

Dear CP/M Plus User:

Digital Research has developed the CP/M Plus Operating
System to take advantage of the latest hardware in the 3 bit
microcomputer world. The design of CP/M Plus is a
reflection of our goal to provide you with a state of the
art operating system that can be configured for a wide
variety of computer hardware.

This shipment contains the version 3.0 release of our
CP/M Plus system. We hope to maintain the same level of
confidence that the computer industry has had in our
previous CP/M operating systems.

On the basis of our experience and the experience of
CP/M Plus users, we estimate that it requires less than a
week to implement a simple non-banked CP/M Plus system from
a copy of your CP/M 2.2 BIOS. Implementing a banked CP/M
Plus system with Bank Switching, Auto Density Select, and
Device Reassignment can require several weeks. Of course,
the time to perform such a reconfiguration will vary widely
depending on the experience of the programmer and the
complexity of the hardware.

Contact the Digital Research Technical Support staff,
(408) 375-6262, if you experience difficulties reconfiguring
CP/M Plus. By sending in your registration card you can
insure that we will mail CP/M Plus application notes and
patches that correct implementation errors.

Sincerely,

TECHNICAL SUPPORT

CP/M Plus™
(CP/M® Version 3)
Operating System

System Guide

Copyright© 1982

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright© 1982 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
CP/M Plus, DDT, LINK-80, RMAC, and SID are
trademarks of Digital Research. Altos is a
registered trademark of Altos Corporation. IBM is a
tradename of International Business Machines. Intel
is a registered trademark of Intel Corporation.
Microsoft is a registered trademark of Microsoft
Corporation. Zilog and Z80 are registered
trademarks of Zilog Inc.

The CP/M 3 Operating System System Guide was
prepared using the Digital Research TEX Text
Formatter and printed in the United States of
Amer ica.

* First Edition: January 1983 *

Foreword

CP/M® 3, also marketed as CP/M Plus™ , is a single-console
operating system for 8-bit machines that use an Intel® 8080, 8085,
or Zilog® Z80® CPU. CP/M 3 is upward-compatible with its
predecessor, CP/M 2, and offers more features and higher performance
than CP/M 2. This manual describes the steps necessary to create or
modify a CP/M 3 Basic Input Output System (BIOS) tailored for a
specific hardware environment.

The CP/M Plus (CP/M Version 3) Operating System System
Guide assumes you are familiar with systems programming in 8080
assembly language and that you have access to a CP/M 2 system. It
also assumes you understand the target hardware and that you have
functioning disk I/O drivers. You should be familiar with the
accompanying CP/M Plus (CP/M Version 3) Operating System User's
Guide describing the operating system utilities. You should also be
familiar with the CP/M Plus (CP/M Version 3) Operating System
Programmer's Guide, which describes the system calls used by the
applications programmer to interface with the operating system. The
Programmer's Utilities Guide for the CP/M Family of Operating
Systems documents the assembling and debugging utilities.

Section 1 of this manual is an overview of the component
modules of the CP/M 3 operating system. Section 2 provides an
overview of the functions and data structures necessary to write an
interface module between CP/M 3 and specific hardware. Section 3
contains a detailed description of these functions and data
structures, followed by instructions to assemble and link the
distributed modules with your customized modules. Section 4
describes the modular organization of the sample CP/M 3 BIOS on your
distribution diskette. Section 5 documents the procedure to
generate and boot your CP/M 3 system. Section 6 is a sample
debugging session.

The appendixes contain tables, and sample BIOS modules you can
use, or study and modify. Appendix A discusses removable media
drives. Appendix B discusses automatic density support. Appendix C
describes how CP/M 3 differs from CP/M 2. Appendix D shows the
format of the CPM3.SYS file.

Appendixes E through H are listings of the assembled source
code for the four hardware-independent modules of the sample BIOS.
Appendix E is the kernel module to use when creating a modular BIOS
in the form of the distributed sample. Appendix F shows the System
Control Block. Appendix G is a table of equates for the baud rate
and mode byte for character I/O. Appendix H contains the macro
definitions you can use to generate some of the CP/M 3 disk data
structures. Appendix I lists the assembled source code for the six
BIOS modules that depend on the Altos 8000-15 Computer System
hardware. It also contains a sample Submit file to build a BIOS.

Appendixes J and K are tabular summaries of the public entry-
points and data items in the modules of the sample BIOS. Finally,
Appendix L is a tabular summary of the thirty-three functions of the
CP/M 3 BIOS, complete with entry parameters and returned values.

Table of Contents

1 CP/M 3 Operating System Overview 1

1.1 Introduction to CP/M 3.............................. 1

1.2 CP/M 3 System Components............................ 2

1.3 Communication Between Modules....................... 2

1.4 Banked and Nonbanked Systems 4

1.5 Memory Requirements.................................. 7

1.6 Disk Organization.................................... 10

1.7.1 Hardware Supported by CP/M 3 Banked System . 11
1.7.2 Hardware Supported by CP/M 3 Nonbanked System 11

1.8 Customizing CP/M 3............ 11

1.9 Initial Load (Cold Boot) of CP/M 3................. 12

2 CP/M 3 BIOS Overview..................................... 15

2.1 Organization of the BIOS............................ 15

2.2 System Control Block 17

2.3 System Initialization................................ 18

2.4 Character I/O... 19

2.5 Disk I/O... 20

2.6 Memory Selects and Moves............................ 24

2.7 Clock Support....................................... 24

3 CP/M 3 BIOS Functional Specification................... 27
3.1 The System Control Block............................ 27

3.2 Character I/O Data Structures....................... 32

3.3 BIOS Disk Data Structures............................ 34

3.3.1 The Drive Table.............................. 36
3.3.2 Disk Parameter Header........................ 36

v

Table of Contents
(continued)

3.3.3 Disk Parameter Block......................... 40
3.3.4 Buffer Control Block......................... 44
3.3.5 Data Structure Macro Definitions............ 46

3.4 BIOS Subroutine Entry Points 49

3.4.1 System Initialization Functions 51
3.4.2 Character I/O Functions..................... 54
3.4.3 Disk I/O Functions............................ 58
3.4.4 Memory Select and Move Functions............ 64
3.4.5 Clock Support Function....................... 67

3.5 Banking Considerations 67

3.6 Assembling and Linking Your BIOS.................... 69

4 The Modules of the CP/M 3 Sample BIOS Modules........... 71

4.1 Functional Summary of BIOS Modules................. 71

4.2 Conventions Used in BIOS Modules................... 73

4.3 Interactions of Modules............................ 73

4.3.1 Initial Boot................................. 73
4.3.2 Character I/O Operation...................... 74
4.3.3 Disk I/O Operation.......................... 74

4.4 Predefined Variables and Subroutines 75

4.5 BOOT Module... 77

4.6 Character I/O....................................... 78

4.7 Disk I/O... 81

4.7.1 Disk I/O Structure.......................... 81
4.7.2 Drive Table Module (DRVTBL) 81
4.7.3 Extended Disk Parameter Headers (XDPHs) ... 82
4.7.4 Subroutine Entry Points 83
4.7.5 Error Handling and Recovery 84
4.7.6 Multiple Section I/O........................ 85

4.8 MOVE Module... 85

4.9 Linking Modules into the BIOS..................... 86

vi

Table of Contents
(continued)

5 System Generation ... 87

5.1 GENCPM Utility....................................... 87

5.2 Customizing the CPMLDR.............................. 98

5.3 CPMLDR.. 100

5.4 Booting CP/M 3... 101

6 Debugging the BIOS.. 103

vii

Appendixes

A Removable Media Considerations 107

B Auto-Density Support 109

C Modifying a CP/M 2 BIOS..................................... Ill

D CPM3.SYS File Format....................................... 115

E Root Module of Relocatable BIOS for CP/M 3............... 117

F System Control Block Definition for CP/M 3 BIOS 129

G Equates for Mode Byte Fields: MODEBAUD.LIB 131

H Macro Definitions for CP/M 3 BIOS Data Structures: CPM3.L 133

I ACS 8000-15 BIOS Modules................................... 137

1.1 Boot Loader Module for CP/M 3.......................... 137

1.2 Character I/O Handler.................................140

1.3 Drive Table..144

1.4 Z80 DMA Single-density Disk Handler.................... 144

1.5 Bank & Move Module for Linked BIOS..................... 152

1.6 I/O Port Addresses..................................... 153

1.7 Sample Submit File..................................... 155

J Public Entry Points for CP/M 3 Sample BIOS Modules . . . 157

K Public Data Items in CP/M 3 Sample BIOS Modules 159

L CP/M 3 BIOS Function Summary.............................. 161

viii

Tables, Figures, and Listings

Tables
1-1. CP/M 3 Operating System Memory Requirements. . . 7

2-1. CP/M 3 BIOS Jump Vector........................... 16
2-2. CP/M 3 BIOS Functions............................. 17
2-3. Initialization of Page Zero...................... 18
2-4. CP/M 3 Logical Device Characteristics........... 19
2-5. BDOS Calls to BIOS in Nonbanked/Banked Systems . 21
2-6. Multiple Sector I/O in Nonbanked/Banked Systems. 22
2-7. Reading Two Contiguous Sectors in Banked System. 23

3-1. System Control Block Fields...................... 29
3-2. Disk Parameter Header Fields 37
3-3. Disk Parameter Block Fields...................... 40
3-4. BSH and BLM Values............................... 42
3-5. Maximum EXM Values............................... 42
3-6. BLS and Number of Directory Entries.............. 43
3-7. PSH and PHM Values............................... 44
3-8. Buffer Control Block Fields...................... 45
3-9. Functional Organization of BIOS Entry Points . . 49
3-10. CP/M 3 BIOS Function Jump Table Summary......... 50
3-11. I/O Redirection Bit Vectors in SCB.............. 54

4-1. CP/M 3 BIOS Module Function Summary.............. 72
4-2. Public Symbols in CP/M 3 BIOS.................... 75
4-3. Global Variables in BIOSKRNL.ASM 76
4-4. Public Utility Subroutines in BIOSKRNL.ASM ... 76
4-5. Public Names in the BIOS Jump Vector............ 77
4-6. BOOT Module Entry Points......................... 78
4-7. Mode Bits.. 79
4-8. Baud Rates for Serial Devices.................... 79
4-9. Character Device Labels........................... 80
4-10. Fields of Each XDPH............................... 83
4-11. Subroutine Entry Points........................... 84
4-12. Move Module Entry Points........................ 86

5-1. Sample CP/M 3 System Track Organization......... 99

C-l. CP/M 3 BIOS Functions................................Ill

D-l. CPM3.SYS File Format................................115
D-2. Header Record Definition 115

K-l. Public Data Items.................................... 159

L-l. BIOS Function Jump Table Summary...................161

ix

Tables, Figures, and Listings
(continued)

Figures
1-1. General Memory Organization of CP/M 3........... 4
1-2. Memory Organization for Banked CP/M 3 System . . 5
1-3. Memory Organization with Bank 1 Enabled......... 6
1-4. Memory Organization in Nonbanked CP/M 3 System . 7
1-5. Memory Organization in Banked CP/M 3........... 8
1-6. Memory Organization in Nonbanked CP/M 3......... 9
1-7. CP/M 3 System Disk Organization.................. 10

2-1. CP/M 3 System Tracks............................. 19

3-1. Disk Data Structures in a Banked System......... 35
3-2. Disk Parameter Header Format 36
3-3. Disk Parameter Block Format...................... 40
3-4. ALO and AL1.. 43
3-5. Buffer Control Block Format...................... 44

4-1. XDPH Format.. 82

Listings
3-1. The SCB.ASM File............................ 28
3-2. Sample Character Device Table............... 33
3-3. Equates for ModeByte Bit Fields............. 34

E-l. Root Module of Relocatable BIOS for CP/M 3 . . . 117

F-l. System Control Block Definition for CP/M 3 BIOS. 129

G-l. Equates for Mode Byte Fields: MODEBAUD.LIB. . . 131

H-l. Macro Definitions............................... 133

1-1. Boot Loader Module for CP/M 3.................. 137
1-2. Character I/O Handler for Z80 Chip-based System. 140
1-3. Drive Table..................................... 144
1-4. Z80 DMA Single-density Disk Handler........... 144
1-5. Bank & Move Module for CP/M 3 Linked BIOS. . . . 152
1-6. I/O Port Addresses for Z80 Chip-based System ; . 153
1-7. Sample Submit File for ACS 8000-15 System. . . . 155

J-l. Public Entry Points............................. 157

x

Section 1
CP/M 3 Operating System Overview

This section is an overview of the CP/M 3 operating system,
with a description of the system components and how they relate to
each other. The section includes a discussion of memory
configurations and supported hardware. The last portion summarizes
the creation of a customized version of the CP/M 3 Basic Input
Output System (BIOS).

1.1 Introduction to CP/M 3
CP/M 3 provides an environment for program development and

execution on computer systems that use the Intel 8080, 8085, or Z80
microprocessor chip. CP/M 3 provides rapid access to data and
programs through a file structure that supports dynamic allocation
of space for sequential and random access files.

CP/M 3 supports a maximum of sixteen logical floppy or hard
disks with a storage capacity of up to 512 megabytes each. The
maximum file size supported is 32 megabytes. You can configure the
number of directory entries and block size to satisfy various user
needs.

CP/M 3 is supplied in two versions. One version supports
nonbank-switched memory; the second version supports hardware with
bank-switched memory capabilities. CP/M 3 supplies additional
facilities for the bank-switched system, including extended command
line editing, password protection of files, and extended error
messages.

The nonbanked system requires 8.5 kilobytes of memory, plus
space for your customized BIOS. It can execute in a minimum of 32
kilobytes of memory.

The bank-switched system requires a minimum of two memory banks
with 11 kilobytes of memory in Bank 0 and 1.5 kilobytes in common
memory, plus space for your customized BIOS. The bank-switched
system provides more user memory for application programs.

CP/M 3 resides in the file CPM3.SYS, which is loaded into
memory by a system loader during system initialization. The system
loader resides on the first two tracks of the system disk. CPM3.SYS
contains the distributed BDOS and the customized BIOS.

The CP/M 3 operating system is distributed on two single
density, single-sided, eight-inch floppy disks. Digital Research
supplies a sample BIOS which is configured for an Altos 8000-15
microcomputer system with bank-switched memory and two single
density, single-sided, eight-inch floppy disk drives.

All Information Presented Here is Proprietary to Digital Research

1

CP/M 3 System Guide 1.2 CP/M 3 System Components

1.2 CP/M 3 System Components
The CP/M 3 operating system consists of the following three

modules: the Console Command Processor (CCP) , the Basic Disk
Operating System (BDOS), and the Basic Input Output System (BIOS)

The CCP is a program that provides the basic user interface to
the facilities of the operating system. The CCP supplies six built-
in commands: DIR, DIRS, ERASE, RENAME, TYPE, and USER. The CCP
executes in the Transient Program Area (TPA), the region of memory
where all application programs execute. The CCP contains the
Program Loader Module, which loads transient (applications) programs
from disk into the TPA for execution.

The BDOS is the logical nucleus and file system of CP/M 3. The
BDOS provides the interface between the application program and the
physical input/output routines of the BIOS.

The BIOS is a hardware-dependent module that interfaces the
BDOS to a particular hardware environment. The BIOS performs all
physical I/O in the system. The BIOS consists of a number of
routines that you must configure to support the specific hardware of
the target computer system.

The BDOS and the BIOS modules cooperate to provide the CCP and
other transient programs with hardware-independent access to CP/M 3
facilities. Because the BIOS is configured for different hardware
environments and the BDOS remains constant, you can transfer
programs that run under CP/M 3 unchanged to systems with different
hardware configurations.

1.3 Communication Between Modules
The BIOS loads the CCP into the TPA at system cold and warm

start. The CCP moves the Program Loader Module to the top of the
TPA and uses the Program Loader Module to load transient programs.

The BDOS contains a set of functions that the CCP and
applications programs call to perform disk and character input and
output operations.

The BIOS contains a Jump Table with a set of 33 entry points
that the BDOS calls to perform hardware-dependent primitive
functions, such as peripheral device I/O. For example, CONIN is an
entry point of the BIOS called by the BDOS to read the next console
input character.

Similarities exist between the BDOS functions and the BIOS
functions, particularly for simple device I/O. For example, when a
transient program makes a console output function call to the BDOS,
the BDOS makes a console output call to the BIOS. In the case of
disk I/O, however, this relationship is more complex. The BDOS
might make many BIOS function calls to perform a single BDOS file
I/O function. BDOS disk I/O is in terms of 128-byte logical

All Information Presented Here is Proprietary to Digital Research

2

CP/M 3 System Guide 1.3 Communication Between Modules

records. BIOS disk I/O is in terms of physical sectors and tracks.

The System Control Block (SCB) is a 100-byte decimal CP/M 3
data structure that resides in the BDOS system component. The BDOS
and the BIOS communicate through fields in the SCB. The SCB
contains BDOS flags and data, CCP flags and data, and other system
information, such as console characteristics and the current date
and time. You can access some of the System Control Block fields
from the BIOS.

Note that the SCB contains critical system parameters which
reflect the current state of the operating system. If a program
modifies these parameters, the operating system can crash. See
Section 3 of this manual, and the description of BDOS Function 49 in
the CP/M Plus (CP/M Version 3) Operating System Programmer's
Guide for more information on the System Control Block.

Page Zero is a region of memory that acts as an interface
between transient programs and the operating system. Page Zero
contains critical system parameters, including the entry to the BDOS
and the entry to the BIOS Warm BOOT routine. At system start-up,
the BIOS initializes these two entry points in Page Zero. All
linkage between transient programs and the BDOS is restricted to the
indirect linkage through Page Zero. Figure 1-1 illustrates the
general memory organization of CP/M 3.

All Information Presented Here is Proprietary to Digital Research

3

CP/M 3 System Guide l.J Communication Between Modules

High memory:

BIOS: Basic I/O System

BIOS_base:

BDOS: Basic Disk Operating System

BDOS-base

LOADER_base:

TPA

0100H:

LOADER: Program Loader Module
Component of CCP

TPA: Transient Program Area

CCP: Console Command Processor

PAGE ZERO

0000H:

Figure 1-1. General Memory Organization of CP/M 3

Note that all memory regions in CP/M 3 are page aligned, which
means that they must begin on a page boundary. Because a page is
defined as 256 (100H) bytes, a page boundary always begins at a
hexadecimal address where the low-order byte of the hex address is
zero.

1.4 Banked and Nonbanked Systems
CP/M 3 is supplied in two versions: one for hardware that

supports banked memory, and the other for hardware with a minimum of
32 kilobytes of memory. The systems are called banked and
nonbanked.

Digital Research supplies System Page Relocatable (.SPR) files
for both a banked BDOS and a nonbanked BDOS. A sample banked BIOS
is supplied for you to use as an example when creating a customized
BIOS for your set of hardware components.

All Information Presented Here is Proprietary to Digital Research

4

CP/M 3 System Guide 1.4 Banked and Nonbanked Systems

The following figure shows the memory organization for a banked
system. Bank 0 and common memory are for the operating system.
Bank 1 is the Transient Program Area, which contains the Page Zero
region of memory. You can use additional banks to enhance operating
system performance.

In banked CP/M 3 systems, CPMLDR, the system loader, loads part
of the BDOS into common memory and part of the BDOS into Bank 0.
CPMLDR loads the BIOS in the same manner.

Figure 1-2 shows the memory organization for the banked version
of CP/M 3.

Top of memory

Top of Banked
Memory

Bank-Switched

Common
to all banks

Hardware-Dependent Buffer Space

Resident Operating System Modules

Bank 1 Bank N

Figure 1-2. Memory Organization for Banked CP/M 3 System

In this figure, the top region of memory is called common
memory. Common memory is always enabled and addressable. The
operating system is divided into two modules: the resident portion,
which resides in common memory, and the banked portion, which
resides just below common memory in Bank 0.

The shaded areas in Figure 1-2 represent the memory available
to transient programs. The clear areas are used by the operating
system for disk record buffers and directory hash tables. The clear

All Information Presented Here is Proprietary to Digital Research

5

CP/M 3 System Guide 1.4 Banked and Nonbanked Systems

area in the common region above the operating system represents
space that can be allocated for data buffers by GENCPM, the CP/M 3
system generation utility. The minimum size of the buffer area is
determined by the specific hardware requirements of the host
microcomputer system.

Bank 0, the system bank, is the bank that is enabled when CP/M
3 is cold started. Bank 1 is the transient program bank.

The transient program bank must be contiguous from location
zero to the top of banked memory. Common memory must also be
contiguous. The other banks need not begin at location zero or have
contiguous memory.

Figure 1-3 shows the CP/M 3 memory organization when the TPA
bank, Bank 1, is enabled in a bank-switched system.

Top of memory

Common

Top of Banked
Memory

Low Memory
(0000H)

Hardware Dependent Buffer Space

Resident Operating System Modules

Figure 1-3. Memory Organization with Bank 1 Enabled
in Banked System

The operating system switches to Bank 0 or other banks when
performing operating system functions. In general, any bank
switching performed by the operating system is transparent to the
calling program.

The memory organization for the nonbanked version of CP/M 3 is
much simpler, as shown in Figure 1-4:

All Information Presented Here is Proprietary to Digital Research

6

CP/M 3 System Guide 1.4 Banked and Nonbanked Systems

Top of memory

Low Memory
(0000H)

Figure 1-4. Memory Organization in Nonbanked CP/M 3 System

In the nonbanked version of CP/M 3r memory consists of a single
contiguous region addressable from 0000H up to a maximum of OFFFFH,
or 64K-1. The clear area above the operating system represents
space that can be allocated for data buffers and directory hash
tables by the CP/M 3 system generation utility, GENCPM, or directly
allocated by the BIOS. The minimum size of the buffer area is
determined by the specific hardware requirements of the host
microcomputer system. Again, the shaded region represents the space
available for transient programs.

1.5 Memory Requirements
Table 1-1 shows typical sizes of the CP/M 3 operating system

components.

Table 1-1. CP/M 3 Operating System Memory Requirements
CP/M 3 Version Nonbanked Banked

Common Bank 0

BDOS 8.5K 1.5K UK

BIOS (values vary)
floppy system
hard system

1.5K
2.5K

.75K
1.5K

2K
3K

The CP/M 3 banked system requires a minimum of two banks (Bank
0 and Bank 1) and can support up to 16 banks of memory. The size of
the common region is often 16K, but can be as small as 4K. Common
memory must be large enough to contain the required buffers and the
resident (common) portion of the operating system, which means a

All Information Presented Here is Proprietary to Digital Research

7

CP/M 3 System Guide 1.5 Memory Requirements

1.5 K BDOS and the common part of your customized BIOS.

In a banked environment, CP/M 3 maintains a cache of deblocking
buffers and directory records using a Least Recently Used (LRU)
buffering scheme. The LRU buffer is the first to be reused when the
system runs out of buffer space. The BDOS maintains separate buffer
pools for directory and data record caching.

The RSX modules shown in Figure 1-5 are Resident System
Extensions (RSX) that are loaded directly below the operating system
when included in an application or utility program. The Program
Loader places the RSX in memory and chains BDOS calls through the
RSX entry point in the RSX.

Figure 1-5 shows the memory organization in a typical bank-
switched CP/M 3 system.

LRU DATA BUFFERS

HASHED DIRECTORY
TABLES

(one per drive)
COPY OF CCP FOR
WARM START
(optional)

BANK 2

Figure 1-5. Memory Organization in Banked CP/M 3

All Information Presented Here is Proprietary to Digital Research

8

CP/M 3 System Guide 1.5 Memory Requirements

The banked system supports a TPA of 60K or more. The banked
portion of the operating system in Bank 0 requires at least 16K of
memory.

In the banked system, the BDOS and the BIOS are separated into
two parts: a resident portion, and a banked portion. The resident
BDOS and BIOS are located in common memory. The banked BDOS and
BIOS are located in the operating system bank, referred to as Bank 0
in this manual.

The TPA extends from 100H in Bank 1 up to the bottom of the
resident BDOS in common memory. The banked BIOS and BDOS reside in
Bank 0 with the directory buffers. Typically, all data buffers
reside in common. Data buffers can reside in an alternate bank if
the system has a DMA controller capable of transferring arbitrary
blocks of data from one bank to another. Hashed directory tables
(one per drive) can be placed in any bank except Bank 1 (TPA) .
Hashed directory tables require 4 bytes per directory entry.

Figure 1-6 shows a typical nonbanked system configuration.

Buffers and Hash Tables

BIOS

BDOS

PROGRAM LOADER

Optional overlays

TRANSIENT PROGRAM

BASE PAGE Oh - 100h

Figure 1-6. Memory Organization in Nonbanked CP/M 3

The nonbanked CP/M 3 system requires 8.5K of memory plus space
for the BIOS, buffers, and hash tables, allowing a TPA size of up to
52K to 54K, depending on the size of the BIOS and the number of hash
tables and buffers you are using.

All Information Presented Here is Proprietary to Digital Research

9

CP/M 3 System Guide 1.6 Disk Organization

1.6 Disk Organization
Figure 1-7 illustrates the organization of a CP/M 3 system

disk.

Track M -----

a 4- a HP v“ o Lr e?

CP/M 3 Data Region
Uala iraCKS

CP/M 3 Directory Region

CCP (Optional)

System tracks CPMLDR

Track 0 -----

Cold Boot Loader

Figure 1-7. CP/M 3 System Disk Organization

In Figure 1-7, the first N tracks are the system tracks; the
remaining tracks, the data tracks, are used by CP/M 3 for file
storage. Note that the system tracks are used by CP/M 3 only during
system cold start and warm start. All other CP/M 3 disk access is
directed to the data tracks of the disk. To maintain compatibility
with Digital Research products, you should use an eight-inch,
single-density, IBM®3740 formatted disk with two system tracks.

1.7 Hardware Supported
You can customize the BIOS to match any hardware environment

with the following general characteristics.

All Information Presented Here is Proprietary to Digital Research

10

CP/M 3 System Guide 1.7 Hardware Supported

1.7.1 Hardware Supported by CP/M 3 Banked System

• Intel 8080, Intel 8085, or Zilog Z80 CPU or equivalent.

• A minimum of two and up to sixteen banks of memory with the top
4K-32K in common memory. Bank 1 must have contiguous memory
from address 0000H to the base of common memory. A reasonable
configuration consists of two banks of 48K RAM each, with the
top 16K in common memory.

• One to sixteen disk drives of up to 512 megabytes capacity
each.

• Some form of ASCII console device, usually a CRT.

• One to twelve additional character input and or output devices,
such as printers, communications hardware, and plotters.

1.7.2 Hardware Supported by CP/M 3 Nonbanked System
• Intel 8080, Intel 8085, or Zilog Z80 CPU or equivalent.
• A minimum of 32K and up to 64K contiguous memory addressable

from location zero.
• One to sixteen disk drives of up to 512 megabytes capacity

each.
• Some form of ASCII console device, usually a CRT.
• One to twelve additional input and or output devices, usually

including a printer.

Because most CP/M-compatible software is distributed on eight
inch, soft-sectored, single-density floppy disks, it is recommended
that a CP/M 3 hardware configuration include a minimum of two disk
drives, at least one of which is a single-density floppy disk drive.

1.8 Customizing CP/M 3
Digital Research supplies the BDOS files for a banked and a

nonbanked version of CP/M 3. A system generation utility, GENCPM,
is provided with CP/M 3 to create a version of the operating system
tailored to your hardware. GENCPM combines the BDOS and your
customized BIOS files to create a CPM3.SYS file, which is loaded
into memory at system start-up. The CPM3.SYS file contains the BDOS
and BIOS system components and information indicating where these
modules reside in memory.

Digital Research supplies a CP/M 3 loader file, CPMLDR, which
you can link with your customized loader BIOS and use to load the
CPM3.SYS file into memory. CPMLDR is a small, self-contained
version of CP/M 3 that supports only console output and sequential
file input. Consistent with CP/M 3 organization, it contains two
modules: an invariant CPMLDR_BDOS, and a variant CPMLDR_BIOS, which
is adapted to match the host microcomputer hardware environment.

All Information Presented Here is Proprietary to Digital Research

11

CP/M 3 System Guide 1.8 Customizing CP/M 3

The CPMLDR—BIOS module can perform cold start initialization of I/O
ports and similar functions. CPMLDR can display a memory map of the
CP/M 3 system at start-up. This is a GENCPM option.

The following
CP/M 3 tailored to

steps tell you how to create a
your specific hardware.

new version of

1) Write and assemble a customized BIOS following the
specifications described in Section 3. This software
module must correspond to the exact physical
characteristics of the target system, including memory and
port addresses, peripheral types, and drive
characteristics.

2) Use the system generation utility, GENCPM, to create the
CPM3.SYS file containing the CP/M 3 distributed BDOS and
your customized BIOS, as described in Section 5.

3) Write a customized loader BIOS (LDRBIOS) to reside on the
system tracks as part of CPMLDR. CPMLDR loads the CPM3.SYS
file into memory from disk. Section 5 gives the
instructions for customizing the LDRBIOS and generating
CPMLDR. Link your customized LDRBIOS file with the
supplied CPMLDR file.

4) Use the COPYSYS utility to put CPMLDR on the system tracks
of a disk.

5) Test and debug your customized version of CP/M 3.

If you have banked memory, Digital Research recommends that you
first use your customized BIOS to create a nonbanked version of the
CP/M 3 operating system. You can leave your entire BIOS in common
memory until you have a working system. Test all your routines in a
nonbanked version of CP/M 3 before you create a banked version.

1.9 Initial Load (Cold Boot) of CP/M 3
CP/M 3 is loaded into memory as follows. Execution is

initiated by a four-stage procedure. The first stage consists of
loading into memory a small program, called the Cold Boot Loader,
from the system tracks of the Boot disk. This load operation is
typically handled by a hardware feature associated with system
reset. The Cold Boot Loader is usually 128 or 256 bytes in length.

In the second stage, the Cold Boot Loader loads the memory
image of the CP/M 3 system loader program, CPMLDR, from the system
tracks of a disk into memory and passes control to it. For a banked
system, the Cold Boot Loader loads CPMLDR into Bank 0. A PROM
loader can perform stages one and two.

All Information Presented Here is Proprietary to Digital Research

12

CP/M 3 System Guide 1.9 Initial Load (Cold Boot) of CP/M 3

In the third stage, CPMLDR reads the CPM3.SYS file, which
contains the BDOS and customized BIOS, from the the data area of the
disk into the memory addresses assigned by GENCPM. In a banked
system, CPMLDR reads the common part of the BDOS and BIOS into the
common part of memory, and reads the banked part of the BDOS and
BIOS into the area of memory below common_base in Bank 0. CPMLDR
then transfers control to the Cold BOOT system initialization
routine in the BIOS.

For the final stage, the BIOS Cold BOOT routine, BIOS Function
0, performs any remaining necessary hardware initialization,
displays the sign-on message, and reads the CCP from the system
tracks or from a CCP.COM file on disk into location 100H of the TPA.
The Cold BOOT routine transfers control to the CCP, which then
displays the system prompt.

Section 2 provides an overview of the organization of the
System Control Block and the data structures and functions in the
CP/M 3 BIOS.

End of Section 1

All Information Presented Here is Proprietary to Digital Research

13

CCP.COM

CP/M 3 System Guide End of Section 1

All Information Presented Here is Proprietary to Digital Research

14

Section 2
CP/M 3 BIOS Overview

This section describes the organization of the CP/M 3 BIOS and
the BIOS jump vector. It provides an overview of the System Control
Block, followed by a discussion of system initialization procedures,
character I/O, clock support, disk I/O, and memory selects and
moves.

2.1 Organization of the BIOS
The BIOS is the CP/M 3 module that contains all hardware

dependent input and output routines. To configure CP/M 3 for a
particular hardware environment, use the sample BIOS supplied with
this document and adapt it to the specific hardware of the target
system.

Alternatively, you can modify an existing CP/M 2.2 BIOS to
install CP/M 3 on your target machine. Note that an unmodified CP/M
2.2 BIOS does not work with the CP/M 3 operating system. See
Appendix C for a description of the modifications necessary to
convert a CP/M 2.2 BIOS to a CP/M 3 BIOS.

The BIOS is a set of routines that performs system
initialization, character-oriented I/O to the console and printer
devices, and physical sector I/O to the disk devices. The BIOS also
contains routines that manage block moves and memory selects for
systems with bank-switched memory. The BIOS supplies tables that
define the layout of the disk devices and allocate buffer space
which the BDOS uses to perform record blocking and deblocking. The
BIOS can maintain the system time and date in the System Control
Block.

Table 2-1 describes the entry points into the BIOS from the
Cold Start Loader and the BDOS. Entry to the BIOS is through a jump
vector. The jump vector is a set of 33 jump instructions that pass
program control to the individual BIOS subroutines.

You must include all of the entry points in the BIOS jump
vector in your BIOS. However, if your system does not support some
of the functions provided for in the BIOS, you can use empty
subroutines for those functions. For example, if your system does
not support a printer, JMP LIST can reference a subroutine
consisting of only a RET instruction. Table 2-1 shows the elements
of the jump vector.

All Information Presented Here is Proprietary to Digital Research

15

CP/M 3 System Guide 2.1 Organization of the BIOS

Table 2-1. CP/M 3 BIOS Jump Vector
No. Instruction Description

0 JMP BOOT Perform cold start initialization
1 JMP WBOOT Perform warm start initialization
2 JMP CONST Check for console input character ready
3 JMP CONIN Read Console Character in
4 JMP CONOUT Write Console Character out
5 JMP LIST Write List Character out
6 JMP AUXOUT Write Auxiliary Output Character
7 JMP AUXIN Read Auxiliary Input Character
8 JMP HOME Move to Track 00 on Selected Disk
9 JMP SELDSK Select Disk Drive

10 JMP SETTRK Set Track Number
11 JMP SETSEC Set Sector Number
12 JMP SETDMA Set DMA Address
13 JMP READ Read Specified Sector
14 JMP WRITE Write Specified Sector
15 JMP LISTST Return List Status
16 JMP SECTRN Translate Logical to Physical Sector
17 JMP CONOST Return Output Status of Console
18 JMP AUXIST Return Input Status of Aux. Port
19 JMP AUXOST Return Output Status of Aux. Port
20 JMP DEVTBL Return Address of Char. I/O Table
21 JMP DEVINI Initialize Char. I/O Devices
22 JMP DRVTBL Return Address of Disk Drive Table
23 JMP MULTIO Set Number of Logically Consecutive

sectors to be read or written
24 JMP FLUSH Force Physical Buffer Flushing for

user-supported deblocking
25 JMP MOVE Memory to Memory Move
26 JMP TIME Time Set/Get signal
27 JMP SELMEM Select Bank of Memory
28 JMP SETBNK Specify Bank for DMA Operation
29 JMP XMOVE Set Bank When a Buffer is in a Bank

other than 0 or 1
30 JMP USERF Reserved for System Implementor
31 JMP RESERV1 Reserved for Future Use
32 JMP RESERV2 Reserved for Future Use

Each jump address in Table 2-1 corresponds to a particular
subroutine that performs a specific system operation. Note that two
entry points are reserved for future versions of CP/M, and one entry
point is provided for OEM subroutines, accessed only by direct BIOS
calls using BDOS Function 50. Table 2-2 shows the five categories
of system operations and the function calls that accomplish these
operations.

All Information Presented Here is Proprietary to Digital Research

16

CP/M 3 System Guide 2.1 Organization of the BIOS

Table 2-2. CP/M 3 BIOS Functions
Operation Function

System Initialization

BOOT, WBOOT, DEVTBL, DEVINI, DRVTBL

Character I/O

CONST, CONIN, CONOUT, LIST, AUXOUT, AUXIN,
LISTST, CONOST, AUXIST, AUXOST

Disk I/O

HOME, SELDSK, SETTRK, SETSEC, SETDMA,
READ, WRITE, SECTRN, MULTIO, FLUSH

Memory Selects and Moves

MOVE, SELMEM, SETBNK, XMOVE

Clock Support

TIME

You do not need to implement every function in the BIOS jump
vector. However, to operate, the BDOS needs the BOOT, WBOOT, CONST,
CONIN, CONOUT, HOME, SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE,
SECTRN, MULTIO, FLUSH, and TIME subroutines. Implement SELMEM and
SETBNK only in a banked environment. You can implement MULTIO and
FLUSH as returns with a zero in Register A. DEVICE and some other
utilities use the remaining entry points, but it is not necessary to
fully implement them in order to debug and develop the system.

Note: include all routines but make the nonimplemented
RET instruction.

routines a

2.2 System Control Block
The System Control Block (SCB) is a data structure located in

the BDOS. The SCB is a communications area referenced by the BDOS,
the CCP, the BIOS, and other system components. The SCB contains
system parameters and variables, some of which the BIOS an
reference. The fields of the SCB are named, and definitions of
these names are supplied as public variable and subroutine names in
the SCB.ASM file contained on the distribution disk. See Section
3.1 for a discussion of the System Control Block.

All Information Presented Here is Proprietary to Digital Research

17

CP/M System Guide 2.3 System Initialization

2.3 System Initialization
When the BOOT and WBOOT routines of the BIOS get control, they

must initialize two system parameters in Page Zero of memory, as
shown in Table 2-3.

Table 2-3. Initialization of Page Zero
Location Description

0,1,2 Set to JMP WBOOT (0000H: JMP BIOS+3). Location
1 and 2 must contain the address of WBOOT in
the jump vector.

5,6,7 Set to JMP BDOS, the primary entry point to
CP/M 3 for transient programs. The current
address of the BDOS is maintained in the
variable @MXTPA in the System Control Block.
(See Section 3.1, System Control Block, and
Section 3.4.1, BIOS Function 1: WBOOT.)

The BOOT and WBOOT routine must load the CCP into the TPA in
Bank 1 at location 0100H. The CCP can be loaded in two ways. If
there is sufficient space on the system tracks, the CCP can be
stored on the system tracks and loaded from there. If you prefer,
or if there is not sufficient space on the system tracks, the BIOS
Cold BOOT routine can read the CCP into memory from the file CCP.COM
on disk.

If the CCP is in a .COM file, use the BOOT and WBOOT routines
to perform any necessary system initialization, then use the BDOS
functions to OPEN and READ the CCP.COM file into the TPA. In bank-
switched systems, the CCP must be read into the TPA in Bank 1.

In bank-switched systems, your Cold BOOT routine can place a
copy of the CCP into a reserved area of an alternate bank after
loading the CCP into the TPA in Bank 1. Then the Warm BOOT routine
can copy the CCP into the TPA in Bank 1 from the alternate bank,
rather than reloading the CCP from disk, thus avoiding all disk
accesses during warm starts.

There is a 128-byte buffer in the resident portion of the BDOS
in a banked system that can be used by BOOT and WBOOT. The address
of this buffer is stored in the SCB variable @BNKBF. BOOT and WBOOT
can use this buffer when copying the CCP to and from the alternate
bank.

The system tracks for CP/M 3 are usually partitioned as shown
in the following figure:

All Information Presented Here is Proprietary to Digital Research

18

CCP.COM
CCP.COM

CP/M System Guide 2.3 System Initialization

Figure 2-1. CP/M 3 System Tracks

Cold CPMLDR
1
‘ CCP

Start Ldr 1 (optional)
1

The cold start procedure is designed so you need to initialize
the system tracks only once. This is possible because the system
tracks contain the system loader and need not change when you change
the CP/M 3 operating system. The Cold Start Loader loads CPMLDR
into a constant memory location that is chosen when the system is
configured. However, CPMLDR loads the BDOS and BIOS system
components into memory as specified in the CPM3.SYS file generated
by GENCPM, the system generation utility. Thus, CP/M 3 allows the
user to configure a new system with GENCPM and then run it without
having to update the system tracks of the system disk.

2.4 Character I/O
CP/M 3 assumes that all simple character I/O operations are

performed in 8-bit ASCII, upper- and lower-case, with no parity. An
ASCII CRTL-Z (1AH) denotes an end-of-file condition for an input
device.

Table 2-4 lists the characteristics of the logical devices.

Table 2-4. CP/M 3 Logical Device Characteristics
Device Characteristics

CONIN, CONOUT The interactive console that
communicates with the operator,
accessed by CONST, CONIN, CONOUT, and
CONOUTST. Typically, the CONSOLE is a
device such as a CRT or teletype,
interfaced serially, but it can also
be a memory-mapped video display and
keyboard. The console is an input
device and an output device.

LIST The system printer, if it exists on
your system. LIST is usually a hard
copy device such as a printer or
teletypewriter.

AUXOUT The auxiliary character output device,
such as a modem.

AUXIN The auxiliary character input device,
such as a modem.

All Information Presented Here is Proprietary to Digital Research

19

CP/M 3 System Guide 2.4 Character I/O

Note that you can define a single peripheral as the LIST,
AUXOUT, and AUXIN device simultaneously. If you assign no
peripheral device as the LIST, AUXOUT, or AUXIN device, the AUXOUT
and LIST routines can just return, and the AUXIN routine can return
with a IAH (CTRL-Z) in register A to indicate an immediate end-of-
f ile.

CP/M 3 supports character device I/O redirection. This means
that you can direct a logical device, such as CONIN or AUXOUT, to
one or more physical devices. The DEVICE utility allows you to
reassign devices and display and change the current device
configurations, as described in the CP/M 3 User's Guide. The I/O
redirection facility is optional. You should not implement it until
the rest of your BIOS is fully functional.

2.5 Disk I/O
The BDOS accomplishes disk I/O by making a sequence of calls to

the various disk access subroutines in the BIOS. The subroutines
set up the disk number to access, the track and sector on a
particular disk, and the Direct Memory Access (DMA) address and bank
involved in the I/O operation. After these parameters are
established, the BDOS calls the READ or WRITE function to perform
the actual I/O operation.

Note that the BDOS can make a single call to SELDSK to select a
disk drive, follow it with a number of read or write operations to
the selected disk, and then select another drive for subsequent
operations.

CP/M 3 supports multiple sector read or write operations to
optimize rotational latency on block disk transfers. You can
implement the multiple sector I/O facility in the BIOS by using the
multisector count passed to the MULTIO entry point. The BDOS calls
MULTIO to read or write up to 128 sectors. For every sector number
1 to n, the BDOS calls SETDMA then calls READ or WRITE.

Table 2-5 shows the sequence of BIOS calls that the BDOS makes
to read or write a physical disk sector in a nonbanked and a banked
system. Table 2-6 shows the sequence of calls the BDOS makes to the
BIOS to read or write multiple contiguous physical sectors in a
nonbanked and banked system.

All Information Presented Here is Proprietary to Digital Research

20

CP/M 3 System Guide 2.5 Disk I/O

Table 2-5. BDOS Calls to BIOS in Nonbanked and Banked Systems
Nonbanked BDOS

Call Explanation

SELDSK Called only when disk
selected or reselected.

is initially

SETTRK Called for every
physical sector.

read or write of a

SETSEC Called for every
physical sector.

read or write of a

SETDMA Called for every
physical sector.

read or write of a

READ, WRITE Called for every
physical sector.

read or write of a

Banked BDOS

Call Explanation

SELDSK Called only when disk
selected or reselected.

is initially

SETTRK Called for every
physical sector.

read or write of a

SETSEC Called for every
physical sector.

read or write of a

SETDMA Called for every
physical sector.

read or write of a

SETBNK Called for every
physical sector.

read or write of a

READ, WRITE Called for every
physical sector.

read or write of a

All Information Presented Here is Proprietary to Digital Research

21

CP/M 3 System Guide 2.5 Disk I/O

Table 2-6. Multiple Sector I/O in Nonbanked and Banked Systems
Nonbanked BDOS

Call Explanation
SELDSK Called only when disk is initially

selected or reselected.
MULTIO Called to inform the BIOS that the next n

calls to disk READ or disk WRITE require a
transfer of n contiguous physical sectors
to contiguous memory.

SETTRK Called for every read or write of a
physical sector.

SETSEC Called for every read or write of a
physical sector.

SETDMA Called for every read or write of a
physical sector.

READ, WRITE Called for every read or write of a
physical sector.

SELDSK Called only when disk is initially
selected or reselected.

MULTIO Called to inform the BIOS that the next n
calls to disk READ or disk WRITE require a
transfer of n contiguous physical sectors
to contiguous memory.

SETTRK Called for every read or write of a
physical sector.

SETSEC Called for every read or write of a
physical sector.

SETDMA Called for every read or write of a
physical sector.

SETBNK Called for every read or write of a
physical sector.

READ, WRITE Called for every read or write of a
physical sector.

All Information Presented Here is Proprietary to Digital Research

22

CP/M 3 System Guide 2.5 Disk I/O

Table 2-7 shows the sequence of BDOS calls to read two
contiguous physical sectors in a banked system.

Table 2-7. Reading Two Contiguous Sectors in Banked System
Call Explanation
SELDSK
MULT10
SETTRK
SETSEC
SETDMA
SETBNK
READ
SETTRK
SETSEC
SETDMA
SETBNK
READ

Called to initially select disk
With a value of 2
For first sector
For first sector
For first sector

For second sector
For second sector
For second sector

The CP/M 3 BDOS performs its own blocking and deblocking of
logical 128-byte records. Unlike earlier versions of CP/M, the BIOS
READ and WRITE routines always transfer physical sectors as
specified in the Disk Parameter Block to or from the DMA buffer.
The Disk Parameter Header defines one or more physical sector
buffers which the BDOS uses for logical record blocking and
deblocking.

In a banked environment, CP/M 3 maintains a cache of deblocking
buffers and directory records using a Least Recently Used (LRU)
buffering scheme. The LRU buffer is the first to be reused when the
system runs out of buffer space. The BDOS maintains separate buffer
pools for directory and data record caching.

The BIOS contains the data structures to control the data and
directory buffers and the hash tables. You can either assign these
buffers and tables yourself in the BIOS, or allow the GENCPM utility
to generate them automatically.

Hash tables greatly speed directory searching. The BDOS can
use hash tables to determine the location of directory entries and
therefore reduce the number of disk accesses required to read a
directory entry. The hash table allows the BDOS to directly access
the sector of the directory containing the desired directory entry
without having to read the directory sequentially. By eliminating a
sequential read of the directory records, hashing also increases the
percentage of time that the desired directory record is in a buffer,
eliminating the need for any physical disk accesses in these cases.
Hash tables and directory caches eliminate many of the directory
accesses required when accessing large files. However, in a
nonbanked system, hash tables increase the size of the operating
system.

All Information Presented Here is Proprietary to Digital Research

23

CP/M 3 System Guide 2.5 Disk I/O

When the BIOS finds an error condition, the READ and WRITE
routines should perform several retries before reporting the error
condition to the BDOS. Ten retries are typical. If the BIOS
returns an error condition to the BDOS, the BDOS reports the error
to the user in the following form:

CP/M Error on d: Disk I/O

where d: represents the drive specification of the relevant drive.

To provide better diagnostic capabilities for the user, it is
often desirable to print a more explicit error message from the BIOS
READ or WRITE routines before the BIOS returns an error code to the
BDOS. The BIOS should interrogate the SCB Error Mode Variable to
determine if it is appropriate to print a message on the console.

2.6 Memory Selects and Moves
Four BIOS functions are provided to perform memory management.

The functions are MOVE, XMOVE, SELMEM, and SETBNK. The XMOVE,
SELMEM, and SETBNK memory management routines are applicable to the
BIOS of banked systems.

The BDOS uses the BIOS MOVE routine to perform memory-to-memory
block transfers. In a banked system, the BDOS calls XMOVE to
specify the source and destination banks to be used by the MOVE
routine. If you use memory that is not in the common area for data
record buffers, you must implement the XMOVE routine.

The BDOS uses SELMEM when the operating system needs to execute
code or access data in other than the currently selected bank.

The BDOS calls the SETBNK routine prior to calling disk READ or
disk WRITE functions. The SETBNK routine must save its specified
bank as the DMA bank. When the BDOS invokes a disk I/O routine, the
I/O routine should save the current bank number and select the DMA
bank prior to the disk READ or WRITE. After completion of the disk
READ or WRITE, the disk I/O routine must reselect the current bank.
Note that when the BDOS calls the disk I/O routines, Bank 0 is in
context (selected).

2.7 Clock Support
If the system has a real-time clock or is capable of keeping

time, possibly by counting interrupts from a counter/timer chip,
then the BIOS can maintain the time of day in the System Control
Block and update the time on clock interrupts. BIOS Function 26 is
provided for those systems where the clock is unable to generate an
interrupt.

All Information Presented Here is Proprietary to Digital Research

24

CP/M 3 System Guide 2.7 Clock Support

The time of day is kept as four fields. @DATE is a binary word
containing the number of days since January 1, 1978. The bytes
@HOUR, @MIN, and @SEC in the System Control Block contain the hour,
minute, and second in Binary Coded Decimal (BCD) format.

End of Section 2

All Information Presented Here is Proprietary to Digital Research
25

CP/M 3 System Guide End of Section 2

All Information Presented Here is Proprietary to Digital Research

26

Section 3
CP/M 3 BIOS Functional Specifications

This section contains a detailed description of the CP/M 3
BIOS. The section first discusses the BIOS data structures and
their relationships, including the System Control Block, the drive
table, the Disk Parameter Header, the Disk Parameter Block, the
Buffer Control Blocks, and the character I/O table. The overview of
the data structures is followed by a summary of the functions in the
BIOS jump vector. A detailed description of the entry values and
returned values for each jump instruction in the BIOS jump vector
follows the summary. The last part of this section discusses the
steps to follow when assembling and linking your customized BIOS.

3.1 The System Control Block
The System Control Block (SCB) is a data structure located in

the BDOS. The SCB contains flags and data used by the CCP, the
BDOS, the BIOS, and other system components. The BIOS can access
specific data in the System Control Block through the public
variables defined in the SCB.ASM file, which is supplied on the
distribution disk.

Declare the variable names you want to reference in the SCB as
externals in your BIOS.ASM source file. Then link your BIOS with
the SCB.REL module.

In the SCB.ASM file, the high-order byte of the various SCB
addresses is defined as OFEH. The linker marks absolute external
equates as page relocatable when generating a System Page
Relocatable (SPR) format file. GENCPM recognizes page relocatable
addresses of OFExxH as references to the System Control Block in the
BDOS. GENCPM changes these addresses to point to the actual SCB in
the BDOS when it is relocating the system.

Do not perform assembly-time arithmetic on any references to
the external labels of the SCB. The result of the arithmetic could
alter the page value to something other than OFEH.

Listing 3-1 shows the SCB.ASM file. The listing shows the
field names of the System Control Block. A @ before a name
indicates that it is a data item. A ? preceding a name indicates
that it is the label of an instruction. In the listing, r/w means
Read-Write, and r/o means Read-Only. The BIOS can modify a Read-
Write variable, but must not modify a Read-Only variable. Table 3-1
describes each item in the System Control Block in detail.

All Information Presented Here is Proprietary to Digital Research

27

CP/M 3 System Guide 3.1 The System Control Block

title 'System Control Block Definition for CP/M3 BIOS'

public @civec, @covec, @aivec, @aovec, @lovec, @bnkbf
public @crdma, @crdsk, @vinfo, @resel, @fx, @usrcd
public @mltio, @ermde, @erdsk, @media, @bflgs
public @date, @hour, @min, @sec, ?erjmp, @mxtpa

scb$base equ 0FE00H

@CIVEC equ scb$base+22h

@COVEC equ scb$base+24h

@AIVEC equ scb$base+26h

@AOVEC equ scb$base+28h

@LOVEC equ scb$base+2Ah

@BNKBF equ scb$base+35h

@CRDMA equ scb$base+3Ch

@CRDSK equ scb$base+3Eh
@VINFO equ scb$base+3Fh

@RESEL equ scb$base+41h
@FX equ scb$base+43h

@USRCD equ scb$base+44h
@MLTIO equ scb$base+4Ah

@ERMDE equ scb$base+4Bh
@ERDSK equ scb$base+51h
@MEDIA equ scb$base+54h

@BFLGS equ scb$base+57h

@DATE equ scb$base+58h

@HOUR equ scb$base+5Ah
@MIN equ scb$base+5Bh
@SEC equ scb$base+5Ch
?ERJMP equ scb$base+5Fh

@MXTPA equ scb$base+62h

end

; Base of the SCB
; Console Input Redirection
; Vector (word, r/w)
; Console Output Redirection
; Vector (word, r/w)
; Auxiliary Input Redirection
; Vector (word, r/w)
; Auxiliary Output Redirection
; Vector (word, r/w)
; List Output Redirection
; Vector (word, r/w)
; Address of 128 Byte Buffer
; for Banked BIOS (word, r/o)
; Current DMA Address
; (word, r/o)
; Current Disk (byte, r/o)
; BDOS Variable "INFO"
; (word, r/o)
; FCB Flag (byte, r/o)
; BDOS Function for Error
; Messages (byte, r/o)
; Current User Code (byte, r/o)
; Current Multisector Count
; (byte,r/w)
; BDOS Error Mode (byte, r/o)
; BDOS Error Disk (byte, r/o)
; Set by BIOS to indicate
; open door (byte,r/w)
; BDOS Message Size Flag
; (byte,r/o)
; Date in Days Since 1 Jan 78
; (word, r/w)
; Hour in BCD (byte, r/w)
; Minute in BCD (byte, r/w)
; Second in BCD (byte, r/w)
; BDOS Error Message Jump
; (3 bytes, r/w)
; Top of User TPA
; (address at 6,7)(word, r/o)

Listing 3-1. The SCB.ASM File

All Information Presented Here is Proprietary to Digital Research

28

CP/M 3 System Guide 3.1 The System Control Block

The following table describes in detail each of the fields of
the System Control Block.

Table 3-1. System Control Block Fields
Field Meaning

@CIVEC, @COVEC, @AIVEC, @AOVEC, @LOVEC (Read-Write
Variable)

These fields are the 16 bit I/O redirection
vectors for the five logical devices: console
input, console output, auxiliary input,
auxiliary output, and the list device. (See
Section 3.4.2, Character I/O Functions.)

@BNKBF (Read-Only Variable)

@BNKBF contains the address of a 128 byte
buffer in the resident portion of the BDOS in a
banked system. This buffer is available for
use during BOOT and WBOOT only. You can use it
to transfer a copy of the CCP from an image in
an alternate bank if the system does not
support interbank moves.

@CRDMA, @FX, @USRCD, @ERDSK (Read-Only Variable)

These variables contain the current DMA
address, the BDOS function number, the current
user code, and the disk code of the drive on
which the last error occurred. They can be
displayed when a BDOS error is intercepted by
the BIOS. See ?ERJMP.

@CRDSK (Read-Only Variable)

@CRDSK is the current default drive, set by
BDOS Function 14.

@VINFO, @RESEL (Read-Only Variable)

If @RESEL is equal to OFFH then @VINFO contains
the address of a valid FCB. If @RESEL is not
equal to OFFH, then @VINFO is undefined. You
can use @VINFO to display the filespec when the
BIOS intercepts a BDOS error.

All Information Presented Here is Proprietary to Digital Research

29

CP/M 3 System Guide 3.1 The System Control Block

Table 3-1. (continued)
Field Meaning

@MLTIO (Read-Write Variable)

@MLTIO contains the current multisector count.
The BIOS can change the multisector count
directly, or through BDOS Function 44. The
value of the multisector count can range from 1
to 128.

@ERMDE (Read-Only Variable)

@ERMDE contains the current BDOS error mode.
OFFH indicates the BDOS is returning error
codes to the application program without
displaying any error messages. OFEH indicates
the BDOS is both displaying and returning
errors. Any other value indicates the BDOS is
displaying errors without notifying the
application program.

@MEDIA (Read-Write Variable)

@MEDIA is global system flag indicating that a
drive door has been opened. The BIOS routine
that detects the open drive door sets this flag
to OFFH. The BIOS routine also sets the MEDIA
byte in the Disk Parameter Header associated
with the open-door drive to OFFH.

@BFLGS (Read-Only Variable)

The BDOS in CP/M 3 produces two kinds of error
messages: short error messages and extended
error messages. Short error messages display
one or two lines of text. Long error messages
display a third line of text containing the
filename, filetype, and BDOS Function Number
involved in the error.

In banked systems, GENCPM sets this flag in the
System Control Block to indicate whether the
BIOS displays short or extended error messages.
Your error message handler should check this
byte in the System Control Block. If the high-
order bit, bit 7, is set to 0, the BDOS
displays short error messages. If the high-
order bit is set to 1, the BDOS displays the
extended three-line error messages.

All Information Presented Here is Proprietary to Digital Research

30

CP/M 3 System Guide 3.1 The System Control Block

Table 3-1. (continued)
Field Meaning

0BFLGS (continued)

For example, the BDOS displays the following
error message if the BIOS returns an error from
READ and the BDOS is displaying long error
messages.

CP/M Error on d: Disk I/O
BDOS Function = nn File = filename.typ

In the above error message. Function nn and
filename.typ represent BDOS function number and
file specification involved, respectively.

@DATE (Read-Write Variable)

The number of days since 1 January 1978,
expressed as a 16-bit unsigned integer, low
byte first. A real-time clock interrupt can
update the @DATE field to indicate the current
date.

@HOUR, @MIN, @SEC (Read-Write Variable)

These 2-digit Binary Coded Decimal (BCD) fields
indicate the current hour, minute, and second
if updated by a real-time clock interrupt.

?ERJMP (Read-Write Code Label)

The BDOS calls the error message subroutine
through this jump instruction. Register C
contains an error code as follows:

1 Permanent Error
2 Read Only Disk
3 Read Only File
4 Select Error
7 Password Error
8 File Exists
9 ? in Filename

Error code 1 above results in the BDOS message
Disk I/O.

All Information Presented Here is Proprietary to Digital Research

31

CP/M 3 System Guide 3.1 The System Control Block

Table 3-1. (continued)
Field Meaning

?ERJMP (continued)

The ?ERJMP vector allows the BIOS to intercept
the BDOS error messages so you can display them
in a foreign language. Note that this vector
is not branched to if the application program
is expecting return codes on physical errors.
Refer to the CP/M 3 Programmer's Guide for
more information.

?ERJMP is set to point to the default (English)
error message routine contained in the BDOS.
The BOOT routine can modify the address at
?ERJMP+1 to point to an alternate message
routine. Your error message handler can refer
to @FX, @VINFO (if @RESEL is equal to OFFH),
@CRDMA, @CRDSK, and @USRCD to print additional
error information. Your error handler should
return to the BDOS with a RET instruction after
printing the appropriate message.

@MXTPA (Read-Only Variable)

@MXTPA contains the address of the current BDOS
entry point. This is also the address of the
top of the TPA. The BOOT and WBOOT routines of
the BIOS must use this address to initialize
the BDOS entry JMP instruction at location
005H, during system initialization. Each time
a RSX is loaded, @MXTPA is adjusted by the
system to reflect the change in the available
User Memory (TPA).

3.2 Character I/O Data Structures
The BIOS data structure CHRTBL is a character table describing

the physical I/O devices. CHRTBL contains 6-byte physical device
names and the characteristics of each physical device. These
characteristics include a mode byte, and the current baud rate, if
any, of the device. The DEVICE utility references the physical
devices through the names and attributes contained in your CHRTBL.
DEVICE can also display the physical names and characteristics in
your CHRTBL.

The mode byte specifies whether the device is an input or
output device, whether it has a selectable baud rate, whether it is
a serial device, and if XON/XOFF protocol is enabled.

All Information Presented Here is Proprietary to Digital Research

32

CP/M 3 System Guide 3.2 Character I/O Data Structures

Listing 3-2 shows a sample character device table that the
DEVICE utility uses to set and display I/O direction.

; sample character device table

chrtbl db 'CRT ' ; console VDT
db mbinout+mb$serial+mb$soft$baud
db baud$9600

db 'LPT ' ; system serial printer
db mb$output+mb$serial+mb$soft$baud+mb$xon
db baud$9600

db 'TI810 ' ; alternate printer
db mb$output+mb$serial+mb$soft$baud
db baud$9600

db 'MODEM ' ; 300 baud modem port
db mbinout+mb$serial+mb$soft$baud
db baud$300

db 'VAX ' ; interface to VAX 11/780
db mbinout+mb$serial+mb$soft$baud
db baud$9600

db 'DIABLO' ; Diablo 630 daisy wheel printer
db mb$output+mb$serial+mb$soft$baud+mbxonxoff
db baud$1200

db 'CEN ' ; centronics type parallel printer
db mb$output
db baud$none

db 0 ; table terminator

Listing 3-2. Sample Character Device Table

Listing 3-3 shows the equates for the fields contained in the
sample character device table. Many systems do not support all of
these baud rates.

All Information Presented Here is Proprietary to Digital Research

33

CP/M 3 System Guide 3.2 Character I/O Data Structures

; equates for mode byte fields

mb$input
mb$output

equ 0000$0001b
equ 0000$0010b

; device may do input
; device may do output

mbinout equ mb$input+mb$output ; dev may do both
mb$soft$baud equ 0000$0100b ; software selectable

; baud rates
mb$serial equ 0000$1000b ; device may use protocol
mbxonxoff equ 0001$0000b ; XON/XOFF protocol

; enabled

; equates for baud rate byte

baud$none equ 0 ; no baud rate
; associated with device

baud$50 equ 1 ; 50 baud
baud$75 equ 2 ; 75 baud
baud$110 equ 3 ; 110 baud
baud$134 equ 4 ; 134.5 baud
baud$150 equ 5 ; 150 baud
baud$300 equ 6 ; 300 baud
baud$600 equ 7 ; 600 baud
baud$1200 equ 8 ; 1200 baud
baud$1800 equ 9 ; 1800 baud
baud$2400 equ 10 ; 2400 baud
baud$3600 equ 11 ; 3600 baud
baud$4800 equ 12 ; 4800 baud
baud$7200 equ 13 ; 7200 baud
baud$9600 equ 14 ; 9600 baud
baud$19200 equ 15 ; 19.2k baud

Listing 3-3. Equates for Mode Byte Bit Fields

3.3 BIOS Disk Data Structures
The BIOS includes tables that describe the particular

characteristics of the disk subsystem used with CP/M 3. This
section describes the elements of these tables.

In general, each disk drive has an associated Disk Parameter
Header (DPH) that contains information about the disk drive and
provides a scratchpad area for certain BDOS operations. One of the
elements of this Disk Parameter Header is a pointer to the Disk
Parameter Block (DPB), which contains the actual disk description

In the banked system, only the Disk Parameter Block must reside
in common memory. The DPHs, checksum vectors, allocation vectors,
Buffer Control Blocks, and Directory Buffers can reside in common
memory or Bank 0. The hash tables can reside in common memory or
any bank except Bank 1. The data buffers can reside in banked
memory if you implement the XMOVE function.

All Information Presented Here is Proprietary to Digital Research

34

CP/M 3 System Guide 3.3 BIOS Data Structures

Figure 3-1 shows the relationships between the drive table, the
Disk Parameter Header, and the Data and Directory Buffer Control
Block fields and their respective data structures and buffers.

Figure 3-1. Disk Data Structures in a Banked System

All Information Presented Here is Proprietary to Digital Research

35

CP/M 3 System Guide 3.3 BIOS Data Structures

3.3.1 The Drive Table
The drive table consists of 16 words containing the addresses

of the Disk Parameter Headers for each logical drive name, A through
P, and takes the general form:

drivetable dw dphO
dw dphl
dw dph2

dw dphF

If a logical drive does not exist in your system, the corresponding
entry in the drive table must be zero.

The GENCPM utility accesses the drive table to locate the
various disk parameter data structures, so that it can determine
which system configuration to use, and optionally allocate the
various buffers itself. You must supply a drive table if you want
GENCPM to do this allocation. If certain addresses in the Disk
Parameter Headers referenced by this drive table are set to OFFFEH,
GENCPM allocates the appropriate data structures and updates the
DPH. You can supply the drive table even if you have performed your
own memory allocation. See the BIOS DRVTBL function described in
section 3.4.1.

3.3.2 Disk Parameter Header
In Figure 3-2, which shows the format of the Disk Parameter

Header, b refers to bits.

Figure 3-2. Disk Parameter Header Format

XLT -0- MF DPB CSV ALV DIRBCB DTABCB HASH HBANK

16b 72b 8b 16b 16b 16b 16b 16b 16b 8b

Table 3-2 describes the fields of the Disk Parameter Header.

All Information Presented Here is Proprietary to Digital Research
36

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-2. Disk Parameter Header Fields
Field Comments

XLT Set the XLT field to the address of the logical to
physical sector translation table. If there is no
sector translation and the physical and logical
sector numbers are the same, set XLT to 0000H. Disk
drives with identical sector skew factors can share
the same translate table.

XLT is the value passed to SECTRN in registers DE.
Usually the translation table consists of one byte
per physical sector. Generally, it is advisable to
keep the number of physical sectors per logical
track to a reasonable value to prevent the
translation table from becoming too large. In the
case of disks with multiple heads, you can compute
the head number from the track address rather than
the sector address.

-0- These 72 bits (9 bytes) of zeroes are the scratch
area the BDOS uses to maintain various parameters
associated with the drive.

MF MF is the Media Flag. The BDOS resets MF to zero
when the drive is logged in. The BIOS can set this
flag and @MEDIA in the SCB to OFFH if it detects
that a drive door has been opened. If the flag is
set to OFFH, the BDOS checks for a media change
prior to performing the next BDOS file operation on
that drive. If the BDOS determines that the drive
contains a new volume, the BDOS performs a login on
that drive, and resets the MF flag to OOH. Note
that the BDOS checks this flag only when a system
call is made, and not during an operation.
Usually, this flag is used only by systems that
support door-open interrupts.

DPB Set the DPB field to the address of a Disk
Parameter Block that describes the characteristics
of the disk drive. Several Disk Parameter Headers
can address the same Disk Parameter Block if their
drive characteristics are identical. (The Disk
Parameter Block is described in Section 3.3.3.)

All Information Presented Here is Proprietary to Digital Research

37

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-2. (continued)
Field Comments
csv CSV is the address of a scratchpad area used to

detect changed disks. This address must be
different for each removable media Disk Parameter
Header. There must be one byte for every 4
directory entries (or 128 bytes of directory). In
other words, length(CSV) = (DRM/4)+l. (See Table
3-3 for an explanation of the DRM field.) If the
drive is permanently mounted, set the CKS variable
in the DPB to 8000H and set CSV to 0000H. This
way, no storage is reserved for a checksum vector.
The checksum vector may be located in common memory
or in Bank 0. Set CSV to OFFFEH for GENCPM to set
up the checksum vector.

ALV ALV is the address of the scratchpad area called
the allocation vector, which the BDOS uses to keep
disk storage allocation information. This area
must be unique for each drive.

The allocation vector usually requires 2 bits for
each block on the drive. Thus, length(ALV) =
(DSM/4) + 2. (See Table 3-3 for an explanation of
the DSM field.) In the nonbanked version of CP/M
3, you can optionally specify that GENCPM reserve
only one bit in the allocation vector per block on
the drive. In this case, length(ALV) = (DSM/8) +
1.

The GENCPM option to use single-bit allocation
vectors is provided in the nonbanked version of
CP/M 3 because additional memory is required by the
double-bit allocation vector. This option applies
to all drives on the system.

With double-bit allocation vectors, CP/M 3
automatically frees, at every system warm start,
all file blocks that are not permanently recorded
in the directory. Note that file space allocated
to a file is not permanently recorded in a
directory unless the file is closed. Therefore,
the allocation vectors in memory can indicate that
space is allocated although directory records
indicate that space is free for allocation. With
single-bit allocation vectors, CP/M 3 requires that
a drive be reset before this space can be
reclaimed. Because it increases performance, CP/M
3 does not reset disks at system warm start. Thus,
with single-bit allocation vectors, if you do not
reset the disk system, DIR and SHOW can report an
inaccurate amount of free space. With single-bit

All Information Presented Here is Proprietary to Digital Research

38

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-2. (continued)
Field Comments

ALV
(continued)

allocation vectors, the user must type a CTRL-C at
the system prompt to reset the disk system to ensure
accurate reporting of free space. Set ALV to
OFFFEH for GENCPM to automatically assign space
for the allocation vector, single- or double-bit,
during system generation. In the nonbanked system,
GENCPM prompts for the type of allocation vector.
In the banked system, the allocation vector is
always double-bit and can reside in common memory
or Bank 0. When GENCPM automatically assigns space
for the allocation vector (ALV = OFFFEH) , it places
the allocation vector in Bank 0.

DIRBCB Set DIRBCB to the address of a single directory
Buffer Control Block (BCB) in an unbanked system.
Set DIRBCB to the address of a BCB list head in a
banked system.

Set DIRBCB to OFFFEH for GENCPM to set up the
DIRBCB field. The BDOS uses directory buffers for
all accesses of the disk directory. Several DPHs
can refer to the same directory BCB or BCB list
head; or, each DPH can reference an independent BCB
or BCB list head. Section 3.3.4 describes the
format of the Buffer Control Block.

DTABCB Set DTABCB to the address of a single data BCB in
an unbanked system. Set DTABCB to the address of a
data BCB list head in a banked system.

Set DTABCB to OFFFEH for GENCPM to set up the
DTABCB field. The BDOS uses data buffers to hold
physical sectors so that it can block and deblock
logical 128-byte records. If the physical record
size of the media associated with a DPH is 128
bytes, you can set the DTABCB field of the DPH to
OFFFFH, because in this case, the BDOS does not use
a data buffer.

HASH HASH contains the address of the optional directory
hashing table associated with a DPH. Set HASH to
OFFFFH to disable directory hashing.

All Information Presented Here is Proprietary to Digital Research

39

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-2. (continued)
Field Comments
HASH

(continued)
Set HASH to OFFFEH to make directory hashing on the
drive a GENCPM option. Each DPH using hashing must
reference a unique hash table. If a hash table is
supplied, it must be 4*(DRM+1) bytes long, where
DRM is one less than the length of the directory.
In other words, the hash table must contain four
bytes for each directory entry of the disk.

HBANK Set HBANK to the bank number of the hash table.
HBANK is not used in unbanked systems and should be
set to zero. The hash tables can be contained in
the system bank, common memory, or any alternate
bank except Bank 1, because hash tables cannot be
located in the Transient Program Area. GENCPM
automatically sets HBANK when HASH is set to
OFFFEH.

3.3.3 Disk Parameter Block
Figure 3-3 shows the format of the Disk Parameter Block, where

b refers to bits.

Figure 3-3. Disk Parameter Block Format

SPT BSH BLM EXM DSM DRM ALO AL1 CKS OFF PSH PHM

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b 8b 8b

Table 3-3 describes the fields of the Disk Parameter Block.

Table 3-3. Disk Parameter Block Fields
Field Comments

SPT Set SPT to the total number of 128-byte logical
records per track.

BSH Data allocation block shift factor. The value
of BSH is determined by the data block
allocation size.

BLM Block mask. The value of BLM is determined by
the data block allocation size.

All Information Presented Here is Proprietary to Digital Research

40

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-3. (continued)
Field Comments
EXM Extent mask determined by the data block

allocation size and the number of disk blocks.

DSM Determines the total storage capacity of the
disk drive. DSM is one less than the total
number of blocks on the drive.

DRM Total number of directory entries minus one that
can be stored on this drive. The directory
requires 32 bytes per entry.

ALO, al:1 Determine reserved directory blocks. See Figure
3-8 for more information.

CKS The size of the directory check vector,
(DRM/4)+l. Set bit 15 of CKS to 1 if the drive
is permanently mounted. Set CKS to 8000H to
indicate that the drive is permanently mounted
and directory checksumming is not required.

Note: full directory checksumming is required
on removable media to support the automatic
login feature of CP/M 3.

OFF The number of reserved tracks at the beginning
of the logical disk. OFF is the track on which
the directory starts.

PSH Specifies the physical record shift factor.

PHM Specifies the physical record mask.

CP/M allocates disk space in a unit called a block. Blocks are
also called allocation units, or clusters. BLS is the number of
bytes in a block. The block size can be 1024, 2048, 4096, 8192, or
16384 (decimal) bytes.

A large block size decreases the size of the allocation vectors
but can result in wasted disk space. A smaller block size increases
the size of the allocation vectors because there are more blocks on
the same size disk.

There is a restriction on the block size. If the block size is
1024, there cannot be more than 255 blocks present on a logical
drive. In other words, if the disk is larger than 256K, it is
necessary to use at least 2048 byte blocks.

The value of BLS is not a field in the Disk Parameter Block;
rather, it is derived from the values of BSH and BLM as given in
Table 3-4.

All Information Presented Here is Proprietary to Digital Research

41

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-4. BSH and BLM Values
BLS BSH BLM

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

The block mask, BLM, equals one less than the number of 128-
byte records in an allocation unit, (BLS/128 - 1), or (2**BSH)-1.

The value of the Block Shift Factor, BSH, is determined by the
data block allocation size. The Block Shift Factor (BSH) equals the
logarithm base two of the block size in 128-byte records, or
LOG2(BLS/128), where L0G2 represents the binary logarithm function.

The value of EXM depends upon both the BLS and whether the DSM
value is less than 256 or greater than 255, as shown in Table 3-5.

Table 3-5. Maximum EXM Values
BLS EXM values

DSM<256 DSM>255

1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of EXM is one less than the maximum number of 16K
extents per FCB.

Set EXM to zero if you want media compatibility with an
extended CP/M 1.4 system. This only applies to double-density CP/M
1.4 systems, with disk sizes greater than 256K bytes. It is
preferable to copy double-density 1.4 disks to single-density, then
reformat them and recreate them with the CP/M 3 system, because CP/M
3 uses directory entries more effectively than CP/M 1.4.

DSM is one less than the total number of blocks on the drive.
DSM must be less than or equal to 7FFFH. If the disk uses 1024 byte
blocks (BSH=3, BLM=7), DSM must be less than or equal to 00FFH. The
product BLS*(DSM+l) is the total number of bytes the drive holds and
must be within the capacity of the physical disk. It does not
include the reserved operating system tracks.

All Information Presented Here is Proprietary to Digital Research

42

CP/M 3 System Guide 3.3 BIOS Data Structures

The DRM entry is one less than the total number of 32-byte
directory entries, and is a 16-bit value. DRM must be less than or
equal to (BLS/32 * 16) - 1. DRM determines the values of ALO and
AL1. The two fields ALO and AL1 can together be considered a string
of 16 bits, as shown in Figure 3-4.

ALO AL1

Figure 3-4. ALO and AL1

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Position 00 corresponds to the high-order bit of the byte
labeled ALO, and position 15 corresponds to the low-order bit of the
byte labeled AL1. Each bit position reserves a data block for a
number of directory entries, thus allowing a maximum of 16 data
blocks to be assigned for directory entries. Bits are assigned
starting at 00 and filled to the right until position 15. ALO and
AL1 overlay the first two bytes of the allocation vector for the
associated drive. Table 3-6 shows DRM maximums for the various
block sizes.

Table 3-6. BLS and Number of Directory Entries
BLS Directory Entries Maximum DRM

1,024 32 * reserved blocks 511
2,048 64 * reserved blocks 1,023
4,096 128 * reserved blocks 2,047
8,192 256 * reserved blocks 4,095

16,384 512 * reserved blocks 8,191

If DRM = 127 (128 directory entries) , and BLS = 1024, there are
32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high-order bits of ALO are set, resulting in the
values ALO = 0F0H and ALI = 00H. The maximum directory allocation
is 16 blocks where the block size is determined by BSH and BLM.

The OFF field determines the number of tracks that are skipped
at the beginning of the physical disk. It can be used as a
mechanism for skipping reserved operating system tracks, which on
system disks contain the Cold Boot Loader, CPMLDR, and possibly the
CCP. It is also used to partition a large disk into smaller
segmented sections.

All Information Presented Here is Proprietary to Digital Research

43

CP/M 3 System Guide 3.3 BIOS Data Structures

PSH and PHM determine the physical sector size of the disk.
All disk I/O is in terms of the physical sector size. Set PSH and
PSM to zero if the BIOS is blocking and deblocking instead of the
BDOS.

PSH specifies the physical record shift factor, ranging from 0
to 5, corresponding to physical record sizes of 128, 256, 512, IK,
2K, or 4K bytes. It is equal to the logarithm base two of the
physical record size divided by 128, or L0G2(sector_size/128). See
Table 3-7 for PSH values.

PHM specifies the physical record mask, ranging from 0 to 31,
corresponding to physical record sizes of 128, 256, 512, IK, 2K, or
4K bytes. It is equal to one less than the sector size divided by
128, or, (sector_size/128)-1. See Table 3-7 for PHM values.

Table 3-7. PSH and PHM Values
Sector
size PSH PHM

128 0 0
256 1 1
512 2 3

1,024 3 7
2,048 4 15
4,096 5 31

3.3.4 Buffer Control Block
A Buffer Control Block (BCB) locates physical record buffers

for the BDOS. The BDOS uses the BCB to manage the physical record
buffers during processing. More than one Disk Parameter Header can
specify the same BCB. The GENCPM utility can create the Buffer
Control Block.

Note that the BANK and LINK fields of the Buffer Control Block
are present only in the banked system. Therefore, the Buffer
Control Block is twelve bytes long in the nonbanked system, and
fifteen bytes long in the banked system. Note also that only the
DRV, BUFFAD, BANK, and LINK fields need to contain initial values.
In Figure 3-5, which shows the form of the Buffer Control Block, b
refers to bits.

Figure 3-5. Buffer Control Block Format

DRV REC# WFLG 00 TRACK SECTOR BUFFAD BANK LINK

8b 24b 8b 8b 16b 16b 16b 8b 16b

All Information Presented Here is Proprietary to Digital Research

44

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-8 describes the fields of each Buffer Control Block.

Table 3-8. Buffer Control Block Fields
Field Comment

DRV Identifies the disk drive associated with the
record contained in the buffer located at
address BUFFAD. If you do not use GENCPM to
allocate buffers, you must set the DRV field to
OFFH.

REC# Identifies the record position of the current
contents of the buffer located at address
BUFFAD. REC# consists of the absolute sector
number of the record where the first record of
the directory is zero.

WFLG Set by the BDOS to OFFH to indicate that the
buffer contains new data that has not yet been
written to disk. When the data is written, the
BDOS sets the WFLG to zero to indicate the
buffer is no longer dirty.

00 Scratch byte used by BDOS.

TRACK Contains the physical track location of the
contents of the buffer.

SECTOR Contains the physical sector location of the
contents of the buffer.

BUFFAD Specifies the address of the buffer associated
with this BCB.

BANK Contains the bank number of the buffer
associated with this BCB. This field is only
present in banked systems.

LINK Contains the address of the next BCB in a
linked list, or zero if this is the last BCB in
the linked list. The LINK field is present
only in banked systems.

The BDOS distinguishes between two kinds of buffers: data
buffers referenced by DTABCB, and directory buffers referenced by
DIRBCB. In a banked system, the DIRBCB and DTABCB fields of a Disk
Parameter Header each contain the address of a BCB list head rather
than the address of an actual BCB. A BCB list head is a word
containing the address of the first BCB in a linked list. If
several DPHs reference the same BCB list, they must reference the
same BCB list head. Each BCB has a LINK field that contains the
address of the next BCB in the list, or zero if it is the last BCB.

All Information Presented Here is Proprietary to Digital Research

45

CP/M 3 System Guide 3.3 BIOS Data Structures

In banked systems, the one-byte BANK field indicates the bank
in which the data buffers are located. The BANK field of directory
BCBs must be zero because directory buffers must be located in Bank
0, usually below the banked BDOS module, or in common memory. The
BANK field is for systems that support direct memory-to-memory
transfers from one bank to another. (See the BIOS XMOVE entry point
in Section 3.4.4.)

The BCB data structures in a banked system must reside in Bank
0 or in common memory. The buffers of data BCBs can be located in
any bank except Bank 1 (the Transient Program Area).

For banked systems that do not support interbank block moves
through XMOVE, the BANK field must be set to 0 and the data buffers
must reside in common memory. The directory buffers can be in Bank
0 even if the system does not support bank-to-bank moves.

In the nonbanked system, the DPH DIRBCB and DTABCB can point to
the same BCB if the DPH defines a fixed media device. For devices
with removable media, the DPH DIRBCB and the DPH DTABCB must
reference different BCBs. In banked systems, the DPH DIRBCB and
DTABCB must point to separate list heads.

In general, you can enhance the performance of CP/M 3 by
allocating more BCBs, but the enhancement reduces the amount of TPA
memory in nonbanked systems.

If you set the DPH DIRBCB or the DPH DTABCB fields to OFFFEH,
the GENCPM utility creates BCBs, allocates physical record buffers,
and sets these fields to the address of the BCBs. This allows you
to write device drivers without regard to buffer requirements.

3.3.5 Data Structure Macro Definitions
Several macro definitions are supplied with CP/M 3 to simplify

the creation of some of the data structures in the BIOS. These
macros are defined in the library file CPM3.LIB on the distribution
disk.

To reference these macros in your BIOS, include the following
statement:

MACLIB CPM3

All Information Pre ited Here is Proprietary to Digital Research

46

CP/M 3 System Guide 3.3 BIOS Data Structures

DTBL Macro

Use the DTBL macro to generate the drive table, DRVTBL. It has
one parameter, a list of the DPHs in your system. The list is
enclosed in angle brackets.

The form of the DTBL macro call is

label: DTBL <DPHA,DPHB,...,DPHP>

where DPHA is the address of the DPH for drive A, DPHB is the
address of the DPH for drive B, up to drive P. For example,

DRVTBL: DTBL <ACSHD0,FDSD0,FDSD1>

This example generates the drive table for a three-drive system.
The DTBL macro always generates a sixteen-word table, even if you
supply fewer DPH names. The unused entries are set to zero to
indicate the corresponding drives do not exist.

DPH Macro

The DPH macro routine generates a Disk Parameter Header (DPH).
It requires two parameters: the address of the skew table for this
drive, and the address of the Disk Parameter Block (DPB). Two
parameters are optional: the maximum size of the checksum vector,
and the maximum size of the allocation vector. If you omit the
maximum size of the checksum vector and the maximum size of the
allocation vector from the DPH macro invocation, the corresponding
fields of the Disk Parameter Header are set to OFFFEH so that GENCPM
automatically allocates the vectors.

The form of the DPH macro call is

label: DPH ?trans,?dpb,[?csize],[?asize]

where:
?trans is the address of the translation vector for this

drive;
?dpb is the address of the DPB for this drive;
?csize is the maximum size in bytes of the checksum

vector;
?asize is the maximum size in bytes of the allocation

vector.

The following example, which includes all four parameters,
shows a typical DPH macro invocation for a standard single-density
disk drive:

FDSDO: DPH SKEW6,DPB$SD,16,31

All Information Presented Here is Proprietary to Digital Research

CP/M 3 System Guide 3.3 BIOS Data Structures

SKEW Macro

The SKEW macro generates a skew table and requires the
following parameters: the number of physical sectors per track, the
skew factor, and the first sector number on each track (usually 0 or
1) .

The form of the SKEW macro call is

label: SKEW ?secs, ?skf, ?f sc

where:
? secs
?skf
?f sc

is the number of physical sectors per track;
is the sector skew factor;
is the first sector number on each track.

The following macro invocation generates the skew table for a
standard single-density disk drive.

SKEW6: SKEW 26,6,1

DPB Macro

The DPB macro generates a Disk Parameter Block specifying the
characteristics of a drive type. It requires six parameters: the
physical sector size in bytes, the number of physical sectors per
track, the total number of tracks on the drive, the size of an
allocation unit in bytes, the number of directory entries desired,
and the number of system tracks to reserve at the beginning of the
drive. There is an optional seventh parameter that defines the CKS
field in the DPB. If this parameter is missing, CKS is calculated
from the directory entries parameter.

The form of the DPB macro call is

where:

label: DPB ?psi ze,?pspt,?trks,?bls,?ndirs,?off[,?ncks]

?psize
?pspt
?trks
?bls
?ndirs
?off
?ncks

is the physical sector size in bytes;
is the number of physical sectors per track;
is the number of tracks on the drive;
is the allocation unit size in bytes;
is the number of directory entries;
is the number of tracks to reserve;
is the number of checked directory entries.

The following example shows the parameters for a standard
single-density disk drive:

DPB$SD: DPB 128,26,77,1024,64,2

All Information Presented Here is Proprietary to Digital Research

48

CP/M 3 System Guide 3.3 BIOS Data Structures

The DPB macro can be used only when the disk drive is under
eight megabytes. DPBs for larger disk drives must be constructed by
hand.

3.4 BIOS Subroutine Entry Points
This section describes the entry parameters, returned values,

and exact responsibilities of each BIOS entry point in the BIOS jump
vector. The routines are arranged by function. Section 3.4.1
describes system initialization. Section 3.4.2 presents the
character I/O functions, followed by Section 3.4.3, discussing the
disk I/O functions. Section 3.4.4 discusses the BIOS memory select
and move functions. The last section, 3.4.5, discusses the BIOS
clock support function. Table 3-9 shows the BIOS entry points the
BDOS calls to perform each of the four categories of system
functions.

Table 3-9. Functional Organization of BIOS Entry Points
Operation Function

System Initialization

BOOT, WBOOT, DEVTBL, DEVINI,

Character I/O

DRVTBL,

CONST, CONIN, CONOUT, LIST,
AUXOUT, AUXIN, LISTST, CONOST,

Disk I/O

AUXIST, AUXOST

HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, SECTRN,
MULTIO, FLUSH

Memory Selects and Moves

MOVE, XMOVE, SELMEM, SETBNK

Clock Support

TIME

Table 3-10 is a summary showing the CP/M 3 BIOS function
numbers, jump instruction names, and the entry and return parameters
of each jump instruction in the table, arranged according to the
BIOS function number.

All Information Presented Here is Proprietary to Digital Research

49

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

Table 3-10. CP/M 3 BIOS Function Jump Table Summary
No. Function Input Output

0 BOOT None None
1 WBOOT None None
2 CONST None A=0FFH if ready

A=00H if not ready
3 CONIN None A=Con Char
4 CONOUT C=Con Char None
5 LIST C=Char None
6 AUXOUT C=Char None
7 AUXIN None A=Char
8 HOME None None
9 SELDSK C=Drive 0-15

E=Init Sei Flag
HL=DPH addr
HL=000H if invalid dr.

10 SETTRK BC=Track No None
11 SETSEC BC=Sector No None
12 SETDMA BC=.DMA None
13 READ None A=00H if no Err

A=01H if Non-recov Err
A=0FFH if media changed

14 WRITE C=Deblk Code A=00H if no Err
A=01H if Phys Err
A=02H if Dsk is R/O
A=0FFH if media changed

15 LISTST None A=00H if not ready
A=0FFH if ready

16 SECTRN BC=Log Sect No HL=Phys Sect No
DE=Trans Tbl Adr

17 CONOST None A=00H if not ready
A=0FFH if ready

18 AUXIST None A=00H if not ready
A=0FFH if ready

19 AUXOST None A=00H if not ready
A=0FFH if ready

20 DEVTBL None HL=Chrtbl addr
21 DEV IN I C=Dev No 0-15 None
22 DRVTBL None HL=Drv Tbl addr

HL=0FFFFH
HL=0FFFEH
HL=0FFFDH

23 MULTIO C=Mult Sec Cnt None
24 FLUSH None A=000H if no err

A=001H if phys err
A=002H if disk R/O

25 MOVE HL=Dest Adr
DE=Source Adr

HL & DE point to next
bytes following MOVE

26 TIME C=Get/Set Flag None
27 SELMEM A=Mem Bank None
28 SETBNK A=Mem Bank None
29 XMOVE B=Dest Bank

C=Source Bank
BC=Count

None

All Information Presented Here is Proprietary to Digital Research

50

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

Table 3-10. (continued)
No. Function Input
30 USERF Reserved for System Implementor
31 RESERV1 Reserved for Future Use
32 RESERV2 Reserved for Future Use

3.4.1 System Initialization Functions
This section defines the BIOS system initialization routines

BOOT, WBOOT, DEVTBL, DEVINI, and DRVTBL.

BIOS Function 0: BOOT

Get Control from Cold Start Loader
and Initialize System

Entry Parameters: None

Returned Values: None

The BOOT entry point gets control from the Cold Start Loader in
Bank 0 and is responsible for basic system initialization. Any
remaining hardware initialization that is not done by the boot ROMs,
the Cold Boot Loader, or the LDRBIOS should be performed by the BOOT
routine.

The BOOT routine must perform the system initialization
outlined in Section 2.3, System Initialization. This includes
initializing Page Zero jumps and loading the CCP. BOOT usually
prints a sign-on message, but this can be omitted. Control is then
transferred to the CCP in the TPA at 0100H.

To initialize Page Zero, the BOOT routine must place a jump at
location 0000H to BIOS_base + 3, the BIOS warm start entry point.
The BOOT routine must also place a jump instruction at location
0005H to the address contained in the System Control Block variable,
@MXTPA.

The BOOT routine must establish its own stack area if it calls
any BDOS or BIOS routines. In a banked system, the stack is in Bank
0 when the Cold BOOT routine is entered. The stack must be placed
in common memory.

All Information Presented Here is Proprietary to Digital Research

51

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 1: WBOOT

Get Control When a Warm Start Occurs

Entry Parameters: None

Returned Values: None

The WBOOT entry point is entered when a warm start occurs. A
warm start is performed whenever a user program branches to location
0000H or attempts to return to the CCP. The WBOOT routine must
perform the system initialization outlined in BIOS Function 0,
including initializing Page Zero jumps and loading the CCP.

When your WBOOT routine is complete, it must transfer control
to the CCP at location 0100H in the TPA.

Note that the CCP does not reset the disk system at warm start.
The CCP resets the disk system when a CTRL-C is pressed following
the system prompt.

Note also that the BIOS stack must be in common memory to make
BDOS function calls. Only the BOOT and WBOOT routines can perform
BDOS function calls.

If the WBOOT routine is reading the CCP from a file, it must
set the multisector I/O count, @MLTIO in the System Control Block,
to the number of 128-byte records to be read in one operation before
reading CCP.COM. You can directly set @MLTIO in the SCB, or you can
call BDOS Function 44 to set the multisector count in the SCB.

If blocking/deblocking is done in the BIOS instead of in the
BDOS, the WBOOT routine must discard all pending buffers.

BIOS Function 20: DEVTBL

Return Address of Character I/O Table

Entry Parameters: None

Returned Values: HL= address of Chrtbl

The DEVTBL and DEVTNI entry points allow you to support device
assignment with a flexible, yet completely optional system. It
replaces the IOBYTE facility of CP/M 2.2. Note that the CHRTBL must
be in common in banked systems.

All Information Presented Here is Proprietary to Digital Research

52

CCP.COM

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 21: DEVINI

Initialize Character I/O Device

Entry Parameters: C=device number, 0-15

Returned Values: None

The DEVINI routine initializes the physical character device
specified in register C to the baud rate contained in the
appropriate entry of the CHRTBL. It need only be supplied if I/O
redirection has been implemented and is referenced only by the
DEVICE utility supplied with CP/M 3.

BIOS Function 22: DRVTBL

Return Address of Disk Drive Table

Entry Parameters: None

Returned Values: HL=Address of Drive Table of Disk
Parameter Headers (DPH); Hashing
can be utilized if specified by
the DPHs referenced by this DRVTBL.

HL=0FFFFH if no Drive Table; the BDOS is
responsible for blocking/deblocking;
Hashing is supported.

HL=0FFFEH if no Drive Table; the BDOS is
responsible for blocking/deblocking;
Hashing is not supported.

The first instruction of this subroutine must be an LXI
H,<address> where <address> is one of the above returned values.
The GENCPM utility accesses the address in this instruction to
locate the drive table and the disk parameter data structures to
determine which system configuration to use.

If you plan to do your own blocking/deblocking, the first
instruction of the DRVTBL routine must be the following:

Ixi h,0FFFEh

You must also set the PSH and PSM fields of the associated Disk
Parameter Block to zero.

All Information Presented Here is Proprietary to Digital Research

53

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

3.4.2 Character I/O Functions
This section defines the CP/M 3 character I/O routines CONST,

CONIN, CONOUT, LIST, AUXOUT, AUXIN, LISTST, CONOST, AUXIST, and
AUXOST.

CP/M 3 assumes all simple character I/O operations are
performed in eight-bit ASCII, upper- and lower-case, with no parity.
An ASCII CTRL-Z (1AH) denotes an end-of-file condition for an input
device.

In CP/M 3, you can direct each of the five logical character
devices to any combination of up to twelve physical devices. Each
of the five logical devices has a 16-bit vector in the System
Control Block (SCB) . Each bit of the vector represents a physical
device where bit 15 corresponds to device zero, and bit 4 is device
eleven. Bits 0 through 3 are reserved for future system use.

You can use the public names defined in the supplied SCB.ASM
file to reference the I/O redirection bit vectors. The names are
shown in Table 3-11.

Table 3-11. I/O Redirection Bit Vectors in SCB
Name Logical Device

@CIVEC Console Input
@COVEC Console Output
@AIVEC Auxiliary Input
@AOVEC Auxiliary Output
@LOVEC List Output

You should send an output character to all of the devices whose
corresponding bit is set. An input character should be read from
the first ready device whose corresponding bit is set.

An input status routine should return true if any selected
device is ready. An output status routine should return true only
if all selected devices are ready.

All Information Presented Here is Proprietary to Digital Research

54

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 2: CONST

Sample the Status of the Console Input Device

Entry Parameters: none

Returned value: A= OFFH if a console character
is ready to read

A= OOH if no console character
is ready to read

Read the status of the currently assigned console device and
return OFFH in register A if a character is ready to read, and OOH
in register A if no console characters are ready.

BIOS Function 3: CONIN

Read a Character from the Console

Entry Parameters: None

Returned Values: A=Console Character

Read the next console character into register A with no parity.
If no console character is ready, wait until a character is
available before returning.

BIOS Function 4: CONOUT

Output Character to Console

Entry Parameters: C=Console Character

Returned Values: None

Send the character in register C to the console output device.
The character is in ASCII with no parity.

All Information Presented Here is Proprietary to Digital Research

55

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 5: LIST

Output Character to List Device

Entry Parameters: C=Character

Returned Values: None

Send the character from register C to the listing device. The
character is in ASCII with no parity.

BIOS Function 6: AUXOUT

Output a Character to the
Auxiliary Output Device

Entry Parameters: C=Character

Returned Values: None

Send the character from register C to the currently assigned
AUXOUT device. The character is in ASCII with no parity.

BIOS Function 7: AUXIN

Read a Character from the
Auxiliary Input Device

Entry Parameters: None

Returned Values: A=Character

Read the next character from the currently assigned AUXIN
device into register A with no parity. A returned ASCII CTRL-Z
(1AH) reports an end-of-file.

All Information Presented Here is Proprietary to Digital Research

56

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 15: LISTST

Return the Ready Status of the
List Device

Entry Parameters: None

Returned Values: A=000H if list device is not
ready to accept a character

A=0FFH if list device is
ready to accept a character

The BIOS LISTST function returns the ready status of the list
device.

BIOS Function 17: CONOST

Return Output Status of Console

Entry Parameters: None

Returned Values: A=0FFH if ready
A=00H if not ready

The CONOST routine checks the status of the console. CONOST
returns an OFFH if the console is ready to display another
character. This entry point allows for full polled handshaking
communications support.

BIOS Function 18: AUXIST

Return Input Status of Auxiliary Port

Entry Parameters: None

Returned Values: A=0FFH if ready
A=000H if not ready

The AUXIST routine checks the input status of the auxiliary port.
This entry point allows full polled handshaking for communications
support using an auxiliary port.

All Information Presented Here is Proprietary to Digital Research

57

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 19: AUXOST

Return Output Status of Auxiliary Port

Entry Parameters: None

Returned Values: A=0FFH if ready
A=000H if not ready

The AUXOST routine checks the output status of the auxiliary
port. This routine allows full polled handshaking for
communications support using an auxiliary port.

3.4.3 Disk I/O Functions
This section defines the CP/M 3 BIOS disk I/O routines HOME,

SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE, SECTRN, MULTIO, and
FLUSH.

BIOS Function 8: HOME

Select Track 00 of the Specified Drive

Entry Parameters: None

Returned Values: None

Return the disk head of the currently selected disk to the
track 00 position. Usually, you can translate the HOME call into a
call on SETTRK with a parameter of 0.

All Information Presented Here is Proprietary to Digital Research

58

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 9: SELDSK

Select the Specified Disk Drive

Entry Parameters: C=Disk Drive (0-15)
E=Initial Select Flag

Returned Values: HL=Address of Disk Parameter
Header (DPH) if drive exists

HL=000H if drive does not exist

Select the disk drive specified in register C for further
operations, where register C contains 0 for drive A, 1 for drive B,
and so on to 15 for drive P. On each disk select, SELDSK must
return in HL the base address of a 25-byte area called the Disk
Parameter Header. If there is an attempt to select a nonexistent
drive, SELDSK returns HL=0000H as an error indicator.

On entry to SELDSK, you can determine if it is the first time
the specified disk is selected. Bit 0, the least significant bit in
Register E, is set to 0 if the drive has not been previously
selected. This information is of interest in systems that read
configuration information from the disk to set up a dynamic disk
definition table.

When the BDOS calls SELDSK with bit 0 in Register E set to 1,
SELDSK must return the same Disk Parameter Header address as it
returned on the initial call to the drive. SELDSK can only return a
000H indicating an unsuccessful select on the initial select call.

SELDSK must return the address of the Disk Parameter Header on
each call. Postpone the actual physical disk select operation until
a READ or WRITE is performed.

BIOS Function 10: SETTRK

Set Specified Track Number

Entry Parameters: BC=Track Number

Returned Values: None

Register BC contains the track number for a subsequent disk
access on the currently selected drive. Normally, the track number
is saved until the next READ or WRITE occurs.

All Information Presented Here is Proprietary to Digital Research

59

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 11: SETSEC

Set Specified Sector Number

Entry Parameters: BC=Sector Number
Returned Values: None

Register BC contains the sector number for the subsequent disk
access on the currently selected drive. This number is the value
returned by SECTRN. Usually, you delay actual sector selection
until a READ or WRITE operation occurs.

BIOS Function 12: SETDMA

Set Address for Subsequent Disk I/O

Entry Parameters: BC=Direct Memory
Access Address

Returned Values None

Register BC contains the DMA (Direct Memory Access) address for
the subsequent READ or WRITE operation. For example, if B = OOH and
C = 80H when the BDOS calls SETDMA, then the subsequent read
operation reads its data starting at 80H, or the subsequent write
operation gets its data from 80H, until the next call to SETDMA
occurs.

All Information Presented Here is Proprietary to Digital Research

60

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 13: READ

Read a Sector from the Specified Drive

Entry Parameters: None

Returned Values: A=000H if no errors occurred
A=001H if nonrecoverable error

condition occurred
A=0FFH if media has changed

Assume the BDOS has selected the drive, set the track, set the
sector, and specified the DMA address. The READ subroutine attempts
to read one sector based upon these parameters, then returns one of
the error codes in register A as described above.

If the value in register A is 0, then CP/M 3 assumes that the
disk operation completed properly. If an error occurs, the BIOS
should attempt several retries to see if the error is recoverable
before returning the error code.

If an error occurs in a system that supports automatic density
selection, the system should verify the density of the drive. If
the density has changed, return a OFFH in the accumulator. This
causes the BDOS to terminate the current operation and relog in the
disk.

BIOS Function 14: WRITE

Write a Sector to the Specified Disk

Entry Parameters: C=Deblocking Codes

Returned Values: A=000H if no error occurred
A=001H if physical error occurred
A=002H if disk is Read-Only
A=0FFH if media has changed

Write the data from the currently selected DMA address to the
currently selected drive, track, and sector. Upon each call to
WRITE, the BDOS provides the following information in register C:

0 = deferred write
1 = nondeferred write
2 = deferred write to the first sector of a new data block

All Information Presented Here is Proprietary to Digital Research

61

CP/M 3 System Guide 3.4 BIGS Subroutine Entry Points

This information is provided for those BIOS implementations that do
blocking/deblocking in the BIOS instead of the BDOS.

As in READ, the BIOS should attempt several retries before
reporting an error.

If an error occurs in a system that supports automatic density
selection, the system should verify the density of the drive. If
the density has changed, return a OFFH in the accumulator. This
causes the BDOS to terminate the current operation and relog in the
disk.

BIOS Function 16: SECTRN

Translate Sector Number Given Translate Table

Entry Parameters: BC=Logical Sector Number
DE=Translate Table Address

Returned Values: HL=Physical Sector Number

SECTRN performs logical sequential sector address to physical
sector translation to improve the overall response of CP/M 3.
Digital Research ships standard CP/M disk with a skew factor of 6,
where six physical sectors are skipped between each logical read
operation. This skew factor allows enough time between sectors for
most programs on a slow system to process their buffers without
missing the next sector. In computer systems that use fast
processors, memory, and disk subsystems, you can change the skew
factor to improve overall response. Typically, most disk systems
perform well with a skew of every other physical sector. You should
maintain support of single-density, IBM 3740 compatible disks using
a skew factor of 6 in your CP/M 3 system to allow information
transfer to and from other CP/M users.

SECTRN receives a logical sector number in BC, and a translate
table address in DE. The logical sector number is relative to zero.
The translate table address is obtained from the Disk Parameter
Block for the currently selected disk. The sector number is used as
an index into the translate table, with the resulting physical
sector number returned in HL. For standard, single-density, eight
inch disk systems, the tables and indexing code are provided in the
sample BIOS and need not be changed.

Certain drive types either do not need skewing or perform the
skewing externally from the system software. In this case, the skew
table address in the DPH can be set to zero, and the SECTRN routine
can check for the zero in DE and return with the physical sector set
to the logical sector.

All Information Presented Here is Proprietary to Digital Research

62

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 23 MULTIO

Set Count of Consecutive Sectors
for READ or WRITE

Entry Parameters C = Multisector Count
Returned Values: None

To transfer logically consecutive disk sectors to or from
contiguous memory locations, the BDOS issues a MULTIO call, followed
by a series of READ or WRITE calls. This allows the BIOS to
transfer multiple sectors in a single disk operation. The maximum
value of the sector count is dependent on the physical sector size,
ranging from 128 with 128-byte sectors, to 4 with 4096-byte sectors.
Thus, the BIOS can transfer up to 16K directly to or from the TPA
with a single operation.

The BIOS can directly transfer all of the specified sectors to
or from the DMA buffer in one operation and then count down the
remaining calls to READ or WRITE.

If the disk format uses a skew table to minimize rotational
latency when single records are transferred, it is more difficult to
optimize transfer time for multisector transfers. One way of
utilizing the multisector count with a skewed disk format is to
place the sector numbers and associated DMA addresses into a table
until either the residual multisector count reaches zero, or the
track number changes. Then you can sort the saved requests by
physical sector to allow all of the required sectors on the track to
be read in one rotation. Each sector must be transferred to or from
its proper DMA address.

When an error occurs during a multisector transfer, you can
either reset the multiple sector counters in the BIOS and return the
error immediately, or you can save the error status and return it to
the BDOS on the last READ or WRITE call of the MULTIO operation.

All Information Presented Here is Proprietary to Digital Research

63

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 24: FLUSH

Force Physical Buffer Flushing
for User-supported Deblocking

Entry Parameters: None
Returned Values: A=000H if no error occurred

A=001H if physical error occurred
A=002H if disk is Read-Only

The flush buffers entry point allows the system to force
physical sector buffer flushing when your BIOS is performing its own
record blocking and deblocking.

The BDOS calls the FLUSH routine to ensure that no dirty
buffers remain in memory. The BIOS should immediately write any
buffers that contain unwritten data.

Normally, the FLUSH function is superfluous, because the BDOS
supports blocking/deblocking internally. It is required, however,
for those systems that support blocking/deblocking in the BIOS, as
many CP/M 2.2 systems do.

Note: if you do not implement FLUSH, the routine must return a zero
in Register 1A. You can accomplish this with the following
instructions:

xra a
ret

3.4.4 Memory Select and Move Functions
This section defines the memory management functions MOVE,

XMOVE, SELMEM, and SETBNK.

All Information Presented Here is Proprietary to Digital Research

64

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 25: MOVE

Memory-to-Memory Block Move

Entry Parameters: HL = Destination address
DE = Source address
BC = Count

Returned Values: HL and DE must point to
next bytes following move
operation

The BDOS calls the MOVE routine to perform memory to memory
block moves to allow use of the Z80 LDIR instruction or special DMA
hardware, if available. Note that the arguments in HL and DE are
reversed from the Z80 machine instruction, necessitating the use of
XCHG instructions on either side of the LDIR. The BDOS uses this
routine for all large memory copy operations. On return, the HL and
DE registers are expected to point to the next bytes following the
move.

Usually, the BDOS expects MOVE to transfer data within the
currently selected bank or common memory. However, if the BDOS
calls the XMOVE entry point before calling MOVE, the MOVE routine
must perform an interbank transfer.

All Information Presented Here is Proprietary to Digital Research

65

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 27: SELMEM

Select Memory Bank

Entry Parameters: A = Memory Bank

Returned Values: None

The SELMEM entry point is only present in banked systems. The
banked version of the CP/M 3 BDOS calls SELMEM to select the current
memory bank for further instruction execution or buffer references.
You must preserve or restore all registers other than the
accumulator, A, upon exit.

BIOS Function 28: SETBNK

Specify Bank for DMA Operation

Entry Parameters: A = Memory Bank

Returned Values: None

SETBNK only occurs in the banked version of CP/M 3. SETBNK
specifies the bank that the subsequent disk READ or WRITE routine
must use for memory transfers. The BDOS always makes a call to
SETBNK to identify the DMA bank before performing a READ or WRITE
call. Note that the BDOS does not reference banks other than 0 or 1
unless another bank is specified by the BANK field of a Data Buffer
Control Block (BCB).

BIOS Function 29: XMOVE

Set Banks for Following MOVE

Entry Parameters: B=destination bank
C=source bank

Returned Values: None

XMOVE is provided for banked
memory DMA transfers over the
Systems with this feature can have

systems that support memory-to-
entire extended address range,
their data buffers located in an

All Information Presented Here is Proprietary to Digital Research

66

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

alternate bank instead of in common memory, as is usually required.
An XMOVE call affects only the following MOVE call. All subsequent
MOVE calls apply to the memory selected by the latest call to
SELMEM. After a call to the XMOVE function, the following call to
the MOVE function is not more than 128 bytes of data. If you do not
implement XMOVE, the first instruction must be a RET instruction.

3.4.5 Clock Support Function
This section defines the clock support function TIME.

BIOS Function 26: TIME

Get and Set Time

Entry Parameters: C = Time Get/Set Flag

Returned values: None

The BDOS calls the TIME function to indicate to the BIOS
whether it has just set the Time and Date fields in the SCB, or
whether the BDOS is about to get the Time and Date from the SCB. On
entry to the TIME function, a zero in register C indicates that the
BIOS should update the Time and Date fields in the SCB. A OFFH in
register C indicates that the BDOS has just set the Time and Date in
the SCB and the BIOS should update its clock. Upon exit, you must
restore register pairs HL and DE to their entry values.

This entry point is for systems that must interrogate the clock
to determine the time. Systems in which the clock is capable of
generating an interrupt should use an interrupt service routine to
set the Time and Date fields on a regular basis.

3.5 Banking Considerations
This section discusses considerations for separating your BIOS

into resident and banked modules. You can place part of your
customized BIOS in common memory, and part of it in Bank 0.
However, the following data structures and routines must remain in
common memory:

• the BIOS stack
• the BIOS jump vector
• Disk Parameter Blocks
e memory management routines
• the CHRTBL data structure
• all character I/O routines
• portions of the disk I/O routines

All Information Presented Here is Proprietary to Digital Research

67

CP/M 3 System Guide 3.5 Banking Considerations

You can place portions of the disk I/O routines in the system
bank. Bank 0. In a banked environment, if the disk I/O hardware
supports DMA transfers to and from banks other than the currently
selected bank, the disk I/O drivers can reside in Bank 0. If the
system has a DMA controller that supports block moves from memory to
memory between banks, CP/M 3 also allows you to place the blocking
and deblocking buffers in any bank other than Bank 1, instead of
common memory.

If your disk controller supports data transfers only into the
currently selected bank, then the code that initiates and performs a
data transfer must reside in common memory. In this case, the disk
I/O transfer routines must select the DMA bank, perform the
transfer, then reselect Bank 0. The routine in common memory
performs the following procedure:

1) Selects the DMA bank that SETBNK saved.
2) Performs physical I/O.
3) Reselects Bank 0.
4) Returns to the calling READ or WRITE routine in Bank 0.

Note that Bank 0 is in context (selected) when the BDOS calls
the system initialization functions BOOT and DRVTBL; the disk I/O
routines HOME, SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE, SECTRN,
MULTIO, and FLUSH; and the memory management routines XMOVE and
SETBNK.

Bank 0 or Bank 1 is in context when the BDOS calls the system
initialization routines WBOOT, DEVTBL, and DEVINI; the character I/O
routines CONST, CONIN, CONOUT, LIST, AUXOUT, AUXIN, LISTST, CONOST,
AUXIST, and AUXOST, the memory select and move routines MOVE and
SELMEM, and the clock support routine TIME.

You can place a portion of the character I/O routines in Bank 0
if you place the following procedure in common memory.

1) Swap stacks to a local stack in common.
2) Save the current bank.
3) Select Bank 0.
4) Call the appropriate character I/O routine.
5) Reselect the saved bank.
6) Restore the stack.

All Information Presented Here is Proprietary to Digital Research

68

CP/M 3 System Guide 3.6 Assembling and Linking Your BIOS

3.6 Assembling and Linking Your BIOS
This section assumes you have developed a BI0S3.ASM or

BNKBI0S3.ASM file appropriate to your specific hardware environment.
Use the Digital Research Relocatable Macro Assembler RMAC™ to
assemble the BIOS. Use the Digital Research Linker LINK-80™ to
create the BIOS3.SPR and BNKBIOS3.SPR files. The SPR files are part
of the input to the GENCPM program.

In a banked environment, your CP/M 3 BIOS can consist of two
segments: a banked segment and a common segment. This allows you
to minimize common memory usage to maximize the size of the TPA. To
prepare a banked BIOS, place code and data that must reside in
common in the CSEG segment, and code and data that can reside in the
system bank in the DSEG segment. When you link the BIOS, LINK-80
creates the BNKBIOS3.SPR file with all the CSEG code and data first,
and then the DSEG code and data.

After assembling the BIOS with RMAC, link your BNKBIOS using
LINK-80 with the [B] option. The [B] option aligns the DSEG on a
page boundary, and places the length of the CSEG into the
BNKBIOS3.SPR header page.

Use the following procedure to prepare a BIOS3.SPR or
BNKBIOS3.SPR file from your customized BIOS.

1) Assemble your BI0S3.ASM or BNKBI0S3.ASM file with the
relocatable assembler to produce a relocatable
file of type REL. Assemble SCB. ASM to produce the
relocatable file SCB.REL.

RMAC.COM

Assembling the Nonbanked BIOS:

A>RMAC BI0S3
Assembling the Banked BIOS:

A>RMAC BNKBIOS3

2) Link the BI0S3.REL or BNKBI0S3.REL file and the SCB.REL file
with LINK-80 to produce the BI0S3.SPR or BNKBI0S3.SPR file.
The [OS] option with LINK causes the output of a System
Page Relocatable (SPR) file.

Linking the Nonbanked BIOS:

A>LINK BIOS3[OS]=BIOS3,SCB
Linking the Banked BIOS:

A>LINK BNKBIOS3[B]=BNKBIOS3,SCB

All Information Presented Here is Proprietary to Digital Research

69

RMAC.COM

CP/M 3 System Guide 3.6 Assembling and Linking Your BIOS

The preceding examples show command lines for linking a banked
and nonbanked BIOS. In these examples, the BI0S3.REL and
BNKBI0S3.REL are the files of your assembled BIOS. SCB.REL contains
the definitions of the System Control Block variables. The [B]
option implies the [OS] option.

End of Section 3

All Information Presented Here is Proprietary to Digital Research

70

Section 4
CP/M 3 Sample BIOS Modules

This section discusses the modular organization of the example
CP/M 3 BIOS on your distribution disk. For previous CP/M operating
systems, it was necessary to generate all input/output drivers from
a single assembler source file. Such a file is difficult to
maintain when the BIOS supports several peripherals. As a result.
Digital Research is distributing the BIOS for CP/M 3 in several
small modules.

The organization of the BIOS into separate modules allows you
to write or modify any I/O driver independently of the other
modules. For example, you can easily add another disk I/O driver
for a new controller with minimum impact on the other parts of the
BIOS.

4.1 Functional Summary of BIOS Modules
The modules of the BIOS are BIOSKRNL.ASM, SCB.ASM, BOOT.ASM,

MOVE.ASM, CHARIO.ASM, DRVTBL.ASM, and a disk I/O module for each
supported disk controller in the configuration.

BIOSKRNL.ASM is the kernel, root, or supervisor module of the
BIOS. The SCB.ASM module contains references to locations in the
System Control Block. You can customize the other modules to
support any hardware configuration. To customize your system, add
or modify external modules other than the kernel and the SCB.ASM
module.

Digital Research supplies the BIOSKRNL.ASM module. This module
is the fixed, invariant portion of the BIOS, and the interface from
the BDOS to all BIOS functions. It is supplied in source form for
reference only, and you should not modify it except for the equate
statement described in the following paragraph.

You must be sure the equate statement (banked equ true) at the
start of the BIOSKRNL.ASM source file is correct for your system
configuration. Digital Research distributes the BIOSKRNL.ASM file
for a banked system. If you are creating a BIOS for a nonbanked
system, change the equate statement to the following:

banked equ false

and reassemble with RMAC. This is the only change you should make
to the BIOSKRNL.ASM file.

Table 4-1 summarizes the modules in the CP/M 3 BIOS.

All Information Presented Here is Proprietary to Digital Research

71

CP/M 3 System Guide 4.1 Functional Summary of BIOS Modules

Table 4-1. CP/M 3 BIOS Module Function Summary
Module Function

BIOSKRNL.ASM

Performs basic system initialization, and
dispatches character and disk I/O.

SCB.ASM module

Contains the public definitions of the
various fields in the System Control Block.
The BIOS can reference the public variables.

BOOT.ASM module

Performs system initialization other than
character and disk I/O. BOOT loads the CCP
for cold starts and reloads it for warm
starts.

CHARIO.ASM module

Performs all character device initialization,
input, output, and status polling. CHARIO
contains the character device characteristics
table.

DRVTBL.ASM module

Points to the data structures for each
configured disk drive. The drive table
determines which physical disk unit is
associated with which logical drive. The
data structure for each disk drive is called
an Extended Disk Parameter Header (XDPH) .

Disk I/O modules

Initialize disk controllers and execute READ
and WRITE code for disk controllers. You
must provide an XDPH for each supported unit,
and a separate disk I/O module for each
controller in the system. To add another
disk controller for which a prewritten module
exists, add its XDPH names to the DRVTBL and
link in the new module.

All Information Presented Here is Proprietary to Digital Research

72

CP/M 3 System Guide 4.1 Functional Summary of BIOS Modules

Table 4-1. (continued)
Module Function

MOVE.ASM mod u1e
Performs memory-to-memory moves and bank
selects.

4.2 Conventions Used in BIOS Modules
The Digital Research RMAC relocating assembler and LINK-80

linkage editor allow a module to reference a symbol contained in
another module by name. This is called an external reference. The
Microsoft® relocatable object module format that RMAC and LINK use
allows six-character names for externally defined symbols. External
names must be declared PUBLIC in the module in which they are
defined. The external names must be declared EXTRN in any modules
that reference them.

The modular BIOS defines a number of external names for
specific purposes. Some of these are defined as public in the root
module, BIOSKRNL.ASM. Others are declared external in the root and
must be defined by the system implementor. Section 4.4 contains a
table summarizing all predefined external symbols used by the
modular BIOS.

External names can refer to either code or data. All
predefined external names in the modular BIOS prefixed with a @
character refer to data items. All external names prefixed with a ?
character refer to a code label. To prevent conflicts with future
extensions, user-defined external names should not contain these
characters.

4.3 Interactions of Modules
The root module of the BIOS, BIOSKRNL.ASM, handles all BDOS

calls, performs interfacing functions, and simplifies the individual
modules you need to create.

4.3.1 Initial Boot
BIOSKRNL.ASM initializes all configured devices in the

following order:

1) BIOSKRNL calls ?CINIT in the CHARIO module for each of the
16 character devices and initializes the devices.

2) BIOSKRNL invokes the INIT entry point of each XDPH in the
FD1797SD module.

All Information Presented Here is Proprietary to Digital Research

73

CP/M 3 System Guide 4.3 Interactions of Modules

3) BIOSKRNL calls the ?INIT entry of the BOOT module to
initialize other system hardware, such as memory
controllers, interrupts, and clocks. It prints a sign-on
message specific to the system, if desired.

4) BIOSKRNL calls ?LDCCP in the BOOT module to load the CCP
into the TPA.

5) The BIOSKRNL module sets up Page Zero of the TPA with the
appropriate jump vectors, and passes control to the CCP.

4.3.2 Character I/O Operation
The CHARIO module performs all physical character I/O. This

module contains both the character device table (@CTBL) and the
routines for character input, output, initialization, and status
polling. The character device table, @CTBL, contains the ASCII name
of each device, mode information, and the current baud rate of
serial devices.

To support logical to physical redirection of character
devices, CP/M 3 supplies a 16-bit assignment vector for each logical
device. The bits in these vectors correspond to the physical
devices. The character I/O interface routines in BIOSKRNL handle
all device assignment, calling the appropriate character I/O
routines with the correct device number. The BIOSKRNL module also
handles XON/XOFF processing on output devices where it is enabled

You can use the DEVICE utility to assign several physical
devices to a logical device. The BIOSKRNL root module polls the
assigned physical devices, and either reads a character from the
first ready input device that is selected, or sends the character to
all of the selected output devices as they become ready.

4.3.3 Disk I/O Operation
The BIOSKRNL module handles all BIOS calls associated with disk

I/O. It initializes global variables with the parameters for each
operation, and then invokes the READ or WRITE routine for a
particular controller. The SELDSK routine in the BIOSKRNL calls the
LOGIN routine for a controller when the BDOS initiates a drive
login. This allows disk density or media type to be automatically
determined.

The DRVTBL module contains the sixteen-word drive table, @DTBL.
The order of the entries in @DTBL determines the logical to physical
drive assignment. Each word in @DTBL contains the address of a DPH,
which is part of an XDPH, as shown in Table 4-10. The word contains
a zero if the drive does not exist. The XDPH contains the addresses
of the INIT, LOGIN, READ, and WRITE entry points of the I/O driver
for a particular controller. When the actual drivers are called,
globally accessible variables contain the various parameters of the
operation, such as the track and sector.

All Information Presented Here is Proprietary to Digital Research

74

CP/M 3 System Guide 4.4 Predefined Variables and Subroutines

4.4 Predefined Variables and Subroutines
The modules of the BIOS define public variables which other

modules can reference. Table 4-2 contains a summary of each public
symbol and the module that defines it.

Table 4-2. Public Symbols in CP/M 3 BIOS
Symbol Function and Use Defined in Module

@ADRV Byte, Absolute drive code BIOSKRNL
@CBNK Byte, Current CPU bank BIOSKRNL
@CNT Byte, Multisector count BIOSKRNL
@CTBL Table, Character device table CHARI0
@DBNK Byte, Bank for disk I/O BIOSKRNL
@DMA Word, DMA address BIOSKRNL
@DTBL Table, Drive table DRVTBL
@RDRV Byte, Relative drive code (UNIT) BIOSKRNL
@SECT Word, Sector address BIOSKRNL
@TRK Word, Track number BIOSKRNL

?BANK Bank select MOVE
?CI Character device input CHARIO
?CINIT Character device initialization CHARIO
?CIST Character device input status CHARIO
?C0 Character device output CHARIO
?COST Character device output status CHARIO
?INIT General initialization BOOT
?LDCCP Load CCP for cold start BOOT
?MOVE Move memory to memory MOVE
?PDEC Print decimal number BIOSKRNL
?PDERR Print BIOS disk error header BIOSKRNL
?PMSG Print message BIOSKRNL
?RLCCP Reload CCP for warm start BOOT
?XMOVE Set banks for extended move MOVE
?TIME Set or Get time BOOT

The System Control Block defines public variables that other
modules can reference. The System Control Block variables @CIVEC,
@COVEC, @AIVEC, @AOVEC, and @LOVEC are referenced by BIOSKRNL.ASM.
The variable @BNKBF can be used by ?LDCCP and ?RLCCP to implement
interbank block moves. The public variable names @ERMDE, @FX,
@RESEL, @VINFO, @CRDSK, @USRCD, and @CRDMA are used for error
routines which intercept BDOS errors. The publics @DATE, @HOUR,
@MIN, and @SEC can be updated by an interrupt-driven real-time
clock. @MXTPA contains the current BDOS entry point.

Disk I/O operation parameters are passed in the following
global variables, as shown in Table 4-3.

All Information Presented Here is Proprietary to Digital Research

75

CP/M 3 System Guide 4.4 Predefined Variables and Subroutines

Table 4-3. Global Variables in BIOSKRNL.ASM
Variable Meaning

@ADRV Byte; contains the absolute drive code (0
through F for A through P) that CP/M is
referencing for READ and WRITE operations. The
SELDSK routine in the BIOSKRNL module obtains
this value from ^the BDOS and places it in @DRV.
The absolute drive code is used to print error
messages.

@RDRV Byte; contains the relative drive code for READ
and WRITE operations. The relative drive code
is the UNIT number of the controller in a given
disk I/O module. BIOSKRNL obtains the unit
number from the XDPH. This is the actual drive
code a driver should send to the controller.

@TRK Word; contains the starting track for READ and
WRITE.

@SECT Word; contains the starting sector for READ and
WRITE.

@DMA Word; contains the starting disk transfer
address.

@DBNK Byte; contains the bank of the DMA buffer.

@CNT Byte; contains the physical sector count for
the operations that follow.

@CBNK Byte; contains the current bank for code
execution.

Several utility subroutines are defined in the BIOSKRNL.ASM
module, as shown in Table 4-4.

Table 4-4. Public Utility Subroutines in BIOSKRNL.ASM
Utility Meaning

?PMSG Print string starting at <HL> , stop at null
(0) .

?PDEC Print binary number in decimal from HL.

?PDERR Print disk error message header using current
disk parameters: <CR><LF>BIOS Error on d:, T-
nn, S-nn.

All Information Presented Here is Proprietary to Digital Research

76

CP/M 3 System Guide 4.4 Predefined Variables and Subroutines

All BIOS entry points in the jump vector are declared as public
for general reference by other BIOS modules, as shown in Table 4-5.

Table 4-5. Public Names in the BIOS Jump Vector
Public Name Function

?BOOT
?WBOOT
?CONST
?CONIN
?CONO
?LIST
?AUXO
?AUXI
7HOME
?SLDSK
?STTRK
7STSEC
?STDMA
?READ
?WRITE
?LISTS
?SCTRN
?CONOS
?AUXIS
?AUXOS
?DVTBL
?DEVIN
?DRTBL
7MLTI0
?FLUSH
?MOV
?TIM
?BNKSL
?STBNK
?XMOV

Cold boot entry
Warm boot entry
Console input status
Console input
Console output
List output
Auxiliary output
Auxiliary input
Home disk drive
Select disk drive
Set track
Set sector
Set DMA address
Read record
Write record
List status
Translate sector
Console output status
Auxiliary input status
Auxiliary output status
Return character device table address
Initialize character device
Return disk drive table address
Set multiple sector count
Flush deblocking buffers (not implemented)
Move memory block
Signal set or get time from clock
Set bank for further execution
Set bank for DMA
Set banks for next move

4.5 BOOT Module
The BOOT module performs general system initialization, and

loads and reloads the CCP. Table 4-6 shows the entry points of the
BOOT module.

All Information Presented Here is Proprietary to Digital Research

77

CP/M System Guide 4.5 BOOT Module

Table 4-6. BOOT Module Entry Points
Module Meaning

?INIT The BIOSKRNL module calls ?INIT during
cold start to perform hardware
initialization other than character and
disk I/O. Typically, this hardware can
include time-of-day clocks, interrupt
systems, and special I/O ports used for
bank selection.

?LDCCP BIOSKRNL calls ?LDCCP during cold start to
load the CCP into the TPA. The CCP can be
loaded either from the system tracks of
the boot device or from a file, at the
discretion of the system implementor. In
a banked system, you can place a copy of
the CCP in a reserved area of another bank
to increase the performance of the 7RLCCP
routine.

?RLCCP BIOSKRNL calls ?RLCCP during warm start to
reload the CCP into the TPA. In a banked
system, the CCP can be copied from an
alternate bank to eliminate any disk
access. Otherwise, the CCP should be
loaded from either the system tracks of
the boot device or from a file.

4.6 Character I/O
The CHARIO module handles all character device interfacing.

The CHARIO module contains the character device definition table
@CTBL, the character input routine ?CI, the character output routine
?C0, the character input status routine ?CIST, the character output
status routine ?COST, and the character device initialization
routine ?CINIT.

The BIOS root module, BIOSKRNL.ASM, handles all character I/O
redirection. This module determines the appropriate devices to
perform operations and executes the actual operation by calling ?CI,
?C0, ?CIST, and ?COST with the proper device number(s).

@CTBL is the external name for the structure CHRTBL described
in Section 3 of this manual. @CTBL contains an 8-byte entry for
each physical device defined by this BIOS. The table is terminated
by a zero byte after the last entry.

The first field of the character device table, @CTBL, is the 6-
byte device name. This device name should be all upper-case, left-
justified, and padded with ASCII spaces (20H) .

All Information Presented Here is Proprietary to Digital Research

78

CP/M 3 System Guide 4.6 Character I/O

The second field of @CTBL is 1 byte containing bits that
indicate the type of device and its current mode, as shown in Table
4-7.

Table 4-7. Mode Bits
Mode Bits Meaning
00000001
00000010
00000011

Input device (such as a keyboard)
Output device (such as a printer)
Input/output device (such as a terminal
or modem)

00000100 Device has software-selectable baud
rates

00001000
00010000

Device may use XON protocol
XON/XOFF protocol enabled

The third field of @CTBL is 1 byte and contains the current
baud rate for serial devices. The high-order nibble of this field
is reserved for future use and should be set to zero. The low-order
four bits contain the current baud rate as shown in Table 4-8. Many
systems do not support all of these baud rates.

Table 4-8 Baud Rates for Serial Devices
Decimal Binary Baud Rate

0 0000 none
1 0001 50
2 0010 75
3 0011 110
4 0100 134.5
5 0101 150
6 0110 300
7 0111 600
8 1000 1200
9 1001 1800
10 1010 2400
11 1011 3600
12 1100 4800
13 1101 7200
14 1110 9600
15 1111 19200

Table 4-9 shows the entry points to the routines in the CHARIO
module. The BIOSKRNL module calls these routines to perform
machine-dependent character I/O.

All Information Presented Here is Proprietary to Digital Research

79

CP/M 3 System Guide 4.6 Character I/O

Table 4-9. Character Device Labels
Label Meaning

?CI Character Device Input

?CI is called with a device number in register
B. It should wait for the next available input
character, then return the character in
register A. The character should be in 8-bit
ASCII with no parity.

?CO Character Device Output

?CO is called with a device number in register
B and a character in register C. It should
wait until the device is ready to accept
another character and then send the character.
The character is in 8-bit ASCII with no parity.

?CIST Character Device Input Status

?CIST is called with a device number in
register B. It should return with register A
set to zero if the device specified has no
input character ready; and should return with A
set to OFFH if the device specified has an
input character ready to be read.

?COST Character Device Output Status

?COST is called with a device number in
register B. It should return with register A
set to zero if the device specified cannot
accept a character immediately, and should
return with A set to OFFH if the device is
ready to accept a character.

7CINIT Character Device Initialization

?CINIT is called for each of the 16 character
devices, and initializes the devices. Register
C contains the device number. The ?CINIT
routine initializes the physical character
device specified in register C to the baud rate
contained in the appropriate entry of the
CHRTBL. You only need to supply this routine
if I/O redirection has been implemented. It is
referenced only by the DEVICE utility supplied
with CP/M 3.

All Information Presented Here is Proprietary to Digital Research

80

CP/M 3 System Guide 4.7 Disk I/O

4.7 Disk I/O
The separation of the disk I/O section of the BIOS into several

modules allows you to support each particular disk controller
independently from the rest of the system. A manufacturer can
supply the code for a controller in object module form, and you can
link it into any existing modular BIOS to function with other
controllers in the system.

The data structure called the Extended Disk Parameter Header,
or XDPH, contains all the necessary information about a disk drive.
BIOSKRNL.ASM locates the XDPH for a particular logical drive using
the Drive Table. The XDPH contains the addresses of the READ,
WRITE, initialization, and login routines. The XDPH also contains
the relative unit number of the drive on the controller, the current
media type, and the Disk Parameter Header (DPH) that the BDOS
requires. Section 3 of this manual describes the Disk Parameter
Header.

The code to read and write from a particular drive is
independent of the actual CP/M logical drive assignment, and works
with the relative unit number of the drive on the controller. The
position of the XDPH entry in the DRVTBL determines the actual CP/M
3 drive code.

4.7.1 Disk I/O Structure
The BIOS requires a DRVTBL module to locate the disk driver.

It also requires a disk module for each controller that is
supported.

The drive table module, DRVTBL, contains the addresses of each
XDPH defined in the system. Each XDPH referenced in the DRVTBL must
be declared external to link the table with the actual disk modules.

The XDPHs are the only public entry points in the disk I/O
modules. The root module references the XDPHs to locate the actual
I/O driver code to perform sector READS and WRITES. When the READ
and WRITE routines are called, the parameters controlling the READ
or WRITE operation are contained in a series of global variables
that are declared public in the root module.

4.7.2 Drive Table Module (DRVTBL)
The drive table module, DRVTBL, defines the CP/M absolute drive

codes associated with the physical disks.

The DRVTBL module contains one public label, @DTBL. @DTBL is a
16-word table containing the addresses of up to 16 XDPH’s. Each
XDPH name must be declared external in the DRVTBL. The first entry
corresponds to drive A, and the last to drive P. You must set an
entry to 0 if the corresponding drive is undefined. Selecting an
undefined drive causes a BDOS SELECT error.

All Information Presented Here is Proprietary to Digital Research

81

CP/M 3 System Guide 4.7 Disk I/O

4.7.3 Extended Disk Parameter Headers (XDpHs)
An Extended Disk Parameter Header (XDPH) consists of a prefix

and a regular Disk Parameter Header as described in Section 3. The
label of a XDPH references the start of the DPH. The fields of the
prefix are located at relative offsets from the XDPH label.

The XDPHs for each unit of a controller are the only entry
points in a particular disk drive module. They contain both the DPH
for the drive and the addresses of the various action routines for
that drive, including READ, WRITE, and initialization. Figure 4-1
below shows the format of the Extended Disk parameter Header.

Figure 4-1. XDPH Format

ADDRESS LOW BYTE HIGH BYTE

0 7 8 15

XDPH-10 addr of ssector WRITE

XDPH-8 addr of ssector READ

XDPH-6 addr of drive LOGIN

XDPH-4 addr of drive INIT

XDPH-2 unit type
«start of

XDPH+0 addr of translate table <—regular DPH

XDPH+2 0 0

XDPH+4 0 0

XDPH+6 0 0

XDPH+8 0 0

XDPH+10 Media Flag & 0

XDPH+12 addr <Df DPB

XDPH+14 addr (if CSV

XDPH+16 addr c)f ALV

XDPH+18 addr c)f DIRBCB

XDPH+20 addr cif DTABCB

XDPH+22 addr cif HASH

XDPH+24 hash bank

All Information Presented Here is Proprietary to Digital Research

82

CP/M 3 System Guide 4.7 Disk I/O

Table 4-10 describes the fields of each Extended Disk Parameter
Header.

Table 4-10. Fields of Each XDPH
Field Meaning

WRITE The WRITE word contains the address of the
sector WRITE routine for the drive.

READ The READ word contains the address of the
sector READ routine for the drive.

LOGIN The LOGIN word contains the address of the
LOGIN routine for the drive.

INIT The INIT word contains the address of the
first-time initialization code for the
dr ive.

UNIT The UNIT byte contains the drive code
relative to the disk controller. This is
the value placed in @RDRV prior to calling
the READ, WRITE, and LOGIN entry points of
the drive.

TYPE The TYPE byte is unused by the BIOS root,
and is reserved for the driver to keep the
current density or media type to support
multiple-format disk subsystems.

regular DPH The remaining fields of the XDPH comprise
a standard DPH, as discussed in Section 3
of this manual.

4.7.4 Subroutine Entry Points
The pointers contained in the XDPH reference the actual code

entry points to a disk driver module. These routines are not
declared public. Only the XDPH itself is public. The BIOS root
references the XDPHs only through the @DTBL. Table 4-11 shows the
BIOS subroutine entry points.

All Information Presented Here is Proprietary to Digital Research

83

CP/M 3 System Guide 4.7 Disk I/O

Table 4-11. Subroutine Entry Points
Entry Point Meaning

WRITE When the WRITE routine is called, the
address of the XDPH is passed in registers
DE. The parameters for the WRITE
operation are contained in the public
variables @ADRV, @RDRV, @TRK, @SECT, @DMA,
and @DBNK. The WRITE routine should
return an error code in register A. The
code 00 means a successful operation, 01
means a permanent error occurred, and 02
means the drive is write-protected if that
feature is supported.

READ When the READ routine is called, the
address of the XDPH is contained in
registers DE. The parameters for the READ
operation are contained in the public
variables @ADRV, @RDRV, @TRK, @SECT, @DMA,
and @DBNK. The READ routine should return
an error code in register A. A code of 00
means a successful operation and 01 means
a permanent error occurred.

LOGIN The LOGIN routine is called before the
BDOS logs into the drive, and allows the
automatic determination of density. The
LOGIN routine can alter the various
parameters in the DPH, including the
translate table address (TRANS) and the
Disk Parameter Block (DPB). The LOGIN
routine can also set the TYPE byte. On
single media type systems, the LOGIN
routine can simply return. When LOGIN is
called, the registers DE point to the XDPH
for this drive.

IN IT The BOOT entry of the BIOSKRNL module
calls each INIT routine during cold start
and prior to any other disk accesses.
INIT can perform any necessary hardware
initialization, such as setting up the
controller and interrupt vectors, if any.

4.7.5 Error Handling and Recovery
The READ and WRITE routines should perform several retries of

an operation that produces an error. If the error is related to a
seek operation or a record not found condition, the retry routine
can home or restore the drive, and then seek the correct track. The
exact sequence of events is hardware-dependent.

All Information Presented Here is Proprietary to Digital Research

84

CP/M 3 System Guide 4.7 Disk I/O

When a nonrecoverable error occurs, the READ or WRITE routines
can print an error message informing the operator of the details of
the error. The BIOSKRNL module supplies a subroutine, ?PDERR, to
print a standard BIOS error message header. This routine prints the
following message:

BIOS Err on D: T-nn S-nn

where D: is the selected drive, and T-nn and S-nn display the track
and sector number for the operation. The READ and WRITE routines
should print the exact cause of the error after this message, such
as Not Ready, or Write Protect. The driver can then ask the
operator if additional retries are desired, and return an error code
to the BDOS if they are not.

However, if the @ERMDE byte in the System Control Block
indicates the BDOS is returning error codes to the application
program without printing error messages, the BIOS should simply
return an error without any message.

4.7.6 Multiple Section I/O
The root module global variable @CNT contains the multisector

count. Refer to Sections 2.5 and 3.4.3 for a discussion of the
considerations regarding multirecord I/O.

4.8 MOVE Module
The MOVE Module performs memory-to-memory block moves and

controls bank selection. The ?MOVE and ?XMOVE entry points
correspond directly to the MOVE and XMOVE jump vector routines
documented in Section 3. Table 4-12 shows the entry points for the
MOVE module.

All Information Presented Here is Proprietary to Digital Research

85

CP/M 3 Sytem Guide 4.8 MOVE Module

Table 4-12. Move Module Entry Points
Entry Point Meaning

?MOVE Memory-to-memory move
?MOVE is called with the source address for
the move in register DE, the destination
address in register HL, and the byte count in
register BC. If ?XMOVE has been called since
the last call to ?MOVE, an interbank move must
be performed. On return, registers HL and DE
must point to the next bytes after the MOVE.
This routine can use special DMA hardware for
the interbank move capability, and can use the
Z80 LDIR instruction for intrabank moves.

?XMOVE Set banks for one following ?MOVE

?XMOVE is passed to the source bank in
register B and the destination bank in
register C. Interbank moves are only invoked
if the DPHs specify deblocking buffers in
alternate banks. ?XMOVE only applies to one
call to ?MOVE.

?BANK Set bank for execution

?BANK is called with the bank address in
register A. This bank address has already
been stored in @CBNK for future reference.
All registers except A must be maintained upon
return.

4.9 Linking Modules into the BIOS
The following lines are examples of typical link commands to

build a modular BIOS ready for system generation with GENCPM:

LINK BNKBIOS3[b]=BNKBIOS,SCB,BOOT,CHARIO,MOVE,DRVTBL,<disk_modules>

LINK BIOS3[b]=BIOS,SCB,BOOT,CHARIO,MOVE,DRVTBL,<disk_modules>

End of Section 4

All Information Presented Here is Proprietary to Digital Research

86

CP/M Plus™ (CP/M^ Version 3)
Operating System System Guide

Release Note
Copyright^ 1983 by Digital Research

CP/M is a registered trademark of Digital Research.
CP/M Plus is a trademark of Digital Research.

Following are corrections to the CP/M Plus™ (CP/M>e) Version 3)
Operating System System Guide-

Page 82

Section 4.7.3 Extended Disk Parameter Headers (XDPHs)
Figure 4-1., XDPH Format, is incorrect. The Media Flag shown

at Address XDPH+10 should be in the High Byte column, and 0 should
be in the Low Byte column.

Page 86

Section 4.9 Linking Modules into the BIOS
The option shown in the second link command example is

incorrect. The command line should read as follows:

LINK BIOS3[os]=BIOS,SCB,BOOT,CHARIO,MOVE,DRVTBL,<disk_modules>

1-1

Section 5
System Generation

This section describes the use of the GENCPM utility to create
a memory image CPM3.SYS file containing the elements of the CP/M 3
operating system. This section also describes customizing the
LDRBIOS portion of the CPMLDR program, and the operation of CPMLDR
to read the CPM3.SYS file into memory. Finally, this section
describes the procedure to follow to boot CP/M 3.

In the nonbanked system, GENCPM creates the CPM3.SYS file from
the BDOS3.SPR and your customized BIOS3.SPR files. In the banked
system, GENCPM creates the CPM3.SYS file from the RESBD0S3.SPR file,
the BNKBDOS3.SPR file, and your customized BNKBI0S3.SPR file.

If your BIOS contains a segment that can reside in banked
memory, GENCPM separates the code and data in BNKBI0S3.SPR into a
banked portion which resides in Bank 0 just below common memory, and
a resident portion which resides in common memory.

GENCPM relocates the system modules, and can allocate physical
record buffers, allocation vectors, checksum vectors, and hash
tables as requested in the BIOS data structures. GENCPM accepts its
command input from a file, GENCPM.DAT, or interactively from the
console.

5.1 GENCPM Utility
Syntax:

GENCPM {AUTO I AUTO DISPLAY}

Purpose:

GENCPM creates a memory image CPM3.SYS file, containing the
CP/M 3 BDOS and customized BIOS. The GENCPM utility performs late
resolution of intermodule references between system modules. GENCPM
can accept its command input interactively from the console or from
a file GENCPM.DAT.

In the nonbanked system, GENCPM creates a CPM3.SYS file from
the BD0S3.SPR and BIOS3.SPR files. In the banked system, GENCPM
creates the CPM3.SYS file from the RESBDOS3.SPR, the BNKBDOS3.SPR
and the BNKBIOS3.SPR files. Remember to back up your CPM3.SYS file
before executing GENCPM, because GENCPM deletes any existing
CPM3.SYS file before it generates a new system.

All Information Presented Here is Proprietary to Digital Research

87

CP/M 3 System Guide 5.1 The GENCPM Utility

Input Files:

Banked System Nonbanked System

BN KBIOS 3.SP R BIOS 3.SPR
RESBDOS 3.SPR BDOS 3.SPR
BNKBDOS3.SPR
Optionally GENCPM.DAT

Output File:

CPM3.SYS

Optionally GENCPM.DAT

GENCPM determines the location of the system modules in memory
and, optionally, the number of physical record buffers allocated to
the system. GENCPM can specify the location of hash tables
requested by the Disk Parameter Headers (DPHs) in the BIOS. GENCPM
can allocate all required disk buffer space and create all the
required Buffer Control Blocks (BCBs). GENCPM can also create
checksum vectors and allocation vectors.

GENCPM can get its input from a file GENCPM.DAT. The values in
the file replace the default values of GENCPM. If you enter the
AUTO parameter in the command line GENCPM gets its input from the
file GENCPM.DAT and generates a new system displaying only its sign-
on and sign-off messages on the console. If AUTO is specified and a
GENCPM.DAT file does not exist on the current drive, GENCPM reverts
to manual generation.

If you enter the AUTO DISPLAY parameter in the command line,
GENCPM automatically generates a new system and displays all
questions on the console. If AUTO DISPLAY is specified and a
GENCPM.DAT file does not exist on the current drive, GENCPM reverts
to manual generation. If GENCPM is running in AUTO mode and an
error occurs, it reverts to manual generation and starts from the
beginning.

The GENCPM.DAT file is an ASCII file of variable names and
their associated values. In the following discussion, a variable
name in the GENCPM.DAT file is referred to as a Question Variable.
A line in the GENCPM.DAT file takes the following general form:

Question Variable = value | ? | ?value <CR><LF>

value = #decimal value
or hexadecimal value
or drive letter (A - P)
or Yes, No, Y, or N

All Information Presented Here is Proprietary to Digital Research

88

CP/M 3 System Guide 5.1 The GENCPM Utility

You can specify a default value by following a question mark
with the appropriate value, for example ?A or ?25 or ?Y. The
question mark tells GENCPM to stop and prompt the user for input,
then continue automatically. At a ?value entry, GENCPM displays the
default value and stops for verification.

The following pages display GENCPM questions. The items in
parentheses are the default values. The Question Variable
associated with the question is shown below the explanation of the
answers to the questions.

Program Questions;

Use GENCPM.DAT for defaults (Y) ?

Enter Y - GENCPM gets its default values from the file
GENCPM.DAT.

Enter N - GENCPM uses the built-in default values.

No Question Variable is associated with this question.

Create a new GENCPM.DAT file (N) ?

Enter N - GENCPM does not create a new GENCPM.DAT file.

Enter Y - After GENCPM generates the new CPM3.SYS file it
creates a new GENCPM.DAT file containing the default
values.

Question Variable: CRDATAF

Display Load Table at Cold Boot (Y) ?

Enter Y - On Cold Boot the system displays the load table
containing the filename, filetype, hex starting address,
length of system modules, and the TPA size.

Enter N - System displays only the TPA size on cold boot.

Question Variable: PRTMSG

Number of console columns (#80) ?

Enter the number of columns (characters-per-line) for your
console.

A character in the last column must not force a new line
for console editing in CP/M 3. If your terminal forces a
new line automatically, decrement the column count by one.

Question Variable: PAGWID

All Information Presented Here is Proprietary to Digital Research

89

CP/M 3 System Guide 5.1 The GENCPM Utility

Number of lines per console page (#24) ?
Enter the number of the lines per screen for your console.

Question Variable: PAGLEN

Backspace echoes erased character (N) ?

Enter N - Backspace (Ctrl-H, 08H) moves back one column and
erases the previous character.

Enter Y - Backspace moves forward one column and displays
the previous character.

Question Variable: BACKSPC

Rubout echoes erased character (Y) ?

Enter Y - Rubout (7FH) moves forward one column and
displays the previous character.

Enter N - Rubout moves back one column and erases the
previous character.

Question Variable: RUBOUT

Initial default drive (A:) ?

Enter the drive code the prompt is to display at cold boot.

Question Variable: BOOTDRV

Top page of memory (FF) ?

Enter the page address that is to be the top of the
operating system. OFFH is the top of a 64K system.

Question Variable: MEMTOP

Bank-switched memory (Y) ?

Enter Y - GENCPM uses the banked system files.

Enter N - GENCPM uses the nonbanked system files.

Question Variable: BNKSWT

Common memory base page (CO) ?

This question is displayed only if you answered Y to the
previous question. Enter the page address of the start of
common memory.

Question Variable: COMBAS

All Information Presented Here is Proprietary to Digital Research

90

CP/M 3 System Guide 5.1 The GENCPM Utility

Long error messages (Y) ?

This question is displayed only if you answered Y to bank-
switched memory.
Enter Y - CP/M 3 error messages contain the BDOS function
number and the name of the file on which the operation was
attempted.
Enter N - CP/M 3 error messages do not display the function
number or file.

Question Variable: LERROR

Double allocation vectors (Y) ?

This question is displayed only if you answered N to bank-
switched memory. For more information about double
allocation vectors, see the definition of the Disk
Parameter Header ALV field in Section 3.

Enter Y - GENCPM creates double-bit allocation vectors for
each drive.

Enter N - GENCPM creates single-bit allocation vectors for
each drive.

Question Variable: DBLALV

Accept new system definition (Y) ?

Enter Y - GENCPM proceeds to the next set of questions.

Enter N - GENCPM repeats the previous questions and
displays your previous input in the default parentheses.
You can modify your answers.

No Question Variable is associated with this question.

Number of memory segments (#3) ?

GENCPM displays this question if you answered Y to bank-
switched memory.

Enter the number of memory segments in the system. Do not
count common memory or memory in Bank 1, the TPA bank, as a
memory segment. A maximum of 16 (0 - 15) memory segments
are allowed. The memory segments define to GENCPM the
memory available for buffer and hash table allocation. Do
not include the part of Bank 0 that is reserved for the
operating system.

Question Variable: NUMSEGS

All Information Presented Here is Proprietary to Digital Research

91

CP/M 3 System Guide 5.1 The GENCPM Utility

CP/M 3 Base,size,bank (8E,32,00)
Enter memory segment table:
Base,size,bank (00,8E,00) ?
Base,size,bank (00,CO,02) ?
Base,size,bank (00,CO,03) ?

Enter the base page, the length, and the bank of the memory
segment.

Question Variable: MEMSEG0# where # = 0 to F hex
Accept new memory segment table entries (Y) ?

Enter Y - GENCPM displays the next group of questions.

Enter N - GENCPM displays the memory segment table
definition questions again.

No Question Variable is associated with this question.

Setting up directory hash tables:

Enable hashing for drive d: (Y) :

GENCPM displays this question if there is a Drive Table and
if the DPHs for a given drive have an OFFFEH in the hash
table address field of the DPH. The question is asked for
every drive d: defined in the BIOS.

Enter Y - Space is allocated for the Hash Table. The
address and bank of the Hash Table is entered into the DPH.

Enter N - No space is allocated for a Hash Table for that
drive.

Question Variable: HASHDRVd where d = drives A-P.

Setting up Blocking/Deblocking buffers:

GENCPM displays the next set of questions if either or both
the DTABCB field or the DIRBCB field contain OFFFEH.

Number of directory buffers for drive d: (#1) ? 10

This question appears only if you are generating a banked
system. Enter the number of directory buffers to allocate
for the specified drive. In a banked system, directory
buffers are allocated only inside Bank 0. In a nonbanked
system, one directory buffer is allocated above the BIOS.

Question Variable: NDIRRECd where d = drives A-P.

All Information Presented Here is Proprietary to Digital Research

92

CP/M 3 System Guide 5.1 The GENCPM Utility

Number of data buffers for drive d: (#1) ? 1
This question appears only if you are generating a Banked
system. Enter the number of data buffers to allocate for
the specified drive. In a banked system, data buffers can
only be allocated outside Bank 1, and in common. You can
only allocate data buffers in alternate banks if your BIOS
supports interbank moves. In a nonbanked system, data
buffers are allocated above the BIOS.

Question Variable: NDTARECd where d = drives A-P.

Share buffer(s) with which drive (A:) ?

This question appears only if you answered zero to either
of the above questions. Enter the drive letter (A-P) of
the drive with which you want this drive to share a buffer.

Question Variable: ODIRDRVd for directory records where d
= drives A-P.

Question Variable: ODTADRVd for data records where d =
drives A-P.

Allocate buffers outside of Commom (N) ?

This question appears if the BIOS XMOVE routine is
implemented.

Answer Y - GENCPM allocates data buffers outside of common
and Bank 0.

Answer N - GENCPM allocates data buffers in common.

Question Variable: ALTBNKSd where d = drives A-P.

Overlay Directory buffer for drive d: (Y) ?

This question appears only if you are generating a
nonbanked system.

Enter Y - this drive shares a directory buffer with another
dr ive.

Enter N - GENCPM allocates an additional directory buffer
above the BIOS.

Question Variable: OVLYDIRd where d = drives A-P.

All Information Presented Here is Proprietary to Digital Research

93

CP/M 3 System Guide 5.1 The GENCPM Utility

Overlay Data buffer for drive d: (Y) ?

This question appears only if you are generating a
non banked system.

Enter Y - this drive shares a data buffer with another
drive.

Enter N - GENCPM allocates an additional data buffer above
the BIOS.

Question Variable: OVLYDTAd for directory records where d
= drives A-P.

Accept new buffer definitions (Y) ?

Enter Y - GENCPM creates the CPM3.SYS file and terminates.

Enter N - GENCPM redisplays all of the buffer definition
questions.

No Question Variable is associated with this question.

Examples:

The following section contains examples of two system
generation sessions. If no entry follows a program question, assume
RETURN was entered to select the default value in parentheses.
Entries different from the default appear after the question mark.

EXAMPLE OF CONTENTS OF GENCPM.DAT FILE

combas = cO <CR>
lerror = ? <CR>
numsegs = 3 <CR>
memsegOO = 00,80,00 <CR>
memsegOl = 0d,b3,02 <CR>
memsegOf = ?00,c0,10 <CR>
hashdrva = y <CR>
hashdrvd = n <CR>
ndirreca = 20 <CR>
ndtarecf = 10 <CR>

EXAMPLE OF SYSTEM GENERATION WITH BANKED MEMORY

A> GENCPM
CP/M 3.0 System Generation
Copyright (C) 1982, Digital Research

Default entries are shown in (parens).
Default base is Hex, precede entry with # for decimal

All Information Presented Here is Proprietary to Digital Research

94

CP/M 3 System Guide 5.1 The GENCPM Utility

Use GENCPM.DAT for defaults (Y) ?

Create a new GENCPM.DAT file (N) ?

Display Load Map at Cold Boot (Y) ?

Number of console columns (#80) ?
Number of lines in console page (#24) ?
Backspace echoes erased character (N) ?
Rubout echoes erased character (N) ?

Initial default drive (A:) ?

Top page of memory (FF) ?
Bank switched memory (Y) ?
Common memory base page (CO) ?

Long error messages (Y) ?

Accept new system definition (Y) ?

Setting up Allocation vector for drive A:
Setting up Checksum vector for drive A:
Setting up Allocation vector for drive B:
Setting up Checksum vector for drive B:
Setting up Allocation vector for drive C:
Setting up Checksum vector for drive C:
Setting up Allocation vector for drive D:
Setting up Checksum vector for drive D:

*** Bank 1 and Common are not included ***
*** in the memory segment table. ***

Number of memory segments (#3) ?

CP/M 3 Base,size,bank (8B,35,00)

Enter memory segment table:
Base,size,bank (00,8B,00) ?
Base,size,bank (0D,B3,02) ?
Base,size,bank (00,CO,03) ?

CP/M 3 Sys 8B00H 3500H Ban k 00
Memseg No. 00 0000H 8B00H Bank 00
Memseg No. 01 0D00H B300H Bank 02
Memseg No. 02 0000H C000H Bank 03

Accept new memory segment table entries (Y) ?

Setting up directory hash tables:
Enable hashing for drive A: (Y) ?
Enable hashing for drive B: (Y) ?
Enable hashing for drive C: (Y) ?
Enable hashing for drive D: (Y) ?

All Information Presented Here is Proprietary to Digital Research

95

CP/M 3 System Guide 5.1 The GENCPM Utility

Setting up Blocking/Deblocking buffers:

The physical record size is 0200H:

Available space in 256 byte pages:
TPA = 00F4H, Bank 0 = 008BH, Other banks = 0166H

Number of directory buffers for drive A: (#32) ?

Available space in 256 byte pages:
TPA = 00F4H, Bank 0 = 0049H, Other banks = 0166H

Number of data buffers for drive A: (#2) ?
Allocate buffers outside of Common (N) ?

Available space in 256 byte pages:
TPA = 00F0H, Bank 0 = 0049H, Other banks = 0166H

Number of directory buffers for drive B: (#32) ?

Available space in 256 byte pages:
TPA = 00F0H, Bank 0 = 0007H, Other banks = 0166H

Number of data buffers for drive B: (#0) ?
Share buffer(s) with which drive (A:) ?

The physical record size is 0080H:

Available space in 256 byte pages:
TPA = 00F0H, Bank 0 = 0007H, Other banks = 0166H

Number of directory buffers for drive C: (#10) ?

Available space in 256 byte pages:
TPA = 00FOH, Bank 0 = 0001H, Other banks = 0166H

Number of directory buffers for drive D: (#0) ?
Share buffer(s) with which drive (C:) ?

Available space in 256 byte pages:
TPA = 00F0H, Bank 0 = 0001H, Other banks = 0166H

Accept new buffer definitions (Y) ?

BNKBIOS3 SPR F600H 0600H
BNKBIOS3 SPR B100H 0F00H
RESBDOS3 SPR F000H 0600H
BNKBDOS3 SPR 8700H 2A00H
*** CP/M 3.0 SYSTEM GENERATION DONE ***

In the preceding example GENCPM displays the resident portion of
BNKBIOS3.SPR first, followed by the banked portion.

All Information Presented Here is Proprietary to Digital Research

96

CP/M 3 System Guide 5.1 The GENCPM Utility

EXAMPLE OF SYSTEM GENERATION WITH NONBANKED MEMORY

A>GENCPM

CP/M 3.0 System Generation
Copyright (C) 1982, Digital Research

Default entries are shown in (parens).
Default base is Hex, precede entry with # for decimal

Use GENCPM.DAT for defaults (Y) ?

Create a new GENCPM.DAT file (N) ?

Display Load Map at Cold Boot (Y) ?

Number of console columns (#80) ?
Number of lines in console page (#24) ?
Backspace echoes erased character (N) ?
Rubout echoes erased character (N) ?

Initial default drive (A:) ?

Top page of memory (FF) ?
Bank switched memory (Y) ? N
Double allocation vectors (Y) ?

Accept new system definition (Y) ?

Setting up Blocking/Deblocking buffers:

The physical record size is 0200H:

Available space in 256 byte pages:
TPA = 00D8H

*** Directory buffer required ***
*** and allocated for drive A: ***

Available space in 256 byte pages:
TPA = 00D5H

Overlay Data buffer for drive A: (Y) ?

Available space in 256 byte pages:
TPA = 00D5H

Overlay Directory buffer for drive B: (Y) ?
Share buffer(s) with which drive (A:) ?

Available space in 256 byte pages:
TPA = 00D5H

All Information Presented Here is Proprietary to Digital Research

97

CP/M 3 System Guide 5.1 The GENCPM Utility

Overlay Data buffer for drive B: (Y) ?
Share buffer(s) with which drive (A:) ?

The physical record size is 0080H:

Available space in 256 byte pages:
TPA = 00D5H

Overlay Directory buffer for drive C: (Y) ?
Share buffer(s) with which drive (A:) ?

Available space in 256 byte pages:
TPA = 00D5H

Overlay Directory buffer for drive D: (Y) ?
Share buffer(s) with which drive (C:) ?

Available space in 256 byte pages:
TPA = 00D5H

Accept new buffer definitions (Y) ?

BIOS3 SPR F300H 0B00H
BDOS3 SPR D600H 1D00H

*** CP/M 3.0 SYSTEM GENERATION DONE ***

A>

5.2 Customizing the CPMLDR
The CPMLDR resides on the system tracks of a CP/M 3 system

disk, and loads the CPM3.SYS file into memory to cold start the
system. CPMLDR contains the LDRBDOS supplied by Digital Research,
and must contain your customized LDRBIOS.

The system tracks for CP/M 3 contain the customized Cold Start
Loader, CPMLDR with the customized LDRBIOS, and possibly the CCP.

The COPYSYS utility places the Cold Start Loader, the CPMLDR,
and optionally the CCP on the system tracks, as shown in Table 5-1.

All Information Presented Here is Proprietary to Digital Research

98

CP/M 3 System Guide 5.2 Customizing the CPMLDR

Table 5-1. Sample CP/M 3 System Track Organization
Track Sector Page Memory Address CP/M 3 Module Name

00 01 Boot Address Cold Start Loader

00 02 00 0100H CPMLDR

and

00 21 09 0A80H LDRBDOS

00 22 10 0B00H LDRBIOS

00 26 12 0D00H and
01 01 12 0D80H

oi 26 25 1A00H CCP

Typically the Cold Start Loader is loaded into memory from
Track 0, Sector 1 of the system tracks when the reset button is
depressed. The Cold Start Loader then loads CPMLDR from the system
tracks into memory.

Alternatively, if you are starting from an existing CP/M 2
system, you can run CPMLDR.COM as a transient program. CP/M 2 loads
CPMLDR.COM into memory at location 100H. CPMLDR then reads the
CPM3.SYS file from User 0 on drive A and loads it into memory.

Use the following procedure to create a customized CPMLDR.COM
file, including your customized LDRBIOS:

1) Prepare a LDRBIOS.ASM file.

2) Assemble the LDRBIOS file with RMAC to produce a LDRBIOS.REL
file.

3) Link the supplied CPMLDR.REL file with the LDRBIOS.REL file
you created to produce a file.CPMLDR.COM

A>LINK CPMLDR[LIO0]=CPMLDR,LDRBIOS
Replace the address 100 with the load address to which your
boot loader loads CPMLDR.COM. You must include a bias of
100H bytes for buffer space when you determine the load
address.

All Information Presented Here is Proprietary to Digital Research

99

CPMLDR.COM
CPMLDR.COM
CPMLDR.COM
CPMLDR.COM
CPMLDR.COM

CP/M 3 System Guide 5.2 Customizing the CPMLDR

The CPMLDR requires a customized LDRBIOS to perform disk input
and console output. The LDRBIOS is essentially a nonbanked BIOS.
The LDRBIOS has the same JMP vector as the regular CP/M 3 BIOS. The
LDRBIOS is called only to perform disk reads (READ) from one drive,
console output (CONOUT) for sign-on messages, and minimal system
initialization.

The CPMLDR calls the BOOT entry point at the beginning of the
LDRBIOS to allow it to perform any necessary hardware
initialization. The BOOT entry point should return to CPMLDR
instead of loading and branching to the CCP, as a BIOS normally
does. Note that interrupts are not disabled when the LDRBIOS BOOT
routine is called.

Test your LDRBIOS completely to ensure that it properly
performs console character output and disk reads. Check that the
proper tracks and sectors are addressed on all reads and that data
is transferred to the proper memory locations.

You should assemble the LDRBIOS.ASM file with a relocatable
origin of 0000H. Assemble the LDRBIOS with RMAC to produce a
LDRBIOS.REL file. Link the LDRBIOS.REL file with the CPMLDR.REL
file supplied by Digital Research to create a CPMLDR.COM file. Use
the L option in LINK to specify the load origin (address) to which
the boot loader on track 0 sector 1 loads the CPMLDR.COM file.

Unnecessary BIOS functions can be deleted from the LDRBIOS to
conserve space. There is one absolute restriction on the length of
the LDRBIOS: it cannot extend above the base of the banked portion
of CP/M 3. (GENCPM lists the base address of CP/M 3 in its load
map.) If you plan to boot CP/M 3 from standard, single-density,
eight-inch floppy disks, your CPMLDR must not be longer than 1980H
to place the CPMLDR.COM file on two system tracks with the boot
sector. If the CCP resides on the system tracks with the Cold Start
Loader and CPMLDR, the combined lengths must not exceed 1980H.

5.3 The CPMLDR Utility
Syntax:

CPMLDR

Purpose:

CPMLDR loads the CP/M 3 system file CPM3.SYS into Bank 0 and
transfers control to the BOOT routine in the customized BIOS. You
can specify in GENCPM for CPMLDR to display a load table containing
the names and addresses of the system modules.

The CPM3.SYS file contains the CP/M 3 BDOS and customized BIOS.
The file CPM3.SYS must be on drive A in USER 0. You can execute
CPMLDR under SID™ or DDT™ to help debug the BIOS. A $B in the
default File Control Block (FCB) causes CPMLDR to execute a RST 7

All Information Presented Here is Proprietary to Digital Research

100

CPMLDR.COM
CPMLDR.COM
CPMLDR.COM

CP/M 3 System Guide 5.3 The CPMLDR Utility

(SID breakpoint) just before jumping to the CP/M 3 Cold Boot BIOS
entry point.

Input File:

CPM3.SYS

Examples:

Research

A>CPMLDR
CP/M V3.0
Copyright

Loader
(C) 1982, 1Digital

BNKBIOS3 SPR F600H 0A00H
BNKBIOS3 SPR BBOOH 0500H
RESBDOS3 SPR F100H 0500H
BNKBDOS3 SPR 9A00H 2100H

60K TPA
A>

In the preceding example, CPMLDR displays its name and version
number, the Digital Research copyright message, and a four-column
load table containing the filename, filetype, hex starting address,
and length of the system modules. CPMLDR completes its sign-on
message by indicating the size of the Transient Program Area (TPA)
in kilobytes. The CCP then displays the system prompt, A>.

5.4 Booting CP/M 3
The CP/M 3 cold start operation loads the CCP, BDOS, and BIOS

modules into their proper locations in memory and passes control to
the cold start entry point (BIOS Function 0: BOOT) in the BIOS.
Typically, a PROM-based loader initiates a cold start by loading
sector 0 on track 1 of the system tracks into memory and jumping to
it. This first sector contains the Cold Start Loader. The Cold
Start Loader loads the CPMLDR.COM program into memory and jumps to
it. CPMLDR loads the CPM3.SYS file into memory and jumps to the
BIOS cold start entry point.

All Information Presented Here is Proprietary to Digital Research

101

CPMLDR.COM

The CP/M 3 System Guide 5.4 Booting CP/M 3

To boot the CP/M 3 system, use the following procedure:

1) Create the CPM3.SYS file.

2) Copy the CPM3.SYS file to the boot drive.

3) Create a for your machine.CPMLDR.COM

4) Place the file on your system tracks using SYSGEN
with CP/M 2 or COPYSYS with CP/M 3. The boot loader must
place the file at the address at which it
originated. If CPMLDR has been linked to load at 100H, you
can run CPMLDR under CP/M 2.

CPMLDR.COM
CPMLDR.COM

The COPYSYS utility handles initialization of the system
tracks. The source of COPYSYS is included with the standard CP/M 3
system because you need to customize COPYSYS to support nonstandard
system disk formats. COPYSYS copies the Cold Start Loader, the
CPMLDR.COM file, and optionally the CCP to the system tracks. Refer
to the COPYSYS.ASM source file on the distribution disk.

End of Section 5

All Information Presented Here is Proprietary to Digital Research

102

CPMLDR.COM
CPMLDR.COM
CPMLDR.COM
CPMLDR.COM

Section 6
Debugging the BIOS

This section describes a sample debugging session for a
nonbanked CP/M 3 BIOS. You must create and debug your nonbanked
system first, then bring up the banked system. Note that your
system probably displays addresses that differ from the addresses in
the following example.

You can use SID, Digital Research’s Symbolic Debugger Program,
running under CP/M 2.2, to help debug your customized BIOS. The
following steps outline a sample debugging session.

1) Determine the amount of memory available to CP/M 3 when the
debugger and CP/M 2.2 are in memory. To do this, load the
debugger under CP/M 2.2 and list the jump instruction at
location 0005H. In the following example of a 64K system,
C500 is the base address of the debugger, and also the
maximum top of memory that you can specify in GENCPM for
your customized CP/M 3 system.

A>SID
CP/M 3 SID - Version 3.0
#L5
0005 JMP C500

2) Running under CP/M 2.2, use GENCPM to generate a CPM3.SYS
file, which specifies a top of memory that is less than the
base address of the debugger, as determined by the previous
step. Allow at least 256K bytes for a patch area. In this
example, you can specify C3 to GENCPM as the top of memory
for your CP/M 3 system.

A>
GENCPM

Top page of memory (FF)?
C3

All Information Presented Here is Proprietary to Digital Research

103

CP/M 3 System Guide 6 Debugging the BIOS

3) Now you have created a system small enough to debug under
SID. Use SID to load the file, as shown in the
following example:

CPMLDR.COM

A>SID CPMLDR.COM
CP/M 3 SID - Version 3.0
NEXT MSZE PC END
0E80 0E80 0100 D4FF

#

4) Use the I command in SID, as shown in the next example, to
place the characters $B into locations 005DH and 005EH of
the default FCB based at 005CH. The $B causes
to break after loading the CPM3.SYS file into memory.

CPMLDR.COM

#I$B

5) Transfer control to CPMLDR using the G command:

#G
At this point, the screen clears and the following
information appears:

CP/M V3.0 LOADER
Copyright (c) 1982, Digital Research

BIOS3 SPR AAOO 0B00
BDOS3 SPR 8B00 1F00

34K TPA

* 01A9
#

6) With the CP/M 3 system in the proper location, you can set
passpoints in your BIOS. Use the L command with the
address specified as the beginning of the BIOS by the
CPMLDR load table as shown in step 5 above. This L command
causes SID to display the BIOS jump vector which begins at
that address. The jump vector indicates the beginning
address of each subroutine in the table. For example, the
first jump instruction in the example below is to the Cold
Boot subroutine.

#LAA00

All Information Presented Here is Proprietary to Digital Research

104

CPMLDR.COM
CPMLDR.COM
CPMLDR.COM

CP/M 3 System Guide 6 Debugging the BIOS

The output from your BIOS might look like this:
JMP AA68
JMP AA8E
JMP ABA4
JMP ABAF
JMP ABC A

7) Now set a passpoint in the Cold BOOT routine. Use the P
command with an address to set a passpoint at that address.

#PAA68

8) Continue with the program by entering the G
command, followed by the address of Cold Boot, the first
entry in the BIOS jump vector.

CPMLDR.COM

#GAA00

9) In response to the G command, the CPMLDR transfers control
to the CP/M 3 operating system. If you set a passpoint in
the Cold BOOT routine, the program stops executing, control
transfers to SID, and you can begin tracing the BOOT
routine.

10) When you know the BOOT routine is functioning correctly,
enter passpoints for the other routines you want to trace,
and begin tracing step by step to determine the location of
problems.

Refer to the Digital Research Symbolic Instruction Debugger
User1 s Guide (SID) in the Programmer 1 s Utilities Guide for the CP/M
Family of Operating Systems for a discussion of all the SID
commands.

End of Section 6

All Information Presented Here is Proprietary to Digital Research

105

CPMLDR.COM

CP/M 3 System Guide End of Section 6

All Information Presented Here is Proprietary to Digital Research

106

Appendix A
Removable Media Considerations

All disk drives under CP/M 3 are classified as either permanent
or removable. In general, removable drives support media changes;
permanent drives do not. Setting the high-order bit in the CKS
field in a drive’s Disk Parameter Block (DPB) marks the drive as a
permanent drive.

The BDOS file system distinguishes between permanent and
removable drives. If a drive is permanent, the BDOS always accepts
the contents of physical record buffers as valid. In addition, it
also accepts the results of hash table searches on the drive.

On removable drives, the status of physical record buffers is
more complicated. Because of the potential for media change, the
BDOS must discard directory buffers before performing most directory
related BDOS function calls. This is required because the BDOS
detects media changes by reading directory records. When it reads a
directory record, the BDOS computes a checksum for the record, and
compares the checksum to the currently stored value in the drive's
checksum vector. If the checksum values do not match, the BDOS
assumes the media has changed. Thus, the BDOS can only detect a
media change by an actual directory READ operation.

A similar situation occurs with directory hashing on removable
drives. Because the directory hash table is a memory-resident
table, the BDOS must verify all unsuccessful hash table searches on
removable drives by accessing the directory.

The net result of these actions is that there is a significant
performance penalty associated with removable drives as compared to
permanent drives. In addition, the protection provided by
classifying a drive as removable is not total. Media changes are
only detected during directory operations. If the media is changed
on a drive during BDOS WRITE operations, the new disk can be
damaged.

The BIOS media flag facility gives you another option for
supporting drives with removable media. However, to use this
option, the disk controller must be capable of generating an
interrupt when the drive door is opened. If your hardware provides
this support, you can improve the handling of removable media by
implementing the following procedure:

1) Mark the drive as a permanent drive and set the DPB CKS
parameter to the total number of directory entries, divided
by four. For example, set the CKS field for a disk with 96
directory entries to 8018H.

All Information Presented Here is Proprietary to Digital Research

107

CP/M 3 System Guide A Removable Media Considerations

2) Implement an interrupt service routine that sets the @MEDIA
flag in the System Control Block and the DPH MEDIA byte for
the drive that signaled the door open condition.

By using the media flag facility, you gain the performance
advantage associated with permanent drives on drives that support
removable media. The BDOS checks the System Control Block @MEDIA
flag on entry for all disk-related function calls. If the flag has
not been set, it implies that no disks on the system have been
changed. If the flag is set, the BDOS checks the DPH MEDIA flag of
each currently logged-in disk. If the DPH MEDIA flag of a drive is
set, the BDOS reads the entire directory on the drive to determine
whether the drive has had a media change before performing any other
operations on the drive. In addition, it temporarily classifies any
permanent disk with the DPH MEDIA flag set as a removable drive.
Thus, the BDOS discards all directory physical record buffers when a
drive door is opened to force all directory READ operations to
access the disk.

To summarize, using the BIOS MEDIA flag with removable drives
offers two important benefits. First, because a removable drive can
be classified as permanent, performance is enhanced. Second,
because the BDOS immediately checks the entire directory before
performing any disk-related function on the drive if the drive’s DPH
MEDIA flag is set, disk integrity is enhanced.

End of Appendix A

All Information Presented Here is Proprietary to Digital Research

108

Appendix B
Auto-Density Support

Auto-density support refers to the capability of CP/M 3 to
support different types of media on a single drive. For example,
some floppy-disk drives accept single-sided and double-sided disks
in both single-density and double-density formats. Auto-density
support requires that the BIOS be able to determine the current
density when SELDSK is called and to subsequently be able to detect
a change in disk format when the READ or WRITE routines are called.

To support multiple disk formats, the drive’s BIOS driver must
include a Disk Parameter Block (DPB) for each type of disk or
include code to generate the proper DPB parameters dynamically. In
addition, the BIOS driver must determine the proper format of the
disk when the SELDSK entry point is called with register E bit 0
equal to 0 (initial SELDSK calls). If the BIOS driver cannot
determine the format, it can return 0000H in register pair HL to
indicate the select was not successful. Otherwise, it must update
the Disk Parameter Header (DPH) to address a DPB that describes the
current media, and return the address of the DPH to the BDOS.

Note: All subsequent SELDSK calls with register E bit 0 equal to 1,
the BIOS driver must continue to return the address of the DPH
returned in the initial SELDSK call. The value 0000H is only a
legal return value for initial SELDSK calls.

After a driver's SELDSK routine has determined the format of a
disk, the driver's READ and WRITE routines assume this is the
correct format until an error is detected. If an error is detected
and the driver determines that the media has been changed to another
format, it must return the value OFFH in register A. This signals
the BDOS that the media has changed and the next BIOS call to the
drive will be an initial SELDSK call. Do not modify the drive's DPH
or DPB until the initial SELDSK call is made. Note that the BDOS
can detect a change in media and will make an initial SELDSK call,
even though the BIOS READ and WRITE routines have not detected a
disk format change. However, the SELDSK routine must always
determine the format on initial calls.

A drive's Disk Parameter Header (DPH) has associated with it
several uninitialized data areas: the allocation vector, the
checksum vector, the directory hash table, and physical record
buffers. The size of these areas is determined by DPB parameters.
If space for these areas is explicitly allocated in the BIOS, the
DPB that requires the most space determines the amount of memory to
allocate. If the BIOS defers the allocation of these areas to
GENCPM, the DPH must be initialized to the DPB with the largest
space requirements. If one DPB is not largest in all of the above
categories, a false one must be constructed so that GENCPM allocates
sufficient space for each data area.

End of Appendix B

All Information Presented Here is Proprietary to Digital Research

109

CP/M 3 System Guide End of Appendix B

All Information Presented Here is Proprietary to Digital Research

110

Appendix C
Modifying a CP/M 2 BIOS

If you are modifying an
the following changes.

existing CP/M 2.2 BIOS, you must note

• The BIOS jump vector is expanded from 17 entry points in CP/M
2.2 to 33 entry points in CP/M 3. You must implement the
necessary additional routines.

• The Disk Parameter Header and Disk Parameter Block data
structures are expanded.

See Section 3 of this manual, "CP/M 3 BIOS Functional
Specifications", for details of the BIOS data structures and
subroutines. The following table shows all CP/M 3 BIOS functions
with the changes necessary to support CP/M 3.

Table C-l. CP/M 3 BIOS Functions
Function Meaning

BIOS Function 00: BOOT

The address for the JMP at location 5 must
be obtained from @MXTPA in the System
Control Block.

BIOS Function 01: WBOOT

The address for the JMP at location 5 must
be obtained from @MXTPA in the System
Control Block. The CCP can be reloaded
from a file.

BIOS Function 02: CONST

Can be implemented unchanged.

BIOS Function 03: CONIN

Can be implemented unchanged. Do not mask
the high-order bit.

All Information Presented Here is Proprietary to Digital Research

111

CP/M 3 System Guide C Modifying a CP/M 2 BIOS

Table C-l. (continued)
Function Meaning

BIOS Function 04: CONOUT

Can be implemented unchanged.

BIOS Function 05: LIST

Can be implemented unchanged.

BIOS Function 06: AUXOUT

Called PUNCH in CP/M 2. Can be
implemented unchanged.

BIOS Function 07: AUXIN

Called READER in CP/M 2. Can be
implemented unchanged. Do not mask the
high-order bit.

BIOS Function 08: HOME

No change.

BIOS Function 09: SELDSK

Can not return a select error when SELDSK
is called with bit 0 in register E equal
to 1.

BIOS Function 10: SETTRK

No change.

BIOS Function 11: SETSEC

Sectors are physical sectors, not logical
128-byte sectors.

BIOS Function 12: SETDMA

Now called for every READ or WRITE
operation. The DMA buffer can now be
greater than 128 bytes.

All Information Presented Here is Proprietary to Digital Research

112

CP/M 3 System Guide C Modifying a CP/M 2 BIOS

Table C-l. (continued)
Function Meaning

BIOS Function 13: READ

READ operations are in terms of physical
sectors. READ can return a OFFH error
code if it detects that the disk format
has changed.

BIOS Function 14: WRITE

WRITE operations are in terms of physical
sectors. If write detects that the disk
is Read-Only, it can return error code 2.
WRITE can return a OFFH error code if it
detects that the disk format has changed.

BIOS Function 15: LISTST

Can be implemented unchanged.

BIOS Function 16: SECTRN

Sectors are physical sectors, not logical
128-byte sectors.

The :following is a list of new BIOS functions

BIOS Function 17: CONOST

BIOS Function 18: AUXIST

BIOS Function 19: AUXOST

BIOS Function 20: DEVTBL

BIOS Function 21: DEVINI

BIOS Function 22: DRVTBL

BIOS Function 23: MULTIO

BIOS Function 24: FLUSH

BIOS Function 25: MOVE

BIOS Function 26: TIME

All Information Presented Here is Proprietary to Digital Research

113

CP/M 3 System Guide C Modifying a CP/M 2 BIOS

BIOS Function 27: SELMEM

BIOS Function 28: SETBNK

BIOS Function 29: XMOVE

BIOS Function 30: USERF

BIOS Function 31: RESERV1

BIOS Function 32: RESERV2

End of Appendix C

All Information Presented Here is Proprietary to Digital Research

114

Appendix D
CPM3.SYS File Format

Table D—1. CPM3.SYS File Format
Record Contents

0
1
2-n

Header Record (128 bytes)
Print Record (128 bytes)
CP/M 3 operating system in
reverse order, top down.

Table D—2. Header Record Definition
Byte Contents

0 Top page plus one, at which the resident
portion of CP/M 3 is to be loaded top
down.

1 Length in pages (256 bytes) of the
resident portion of CP/M 3.

2 Top page plus one, at which the banked
portion of CP/M 3 is to be loaded top
down.

3 Length in pages (256 bytes) of the banked
portion of CP/M 3.

4-5 Address of CP/M 3 Cold Boot entry point.

6-1 Reserved.

16-51 Copyright Message.

52 Reserved.

53-58 Serial Number.

59-127 Reserved.

The Print Record is the CP/M 3 Load Table in ASCII,
terminated by a dollar sign ($).

End of Appendix D

All Information Presented Here is Proprietary to Digital Research

115

CP/M 3 System Guide End of Appendix D

All Information Presented Here is Proprietary to Digital Research

116

Appendix E
Root Module of the Relocatable BIOS for CP/M 3

All the listings in Appendixes E through I are assembled with
RMAC, the CP/M Relocating Macro Assembler, and cross-referenced with
XREF, an assembly language cross-reference program used with RMAC.
These listings are output from the XREF program. The assembly
language sources are on your distribution disk as .ASM files.

i
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

title 'Root module of relocatable BIOS for CP/M 3.0

; version 1.0 15 Sept 82

FFFF =
0000 -

true
false

equ -1
equ not true

ffff = banked equ true

Copyright (C), 1982
Digital Research, Inc

P.O. Box 579
Pacific Grove, CA 93950

This is the invariant portion of the modular BIOS and is
distributed as source for informational purposes only.
All desired modifications should be performed by
adding or changing externally defined modules.
This allows producing "standard" I/O modules that
can be combined to support a particular system
configuration.

cseg ; GENCPM puts CSEG stuff in common memory

000D = cr equ 13
000A = If equ 10
0007 2 bell equ 7
0011 = ctlQ equ •Q'-'g'
0013 = ctlS equ •S'-'e'

0100 = ccp equ 0100h ; Console Command Processor gets loaded into the TPA

; variables in system data page

extrn 0covec,ecivec,®aovec,eaivec,^lovec ; I/O redirection vectors
extrn @mxtpa ; addr of system entry point
extrn gbnkbf ; 128 byte scratch buffer

; initialization

extrn ?init
extrn ?ldccp,?rlccp

; general initialization and signon
; load & reload CCP for BOOT & WBOOT

; user defined character I/O routines

extrn ?ci,?co,?cist,?cost
extrn ?cinit
extrn Cctbl

; disk communication data items

extrn Gdtbl
public @adrv,@rdrv,£trk,0sect
public @dma,@dbnk,£cnt

; each take device in
; (re)initialize device in <C>
; physical character device table

; table of pointers to XDPHs
; parameters for disk I/O

; memory control

Listing E-l. Root Module of Relocatable BIOS for CP/M 3

All Information Presented Here is Proprietary to Digital Research

117

CP/M 3 System Guide E Root Module of Relocatable BIOS
60
61 public ^cbnk ; current bank
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91 0000 C30000

extrn ?xmove,?move ; select move bank, and block move
extrn ?bank ; select CPU bank

; clock support

extrn ?time ; signal time operation

; general utility routines

public ?pmsg,?pdec ; print message, print number from 0 to 65535
public ?pderr ; print BIOS disk error message header

maclib modebaud ; define mode bits

; External names for BIOS entry points

public ?boot,?wboot,?const,?conin,?cono,?list,?auxo,?auxi
public ?home,?sldsk,?sttrk,?stsec,?stdma,?read,?write
public ?lists,?sctrn
public ?conos,?auxis,?auxos,?dvtbl,?devin,?drtbl
public ?mltio,?flush,?mov,?tim,?bnksl,?stbnk,?xmov

; BIOS Jump vector.

; All BIOS routines are invoked by calling these
; entry points.

?boot: jmp boot ; initial entry on cold start
92 0003 C36C00 ?wboot: jmp wboot ; reentry on program exit, warm start
93
94 0006 C37701 ?const: jmp const ; return console input status
95 0009 C39201 ?conin: jmp conin ; return console input character
96 000C C3DA00 ?cono: jmp conout ; send console output character
97 000F C3E600 ?list: jmp list ; send list output character
98 0012 C3E000 ?auxo: jmp auxout ; send auxilliary output character
99 0015 C39801 ?auxi: jmp auxin ; return auxilliary input character

100
101 0018 C36E00 ?home: jmp home ; set disks to logical home
102 001B C33F00 ?sldsk; jmp seldsk ; select disk drive, return disk parameter info
103 001E C37100 ?sttrk: jmp settrk ; set disk track
104 0021 C37700 ?stsec: jmp setsec ; set disk sector
105 0024 C37D00 ?stdma: jmp setdma ; set disk I/O memory address
106 0027 C39400 Tread: jmp read ; read physical block(s)
107 002A C3AA00 Twrite: jmp write ; write physical block(s)
108
109 002D C31201 ?lists: jmp listst ; return list device status
110 0030 C38900 ?sctrn: jmp sectrn ; translate logical to physical sector
111
112 0033 C30601 ?conos; jmp conost ; return console output status
113 0036 C37D01 ?auxis: jmp auxist ; return aux input status
114 0039 C30C01 Tauxos: jmp auxost ; return aux output status
115 003C C3D200 ?d”tbl: jmp devtbl ; return address of device def table
116 003F C30000 ?devin: jmp ?cinit ; change baud rate of device
117
118 0042 C3D600 ?drtbl: jmp getdrv

?mltio: jmp multi©
; return address of disk drive table

119 0045 C3CB00 ; set multiple record count for disk I/O
120 0048 C3CF00 ?flush: jmp flush ; flush BIOS maintained disk caching
121
122 004B C30000 ?mov: jmp ?move ; block move memory to memory
123 004E C30000 ?tim: jmp ?time ; Signal Time and Date operation
124 0051 C32502 Tbnksl: jmp bnksel ; select bank for code execution and default DMA
125 0054 C38500 ?stbnk: jmp setbnk ; select different bank for disk I/O DMA operations.
126 0057 C30000 ?xmov: jmp ?xmove ; set source and destination banks for one operation
127
128 005A C30000 jmp 0 ; reserved for future expansion
129 005D C30000 jmp 0 ; reserved for future expansion
130 0060 C30000 jmp 0 ; reserved for future expansion
131
132
133 ; BOOT
134 ; Initial entry point for system startup.
135
136 dseg ; this part can be banked
137
138 boot:
139 0000 31D200 Ixi sp,boot$stack
140 0003 0E0F mvi c,15 ; initialize all 16 character devices
141 c$init$loop:
142 0005 C5CD0000C1 push b 1 call ?cinit I pop b
143 000A 0DF20500 der c ! jp c$init$loop

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research

118

CP/M 3 System Guide E Root Module of Relocatable BIOS

144
145 000E CD0000 call ?init ; perform any additional system initialization
146
147

; and print signon message

148
149

0011 0100102100 Ixi b,16*256+0 ! Ixi h,8dtbl ; init all 16 logical disk drives
d$init$loop:

150 0017 C5 push b ; save remaining count and abs drive
151 0018 5E235623 mov e,m ! inx h ! mov d,m ! inx h ; grab @drv entry
152 001C 7BB2CA3600 mov a,e ! ora d ! jz d$init$next ; if null, no drive
153 0021 E5 push h ; save @drv pointer
154 0022 EB xchg ; XDPH address in <HL>
155 0023 2B2B7E32EE dcx h ! dcx h ! mov a,m ! sta @RDRV ; get relative drive code
156 0029 7932ED00 mov a,c ! sta @ADRV ; get absolute drive code
157 002D 2B dcx h ; point to init pointer
158 002E 562B5E mov d,m ! dcx h ! mov e,m ; get init pointer
159 0031 EBCDB601 xchg ! call ipchl ; call init routine
160
161

0035 El pop h ; recover @drv pointer
d$ init$next:

162 0036 Cl pop b ; recover counter and drive #
0C05C21700 inr c ! der b ! jnz d$init$loop ; and loop for each drive163 0037

164
165
166
167
168

003C C36300 jmp boot$l

cseg ; following in resident memory

boot$1:
169 0063 CD7800 call setSjumps
170 0066 CD0000 call ?ldccp ; fetch CCP for firät time
171
172
173
174
175
176
177

0069 C30001 jmp ccp

; WBOOT
; Entry for system restarts.

wboot:
178 006C 31D200 Ixi sp,bootSstack
179 006F CD7800 call set$jumps ; initialize page zero
180 0072 CD0000 call ?rlccp ; reload CCP
181
182
183
184
185
186

0075 C30001 jmp ccp ; then reset jmp vectors and exit to ccp

set$jumps:

if banked
187
188
189

0078 3E01CD5100 mvi a,l ! call ?bnksl
endif

190 007D 3EC3 mvi a,JMP
191 007F 3200003205 sta 0 ! sta 5 ; set up jumps in page zero
192 0085 2103002201 Ixi h,?wboot ! shld 1 ; BIOS warm start entry
193 008B 2A00002206 Ihld 3MXTPA ! shld 6 ; BDOS system call entry
194
195
196
197

0091

0092

C9 ret

de 64
198
199
200
201
202
203
204

00D2 = boots stack equ $

; DEVTBL
; Return address of character device table

devtbl:
205
206
207
208
209
210
211

00D2 210000C9 Ixi h,Sctbl ! ret

; GETDRV
; Return address of drive table

getdrv:
212
213
214
215
216
217
218
219
220
221

00D6 210000C9 Ixi h,@dtbl ! ret

; CONOUT
; Console Output. Send character in <C>
; to all selected devices

conout:

222 00DA 2A0000 Ihld gcovec ; fetch console output bit vector
223
224

00DD C3E900 jmp outSscan

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research

119

CP/M 3 System Guide E Root Module of Relocatable BIOS

225
226
227
228
229
230

; AUXOUT
; Auxiliary Output. Send character in <C>
; to all selected devices

auxout:
231 00E0 2A0000 Ihld gaovec ; fetch aux output bit vector
232
233
234
235
236
237
238
239

00E3 C3E900 jmp out$scan

; LIST
; List Output. Send character in <C>
; to all selected devices.

list:
240
241
242

00E6 2A0000 Ihld @lovec ; fetch list output bit vector

out$scan:
243
244

00E9 060F mvi b,15 ; start with device 15
co$next:

245 00EB 29 dad h ; shift out next bit
246 00EC D2FF00 jnc notoutdevice
247 00EF E5 push h ; save the vector
248
249

00F0 C5 push b ; save the count and character
notoutready:

250 00F1 CD2C01B7CA call coster ! ora a ! jz notoutready
251 00F8 C1C5 pop b ! push b ; restore and resave the character and device
252 00FA CD0000 call ?co ; if device selected, print it
253 00FD Cl pop b ; recover count and character
254
255

OOFE El pop h ; recover the rest of the vector
notoutdevice:

256 00FF 05 der b ; next device number
257 0100 7CB5 mov a,h ! ora 1 ; see if any devices left
258 0102 C2EB00 jnz co$next ; and go find them...
259
260
261
262
263
264
265
266
267

0105 C9 ret

; CONOST
; Console Output Status. Return true if
; all selected console output devices
; are ready.

conost: Z*
268 0106 2A0000 Ihld Gcovec ; get console output bit vector
269
270
271
272
273
274
275
276
277

0109 C31501 jmp ost$scan v>

; AUXOST
; Auxiliary Output Status. Return true if
; all selected auxiliary output devices
; are ready.

auxost:
278 010C 2A0000 Ihld ?aovec ; get aux output bit vector
279
280
281
282
283
284
285
286
287

010F C31501 jmp ost$scan

; LISTST
; List Output Status. Return true if
; all selected list output devices
; are ready.

listst:
288
289
290

0112 2A0000 Ihld ?lovec ; get list output bit vector

ost$scan:
291
292

0115 060F mvi b,15 ; start with device 15
cos$next:

293 0117 29 dad h ; check next bit
294 0118 E5 push h ; save the vector
295 0119 C5 push b ; save the count
296 011A 3EFF mvi a,0FFh ; assume device ready
297 one DC2C01 cc coster ; check status for this device
298 011F Cl pop b ; recover count
299 0120 El pop h ; recover bit vector
300 0121 B7 ora a ; see if device ready
301 0122 C8 rz ; if any not ready, return false
302 0123 05 der b ; drop device number
303 0124 7CB5 mov a,h ! ora 1 ; see if any more selected devices
304 0126 C21701 jnz cos$next
305 0129 F6FF ori OFFh ; all selected were ready, return true
306
307

012B C9 ret

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research

120

CP/M 3 System Guide E Root Module of Relocatable BIOS

308 coster: ; check for output device ready, including optional
309
310 012C 682600

; xon/xoff support
mov l,b ! mvi h,0 ; make device code 16 bits

311 012F E5 push h ; save it in stack
312 0130 292929 dad h ! dad h ! dad h ; create offset into device characteristics tbl
313 0133 11060019 Ixi d,@ctbl+6 ! dad d ; make address of mode byte
314 0137 7EE610 mov a,m ! ani mb$xonxoff
315 013A El pop h ; recover console number in <HL>

jz ?cost ; not a xon device, go get output status direct316 013B CA0000
317 013E 112B0219 Ixi d,xofflist ! dad d ; make pointer to proper xon/xoff flag
318 0142 CD5D01 call cistl ; see if this keyboard has character
319 0145 7EC46F01 mov a,m ! cnz cil ; get flag or read key if any
320 0149 FE11C25001 cpi ctlq ! jnz not$q ; if its a ctl-Q,
321 014E 3EFF mvi a,0FFh ; set the flag ready
322
323

not$q:
0150 FE13C25701 cpi ctls ! jnz not$s ; if its a ctl-S,

324 0155 3E00 mvi a,00h ; clear the flag
325 not$s:
326 0157 77 mov m,a ; save the flag
327 0158 CD6601 call costl ; get the actual output status,
328 015B A6 ana m ; and mask with ctl-Q/ctl-S flag
329 015C C9 ret ; return this as the status
330
331 cistl: ; get input status with <BC> and <HL> saved
332 015D C5E5 push b ! push h
333 015F CD0000 call ?cist
334 0162 E1C1 pop h ! pop b
335 0164 B7 ora a
336 0165 C9 ret
337
338 costl: ; get output status, saving <BC> & <HL>
339 0166 C5E5 push b ! push h
340 0168 CD0000 call ?cost
341 016B E1C1 pop h ! pop b
342 016D B7 ora a
343 016E C9 ret
344
345 cil: ; get input, saving <BC> & <HL>
346 016F C5E5 push b L push h
347 0171 CD0000 call ?ci\
348 0174 E1C1 pop h ! pop b
349 0176 C9 ret
350
351
352
353
354
355
356
357
358

const:
0177 2A0000

; CONST
; Console Input Status. Return true if
; any selected console input device
; has an available character.

Ihld ^civec ; get console input bit vector
359 017A C38001 jmp ist$scan
360
361
362
363
364
365
366
367
368
369

auxist:
017D 2A0000

; AUXIST
; Auxiliary Input Status. Return true if
; any selected auxiliary input device
; has an available character.

Ihld @aivec ; get aux input bit vector

370 ist$scan:
371 0180 060F mvi b,15 ; start with device 15
372 cis$next:
373 0182 29 dad h ; check next bit
374 0183 3E00 mvi a,0 ; assume device not ready
375 0185 DC5D01 cc cistl ; check status for this device
376 0188 B7C0 ora a ! rnz ; if any ready, return true
377 018A 05 der b ; drop device number
378 018B 7CB5 mov a,h ! ora 1 ; see if any more selected devices
379 018D C28201 jnz cis$next
380 0190 AF xra a ; all selected were not ready, return false
381 0191 C9 ret
382
383
384
385
386
387
388
389

con in:
0192 2A0000

; CONIN
; Console Input. Return character from first
; ready console input device.

Ihld £civec
390 0195 C39B01 jmp in$scan

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research

121

CP/M 3 System Guide E Root Module of Relocatable BIOS
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

0198

019B
019C

019E
019F
01A1
01A4
01A5
01A8
01A9
01AB
01AE
01AF

01B2
01B3

01B6

01B7
01B8

01B9
01BE
01C0
01C4

01C8
01C9
01CA

01CB

01D1

01D3
01D9

OIDE
01E0
01E4

01E6
01E7
01EA
01ED
01F2

01F3

01FD
0203
020C
0212
0218
021E
0224

2A0000

E5
060F

29
3E00
DC5D01
B7
C2B201
05
7CB5
C29E01
El
C39B01

El
C30000

E9

C5
D5

7EB7CAC801
4FE5
CD0C00E1
23C3B901

DI
Cl
C9

01F30111F0

3E2F

E53C19D2DE
3333C3D301

D5C5
4FCD0C00
C1D1

El
0A5F03
0A5703
7BB2C2D101
C9

18FC9CFFF6

21D100CDB7
3AED00C641
21E300CDB7
2AEF00CDCB
21E800CDB7
2AF100CDCB
C9

auxin:

in$scan

; AUXIN
; Auxiliary Input. Return character from
; ready auxiliary input device.

Ihld Gaivec

first

mvi b,15
ci$next:

dad h ; shift out next bit
mvi a,0 ; insure zero a (nonexistant device not ready),
cc cistl ; see if the device has a character
ora a
jnz ci$rdy ; this device has a character
der b ; else, next device
mov a,h 1 ora 1 ; see if any more devices
jnz ci$next ; go look at them
pop h ; recover bit vector
jmp in$scan ; loop til we find a character

ci$rdy:
pop h ; discard extra stack
jmp ?ci

; Utility Subroutines

ipchl: ; vectored CALL point
pchl

?pmsg: ; print message @<HL> up to a null
; saves <BC> & <DE>

push b
push d

pmsg$loop:
mov a,m ! ora a ! jz pmsg$exit
mov c,a 1 push h
call ?cono ! pop h
inx h 1 jmp pmsg$loop

pmsg$exit:
pop d
pop b
ret

?pdec: ; print binary number 0-65535 from <HL>
Ixi b,tablel0! Ixi d,-10000

next:
mvi a,'0'-1

pdecl:
push h! inr a! dad d! jnc stoploop
inx sp! inx spl jmp pdecl

stoploop:
push d! push b
mov c,a! call ?cono
pop b! pop d

nextdigit:
pop h
Idax b! mov e,a! inx b
Idax b! mov d,al inx b
mov a,e! ora d! jnz next
ret

tablelO:
dw -1000,-100,-10,-1,0

?pderr:
Ixi h,drive$msg ! call ?pmsg ; error header
Ida @adrv ! adi ’A’ 1 mov c,a 1 call ?cono ; drive code
Ixi h,track$msg ! call ?pmsg ; track header
Ihld Gtrk ! call ?pdec ; track number
Ixi h,sector$msg ! call ?pmsg ; sector header
Ihld @sect ! call ?pdec ; sector number
ret

; BNKSEL
; Bank Select. Select CPU bank for further execution.

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research

122

CP/M 3 System Guide E Root Module of Relocatable BIOS

475 bnksel:
476 0225 323B02 sta ecbnk ; remember current bank
477
478
479
480

0228 C30000 jmp ?bank ; and go exit through users
; physical bank select routine

481 022B FFFFFFFFFFxofflist db -1,-1,-1,-1,-1,-1,-1,-1 ; ctl-s clears to zero
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

0233 FFFFFFFFFF db -1,-1,-1,-1,-1,-1,-1,-1

dseg ; following resides in banked memory

Disk I/O interface routines

; SELDSK
; Select Disk Drive. Drive code-in <C>.
; Invoke login procedure for drive
; if this is first select. Return
; address of disk parameter header
; in <HL>

seldsk:
501 003F 7932ED00 mov a,c ! sta eadrv ; save drive select code
502 0043 69260029 mov l,c I mvi h,0 I dad h ; create index from drive code
503 0047 01000009 Ixi b,edtbl 1 dad b ; get pointer to dispatch table
504 004B 7E23666F mov a,m I inx h 1 mov h,m I mov l,a ; point at disk descriptor
505 004F B4C8 ora h I rz ; if no entry in table, no disk
506 0051 7BE601C26D mov a,e ! ani 1 ! jnz not$first$select ; examine login bit
507 0057 E5EB push h ! xchg ; put pointer in stack & <DE>
508 0059 21FEFF197E Ixi h,-2 ! dad d ! mov a,m ! sta eRDRV ; get relative drive
509 0061 21FAFF19 Ixi h,-6 ! dad d ; find LOGIN addr
510 0065 7E23666F mov a,m 1 inx h ! mov h,m ! mov l,a ; get address of LOGIN routine
511 0069 CDB601 call ipchl ; call LOGIN
512
513

006C El pop h ; recover DPH pointer
not$ first$select:

514
515
516
517
518
519
520

006D C9 ret

; HOME
; Home selected drive. Treated as SETTRK (0).

home:
521
522
523
524
525
526
527
528

006E 010000 Ixi b,0 ; same as set track zero

; SETTRK
; Set Track. Saves track address from <BC>
; in eTRK for further operations.

settrk:
529 0071 6960 mov l,c 1 mov h,b
530 0073 22EF00 shld etrk
531
532
533
534
535
536
537
538

0076 C9 ret

; SETSEC
; Set Sector. Saves sector number from <BC>
; in ^sect for further operations.

setsec:
539 0077 6960 mov l,c ! mov h,b
540 0079 22F100 shld esect
541
542
543
544
545
546
547
548
549
550

007C C9 ret

; SETDMA
; Set Disk Memory Address. Saves DMA address
; from <BC> in eDMA and sets eDBNK to eCBNK
; so that further disk operations take place
; in current bank.

setdma:
551 007D 6960 mov l,c ! mov h,b
552
553

007F 22F300 shld edma

554
555

0082 3A3B02 Ida ecbnk ; default DMA bank is current bank
; fall through to set DMA bank

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research
123

CP/M 3 System Guide E Root Module of Relocatable BIOS

556
557 ; SETBNK
558 ; Set Disk Memory Bank. Saves bank number
559 ; in @DBNK for future disk data
560
561

; transfers.

562 setbnk:
563 0085 32F600 sta Sdbnk
564
565
566

0088 C9 ret

567 ; SECTRN
568 ; Sector Translate. Indexes skew table in <DE>
569 ; with sector in <BC>. Returns physical sector
570 ; in <HL>. If no skew table (<DE>=0) then
571
572

; returns physical=logical.

573 sectrn:
574 0089 6960 mov l,c ! mov h,b
575 008B 7AB3C8 mov a,d ! ora e I rz
576 008E EB096E2600 xchg ! dad b ! mov l,m I mvi h,0
577
578
579

0093 C9 ret

580 ; READ
581 ; Read physical record from currently selected drive.
582 ; Finds address of proper read routine from
583
584

; extended disk parameter header (XDPH).

585 read:
586 0094 2AED002600 Ihld @adrv ! mvi h,0 1 dad h ; get drive code and double it
587 009A 11000019 Ixi d,0dtbl ! dad d ; make address of table entry
588 009E 7E23666F mov a,m ! inx h ! mov h,m ! mov l,a ; fetch table entry
589 00A2 E5 push h ; save address of table
590 00A3 11F8FF19 Ixi d,-8 ! dad d ; point to read routine address
591
592
593

00A7 C3BD00 jmp rw$common ; use common code

594 ; WRITE
595 ; Write physical sector from currently selected drive.
596 ; Finds address of proper write routine from
597
598

; extended disk parameter header (XDPH).

599 write:
600 00AA 2AED002600 Ihld £adrv 1 mvi h,0 1 dad h ; get drive code and double it
601 00B0 11000019 Ixi d,£dtbl ! dad d ; make address of table entry
602 00B4 7E23666F mov a,m ! inx h 1 mov h,m 1 mov l,a ; fetch table entry
603 00B8 E5 push h ; save address of table
604
605

00B9 11F6FF19 Ixi d,-10 ! dad d ; point to write routine address

606 rw$common:
607 00BD 7E23666F mov a,m ! inx h 1 mov h,m ! mov l,a ; get address of routine
608 00C1 DI pop d ; recover address of table
609 00C2 1B1B dcx d ! dcx d ; point to relative drive
610 00C4 1A32EE00 Idax d ! sta @rdrv ; get relative drive code and post
611 00C8 1313 inx d 1 inx d ; point to DPH again
612
613
614

00CA E9 pchl ; leap to driver

615 ; MULTIO
616 ; Set multiple sector count. Saves passed count in
617
618

; eCNT

619 multio:
620
621
622

00CB 32F500C9 sta Sent ! ret

623 ; FLUSH
624
625

; BIOS deblocking buffer flush. Not implemented.

626 flush:
627
628
629
630

00CF AFC9 xra a 1 ret ; return with no error

631 ; error message components
632 00D1 0D0A074249drive$msg db cr,If,bell,'BIOS Error on ',0
633 00E3 3A20542D00track$msg db ': T-',0
634
635
636

00E8 2C20532D00sector$msg db ', S-',0

637 ; disk communication data items

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research

124

CP/M 3 System Guide E Root Module of Relocatable BIOS

638
639 00ED @adr v ds 1
640 00EE @rdr v ds 1
641 00EF etrk ds 2
642 00F1 $sect ds 2
643 00F3 @dma ds 2
644 00F5 00 £cnt db 0
645 00F6 00 @dbnk db 0
646

; currently selected disk drive
; controller relative disk drive
; current track number
; current sector number
; current DMA address
; record count for multisector transfer
; bank for DMA operations

647
648 cseg ; common memory
649
650 023B
651
652
653 023C

00 Gcbnk db

end

0

AUXIN 0198 99 397#
AUXIST 017D 113 367#
AUXOST 010C 114 277#
AUXOUT 00E0 98 230#
BANKED FFFF 81 186
BAUD110 0003
BAUD1200 0008
BAUD134 0004
BAUD150 0005
BAUD1800 0009
BAUD19200 000F
BAUD2400 000A
BAUD300 0006
BAUD3600 000B
BAUD4800 oooc
BAUD50 0001
BAUD600 0007
BAUD7200 GOOD
BAUD75 0002
BAUD9600 000E
BAUDNONE 0000
BELL 0007 271 632
BNKSEL 0225 124 475#
BOOT 0000 91 138»
BOOT1 0063 164 168»
BOOTSTACK 00D2 139 178 198»
CCP 0100 31# 171 181
CI1 016F 319 345»
CINEXT 019E 403# 411
CINITLOOP 0005 141# 143
CIRDY 01B2 408 415»
CISNEXT 0182 372# 379
CIST1 015D 318 331« 375 406
CONEXT 00EB 244» 258
CONIN 0192 95 388»
CONOST 0106 112 267»
CONOUT 00DA 96 220»
CONST 0177 94 357»
COSNEXT 0117 292# 304
COSTI 0166 327 338«
COSTER 012C 250 297 308»
CR 000D 25# 632
CTLQ 0011 28# 320
CTLS 0013 29# 323
DEVTBL 00D2 115 204«
DINITLOOP 0017 149# 163
DINITNEXT 0036 152 161«
DRIVEMSG 00D1 463 632«
FALSE 0000 6»
FLUSH 00CF 120 626«
GETDRV 00D6 118 211«
HOME 006E 101 520«
INSCAN 019B 390 400« 413
IPCHL 01B6 159 423« 511
ISTSCAN 0180 359 370«
LF 000A 26# 632
LIST 00E6 97 239»
LISTST 0112 109 287»
MBINOUT 0003
MBINPUT 0001
MBOUTPUT 0002
MBSERIAL 0008
MBSOFTBAUD 0004
MBXONXOFF 0010 314
MULTIO 00CB 119 619»

; bank for processor operations

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research
125

CP/M 3 System Guide E Root Module of Relocatable BIOS
NEXT 01D1 443# 456
NEXTDIGIT 01E6 452#
NOTFIRSTSELECT 006D 506 513#
NOTOUTDEVICE 00FF 246 255#
NOTOUTREADY 00F1 249# 250
NOTQ 0150 320 322#
NOTS 0157 323 325#
OSTSCAN 0115 269 279 290#
OUTSCAN 00E9 223 232 242#
PDECL 01D3 445# 447
PMSGEXIT 01C8 432 436#
PMSGLOOP 01B9 431# 435
READ 0094 106 585#
RWCOMMON 00BD 591 606#
SECTORMSG 00E8 467 634#
SECTRN 0089 110 573#
SELDSK 003F 102 500#
SETBNK 0085 125 562#
SETDMA 007D 105 550#
SETJUMPS 0078 169 179 184#
SETSEC 0077 104 538#
SETTRK 0071 103 528#
STOPLOOP OIDE 446 448#
TABLE10 01F3 442 459#
TRACKMSG 00E3 465 633#
TRUE FFFF 5# 6 8
WBOOT 006C 92 177#
WRITE 00AA 107 599#
XOFFLIST 022B 317 481#
?AUXI 0015 79 99#
?AUXIS 0036 82 113#
?AUXO 0012 79 98#
7AUXOS 0039 82 114#
?BANK 0000 63 477
?BNKSL 0051 83 124# 187
?BOOT 0000 79 91#
?CI 0000 49 347 417
7CINIT 0000 50 116 142
?CIST 0000 49 333
?CO 0000 49 252
?CONIN 0009 79 95#
?CONO oooc 79 96# 434 450 464
?CONOS 0033 82 112#
?CONST 0006 79 94#
?COST 0000 49 316 340
7DEVIN 003F 82 116#
?DRTBL 0042 82 118#
7DVTBL 003C 82 115#
?FLUSH 0048 83 120#
?HOME 0018 80 101#
?INIT 0000 44 145
?LDCCP 0000 45 170
?LIST 000F 79 97#
?LISTS 002D 81 109#
7MLTIO 0045 83 119#
7 MOV 004B 83 122#
7 MOVE 0000 62 122
7PDEC 01CB 71 441# 466 468
7PDERR 01FD 72 462#
7PMSG 01B7 71 427# 463 465 467
7 READ 0027 80 106#
7RLCCP 0000 45 180
7SCTRN 0030 81 110#
7SLDSK 001B 80 102#
7STBNK 0054 83 125#
7STDMA 0024 80 105#
7STSEC 0021 80 104#
7STTRK 001E 80 103#
7TIM 004E 83 123#
7TIME 0000 67 123
7WBOOT 0003 79 92# 192
7WRITE 002A 80 107#
7XMOV 0057 83 126#
7XMOVE 0000 62 126
3ADRV 00ED 56 156 464 501 586 600 639#
GAIVEC 0000 38 368 398
@AOVEC 0000 38 231 278
GBNKBF 0000 40
@CBNK 023B 61 476 554 650#
0CIVEC 0000 38 358 389
SCNT 00F5 57 620 644#
ecovEc 0000 38 222 268

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research
126

CP/M 3 System Guide E Root Module of Relocatable BIOS

SCTBL 0000 51 205 313
@DBNK 00F6 57 563 645#
@DMA 00F3 57 552 643#
@DTBL 0000 55 148 212 503 587 601
GLOVEC 0000 38 240 288
3MXTPA 0000 39 193
@RDRV 00EE 56 155 508 610 640#
@SECT 00F1 56 468 540 642«
3TRK 00EF 56 466 530 641#

Listing E-l. (continued)

End of Appendix E

All Information Presented Here is Proprietary to Digital Research
127

CP/M 3 System Guide E Root Module of Relocatable BIOS

All Information Presented Here is Proprietary to Digital Research
128

Appendix F
System Control Block Definition for CP/M 3 BIOS

The SCB.ASM module contains the public definitions of the
various fields in the System Control Block. The BIOS can reference
the public variables.

1 title 'System Control Block Definition for CP/M3 BIOS'
2
3
4
5
6

public
public
public
public

Ccivec. «covec
«crdma. «crdsk
«mltio. «ermde
idate. «hour.

®aivec. taovec. Clovec. Cbnkbf
. «vinfo. «resel. «fx, ®usrcd
. «erdsk. «media, «bflgs
®min. «sec. ?erjmp, «mxtpa

7
8
9 FEOO - scbtbase equ 0FE00H . Base of the SCB

10
11
12

FE22 •CIVEC equ scb$oase*22h Console Input Redirection
Vector (word, r/w)

13
14

FE24 - ®C0VEC equ scbtbase*24h ; Console Output Redirection
Vector (word, r/w)

15
16

FE26 - 9AIVEC equ scb*base*26h Auxiliary Input Redirection
; Vector (word, r/w)

17
18

FE28 - •A0VEC equ scb4base*28h ; Auxiliary Output Redirection
i Vector (word, r/w)

19
20

FE2A • «L0VEC equ scb«base*2Ah . List Output Redirection
Vector (word, r/w)

21
22

FE35 «BNKBF equ scb<base*35h . Address of 128 Byte Buffer
; for Banked BIOS (word, r/o)

23
24

FE3C = «CRDMA equ scbSbase*3Ch ; Current DMA Address
. (word, r/o)

25 FE3E «CRDSK equ scbSbase*3Eh Current Disk (byte, r/o)
26
27

FE3F * «VINF0 equ scb Bbase+3Fh , BDOS Variable "INFO"
; (word, r/o)

29 FE41 W «RESEL equ scb tbase+41h FCB Flag (byte, r/o)
29
30

FE43 = «FX equ scbtbase*43h . BDOS Function for Error
; Messages (byte, r/o)

31 FE44 = 8USRCD equ sc b >base*44h ; Current User Code (byte, r/o)
32
33

FE4A = SMLT10 equ scbSbase+4Ah ; Current Multi-Sector Count
, (byte.r/w)

34 FE4B = ®ERMDE equ scb»base*4Dh , BDOS Error Mode (byte, r/o)
35 FE51 = «ERDSK equ scb«oase*51h ; BDOS Error Disk (byte.r/o)
36
37

FE54 = «MEDIA equ scb»base*54h . Set by BIOS to indicate
. open door (byte,r/w)

38 FE57 at ®BFLGS equ scb»base*57h ; BDOS Message Size Flag (byte,
39
40

FE58 = «DATE equ sc b*base*58h Date in Days Since 1 Jan 78
, (word, r/w)

41 FE5A w «HOUR equ scb*base*5Ah Hour in BCD (byte, r/w)
42 FE58 = •MIN equ sc b$base + 5Bh . Minute in BCD (byte, r/w)
43 FE5C «SEC equ sc bSbase+5Ch Second in BCD (byte, r/w)

45
FE5F ''ER JMP equ scbSbase*5Fh BDOS Error Message Jump

. (word, r/w)
46

48

FE62

0000

9MXTPA equ

end

scbSbase+62h . Top of User TPA
(address at 6.7)(word. r/o)

Listing F-l. System Control Block Definition for CP/M 3 BIOS

All Information Presented Here is Proprietary to Digital Research
129

CP/M 3 System Guide F System Control Block Definition

SCBBASE

7ERJMP
©AIVEC
©AOVEC
©BFLGS
©BNKBF
©CIVEC
ecovEc
eCRDMA
eCRDSK
©DATE
©ERDSK
©ERMDE
©FX
«HOUR
©LOVEC
«MEDIA
«HIN
©MLTIO
©MXTPA
©RESEL
©SEC
©USRCD
©V1NFO

FEOO 9# 11 13
28 29 31
42 43 44

FE5F 6 44#
FE26 3 15#
FE28 3 17#
FE57 5 38#
FE35 3 21#
FE22 3 11#
FE24 3 13#
FE3C 4 23#
FE3E 4 25#
FE58 6 39#
FE51 5 35#
FE4B 5 34#
FE43 4 29#
FE5A 6 41#
FE2A 3 19#
FE54 5 36#
FE5B 6 42#
FE4A 5 32#
FE62 6 46#
FE41 4 28#
FE5C 6 43#
FE44 4 31#
FE3F 4 26«

15 17 19 21 23 23 26
32 34 35 36 38 39 41
46

Listing F-l. (continued)

End of Appendix F

All Information Presented Here is Proprietary to Digital Research

130

Appendix G
Equates for Mode Byte Bit Fields

; equates for mode byte bit fields

mb$ input
mb$output

equ 000050001b
equ 000050010b

; device may do input
; device may do output

mb$ in$out equ mb$input+mb$output
mb$sof t5baud equ 000050100b ; software selectable baud rates
mb5ser ial equ 000051000b ; device may use protocol
mbxonxoff equ 0001$0000b ; XON/XOFF protocol enabled

baud$none equ 0 ; no baud rate associated with device
baud$50 equ 1 ; 50 baud
baud$75 equ 2 ; 75 baud
baud5110 equ 3 ; 110 baud
baud$134 equ 4 ; 134.5 baud
baud$150 equ 5 ; 150 baud
baud$300 equ 6 ; 300 baud
baud5600 equ 7 ; 600 baud
baud51200 equ 8 ; 1200 baud
baud51800 equ 9 ; 1800 baud
baud52400 equ 10 ; 2400 baud
baud$3500 equ 11 ; 3600 baud
baud54800 equ 12 ; 4800 baud
baud$7200 equ 13 ; 7200 baud
baud$9600 equ 14 ; 9600 baud
baud$19200 equ 15 ; 19.2k baud

Listing G-l. Equates for Mode Byte Fields: MODEBAUD.LIB

End of Appendix G

All Information Presented Here is Proprietary to Digital Research

131

CP/M 3 System Guide End of Appendix G

All Information Presented Here is Proprietary to Digital Research

132

Appendix H
Macro Definitions for CP/M 3 BIOS Data Structures

Macro Definitions for CP/M3 BIOS Data Structures.

; dtbl <dphO,dphl,...> - drive table

; dph translates table, - disk parameter header
; disk$parameter$block,
; checksum$size, (optional)
; alloc$size (optional)

; skew sectors, - skew table
; skew$factor,
; first$sector$number

; dpb physical$sector$size, - disk parameter block
; physical$sectors$per$track,
; numbers tracks,
; block$size,
; numberdirentries,
; trackSoffset,
; checksumvecsize (optional)

; Drive Table. Contains 16 one word entries,

dtbl macro ?list
local ?n

?n set 0
irp ?drv,<?list>

?n set ?n+l
dw ?drv

endm

if ?n > 16
Too many drives. Max 16 allowed'

exitm
endif

if ?n < 16
rept (16-?n)
dw 0
endm

endif
endm

dph macro ?trans,?dpb,?csize,?asize
local ?csv,?alv

dw ?trans ; translate table address
db 0,0,0,0,0,0,0,0,0 ; BDOS Scratch area
db 0 ; media flag

dw ?dpb ; disk parameter block
if not nul ?csize

dw ?csv ; checksum vector
else

dw OFFFEh ; checksum vector allocated by GENCPM
endif
if not nul ?asize

dw ?alv ; allocation vector
else

dw OFFFEh ; alloc vector allocated by GENCPM
endif

dw Offfeh,Offfeh,Offfeh ; dirbcb, dtabcb, hash alloc'd by GENCPM
db 0 ; hash bank

Listing H-l. Macro Definitions for CP/M 3 BIOS Data Structures

All Information Presented Here is Proprietary to Digital Research

133

CP/M 3 System Guide H Macro Definitions

if not nul ?csize
?csv ds Tcsize

endif
if not nul ?asize

?alv ds ?asize
endif

; checksum vector

; allocation vector

endm

dpb macro Tpsize,Tpspt,Ttrks,Tbls,Tndirs,Toff,Tncks
local ?spt, Tbsh,?blm,?exm,?dsm,?drm,?alO,Tall,Tcks,Tpsh,Tpsm
local ?n

;; physical sector mask and physical sector shift
?psh set 0
?n set ?psi ze/128
?psm set ?n-l

rept 8
?n set Tn/2

if Tn =
exitm
endif

0

?psh
endm

set Tpsh + 1

?spt set ?pspt*(Tpsize/128)

Tbsh set 3
?n set Tbls/1024

rept 8
Tn set ?n/2

if Tn =
exitm
endif

0

Tbsh
endm

set Tbsh + 1

Tblm set Tbls/128-1
?si ze set (Ttrks-Toff)*Tspt
?dsm set Tsize/(Tbls/128)-1

Texm set Tbls/1024
if Tdsm > 255

if Tbls = 1024

.'Error, can''t have this size disk with Ik block size’
exi tm
endif

?exm set ?exm/2
endif

Texm set ?exm-l
Tall set 0
?n set (?ndirs*32+?bls-l)/?bls

rept ?n
Tall
endm

set (Tail shr 1) or 8000h

TalO set high Tall
Tail set low Tall
?drm set Tndirs-1
if not nul Tncks

?cks
else

set Tncks

Tcks
endif

set Tndirs/4

dw Tspt ; 128 byte records per track
db Tbsh,Tblm ; block shift and mask
db Texm ; extent mask
dw Tdsm ; maximum block number
dw Tdrm ; maximum directory entry number
db TalO,Tall ; alloc vector for directory
dw Tcks ; checksum size
dw Toff ; offset for system tracks
db Tpsh,Tpsm ; physical sector size shift and mask

endm

Listing H-l. (continued)

All Information Presented Here is Proprietary to Digital Research

134

CP/M 3 System Guide H Macro Definitions

gcd macro ?m,?n
;; greatest common divisor of m,n

;; produces value gcdn as result
;; (used in sector translate table generation)

?gcdm set ?m ;;variable for m
?gcdn set ?n ;;variable for n
?gcdr set 0 ;;variable for r

rept 65535
?gcdx set ?gcdm/?gcdn
?gcdr set ?gcdm - ?gcdx*?gcdn

if ?gcdr = 0
exi tm
endif

?gcdm set ?gcdn
?gcdn set ?gcdr
endm

endm

skew macro ?secs,?skf,?fsc
;; generate the translate table

?nxtsec set 0 ;;next sector to fill
?nxtbas set 0 ;;moves by one on overflow
gcd %?secs,?skf
;; ?gcdn ■ gcd(?secs,skew)
?neltst set ?secs/?gcdn
;; neltst is number of elements to generate
;; before we overlap previous elements
?nelts set ?neltst ;;counter

rept ?secs ;;once for each sector
db ?nxtsec+?fsc
?nxtsec set ?nxtsec+?skf

if ?nxtsec >= ?secs
?nxtsec set ?nxtsec-?secs
endif

?nelts set ?nelts-l
if ?nelts = 0
?nxtbas set ?nxtbas+l
?nxtsec set ?nxtbas
?nelts set ?neltst
endif

endm
endm

Listing H-l. (continued)

End of Appendix H

All. Information Presented Here is Proprietary to Digital Research

135

CP/M 3 System Guide End of Appendix H

All Information Presented Here is Proprietary to Digital Research

136

Appendix I
ACS 8000-15 BIOS Modules

1.1 Boot Loader Module for CP/M 3
The

characte
BOOT.ASM module performs system initialization other than
r and disk I/O. BOOT loads the CCP for cold starts and

reloads it for warm starts. Note that the device drivers in the
Digital :Research sample BIOS initialize devices for a polled, and
not an interrupt-driven, environment.

1 title ’Boot loader module for CP/M 3.0’
2
3 FFFF = true equ -1
4 0000 = false equ not true
5
6 FFFF = banked equ true
7
8 public ?init,?ldccp,?rlccp,?time
9 extrn ?pmsg,?conin

10 extrn @civec,@covec,@aivec,eaovec,£lovec
11 extrn @cbnk,?bnksl
12
13 maclib ports
14 maclib z80
15
16 0005 = bdos equ 5
17
18 if banked
19 0001 = tpa$bank equ 1
20 else
21 tpa$bank equ 0
22 endif
23
24 dseg ; init done from banked memory
25
26 ?init:
27 0000 2101002200 Ixi h,l ! shld gcivec ! shld Gcovec ; assign console to CRT:
28 0009 2102002200 Ixi h,2 ! shld @lovec ; assign printer to LPT:
29 000F 2104002200 Ixi h,4 ! shld ^aivec I shld ^aovec ; assign AUX to CRT1:
30 0018 21EF00CD25 Ixi h,init$table ! call out$blocks ; set up raise hardware
31 001E 218700CD00 Ixi h,signon$msg ! call ?pmsg ; print signon message
32 0024 C9 ret
33
34 out$blocks:
35 0025 7EB7C847 mov a,m ! ora a ! rz ! mov b,a
36 0029 234E23 inx h ! mov c,m I inx h
37 outir
38 002C+EDB3 DB 0EDH,0B3H
39 002E C32500 jmp out$blocks
40
41
42 cseg ; boot loading most be done from resident memory
43
44 ; This version of the boot loader loads the CCP from a file
45 ; called CCP.COM on the system drive (A:).
46
47
48 ?ldccp:
49 ; First time, load the A:CCP.COM file into TPA
50 0000 AF32DB00 xra a ! sta ccp$fcb+15 ; zero extent
51 0004 21000022EC Ixi h,0 ! shld fcb$nr ; start at beginning of file
52 000A 11CC00CD73 Ixi d,ccp$fcb I call open ; open file containing CCP
53 0010 3CCA4A00 inr a ! jz no$CCP ; error if no file...
54 0014 110001CD78 Ixi d,0100h ! call setdma ; start of TPA
55 001A 118000CD7D Ixi d,128 ! call setmulti ; allow up to 16k bytes
56 0020 11CC00CD82 Ixi d,ccp$fcb ! call read } load the thing
57 ; now,
58 ; copy CCP to bank 0 for reloading
59 0026 2100010100 Ixi h,0100h 1 Ixi b,0C00h ; clone 3K, just in case
60 002C 3A0000F5 Ida Scbnk ! push psw ; save current bank
61 ld$l:
62 0030 3E01CD0000 mvi a,tpa$bank ! call ?bnksl ; select TPA
63 0035 7EF5 mov a,m ! push psw ; get a byte

Listing 1-1. Boot Loader Module for CP/M 3
All Information Presented Here is Proprietary to Digital Research

137

CCP.COM
A:CCP.COM

CP/M 3 System Guide 1.1 Boot Loader Module for CP/M 3

64 0037 3E02CD0000 mvi a,2 ! call ?bnksl ; select extra bank
65 003C F177 pop psw ! mov m,a ; save the byte
66 003E 230B inx h ! dcx b ; bump pointer, drop count
67 0040 78B1 mov a,b 1 ora c ; test for done
68 0042 C23000 jnz ld$l
69
70
71
72

0045
0049

F1CD0000 pop
C9 ret

no$CCP:

psw ! call ?bnksl ; restore original bank

; here if we couldn't find the file
73 004A 21AB00CD00 Ixi h,ccp$msg 1 call ?pmsg ; report this...
74 0050 CD0000 call ?conin ; get a response
75
76
77
78

0053 C30000 jmp

?rlccp:

?ldccp ; and try again

79
80

0056 2100010100 Ixi
rl$l:

h,0100h I Ixi b,0C00h ; clone 3K

81 00 5C 3E02CD0000 mvi a,2 ! call ?bnksl ; select extra bank
82 0061 7EF5 mov a,m ! push psw ; get a byte
83 0063 3E01CD0000 mvi a,tpa$bank I call ?bnksl ; select TPA
84 0068 F177 pop psw ! mov m,a ; save the byte
85 006A 230B inx h ! dcx b ; bump pointer, drop count
86 006C 78B1 mov a,b ! ora c ; test for done
87
88
89
90
91
92
93
94
95
96

006E
0071

0072

C25C00 jnz rl$l
C9 ret

; No external clock.
?time:

C9 ret

; CP/M BDOS Function Interfaces

open:
97
98
99

0073 0E0FC30500 mvi

setdma:

c,15 ! jmp bdos ; open file control block

100
101
102

0078 0E1AC30500 mvi

setmulti:

c,26 ! jmp bdos ; set data transfer address

103
104
105

007D 0E2CC30500 mvi

read:

c,44 ! jmp bdos ; set record count

106
107
108

0082 0E14C30500 mvi c,20 ! jmp bdos ; read records

109
110

0087 0D0A0D0A43signon$msg db 13,10,13,10,'CP/M Version 3.0, sample BIOS',13,10,0

111
112
113

00AB 0D0A42494Fccp$msg db 13,10,'BIOS Err on A: NoCCP.COM file',0

114
115

OOCC
00DC

0143435020ccp$fcb db 1,'CCP ','COM',0,0,0,0
ds 16

116
117

00EC 000000 fcb$nr db 0,0,0

118 00EF 0326CFFF07init$table db 3,p$zpio$3a,OCFh,OFFh,07h ; set up config port
119 00F4 0327CF0007 db 3,p$zpio$3b,OCFh,000h,07h ; set up bank port
120 00F9 012500 db 1,p$bank$select,0 ; select bank C
121
122
123

BANKED
BC

00FC

00FD

00

end
FFFF 6# 18
0000

db 0 ; end of init$table

BDOS
CCPFCB
CCPMSG
DE
FALSE
FCBNR
HL
INITTABLE
IX
IY
LD1
NOCCP
OPEN
OUTBLOCKS
PBANKSELECT
PBAUDCON1
PBAUDCON2
PBAUDCON34
PBAUDLPT1

0005 16# 97
00CC 50 52
00AB 73 111#
0002
0000 4#
00EC 51 116#
0004
00EF 30 118#
0004
0004
0030 61# 68
004A 53 72#
0073 52 96#
0025 30 34#
0025 120
oooc
0030
0031
000E

100 103 106
56 114#

39

Listing 1-1. (continued)

All Information Presented Here is Proprietary to Digital Research

138

NoCCP.COM

CP/M 3 System Guide 1.1 Boot Loader Module for CP/M 3

PBAUDLPT2 0032
PBOOT 0014
PCENTDATA 0011
PCENTSTAT 0010
PCON2DATA 002C
PCON2STAT 002D
PCON3DATA 002E
PC0N3STAT 002F
PCON4DATA 002A
PCON4STAT 002B
PCONFIGURATION 0024
PCRTDATA 001C
PCRTSTAT 001D
PFDCMND 0004
PFDDATA 0007
PFDINT 0008
PFDMISC 0009
PFDSECTOR 0006
PFDSTAT 0004
PFDTRACK 0005
PINDEX 000F
PLPT2DATA 0028
PLPT2STAT 0029
PLPTDATA 001E
PLPTSTAT 001F
PRTC 0033
PSELECT 0008
PWD1797 0004
PZCTC1 oooc
PZCTC2 0030
PZDART 001C
PZDMA 0000
PZPIO1 0008
PZPIO1A 000A
PZPIO1B 000B
PZPIO2 0010
PZPIO2A 0012
PZPIO2B 0013
PZPIO3 0024
PZPIO3A 0026 118
PZPIO3B 0027 119
PZSIO1 0028
PZSIO2 002C
READ 0082 56 1051
RL1 00 5C 801 87
SETDMA 0078 54 991
SETMULTI 007D 55 102#
SIGNONMSG 0087 31 1091
TPABANK 0001 19» 21# 62 83
TRUE FFFF 31 4 6
7BNKSL 0000 11 62 64 69 81 83
7CONIN 0000 9 74
7INIT 0000 8 26#
7LDCCP 0000 8 48# 75
7PMSG 0000 9 31 73
7RLCCP 0056 8 78#
’TIME 0072 8 91#
SAIVEC 0000 10 29
GAOVEC 0000 10 29
3CBNK 0000 11 60
3CIVEC 0000 10 27
0COVEC 0000 10 27
3LOVEC 0000 10 28

Listing 1-1. (continued)

All Information Presented Here is Proprietary to Digital Research

139

CP/M 3 System Guide 1.2 Character I/O Handler

1.2 Character I/O Handler for Z80 Chi{>-based System
The CHARIO.ASM module performs all character device

initialization, input, output, and status polling. CHARIO contains
the character device characteristics table.

1 title 'Character I/O handler for ::80 chip based system'
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23 0006

; Character I/O for the Modular CP/M 3 BIOS

; limitations:

; baud rates 19200,7200,3600,1800 and 134
; are approximations.

; 9600 is the maximum baud rate that is likely
; to work.

; baud rates 50, 75, and 110 are not supported

public ?cinit,?ci,?co,?cist,?cost
public Gctbl

maclib Z80 ; define Z80 op codes
maclib ports ; define port addresses
maclib modebaud ; define mode bits and baud equates

max$devices equ 6
24
25
26
27
28 0000 79FE06CA42

cseg

?cinit:
mov a,c ! cpi max$devices 1 jz cent$init ; init parallel printer

29 0006 DO me ; invalid device
30 0007 692600 mov l,c ! mvi h,0 ; make 16 bits from device number
31 000A E5 push h ; save device in stack
32 000B 292929 dad h 1 dad h 1 dad h ; *8
33 000E 11E900196E Ixi d,£ctbl+7 ! dad d ! mov l,m ; get baud rate
34 0013 7DFE07 mov a,l ! cpi baud$600 ; see if baud > 300
35 0016 3E44D21D00 mvi a,44h ! jnc hi$speed ; if >= 600, use *16 mode
36 001B 3EC4 mvi a,0C4h ; else, use *64 mode
37
38 001D 323501

hi$speed:
sta sioreg4

39 0020 2600111B01 mvi h,0 ! Ixi d,speed$table ! dad d ; point to counter entry
40 0026 7E322E01 mov a,m ! sta speed ; get and save etc count
41 002A El pop h ; recover
42 002B 11DC0019 Ixi d,data$ports ! dad d ; point at SIO port address
43 002F 7E3C323001 mov a,m ! inr a 1 sta sio$port ; get and save port
44 0034 11FAFF19 Ixi d,baud$ports-data$ports ! dad d ; offset to baud rate port
45 0038 7E322C01 mov a,m ! sta ctcSport ; get and save
46 003C 212B01 Ixi h,serial$init$tbl
47 003F C34500 jmp stream$out
48
49
50 0042 213901

cent$ init:
Ixi h,pio$init$tbl

51
52
53 0045 7EB7C8

stream$out:
mov a,m f ora a ! rz

54 0048 47234E23 mov b,a ! inx h ! mov c,m 1 inx h
55
56 004C+EDB3

outi r
DB 0EDH,0B3H

57 004E C34500 jmp stream$out
58
59
60
61
62 0051 78FE06D263

?ci: ; character input

mov a,b ! cpi 6 I jnc null$input ;; can't read from centronics
63
64 0057 CD6600CA57

cil:
call ?cist ! jz cil ; wait for character ready

65 005D 0D der c ! inp a ; get data
66 005E+ED78 DB 0EDH,A*8+40H
67 0060 E67F ani 7Fh ; mask parity
68 0062 C9 ret

Listing 1-2. Character I/O Handler for Z80 Chip-based System

All Information Presented Here is Proprietary to Digital Research

140

CP/M 3 System Guide 1.2 Character I/O Handler

69
70
71 0063

null$ input:
3E1A mvi a,lAh ; return a ctl-Z for no device

72 0065 C9 ret
73
74 ?cist: ; character input status
75
76 0066 78FE06D27D mov a,b 1 cpi 6 1 jnc null$status ; can't read from centronics
77 006C 682600 mov l,b ! mvi h,0 ; make device number 16 bits
78 006F 11DC0019 Ixi d,data$ports 1 dad d ; make pointer to port address
79 0073 4E0C mov c,m ! inr c ; get SIO status port
80
81

inp a ; read from status port
0075+ED78 DB 0EDH,A*8+40H

82 0077 E601 ani 1 ; isolate RxRdy
83 0079 C8 rz ; return with zero
84 007A F6FF ori OFFh
85 007C C9 ret
86
87
88 007D

null$status:
AFC9 xra a ! ret

89
90
91 007F

?co: ; character output
78FE06CA9E mov a,b ! cpi 6 ! jz centronics$out

92 0085 D29D00 jnc null$output
93 0088 79F5 mov a,c ! push psw ; save character from <C>
94 008A C5 push b ; save device number
95
96 008B

co$spin:
CDB300CA8B call ?cost ! jz co$spin ; wait for TxEmpty

97 0091 E16C2600 pop h ! mov l,h ! mvi h,0 ; get device number in <HL>
98 0095 11DC0019 Ixi d,data$ports ! dad d ; make address of port address
99 0099 4E mov c,m ; get port address

100 009A Fl pop psw ! outp a ; send data
101 009B+ED79 DB 0EDH,A*8+41H
102
103 009D

null$output:
C9 ret

104
105
106 009E

centronics$out:
DB10E620C2 in p$centstat ! ani 20h I jnz centronics$out

107 00A5 79D311 mov a,c ! out p$centdata ; give printer data
108 00A8 DB10F601D3 in p$centstat ! ori 1 ! out p$centstat ; set strobe
109 00AE E67ED310 ani 7Eh ! out p$centstat ; clear strobe
110 00B2 C9 ret
111
112
113 00B3

?cost: ; character output status
78FE06CACD mov a,b ! cpi 6 ! jz cent$stat

114 00B9 D27D00 jnc null$status
115 00BC 682600 mov l,b ! mvi h,0
116 00BF 11DC0019 Ixi d,data$ports ! dad d
117 00C3 4E0C mov c,m ! inr c
118
119

inp a ; get input status
00C5+ED78 DB 0EDH,A*8+40H

120 00C7 E604C8 ani 4 ! rz ; test transmitter empty
121 00CA F6FFC9 ori OFFh ! ret ; return true if ready
122
123
124
125 00CD

cent$stat:
DB102F in p$centstat 1 cma

126 00D0 E620C8 ani 20h ! rz
127 00D3 F6FFC9 ori OFFh ! ret
128
129
130 00D6

baud$ports: ; CTC ports by physical device number
0C0E3031 db p$baud$conl,p$baud$lptl,p$baud$con2,p$baud$con34

131 00DA 3132 db p$baud$con34,p$baud$lpt2
132
133
134 00DC

data$ports: ; serial base ports by physical device number
1C1E2C2E db pcrtdata,plptdata,p$con2data,p$con3data

135 00E0 2A28 db p$con4data,p$lpt2data
136
137
138 00E2 4352542020@ctbl db 'CRT ' ; device 0, CRT port 0
139 00E8 OF db mbinout+mb$serial+mb$softbaud
140 00E9 0E db baud$9600
141 00EA 4C50542020 db 'LPT ' ; device 1, LPT port 0
142 00F0 IF db mbinout+mb$serial+mb$softbaud+mb$xonxoff
143 00F1 0E db baud$9600
144 00F2 4352543120 db 'CRT1 ' ; device 2, CRT port 1
145 00F8 OF db mbinout+mb$serial+mb$softbaud
146 00F9 0E db baud$9600

4352543220 db 'CRT2 ' ; device 3, CRT port 2147 OOFA
148 0100 OF db mbinout+mb$serial+mb$softbaud
149 0101 0E db baud$9600

Listing 1-2. (continued)

All Information Presented Here is Proprietary to Digital Research

141

CP/M 3 System Guide 1.2 Character I/O Handler

interface

150 0102 4352543320 db 'CRT3 ' ; device 4, CRT port 3
151 0108 OF db mbinout+mb$serial+mb$softbaud
152 0109 0E db baud$9600

5641582020 db 'VAX ' ; device 5, LPT port 1 used for VAX153 010A
154 0110 OF db mbinout+mb$serial+mb$softbaud
155 0111 0E db baud$9600

43454E2020 db 'CEN ' ; device 6, Centronics parallel prini156 0112
157 0118 02 db mb$output
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

0119
011A

011B

012B
012C
012D
012E
012F
0130
0131
0135
0136
0138

00 db baud$none
00 db 0 ; table terminator

00FFFFFFE9speed$table db 0,255,255,255,233,208,104,208,104,69,

ser ial$ init$tbl
02 db 2 ; two bytes to CTC

ctc$port ds 1 ; port address of CTC
47 db 47h ; CTC mode byte

speed ds 1 ; baud multiplier
07 db 7 ; 7 bytes to SIO

sio$port ds 1 ; port address of SIO
1803E104 db 18h,3,0Elh,4

sioreg4 ds 1
05EA db 5,0EAh
00 db 0 ; terminator

176
177
178
179
180

BAUD110
BAUD1200
BAUD134
BAUD150
BAUD1800

0139
013D
0142

0143

02130F07 pio$init$tbl db 2,p$zpio$2b,OFh,07h
0312CFF807 db 3,p$zpio$2a,OCFh,0F8h,07h
00 db 0

end
0003
0008
0004
0005
0009

52,35,26,17,13,7

BAUD19200
BAUD2400
BAUD300
BAUD3600
BAUD4800
BAUD50
BAUD600
BAUD7200
BAUD75

000F
000A
0006
000B
000C
0001
0007
000D
0002

34

BAUD9600 000E 140 143 146 149 152 155
BAUDNONE 0000 158
BAUDPORTS 00D6 44 129#
BC 0000
CENTINIT 0042 28 49#
CENTRONICSOUT 009E 91 105# 106
CENTSTAT 00CD 113 124#
CI1 0057 631 64
COSPIN 008B 95# 96
CTCPORT 012C 45 166#
DATAPORTS 00DC 42 44 78 98 116 133#
DE 0002
HISPEED 001D 35 37#
HL 0004
IX 0004
IY 0004
MAXDEVICES 0006 23# 28
MBINOUT 0003 139 142 145 148 151 154
MBINPUT 0001
MBOUTPUT 0002 157
MBSERIAL 0008 139 142 145 148 151 154
MBSOFTBAUD 0004 139 142 145 148 151 154
MBXONXOFF 0010 142
NULLINPUT 0063 62 70#
NULLOUTPUT 009D 92 102#
NULLSTATUS 007D 76 87# 114
PBANKSELECT 0025
PBAUDCON1 oooc 130
PBAUDCON2 0030 130
PBAUDCON34 0031 130 131
PBAUDLPT1 000E 130
PBAUDLPT2 0032 131
PBOOT 0014
PCENTDATA 0011 107
PCENTSTAT 0010 106 108 108 109 125
PCON2DATA 002C 134

Listing 1-2. (continued)

All Information Presented Here is Proprietary to Digital Research

142

CP/M 3 System Guide 1.2 Character I/O Handler

PC0N2STAT 002D
PC0N3DATA 002E 134
PCON3STAT 002F
PC0N4DATA 002A 135
PCON4STAT 002B
PCONFIGURATION 0024
PCRTDATA 001C 134
PCRTSTAT 001D
PFDCMND 0004
PFDDATA 0007
PFDINT 0008
PFDMISC 0009
PFDSECTOR 0006
PFDSTAT 0004
PFDTRACK 0005
PINDEX 000F
PIOINITTBL 0139 50 1761
PLPT2DATA 0028 135
PLPT2STAT 0029
PLPTDATA 001E 134
PLPTSTAT 001F
PRTC 0033
PSELECT 0008
PWD1797 0004
PZCTC1 oooc
PZCTC2 0030
PZDART 001C
PZDMA 0000
PZPIO1 0008
PZPIO1A 000A
PZPIO1B 000B
PZPIO2 0010
PZPIO2A 0012 177
PZPIO2B 0013 176
PZPIO3 0024
PZPIO3A 0026
PZPIO3B 0027
PZSIO1 0028
PZSIO2 002C
SERIALINITTBL 012B 46 164#
SIOPORT 0130 43 170#
SIOREG4 0135 38 172#
SPEED 012E 40 168#
SPEEDTABLE 011B 39 162#
STREAMOUT 0045 47 52# 57
?CI 0051 16 60#
7CINIT 0000 16 27#
?CIST 0066 16 64 74#
?CO 007F 16 90#
7COST 00B3 16 96 112#
@CTBL 00E2 17 33 138#

Listing 1-2. (continued)

All Information Presented Here is Proprietary to Digital Research

143

CP/M 3 System Guide 1.3 Drive Table

1.3 Drive Table
The DRVTBL.ASM module points to the data structures for each

configured disk drive. The drive table determines which physical
disk unit is associated with which logical drive. The data
structure for each disk drive is called an Extended Disk Parameter
Header (XDPH).

i
2
3
4
5
6 0000 00000000 @dtbl
7 0004 0000000000
8
9 0020

FDSD0 0000 2
FDSD1 0000 2
@DTBL 0000 1

public @dtbl
extrn fdsd0,fdsdl

cseg

dw fdsd0,fdsdl
dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0

end
6
6
61

drives C-P non-existent

Listing 1-3. Drive Table

1.4 Z80 DMA Single-density Disk Handler
The FD1797SD module initializes the disk controllers for the

disks described in the Disk Parameter Headers and Disk Parameter
Blocks contained in this module. FD1797SD is written for hardware
that supports Direct Memory Access (DMA).

1 title 'wdl797 w/ Z80 DMA Single density diskette handler’
2
3 ; CP/M-80 Version 3 — Modular BIOS
4
5 ; Disk I/O Module for wd!797 based diskette systems
6
7 ; Initial version 0.01,
8 ; Single density floppy only. - jrp, 4 Aug 82
9

10 dseg
11
12 ; Disk drive dispatching tables for linked BIOS
13
14 public fdsd0,fdsdl
15
16 ; Variables containing parameters passed by BDOS
17
18 extrn @adrv,@rdrv
19 extrn @dma,@trk,£sect
20 extrn @dbnk
21
22 ; System Control Block variables
23
24 extrn @ermde ; BDOS error mode
25
26 ; Utility routines in standard BIOS

Listing 1-4. Z80 DMA Single-density Disk Handler

All Information Presented Here is Proprietary to Digital Research

144

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

27
28
29
30
31
32
33
34
35

extrn ?wboot ; warm boot vector
extrn ?pmsg ; print message £<HL> up to 00, saves <BC> & <DE>
extrn ?pdec ; print binary number in <A> from 0 to 99.
extrn ?pderr ; print BIOS disk error header
extrn ?conin,?cono ; con in and out
extrn ?const ; get console status

36
37
38
39

* Port Address Equates

maclib ports

40
41
42
43

CP/M 3 Disk definition macros

maclib cpm3

44
45
46
47

Z80 macro library instruction definitions

maclib z80

48
49

common control characters

50 000D = cr equ 13
51 000A = If equ 10
52
53
54

0007 = bell equ 7

55
56

Extended Disk Parameter Headers (XPDHs)

57 0000 E600 dw fd$writ'e
58 0002 DC00 dw fd$read
59 0004 DB00 dw fd$login
60 0006 BEOO dw fd$initO
61 0008 0000 db 0,0 ; relative drive zero
62 fdsdO dph trans,dpbsd,16,31
63 000A+A400 DW TRANS ; TRANSLATE TABLE ADDRESS
64 OOOC+OOOOOOOOOO DB 0,0,0,0,0,0,0,0,0 ; BDOS SCRATCH AREA
65 0015+00 DB 0 ; MEDIA FLAG
66 0016+0000 DW DPBSD ; DISK PARAMETER BLOCK
67 0018+2300 DW 770001 ; CHECKSUM VECTOR
68 001A+3300 DW 770002 ; ALLOCATION VECTOR
69 001C+FEFFFEFFFE DW 0FFFEH,0FFFEH,0FFFEH ; DIRBCB, DTABCB, HASH ALLOC'D BY GENCPM
70 0022+00 DB 0 ; HASH BANK
71 0023+ ??0001 DS 16 ; CHECKSUM VECTOR
72
73

0033+ 770002 DS 31 ; ALLOCATION VECTOR

74 0052 E600 dw fd$write
75 0054 DC00 dw fd$read
76 0056 DBOO dw fd$login
77 0058 CD00 dw fd$initl
78 005A 0100 db 1,0 ; relative drive one
79 fdsdl dph trans,dpbsd,16,31
80 005C+A400 DW TRANS ; TRANSLATE TABLE ADDRESS
81 005E+0000000000 DB 0,0,0,0,0,0,0,0,0 ; BDOS SCRATCH AREA
82 0067+00 DB 0 ; MEDIA FLAG
83 0068+0000 DW DPBSD ; DISK PARAMETER BLOCK
84 006A+7500 DW 770003 ; CHECKSUM VECTOR
85 006C+8500 DW 770004 ; ALLOCATION VECTOR
86 006E+FEFFFEFFFE DW 0FFFEH,0FFFEH,0FFFEH ; DIRBCB, DTABCB, HASH ALLOC'D BY GENCPM
87 0074+00 DB 0 ; HASH BANK
88 0075+ 770003 DS 16 ; CHECKSUM VECTOR
89
90
91
92

0085+ 770004 DS 31 ,• ALLOCATION VECTOR

cseg ; DPB must be resident

93 dpbsd dpb 128,26,77,1024,64,2
94 0000+1A00 DW 770005 ; 128 BYTE RECORDS PER TRACK
95 0002+0307 DB 770006,770007 ; BLOCK SHIFT AND MASK
96 0004+00 DB 770008 ; EXTENT MASK
97 0005+F200 DW 770009 ; MAXIMUM BLOCK NUMBER
98 0007+3F00 DW 770010 ; MAXIMUM DIRECTORY ENTRY NUMBER
99 0009+C000 DB 770011,770012 ; ALLOC VECTOR FOR DIRECTORY

100 000B+1000 DW 770013 ; CHECKSUM SIZE
101 000D+0200 DW 2 ; OFFSET FOR SYSTEM TRACKS
102
103
104

000F+0000 DB 770014,770015 ; PHYSICAL SECTOR SIZE SHIFT AND MASK

dseg ; rest is banked

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

145

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

105
106 trans skew 26 ,6,1
107 00A4+01 DB 7NXTSEC+1
108 00A5+07 DB 7NXTSEC+1
109 00A6+0D DB 7NXTSEC+1
110 00A7+13 DB 7NXTSEC+1
111 00A8+19 DB 7NXTSEC+1
112 00A9+05 DB 7NXTSEC+1
113 00AA+0B DB 7NXTSEC+1
114 00AB+11 DB 7NXTSEC+1
115 00AC+17 DB 7NXTSEC+1
116 00AD+03 DB 7NXTSEC+1
117 00AE+09 DB 7NXTSEC+1
118 00AF+0F DB 7NXTSEC+1
119 00B0+15 DB 7NXTSEC+1
120 00B1+02 DB 7NXTSEC+1
121 00B2+08 DB 7NXTSEC+1
122 00B3+0E DB 7NXTSEC+1
123 00B4+14 DB 7NXTSEC+1
124 00B5+1A DB 7NXTSEC+1
125 00B6+06 DB 7NXTSEC+1
126 00B7+0C DB 7NXTSEC+1
127 00B8+12 DB 7NXTSEC+1
128 00B9+18 DB 7NXTSEC+1
129 00BA+04 DB 7NXTSEC+1
130 00BB+0A DB 7NXTSEC+1
131 00BC+10 DB 7NXTSEC+1
132 00BD+16 DB 7NXTSEC+1
133
134
135
136 ; Disk I /o routines for standardized BIOS interface
137
138 ; Initialization entry point.
139
140 called for first time initialization.
141
142
143 fd$initO:
144 00BE 21CE00 Ixi h, init$ table
145 fd$ init$next:
146 00C1 7EB7C8 mov a ,m ! ora a ! rz
147 00C4 47234E23 mov b,a ! inx h I mov c,m 1 inx h
148 outir
149 00C8+EDB3 DB 0EDH,0B3H
150 OOCA C3C100 jmp fd$init$next
151
152 fd$initl: ; all initialization done by drive 0
153 00CD C9 ret
154
155 OOCE 040A init$ table db 4,p$zpio$lA
156 00D0 CFC217FF db 11001111b, 11000010b, 00010111b,11111111b
157 00D4 040B db 4,p$zpio$lB
158 00D6 CFDD17FF db 11001111b, 11011101b, 00010111b,11111111b
159 00DA 00 db 0
160
161
162 fd$login:
163 ; This entry is called when a logical drive is about to
164 ; be logged into for the purpose of density determination.
165
166 ; It may adjust the parameters contained in the disk
167 ; parameter header pointed at by <DE>
168
169 OODB C9 ret ; we have nothing to do in
170 ; simple single density only environment.
171
172
173 ; disk READ and WRITE entry points.
174
175 ; these entries are called with the following arguments:
176
177 ; relative drive number in @rdrv (8 bits)
178 ; absolute drive number in @adrv (8 bits)
179 ; disk transfer address in @dma (16 bits)
180 ; disk transfer bank in @dbnk (8 bits)
181 ; disk track address in ?trk (16 bits)
182 ; disk sector address in @sect (1€i bits)
183 ; pointer to XDPH in <DE>
184

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

146

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

; they transfer the appropriate data, perform retries
; if necessary, then return an error code in <A>

fd$read:
00DC 211802 Ixi h,read$msg ; point at " Read "
00DF 3E880601 mvi a,88h 1 mvi b,01h ; 1797 read + Z80DMA direction
00E3 C3ED00 jmp rw$common

fd$write:
00E6 211F02 Ixi h,write$msg ; point at " Write "
00E9 3EA80605 mvi a,0A8h 1 mvi b,05h ; 1797 write + Z80DMA direction

; jmp wr$common

rw$common: ; seek to correct track (if necessary),
; initialize DMA controller,
; and issue 1797 command.

00ED 222702 shld operation$name ; save message for errors
00F0 321102 sta disk$command ; save 1797 command
00F3 7832A802 mov a,b ! sta zdma$direction ; save Z80DMA direction code
00F7 2A0000229F Ihld @dma ! shld zdma$dma ; get and save DMA address
00FD 3A00006F26 Ida grdrv ! mov l,a 1 mvi h,0 ; get controller-relative disk drive
0103 11160219 Ixi d,select$table ! dad d ; point to select mask for drive
0107 7E321202 mov a,m I sta select$mask ; get select mask and save it
010B D308 out p$select ; select drive

more$retries:
010D 0E0A mvi c,10 ; allow 10 retries

retry$operation:
010F C5 push b ; save retry counter

0110 3A12022113 Ida select$mask ! Ixi h,old$select ! cmp m
0117 77 mov m,a
0118 C22D01 jnz new$track ; if not same drive as last, seek

011B 3A00002114 Ida @trk ! Ixi h,old$track ! cmp m
0122 77 mov m,a
0123 C22D01 jnz new$track ; if not same track, then seek

0126 DB09E602C2 in p$fdmisc 1 ani 2 ! jnz same$track ; head still loaded, we are OK

new$track: ; or drive or unloaded head means we should . . .
012D CDA901 call check$seek ; . . read address and seek if wrong track

0130 011B41 Ixi b,16667 ; 100 ms / (24 t states*250 ns)
spin$loop: ; wait for head/seek settling

0133 0B dcx b
0134 78B1 mov a,b ! ora c
0136 C23301 jnz spin$loop

same$track:
0139 3A0000D305 Ida $trk I out p$fdtrack ; give 1797 track
013E 3A0000D306 Ida @sect 1 out p$fdsector ; and sector

0143 219A02 Ixi h,dma$block ; point to dma command block
0146 010011 Ixi b,dmab$length*256 + p$zdma ; command block length and port address

outir ; send commands to Z80 DMA
0149+EDB3 DB 0EDH,0B3H

014B DB25 in p$bankselect ; get old value of bank select port
014D E63F47 ani 3Fh ! mov b,a ; mask off DMA bank and save
0150 3A00000F0F Ida £dbnk 1 rrc I rrc ; get DMA bank to 2 hi-order bits
0155 E6C0B0 ani OCOh ! ora b ; merge with other bank stuff
0158 D325 out p$bankselect ; and select the correct DMA bank

015A 3A1102 Ida disk$command ; get 1797 command
015D CDD501 call exec$command ; start it then wait for IREQ and read status
0160 321502 sta disk$status ; save status for error messages

0163 Cl pop b ; recover retry counter
0164 B7C8 ora a 1 rz ; check status and return to BDOS if no error

0166 E610 ani 0001$0000b ; see if record not found error
0168 C4A901 cnz check$seek ; if a record not found, we might need to seek

016B 0DC20F01 der c ! jnz retry$operation

; suppress error message if BDOS is returning errors to application...

016F 3A0000FEFF Ida §ermde 1 cpi OFFh ! jz hard$error

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research
147

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

264
265
266

id permanent error, print message like:

267
268

; BIOS Err on d: T-nn, S-mm, <operation> <type>, Retry ?

269
270

0177 CD0000 call ?pderr ; print message header

271
272
273
274

017A 2A2702CD00 Ihld operation?name ! call ?pmsg ; last function

; then, messages for all indicated error bits

275 0180 3A1502 Ida disk$status ; get status byte from last error
276
277

0183 212902
errml:

Ixi h,error?table ; point at table of message addresses

278 0186 5E235623 mov e,m ! inx h ! mov d,m ! inx h ; get next message address
279 018A 87F5 add a ! push psw ; shift left and push residual bits with status
280 018C EBDC0000EB xchg ! cc ?pmsg ! xchg ; print message, saving table pointer
281
282

0191 F1C28601 pop psw ! jnz errml ; if any more bits left, continue

283 0195 218A02CD00 Ixi h,error$msg ! call ?pmsg ; print "<BEL>, Retry (Y/N) ? "
284 019B CDF501 call u?conin?echo ; get operator response

epi 'Y' ! jz more$retries ; Yes, then retry 10 more times
ror: ; otherwise,

285
286

019E FE59CA0D01
hard?eri

287
288
289

01A3 3E01C9

cancel:

mvi a,l ! ret ; return hard error to BDOS

; here to abort job
290
291
292
293
294
295
296

01A6 C30000 jmp ?wboot ; leap directly to warmstart vector

; subroutine to seek if on wrong track
; called both to set up new track or drive

check$seek:
297 01A9 C5 push b ; save error counter
298 01AA CDE101 call read$id ; try to read ID, put track in
299 01AD CABE01 jz id$ok ; if OK, we’re OK
300 01B0 CDCE01 call step?out ; else step towards Trk 0
301 01B3 CDE101 call read?id ; and try again
302 01B6 CABE01 jz id?ok ; if OK, we're OK
303 01B9 CDD301 call restore ; else, restore the drive
304
305

01BC 0600
id?ok:

mvi b,0 ; and make like we are at track 0

306 01BE 78D305 mov a,b 1 out p$fdtrack ; send current track to track port
307 01C1 3A0000B8C1 Ida @trk 1 cmp b ! pop b I rz ; if its desired track, we are done
308 01C7 D307 out p$fddata ; else, desired track to data port
309 01C9 3E1A mvi a,00011010b ; seek w/ 10 ms. steps
310
311
312
313
314

01CB C3D501 jmp exec$command

step$out:
315 01CE 3E6A mvi a,01101010b ; step out once at 10 ms.
316
317
318

01D0 C3D501

restore:

jmp exec$command

319
320
321
322
323
324

01D3 3E0B mvi a,00001011b ; restore at 15 ms
; jmp exec$command

exec?command: ; issue 1797 command, and wait for IREQ
; return status

325
326

01D5 D304 out p$fdcmnd ; send 1797 command
wait?IREQ: ; spin til IREQ

327 01D7 DB08E640CA in p$fdint ! ani 40h ! jz wait$IREQ
328 OIDE DB04 in p?fdstat ; get 1797 status and clear IREQ
329
330
331

01E0 C9

read? id:

ret

332 01E1 21AB02 Ixi h,read?id?block ; set up DMA controller
333
334

01E4 01000F Ixi b, length?id?dmab*256 + p?zdma ; for READ ADDRESS operation
outir

335 01E7+EDB3 DB 0EDH,0B3H
336 01E9 3EC4 mvi a,11000100b ; issue 1797 read address command
337 01EB CDD501 call exec?command ; wait for IREQ and read status
338 01EE E69D ani 10011101b ; mask status
339 01F0 21110046 Ixi h,id?buffer ! mov b,m ; get actual track number in
340
341
342

01F4 C9 ret ; and return with Z flag true for OK

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

148

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

343 u$conin$echo: ; get console input, echo it, and shift to upper case
344 01F5 CD0000B7CA call ?const ! ora a ! jz u$cl ; see if any char already struck
345 01FC CD0000C3F5 call ?conin !
346 u$cl:

jmp u$conin$echo ; yes, eat it and try again

347 0202 CD0000F5 call ?conin ! push psw
348 0206 4FCD0000 mov c,a ! call. ?cono
349 020A F1FE61D8 pop psw ! cpi

- 'A'
'a' I rc

350 020E D620 sui 'a'
351 0210 C9 ret
352
353

; make upper case

354 0211 disk$command ds 1 ; current wdl797 command
355 0212 select$mask ds 1 ; current drive select code
356 0213 old$select ds 1 ; last drive selected
357 0214 old$track
358

ds 1 ; last track seeked to

359 0215 disk$status
360

ds 1 ; last error status code for messages

361 0216 1020 select$table
362
363

db 0001$0000b,0010$0000b ; for now use drives C and D

364 ; error
365

message components

366 0218 2C20526561read$msg db ', Read',0
367 021F 2C20577269write$msg
368

db •, Write',0

369 0227 1802 operation$name
370

dw read$msg

371 ; table of pointers to error message strings
372 ;
373

first entry is for bit 7 of 1797 status byte

374 0229 3902 error$table dw b7$msg
375 022B 4502 dw b6$msg
376 022D 4F02 dw b5$msg
377 022F 5702 dw b4$msg
378 0231 6A02 dw b3$msg
379 0233 7002 dw b2$msg
380 0235 7C02 dw bl$msg
381 0237 8302
382

dw b0$msg

383 0239 204E6F7420b7$msg db ' Not ready,',0
384 0245 2050726F74b6$msg db ' Protect,’,0
385 024F 204661756Cb5$msg db ' Fault,',0
386 0257 205265636Fb4$msg db ' Record not found,',0
387 026A 204352432Cb3$msg db ' CRC, ',0
388 0270 204C6F7374b2$msg db ' Lost data,’,0
389 027C 2044524551bl$msg db ' DREQ,',0
390 0283 2042757379b0$msg
391

db ' Busy,',0

392 028A 2052657472error$msg
393
394
395

db • Retry (Y/N) ? ',0

396 ; command string for Z80DMA device for normal operation
397
398 029A C3 dma$block db 0C3h ; reset DMA channel
399 029B 14 db 14h ; channel A is incrementing memory
400 029C 28 db 28h ; channel B is fixed port address
401 029D 8A db 8Ah ; RDY is high, CE/ only, stop on EOB
402 029E 79 db 79h ; program all of ch. A, xfer B->A (temp)
403 029F zdma$dma ds 2 ; starting DMA address
404 02A1 7F00 dw 128-1 ; 128 byte sectors in SD
405 02A3 85 db 85h ; xfer byte at a time, ch B is 8 bit address
406 02A4 07 db p$fddata ; ch B port address (1797 data port)
407 02A5 CF db OCFh ; load B as source register
408 02A6 05 db 05h ; xfer A->B
409 02A7 CF db OCFh ; load A as source register
410 02A8 zdma$direction ds 1 ; either A->B or B->A
411 02A9 CF db OCFh ; load final source register
412 02AA 87 db 87h ; enable DMA channel
413 0011 = dmab$length
414
415
416

equ $-dma$block

417 02AB C3 readidblock db 0C3h ; reset DMA channel
418 02AC 14 db 14h ; channel A is incrementing memory
419 02AD 28 db 28h ; channel B is fixed port address
420 02AE 8A db 8Ah ; RDY is high, CE/ only, stop on EOB
421 02AF 7D db 7Dh ; program all of ch. A, xfer A->B (temp)
422 02B0 1100 dw id$buffer ; starting DMA address
423 02B2 0500 dw 6-1 ; Read ID always xfers 6 bytes

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

149

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

424 02B4 85 db 85h ; byte xf er, ch B is 8 bit address
425 02B5 07 db p$fddata ; ch B port address (1797 data port)
426 02B6 CF db OCFh ; load dest (currently source) register
427 02B7 01 db Olh ; xfer B->A
428 02B8 CF db OCFh ; load source register
429 02B9 87 db 87h ; enable DMA channel
430 000F = length$ id$dmab equ $-read$id$block
431
432 cseg ; easier to put ID buffer in common
433
434 0011 id$buffer dB 6 ; buffer to hold ID field
435 ; track
436 ; side
437 ; sector
438 ; length
439 ; CRC 1
440 ; CRC 2
441
442 0017 end

B0MSG 0283 381 390#
BiMSG 027C 380 3891
B2MSG 0270 379 388#
B3MSG 026A 378 387#
B4MSG 0257 377 386#
B5MSG 024F 376- 385#
B6MSG 0245 375 384#
B7MSG 0239 374 383#
BC 0000
BELL 0007 52#
CANCEL 01A6 289#
CHECKSEEK 01A9 226 257 296»
CR 000D 50#
DE 0002
DISKCOMMAND 0211 203 249 354«
DISKSTATUS 0215 251 275 359«
DMABLENGTH 0011 239 413#
DMA BLOCK 029A 238 398« 413
DPBSD 0000 62 66 79 83 93»
ERRM1 0186 277# 281
ERRORMSG 028A 283 392#
ERRORTABLE 0229 276 374«
EXECCOMMAND 01D5 250 310 316 323« 337
FDINIT0 00BE 60 143«
FDINIT1 00CD 77 152«
FDINITNEXT 00C1 145« 150
FDLOGIN 00DB 59 76 162«
FDREAD 00DC 58 75 188«
FDSD0 000A 14 62«
FDSD1 005C 14 79«
FDWRITE 00E6 57 74 193«
HARDERROR 01A3 263 286«
HL 0004
IDBUFFER 0011 339 422 434«
IDOK 01BE 299 302 305«
INITTABLE OOCE 144 155«
IX 0004
IY 0004
LENGTHIDDMAB 000F 333 430«
LF 000A 51«
MORERETRIES 010D 210« 285
NEWTRACK 012D 217 221 225«
OLDSELECT 0213 215 356«
OLDTRACK 0214 219 357«
OPERATIONNAME 0227 202 271 369«
PBANKSELECT 0025 243 247
PBAUDCON1 OOOC

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

150

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

PBAUDC0N2 0030
PBAUDCON34 0031
PBAUDLPT1 000E
PBAUDLPT2 0032
PBOOT 0014
PCENTDATA 0011
PCENTSTAT 0010
PC0N2DATA 002C
PCON2STAT 002D
PC0N3DATA 002E
PCON3STAT 002F
PC0N4DATA 002A
PCON4STAT 002B
PCONFIGURATION 0024
PORTDATA 001C
PCRTSTAT 001D
PFDCMND 0004 325
PFDDATA 0007 308 406 425
PFDINT 0008 327
PFDMISC 0009 223
PFDSECTOR 0006 236
PFDSTAT 0004 328
PFDTRACK 0005 235 306
PINDEX 000F
PLPT2DATA 0028
PLPT2STAT 0029
PLPTDATA 001E
PLPTSTAT 001F
PRTC 0033
PSELECT 0008 209
PWD1797 0004
PZCTC1 oooc
PZCTC2 0030
PZDART 001C
PZDMA 0000 239 333
PZPIO1 0008
PZPIO1A 000A 155
PZPIO1B 000B 157
PZPIO2 0010
PZPIO2A 0012
PZPIO2B 0013
PZPIO3 0024
PZPIO3A 0026
PZPIO3B 0027
PZSIO1 0028
PZSIO2 002C
READID 01E1 298 301 331#
READIDBLOCK 02AB 332 417# 430
READMSG 0218 189 366# 369
RESTORE 01D3 303 318#
RETRYOPERATION 010F 212# 259
RWCOMMON 00ED 191 198#
SAMETRACK 0139 223 234#
SELECTMASK 0212 208 215 355#
SELECTTABLE 0216 207 361#
SPINLOOP 0133 2291 232
STEPOUT 01CE 300 314#
TRANS 00A4 62 63 79 80 106#
UC1 0202 344 346#
UCONINECHO 01F5 284 343# 345
WAIT I REQ 01D7 326# 327
WRITEMSG 021F 194 367#
ZDMADI RECTION 02A8 204 410#
ZDMADMA 029F 205 403#
?CONIN 0000 32 345 347
7 CONO 0000 32 348
?CONST 0000 33 344
7PDEC 0000 30
7PDERR 0000 31 269
7PMSG 0000 29 271 280 283
7 WBOOT 0000 28 290
@ADRV 0000 18

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

151

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

@DBNK
@DMA
@ERMDE
@RDRV
SSECT
@TRK

0000 20 245
0000 19 205
0000 24 263
0000 18 206
0000 19 236
0000 19 219 235 307

Listing 1-4. (continued)

1.5 Bank and Move Module for CP/M 3 Linked BIOS
The MOVE.ASM module performs memory-to-memory moves and bank

selects.

2
3

title 'bank & move module for CP/M3 linked BIOS'

cseg

5
6

public ?move,?xmove,?bank
extrn @cbnk

10

maclib
maclib

z80
ports

12
13

0000 C9
?xmove ALTOS can't perform interbank moves

15
16
17
18
19
20
21
22

0001 EB

0002+EDB0
0004
0005

EB
C9

?move
xchg
Idir
DB
xchg

0EDH,0B0H

we are passed source in DE and dest in HL
use Z80 block move instruction

need next addresses in same regs

by exiting through bank select
?bank;

23 0006 C5 push b
24 0007 171717E618 ral 1 ral ! ral ! ani 18h
25 000C 47 mov b,a
26 000D DB25 in p$bankselect
27 000F E6E7B0 ani 0E7h ! ora b
28 0012 D325 out p$bankselect
29 0014 Cl pop b
30
31
32
33
34

0015 C9

0016

ret

end

; save register b for temp
; isolate bank in proper
; save in reg B
; get old memory control
; mask out old and merge

bit position

put new
restore

128 bytes

memory control
register b

at a time

byte
in new
byte

BC 0000
DE 0002
HL 0004
IX 0004
IY 0004
PBANKSELECT 0025
PBAUDCON1 oooc
PBAUDCON2 0030
PBAUDCON34 0031
PBAUDLPT1 000E
PBAUDLPT2 0032
PBOOT 0014
PCENTDATA 0011
PCENTSTAT 0010
PCON2DATA 002C
PCON2STAT 002D
PCON3DATA 002E
PCON3STAT 002F
PCON4DATA 002A
PCON4STAT 002B
PCONF IGURATION 0024
PCRTDATA 001C

26 28

Listing 1-5. Bank and Move Module for CP/M 3 Linked BIOS

All Information Presented Here is Proprietary to Digital Research

152

CP/M 3 System Guide 1.5 Bank & Move Module for Linked BIOS
PCRTSTAT
PFDCMND
PFDDATA
PFDINT
PFDMISC
PFDSECTOR
PFDSTAT
PFDTRACK
PINDEX
PLPT2DATA
PLPT2STAT
PLPTDATA
PLPTSTAT
PRTC
PSELECT
PWD1797
PZCTC1
PZCTC2
PZDART
PZDMA
PZPIO1
PZPIO1A
PZPIO1B
PZPIO2
PZPIO2A
PZPIO2B
PZPIO3
PZPIO3A
PZPIO3B
PZSIO1
PZSIO2
7BANK
7 MOVE
7XMOVE
CCBNK

001D
0004
0007
0008
0009
0006
0004
0005
000F
0028
0029
001E
001F
0033
0008
0004
000C
0030
001C
0000
0008
000A
000B
0010
0012
0013
0024
0026
0027
0028
002C
0006
0001
0000
0000

5 22*
5 141
5 11#
6

Listing 1-5. (continued)

1.6 I/O Port Addresses for Z80 Chip-based System: PORTS.LIB
Tl)is

diskette.
listing is the PORTS.LIB file on your distribution
It contains the port addresses for the Z80 chip-based

system with a Western Digital 1797 Floppy Disk Controller.

T/O Port addresses for Z80 chip set based system with wd!797 FDC

; chip bases

pSzdma equ 0
p$wdl797 equ 4
p$zpiol equ 8
pSzctcl equ 12
p$zpio2 equ 16
p$boot equ 20 ; OUT disables boot EPROM
pSzdart equ 28 ; console 1 and printer 1
p$zpio3 equ 36
p$zsiol equ 40
p$zsio2 equ 44
p$zctc2 equ 48

; diskette controller chip ports

p$fdcmnd
p$fdstat
p$fdtrack
pS fdsector
p$fddata

equ p$wdl797+0
equ p$wdl797+0
equ p$wdl797+l
equ p$wdl797+2
equ p$wdl797+3

; parallel I/O 1

Listing 1-6. I/O Port Addresses for Z80 Chip-based System

All Information Presented Here is Proprietary to Digital Research
153

CP/M 3 System Guide 1.6 I/O Port Addresses

p$select equ p$zpiol+0
p$fdint equ p$zpiol+0
p$fdmisc equ p$zpiol+l
p$zpiola equ p$zpiol+2
p$zpiolb equ p$zpiol+3

; counter timer chip 1

p$baudconl equ p$zctcl+0
p$baudlptl equ p$zctcl+2
p$index equ p$zctcl+3

; parallel I/O 2, Centronics printer interface

p$cent$stat
p$cent$data
p$zpio2a
p$zpio2b

equ
equ
equ
equ

p$zpio2+0
p$zpio2+l
p$zpio2+2
p$zpio2+3

pcrtdata
pcrtstat
plptdata
plptstat

; dual asynch rcvr/xmtr, console and serial printer ports
equ
equ
equ
equ

p$zdar t+0
p$zdart+1
p$zdar t+2
p$ zdar t+3

; Third Parallel I/O device

p$configuration equ p$zpio3+0
p$bankselect equ p$zpio3+l
p$zpio3a equ p$zpio3+2
p$zpio3b equ p$zpio3+3

; Serial I/O device 1, printer 2 and console 4

p$lpt2data
p$lpt2stat
p$con 4data
p$con4stat

equ p$zsiol+0
equ p$zsiol+l
equ p$zsiol+2
equ p$zsiol+3

; Serial I/O device 2, console 2 and 3

p$con 2data
p$con 2stat
p$con3data
p$con 3stat

equ p$zsio2+0
equ p$zsio2+l
equ p$zsio2+2
equ p$zsio2+3

; second Counter Timer Circuit

p$baudcon2
p$baudcon34
p$baudlpt2
p$rtc

equ p$zctc2+0
equ p$zctc2+l
equ p$zctc2+2
equ p$zctc2+3

Listing 1-6. (continued)

All Information Presented Here is Proprietary to Digital Research

154

CP/M 3 System Guide 1.7 Sample Submit File

1.7 Sample Submit File for ASC 8000-15 System
Digital Research used this SUBMIT file to build the sample

BIOS.

;Submit file to build sample BIOS for ACS 8000-15 single-density system

rmac bioskrnl
rmac boot
rmac move
rmac chario
rmac drvtbl
rmac fdl797sd
rmac scb
link bnkbios3[b,q]=bioskrnl,boot,move,chario,drvtbl,fdl797sd,scb
gencpm

Listing 1-7. Sample Submit File for ASC 8000-15 System

End of Appendix I

All Information Presented Here is Proprietary to Digital Research

155

CP/M 3 System Guide End of Appendix I

All Information Presented Here is Proprietary to Digital Research

156

Appendix J
Public Entry Points for CP/M 3 Sample BIOS Modules

Public
Module Entry

Name Point

BIOSKRNL
7PMSG
7PDEC
7PDERR

Function

Print Message
Print Decimal
Print BIOS Disk
Err Msg Header

Input
Parameter

Return
Value

HL -points to msg
HL=number
none

none
none
none

CHARIO
7CINIT

7CIST

Char Dev Init

Char Inp Dev St

C=Phys Dev I
Dev Parms in @CTBL
B=Phys Dev •

7COST Char Out Dev St B=Phys Dev I

7CI

7 CO

Char Dev Input

Char Dev Output

B=Phys Dev I

B=Phys Dev I
C=Input Char

none

A=00 if no input
A=0FFH if input

char available
A=00 if output

busy
A=0FFH if output

ready
A=next available

input char

MOVE
7 MOVE Memory to Memory

Move
BC=byte count
DE=start source adr
HL=start dest adr

7XMOVE

7BANK

Set Banks for
Extended Move

Select Bank

B=Source Bank
C=Dest Bank

A=Bank Number

DE,HL point to
next bytes
after move

BC,DE,HL are
unchanged

All unchanged

BOOT
7INIT
7LDCCP
7RLCCP
7TIME

System Init
Load CCP
Reload CCP
Get/Set Time

none
none
none
C=000H if get
C=0FFH if set

none
none
none
none

Listing J-l. Public Entry Points for CP/M 3 Sample BIOS Modules

End of Appendix J

All Information Presented Here is Proprietary to Digital Research

157

CP/M 3 System Guide End of Appendix J

All Information Presented Here is Proprietary to Digital Research

158

Appendix K
Public Data Items in CP/M 3 Sample BIOS Modules

Table K-l. Public Data Items
Module
Name

Public
Data Description

BIOSKRNL
@ADRV Absolute Logical Drive Code
@RDRV Relative logical drive code (UNIT)
@TRK Track Number
@SECT Sector Address
@DMA DMA Address
@DBNK Bank for Disk I/O
@CNT Multi-sector Count
@CBNK Current CPU Bank

CHARIO
@CTBL Character Device Table

DRVTBL
@DTBL Drive Table

End of Appendix K

All Information Presented Here is Proprietary to Digital Research

159

CP/M 3 System Guide End of Appendix K

All Information Presented Here is Proprietary to Digital Research

160

Appendix L
CP/M 3 BIOS Function Summary

Table L-l. BIOS Function Jump Table Summary
No. Function Input Output

0 BOOT None None
1 WBOOT None None
2 CONST None A=0FFH if ready

A=00H if not ready
3 CONIN None A=Con Char
4 CONOUT C=Con Char None
5 LIST C=Char None
6 AUXOUT C=Char None
7 AUXIN None A=Char
8 HOME None None
9 SELDSK C=Drive 0-15

E=Init Sei Flac
HL=DPH addr

j HL=000H if invalid dr.
10 SETTRK BC=Track No None
11 SETSEC BC=Sector No None
12 SETDMA BC=.DMA None
13 READ None A=00H if no Err

A=01H if Non-recov Err
A=0FFH if media changed

14 WRITE C=Deblk Codes A=00H if no Err
A=01H if Phys Err
A=02H if Dsk is R/O
A=0FFH if media changed

15 LISTST None A=00H if not ready
A=0FFH if ready

16 SECTRN BC=Log Sect No HL=Phys Sect No
DE=Trans Tbl Adr

17 CONOST None A=00H if not ready
A=0FFH if ready

18 AUXIST None A=00H if not ready
A=0FFH if ready

19 AUXOST None A=00H if not ready
A=0FFH if ready

20 DEVTBL None HL=Chrtbl addr
21 DEVINI C=Dev No 0-15 None
22 DRVTBL None HL=Drv Tbl addr

HL=0FFFFH
HL=0FFFEH
HL=0FFFDH

23 MULTIO C=Mult Sec Cnt None
24 FLUSH None A=000H if no err

A=001H if phys err
A=002H if disk R/O

25 MOVE HL=Dest Adr
DE=Source Adr

HL & DE point to next
bytes following MOVE

All Information Presented Here is Proprietary to Digital Research

161

CP/M 3 System Guide L CP/M 3 BIOS Function Summary

Table L-l. (continued)
No. Function Input Output
26 TIME C=Get/Set Flag None
27 SELMEM A=Mem Bank None
28 SETBNK A=Mem Bank None
29 XMOVE B=Dest Bank

C=Source Bank
BC=Count

None

30 USERF Reserved for System Implementor
31 RESERV1 Reserved for Future Use
32 RESERV2 Reserved for Future Use

End of Appendix L

All Information Presented Here is Proprietary to Digital Research

162

Index

?, 73
@, 73

A
absolute drive code, 76
allocation vector, 38
application programs,
memory for, 1

assembly-time arithmetic, 27
AUTO DISPLAY parameter , 88
AUTO parameter, 88
auto-density support, 109
AUXIN, 19, 56
AUXIST, 57
AUXOST, 58
AUXOUT, 19, 56

B
$B, 101
Bank 0, 5, 6
Bank 1, 6
BANK field, 46
bank switching, 6
bank-switched memory, 4

block moves and memory
selects, 15

requirements, 1, 8
banked BIOS

assembling, 69
linking, 69
preparing, 69

banked system,
allocation vector, 39
BANK field, 46
BCB data structures, 46
BDOS and BIOS, in common

memory, 9
BDOS and BIOS, in Bank 0, 9
buffer control block, 44
common memory, 34
with Bank 1 enabled, 6

Basic Disk Operating System;
see BDOS

baud rates,
for serial devices, 79

BDOS, 2, 15
calls to BIOS, 21
error messages in foreign

language, 32
flags, 3
function 44, 52
function 49, 3
function 50, 16

Binary Coded Decimal (BCD)
format, 24
fields, 31

BIOS
assembling, 69
calls, 20
•customizing, 4, 10
debugging; see debugging, 103
entry points, 64
error message header, 84
functions, 52, 55-66
jump vector
linking, 69
media flag , 107, 108
modules, 86
public names, 77
routines, 2
subroutine entry points, 84
subroutines, 17

BIOSKRNL.ASM, 71-73
public utility subroutines, 76

block,
defined, 41
disk transfers, 20
mask, 42
moves, 15
shift factor, 42
size restriction, 41

block transfers
memory-to-memory, 24

blocking logical records, 23
blocking/deblocking, 64
@BNKBF, 18
BOOT, 17-18, 51

entry point, 100
boot loader, 102
BOOT module,

entry points, 77
BOOT.ASM, 71
booting CP/M 3, 102
buffer control block, 44
built-in commands, 2

163

CCP,
flags, 3
loading into TPA, 78

CCP.COM, 13, 18
character device table

(@CTBL), 74
device name fields, 78

character devices
interfacing, 78
labels, 80
logical to physical

redirection, 74
character I/O, 19

interface routines, 74
redirection, 78

character table, 32
CHARIO module, 74, 78
CHARIO.ASM, 71
checksum vector, 38
CHRTBL, 32, 78
clock support, 24
cold boot

loader program, 12
process, 12

cold BOOT routine, 13
passpoint, 105
setting passpoint, 105

cold start, 11, 101
loader, 15, 19, 101

common memory, 67
common base, 13
communications hardware, 11
CONIN, 2, 17, 19, 55
CONOST, 57
CONOUT, 17, 19, 55
Console Command Processor

(CCP), 2
console output, 11
CONST, 17, 55
COPYSYS utility, 98, 102
counter/timer chip, 24
CP/M 2 BIOS

modification, 111
converting to CP/M 3, 15

CP/M 3
BIOS functions, 111
customizing hardware, 11
loading into memory, 12

CPM3.SYS file, 1, 11, 19
format, 115
loading into memory, 98

CPMLDR.COM, 5, 11, 19, 98-100
as transient program, 99

sign-on message, 101
BDOS, 11
BIOS, 11

@CTBL, 74, 78
CTRL-Z (1AH), 19, 54

data record
buffers, 24, 93
caching, 23

data structures,
in common memory, 67

data tracks, 10
@DATE, 24
DDT, 101
deblocking logical records, 23
debugging

BIOS, 103
session for nonbanked

BIOS, 103
with SID, 103

default value,
with question mark, 88

device name format, 78
DEVICE utility, 20, 32, 74
DEVINI entry point, 52
DEVTBL entry point, 52
diagnostic capabilities, 24
Direct Memory Access (DMA)

address, 20
directory

buffers, 92
caching, 23
entries
maximum size, 1
hash tables, 5

directory hashing
as GENCPM option, 39
disabling, 39

directory search
speeding, 23

disk
accesses, 18
compatibility, 10
density, automatically

determined, 74
double density, 42
drives, 107
I/O, 20, 71
logical floppy or hard, 1
number supported, 1
physical sector size, 43
reformatting, 42
organization, 10

164

CCP.COM
CPMLDR.COM

parameter block, 23, 34,
37, 48

disk parameter block
fields, 40
format, 40

disk parameter header, 36, 47
fields , 37
format, 36

disk record buffers, 5
DMA controller, 9
double-density disks, 42
DPB macro, 48
DPH macro, 47
drive code,

absolute, 76
relative, 76

drive table, 47
DRVTBL.ASM, 53, 71, 74, 81
@DTBL, 74
DTBL macro, 47
dynamic disk definition table,

E
end-of-file condition, 19, 54
entry points,

BIOS subroutine, 84
BOOT, 51
BOOT module, 51, 77
DEVTBL, 52
DEVINI, 52
MOVE module, 86
WBOOT, 52

equates,
absolute external, 27

error
condition, 23, 24
in multisector transfer, 63
nonrecoverable, 84

error messages,
extended, 30
in foreign language, 32
short, 30

Extended Disk Parameter Header
(XDPH), 71, 81

fields , 83
format, 82

external names, 73
external reference, 73
F
file format,
CPM3.SYS, 115

file,

random access, 1
sequential access, 1

flag,
global system, 30
media, 37

FLUSH, 17, 64

G command, 105
GENCPM utility, 5, 11, 36, 46

and AUTO DISPLAY parameter, 88
command input, 87
directory hashing, 39
in banked system, 87
in nonbanked system, 87

global system flag, 30
global variables, 76

59
handshaking

polled, 57, 58
hardware

environment, 10
initialization, 77
requirements, 1
special DMA, 65

hash table, 9, 23, 39, 107
hardware environment,

nonbanked system, 11
HOME, 17, 58
@HOUR, 24

I/O
character, 19
devices, 11
disk, 20
multiple sector, 22
redirection, 20
redirection bit vectors, 54

IBM 3740 disk, 10
initialization,
basic system^ 51
cold start, 11
hardware, 51, 77
Page Zero, 51
system tracks , 102

interactive console, 19

165

J

JMP,
BDOS, 18
WBOOT, 18

jump
address, 16
instructions, 50
table, 2
vector , 77

L

L option, 100
labels, of SCB, 27
LDRBIOS.ASM, assembling, 100
LINK-80, 69, 73

L option, 100
linking modules into BIOS, 86
LIST, 19, 56
LISTST, 57
loader file, 11
logical character devices,
combinations, 54

logical
devices, 20
records, 3

macro definitions, 46
maximum size directory entries,
media

change, 107
flag, 37, 108
removable, 107

media type, automatically
determined, 74

memory
bank-switched; see
bank-switched memory

contiguous, 11
for application programs, 1
image, 13
management functions, 24
map, 11
nonbank-switched; see
nonbank-switched memory

segment, 91
selects, 15

memory organization,
banked, 5
general, 3
nonbanked, 7-9

memory regions, page aligned, 4

memory requirements,
banked, 8
nonbanked, 9

memory-to-memory move, 86
@MIN, 24
modifying CP/M 2 BIOS, 111
MOVE.ASM module, 24, 65, 71

entry points, 86
MULTIO, 17, 20, 63
multiple disk formats, 109
multisector count, 30
@MXTPA, 18

N
nonbank-switched memory,

block moves and memory
selects, 15

requirements, 1
nonbanked BIOS,

assembling, 69
debugging session, 103
linking, 69

nonbanked memory, 4
nonbanked system,

buffer control block, 44
modifying BIOSKRNL.ASM, 71

nonrecoverable error, 84

O
1 OEM subroutines, 16

OFF field, 43
OPEN, 18
operating system bank, 9
operating system modules

banked, 5
resident, 5

P
P command, 105
page boundary, 4
Page Zero, 18
passpoints,

cold BOOT routine, 105
in BIOS, 104

@PDERR subroutine, 84
peripheral devices,

reassigning, 20
permanent drives, 107
physical

devices, 20
I/O, 2
record mask, 44

166

record shift factor, 43
sectors, 3, 20

plotters, 11
primitive functions,

hardware-dependent, 2
printers, 11
Program Loader Module, 2
PROM loader, 13
public names, 54, 77
public symbols,

defined in modules, 75
public utility subroutines,

in BIOSKRNL.ASM, 76
public variable,

names, 17
predefined, 75

Q
question mark, 88
question variable, 88

R
r/o, 27
r/w, 27
Random Access Memory , 11
READ, 17, 18, 20, 61
real-time clock, 24
redirection vectors, 29
register A, 17, 20
relative drive code, 76
removable drives, 107
Resident System Extension (RSX)

modules, 9
retry routine, 84
RMAC, 69, 73, 99
rotational latency, 20

S
SCB see System Control Block
SCB.ASM file, 17, 27-28, 71

error mode variable, 24
@SEC, 24
SECTRN, 17, 62
SELDSK, 17, 20, 59, 74

routine, 109
SELMEM, 24, 66
sequential file input, 11
serial devices,

baud rates, 79
SETBNK, 24, 66
SETDMA, 17, 20, 60
SETSEC, 17, 60

SETTRK, 17, 59
SID, 104
sign-on message, 101
skew factor,

standard CP/M disk, 62
SKEW macro, 48
skew table

address, 62
SKEW macro, 48

space allocation, 6
subroutine names, 17
symbols,

public; see public symbols
system bank, 6
System Control Block (SCB), 27

fields, 29
system disk organization, 10
system initialization, 1, 18
system loader, 1
System Page Relocatable

(.SPR) files, 4
system parameters, critical, 3
system tracks, 102

T
TIME, 17, 67
time of day function, 24
TPA, 32
tracing routines, 105
Transient Program Area; see TPA
transient programs, 18

bank, 6
translation table, 37

V
variables

global; see global variables
public; see public variables

vector,
allocation, 38
checksum, 38
I/O redirection bit, 54

W
Warm BOOT routine, 3
WBOOT, 17-18

entry point, 52
WRITE, 17, 20, 61

X
XDPH, 82
XMOVE, 24, 65, 66

167

Reader Comment Form
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date Manual Title Edition

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual?tWhat information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

I

I
J
1
1
i
i
i
i
।
1
I
I
|
I
!
i

A
ttn

: P
ub

lic
at

io
n P

ro
du

ct
io

n

	TOP
	Foreword
	Table of Contents
	1 CP/M 3 Operating System Overview
	1.1 Introduction to CP/M
	1.2 CP/M 3 System Components
	1.3 Communication Between Modules
	1.4 Banked and Nonbanked Systems
	1.5 Memory Requirements
	1.6 Disk Organization
	1.7 Hardware Supported
	1.7.2 Hardware Supported by CP/M 3 Nonbanked System
	1.7.1 Hardware Supported by CP/M 3 Banked System

	1.8 Customizing CP/M 3
	1.9 Initial Load (Cold Boot) of CP/M 3

	2 CP/M 3 BIOS Overview
	2.1 Organization of the BIOS
	2.2 System Control Block
	2.3 System Initialization
	2.4 Character I/O
	2.5 Disk I/O
	2.6 Memory Selects and Moves
	2.7 Clock Support

	3 CP/M 3 BIOS Functional Specification
	3.1 The System Control Block
	3.2 Character I/O Data Structures
	3.3 BIOS Disk Data Structures
	3.3.1 The Drive Table
	3.3.2 Disk Parameter Header
	3.3.3 Disk Parameter Block
	3.3.4 Buffer Control Block.
	3.3.5 Data Structure Macro Definitions

	3.4 BIOS Subroutine Entry Points
	3.4.1 System Initialization Functions
	3.4.2 Character I/O Functions
	3.4.3 Disk I/O Functions
	3.4.4 Memory Select and Move Functions
	3.4.5 Clock Support Function

	3.5 Banking Considerations
	3.6 Assembling and Linking Your BIOS

	4 The Modules of the CP/M 3 Sample BIOS Modules
	4.1 Functional Summary of BIOS Modules
	4.2 Conventions Used in BIOS Modules
	4.3 Interactions of Modules
	4.3.1 Initial Boot
	4.3.2 Character I/O Operation
	4.3.3 Disk I/O Operation

	4.4 Predefined Variables and Subroutines
	4.5 BOOT Module
	4.6 Character I/O
	4.7 Disk I/O
	4.7.1 Disk I/O Structure
	4.7.2 Drive Table Module (DRVTBL)
	4.7.3 Extended Disk Parameter Headers (XDPHs)
	4.7.4 Subroutine Entry Points
	4.7.5 Error Handling and Recovery
	4.7.6 Multiple Section I/O

	4.8 MOVE Module
	4.9 Linking Modules into the BIOS
	Corrections to 4.7.3 and 4.9

	5 System Generation
	5.1 GENCPM Utility
	5.2 Customizing the CPMLDR
	5.3 CPMLDR
	5.4 Booting CP/M 3

	6 Debugging the BIOS
	Appendixes
	A Removable Media Considerations
	B Auto-Density Support
	C Modifying a CP/M 2 BIOS
	D CPM3.SYS File Format
	E Root Module of Relocatable BIOS for CP/M 3
	F System Control Block Definition for CP/M 3 BIOS
	G Equates for Mode Byte Fields: MODEBAUD.LIB
	H Macro Definitions for CP/M 3 BIOS Data Structures: CPM3.L
	I ACS 8000-15 BIOS Modules
	I.2 Character I/O Handler for Z80 Chi{>-based System
	I.3 Drive Table
	I.4 Z80 DMA Single-density Disk Handler
	I.5 Bank and Move Module for CP/M 3 Linked BIOS
	I.6 I/O Port Addresses for Z80 Chip-based System: PORTS.LIB
	I.7 Sample Submit File for ASC 8000-15 System

	J Public Entry Points for CP/M 3 Sample BIOS Modules
	K Public Data Items in CP/M 3 Sample BIOS Modules
	L CP/M 3 BIOS Function Summary
	Index
	Back

