
SIEMENS

Betriebssystem
„ Systembeschreibung

^n HL M Ofc®
Cr/ M - OD (System Guide)



COPYRIGHT

Copyright © 1981 by Digital Research. All rights
reserved. No oart of this publication mav be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M, CP/M-86, and CP/NET are registered trademarks
of Digital Research. ASM-86, CP/M-80, DDT-86, LINK-
80, MP/M, and TEX-80 are trademarks of Digital
Research.

The "CP/M-86 System Guide" was prepared using the
Digital Research TEX-SO™ Text Formatter and printed
in the United States of America by Commercial Press/
Monterey.

* Second Printing: June 1981 *



Foreword

The CP/M-86 System Guide presents the system programming
aspects of CP/M-86® , a single-user operating system for the Intel
8086 and 8088 16-bit microprocessors. The discussion assumes the
reader is famil iar with <~P/M the Digital Research 8-bit operating
system. To clarify soecific differences with CP/M-86, this document
refers to the 8-bit version of CP/M as rp/M-80™. Elements common
to both systems are simply calued rp/M features.

CP/M-80 and CP/M-86 are equivalent at the user interface level
and thus the Diqital Research documents:

• An Introduction to CP/M Features and ̂ acii ities
• ED: A Context Editor for the CP/M Disk System
• CP/M 2 User's Guide

are shipped with the CP/M-86 package. Also included is the CP/M-86
Programmer's Guide, which describes ASM-86TM and DDT-86™, Digital
Research's 8086 assembler and interactive debugger.

This System Guide presents an overview of the CP/M-86
programming interface conventions. Tt also describes orocedures for
adaoting CP/M-86 to a custom hardware enviornment. This information
parallels that presented in the CP/M 2 Interface Guide and the CP/M
2 Alteration Guide.

Section 1 gives an overview of CP/M-86 and summarizes its
differences with CP/M-80. Section 2 describes the general execution
environment while Section 3 tells how to generate command files.
Sections 4 and 5 respectively define the programming interfaces to
the Basic Disk Operating System and the Basic Incut/Output System.
Section 6 discusses alteration of the BIOS to support custom disk
configurations, and Section 7 describes the loading operation and
the organization of the CP/M-86 system file.

ill





Table of Contents

1 CP/M-86 System Overview

1.1 CP/M-86 General Characteristics 1
1.2 CP/M-80 and CP/M-86 Differences 3

2 Command Setup and Execution Under CP/M-86

2.1 CCP Built-in and Transient Commands 7
2.2 Transient Proqram Execution Models 8
2.3 The B080 Memory Model 9
2.4 The Small Memory Model 10
2.5 The Compact Memory Model 11
2.6 Base Page Initialization 13
2.7 Transient Program Load and Exit 14

3 Command (CMD) File Generation

3.1 Intel. Hex File Format 15
3.2 Operation of GENCMD 16
3.3 Operation of LMCMD 19
3.4 Command (CMD) File Format 20

4 Basic Disk Operating System (BDOS) Functions

4.1 BDOS Parameters and Function Codes 23
4.2 Simple BDOS Calls 25
4.3 BDOS Pile Operations 30
4.4 BDOS Memory Management and Load 48

5 Basic I/O System (BIOS) Organization

5.1 Organization of the BIOS 55
5.2 The BIOS Jump Vector 56
5.3 Simple Peripheral Devices 57
5.4 BIOS Subroutine Entry Points 60

6 BIOS Disk Definition Tables

6.1 Disk Parameter Table Format 67
6.2 Table Generation Using GENDEF 72
6.3 GENDEF Output 77

7 CP/M-86 Bootstrap and Adaptation Procedures

7.1 The Cold Start Load Operation 81
7.2 Organization of CPM.SYS 84



Appendixes

A Blocking and Deblocking Algorithms B7

B Random Access Sample Program 95

C Listing of the Boot Rom 103

D LDBIOS Listing 113

E BIOS Listing 121

P CBIOS Listing 137

vi



Section 1
CP/M-86 System Overview

1.1 CP/M-86 General Characteristics

CP/M-86 contains all facilities of CP/M-80 with additional
features to account for increased processor address space of up to a
megabyte (1,048,576) of main memory. Further, CP/M-86 maintains
file compatibility with all previous versions of CP/M. The file
structure of version 2 of CP/M is used, allowing as many as sixteen
drives with up to eight megabytes on each drive. Thus, CP/M-80 and
CP/M-86 systems may exchange files without modifying the file
format.

CP/M-86 resides in the file CPM.SYS, which is loaded into
memory by a cold start loader during system initialization. The
cold start loader resides on the first two tracks of the system
disk. CPM.SYS contains three program modules: the Console Command
Processor (CCP), the Basic Disk Operating System (BDOS), and the
user-configurable Basic I/O System (BIOS). The CCP and BDOS
portions occupy approximately 10K bytes, while the size of the BIOS
varies with the implementation. The operating system executes in
any portion of memorv above the reserved interrupt locations, while
the remainder of the address space is partitioned into as many as
eight non-contiguous regions, as defined in a BIOS table. Unlike
CP/M-80, the CCP area cannot be used as a data area subsequent to
transient program load; all CP/M-86 modules remain in memory at all
times, and are not reloaded at a warm start.

Similar to CP/M-80, CP/M-86 loads and executes memory image
files from disk. Memory image files are preceded by a "header
record," defined in this document, which provides information
required for proper program loading and execution. Memory image
files under CP/M-86 are identified by a "CMD" file tvpe.

Unlike CP/M-80, CP/M-86 does not use absolute locations for
system entry or default variables. The BDOS entry takes place
through a reserved software interrupt, while entry to the BIOS is
provided by a new BDOS call. Two variables maintained in low memory
under CP/M-80, the default disk number and I/O Byte, are placed in
the CCP and BIOS, respectively. Dependence upon absolute addresses
is minimized in CP/M-86 by maintaining initial "base page" values,
such as the default FCB and default command buffer, in the transient
program data area.

Utility programs such as ED, PIP, STAT and SUBMIT operate in
the same manner under CP/M-86 and CP/M-80. In its ooeration, DDT-86
resembles DDT supplied with CP/M-80. It allows interactive
debugging of 8086 and 8088 machine code. Similarly, ASM-86 allows
assembly language programming and development for the 8086 and 8088
using Intel-like mnemonics.

All Information Presented Here is Proprietary to Digital Research



CP/M-86 System Guide 1.1 CP/M-86 General Characteristics

The GENCMD (Generate CMD) utility replaces the LOAD program of
CP/M-80, and converts the hex files produced by ASM-86 or Intel
utilities into memory image format suitable for execution under
CP/M-86. Further, the LDCOPY (Loader Copy) program replaces SYSGEN,
and is used to copy the cold start loader from a system disk for
replication. In addition, a variation of GENCMD, called LMCMD,
converts output from the Intel LOC86 utility into CMD format.
Finally, GENDEF (Generate DISKDEF) is orovided as an aid in
producing custom disk parameter tables. ASM-86, GENCMD, LMCMD, and
GENDEF are also supplied in "COM" file format for cross-development
under CP/M-80.

Several terms used throughout this manual are defined in Table
1-1 below:

Table 1-1. CP/M-86 Terms

Term Meaning

Nibble

Byte

Word

Double Word

Paragraph

Paragraph Boundary

Segment

Segment Register

Offset

Group

Address

4-bit half-byte

8-bit value

16-bit value

32-bit value

16 contiguous bytes

An address divisible evenly
by 16 (low order nibble 0)

Up to 64K contiguous bytes

One of CS, DS, ES, or SS

16-bit displacement from a
segment register

A segment-register-relative
relocatable program unit

The effective memory address
derived from the composition
of a segment register value
with an offset value

A group consists of segments that are loaded into memory as a single
unit. Since a group may consist of more than 64K bytes, it is the
responsibility of the application program to manage segment
registers when code or data beyond the first 64K segment is
accessed.

All Information Presented Here is Proprietary to Digital Research

2



CP/M-86 System Guide 1.1 CP/M-86 General Characteristics

CP/M-86 supports eiqht program groups: the code, data, stack
and extra groups as well as four auxiliary groups. When a code,
data, stack or extra group is loaded, CP/M-86 sets the respective
segment register (CS, DS, SS or ES) to the base of the group. CP/M-
86 can also load four auxiliary groups. A transient program manages
the location of the auxiliary groups using values stored by CP/M-86
in the user's base page.

1.2 CP/M-80 and CP/M-86 Differences

The structure of CP/M-86 is as close to CP/w-80 as possible in
order to provide a familiar programming environment which allows
application programs to be transported to the 8086 and 8088
processors with minimum effort. This section points out the
specific differences between CP/M-80 and CP/M-86 in order to reduce
your time in scanning this manual if you are already familiar with
CP/M-80. The terms and concepts presented in this section are
explained in detail throughout this manual, so you will need to
refer to the Table of Contents to find relevant sections which
provide specific definitions and information.

Due to the nature of the 8086 processor, the fundamental
difference between CP/M-80 and CP/M-86 is found in the management of
the various relocatable groups. Although CP/M-80 references
absolute memory locations by necessity, CP/M-86 takes advantage of
the static relocation inherent in the 8086 processor. The operating
system itself is usuallv loaded directly above the interrupt
locations, at location 0400H, and relocatable transient programs
load in the best fit memory region. However, you can load CP/M-86
into any portion of memory without changing the operating system
(thus, there is no MOVCPM utility with CP/M-86), and transient
programs will load and run in any non-reserved region.

Three general memory models are presented below, but if you are
converting 8080 programs to CP/M-86, you can use either the 8080
Model or Small Model and leave the Compact Model for later when your
addressing needs increase. You'll use GENCMD, described in Section
3.2, to produce an executable program file from a hex file. GENCMn
parameters allow you to specify which memory model your program
requires.

CP/M-86 itself is constructed as an 8080 Model. This means
that all the segment registers are placed at the base of CP/M-86,
and your customized BIOS is identical, in most respects, to that of
CP/M-80 (with changes in instruction mnemonics, of course). In
fact, the only additions are found in the SETDMAB, GETSEGB, SETIOB,
and GETIOB entry points in the BIOS. Your warm start subroutine is
simpler since you are not required to reload the CCP and BDOS under
CP/M-86. One other point: if you implement the IOBYTE facility,
you'll have to define the variable in your BIOS. Taking these
changes into account, you need only perform a simple translation of
your CP/M-80 BIOS into 8086 code in order to implement your 8086
BIOS.

All Information Presented Here is Proprietary to Digital Research

3



CP/M-86 System Guide 1.2 CP/M-80 and CP/M-86 Differences

If you've implemented CP/M-80 Version 2, you already have disk
definition tables which will operate properly with CP/M-86. You may
wish to attach different disk drives, or experiment with sector skew
factors to increase performance. If so, you can use the new GENDEF
utility which performs the same function as the DTSKDEF macro used
by MAC under CP/M-80. You'll find, however, that GENDEF provides
you with more information and checks error conditions better than
the DISKDEF macro.

Although generating a CP/M-86 system is generally easier than
generating a CP/M-80 system, complications arise if you are using
single-density floppy disks. CP/M-86 is too large to fit in the
two-track system area of a single-density disk, so the bootstrap
operation must perform two steps to load CP/M-86: first the
bootstrap must load the cold start loader, then the cold start
loader loads CP/M-86 from a system file. The cold start loader
includes a LDBIOS which is identical to your CP/M-86 BIOS with the
exception of the INIT entry point. You can simplify the LDBIOS if
you wish because the loader need not write to the disk. If you have
a double-density disk or reserve enough tracks on a single-density
disk, you can load CP/M-86 without a two-step boot.

To make a BDOS system call, use the reserved software interrupt
#244. The -jump to the BDOS at location 0005 found in CP/M-80 is not
present in CP/M-86. However, the address field at offset 0006 is
present so that programs which "size" available memory using this
word value will operate without change. CP/M-80 BDOS functions use
certain 8080 registers for entry parameters and returned values.
CP/M-86 BDOS functions use a table of corresponding 8086 registers.
For example, the 8086 registers CH and CL correspond to the 8080
registers B and C. Look through the list of BDOS function numbers
in Table 4-2. and you'll find that functions 0, 27, and 31 have
changed slightly. Several new functions have been added, but they
do not affect existing programs.

One major philosophical difference is that in CP/M-80, all
addresses sent to the BDOS are simply 16-bit values in the range
OOOOH to OFFFFH. In CP/M-86, however, the addresses are really just
16-bit offsets from the DS (Data Segment) register which is set to
the base of your data area. If you translate an existing CP/M-80
program to the CP/M-86 environment, your data segment will be less
than 64K bytes. In this case, the DS register need not be changed
following initial load, and thus all CP/M-80 addresses become simple
DS-relative offsets in CP/M-86.

Under CP/M-80, programs terminate in one of three ways: by
returning directly to the CCP, by calling BDOS function 0, or by
transferring control to absolute location OOOOH. CP/M-86, however,
supports only the first two methods of program termination. This
has the side effect of not providing the automatic disk system reset
following the jump to OOOOH which, instead, is accomplished by
entering a CONTROL-C at the CCP level.

All Information Presented Here is Proprietary to Digital Research

4



CP/M-86 System Guide 1.2 CP/M-80 and CP/M-86 Differences

You'll find many new facilities in CP/M-86 that will simplify
your programming and expand your application programming capability.
But, we've designed CP/M-86 to make it easy to get started: in
short, if you are converting from CP/M-80 to CP/M-86, there will be
no major changes beyond the translation to 8086 machine code.
Further, programs you design for CP/M-86 are upward compatible with
MP/M-86, our multitasking operating system, as well as CP/NET-86
which provides a distributed operating system in a network
environment.

All Information Presented Here is Proprietary to Digital Research

5





Section 2
Command Setup and Execution Under CP/M-86

This section discusses the operation of the Console Command
Processor (CCP), the format of transient programs, CP/M-86 memory
models, and memory image formats.

2.1 CCP Built-in and Transient Commands

The operation of the CP/M-86 CCP is similar to that of CP/M-80.
Upon initial cold start, the CP/M sign-on message is printed, drive
A is automatically logged in, and the standard prompt is issued at
the console. CP/M-86 then waits for inout command lines from the
console, which may include one of the built-in commands

DIR ERA REN TYPE USER

(note that SAVE is not supported under CP/M-86 since the equivalent
function is performed by DDT-86).

Alternatively, the command line may begin with the name of a
transient program with the assumed file type "CMD" denoting a
"command file." The CMD file type differentiates transient command
files used under CP/M-86 from COM files which operate under CP/M-80.

The CCP allows multiple programs to reside in memory, providing
facilities for background tasks. A transient program such as a
debugger may load additional programs for execution under its own
control. Thus, for example, a background printer spooler could
first be loaded, followed by an execution of DDT-86. DDT-86 may, in
turn, load a test program for a debugging session and transfer
control to the test program between breakpoints. CP/M-86 keeps
account of the order in which programs are loaded and, upon
encountering a CONTROL-C, discontinues execution of the most recent
program activated at the CCP level. A CONTROL-C at the DDT-86
command level aborts DDT-86 and its test program. A second CONTROL-
C at the CCP level aborts the background printer spooler. A third
CONTROL-C resets the disk system. Note that program abort due to
CONTROL-C does not reset the disk system, as is the case in CP/M-80.
A disk reset does not occur unless the CONTROL-C occurs at the CCP
command input level with no programs residing in memory.

When CP/M-86 receives a request to load a transient program
from the CCP or another transient program, it checks the program's
memory requirements. If sufficient memorv is available, CP/M-86
assigns the required amount of memory to the program and loads the
program. Once loaded, the program can request additional memory
from the BDOS for buffer space. When the program is terminated,
CP/M-86 frees both the program memory area and any additional buffer
space.

All Information Presented Here is Proprietary to Digital Research

•7



CP/M-86 System Guide 2.2 Transient Program Execution Models

2.2 Transient Program Execution Models

The initial values of the segment registers are determined by
one of three "memory models" used by the transient program, and
described in the CMD file header. The three memory models are
summarized in Table 2-1 below.

Table 2-1. CP/M-86 Memory Models

Model Group Relationships

8080 Model

Smal] Model

Compact Model

Code and Data Grouos Overlap

Independent Code and Data Groups

Three or More Independent Groups

The 8080 Model supports orograms which are directly translated
from CP/M-80 when code and data areas are intermixed. The 8080
model consists of one group which contains all the code, data, and
stack areas. Segment registers are initialized to the starting
address of the region containing this group. The segment registers
can, however, be managed by the application program during execution
so that multiple segments within the code group can be addressed.

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data group. The
Small Model is suitable for use by programs taken from CP/M-80 where
code and data is easily separated. Note again that the code and
data groups often consist of, but are not restricted to, single 64K
byte segments.

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in program. Each group mav consist of
one or more segments, but if any group exceeds one segment in size,
or if auxiliary groups are present, then the application program
must manage its own segment registers during execution in order to
address all code and data areas.

The three models differ primarily in the manner in which
segment registers are initialized upon transient program loading.
The operating system program load function determines the memory
model used by a transient program by examining the program group
usage, as described in the following sections.

All Information Presented Here is Proprietary to Digital Research

8



CP/M-86 -System Guide 2.3 The 8080 Memory Model

2.3 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains
only a code group. In this case, the CS, DS, and ES registers are
initialized to the beginning of the code group, while the SS and SP
registers remain set to a 96-byte stack area in the CCP. The
Instruction Pointer Register (IP) is set to 100H, similar to CP/M-
80, thus allowing base page values at the beginning of the code
group. Following program load, the 8080 Model appears as shown in
Figure 2-1, where low addresses are shown at the top of the diagram:

SS:

SS + SP:

CS DS ES:
DS+OOOOH:

CS+0100H:

CCP

CCP Stack

base
oage

IP = 0100H
code

data

code

data

Figure 2-1. CP/M-86 8080 Memory Model

The intermixed code and data regions are indistinguishable. The
"base page" values, described below, are identical to CP/M-80,
allowing simple translation from 8080, 8085, or Z80 code into the
8086 and 8088 environment. The following ASM-86 example shows how
to code an 8080 model transient program.

endcs

eseg
org

equ
dseg
org

end

100h

(code)
$

offset endcs

(data)

All Information Presented Here is Proprietary to Digital Research

9



CP/M-86 System Guide 2.4 The Small Memory Model

2.4 The Small Memory Model

The Small Model is assumed when the transient program contains
both a code and data group. (In ASM-86, all code is generated
following a CSEG directive, while data is defined following a DREG
directive with the origin of the data segment independent of the
code segment.) In this model, CS is set to the beginning of the
code group, the DS and ES are set to the start of the data group,
and the SS and SP registers remain in the CCP's stack area as shown
in Figure 2-2.

SS + SP:

DS ES:

OS+0100H:

Figure 2-2. CP/M-86 Small Memory Model

The machine code begins at CS+OOOOH, the "base page" values begin at
DS+OOOOH, and the data area starts at DS+0100H. The following ASM-
86 example shows how to code a small model transient orogram.

cseg

dseg
org

end

(code)

100h

(data)

All Information Presented Here is Proprietary to Digital Research

10



CP/M-86 System Guide 2.5 The Compact Memory Model

2.5 The Compact Memory Model

The Compact Model is assumed when code and data groups are
present, along with one or more of the remaining stack, extra, or
auxiliary groups. In this case, the CS, DS, and ES registers are
set to the base addresses of their respective areas. Figure 2-3
shows the initial configuration of segment registers in the Compact
Model. The values of the various segment registers can be
programmatically changed during execution by loading from the
initial values olaced in base page by the CCP, thus allowing access
to the entire memory space.

If the transient program intends to use the stack group as a
stack area, the SS and SP registers must be set upon entry. The SS
and SP registers remain in the CCP area, even if a stack group is
defined. Although it may appear that the SS and SP registers should
be set to address the stack group, there are two contradictions.
First, the transient program may be using the stack group as a data
area. In that case, the Far Call instruction used by the CCP to
transfer control to the transient program could overwrite data in
the stack area. Second, the SS register would logically be set to
the base of the group, while the SP would be set to the offset of
the end of the group. However, if the stack group exceeds 64K the
address range from the base to the end of the group exceeds a 16-bit
offset value.

The following ASM-86 example shows how to code a compact model
transient program.

cseg

(code)
dseg
org 100h

(data)
eseg

(more data)
sseg

(stack area)
end

All Information Presented Here is Proprietary to Digital Research

11



CP/M-86 System Guide 2.5 The Compact Memory Model

SS:

SS + SP:

Figure 2-3. CP/M-86 Compact Memory Model

All Information Presented Here is Proprietary to Digital Research

12



CP/M-86 System Guide 2.6 Rase Page Initialization

2.6 Base Page Initialization

Similar to CP/M-80, the CP/M-86 base page contains default
values and locations initialized by the CCP and used by the
transient program. The base paqe occupies the regions from offset
OOOOH through OOFFH relative to the DS register. The values in the
base page for CP/M-86 include those of CP/M-80, and appear in the
same relative oositions, as shown in Figure 2-4.

OS + 0000:

OS + 0003:

OS + 0006:

DS + 0009:

OS + OOOC:

OS + OOOF:

DS + 0012:

OS + 0015:

DS + 0018:

OS + 001B:

DS + 001E:

DS + 0021:

DS + 0024:

DS + 0027:

OS + 002A:

OS + 002D:

DS + 0030:

DS + 005B:

DS + 005C:

DS + 0080:

DS + 0100:

LCO

BCO

LDO

BDO

LEO

BEO

LSO

BSO

LXO

BXO

LXO

BXO

LXO

BXO

LXO

BXO

LCI

BC1

LD1

BDl

LEI

BEI

LSI

BS1

LX1

BX1

LX1

BX1

LX1

BX1

LX1

BXl

LC2

M80

LD2

XXX

LE2

XXX

LS2

XXX

LX2

XXX

LX2

XXX

LX2

XXX

LX2

XXX

Not
Current!y

Used

Default FCB

Default Buffer

Begin User Data

Figure 2-4. CP/M-86 Base Page Values

All Information Presented Here is Proprietary to Digital Research

13



CP/M-86 System Guide 2.6 Base Page Initialization

Each byte is indexed by 0, 1, and 2, corresponding to the standard
Intel storage convention of low, middle, and high-order (most
significant) byte. "xxx" in Figure 2-4 marks unused bytes. LC is
the last code group location (24-bits, where the 4 high-order bits
equal zero).

In the 8080 Model, the low order bytes of LC (LCO and LCI)
never exceed OFFFFH and the high order byte (LC2) is always zero.
BC is base paragraph address of the code group (16-bits) . LD and BD
provide the last position and paragraph base of the data group. The
last position is one byte less than the group length. It should be
noted that bytes LDO and LDl appear in the same relative positions
of the base page in both CP/M-80 and CP/M-86, thus easing the
program translation task. The M80 byte is equal to 1 when the 8080
Memory Model is in use. LE and BE provide the length and paragraph
base of the optional extra group, while LS and BS give the optional
stack group length and base. The bytes marked LX and BX correspond
to a set of four optional independent groups which mav be required
for programs which execute using the Compact Memorv Model. The
initial values for these descriptors are derived from the header
record in the memory image file, described in the following section.

2.7 Transient Program Load and Exit

Similar to CP/M-80, the CCP parses up to two filenames
following the command and places the properly formatted FCB's at
locations 005CH and 006CH in the base page relative to the OS
register. Under CP/M-80, the default DMA address is initialized to
0080H in the base page. Due to the segmented memory of the 8086 and
8088 processors, the DMA address is divided into two parts: the DMA
segment address and the DMA offset. Therefore, under CP/M-86, the
default DMA base is initialized to the value of DS, and the default
DMA offset is initialized to 0080H. Thus, CP/M-80 and CP/M-86
operate in the same way: both assume the default DMA buffer
occupies the second half of the base page.

The CCP transfers control to the transient program through an
8086 "Far Call." The transient program mav choose to use the 96-byte
CCP stack and optionally return directlv to the CCP upon program
termination by executing a "Far Return." Program termination also
occurs when BDOS function zero is executed. Note that function zero
can terminate a program without removing the program from memory or
changing the memory allocation state (see Section 4.2). The
operator may terminate program execution by typing a single CONTROL-
C during line edited input which has the same effect as the program
executing BDOS function zero. Unlike the operation of CP/M-80, no
disk reset occurs and the CCP and BDOS modules are not reloaded from
disk upon program termination.

All Information Presented Here is Proprietary to Digital Research

14



Section 3
Command (CMD) File Generation

As mentioned previously, two utility programs are provided with
CP/M-86, called GENCMD and LMCMD, which are used to produce CMD
memory image files suitable for execution under CP/M-86. GENCMD
accepts Intel 8086 "hex" format files as input, while LMCMD reads
Intel L-module files output from the standard Intel LOC86 Object
Code Locator utility. GENCMD is used to process output from the
Digital Research ASM-86 assembler and Intel's OH86 utility, while
LMCMD is used when Intel compatible developmental software is
available for generation of programs targeted for CP/M-86 operation.

3.1 Intel 8086 Hex Pile Format

GENCMD input is in Intel "hex" format produced by both the
Digital Research ASM-86 assembler and the standard Intel OH86
utility program (see Intel document #9800639-03 entitled "MCS-86
Software Development Utitities Operating Instructions for ISIS-II
Users"). The CMD file produced by GENCMD contains a header record
which defines the memory model and memory size requirements for
loading and executing the CMD file.

An Intel "hex" file consists of the traditional sequence of
ASCII records in the following format:

1 1 a a a a t t d d d I . . . d e c

where the beginning of the record is marked by an ASCII colon, and
each subsequent digit position contains an ASCII hexadecimal digit
in the range 0-9 or A-F. The fields are defined in Table 3-1.

All Information Presented Here is Proprietary to Digital Research

15



CP/M-86 System Guide 3.1 Intel Hex File Format

Table 3-1. Intel Hex Field Definitions

Field

11

aaaa

tt

d

cc

Contents

Record Length 00-FF (0-255 in decimal)

Load Address

Record Type:
00 data record, loaded starting at offset

aaaa from current base paragraph
01 end of file, cc = FF
02 extended address, aaaa is paragraph

base for subsequent data records
03 start address is aaaa (ignored, IP set

according to memory model in use)

The following
81 same as 00
82 same as 00
83 same as 00
84 same as 00
85 paragraph
86 paragraph
87 paragraph
88 paragraph

are output from ASM-86 only:
, data belongs to code segment
, data belongs to data segment
, data belongs to stack segment
, data belongs to extra segment
address for absolute code segment
address for absolute data segment
address for absolute stack segment
address for absolute extra segment

Data Byte

Check Sum (00 - Sum of Previous Digits)

All characters preceding the colon for each record are ignored.
(Additional hex file format information is included in the ASM-86
User's Guide, and in Intel's document »9800821A entitled "MCS-86
Absolute Object File Formats.")

3.2 Operation of GENCHD

The GENCMD utility is invoked at the CCP level by typing

GENCMD filename parameter-list

where the filename corresponds to the hex input file with an assumed
(and unspecified) file type of H86. GENCMD accepts optional
parameters to specifically identify the 8080 Memory Model and to
describe memory requirements of each segment group. The GENCMD
parameters are listed following the filename, as shown in the
command line above where the parameter-list consists of a sequence
of keywords and values separated by commas or blanks. The keywords
are:

8080 CODE DATA EXTRA STACK Xl X2 X3 X4

All Information Presented Here is Proprietary to Digital Research

16



CP/M-86 System Guide 3.2 Operation of GENCMD

The 8080 keyword forces a single code qroup so that the BDOS load
function sets up the 8080 Memory Model for execution, thus allowing
intermixed code and data within a single segment. The form of this
command is

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option and
define soecific memory requirements for each segment group,
corresponding one-to-one with the segment grouos defined in the
previous section. In each case, the values corresponding to each
group are enclosed in square brackets and separated bv commas. Each
value is a hexadecimal number representing a paragraph address or
segment length in paragraph units denoted by hhhh, prefixed by a
single letter which defines the meaning of each value:

Ahhhh Load the group at absolute location hhhh
Bhhhh The group starts at hhhh in the hex file
Mhhhh The group requires a minimum of hhhh * 16 bytes
Xhhhh The group can address a maximum of hhhh * 16 bvtes

Generally, the CMD file header values are derived directly from the
hex file and the parameters shown above need not be included. The
following situations, however, require the use of GENCMD parameters.

• The 8080 keyword is included whenever ASM-86 is used in
the conversion of 8080 programs to the 8086/8088
environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and
DSEG directives in the source program.

• An absolute address (A value) must be given for any group
which must be located at an absolute location. Normally,
this value is not specified since CP/M-86 cannot
generally ensure that the required memory region is
available, in which case the CMD file cannot be loaded.

• The B value is used when GENCMD processes a hex file
produced by Intel's OH86, or similar utility program that
contains more than one group. The output from OH86
consists of a sequence of data records with no
information to identify code, data, extra, stack, or
auxiliary groups. In this case, the B value marks the
beginning address of the group named by the keyword,
causing GENCMD to load data following this address to the
named group (see the examples below). Thus, the B value
is normally used to mark the boundary between code and
data segments when no segment information is included in
the hex file. Files produced by ASM-86 do not require
the use of the B value since segment information is
included in the hex file.

All Information Presented Here is Proprietary to Digital Research

17



CP/M-86 System Guide 3.2 Operation of GENCMD

• The minimum memory value (M value) is included only when
the hex records do not define the minimum memory
requirements for the named group. Generally, the code
group size is determined precisely by the data records
loaded into the area. That is, the total space required
for the group is defined by the range between the lowest
and highest data byte addresses. The data group,
however, may contain uninitialized storage at the end of
the group and thus no data records are present in the hex
file which define the highest referenced data item. The
highest address in the data group can be defined within
the source program by including a "DB 0" as the last data
item. Alternatively, the M value can be included to
allocate the additional space at the end of the group.
Similarly, the stack, extra, and auxiliary group sizes
must be defined using the M value unless the highest
addresses within the groups are implicitly defined by
data records in the hex file.

• The maximum memory size, given by the X value, is
generally used when additional free memory may be needed
for such purposes as I/O buffers or svmbol tables. If
the data area size is fixed, then the X parameter need
not be included. In this case, the X value is assumed to
be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the
transient program must be aware that a three-byte length
field is produced in the base page for this group where
the high order byte may be non-zero. Programs converted
directly from CP/M-80 or programs that use a 2-byte
pointer to address buffers should restrict this value to
XFFF or less, producing a maximum allocation length of
OFFFOH bytes.

The following GENCMD command line transforms the file X.H86
into the file X.CMD with the proper header record:

gencmd x code[a40] data[m30,xfff]

In this case, the code group is forced to paragraph address 40H, or
equivalently, byte address 400H. The data group requires a minimum
of 300H bytes, but can use up to OFFFOH bytes, if available.

All Information Presented Here is Proprietary to Digital Research

18



CP/M-86 System Guide 3.2 Operation of GENCMD

Assuming a file Y.H86 exists on drive B containing Intel hex
records with no interspersed segment information, the command

gencmd b:y data[b30,m20] extra[b50] stack[m40] xl[m401

produces the file Y.CMD on drive B by selecting records beginning
at address OOOOH for the code segment, with records starting at
300H allocated to the data segment. The extra segment is filled
from records beginning at 500H, while the stack and auxiliary
segment #1 are uninitialized areas requiring a minimum of 400H
bytes each. In this example, the data area requires a minimum of
200H bytes. Note again, that the B value need not be included if
the Digital Research ASM-86 assembler is used.

3.3 Operation of LMCMD

The LMCMD utility operates in exactly the same manner as
GENCMD, with the exception that LMCMD accepts an Intel L-module
file as input. The primary advantage of the L-module format is
that the file contains internally coded information which defines
values which would otherwise be required as parameters to GENCMD,
such the beginning address of the group's data segment. Currenfy,
however, the only language processors which use this format are the
standard Intel development packages, although various independent
vendors will, most likely, take advantage of this format in the
future.

All Information Presented Here is Proprietary to Digital Research

19



CP/M-86 System Guide 3.4 Command (CMD) File Format

3.4 Command (CMD) File Format

The CMD file produced by GENCMD and LMCMD consists of the
128-byte header record followed immediately by the memory image.
Under normal circumstances, the format of the header record is of
no consequence to a programmer. For completeness, however, the
various fields of this record are shown in Figure 3-1.

•128 Bytes

GD#1 GDI2 GD#3 GD#4 GDf5-GDt8. .

Code,
Data,

Extra,
Stack,

Auxiliary

Figure 3-1. CMD File Header Format

In Figure 3-1, GDf2 through GD#8 represent "Group Descriptors."
Each Group Descriptor corresponds to an independently loaded
program unit and has the following fields:

8-bit 16-bit 16-bit 16-bit 16-bit

G-Form G-Length A-Base G-Min G-Max

where G-Form describes the group format, or has the value zero if
no more descriptors follow. If G-Form is non-zero, then the 8-bit
value is parsed as two fields:

G-Form:
4-bit 4-bit

I x x x x G-Type I

The G-Type field determines the Group Descriptor type. The valid
Group Descriptors have a G-Type in the range 1 through 9, as shown
in Table 3-2 below.

All Information Presented Here is Proprietary to Digital Research

20



CP/M-86 System Guide 3.4 Command (CMD) File Format

Table 3-2. Group Descriptors

G-Type Group Type

1 Code Group
2 Data Group
3 Extra Group
4 Stack Group
5 Auxiliary Group fl
6 Auxiliary Group #2
7 Auxiliary Group #3
8 Auxiliary Group 14
9 Shared Code Group

10 - 14 Unused, but Reserved
15 Escape Code for Additional Types

All remaining values in the group descriptor are given in
increments of 16-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address. G-Length gives the number
of paragraphs in the group. Given a G-length of 0080H, for
example, the size of the group is 00800H = 2048D bytes. A-Base
defines the base paragraph address for a non-relocatable group
while G-Min and G-Max define the minimum and maximum size of the
memory area to allocate to the group. G-Type 9 marks a "pure" code
group for use under MP/M-86 and future versions of CP/M-86.
Presently a Shared Cede Group is treated as a non-shared Program
Code Group under CP/M-86.

The memory model described by a header record is implicitly
determined by the Group Descriptors. The 8080 Memory Model is
assumed when only a code group is present, since no independent
data group is named. The Small Model is implied when both a code
and data group are present, but no additional group descriotors
occur. Otherwise, the Compact Model is assumed when the CMD file
is loaded.

All Information Presented Here is Proprietary to Digital Research

21





Section 4
Basic Disk Operating System Functions

This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS functions. The
BDOS calls correspond closely to CP/M-80 Version 2 in order to
simplify translation of existing CP/M-80 programs for operation
under CP/M-86. BDOS entry and exit conditions are described first,
followed by a presentation of the individual BDOS function calls.

4.1 BDOS Parameters and Function Codes

Entry to the BDOS is accomplished through the 8086 software
interrupt #224, which is reserved by Intel Corporation for use by
CP/M-86 and MP/M-86. The function code is passed in register CL
with byte parameters in DL and word parameters in DX. Single byte
values are returned in AL, word values in both AX and BX, and double
word values in ES and BX. All segment registers, except ES, are
saved upon entry and restored upon exit from the BDOS (corresponding
to PL/M-86 conventions). Table 4-1 summarizes input and output
parameter passing:

Table 4-1. BDOS Parameter Summary

BDOS Entry Registers BDOS Return Registers

CL Function Code Byte value returned in AL
DL Byte Parameter Word value returned in both AX and BX
DX Word Parameter Double-word value returned with
DS Data Segment offset in BX and

segment in ES

Note that the CP/M-80 BDOS requires an "information address" as
input to various functions. This address usually provides buffer or
File Control Block information used in the system call. In CP/M-86,
however, the information address is derived from the current DS
register combined with the offset given in the DX register. That
is, the DX register in CP/M-86 performs the same function as the DE
pair in CP/M-80, with the assumption that DS is properly set. This
poses no particular problem for programs which use only a single
data segment (as is the case for programs converted from CP/M-80),
but when the data group exceeds a single segment, you must ensure
that the DS register is set to the segment containing the data area
related to the call. It should also be noted that zero values are
returned for function calls which are out-of-range.

All Information Presented Here is Proprietary to Digital Research

23



CP/M-36 System Guide 4.1 BDOS Parameters and Function Codes

A list of CP/M-86 calls is given in Table 4-2 with an asterisk
following functions which differ from or are added to the set of
CP/M-80 Version 2 functions.

Table 4-2. CP/M-86 BDOS Functions

F| Resu]t

0* System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Punch Output
5 List Output
6* Direct Console I/O
7 Get I/O Byte
8 Set I/O Byte
9 Print String
10 Read Console Buffer
11 Get Console Status
12 Return Version Number
13 Reset Disk System
14 Select Disk
15 Open File
16 Close File
17 Search for First
18 Search for Next
19 Delete File
20 Read Sequential
21 Write Sequential
22 Make File
23 Rename File

F# Result

24 Return Login Vector
25 Return Current Disk
26 Set DMA Address
27* Get Addr(Alloc)
28 Write Protect nisk
29 Get Addr(R/O Vector)
30 Set File Attributes
31* Get Addr(Disk Farms)
32 Set/Get User Code
33 Read Random
34 Write Random
35 Compute File Size
36 Set Random Record
37* Reset drive
40 Write Random with Zero Fill
50* Direct BIOS Call
51* Set DMA Segment Base
52* Get DMA Segment Base
53* Get Max Memory Available
54* Get Max Mem at Abs Location
55* Get Memorv Region
56* Get Absolute Memorv Region
57* Free memorv region
58* Free all memory
59* Program load

The individual BDOS functions are described below in three
sections which cover the simple functions, file operations, and
extended operations for memorv management and program loading.

All Information Presented Here is Proprietary to Digital Research

24



CP/M-86 System Guide 4.2 Simple BDOS Calls

4.2 Simple BDOS Calls

The first set of BDOS functions cover the range 0 through 12,
and perform simple functions such as system reset and single
character I/O.

Entry

CL: OOH

DL: Abort
Code

Return

FUNCTION 0

SYSTEM RESET

The system reset function returns control to the CP/M operating
system at the CCP command level. The abort code in DL has two
possible values: if DL = OOH then the currently active program is
terminated and control is returned to the CCP. If DL is a 01H, the
program remains in memory and the memory allocation state remains
unchanged.

Entry

CL: 01H FUNCTION 1

CONSOLE INPUT

Return

AL: ASCII Character

The console input function reads the next character from the
logical console device (CONSOLE) to register AL. Graphic
characters, along with carriage return, line feed, and backspace
(CONTROL-H) are echoed to the console. Tab characters (CONTROL-I)
are expanded in columns of eight characters. The BDOS does not
return to the calling program until a character has been typed, thus
suspending execution if a character is not ready.

Entry Return

CL: 02H

DL: ASCII
Character

FUNCTION 2

CONSOLE OUTPUT

The ASCII character from DL is sent to the logical console.
Tab characters expand in columns of eight characters. In addition,
a check is made for start/stop scroll (CONTROL-S).

All Information Presented Here is Proprietary to Digital Research

25



CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry

CL: 03H

Return

FUNCTION 3

READER INPUT

AL: ASCII Character

The Reader Input function reads the next character from the
logical reader (READER) into register AL. Control does not return
until the character has been read.

Entry Return

CL: 04H

DL: ASCII
Character

FUNCTION 4

PUNCH OUTPUT

The Punch Output function sends the character from register DL
to the logical punch device (PUNCH).

Entry

CL: 05H

DL: ASCII
Character

FUNCTION 5

LIST OUTPUT

Return

The List Output function sends the ASCII character in register
DL to the logical list device (LIST).

All Information Presented Here is Proprietary to Digital Research

26



CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry

CL: 06H

DL: OFFH (input)
or
OFEH (status)
or
char (output)

Return

FUNCTION 6

DIRECT CONSOLE I/O

AL: char or status

(no value)

Direct console I/O is supported under CP/M-86 for those
specialized applications where unadorned console input and output is
required. Use of this function should, in qeneral, be avoided since
it bypasses all of CP/M-86's normal control character functions
(e.g., CONTROL-S and CONTROL-P). Programs which perform direct I/O
through the BIOS under previous releases of CP/M-80, however, should
be changed to use direct I/O under the BDOS so that they can be
fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register DL either contains (1) a
hexadecimal FF, denoting a CONSOLE input request, or (2) a
hexadecimal FE, denoting a CONSOLE status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then function 6 directly
calls the BIOS console input primitive. The next console input
character is returned in AL. If the input value is FE, then function
6 returns AL = 00 if no character is ready and AL = FF otherwise.
If the input value in DL is not FE or FF, then function 6 assumes
that DL contains a valid ASCII character which is sent to the
console.

Entry

CL: 07H FUNCTION

GET I/O

7

BYTE

Return

AL: I/O Byte Value

The Get I/O Byte function returns the current value of IOBYTE
in register AL. The IOBYTE contains the current assignments for the
logical devices CONSOLE, READER, PUNCH, and LIST provided the IOBYTE
facility is implemented in the BIOS.

All Information Presented Here is Proprietary to Digital Research

27



CP/M-86 System Guide 4.2 Simple BOOS Calls

Entry

CL: 08H

DL: I/O Byte
Value

«s x

N

FUNCTION

SET I/O

8

BYTE

Return

The Set I/O Byte function changes the system IOBYTE value to
that given in register DL. This function allows transient program
access to the IOBYTE in order to modify the current assignments for
the logical devices CONSOLE, READER, PUNCH, and LIST.

Entry

CL: 09H

DX: String
Offset

Return

FUNCTION 9

PRINT STRING;

The Print String function sends the character string stored in
memory at the location given by DX to the logical console device
(CONSOLE), until a "$" is encountered in the string. Tabs are
expanded as in function 2, and checks are made for start/stop scroll
and printer echo.

Entry Return

CL: OAH

DX: Buffer
Offset

FUNCTION 10

READ CONSOLE BUFFER

Console Characters

in Buffer

All Information Presented Here is Proprietary to Digital Research

28



CP/M-86 System Guide 4.2 Simple BDOS Calls

The Read Buffer function reads a line of edited console input into a
buffer addressed by register OX from the loqical console device
(CONSOLE). Console incut is terminated when either the input buffer
is filled or when a return (CONTROL-M) or a line feed (CONTROL-J)
character is entered. The input buffer addressed by DX takes the
form:

OX: +0 +1 + 2 +3 +4 +5 +6 + 7 +8 +n

mx nc cl c2 c3 c4 c5 c6 c7

where "mx" is the maximum number of characters which the buffer will
hold, and "nc" is the number of characters Placed in the buffer.
The characters entered by the operator follow the "nc" value. The
value "mx" must be set prior to makinq a function 10 call and mav
range in value from 1 to 255. Setting mx to zero is equivalent to
setting mx to one. The value "nc" is returned to the user and may
range from 0 to mx. If nc < mx, then uninitialized positions follow
the last character, denoted by "•??" in the above figure. Note that
a terminating return or line feed character is not placed in the
buffer and not included in the count "nc".

A number of editing control functions are supported during
console input under function 10. These are summarized in Table 4-3.

Table 4-3. Line Editing Controls

Keystroke Result

rub/del removes and echoes the last character
CONTROL-C reboots when at the beginning of line
OONTROL-E causes Physical end of line
CONTROL-H backspaces one character position
CONTROL-J (line feed) terminates input line
CONTROL-M (return) terminates input line
CONTROL-R retvpes the current line after new line
CONTROL-U removes current line after new line
CONTROL-X backspaces to beqinning of current line

Certain functions which return the carriage to the leftmost position
(e.g., CONTROL-X) do so only to the column position where the prompt
ended. This convention makes operator data input and line
correction more legible.

All Information Presented Here is Proprietary to Digital Research

29



CP/M-86 System Guide 4.2 Simple BDOS Calls

Entrv Return

CL: OBH FUNCTION 11

GET CONSOLE

AL: Console Status

The Console Status function checks to see if a character has
been typed at the l.oqical console device (CONSOLE) . If a character
is ready, the value 01H is returned in reqister AL. Otherwise a OOH
value is returned.

Entrv Return

CL: OCH FUNCTION 12

RETURN VERSION NUMBER

BX: Version Number

Function 12 provides information which allows version
independent programming. A two-bvte value is returned, with BH = 00
designating the CP/M release (BF = 01 for MP/M) , and BL = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register RL, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. To provide version number compatibility,
the initial release of CP/M-86 returns a 2.2.

4.3 BDOS File Operations

Functions 12 through 52 are related to disk file operations
under cp/M-86. In many of these operations, DX provides the OS-
relative offset to a file control block (FCB). The File Control
Block (FCB) data area consists of a sequence of 33 bytes for
sequential access, or a sequence of 36 bytes in the case that the
file is accessed randomlv. The default file control block normally
located at offset 005CH from the DS register can be used for random
access files, since bytes 007OH, 007EH, and 007FH are available for
this purpose. Here is the FCB format, followed by definitions of
each of its fields:

All Information Presented Here is Proprietary to Digital Research

30



CP/M-86 System Guide 4.3 BDOS File Operations

dr fl f2 / / f8 tl t2 t3 ex si s2 re dO / / dn cr rO rl r2

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
• * •

16=> auto disk select drive P.

fl...f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the high
bit of these positions,
tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 3 1 during file I/O

Si reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

re record count for extent "ex,"
takes on values from 0 - 128

40...dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

rO,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
rO,rl constitute a 16-bit value with
low byte rO, and high byte rl

For users of earlier versions of CP/M, it should be noted in
passing that both CP/M Version 2 and CP/M-86 perform directory
operations in a reserved area of memory that does not affect write
buffer content, except in the case of Search and Search Next where
the directory record is copied to the current DMA address.

All Information Presented Here is Proprietary to Digital Research

31



CP/M-86 System Guide 4.3 BDOS File Operations

There are three error situations that the BDOS may encounter durinq
file processing, initiated as a result of a BDOS File I/O function
call. When one of these conditions is detected, the BDOS issues the
following message to the console:

BDOS ERR ON x: error

where x is the drive name of the drive selected when the error
condition is detected, and "error" is one of the three messages:

BAD SECTOR SELECT R/0

These error situations are trapped by the BDOS, and thus the
executing transient program is temporarily halted when the error is
detected. No indication of the error situation is returned to the
transient program.

The "BAD SECTOR" error is issued as the result of an error
condition returned to the BDOS from the BIOS module. The BDOS makes
BIOS sector read and write commands as part of the execution of BDOS
file related system calls. If the BIOS read or write routine
detects a hardware error, it returns an error code to the BDOS
resulting in this error message. The operator may respond to this
error in two ways: a CONTROL-C terminates the executing program,
while a RETURN instructs CP/M-86 to ignore the error and allow the
program to continue execution.

The "SELECT" error is also issued as the result of an error
condition returned to the BDOS from the BIOS module. The BDOS makes
a BIOS disk select call prior to issuing any BIOS read or write to a
particular drive. If the selected drive is not supported in the
BIOS module, it returns an error code to the BDOS resulting in this
error message. CP/M-86 terminates the currently running program and
returns to the command level of the CCP following any input from the
console.

The "R/0" message occurs when the BDOS receives a command to
write to a drive that is in read-only status. Drives may be placed
in read-only status explicitly as the result of a STAT command or
BDOS function call, or implicitly if the BDOS detects that disk
media has been changed without performing a "warm start." The
ability to detect changed media is optionally included in the BIOS,
and exists only if a checksum vector is included for the selected
drive. Upon entry of any character at the keyboard, the transient
program is aborted, and control returns to the CCP.

All Information Presented Here is Proprietary to Digital Research

32



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return

CL: ODH FUNCTION 13

RESET DISK SYSTEM

The Reset Disk Function is used to proqrammatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected. This
function can be used, for example, by an application program which
requires disk changes during operation. Function 37 (Reset Drive)
can also be used for this purpose.

Entry

CL: OEH

DL: Selected
Disk

Return

FUNCTION 14

SELECT DISK

The Select Disk function designates the disk drive named in
register DL as the default disk for subsequent file operations, with
DL = 0 for drive A, 1 for drive B, and so-forth through 15
corresponding to drive P in a full sixteen drive system. In
addition, the designated drive is logged-in if it is currently in
the reset state. Logging-in a drive places it in "on-line" status
which activates the drive's directory until the next cold start,
warm start, disk system reset, or drive reset operation. FCB's
which specify drive code zero (dr = OOH) automatically reference the
currently selected default drive. Drive code values between 1 and
16, however, ignore the selected default drive and directly
reference drives A through P.

Entry Return

CL: OFH

DX: FCB
Offset

FUNCTION 15

OPEN FILE

AL: Return Code

The Open File operation is used to activate a FCB specifying a
file which currently exists in the disk directory for the currently
active user number. The BDOS scans the disk directory of the drive
specified by byte 0 of the FCB referenced by DX for a match in
positions 1 through 12 of the referenced FCB, where an ASCII
question mark (3FH) matches any directory character in any of these
positions. Normally, no question marks are included and, further,
byte "ex" of the FCB is set to zero before making the open call.

All Information Presented Here is Proprietary to Digital Research

33



CP/M-86 System Guide 4.3 BDOS File Operations

If a directory element is matched, the relevant directory
information is copied into bytes dO through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
successful open operation is completed. Further, an FCB not
activated by either an open or make function must not be used in
BDOS read or write commands. Upon return, the open function returns
a "directory code" with the value 0 through 3 if the open was
successful, or OFFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("cr") must be zeroed by
the program if the file is to be accessed sequentially from the
first record.

Entry ^^_^___^______^ Return

CL: 10H

DX: FCB
Offset

FUNCTION 16

CLOSE FILE

AL: Return Code

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DX has been previously
activated through an open or make function (see functions 15 and
22) , the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close
is identical to the open function. The directory code returned for
a successful close operation is 0, 1, 2, or 3, while a OFFH (255
decimal) is returned if the file name cannot be found in the
directory. A file need not be closed if only read operations have
taken place. If write operations have occurred, however, the close
operation is necessary to permanently record the new directory
information.

All Information Presented Here is Proprietary to Digital Research

34



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return

CL: 11H

DX: FCB
Offset

FUNCTION 17

SEARCH FOR FIRST

AL: Directory
Code

Search First scans the directory for a match with the file
given by the FCB addressed by DX. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is
returned indicating the file is present. In the case that the file
is found, the buffer at the current DMA address is filled with the
record containing the directory entry, and its relative starting
position is AL * 32 (i.e., rotate the AL register left 5 bits).
Although not normally required for application programs, the
directorv information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding field of
any directory entry on the default or auto-selected disk drive. If
the "dr" field contains an ASCII question mark, then the auto disk
select function is disabled, the default disk is searched, with the
search function returning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally
used by application programs, but does allow complete flexibility to
scan all current directory values. If the "dr" field is not a
question mark, the "s2" byte is automatically zeroed.

Entry

CL: 12H FUNCTION 18

SEARCH FOR NEXT

Return

AL: Directory
Code

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match. In terms
of execution sequence, a function 18 call must follow either a
function 17 or function 18 call with no other intervening BDOS disk
related function calls.

All Information Presented Here is Proprietary to Digital Research

35



CP/M-86 System Guide

Entry

CL: 13H

DX: FCB
Offset

Return

FUNCTION 19

DELETE FILE

AL: Return Code

The Delete File function removes files which match the FCB
addressed by DX. The filename and type may contain ambiquous
references (i.e., question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search
Next functions. Function 19 returns a OFFH (decimal 255) if the
referenced file or files cannot be found, otherwise a value of zero
is returned.

Entry

CL: 14H

DX: FCB
Offset

FUNCTION 20

READ SEQUENTIAL

Return

AL: Return Code

Given that the FCB addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. The record is read from position "cr" of
the extent, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next read operation. The "cr" field
must be set to zero following the open call by the user if the
intent is to read sequentially from the beginning of the file. The
value OOH is returned in the AL register if the read operation was
successful, while a value of 01H is returned if no data exists at
the next record position of the file. Normally, the no data
situation is encountered at the end of a file. However, it can also
occur if an attempt is made to read a data block which has not been
previously written, or an extent which has not been created. These
situations are usually restricted to files created or appended by
use of the BDOS Write Random commmand (function 34).

All Information Presented Here is Proprietary to Digital Research

36



CP/M-86 System Guide 4.3 BDOS Pile Operations

Return

CL:

DX:

• i

15H

FCB
Clff r*f*»-

V

\

FUNCTION

WRITE

21

SEQUENTIAL

AL: Return Code

Given that the FCB addressed by OX has been activated through
an open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address
to the file named by the FCB. The record is placed at position "cr"
of the file, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next write operation. Write
operations can take place into an existing file, in which case newly
written records overlay those which already exist in the file. The
"cr" field must be set to zero following an open or make call by the
user if the intent is to write sequentially from the beginning of
the file. Register AL = OOH upon return from a successful write
operation, while a non-zero value indicates an unsuccessful write
due to one of the following conditions:

01 No available directory space - This condition occurs when
the write command attempts to create a new extent that
requires a new directory entry and no available directory
entries exist on the selected disk drive.

02 No available data block - This condition is encountered
when the write command attempts to allocate a new data
block to the file and no unallocated data blocks exist on
the selected disk drive.

Entry

CL: 16H

DX: FCB
Offset

FUNCTION 22

MAKE FILE

Return

AL: Return Code

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly
by a non-zero "dr" code, or the default disk if "dr" is zero). The
BDOS creates the file and initializes both the directory and main
memory value to an empty file. The programmer must ensure that no
duplicate file names occur, and a preceding delete operation is
sufficient if there is any possibility of duplication. Upon return,
register A = 0, 1, 2, or 3 if the operation was successful and OFFH
(255 decimal) if no more directory space is available. The make
function has the side-effect of activating the FCB and thus a
subsequent open is not necessary.

All Information Presented Here is Proprietary to Digital Research

37



CP/M-86 System Guide 4.3 BDOS File Ooerations

Entry

CL: 17H

DX: FCB
Offset

FUNCTION 23

RENAME FILE

Return

AL: Return Code

The Rename function uses the FCB addressed by DX to change ail
directory entries of the file specified by the file name in the
first 16 bytes of the FCB to the file name in the second 16 bytes.
It is the user's responsibility to insure that the file names
specified are valid CP/M unambiguous file names. The drive code
"dr" at position 0 is used to select the drive, while the drive code
for the new file name at position 16 of the FCB is ignored. Upon
return, register AL is set to a value of zero if the rename was
successful, and OFFH (255 decimal) if the first file name could not
be found in the directory scan.

Entry

CL: 18H

BX: Login
Vector

V X

\

FUNCTION 24

RETURN LOGIN
VECTOR

Return

BX: Login Vector

The login vector value returned by CP/M-86 is a 16-bit value in
BX, where the least significant bit corresponds to the first drive
A, and the high order bit corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line,
while a "1" bit marks an drive that is actively on-line due to an
explicit disk drive selection, or an implicit drive select caused by
a file operation which specified a non-zero "dr" field.

Entry Return

CL: 19H FUNCTION 25

RETURN CURRENT
DISK

AL: Current Disk

Function 25 returns the currently selected default disk number
in register AL. The disk numbers range from 0 through 15
corresponding to drives A through P.

All Information Presented Here is Proprietary to Digital Research

38



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return

CL: 1AH

DX: DMA
Offset

v. \

\

FUNCTION 26

SET DMA
ADDRESS

"DMA" is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the
disk subsystem. Although many computer systems use non-DMA access
(i.e., the data is transfered through programmed I/O operations),
the DMA address has, in CP/M, come to mean the address at which the
128 byte data record resides before a disk write and after a disk
read. In the CP/M-86 environment, the Set DMA function is used to
specify the offset of the read or write buffer from the current DMA
base. Therefore, to soecify the DMA address, both a function 26
call and a function 51 call are required. Thus, the DMA address
becomes the value specified by DX plus the DMA base value until it
is changed by a subsequent Set DMA or set DMA base function.

Entry

CL: 1BH FUNCTION 27

GET ADDR(ALLOC)

Return

BX: ALLOC Offset

ES: Segment base

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
segment base and the offset address of the allocation vector for the
currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read/only.

Entry Return

CL: ICH FUNCTION 28

WRITE PROTECT DISK

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold start, warm start, disk system reset,
or drive reset operation produces the message:

Bdos Err on d: R/0

All Information Presented Here is Proprietary to Digital Research

39



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return

CL: 1DH
<v_ X

\

FUNCTION 29

GET READ/ONLY
VECTOR

BX: R/O Vector Value

Function 29 returns a bit vector in register BX which indicates
drives which have the temporary read/onlv bit set. Similar to
function 24, the least significant bit corresponds to drive A, while
the most significant bit corresponds to drive P. The R/O bit is set
either by an explicit call to function 28, or by the automatic
software mechanisms within rp/M-86 which detect chanqed disks.

Entry

PL: 1EH

DX: FCB
Offset \

FUNCTION 30

SET FILE
ATTRIBUTES

Re t u r n

AL: Return Code

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. Tn
particular, the R/O, System and Archive attributes (tl', t2', and
t3') can be set or reset. The DX pair addresses a ̂ CB containing a
file name with the approoriate attributes set or reset. It is the
user's responsibility to insure that an ambiguous file name is not
specified. Function 30 searches the default disk drive directory
area for directory entries that belong to the current user number
and that match the FCB specified name and tvpe fields. All matching
directory entries are updated to contain the selected indicators.
Indicators fl' through f4' are not presently used, but may be useful
for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators
f5' through f8' are reserved for future system expansion. The
currently assigned attributes are defined as follows:

tl': The R/O attribute indicates if set that the file
is in read/only status. BDOS will not allow write
commands to be issued to files in R/O status.

t2': The System attribute is referenced by the CP/M DIR
utility. If set, DIR will not disolay the File in
a directory display.

All Information Presented Here is Proprietary to Digital Research

40



CP/M-86 System Guide 4.3 BDOS File Operations

t3': The Archive attribute is reserved but not actually
used bv ^P/M-86 If set it indicates that the file
has been written to back UD storaqe bv a user
written archive program. To implement this
facility, the archive program sets this attribute
when it copies a file to back up storage; anv
programs updating or creating files reset this
attribute. Further, the archive program backs uo
only those files that have the Archive attribute
reset. Thus, an automatic back UD facilitv
restricted to modified files can be easily
implemented.

Function 30 returns with register AL set to O^FH (255 decimal)
if the referenced file cannot be found, otherwise a value of zero is
returned .

Entrv

CL: 1FH FUNCTION 31

GET AODR
(DISK PARMS)

Return

BX: npR Offset

ES: Segment Base

The offset and th*» seqment base of the BIOS resident disk
oarameter block of the currently selected drive are returned in BX
and ES as a result of this function call. This control block can be
used for either of two Purposes. First, the disk oarameter values
can be extracted for display and space computation purposes, or
transient programs can dynamically change the values of current disk
parameters when the disk environment changes, if required.
Normally, application orograms will not require this
Section 6.3 defines the BIOS disk parameter block.

Entrv Return

CL: 20H

OL: OFFH(get)
or

User Code
(set)

FUNCTION 32

TTSER CODE

AT,: Current
or no value

An application program can change or interrogate the currently
active user number by calling function 32. If register DL = OFFH,
then the value of the current usor number is returned in register
AL, where the value is in the range 0 to 15. If register OL is not
OFFH, then the current user number is changed to the value of DL
(modulo 16) .

All Information Presented Here is Proprietary to Digital Research

41



CP/M-86 System Guide 4.3 BDOS File Operations

Entry ReturnrCL: 21H

DX: FCB 1
offset- >

FUNCTION 33

READ RANDOM

AL: Return Code

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions rO at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (rO) , middle
byte next (rl), and high byte last (r2) . CP/M does not reference
byte r2, except in computing the size of a file (function 35). Byte
r2 must be zero, however, since a non-zero value indicates overflow
past the end of file.

Thus, the rO,rl byte pair is treated as a double-byte, or
"word" value, which contains the record to read. This value ranges
from 0 to 65535, providing access to any particular record of any
size file. In order to access a file using the Read Random
function, the base extent (extent 0) must first be opened. Although
the base extent may or may not contain any allocated data, this
ensures that the FCB is properly initialized for subsequent random
access operations. The selected record number is then stored into
the random record field (rO,rl), and the BDOS is called to read the
record. Upon return from the call, register AL either contains an
error code, as listed below, or the value 00 indicating the
operation was successful. In the latter case, the buffer at the
current DMA address contains the randomly accessed record. Note
that contrary to the sequential read operation, the record number is
not advanced. Thus, subsequent random read operations continue to
read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode
to sequential read, and the last record will be re-written as you
switch to a sequential write operation. You can, of course, simply
advance the random record position following each random read or
write to obtain the effect of a sequential I/O operation.

All Information Presented Here is Proprietary to Digital Research

42



CP/M-86 System Guide 4.3 BDOS File Operations

Error codes returned in register HL followinq a random read are
listed in Table 4-4, below.

Table 4-4. Function 33 (Read Random) Error Codes

Code I Meaninq

01 Readinq unwritten data - This error code is returned
when a random read operation accesses a data block which
has not been previously written.

02 (not returned by the Random Read command)

03 Cannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to movinq to the new extent containinq the record
specified by bytes rO,rl of the FCB. This error can be
caused by an overwritten FCB or a read random operation
on an FCB that has not been opened.

04 Seek to unwritten extent - This error code is returned
when a random read operation accesses an extent that has
not been created. This error situation is equivalent to
error 01.

05 (not returned by the Random Read command)

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Normally, non-zero return codes can be treated as missinq data, with
zero return codes indicating operation complete.

All Information Presented Here is Proprietary to Digital Research

43



CP/M-86 System Guide 4.3 BOOS File Ooerations

Entry _ Return

CL: 22H

DX: FCB
Offset

FUNCTION 34

WRITE RANDOM

AL: Return Code

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the
current DMA address. Further, if the disk extent or data block
which is the tarqet of the write has not yet been allocated, the
allocation is performed before the write operation continues. Us in
the Read Random operation, the random record number is not changed
as a result of the write. The logical extent number and current
record positions of the file control block are set to correspond to
the random record which is beinq written. Sequential read or write
operations can commence following a random write, with the note that
the currently addressed record is either read or rewritten again as
the sequential operation begins. You can also simoly advance the
random record position following each write to get the effect of a
sequential write operation. In particular, reading or writing the
last record of an extent in random mode does not cause an automatic
extent switch as it does in sequential mode.

In order to access a file using the Write Random function, the
base extent (extent 0) must first be opened. As in the Read Random
function, this ensures that the FCB is properly initialized for
subsequent random access operations. If the file is empty, a Make
File function must be issued for the base extent. Although the base
extent may or may not contain any allocated data, this ensures that
the file is properly recorded in the directory, and is visible in
DIR requests.

Upon return from a Write Random cal1, register AL either
contains an error code, as listed in Table 4-5 below, or the value
00 indicating the operation was successful.

Table 4-5. Function 34 (WRITE RANDOM) Error Codes

Code! Meaning

01 (not returned by the Random Write command)

02 No available data block - This condition is encountered
when the Write RandoTn command attempts to allocate a new
data block to the file and no unallocated data blocks
exist on the selected disk drive.

All Information Presented Here is Proprietary to Digital Research

44



CP/M-86 System Guide 4.3 BOOS File Operations

Table 4-5. (continued)

Code I Meaning

03 Cannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bytes rO,rl of the FCB. This error can be
caused by an overwritten FCB or a write random operation
on an FCB that has not been opened.

04 (not returned by the Random Write command)

05 No available directory space - This condition occurs
when the write command attempts to create a new extent
that requires a new directory entry and no available
directory entries exist on the selected disk drive.

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Entry Return

CL: 23H

DX: FCB
Offset

FUNCTION 35

COMPUTE FILE
SIZE

Random Record
Field Set

When computing the size of a file, the DX register addresses an
FCB in random mode format (bytes rO, rl, and r2 are present). The
FCB contains an unambiguous file name which is used in the directory
scan. Upon return, the random record bytes contain the "virtual"
file size which is, in effect, the record address of the record
following the end of the file. If, following a call to function 35,
the high record byte r2 is 01, then the file contains the maximum
record count 65536. Otherwise, bytes rO and rl constitute a 16-bit
value (rO is the least significant byte, as before) which is the
file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes startinq at the
preset record address.

The virtual size of a file corresponds to the physical size
when the file is written sequentially. If, instead, the file was
created in random mode and "holes" exist in the allocation, then the
file may in fact contain fewer records than the size indicates. If,
for example, a single record with record number 65535 (CP/M's
maximum record number) is written to a file using the Write Random
function, then the virtual size of the file is 65536 records,
although only one block of data is actually allocated.

All Information Presented Here is Proprietary to Diqital Research

45



CP/M-86 System Guide 4.3 BOOS File Operations

Entry Return

CL: 24H

OX: FCB
Offset

V X

\

FUNCTION 36

SET RANDOM
RECORD

Random Record
Field Ret

The Set Random Record function causes the BDOS to automatically
produce the random record position of the next record to be accessed
from a file which has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields.
As each key is encountered, function 36 is called to compute the
random record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record position minus
one is placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the kevs and their record
numbers, you can move instantly to a particular keyed record by
performing a random read using the corresponding random record
number which was saved earlier. The scheme is easily generalized
when variable record lengths are involved since the program need
only store the buffer-relative byte position along with the key and
record number in order to find the exact starting position of the
keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read
and write operations continue from the next record in the file.

Entry Re t u r n

CL: 25H

DX: Drive
Vector

FUNCTION 37

RESET DRIVE

AL: OOH

The Reset Drive function is used to programmatically restore
specified drives to the reset state (a reset drive is not logged-in
and is in read/write status) . The passed parameter in register DX
is a 16 bit vector of drives to be reset, where the least
significant bit corresponds to the first drive, A, and the high
order bit corresponds to the sixteenth drive, labelled P. Bit
values of "1" indicate that the specified drive is to be reset.

In order to maintain compatibility with MP/M, CP/M returns a
zero value for this function.

All Information Presented Here is Proprietary to Digital Research

46



CP/M-86 System Guide

Entry Return

CL: 28H

DX: FCB
Offset

FUNCTION 40

WRITE RANDOM
WITH ZERO FILL

AL: Return Code

The Write Random With Zero Fill function is similar to the
Write Random function (function 34) with the exception that a
previously unallocated data block is initialized to records filled
with zeros before the record is written. If this function has been
used to create a file, records accessed by a read random operation
that contain all zeros identify unwritten random record numbers.
Unwritten random records in allocated data blocks of files created
using the Write Random function contain uninitialized data.

Entry

CL: 32H

DX: BIOS
Descriptor

Return

FUNCTION 50

DIRECT BIOS CALL

Function 50 provides a direct BIOS call and transfers control
through the BDOS to the BIOS. The DX register addresses a five-byte
memory area containing the BIOS call parameters:

8-bit 16-bit 16-bit

|Func | value (CX) | value (DX)|

where Func is a BIOS function number, (see Table 5-1) , and value(CX)
and value(DX) are the 16-bit values which would normally be passed
directly in the CX and DX registers with the BIOS call. The CX and
DX values are loaded into the 8086 registers before the BIOS call is
initiated.

All Information Presented Here is Proprietary to Digital Research

47



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return

CL: 33H

DX: Base
Address

•v X

\

FUNCTION

SET DMA

51

BASE

Function 51 sets the base register for subsequent DMA
transfers. The word parameter in DX is a paragraph address and is
used with the DMA offset to specify the address of a 128 byte buffer
area to be used in the disk read and write functions. Note that
upon initial program loading, the default DMA base is set to the
address of the user's data segment (the initial value of DS) and the
DMA offset is set to 0080H, which orovides access to the default
buffer in the base page.

Entrv

CL: 34H FUNCTION 52

GET DMA BASE

Return

BX: DMA Offset

ES: DMA Segment

Function 52 returns the current DMA Base Segment address in ES,
with the current DMA Offset in DX.

4.4 BDOS Me»ory Management and Load

Memory is allocated in two distinct ways under CP/M-86. The
first is through a static allocation map, located within the BIOS,
that defines the physical memory which is available on the host
system. In this way, it is possible to ooerate CP/M-86 in a memory
configuration which is a mixture of up to eight non-contiguous areas
of RAM or ROM, along with reserved, missing, or faulty memorv
regions. In a simple RAM-based system with contiguous memory, the
static map defines a single region, usually starting at the end of
the BIOS and extending up to the end of available memorv.

Once memory is physically mapped in this manner, CP/M-86
performs the second level of dynamic allocation to support transient
program loading and execution. CP/M-86 allows dynamic allocation of
memory into, again, eight regions. A request for allocation takes
place either implicitly, through a program load ooeration, or
explicitly through the BDOS calls given in this section. Programs
themselves are loaded in two ways: through a command entered at the
CCP level, or through the BDOS Program Load ooeration (function 59).
Multiple programs can be loaded at the CCP level, as long as each
program executes a System Reset (function 0) and remains in memorv
(DL = 01H). Multiple programs of this type only receive control by
intercepting interrupts, and thus under normal circumstances there

All Information Presented Here is Proprietary to Digital Research

48



CP/M-86 System Guide 4.4 BDOS Memory Management and Load

is only one transient proqram in memory at any given time. If,
however, multiple programs are present in memory, then CONTROL-C
characters entered by the operator delete these programs in the
opposite order in which they were loaded no matter which orogram is
actively reading the console.

Any given program loaded through a CCP command can, itself,
load additional programs and allocate data areas. Suppose four
regions of memory are allocated in the following order: a program
is loaded at the CCP level through an operator command. The CMD
file header is read, and the entire memorv image consisting of the
program and its data is loaded into region A, and execution begins.
This program, in turn, calls the BDOS Program Load function (59) to
load another program into region B, and transfers control to the
loaded program. The region B program then allocates an additional
region C, followed by a region D. The order of allocation is shown
in Figure 4-1 below:

Region A

Region B

Region C

Region D

Figure 4-1. Example Memory Allocation

There is a hierarchical ownershio of these regions: the program in
A controls all memory from A through D. The program in B also
controls regions B through D. The program in A can release regions
B through D, if desired, and reload yet another program. DDT-86,
for example, operates in this manner by executing the Free Memory
call (function 57) to release the memory used by the current program
before loading another test program. Further, the program in B can
release regions C and D if required by the application. It must be
noted, however, that if either A or B terminates by a System Reset
(BDOS function 0 with DL = OOH) then all four regions A through D
are released.

All Information Presented Here is Proprietary to Digital Research

49



CP/M-86 System Guide 4.4 BOOS Memory Manaqement and Load

A transient program may release a portion of a region, allowing
the released portion to be assigned on the next allocation request.
The released portion must, however, be at the beginning or end of.
the region. Suppose, for example, the program in region B above
receives 800H paragraphs at paragraph location 100H following its
first allocation request as shown in Figure 4-2 below.

IOOOH:

Length =
8000H Region C.

Figure 4-2. Example Memory Region

Suppose further that region D is then allocated. The last 200H
paragraphs in region C can be returned without affecting region D by
releasing the 200H paragraphs beginning at paragraoh base 700H,
resulting in the memory arrangement shown in Figure 4-3.

Length =
6000H

Length =
2000H

IOOOH:

7000H:

Region C

Figure 4-3. Example Memory Regions

The region beginning at paragraph address 700H is now available for
allocation in the next request. Note that a memorv request will
fail if eight memory regions have already been allocated. Normally,
if all program units can res'ide in a contiguous region, the system
allocates only one region.

All Information Presented Here is Proprietary to Digital Research

50



CP/M-86 System Guide 4.4 BOOS Memory Management and Load

Memory management functions beginning at 53 reference a Memory
Control Block (MCB), defined in the calling program, which takes the
form:

16-bit 16-bit 8-bit

M-Base M-Length M-ExtMCB:

where M-Base and M-Length are either input or output values
expressed in 16-byte paragraph units, and M-Ext is a returned byte
value, as defined specifically with each function code. An error
condition is normally flagged with a OFFH returned value in order to
match the file error conventions of CP/M.

Entry

CL: 35H

DX: Offset
of MCB

FUNCTION 53

GET MAX MEM

Return

AL: Return Code

Function 53 finds the largest available memory region which is
less than or equal to M-Length paragraphs. If successful, M-Base is
set to the base paragraph address of the available area, and M-
Length to the paragraph length. AL has the value OFFH upon return
if no memory is available, and OOH if the request was successful.
M-Ext is set to I if there is additional memory for allocation, and
0 if no additional memory is available.

Entry

CL: 36H

DX: Offset
of MCB

FUNCTION 54

GET ABS MAX

Return

AL: Return Code

Function 54 is used to find the largest possible region at the
absolute paragraph boundary given by M-Base, for a maximum of M-
Length paragraphs. M-Length is set to the actual length if
successful. AL has the value OFFH upon return if no memory is
available at the absolute address, and OOH if the request was
successful.

Al] Information Presented Here is Proprietary to Digital Research

51



CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry

CL: 37H

DX: Offset
of MCB

k x

N

FUNCTION 55

ALLOC MEM

Return

AL: Return Code

The allocate memory function allocates a memory area according
to the MCB addressed by DX. The allocation request size is obtained
from M-Length. Function 55 returns in the user's MCB the base
paragraph address of the allocated region. Register AL contains a
OOH if the request was successful and a OFFH if the memory could not
be allocated.

Entry

CL: 38H

DX: Offset
of MCB

FUNCTION 56

ALLOC ABS MEM

Return

AL: Return Code

The allocate absolute memory function allocates a memory area
according to the MCB addressed by nx. The allocation request size
is obtained from M-Length and the absolute base address from M-Base.
Register AL contains a OOH if the request was successful and a OFFH
if the memory could not be allocated.

Entry

CL: 39H

DX: Offset
of MCB

N

FUNCTION 57

FREE MEM

Return

Function 57 is used to release memory areas allocated to the
program. The value of the M-Ext field controls the operation of
this function: if M-Ext = OFFH then all memory areas allocated by
the calling program are released. Otherwise, the memory area of
length M-Length at location M-Base given in the MCB addressed by DX
is released (the M-Ext field-should be set to OOH in this case). As
described above, either an entire allocated region must be released,
or the end of a region must be released: the -middle section cannot
be returned under CP/M-86.

All Information Presented Here is Proprietary to Digital Research

52



CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry

CL: 3AH

Return

FUNCTION 58

FREE ALL MEM

Function 58 is used to release all memory in the CP/M-86
environment (normally used only by the CCP upon initialization).

Entry

CL: 3BH

DX: Offset
of FCB

FUNCTION 59

PROGRAM LOAD

Return

AX: Return Code/
Base Page Addr

BX: Base Page Addr

Function 59 loads a CMD file. Upon entry, register OX contains
the DS relative offset of a successfully opened FCB which names the
input CMD file. AX has the value OFFFFH if the program load was
unsuccessful. Otherwise, AX and BX both contain the paragraph
address of the base page belonging to the loaded program. The base
address and segment length of each segment is stored in the base
page. Note that upon program load at the CCP level, the DMA base
address is initialized to the base page of the loaded program, and
the DMA offset address is initialized to 0080H. However, this is a
function of the CCP, and a function 59 does not establish a default
DMA address. It is the responsibility of the program which executes
function 59 to execute function 51 to set the DMA base and function
26 to set the DMA offset before passing control to the loaded
program.

All Information Presented Here is Proprietary to Digital Research

53





Section 5
Basic I/O System (BIOS) Organization

The distribution version of CP/M-86 is setup for operation with
the Intel SBC 86/12 microcomputer and an Intel 204 diskette
controller. All hardware dependencies are, however, concentrated in
subroutines which are collectively referred to as the Basic I/O
System, or BIOS. A CP/M-86 svstem implementor can modify these
subroutines, as described below, to tailor CP/M-86 to fit nearly anv
8086 or 8088 operating environment. This section describes the
actions of each BIOS entry point, and defines variables and tables
referenced within the BIOS. The discussion of Disk Definition
Tables is, however, treated separately in the next section of this
manual.

5.1 Organization of the BIOS

The BIOS portion of CP/M-86 resides in the toomost oortion of
the operating system (highest addresses) , and takes the general form
shown in Figure 5-1, below:

CS, DS, ES, SS:

CS + 2500H:

CS + 253FH:

BIOS:

Console
Command
Processor

and
Basic
Disk
Operating
System

BIOS Jump Vector

BIOS Entrv Points

Disk
Parameter
Tables

Uninitialized
Scratch RAM

Figure 5-1. General CP/M-86 Organization

All Information Presented Here is Proprietary to Digital Research

55



CP/M-86 System Guide 5.1 Organization of the BIOS

As described in the following sections, the CCP and BDOS are
supplied with CP/M-86 in hex file form as CPM.H86. In order to
implement CP/M-86 on non-standard hardware, you must create a BIOS
which performs the functions listed below and concatenate the
resulting hex file to the end of the CPM.H86 file. The GENCMD
utility is then used to produce the CPM.SYS file for subsequent load
by the cold start loader. The cold start loader that loads the
CPM.SYS file into memory contains a simplified form of the BIOS,
called the LDBIOS (Loader BIOS). It loads CPM.SYS into memory at
the location defined in the CPM.SYS header (usually 0400H). The
procedure to follow in construction and execution of the cold start
loader and the CP/M-86 Loader is given in a later section.

Appendix D contains a listing of the standard CP/M-86 BIOS for
the Intel SBC 86/12 system using the Intel 204 Controller Board.
Appendix E shows a sample "skeletal" BIOS called CBIOS that contains
the essential elements with the device drivers removed. You mav
wish to review these listings in order to determine the overall
structure of the BIOS.

5.2 The BIOS Jump Vector

Entry to the BIOS is through a "jump vector" located at offset
2500H from the base of the operating system. The -jump vector is a
sequence of 21 three-byte jump instructions which transfer program
control to the individual BIOS entry points. Although some non-
essential BIOS subroutines may contain a single return (RET)
instruction, the corresponding jump vector element must be present
in the order shown below in Table 5-1. An example o^ a BIOS iump
vector may be found in Appendix n, in the standard CP/M-86 BIOS
listing.

Parameters for the individual subroutines in the BIOS are
passed in the CX and DX registers, when required. CX receives the
first parameter; OX is used for a second argument. Return values
are passed in the registers acco dinq to type: Rvte values are
returned in AL. Word values (16 bits) are returned in BX. Specific
parameters and returned values are described with each subroutine,

All Information Presented Here is Proprietary to Digital Research

56



CP/M-86 System Guide 5.2 The BIOS Jump Vector

Table 5-1. BIOS Jump Vector

Offset from
Beqinninq
of BIOS

2500H
2503H
2506H
2509H
250CH
250FH
2512H
2515H
2518H
251BH
251EH
2521H
2524H
2527H
252AH
252DH
2530H
2533H
2536H
2539H
253CH

Suggested
Instruction

JMP IN I T
JMP WBOOT
JMP CONST
JMP CON IN
JMP CONOUT
JMP LIST
JMP PUNCH
JMP READER
JMP HOME
JMP SELDSK
JMP SETTRK
JMP SETSEC
JMP SETDMA
JMP READ
JMP WRITE
JMP LISTST
JMP SECTRAM
JMP SETDMAB
JMP GETSEGB
JMP GETIO3
JMP SETIOB

BIOS
Ft

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Description

Arrive Here from Cold Boot
Arrive Here for Warm Start
Check for Console Char Ready
Read Console Character In
Write Console Character Out
Write Listing Character Out
Write Char to Punch Device
Read Reader Device
Move to Track 00
Select Disk Drive
Set Track Number
Set Sector Number
Set DMA Offset Address
Read Selected Sector
Write Selected Sector
Return List Status
Sector Translate
Set DMA Seqment Address
Get MEM DESC Table Offset
Get I/O Mapping Byte
Set I/O Mapping Byte

There are three major divisions in the BIOS jump table: system
(re)initialization subroutines, simple character I/O subroutines,
and disk I/O subroutines.

5.3 Simple Peripheral Devices

Al] simple character I/O operations are assumed to be performed
in ASCII, upper and lower case, with hiqh order (parity bit) set to
zero. An end-of-file condition for an input device is given bv an
ASCII control-z (1AH). Peripheral devices are seen by CP/M-86 as
"logical" devices, and are assigned to physical devices within the
BIOS. Device characteristics are defined in Table 5-2.

All Information Presented Here is Proprietary to Digital Research

57



CP/M-86 System Guide 5.3 Simple Peripheral Devices

Table 5^2. CP/M-86 Logical Device Characteristics

Device Name Characteristics

CONSOLE The p r i n c i p a l interactive console which
communicates with the ooerator, accessed throuqh
CONST, CONIN, and CONOUT. Typically, the CONSOLE
is a device such as a CRT or Teletype.

LIST The principal listinq device, if it exists on your
system, which is usually a hard-copy device, such
as a printer or teletype.

PUNCH The principal tape punchinq device, if it exists,
which is normally a hiqh-speed paper tape Punch or
teletype.

READER The principal tape readinq device, such as a
simple optical reader or teletyoe.

Note that a sinqle perioherai can be assiqned as the LIST,
PUNCH, and READER device simultaneously. If no perioheral device is
assiqned as the LIST, PUNCH, or READER device, your CBIOS should
qive an aoorooriate error messaqe so that the svstem does not "hanq"
if the device is accessed by PIP or some other transient proqram.
Alternately, the PUNCH and LIST subroutines can lust simolv return,
and the READER subroutine can return with a IAH (ctl-7,) in req A to
indicate immediate end-of-file.

For added flexibility, you can optionally implement the
"IOBYTE" function which allows reassiqnment of physical and loqical
devices. The IOBYTE function creates a maopinq of loqical to
physical devices which can be altered durinq CP/M-86 orocessinq (see
the STAT command). The definition of the IOBYTE function
corresponds to the Intel standard as follows: a sinqle location in
the BIOS is maintained, called IOBYTE, which defines the loqical to
physical device mappinq which is in effect at a particular time.
The mappinq is oerformed by splittinq the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER, PUNCH, and LIST
fields, as shown below:

most siqnificant least siqnificant

IOBYTE LIST PUNCH READER CONSOLE

bits 6,7 bits 4,5 bits 2,3 bits 0,1

All Information Presented Here is Proprietary to Diqital Research

58



CP/M-86 System Guide 5.3 Simple Peripheral Devices

The value in each field can be in the ranqe 0-3, defining the
assigned source or destination of each logical device. The values
which can be assigned to each field are given in Table 5-3, below.

Table 5-3. IOBYTE Field Definitions

CONSOLE field (bits 0,1)
0 - console is assigned to the console orinter
1 - console is assigned to the CRT device (CRT:)
2 - batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 - user defined console device (UC1:)

READER field (bits 2,3)
0 - READER is the Teletype device (TTY:)
1 - READER is the high-speed reader device (RDR:)
2 - user defined reader # 1 (URl:)
3 - user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)
0 - PUNCH is the Teletype device (TTY:)
1 - PUNCH is the high soeed punch device (PUN:)
2 - user defined ounch t l (UPI:)
3 - user defined ounch I 2 (UP2:)

LIST field (bits 6,7)
0 - LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - user defined list device (ULl:)

Note again that the implementation of the IOBYTE is optional,
and affects only the organization of your CBIOS. No CP/M-86
utilities use the IOBYTE except for PIP which allows access to the
physical devices, and STAT which allows logical-physical assignments
to be made and displayed. In any case, you should omit the IOBYTE
implementation until your basic CBIOS is fully implemented and
tested, then add the IOBYTE to increase vour facilities.

All Information Presented Here is Proprietary to Digital Research

59



CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

5.4 BIOS Subroutine Entry Points

The actions which must take place upon entrv to each BIOS
subroutine are given below. It should be noted that disk I/O is
always performed through a sequence of calls on the various disk
access subroutines. These setup the disk number to access, the
track and sector on a particular disk, and the direct memory access
(DMA) offset and segment addresses involved in the I/O operation.
After all these parameters have been setup, a call is made to the
READ or WRITE function to perform the actual I/O operation. Note
that there is often a single call to SELDSK to select a disk drive,
followed by a number of read or write operations to the selected
disk before selecting another drive for subsequent operations.
Similarly, there may be a call to set the DMA seament base and a
call to set the DMA offset followed bv several calls which read or
write from the selected DMA address before the DMA address is
changed. The track and sector subroutines are always called before
the READ or WRITE operations are performed.

The READ and WRITE subroutines should perform several retries
(10 is standard) before reporting the error condition to the BDOS.
The HOME subroutine mav or may not actually perform the track 00
seek, depending upon your controller characteristics; the important
point is that track 00 has been selected for the next operation, and
is often treated in exactly the same manner as SETTRK with a
parameter of 00.

Table 5-4. BIOS Subroutine Summary

Subroutine Descr ipt ion

INIT

WBOOT

CONST

This subroutine is called directly by the CP/M-86
loader after the CPM.SYS file has been read into
memory. The procedure is responsible for anv
hardware initialization not performed by the
bootstrap loader, setting initial values for BIOS
variables (including IOBYTE), printing a sign-on
message, and initializing the interrupt vector to
point to the RDOS offset (OB11H) and base, when
this routine completes, it jumps to the CCP
offset (OH) . All segment registers should be
initialized at this time to contain the base of

the operating system.

This subroutine is called whenever a proqram
terminates by performing a BDOS function $0 call.
Some re-initialization of the hardware or
software may occur here. When this routine
completes, it jumps directly to the warm start
entry point of "the CCP (06H).

Sample the status of the currently assigned
console device and return OFFH in register AL if
a character is ready to read, and OOH in register
AL if no console characters are ready.

All Information Presented Here is Proprietary to Digital Research

60



CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine Descr iption

CONIN Read the next console character into register AL,
and set the parity bit (high order bit) to zero.
If no console character is ready, wait until a
character is tvped before returning.

CONOUT Send the character from register CL to the
console output device. The character is in
ASCII, with high order parity bit set to zero.
You may want to include a time-out on a line feed
or carriage return, if your console device
requires some time interval at the end of the
line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters
which have undesirable effects on the console
device.

LIST Send the character ^rom register CL to the
currently assigned listing device. The character
is in ASCII with zero paritv.

PUNCH Send the character from register CL to the
currently assigned punch device. The character
is in ASCII with zero parity.

READER Read the next character from the currently
assigned reader device into register AL with zero
paritv (high order bit must be zero). An end of
file condition is reported bv returning an ASCII
CONTROL-Z (1AH).

HOME Return the disk head of the currently selected
disk to the track 00 position. If your
controller does not have a special feature for
finding track 00, you can translate the call into
a call to SETTRK with a parameter of 0.

All Information Presented Here is Proprietary to Digital Research

61



CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine Description

SELDSK Select the disk drive given by register CL for
further operations, where register CL contains 0
for drive A, 1 for drive B, and so on UD to IS
for drive P (the standard CP/M-86 distribution
version suoports two drives). On each disk
select, SELDSK must return in BX the base address
of the selected drive's Disk Parameter Header.
*"or standard floppy disk drives, the content of

the header and associated tables does not change.
The sample BIOS included with CP/M-86 called
CHIOS contains an examole program segment that
performs the SELDSK function. If there is an
attempt to select a non-existent drive, SELDSK
returns BX=OOOOH as an error indicator. Although
SELDSK must return the header address on each
call, it is advisable to oostpone the actual
physical disk select ooeration until an I/O
function (seek, read or write) is performed.
This is due to the fact that disk select
ooerations may take olace without a subsequent
disk operation and thus disk access mav be
substantially slower using some disk controllers.
On entry to SELDSK it is oossible to determine
whether it is the first time the specified disk
has been selected. Register DL, bit 0 (least
significant bit) is a zero if the drive has not
been previously selected. This information is of
interest in systems which read configuration
information from the disk in order to set UP a
dynamic disk definition table.

SETTRK Register CX contains the track number for
subsequent disk accesses on the currently
selected drive. You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actually occurs.
Register CX can take on values in the range 0-76
corresponding to valid track numbers for standard
floopy disk drives, and 0-65535 for non-standard
disk subsystems.

SETSEC Register CX contains the translated sector number
for subsequent disk accesses on the currently
selected drive (see SEC^RAN, below). You can
choose to send this information to the controller
at this point, or instead delay sector selection
until a read or write operation occurs.

All Information Presented Here is Proprietary to Digital Research

62



CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine Description

SETDMA Register CX contains the DMA (disk memory access)
offset for subsequent read or write operations.
For example, if CX = 80H when SETDMA is called,
then all subsequent read operations read their
data into 80H through OFFH offset from the
current DMA segment base, and all subsequent
write operations get their data from that
address, until the next calls to SETDMA and
SETDMAB occur. Note that the controller need not
actually support direct memory access. If, for
example, all data is received and sent through
I/O ports, the CBIOS which you construct will use
the 128 byte area starting at the selected DMA
offset and base for the memory buffer during the
following read or write operations.

READ Assuming the drive has been selected, the track
has been set, the sector has been set, and the
DMA offset and segment base have been specified,
the READ subroutine attempts to read one sector
based upon these parameters, and returns the
following error codes in register AL:

0 no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M-86 responds only to a zero or
non-zero value as the return code. That is, if
the value in register AL is 0 then CP/M-86
assumes that the disk operation completed
properly. If an error occurs, however, the CBIOS
should attempt at least 10 retries to see if the
error is recoverable. When an error is reported
the BDOS will print the message "BDOS ERR ON x:
BAD SECTOR". The operator then has the option of
typing RETURN to ignore the error, or CONTROL-C
to abort.

WRITE Write the data from the currently selected DMA
buffer to the currently selected drive, track,
and sector. The data should be marked as "non-
deleted data" to maintain compatibility with
other CP/M systems. The error codes given in the
READ command are returned in register AL, with
error recovery attempts as described above.

LISTST Return the ready status of the list device. The
value 00 is returned in AL if the list device is
not ready to accept a character, and OFFH if a
character can be sent to the printer.

All Information Presented Here is Proprietary to Digital Research

63



CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine Descr iotion

SECTRAN Performs logical to physical sector translation
to improve the overall response of CP/M-86.
Standard CP/M-86 systems are shipped with a "skew
factor" of 6, where five physical sectors are
skipped between sequential read or write
operations. This skew factor allows enouqh time
between sectors for most programs to load their
buffers without missing the next sector. In
computer systems that use fast processors, memory
and disk subsystems, the skew factor may be
changed to improve overall response. Note,
however, that you should maintain a single
density IBM compatible version of CP/M-86 for
information transfer into and out of your
computer system, using a skew factor of 6. In
general, SECTRAN receives a logical sector number
in CX. This logical sector number mav range from
0 to the number of sectors -1. Sectran also
receives a translate table offset in DX. The
sector number is used as an index into the
translate table, with the resulting physical
sector number in BX. For standard systems, the
tables and indexing code is provided in the CBIOS
and need not be changed. If OX = OOOOH no
translation takes place, and CX is simply copied
to BX before returning. Otherwise, SECTRAN
computes and returns the translated sector number
in BX. Note that SECTRAN is called when no
translation is specified in the Disk Parameter
Header.

SETDMAB Register CX contains the segment base for
subsequent DMA read or write operations. The
BIOS will use the 128 byte buffer at the memorv
address determined by the DMA base and the DMA
offset during read and write operations.

GETSEGB Returns the address of the Memory Region Table
(MRT) in BX. The returned value is the offset of
the table relative to the start of the operating
system. The table defines the location and
extent of physical memory which is available for
transient programs.

All Information Presented Here is Proprietary to Digital Research

64



CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine Oescr ipt ion

Memorv areas reserved for interrupt vectors and
the CP/M-86 operatinq system are not included in
the MRT.

MRT:

0:

1:

n :

where R

The Memorv Region Table takes the

8-bit

R-Cnt

R-Base

R-Base

•

R-Base

16-bit

R-Length

R-Length

• •

R-Lenqth

16-bit

form:

-fnt is the number of Memory Region
Descriotors (equal to n+1
while R-Base and R-Lenqth

in the diagram above) ,
give the paragraph base

and length of each physically contiguous area of
memory .
normal! v
are not
contains

Again, the reserved interrupt locations,
0-3FFH, and the CP/M-86 operating system
included in this map, because the map
regions available to transient programs.

If all memory is contiguous, the R-Cnt field is 1
and n = 0, with only a single Memorv Region
Descriptor which defines

GETIOB Returns
ohvsical

the region.

the current value of the logical to
input/output device byte (IOBYTE). in AL.

This eight-bit value is used to associate
physical devices with CP/M-36's four logical
devices .

SETIOB Use the value in CL to set the value of the
IOB*TE stored in the BIOS.

The following section describes the exact layout and
construction of the disk parameter tables referenced by various
subroutines in the BIOS.

All Information Presented Here is Proprietary to Digital Research

65





Section 6
BIOS Disk Definition Tables

Similar to CP/M-80, CP/M-R6 is a table-driven operating system
with a separate field-configurable Basic I/O System (BIOS). By
altering soecific subroutines in the BIOS presented in the previous
section, CP/M-96 can be customized for operation on any RAM-based
R086 or 3088 microorocessor svstem.

The puroose of this section is to present the organization and
construction of tables within the BIOS that define the
characteristics of a Particular disk svstem used with CP/M-86.
mhese tables can be either hand-coded or automatically generated
usinq the IKNnRF utilitv provided with CP/M-86. The elements of
these tables are presented below.

6.1 Disk Parameter Table Format

In general, each disk drive has an associated (16-bvte) disk
parameter header which both contains information about the disk
drive and provides a scratchpad area for certain BDOS operations.
The format of the disk parameter header ^or each drive is shown
below.

Disk Parameter Header

XLT

16b

0000

16b

0000

16b

0000

16b

DIRBUF

16b

npB

16b

CSV

16b

ALV

16b

where each element is a word (16-bit) value. The meaning of each
Disk Parameter Header (OPH) element is given in Table 6-1.

Table 6-1. Disk Parameter Header Elements

Element nescr iption

XLT Offset of the logical to physical, translation vector,
if used for this particular drive, or the value OOOOH
if no sector translation takes place (i.e, the
physical and logical sector numbers are the same).
Disk drives with identical sector skew factors share
the same translate tables.

0000 Scratchpad values for use within the BDOS (initial
value is unimportant).

All Information Presented Here is Proprietary to Digital Research

67



CP/M-86 System Guide 6.1 Disk Parameter Table Format

Element

Table 6-1. (continued)

Description

DIRBUF Offset of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area.

DPB Offset of a disk parameter block for this drivt?.
Drives with identical disk characteristics address the
same disk parameter block.

CSV Offset of a scratchpad area used for software check for
changed disks. This offset is different for each nPH.

ALV Offset of a scratchpad area used by the BDOS to keep
disk storage allocation information. This offset is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first
row of 16 bytes corresponds to drive 0, with the last row
corresponding to drive n-1. The table thus appears as

DPBASE

00

01

XLT 00

XLT 01

0000

0000

0000

0000

0000

0000

DIRBUF

DIRBHF

DBP 00

DBP 01

CSV 00

CSV 01

ALV 00

ALV 01

(and so-forth through)

n-1 XLTn-1 0000 0000 0000 DIRBMF DBPn-1 CSVn-1 ALVn-1

where the label DPBASE defines the offset of the DPH table relative
to the beginning of the ooerating system.

A responsibility of the SELDSK subroutine, defined in the
previous section, is to return the offset of the DPH from the
beginning of the operating system for the selected drive. ^he
following sequence of operations returns the table offset, with a
OOOOH returned if the selected drive does not exist.

All Information Presented Here is Proprietary to Digital Research

68



CP/M-86 System Guide 6.1 Fairameter Table Format

NDISKS

SELOSK:

EOU ;NUMBER OF DISK DRIVES

RETURN:

;SELECT DISK N GIVEN BY CL
MOV BX,OOOOH ;READY FOR ERR
CPM CL,NDISKS ;N BEYOND MAX DISKS?
JNB RETURN ;RETURN IF SO

;0 <= N < NDISKS
MOV CH,0 ;DOUBLE (N)
MOV BX,CX ;BX = N
MOV CL,4 ;READY FOR * 16
SHL BX,CL ;N = N * 16
MOV CX,OFFSET DPBASE
ADD BX,CX ;DPBASE + N * 16
RET ;BX - .DPH (N)

The translation vectors (XLT 00 through XLTn-1) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1. The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH's, takes the general
^orm:

SPT BSH BLM EXM DSM DRM ALO AL1 CKS OFF |

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "8b" or "16b"
indicator below the field. The fields are defined in Table 6-2.

Table 6-2. Disk Parameter Block Fields

Field Definition

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined
by the data block allocation size.

BLM is the block mask which is also determined by the data
block allocation size.

EXM is the extent mask, determined by the data block
allocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive

All Information Presented Here is Proprietary to Digital Research

69



CP/M-86 System Guide 6.1 Disk Parameter Table Format

Table 6-2. (continued)

Field Definition

ALO,ALl determine reserved directorv blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

Although these table values are produced automatically by GENDEF, it
is worthwhile reviewing the derivation of each field so that the
values may be cross-checked when necessary. The values of BSH and
BLM determine (implicitly) the data allocation size BLS, which is
not an entry in the disk parameter block. Given that you have
selected a value for BLS, the va]ues of BSH and BLM are shown in
Table 6-3 below, where all values are in decimal.

Table 6-3. BSH and BLM Values for Selected BLS

BLS |

1,
2,
4,
8,
16,

024
048
096
192
384

BSH

3
4
5
6
7

BLM

7
15
31
63
127

The value of EXM depends upon both the BLS and whether the DSM value
is less than 256 or greater than 255, as shown in the following
table.

Table 6-4. Maximum EXM Values

BLS

1,024
2,048
4,096
8,192
16,384

DSM < 256

0
1
3
7
15

DSM > 255

N/A
0
1
3
7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of
course, must be within the capacity of the physical disk, not
counting the reserved operating system tracks.

All Information Presented Here is Proprietary to Digital Research

70



CP/M-86 System Guide 6.1 Disk Parameter Format

The DRM entry is one less than the total number of directory
entries, which can take on a 16-bit value. The values of ALO and
AL1, however, are determined bv DRM. The two values ALO and ALl can
together be considered a string of 16-bits, as shown below.

ALO ALl

1
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labeled ALO, and 15 corresponds to the low order bit of the bvte
labeled ALl. Each bit position reserves a data block for a number
of directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until oosition 15). Each directory entrv
occupies 32 bytes, as shown in Table 6-5.

Table 6-5. BLS and Number of Directory Entries

BLS

1
2
4
8
16

,024
,048
,096
,192
,384

Directory Entries

32
64
128
256
512

times #
times #
times #
times #
times #

bits
bits
bi ts
bits
bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then
there are 32 directory entries per block, requiring 4 reserved
blocks. In this case, the 4 high order bits of ALO are set,
resulting in the values ALO = OFOH and ALl = OOH.

The CKS value is determined as follows: if the disk drive
media is removable, then CKS = (DRM+D/4, where DRM is the last
directory entrv number. If the media is fixed, then set CKS = 0 (no
directory records are checked in this case).

Finally, the OFF field determines the number of tracks which
are skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several
DPH's can address the same DPB if their drive characteristics are
identical. Further, the DPB can be dynamically changed when a new
drive is addressed by simp]y changing the pointer in the DPH since
the BDOS copies the DPB values to a local area whenever the SELDSK
function is invoked.

All Information Presented Here is Proprietarv to Digital Research

71



CP/M-86 System Guide 6.1 nisk Parameter Table Format

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this
particular drive. If CKS = (ORM+i)/4, then you must reserve
(DRM+l)/4 bytes for directorv check use. If CKS = 0, then no
storage is reserved.

The size of the area addressed bv ALV is determined by the
maximum number of data blocks allowed for this particular disk, and
is computed as (nSM/8)+l.

The BIOS shown in Appendix D demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to
examine this program, and compare the tabular values with the
definitions given above.

6.2 Table Generation using GENDEF

The GENDEF utility supplied with CP/M-86 great!v simplifies the
table construction Process. GENDEF reads a file

x.DEF

containing the disk definition statements, and produces an output
file

x.LIB

containing assembly language statements which define the tables
necessary to support a particular drive configuration. The form of
the GENDEF command is:

GENDEF x parameter l ist

where x has an assumed (and unspecified) filetype of DEF. The
parameter list may contain zero or more of the symbols defined in
Table 6-6.

Table 6-6. GENDEF Optional Parameters

Parameter Effect

$C Generate Disk Parameter Comments
$O Generate DPBASE OFFSET $
$Z Z80, 8080, 8085 Override
$COZ (Any of the Above)

All Information Presented Here is Proprietary to Digital Research

72



CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The C parameter causes GENDEF to produce an accompanying
comment line, similar to the output from the "STAT DSK:" utility
which describes the characteristics of each defined disk. Normally,
the DPBASE is defined as

DPBASE EQU $

which requires a MOV CX,OFFSET DPBASE in the SELDSK subroutine shown
above. For convenience, the $O parameter produces the definition

DPBASE EQU OFFSET $

allowing a MOV CX,DPBASE in SELDSK, in order to match your
particular programming practices. The $Z parameter is included to
override the standard 8086/8088 mode in order to generate tables
acceptable for operation with Z80, 8080, and 8085 assemblers.

The disk definition contained within x.DEF is composed with the
CP/M text editor, and consists of disk definition statements
identical to those accepted by the DISKDEF macro supplied with CP/M-
80 Version 2. A BIOS disk definition consists of the following
sequence of statements:

DISKS
DISKDEF
DISKDEF

DISKDEF n-1

ENDEF

Each statement is placed on a single line, with optional embedded
comments between the keywords, numbers, and delimiters.

The DISKS statement defines the number of drives to be
configured with your system, where n is an integer in the range 1
through 16. A series of DISKDEF statements then follow which define
the characteristics of each logical disk, 0 through n-1,
corresponding to logical drives A through P. Note that the DISKS
and DISKDEF statements generate the in-1ine fixed data tables
described in the previous section, and thus must be placed in a non-
executable portion of your BIOS, typically at the end of your BIOS,
before the start of uninitialized RAM.

The ENDEF (End of Diskdef) statement generates the necessary
uninitialized RAM areas which are located beyond initialized RAM in
your BIOS.

All Information Presented Here is Proprietary to Digital Research

73



CP/M-86 System Guide 6.2 Table Generation Usinq GENDEF

The form of the DISKDEP statement is

DISKDEF dn,fsc,lsc,[skf1,bls,dks,dir,cks,ofs,[0]

where

dn is the logical disk number, 0 to n-1
fsc is the first Physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
bis is the data allocation block size
dks is the disk size in b]s units
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DTSKDEF
statement. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "Isc" is the last
numbered sector on a track. When present, the "skf" parameter
defines the sector skew factor which is used to create a sector
translation table according to the skew. If the number of sectors
is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No translation table
is created if the skf parameter is omitted or equal to 0.

The "bis" parameter specifies the number of bvtes allocated to
each data block, and takes on the values 1024, 2048, 4096, 8192, or
16384. Generally, performance increases with larger data block
sizes because there are fewer directory references, Also, logically
connected data records are physically close on the disk, further,
each directory entry addresses more data and the amount of BIOS work
space is reduced. The "dks" specifies the total disk size in "bis"
units. That is, if the bis = 2048 and dks = 1000, then the total
disk capacity is 2,048,000 bytes. If dks is greater than 255, then
the block size parameter bis must be greater than 1024. The value
of "dir" is the total number of directory entries which may exceed
255, if desired.

The "cks" parameter determines the number of directory items to
check on each directory scan, and is used internally to detect
changed disks during system operation, where an intervening cold
start or system reset has not occurred (when this situation is
detected, CP/M-86 automatically marks the disk read/only so that
data is not subsequently destroyed). As stated in the Previous
section, the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. Tf the disk is
permanently mounted, then the value of cks is typically 0, since the
probability of changing disks without a restart is quite low.

All Information Presented Here is Proprietary to Digital Research

74



CP/M-86 System Guide 6.2 Table Generation Using GKNDEF

T*he "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several "logical
drives on a single large capacity physical drive. Finally, the [01
parameter is included when file compatibility is required with
versions of CP/M-80, version 1.4 which have been modified for higher
density disks (typically double density). This parameter ensures
that no directory compression takes place, which would cause
incompatibilities with these non-standard CP/M 1.4 versions.
Normativ, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,i

gives disk i the same characteristics as a previously defined drive
i. A standard four-drive single density system, which is compatible
with CP/M-80 Version 1.4, and upwardly compatible with CP/M-80
Version 2 implementations, is defined using the following
statements:

DISKS 4
DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1,0
DISKDEF 2,0
DISKDEF 3,0
ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26) , with a skew of 6 between sequential,
accesses, 1024 bytes per data block, 243 data blocks for a total of
243K byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS statement generates n Disk Parameter Headers (DPH's) ,
starting at the DPH table address DPBASE generated by the statement.
Each disk header block contains sixteen bytes, as described above,
and corresponds one-for-one to each of the defined drives. In the
four drive standard system, for example, the DISKS statement
generates a table of the form:

DPBASE EQU $
DPEO DW XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSVO,ALVO
DPE1 DW XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSV1,ALV1
DPE2 DW XLTO,OOOOH,OOOOH,OOOOH,DIRBITF,DPBO,CSV2,ALV2
DPE3 DW XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail
earlier in this section. The check and allocation vector addresses
are generated by the ENDEF statement for inclusion in the RAM area
following the BIOS code and tables.

All Information Presented Here is Proprietary to Digital Research

75



CP/M-86 System Guide 6.2 Table Generation Usinq GENDEF

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a OOOOH value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the loqical to ohysical
translation, SECTRAN receives a translation table address of DX =
OOOOH, and simply returns the original loqical sector from CX in the
BX register. A translate table is constructed when the skf
parameter is Present, and the (non-zero) table address is placed
into the corresponding DPH's. The table shown below, for example,
is constructed when the standard skew factor skf = 6 is specified in
the DISKDEF statement call:

XLTO EOU OFFSET S
DB 1,7,13,19,25,5,11,17,23,3,9,15,2l
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF statement, a number of uninitialized data
areas a'-e defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of operating system memory. The size of the
uninitialized RAM area is determined by EOU statements generated by
the ENDEF statement. For a standard four-drive system, the ENDEF
statement might produce

1C72 = BEGOAT EOU OFFSET S
(data areas)

1DBO = ENDDAT EOU OFFSET $
013C = DATS I Z EOU OFFSET S-REGDAT

which indicates that uninitialized RAM begins at offset 1C72H, ends
at 1DBOH-1, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

modification, you can use the STAT program to check vour
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The comment included in the LIB file
by the $C parameter to GENCMD will match the output from STAT. The
STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A, . . . ,P) and
displays the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved Tracks

All Information Presented Here is Proprietary to Digital Research

76



CP/M-86 System Guide 6.3 GENDEF Output

6.3 GENDEF Output

GENDEP produces a listinq of the statements included in the DEF
file at the user console (CONTROL-P can be used to obtain a printed
listinq, if desired). Each source line is numbered, and any errors
are shown below the line in error, with a "?" beneath the item which
caused the condition. The source errors produced by GENCMD are
listed in Table 6-7, followed by errors that can occur when
producinq input and output files in Table 6-8.

Table 6-7. GENDEF Source Error Messages

Message Meaning

Bad Val More than 16 disks defined in DISKS statement,

Convert Number cannot be converted, must be constant
in binary, octal, decimal, or hexadecimal as
in ASM-86.

Delimit Missinq delimiter between parameters.

Ouplic Duplicate definition for a disk drive.

Extra Extra parameters occur at the end of line.

Lenqth Keyword or data item is too lonq.

Missinq Parameter required in this position.

No Disk Referenced disk not previously defined.

No Stmt Statement keyword not recoqnized.

Numeric Number required in this position

Ranqe Number in this position is out of ranqe.

Too Few Not enough parameters provided.

Quote Missing end quote on current line.

All Information Presented Here is Proprietary to Digital Research

77



CP/M-86 System Guide 6.3 GENDEF Output

Table 6-8. GENDEF Input and Output Error Messages

Messaqe I Meaninq

Cannot Close ".LIB" File LIB file close operation
unsuccessful, usually due
to hardware write protect.

"LIB" Disk Full No space for LIB file.

No Input File Present Specified DEF file not
found.

No ".LIB" Directory Space Cannot create LIB file due
to too manv files on LIB
disk.

Premature End-of-File End of OEF file encountered
unexpectedly.

Given the file TWO.DEF containinq the following statements

disks 2
diskdef 0,1,26,6,2048,256,128,128,2
diskdef 1,1,58,,2048,1024,300,0,2
endef

the command

gencmd two $c

produces the console output

DISKDEF Table Generator, Vers 1.0
1 DISKS 2
2 DISKDEF 0,1,58,,2048,256,128,128,2
3 DISKDEF 1,1,58,,2048,1024,300,0,2
4 ENDEF
No Error (s)

The resulting TWO.LIB file is brought into the following skeletal
assembly language program, using the ASM-86 INCLUDE directive. The
ASM-86 output listing is truncated on the right, but can be easily
reproduced using GENDEF and ASM-86.

All Information Presented Here is Proprietary to Digital Research

78



CP/M-86 System Guide 6.3 GENDEF Output

Sample Proqram Including TWO.LI

SELDSK:

0000 B9 03 00

0003
=
=
=
=
s
=
=

0003
0007
OOOB
OOOF
0013
0017
001B
001F

32
00
5B
FB
00
00
5B
9B

00
00
00
00
00
00
00
01

00
00
23
OB
00
00
4C
IB

00
00
00
00
00
00
00
01

0023
=
=
=
=
=
=
=
=
=
=

0023
0025
0026
0027
0028
002A
002C
002D
002E
0030

1A
04
OF
01
FF
7F
CO
00
20
02

00

00
00

00
00

0032
=
=
=
=
=
=
=

0032
0036
003A
003E
0042
0046
004A

01
19
17
15
14
12
10

07
05
03
02
1A
18
16

OD
OB
09
08
06
04

13
11
OF
OE
or
OA

0020
0020

MOV CX,OFFSET PPBASE

INCLUDE TWO.LIB
DISKS 2

dpbase
dpeO

dpel

;

dpbO

xltO

alsO
cssO
7

equ
dw
dw
dw
dw
dw
dw
dw
dw

Disk 0
4096:
512:
128:
128:
256:
16:
26:
2:
6:

equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
equ
equ

$ ;Base o
xltO,OOOOh ;Transl
0000h,0000h ;Scratc
dirbuf,dpbO ;Dir Bu
csvO,alvO ;Check,
xltl,0000h ;Transl
0000h,0000h ;Scratc
dirbuf,dpbl ;Dir Bu
csvl,alvl ;Check,
DISKDEF 0,1,26,6,2048,2

is CP/M 1.4 SinaTe Densi
128 Byte Record Capactt
Kilobyte Drive Capacit
32 Byte Directory Entri
Checked Directory Entri
Records / Extent
Records / Block
Sectors / Track
Reserved Tracks
Sector Skew Factor

offset $ ;Disk P
26 ;Sector
4 ;Block
15 ;Block
1 ;Extnt
255 ;Disk S
127 ;Direct
192 ;AllocO
0 ;Allocl
32 ;Check
2 ;Offset
offset $ ;Transl
1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22
32 ;ALloca
32 ;Check
DISKDEF 1,1,58, ,2048,10

Disk 1 is CP/M 1.4 Single Densi
16384: 128 Byte Record Caoacit

All Information Presented Here is Proprietary to Digital Research

79



CP/M-86 System Guide 6.3 OENDEF Outout

004C
004C 3A 00
004E 04
004F OF
0050 00
0051 FF 03
0053 2B 01
0055 F8
0056 00
0057 00 00
0059 02 00
0000
0080
0000

005B
005B
OODB
OOFB
011B
019B
019B
0140

019B 00

;
;
;
;
;
9

;
t
dpbl

xltl
ai.sl
cssl
t

2048:
300:
0:

128:
16:
58:
2:

equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
equ
equ

Kilobyte Drive Capacit
32 Byte Directory Entri
Checked Directory Entri
Records / Extent
Records / Block
Sectors / Track
Reserved Tracks

offset $ ;Disk P
58 ;Sector
4 ;Block
15 ;Block
0 ;Extnt
1023 ;Disk S
299 ;Direct
248 ;AllocO
0 ;Allocl
0 ;Check
2 ;Offset
0 ; No Tra
128 ;Mloca
0 ;Check
ENDEF

Uninitialized Scratch Memory Fo

beqdat
dirbuf
alvO
csvO
alvl
csvl
enddat
datsiz

equ
r s
rs
rs
rs
rs
equ
equ
db
END

offset
128
alsO
cssO
alsl
cssl
offset
offset
0

$

$
$-beqdat

;Start
;Direct
; Alloc
;Theck
;Alloc
;Check
;End of
;Size o
;Marks

All Information Presented Here is Proprietary to Digital Research

80



Section 7
CP/M-86 Bootstrap and Adaption Procedures

This section describes the components of the standard CP/M-86
distribution disk, the operation of each component, and the
procedures to follow in adaotinq CP/M-86 to non-standard hardware.

CP/M-86 is distributed on a sinqle-density IBM compatible 8"
diskette using a file format which is compatible with all previous
CP/M-80 operating systems. In particular, the first two tracks are
reserved for operating system and bootstrap programs, while the
remainder of the diskette contains directorv information which leads
to program and data files. CP/M-86 is distributed for operation
with the Intel SBC 86/12 single-board computer connected to floppy
disks through an Intel 204 Controller. The operation of CP/M-86 on
this configuration serves as a model for other 8086 and 8088
environments, and is presented below.

The principal components of the distribution system are listed
below:

• The 86/12 Bootstrap ROM (BOCV ROM)
• The Cold Start Loader (LOADER)
• The CP/M-86 System (CPM.SYS)

When installed in the SBC 86/12, the BOOT ROM becomes a oart of
the memory address space, beginning at bvte location OPFOOOH, and
receives control when the system reset button is depressed. In a
non-standard environment, the BOOT ROM is reolaced by an equivalent
initial loader and, therefore, the ROM itself is not included with
CP/M-86. The BOOT ROM can be obtained from Digital Research or,
alternatively, it can be programmed from the listing given in
Appendix C or directly from the source file which is included on the
distribution disk as BOOT.A86. The responsibility of the BOOT ROM
is to read the LOADER from the first two system tracks into memory
and pass oroqram control to the LOADER for execution.

7.1 The Cold Start Load Operation

The LOADER program is a simple version of CP/M-86 that contains
sufficient file processing capability to read CPM.SYS from the
system disk to memory. When LOADER completes its operation, the
CPM.SYS program receives control and proceeds to process operator
input commands.

Both the LOADER and CPM.SYS programs are preceded by the
standard CMD header record. The 128-bvte LOADER header record
contains the following single group descriptor.

All Information Presented Here is Proprietary to Digital Research

81



CP/M-86 System Guide 7.1 The Cold Start Load Operation

G-Form

1

G-Lenqth

xxxxxxxxx

A-Base

0400

G-Min

xxxxxxx

G-Max

xxxxxxx

8b 16b 16b 16b 16b

where G-Form = 1 denotes a code group, "x" fields are ignored, and
A-Base defines the paragraph address where the BOOT ROM begins
filling memory (A-Base is the word value which is offset three bytes
from the beginning of the header). Note that since only a code
group is present, an 8080 memory model is assumed. Further,
although the A-Base defines the base paragraph address for LOADER
(byte address 04000H) , the LOADER can, in fact be loaded and
executed at any paragraph boundary that does not overlao CP/M-86 or
the BOOT ROM.

The LOADER itself consists of three parts: the Load CPM
program (LDCPM), the Loader Basic Disk System (LDBDOS), and the
Loader Basic I/O System (LDBIOS). Although the LOADER is setup to
initialize CP/M-86 using the Intel 86/12 configuration, the LDBIOS
can be field-altered to account for non-standard hardware using the
same entry points described in a orevious section for BIOS
modification. The organization of LOADER is shown in Figure 7-1
below:

CS DS ES SS OOOOH:

0400H:

1200H:

GDtl

JMP

0 /////////////

1200H

{ LDCPM)

JMPF CPM

(LDBDOS)

JMP

JMP

INIT

INIT

SET I OB

: . . JMP 0003H

(LDBIOS)

1700H:

Figure 7-1. LOADER Organization

All Information Presented Here is Proprietary to Digital Research

82



CP/M-86 System Guide 7.1 The Cold Start Load Operation

Byte offsets from the base registers are shown at the left of the
diagram. GD#1 is the Group Descriptor for the LOADER code group
described above, followed immediately by a "0" group terminator.
The entire LOADER program is read by the BOOT ROM, excluding the
header record, starting at byte location 04000H as given by the A-
Field. Upon completion of the read, the BOOT ROM passes control to
location 04000H where the LOADER program commences execution. The
JMP 1200H instruction at the base of LDCPM transfers control to the
beginning of the LDBIOS where control then transfers to the INIT
subroutine. The subroutine starting at INIT performs device
initialization, prints a sign-on message, and transfers back to the
LDCPM program at byte offset 0003H. The LDCPM module opens the
CPM.SYS file, loads the CP/M-86 system into memory and transfers
control to CP/M-86 through the JMPF CPM instruction at the end of
LDCPM execution, thus completing the cold start sequence.

The files LDCPM.H86 and LDBDOS.H86 are included with CP/M-86 so
that you can append your own modified LDBIOS in the construction of
a customized loader. In fact, BIOS.A86 contains a conditional
assembly switch, called "loader_bios," which, when enabled, produces
the distributed LDBIOS. The INIT subroutine portion of LDBIOS is
listed in Appendix C for reference purposes. To construct a custom
LDBIOS, modify your standard BIOS to start the code at offset 1200H,
and change your initialization subroutine beginning at TNIT to
perform disk and device initialization. Include a JMP to offset
0003H at the end of your INIT subroutine. Use ASM-86 to assemble
your LDBIOS.A86 program:

ASM86 LDBIOS

to produce the LDBIOS.H86 machine code file. Concatenate the three
LOADER modules using PIP:

PIP LOADER.H86=LDCPM.H86,LDBDOS.H86,LDBIOS.H86

to produce the machine code file for the LOADER program. Although
the standard LOADER program ends at offset 1700H, your modified
LDBIOS may differ from this last address with the restriction that
the LOADER must fit within the first two tracks and not overlap
CP/M-86 areas. Generate the command (CMD) file for LOADER using the
GENCMD utility:

GENCMO LOADER 8080 CODE[A400]

resulting in the file LOADER.CMD with a header record defining the
8080 Memory Model with an absolute paragraph address of 400H, or
byte address 4000H. Use DDT to read LOADER.CMD to location 900H in
your 8080 system. Then use the 8080 utility SYSGEN to copy the
loader to the first two tracks of a disk.

All Information Presented Here is Proprietary to Digital Research

83



CP/M-86 System Guide 7.1 The Cold Start Load Operation

A>DDT
-ILOADER.CMD
-R800
-~C
A>SYSGEN
SOURCE DRIVE NAME (or return to skip) <cr>
DESTINATION DRIVE NAME (or return to skip) B

Alternatively, if you have access to an operational CP/M-86 system,
the command

LDCOPY LOADER

copies LOADER to the system tracks. You now have a diskette with a
LOADER program which incorporates your custom LDBIOS capable of
reading the CPM.SYS file into memory. For standardization, we
assume LOADER executes at location 4000H. LOADER is staticallv
relocatable, however, and its operating address is determined onlv
by the value of A-Base in the header record.

You must, of course, perform the same function as the BOOT ROM
to get LOADER into memory. The boot operation is usually
accomplished in one of two ways. First, you can program your own
ROM (or PROM) to perform a function similar to the BOOT ROM when
your computer's reset button is pushed. As an alternative, most
controllers provide a power-on "boot" operation that reads the first
disk sector into memory. This one-sector program, in turn, reads
the LOADER from the remaining sectors and transfers to LOADER upon
completion, thereby performing the same actions as the BOOT ROM.
Either of these alternatives is hardware-specific, so you'll need to
be familiar with the operating environment.

7.2 Organization of CPM.SYS

The CPM.SYS file, read by the LOADER program, consists of the
CCP, BDOS, and BIOS in CMD file format, with a 128-byte header
record similar to the LOADER program:

G-Form

1

G-Length

xxxxxxxxx

A-Base

040

G-Min

xxxxxxx

G-Max

xxxxxxx

8b 16b 16b 16b 16b

where, instead, the A-Base load address is paragraph 040H, or byte
address 0400H, immediately following the 8086 interrupt locations.
The entire CPM.SYS file appears on disk as sjiown in Figure 7-2.

All Information Presented Here is Proprietary to Digital Research

84



CP/M-86 System Guide 7.2 Organization of CPM.SYS

(0040:0) CS DS ES SS OOOOH:

(0040:) 2500H:

GDll 0 /////////////

(CCP and BDOS)

JMP INIT

JMP SETIOB

(BIOS)

INIT: .. JMP OOOOH

(0040:) 2AOOH:

Figure 7-2. CPM.SYS File Organization

where GD#1 is the Group Descriptor containing the A-Base value
followed by a "0" terminator. The distributed 86/12 BIOS is listed
in Appendix D, with an "include" statement that reads the
SINGLES.LIB file containing the disk definition tables. The
SINGLES.LIB file is created by GENDEF using the SINGLES.DEF
statements shown below:

disks 2
diskdef 0,1,26,6,1024,243,64,64,2
diskdef 1,0
endef

The CPM.SYS file is read by the LOADER program beginning at the
address given by A-Base (byte address 0400H) , and control is passed
to the INIT entry point at offset address 2500H. Any additional
initialization, not performed by LOADER, takes place in the INIT
subroutine and, upon completion, INIT executes a JMP OOOOH to begin
execution of the CCP. The actual load address of CPM.SYS is
determined entirely by the address given in the A-Base field which
can be changed if you wish to execute CP/M-86 in another region of
memory. Note that the region occupied by the operating system must
be excluded from the BIOS memory region table.

Similar to the LOADER program, you can modify the BIOS by
altering either the BIOS.A86 or skeletal CBIOS.A86 assembly language
files which are included on your source disk. In either case,
create a customized BIOS which includes your specialized I/O
drivers, and assemble using ASM-86:

ASM86 BIOS

to produce the file BIOS.H86 containing your BIOS machine code.

All Information Presented Here is Proprietary to Digital Research

85



CP/M-86 System Guide 7.2 Organization of CPM.SYS

Concatenate this now BIOS to the CPM.H8S file on yout distribution
disk:

PIP CPMX.H86 = CPM.H86,BIOS.H86

The tesulting CPMX hex file is then converted to CMD file for not by
executing

GENCMD CPMX 8080 CODE[A40]

in order to produce the CMD memory image with A-Bdse = 4011.
Finally, rename the CPMX file using the command

REN CPM.SYS = CPMX.CMD

and place this file on your 8086 system disk. Now the tailoring
process is complete: you have replaced the BOOT ROM by either your
own customized BOOT ROM, or a one-sector cold start loader which
brings the LOADER program, with your custom LDBIOS, into memory at
byte location 04000H. The LOADER program, in turn, reads the
CPM.SYS file, with your custom BIOS, into memory at byte location
0400H. Control transfers to CP/M-86, and you are up and operating.
CP/M-86 remains in memory until the next cold start operation takes
place.

You can avoid the two-step boot operation if you construct a
non-stendard disk with sufficient spdce to hold the entire CPM.SYS
file on the system tracks. In this case, the cold stdrt brings the
CP/M-86 memory image into memory at the location given by A-Base,
and control transfers to the INIT entry point at offset 2500H.
Thus, the intermediate LOADER progrdm is eliminated entirely,
although the initialization found in the LDBIOS must, of course,
take place instead within the BIOS.

Since ASM-86, GENCMD and GENDEF are provided in both COM and
CMD formats, either CP/M-80 or CP/M-86 can be used to aid the
customizing process. If CP/M-80 or CP/M-86 is not available, but
you have minimal editing and debugging tools, you can write
specialized disk I/O routines to read and write the system tracks,
as well as the CPM.SYS file.

The two system tracks are simple to access, but the CPM.SYS
file is somewhat more difficult to read. CPM.SYS is the first file
on the disk and thus it appears immediately following the directory
on the diskette. The directory begins on the third track, and
occupies the first sixteen logical sectors of the diskette, while
the CPM.SYS is found starting at the seventeenth sector. Sectors
are "skewed" by a factor of six beginning with the directory track
(the system tracks are sequential) , so that you must load every
sixth sector in reading the CPM.SYS file. Clearly, it is worth the
time ?nd effort to use an existing CP/M system to aid the conversion
process.

All Information Presented Here is Proprietary to Digital Research

86



Appendix A
Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M-86 BOOS
includes information that allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is
a multiple of the basic 12R-bvte unit. This aopendix presents a
general-purpose alqorithm that can be included within your BIOS and
that uses the BOOS information to oerform the operations
automatical!v.

noon each call to WRITE, the BPOS provides the following
information in register r*L:

0 = normal sector write
1 = write to directory sector
2 = write to the first sector

of a new data block

Condition 0 occurs whenever the next write operation is into a
oreviouslv written area, such as a random mode record undate, when
the write is to other than the first sector of an unallocated block,
or when the write is not into the directorv area. Condition 1
occurs when a write into the directory area is performed. Condition
2 occurs when the first record (only) of a new!v allocated data
block is written. In most casps, aoplication programs read or write
multiple 128-bvte sectors in sequence, and thus there is Mttl*»
overhead involve^ in either operation when blocking and deblocking
records since pre-read operations can be avoided when writing
records.

This appendix lists thp blocking and deblocking algorithm in
skeletal form (the file is included on vour rp/M-Sf disk).
Generally, the algorithms map all CP/M sector read operations onto
the host disk through an intermediate buffer which is the size of
the host disk sector. Throughout the program, values and variables
which relate to the CP/M sector involved in a seek operation are
prefixed by "sek," while those related to the host disk system are
prefixed bv "hst." The equate statements beginning on line 24 of
Appendix F define the mapping between rp/M and the host system, and
must be changed if other than the sample host svstem is involved.

The SELDSK entry point dears the host buffer flag whenever a
new disk is logged-in. Note that although the SELDSK entry point
computes and returns the nisk Parameter Header address, it does not
physically select the host disk at this Point (it is selected later
at READHST or WRITEHST) . Further, SETTRK, SETSEC, and SETDMA simplv
store the values, but do not take anv other action at this point.
SECTRAN performs a trivial function of returning the physical sector
number.

AI l Information Presented Here is Proprietary to Digital Research

87



CP/M-86 System Guide Appendix A Blocking and Deblocking

The principal entry points are READ and WRITE. These
subroutines take the place of your previous READ and WRITE
operations.

The actual physical read or write takes place at either
WRITEHST or READHST, where all values have been prepared: hstdsk is
the host disk number, hsttrk is the host track number, and hstsec is
the host sector number (which mav require translation to a physical
sector number). You must insert code at this point which performs
the full host sector read or write into, or out of, the buffer at
hstbuf of length hstsiz. All other mapping functions are performed
by the algorithms.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23: i
24:
25: 1
26: f
27: \
28: 1
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

**
*
*
it

* '

*

*

*
*

*

*

**

**

*

*

*

*

*

*
*

**

ana

Dlk
ist
ist
ist

**
*
*
*
*
*
*
*
*
*
*

Sector Blocking / Deblocking

* This algorithm is a direct translation of the
* cp/M-80 Version, and is included here for refer-

ence purposes only. The file DEBLOCK.LIB is in-
cluded on your CP/M-86 disk, and should be used
for actual applications. You may wish to contact *

* Digital Research for notices of updates. *

CP/M to host disk constants *

(This example is setup for CP/M block size of 16K *
with a host sector size of 512 bvtes, and 12 sec- *

* tors per track. Blksiz, hstsiz, hstspt, hstblk *
* and secshf mav change for different hardware.) *

************************************************
equ byte ptr [BX] ;name for byte at BX

equ 16384 ;CP/M allocation size
equ 512 ;host disk sector size
equ 12 ;host disk sectors/trk
equ hstsiz/128 ;CP/M sects/host buff

secshf is Iog2(hstblk), and is listed below for
* values of hstsiz up to 2048.

hstsiz
256
512

1024
2048

hstblk
2
4
8
16

«secshf
1
2
3
4

All Information Presented Here is Proprietary to Digital Research

88



CP/M-86 System Guide Appendix A Blockinq and Deblocking

41; .A****************************************************

42: secshf
43: cpmspt
44: secmsk
45: ;
46- .*******
47: ';*
48: ;*
49: ;*
50. .******<
51: wrall
52: wrdir
53: wrual
54:
55; *******

56: *
57: *
58: *
59: *
60: *******
61: seldsk:
62:
63:
64:
65:
66:
67:
68:
69: selset:
70:
71:
72:
73:
74:
75:
76: ;
77: home:
78:
79:
80:
81:
82:
8 3 : homed :
84:
85: ;
86:
87: ;
88: settrk:
89:
90:
91:
92: ;
93: setsec:
94:
95:

equ 2
equ hstblk * hstsot
equ hstblk-1

***********************

;log2 (hstblk)
;CP/M sectors/track
;sector mask

********************

BOOS constants on entry to write

************************
equ 0
equ 1
equ 2

************************

********************
;write to allocated
;write to directory

***
*
*
*

***

;write to unallocated

********************

The BIOS entry points given below show the
code which is relevant

************************

;select disk

to deblocking only.

********************

***
*
*
*
*

***

;is this the first activation of the drive?
test OL,1
inz selset

;]sb = 0?

;this is the first activation, clear host buff
mov hstact,0
mov unacnt,0

mov al,cl ! cbw
mov sekdsk,al
mov cl,4 ! shi al,ci
add ax, offset dpbase
mov bx,ax
ret

;home the selected disk
mov al,hstwrt
test a] ,al
jnz homed
mov hstact,0

mov ex , 0
(continue HOME routine)
ret

;put in AX
;seek disk number
;times 16

;check for pending

;clear host active

write

flag

;now, set track zero

;set track given by registers CX
mov sektrk,CX
ret

;track to seek

;set sector given by register cl
mov seksec,cl ;sector to seek

All Information Presented Here is Proprietary to Digital Research

89



CP/M-86 System Guide Appendix A Blocking and Deblocking

96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:

setdma:

ret

;set dma address given by CX
mov dma_off,CX
ret

setdmab:
;set segment address given by CX
mov dma_seg,CX
ret

sectran:

wr ite:

;transiate sector number ex with table at [nx]
test DX,DX ;test for hard skewed
jz notran ;(blocked must be hard skewed)
mov BX,CX
add BX,OX
mov BL,[BX]
ret

no tran:

read:

;hard skewed disk, physical = logical
mov BX,CX
ret

sector

;read the selected CP/M sector
mov unacnt,0 ;clear unallocated counter
mov readoo,! ;read operation

;must read data
;treat as unalloc
;to perform the read

mov rsflag,!
mov wrtype,wrual
imp rwoper

jwrite the selected T/M sector
mov readop,0 ;write operation
mov wrtype,cl
cmp c],wrual ;write unallocated'
jnz chkuna ;check for unailoc

write to unallocated, set parameters

mov unacnt,(blksiz/128) ;next unaJloc recs
mov al,sekdsk
mov unadsk,al
mov ax,sektrk
mov unatrk,ax
mov al,seksec
mov unasec,al

;disk to seek
;unadsk = sekdsk

;unatrk = sektrk

;unasec = seksec

chkuna:
;check for write to unallocated sector

mov bx,offset unacnt ;point "UNA" at UNACNT
mov al,una ! test al,al ;any unalloc remain?

All Information Presented Here is Proprietary to Digital Research

90



CP/M-86 System Guide Aooendix A Blocking and Deblocking

151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:

iz alloc
i
; more unallocated records

dec al
mov una,al
mov al , sekdsk
mov BX, offset unadsk
cmp al , una
jnz al]oc

i
; disks are the same

mov AX, unatrk
cmp AX, sektrk
jnz alloc

tracks are the same
mov al , seksec

mov BX, offset unasec

cmp al,una
jnz al loc

;skip if not

remain
;unacnt = unacnt-1

;same disk?

;sekd«5k = unadsk?
;skio if not

;skio if not

;same sector''

;point una at unasec

;seksec = unasec15

;skip if not

match, move to next sector for future ref
inc una
mov al ,una
cmp al,cpmspt
jb noovf

9

; overflow to next track
mov una , 0
inc unatrk

;
noovf:

;unasec = unasec+1
;end of track?
;count CP/M sectors
;skip if below

; unasec = 0
;unatrk=unatrk+l

;match found, mark as unnecessary read
mov rsflag,0
jmps rwoper

i
alloc:

;rsflag = 0
; to perform the write

;not an unallocated record, requires ore-read
mov unacnt,0
mov rsflaq/1

/

********************************

;*
;* Common code for READ and
. *

rwoper :

;unacnt = 0
;rsflag = 1
;drop through to rwoper

**********************
*

WRITE f ol lows *
*

**********************

;enter here to perform the read/write
mov erflag,0
mov al, seksec
mov cl, secshf
shr al,cl

;no errors (yet)
;compute host sector

All Information Presented Here is Proprietary to Digital Research

91



CP/M-86 System Aopendix A Blockinq and neblockinq

206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
728:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:

mov sekhst,al

active host sector''
mov al,1
xchg al,hstact
test al,al
iz filhst

nomatch

filhst:

match:

;host sector to seek

;always becomes 1
;was it already?
;fill host if not

host buffer active, same as seek buffer7

mov al,sekdsk
cmp a] ,hstdsk ;sekdsk = hstdsk7

inz nomatch

same disk, same track7

mov ax,hsttrk
cmp ax,sektrk
inz nomatch

;host track same as seek track

same disk, same track, same buffer7

mov al,sekhst
cmp al. ,hstsec ;sekhst = hstsec7

1z match ;skip if match

;proper disk, but not correct sector
mov al, hstwrt
test al,al
jz filhst
call writehst
(check errors here)

"djrtv" buffer 7

no, don't need to write
yes, clear host buff

;mav have to fill the host buffer
mov al,sekdsk ! mov hstdsk,al
mov ax,sektrk ! mov hsttrk,ax
mov al,sekhst ! mov hstsec,ai
mov al,rsflag
test al,al
iz filhstl

;need to read7

calI readhst
(check errors here)

filhstl:
mov hstwrt,0

;ves, if 1

;no pending wri te

;copy data to or from buffer depending on "readoo"
mov al,seksec ;mask buffer number
and ax,secmsk ;least signif bits are masked
mov cl, 7 ! shl ax,cl ;shift left 7 (* 128 = 2**7)

ax has relative host buffer offset

add ax,offset hstbuf
mov si,ax

;ax has buffer address
;put in source index register

All Information Presented Here is Proprietary to Digital Research

92



CP/M-86 System Guide Appendix A Blocking and Deblocking

261:
262:
263:
264:
265:
266:
267:
268:
'269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:

mov di,dma_off

push DS ! push ES

mov E S ,dma_seg

mov ex,128/2
mov al,readop
test al,al
jnz rwmove

;user buffer is dest if readop

;save segment registers

;set destseg to the users seg
;SI/DI and DS/ES is swapped
;if write op
; length of move in words

;which way?
;skip if read

write ooeration, mark and switch direction

rwmove:

mov hstwrt,!
xchg si,di
mov ax,ns
mov ES,ax
mov DS,dma_seg

eld ! rep movs AX,AX
pop ES J pop DS

;hstwrt = 1 (dirty buffer now)
;source/dest index swap

jsetup DS,ES for write

;move as 16 bit words
;restore segment registers

; data has been moved to/from host buffer
cmp wrtype,wrdir ;write type to directory?
mov al,erflag ;in case of errors
jnz return_rw ;no further processing

<
; clear host buffer for directory write

test al,al ;errors?
jnz return_rw ;skip if so
mov hstwrt,0 ;buffer written
call writehst
mov al,erflag

return_rw:
ret

* WRITEHST performs the physical write to the host *
* disk, while REAOHST reads the physical disk. *
* *
4M

writehst:
ret

eadhst:
ret

* *
* Use the GENDEF utility to create disk def tables *

dpbase equ offset $

All Information Presented Here is Proprietary to Digital Research

93



r?/Vi-56 System Guide Appendix A Blocking and

316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:

!disk Parameter tables qo here

*******
*

********

* Uninitialized
* areas
*
*******

sek dsk
sek_trk
sek sec
•
hst dsk
hst_trk
hst sec
*
sek hst
hst_act
hst wrt
r
una_cnt
una_dsk
una trk
una sec
•
erf lag
rsf lag
readop
wrtvpe
dma seq
dma off
hstbuf

created

********
rb
rw
rb

rb
rw
rb

rb
rb
rb

rb
rb
rw
rb

rb
rb
rb
rb
rw
rw
rb
end

***************************************
*

RAM areas follow, includinq the *
by the

********
1
1
1

1
1
1

1
1
1

1
1
1
1

1
1
1
1
1
1
hstsiz

GENDRP utility listed above. *
*

*******************************
;seek disk number
;seek track number
;seek sector number

;host disk number
;host track number
;host sector number

;seek shr secshf
;host active flaq
;host written flaq

;unalloc rec cnt
;last unalloc disk
;last unalloc track
;last unalloc sector

;error reportinq
;read sector H aq
;1 if read operation
jwrite operation type
;last dma seqment
;last dma offset
;host buffer

All Information Presented Here is Proor-ietarv to niqital Research

94



Appendix B
Sample Random Access Program

This appendix contains a rather extensive and complete example
of random access operation. The proqram listed here performs the
simple function of readinq or writinq random records upon command
from the terminal. Given that the proqram has been created,
assembled, and placed into a file labelled RANDOM.CMO, the CCP level
command:

RANDOM X.DAT

starts the test proqram. The proqram looks for a file by the name
X.DAT (in this Particular case) and, if found, proceeds to prompt
the console for inout. If not found, the *ile is created before the
orompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriaqe return.
The inout commands take the form

nW nR O

where n is an inteqer value in the ranqe 0 to 65535, and W, R, and 0
are simple command characters correspondinq to random write, random
read, and quit processinq, respectively. If the W command is
issued, the RANDOM proqram issues the prompt

type data:

The operator then responds by typinq up to 127 characters, followed
by a carriaqe return. RANDOM then writes the character strinq into
the X.DAT file at record n. If the R command is issued, RANDOM
reads record number n and displays the strinq value at the console.
If the Q command is issued, the X.DAT file is closed, and the
proqram returns to the console command processor. The onlv error
message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at
the label "ready" where the individual commands are interpreted.
The default file control block at offset 005CH and the default
buffer at offset 0080H are used in all disk operations. The utility
subroutines then follow, which contain the principal input line
processor, called "readc." This particular program shows the
elements of random access processinq, and can be used as the basis
for further proqram development. In fact, with some work, this
proqram could evolve into a simple data base management svstem.

All Information Presented Here is Proprietary to Digital Research

95



CP/M-86 System Guide Appendix B Sample Random Access Program

One could, tor exampl». assume a standard record «size of 128
bytes, consisting of arbitrary fields within the record. A Program,
called GETKEY, could be developed which first reads a sequential
file and extracts a specific field defined bv the operator. For
example, the command

GETKEY NAMES.OAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.OAT and extract
the "LASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a tab"" e in memorv consisting
of each particular LASTNAME field, along with its 16-bit record
number location within the file. The GETKEY program then sorts this
list, and writes a new file, called LASTNAME.KEY, which is an
alphabetical list of LASTNAME fie1ds with their corresponding record
numbers. (This list is called an "inverted index" in information
retrieval parlance.)

Rename the proqram shown above as QUERY, and enhance it a bit
so that it reads a sorted key file into memory. '''he command line
might appear as:

QUERY NAMES.OAT LASTNAME.KEY

Instead of reading a number, the ntlERY program reads an alphanumeric
string which is a Particular key to find in the NAMES.OAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular
entry quite rapidly by performing a "binary search," similar to
looking up a name in the telephone book. That is, starting at both
ends of the list, you examine the entry halfway in between and, if
not matched, split either the upper half or the lower half for the
next search. You'll quickly reach the item you're looking for (in
Iog2(n) steps) where you'll find the corresponding record number.
Fetch and display this record at the console, iust as we have done
in the program shown above.

At this point you're lust getting started. With a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of
the record number as well as the byte offset within the record.
Knowing the group size, you randomly access the record containing
the proper group, offset to the beginning of the group within the
record read sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an
AGE less than 45. Display all the records which fit this
description. Finally, if your lists are getting too big to fit into
memory, randomly access your key files from the disk as well.

All Information Presented Here is Proprietary to Digital Research

96



OP/M-86 System Guide Appendix B Random Access Sample Proqram

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:

Sample Random Access Proqram for CP/M-86

BDOS Functions

coninp
conout
pstr inq
rstr inq
version
openf
closef
makef
readr
wr iter

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

1
2
9
10
12
15
16
22
33
34

;console input function
;console output function
;print strinq until '$'
;read console buffer
jreturn version number
;file open function
jclose function
;make file function
;read random
;write random

Equates for non graphic characters
cr equ Odh ;carriaqe return
f equ Oah jiine feed

load SP, ready file for random access

cseq
pushf
pop
cli
mov
mov
mov
push
popf

stack
ax

bx,ds
ss, bx
SP,offset stack
ax

Push flaqs in
;save flaqs in AX
;disable interrupts
set SS register to base
;set SS, SP with interru
; for 80888
;restore the flags

CP/M-86 initial release returns the file
system version number of 2.2: check is
shown below for illustration purposes.

;version 2.0 or later7

versok:

cl, version
bdos
al,20h
versok
bad version, messaqe and qo back
dx, off set badver
print
abort

correct version for random access
mov cl,openf ;open default fct
mov dx,offset fcb

1 bdos

mov
call
cmp
jnb
;
mov
call

All Information Presented Here is Proprietary to Digital Research

97



CP/M-86 System Guide Appendix B Random Access Sample Program

56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:

inc
jnz

al
ready

;err 255 becomes zero

cannot open file, so create it
mov cl,makef
mov dx,offset fcb
call bdos
inc al ;err 255 becomes zero
inz ready

cannot create file, directory full
mov dx,offset nospace
call print
imp abort ;back to ccp

loop back to "ready" after each command

ready:
file is ready for processing

call
mov
mov
cmp
jnz

readcom
ranrec,dx
ranovf,0h
al,'Q*
notq

;read next command
; store input record!
;clear high byte if set
;quit?

quit processing, close file
mov cl,closef
mov dx,offset fcb
call bdos
inc al ;err 255 becomes 0
jz error ;error message, retry
jmps abort ;back to ccp

end of quit command, process write

notq:
not the quit command, random write?
cmp al,'W
•jnz notw

this is a random write, fill buffer until cr
mov dx,offset datmsg
call print ;data prompt
mov ex, 127 ;up to 127 characters
mov bx,offset bu^f ydestination

rloop: ;read next character
push
push
call
pop
pop
crop

ex
bx
getchr
bx
ex
al ,cr

to buff
;save loop conntrol
;next destination
jcharacter to AL
;restore destination
;restore counter
jend of line?

All Information Presented Here is Proprietary to Digital Research

98



CP/M-86 System Guide Appendix B Random Access Sample Proqram

111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:

jz erlooo
not end, store character
mov byte ptr [bxl,al
me
loop

bx
rlooo

;next to fill
Decrement ex ..loop if

erloop:
end of read IOOD, store 00
mov byte ptr [bx],0h

write the record to selected record number
mov cl,writer
mov dx,offset fcb
call bdos
or al,al ;error code zero?
jz ready ;for another record
jmps error ;messaqe if not

end of write command, process read

notw:
not a write command, read record?
cmp al,'R'
jz ranread
jmps error ;skip if not

read random record
ranread:

mov cl,readr
mov dx,offset fcb
call bdos
or al,al
jz readok
jmps error

;return code 00?

readok:

wloop:

wloopl:

skipw:

read was successful, write to console

call crlf
mov ex, 128
mov si,offset buff

lods al
and al,07*h
jnz wloopl
jmp ready

push ex
push si
cmp al,' '
jb skipw
call putchr

pop si

;new line
;max 128 characters
;next to qet

;next character
;mask parity

;for another command if

;save counter
;save next to get
;qraphic?
;skip output if not grao
joutput character

All Information Presented Here is ̂ roprietarv to Digital Research

99



CP/M-86 System Guide Apoendix B Random Access Samole Proqram

166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:

pop ex
loon wi oop
Imp ready

;decrement CX and check

end of read command, all errors end-up here

error:
mov dx,offset errmsq
call print
jmp ready

; BOOS entry subroutine
bdos:

int 224
ret

;entry to BOOS if by INT

abort: ;return to
mov c1,0
call bdos ;use function 0 to end e

; utility subroutines for console i/o
i
qetchr :

;read next console character to a
mov cI,conino
call bdos
ret

putchr

crlf:

;
print:

;write character from a to console
mov el,conout
mov dl,al ;character to send
call bdos ;send character
ret

;send carriaqe return line feed
mov al,cr ;carriaqe return
call putchr
mov al,lf ;line feed
call putchr
ret

;print the buffer addressed by dx until $
push dx
call crlf
pop dx ;new 1 ine
mov cl,pstrinq
call bdos ;print the string
ret

readcom:

All Information Presented Here is Proprietary to niqitai Research

100



CP/M-86 System Guide Aopendix B Random Access Samol e Proqram

221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:

;read the next command Tine to the conbuf

readc:

qetnum:

endrd:

mov dx, off set promot
call print
mov cl,rstrinq
mov dx, off set conbuf
cal 1 bdos
command Mne is present,
mov ax,0
mov bx, off set conlin
mov dl , [bxl
inc bx
mov dh , 0
or dl ,dl
inz getnum
ret
not zero, numeric"3

sub dl,'0'
cmp dl , 10
inb endrd
mov cl,10
mul cl
add ax,dx
Imps readc

; command?

;read command line
scan it
;start with 0000

;next command character
;to next command positio
;zero hiqh bvte for add
; check for end of comman

jcarrv if numeric

;multipy accumulator bv
;+diqit
; f or another char

end of read, restore value in a and return value
mov dx,ax
mov al,-l[bxl
cmp al,'a'
jnb transl
ret

; return value in DX

;check for lower case

and a"i,5fH ;translate to upper case
ret

transl:

Template for Paqe 0 of Data Group
Contains default FCB and DMA buffer

dseq
org

fcb rb
ranrec rw
ranovf rb
buff rb

05ch
33
1
1
128

Default file control bl
;random record position
;hiqh order (overflow) b
;default DMA buffer

; strinq data area for console messaqes
badver db 'sorrv, you need co/m version
nospace db 'no directory soace$'
datmsq db 'tvpe data: $'
errmsq db 'error, try aqain.S'
prompt db 'next command? S'

fixed and variable data area

All Information Presented Here is Proprietary to niqital Research

101



CP/M-86 System Guide Appendix B Random Access Sample Proqram

276: conbuf db conlen ;length of console buffer
277: consiz rs 1 ;resultinq size after read
278: conlin rs 32 ;lenqth 32 buffer
279: conlen equ offset $ - offset consiz
280: ;
281: rs 31 ;16 ]evel stack
282: stack rb 1
283: db 0 ;end byte ^or
284: end

All Information Presented Here is Proprietary to Digital Research

102



Appendix C
Listing of the Boot ROM

* *
* This is the original BOOT ROM distributed with CP/M *
* for the SBC 86/12 and 204 Controller. The listing *
* is truncated on the right, but can be reproduced by *
* assembling ROM.A86 from the distribution disk. Note *
* that the distributed source file should always be *
* referenced for the latest version *
* *

ROM bootstrap for CP/M-86 on an iSBC86/12
with the

Intel SBC 204 Floppy Disk Controller

Copyright (C) 1980,1981
Digital Research, Inc.
Box 579, Pacific Grove
California, 93950

* This is the BOOT1 ROM which is initiated *
* by a svstem reset. First, the ROM moves *
* a copy of its data area to RAM at loca- *
* tion OOOOOH, then initializes the segment*
* registers and the stack oointer. The *
* various peripheral interface chips on the*
* SBC 86/12 are initialized. The 8251 *
* serial interface is configured for a 9600*
* baud asynchronous terminal, and the in- *
* terrupt controller is setup for inter- *
* rupts 10H-17H (vectors at 00040H-0005FH) *
* and edge-triggered auto-EOI (end of in- *
* terrupt) mode with all interrupt levels *
* masked-off. Next, the SBC 204 Diskette *
* controller is initialized, and track 1 *
* sector 1 is read to determine the target *
* paragraph address for LOADER. Finally, *
* the LOADER on track 0 sectors 2-26 and *
* track 1 sectors 1-26 is read into the *
* target address. Control then transfers *
* to LOADER. This orogram resides in two *
* 2716 EPROM's (2K each) at location *
* OFFOOOH on the SBC 86/12 CPU board. ROM *
* 0 contains the even memory locations, and*
* ROM 1 contains the odd addresses. BOOT *
* ROM uses RAM between OOOOOH and OOOFFH *
* (absolute) for a scratch area, along with*
* the sector 1 buffer. *

All Information Presented Her-e is Proprietary to Digital Research

103



CP/M-86 «System Guide Appendix C Listing of the BOOT ROM

OOFP
FFOO

OOFF

GOOD
OOOA

OOAO
OOAO
OOAO
OOA1
OOA1
OOA2
OOA4
OOA5
OOA6
OOA7
OOA8
OOA8
OOA9
OOAA
OOAF

2580

0008

OOOA
OOD«

OODO
0002
OOD4
OOD6

OOCO
OOC2

true
fa] se

equ
equ

O^fh
not true

debug equ true
;debug = true indicates bootstrao is in same roms
;with SBC 957 "Execution Vehicle" monitor
;at FEOO:0 instead of

er
If
t

equ
equ

13
10

; disk oorts and commands

base204
fdccom
fdcstat
f dcparm
fdcrslt
fdcrst
dmacadr
dmaccont
dmacscan
dmacsadr
dmacmode
dmacstat
f dcsel
f dcsegment
reset204
t
; actual console
baud rate
;value for 8253
baud

csts
cdata

tchO
tchl
tch2
tcmd

icpl
icp2

eau
equ
equ
equ
eau
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

baud
eau
baud
eau

equ
equ

equ
equ
equ
equ

equ
equ

OaOh
base204+0
base?04+0
base204+l
base204+l
base204+2
base204+4
basp204+5
base204+6
base204+7
base204+8
base204+8
base204+9
base204+10
base204+15

rate
9600

counter
768/(baud_rate/100)

ODAh ;i8251 status port
OD8h ; " data port

OnOh ;8253 PIC channel 0
tchO+2 ;ch 1 port
tchO+4 ;ch 2 port
tchO+6 ;8253 command port

OCOh ;8259a port 0
0«~2h ;8259a port 1

FEOO

IF NOT DEBUG
ROMSEH EOU OFFOOH

ENDIF
;

IF DEBUG
ROMSEG EOU OFEOOH

ENDIF
;

;share prom with SB

Al] Information Presented here is Proprietary to Digital Research

104



CP/M-86 System Guide Appendix C Listing of the BOOT ROM

FEOO

0000
0002
0004
0007
OOOA
GOOD
OOOF
0012

8CC8
8EO8
BE3F01
BF0002
B80000
8ECO
B9E600
F3A4

0014 380000
0017 8ED8
0019 8EDO
001B BC2A03
001E FC

001F B013
0021 E6CO
0023 B010

1 onq JUTIP prom'd in by hand
cseg Offffh ;reset qoes to here

;boot is at bottom
;cs = bottom of pro

ip = 0
ODD PROM
7F8 - 00
7F9 - 00

; this is not done i

JMPF BOTTOM
EA 00 00 00 FF

EVEN PROM
7F8 - EA
7F9 - 00
7FA - FF

cseq romseq

;First, move our data area into RAM at 0000:0200

mov ax,cs
mov ds,ax ;point OS to CS for source
mov RI,drombeqin ;start of data
mov r»i,offset ram_start joffset of destinat
mov ax,0
mov es,ax Destination segment is 000
mov CX,data_iength ;how much to move i
reo movs aT ,al ;move out of eprom

;data seament now in PAM
mov ax,0
mov ds,ax
mov ss,ax
mov sp,stack_offset ;Initialize stack s
eld jclear the directio

•

IF NOT OEBTJC
t
;Now, initialize the console USAR^ and baud rate

mov al,OEh
out csts,al
mov al,40h
out csts,al
mov al,4Eh
out cstSrai
mov al, 37h
out csts,al
mov al,OB6h
out tcmd,al
mov ax,baud
out tch2,al
mov al,ah
out tch2,al

;give 8251 dummy mode

; reset 8251 to accept mode

;normal 8 bit asynch mode,

;enable TX & Rx

;8253 ch.2 square wave mode

;low of the baud rate

;high of the baud rate

END IF

;Setup the 8259 Programmable Interrupt Controller

mov al,13h
out icpl,al
mov al,10h

;8259a ICW 1 8086 mode

All Information Presented Here is Proprietary to niqital Research

105



CP/M-86 System Guide Appendix C Listing of the BOO^ ROM

0025 E6C2
0027 B01F
0029 E6C2
002B BOFF
002D E6C2

E6AF
B001
E6A2
BOOO
E6A2
BB1502
E8E100
BB1B02
E8DBOO
BB2102
E8D500
BB1002
E85800

0031
0033
0035
0037
0039
003C
003F
0042
0045
0048
004B
004E

0051 BB2A03
0054 B80000
0057 8ECO
0059 E8A700

005C
005F

0062
0066
0069

006C
006F
0072
0075

B30202
E84700

8E062D03
BBOOOO
E89700

BB0602
E83700
BBOB02
E83100

;8259a irw 2 vector 0 40-5

;8259a irw 4 auto EOI mast

;8259a Orw 1 mask all T eve

;Reset and initialize the i^BP 204 Diskette Tnterfa

out icp2,a1
mov al,iFh
out icp2,al
mov al,OFFh
out icp2,al

restart: jaiso come back here on fatal error
out reset204,AL ;reset iSBP 204 logic and
mov AL , 1
out fdcrst,AL ;qive 8271 FDC
mov al,0
out fdcrst,AL ; a reset command
mov BX, offset soecsl
CALL sendcom ;proqram
mov BX, offset specs2
CALL sendcom ; Shugart SA-800 drive
mov BX, offset specs3
call sendcom ; characteristics

homer: mov BX, off set home
CALL execute ;home drive 0

0078 8C06E802

007C C706E6020000

0082 FF2EE602

0086 8AOF
0088 84C9
008A 7476
008C E80400
008F 43
0090 E9F3FF

pmsg:

mov bx,sectorl
mov ax , 0
mov es, ax
call setup_dma

;offset for first sector OM

; segment " " " "

mov bx, offset readO
call execute ;get TO

mov es,
mov bx,0
call setup dma

;get loader Toad address
;setup DMA to read loader

mov bx,offset readl
call execute ;read track 0
mov bx,offset read2
call execute ;read track 1

mov leap_segment,ES
setup far lump vector
mov leap_offset,0

enter LOADER
jmpf dword Ptr leap offset

mov cl,[BXl
test cl,cl
•jz return
cal1 conout
inc BX
jmp pmsg

All Information Presented Here is Proorietary to Digital Research

106



CP/M-86 System Guide Appendix c Listing of the BOOT ROM

conout:
0093 E4DA
0095 A801
0097 74FA
0099 8AC1
009B E6D8
009D T3

009E E4DA
OOAO A802
OOA2 74FA
OOA4 E4D8
OOA6 247F
OOA8 C3

conin:

in al,csts
test al,l
jz conout
mov al,cl
out cdata,al
ret

in al ,csts
test al,2
iz conin
in al ,cdata
and a
ret

OOA9 891E0002

OOAD E87000

OOBO
OOB4
OOB7
OOB9
ODBC
OOBE
OOCO
OOC3
OOC5
OOC7
OOC9

8B1E0002
8A4701
243F
B90008
3C2C
720B
B98080
240F
3COC
BOOO
7737

OOCB E4AO
OOCD 22C5
OOCF 32C174F8

OOD3 E4A1
OOD5 241E
OOD7 7429

OOD9 3C10
OODB 7513

OOnn BB1302
OOEO E83DOO

execute:

retry:

la return

;execute command strinq @ fBXl
;<BX> ooints to lenqth,
;foil owed by Command byte
;fol1 owed by lenqth-1 oarameter hvt

; remember what it w
;retrv if not readv
;execute the comman
;now, let's see wha
;of status DO!1 was
;for that command t
;Ooint to command s
;qet command OD cod
;droo drive code bi
;mask if it wii 1 be
;see if interrupt t

;else we use "not c
;unless . . .
;there isn't

;any result at all

mov l astcom ,BX

call sendcom

mov
mov
and
mov
cmp
ib
mov
and
cmo
mov

BX, 1 astcom
AL,1 [BXl
AL,3fh
PX, 0800h
AL,2ch
execpol 1
i~"X , 8080h
AL,Ofh
AL,Och

AL,0

execDol1: ;poll for bit in b, toqqled with c
in AL,FOCSfAT
and ALf^H
xor AL,^L ! JZ execpol1

in
and

AL^dcrslt
AL,leh
return

cmo al,10h
jne fatal

mov bx,offset rdstat
cal1 sendcom

;get result reqiste
jiook only at resul
;zero means it was

;if other than "Not

joerform read statu

All Information Presented Here is Proprietary to Diqitai Research

107



CP/M-86 System Guide Appendix C Listinq of the BOOT ROM

OOE3 E4AO
OOE5 A880
OOE7 75FA
OOE9 8B1E0002
OOED E9BDFF

OPFO B400
OOF2 8BD8
OOF4 8B9F2702

OOF8 E88BFF
OOFB E8AOFF
OOFE 58
OOFF E92DFF

0102 C3

rd_poll:

0103
0105
0107
0109
010B
010D
010F
0111
0113
0115
0117
0119
011B
011D
011F

B004
E6A8
BOOO
E6A5
B040
E6A5
8CCO
E6AA
8AC4
E6AA
8BC3
E6A4
8AC4
E6A4
C3

fatal:

in al,fdc_stat
test al,80h
jnz rd_poll
mov bx,1 a s t_com
•imp retry

mov ah,0
mov bx,ax
mov bx,errtb1 [BX]
print appropriate error
cai1 pmsg
call conin
pop ax
-}mp restart

return:
RET

setuodma:
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
RET

AL,04h
dmacmode,AL
al ,0
dmaccont,AL
AL,40h
dmaccont,AL
AX,ES
fdcsegment,AL
AL,AH
fdcsegment,AL
AX,BX
dmacadr,AL
AL,AH
dmacadr,AL

;wait for command n

;recover last attem
;and try it over ag

; fatal error

;make 16 bits

message

;wait for key strik
;discard unused ite
;then start all ove

;return from EXECUT

;enabie dmac

;set first (dummy)

;force read data mo

0120
0122
0124
0126
0128
0129
012B

E4AO
2480
75FA
8AOF
43
8A07
E6AO

012D FEC9
012F 74D1
0131 43

0132 E4AO
0134 2420
0136 75FA

sendcom: ; routine
in AL,fdcstat
and AL,80h
inz sendcom
mov CL,[BX]
inc BX
mov al,[BX]
out fdccom,AL

parmloop:
dec TL
jz return
inc BX

parmpoll:
in AL,fdcstat
and AL,20h
jnz parmpol 1

to send a command string t

;insure command not busy
;get count

;point to and fetch command
;send command

;see if any (more) paramete
;point to next parameter

;looo until parm not full

All Information Presented Here is Proprietary to Digital Research

108



CP/M-86 System Guide Appendix C Listing of the BOOf ROM

0138 8A07
013A E6A1
013C E9EEFF

013F

013F 0000

0141 03
0142 52
0143 00
0144 01

0145 04
0146 53
0147 00
0148 02
0149 19

014A 04
014B 53
014C 01
014D 01
014E 1A

014F
0152
0154
0157
015A
015D
0160
0163

0166
0168
016A
016C
016E
0170
0172
0174
0176
0178
017A
017C
017E
0180
0182
0184

026900
016C
05350D
0808E9
053510
FFFFFF
053518
FFFFFF

4702
4702
4702
4702
5702
6502
7002
7F02
9002
A202
B202
C502
D302
4702
4702
4702

mov AL, [RX]
out fdcparm,AL
jmp parmloop

;outout next parameter
;qo see about another

Image of data to be moved to RAM

drombegin equ offset $

clastcom dw OOOOh ;last command

creadstr ing

creadtrkO

creadtrkl

chomeO
crdstatO
cspecsl

cspecs2

cspecs3

cerrtb] dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

db
db
db
db

db
db
db
db
db

db
db
db
db
db

db
db
db
db
db
db
db
db

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

3
52h
0
1

4
53h
0
2
25

4
53h
1
1
26

2,69h,0
l,6ch

; 1 ength
;read function code
;track #
;sector #

; read mul tide
;track 0
jsectors 2
;through 26

;track 1
;sectors 1
;through 26

5,35h,0dh
08h,08h ,0e9h
5,35h,10h
255,255 ,255
5,35h,18h
255,255

erO
erl
er2
er3
er 4
er5
er6
er7
er8
er9
erA
erB
erC
erf)
erE
erF

,255

0186 ODOA4E756C6C CerO db cr,If,'Null Error ??',0

All Information Presented Here is Proprietary to Digital Research

109



CP/M-86 System Guide Appendix C Listing of the BOOT ROM

204572726F72
203F3FOO

0186
0186
0186

0196 ODOA436C6F63
6B204572726F
7200

01A4 ODOA4C617465
20444D4100

01AF ODOA49442043
524320457272
6F7200

01BE ODOA44617461
204352432045
72726F7200

01CF ODOA44726976
65204E6F7420
526561647900

01E1 ODOA57726974
652050726F74
65637400

01F1 ODOA54726B20
3030204E6F74
20466F756E64
00

0204 ODOA57726974
65204661756C
7400

0212 ODOA53656374
6F72204E6F74
20466F756E64
00

0186
0186
0186

0225

OOE6

0000

0200
0200
0202
0206
020B
0210
0213
0215

Cerl equ cerO
Cer2 equ cerO
Cer3 equ cerO
Cer4 db cr, If, '<~lock Error',0

Cer5 db cr, if, 'Late OMA',0

Cer6 db cr,lf,'in CRC Error', 0

Cer7 db cr,lf,'nata CRC Error', 0

Cer8 db cr,lf,'nrive Not Ready', 0

db

CerD equ
CerE equ
CerF equ

cr, If, 'Write Protect', 0

CerA db cr,lf,'Trk 00 Not Found', 0

CerR db cr, If, 'write Fault', 0

CerC db cr ,1 f , 'Sector Not Found', 0

cer 0
cerO
cerO

dromend equ offset S

data_length equ dromend-drombegin

y reserve space in RAM for data area
; (no hex records generated here)

dseg
org

•t
ram_start
lastcom
readO
readl
read2
home
rdstat
spec si

0
0200h

equ
rw
rb
rb
rb
rb
rb
rb

$
1
4
5
5
3
2
6

;last command
;read track 0 secto
;read TO S2-26
;read T]_ si-26
;home drive 0
;read status

All Information Presented Here is Proprietary to Digital Research

110



CP/M-86 System Guide Appendix C Listinq of the BOOT ROM

021B
0221
0227
0247
0247
0247
0247

0257
0265
0270
027F
0290
02A2
02B2
02C5
02D3
0247
0247
0247

02E6
02E8

02EA
032A

032A

032A
032B
032D
032F
0331

specs2
specs3
errtbl
erO
erl
er2
er3
er4
er5
er6
er7
er8
er9
erA
erB
erC
erD
erE
erF

leao_offset
eap segment

stack offset

sector 1

TV
Len
Abs
Min
Max

rb 6
rb 6
rw 16
rb length cerO ;16
equ erO
equ erO
equ erO
rb length cer4 ;14
rb length cer5 ;11
rb length cer6 ;15
rb length cer7 ;17
rb length cerfl ;1R
rb length cer9 ;16
rb length cerA ;19
rb length cerB ;14
rb length cerC ;19
equ erO
equ erO
equ erO

rw 1
rw 1

rw 32 ;local stack
equ offset S-stack from here do

TO SI read in here
equ offset S

rb
rw
rw
rw
rw
end

;ABS is all we care

All Information Presented Here is'Proprietary to Digital Research

111





Appendix D
LDBIOS Listing

* This the the LOADER BIOS, derived from the BIOS *
* program bv enabling the """oader^ios" condi- *
* tional assembly switch. The Mstinq has been *
* edited to remove portions which are duplicated *
* in the BIOS listing which appears in Appendix n *
* where elipses "..." denote the deleted portions *
* (the listing is truncated on the right, but can *
* be reproduced bv assembling the BTOS.A86 file *
* provided with CP/M-86) *

* Basic Incut/Output System (BIOS) for
* CP/M-R6 Configured for iSBr 86/12 with
* the iSBC 204 Floppy Disk Controller

(Note: this file contains both embedded *
tabs and blanks to minimize the list f i l e *
width for printing purposes. You mav wish*
to expand the blanks before performing *

* major editing.) *

Copyright (C) 1980,1981
Digita1 Research, Inc.
Box 579, Pacific Grove
California, 93950

(Permission is herebv granted to use
; or abstract the following program in
; the implementation of CP/M, MP/y or
; CP/NET for the 8086 or 8088 Micro-
; processor)

FFFF
0000

true
false

equ -1
equ not true

All Information Presented Here is Proprietary to Digital Research

113



CP/M-86 System Guide Appendix D LDBIOS Listing

FFFF
FFFF
OOEO

* Loader_bios is true if assembling the *
* LOADER BIOS, otherwise BIOS is for the *
* CPM.SYS file. Blc_list is true if we *
* have a serial printer attached to BLC8538 *
* Bdos int is interrupt used for earlier *
* versTons. *
* *
*********************************************

loader_bios equ true
blc_list equ true
bdos_int equ 224 ;reserved BDOS Interrupt

IF not loader bios

;l

ENDIF ;not loader bios

IF loader bios

1200
0003
0406

bios_code equ 1200h ;start of LDBIOS
ccp_offset equ 0003h ;base of CPMLOADER
bdos ofst equ 0406h ;stripped BDOS entrv

ENDIF ;loader bios

ccp:

cseg
org

org

ccpoffset

bios code

*********************************************
* *
* BIOS Jump Vector ôr Individual Routines *

1200 E93COO
1203 E96100

1239 E96400
123C E96400

jmp INIT ;Enter from BOOT ROM or LOADER
imp WBOOT ;Arrive here from BDOS call 0

jmp GETIOBF ;return I/O mao byte (IOBYTE)
imp SETIOBF ;set I/O map byte (IOBYTE)

All Information Presented Here is Proprietary to Digital Research

114



CP/M-86 System Guide Appendix D LDBIOS Listinq

*********************************************

* *
;* INIT Entry Point, Differs for LDBIOS and
;* BIOS, according to "Loader Bios" value

-

*
*
*

«A*******************************************

INIT:
123F 8CC8
1241 8EDO
1243 8ED8
1245 8ECO

1247 BCA916
124A FC

;print siqnon messaqe and initialize hardwa
mov ax,cs ;we entered with a JMPF so
mov ss,ax ; CS: as the initial value
mov ds,ax ; ns:,
mov es,ax ; and ES:
;use local stack durinq initialization
mov so,offset stkbase
eld ;set forward direction

IF not loader bios

I
; This is a BIOS for the CPM.SYS file.
. . . |

ENDIF ;not loader_bios

IF loader bios

124B IE
124C B80000
124F 8ED8

1251 C70680030604
1257 8COE8203
125B IF

;This is a BIOS for the LOADER
push ds ;save data seqment
mov ax, 0
mov ds,ax ;point to seqment zero
;BDOS interrupt offset
mov bdos_offset,bdos_ofst
mov bdos_seqment,CS ;bdos interrupt seqment
pop ŝ ;restore data seqment

125C BB1514
125F E85AOO
1262 B100
1264 E99CED

1267 E99FED WBOOT:

I I

ENDTF ;loader bios

mov bx,offset siqnon
call pmsq ;print siqnon messaqe
mov cl,0 jdefault to dr A: on coldst
Imp ccp ;iump to cold start entry o

jmp ccp+6 ;direct entry to CCP at com

IF not loader bios

ENDIF ;not loader bios

All Information Presented Here is Proprietary to Digital Research

115



CP/M-86 System Guide Appendix D LHBIOS Listinq

126A E4DA

1272 C3

1273 E8F4FF

127D E4DA

1288 E80700

* CP/M Character I/O Interface Routines *
* Console is Usart (\8251a) on iSBC 86/12 *
* at ports D8/DA *
* *

CONS'11: ;console status
in al,csts

const_ret:
ret

CONIN:

jReceiver Data Available

;console input
cai1 const

CONOUT: ;consoLe output
in al,csts

LISTOUT: ;list device output

blc list

cal 1 T.ISTST

1291 C3

ENDIF ;b1c_list

ret

LISTST: ;poll list status

IF blc list

1292 E441

129C C3

129D B01A
129F C3

in al,lsts

l l

ENDIF ;blc_1ist

ret

PUNCH: ;not implemented in this confiquration
READER:

mov al/lah
ret ;return EOF for now

All Information Presented Here is Proprietary to Diqital Research

116



CP/M-86 System Guide Appendix 0 LDBIOS Listing

GETIOBF:
12AO BOOO
12A2 C3

12A3 C3

12A4 2400
12A6 C3

12A7 E8C9FF

mov al,0
ret

SETIOBF:
ret

zero_ret:
and al,0

ret

: for consistency
jIOBYTE not implemented

;iobyte not implemented

;return zero in AL and flag

; Routine to get and echo a console character
; and shift it to upper case

uconecho:
call CONIN ;qet a console character

*********************************************

Disk Input/Output Routines

12CA BBOOOO
SELD^K: ;select disk given by register CL

mov bx,0000h

HOME: ;move selected disk to home position ('''rack
12EB C606311500 mov trk,0 ;set disk i/o to track zero

1300 880E3115
1304 C3

1305 880E3215
1309 C3

130A 8BD9

SETTRK: ;set track address given bv CX
mov trk,cl ;we only use 8 bits of trac
ret

SETSEC: ;set sector number given by ex
mov sect,cl ;we only use 8 bits of sect
ret

SECTRAN: ;translate sector CX using table at [DXl
mov bx, ex

1311 890E2A15
1315 C3

1316 890E2C15
131A C3

131B BB3815
131E C3

SETDMA: ;set DMA offset given by CX
mov dma_adr,CX
ret

SETDMAB: ;set OMA segment given by CX
mov dma_seg,CX
ret

•

GETSEGT: ;return address of physical memory table
mov bx,offset seg_table
ret

All Information Presented Here is Proprietary to Digital Research

117



OP/M-86 System Guide Appendix D LDBIOS Listing

ENDIF ;not loader_bios

142F ODOA486F6D65 bad_hom db cr,If,'Home Error',cr,If,0

= include singles.lib ; read in disk definitio
« : DISKS 2

131F B012
1321 EB02

1323 BOOA

1325 BB2F15

1415

* *
* All disk I/O parameters are setup: the *
* Read and Write entry points transfer one *
* sector of 128 bvtes to/from the current *
* DMA address using the current disk drive *
* *

READ:

WRI^E:

mov a1,12h ;basic read sector command
jmps r w common

mov al,0ah ;basic write sector command

r_w_common:
mov bx,offset io com ;point to command stri

»*

. *

data_offset

dseg
org

IF

Data Areas

r ********* T

equ offset 5

data_offset

loader bios

;contiquous with co

1415 ODOAODOA signon db
1419 43502F4D2D38 db

362056657273
696F6E20322E
320DOAOO

cr,1f,cr,1f
'rp/M-86 Version 2.2',cr,if,0

ENDTF ;loader_bios

IF not loader bios

I I

All Information Presented Here is Proprietary to Digital Research

118



CP/M-86 System Guide Aopendix D LDBIOS Listinq

• 1541 dpbase equ $ ;Base of Disk Param

=1668 00 db 0 ;Marks End of Modul

1669 loc_stk rw 32 ;local stack for initialization
16A9 stkbase equ offset $

16A9 00 db 0 ;fill last address for GENCMD

.A********************************************
;* *
;* Dummy Data Section *
;* *
.*********************************************

0000 dseg 0 jabsolute low memory
org 0 ;(interrupt vectors)
• • •

END

All Information Presented Here is Proprietary to Digital Research

119





Appendix E
BIOS Listing

* This is the CP/M-86 BIOS, derived from the BIOS
* program by disabling the "loader_bios" condi-
* tional assembly switch. The listing has been
* truncated on the right, but can be reproduced
* by assembling the BIOS.A86 file provided with
* CP/M-86. This BIOS allows CP/M-86 operation
* with the Intel SBC 86/12 with the SBC 204 con-
* troller. Use this BIOS, or the skeletal CBIOS
* listed in Appendix E, as the basis for a cus-
* tomized implementation of CP/M-86.
* provided with CP/M-86)

* Basic Input/Output System (BIOS) for *
* CP/M-86 Configured for iSBC 86/12 with *
* the iSBC 204 Floppy Disk Controller *
* *
* (Note: this file contains both embedded *
* tabs and blanks to minimize the list file *
* width for printing purposes. You may wish*
* to expand the blanks before performing *
* major editing.) *

Copyright (C) 1980,1981
Digital Research, Inc.
Box 579, Pacific Grove
California, 93950

(Permission is hereby granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro-
processor)

FFFF
0000

true
false

equ -1
equ not true

All Information Presented Here is Proprietary to Digital Research

121



CP/M-86 System Guide Appendix E BIOS Listing

0000
FFFF
OOEO

* Loader_bios is true if assemblina the
* LOADER BIOS, otherwise BIOS is for the
* CPM.SYS file. Blc_!ist is true if we
* have a serial orinter attached to BLP8538
* Bdos_int is interruot used for earlier
* versions.

loader_bios equ false
blc_iist equ true
bdos_int equ 224 ;reserved BOOS Interruot

IF not loader bios

2500
0000
OB06

bios_code
ccp_offset
bdos ofst

equ 2500h
equ OOOOh
equ OB06h ;Rnos entry ooint

ENDIF ;not 1oader_bios

IF loader bios

bios_code equ 1200h ;start of LDBIOS
ccp_offset equ 0003h ;base of CPMLOADER
bdos ofst equ 0406h ;strioped BDOS entrv

OODA
OOD8

ENDIF ;1oader_bios

csts equ ODAh ;i8251 status port
cdata equ OD8h ; " data oort

IF blc list

0041
0040
0060

Ists equ 41h ;2651 No. 0 on BLC8538 stat
Idata equ 40h ; " " " " " data
blc_reset equ 60h ;reset selected USARTS on B

ENDIF ;blc ]ist

Intel iSBC 204 Disk Controller Ports

All Information Presented Here is Proprietary to Digital Research

122



CP/M-86 System Guide Appendix E BIOS Listinq

OOAO

OOAO
OOAO
OOA1
OOA1
OOA2
OOA4
OOA5
OOA6
OOA7
OOA8
OOA8
OOA9
OOAA
OOAF

OOOA

GOOD
OOOA

base204 equ OaOh

fdc com
fdc_stat
fdc parm
fdc_rslt
fdc_rst
dmac ad r
dmac_cont
dmac scan
dmac_sadr
dmac_mode
dmac stat
fdc_sel
fdc_segment
reset_204

max_retr ies

or
If

cseg
org

ccp:
org

equ base204+0
equ base204+0
equ base204+l
equ base204+l
eau base204+2
equ base204+4
equ base204+5
equ base204+6
equ base204+7
equ base204+8
equ base204+8
equ base204+9
equ base204+10
equ base204+15

equ 10

equ Odh
equ Oah

ccpoffset

bios code

;SBC204 assigned ad

;8271 FOC out comma
;8271 in status
;8271 out parameter
;8271 in result
;8271 out reset
;8257 DMA base addr
;8257 out control
;8257 out scan cont
;8257 out scan addr
;8257 out mode
;8257 in status
;FDC select port (n
;segment address re
;reset entire inter

;max retries on dis
;before perm error
;carriage return
;line feed

;* BIOS Jumo Vector for Individual Routines
. *

2500 E93COO
2503 E98400
2506 E99000
2509 E99600
250C E99000
250F E9A500
2512 E9B700
2515 E9B400
2518 E9FFOO
251B E9DBOO
251E E90E01
2521 E91001
2524 E91901
2527 E92401
252A E92501
252D E99100
2530 E90601
2533 E90F01
2536 E91101
2539 E99300
253C E99300

imp INIT
imp WBOOT
imp CONST
imp CONIN
imp CONOUT
imp L I STOUT
imp PUNCH
imp READER
imp HOME
imp SELDSK
imp SETTRK
imp SETSEC
imp SETDMA
imp READ
imp WRITE
imp LISTST
imp SECTRAN
imp SETDMAB
imp GETSEGT
imp GETIOBF
jmp SETIOBF

;Enter from BOOT ROM or LOADER
;Arrive here from BDOS call 0
; return console keyboard status
;return console keyboard char
jwrite char to console device
;write character to list device
;write character to punch device
jreturn char from reader device
;move to trk 00 on cur sei drive
jselect disk for next rd/write
;set track for next rd/write
;set sector ^or next rd/write
;set offset for user buff (DMA)
;read a 128 bvte sector
;write a 128 byte sector
;return list status
;xlate logical->ohysical sector
;set seg base for buff (DMA)
;return offset of Mem nesc Table
;return I/O map byte (IOBYTE)
;set I/O map byte

All Information Presented Here'is Proprietary to Digital Research

123



CP/M-86 System Guide Aopendix E BIOS Listinq

253F 8CC8
2541 8EDO
2543 8ED8
2545 8ECO

2547 B<~E429
254A FC

* INIT Entry Point, Differs for LDBIOS and
* BIOS, according to "Loader Bios" value

TNIT: ;print signon messaqe and initialize hardwa
mov ax,cs ;we entered with a JMPF so
mov ss,ax ; PS: as the initial value
mov ds,ax ; DS:,
mov es,ax ; and ES:
;use local stack during initialization
mov sp,offset stkbase
eld ;set forward direction

IF not loader bios

254B IE
254C B80000
254F 8ED8
2551 8ECO

2553 C70600008D25
2559 8COE0200
255D BF0400
2560 BEOOOO
2563 B9FE01
2566 F3A5

2568 C7068003060B
256E IF

; This is a BIOS for the TPM.SYS file.
; Setup all interrupt vectors in low
; memory to address trao

push ds ;save the ns register
mov ax, 0
mov ds,ax
mov es,ax ;set ES and OS to zero
;setuo interrupt 0 to address trao routine
mov intO_offset,offset int_trap
mov intO_segment,rq
mov d i , 4
mov si,0 ;then propagate
mov ex,510 ;trap vector to
rep movs ax,ax ;a!1 256 interrupts
;BDOS offset to proper interrupt
mov bdos_offset,bdos_ofst
POD ds ;restore the ns register

256F
2571
2573
2575
2577
2579
257B
257D

BOFF
E660
B04E
E642
B03E
E642
B037
E643

* *
* National "BLC 8538" Channel 0 for a serial*
* 9600 baud printer - this board uses 8 Sig-*
* netics 2651 Usarts which have on-chip baud*
* rate generators. *

mov al,OFFh
out blc_reset,al ;reset all usarts on 8538
mov al,4Eh
out ldata+2,al ;set usart 0 in asvnc 8 bit
mov al,3Eh
out ldata+2,al ;set usart 0 to 9600 baud
mov al,37h
out ldata+3,al ;enable Tx/Rx, and set up R

All Information Presented Here is Proprietary to Digital Research

124



CP/M-86 System Guide Appendix E BIOS Listing

257F BB4427
2582 E86600
2585 B100
2587 E976DA

258A E979DA

ENDIF ;not loader_bios

IF loader bios

;This is a BIOS for the LOADER
push ds ;save data segment
mov ax,0
mov ds,ax ;point to segment zero
;BDOS interrupt offset
mov bdos_offset,bdos_ofst
mov bdos_segment,CS ;bdos interrupt segment
pop ds ;restore data segment

ENDIF ;loader_bios

mov bx,offset signon
call pmsg ;print signon message
mov ci,0 ;defau1.t to dr A: on coldst
•jmp ccp »"jump to cold start entry o

WBOOT: jmp ccp+6 ;direct entry to CCP at com

IF not loader bios

258D FA
258E 8CC8
2590 8ED8
2592 BB7927
2595 E85300
2598 F4

2599 E4DA
259B 2402
259D 7402
259F OCFF

25A1 C3

int_trap:
cli ;block interrupts
mov ax,cs
mov ds,ax ;get our data segment
mov bx,offset tnt_trp
call pmsg
hit ;hardstop

ENDIF ;not loader bios

* CP/M Character I/O Interface Routines *
* Console is Usart (i8251a) on iSBC 86/12 *
* at ports D8/DA *

CONST: ;console status
in al,csts
and al,2
jz const_ret
or al,255 ;return non-zero if RDA

const_ret:
ret jReceiver Data Available

All Information Presented Here is Proprietary to Digital Research

125



CP/M-86 System Guide Appendix E BIOS Listing

CONIN:
25A2 E8F4FF
25A5 74FB
25A7 E4D8
25A9 247F
25AB C3

25AC E4DA
25AE 2401
25BO 74FA
25B2 8AC1
25B4 E6D8
25B6 C3

25B7 E80700
25BA 74FB
25BC 8AC1
25BE E640

25CO C3

25C1 E441
25C3 2481
25C5 3C81
25C7 750A
25C9 OCFF

call const
jz CONIN
in al,cdata
and al,7fh
ret

;console inout

;wait for RDA

;read data and remove par it

CONOUT: ;console output
in a i,csts
and al , 1
jz CONOUT
mov al,cl
out cdata,al
ret

;get console status
;wait for TBE

transmitter Buffer Empty
;then return data

LISTOUT: ;list device output

l l

;l

IF blc list

call LISTST
1Z LISTOUT
mov al,cl-
out ldata,al

;wait for printer not busv

;send char to TT 810

ENDIF ;blc_list

ret

LISTST: ;poll list status

IF blc list

in al,lsts
and al,81h
cmp al,81h
inz zero_ret
or al,255

;look at both TXRDY and DTR

;either false, printer is b
;both true, LPT is ready

25CB C3

25CC B01A
25CE C3

25CF BOOO
25D1 C3

ENDIF ;blc_list

ret

;not implemented in this configurationPUNCH:
READER:

mov al,lah
ret

GETIOBF:
mov al,0
ret

;return EOF for now

;TTY: for consistency
;IOBYTE not implemented

All Information Presented Here is Proprietary to Digital Research

126



CP/M-86 System Guide Appendix E BIOS Listing

25D2 C3

25D3 2400
25D5 C3

25D6
25D9
25DA
25DC
25DF
25EO
25E2
25E4
25E6
25E8

E8C9FF
50
8AC8
E8CDFF
58
3C61
7206
3C7A
7702
2C20

25EA C3

25EB 8A07
25ED 84CO
25EF 7428
25F1 8ACS
25F3 E8B6FF
25F6 43
25F7 EBF2

SETIOBF:
ret

zero_ret:
and al,0

ret

;iobyte not implemented

;return zero in AL and flag

; Routine to get and echo a console character
; and shift it to upper case

uconecho:
call CONIN
push ax
mov cl,al
call CONOUT
pop ax
crop al,*a*
•jb uret
cmp al,'z'
ja uret

uret:

pmsg

;qet a console character

;save and

;echo to console

;iess than 'a' is ok

;greater than *z" is ok
sub al,'a'-'A' ;else shift to caps

ret

utility subroutine to print messages

mov al,[BXl
test al,al
jz return
mov CL,AL
call CONOUT
inc BX
jmps pmsg

;get next char from message

;if zero return

;print it

;next character and IOOD

Disk Input/Output Routines

SELDSK:
25F9
25FC
25FF
2601
2603
2606
2608
260A

BBOOOO
80F902
7318
B080
80F900
7502
B040
A26928

260D B500
260F 8BD9
2611 B104

sell:

mov bx,0000h
cmp cl,2
jnb return
mov al, 80h
cmp cl,0
•jne sell
mov al, 40h
mov sel_mask,al

mov ch,0
mov bx,cx
mov cl,4

;select disk given by register CL

;this BIOS only supports 2
jreturn w/ 0000 in BX if ba

;drive 1 if not zero
;else drive is 0
;save drive select mask
;now, we need disk paramete

;BX = word(CL)

All Information Presented Here is Proprietary to Digital Research

127



CP/M-86 System Guide Appendix E BIOS Listinq

2613 D3E3

2615 81C37C28

2619 C3

261A C6066C2800
261F BB6E28
2622 E83500
2625 74F2
2627 BB6A27
262A E8BEFF
262D EBEB

262F 880E6C28
2633 C3

2634 880E6D28
2638 C3

2639 8BD9
263B 03DA
263D 8A1F
263F C3

2640 890E6528
2644 C3

2645 890E6728
2649 C3

264A BB7328
264D C3

return:

HOME:

shl bx,cl ;multiply drive code * 16
;create offset from Disk Parameter Base
add bx,offset dp_base

ret

;move selected disk to home position (Track
mov trk,0 ;set disk i/o to track zero
mov bx,offset hom_com
call execute
jz return ;home drive and return if 0
mov bx,offset bad_hom ;else print
call pmsq ;"Home Error"
jmps home ;and retry

SETTRK: ;set track address qiven by CX
mov trk,cl ;we only use 8 bits of trac
ret

SETSEC: ;set sector number qiven by ex
mov sect,cl ;we only use 8 bits of sect
ret

SECTRAN: ;translate sector CX usinq table at [DX]
mov bx,cx
add bx,dx ;add sector to tran table a
mov bl,[bxl ;get loqical sector
ret

SETDMA: ;set DMA offset qiven by CX
mov dma_adr,CX
ret

SETDMAB: ;set DMA seqment given by CX
mov dma_seg,CX
ret

t
GETSEGT: ;return address of ohysical memory table

mov bx,offset seg_table
ret

264E B012
2650 EB02

All disk I/O parameters are setup: the *
Read and Write entry points transfer one *
sector of 128 bytes to/from the current *
DMA address usinq the current disk drive *

READ:

WRITE:

mov al,12h ;basic read sector command
imps r w common

All Information Presented Here is Proprietary to Diqital Research

128



CP/M-86 System Cuide Appendix E BIOS Listing

2652 BOOA mov al , Oah ;basic write sector command

2654 BB6A28
2657 884701

265A 891E6328

265E C60662280A

2663 8B1E6328
2667 E88900

r_w_common:
mov bx,offset io_com ;point to command stri
mov byte ptr l[BXl,al ;put command into str

; fall into execute and return

execute: ;execute command strinq.
; [BXl points to length,
; followed by Command byte,
; followed bv length-1 parameter byte

mov last_com,BX ;save command address for r
outer_retrv:

jallow some retrying
mov rtrv cnt,max retries

retrv:

266A
266E
2671
2674
2676
2678
267B
267D
267F
2681

8B1E6328
8A4701
B90008
3C2C
720B
B98080
240F
3COC
BOOO
7736

2683 E4AO
2685 22C5
2687 32C1
2689 74F8

268B E4A1
268D 241E
268F 7428

2691 3C10
2693 7425

2695 FEOE6228
2699 15C8

269B B400

mov BX,la<5t_com
call send_com ;transmit command to i827!
check status pol l

mov BX,last com
mov al,l[bxj
mov cx,0800h
cmp al,2ch
ib exec_poi1
mov cx,8080h
and al,0fh
cmp al,0ch
mov al,0
la exec exit

exec poll:

in al,fdc_stat
and al,ch
xor al,cl
iz exec_poi 1

in al,fdc_rslt
and al,leh
iz exec_exit

cmp al,10h
1e dr nrdy

get command OP code
mask if it will be "int re

ok if it is an interrupt t
else we use "not command b

unless there isn't

anv result
poll for bits in CH,

toggled with bits in CL

read status

isolate what we want to
and loop until it is done

Operation complete,
see if result code indica

no error, then exit
some type of error occurre

was it a not ready drive
no,

dr_rdy: ; then we iust retrv read or write
dec rtry_cnt

up to 10 timesinz retry

retries do not recover from the
hard error

mov ah,0

All Information Presented Here is Proprietary to Digital Research

129



CP/M-86 System Guide Appendix E BIOS Listinq

269D
269F
26A3
26A6
26A8
2 6 AB
2 6 AD
26AF

26B3
26B5
26B7

8BD8
8B9F9127
E845FF
E4D8
E82BFF
3C43
7425
3C52
7 4 AB
3C49
741A
OCFF

26B9 C3

26BA E81AOO
26BD 75A4
26BF E81500
26C2 759F
26C4 BB0228
26C7 E821FF

26CA E80AOO
26CD 74FB
26CF EB92

26D1 2400
26D3 C3

26D4 E9B3FE

mov bx,ax ;make error code 16 bits
mov bx,errtbl[BXl
call pmsg ;print appropriate messaqe
in al,cdata ;flush usart receiver buffe
call uconecho ;read upper case console ch
cmp al,'C'
ie wboot_l ;cancel
cmp al,'R'
ie outer_retrv ;retry 10 more times
cmp al,'I"
ie z_ret ;iqnore error

;set code for permanent error al,255
exec_exit:

ret

dr_nrdy: ;here to wait for drive ready
call test_ready
inz retry ;if it's ready now we are d
call test_ready
inz retry ;if not ready twice in row,
mov bx,offset nrdymsq
call pmsg ;"Drive Not Ready"

nrdyOl:
call test_ready
iz nrdyOl ;now loop until drive ready
imps retry ;then go retry without deer

zret:
and al,0
ret ;return with no error code

wboot 1:
imp WBOOT

;can't make it w/ a short 1

26D7 B640
26D9 F606692880
26DE 7502
26EO B604

26E2 BB7128
26E5 E80BOO

26E8 E4AO
26EA A880
26EC 75FA
26EE E4A1
26FO 84C6

* *
* The i8271 requires a read status command *
* to reset a drive-not-ready after the *
* drive becomes ready *
* *
*********************************************

test_ready:
mov dh, 40h ;proper mask if dr 1
test sei mask,80h
jnz nrdy^
mov dh, 04h ;mask for dr 0 status bit

nrdy2:
mov bx,offset rds_com
call send_com

dr_poll:
in al,fdc_stat ;qet status word
test al,80h
inz dr_poll ;wait for not command busy
in al,fdc_rslt ;qet "special result"
test al,dh ;look at bit for this drive

All Information Presented Here is Proprietary to Diqital Research

130



CP/M-86 System Guide Aooendix E RIOR Listing

26F2 C3 ret ; return status of ready

26F3 E4AO
26F5 A880
26F7 75FA

26F9 8A4701
26FC 3C12
26FE 7504
2700 B140
2702 EB06

2704 3COA
2706 7520
2708 B180

270A
270C
270E
2710
2712
2714
2716
2719
271B
271D
2 7 IF
2722
2724
2726

B004
E6A8
BOOO
E6A5
8AC1
E6A5
A16528
E6A4
8AC4
E6A4
A16728
E6AA
8AC4
E6AA

2728 8AOF
272A 43
272B 8A07
272D OA066928
2731 E6AO

2733 FEC9
2735 7482
2737 43

Send com sends a command and parameters
*

^^tii „„..„„ „ ,̂.,..„„..... „..„ „„.. ̂ ,..̂ _ ̂.. ̂  *
* to the i8271: BX addresses parameters. *
* The DMA controller is a]so initialized *

if this is a read or write **
* *
*********************************************

send_com:
in al,fdc_stat
test al,80h ; insure command not busy
jnz send_com ;loop until ready

;see if we have to initialize for a OMA ope

mov al,l[bxl ;get command byte
cmp al,12h
jne write_mavbe ;if not a read it could be
mov cl,40h
imps init_dma ;is a read command, qo set

write_mavbe:
cmp al,0ah
jne dma_exit ;leave HMA alone if not rea
mov cl,80h ;we have write, not read

init_dma:
;we have a read or write operation, setup DMA contr
j (CL contains proper direction bit)

mov al,04h
out dmac_mode,al ;enable dmac
mov al,00
out dmac_cont,al
mov al,cl
out dmac_cont,al
mov ax,dma_adr
out dmac_adr,al
mov al,ah
out dmac_adr,al
mov ax,dma_seq
out fdc_seqment,al ;send low bvte of seqmen
mov al,ah
out fdc_seqment,al ;then high segment addre

dma_exit:
mov cl,[BXl ;get count
inc BX
mov al,[BXl ?get command
or al,sel_mask ;merqe command and drive co
out fdc_com,al ;send' command byte

parm_loop:
dec cl
iz exec_exit ;no (more) parameters, retu
inc BX ;point to (next) parameter

parm poll:

;send first byte to con

;load direction register

;send low bvte of DMA

;send high byte

All Information Presented Here is Proprietary to Digital Research

131



CP/M-86 System Guide Appendix E BIOS Listing

2738 E4AO
273A A820
273C 75FA
273E 8A07
2740 E6A1
2742 EBEF

2744

in al,fdc_stat
test al,20h ;test "parameter register f
inz Darm_poll ; idle until parm req not fu
mov al , [BX]
out fdc_parm,al ;send next parameter
jmps parm_loop ;qo see if there are more p

;
. *

data_offset

dseq
org

IF

Data Areas

k**********i

equ offset $

data_offset

loader bios

;contiguous with co

signon db cr,lf,cr,lf
db 'CP/M-86 Version 2.2',cr,lf,0

2744 ODOAODOA siqnon
2748 202053797374

656D2047656E
657261746564
20202D203131
204A616E2038
310DOAOO

ENDIF ;loader_bios

IF not loader bios

db cr,lf,cr,l<:

db ' System Generated - 11 Jan 81',c

276A ODOA486F6D65 bad_hom db
204572726F72
ODOAOO

2779 ODOA496E7465 int_tro db
727275707420
547261702048
616C740DOAOO

;not loader_bios

cr,If,'Home Error',cr,If,0

cr ,1f,'Interrupt Trap Halt',cr,lf,0

2791 B127B127B127 errtbl dw erO,er1,er2,er3
B127

2799 C127D127DE27 dw er 4,er5,er6,er7
EF27

27A1 022816282828 dw er8,er9,erA,erB
3D28

27A9 4D28B127B127 dw erC,erD,erE,erF

All Information Presented Here is Proprietary to Digital Research

132



CP/M-86 System Guide Aopendtx E BIO«? Listinq

B127

27B1 ODOA4E756C6C
204572726F72
203P3FOO

27B1
27B1
27B1

27C1 ODOA436C6F63
6B204572726F
72203AOO

27nl ODOA4C617465
20444D41203A
00

27DE OOOA49442043
524320457272
6F72203AOO

27EF ODOA44617461
204352432045
72726F72203A
00

2802 ODOA44726976
65204E6F7420
526561647920
3AOO

2816 ODOA57726974
652050726F74
656374203AOO

2828 ODOA54726B20
3030204E6F74
20466F756E64
203AOO

283D ODOA57726974
65204661756C
74203AOO

284D ODOA53656374
6F72204E6F74
20466F756E64
203AOO

27B1
27B1
27B1
2802

2862 00
2863 0000
2865 0000
2867 0000
2869 40

286A 03
286B 00
286C 00

erO

erl
er2
er3
er 4

er5

er6

db cr,lf,'Nul] Error •>'>', 0

equ erO
equ erO
equ erO
db

ei u
er,if,'Clock Error :',0

db cr,If,'Late DMA :',0

db cr,lf,'ID CRC Error :',0

er7 db cr,If,'Data CRC Error :',0

er8 db cr ,lf,'r>r ive Not Readv :',0

er9 db cr,1^,'Write Protect :',0

erA db cr ,\f ,'***. 00 Not Found :',0

erB db cr,if,'Write ^ault :',0

ere db cr,3f,'Sector Not Found :',0

erD equ erO
erE equ erO
erF equ erO
nrdymsg equ er8

rtry_cnt db 0 ;disk error retry counter
last_com dw 0 ;address of last command strinq
dma_adr dw 0 ;dma offset stored here
dma_seg dw 0 ;dma segment stored here
sel_mask db 40h ;select mask, 40h or 80h

; Various command strings for i8271

io_com db 3 ;length
rd_wr db 0 ;read/write function code
trk db 0 ;track I

All Information Presented Here is Proprietary to Digital Research

133



CP/M-86 Svstem Guide Appendix E BIO6! Listing

286D 00 sect db 0 ; sector #

286E 022900
2871 012C

2873 02
2874 DF02
2876 2105
2878 0020
287A 0020

= 287C
=287C AB280000
=2880 00000000
=2884 C5289T28
=2888 64294529
=288C AB280000
=2890 00000000
=2894 C5289C28
=2898 93297429

= 289C
=289C 1AOO
=289E 03
=289F 07
= 28AO 00
=28A1 F200
=28A3 3FOO
= 28A5 CO
=28A6 00
= 28A7 1000
=28A9 0200
= 28AB
=28AB 01070D13
=28AF 19050B11
= 28B3 1703090F
=28B7 1502080E
=28BB 141A060C
=28BF 1218040A
=28C3 1016
= 001F
= 0010

= 289C
= 001F
= 0010
= 28AB

= 28C5 begdat

hom_com db 2,29h,0
rds com db l,2ch

;home drive command
;read status command

; System Memory Segment Table

segtable db 2 ;2 segments
dw tpa_seg ;lst seq starts a^ter
dw tpa_len ;and extends to 08000
dw 2000h ;second is 20000 -

;read in disk definitio

;Base of Disk Param
translate ^abl e
»•^cratch Area
;Pir Buff, Parm Bio
;Check, Alioc Vecto
,-Transiate ^able
;Scratch Area
;Dir Bu<"f, Parm Bio
;Theck, Alloc Vecto

26,6,1024,243,64,64,2
;nisk Parameter Bio
Rectors Per Track
;Block Shift
;Block Mask
;Extnt Mask
; O i s k Size - 1
;Directorv Max
;AHocO
;A1 loci
;<"heck Size
;0ffset
;Transiate ^able

dw 2000h ;3FF

*
dpbase
dpeO

dpel

•
dpbO

xltO

alsO
cssO
/
dpbl
alsl
cssl
xltl
;

include

ecm
dw
dw
dw
dw
dw
dw
dw
dw

equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
equ
equ

equ
equ
equ
equ

singles .lib
DISKS 2
S
xltO,OOOOh
0000h,0000h
dirbuf ,dobO
csvO , al vO
xl tl,0000h
0000h,0000h
dirbuf ,dpbl
csvl , al vl
DISKDEF 0,1,
offset S
26
3
7
0
242
63
192
0
16
2
offset S
1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22
31
16
DISKDEF 1,0
dpbO
alsO
cssO
xl tO
ENDE*1

;Allocation vector
;Check Vector Size

;Equivalent Paramet
;Same Allocation Ve
;Same Checksum Vect
;Same Translate Tab

Uninitialized Scratch Memory follows:
equ offset $ ;Start of Scratch A

All Information Presented Here is Proprietary to Digital Research

134



CP/M-86 System Guide Appendix E BIOS Listing

=28C5
= 2945
= 2964
= 2974
= 2993
• 29A3
= OODE
= 29A3 00

dirbuf
alvO
csvO
alvl
csvl
enddat
datsiz

rs
rs
rs
rs
rs
equ
equ
db

128
alsO
cssO
alsl
cssl
offset

;Directory Buffer
;Alloc Vector
;Check Vector
;Alloc Vector
;Check Vector
;End of Scratch Are

offset $-begdat ;Size of Scratch Ar
0 ;Marks End of Modul

29A4
29E4

29E4
02DF
0521

29E4 00

loc_stk rw 32 ;local stack for initialization
stkbase equ offset $

lastoff equ offset $
tpa_seg equ (lastoff+0400h+15) / 16
tpa_len equ 0800h - tpa_seg

db 0 ;fill last address for GENCMD

0000

0000
0002

0004

0380
0382

Dummy Data Section

dseg 0 ;absolute low memory
org 0 ; (interrupt vectors)

intO_offset rw 1
intO_segment rw 1
; pad to system call vector

rw 2*(bdos int-1)

bdos_offset
bdos_segment

END

rw
rw

All Information Presented -Here is Proprietary to Digital Research

135





Appendix F
CBIOS Listing

* This is the listing of the skeletal GRIDS which *
* you can use as the basis for a customized BIOS *
* for non-standard hardware. The essential oor- *
* tions of the BIOS remain, with "rs" statements *
* marking the routines to be inserted. *
* *

* This Customized BIOS adapts CP/M-86 to
* the following hardware configuration

Processor:
Brand:
Contro]ler:

Programmer:
Revisions :

FFFF
0000
OOOD
OOOA

true
false
cr
If

equ -1
equ not true
equ Odh ;carriage return
equ Oah ;line feed

0000
OOEO

* Loader_bios is true if assembling the
* LOADER BIOS, otherwise BIOS is for the
* CPM.SYS file.
*

loader_bios equ false
bdos_int equ 224 ;reserved BDOS interrupt

IF not loader bios

2500
0000
OB06

bios_code equ 2500h
ccp_offset equ OOOOh
bdos ofst equ OBOSh ;BDOS entry point

All Information Presented Here is Proprietary to Digital Research

137



CP/M-86 System Guide Appendix F PBIOS Listing

ENDIF ;not loader_bios

IF loader bios

;!
bios code
ccp offset
bdos ofst

eau 1200h
equ 0003h
equ 0406h

1
; star t of LDBIOS
;base of CPMLOADER
; stripoed BDOS entry

ccp:

ENDIP

cseq
orq

orq

;]oader_bios

ccpoffset

bios code

;* BIOS Jump Vector for Individual Routines
. *

2500 E93POO
2503 E97900
2506 E98500
2509 E98DOO
250C E99AOO
250F E9A200
2512 E9B500
2515 E9BDOO
2518 E9F600
251B E9D900
251E E90101
2521 E90301
2524 E90C01
2527 E91701
252A E94701
2520 E98FOO
2530 E9F900
2533 E90201
2536 E90401
2539 E9A400
253C E9A500

imp INIT
jmp WBOOT
imp CONST
imp CONIN
imp CONOUT
imp L I STOUT
imp PUNCH
imp READER
imp HOME
imp SELDSK
imp SETTRK
imp SETSEC
imp SETDMA
imp READ
imp WRITE
imp LISTST
imp SECTRAN
imp SETOMAB
imp GETSEGT
imp GETTOBF
jmp SETIOBF

;Enter from BOOT ROM or LOADER
;Arrive here ^rom BDOS call 0
;return console keyboard status
;return console keyboard char
;write char to console device
;write character to list device
jwrite character to punch device
;return char ^rom reader device
;move to trk 00 on cur sei drive
;select disk for next rd/write
;set track for next rd/write
;set sector ^or next rd/write
;set offset for user buff (DMA)
;read a 128 byte sector
;write a 128 byte sector
;return list status
;xlate Ioqical->physica1 sector
;set seq base for buff (DMA)
;return offset of Mem Desc Table
; return I/O map byte (IOBYTE)
;set I/O map bvte (TOBYTE)

* INIT Entry Point, Differs for LDBIOS and
* BIOS, accordinq to "Loader Bios" value

253F 8CC8
INIT; ;print siqnon messaqe and initialize hardwa

mov ax,cs ;we entered with a JMPF so

All Information Presented Here is Proprietary to Diqital Research

138



CP/M-86 System Guide Appendix P CBIOS Listing

2541 8EDO
2543 8ED8
2545 8ECO

2547 BC5928
254A FC

mov ss,ax ;CS: as the initial value
mov ds,ax ;ns:,
mov es,ax ;and ES:
;use local stack during initialization
mov sp,offset stkbase
eld ;set forward direction

IP not loader bios

254B IE
254C C606A72600
2551 B80000
2554 8ED8
2556 8ECO

2558 C70600008225
255E 8COE0200
2562 BF0400
2565 BEOOOO
2568 B9FE01
256B F3A5

256D C7068003060B
2573 IF

; This is a BIOS «'or the rPM.SYS file.
; Setup all interrupt vectors in low
; memory to address trap

;save the OS register
;clear IOBYTE

push ds
mov IOBYTE,0
mov ax, 0
mov ds,ax
mov es,ax ;set ES and OS to zero
;setup interrupt 0 to address trap routine
mov intO_offset,offset int_trap
mov intO_segment,CS
mov d i , 4
mov si,0 ;then propagate
mov ex,510 ;trap vector to
rep movs ax,ax ;all 256 interrupts
;BDOS offset to proper interrupt
mov bdos_offset,bdos_ofst
pop ds ;restore the DS register

(additional CP/M-86 initialization)

ENDIF ;not loader_bios

IF loader bios

2574 BBB126
2577 E86FOO
257A B100
257C E981DA

;This is a BIOS for the LOADER
push ds ;save data segment
mov ax,0
mov ds,ax ;point to segment zero
;BDOS interrupt offset
mov bdos_offset,bdos_ofst
mov bdos_segment,CS ;bdos interrupt segment
(additional LOADER initialization)
pop ds ;restore data segment

ENDIF ;loader bios

mov bx,offset signon
call pmsg ;print signon message
mov cl,0 ;default to dr A: on coldst
jmp ccp ;iump to cold start entrv o

All Information Presented Here is Proprietarv to Digital Research

139



CP/M-86 System Guide Appendix F PBIOS Listing

257F E984DA WBOOT: jmp ccp+6 jdirect entry to crp at com

IF not loader bios

2582 FA
2583 8CC8
2585 8ED8
2587 BBD126
258A E85POO
258D F4

int_trap:
cli

258E
2598 C3

2599 E8F2FF
259C 74FB
259E
25A8 C3

25A9
25B3 C3

25B4
25BE r3

25BF
25C9 C3

25CA
25D4 C3

25D5
25DF C3

25EO AOA726

;block interrupts
mov ax,cs
mov ds,ax ;get our data segment
mov bx,offset int_trp
call pmsq
hit ;hardstop

ENDIF ;not loader bios

* CP/M Character I/O Interface Routines

CONST:

TONIN:

CONOUT:

LISTOUT:

LISTST:

PUNCH:

READER:

GETIOBF:

rs
ret

;console status
10 ; (fill-in)

;conso"i e i nput
call CONST
jz CONIN
rs
ret

;wait for RDA
10 ;(fill-in)

;console output
rs
ret

rs
ret

rs
ret

rs
ret

rs
ret

10

10

10

(fill-in)
then return data

list device output
(fill-in)

poll list status
(fill-in)

;write punch device
10 ; (fill-in)

10 ; (fill-in)

mov al,IOBYTE

All Information Presented Here is Proprietary to Digital Research

140



CP/M-86 System Guide Appendix F CHIOS Listing

25E3 C3

25E4 880EA726
25E8 C3

25E9 8A07
25EB 84CO
25ED 7421
25EF 8ACS
25F1 E8B5FF
25F4 43
25F5 EBF2

ret

SETIOBF:

pmsq:

mov IOBYTE,cl
ret

mov al,[BX]
test al,al
jz return
mov CL,AL
call CONOUT
inc BX
jmps pmsg

;set iobyte
;iobyte not imolemented

;get next char from message

;if zero return

;print it

;next character and loop

.*********************************************

. * *
;* Disk Input/Output Routines *
. * */
.*********************************************

0002
25F7 880EA826
25FB BBOOOO
25FE 80F902
2601 730D
2603 B500
2605 8BD9
2607 B104
2609 D3E3
260B B9F126
260E 03D9
2610 C3

2611 C706A9260000
2617
2621 C3

2622 890EA926
2626 C3

2627 890EAB26
262B C3

262C 8BD9
262E 03DA
2630 8A1F
2632 C3

HOME:

SETTRK!

;select disk given by register OL
;number of disks (up to 16)

;save disk number
;ready for error return
;n beyond max disks?
;return if so
jdouble(n)
;bx = n
;ready for *16
;n = n * 16
»base
;dpbase + n * 16
;bx = .dph

;move selected disk to home position (Track
mov trk,0 ;set disk i/o to track zero
rs 10 ;(fill-in)
ret

;set track address given by OX
mov trk,CX
ret

SELDSK:
ndisks

return:

equ
mov
mov
cmp
inb
mov
mov
mov
shl
mov
add
ret

;selei
2 ;nui

disk ,cl.
bx,0000h
cl , ndisks
return
ch,0
bx,cx
cl,4
bx,cl
ex, of f set
bx,cx

SETSEC: ;set sector number given by ex
mov sect,CX
ret

SECTRAN: ;trans\ate sector CX using table at [OX]
mov bx,cx
add bx,dx ;add sector to tran table a
mov bl,[bx] ;get logical sector
ret

SETDMA: ;set DMA offset given by CX

All Information Presented Here is Proprietary to Digital Research

141



CP/M-86 System Guide Appendix F CBIOS Listinq

2633 890EAD26
2637 C3

2638 890EAF26
263C C3

263D BBE826
2640 C3

mov dma_adr,fX
ret

SETDMAB: ;set DMA segment qiven bv CX
mov dma_seg,CX
ret

GETSEGT: ;return address of physical memory table
mov bx,offset seq_table
ret

2641
2673 C3

2674
26A6 C3

All disk I/O parameters are setup: *
DISK is disk number (SELDSK) *
TRK is track number (SETTRK) *
SECT is sector number (SETqsr) *
DMA_AHR is the DMA offset (SETDMA) *
DMA_SEG is the DMA seqment (SETDMAB)*

READ reads the selected sector to the DMA*
address, and WRITE writes the data ^rom *
the DMA address to the selected sector *
(return 00 if successful, 01 if perm err)*

READ:

WRITE:

rs
ret

rs
ret

50

50 ; (fill-in)

.*********************************************

. * *
r

-,* Data Areas *
. * *

26A7

26A7 00
26A8 00
26A9 0000
26AB 0000
26AD 0000
26AF 0000

data offset equ offset $

IOBYTE
disk
trk
sect
dma_adr
dma_seq

dseq
orq
db
db
dw
dw
dw
dw

IF

data offset Contiguous with co
0
0 ;disk number
0 ; track number
0 ; sector number
0 ;DMA offset from OS
0 ;DMA Base Seqment

loader_bios

signon db cr ,cr

All Information Presented Here is Proprietary to Digital Research

142



CP/M-86 System Guide Appendix P CBIOS Listing

l l
db 'CP/M-86 Version 1. 0' ,cr ,!f,0

ENDIF ;loader bios

IF not loader bios

26B1 ODOAODOA signon db
26B5 53797374656D db

2047656E6572
617465642030
302F30302F30
30

26CE ODOAOO db

cr,T f,cr ,1 f
'System Generated 00/00/00'

cr,lf ,0

ENDIF ;not loader bios

26D1 ODOA int_trp db
26D3 496E74657272 db

757074205472
61702048616C
74

26E6 ODOA db

26E8 02
26E9 C602
26EB 3A05
26ED 0020
26EP 0020

= 26F1
= 26F1 20270000
= 26F5 00000000
= 26F9 3A271127
=26FD D927BA27
=2701 20270000
=2705 00000000
=2709 3A271127
=2700 0828E927

= 2711
=2711 1AOO
=2713 03
=2714 07
=2715 00
=2716 F200
=2718 3FOO
=271A CO
=271B 00

cr,!f
'Interrupt Trap Halt'

cr,lf

; System Memory Segment Table

segtable db 2 ;2 segments
dw tpa_seg ;lst seg starts after BIOS
dw tpa_len ;and extends to 08000
dw 2000h ;second is 20000 -
dw 2000h ;3FFFP (128k)

include singles.lib ;read in disk definitio
; DISKS 2
dpbase equ S ;Base of Disk Param
dpeO dw xitO,OOOOh translate Table

dw 0000h,0000h ;Scratch Area
dw dirbuf,dpbO ;Dir Buff, Parm Bio
dw csvO,alvO ;Theck, Al1oc Vecto

dpel dw xltl,0000h ,-Transiate Table
dw 0000h,0000h ;Scratch Area
dw dirbuf,dpbl ;Dir Buff, Parm Bio
dw csvl,alvl ;Check, Alloc Vecto

; DISKDEF 0,1,26,6,1024,243,64,64,2
dpbO equ offset S ;Disk Parameter Bio

dw 26 jSectors Per Track
db 3 ;Block Shift
db 7 ;Block Mask
db 0 ;Extnt Mask
dw 242 ;Disk Size - 1
dw 63 ;Directory Max
db 192 ;AllocO
db 0 ;Allocl

All Information Presented Here is Proprietary to Digital Research

143



CP/M-86 System Guide Appendix F CHIOS Listing

= 271C 1000
=271E 0200
= 2720
=2720 01070D13
=2724 19050B11
=2728 1703090F
=272C 1502080E
=2730 141A060C
=2734 1218040A
=2738 1016
= 001F
= 0010

= 2711
= 001F
= 0010
= 2720

= 273A
= 273A
= 27BA
= 2709
= 27E9
= 2808
= 2818
= OODE
=2818 00

xltO

alsO
cssO

dobl
alsl
cssl
xltl

begdat
dirbuf
alvO
csvO
alvl
csvl
enddat
datsiz

dw
dw
equ
db
db
db
db
db
db
db
equ
equ

equ
equ
equ
equ

16
2
offset $
1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22
31
16
niSKDEP 1,0
dobO
alsO
cssO
xltO
ENDEF

;Check Size
;0ffset
;Transiate Table

;A]location Vector
;rheck Vector Size

Equivalent Paramet
;Same Allocation Ve
;Same Checksum Vect
;Same ^ransuate ^ab

TIninit ialized Scratch Memory Follows:

equ offset $
rs 128
rs alsO
rs cssO
rs alsl
rs cssl
equ offset S
equ offset S-begdat
db 0

;Start of Scratch A
;Oirectorv Buffer
;A1loc Vector
;Check Vector
;Al]oc Vector
;0heck Vector
;End of Scratch Are
;Size of Scratch Ar
;Marks End of Modul

2819
2859

2859
02C6
053A

2859 00

loc_stk rw 32 ;local stack for initialization
stkbase equ offset $

lastoff equ offset S
tpa_seg equ (lastoff+0400h+15) / 16
tpa_len equ 0800h - tpa_seg

db 0 ;fill last address for GEMCMO

0000

0000
0002

0004

0380
0382

Dummy Data Section

dseg 0 ;absolute low memory
org 0 ; (interrupt vectors)

intO_offset rw 1
intO_segment rw 1
; pad to system call vector

rw 2*(bdos_int-l)

bdos_offset rw 1
bdos_segment rw 1

END

All Information Presented Here is Proprietary to Digital Research

144



Index

allocate absolute memory, 52
allocate memory, 52

B

base oaqe, 1
BIOS, 121
bootstrao, 4
bootstrao ROM, 81

CBIOS, 56, 137
close file, 34
PMO, 1, 15
cold start ""oader, 1, 56, 81
compact memory model, 11, 21
compute file size, 45
CONIN, 61
CONOUT, 61
console inout, 25
console output, 25
console status, 30
CONST, 60
convertinq 8080 programs

to CP/M-86, 3, 17, 23
cross develooment tools, 2

data block, 72, 74
delete file, 36
direct BIOS call, 47
direct console I/O, 27
directory entries, 71
disk definition tables, 4, 67
disk parameter block, 69
disk parameter header, 62,

67, 75
DMA buffer, 14, 39, 60, 63

far call, 11, 14
file control block, 30
file structure, 1
free all memory, 53

GENCMD, 2, 3, 15, 17
GF.NDEF, 2
qet address of disk parameter

block, 41
qet allocation vector

address, 39
qet DMA base, 48
qet I/O bvte, 27
qet maximum memory, 51
qet or set user code, 41
qet read /only vector, 40

65

20

GETSEGB, 65
qrouo, 2

header record
HOME, 61

, 4, 60
Inte1 utilities
TOBYTE, 5R

17

L-module format, 19
LDCOPY, 2
LIST, 61
1 i st output, 26
LISTST, 63
LMCMD, 19
loqical to nhysical sector

translation, 64

make file, 37
memory, 14
memory reqion table, 65
memory reqions, 1

offset, 2
open file, 33

145



Index

print string, 28
program load, 53
PUNCH, 61
punch output, 26

translation vectors, 69

utility orogram operation, 2

random access, 95
READ, 63
read buffer, 29
read random, 42
read sequential, 36
READER, 61
reader inout, 26
release all memory, 53
release memory, 52
rename, 38
reserved software interrupt,

1, 23
reset disk, 33
reset drive, 46
return current disk, 38
return login vector, 38
return version number, 30

WBOOT, 60
WRITE, 63
write protect disk, 39
write random, 44
write random with zero

fill, 47

8080 memory model, 3, 10,
14, 21

search for first, 35
search for next, 35
sector blocking and

deblocking, 87
SEC^RAN, 64
segment, 2
segment group memory

requirements, 17
segment register change, 11
segment register

initialization, 8
SELDSK, 62
select disk, 33
set DMA address, 39
set DMA base, 48
set file attributes, 41
set I/O byte, 28
set random record, 46
SETDMA, 63
SETDMAB, 64
SETIOB, 65
SETSEC, 62
SETTRK, 62
small memory model, 10, 21
system reset, 4, 7, 14, 25

49, 60, 74

146


