014A

014D
0003
0153
0167
0182

01A1

CP/M MACRO ASSEM 2.0

SF

1600

214001

19

19

SE

23

56

EB

CD0301

C30000
i
i
SIGNON:

2774797065

312E30

0D0A00

i
TABLE:

5301670182

= TABLEN
i

7468697320MESSEA:

796F752073MESSEB:

7468697320MESSEC:

Y

STACK:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

MOV
MVI
LXI
DAD
DAD
MoV
INX
Mov
XCHG
CALL
JMP

DATA
DB

DB
DB

4.10 A Sample Program

#002 Tyrper Prodram
EA iLOW ORDER INDEX
D0 SEXTENDED TO DOUBLE PRECISION
H)»TABLE iBASE OF THE TABLE TO INDEX
D iSINGLE PRECISION INDEX
D sDOUBLE PRECISION INDEX
E M iLOW ORDER BYTE TO E
H
DM iHIGH ORDER MESSAGE ADDRESS TO DE
iREADY FOR PRINTOUT
WMESSAGE SMESSAGE WRITTEN TO CONSOLE
BOOT {REBOOT,» GO BACK TO CCP LEVEL
AREAS
‘‘’'typer’’ version '
VERS/10+°0'y '+'y VERS MOD 10 +'0'
CR+LF+0 3END OF MESSAGE

i0F MESSAGE BASE ADDRESSES

DW
EQU

DB
DB
DB

DS

STACK

MESSEA yMESSEB yMESSEC

($-TABLE) /2 SLENGTH OF TABLE

‘this is message a’sCRILF 40

‘vyou selected b this time’»CRsLF 0

‘this messade comes out for c’»CRsLF+0

STKSIZ#2 iRESERVES AREA FOR
Listing 4-5. (continued)

End of Section 4

27

Section 5
Operation Codes

Operation codes, found in the operation field of the statement, form the principal
components of assembly language programs. MAC accepts all the standard mnemon-
ics for the Intel 8080 microcomputer. These standard mnemonics are detailed in the
8080 Assembly Language Programming Manual, published by Intel. Labels are optional
on each input line and, if included, take the value of the instruction address immedi-
ately before the instruction is issued by the assembler. The individual operators are
listed briefly in the following sections. See the Intel documentation for exact operator
details. In this section, operation codes are categorized for discussion; a sample assembly
shows the hexadecimal codes produced for each operation. The following notation is
used throughout:

e3 represents a 3-bit value in the range 0-7 that usually takes one of the
predefined register values A, B, C, D, H, L, M, SP, or PSW

e8 represents an 8-bit value in the range 0-255; signed 8-bit values are
also allowed in the range —128 through +127

elé represents a 16-bit value in the range 0-65535
where €3, €8, and e16 can be formed from an arbitrary combination of operands

and operators in a well-formed expression. In some cases, the operands are restricted
to particular values within the range, such as the PUSH instruction.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TQ DIGITAL RESEARCH 29

wn
(9}
(g
.
o
)
%]

5.1 Jumps, Calls, and Returns Programmer’s Utilities Guide

5.1 Jumps, Calls, and Returns

In some cases, the condition flags are tested to determine whether or not to take
the jump, call, or return. The forms are shown below. The jump instructions are

JMP el6 JNZ e16 JZ el6
JNC el6 JC e16 JPO el6
JPE e16 JP el16 JM el6

The call instructions are

CALL el6 CNZ el6 CZ el6
CNC el6 CCelé6 CPO el6
CPE el6 CP el6 CM el6

The return instructions are

RET RNZ RZ
RNC RC RPO
RPE RP RM

The restart instruction takes the form:
RST e3

and performs exactly the same function as the instruction CALL e3*8 except that
RST e3 requires only one byte of memory.

Listing 5-1 shows the hexadecimal codes for each instruction, along with a short
comment on each line describing the function of the instruction.

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0000
0003
0006
0009
000C
000F
0012
0015
0018

0018
001E
0021
0024
0027
002A
0020
0030
0033

0036
0037

0038
0039
003A
0038
003C
003D
003E
003F
0040

0002

0041

CP/M MACRD ASSEM 2.0 #001 8080 JUMPS, CALLS: AND RETURNS

C31B00
€25C00
CA0001
D21F00
DA4142
E21700
EAODOO
F24100
FA1BOO

CD3600
€43800
CC0001
D43A00
DC0000
E43200
EC0900
F44100
FC4100

Cc7
DF

c9
Co
c8
DO
D8
EOQ
E8
FO
F8

L) 3X e

-
—

- -

w
—

- as we

AMMA:

TITLE ‘8080 JUMPS, CALLS+ AND RETURNS'’

JUMPS ALL REQUIRE A 16-BIT OPERAND

JMP L1 $JUMP UNCONDITIONALLY TO LABEL
JNZ L1+’A’ §JUMP ON NON ZERO TO LABEL

JZ 100H iJUMP ON ZERO CONDITION TO LABEL
JNC Li+4d iJUMP ON NO CARRY TO LABEL

JC ‘AB’ iJUMP ON CARRY TO LABEL

JPO $+8 iJUMP ON PARITY 0ODD TO LABEL

JPE L1/2 iJUMP ON EVEN PARITY TO LABEL

JP GAMMA iJUMP ON POSITIVE RESULT TO LABEL
JM LOW L1 §JUMP ON MINUS TO LABEL

CALL OPERATIONS ALL REQUIRE A 16-BIT OPERAND

CALL S1 iCALL SUBROUTINE UNCONDITIONALLY
CNZ S1+X iCALL SUBROUTINE IF NON ZERO FLAG
cz 100H iCALL SUBROUTINE IF ZERO FLAG

CNC S1+4 iCALL SUBROUTINE IF NO CARRY FLAG
cc S1 MOD 3iCALL SUBROUTINE IF CARRY FLAG
CPO $+8 iCALL SUBROUTINE IF PARITY 0DD
CPE S1-% iCALL SUBROUTINE IF PARITY EVEN
cp GAMMA iCALL SUBROUTINE IF POSITIVE

CM GAM$MA SCALL SUBROUTINE IF MINUS FLAG

PROGRAMMED RESTART (RST) REQUIRES 3-BIT OPERAND
(RST X IS EQUIVALENT TO CALL X#8)

RST 0 iRESTART TO LOCATION 0O

RST X+1

RETURN INSTRUCTIONS HAVE NO OPERAND

RET iRETURN FROM SUBROUTINE
RNZ iRETURN IF NON ZERO

RZ iRETURN IF ZERO FLAG SET
RNC iRETURN IF NO CARRY FLAG
RC iRETURN IF CARRY FLAG SET
RPO iRETURN IF PARITY IS 0ODD
RPE iRETURN IF PARITY IS EVEN
RP iRETURN IF POSITIVE RESULT
RM iRETURN IF MINUS FLAG SET
EQU 2

END

Listing 5-1. Assembly Showing Jumps, Calls, Returns, and Restarts

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

5.1 Jumps, Calls, and Returns

31

5.2 Immediate Operand Instructions Programmer’s Utilities Guide

5.2 Immediate Operand Instructions

Several instructions load single- or double-precision registers or single-precision
memory locations with constant values. Other instructions perform immediate arith-
metic or logical operations on the accumulator (register A). The move immediate
instruction takes the form:

MVI e3,e8
where e3 is the register to receive the data given by the value e8. The expression €3
must produce a value corresponding to one of the registers A, B, C, D, E, H, L, or

the memory location M, which is addressed by the HL register pair.

The accumulator immediate operations take the form:

ADI 8 ACI €8 SUI 8 SBI 8
ANI 8 XRI €8 ORI €8 CPI €8

where the operation is always performed on the accumulator using the immediate
data value given by the expression e8.

The load extended immediate instructions take the form:
LXI e3,el6
where e3 designates the register pair to receive the double-precision value given by

el6. The expression e3 must produce a value corresponding to one of the double-
precision register pairs B, D, H, or SP.

32 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 5.2 Immediate Operand Instructions

Listing 5-2 shows the accumulator immediate operations in an assembly language
program and briefly describes each instruction.

CP/M MACRO ASSEM 2.0 #001 IMMEDIATE OPERAND INSTRUCTIONS

TITLE ‘IMMEDIATE OPERAND INSTRUCTIONS’

MVUI USES A REGISTER (3-BIT) OPERAND AND 8-BIT DATA
0000 OBFF MUI B+25S iMOVE IMMEDIATE A+B+C+DsE+HsL M

ALL REMAINING IMMEDIATE OPERATIONS USE A REGISTER

0002 C601 ADI 1 iADD IMMEDIATE TO A W/0 CARRY

0004 CEFF ACI OFFH $ADD IMMEDIATE TO A WITH CARRY

0006 D613 Sul L1+3 iSUBTRACT FROM A W/0 BORROW (CARRY)
0008 DE10 SB1 LOW L1 $SSUBTRACT FROM A WITH BORROW (CARRY)
000A EB02 ANI $ AND 7 SLOGICAL AND WITH IMMEDIATE DATA
000C EE3C XRI 1111$00B5LOGICAL XOR WITH IMMEDIATE DATA
000E FBFD ORI -3 iLOGICAL OR WITH IMMEDIATE DATA

’ L1:

0010 END

Listing 5-2. Assembly Using Immediate Operand Instructions

5.3 Increment and Decrement Instructions

The 8080 set includes instructions for incrementing or decrementing single- and
double-precision registers. The instruction forms for single-precision registers are

INR e3 DCR €3
where €3 produces a value corresponding to register A, B, C, D, H, L, or M. These
registers correspond to the byte value at the memory location addressed by HL. The
double-precision instructions are

INX e3 DCXe3

where 3 must be equivalent to one of the double-precision register pairs B, D, H, or
SP.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

5.3 Increment and Decrement Programmer’s Utilities Guide

Listing 5-3 shows a sample assembly language program using both single- and
double-precision increment and decrement operations.

CP/M MACRO ASSEM 2.0 #001 INCREMENT AND DECREMENT INSTRUCTIONS

TITLE ‘INCREMENT AND DECREMENT INSTRUCTIONS'

i INSTRUCTIONS REQUIRE REGISTER (3-BIT) OPERAND
0000 1IC INR E iBYTE INCREMENT A+BC+DsE+HsL M
0001 3D DCR A iBYTE DECREMENT A B +C+DsEsHsL M
0002 33 INX SP i16-BIT INCREMENT B.DsH,SP
0003 OB DCX B i16-BIT DECREMENT B/D+H,SP
0004 END

Listing 5-3. Assembly Containing Increment
and Decrement Instructions

5.4 Data Movement Instructions

A number of 8080 instructions move data from memory to the CPU and from the
CPU to memory. Data movement instructions also include a number of register-to-
register move operations. The single-precision move register instruction takes the
form:

MOV e3, e3

where the e3 and e 3’ expressions each produce a single-precision register A, B, C,D, E, H,
L, or M, where the M register corresponds to the memory location addressed by HL. The
register named by e3 always receives the 8-bit value given by the register expression e3'.
The instruction is often read as move to register €3 from register 3. The instruction
MOV B,H would thus be read as move to register B from register H. Note that the
instruction MOV M,M is not allowed.

The single-precision load and store extended operations take the form:
LDAX e3 STAX e3
where €3 is a register expression that must produce one of the double-precision

register pairs B or D. The 8-bit value in register A is either loaded from (LDAX) or
stored to (STAX) the memory location addressed by the specified register pair.

34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH

Programmer’s Utilities Guide 5.4 Data Movement Instructions

The load and store direct instructions operate on either the A register for single-
precision operations, or on the HL register pair for double-precision operations.
Load and store direct instructions take the form:

LHLD elé6 SHLD el6 LDA el6 STA el6

where €16 is an expression that produces the memory address to obtain (LHLD,
LDA) or store (SHLD, STA) the data value.

The stack pop and push instructions perform double-precision load and store oper-
ations, with the 8080 stack as the implied memory address. The forms are

POP e3 PUSH e3

where €3 must evaluate to one of the double-precision register pairs PSW, B, D, or
H.

The input and output instructions are also in this category, even though they
receive and send their data to the electronic environment external to the 8080 pro-
cessor. The input instruction reads data to the A register; the output instruction sends
data from the A register. In both cases, the data port is given by the data value that
follows the instruction. The forms are

IN e8 OUT e8

A set of instructions transfers double-precision values between registers and the
stack. These instructions are

XTHL PCHL SPHL XCHG

Listing 5-4 lists these instructions in an assembly language program and briefly describes
them.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

5.4

0000

0001
0002

0003
0006
0009
000C

000F
0010

0011
0013

0015
0016
0017
0018

0019
0018
0004
0010

36

Data Movement Instructions

Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 DATA/MEMORY/REGISTER MOVE OPERATIONS

78

2A1900
221800
3A1900
326400

F1
Cs

DBOB
D3FE

E3
E9
F9
EB

TITLE ‘DATA/MEMORY/REGISTER MOVE OPERATIONS'’

THE MOV INSTRUCTION REQUIRES TWO REGISTER OPERANDS

(3-BITS) SELECTED FROM A+B:C+sD+EsHsy OR M (MM INVALID)

MoV A4B iMOVE DATA TO FIRST REGISTER FROM
iSECOND

LOAD/STORE EXTENDED REQUIRE REGISTER PAIR B OR D
LDAX B iLOAD ACCUM FROM ADDRESS GIVEN BY BC
STAX D iSTORE ACCUM TO ADDRESS GIVEN BY DE

LOAD/STORE DIRECT REQUIRE MEMORY ADDRESS

LHLD D1 iLOAD HL DIRECTLY FROM ADDRESS D1
SHLD Di1+2 iSTORE HL DIRECTLY TO ADDRESS D1+2
LDA D1 iLOAD THE ACCUMULATOR FROM DI

STA D1 SHL 23iSTORE THE ACCUMULATOR TO D1 SHL 2

PUSH AND POP REQUIRE PSW OR REGISTER PAIR FROM B.D.H
PoP PSHW iLOAD REGISTER PAIR FROM STACK
PUSH B iSTORE REGISTER PAIR TO THE STACK

INPUT/0UTPUT INSTRUCTIONS REQUIRE 8-BIT PORT NUMBER
IN K+2 iREAD DATA FROM PORT NUMBER TO A
out OFEH iWRITE DATA TO THE SPECIFIED PORT

MISCELLANEOUS REGISTER MOVE OPERATIONS

KTHL iEXCHANGE TOP OF STACK WITH HL
PCHL iPC RECEIVES THE HL VALUE

SPHL iSP RECEIVES THE HL VALUE

XCHG iEXCHANGE DE AND HL

END OF INSTRUCTION LIST

DS 2 iDOUBLE WORD TEMPORARY
DS 2 iANOTHER TEMPORARY
EQU 4 iLITERAL VALUE

END

Listing 5-4. Assembly Using Various Register/Memory Moves

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 5.5 ALU Operations

5.5 Arithmetic Logic Unit Operations

The 8080 set includes instructions that operate between the accumulator and sin-
gle-precision registers, including operations on the A register and carry flag. The
accumulator/register instructions are

ADD e3 ADC e3 SUB e3 SBB €3
ANA e3 XRA e3 ORA e3 CMP €3

where €3 produces a value corresponding to one of the single-precision registers A,
B, C, D, E, H, L, or M, where the M register is the memory location addressed by
the HL register pair.

The accumulator/carry operations given below operate upon the A register, or
carry bit, or both.

DAA CMA STC CMC
RLC RRC RAL RAR

The function of each instruction is listed in the comment line shown in Listing 5-5.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

5.5 ALU Operations Programmer’s Utilities Guide

0000
0001
0002
0003
0004
0005
0006
0007

0008

0009
000A
0008
000C
000D
000E
000F
0010

0011

CP/M MACRD ASSEM 2.0 #001 ARITHMETIC LOGIC UNIT OPERATIONS

80
80
94
29
Al
AF
BO
BC

09

27
2F
37
3F
07
OF
17
1F

TITLE ‘ARITHMETIC LOGIC UNIT OPERATIONS'

ASSUME OPERATION WITH ACCUMULATOR AND REGISTER
WHICH MUST PRODUCE Ay By Cy» D» E» Hy Ly OR M

- ws e e

ADD B iADD REGISTER TO A W/0 CARRY
ADC L iADD TO A WITH CARRY INCLUDED
suB H iSUBTRACT FROM A W/0 BORROW
SBB B+1 iSUBTRACT FROM A WITH BORROW
ANA C iLOGICAL AND WITH REGISTER
XRA A FLOGICAL XOR WITH REGISTER
ORA B iLOGICAL OR WITH REGISTER

CMP H iCOMPARE REGISTER+ SETS FLAGS

i DOUBLE ADD CHANGES HL PAIR ONLY
DAD B iDOUBLE ADD B,D»H,SP TO HL

i REMAINING OPERATIONS HAVE NO OPERANDS

DAA iDECIMAL ADJUST REGISTER A USING LAST OF
CMA iCOMPLEMENT THE BITS OF THE A REGISTER
STC iSET THE CARRY FLAG TO 1
CMC SCOMPLEMENT THE CARRY FLAG
RLC i8-BIT ACCUM ROTATE LEFT+ AFFECTS CY
RRC i8-BIT ACCUM ROTATE RIGHT: AFFECTS CY
RAL i9-BIT CY/ACCUM ROTATE LEFT
RAR i9-BIT CY/ACCUM ROTATE RIGHT

1]
END

Listing 5-5. Assembly Showing ALU Operations

The double-precision add instruction performs a 16-bit addition of a register pair
(B, D, H, or SP) into the 16-bit value in the HL register pair. This addition produces
the 16-bit (unsigned) sum of the two values. The sum is placed into the HL register
pair. The form is

DAD e3

38

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 5.6 Control Instructions

5.6 Control Instructions

The four remaining instructions in the 8080 set are control instructions. These take
the forms:

HLT
DI
El
NOP

They stop the processor (HLT), enable the interrupt system (EI), disable the interrupt
system (DI), or perform a no-operation (NOP).

End of Section §

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39

Section 6
An Introduction to
Macro Facilities

The fundamental difference between the Digital Research ASM and MAC assem-
blers is that ASM provides only the facilities for assembling 8080 operation codes,
and MAC includes a powerful macro processing facility. MAC implements the indus-
try standard Intel macro definition, which includes the following pseudo operations.

Macro definitions allow groups of instructions to be stored and substituted in the
source program as the macro names are encountered. Definitions and macro calls
can be nested; symbols can be constructed through concatenation using the special
& operator, and locally defined symbols can be created using the LOCAL pseudo
operation. Macro parameters can be formed to pass arbitrary strings of text to a
specific macro for substitution during expansion.

The MACLIB (macro library) feature allows the programmer to define a set of
macros, equates, and sets and automatically includes them in a program. A macro
library can contain an instruction set for another central processor that is not directly
supported by the MAC built-in mnemonics. The macro library can also include
general purpose input/output macros used in programs that operate in the CP/M
environment to perform peripheral or disk I/O functions.

IRPC, IRP, and REPT pseudo operations repeat source statements under control
of a count or list of characters or items to be substituted each time the assembler
rereads the statements. This feature is particularly useful in generating groups of
assembly language statements with similar structure, such as a set of File Control
Blocks where only the filetype is changed in each statement.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41

O Uond3g

6 Introduction to Macro Facilities Programmer’s Utilities Guide

To illustrate the power of macro facility, consider the macro library shown in
Listing 6-1, which resides in a disk file called MSGLIB.LIB. This macro library con-
tains macro definitions that have standard instruction sequences for program startup,
message typeout, and program termination. The program shown in Listing 6-2 pro-
vides an example of the use of this macro library. The assembly shown in Listing
6-2 lists both the macro calls and the statements in macro expansions that generate
machine code. The statements marked by + in Listing 6-2 are generated from the
macro calls. The remaining statements are a part of the calling program.

The macro call
ENTCCP 10

in Listing 6-2 shows a specific expansion of ENTCCP (enter from CCP). ENTCCP is
defined in Listing 6-1. The macro call causes MAC to retrieve the definition—the
text between MACRO and ENDM in Listing 6-1—and substitute this text following
the macro call in Listing 6-2. Upon entry to the program from CCP, this macro saves
the stack pointer (SP) into a variable called @ENTSP for later retrieval. The stack
pointer is then reset to a local area for the remainder of the program execution.

The size of the local stack is defined by the macro parameter named in the macro
definition as SSIZE (see Listing 6-1), and filled in at the call with the value 10. The
ENTCCP macro reserves space for a local stack of SSIZE=10 double bytes (2*10
bytes) and, after setting up the stack, branches around this reserved area to continue
the program execution.

42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

6 Introduction to Macro Facilities Programmer’s Utilities Guide

i SIMPLE MACRO LIBRARY FOR MESSAGE TYPEOUT

REBOOT EQU 0000H iWARM START ENTRY POINT

TPA EQU 0100H iTRANSIENT PROGRAM AREA

BDOS EQU Q0OS5H iSYSTEM ENTRY POINT

TYPE EQU 2 SWRITE CONSOLE CHARACTER FUNCTION
CR EQU ODH iCARRIAGE RETURN

LF EQU 0AH iLINE FEED

1

iMACRO DEFINITIONS

CHROUT MACRO SWRITE A CONSOLE CHARACTER FROM REGISTER A
MUT C+TYPE §3iTYPE FUNCTION
CALL BDOS $JENTER THE BDOS TO WRITE THE CHARACTER
ENDM
i
TYPEOUT MACRO PMESSAGE $TYPE LITERAL MESSAGE AT CONSOLE
LOCAL PASTSUB §3JUMP PAST SUBROUTINE INITIALLY
JMP PASTSUB
MSGOUT: i3THIS SUBROUTINE PRINTS THE MESSAGE STARTING AT HL ‘TIL 00
Moy EM $INEXT CHARACTER TO E
Moy AE $3iT0 ACCUM TO TEST FOR 00
ORA A §8=007
RZ $IRETURN IF END OF MESSAGE
INX H $OTHERWISE MOVE TO NEXT CHARACTER AND PRINT

.
kl
.
1

PUSH H iSAVE MESSAGE ADDRESS
CHROUT
POP H i iRECALL MESSAGE ADDRESS
Jup MSGOUT §3iFOR ANOTHER CHARACTER
PASTSUB:
L)
i REDEFINE THE TYPEOUT MACRO AFTER THE FIRST INVOCATION
TYPEOUT MACRO ??MESSAGE

LOCAL TYMSG i iLABEL THE LOCAL MESSAGE
LOCAL PASTM

LXI HyTYMSG §35ADDRESS THE LITERAL MESSAGE
CALL MSGOUT iiCALL THE PREVIOUSLY DEFINED SUBROUTINE
JMP PASTM
i INCLUDE THE LITERAL MESSAGE AT THIS POINT
TYMSG: DB ‘FROM CONSOLE: &??MESSAGE’CRsLF 40O
i ARRIVE HERE TO CONTINUE THE MAINLINE CODE
PASTM: ENDM
TYPEOUT <?MESSAGE:>
ENDM

Listing 6-1. A Sample Macro Library

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 43

6 Introduction to Macro Facilities Programmer’s Utilities Guide

ENTCCP MACRO SSIZE iENTER PROGRAM FROM CCP, RESERVE 2#SSIZE STACK LOCS
LOCAL START 7 JAROUND THE STACK

LXI H»0
DAD SP iiSP VALUE IN HL
SHLD BENTSP iiENTRY SP
LXI SP,@STACK{iSET TO LOCAL STACK
JMP START
IF NUL SSIZE
DS 32 iiDEFAULT 16 LEVEL STACK
ELSE
DS 2#SS1ZE
ENDIF
@STACK: iiLOW END OF STACK
BENTSP: DS 2 iiENTRY SP

START: ENDM

Y

RETCCP MACRO iRETURN TO CONSOLE PROCESSOR
LHLD BENTSP i iRELDAD CCP STACK
SPHL
RET iiBACK TO THE CCP
ENDM

1

ABORT MACRO iABORT THE PROGRAM

JMP REBOOT
ENDM
i
i END OF MACRO LIBRARY

Listing 6-1. (continued)

44 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0

0100

01004210000
0103+39
01044222101
0107+312101
010A+C32301
010D+

0121+

0123+C33401
0126+5E
0127+87
0128+CB
0129+23
012A+ES
012B+0E0Q2
012D+CDOS00Q
0130+E1
0131+C32601
0134+213001
0137+CD2601
013A+C36701

013D+46524F4D20?70003:

0167+217001
016A+CD2601
016D+C39B0O1

0170+46524F4D20??0005:

019B8+21A401
019E+CD2601
01A1+C3CEOL

01A4+46524FAD20770007:

01CE+2A2101
01D1+F9
01D2+C9
0103

BENTSP:

001 S

TITLE

MACLIB
ORG

USE THE
ENTCCP
LXI

DAD
SHLD
LXI

JMP

DS

TYPEQUT
JMP
Mov
ORA
RZ
INX
PUSH
MUI
CALL
POP
JMP
LXI
CALL
JMP

TYPEOUT
LXI
CALL
JMP

TYPEOUT
LXI
CALL
JMP

RETCCP
LHLD
SPHL
RET
END

6 Introduction to Macro Facilities

AMPLE MESSAGE OUTPUT MACRO

'SAMPLE MESSAGE QUTPUT MACRO’

MSGLIB $INCLUDE THE MACRO LIBRARY

TPA {ORIGIN AT THE TRANSIENT AREA

MACRO LIBRARY TO TYPE TWO MESSAGES :
10 {ENTER PROGRAM,s RESERVE 10 LEVEL STACK
Hio

SP

BENTSP

SP+@STACK

??0001

2%10

DS 2

<THIS IS THE FIRST MESSAGE>

2?0002

E WM

A

H

H

CyTYPE

BDOS

H

MSGOUT

H»??20003

MSGOUT

2?0004

08 ‘FROM CONSOLE: THIS IS THE FIRST MESSAGE ' CR.LF+0
<THIS IS THE SECOND MESSAGE:
H»??000S

MSGOUT

7?0006

08 "FROM CONSOLE: THIS IS THE SECOND MESSAGE'/CR,LF 0

<THIS IS THE THIRD MESSAGE:

H??20007

MSGOUT

2?0008

08 ‘FROM CONSOLE: THIS IS THE THIRD MESSAGE'CR,LF0

SRETURN TO THE CONSOLE COMMAND PROCESSOR
BENTSP

Listing 6-2. A Sample Assembly Using the MACLIB Facility

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

45

6 Introduction to Macro Facilities Programmer’s Utilities Guide
it

Consider also the special macro statements used in Listing 6-1 within the body of
the ENTCCP macro. The LOCAL statement defines the label START within the
macro body. Each LOCAL statement causes the macro assembler to construct a
unique symbol starting with ?? each time it is encountered. Thus, multiple macro
calls reference unique labels that do not interfere with one another. ENTCCP also
contains a conditional assembly statement that uses the NUL operator; this tests
whether a macro parameter has been supplied or not. In this case, the ENTCCP
macro can be started by

ENTCCP

with no actual parameter, resulting in a default stack size of 32 bytes. The following
sections give exact details and examples.

The TYPEOUT macro is a more complicated example of macro use. Note that this

macro contains a redefinition of itself within the macro body. The structure of
TYPEOUT is

TYPEOUT MACRO TMESSAGE
TYPEOUT MACRO TT?MESSAGE
ENDM

+ e

ENDM

where the outer definition of TYPEOUT completely encloses the inner definition. The
outer definition is active upon the first invocation of TYPEOUT, but upon comple-
tion, the nested inner definition becomes active.

To see the use of such a nested structure, consider the TYPEOUT macro. Each
time it starts, TYPEOUT prints the message sent as an actual parameter at the
console device. The typeout process, however, can be easily handled with a short
subroutine. Upon the first invocation, include the subroutine inline. Then simply call
this subroutine on subsequent invocations of TYPEOUT. Thus, the outer definition
of TYPEOUT defines the utility subroutine and then redefines itself, so that the
subroutine is called, rather than including another copy of the utility subroutine.

46 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 6 Introduction to Macro Facilities

Note that macro definitions are stored in the symbol table area of the assembler,
so each macro reduces the remaining free space. MAC allows double semicolon
comments to indicate that the comment itself is to be ignored and not stored with
the macro. Thus, comments with a single semicolon are stored with the macro and
appear in each expansion; comments with two preceding semicolons are listed only
when the macro is defined.

Listing 6-2 gives three examples of TYPEOUT invocations, with three messages
that are sent as actual parameters. Note that the LOCAL statement causes a unique
label to be created (2?0002) in the place of PASTSUB, which is used to branch
around the utility subroutine included inline between addresses 0126H and 0133H.
The utility subroutine is then called, followed by another jump around the console
message, also included inline. However, subsequent invocations of TYPEOUT use
the previously included utility subroutine to type their messages.

Although this example concentrates all macro definitions in a separate macro library,
macros are often defined in the mainline (.ASM) source program. In fact, many
programs that use macros do not use the external macro library facility at all.

The rest of this manual examines many applications of macros. Macro facilities
can simplify the programming task by abstracting from the primitive assembly lan-
guage levels. That is, you can define macros that provide more generalized functions
that are allowed at the pure assembly language level, such as macro languages for a
given application, improved control facilities, and general purpose operating systems
interfaces. The remainder of this manual first introduces the individual macro forms,
and then presents several uses of the macro facilities in realistic applications.

End of Section 6

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47

Section 7
Inline Macros

The simplest macro facilities involve the REPT (repeat), IRPC (indefinite repeat
character), and IRP (indefinite repeat) macro groups. All these forms cause the assem-
bler to reread portions of the source program under control of a counter or list of
textual substitutions. These groups are listed below in order of increasing complexity.

7.1 The REPT-ENDM Group

The REPT-ENDM group is written as a sequence of assembly language statements
starting with the REPT pseudo operation and terminated by an ENDM pseudo oper-
ation. The form is

label: REPT expression
statement-1
statement-2

statement-n
label: ENDM

where the labels are optional. The expression following the REPT is evaluated as a
16-bit unsigned count of the number of times that the assembler is to read and
process statements 1 through n, enclosed within the group.

Listing 7-1 shows an example of the use of the REPT group. In this case, the
REPT-ENDM group generates a short table of the byte values 5, 4, 3, 2, and 1.
Upon entry to the REPT, the value of NXTVAL is 5. This is taken as the repeat
count, even though NXTVAL changes within the REPT. The macro lines that do not
generate machine code are not listed in the repetition, while the lines that do generate
code are listed with a + sign after the machine code address. Full macro tracing is
optional, however, using assembly parameters. (See Section 10.)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

2
0
N
.
o
>
~N

7.1 The REPT-ENDM Group

Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 SAMPLE REPT STATEMENT

0100 ORG 100H iBASE OF TRANSIENT AREA
TITLE ‘SAMPLE REPT STATEMENT'
i THIS PROGRAM READS INPUT PORT O AND INDEXES

INTO A TABLE

i BASED ON THIS VALUE. THE TABLE VALUE IS FETCHED

AND SENT
H TO OUTPUT PORT 0

0005 = MAXVAL EOQU 3 iLARGEST VALUE TO PROCESS
0100 DBOO RLOOP: IN 0 iREAD THE PORT VALUE
0102 FEOS CPI MAXVYAL 3iTOO LARGE?
0104 D20001 JNC RLOOP iIGNORE INPUT IF INVALID
0107 211401 LXI HsTABLE 3FADDRESS BASE OF TABLE
010A 5F MoV EsA iLOW ORDER INDEX TO E
010B 1600 MUT D0 fHIGH ORDER 00 FOR INDEX
010D 19 DAD D iHL HAS ADDRESS OF ELEMENT
010E 7E MoV AsM iFETCH TABLE VALUE FOR OUTPUT
010F D300 ouTt 0 §SEND TO THE QUTPUT PORT AND LOOP
0111 C30001 JMP RLOOP iFOR ANOTHER INPUT
)
i GENERATE A TABLE OF VALUES MAXVAL sMAXVAL-1144491
0005 # NXTVAL SET MAXVAL SSTART COUNTER AT MAXVAL
TABLE: REPT NXTVAL
DB NXTVAL SFILL ONE (MORE) ELEMENT
NXTUAL SET NXTVAL-1§31AND DECREMENT FILL VALUE
ENDM
0114+05 DB NXTVAL SFILL ONE (MORE) ELEMENT
0115+04 DB NXTVAL SFILL ONE (MORE) ELEMENT
0116+03 DB NXTUAL SFILL ONE (MORE) ELEMENT
0117+02 DB NXTVAL SFILL ONE (MORE) ELEMENT
0118+01 DB NXTVUAL SFILL ONE (MORE) ELEMENT
0119 END

Listing 7-1. A Sample Program Using the REPT Group

If a label appears on the REPT statement, its value is the first machine code
address that follows. This REPT label is not reread on each repetition of the loop.
The optional label on the ENDM is reread on each iteration; thus constant labels,
not generated through concatenation or with the LOCAL pseudo operation, generate

phase errors if the repetition count is greater than 1.

50 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.1 The REPT-ENDM Group

Properly nested macros, including REPTSs, can occur within the body of the REPT-
ENDM group. Further, nested conditional assembly statements are also allowed,
with the added feature that conditionals beginning within the repeat group automat-
ically terminate upon reaching the end of the macro expansion. Thus, IF and ELSE
pseudo operations are not required to have their corresponding ENDIF when they
begin within the repeat group, although the ENDIF is allowed.

7.2 The IRPC-ENDM Group

Similar to the REPT group, the IRPC-ENDM group causes the assembler to reread
a bounded set of statements, taking the form:

label: IRPC identifier,character-list
statement-1
statement-2

statement-n

label: ENDM

where the optional labels obey the same conventions as in the REPT-ENDM group.
The identifier is any valid assembler name, not including embedded $ separators.
Character list denotes a string of characters terminated by a delimiter (space, tab,
end-of-line, or comment).

The IRPC controls the reread process as follows: the statement sequence is read
once for each character in the character list. On each repetition, a character is taken
from the character list and associated with the controlling identifier, starting with the
first and ending with the last character in the list. Thus, an IRPC header of the form

IRPC ?X :ABCDE

rereads the statement sequence that follows (to the balancing ENDM) five times,
once for each character in the list ABCDE. On the first iteration, the character A is
associated with the identifier ?X. On the fifth iteration, the letter E is associated with
the controlling identifier.

On each iteration, the macro assembler substitutes any occurrence of the control-
ling identifier by the associated character value. Using the preceding IRPC header, an
occurrence of ?X in the bounds of the IRPC-ENDM group is replaced by the char-
acter A on the first iteration, and by E on the last iteration.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

7.2 The IRPC-ENDM Group Programmer’s Utilities Guide

The programmer can use the controlling identifier to construct new text strings
within the body of the IRPC by using the special concatenation operator, denoted by
an ampersand (&) character. Again using the preceding IRPC header, the macro
assembler replaces LAB&?X with LABA on the first iteration. LABE is produced on
the final iteration. The concatenation feature is most often used to generate unique
label names on each iteration of the IRPC reread process.

The controlling identifier is not usually substituted within string quotes because
the controlling identifier can appear as a part of a quoted message. Thus, the macro
assembler performs substitution of the controlling identifier when it is preceded or
followed by the ampersand operator. Further, all alphabetics outside string quotes
are translated to upper-case, but no case translation occurs within string quotes. So
the controlling identifier must not only be preceded or followed by the concatenation
operator within strings, but it must also be typed in upper-case.

Listings 7-2a and 7-2b illustrate the use of the IRPC-ENDM group. Listing 7-2a
shows the original assembly language program, before processing by the macro
assembler. The program is typed in both upper- and lower-case. Listing 7-2b shows
the output from the macro assembler, with the lower-case alphabetics translated to
upper-case. Three IRPC groups are shown in this example. The first IRPC uses the
controlling identifier reg to generate a sequence of stack push operations that save
the double-precision registers BC, DE, and HL. The lines generated by this group are
marked by a + sign following the machine code address.

construct a data table

save relevant regdisters

enter: 1irpPc redsbdh
Push red iisave red
endm

1
i initialize a partial ascii table
irpc c+1AbS?E
datakc: db ‘&C"’

endm
i
i restore redisters

irpc redshdb

POP red iirecall reg
endm

ret

end

Listing 7-2a. Original (.ASM) File with IRPC Example

52 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.2 The IRPC-ENDM Group

CONSTRUCT A DATA TABLE

SAVE RELEVANT REGISTERS

M e we =

NTER: IRPC REGBDH
PUSH REG i iISAVE REG
ENDM
0000+CS PUSH B
0001+D5 PUSH D
0002+ES PUSH H

INITIALIZE A PARTIAL ASCII TABLE
IRPC Cr1AB$?E@

DATARC: DB ‘&C
ENDM

0003+31 DATAL: DB ‘1’
0004+41 DATAA: DB ‘A’
0005+42 DATAB: DB ‘B’
0006+24 DATA$: DB ‘$’
0007+3F DATA?: DB i
0008+40 DATA@: DB ‘e’

i
i RESTORE REGISTERS
IRPC REG »HDB

POP REG iiRECALL REG
ENDM

0009+E1 POP H

000A+D1 POP D

000B+C1 POP B

000C C9 RET

0000 END

Listing 7-2b. Resulting (.PRN) File with IRPC Example

The second IRPC shown in Listing 7-2a uses the controlling identifier C to gener-
ate a number of single-byte constants with corresponding labels. Although the con-
trolling variable was typed in lower-case, it has been translated to upper-case during
assembly. The string ‘&C’ occurs within the group and, because the controlling
variable is enclosed in string quotes, it must occur next to an ampersand operator
and be typed in upper-case for the substitution to occur properly. On each iteration
of the IRPC, a label is constructed through concatenation, and a DB is generated
with the corresponding character from the character list.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

7.2 The IRPC-ENDM Group Programmer’s Utilities Guide

Substitution of the controlling identifier by its associated value can cause infinite
substitution if the controlling identifier is the same as the character from the charac-
ter list. For this reason, the macro assembler performs the substitution and then
moves along to read the next segment of the program, rather than rereading the
substituted text for another possible occurrence of the controlling identifier. Thus, an
IRPC of the form

IRPC C+1ACHTE

produces

DATAC: DB ‘C’

in place of the DB statement at the label DATAA in Listing 7-2b.

The last IRPC restores the previously saved double-precision registers and performs
the exact opposite function from the IPRC at the beginning of the program.

When no characters follow the identifier portion of the IRPC header, the group of
statements is read once, and the controlling identifier is deleted when it is read. It is
replaced by the null string.

7.3 The IRP-ENDM Group

The IRP (indefinite repeat) functions like the IRPC, except that the controlling
identifier can take on a multiple character value. The form of the IRP group is

label: IRP identifier,1<4c1-1,c1-2,...,c1-n1>2
statement-1
statement-2

statement-m

label: ENDM

where the optional labels obey the conventions of the REPT and IRPC groups. The
identifier controls the iteration, as follows. On the first iteration, the character list
given by c1-1 is substituted for the identifier wherever the identifier occurs in the
bounded statement group (statements 1 through m). On the second iteration, c1-2
becomes the value of the controlling identifier. Iteration continues in this manner
until the last character list, denoted by c1-n, is encountered and processed. Substitu-
tion of values for the controlling identifier is subject to the same rules as in the IRPC.

54 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.3 The IRP-ENDM Group

Note rules for substitution within strings and concatenation of text using the amper-
sand & operator. Controlling identifiers are always ignored within comments.

Listing 7-3 gives several examples of IRP groups. The first occurrence of the IRP
in Listing 7-3 is a typical use of this facility—to generate a jump vector at the
beginning of a program or subroutine. The IRP assigns label names (INITIAL, GET,
PUT, and FINIS) to the controlling identifier ?LAB and produces a jump instruction
for each label by rereading the IRP group, substituting the actual label for the formal
name on each iteration.

The second occurrence of the IRP group in Listing 7-3 points out substitution
conventions within strings for both IRPC and IRP groups. The controlling identifier
IS takes on the values A-ROSE and ? on the two iterations of the IRP group,
respectively.

The controlling identifier is replaced by the character lists in the two occurrences
of &IS and IS& inside the string quotes because they are both adjacent to the
ampersand operator. is& is not replaced because the controlling identifier is typed in
lower-case, and there is no automatic translation to upper-case within strings. The
occurrences of IS within the comments are not substituted.

The last IRP group shows the effects of an empty character list. The value of the
controlling identifier becomes the null string of symbols and, in the cases where ?X
is replaced, produces the statement:

DB + ¢

DB produces no machine code and is therefore not listed in the macro expansion.
The three statements

DB ‘?x’ DB ’‘?X‘’ DB ‘&’

appear in the expansions because the ‘?x’ is typed in lower-case and thus is not
replaced. The ‘?X’ does not appear next to an ampersand in the string and is thus
not replaced. In the last case, only one of the double ampersands is absorbed in the
‘88 ?X&’ string. Here, the two ampersands surrounding ?X are removed because
they occur immediately next to the controlling identifier within the string.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

7.3 The IRP-ENDM Group Programmer’s Utilities Guide

Substitution rules outside of string quotes and comments are much less compli-
cated; the controlling identifier is replaced by the current character-list value when-
ever it occurs in any of the statements within the group. The ampersand operator
can be placed before or after the controlling identifier to cause the preceding or
following text to be concatenated.

The actual forms for the character lists (cl-1 through cl-n) are more general than
stated here. In particular, bracket nesting is allowed, and escape sequences allow
delimiters to be ignored. The exact details of character list forms are discussed in the
macro parameter sections.

56 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

7.3 The IRP-ENDM Group

i CREATE A JUMP VECTOR USING THE IRP GROUP

IRP
JMP
ENDM
0000+C30C00 JMP
0003+C34300 JMP
0006+C34600 JMP
0009+C34900 JMP

— e e

NITIAL:
000C 211200 LXI
000F C35100 JMP
CHRS: IRP
DB
DB
ENDM
0012+412D524FS3 DB
0022+412D524F53 DB
0032+3F20485320 DB
0038+3F2069736E DB
'

0043 C35100 GET: JMP
i
0046 C35100 PUT: JMP
i
0049 C35100 FINIS: JMP
IRP
DB
DB
DB
DB
DB
ENDM
004C+3F78 DB
004E+3FS8 DB
0050+26 DB
ENDCASE:
0051 C9 RET
0052 END

?LAB<CINITIALGETPUT,FINIS>
?LAB i iGENERATE THE NEXT JUMP

INITIAL
GET

PUT
FINIS

INDIVIDUAL CASES

H+CHRS

ENDCASE
I1S+<A-ROSE+?>
‘&IS IS IS&’
‘&IS isn’‘t is&’

ilIS IS &IS

'A-ROSE IS A-ROSE’
‘A-ROSE isn’‘t is&’
‘? 18 7' iIS IS &IS
‘? isn’’t isk&’

iIS IS &IS

ENDCASE

ENDCASE

ENDCASE
PR
I?xl
I?Xl
‘&KX
"IN
‘REPXE

-
'
8!

Listing 7-3. A Sample Program Using IRP

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

57

7.4 The EXITM Statement Programmer’s Utilities Guide

7.4 The EXITM Statement

The EXITM pseudo operation can occur within the body of a macro. Upon
encountering the EXITM statement, the macro assembler aborts expansion of the
current macro level. The EXITM pseudo operation occurs in the context

macro-heading
statement-1

label: EXITM

statement-n
ENDM

where the label is optional, and macro-heading denotes the REPT, IRPC, or IRP
group heading as described above. The EXITM statement can also be used with the
MACRO group, as discussed in later sections.

The EXITM statement usually occurs within the scope of a surrounding condi-
tional assembly operation. If the EXITM occurs in the scope of a false conditional
test, the statement is ignored, and macro expansion continues. If the EXITM occurs
within the scope of a true conditional, the expansion stops where the EXITM is
encountered. Assembly statement processing continues after the ENDM of the group
aborted by the EXITM statement.

Two examples of the EXITM statement are shown in Listing 7-4. This listing
shows two IRPCs used to generate DB statements up to eight characters long. These
IRPCs might occur within the context of another macro definition, such as in the
generation of CP/M File Control Block (FCB) names. In both cases, the variable LEN
counts the number of filled characters. If the count reaches eight characters, the
EXITM statement is assembled under a true condition, and the IRPC stops expansion.

The first IRPC generates the entire string SHORT because the length of the char-
acter list is less than eight characters. Each evaluation of LEN = 8 produces a false
value, and the EXITM is skipped. This IRPC terminates by exhausting the character
list through its five repetitions.

The second IRPC stops generation at the eighth character of the list LONG-
STRING when the conditional LEN EQ 8 produces a true value, resulting in assem-
bly of the EXITM statement. Note that = and EQ are equivalent operators. The
EXITM causes immediate termination of the expansion process.

58 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.4 The EXITM Statement

The second IRPC also contains a conditional assembly without the balancing ENDIF.
In this case, the ENDIF is not required because the conditional assembly begins
within the macro body. The ENDM serves the dual purpose of terminating unmatched
IFs and marking the physical end of the macro body.

SAMPLE USE OF THE EXITM STATEMENT WITH THE IRPC MACRO

THE FOLLOWING IRPC FILLS AN AREA CF MEMORY WITH AT MOST
EIGHT BYTES OF DATA:

0000 = LEN SET 0 SINITIALIZE LENGTH TO ©
IRPC NSHORT
DB ‘&N’
LEN SET LEN+1
IF LEN = 8
EXITM iSTOP MACRO IF AREA IS FULL
ENDIF
ENDM
0000+53 DB ‘s’
0001+48 DB ‘H’
0002+4F DB ‘o
0003+52 DB ‘R’
0004+54 DB ‘T

i
i
i THE FOLLOWING MACRO PERFORMS EXACTLY THE SAME FUNCTIONS AS
i SHOWN ABOVEs BUT ABORTS EXPANSION WHEN LENGTH EXCEEDS 8
i
L

0000 = EN SET 0 FiINITIALIZE LENGTH COUNTER
IRPC N+LONGSTRING
DB ‘&N’
LEN SET LEN+1
IF LEN EQ 8
EXITM
ENDM
0005+4C DB L’
0006+4F DB ‘0’
0007+4E DB ‘N’
0008+47 DB ‘G’
0009+53 DB ‘S’
000A+54 DB ‘T’
000B+52 DB ‘R’
000C+49 DB ‘1’
1
000D END

Listing 7-4. Use of the EXITM Statement in Macro Processing

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59

7.5 The LOCAL Statement Programmer’s Utilities Guide

7.5 The LOCAL Statement

It is often useful to generate labels for jumps or data references unique on each
repetition of a macro. This facility is available through the LOCAL statement. The
LOCAL statement takes the form:

macro-heading
label: LOCAL id-1,id-2,. . .,id-n

ENDM
where the label is optional, macro-heading is a REPT, IRPC, or IRP heading, already
discussed, or a MACRO heading as discussed in following sections, and id-1 through
id-n represent one or more assembly language identifiers that do not contain embed-
ded $ separators. The LOCAL statement must occur within the body. It should

appear immediately following the macro header to be compatible with the standard
Intel macro facility.

Upon encountering the LOCAL statement, the assembler creates a new frame of
the form

?2nnnn

for association with each identifier in the LOCAL list, where nnnn is a four-digit
decimal value assigned in ascending order starting at 0001. Whenever the assembler
encounters one of the identifiers in the list, the corresponding created name is substi-
tuted in its place. Substitution occurs according to the same rules as those for the
controlling identifier in the IRPC and IRP groups.

Avoid the use of labels that begin with the two characters ??, so that no conflicting
names accidentally occur. Symbols that begin with ?? are not usually included in the
sorted symbol list at the end of assembly. (See Section 10 to override this default.) A
total of 9999 LOCAL labels can be generated in any assembly. An overflow error
occurs if more generations are attempted.

Listing 7-5a shows an example of a program using the LOCAL statement to gen-
erate both data references and jump addresses. This program uses the CP/M operat-
ing system to print a series of four generated messages, as shown in the output from
the program in Listing 7-5b.

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.5 The LOCAL Statement

The program begins with equates that define the operating system primary entry
point, along with names for the nongraphic ASCII characters CR (carriage return)
and LF (line-feed). The REPT statement that follows contains a LOCAL statement
with the identifiers X and Y. These identifiers are used throughout the body of the
REPT group.

On the first iteration, X’s value becomes 220001, the first generated label; Y’s value
becomes 2?0002. The substitution for X and Y within the generated strings follows
the rules stated for controlling identifiers in previous sections.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 61

7.5 The LOCAL Statement Programmer’s Utilities Guide

Upon completion, four messages are generated along with four CALLs to the
PRINT subroutine. At each call to PRINT, the message address is present in the DE
register pair. The subroutine loads the print string function number into register C
(C=9) and calls the operating system to print the string value.

0100 ORG 100H iBASE OF THE TRANSIENT AREA
0005 = BDOS EQU 5 iBDOS ENTRY POINT

000D = CR EQU ODH iCARRIAGE RETURN (ASCII)
000A = LF EQU 0OAH iLINE FEED (ASCII)

SAMPLE PROGRAM SHOWING THE USE OF ‘LOCAL’

REPT 4 iREPEAT GENERATION 4 TIMES
LOCAL XaY i IGENERATE TWO LABELS
JMP Y iJUMP PAST THE MESSAGE
X DB ‘print x=&X» vy=&Y'CRsLF+'$’
Y: LXI DX iREADY PRINT STRING
CALL PRINT
ENDM
0100+C31E01 JMP ??0002 §JUMP PAST THE MESSAGE
0103+7072696E747?7?0001: DB ‘Print x=??0001, y=??0002'CRs+LF,‘$"’
011E+110301 ?70002: LXI D,??0001 iREADY PRINT STRING
0121+CD9101 CALL PRINT
0124+C34201 JMP ??0004 §JUMP PAST THE MESSAGE
0127+7072696E747?70003: DB ‘print x=770003s y=??0004',CRILF,'$’
0142+112701 ??0004: LXI D»?70003 iREADY PRINT STRING
0145+CD9101 CALL PRINT
0148+C36601 JMP ??0006 §JUMP PAST THE MESSAGE
014B+7072696E747?7?0005: DB ‘print x=??0005, y=??0006'CRILF+‘$"’
0166+114B01 ??0006: LXI D+??0005 iREADY PRINT STRING
0169+CD9101 CALL PRINT
01BC+C3B8A01 JMP ??0008 §JUMP PAST THE MESSAGE
016F+7072696E747?70007: DB ‘print x=??0007, y=??0008'CRILF,‘$"’
018A+116FO01 ??0008: LXI D4?70007 iREADY PRINT STRING
018D+CDO101 CALL PRINT
0190 C9 RET
)
0191 OE09 PRINT: MUVI €19
0193 CDOS00 CALL BDOS
0186 C9 RET
0197 END

Listing 7-5a. Assembly Program Using the LOCAL Statement

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.5 The LOCAL Statement

print x=?70001, y=770002
print x=?70003, y=?70004
print x=?70005, ¥=?7?0006
print x=?70007, y=770008

Listing 7-5b. Output from Program in Listing 7-5a

Upon completion of the program, control returns to the Console Command Pro-
cessor (CCP) for further operations. This program uses the default stack passed by
the CCP. About 16 levels are available. This example is primarily intended to show
operation of the LOCAL statement. Consult the CP/M documentation for BDOS
interface conventions to follow this example completely.

End of Section 7

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

Section 8
Definition and Evaluation of
Stored Macros

The stored macro facility of MAC allows you to name a sequence of assembly
language prototype statements to be included at selected places throughout the assembly
process. Macro parameters can be supplied in various forms at the point of expan-
sion which are substituted as the prototype statements are reread. These parameters
tailor the macro expansion to a particular case.

Although similar in concept to subroutine definition and call, macro processing is
purely textual manipulation at assembly time. That is, macro definitions cause source
text to be saved in the assembler’s internal tables, and any expansion involves manip-
ulating and rereading the saved text.

You can combine macro features in various ways to greatly enhance the available
facilities. Specifically, you can

® easily manipulate generalized data definitions

® define macros for generalized operating systems interface
® define simplified program control structures

® support nonstandard instruction sets, such as the Z80®

Finally, well-designed macros for an application can achieve a measure of machine
independence.

g UONDIS

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 65

8.1 The MACRO-ENDM Group Programmer’s Utilities Guide

8.1 The MACRO-ENDM Group

The prototype statements for a stored macro are given in the macro body enclosed
by the MACRO and ENDM pseudo operations, taking the general form

macname MACRO d-1,d-2,...,d-n
statement-1
statement-2

statement-m

label: ENDM

where the macname is any nonconflicting assembly language identifier; d-1 through
d-n constitutes a (possibly empty) list of assembly identifiers without embedded $
separators, and statement-1 through statement-m are the macro prototype state-
ments. The identifiers denoted by d-1 through d-n are called dummy parameters for
this macro. Although they must be unique within the macro body, dummy parame-
ters can be identical to any program identifiers outside the macro body without
causing a conflict. The prototype statements can contain any properly balanced assembly
language statements or groups, including nested REPTs, IRPCs, MACROs, and IFs.

The prototype statements are read and stored in the assembler’s internal tables
under the name give by macname. They are not processed until the macro is expanded.

The following section gives the expansion process.

The label preceding the ENDM is optional.

8.2 Calling a Macro

The macro text stored through a MACRO-ENDM group can be brought out for
processing through a statement of the form

label: macname a-1,a-2,...,a-n
where the label is optional, and macname has previously occurred as the identifier

on a MACRO heading. The actual parameters a-1 through a-n are sequences of
characters separated by commas and terminated by a comment or end-of-line.

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.2 Calling a Macro

Upon recognition of the macname, the assembler first pairs off each dummy
parameter in the MACRO heading (d-1 through d-n) with the actual parameter text
(a-1 through a-n). The assembler associates the first dummy parameter with the first
actual parameter (d-1 is paired with a-1), the second dummy with the second actual,
and so forth until the list is exhausted. If more actuals are provided than dummy
parameters, the extras are ignored. If fewer actuals are provided, then the extra
dummy parameters are associated with the empty string (a text string of zero length).
The value of a dummy parameter is not a numeric value, but is instead a textual
value consisting of a sequence of zero or more ASCII characters.

After each dummy parameter is assigned an actual textual value, the assembler
rereads and processes the previously stored prototype statements and substitutes each
occurrence of a dummy parameter by its associated actual textual value, according
to the same rules as the controlling identifier in an IRPC or IRP group.

Listings 8-1 and 8-2 provide examples of macro definitions and invocations. List-
ing 8-1 begins with the definition of three macros, SAVE, RESTORE, and WCHAR.
The SAVE macro contains prototype statements that save the principal CPU registers
(PUSH PSW, B, D, and H). The RESTORE macro restores the principal registers
(POP H, D, B, and PSW). The WCHAR macro contains the statements necessary to
write a single character at the console using a CP/M BDOS call.

The occurrence of the SAVE macro definition between MACRO and ENDM causes
the assembler to read and save the PUSHs, but does not assemble the statements into
the program. Similarly, the statements between the RESTORE MACRO and the
corresponding ENDM are saved, as are the statements between the WCHAR MACRO
and ENDM statements. The fact that the assembler is reading the macro definition is
indicated by the blank columns in the leftmost 16 columns of the output listing.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67

8.2 Calling a Macro Programmer’s Utilities Guide

Referring to Listing 8-1, note that machine code generation starts following the
SAVE macro call. The prototype statements that were previously stored are reread
and assembled, with a + between the machine code address and the generated code
to indicate that the statements are being recalled and assembled from a macro defi-
nition. The SAVE macro has no dummy parameters in the definition, so no actual
parameters are required at the point of invocation.

The SAVE call is immediately followed by an expansion of the WCHAR macro.
The WCHAR macro, however, has one dummy parameter, called CHR, which is
listed in the macro definition header. This dummy parameter represents the character
to pass to the BDOS for printing. In the first expansion of the WCHAR macro, the
actual parameter H becomes the textual value of the dummy parameter CHR. Thus,
the WCHAR macro expands with a substitution of the dummy parameter CHR by
the value H. The CHR is within string quotes, so it is typed in upper-case and
preceded by the ampersand operator. Following the reference to WCHAR, the pro-
totype statements are listed with the + sign to indicate that they are generated by
the macro expansion.

68 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0100 ORG
0005 = BDOS EQU
0002 = CONOUT EQU
1
SAVE MACRO
PUSH
PUSH
PUSH
PUSH
ENDM
;
RESTORE MACRO
POP
POP
POP
POP
ENDM
;
WCHAR MACRO
MVI
MVI
CALL
ENDM
;
; MAIN
SAVE
0100+F5 PUSH
0101+C5 PUSH
0102+D5 PUSH
0103+E5 PUSH
WCHAR
0104+0E02 MVI
0106+1E48 MVI
0108+CD0500 CALL
WCHAR
010B+0E02 MVI
010D+1E49 MVI
010F+CD0O500 CALL
RESTORE
0112+E1 POP
0113+D1 POP
0114+C1 POP
0115+F1 POP
0116 C9 RET
0117 END
Listing 8-1.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

100H

VT oI

CHR
CCONOUT
E+'&CHR’
BDOS

PSHW

B

D

H

H
C,CONOUT
Ev'H'
BDOS

1
C,CONOUT
Es'17
BDOS

e e e o

8.2 Calling a Macro

iBASE OF TRANSIENT AREA
iBDOS ENTRY POINT
iCHARACTER OUT FUNCTION

iSAVE ALL CPU REGISTERS

IRESTORE ALL REGISTERS

iWRITE CHR TO CONSOLE
i iCHAR OUT FUNCTION
iiCHAR TO SEND

PROGRAM STARTS HERE

iSAVE REGISTERS UPON ENTRY

iSEND ‘H’ TO CONSOLE

iSEND

‘1’ TO CONSOLE

iRESTORE CPU REGISTERS

iRETURN TO CCP

Example of Macro Definition and Invocation

69

8.2 Calling a Macro Programmer’s Utilities Guide

The second invocation of WCHAR is similar to the first except that the dummy
parameter CHR is assigned the textual value I, causing generation of a MVI E, ‘I’ for
this case.

After the listing of the second WCHAR expansion, the RESTORE macro starts,
causing generation of the POP statements to restore the register state. The RESTORE
is followed by a RET to return to the CCP following the character output.

This program saves the registers upon entry, typing the two characters HI at the
console, restoring the registers, and then returning to the Console Command Proces-
sor. The SAVE and RESTORE macros are used here for illustration and are not
required for interface to the CCP, since all registers are assumed to be invalid upon
return from a user program. Further, this program uses the CCP stack throughout.
This stack is only eight levels deep.

Listing 8-2 shows another macro for printing at the console. In this case, the
PRINT macro uses the operating system call that prints the entire message starting at
a particular address until the $ symbol is encountered. The PRINT macro has a
slightly more complicated structure: two dummy parameters must be supplied in the
invocation. The first parameter, called N, is a count of the number of carriage return
line-feeds to send after the message is printed. The second parameter, called MES-
SAGE, is the ASCII string to print that must be passed as a quoted string in the
invocation.

The LOCAL statement within the macro generates two labels denoted by PASTM
and MSG. When the macro expands, substitutions occur for the two dummy para-
meters by their associated actual textual values, and for PASTM and MSG by their
sequentially generated label values. The macro definition contains prototype state-
ments that branch past the message (to PASTM) that is included inline following the
label MSG. The message is padded with N pairs of carriage return line-feed sequences,
followed by the $ that marks the end of the message. The string address is then sent
to the BDOS for printing at the console.

Listing 8-2 includes two invocations of the PRINT macro. The invocation sends
two actual parameters: the textual value 2 is associated with the dummy N, followed
by a quoted string associated with the dummy parameter MSG. The second actual
parameter includes the string quotes as a part of the textual value. The generated
message is preceded by a jump instruction and followed by N = 2 carriage return
line-feed pairs.

70 ALL INFORMATION PRESENTED HERE S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.2 Calling a Macro

The second invocation of the PRINT macro is similar to the first, except that the
REPT group is executed N = 0 times, resulting in no carriage return line-feed pairs.

Similar to Listing 8-1, the program of Listing 8-2 uses the Console Command
Processor’s eight-level stack for the BDOS calls. When the program executes, it types
the two messages, separated by two lines, and returns to the CCP.

0100 ORG 100H iBASE OF THE TPA
i
0005 = BDOS EQU S iBDOS ENTRY POINT
0009 = PMSG EQU 9 iPRINT ‘TIL $ FUNCTION
000D = CR EQU 0DH iCARRIAGE RETURN
000A = LF EQU 0AH iLINE FEED

PRINT MACRO N+MESSAGE

i PRINT MESSAGE, FOLLOWED BY N CRLF'S
LOCAL PASTM,MSG
JMP PASTM iiJUMP PAST MSG
MSG: DB MESSAGE §iINCLUDE TEXT TO WRITE
REPT N i iREPEAT CR LF SEQUENCE
DB CRLF
ENDM
DB ‘$’ i IMESSAGE TERMINATOR
PASTM: LXI D +MSG i iIMESSAGE ADDRESS
MUI C+PMSG §3iPRINT FUNCTION
CALL BDOS
ENDM

PRINT 2+'The rain in Spain does’

0100+C31E01 JMP 770001
0103+546865207277?0002: DB ‘The rain in Seain goes’
0119+40D0A DB CRLF
011B+0DOA DB CRLF
011D+24 DB ‘$’
011E+110301 ?70001: LXI D+??0002
0121+40E09 MVI CPMSG
0123+CD0O500 CALL BDOS

PRINT 0s’mainly down the drain,’
0126+C34001 JMP 7?7?0003
0129+6061696EBC?70004: DB ‘mainly down the drain,’
013F+24 DB ‘$’
0140+112901 ??0003: LXI D»?70004
0143+0E09 MUI C»PMSG
0145+CD0500 CALL BDOS
0148 C9 RET

Listing 8-2. Sample Message Printout Macro

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESFARCH 71

8.3 Testing Empty Parameters Programmer’s Utilities Guide

8.3 Testing Empty Parameters

The NUL operator is specifically designed to allow testing of null parameters. Null
parameters are actual parameters of length zero. NUL is used as a unary operator.
NUL produces a true value if its argument is of length zero and a false value if the
argument has a length greater than zero. Thus the operator appears in the context of
an arithmetic expression as:

... NUL argument

where the ellipses (...) represent an optional prefixing arithmetic expression, and
argument is the operand used in the NUL test. The NUL differs from other operators
because it must appear as the last operator in the expression. This is because the
NUL operator absorbs all remaining characters in the expression until the following
comment or end-of-line is found. Thus, the expression

X GT Y AND NUL XXX

is valid because NUL absorbs the argument XXX, producing a false value in the scan
for the end-of-line. The expression

X GT Y AND NUL M +2Z)

is deceiving but nevertheless valid, even though it appears to be an unbalanced
expression. In this case, the argument following the NUL operator is the entire
sequence of characters M + Z). This sequence is absorbed by the NUL operator in
scanning for the end-of-line. The value of NUL M + Z) is false because the sequence
is not empty.

72 ALL INFORMATION PRESENTED HERE IS PRCPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.3 Testing Empty Parameters

Listing 8-3 gives several examples of the use of NUL in a program. In the first
case, NUL returns true because there is an empty argument following the operator.
Thus, the true case is assembled, as indicated by the machine code to the left, and
the false case is ignored. Similarly, the second use of NUL in Listing 8-3 produces a
false value because the argument is nonempty. Both uses of NUL, however, are
contrived examples, because NUL is only useful within a macro group, as shown in
the definition of the NULMAC macro.

NULMAC consists of a sequence of three conditional tests that demonstrate the
use of NUL in checking empty parameters. In each of the tests, a DB is assembled if
the argument is not empty and skipped otherwise. Seven invocations of NULMAC
follow its definition, giving various combinations of empty and nonempty actual
parameters.

In the first case, NULMAC has no actual parameters. Thus all dummy parameters
(A, B, and C) are assigned the empty sequence. As a result, all three conditional tests
produce false results because both A and B are empty; B&C concatenates two empty
sequences, producing an empty sequence as a result.

The second invocation of NULMAC provides only one actual parameter, XXX,

assigned to the dummy parameter A. B and C are both assigned the empty sequence.
Thus only the DB for the first conditional test is assembled.

ALLINFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 73

8.3 Testing Empty Parameters

IF
0000 7472756520 DB
ELSE
DB
ENDIF

IF

DB

ELSE
0009 78787820869 DB

ENDIF

1
NULMAC MACRO
IF

DB
ENDIF
IF

DB
ENDIF
IF

DB
ENDM

NULMAC
NULMAC
0017+61203D2058 DB
NULMAC
0029+62203D2058 DB
003B+6263203D20 DB
NULMAC
004F+61203D2058 DB
0061+6263203D20 DB
NULMAC
0075+6263203D20 DB
NULMAC
NULMAC
0089+6263203D020 DB
009C END

Programmer’s Utilities Guide

NUL
‘true case’

‘false case’

NUL XXX
‘xxx is nul’

‘Xxx is not nul’

A+BsC
NOT NUL A
‘a = &A is not nul’

NOT NUL B
‘b = &B is not nul’

NOT NUL B&C

‘bec = &B&C is naot nul’

XXX

‘a = XXX is not nul’

P KKX

‘b = XXX is not nul’
'be = XXX is not nul’
KR 2 YYY

‘a = XXX is not nul’
‘bc = YYY is not nul’
1 YYY

‘be = YYY is not nul’
LR

I

‘be = '’’’ is not nul’

Listing 8-3. Sample Program Using the NUL Operator

The third case is similar to the second, except that the actuai parameters for A and
C are omitted. Thus, the second and third conditionals both test NOT NUL XXX,
which is true because B has the value XXX, and B&C produces the value XXX as

well.

74 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.3 Testing Empty Parameters

The fourth invocation of NULMAC skips the actual parameter for B but supplies
values for both A and C. Thus, the first and third test result in true values; the
second conditional group is skipped.

The fifth invocation provides an actual parameter only for C. As a result, only the
third conditional is true because B&C produces the sequence YYY.

The sixth invocation produces exactly the same result as the first because all three
actual parameters are empty.

The final expansion of NULMAC in Listing 8-3 shows a special case of the NUL
operator. The expression

NUL 7

where the two apostrophes are in juxtaposition, produces the value true, even though
there are two apostrophe symbols on the line following NUL and before the end-of-
line. The value of A is the empty string in this case. The value assigned to both B
and C consists of the two apostrophe characters side by side; this is treated as a

quoted string of length zero, even though it is a sequence of two characters. In this
last expansion, the first conditional, however, evaluates the form

NOT NUL ‘7

that is the special case of NUL applied to a length zero quoted string, but not a
length zero sequence. Because of the special treatment of the length zero quoted
string, this expression also produces a false result. The third conditional, however,
must be considered carefully. The original expression in the macro definition takes
the form

NOT NUL B&C

with B and C both associated with the sequence of length two given by two adjacent
apostrophes. Thus, the macro assembler examines

NOT NUL “‘&"‘“
or, after concatenation,
NOT NUL 77

where the four apostrophes are adjacent. Considering only the four apostrophes, the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75

8.3 Testing Empty Parameters Programmer’s Utilities Guide

macro assembler considers this a quoted string that happens to contain a single
apostrophe because double apostrophes are always reduced to a single apostrophe.
As a result, the test produces a true value, and the conditional segment is assembled.
Usually the NUL operator is used only to test for missing arguments, as shown in
later examples. (See Listing 8-6.)

8.4 Nested Macro Definitions

The MAC assembler allows you to include nested macro definitions. These take
the form

macl MACRO macl-list
mac2 MACRO mac2-list
ENDM
ENDM
where macl is the identifier corresponding to the outer macro, and mac2 is an
identifier corresponding to an inner nested macro that is wholly contained within the
outer macro. In this case, macl-list and mac2-list correspond to the dummy parame-

ter lists for macl and mac2, respectively. As before, labels are allowed on the ENDM
statements.

The statements contained within a macro definition are prototype statements that
are read and stored by the assembler but not evaluated as assembly language state-
ments until the macro is expanded. Thus, in the preceding form, only the macl
macro is available for expansion because the assembler has stored but not processed
the body of macl that contains the definition of mac2. mac2 cannot be expanded
until macl is first expanded, revealing the definition of mac2.

Properly balanced embedded macros of this form can be nested to any level, but

they cannot be referenced until their encompassing macros have themselves been
expanded.

76 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.4 Nested Macro Definitions

Listing 8-4 gives a practical example of nested macro definition and expansion.
This program writes characters either to the CP/M console device or to the currently
assigned list device, according to the value of the LISTDEV flag set for the assembly.
If the LISTDEYV flag is true, then the assembly sends characters to the listing device.
Otherwise, the console is used for output. In either case, the macro OUTPUT is
produced; this sends a single character to the selected device.

The sample program in Listing 8-4 uses the macro SETIO to construct the OUT-
PUT macro. The OUTPUT macro is wholly contained within the SETIO macro and,
as a result, remains undefined until SETIO is expanded. Upon encountering the invo-
cation of SETIO, the macro assembler reads the prototype statements within SETIO
and, in the process, constructs the definition of the OUTPUT macro. Because LIST-
DEV is true for this assembly, the OUTPUT macro is defined as

OuUTPUT MACRO CHAR
MUI E sCHAR
MUI C,LISTOUT
CALL BDOS
ENDM

Note that the SETIO macro itself uses this newly created OUTPUT macro in its last
prototype statement to print a single + at the selected device.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 77

8.4 Nested Macro Definitions Programmer’s Utilities Guide

Following the invocation of SETIO, the invocations of OUTPUT are recognized
because its definition has been entered in the process of reading the prototype state-
ments of SETIO. These invocations send the characters 1 and 2 to the list device.

0100 ORG 100H iBASE OF THE TPA
0000 = FALSE EQU 0000H iVALUE OF FALSE
FFFF = TRUE EQU NOT FALSE iVALUE OF TRUE
i LISTDEV IS TRUE IF LIST DEVICE IS USED
i FOR OQUTPUT,» AND FALSE IF CONSOLE IS USED
FFFF = LISTDEV EQU TRUE
1)
i
0009 = BDOS EQU 5 iBDOS ENTRY POINT
0002 = CONOUT EQU 2 iWRITE TO CONSOLE
5 PWRITE TO LIST DEVICE

0009 = LISTOUT EQU
i
SETIO MACRO iSETUP OUTPUT MACRO FOR LIST OR CONSOLE

1

OUTPUT MACRO CHAR

MVI E+CHAR §3iREADY THE CHARACTER FOR PRINTING

IF LISTDEV

MVI CyLISTOUT

ELSE

MVI CCONOUT

ENDIF

CALL BDOS

ENDM

OUTPUT ‘%

ENDM

i

SETIO iSETUP THE I0 SYSTEM
0100+1E2A MVI Ey'#’
0102+0E0S MVI CyLISTOUT
0104+CD0OS00 CALL BDOS

QuTPUT ‘1Y
0107+1E31 MVI Ev'17
0109+0E0S MVI C.LISTOUT
010B+CDOS00 CALL BDOS

ouTPUT 27
010E+1E32 MUI Esv'27
0110+0E0S MUI CsLISTOUT
0112+CDOS00 CALL BDOS
0115 C9 RET
0116 END

Listing 8-4. Sample Program Showing a Nested Macro Definition

78 ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.5 Redefinition of Macros

8.5 Redefinition of Macros

It is often useful to redefine the prototype statements of a macro after the initial
prototype statements have been entered. Redefinition is a specific instance of the
nesting described in the previous section, where the inner nested macro carries the
same name as the encompassing macro definition. Macro redefinition is extremely
useful if the macro contains a subroutine. In this case, the subroutine can be included
on the first expansion and simply called in any remaining expansions. Thus, if the
macro is never invoked, the subroutine is not included in the program.

Listing 8-5 shows an example of macro redefinition. This sample program defines
the macro MOVE. MOVE is intended to move byte values from a starting source
address to a target destination address for a particular number of bytes. The three
dummy parameters denote these three values: SOURCE is the starting address; DEST
is the destination address, and COUNT is the number of bytes to move (a constant
in the range 0-65535). The actions of the MOVE macro, however, are complicated
enough to be performed through a subroutine, rather than inline machine code each
time MOVE is expanded.

Examining the structure of MOVE in Listing 8-5, note that it contains a properly
nested redefinition of MOVE, taking the general form:

MOVE MACRO SOURCE,DEST,COUNT

@MOVE subroutine
MOVE MACRO 2S,°D,?C

call to @MOVE

ENDM

invocation of MOVE

ENDM

Upon encountering the first invocation of MOVE, the assembler begins reading the
prototype statements. Note, however, that the first expansion of the MOVE includes
the subroutine for the actual move operation, labeled by @MOVE so that there is
no name conflict (with a branch around the subroutine). MOVE then redefines itself
as a sequence of statements that simply call the out-of-line subroutine each time it
expands. The last statement of the original MOVE macro is an invocation of the
newly defined version. As indicated by this example, once a macro has started expan-
sion, it continues to completion (or until EXITM is assembled), even if it redefines
itself.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 79

8.5 Redefinition of Macros

Programmer’s Utilities Guide

0100 ORG 100H iBASE OF TPA
MOVE MACRO SOURCE +DEST »COUNT
id MOVE DATA FROM ADDRESS GIVEN BY ‘SOURCE’
ii TO ADDRESS GIVEN BY ‘DEST’ FOR ‘COUNT’ BYTES
LOCAL PASTSUB §3iLABEL AT END OF SUBROUTINE
L]
JMP PASTSUB §3iJUMP AROUND INLINE SUBROUTINE
@MOVE: §iINLINE SUBROUTINE TO PERFORM MOVE OPERATION
ii HL IS SOURCE, DE IS DEST, BC IS COUNT
MOV AsC i3LOW ORDER COUNT
ORA B i 3ZERO COUNT?
RZ iiSTOP MOVE IF ZERO REMAINDER
Mov AWM §3GET NEXT SOURCE CHARACTER
STAX D i iPUT NEXT DEST CHARACTER
INX H i iADDRESS FOLLOWING SOURCE
INX D i iADDRESS FOLLOWING DEST
DCX B i SCOUNT=COUNT-1
JMP @MOVE iiFOR ANOTHER BYTE TO MOVE
PASTSUB:
ii ARRIVE HERE ON FIRST INVOCATION - REDEFINE MOVE
MOVE MACRO ?647?D4+7C i iCHANGE PARM NAMES
LXI H?8S i iADDRESS THE SOURCE STRING
LXI D7D i JADDRESS THE DEST STRING
LXI B+?C i iPREPARE THE COUNT
CALL @MOVE i iMOVE THE STRING
ENDM

- s

MOVE
ENDM

CONTINUE HERE ON THE FIRST INVOCATION TO USE
THE REDEFINED MACRO TO PERFORM THE FIRST MOVE

SOURCE +DEST sCOUNT

Listing 8-5. Sample Program Showing Macro Redefinition

80 ALL INFORMATION PRESENTED HERE {S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

MOVE
0100+C30E01 JMP
0103+79 MOV
0104+B0 ORA
0105+C8 RZ
0106+7E MOV
0107+12 STAX
0108+23 INX
0109+13 INX
010A+0B DCX
010B+C30301 JMP
010E+212701 LX1I
0111+114001 LXI
0114+010500 LX1
0117+CD0O301 CALL

MOVE
011A+210030 LXI
011D0+110010 LXI
01204010015 LXI
0123+CD0301 CALL
0126 C9 RET
0127 6865726520X1: DB
0140 7878787878X2: DB

8.5 Redefinition of Macros

X14X2+5 SMOVE S CHARS FROM X1 TO X2
770001
AC

BMOVE
HX1
D X2
B1S
@MOVE
3000H »1000H »1500H iBIG MOVER
H+3000H
D+1000H
B+1500H
@MOVE
iRETURN TO THE CCP
‘here is some data to move’
‘Xxxxxwe are!’

Listing 8-5. (continued)

It is important to note the use of ?S, ?D, and ?C in the previous example. The
innermost MOVE macro uses the same sequence of three parameters for the source,
destination, and count. The dummy parameter names must differ, however, because
they would be substituted by their actual values if they were the same. This is
because the inner MOVE macro is wholly contained within the outer macro, so
parameter substitution takes place regardless of the context.

Macro storage is not reclaimed upon definition, however, because the macro
assembler performs two passes through the source program and saves any preceding

definitions for the second pass scan.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 81

8.6 Recursive Macro Invocation Programmer’s Utilities Guide

8.6 Recursive Macro Invocation

The prototype statements of a recursive macro x contain invocations of macros
that, in turn, invoke macros that eventually lead back to an invocation of x. A direct
recursion occurs when x invokes itself, as shown in the form below:

macname MACRO d-1,. . .,d-n
macname a-1,. . .,a-n
ENDM
Although this form is similar to the embedded macro definition discussed in the
previous section, macname is expanded within its own definition, rather than being
redefined. Recursion is only useful, however, in the presence of conditional assembly
where various tests are made that prevent infinite recursion. In fact, recursion is

allowed only to sixteen levels before returning to complete the expansion of an
earlier level.

Listing 8-6 shows a situation in which indirect recursive macro invocation is use-
ful. The macro WCHAR writes a character to the console device using the general
purpose operating system macro CBDOS (call BDOS). CBDOS acts as an interface
between the program and the CP/M system by performing the system function given
by FUNC, with optional information address INFO. CBDOS loads the specified
function to register C, then tests to see whether the INFO argument has been sup-
plied, using the NUL operator. If supplied, INFO is loaded to the DE register pair.
After register setup, the BDOS is called, and the macro has completed its expansion.

Assume, however, that CBDOS has the additional task of inserting a carriage
return line-feed before writing messages where operating system Function 9 (write
buffer until $) has been specified. In this case, CBDOS uses the WCHAR macro to
send the carriage return line-feed. The WCHAR macro, in turn, uses CBDOS to send
the character, resulting in two activations of CBDOS at the same time. The assembler
holds the initial invocation of CBDOS until the WCHAR macro has completed, then
returns to complete the initial CBDOS expansion.

In recursion the values of the dummy parameters are saved at each successive level
of recursion and restored when that level of recursion is reinstated. Reentry into a
macro expansion through recursion does not destroy the values of dummy arguments
held by previous entry levels.

82 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0100

0005 =
0002 =
0009 =
000D =
000A =

0100+0E02
0102+116800
0105+CD0S00

i
BDOS
CONOUT
MSGOUT
CR

LF

i
WCHAR

19

-

ORG 100H iBASE OF TRANSIENT AREA
SAMPLE PROGRAM SHOWING RECURSIVE MACROS
EQU 0005H FENTRY TO BDOS

EQU 2 iCONSOLE CHARACTER OUT
EQU 9 iPRINT MESSAGE ‘TIL ¢
EQU ODH iCARRIAGE RETURN

EQU 0AH iLINE FEED

MACRO CHR

WRITE THE CHARACTER CHR TO CONSOLE
CBDOS CONOUT +CHR i3iCALL BDOS
ENDM

MACRO FUNC+»INFO

GENERAL PURPOSE BDOS CALL MACRO

FUNC IS THE FUNCTION NUMBER

INFO IS THE INFORMATION ADDRESS OR NUL
CHECK FOR FUNCTION 9, SEND CRLF FIRST IF SO

IF FUNC=MSGOUT

PRINT CRLF FIRST

WCHAR CR

WCHAR LF

ENDIF

NOW PERFORM THE FUNCTION

MUI C+FUNC

INCLUDE LXI TO DE IF INFO NOT EMPTY
IF NOT NUL INFO

LXI D+ INFO

ENDIF

CALL BDOS

ENDM

WCHAR ‘h’ iSEND § "H" TO CONSOLE
MUI C,CONOUT

LXI Di+'h’

CALL BDOS

Listing 8-6. Sample Program Showing a Recursive Macro

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

8.6 Recursive Macro Invocation

83

8.6 Recursive Macro Invocation Programmer’s Utilities Guide

WCHAR i’ iSEND ‘I’ TO CONSOLE
0108+0E02 MVI C.CONOUT
010A+116900 LXI Dy/i’
010D+CDOS00 CALL BDOS
CBDOS MSGOUT yMSGADDR iSEND MESSAGE
0110+0E02 MUI C,CONOUT
0112+110000 LXI DCR
0115+CDOS00 CALL BDOS
0118+0E02 MUI C,CONOUT
011A+110A00 LXI DsLF
011D+CDOS00 CALL BDOS
0120+0E09 MUI CyMSGOUT
0122+112901 LXI D yMSGADDR
0125+CD0S500 CALL BDOS
0128 C9 RET iTERMINATE PROGRAM
1
MSGADDR:
0129 B16EB4206C DB ‘and lois$’
0132 END

Listing 8-6. (continued)

8.7 Parameter Evaluation Conventions

You can exercise a number of options in the construction of actual parameters,
and in the specification of character lists for the IRP group. Although an actual
parameter is simply a sequence of characters placed between parameter delimiters,
these options allow overrides where delimiter characters themselves become a part of
the text. A parameter x occurs in the context:

label: macname <... x,...>

where macname is the name of a previously defined macro, and the preceding label
is optional. The ellipses . . . represent optional surrounding actual parameters in the
invocation of macname. In the case of an IRP group, the occurrence of a character
list x is

label: IRPid,... x,...
where the label is again optional, and the ellipses represent optional surrounding

character lists for substitution within the IRP group where the controlling identifier
id is found. In either case, the statements can be contained within the scope of a

84 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

fritz
Hervorheben

Programmer’s Utilities Guide 8.7 Parameter Evaluation

surrounding macro expansion. Hence, dummy parameter substitution can take place
for the encompassing macro while the actual parameter is being scanned.

The macro assembler follows the steps shown below in forming an actual parame-
ter or character list:

1. Leading blanks and tabs (control-I) are removed if they occur in front of x.

2. The leading character of x is examined to determine the type of scan opera-
tion to take place.

3. If the leading character is a string quote (apostrophe), then x becomes the
text up to and including the balancing string quote, using the normal string
scanning rules: double apostrophes within the string are reduced to a single
apostrophe, and upper-case dummy parameters adjacent to the ampersand
symbol are substituted by the actual parameter values. Note that the string
quotes on either end of the string are included in the actual parameter text.

4. If the first character is the left angle bracket (<), then the bracket is removed,
and the value of x becomes the sequence of characters up to, but not includ-
ing, the balancing right angle bracket (>). The right angle bracket does not
become a part of x. In this case, left and right angle brackets can be nested
to any level within x, and only the outer brackets are removed in the evalu-
ation. Quoted strings within the brackets are allowed, and substitution within
these strings follows the rules stated in 3 above. Left and right brackets
within quoted strings become a part of the string; these are not counted in
the bracket nesting within x. Further, the delimiter characters comma, blank,
semicolon, tab, and exclamation point become a part of x when they occur
within the bracket nesting.

5. If the leading character is a percent (%) character, then the sequence of
characters that follows is taken as an expression that is evaluated immedi-
ately as a 16-bit value. The resulting value is converted to a decimal number
and treated as an ASCII sequence of digits, with left zero suppression (0-
65535).

6. If the leading character is not a quote, a left bracket, or a percent, the

possibly empty sequence of characters that follows, up to the next comma,
blank, tab, semicolon, or exclamation point, becomes the value of x.

ALL INFORMATION Pe INTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 85

8.7 Parameter Evaluation Programmer’s Utilities Guide

There is one important exception to the preceding rules: the single-character escape,
denoted by an up arrow, causes the macro assembler to read the special (nonalpha-
betic) character immediately following as a part of x without treating the character
as significant. The character following the up arrow, however, must be a blank, tab,
or visible ASCII character. The up arrow itself can be represented by two up arrows
in succession. If the up arrow directly precedes a dummy parameter, then the up
arrow is removed, and the dummy parameter is not replaced by its actual parameter
value. Thus, the up arrow can be used to prevent evaluation of dummy parameters
within the macro body. Note that the up arrow has no special significance within
string quotes and is simply included as a part of the string.

Evaluation of dummy parameters in macro expansions has been presented throughout
the previous sections. The macro assembler evaluates dummy parameters as follows:

® If a dummy parameter is either preceded or followed by the concatenation
operator &, then the preceding or following & operator is removed, the
actual parameter is substituted for the dummy parameter, and the implied
delimiter is removed at the position where the ampersand occurs.

® Dummy parameters are replaced only once at each occurrence as the encom-
passing macro expands. This prevents the infinite substitution that occurs if a
dummy parameter evaluates to itself.

In summary, parameter evaluation follows these rules:

Leading and trailing tabs and blanks are removed.

Quoted strings are passed with their string quotes intact.
Nested brackets enclose arbitrary characters with delimiters.

A leading percent symbol causes immediate numeric evaluation.
An up arrow passes a special character as a literal value.

An up arrow prevents evaluation of a dummy parameter.

The & operator is removed next to a dummy parameter.
Dummy parameters are replaced only once at each occurrence.

86 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.7 Parameter Evaluation

Listings 8-7, 8-8, and 8-9 show examples of macro definitions and invocations
illustrating these points. In Listing 8-7, for example, two macros are defined, called
MAC1 and MAC2. Each has several dummy parameters. In this case, the macro
definitions are headed by DB statements to reveal the actual values passed in each
case. There is a single mainline invocation of MAC2 with the actual parameters

I »9» X+1, %7 X + 1, 'Kwote’

that associates I with E, the null sequence with F, the sequence X+1 with G, the
value 16 with H, and the literal string ‘kwote’ with S. MAC2 expands, filling the DB
and MVI instructions with the substituted values. Before leaving MAC2, MAC1 is
invoked with the value of E (the sequence I), the concatenation of the dummy argu-
ment F with the sequence M (producing M since F’s value is null), along with the
literal value A, followed by the value of H (which is 16), and terminated by the value
of S (yielding the string ‘kwote’). These values are associated with MAC1’s dummy
parameters.

i MACRO PARAMETER EVALUATION
MAC1 MACRO A+B4CHD,S

i ENTERING MACRO 1:

DB ‘&A &B &C &C'
DB)

A: NOP
MVI Bl

C&l: NOP

L&ARD: NOP
i LEAVING MACRO 1

ENDM
MAC2 MACRO EsF+G4H S

i ENTERING MACRD 2:

DB ‘&E &F &G &H’
DB S
MVI MsH
MACH E+F&M+AIH,S
i LEAVING MACRO 2
i
ENDM

Listing 8-7. Macro Parameter Evaluation Example

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87

8.7 Parameter Evaluation Programmer’s Utilities Guide

-

000F = X EQU 15
MAC2 I 49 X+41y 2 X + 1y ‘Kwote’

+ H

+ i ENTERING MACRO 2:
0000+4920205828B DB ‘T X+1 16°
0009+6B776F7465 DB ‘Kwote’
000E+3610 MVI Mi16

+ MAC1 I+MyI+16+'Kwote’

+ i

+ i ENTERING MACRO 1:
0010+49204D2049 DB ‘T M1 167
0018+6B776F 7465 DB ‘Kwote’
001D+00 I: NOP
001E+3601 MVI Mil
0020+00 I1: NOP
0021400 LI16: NOP

+ i LEAVING MACRO 1

+ i

+ ENDM

+ H LEAVING MACRO 2

+ §

+ ENDM
0022 END

Listing 8-7. (continued)

Upon expanding MAC1, the DB statements are filled out, followed by the substitu-
tion of A as a label (producing A’s value I). The MVI instruction references memory
because B’s value is M. Note that the concatenation of C with 1 reduces to a conca-
tenation of A with 1 because C’s value is A. The replacement of C by A constitutes
a substitution of a single occurrence of a dummy parameter. Thus the A that is
produced is not itself replaced at this point. Finally, the literal value L is concaten-
ated to the value of A and D to produce the label LI16.

Listing 8-8 illustrates the use of bracketed notation, using IRPs (indefinite repeats)
within three macros, called IRPM1, IRPM2, and IRPM3. Note that one bracket level
is removed in the first invocation of IRPM1, leaving the IRP list with one bracket
level (required in the IRP heading). Similarly, the IRPM2 invocation also eliminates
the outer bracket level, but these brackets are replaced at the IRP heading within
IRPM2. IRPM3 has three distinct dummy parameters that are reconstructed as a
single list at the IRP heading it contains. IRPM4 shows the effect of passing parame-
ters through two macro invocation levels by accepting a single parameter X, which

88 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.7 Parameter Evaluation

is immediately passed along to the IRPM1 macro. Note that the invocation requires
three bracket levels: the first is removed at the nested invocation of IRPM1 inside
IRPM4, and the innermost level is required at the IRP heading within IRPM1.

Listing 8-9 presents various combinations of bracketed actual parameters, quoted
strings, and escape sequences. The MAC1 macro has two parts: the first portion
includes a DB statement showing the value of the first parameter X, if it is not empty,
and the second part produces the value of Y, if not empty. Note that the first
invocation includes a properly nested bracketed sequence for X and an empty param-
eter for Y. The second invocation sends a properly nested bracketed expression for
X that produces an empty value because no characters remain after the brackets are
removed. The second parameter includes a quoted string (‘string of pearls’) and a
hexidecimal value that becomes a part of the DB in MAC1.

The third invocation of MAC1 passes a bracketed expression, including a quoted
string (the pair of adjacent apostrophes), followed immediately by a sequence of
ASCII characters. Note that the pair of apostrophes are passed intact because they
appear as an empty quoted string. In this case, the value of Y is empty. The remain-
ing examples show various cases of strings and escape sequences. Take care in pass-
ing quoted strings that contain apostrophes because a pair of apostrophes is consid-
ered a single apostrophe at each evaluation level in the sequence of macro invocations.
Pay particular attention to the use of the escape character to pass an unevaluated
dummy parameter from MAC2 to the MAC1 invocation.

IRPM1 MACRO X

i INDEFINITE REPEAT MACRO
IRP Y X

Y NOP
ENDM
ENDM

IRPM1 <<ONE +TWO yTHREE>>

0000+00 ONE: NOP
0001+00 TWO: NOP

0002+00 THREE: NOP
i
IRPMZ MACRO X
IRP Y <{XD
Y NOP
ENDM
ENCM

Listing 8-8. Parameter Evaluation Using Bracketed Notation

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89

8.7 Parameter Evaluation

0003+00
0004400
0005+00

0006+00
0007+00
0008+00

0009+00
000A+00
0008+00
000C

90

FOUR:
FIVE:
SIX:

IRPM3

SEVEN:
EIGHT:
NINE:

IRPM4A

-.

TEN:
ELEVEN:
TWELVE:

IRPM2
NOP
NOP
NOP

MACRO
IRP
NOP
ENDM
ENDM

IRPM3
NOP
NOP
NOP

MACRO
IRPM1
ENDM

IRPMA
NQOP
NOP
NOP
END

Programmer’s Utilities Guide

{FOURFIVE,SIX>

K1 X2 4X3
Y 1<X1 X2 1X3%

SEVEN JEIGHT sNINE

=<

C{{TEN,ELEVEN,TWELVE>>>

Listing 8-8. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.7 Parameter Evaluation

i SAMPLE BRACKETED PARAMETERS,» WITH ESCAPE CHARACTER
El
MAC1 MACRO XY

DB ‘XY i (ONE)

IF NUL Y

EXITM

ENDIF

DB Y i (TWO)

ENDM

MAC1 <<LEFT SIDE> MIDDLE <RIGHT SIDE::

0000+3C4C454654 DB '¢LEFT SIDE> MIDDLE <RIGHT SIDE:’ i (ONE)
H
MAC1 <ry9¢'string of pearls’ 34H:
001F+737472696E DB ‘string of pearls’s3dH F(TWO)
H
MAC1 <A QUOTE IS A '’y RIGHT?:
0030+412051554F DB ‘A QUCTE IS A '’y RIGHT? i (ONE)
i
MAC1 <xy¢'ridghty but also ‘'’’’ 7%
0046+7269676874 DB ‘righty but also '’ $(TWO)
i
MAC1 1<’is this ‘'’’’ '’confusing’’ '’ ' 463>
0057+6973207468 DB “is this ‘s’ '’confusing’’’,63 1 (TWO)
3
MAC1 {HERE IS A "> AND A "~ * >
006B6+4845524520 DB ‘HERE IS A > AND A ' i (ONE)

MACZ MACRO APAR +BPAR

LOCAL X
X EQU 10
DB APAR
MAC1 “APAR 1BPAR
ENDM
i
MAC2Z (X+5)*4y'what’ """’ '"’ig doing on?’
000A+= ??0001 EQU 10
007E+3C DB (??0001+3) %4
007F+41504152 DB ‘"APAR’ i (ONE)
0083+7768617427 DB ‘what’’s doing on?’ §(TWO)

Listing 8-9. Examples of Macro Parameter Evaluation

Examine the various parameters and their evaluations in Listing 8-9 to ensure that
the rules for evaluation given in this section are consistent.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 91

8.8 The MACLIB Statement Programmer’s Utilities Guide

8.8 The MACLIB Statement

The macro assembler allows you to create and reference macro library files that
are external to the mainline program. The form of the macro library reference is

MACLIB libname

where libname is an identifier referencing file libname.LIB assumed to exist on the
disk. Macro libraries are in source program form, so you can easily create and
modify them using an editor program.

In order to speed up the assembly process, macro libraries are read only on the
first assembly pass. This places some restrictions on the use of the MACLIB state-
ment, as listed below:

® The statements included in the macro library cannot generate machine code.
For example, comments, EQUs, SETs, and MACRO definitions are allowed;
DB statements outside macro definitions are not allowed.

® Macro libraries are not listed with the source program, although an overrid-
ing parameter can be supplied. (See Section 10.)

® All MACLIB statements must appear before the mainline program macro
definitions. The MACLIB statements are placed at the beginning of the pro-
gram, followed by the mainline declarations and machine code.

The principal advantage of the MACLIB feature is that you can predefine macros
that enhance the facilities of the assembly language itself. For example, the additional
operations codes of the Zilog Z80 microprocessor can be defined in a macro library
that is referenced in a single statement

MACLIB 280
causing the assembler to read the file Z80.LIB from the disk that contains the neces-

sary macros for Z80 code generation. These macros can then be referenced within
the program, intermixed with the usual 8080 mnemonics.

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.8 The MACLIB Statement

The libname.LIB file is assumed to exist on the currently logged disk drive. You
can override this default condition using a special parameter (L) when the macro
assembler is started that redirects the .LIB references to a different disk. (See Section
10.)

Listings 6-1 and 6-2 show the use of the macro library facility, as introduced in
the initial macro discussion. The following sections contain additional examples of
the use of MACLIB in practical applications.

End of Section 8

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 93

Section 9
Macro Applications

The MAC assembler provides a powerful tool for microcomputer systems develop-
ment through its macro facilities. To demonstrate this, the following sections describe
a number of macro applications that solve practical problems in four applications
areas:

® implementation of special purpose languages

® emulation of nonstandard machine architectures
® implementation of additional control structures
B operating systems interface macros

9.1 Special Purpose Languages

A wide variety of microcomputer designs can be broadly classed as controller
applications. Specifically, the microcomputer is used as the controlling element in
sequencing and decision making as real-time events are sampled and directed.

Typical applications of this sort include assembly line sensing and control, metal
machine control, data communications and terminal control functions, production
instrumentation and testing, and traffic control systems.

In many cases, application programmers set up the sequence of operations that the
microprocessor carries out in performing its task. To avoid unnecessary details, the
application programmer is not expected to know how to program and debug micro-
computer assembly language programs.

In this situation, it is useful to define a language through macros that suit the
application. The application programmer uses these predefined macros as the primi-
tive language elements. If properly defined, the application language is easily pro-
grammed, allowing considerable machine independence. That is, an application pro-
gram written for a particular microprocessor can be used with another processor by
changing the definitions of the individual macros that implement the primitive oper-
ations. Further, the macro bodies can incorporate debugging facilities for application
development.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

6 UOND3S

9.1 Special Purpose Languages Programmer’s Utilities Guide

To illustrate language definition, consider the following situation. Hornblower
Highway Systems, Inc. produces turnkey traffic control systems for cities throughout
the country. Their hardware subsystems consist of various traffic lights and sensors
customized for the traffic layout in a particular city. When Hornblower negotiates a
contract, their engineers survey the intersections of the city and produce plans show-
ing a configuration of their standard hardware for each intersection, along with the
algorithms required for traffic flow at that point.

The standard hardware items Hornblower manufactures consist of central and
corner traffic lights that display green, yellow, and red (or off completely); pushbut-
ton switches for pedestrian cross requests; road treadles for sensing the presence of
an automobile at an intersection; and a central controller box.

The central controller box contains an 8080 microcomputer connected through
external logic to relays that control the lights and latches that hold the sensor input
information. The controller box also contains a time of day clock that changes on an
hourly basis from 0 through 23. The 8080 processor in the controller box can be
configured for any particular intersection with up to 1024 bytes of programmable
Read-Only Memory (PROM) in 256-byte increments. Although Random Access
Memory can be included in the controller box, Hornblower uses only ROM when
possible.

Thus, the Hornblower engineers examine the hardware requirements for each
intersection in the city and produce hardware configuration plans that intermix the
various standard components. Programs are then written and debugged that control
each intersection, based on predicted traffic patterns.

9% ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

The intersection of Easy Street and Maria Avenue, for example, controls minimal
traffic and thus consists of a controller box with a single central light. The algorithm
for this intersection simply alternates red and green lights between Easy and Maria,
with a bias toward Easy Street because traffic along Easy has measured higher in the
past surveys. Thus the green light along Easy lasts for 20 seconds, while the green
along Maria lasts for only 15 seconds. Given this situation, the application program-
mer writes the following program:

HORNBLOWER HIGHWAYS SYSTEMS, INC.
INTERSECTION:
EASY STREET (N-8) / MARIA AVENUE(E-W)

MACLIB INTERSECT iLOAD MACROS

CYCLE: SETLITE NS »GREEN
SETLITE EW+RED

TIMER 20 iWAIT 20 SECS
i
i CHANGE LIGHTS

SETLITE NS»YELLOMW

TIMER 3 iWAIT 3 SECS

SETLITE NS sRED
SETLITE EW:GREEN
TIMER 15 iWAIT 15 SECS

- .

CHANGE BACK

SETLITE EW,YELLOW

TIMER 3 iWAIT 3 SECS
RETRY CYCLE

The macro library INTERSECT.LIB contains the macro definitions that implement
the primitive operations SETLITE and TIMER, setting the central traffic light and
time out for the specified interval, respectively. Further, the RETRY macro causes
the traffic light to recycle on each light change. The sequence of operations is easy to
write and is completely machine independent.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

9.1 Special Purpose Languages Programmer’s Utilities Guide

Listing 9-1 gives an example of a macro library for intersect that assumes the
following hardware with an 8080 processor: the central traffic light is controlled by
the 8080 output port O (given by light); the time of day clock is read from port 3
(clock). Further, the north-south (nsbits) of the central light are given by the high-
order 4 bits of output port 0; the east-west direction (ewbits) is specified in the low-
order 4 bits of output port 0. When either of these fields is set to 0, 1, 2, or 3, the
light in that direction is turned off, or set to red, yellow, or green, respectively. Thus,
the SETLITE macro in Listing 9-1 accepts a direction (NS or EW) along with a color
(OFF, RED, YELLOW, or GREEN) and sets the specified direction to the appropri-
ate color.

macro library for basic intersection

- we as

inPut/outrPut Ports for light and clock

light equ 00h itraffic light control
clock equ 03h 724 hour clock (0s14444223)
1

i constants for traffic lidht control
nsbits equ 4 inorth south bits
ewbits equ 0 jeast west bits

i

off equ 0 fturn light off

red equ 1 jivalue for red light
vellow equ 2 ivalue for vellow lidht
dreen equ 3 idreen lidht

i
setlite macro dirscolor

i set light i"dir" (ns,ew) to i"color" (offsredsvellowsdreen)
mui ascolor shl dir&bits iicolor readied
out light iisent in Proper bit Position
endm

timer macro seconds

i construct inline time-out looP
local t1+t29t3 iiloor entries
mui dsd*seconds iibasic loop control
tl: mui b+250 i1250msec #4 = 1 sec
t2: mui c1182 11182%#5,5usec = Imsec
t3: der c iil cy = .5 usec
dnz t3 §i+10 cy = 5.5 usec
der b jicount 250+249...
Jnz t2 iiloor on b register
der d iibasic loop control
dnz t1 iiloor on d redister

Listing 9-1. Macro Library for Basic Intersection

98 ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

arrive here with approximately i"seconds" secs timeout
endm

i
clock? macro lowshighsiftrue

ii Jump to i"iftrue" if clocK is between low and high
local iffalse ijalternate to true case
in clock jiread real-time clock
if not nul high iicheck high clock
cPi high isequal or dreater?
dnc iffalse i3skip to end if so
endif
cPi low iiless than low value?

Jdnc iftrue §iskip to label if not
iffalse:
endm

retry macro dolabel

i continue execution at 3i"dolabel"
JmpP dolabel
endm

Listing 9-1. (continued)

The TIMER macro in Listing 9-1 uses the internal cycle time of the 8080 processor
to construct an inline timing loop, based on the value of SECONDS. This loop is not
generated as a subroutine because Hornblower prefers not to include RAM in the
controller box. (Subroutines require return addresses in RAM.)

In addition to the basic intersection macro library, Hornblower has also defined
macro libraries for all of the optional hardware components. Listing 9-2a, for exam-
ple, is included when the intersection contains treadles in the street to detect auto-
mobiles; Listing 9-2b shows the macro library for pedestrian pushbuttons. In the case
of automotive treadles, the sensors are attached to input port 1 (trinp) of the proces-
sor. The treadles, however, require a reset operation that clears the latched value
through output port 1 (trout) of the controlling 8080 processor. In any particular
intersection, the treadles are numbered clockwise from true north, labeled 0, 1, through
a maximum of 7 treadles. Each sensor and reset position of the treadle ports corre-
sponds to one bit position, numbered from the least to most significant bit. Thus the
treadle #0 sensor is read from bit 0 of port 1 and reset by setting bit 0 of output
port 1. Similarly, treadle #1 uses bit position 1 of input and output port 1. The
TREAD? macro is invoked to sense the presence of a latched value for treadle tr and,
if on, the sensor is reset, with control transferring to the label given by iftrue.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99

9.1 Special Purpose Languages Programmer’s Utilities Guide

Listing 9-2b shows the macro library that processes pedestrian pushbuttons. Horn-
blower’s hardware senses the latched pedestrian switches on input port 0 (cwinp) as
a sequence of 1s and Os in the least significant positions, corresponding to the switches
at the intersection. Thus, if there are four pedestrian switches, bit positions 0, 1, 2,
and 3 correspond to these switches. A 1 bit in any of these positions indicates that
the pushbutton has been depressed. Unlike the automotive treadles, the crosswalk
switch latches are all cleared whenever input port 0 is read. Hornblower has defined
several other libraries that support optional hardware manufactured by their company.

macro library for street treadles

- =

trinp equ O1lh itreadle inPut Port
trout equ 01lh itreadle output Port

ead? macro trsiftrue
i"tread?" is invoked to check if
treadle diven by tr has been sensed.
if so» the latch is cleared and control
transfers to the label §"iftrue"

ws ws an as ot
- ws s we -3

local iffalse iiin case not set
i

in trinep iiread treadle switches

ani 1 shl tr iimask proper bit

Jz iffalse iiskip reset if O

myi arl shl tr iito reset the bit

out trut fjiclear it

Jmp iftrue 390 to true label
iffalse:

endm

Listing 9-2a. Macro Library for Treadle Control

i macro library for pedestrian pPushbuttons
i
cwinp equ 00h iinPput port for crosswalk
i
Push? macro iftrue
Vi i"Push?" Jumps to label §"iftrue" when any one
i of the crosswalk switches is derpressed. The
i value has been latched: and readind the Port
i clears the latched values
in cwinp jiread the crosswalK switches
ani (1 shl cwent) - 1 iibuild mask
Jdnz iftrue §jany switches set?
i continue on false condition
endm

Listing 9-2b. Macro Library for Corner Pushbuttons

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.1 Special Purpose Languages Programmer’s Utilities Guide

The intersection of Bumpenram Boulevard and Lullabye Lane presents a more
complicated situation. Bumpenram carries heavy traffic in an E-W direction to and
from the center of town. Lullabye, however, feeds a residential portion of the city,
running perpendicular to Bumpenram in a N-S direction. The contracting city wants
the traffic control biased toward Bumpenram as follows: the traffic light must remain
green along Bumpenram until the treadles along Lullabye detect the presence of
automobiles or until the pedestrian switches are pushed. At that time, the light must
change to allow the traffic to move N-S through Lullabye, allowing all traffic to clear
before returning to the major E-W flow along Bumpenram. Late night traffic along
Bumpenram is not very heavy, so the city also wants the E-W light to flash yellow
and the N-S direction to flash red between the hours of 2 and § a.m.

The application program created by Hornblower for the Bumpenram and Lullabye
intersection is shown in Listings 9-3a, 9-3b, and 9-3c. Each major cycle of the traffic
light enters at CYCLE where the time of day is tested. Between 2 and § a.m., control
transfers to NIGHT where the yellow and red lights are flashed in the appropriate
directions. During other hours, the switches and treadles are sampled until N-S traffic
along Lullabye is sensed. If cross traffic is detected, the lights switch until all the
traffic is through. Sampling also stops when the time of day reaches 2 a.m.

Listing 9-3a shows the assembly with no macro generated lines, controlled by the
-M parameter. (See Section 10.) Although the machine code locations are shown to
the left, no 8080 machine code is listed. Listing 9-3b shows a segment of this same
program with machine code generation, but no 8080 mnemonics, controlled by *M.
Listing 9-3a is the most readable to the application programmer. Listings 9-3b and
9-3¢ are useful for macro debugging.

Note that the resulting program requires no RAM for execution because all tem-
porary values are maintained in the 8080 registers. Further, the program is less than
256 bytes, so it can be placed in a single programmable Read-Only memory chip for
a minimum memory/processor configuration.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 101

9.1

0004
0000
0001

0000

00oC
0010

0014
0018
0029
0037
003E

0041
0045
0057
0058
005F

0071
007F

008D

0090
00A2

00AS
00A9
00AD
00BF
00C3
00C?
0009

102

Special Purpose Languages

i INTERSECTION: BUMPENRAM

= CHCNT
s LuLLO
= LuLLl

EQU 4
EQU 0
EQU 1

iSET TO

MACLIB
MACLIB
MACLIB

INTER
TREADLES
BUTTONS
CYCLE: SENTER
CLOCK? 245NIGHT

iNOT BETWEEN 2 AND 5 AM
SETLITE NS,RED

SETLITE EW,GREEN
SAMPLE: 3iSAMPLE THE BUTTONS AND
PUSH? SWITCH §ANYONE
TREAD? LULLO,SWITCH
TREAD? LULL1,SWITCH
CLOCK? 24 sNIGHT

RETRY SAMPLE

SWITCH:
FSOMEONE IS WAITING,
SETLITE EW,YELLOW
TIMER 3
SETLITE EW.RED
SETLITE NS,GREEN
TIMER 23

DONE?: IS ALL

TREAD?

TREAD?

LULLO/NOTDONE
LULL1 yNOTDONE

INEITHER TREADLE IS SET.

RETRY CYCLE

NOTDONE::
TIMER S
RETRY DONE?
NIGHT: STHIS IS NIGHTTIME,
SETLITE EW.OFF
SETLITE NS,OFF
TIMER 1
SETLITE EW,YELLOW
SETLITE NSRED
TIMER 1
RETRY CYCLE

Programmer’s Utilities Guide

BLVD / LULLABYE LN.

4 CROSSWALK SWITCHES

iNAME FOR TREADLE ZERO
iNAME FOR TREADLE ONE

iBASIC INTERSECTION
iINCLUDE TREADLES
FINCLUDE PUSHBUTTONS

HERE ON EACH MAJOR CYCLE OF THE LIGHT

FiSPECIAL FLASHING?

FRED LIGHT ON LULLABYE
FGREEN ON BUMPENRAM

TREADLES

THERE?

iTREADLE 07
iTREADLE 1°?

iPAST 2AM?

iTRY AGAIN IF NOT

CHANGE LIGHTS

iSLOW ‘EM DOWN
iWAIT 3 SECONDS
iSTOP ‘EM

iLET "EM GO
iFOR AWHILE

THE TRAFFIC THROUGH ON LULLABYE?

iTREADLE 07
STREADLE 17

CYCLE

iFOR ANOTHER LOOP

iWAIT S SECONDS
iTRY AGAIN

FLASH LIGHTS

iTURN OFF

iTURN OFF

FWAIT WITH OFF
iTURN TO YELLOW
iTURN TO RED

iLEAVE ON FOR 1 SEC
iGO AROUND AGAIN

Listing 9-3a. Traffic Control Algorithm using -M Option

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

i INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.
0004 = CWCNT EQU a iSET TO 4 CROSSWALK SWITCHES
0000 = LuLLo EQU 0 iNAME FOR TREADLE ZERO
0001 = LuLL1 EQU 1 iNAME FOR TREADLE ONE
MACLIB INTER $BASIC INTERSECTION
MACLIB TREADLES FINCLUDE TREADLES
MACLIB BUTTONS §INCLUDE PUSHBUTTONS
CYCLE: SENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
CLOCK? 245 NIGHT FSPECIAL FLASHING?
0000+DB0O3
0002+FEOQS
0004+D20C00
0007+FEQ2
0009+D2A500
iNOT BETWEEN 2 AND 5 AM
SETLITE NS,RED iRED LIGHT ON LULLABYE
000C+3E10
000E+D300
SETLITE EW:GREEN iGREEN ON BUMPENRAM
0010+3E03
0012+D300
SAMPLE: $SAMPLE THE BUTTONS AND TREADLES
PUSH? SWITCH §ANYONE THERE?
0014+DB0O
0016+EBOF
0018+C24100
TREAD? LULLOSWITCH iTREADLE 07
0018+DBO1
001D+EBO01
001F+CA2900
0022+3E01
0024+D301
0026+C34100
TREAD? LULLI1SWITCH iTREADLE 17
0029+D601
002B+EB02
002D+CA3700
0030+3E02
0032+D301
0034+C34100
CLOCK? 24 NIGHT iPAST 2 AM?
0037+0803
0039+FE02
003B+D2AS500
RETRY SAMPLE iTRY AGAIN IF NOT
003E+C31400

Listing 9-3b. Intersection Algorithm with *M in Effect

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103

9.1 Special Purpose Languages Programmer’s Utilities Guide

SWITCH:
iSOMEONE IS WAITING, CHANGE LIGHTS
SETLITE EW,YELLOW iSLOW ‘EM DOWN
0041+3E02 MVI AYYELLOW SHL EWBITS
0043+D300 out LIGHT
TIMER 3 iWAIT 3 SECONDS
0045+160C MUI D/4*3
0047+06FA ?70005: MVI B+250
0049+0EB6 ??0006: MVI C182
004B+0D ??0007: DCR C
004C+C24B00 JNZ ??0007
004F+0S DCR B
0050+C24900 JNZ ??0006
0053+15 DCR D
0054+C24700 JNZ ??0005
SETLITE EW/RED iSTOP ‘EM
0057+3E01 MVI A+RED SHL EWBITS
0059+D300 ouTt LIGHT
SETLITE NS/,GREEN iLET 'EM GO
005B+3E30 MUI A+GREEN SHL NSBITS
0050+D300 out LIGHT
TIMER 23 iFOR AWHILE
005F+165C MVI D14%23
0061+06FA ?70008: MVI B 250
0063+03B6 ??0009: MVI c.182
0065+00D ??0010: DCR C
0066+C26500 JNZ ??0010
0069+0S DCR B
006A+C26300 JNZ ??0009
006D+15 DCR D
006E+C26100 JNZ 7?7?0008

DONE?: §IS ALL THE TRAFFIC THROUGH ON LULLABYE?
TREAD? LULLONOTDONE iTREADLE 07

0071+DBO1 IN TRINP
0073+EB01 ANI 1 SHL LULLO
0075+CA7F00 Jz ??0011
0078+D301 MVI Ayl SHL LULLO
007A+D301 out TROUT
007C+C39000 JMP NOTDONE
TREAD? LULL1,NOTDONE iTREADLE 17
007F+DBO1 IN TRINP
0081+E602 ANI 1 SHL LULL1
0083+CABDOO JZ ??0012
0086+3E02 MVI Asl SHL LULL1L
0088+D301 ouTt TROUT
008A+C39000 JMP NOTDONE
INEITHER TREADLE IS SET.» CYCLE
RETRY CYCLE iFOR ANOTHER LOOP
008D+C30000 JMP CYCLE

Listing 9-3c. Algorithm with Generated Instructions

104 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

Macro-based languages of this sort can easily incorporate debugging facilities. In
the case of Hornblower, Inc., the principal algorithms are constructed and tested in
the CP/M environment by including debugging traces within each macro. In each
case, a debug flag is tested and, if true, machine code is generated to trace the
operation at the console, rather than actually executing the input/output calls.

Listing 9-4 shows the modification required to the INTER.LIB file to include the
debugging code. Although only the SETLITE macro is shown, similar coding is easily
included for the remaining macros. Listing 9-4 includes the debug flag at the begin-
ning of the library, initially set to FALSE, along with the appropriate equates for
CP/M system calls. If the debug flag is set to true by the application programmer,
special trace calls are included. For example, the setlite macro constructs a message
of the form

DIR changing to COLOR

where DIR and COLOR are the parameters sent to the macro. If debug remains false
in the application program, this trace code is not assembled.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 105

9.1 Special Purpose Languages Programmer’s Utilities Guide

macro library for basic intersection

-s ws e

dlobal definitions for debug Processing

true equ Offffh Svalue of true
false equ not truejvalue of false
debug set false finitially false
bdos equ 5 ientry to cp/m bdos
rchar equ 1 iread character function
wbuff equ 9 fwrite buffer functiaon
cr equ Odh icarriade return
1f equ Oah iline feed
i
i inPut/outrut Ports for light and clock
lidht equ 00h itraffic light control
clock equ 03h 24 hour clock (0s1444¢123)
1
H bit positions for traffic light control
nsbits equ a inorth south bits
ewbits equ 0 feast west bits
H
i constant values for the lidht control
off equ 0 jturn light off
red equ 1 fjvalue for red light
vellow equ 2 jvalue for vellow light
dreen equ 3 idreen light
H
setlite macr dirscolar
i set light diven by "dir" to color diven by "color"
if debud iiprint info at console
local setmsdspastmsyg
myi crwbuff jiwrite buffer function
Ixi disetmsd
call bdos iiwrite the trace info
Jmp pastmsd
setmsd: db craif
db ‘&DIR chanding to &COLOR%’
Pastmsd:
exitm
endif
mui ajcolor shl dir&bits readied
out lidght iisent in pProper bit Position
endm

(remaining macros are identical to the previous figure,
but each contains trace information similar to “setlite”)

-. = ws as

Listing 9-4. Library Segment with Debug Facility

106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

Listing 9-5a shows an application program for an intersection where the debug
flag is set to TRUE after the macro library is included. As a result, each macro
expansion assembles a call to the CP/M operating system to trace the light direction
and color change, skipping the machine code that is eventually assembled to drive
the actual Hornblower hardware.

The application programmer then uses CP/M to trace the operation of the algo-
rithm, resulting in the printout shown in Listing 9-5b. Each trace line corresponds to
a SETLITE call with a specific direction and color, with the appropriate wait time
between printouts.

0100 ORG 100H iREADY FOR THE DEBUG RUN
MACLIB INTER iBASIC MACRO LIBRARY

FFFF# DEBUG SET TRUE iREADY DEBUG TOGGLE

0100 CYCLE: SETLITE NS,RED

0120 SETLITE EW,GREEN

0142 TIMER 10

0154 SETLITE EW,YELLOMW

0177 TIMER 2

1089 SETLITE EWRED

01A8 SETLITE NS/:GREEN

01CB TIMER 10

010D SETLITE NS,YELLOW

0200 TIMER 2

0212 RETRY CYCLE

Listing 9-5a. Sample Intersection Program with Debug

NS chandind to RED

EW chanding to GREEN
EW changdind to YELLOW
EW chanding to RED

NS chanding to GREEN
NS chandingd to YELLOW
NS chandind to RED

EW chandind to GREEN
EW chanding to YELLOW
EW chanding to RED

o e

Listing 9-5b. Debug Trace Printout

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107

9.1 Special Purpose Languages Programmer’s Utilities Guide

Upon completion of the initial debugging under CP/M, the SET statement in the
application program is removed—the ORG can be removed as well—and the pro-
gram is reassembled. This time, the CP/M traces are not included because the debug
flag remains FALSE. As a result, the actual Hornblower hardware interface is assem-
bled instead. The newly assembled program is then placed into PROM in the con-
troller box for that intersection and tested in its target environment.

This approach to macro based language facilities provides a simple tool for rapid
development and debugging of programs where high-level languages are not avail-
able, but a measure of machine independence is required. The macros are easy to
develop, and the application programs are simple to write and debug.

9.2 Machine Emulation

A second application of macro processing is in the emulation of a machine opera-
tion code set that is different from the 8080 microprocessor. In particular, a machine
architecture is selected, based on an existing or fictitious operation code set, and a
macro is written for each opcode, taking the general form:

op MACRO d-1d-2,. . .,dn
opcode emulation
ENDM

where op is a mnemonic instruction in the emulated machine, and the dummy
parameters d-1 through d-n represent the optional operands required by op. The
macro body includes 8080 instructions that carry out the operation on the 8080
microprocessor. This means the instructions within the macro body perform the same
function as the op with its arguments on the emulated machine.

Upon completion of the opcode macro definitions, a program can be written using

these opcodes. These opcodes expand to the equivalent 8080 instructions but per-
form the emulated machine operations.

108 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

For example, consider the situation encountered by Nachtflieger Maschinewerke,
an internationally famous manufacturer and distributor of automated machining
equipment. Though incorporating microprocessors in controlling their equipment,
Nachtflieger expects to build a custom LSI processor for their future products. The
processor, called the KDF-10, will be used primarily as an analog sensing and control
element in a larger electronic environment. As a result, the KDF-10 word size must
accommodate digital values corresponding to analog signals of up to 12 bits. To
allow computations on these 12-bit values, Nachtflieger engineers are going to allow
a full 16-bit word in the KDF-10, along with a number of primitive operations on
these values. Externally, the KDF-10 will provide four analog-to-digital input ports
(A-D) that can be read by KDF-10 programs, along with four digital-to-analog out-
put ports (D-A) that can be written by the program. The KDF-10 will automatically
perform the A-D and D-A conversion at these ports.

Being forward thinkers, the engineers at Nachtflieger have designed the KDF-10 as
a stack machine, similar in concept to the Hewlett-Packard HP-65 handheld pro-
grammable calculator, where data can be loaded to the top of a stack of data ele-
ments, automatically pushing existing elements deeper onto the stack. Similar to the
Reverse Polish Notation (RPN) of an HP-65, arithmetic on the KDF-10 will be
performed on the topmost stacked elements, automatically absorbing the stacked
operands as the arithmetic is performed. The designers settled on the following three-
character operation codes for the KDF-10:

SIZ n reserves n 16-bit elements as the maximum size of the KDF-10
operand stack. This operation code must be provided at the begin-
ning of the program.

RDM i reads the analog signal from input port i (0, 1, 2, or 3) to the top
of the stack.

WRM o writes the digital value from the top of the stack to the D-A output
port given by o (0, 1, 2, or 3). The value at the stack top is
removed.

DUP duplicates the top of the KDF-10 stack.

SUM adds the top two elements of the KDF-10 stack. Both operands
are removed, and the resulting sum is placed on the top of the
stack.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

9.2

Because the KDF-10 does not exist, except in the minds of the Nachtflieger engineers,
the software designers decided to use the macro facilities of MAC to emulate the
KDF-10, using the 8080 microcomputer.

Listing 9-6 shows an example of a program for the KDF-10 that was processed by
MAC using the macro library defined by the Nachtflieger software group. In this
situation, the KDF-10 is connected to four temperature sensors attached at strategic
places on the machining equipment. The program continuously reads the four input
values from the A-D ports and computes their average value by summing and divid-
ing by four. This average value is sent to D-A output port 0 where it is used to set

JMP a

Machine Emulation

LSR n performs a logical shift of the topmost stacked element to the right
by n bits (1, 2,...,15), replacing the original operand by the shifted
result. LSR n performs a division of the topmost stacked value by

Programmer’s Utilities Guide

the divisor 2 to the n power.

environmental controls.

0000
012E
0134
0136
013A

013E
0140
0142

0144
0152
0156

110

branches directly to the program address given by label a.

AVERAGE THE VALUES WHICH ARE READ FROM ANALOG

THE D-A OUTPUT PORTS.

b
i INPUT PORTSs WRITE THE RESULTING VALUE TO ALL
i
)

MACLIB STACK

SIZ
LOOP: RDM
RDM
RDM
RDM

i ALL
SUM
SUM
SUM

i SUM

LSR

WRM

C32E01 JMP

20
0

1
2
3

FOUR VALUES

iREAD THE STACK MACHINE OPCODES
iCREATE 20 LEVEL WORKING STACK
iREAD A-D PORT 0

iREAD A-D PORT 1

iREAD A-D PORT 2

iREAD A-D PORT 3

ARE STACKED: ADD THEM UP
iAD3+AD2

i (AD3+AD2) +AD1

i ((AD3+AD2)+AD1)+ADO

IS AT TOP OF THE STACK, DIVIDE BY 4

2
0
LOOP

FSHIFT RIGHT TWO = DIV BY 4
iWRITE RESULT TO D-A PORT O
iGO GET ANOTHER SET OF VALUES

Listing 9-6. A-D Averaging Program Using Stack Machine

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

As shown in Listing 9-6, the program begins by reserving a stack of 20 elements,
a much larger stack than required for this application, since a maximum of four
elements are actually stacked. The program then cycles following LOOP, where the
values are read and processed. The four operations RDM 0, RDM 1, RDM 2, and
RDM 3 read all four temperature sensors, placing their data values in the stack. The
three SUM operations that follow the read operations perform pairwise addition of
the temperature values, producing a single sum at the top of the stack. Because the
average value is wanted, the LSR 2 operator is applied to the stack top to perform
the division by four. Finally, the resulting average is sent to the D-A port using the
WRM 0 operation code. Control then transfers back to LOOP, where the entire
operation is performed again.

Because Nachtflieger designers are emulating KDF-10s using 8080s, they have cre-
ated the macro library file, called STACK.LIB, as shown in Listing 9-7. A macro is
shown in this listing for each of the KDF-10 opcodes, starting with the SIZ operator.
In this case, the program origin is set, since this must be the first opcode in the
program, and the stack area is reserved. Note that double words of storage are
reserved because a 16-bit word size is assumed. The DUP, SUM, and LSR operators
follow the SIZ macro. In each case, the KDF-10 stack top is assumed to be in 8080’s
HL register pair. Further, each operation that pushes the KDF-10 stack causes the
element in the 8080 HL pair to be pushed to the 8080 memory area reserved by the
SIZ opcode.

siz macro size
i set "ord" and create stack
local stack iilabel on the stack
ord 100h ijat base of TPA
Ixi spistack
Jmp stack iiPast stack
ds size*2 iidouble Precision

stack: endm

dup macro

i duplicate top of stack
Push h
endm

Listing 9-7. Stack Machine Opcode Macros

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 111

- = s
-
-

wes £ e
-, =y
32

112

Machine Emulation Programmer’s Utilities Guide
macro
add the top two stacKk elements
POP d iitor-1 to de
dad d iiback to hi
endm
macro len
lodgical shift ridht by len
reprt len iidenerate inline
Xra a iiclear carry
mov arh
rar jirotate with high 0
mov hra
mov arl
rar
mowv 12 iiback with high bit
endm
endm
equ 1080h ia-d converter O
equ 1082h ja-d converter 1
equ 1084h ia-d converter 2
equ 1086h ja-d converter 3
equ 1090h id-a converter O
equ 1092h id-a converter 1
equ 1094h id-a converter 2
equ 1096h id-a converter 3
macro ?c
read a-d converter number "7?c"
Push h iiclear the stack
read from memory marred input address
1hid adc&?c
endm
macro ?c
write d-a converter number "7c¢c"
shld dack?c Jivalue written
POP h iirestore stack
endm

Listing 9-7. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

The DUP opcode simply pushes the HL register pair to memory since the HL pair
is not altered in the 8080 during this operation. In the case of the SUM operator, it
is assumed that the KDF-10 programmer has somehow loaded two values to the
KDF-10 stack. So the HL registers contain the most recently loaded value, and the
8080 memory stack contains the next-to-most recently stacked value. The POP D
operation loads the second operand to the DE pair in the 8080 CPU. Then the
topmost value and next to top value are added, using the DAD D operation. The
resulting operand goes into the HL register pair. This is necessary in the KDF-10
emulation because the top of the KDF-10 stack is located in the 8080’s HL register
pair.

The LSR opcode is more complicated. The values must go through the accumula-
tor because the 8080 does not support a double precision (16-bit) right shift of the
HL register pair. Thus, the LSR macro contains a REPT loop that generates inline
machine code for each right shift. The inline machine code performs the right shift
by first clearing the carry (XRA A), followed by a high-order right shift by one bit
(MOV A,H followed by RAR), then by a low-order bit shift (MOV A,L followed by
RAR). Note that an intermediate bit can move from the high-order byte to the low-
order byte using the carry between high- and low-order byte shifts.

In Listing 9-7, the RDM and WRM operation codes are defined by memory-
mapped input/output operations. That is, memory locations 1080H through 1087H
are intercepted external to the 8080 microprocessor and treated as external read
operations. Thus, a load from locations 1080H and 1081H to HL is treated as a
read from A-D device 0, rather than from RAM. This operation is simple to perform
in the KDF-10 emulation because all program addresses are assumed to be below
1000H, so any 8080 address bus values beyond 1000H must be memory mapped 1/O.

As a result, ADCO through ADC3 correspond to the locations where A-D values 0
through 3 are obtained. Similarly, the D-A output values that are written to locations
1090H through 1097H are intercepted as memory mapped output values that are
sent to the D-A converters rather than to RAM.

The RDM instruction is emulated by simply performing an LHLD from the appro-
priate memory mapped input address, constructed through concatenation of the dummy
parameter. The HL value is first pushed because the KDF-10 RDM opcode performs
this task automatically. Then the new value is loaded into the HL register pair.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY 1O DIGITAL RESEARCH 113

9.2 Machine Emulation Programmer’s Utilities Guide

The WRM opcode definition is similar, except the value to write is assumed to
reside at the top of the KDF-10 stack and thus appears in the 8080 HL register pair.
The value is written to the memory mapped output location, and the value is removed
from the HL pair by restoring HL from the 8080 stack.

To see the actual code generated by each of these macros, Listing 9-8 shows the
same averaging program as given in Listing 9-6, except that the generated 8080
instructions are interspersed throughout the listing file. Listing 9-8 is the usual output
from MAC; Listing 9-6 was generated using the parameter -M, which suppresses
generated mnemonics. Compare Listings 9-6, 9-7, and 9-8, so that you understand
the macro expansion processes.

AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
INPUT PORTS: WRITE THE RESULTING VALUE TO ALL
THE D-A OUTPUT PORTS.

-e wan wan as

MACLIB STACK iREAD THE STACK MACHINE OPCODES

SlZ 20 iCREATE 20 LEVEL WORKING STACK
0100+ ORG 100H
0100+312E01 LXI SP 42?0001
0103+C32E01 JMP ??0001
0106+ DS 20%2

LOOP: RDM 0 iREAD A-D PORT 0

012E+ES PUSH H
012F+2A8B010 LHLD ADCO

RDM 1 iREAD A-D PORT 1
0132+ES PUSH H
0133+2A8210 LHLD ADC1

RDM 2 iREAD A-D PORT 2
0136+ES PUSH H
0137+2AB410 LHLD ADC2

RDM 3 iREAD A-D PORT 3
013A+ES PUSH H
013B+2A8610 LHLD ADC3

Listing 9-8. Averaging Program with Expanded Macros

114 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

i ALL FOUR VALUES ARE STACKED: ADD THEM UP
SUM iAD3+AD2
013E+D1 POP D
013F+18 DAD D
SUM i (AD3+AD2) +AD1
0140+D1 POP D
0141+18 DAD D
SUM i ((AD3+AD2)+AD1) +ADO
0142+D1 POP D
0143+189 DAD D
i SUM IS AT TOP OF THE STACK, DIVIDE BY 4
LSR 2 $SHIFT RIGHT TWO = DIV BY 4
0144+AF XRA A
0145+7C MoV AH
0146+1F RAR
0147+67 Mov H:A
0148+70 MoV AL
0149+1F RAR
014A+6F MoV LA
014B+AF XRA A
014C+7C MoV A+H
014D+1F RAR
014E+67 Mov H1A
014F+7D MoV Ayl
0150+1F RAR
0151+6F MOV L+A
WRM 0 FWRITE RESULT TO D-A PORT 0
0152+229010 SHLD DACO
0155+E1 POP H
0156 C32E01 JMP LooP iGO GET ANOTHER SET OF VALUES

Listing 9-8. (continued)

A problem arose at Nachtflieger MW, however, that had to be rectified. Although
programs could be effectively written for the KDF-10 computer using the 8080 emu-
lation, they could not be effectively debugged. The program in Listing 9-8, for exam-
ple, could be tested under the CP/M Dynamic Debugging Tool (see CP/M documen-
tation), but the program required monitoring and tracing at the 8080 machine code
level. It became clear that higher level debugging tools were necessary.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 115

9.2 Machine Emulation Programmer’s Utilities Guide

As a result, Nachtflieger designers added several pseudo opcodes that allow debug-
ging traces. The opcodes can be interspersed in the program and selectively enabled
and disabled, depending on the debugging needs. In production, all debugging traces
are disabled, resulting only in absolute port I/O. The additional debugging opcodes

are listed below.

116

PRN msg

DMP

TRT ¢t

TRF t

TRT p

TRF p

Print the message given by “msg” at the debugging console when-
ever the print trace is enabled. The message must be enclosed in
angle brackets.

Print the value of the top element in the KDF-10 stack in
hexadecimal.

Set machine code trace option to true. Each time a KDF-10 machine
operation is executed, the opcode is printed, followed by the
approximate KDF-10 machine code address, followed by the top
two elements of the KDF-10 stack, in the format:

OPC oploc top top’

where OPC is the opcode, oploc is the location, top is the top
element, and top’ is the second to the top element, all in hexadec-
imal notation.

Disable the machine code trace. Only the KDF-10 instructions
that physically appear between the TRT and TRF opcodes are
shown in the trace.

Enable the print/read trace. PRN opcodes that follow produce
output at the debugging console, and are otherwise treated as
comments. Further, RDM and WRM opcodes prompt and dis-
play data at the debugging console.

Disable the print/read trace. Only the PRN, RDM, and WRM
instructions that physically appear between TRT and TRF inter-
act with the console.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

The traces are disabled at the beginning of the program and must be explicitly
enabled with TRT opcodes.

i AVERAGING PROGRAM WITH INTERSPERSED DEBUG CODE

MACLIB DSTACK SREAD THE STACK MACHINE OPCODES

0000 SIZ 20 iCREATE 20 LEVEL WORKING STACK
0103 TRT T iMACHINE CODE TRACE ON
0103 TRT P iPRINT TRACE ON

0103 PRN <TRACE FOR AVERAGING PROGRAM>
012E LOOP: RDM Q iREAD A-D PORT 0

01F0 DMP iWRITE TOP OF STACK
0z22C ROM 1 iREAD A-D PORT 1

0267 DMP WRITE TOP OF STACK
026A RDM 2 iREAD A-D PORT 2

02A5 DMP iWRITE TOP OF STACK
02AB ROM 3 iREAD A-D PORT 3

02E3 DMP iWRITE TOP OF STACK
02E6 PRN <FOUR VALUES HAVE BEEN READ:

ALL FOUR VALUES ARE STACKED:» ADD THEM UP

-

0310 SUM iAD3+AD2
0324 DMP iWRITE FIRST SUM
0327 SUM i (AD3+AD2) +AD1
0338 DMP iWRITE SECOND SUM
033E SUM i ((AD3+AD2)+AD1)+ADO
0352 PRN <VALUES HAVE BEEN ADDED>»
0378 DMP iWRITE SUM OF VALUES

i SUM IS AT TOP OF THE STACK, DIVIDE BY 4
0378 LSR 2 iSHIFT RIGHT TWO = DIV BY 4
0389 PRN <AVERAGE VALUE CALCULATEC>
0361 DMP iWRITE AVERAGE VALUE
0384 WRM 0 iWRITE RESULT TO D-A PORT ©
O3EE BRN LOOP iGO GET ANOTHER SET OF VALUES
03F1 XIT {iEMIT EXIT CODE

Listing 9-9. Averaging Program with Debugging Statements

ALL INFORMATION TREGINTED HERE IS PROUPRIETARY TO DIGITAL RESEARCH 117

9.2 Machine Emulation, Programmer’s Utilities Guide

Listing 9-9 shows the averaging program of Listing 9-6 with interspersed debug-
ging statements. The opcodes TRT t and TRT p are executed at the beginning of the
program, enabling all trace options throughout the execution. The PRN statement
above the LOOP label prints the initial sign-on; the DMP statements after each read
operation give the value of the A-D port. Upon completion of the four-element read,
the PRN opcode indicates this fact. Each SUM operator is followed by a DMP
opcode that shows the current sum. Finally, the PRN and DMP opcodes display the
final average value that is being sent to D-A port 0. The XIT opcode shown at the
end of the program is discussed below.

Listing 9-10 shows the execution of the averaging program under DDT. Note that
the program headings appear at the points in the program where PRN opcodes are
placed. Further, the console is prompted for input in the case of an RDM opcode,
giving the absolute memory mapped input address in decimal, while the WRM
instruction produces a “D-A OUTPUT . .” message that shows the absolute memory
mapped output address and the data that is written.

The opcodes are also traced showing the opcode mnemonic, address, and top two
stacked elements. The RDM trace at the beginning, for example, shows the instruc-
tion address 01AD, which is in the range of the first RDM of Listing 9-9 (012E to
01EF), and is followed by the two values 0111 (the value just read) and C21D
(garbage value, because only one element is stacked). The trace is easily followed at
the KDF-10 level, showing each value that is read in and the operations performed
upon these values. Upon completion of the debugging process under CP/M, the TRT
opcodes are removed and the program is reassembled, leaving only the 8080 instruc-
tions required in the production machine. Nachtflieger systems engineers then take
the resulting program and test its operation in a hardware environment.

118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Ultilities Guide 9.2

A>ddt aver.hex
DDT VERS 1.4
NEXT PC

0406 0000
-9100

TRACE FOR AVERAGING PROGRAM
A-D INPUT AT 4224 111

RDM 01AD 0111 C21D

(TOP)= 0111

A-D INPUT AT 4226 222

RDM 0285 0222 0111

(TOP)= Q222

A-D INPUT AT 422
RDM 0293 0555 o022
(TOP)= 0559

A-D INPUT AT 4230 444

RDM 02D1 0444 0555

(TOP)= 0444

FOUR VALUES HAVE BEEN READ
SUM 0312 0999 0222

(TOP)= 0999
SUM 0329 0BBB 0111
(TOP)= (BBB

SUM 0340 OCCC C21D
VALUES HAVE BEEN ADDED
(TOP)= 0CCC

AVERAGE VALUE CALCULATED
(TOP)= 0333

D-A OUTPUT AT 4240 0333
WRM 03DC 7938 C21D

A-D INPUT AT 4224

Machine Emulation

Listing 9-10. Sample Execution of AVER Using DDT

Nachtflieger engineers quickly realized that the KDF-10 design had a number of
deficiencies due to the paucity of arithmetic operators and the total absence of con-
ditional branching instructions. Further, there was no provision for variable storage
other than the stack. Thus, the KDF-11 naturally evolved from the KDF-10, incor-
porating these features. Table 9-1 lists the operation codes of the KDF-11.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESFARCH 119

9.2 Machine Emulation Programmer’s Utilities Guide

Table 9-1. KDF-11 Operation Codes

Code

Meaning

DCL v,n

LIT ¢

VAL v,i,c

STO v,i,c

DIF

GEQ a

BRN a

Declare (reserve) storage for a variable by the name v, with
optional size n. If n is omitted, then n — 1 is assumed. All DCL
opcodes must follow the XIT opcode given below.

Load the value of the literal constant ¢ to the top of the KDF-
11 stack.

Load the value of the variable v optionally indexed by the vari-
able i with the optional constant offset c. VAL V loads the value
of V to the top of the stack. VAL VI loads the value located at
the address of V plus the index value contained in I. VAL V,I,3
loads the value at location V plus the index I, plus the constant
index 3. In all cases, the value is placed at the top of the KDF-
11 stack.

Store the value obtained from the KDF-11 stack to the address
given by v, plus the optional index i, plus the optional constant
index given by c. The top element of the KDF-11 stack is removed.

Subtract the top element of the KDF-11 stack from the next-to-
top element of the stack and replace both operands by their
difference.

Test the next-to-top element (top’) against the top of stack ele-
ment (top), and branch to the label given by “a” if top’ is greater
than or equal to top. If not, program control continues to the

next opcode in sequence.

Replace the JMP instruction in the KDF-10 architecture to allow
complete separation of the KDF-11 and 8080 machines.

Listing 9-11 gives the macro library that was constructed by the Nachtflieger soft-
ware group for KDF-11 machine emulation. More than half of the macro library
implements trace and debugging functions. The remaining components implement
the KDF-11 opcodes themselves. Each major section of this macro library, called
DSTACK.LIB, is briefly described below, followed by an example of its use.

120 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

macro library for a zero address machine
EREREERRERRRRRRRRRRRRRRRRRERRRRRRRRRERRRR

* begin trace/dump utilities *
3 RERRRRERERERERRRRRRERRRRRRRRRRERRRRRRRR RN
bdos equ 0005h isystem entry
rchar eau 1 iread a character
wchar equ 2 jwrite character
wbuff eau 9 iwrite buffer
tran equ 100h itransient Prodram area
data equ 1100h idata area
cr equ 0dh fcarriade return
1f equ Oah iline feed
i
debugdt set 0 jitrace debud set false
debugp set 0 iiprint debug set false
i
PN macro PT
IR print messade ‘Pr’ at console
if debugp Jiprint debug on?
local Pmsgimsd iilocal messade
Jmp Pms g ijaround message
msd: db cr»lf jireturn carriagde
db ‘&PR$’ iiliteral message
Pmsd: Push h iisave top element of stack
Ixi dimsd iilocal messade address
mui ciwbuff ijwrite buffer ‘til ¢
call bdos iiprint it
POP h iirestore top of stack
endif ijend test debugp
endm

i

uden macro

i denerate utilities for trace or dume
local pPsub

Jmp Psub iiJump Past subroutines
@ch: jjwrite character in reg-a

mov esa

mui ciwchar

Jmp bdos iireturn thru bdos
i
@nb: iiwrite nibble in reg-a

adi 90h

daa

aci 4aoh

daa

Jmp Bch iireturn thru Bch

Listing 9-11. Stack Machine Macro Library

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 121

9.2 Machine Emulation

@hx:

L]

@ad

@in0:

@inl:

122

jiwrite hex value in red-a

Push
rre
rrc
rrc
rrc
ani
call
POP
ani
Jmp

fiwrite
Push
mui
call
POP
mov
Push
call
POP
mov
dmp

PSW

ofh
@nb
PSW
ofh
@nb

address
h
ar’
@ch
h
asth
h
Bhx
h
asl
@hx

1

iisave low byte

mask hidh nibble
print hidh nibble

iiprint low nibble

value in hl

iisave value
iileading blank
ijahead of address
iihigh bvte to a

iicory back to stacK
fiwrite high byte

ow brte
rite low byte

£ -

iiread hex value to hl from console

mui ar’ ! iileading space

call @ch iito console

Ixi h»0 iistartingd value

Push h iisave it for char read
myi csrchar iiread character function
call bdos iiread to accumulator
POP h ijivalue being built in hl
sui ‘0 iinormalize to binary
cPi 10 iidecimal?

Jc @inl iscarry if Oslss019

may be hexadecimal asevoesf

sui 'AY-'0"-10

cPi 16 iia through f?

rnc jireturn with assumed cr
iiin randes multiply by 4 and add

rept 4

dad h iishift 4

endm

ora 1 ijadd digit

mov 1:a ijand replace value

Jmp @in0 iifor another digit

Listing 9-11. (continued)

Programmer’s Utilities Guide

ALL INFORMATION PRESENTED HERE iS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

Psub:
uden

1

trace

N o—

- D e @D
-

T e

macro

redef to include once

endm

uden iidenerate first time

endm
EEEREREEERRERRRRRRRRRRRRRRRRERRRRRRRRR RN
* end of trace/dump utilities *
* begin trace (only) utilities *

HRERRRRRRRRNRERERRERRRRERRRRRRRRRRRRRRRRR
macro code smname

trace macro diven by mname.

at location diven by code

local psub

uden iidenerate utilities
Jmp psub

ds 2 iitemp for regd-1

ds 2 iitemp for reg-2

jitrace macro call
bc=code address, de=messade

shld etl jistore top red
POP h jireturn address
xthl iired-2 to top
shld Bt2 iistore to temp
Push PSW iisave flags

Push b iisave ret address
mui ciwbuff §iprint buffer func
call bdos iiprint macro name
POP h iicode address
call Bad iiprinted

1hld evl iitor of stack
call @ad iiPprinted

1hld et2 iitor-1

call Bad iiprinted

POP PSW jiflags restored
POP d jireturn address
lhld Bt2 iitor-1

Push h jirestored

Push d iireturn address
1hld Btl iitor of stack

ret

Listing 9-11. (continued)

NFORMA

TON PRESENTED HERE IS PROPRIETARY 1O D

9.2 Machine Emulation

123

9.2 Machine Emulation Programmer’s Utilities Guide

psub: §ipast subroutines

i

trace macro Cm

LR] redefined trace» uses @tr
local PmMsdsmsd
Jmp PMSd

msd: db crslf jicrslf
db ‘&M$ iimac name

PMSd:
Ixi bsc iicode address
Ixi dimsd iimacro name
call @tr jito trace it
endm

i back to oridinal macro level
trace code ymname
endm

3

trt macro f

i turn on flag "f"

debugdf set 1 iiPrint/trace on
endm

i

trf macro f

LR} turn off flag "f"

debugkf set 0 iitrace/print off
endm

Listing 9-11. (continued)

124 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

“-s we OO ws ws an e
- ws 3

- - D
w e Q
3

@dm0:

macro m
check debugt todgdle before trace

if debugt

trace %% m

endm
HEEREEERRRERRRRRRERERRRRRRRRERRARRRRRRRRR
* end trace (only) utilities *
* begin dump (only) utilities *

EREEREERRERERRRRRERRRRRRRRRRRRRRREERRRRRR
macro uname »n

dump variable vname for

n elements (double bytes)

local Psub iirpast subroutines
uden iiden inline routines
Jmp Psub iipast local subroutines

jidump utility Prodram

de=msd address,» c=element count
hl=base address to Print

Push h iibase address

1
pPush b jielement count
myi ciwbuff jjwrite buffer func
call bdos jimessade written
POP b iirecall count
POP h iirecall base address
mouv asc ijend of list?
ora a
rz iireturn if so
der c iidecrement count
mov e sm iinext item (low)
inx h
mov dm iinext item (high)
inx h iiready for next round
Push h iisave Pprint address
Push b iisave count
xchg iidata ready
call Rad iiprint item value
1)

Jmp @dm0 ifor another value

iidump top of stack only

PIN <(tor)=> F3"(TOP)="
Push h

call Bad itvalue of hl
POP h iitor restored
ret

Listing 9-11. (continued)

9.2 Machine Emulation

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 125

9.2 Machine Emulation Programmer’s Utilities Guide

Psub:
ii
dmp macro ?v4?n
i redefine dump to use Bdm utility

local Pmsdimsy
LR] special case if null rarameters

if nul vname
is dump the tor of the stack only

call @dt

exitm

endif
ii otherwise dump variable name

Jmp Pms 9
msg: db crslf iicrlf

db ‘&7?V=%' jimessade
pmsd: adr ?v iihl=address
active set 0 jiclear active flag

1xi dimsd iimessade to Print

if nul ?n §juse lendth 1

mui csl

else

myi c?n

endif

call Bdm iito perform the dume

endm iiend of redefinition

dmp vname sn

endm
H
H EEEERRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRS
i * end dump (only) utilities: *
i * bedin stack machine opcodes *
H ERRRRERRERRRRRRRRRRRRRRFRRRRRRRRRRERRRRRS
active set 0 jactive redister flag
i
siz macro size

ord tran iiset to transient area
i create a stack when "xit" encountered
@stkK set size iisave for data area

Ixi sprstack

endm
1

Listing 9-11. (continued)

126 ALL INFORMATION PRE D HERE IS PROPRIETARY 1O DIGITAL RESFARCH

Programmer’s Utilities Guide

save

11

save

active

active

ear

- 0O =
- b

active

- = ..
-
L

macro

check to ensure "enter" Properly
if stack iiis it present?
endif

macro jiredefine after initial
if active Jielement in hl
Push h iisave it

endif

set 1 jiset active
endm

save

endm

macro

restore the top element

if not active

POP h iirecall to hl
endif

set 1 jimarkK as active
endm

macro

clear the top active element
rest ijensure active
set 0 iicleared

endm

macro unamesize
label the declaration

if nul size

ds 2 ijone word req’‘d
else

ds size*¥2 Jidouble words
endm

macro val

set up

reference

load literal value to top of stack

save iisave if active
Ixi hsval iiload literal
?tr lit

endm

Listing 9-11.

(continued)

9.2 Machine Emulation

127

9.2 Machine Emulation Programmer’s Utilities Guide

adr macro basesinxscon

i load address of base» indexed by inx:

ii with constant offset diven by con
save iipush if active
if nul inx&con
Ixi h:base §jaddress of base
exitm iisimple address
endif

i must be inx and/or con
if nul inx
Ixi hscon*2 jiconstant
else
l1hld inx ijindex to hl
dad h iidouble precision inx
if not nul con
Ixi dycon*2 jidouble const
dad d ijadded to inx
endif iinot nul con
endif iinul inx
Ixi dsbase Jiready to add
dad d iibasetinx#*2+con*2
endm

i

val macro bsisec

i det value of b+i+c to hl

i check simple case of b only
if nul i&ec
save iipush if active
1hld b iiload directly
else

i "adr" pushes active redisters
adr brisec ijaddress in hl
mov erm iilow order bvte
inx h
mov dm iihigh order brte
xchg iiback to hl
endif
?tr val iitrace set?
endm

Listing 9-11. (continued)

128 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

.. we
.. we *

sum

a .
-
-

macro bsisc
store the value of the top of stack
leavind the top element active

if nul i&e

rest ijactivate stack

shld b iistored directly to b
else

adr bsisc

POP d ijvalue is in de

mov mre iilow brte

inx h

mov msd iihigh brte

endif

clear iimark empty

?tr sto iitrace?

endm

macro

rest iirestore if saved

add the top two stack elements

POP d iitor-1 to de

dad d iiback to hl

?tr sum

endm

macro

compute difference between top elements
rest iirestore if saved

POP d iitor-1 to de

mov are iitor-1 low byte to a
sub 1 iilow order difference
mov 1:a iiback to 1

mov asd iitor-1 hidh byte

sbb h iihigh order difference
mov hra iiback to h

carry flag may be set upon return

?tr dif

endm

Listing 9-11. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.2 Machine Emulation

129

Programmer’s Utilities Guide

9.2 Machine Emulation
lsr macro len
IR] lodical shift right by len
rest jjactivate stack
rept len jidenerate inline
Xra a fjiclear carry
mov arh
rar jirotate with high 0
mov hia
mov arl
rar
mov 1:a iiback with hidh bit
endm
endm
i
deq macro lab
i Jump to lab if (top-1) is dreater or
i equal to (tor) element.
dif iicompute difference
clear iiclear active
?tr deq
dne lab iino carry if dreater
Jz lab iizero if equal
Vi drop throudh if neither
endm
H
dup macro
i duplicate the tor element in the stack
rest iiensure active
Push h
?tr dup
endm
H
brn macro addr
i branch to address
Jmp addr
endm
i
Xit macro
?tr Xit iitrace on?
Jmp 0 jirestart at 0000
ord data jistart data area
ds Bstk*¥2 §jobtained from "siz"
stack: endm
1
Listing 9-11. (continued)
130 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

H ERERRERRRRERRRRRERRERERRRRRRRRRRRRRRRRRNN
i * memory mapped i/0 section *
H HRERRRERERRRRERRRRRRRRRRRRRRRRRRRRERRRNRR
i inPut values which are read as if in memory
adcO equ 1080h ia-d converter O
adcl equ 1082h ia-d converter 1
ade2 equ 1084h ia-d converter 2
adc3 equ 1086h ia-d converter 3
i
dacO equ 1090h id-a converter O
daci equ 1092h id-a converter 1
dac2 equ 1094h id-a converter 2
dac3 equ 1096h id-a converter 3
H
rwtrace macro msdsadr
LR read or write trace with messagde
i given by "msd9" to/from "adr"
PN <msd at adr>
endm
H
rdm macro ?c
i read a-d converter number "“7?c"
save iiclear the stack
if debudp Jistop execution in ddt
rwtrace <a-d input »% adck?c
ugen ijensure @in is Present
call @in iivalue to hl
shld adck?c iisimulate memory inpPut
else
i read from memory marped inpPut address
lhld adc&?c
endif
?tr rdm iitracing?
endm

Listing 9-11. (continued)

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 131

9.2 Machine Emulation Programmer’s Utilities Guide

wrm macro ?c

id write d-a converter number "?c"
rest jirestore stack
if debudp Jitrace the output
rwtrace <d-a outputr»% dac&?c
uden ijinclude subroutines
call Bad iiwrite the value
endif
shld dack?c
?tr wrm iitracing outpPut?
clear iiremove the value
endm

H 39 3 36 3 3 3 3 393 3 3 3 3 36 369 3 3 I 9 3 3 3 K K I K KKK KKK XNR

5 * end of macro library *
H HRERERRERRRRARERRRR RN RRRRRRRRRRRRRRRERR

Listing 9-11. (continued)

The first portion of the library, which is principally concerned with debugging
functions, begins with CP/M system calls, function numbers, and equates for non-
graphic characters, similar to the examples given earlier. Although these values are
not necessary for operation of the KDF-11, they are necessary for the debugging
functions that operate when the TRT opcode is in effect. Following the CP/M equates,
the toggles DEBUGT and DEBUGP are set to false (0 value), reflecting the conditions
of the debugging switches given by TRT and TRF. When DEBUGT is true (1 value),
machine operation codes are traced. Similarly, when DEBUGP is true, PRN, RDM,
and WRM operations interact with the console.

The PRN macro, for example, produces an inline message with a call to CP/M to
write the message whenever the DEBUGP toggle is true. Otherwise, the PRN pro-
duces no generated code.

The UGEN macro that follows PRN is called the first time the debugging subrou-

tines are required by trace or print/read opcodes. When invoked, the UGEN macro
produces several inline subroutines that are used throughout the debugging process.

132 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide . 9.2 Machine Emulation

If no trace or print/read functions are invoked during the assembly, UGEN is not
invoked. Thus no inline subroutines are included for debugging. If UGEN is invoked,
the subroutines shown below are included inline:

@CH writes a single ASCII character to the console.
@NB writes a single half byte (nibble) to the console.
@HX writes a full hexadecimal byte value at the console.

@AD writes a full address (double byte) value with preceding blank.
@IN reads a hexadecimal value from the console to HL.

Upon including these subroutines, UGEN then redefines itself to an empty macro
body so that the subroutines are not included on subsequent invocations of UGEN.
This ensures that the inline subroutines are included only once, and only if they are
required by the debugging macros.

The SIZ macro is similar to the opcode defined for the KDF-10, except that the
size of the stack is saved for later declaration in the data area (see the XIT opcode).
Throughout the opcode macros, the SAVE and REST macros save and restore the
HL register pair, based on the ACTIVE flag. The CLEAR macro, however, marks the
top element of the KDF-11 stack as deleted.

The DCL macro simply sets up the variable name VNAME as a label and follows
the label by a DS that reserves the specified number of double wo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>