SIEMENS

Betriebssystem .
® Systembeschreibung
CP/M-86 (System Guide)

COPYRIGHT

Copyright © 1981 by Digital Research. Al) rights
reserved. No vart of this publication mav he
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer languade, in any form or by any means,
electronic, mechanical, magnetic, ootical, ¢hemical,
manual or otherwise, without the »nrior written
permission of Digital Research, Poast Dffice Rox 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature, Thus,
the reader 1is granted permission to include the
example programs, either in whole or in part, in his
Oown Drograms.

NISCLAIMER

Digital Research makes no revoresentations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any wparticular
purpose. Further, nigital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notifvy any verscon
of such revision or changes.

TRADEMARKS

CP/M, CP/M-86, and CP/NET are registered trademarks
of Digital Research. ASM-86, CP/M-80, DDT-86, LINK-
80, MP/M, and TEX-80 are trademarks of Digital
Research.

The "CP/M-86 System Guide®” was prepared using the
Digital ®Research TEX-80T™ Text Pormatter and printed
in the United States of america by Commercial Press/
Monterey.

hhkhh kbbb bbbk nb bbbk hdhh

* Second Printing: June 1981 *
LR S RS2 RIS EEE SRR RS AR ER SRS

Foreword

The CP/M-86 System Guide presents the svstem programming
aspects of CP/M-B6® , a single-user operating system for the Intel
8086 and 8088 16-bit microprocessors. The discussion assumes the
reader is familiar with ©P/M the Digital Research B-bit owerating
system, To clarifv svecific differences with CP/M-86, this document
refers to the 8-bit version of CP/M as rp/M-80TM, Elements common
to both systems are simply called CpP/M features.

CPM-80 and CP/M-86 are equivalent at the user interface level
and thus the Digital Research documents:

® An Introduction to CP/M Peatures and Facilities
® FED: A Context Rditor for the CP/M Disk System
® CP/M 2 User“s Guide

are shipped with the CP/M-86 package. Also included 15 the CP/M-86
Programmer“s Guide, which describes ASM-86™ and pnr-86™, nigital
Research”™s 8086 assembler and interactive debugger.

This System Guide presents an overview of the CP/M-86&
programming intecface conventions. Tt alsc describes vrocedures for
adaoting CP/M-86 to a custom hardware enviornment, This information
parallels that presented in the CP/M 2 Interface Guide and the CP/M
2 Alteration Guide.

Section 1 gives an overview of CP/M-86 and summarizes its
differences with CP/M=-80. Section 2 describes the general execution
environment while Section 3 tells how to generate command fidesg.
Sections 4 and 5 respectively define the programming interfaces to
the Basic Disk Operating Svstem and the Basic Tnouk/Output System.
Section 6 discusses alteration of the BIOS to subbort custom disk
configurations, and Section 7 describes the loading operatinn and
the organization of the CP/M-86 svstem file.

it

Table of Contents

CP/M-86 System Overview

1.1 cep/M-86 General Characteristics
1.2 P/M-80 and CP/M-86 Differences

Command Setup and Execution OUnder CP/M-86

1

2

3 The BOBO Memory Model
4 The Small Memory Model ., . . .
5 The Compact Memory Model . . .
6 Base Page Initialization . . .
7 "Transient Program Load and Exit

Command (CMD) File Generation

1 TIntel Hex File Format . . .
2 QOperation of GENCMD
3 Operation of LMCMD . , . .
4 Command (CMD) File Format .

-

.

-

CCP Built-in and Transient Commands
Transient Program Execution Models

+ & b s

R)

Basic Disk Operating System (BDOS) Functions

BDOS Parameters and Function Codes

4,1

4.2 Simple BDOS Calls e s e e e e
4.3 BNOS File Operations .+ + + .+ .«
4.4 BDOS Memory Management and Load

Basic I/0 System (BIOS) Organization

5.1 Organization of the BIOS . . .
5,2 The BIOS Jump Vector
5.3 Simple Peripheral Devices . .
5.4 BIOS Subroutine Entry Points .

BIOS Disk Definition Tables
Disk Parameter Table Format . .

1
2 Table Generation Using GENDEF .
3 GENDEF OUtput . + « » o 5 » » »

CP/M-86 Bootstrap and Adaptation Procedures

7.1 The Cold Start Load Operation
7.2 Organization of CPM.3YS . v

» » v

= o+

* o o»

LI)

L

. o+ 0 R

2 a2 s T Y L)

FREE I . 0w

10
11
13
14

15
16
19
20

23
25
30
48

55
56
57
60

67
72
77

a
f4

H N 2 N0 @ >

Appendixes

Blocking and Deblocking Algorithms
Random Access Sample Program . . .
Listing of the Boot Rom
LDBIOS Listing . + . = + « « + o .
BIOS Listing . . + ¢ « &« & ¢ o« « &

CBIOS Listing + + « v ¢ o ¢ & + &

vi

87
935
103
113
121

137

Section 1)
CP/M-86 System Overview

1.1 CP/M-88& General Characteristics

CP/M-86 contains all facilities of CP/M-80 with additional
features to account For increased processor address space of up to a
megabyte (1,048,576} of main memory. Further, CP/M-86 maintains
file compatibility with all previous versions of CP/M, The file
structure of version 2 of CP/M is used, allowing as many as sixteen
drives with up to gight megabvtes on each Arive. Thus, CP/M-B0 and

CP/M-86 svstems may exchange files without modifying the file
format .,

CP/M-B86 resides in the file CPM.S5YS, which is loaded into
memory by a cold start loader during system initialization. The
cold start loader resides on the first two tracks of the system
disk, CPM.SYS contains three program modules: the Console Command
Processor (CCP), the Basic Disk Operating System (BDOS), and the
user-confiqurable Basic I/0 System (BIOS). The CCP and BDOS
portions occupy approximately LO0K bytes, while the size of the BIQS
varies with the implementation. The operating svstem executes in
any portion of memorv above the reserved interrupt locations, while
the remainder of the address space is partitioned into as many as
eight non-contiguous regions, as defined in a BIOS table. Unlike
CP/M-80, the CCP area cannot be used as a data area subsegquent to
transient program load; all CP/M-86 modules remain in memory at all
times, and are not relovaded at a warm start.

Similar to CP/M-B0, CP/M-B6 loads and executes memcry image
files from disk. Memory image files are preceded by a "header
record,” defined in this document, which provides information
required for proper program loading and execution. Memory image
files under CP/M-B6 are identified by a "CMD® file tvpe,

Unlike CP/M-80, CP/M-86 does not use absolute locations for
system entry or default variables. The BDOS entry takes place
through a reserved software interrupt, while aentry to the BIDS is
provided by a new BDOS call. Two variables maintained in 1ow memory
under CP/M-B0, the default disk number and I/O Byte, are placed in
the CCP and BIOS, respectively. bDependence upon absolute addresses
is minimized in CP/M-86 by maintaining initial "base page® values,
such as the default FCB and default command buffer, in the transient
program data area.

Utility programs such as ED, PIP, STAT and SUBMIT operate in
the same manner under CP/M-86 and CP/M-80, In its operation, NDT-B&
resembles DDT supplied with CP/M=-80, It allows interactive
debugging of 8086 and 8088 machine code, Simitarly, ASM-86 allows
assembly language programming and development for the 8086 and B088
using Intel-like mnemonics.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 1.1 cCp/M-86 General Characteristics

The GENCMD {(Generate CMD) utility replaces the LOAD program of
CP/M-B0, and converts the hex files produced by ASM-86 or Intel
utilities into memory image format suitable for execution under
CP/M-86. Further, the LDCOPY (Loader Copy) program replaces SYSGEN,
and is used to copy the cold start loader from a system disk for
replication. In addition, a variation of GENCMD, called TMCMD,
converts output from the Intel LOC86 utility into CMD format.
Finally, GENDEF (Generate DISKDEF} is orovided as an aid in
producing custom disk parameter tables. ASM-86, GENCMD, LMCMD, and
GENDEF are also supplied in "COM" file format for cross-development
under CP/M-80,

Several terms used throughout this manual are defined in Table
1-1 below:

Table 1-1. CP/M-86 Terms
Term Meaning
Nibble 4-bit half-byte
Byte 8-bit value
Word l6=bit value

Nouble Word
Paragraph

Paragravh Boundary

Segment

Segment Register

Offset

Group

Address

32-bit value
16 contiguous bytes

An address divisible evenly
by 16 {low order nibble 0)

o to 64K contiguous bytes

One of 8, DS, ES, or SS
16-bit displacement from a

segment register

A segment-register-relative
relocatable program unit

The effective memory address
derived from the composition
of a segment register value

with an offset value

A group consists of segments that are loaded into memory as a single
unit. Since a group may consist of more than 64K bytes, it is the
responsibility of the application program to manage segment
registers when code or data beyond the first 64K seqment is
accessed,

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 System Guide 1.1 €P/M-86 General Characteristics

CP/M-86 supoorts eight program groups: the code, data, stack
and extra groups as well as four auxiliarv groups, When a code,
data, stack or extra group is loaded, CP/M-86 sets the respective
segment register (CS, DS, S5 or ES5) to the base of the group. CP/M-
86 can also toad four auxiliary groups. A transient program manages
the location of the auxiliary qroups using values stored by CP/M-86
in the user”s base page.

1.2 CP/M-80 and CP/M-86 Differences

The structure of CP/M-86 is as close to CP/M-80 as possible in
order to provide a familiar programming environment which allows
application programs to be transported to the B086 and 8088
processors with minimum effort. This section points out the
specific differences between CP/M-80 and CP/M=-86 in order to reduce
your time in scanning this manual if you are alreadv familiar with
CP/M-80. The terms and concepts presented in this section are
explained in detail throughout this manual, so you will need to
refer to the Table of Contents to find relevant sections which
provide specific definitions and information.

Due to the nature of the B8086 processor, the fundamental
difference between CP/M-80 and CP/M-86 is found in the management of
the wvarious rtelocatable dgroups. Although CP/M-80 references
absolute memory locations by necessity, CP/M-86 takes advantaqe of
the static relocation inherent in the B086 wrocessor. The operating
system itself is usuallv loaded directly above the interrupt
tocations, at location 0400H, and relocatable transient programs
load in the best fit memory region. However, you can load CP/M-8%6
into any portion of memory without changing the ooerating system
{thus, there is no MOVCPM utility with CP/M=86), and transient
programs will load and run in any non-reserved reqion.

Three general memorv models are presented below, but if you are
converting 80B0 programs to CP/M-86, you can use either the 8080
Model or Small Model and leave the Compact Model for later when your
addressing needs increase. You“ll use GENCMD, described in Section
3.2, to produce an executable program file from a hex file. GENCMD
parameters allow you to specify which memory model your program
requires.

CP/M-86 itself is constructed as an 8080 Mode), This means
that all the segment registers are placed at the base of CP/M-86,
amd your customized BIOS is identical, in most respects, to that of
CP/M-B80 (with changes in instruction mnemonics, of course}. 1In
fact, the only additions are found in the SETDMAB, GETSEGB, SETIOR,
and GETIOB entry points in the BIOS. Your warm start subroutine is
simpler since you are not required to reload the CCP and BDOS under
CP/M-86, One other point: if you implement the IOBYTE facility,
you”’ll have to define the variable in your BIOS. PTaking these
changes into account, you need only perform a simple translation of

your CP/M-8C0 BIOS into 8086 code in order to implement vour 8086
BIOS.

All Information Pregented Here is Proprietary to DRigita) Research

3

CP/M-86 System Guide 1.2 Cp/M-80 and CP/M-B86 Differences

If you“ve implemented CP/M-80 Version 2, you already have disk
definition tables which will operate properly with CP/M-86, You may
wish to attach different disk drives, or experiment with sector skew
factors to increase performance. If so, vou can use the new GENDEF
utility which performs the same function as the DISKDEF macro used
by MAC under CP/M-80. You“ll find, however, that GENDEF provides
vyou with more information and checks error conditions better than
the DISKDEF macro.

Although generating a CP/M-86 system is generallv easier than
generating a CP/M-80 system, complications arise if you are using
single-density floppy disks. CP/M-86 is too large to fit in the
two-track system area of a single-density disk, so the bootstrap
operation must perform two steps to load CP/M-86: first the
bootstrap wnust load the cold start loader, then the cold start
loader 1loads CP/M-86 from a system file. The cold start loader
includes a LDBIOS which is identical to your CP/M-86 BIOS with the
exception of the INIT entry point. You can simplify the LDBIOS if
vou wish because the loader need not write to the disk. If you have
a double-density disk or reserve enough tracks on a single-density
disk, you can load CP/M-86 without a two-step boot.

To make a BDOS system call, use the reserved software interrupt
$#244. The jump to the BDOS at location 0005 found in CP/M-80 is not
present in CP/M-86. However, the address field at offset 0006 is
present so that programs which "size" available memory using this
word value will operate without change. CP/M-80 BDOS functions use
certain 8080 registers for entry parameters and returned values.
CP/M-86 BDOS functions use a table of corresponding B086 registers.
For example, the 8086 registers CH and CL correspond to the 8080
registers B and C. Look through the list of BDOS function numbers
in Table 4-2. and you”ll find that functions 0, 27, and 31 have
changed slightly. Several new functions have been added, but they
do not affect existing programs.

One major philosophical difference is that in CP/M-80, all
addresses sent to the BPOS are simply lé6-bit values in the range
0000H to OFFFFR. In CP/M-86, however, the addresses are really just
16-bit offsets from the DS (Data Segment)} register which is set to
the base of your data area. If vou translate an existing CP/M-B0
program to the CP/M-86 environment, your data segment will be less
than 64K bytes. 1In this case, the DS register need not be changed
following initial load, and thus all CP/M-B0 addresses become simple
D5~-relative offsets in CP/M-B6.

Under CP/M-80, programs terminate in one of three ways: by
returning directly to the €CP, by calling BDOS functieon 0, or by
transferring control to absolute location 0000H. CP/M-86, however,
supports only the first two methods of program termination. This
has the side effect of not providing the automatic disk system reset

following the jump to 0000H which, instead, is accomplished by
entering a CONTROL-C at the CCP level,

All Information Presented Here is Proprietary to Digital Research

4

CP/M-86& System Guide 1.2 CP/M-30 and CP/M-86 nifferences

You“ll find many new facilities in CP/M-86 that will simplify
your programming and expand your application programming capability.
But, we ve designed CP/M-B86 to make it easy to get started: in
short, if you are converting from CP/M-80 to CP/M=-86, there will be
no major changes bevond the translation to 8086 machine code.
Further, programs you desian for CP/M-86 are upward compatible with
MP/M-B6, our multitasking operating system, as well as CP/NET-86
which provides a distributed operating system in a network
environment.

All Information Presented Here is Proprietary to Digital Research

5

Section 2
Command Setup and Execution Under CP/M-86

This section discusses the operation of the Console Command

Procegsor (CCP), the format of transient programs, CP/M-86 memory
models, and memory image formats.

2.1 CCP Built-in and Transient Commands

The operation of the CP/M-86 CCP is similar to that of CP/M-80.
Upon initial cold start, the CP/M sign-on message is printed, drive
A is automatically logged in, and the standard prompt is issued at
the console, CP/M-86 then waits for input command lines from the
console, which may include one of the built-in commands

DIR ERA REN TYPE USER

{note that SAVE is not supported under CP/M-86 since the equivalent
function is performed by DDT-86).

Alternatively, the command line may begin with the name of a
transient program with the assumed file type "CMD" denoting a
*command file.” The CMD file type differentiates transient command
files used under CP/M-86 from COM files which operate under CP/M-80,

The CCP allows multiple programs to reside in memory, providing
facilities for background tasks, A transient program such as a
debugger may load additional programs for execution under its own
control, Thus, for example, a background printer spooler coutd
first be loaded, followed by an execution of DDT-86. DDT-86 may, in
turn, load a test program for a debugging session and transfer
control to the test program between breakpoints. CP/M-86 keeps
account of the order in which proqrams are loaded and, upon
encountering a CONTROL-C, discontinues execution of the most recent
program activated at the CCP level. A CONTROL-C at the DDT-86
conmand level aborts DDT-86 and its test program. A second CONTROL-
C at the CCP level aborts the background printer spooler. A third
CONTROL-C resets the disk system. HNote that program abort due to
CONTROL-C does not reset the disk system, as is the case in CP/M-80,.
A disk reset does not occur unless the CONTROL-C occurs at the CCP
command input level with no programs residing in memory.

When CP/M-86 receives a regquest to load a transient program
from the CCP or another transient program, it checks the program”s
memory requirements. If sufficient memorv is available, CP/M-86
assigns the required amount of memory to the program and loads the
program. Once loaded, the program can request additional memory
from the BDOS for buffer space. When the program is terminated,

CP/M-86 frees both the program memory area and any additional buffer
Epace.

All Information Presented Here is Proprietary to Digital Research

7

CP/M-86 System Guide 2.2 Transient Program Execution Models

2.2 Transient Program Execution Models

The initial values of the segment registers are determined by
one of three "memory models" used by the transient program, and
described in the CMD file header. The three memory models are
summarized in Table 2-1 below.

Table 2-1. CP/M-86 Memory Models

Madel Group Relationships
8080 Model Code and Data Grouops Overlap
Smal) Model Independent Code and Data Groups

Compact Model Three or More Independent Groubps

The 8080 Model supports programs which are directly translated
from CP/M-80 when code and data areas are intermixed. The 8080
mode] consists of one group which containe all the code, data, and
stack areas. Segment registers are initialized to the starting
address of the region containing this group. The segment registers
can, however, be managed by the application program during execution
50 that multiple segments within the code group can be addressed.

The Small Model is similar to that defined by Intel, whece the
proqram consists of an independent code group and a2 data group. The
Small Model is suitable for use by programs taken from CP/M-80 where
code and data is easily separated. Note again that the code and
data groups often consist of, but are not restricted to, single 64K
byte segments.

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in program. Each group mav consist of
one or more segments, but if any qroup exceeds one segment in size,
or if auxiliacy groups are present, then the application program
must manage its own segment registers during execution in order to
address all code and data areas.

The three models differ primarily in the manner in which
segment registers are initialized upon transient program loading.
The operating system program load function determines the memory
model used by a transient program by examining the program group
usage, as described in the following sections.

All Information Presented Here is Proprietary to Digital Research

8

CP/M~-86 .System Guide 2.3 The 8080 Memory Model

2.3 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains
only a code group. In this case, the CS, DS, and ES registers are
initialized to the beginning of the code group, while the 55 and SP
registers remain set to a 96-byte stack area in the CCP. The
Instruction Pointer Register (IP) is set to 100H, similar to CP/M-
80, thus allowing base page values at the beginning of the code
group. Following program load, the B080 Model appears as shown in
Figure 2-1, where low addresses are shown at the top of the diagram:

ccp

58 + Sp; CCP Stack

CS DS ES:
DS+0000H: base
page

CS+0100H: IP = 0100H
¢code

data

code

data

Fiqure 2-1. CP/M-86 8080 Memory Model

The intermixed code and data regions are indistinguishable. The
"base page" values, described below, are identical to CP/M-80,
allowing simple translation from 8080, 8085, or Z80 code into the
8096 and 8088 environment. The following ASM-86 example shows how
to code an BOBO model transient program,

eseq
org 100h
: {code)
endcs equ $
deeq
oryg offset endcs
: (data)
end

All Information Presented Here is Proprietary to Digital Research
9

CP/M=86 System Guide 2.4 The Small Memory Model

2.4 The Small Memory Model

The Small Model is assumed when the transient program contains
both a cede and data group. {In ASM~86, all code is generated
following a CSEG directive, while data is defined following a DSEG
directive with the origin of the data segment independent of the
code segment.) In this model, CS is set to the beginning of the
code group, the DS and BS are set to the start of the data group,

and the S8 and SP registers remain in the CCP“s stack area as shown
in Figure 2-2,

85
CCP

55 + Sp: CCP Stack

CS5: IP = O0DOH

code
DS ES: base
page

DS+0100H:;
data

Fiqure 2-2. CP/M-86 Small Memory Model

The machine code begins at CS+0000H, the "base page® values begin at
DS+0000H, and the data area starts at DS+0100H. The following ASM=-
86 example shows how to code a small model transient vwrogram.

cseq

: (code)
dseq

org 100h
: {data)
end

All Information Presented Here is Proprietary to Digital Research

10

CP/M-86 System Guide 2.5 The Compact Memory Model

2.5 The Compact Memory Model

The Compact Model! is assumed when code and data groups are
present, along with one or more of the remaining stack, extra, or
auxiliary groups. In this case, the CS, DS, and ES registers are
set to the base addresses of their respective areas. Figure 2-3
shows the initial configuration of segment registers in the Compact
Model. The wvalues of the various segment registers can be
programmatically changed during execution by loading from the
initial values placed in base page by the CCP, thus allowing access
to the entire memory space.

If the transient program intends to use the stack group as a
stack area, the 85 and SP registers must be set upon entry. The 55
and SP registers remain in the CCP area, even if a stack group is
defined. Although it may appear that the 5SS and SP registers should
be set to address the stack group, there are two contradictions.
First, the transient program may be using the stack grour as a data
area. In that case, the PFar Call instruction used by the CCP to
transfer control to the transient program could overwrite data in
the stack area. Second, the S5 register would logically be set to
the base of the group, while the SP would be set to the offset of
the end of the group. However, if the stack group exceeds &4K the
address range from the base to the end of the group exceeds a 16-bit
offset value.

The following ASM-86 example shows how to code a compact model
transient program.

cseg

. (code)

dseq

org 100h

) {data)

eseq

: {more data)
sseqg

. {stack area)
end

All Information Presented Here is Proprietary to Digital Research

11

CP/M-B6 System Guide 2.5 The Compact Memory Model

S8
CCp

58 + SP: CCP Stack

"S: IP = 0000R

code
DS base
page
DS+0100H:
data
ES:
data

Figure 2-3. CP/M-86 Compact Memory Model

All Information Presented Here is Proprietary to Digital Research

12

CP/M-86 System Guide 2.6 PBRase Page Initialization

2.6 Base Page Initialization

Similar to CpP/M-80, the CP/M~-86 hase page contains default
values and locations initialized by the CCP and used by the
transient program. The base page occupies the regions from offset
0000H through 00FFH relative to the DS register. The values in the
base page for CP/M~B86 include those of CP/M-80, and appear in the
same relative vositions, as shown in Figure 2-4&.

ns + 0000: LCO LCl Lc2

NS + 0003: BCO BC1 M80

ns + 0006: LDO LDl LD2

DS + 0009: BDO BDL AEX

DS + 000C; LEO LEL LEZ

ns + 000F: BE{ BEl KEX

DS + 0012 L50 L51 LS2

ns + 0015: BSD g5l XXX

DS + 0018: Lx%0 Lx1 Lx2

ns + 0018: BX0 BX1 XXX

DS + G0lE: LX0 L%1l LX2

DS + 0021: BX0 BX1 XXX

DS + 0024: LX0 Lx1 LX2

DS + 0027: BX0 BX1 XK

NS + 002A; LX0 Lx1 X2

DS + 0020 BXQ BX1 XXX

DS + 0030: Not
v s Currently
DS + 005B: Used
DS + 005C: PDefault FCB
DS + 0080: Default Buffer

DS + 0100: Begin User Data

Pigure 2-4. CP/M-86 Base Page Valuesa

All Information Presented Here is Proprietary to Digital Research

13

CP/M-86 System Guide 2.6 Base Page Initialization

Bach byte is indexed by 0, 1, and 2, corresponding to the standard
Intel storage convention of low, middle, and high-order {most
significant) byte. "xxx" in Figure 2-4 marks unused bytes., LC is
the last code group location (24-bits, where the 4 high-order bits
equal zero).

In the 8080 Model, the low order bytes of LC (LCD and LCL}
never exceed OFFFVH and the high order byte (LC2) is alwavs zero.
BC is base paragraph address of the code group (l6-bhits). LD and BD
provide the last position and paragraph base of the data group. The
last position is one byte less than the group length. 1Tt should be
noted that bytes LDRO and LDl appear in the same relative positions
of the base page in both CP/M-80 and CP/M-86, thus easing the
program translation task. The M80 byte is equal to 1 when the 8080
Memory Model is in use. LE and RE provide the length and paragraph
base of the ontional extra group, while LS and BS give the optional
stack group length and base. The bytes marked LX and BX correspond
to a set of four ovotional independent groups which mav be required
for programs which execute using the Compact Memorv Model. The
initial values for these descrictors are decrived from the header
record in the memory image file, described in the following section.

2.7 Transient Program Load and Exit

Similar to CP/M-80, the CCP parses up to two filenames
following the command and places the properly formatted FCB's at
locations 005CH and 006CH in the base page relative to the DS
register. Under CP/M-80, the default DMA address is initiatized to
0080H in the base page. Pue to the segmented memory of the BU86 and
8088 processors, the DMA address is divided into two parts: the DMA
segment address and the DMA offset. Therefore, under MP/M-86, the
default PMA base is initialized to the value of DS, and the default
DMA offset is initialized to 0080H. Thus, CP/M-80 and CP/M-86
operate in the same way: both assume the default NMA buffer
occupies the second half of the base page.

The CCP transfers control to the transient program through an
8086 "Far Catl." The trangsient program may choose to use the 96-byte
CCP stack and coptionally return directlv to the CCP upon program
termination by executing a “"Far Return.™ Program termination also
occurs when BDOS function zero is executed., Note that function zero
can terminate & program without removing the nrogram from memery or
changing the memory allocation state (see Section 4.2). The
operator may terminateé program execution by typing a single CONTROL-
C during line edited input which has the same effect as the program
executing BDOS function zero. (Inlike the operation of CP/M-BG, no
disk reset occurs and the CCP and BDOS modules are not reloaded from
disk upon program termination.

811 Information Presented Here is Proprietary to Digital Research

14

Section 3
Command (CMD) File Generation

As mentioned previously, two utility programs are provided with
CP/M-86, called GENCMD and LMCMD, which are used to produce CMD
memory image files suitable for execution under CP/M-86. GENCMD
accepts Intel B0BEé "hex"™ format files as input, while LMCMD reads
Inte)l L-module files output from the standard Tntel LOC86 Object
Code Locator utility. GENCMD is used to process output from the
Digital Research ASM-86 aasembler and Intel”s OHBS utility, while
LMCMD is used when Intel compatible developmental software is
available for generation of programs targeted for CP/™-86 operation.

3.1 1Intel 8086 Hex Pile Pormat

GENCMD input is in Intel "hex" format produced by both the
Digital Research ASM-88 assembler and the standard Intel OHS36
utility program (see Intel document #9800639-03 entitled "MCS-86
Software Development Utitities Operating Instructions for ISIS-II
Users™). The CMD file produced by GENCMD contains a header record
which defines the memory model and memory size requirements for
loading and executing the CMD file,

An Intel "hex" file consists of the traditional sequence of
ASCII records in the following format:

.
—
—
'
]
i
i
Led
o
o
=7
=N
.
.
o
}
O

where the beginning of the record is marked by an ASCIT colon, and
each subsequent digit position contains an ASCII hexadecimal digit
in the range 0-9 or A-F. The fields are defined in Table 3-1,

All Information Presented Here is Proprietarv to Digital Research

15

CP/M-86 System Guide . 3.1 1Intel Hex File Format

Table 3-1. 1Intel Hex Field Definitions

Field Contents
11 Record Length 00-FF (0-255 in decimal)
aaaa Load Address
tt Record Type:
00 data record, loaded starting at offset

aaaa from current base paragraph

01 end of file, cc = FF

02 extended address, aaaa is paragraph
base for subsequent data records

03 start address is aaaa (ignored, IP set
according to memory model in use)

The following are ocutput from ASM-86 onlys

81 same as 00, dAata belongs to code segment

82 same as 00, data belongs to data segment

83 same as 00, data belongs to stack segment

B4 same as 00, data belongs to extra segment

85 paragraph address for absoclute code segment
86 paragraph address for absolute data segment
87 paragraph address for absolute stack segment
88 paragraph address for absolute extra seqment

a Data Byte

cc Check Sum {00 - Sum of Previous Digits)

411 characters preceding the colon for each record are ignored.
(Additional hex file format information iz included in the ASM-86
User”’s Guide, and in Intel”s document #9800821A entitled "MCS-86
Absolute Object File Formats."}

3.2 Operation of GENCMD
The GENCMD utility is invoked at the CCP level by typing
GENCMD filename parameter-list

where the filename corresponds to the hex input €ile with an assumed
{and unspecified) file type of HB86. GENCMD accepts optional
parameters to specifically identify the 8080 Memory Model and to
describe memory requirements of each segment group. The GENCMD
parameters are listed following the filename, as shown in the
command line above where the parameter-list consists of a sequence
of keywords and values separated by commas or blanks. The keywords
are;

8080 CODE DATA EXTRA STACK X1 X2 X3 x4

All Information Presented Here is Proprietary to Digital Research

16

CP/M-B86 System Guide 3.2 Operation of GENCMD

The 8080 keyword forces a single code group so that the BDOS load
function sets up the 8080 Memory Model for execution, thus allowing

intermixed code and data within a single segment. The form of this
command is

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option and
define scecific memory requirements for each segment group,
corresponding one-to-one with the segment grouns defined in the
previous section. 1In each case, the values corresponding to each
group are enclosed in square brackets and separated by commas. Rach
value is a hexadecimal number representing a paragraph address or
segment length in varagraph units denoted by hhhh, prefixed by a
single letter which defines the meaning of each value:

Ahhhh Load the group at absolute location hhhh

Bhhhh The group starts at hhhh in the hex file

Mhhbh The group requires a minimum of hhhh * 16 bvtes
Xhhhh The group can address a maximum of hhhh * 16 bvtes

Generally, the CMD file header values are derived directly from the
hex file and the parameters shown above need not be included. The
following situations, however, require the use of GENCMD parameters,

® The 8080 keyword is included whenever ASM-B6 is used in
the conversion of 8080 programs to the 8086/80388
environment when code and data are intecmixed within a
single 64K segment, regardiess of the use of CSEG and
DSEG directives in the source program.

® An absolute address (A value) must be given for any group
which must be located at an absolute locatinon. HNormally,
this value is not spvecified since CP/M=-86 cannot
generally ensure that the required memory region is
available, in which case the CMD file cannot be loaded.

® The B value is used when GENCMD processes a hex file
produced by Intel”s OHB6, or similar utility program that
contains more than one daroup. The output from OMBS
consists of a sequence of data records with no
information to identify code, data, extra, stack, or
auxiliary groups. 1In this case, the B value marks the
beginning address of the group named by the keyword,
causing GENCMD to load data following this address to the
named droup (see the examples below). Thus, the B value
is normally used to mark the boundary bhetween code and
data segments when no segment information is included in
the hex file. Files produced by ASM-86 do not require

the use of the B value since segment information is
included in the hex file.

All Information Presented Here is Proprietary to Digital Research

17

CP/M-B6 System Guide 3.2 Operation of GENCMD

® The minimum memory value (M value) is included only when
the hex records do not define the minimum memory
regquirements for the named group. Generally, the code
groun size is determined precisely by the data vecords
loaded into the area. That is, the total svace reguired
for the group is defined by the range between the lowest
and highest data byte addresses. The data group,
however, may contain uninitialized storage at the end of
the group and thus no data records are present in the hex
file which define the highest referenced data item, The
highest address in the data group can be defined within
the source nrogram by including a "DB 0" as the last data
item. Alternatively, the M value can be included to
allocate the additional space at the end of the groum.
Similarly, the stack, extra, and auxiliarv group sizes
must be defined using the M wvalue unless the highest
addresses within the groups are implicitly defined by
data records in the hex file.

® The maximum memory size, given by the X value, is
generally used when additional free memory may he needed
for such purposes as I/0 buffers or svmbol tables. If
the data area size is fixed, then the X parvameter need
not be included. 1In this case, the X value is assumed to
be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the
transient program must be aware that a three-byte length
field is produced in the base page for this group where
the high order byte may be non-zero. Programs converted
directly from CP/M-80 or programs that use a 2-byte
nointer to address buffers should restrict this value to
XFFF or less, producing a maximum allocation length of
GFFFOH bytes.

The following GENCMD command line transforms the file X,HS6
inte the file X.CMD with the proper header record:
gencmd x code[add] data(md0,xFff)
In this case, the code group is forced to paragraph address 40H, or

equivalently, byte address 400H. The data group requires a minimum
of 300H bytes, but can use up to OFFFOH bytes, if available.

All Information Presented Here 15 Proprietary to Digital Research

18

CP/M-86 System Guide 3.2 Operation of GENCMD

Assuming a file Y.HB86 exists on drive B containing Intel hex
records with no interspersed segment information, the command

gencmd b:v datal(bk30,m20] extra(b50] stack(md40] x1[md0]

produces the file Y.CMD on drive B by selecting records beginning
at address 0000H for the code segment, with records starting at
300H allocated to the data seqment. The extra segment is Ffilled
from records beginning at 500H, while the stack and auxiliacy
segment #1 are uninitialized areas requiring a minimum of 400H
bytes each. 1In this example, the data area requires a minimum of
200H bytes. Note again, that the B value need not be included if
the Digital Research ASM-B6 assembler is used.

3.3 Operation of LMCMD

The LMCMD utility operatées in exactly the same manner as
GENCMD, with the exception that TLMCMD accents an Intel L-module
file as input. The primary advantage of the L-module format is
that the file contains internally coded information which defines
values which would otherwise be regquired as parameters to GENCMD,
such the beginning address of the aroup”s data segment. Currently,
however, the only lanquage processors which use this format are the
standard Intel development packages, although various independent
vendors witl, most likely, take advantage of this format in the
future,

All Information Presented Here is Proprietary to Pigital Research

19

CP/M-86 System Guide 3.4 Command {CMD) File Pormat

3.4 Command {CMD} File Format

The CMD file produced by GENCMD and LMCMD consists of the
128-byte header record followed immediately by the memory image.
Under normal circumstances, the format of the header record is of
no consequence to a programmer. For completeness, however, the
various fields of this record ace shown in Figure 3~1.

—— 128 Bytes -

GD4L1| GD#Z2{GDA3 |GDH4 |[GDE5-GDAB. . .

Code,
Data,
EXtra,
Stack,
Auxiliacy

Figure 3-1. OMD File Header Format

In Figure 3-1, GD#2 through GD#8 represent "Group Descriptors.”
Each Group Descriptor corresponds to an independently loaded
program unit and has the following fields:

B-bit 16-bit 16-bit 16-bit 16-bit

G-Form | G-Length A~Base G-Min G-Max

where G-Form describes the group format, or has the value zero if
no more descriptors follow. If G-Form is non-zero, then the 8-bit
value is parsed as two fields:

G-Form:
d-bit f-bit

rx X X X rG-Type—l

The G-Type field determines the Group Descriptor type. The valid
Group Descriptors have a G-Type in the range 1 through %, as shown
in Table 3-2 below.

All Information Presented Here is Proprietary to Digital Research

20

CP/M-86 System Guide 3.4 cCommand {(CMD) File FPormat

Table 3-2. Group Descriptors

G-Type Group Type

Code Group
Data Group
Extra Group
Stack Group
Auxiliary Group #1
Auxiliary Group #2
Auxiliary Group #3
Auxiliary Group #4
Shared Code Group

14 Unused, but Reserved
Escape Code for Additional Types

-
o
N O =R i LD

-

All remaining values in the group descriptor acte given in
increments of 16-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address. G-Length gives the number
of paragraphs in the group. Given a G-length of 0080H, for
example, the size of the group is G0800H = 20480 bytes. A-RBase
defines the base paragraph address for a non-relocatable group
while G-Min and G-Max define the minimum and maximum size of the
memory area to allocate to the group. G-Type 9 marks a "pure™ code
group for wuse under MP/M-B6 and future versions of CP/M-Bé6,
Presently a Shared Ccde Group is treated as a non-shared Program
Code Group under CP/M-86.

The memory model described by a header record is implicitly
detecrmined by the Group Descriptors. The 82080 Memory Model is
assumed when only a code droup is present, since no independent
data group is named. The Small Model is implied when both a code
and data group are present, but no additional group descriptors
occur. Otherwise, the Compact Model is assumed when the CMD file
is loaded.

All Information Presented Here is Proprietary to Digital Research

21

Section 4
Basic Disk Operating System Functions

. This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS functions. The
BDOS calls correspond closely to CP/M-B0 Version 2 in order to
simplify translation of existing CP/M-80 programs for operation
under CP/M~B6. BDOS entry and exit conditions are described first,
followed by a presentation of the individual BDOS function calls.

4.1 BDOS Parameters and Function Codes

Entry to the BDOS is accomplished through the 8086 software
interrupt #224, which is reserved by Intel Corporation for use by
CP/M-86 and MP/M-86. The function code is passed in register CL
with byte parameters in DL and word parameters in DX. Single byte
values are returned in AL, word values in both AX and BY, and double
word values in ES and BX. All segment ctegisters, except ES, are
saved upon entry and restored upon exit from the BDOS (corresponding
to PL/M-86 conventions). Table 4-1 summarizes input and output
parameter passing:

Table 4-1., BDOS Parameter Summary

BDOS Entry Registers BDOS Return Registers
CL PFunction Code Byte value returned in AL
DL Byte Parameter Word value returned in both AX and BX
DX Word Parameter Double-word value returned with
DS Data Segment offset in BX and
segment in ES

Note that the CP/M~B80 BDOS reduires an "information address® as
input to various functions. This address usually provides buffer or
File Control Block information used in the system call. In CP/M-BE,
however, the information address is derived from the current DS
register combined with the offset given in the DX register. That
is, the DX register in CP/M-86 performs the same function as the DE
pair in CP/M-80, with the assumption that DS is properly set. This
poses no particular problem for programs which use only a single
data segment (as is the case for programs converted from CP/M-80},
but when the data group exceeds a single segment, you must ensure
that the DS register is set to the segment containing the data area
related to the call. It should alsc be noted that zero values are
returned for function calls which are out-of-range.

All Information Presented Here is Proprietary to Digital Research

23

CP/M-86 System Guide

4.1 BNOS Parameters and Function Codes

A list of CP/M-86 calls is given in Table 4-2 with an asterisk
foltowing functions which differ from or are added to the set of

CP/M-80 Version 2 functions.

Table 4-2. CP/M-86 BDOS Functions

F# Resul t F# Result

0* System Reset 24 Return Login Vector

1 Console Input 25 Return Current Disk

2 Console Outnut 26 Set DMA Address

3 Reader Input 27*%* Get AAddr{Alloc)

4 Punch OQutput 28 Write Protect Nisk

5 List Outout 29 Get Addr (R/0 Vector)

&* pDirect Console 1/0 30 Set File Attributes

7 Get I1/0 Bvte 31* Get Addr (Disk Parms}

8 Set I/0 Byte 32 Set/Get User Code

9 Print String 33 Read Random

10 Read Console Buffer 34 Write Random

11 Get Console Status 35 Compute File Size

12 Return Version Number 36 Set Random Record

13 Reset Disk System 37* Reset Arive

14 Select Disk 40 Write Random with Zero Fill
15 Open File S0* Direct BIOS Call

16 Close File 51* Set DMA Segment Base

17 Search for First 52* Get NDMA Segment Base

18 Search for Next 53* Get Max Memory Available

19 NDelete File 54* Get Max Mem at Abs Location
20 Read Sequential 55* Get Memorv Region

21 Write Sequential 56* Get Absolute Memorv Region
22 Make File 57* Free memory region

23 Rename File 58* Free all memory

9% Program load
The individual BPOS functions acre described below in three

sections which cover the simple functions,

file operations, and

extended operations for memorv management and program loading.

All Information Presented Here is Proprietary to Digital Research

24

CP/M-86 System Guide 4.2 Simple BDOS alls

4.2 Simple BDOS Calls

The first set of BDOS functions cover the range 0 through 12,
and perform simple functions such as system reset and single
character 1/0.

Entry Return
CL: 00" FUNCTION O
DL: Abort 5YSTEM RESET

Code

The system reset function returns control to the CP/M operating
system at the CCP command level. The abort code in DL has two
possible values: if DL = 00H then the cuctrently active program is
terminated and control is returned to the CCP. If DL is a 0lH, the
program remains in memory and the memory allocation state remains
unchanged.

Entry Return

AL; ASCII Character

CL: 01M FUNCTION 1

CONSOLE INPUT

The console input function reads the next character from the
logical console device (CONSOLE}) to register AL. Graphic
characters, along with carriage return, line feed, and backspace
{CONTROL-H) are echoed to the console, Tab characters (CONTROL-1)
are expanded in columns of eight characters. The BDOS does not
return to the calling program until a character has been tywped, thus
suspending execution if a character is not ready.

Entry Return
CL: 02H FUNCTION 2
DL: ASCII CONSOLE OQUTPUT
Character

The ASCITI character from DI, is sent to the logical console.

Tab characters expand in columns of eight characters.

In addition,

a check is made for start/stop scroll (CONTROL-S).

All Information Presented Here is Proprietary to Digital Research

25

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry Return

CL: 03B PUNCTION 3 AL: ASCII Character

READER INPUT

The Reader Input function reads the next character from the
logical reader (READER) into register AL. Control does not return
until the character has been read.

Entry Return
CL: 04H FUNCTION 4
DL: ASCII PUNCH OUTPUT
Character

The Punch Output function sends the character from register DL
to the lcogical punch device (PUNCH).

Entry Return
CL: 05H FUNCTION 5
DL: ASCII LIST OUTPUT
Character

The List Output function sends the ASCII charackter in register
DL to the logical list device (LIST}.

All Information Presented Here is Proprietary to Digital Research
26

CP/M-B6 System Guide 4.2 Simple BDOS Calls

Entry - \ Return N
CL: 06H - FUNCTION & AL: char or status
DL: OPPH (input)|| DIRECT CONSOLE I/0 {no value)
og;n {statusg)
or

char (output)

Direct console I/0 is supported under CP/M-86 for those
specialized applications where unadorned console input and output is
required. Use of this function should, in general, be avoided since
it bypasses all of CP/M-86"s normal control character functions
{e.g., CONTROL-S and CONTROL-P)}. Programs which perform direct 1/0
through the BI10S under previous releases of CP/M-80, however, should
be changed to use direct I/0 under the BNOS so that they can be
fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register DL either contains (1) a
hexadecimal FF, denoting a CONSOLE input cequest, or (2} a
hexadecimal FE, denoting a CONSOLE status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then function 6 directly
calls the BIOS console input primitive. The next console input
character is returned in AL. If the input value is FE, then function
6 returns AL = 00 if no character is ready and AL = FF otherwise.
If the input value in DL is not FE or FF, then function 6 assumes
that DL contains a valid ASCII character which is sent to the
console.

Entry Return

CL: 07H FUNCTION 7 AL: I/0 Byte Value

GET 1/0 BYTE

The Get 1/0 Byte function returns the current value of IOBYTE
in register AL. The IOBYTE contains the current assignments for the
logical devices CONSOLE, READER, PUNCH, and LI1ST provided the IOBYTE
facility is implemented in the BIOS.

All Information Presented Here is Proprietary to Digital Research
27

CP/M-B6 System Guide

Entry
CL: 08H
DL: I/0 Byte
Value

FUNCTION 8

SET 1/0 BYTE

4.2 Simple BDOS Calls

Return

: 4

The Set I/0 Byte function changes the system IOBYTE value to

that given in register DL.

This function allows transient program

access to the IOBYTE in order to modify the current assignments for
the logical devices CONSOLE, READER, PUNCH, and LIST.

Entry Return
CL: O9H FUNCTION 9
DX: String PRINT STRING
Offset

The Print String function sends the character string stored in
memory at the location given by DX to the logical console device

(CONSOLE), until a

l|$.|

is encountered

in the string.

Tabs are

expanded as in function 2, and checks are made for start/stop scroll

and printer echo.

Entry

Retuen

CL: OAH

DX: Buffer
Offset

FUNCTION 10

READ CONSOLE BUFFER

Congole Characters

in Buffer

All Information Presented Here is Proprietarv to Digital Research

28

CP/M-86 System Guide 4,2 Simple RBDDS Calls

The Read Buffer function reads a line of edited console inout inte a
buffer addressed by register DX from the logical console device
(CONSOLE} . Conscle inout is terminated when either the input buffer
is filled or when a return (CONTROL-M) or a ltine feed (CONTROL-J)
character is enteved. The input buffer addressed by DX takes the
form:

DE: +0 +1 +2 +3 +4 +¥5 +6 +7 +8 e . +n

mx| ncl clic2|c3]|cd|cS|ce]lc? P 7

where "mx" is the maximum number of characters which the buffer will
hold, and "nc" is the number of characters olaced in the buffer.
The characters entered by the overator follow the "nc" value. The
value "mx" must be set vrior to making a function 10 gall and mav
range in value from 1 to 255, Setting mx to zero is equivalent to
setting mx to one, The value "nc" is returned to the user and may
range from 0 to mx. If nc < mx, then uninitialized positions follow
the last character, denoted by “?7?" in the above figure. Wote that
a terminating return or line feed character i3 not placed in the
buffer and not included in the count "nc”.

A number of editing control functions are suoported during
console input under function 10. These are summarized in Table 4-3.

Table 4-3. Line Bditing Controls

Keystroke Result

rub/del removes and echoes the last character
CONTROL-C reboots when at the beginning of line
CONTROL-E causes ohysical end of line

CONTROL-H backspaces one character position
CONTROL-J (line feed) terminates inout line
CONTROL-M (return} terminates input line
CONTROL-R retvpes the current line after new line
CONTROL-U removes current line after new tine
CONTROL-X backspaces to beainning of current line

Certain functions which return the carriage to the leftmost nosition
(e.qg., CONTROL-X) do so only to the column position where the prompt
ended. This convention makes operator data input and line
correction more legible.

All Information Presented Here is Proprietary to Digital Research
29

CP/M-86 System Guide 4.2 Simple BNOS Calls

Entrv) Return

CL: 0BH FUNCTION 11} AL: Console Status

GET CONSOLE STATUS

The Console Status function checks to see if a character has
been typed at the logical console device (CONSQLE)., If a character
is readv, the value 01lH is returned in register AL. Otherwise a 00H
value is returned,

Entry Return

~L: OCH FUNCTINN 12 BX: Version Number

RETURN VERSION NUMBER

Function 12 provides information which allows version
independent programming. A two-bvte value is returned, with BH = 00
designating the P/M release (BP = 01 for MP/M}, and BL = 00 for all
releases previous to 2.0, ¢CP/M 2,0 returns a hexadecimal 20 in
register BL, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. To provide version number compatibility,
the initial release of CP/M~-86 returns a 2.2.

4.3 BDOS File Operations

Functions 12 through 52 are related to disk file operations
under “P/M-86. In many of these operations, DX provides the D§-
relative offset to a file control block (FCB}. The File Control
Block (FCB) data area consists of a sequence of 33 bytes for
sequential access, or a seguence of 36 bytes in the case that the
file is accessed randomlv. The default file control block normally
located at offset 005CH from the DS reqgister can be used for random
access files, since bytes 007nH, O007EH, and 007FH are available for
this purmose. Here is the FCB format, followed by definitions of
each of its fields:

All Information Presented Here is Proprietary to Digital Research

30

CP/M-86 System Guide 4.3 BDOS File Operations

dr |fY]£2]/ /|f8|tl|t2|t3]|ex|sl|s2|rc|d0|/ /|An]ccirl]rl|z2

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where

dr drive code (0 - 16}
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk seiect drive B,

» "

1l6=> auto disk select drive P,

£fl...£8 contain the file name in ABSCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl”, t2°7, and t31” denote the high
bit of these positions,
tl” = 1 => Read/Only file,
t2° = 1 => 5Y5 file, no DIR list

ax contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file 1/0

sl raeserved for internal system use

22 reserved for internal system uge, set
te zero on call to NPEN, MARKE, SEARCH

b of record count for extent “"ex,*
takes on values from 0 - 128

d40...dn filled-in by CP/M, reserved for
gsystem use

cr current record to read or write in

a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random recoerd number in the
range 0-65535, with overflow to r2,
r0,rl constitute a lé6-bit value with
low byte r@, and high byte rl

For users of earlier versions of CP/M, it should be noted in
passing that both CP/M Version 2 and CP/M-86 perform directory
operations in a reserved area of memory that does not affect write
buffer content, except in the case of Search and Search Next where
the directory record is copied to the current DMA address.

All Information Presented Here is Proprietary to Digital Research
3l

CP/M-86 System Guide 4.3 BDOS File Operations

There are three error situations that the BDOS may encounter during
file processing, initiated as a result of a BDOS Pile I/0 function
call. When one of these conditions is detected, the BDOS issues the
following message to the console:

BDOS ERR ON x: error

where x is the drive name of the drive selected when the error
condition is detected, and "error™ is one of the three messages:

BAD SECTOR SELECT R/O

These error situations are trapped by the BDOS, and thus the
executing transient program is temporarily halted when the error is
detected. No indication of the error situation is returned to the
transient program.

The "BAD SECTOR" error is issued as the result of an errorv
condition returned to the BDOS from the BIOS module. The BNDOS makes
BIOS sector read and write commands as part of the execution of BDOS
Eile related system calls. If the BIOS read or write routine
detects a hardware error, it returns an error code to the BDOS
resulting in this error message. The operator may respond to this
error in two ways: a CONTROL-C terminates the executing program,
while a RETURN instructs CP/M-86 to ignore the error and allow the
program to continue execution,

The "SELECT" error is also issued as the result of an error
condition returned to the BDOS from the BIOS module. The BNOS makes
a BIOS disk select call prior to issuing any BIOS read or write to a
particular drive. If the selected drive is not supported in the
BIOS module, it returns an error code to the BDOS resulting in this
error message. CP/M-86 terminates the currently running program and
returns to the command level of the CCP following any input from the
console,

The "R/0" message occurs when the BDOS receives a command to
write to a drive that is in read-only status. Drives may be placed
in read-only status explicitly as the result of a STAT command or
BpOS function call, or implicitly if the BDOS detects that disk
media has been changed without performing a "warm start." The
ability to detect changed media is optionally included in the BIOS,
and exists only if a checksum wvector is included for the selected
drive. Upon entry of any character at the kKeyboard, the transient
program is aborted, and control returns to the CCP.

All Information Presented Here is Proprietary to Digital Research

32

CP/M-86 System Guide 4.3 ®DOS File Operations

Entry Return
- S -
CL: ODH FUNCTION 13

RESET DISK SYSTEM

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
{see Functions 28 and 29}, only disk drive A is selected. This
function can be used, for example, by an application program which
requires disk changes during operation. Function 37 (Reset Drive)
can also be used for this purpose.

Bntry i Return
CL: OEH FUNCTION 14
DL: Selected SELECT DISK

Disk

The Select Disk function desiqnates the disk drive named in
register DL as the default disk for subsequent file operations, with
DL = 0 for drive A, 1 for drive B, and so-forth through 1§
corresponding to drive P in a full sixteen drive system. in
addition, the designated drive is logged-in if it is currently in
the reset state. Logging-in a drive places it in "on-line®™ status
which activates the drive’s directory until! the next c¢old start,
warm start, disk system reset, or drive reset operation. FCB’s
which specify drive code zero (dr = 00H) automatically reference the
curcently selected default dArive. Drive code values between 1 and
16, however, ignore the selected default drive and directly
reference drives A through P,

Entry Return
CL: OFH FUNCTION 15 AL: Return Code
DX: FCB OPEN FILE

Offset

The Open File operation is used to activate a FCB specifving a
file which currently exists in the disk directory for the currently
active user number., The BDOS scans the disk directory of the drive
specified by byte 0 of the PCB referenced by DX for a match in
positions 1 through 12 of the referenced FCB, where an ASCII
question mark (3FH) matches any directory character in any of these
positions. Normally, no guestion marks are included and, further,
byte "ex™ of the PCB is set to zero before making the open call.

All Information Presented Here is Proprietary toc Digital Research

33

CP/M-B86 System Guide 4.3 BDPOS File Operations

If a directory element is matched, the retevant directory
information is copied into bytes 40 through dn of the ®CB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
successful open operation is completed, Fuarther, an FCB not
activated by either an open or make function must not be used in
BDOS read or write commands. TJpon return, the open function returns
4 "directory code™ with the value 0 through 3 if the open was
successful, or OPFH (255 decimal) if the file cannot be found. 1If
question marks occur in the ¥FCB then the €irst matching FCB is
activated. Note that the current record (“"cr™) must be zeroed by

the program if the file is to be accessed sequentially from the
first record.

Entry Return
cL: 108 FUNCTION 16 AL: Return Code
DX: FCB CLOSE FILE

Offset

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DX has been previously
activated through an open or make function (see functions 15 and
22), the close function permanently records the new FCB in the
referenced disk directory. The PCB matching process for the close
is identical to the open function., The directory code returned for
a successful close operation is 0, 1, 2, or 3, while a OFFH (255
decimal) is returned if the file name cannct be Ffound in the
directory, A file need not be closed if only read cperations have
taken place. If write operations have occcurred, however, the close
operation i5 necessary to permanently record the new directorvy
information.

All Information Presented Here is Probrietary to Digital Research

34

CP/M-86 System Guide 4.3 BDOS Pile Operations

Entry Return
CL: 11H FUNCTION 17 AL: Directory
Code
DX: FCB SEARCH FOR FIRST
Offset

Search First scans the directory for a match with the file
given by the FCB addressed by DX. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise ¢, 1, 2, or 3 is
returned indicating the file is present. In the case that the file
is found, the buffer at the current DMA address is filled with the
record containing the directory entry, and its relative starting
position is AL * 32 (i.e., rotate the AL register left 5 bits}.
Although not normally regquired for application programs, the
directory information can be extracted from the buffer at this
position,

An ASBCII gquestion mark (63 decimal, 3IF hexadecimal) in any
position from "fl" through "ex" matches the corresponding field of
any dicectory entry on the default or auto-selected disk drive. If
the "dr" field contains an ASCII gquestion mark, then the auto disk
select function is disabled, the default disk is searched, with the
search function returning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally
used by application programs, but does allow complete flexibility to
scan all curreant directory values. If the "dr"™ field is not a
question mark, the "s2" byte is automatically zeroed.

Entry Return
CL: 12H FUNCTION 18 AL: Directory
Code

SEARCH FOR NEXT

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, €unction 18 returns the
decimal value 255 in A when no more directory items match. In terms
of execution sequence, a function 1B call must follow either a
function 17 or function 18 call with no other intervening BDOS disk
related function calls.

All Information Presented Heré is Proprietary to Digital Research
3s

CP/M-86 System Guide

Entry Return
CL: 134 FUNCTION 19 AL: Return Code
DX: PFCB DELETE FILE

Offset

The Delete File function removes files which match the FCB
addressed by DX. The filename and type may contain ambigquous
references (i.e., question marks in various positions), but the
drive select code cannot be ambigquous, as in the Seacrch and Search
Next functions. Function 19 teturns a OFFH (decimal 255) if the

referenced file or files cannot be found, otherwise a value of zero
is returned.

Entry Return
CL: 149 FUNCTION 20 AL: Return Code
DX: FCB READ SEQUENTIAL

Offset

Given that the FCB addressed by DX has been acti{vated through
an open or make function (numbers 15 and 22), the Read Seguential
function reads the next 128 byte record from the file into memory at
the current DMA address. The record is read from position ®cr®™ of
the extent, and the "cr™ field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the “¢r* field is reset
to zero in vreparation for the next read operation. The "cr* field
must be set to zero following the open call by the user if the
intent is to read sequentially from the beqinning of the file, The
value 00H is returned in the AL register if the read operation was
successful, while a value of O01lH is returned if no data exists at
the next record position of the file. Normally, the no Adata
situation is encountered at the end of a file. However, it can also
occur if an attempt is made to read a data block which has not been
previously written, or an extent which has not been created. These
situations are usually restricted to files created or appended by
use of the BDOS Write Random commmand {(function 34).

All Information Presented Here is Proprietary to Digital Research

36

CP/M-86 System Guide 4.3 ©8DpOS PFile Operations

Entry Return
CL: 1SH FUNCTION 21 AL: Return Code
DX: FCB WRITE SEQUENTIAL

Offset Lo

Given that the F(B addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address
to the file named by the PCB. The record is placed at position "cr"
of the file, and the "cr" field is automatically incremented to the
next record positien. If the "cr" field overflows then the next
logical extent is automatically ovened and the "or™ field is reset
to zero in preparation for the next write operation. Write
cperations can take place into an existing file, in which case newly
written records overlay those which already exist in the file. The
"cr" field must be set to zero following an open or make call by the
user if the intent is to write sequentially from the beginning of
the file. Register AL = 00H upon return from a successful write
operation, while a non-zero value indicates an unsuccessful write
due to one of the following conditions:

01 No available dicectory space - This condition occurs when
the write command attempts to create a new extent that
requires a new directory entry and no available directory
entries exist on the selected disk drive.

02 WNo available data block - This condition is encountered
when the write command attempts to allocate a new data
block to the file and no unallocated data blocks exist on
the selected disk drive.

1

Entry Return
CL: 16H PUNCTION 22 AL: Return Code
DX: FCB MAKE FILE

Offset

The Make FPile operation is similar to the open file operation
except that the FCR must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly
by a mon-zero "Aar® code, or the default disk if *"dr” is zero). The
BDOS creates the file and initializes both the directory and main
memory value to an empty file. The programmer must ensure that no
duplicate file names occur, and a preceding delete operation is
sufficient if there is any possibility of duplication. Upon return,
register A= ¢, 1, 2, or 3 if the operation was successful and OFFH
(255 decimal) if no more directory space is available. The make
function has the side-effect of activating the FCB and thus a
subsequent open is not necessary.

All Information Presented Here is Proprietary to Digital Research

37

CP/M-86 System Guide 4.3 BDOS File Noerations

Entry) Return
CL: 171 FUNCTION 23 AL: Return Code
DX: FCB RENAME ¥ILE

Offset

The Rename function uses the FCB addressed by DX to change all
directory entries of the file specified by the file name in the
first 16 bytes of the FCB to the file name in the second 16 bytes.
It is the user”s responsibility to insure that the file names
specified are valid CP/M unambiguous file names. The drive code
"dr" at position 0 is used to select the drive, while the drive code
for the new file name at position 16 of the FCB is ignored. Upon
return, register AL is set to a value of 2zero if the rename was
successful, and OFFH (255 decimal) if the first file name could not
be found in the directory scan.

Entry Return
CL: 18H FUNCTION 24 BX: Login Vector
BX: Login RETURN LOGIN

Vector VECTOR

The login vector value returned by CP/M-86 is a 16-bit value in
BX, where the least significant bit corcesponds to the first drive
A, and the high order bit corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line,
while a "1" bit marks an drive that is actively on-line due to an
explicit disk drive selection, or an implicit drive setect caused by
a file operation which specified a non-zero "dr" field.

Entyvy Retucrn

CL: 19H FUNCTION 25 AL: Current Disk

RETIJRN CURRENT
DISK

Punction 25 returns the currently selected default disk number
in register AL, The disk numbers range from 0 through 15
corresponding to drives A through P.

All Information Presented Here is Prowrietary to Digital Research

as

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
CL: 1AH FUNCTION 26
DX: DMA SET DMA

Offset ADDRESS

"MMA" is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the
disk subsystem. Although many computer systems use non-DMA access
{i.e., the data is transfered through programmed I/N operations),
the DMA address has, in CP/M, come to mean the address at which the
128 byte data record resides before a disk write and after a disk
read. 1In the CP/M-86 environment, the Set DMA function is used to
specify the offset of the read or write buffer from the current DMA
base. Therefore, to svecify the DMA address, both a function 26
call and a functian 51 call are regquired. Thus, the DMA address
becomes the value specified by DX plus the DMA base value until it
is changed by a subsequent Set DMA or set DMA base function.

Entry Return

CL: 1BH PUNCTION 27 BX: ALLOC Offset

GET ADDR(ALLOC} ES: Segment base

1

An "allocation vector®™ is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
segment base and the offset address of the allocation vector for the
currently selected disk drive, The allocation information may,
however, be invalid if the selected disk has been marked read/only.

Entry Return

CL: 1cH FUNCTION 28

WRITE PROTECT DISK

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold start, warm start, disk system reset,
or drive reset operation produces the message:

Bdos Erxr on d: R/O

All Information Presented Here is Proprietary to Digital Research
39

CP/M=-86 System Guide 4.3 BDOS File Operations

Entry Return

CL: 1DH FUNCTION 29 BX: R/0O Vector Value

GET READ/ONLY
VECTOR

Function 2% returns a bit vector in register BX which indicates
drives which have the temporary read/onlv bit set. Similar to
function 24, the least significant bit corresponds to Arive A, while
the most significant bit corresponds to drive P. The R/0 bit is set
either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M-86 which detect changed disks.

Entry Return
ct: 1EH FUNCTION 30 AL: Return Code
DX: FCB SET FILE

Offset ATTRIBUTES

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. n
particular, the R/0, System and Archive attributes {tl”, t2°, and
t3°) can be set or reset. The DX pair addresses a FCB containing a
file name with the approoriate attributes set or reset, It is the
user ‘s responsibility to insure that an ambiqueous file name is not
specified. Punction 30 searches the default Adisk drive directory
area for directory entries that belong to the current user number
and that match the FCB specified name and tvpe fields. a1l matching
directory entries are updated to contain the selected indicators.
Indicators f1” through 47 are not presently used, but may he usefyl
for applications programs, since they are not invelved in the
matching process during file open and close operations. Indicators
€5 through f8° are reserved for future system expansion. The
currently assigned attributes are defined as follows:

tl”: The R/0 attribute indicates if set that the file
is in read/only status. BDROS will not allow write
commands to be issued to fFiles in R/0D status.

t2”: fThe System attribute is referenced by the CP/M DIR
utility. If set, DIR will not display the file in
a directory dispiay.

All Information Presented Here is Proprietary to Digital Research

40

CP/M-86 System Guide 4.3 ®BNOS File Operations

t3°: The Archive attribute is reserved but not actually
used by FP/M-86 If set it indicates that the file
has been written to back up storage by a user
written archive program. To implement this
facilitv, the archive program sets this attribute
when it copies a file to back up storage; anvy
progqrams updating or creating files ceset this
attribute. Further, the archive program backs up
only those files that have the Archive attribute
reset. Thus, an automatic back up facilitv

restricted to modified €files can be easilty
implemented.

Function 30 returns with register AL set to OFPFH (255 decimal)
if the referenced file cannot be found, othegwise a valus of zero is
returned.

Entey - Return
CL: 1PH PUNCTION 31 RX: NPR Nffoat
GET ANDR FS: Seygment Base
{NISK PARMS)

The offset and the segment base of the RINS resident Adisk
parameter block of the currentlv gselected Arive are returned in BX
and ES ag a result of this function call., This control block can be
used for either of two vurvoses. First, the disk parameter wvalues
can be extracted for Adismlav and space computation purposes, orv
transient proarams can dvnamically chanqge the values of current disk
parameters when the disk environment changes, if redguired.
Normally, aoplication obrograms will not require this faciltity,
Section 6.3 defines the BINS disk parameter block.

untrv - Return
CL: 20H FUNCTION 32 AT: Current Code
or no value
DL: OFFR{get) SET/CRT
ov NSER OODE
Iser (ode
{set)

An application proaram can change ot 1ntecrogate the currently
active user number by caTtling functinn 32, 1If reqgister PL = QFFH,
then the value of the current user number is returned in cegister
AL, where the value is in the range 0 to 15, 1If register DL is not
OFFH, then the current user number is changed to the value of DL
{(modulo 16},

A1) Information Presented Here is Proorietarv to Digital Research

41

CP/M=86 System Guide 4.3 BDOS File Operations

Entry Return
CL: 21H FUNCTION 33 AL: Return Code
DX: FCB READ RANDOM
Offset

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the PCB (byte
positions r0 at 33, rl at 34, and r2 at 35)., Wote that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl}, and high byte last (r2). CP/M does not reference
byte r2, except in computing the size of a file (function 35). Byte

r2 must be zero, however, since a non-zero value indicates overflow
past the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or
"word* value, which contains the record to read. *This value ranges
€rom Q0 to 65535, providing access to any particular record of any
size file. In order to access a file using the Read Random
function, the base extent {extent 0) must first be opened. Although
the base extent may or may not contain any allocated data, this
ensures that the FCB is properly initialized for subsequent random
access operations. The selected record number is then stored inte
the random recocrd field {r0,rl), and the BDOS is called to read the
record. Upon return from the call, register AL either containsg an
erroc code, as listed below, or the wvalue 00 indicating the
operation was successful. In the latter case, the buffer at the
current PMA address contains the randomly accessed record. HNote
that contrary to the sequential read operation, the record number is
not advanced. Thus, subsequent random read operations continue to
read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. MNote, however, that in this case, the last
randomly read record will be re-read as you switch from random mode
to sequential read, and the last record will be re-written as vou
switch to a sequential write operation. You can, of course, simply
advance the random record position following each random read or
write to obtain the effect of a sequential 1/0 operation.

All Information Presented Here iz Proprietary to Digital Research

42

CP/M-B6 System Guide 4.3 BDOS File Operations

Frror codes returned in register AL following a random read are
listed in Table 4-4, below.

Table 4-4. Punction 33 (Read Random)} Error Codes

Code Meaning

01 Reading unwritten data - This error code is returned
when a random read operation accesses a data block which
has not been previouslv written.

02 (not returned by the Random Read command}

03 Cannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bvtes ¢0,rl of the FCB. This error can be
caused by an overwritten FCB or a read random operation
on an FCB that has not been opened,

04 Seek to unwritten extent - This error code is returned
when a random read operation accesses an extent that has

not been created. This error situation is equivalent to
error 0l.

05 (not returned by the Random Read command}

06 Random record number out of range - This error code is
returned whenever hyte r2 of the PCB is non-zero.

Hormally, non-zero return codes can be treated as missing data, with
zero return codes indicating operation complete.

All Information Presented Here is Proprietary to Digital Research
43

CP/M-86 System Guide 4.3 BPOS File Operations

Entry Return
CL: 229 FINCTION 34 AL: Return Code
DX: FCB WRITE RANDOM

Offset

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the
currernt DMA address. Purther, if the disk extent or data block
which is the target of the write has not yvet been allocated, the
allocation is performed before the write operation continues, Aas in
the Read Random operation, the random record number is not changed
as a result of the write. The logical extent number and cucrrent
record positions of the file contrcl block are set to correspond to
the random recard which is being written., Sequential read or write
operations can commence following a random write, with the note that
the currently addressed record is either read or rewritten again as
the segquential operation begins. You can also simply advance the
random record position following each write to get the effect of a
sequential write operation. 1In particutar, reading or writing the
last record of an extent in random mode does not Ccause an automatic
extent switch as it does in sequential mode.

In order to access a file using the Write Random function, the
base extent (extent 0} must first be ovened. As in the Read Random
function, this ensures that the PCB is properly initialized for
subsequent random access operations. If the file is empty, a Make
File function must be issued for the base extent. Although the base
extent may or may not contain any altocated data, this ensures that
the file is properly recorded in the directory, and is visible in
DIR reguests.

Upon return €rom a Write Random cal!, register AL either

contains an error code, as listed in Table 4-5 below, or the value
00 indicating the operation was successful.

Table 4-%. PFunction 34 (WRITE RANDOM)} Error Codes

Codel Meaning

01 (not returned by the Random Write command)

02 ©No available data block - This conditinn is encountered
when the Write Randowm command attempts to allocate a new
data block to the file and no unallocated data blocks
exist on the selected disk drive.

All Information Presented Here is Proprietary to Digital Research

14

CP/M=86 System Guide 4.3 BDOS Pile Operations

Table 4-5. (continued)

Code Meaning

03 Cannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to moving to the new extent c¢ontaining the record
specified by bytes r0,rl of the FCB. This error can be
caused by an overwritten FCB or a write random operation
ont an FCB that has not been opened.

04 (not returned by the Random Write command}

05 No available directory space - This condition occurs
when the write command attempts to create a new extent
that requires a new directory entry and no available
directory entries exist on the selected disk drive.

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-ZzZero.

Entry Return
CL: 23H FUNCTION 35 Random Record
Field Set
nX: FCB COMPUTE FILE
Offset SIZE

When computing the size of a file, the DX register addresses an
PCB in random mode format (bytes r0, rl, and r2 are present). The
FCB contains an unambiguous file name which is used in the directory
scan. Upon return, the random record bytes contain the "virtual”
file size which is, in effect, the record address of the recerd
following the end of the file, 1f, following a call to function 35,
the high record byte r2 is 01, then the file contains the maximum
record count 65536, Otherwise, bytes r0 and rl constitute a 16-bit
value (r0 is the least significant byte, as before} which is the
file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size
when the file is written sequentially. If, instead, the file was
created in random mode and "holes" exist in the allocation, then the
file may in fact contain fewer records than the size indicates. 1f,
for example, a single record with record number 65535 (CP/M"s
maximum record number) is written to a file using the Write Random
function, then the wvirtual size of the file is 65536 records,
although only one block of data is actually allocated.

All Information Presented Here iz Proprietary to Digital Research
45

CP/M~-86 System Guide 4.3 BDOS File Operations

Entry Return
CL: 24H FITNCTION 36 Random Record
Pield Set
DX: PCB SET RANDOM
Offset RECORD

The Set Random Record function causes the BDOS to automatically
produce the random record position of the next record to be accessed
from a file which has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "kev" fields.
As each key is encountered, function 36 is called to compute the
random record position for the data corresponding to this key., If
the data unit size is 128 bytes, the resulting record position minus
one is placed into a table with the key for Yater retrieval. After
scanning the entire file and tabularizing the keys and their record
numbers, you can move instantly to a particular keyed record by
rperferming a random read using the corresponding random record
number which was saved earlier. The scheme is easily generalized
when variable record lengths are involved since the program need
only store the buffer-relative bvte position along with the key and
record number in order to find the exact starting position of the
keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read
and write operations continue from the next record in the file.

Entry Return
CL: 25H FUNCTION 37 AL: OOH
DX: Drive RESET DRIVE

Vector

The Reset Drive function is used to programmatically restore
specified dArives to the reset state {(a reset drive is not logged-in
and is in read/write status). The passed parameter in register DX
iz a 16 bit vector of drives to be reset, where the least
significant bit corresponds to the first drive, A, and the high
order bit corresponds to the sixteenth drive, labelled P. Bit
values of "1" indicate that the gpecified drive is to be reset,

In order to maintain compatibility with MP/M, CP/M returns a
zero value for this function.

All Information Presented Here is Promrietary to Digital Research

46

CP/M-86 System Guide

Entey Return
CL: 28H PUNCTION 44 AL: Return Code
DX: FCB WRITE RANDOM

Offget WITH ZERD PILL

The Write Random With Zero Fill function is similar to the
Write Random function (function 34} with the exception that a
vreviously unallocated data block iz initialized to records filled
with zeros before the record is written. If this function has been
ugsed to create a file, records accessed by a read random operation
that contain all zeros identify unwritten random record numbers.
Urmwritten random records in allocated data blocks of files created
using the Write Random function contain uninitialized data.

Entry Return

cL: 328 FUNCTION 50]
NDX: BIOS DIRECT BIOS CALL

Descriptor

Function 50 provides a direct BI10S call and transfers control
through the BDOS to the BIOS. The NX register addresses a five-byte
memory area containing the BIOS call parameters:

B-bit 16-bit l16-bit

[Punc | value{cx) | value(nx)|

where Func is a BIOS function number, (see Table 5-1), and value{CX)
and value (DX} are the l6-bit values which would normally be passed
directly in the C¥X and DX registers with the BIOS call., The CX and

DX values are loaded into the 8086 registers before the BIOS call is
initiated.

All Information Presented Here is Proprietary to Digital Research
47

CP/M-B86 System Guide 4.3 BDOS File Operations

Entry Return
CL: 33H FUNCTION 51

DX: Base SET MA BASE

Address

Function 51 sets the base register for subsequent DMA
transfers. The word parameter in DX is a maragraph address and is
used with the DMA offset to specify the address of a L2 byte buffer
area to be used in the disk read and write functions. Note that
upen initial program loading, the default DMA base is set to the
address of the user”s data seqment (the ipnitial value of D3S) and the
NMA offset is set to 0080H, which provides access to the Aefault
buffer in the base page.

Entrv Return
CL: 344 PUNCTION 52 RX: DM OFffget
GET ™A BASE ES: DMA Segment

Function 52 returns the current PMA Base Segment address in ES,
with the current DMA Offset in DX,

4.4 BDOS Memory Management and Load

Memory is allocated in two distinct ways under CP/M-86, The
first is through a static allocation map, located within the BIOS,
that defines the physical memory which is available on the host
system. In this way, it is possible to overate CP/M-86 in a memory
confiquration which is a mixture of up to eight non-contiguous areas
of RAM or ROM, along with reserved, missing, or faulty memorv
tegions. In a simple RAM-based system with contiguous memory, the
static map defines a single region, usually starting at the end of
the BIOS and extending up to the end of available memorv.

Once wmemory is physically mapped in this manner, CP/M-86
performs the second level of dynamic allocation to support transient
program lcading and execution. CP/M-86 allows dynamic allocation of
memory into, again, eight regions. A request for allocation takes
place either implicitly, through a program load operation, or
explicitly through the BNOS calls given in this section. Programs
themselves are loaded in two ways: through a command entered at the
CCP level, or through the BDOS Program Load operation (function 59).
Multiple programs can be loaded at the CCP level, as long as each
program executes a System Reset {function 0} and remains in memory
(DL = 01H). Multiple programs of this type only receive control by
intercepting interrupts, and thus under normal circumstances there

All Information Presented Here is Proprietary to Nigital Research
48

CP/M=-B6 System Guide 4.4 BDOS Memory Management and Load

is only one transient program in memory at any given time. 1If,
however, multiple programs are present in memory, then CONTROL-C
characters entered by the operator delete these programs in the
opposite order in which they were loaded no matter which brogram is
actively reading the c¢onsole.

Any given program loaded through a CCP command can, itself,
toad additional programs and allocate data areas. Suppose four
regions of memory are allocated in the following order: a program
is loaded at the CCP level through an operator command. The CMD
file header is read, and the entire memorv image consisting of the
program and its data is loaded into region A, and execution begins.
This program, in turn, calls the BDOS Program Load function (59) to
load another program into region B, and transfers control to the
loaded program. The region B program then allocates an additional
region ¢, followed by a region D. The order of allocation is shown
in Figure 4-1 below:

Region

Region

Region

o|l0|wo| P

Region

Figure 4-1. Example Memory Allocation

There is a hieracchical ownershin of these regions: the program in
A controls all memory from A through ». The program in B also
controls regions B through D. The program in A ¢an release regions
B through D, if desired, and reload yet another program. DDT-86,
for example, operates in this manner by executing the Free Memory
call {function 57) to release the memory used by the current program
before loading another test program. Further, the program in B can
release regions ¢ and © if regquired by the application. It must be
noted, however, that if either A or B terminates by a System Reset
(BDOS function 0 with DL = 00H) then all four regions A through D
are released,

All Information Presented Here is Proprietary to Digital Research

49

CP/M-B6 System Guide 4.4 BNOS Memorv Management and Load

A transient program may release a portion of a region, allowing
the released portion to be assigned on the next altlocation request.
The released portion must, however, be at the beginning or end of
the region., Suppose, for example, the program in regqion B above
receives 800W paragraphs at paragraph location 100H following its
first allocation request as shown in Figure 4-2 below.

1000H:

Length =
80009 Region «

Pigure 4-2. Example Memory Region

Suppose further that region D is then allocated, The last 200d
paragraphs in region 2 can be returned without affecting region D by
releasing the 200H paragraphs beginning at paragrach base 700H,
resulting in the memory arrangement shown in Figqure 4-3,

1L000NH:
Length =
6000H Region C
Length = TOOQH: | S/ /77777777
2000n FrEPTIrIIrY

Pigure 4-3. Example Memory Regions

The region beginning at paragraph address 700H is now available for
allocation in the next regquest. MNote that a memory request will
fail if eight memory regions have already been allocated. Normally,

if all program units can reside in a contiguous region, the system
allocates only one region.

All Information Presented Here is Prowmrietary to Digital Research

50

CP/M-B6 System Guide 4,4 BDOS Memory Management and Load

Memory management functions beginning at 53 reference a Memory

Control Block (MCB), defined in the calling program, which takes the
form:

16-bit lé=-bit 8-bit

MCB: M-Base M-Length M~Ext

where M-Base and M-Length are either input or output values
expressed in 16-byte paragraph ownits, and M-Ext is a returned byte
value, as defined specifically with each function code. An error
condition is normally flagged with a OFFH returned value in order to
match the file error conventions of CB/M.

Entry i Return
CL: 35H FUNCTION 53 AL: Return Code
DX: Offset GET MAX MEM

of MCB

Function 53 finds the largest available memory region which is
less than or egqual to M-Length paragraphs. 1f successful, M-Base is
set to the base paragraph address of the available area, and M-
Lbength to the paragraph length. AL has the value 0FFH upon return
if no memory is available, and 00H if the request was successful.
M-Ext is set to L if there is additional memory for allocation, and
0 if no additional memory is available.

Entry Return
CL: 36H FUNCTION 54 AL: Return Code
DX: offset GET ABS MAX

of MCB

Function 54 is used to find the largest possible region at the
ahsolute paragraph boundary given by M-Base, for a maximum of M-
Length paragraphs. M-Length is set to the actual length if
successful. AL has the value OFFH upon return if no memory is

available at the absolute address, and 00H if the request was
successful.

Al) Information Presented Here is Proprietary to Digital Research

51

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry Return
CL: 37H FUNCTION 55 AL: Return Code
DX: Offset ALLOC MEM

of MCB

The allocate memory function allocates a memory area according
to the MCB addressed by NX. The allocation request size is obtained
from M-Length. Function 55 returns in the user”s MCBE the base
paragraph address of the allocated region, Register AL contains a
00H if the request was successful and a OFFH if the memorv could not
be allocated.

Entry : Raturn
CL: 38H FUNCTION 56 AL: Return Code
DX: Offset ALLOC ABS MEM

of MCB

The allocate absolute memory function allocates a memory area
according to the MCB addressed by NX. The allocation reguest size
is obtained from M-Length and the absolute base address from M-Base,
Register AL contains a OOH if the request was successful and a OFFH
if the memory could not be allocated.

Entry . Return
CL: 39H PUNCTION 57
DX: Offset FREE MEM

of MCB

Function 57 is used to release memory areas allocated to the
program. The value of the M-Ext field controls the operation of
this function: if M-Ext = OFFH then all memory areaz allocated by
the calling program are released. Otherwise, the memory area of
length M-Length at location M-Base given in the MCB addressed by DX
is released (the M-Ext field-should be set to 00H in this case}. As
described above, either an entire allocated region must be released,
or the end of a region must be released: the middle section cannot
be returned under CP/M-86.

All Information Presented Here is Proprietary to Digital Research

52

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry Return

i

CL: 3AH FUNCTION 58

FREE ALL MEM

Function 58 is used to release all memory in the CP/M-86
environment (nermally used only by the CCP upon initialization).

Entry Return
CL: 3BH FUNCTION 59 4¥X: Return Code/
Base Page Addr
nX: Offset PROGRAM LOAD BX: Base Page Addr
of FCB

Function 59 loads a CMD file. ftlpon entry, register DX contains
the DS relative offset of a successfully opened FCB which names the
input CMD file. AX has the value OFFFFH if the program load was
unsuccessful., Otherwise, AX and BX both contain the paragraph
address of the base page belonging to the loaded program. The base
address and segment length of each segment is stored in the base
page. Note that upon program load at the CCP level, the DMA base
address is initialized to the base page of the loaded program, and
the DMA offset address is initialized to 0080H., However, this is a
function of the CCP, and a functinn 59 does not establish a default
DMA address. 1Tt is the responsibility of the program which executes
function 59 to execute function 51 to set the DMA base and function
26 to set the DMA offset before passing control to the loaded
program.

All Information Presented Here is Proprietary to Digital Resgsearch
53

Section 5
Basic 1/0O System (BIOS) Organization

Phe distribution version of CP/M-B6 is setup for overation with
the Intel SBC B6/12 microcomputer and an Intel 204 diskette
controller. All hardware dependencies are, however, concentrated in
subroutines which are collectively referred to as the Basic 1/0
System, or BIOS. A CP/M-86 svstem implementor can modify these
subroutines, as described below, to tailor CP/M-86 to fit nearly anv
8086 or 8088 operating environment. This section describes the
actions of each BIOS entry point, and defines variables and tables
referenced within the BIOS, The discussion of Disk Definition
Tablei is, however, treated separately in the next section of this
manual.

5.1 Organization of the BIOS

The BI10S portion of CP/M-86 resides in the toomost ovortion of
the operating system (highest addresses), and takes the general form
shown in Figure 5-1, below:

¢s, DS, ES5, S585:

Console
Command
Processor

and
Basic
bisk
Operating
System

1S + 2500H: BIOS Jump Vector

CS + 253FH:
BIOS Entrv Points

BIOS:
Disk
Parameter
Tables

Uninitialized
Scratch RAM

Figure 5-1. General CP/M-86 Organization

All Information Presented Here is Proprietary to Digital Research

55

CP/M-B6 System Guide 5.1 Organization of the BIOS

As described in the following sections, the CCP and BDOS are
supplied with CP/M-86 in hex file form as CPM.HBé., In order to
implement CP/M-86 on non-standard hardware, you must create a BIOS
which performs the functions listed below and concatenate the
resulting hex file to the end of the CPM,H86 file. The GENCMD
utility is then used to produce the CPM.SYS file for subsequent load
by the cold start loader. The cold start loader that loads the
CPM.SY5 file into memory contains a simplified form of the BIOS,
called the LNBINS {Loader BIOS). It loads CPM.SY3 into memory at
the location defined in the CPM.5YS5 header ({usually 0400H). The
procedure to follow in construction and execution of the ccld start
loader and the CP/M-86 Loader is given in a later section.

appendix T contains a listing of the standard CP/M-86 BICS for
the Intel S5BC 86/12 system using the Intel 204 Controller Roard.
Appendix E shows a sample "skeletatl™ BIOS called CBIOS that contains
the essential elements with the device drivers removed, You mav
wish to review these listings in ¢order to determine the overall
structure of the BIOS.

5.2 The BIOS Jump Vector

Entry to the BIOS is through a "jump vector”™ located at offset
25000 from the base of the opberating system. The jump vector is a
sequence of 21 three-byte jump instructions which transfer program
control to the individual RBIOS entry voints. Although some non-
essential BTOS subroutines may contain a single return (RET)
instruction, the corresponding jump vector element must be present
in the order shown below in Table 5-1. An example of a BIOS Jump
vector may be found in aAppendix D, in the standard CP/M=B6& BIOS
listing.

Parameters for the individual subroutines in the BIOS are
passed in the CX and DX registers, when required., CX receives the
first parameter; PX is used for a second argument. Return values
are passed in the registers acco ding to tvpe: Bvte values are
returned in AL. Word values (16 bits) are returned in BX. Specific
narameters and returned values are described with each subroutine.

All Information Presented Here is Proprietarv to pigital Research

56

CP/M=-86 System Guide 5.2 The BIOS Jump Vector

Table 5-1. BIOS Jump Vector

Offset from Suggested BIOS

Baeginning Instruction |F# Description

of RIOS
25004 JHMP INIT 0 Arrive Here from rold Boot
2503H JME WROOT 1 Arrive Here for wWarm Start
2506H JMP CONST 2 Check for Console Char Ready
2509H JMP CONIN 3 Read Console Character In
250CH JMP CONOUT 4 Write Console Character Out
250FH JYMP LIST 5 Write Listing Character Out
25124 JMEP PUNCH 6 Write “har to Punch Device
25154 JMP READER 7 Read Reader Device
25184 IMP HOME 8 Move to Track 00
25918BH JMP SELDSK 9 Salect Nigk Prive
251EH JMP SETTRK 10 Set Track Number
25218 JMP SETSE" 11 Set Sector Number
2524H JMP SETDMA 12 Set DMA Offset Address
2527H JMP READ 13 Read Selected Sector
252AH JMP WRITE 14 Write Selected Sector
252m4 JMP LISTST 15 Return List Status
2530H JMP SECTRAN 16 Sector Translate
2533H JMP SETDMAE 17 Set DMA Segment Address
2536H JMP GETSEGB 18 Get MEM DESC Table Offset
2539R JMP ETIOR 19 Get I/0 Mapping Byte
2530H JMP SETIOB 20 Set I/0 Mapping Byte

There are three major divisions in the BINS jump table: system
(re)initialization subroutines, simple character I/0 subroutines,
and disk 1/0 subroutines.

5.3 Simple Peripheral Devices

All simple character I/0 operations are assumed to be performed
in ASCII, upper and lower case, with high order (parity bit) set to
zero, An end-of-file condition for an input device is given by an
ASCII control-z (lAH). Perivheral devices are seen by CP/M-86 as
"logical" devices, and are assigned to physical Aevices within the
BIDS., Device characteristics are defined in Table 5-2.

All Information Presented Here is Proprietary to Diglital Research

57

CP/M-86 System Guide 5.3 Simple Peripheral hevices

Table 5-2. CP/M-86 Logical Device Characteristics

Device WName Characteristics

CONSOLE The principa?! interactive conscle which
communicates with the oberator, accessed through
TONST, CONIN, and CONOUT. Typically, the CONSOLE
is a device such as a CRT or Teletype.

LIST The principal listing devices, if it exists on vour
system, which is usually a hard-copvy device, such
as a printer or Teletvpe.

PUNCH The principal tape punching device, if it exists,
which is normally a high-sweed paper tave vunch or
Teletype.

RREADER The princival tave reading device, such as a

simple optical reader or teletyoe.

Note that a single periocheral’ c¢an be assianed as the L1IST,
PUNCH, and READER device simultaneously. 1If no peripheral device is
assigned as the TIST, PUNCH, or READER device, your rBIOS should
give an avorooriate error message 50 that the svstem does not "hang”
if the device is accessed by PIP or some other transient program.
Alternately, the PINCH and LIST subroutines can just simplv return,
and the READER subroutine can return with a 1AH {ctl-7) in req A to
indicate immediate end-of-file.

For added flexibility, vyou can ovtionally implement the
"IOBYTE" function which allows reassignment of phvsical and logical
devices. The IOBYTE function creates a mapping of Jeoaical to
physical Aevices which can be altered during OP/M-86 processing (see
the STAT command). The definition of the TOBYTE function
corresponds to the Intel standard as follows: a single ‘ocation in
the BIOS is maintained, called TOBYTE, which defines the logical to
physical devigce mapring which is in effect at a particular time.
The mapping is verformed by splitting the IOBYTE into four distinct
fields of two bits each, called the TONSOLE, READER, PIMNCH, and LIST
fields, as shown below:

most significant least significant

IO0BYTE LIST PINCH READER CONSOLE

bits 6,7 bits 4,5 bits 2,3 bits 0,1

All Information Presented Here is Proprietarv to Digital Regearch

58 -

CP/M-86 System Guide 5.3 9Simple Peripheral Devices

The value in each €ie1d can be in the range 0-=3, defining the
assigned source or destination of each logical device. The values
which can be assigned to each field are given in Table 5-3, below.

Table 5-3. IOBYTE Field bDefinitions

CONSNLE field {bits 0,1}

- console is assigned to the console wrinter (TrY:)
1 - console is assigned to the CRT device (CRT:)
2 = batch mode: use the READFR as the CONSOLE input,
and the LIST Aevice as the CONSOLE output (BAT:)
3 - user defined console device (UC1l:)
READER field (bits 2,3}
0 - READER is the Teletvpe device (TTY:}
1L - REANDER is the high-speed reader device (RDR:)
2 - user defined reader # 1 (URL:%)
3 - user defined reader # 2 (UR2:)
PINCH field (hits 4,5)
0 - PUNCH is the Teletvpe device (TTY:}
1 - PUNCH is the high spneed punch device (PUN:)
2 - user defined ounch # 1 (UPl:)
3 - user defined ounch % 2 (UP2:)
LIST field (bits 6,7)
0 - LIST is the Teletype device (T7Y:)
1. - LIST is the CRT device (CRT:)
2 = LIST is the line printer device (LPT:)
3 - user defined list device {(ULL:)

Note again that the implementation of the IOBYTE is opticnal,
and affects only the organization of your CBIOS. No CP/M-86
utilities use the IOBYTE except for PIP which allows access to the
physical devices, and STAT which allows logical-physical assignments
to be made and displayed. In any case, you should omit the IOBYTE
implementation until your basic CBIOS is fully implemented and
tested, then add the IOBYTE to increase vour facilities.

All Infeormation Presented Were is Proprietary to Digital Research

59

CP/M~-86 System Guide 5.4 BIOS Subroutine EBntry Points

9.4 BIOS Subroutine Entry Points

The actions which must take ovlace upon entrv to each BRINS
subroutine are given below. 1t should be noted that disk I/ is
always performed through a sequence of calls on the various Aisk
access subroutines. These setup the disk number to access, the
track and sector on a particular disk, and the direct memory access
{PMA] offset and segment addresses involved in the T/0 operation.
After all these parameters have been setur, a cal! is made to the
READ or WRITE function to perform the actual I/0 operaticn. Mote
that there is often a single call to SELDSK to select a disk Arive,
followed by a number of read ot write overations to the selected
disk before selecting another Arive €for subseauent overations.
Similarly, there mav be a call to set the NMA sedment base and a
call to set the DMA offset followed by several calls which read or
write from the selected DMA address before the TMA address is
changed. The track and sector subroutines are always called before
the READ or WRITE cuerations are performed.

The READ and WRITE subroutines should perform several retries
(10 is standard) before reporting the error condition to the BRNS,
The HOME subroutine mav or may not actually perform the track 00
seek, depending upon your contraller characteristics; the important
point is that track 00 has been selected for the next owveration, and
is often treated in exactlv the same manner as SRTPRE with a
parameter of 00.

Table 5-4. BI0S Subroutine Summary

Subroutine I Nescription

INIT This subroutine is called directly by the Cp/M-86
loader after the CPM.S5YS file has been read into
memory, The vprocedure is responsible €for anv
hardware initialization not wverformed by the
bootstrap loader, setting initial values for BIOS
variables (including IOBYTE), printing a sign-on
message, and initializing the interrunt vector to
point to the BNDOS offset {(0RLIH) and base. When
this routine completes, it jumps to the CCP
offset (0H), All segment reqgisters should be
initialized at this time to contain the hase of
the operating system.

WBOOT This subroutine is called whenever a program
terminates by performing a BDOS function #0 calt.
Some re-initialization o©f the hardware or
software may occur here. When this routine
completes, it jumps directly to the warm start
entey point of the CCP (Q6H)}.

CONST Sample the status of the currently assigned
console device and return OFFH in register AL if
a character is ready to read, and 00H in reqister
AL if no console characters ate ready.

All Information Presented Here is Proprietary to Digital Research

&0

CP/M-86 System Guide 5.4 BRINS Subroutine Bntry Points

Table S5-4. (continued)

Subroutine

PDescription

CONTN

CONOUT

LIST

PUNCH

READER

HOME

Read the next console character into register AL,
and set the parity bit (high order bit) to zero.
If no console character is ready, wait until a
character 1is tvped hefore returning.

Send the character from register CL to the
console output device. The character is in
ASCTII, with high order parity bit set to zero.
You may want to include a time-out on a line feed
or carriage return, if your console device
requires some time interval at the end of the
Tine (such as a ™I Silent 700 terminalt). You
can, if you wish, filter out control characters
which have undesirable effects on the console
device.

8end the character from register CL to the
currently assigned listing device. The character
is in ASCII with zero paritv,

Send the character from register CL to the
currently assigned punch device. The character
is in ASCIT with zero parity.

Read the next character from the currently
assigned reader device into register AL with zero
parity (high order bit must be zero). An end of
file condition is reported bv returning an ASCII
CONTROL=-2Z (1lAH}.

Return the disk head of the currently selected
disk to the track 00 position. If vyour
controller does not have a special feature €for
finding track 00, you can translate the call into
a call to SETTRK with a parameter of 0.

3l)l Information Presented Here is Proprietary to Digital Research

61

CP/M-86 System Guide S.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine NDescription

SELDSK Select the disk drive qiven bv register €L for
further operations, where register rL contains D
for drive A, 1 for dArive B, and so on up to 15
fEor drive P (the standard cP/M-86 distribution
version sunports two drives). On each disk
select, SELDSK must return in BX the base address
of the selected drive”s Nisk Parameter Header.
For standard floppy disk drives, the content of
the header and associated tahles does not change.
The sample BIOS included with CP/M-86 calleAd
CBIOS contains an example program segment that
performs the SELDSK function. If there is an
attempt to select a non—-existent drive, SELDSK
returns BX=0000H as an error indicator. Although
SELDSK must return the header address on each
call, it is advisable to opostpone the actual
rhysical disk select ooveration unti! an 1/9
function {seek, read or write)} is wnerformed.
This is due to the fact that Adisk select
operations mav take vlace without a subsequent
disk operation and thus disk access mav be
substantially slower using some disk controllers.
On entry to SELDSK it is vossible to detecmine
whether it is the first time the specified disk
has been selected. Register DL, bit 0 ({least
significant bit) is a zero if the drive has not
been previously selected, This information is of
interest in systems which read configuration
information from the disk in order tn set up a
dynamic disk Adefinition table.

SETTRK Register CX contains the track number for
subsequent disk accesses on the currently
selected drive, You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actually occurs.
Register CX can take on values in the range 0-76
correswonding to valid track numbers for standard
floopy disk drives, and 0-65535 for non-standard
disk subsystems.

SETSEC Register X contains the translated sector number
for subsequent disk accesses on the currently
selected drive (see SKECTRAN, below). You can
choose to send this information to the controller
at this point, or instead delay sector selection
until a read or write operation occurs.

All Information Presented Here is Proprietary to Digital Research

62

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4., {continued)

Subroutine

Descriotion

SETDMA

READ

WRITE

LISTST

Register CX contains the DMA (disk memory access)
offset for subsequent read or write onerations.
For example, if CX = 80H when SETDMA is called,
then all subsequent read operations read their
data into B80H through OFPH offset from the
current DMA segment base, and all subsequent
write operations get their data from that
address, until the next calls to SETDMA and
SETDMAB occur. WNote that the controller need not
actually support direct memory access. If, for
example, all data is received and sent through
I1/0 ports, the CBIOS which you construct will use
the 128 byte area starting at the selected DMA
offset and base for the memory buffer during the
following read or write operations.

Assuming the drive has been selected, the track
has been set, the sector has been set, and the
DMA of fset and segment base have been specified,
the READ subroutine attempts to read one sector
based upon these parameters, and returns the
following error codes in register AL:

0 noc errors gccurred
1 non—-recoverable error condition occurred

Currently, CP/M-86 responds only to a zero or
non-zero value as the return code. That is, if
the value in register AL is 0 then CP/M-86
assumes that the disk operation completed
propecly. If an error occurs, however, the CBIOS
should attempt at least 10 retries to see if the
error is recoverable. When an error is reported
the BDOS will print the message "BDOS ERR ON x:
BAD SECTOR". The oberator then has the option of

typing RETURN to ignore the error, ot CONTROL-C
to abort.

Write the data from the currently selected DMA
buffer to the currently selected drive, track,
and sector. The data should be marked as "non-
deleted data®™ to maintain compatibility with
other CP/M systems. The error codes given in the
READ command are returned in register AL, with
error recovery attempts as described above.

Return the ready status of the list device. The
value 00 is returned in AL if the list device is
not ready to accent a character, and OFFE if a
character can be sgent to the printer.

All Information Presented Here is Proprietary to Digital Research

63

CP/M-86 System Guide 5.4 BIOS Subroutine Bntrvy Points

Table S-4. {(continued)

Subroutine Descrintion

SECTRAN Performs logical to physical sector translation
to improve the overall response of rTP/M-86,
Standard CP/M-86 systems are shipped with a "skew
factor™ of 6, where five physical sectors are
skipped between seguential read or write
operations. This skew factor allows enough time
between sectors for most programs to load their
buffers without missing the next sector. in
computer systems that use fast processors, memory
and disk subsystems, the skew factor mayv be
changed to improve overall response. Note,
however, that vyou should maintain a single
density IBM compatible version of CP/M-86 for
information transfer into and out of vyour
computer system, using a skew factor of 6., In
general, SECTRAN receives a logical sector number
in ¢X. This logical sector number mavy range from
¢ to the number of sectors -1. Sectran also
receives a translate table offset in DX. The
sector number is used as an index into the
translate table, with the resulting physical
sector number in BX. For standard systems, the
tables and indexing code is vrovided in the CBINS
and need not be changed. if oL = 0000H no
translation takes place, and C¥ is simply copied
to BX before returning. Otherwise, SECTRAN
computes and returns the translated sector number
in BX. Note that SECTRAN {s called when no
translation is specified in the NDisk Parameter
Header.

SETDMAB Register CX contains the segment base for
subsequent DMA read or write operations. ‘The
BIOS will use the 128 byte buffer at the memorv
address determined by the DMA base and the DMA
offset during read and write operations.

GETSEGB Returns the address of the Memory Region Table
{MRT) in BX. The returned value is the offset of
the table relative to the start of the operating
system. The table defines the location and
extent of physical memory which is available for
transient programs.

All Information Presented Here is Proprietary to Digital Research

64

CP/M-86 System Guide 5.4 BINS Subroutine Entrv Points

Table S-4, {continued)

Subroutine Nescription

Memorv areas reserved for interrupt vectors and
the CP/M-86 operating system are not included in
the MRP. The Memory Region Table takes the form:

B-bit
MRT : R-Cnt
0: R-Base R-Length
1: R-Base R-Length
n: R-Rase R=-Length
l6-bit l6-bit

where R-Cnt {is the number of Memory Region
Nescrictors (equal to n+l in the diagram above),
while R-Base and R-Length give the paragraovh base
and length of each physically contiquous area of
memory. Bgain, the reserved interrupt locations,
normally 0-3FFH, and the CP/M=-86 operating system
are not included in this map, because the map
contains regions available to transient programs.
IfF a'l memory is contigquous, the R-Cnt field ig 1
and n = 0, with only a single Memorv Region
Descriptor which defines the region,.

GETIOB Returns the current value of the logical te
ohysical input/output device bvte (IOBYTE)L in AL.
This eight-bit value is used to associate
physical Aevices with CP/M-836"s four Togical
devices.

SETIOR Use the value in €L to set the value of the
IOBYTE stored in the BIOS,

The following section describes the exact layout and
construction of the disk parameter tables referenced by various
subroutines in the BIOS,

All Information Presented Here is Proprietarvy to Digital Research

65

Section 6
BIOS Disk Definition Tables

Similar to CP/M-80, CP/M-88 is a table-Ariven operating system
with a separate field-configurable Basic T1/0 System (BINS). By
altering swecific subroutines in the RIOS presented in the previous
section, CP/M-86 can be customized for operation on any RAM-based
#8086 or 3088 microvrocessor svstem,

The purvose of this section is to present the organization and
construction of tables within the BINS that define the
characteristics of a particular Aisk svstem used with CP/M-86,
"hese tables can be either hand-coded or automatically generated
using the GFNREF utilitv orovided with CP/M-86. The elements of
these tables are presented below.

6.1 Disk Parameter Table Format

In general, each disk drive has an assocjiated (l6-hvte) disk
narameter header which both contains information about the disk
drive and orovides a scratchpad area for certain BDROS operations.

The format of the disk parameter header for each drive is shown
helow.

Nigk Parameter Header
KT 0000 nooog 0000 | PTRBOF nFB csv ALV
16b 16b 16b 16b 16k 16b 16b 16b

where each element is a word (l16-bit) value. The meaning of each
Disk Parameter Header (DPH) element is given in Table 6-1.

Table 6-1, Disk Parameter Header Elements

Element Nescription

XLT Offset of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the
vhvsical and logical sector numbers are the same).
PDisk drives with identical sector skew factors share
the same translate tables.

D000 Scratchvad values for use within the BNROS (initial
value is unimportant).

All Information Presented Here is Proprietary to Digital Research

67

CP/M-86 System Guide 6.1 Disk Parameter Table Format

Table 6-1. (continued}

Element NDescrintion

DIRBIP Offset of a 128 bvte scratchpad area for directory
operations within BDOS. All NPH’s address the same
scratchpad area.

DPB Offset of a disk parameter block for this Arive.
nDrives with identical disk characteristics address the
same disk parameter block.

sV Offset of a scratchoad area used for software check for
changed disks. This offset is Aifferent for each NPH,

ALV Dffset of a scratchmad area used by the BDOS to keen
disk storage allocation information. This offset is
dAifferent for each DPH,

Given n disk drives, the DPH”s are arranged in a table whose first
row of 16 bytes corresponds to drive 0, with the last row
corresponding to drive n-1. The tabhle thus appears as

DPBASE

00 §XLT 00 | 0000 0000 0000 | DIRBUF |NBP 00|CSV OO0}ALY 00

01 | XLT 01} 0000 Qo000 0000 | DIRBUF [DBP 01)CSV 01]ALV D1

{and so-forth through)

n-1 XLTn~-11 0000 04200 0000 | DIRRIF [DBRPn-1|"SVn-1jALVn~1

where the label DPBASE defines the offset of the NPH tahle relative
to the beginning of the overating system.

A responsibility of the SELDSK subroutine, rdefined in the
previous section, is to return the offset of the NHPH from the
beginning of the overating system for the selected drive. The
following sequence of operations returns the table offset, with a
C000H returned if the selected drive does not exist.

All Information Presented Here is Proprietary to Digital Research

68

CP/M-86 System Guide 6.1 Dish Farameter Table Format

NDISKS EOU 4 ;NUMBER OF DISK DRIVES

LR

SELDSK :
:SELECT DISK N GIVEN BY COL
MOV BX,00004 ;READY FOR ERR
CPM CL,NRISKS ;N BEYOND MAX NDISKS?
JHB RETURN sRETURN IF SO
10 <= N < NDISKS
MOV CH,Q ;DOUBLE (N}
MoV BX,CX +sBX = N
MOV CL,4 +READY FOR * 16
SHL BX,CL N =N * 16
MOV CX,OFFSET DPBASE
ADD BX,CX :DPBASE + N * 1§
RETURN: RET BX - .DPH (N)

The translation vectors (XLT 00 through XLTn-1} are located
elsewhere in the BIOS, and simoly correspond one-for-one with the
logical sector numbers zero through the sector count-l. The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DEB, which is addressed by one or more DPH”s, takes the general
forms

spm I BSHIBLM anl nSM orv | ALO [aL1{ exs OFF

1éb b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "8b" or "léb"
indicator below the field., The fields are defined in Table 6-2.

Table 6-2, Disk Parameter Block Fields

Field Definition

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined
by the data block allocation size.

BLM is the block mask which is alsoc determined by the data
block allocation size.

EXM is the extent mask, determined by the data block
allocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which

can be stored on this drive

All Information Presented Here is Proprietary to Digital Research
69

CP/M-86 System Guide 6.1 Disk Parameter Tahle Format

Table 6-2. (continued)

Field Definition

ALO,AL]l Adetermine reserved directorv blocks.
CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

Althougbh these table values are produced automatically by GENDEF, it
is worthwhile reviewing the Aerivation of each field so that the
values may be cross-checked when necessary. The values of BSH and
BIM determine {(implicitly) the data allocation size BLS, which is
not an entry in the disk parameter hlock. iven that vou have
selected a value for BLS, the values of BSH and BLM are shown in
Table 6-3 below, where all values are in decimal. '

Table 6~-3. BSH and BLM Values for Selected BLS

BLS | BsH BLM
1,024 3 7
2,048 4 15
4,096 s 31
8,192 6 63

16,384 7 127

The value of EXM depends upon both the BLS and whether the DSM value
is less than 256 or greater than 255, as shown in the following
table.

Table 6-4. Maximum EXM Values

BLS | DSM < 256 | DsM > 255

1,024 0 N/A
2,048 1 0

4,096 3 1

8,192 7 3
16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
{DSM+1) is the total number of bytes held by the drive and, of
course, must be within the capacity of the physical disk, not
counting the reserved operating system tracks.

All Information Presented Here is Proprietary to Digital Research

70

CP/M-86 System Guide 6.1 Disk Parameter Tahle Format

Thé DRM entry is one less than the total number of directory
entries, which can take on a 16-bit value. The values of ALO and
ALl, however, are determined bv DRM. The two values ALY and ALL can
together be considered a string of lé-bits, as shown below.

ALD ALl

00 01 02 03 04 0% 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labeted ALO, and 15 corresponds to the low order bit of the hvte
labeled AL1. Each bit position reserves a rdata block for a number
of directory entries, thus allowing a total of 154 data blocks to he
assigned for directory entries (bits are assigned stacting at 00 and
filled to the right until oosition 195). Each Adirectory entrv
occupies 32 bytes, as shown in Table 6-5.

Table 6-5. BLS and Number of Directory Entries

BLS Directorv Entries
1,024 32 times ¥ bits
2,048 64 times & bits
4,098 128 times # bits
8,192 256 times & Dbits

16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then
there are 32 directory entries per block, requiring 4 reserved
blocks, In this case, the 4 high order bits of ALO0 are set,
resulting in the values ALO = OF0OH and ALl = 00H.

The CKS value is determined as follows: if the Aisk drive
media is removable, then CKS = (DRM+l)}/4, where DRM is the last
directory entrv number. If the media is fixed, then set CX$S = 0 (no
directory records are checked in this case}.

Pinally, the OFF field determines the number of tracks which
are skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the NPB, recall that several
DPR’s can address the same DPB if their drive characteristics are
identical. Further, the DPB can be dvnamicallv changed when a new
drive is addressed by simply changing the pointer in the PPH since
the BDOS covies the DPB values to a local area whenever the SELDSK
function is invoked.

All Information Presented Heré is Proprietarv to Nigital Research

71

CP/M-86 System Guide 6.1 nisk Parameter Table Format

Returning back to the NPPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory fFoltlowing the BINS. The areas must be
unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by SV is 7KS bytes, which is
sufficient to hold the directory check information for this
particular drive. If CKXS = (nRM+1)/4, then you must reserve
{DRM+1) /4 bytes for directorvy check use. If ¢KS = 0, then no
storage is reserved.

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particutar Aisk, and
is computed as (NSM/8)+1.

The BIOS shown in Appendix D demonstrates an instance of these
tables for standard B" single density Arives. It may be useful to
examine this program, and compare the tabular values with the
definitions given above.

6.2 Table Generation Using GENDEP

The GENNEF utility supplied with CP/M-86 greatly simplifies the
table construction process., GENDEF reads a file

X .DEF

containing the disk definition statements, and produces an output
file

X.LIB
containing assembly language statements which define the tables
necessary to support a particultar drive configuration. The form of
the GENDEF command is:

GENDEF x parameter list
where % has an assumed (and unspvecified) filetyoe of DREF, The

parameter list may contain zero or more of the symbols defined in
Table 6-6,

Table 6-6. GENDEF Optional Parawmeters

Parameter Fffect
sC Generate Disk Parameter Comments
$0 Generate NPBASE OFFSET §
$2 Z80, 8080, 8085 Override
SC0Z {any of the Above)

All Information Presented Pere is Proprietary to Nigital Research

72

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The C parameter causes GENDEF to produce an accompanying
comment line, similar to the output from the "STAT DSK:" utility

which describes the characteristics of each defined disk. HNormally,
the DPBASE is defined as

BPBASE EQU §

which requires a MOV CX,0FFSET DPBASE in the SELDSK subroutine shown
above., For convenience, the $0 parameter produces the definition

NPBASE EBQU OFFSET §

allowing a MOV CX,DPBASE in SELDSK, in order to match vyour
particular programming practices. The $2Z parameter is included to
override the standard 8086/8088 mode in order to generate tables
acceptable for operation with Z80, 8080, and B085 assemblers.

The disk definition contained within X.DEF is composed with the
CP/M text editor, and consists of disk definition statements
identical to those accepted by the DISKDEF macro supplied with CP/M-

80 Version 2. A BIOS Adisk definition consiats of the following
sequence of statements:

DISKS n
DISKDEF 0,...
NISKDEF 1,...
DISKDEF n-1

ENDEF

Each statement is placed on a single line, with optional embedded
comments between the keywords, numbers, and delimiters.

The DISKS statement defines the number of drives to be
configured with your system, where n is an integer in the range 1
through 16. A series of DISKDEF statements then follow which define
the characteristies of each 1logical disk, 0 through n-1,
corresponding to logical drives A through P, HWote that the DISKS
and DISKDEF statements generate the in-line fixed data tables
described in the previous section, and thus must be placed in a non-

executable portion of your BIOS, tvpically at the end of your BIOS,
before the start of uninitialized RAM.

The ENDEF {(End of Diskdef) statement generates the necessary

uninitialized RAM areas which are located beyond initialized RAM in
your BIOS.

All Information Presented Here is Proprietary to Digital Research

73

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The form of the DISKNEF statement is

DISKDEF dn,fsc,1s¢,[skfl,b1s,dks,dir,cks,ofs,[0]

where
dn is the logical disk number, 0 to n-1
fse is the first physical sector number (0 or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dks is the disk size in bls units
dir is the number of directory entries
cks is the number of "checked® directory entries
ofs is the track offset to logical track 00
(01 is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEP
statement. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "Isc” is the last
numbered sector on a track. When present, the "skf” wvarameter
defines the sector skew factor which is used to create a sector
translation table according to the skew. If the number of sectors
is less than 256, a single-byte table is c¢created, otherwise each
translation table element occcupies two bytes. WNo translation table
is created if the skf parameter is omitted or equal to 0.

The "bls" parameter swecifies the number of bvtes allocated to
each data block, and takes on the values 1024, 2048, 4096, 8192, or
16384, Generally, performance increases with larger data block
sizes because there are fewer directory references. Also, logically
connected data records are physically close on the disk. Further,
each directory entry addresses more data and the amount of BINS work
space is reduced. The "dks"” specifies the total disk size in "bls”®
units. That is, if the bls = 2048 and dks = 1000, then the toctal
disk capacity is 2,048,000 bytes. 1f dks is greater than 2%5, then
the block size parameter bls must be greater than 1024. The value
of "dir" is the total number of directory entries which may exceed
255, if desired.

The "cks" parameter determines the number of directory items to
check on each directorv scan, and is used internally to detect
changed disks during system operation, where an intervening cold
start or system reset has not occurred (when this situation is
detected, CP/M-86 automatically marks the disk read/only so that
data is not subsequently destroved). As stated in the vrevious
section, the value of cks = dir when the media is easily changed, as
iz the case with a floppy disk subsystem. If the disk is
permanently mounted, then the value of cks is typically 0, since the
probability of changing disks without a restart is gquite tow.

All Information Presented Here is Proprietary to Pigital Research

74

CP/M-86 System Guide 6.2 Table Generation Using GRNDEF

The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several Yogical
drives on a single large capacity physical Arive. Finally, the [0]
parameter is included when file compatibility is required with
versions of CP/M-80, version 1.4 which have heen modified for higher
density disks (typically double density). This varameter ensures
that no directory compression takes place, which would cause
incompatibilities with these non-standard CP/YM 1.4 versions.
Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,

gives disk i the same characteristics as a oreviouslv defined dArive
i. A standard four-drive single densitv system, which is compatihle
with CP/M-80 Version 1.4, and upwardlv compatible with CP/M-80

Version 2 implementations, is defined using the following
statements:

DISKS 4
DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1,

DISKDEF 2,
DISKDEF 3,
ENDEF

with a1l disks having the same parameter values of 26 sectors mer
track (numbered 1 through 26), with a skew of 6 between seguential
accesses, 1024 bytes per data block, 243 data blocks for a total of
243K byte disk capacitv, 64 checked directory entries, and two
operating system tracks.

The DISKS statement generates n Disk Parameter Headers (DPHs),
starting at the DPH table address NDPBASE generated by the statement.
Each disk header block contains sixteen bytes, as described above,
and corresponds one-for-one to each of the defined drives. 1In the

four drive standard system, for example, the DISKS statement
generates a table of the form:

DPBASE EQU §

DPED DW ¥LTO, 0000H,0000H, 00004, DIRBUR,DPBO,CSV], ALVO
DPE1 W XLTO,0000H,0000H, 0000H, DIRBUF,DPB0,CSV1 ,ALV]
DPE2 Dw XLT0,0000H,0000H, 00008, DIRBUFP,DPR],CSV2,ALV2
DPE3 oW XLTO0,0000H,00004, 00004, DIRBUR,DPBO,CSV3 ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail
earlier in this section. The check and allocation vector addresses
are generated by the ENDEF statement €or inclusion in the RAM area
following the BIOS code and tables.

All Information Presented Here i& Proprietary to Digital Research

75

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a 0000 value is
inserted in the XLT wosition of the dAisk parameter header for the
disk. In a subsequent call to perform the logical to ohysical
translation, SECTRAN receives a translation table address of DX =
0000H, and simplv returns the original logical sector from CX in the
BX register, A translate table is constructed when the skf
parameter is oresent, and the (non-zero) table address is nlaced
into the corresponding DPH"s. The table shown below, for example,
is constructed when the standard skew factor skf = 6 is spvecified in
the DISKDEF statement call:

XLTO EQU OFFSET 5
DB 1,7,13,19,25,5,11,17,23,3,9,15,21
2)-] 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF statement, a number of uninitialized data
areas are defined. These data areas need not be a part of the RIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of operating system memory. The size of the
uninitialized RAM area is determined by EQU statements generated by
the ENDEF statement. For a standard four-drive system, the ENDEF
statement might produce

172 = BEGDAT FOU OFFSET $
{data areas)
1DBO = ENDDAT ENU OFFSET $
013c = DATSIZ ROU OFFSET S-REGDAT

which indicates that uninitialized RAM beqins at offset 1C72H, ends
at 1DBOR-1, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you ¢an use the STAT program to check vour
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The comment included in the LIB file
by the § parameter to GENCMD will match the output from STAT. The
STAT command form

STAT d:DS%:

decodes the disk parameter block for drive 4 (d=A,...,P) and
displays the values shown below:

128 Byte Record Capacity
Kilobyte Drive Capacity
32 Byte Directory Entries
Checked Tirectory FEntries
Records/ Extent

Records/ Block

Sectors/ Track

Reserved Tracks

rpFPOLER

All Information Presented Here is Proprietary to Digital Research

76

CP/M-86 System Guide 6.3 GENDEF Qutput

6.3 GENDEF Output

GENDFF produces a listing of the statements included in the DEF
file at the user console {CONTROL-P can be used to obtain a printed
listing, if desired). FEach source line is numbered, and any errors
are shown below the tine in error, with a "?" beneath the item which
caused the condition. The source errors produced by GENCMD are
listed in Table 6-7, followed by errors that can occur when
producing input and outout files in Table 6-8.

Table 6-7. GENDEF Source Error Messages

Message Meaning

Bad val More than 16 disks defined in DISKS statement.

Convert Number cannot be converted, must be constant
in binary, octal, decimal, or hexadecimal as
in ASM-Bé6.

Delimit Missing delimiter between parameters,

Duplic Nuplicate definition for a disk drive.

Extra Extra parameters occur at the end of line.

Length Keyword or Aata item is too lona,

Missing Parameter required in this position.

No Disk Referenced disk not previocusly defined.

No Stmt Statement keyword not recognized.

Numeric Number reguired in this position

Range Nunmber in this position is cut of range,

Too Few Not enough parameters provided.

Quote Missing end quote on current line.

All Information Presented Here iz Proprietary to Digital Research

77

CP/M-B6 System Guide 6.3 GENDEF Output

Table 6-8. GENDEF Input and Output Error Messages

Messaqge l_ Meaning

Cannot Close ".LIB" File LIB file close operation
unsuccessful, usually due
to hardware write protect.

"LIB* Disk Full No space for LIB file.

Ne Input File Present Specified DEF file not
€ound.

No ".LIB" Directory Space Canncot create LIB file due
to too manv files on LIB
disk.

Premature Bnd-of-File Bnd of NEF file encountered
unexpectedly.

Given the file TWO.NEF containing the following statements
disks 2
diskdef 0,1,26,6,2048,256,128,128,2
diskdef 1,1,5%8,,2048,1024,300,0,2
endef
the command
gencmd two $c
produces the console cutput

DISKDEF Table (Generator, Vers 1.0

1 DISKS 2

2 DISKDEF 0,1,58,,2048,256,128,128,2
3 NISKDEF 1,1,58,,2048,1024,300,0,2
4 ENDEF

No Error (s}

The resulting TWC.LIB file is brought into the following skeletal
assembly language program, using the ASM-86 INCLUDE directive. The
ASM~86 output listing is truncated on the right, but can be easily
reproduced using GENDEF and ASM-86,

All Information Presented Here is Proprietary to NDigital Research
78

CP/M-86 System Guide 6.3 GENDEF (utput

s Sample Program Including T™WO.LI

SELDSK :

¥ e

0000 B9 03 00 MOV "X ,0FFSET NPBASE

H P
- INCLTIDE TWO.LIB
= : DISKS 2
= 0003 dpbase equ 8 sBase ©
= 0003 32 @0 00 00 dpe0 dw x1t0,0000h0 :Transl
= 0007 00 00 Q0 00 dw 0000h,0000h i8crate
= 000B SB 00 23 00 Aw dirbuf,dpb0 :Dir Bu
= g00® ¥R 00 DB 00 dw csvl,alv(;Check,
= 0013 00 00 Q0 00 dpel dw x1tl,0000h ;Transl
= 0017 00 00 00 0O dw 0000h,0000h :Scrate
= 001B 5B 00 4C 00 dw dirbuf,dobl sNir Bu
= 001F 9B 01 1B 01 dw ecsvl,alvl :Check,
= : NISKDEF O,1,26,6,2048,2
= H
= s hisk ¢ is CP/M 1.4 Sinagle NDensi
- z 4096: 128 Byte Record Cawmacit
- ' 512: Kilobyte NDrive Capacit
a 3 128: 32 Byte Nirectorvy Entri
= : 128: rhecked Nirectory EBntri
- ' 256: Records / Extent
=) 16: Records / Block
= ' 26: Sectors / Track
= : 2: Reserved Tracks
= : 6: Sector Skew Factor
- 0023 dob0 equ offset $;Digk P
= 0023 1a 00 dw 26 ;Sector
= 0025 04 db 4 :Block
= 0026 QF db 15 1Block
= 0027 01 db 1 Fxtnt
= (0028 FF 00 dw 255 :Disk §
= 002a TF 00 dw 127 ;Direct
= 002C CO db 192 ;AllocO
= 002D 00 ab 0 sAlloecl
= Q02E 20 00 dw 32 1Check
= 0030 02 00 dw 2 ;O0ffset
= 0032 x1t0 equ offzet $:Transl
= 0032 01 07 0D 13 4ab 1,7,13,19
= 0036 19 05 0B 11 ab 25,5,11,17
= 003A 17 03 09 OF db 23,3,9,15
= Q03E 15 02 08 (E dab 21,2,8,14
= (042 14 1A 06 OO db 20,26,6,12
= 0046 12 18 04 OA db 18,24,4,10
= 004a 10 16 db 16,22
= 0020 als0 equ 32 tAlloca
= 0020 cssl equ 32 ;Check
= 3 DISKDREF 1,1,58,,2048,10
= H
= H pisk 1 is °P/M 1.4 Single Densi
= H

16384: 128 Byte Reccrd Camacit

L3

All Information Presented Here is Proprietary to Digital Research

79

CP/M-B86 System Guide 6.3 GENDEF Output

= H 2048: Kilobyte Drive Capacit
= H 300: 32 Byte Directory Fntri
- ¥ 0: Checked Nhirectorv Entri
= H 128: Records / Fxtent

- H 16: Records / Block

= ; 58: Sectors / Track

= ? 2: Reserved Tracks

= 004c¢C dpbl edqu offset § Disk P
= 004C 3 00 dw 58 ;Sector
= Q04E 04 dh 4 :Block
= 004F QF db 15 :Rlock
= 0050 00 db 0 sExtnt
= 0051 PF 03 dw 1023 ;Nisk S
= 0053 2B 01 Adw 299 iNirect
= 0055 F8 db 248 salloch
= 0056 00 db 0 :Allocl
= 0057 00 00 dw 0 :Check
= 0059 02 00 dw 2 iNffset
= 0coo x1tl equ 0 1No Tra
= go8o alsl equ 128 ;Alloca
= 0000 cssl edqu 0 1Check
= H ENDEF

= ¥

- H Uninitialized Scratch Memory Fo
= 0058 begdat equ offset § 1Start
= 005B dirbuf s 128 ;Direct
= 00DB alvg rs also0 :Alloc
= OOFB csv0 Es css0 :Check
= 011B alvl s alsl sAlloc
= Ql9B csvl rs cssl ;heck
= 0198 enddat equ offset $:Fnd of
= 0140 datsiz equ offset S-begdat ;Size o
= 0198 00 db 0 :Marks

END

A1l Information Presented Here is Proprietary to Digital Research

80

Section 7
CP/M-86 Bootstrap and Adaption Procedures

This section describes the components of the standard CP/M-86
distribution disk, the operation of each component, and the
procedures to follow in adanting CP/M-86 to non-standard hardware.

CP/M-B6& is distributed on a single-density IBM compatible 8"
diskette using a file format which is compatible with all previcus
CP/M-B80 operating systems. 1Tn particular, the first two tracks are
reserved for operating system and bootstrap programs, while the
remainder of the diskette contains directorv information which leads
to program and data files. CP/M=-86 is distributed for operation
with the Intel SBC 86/12 single-boatd computer connected to flopny
disks through an Intel 204 Controtler. The operation of CP/M=-86 on
this configuration serves as a model for other 8086 and 8088
environments, and is presented below.

The principal components of the distribution svstem are listed
below:

@ The 86/12 Bootstrao ROM (BOO™ ROM)
® The Cold Start Loader {LOADER)
¢ The CP/M=-86 System {CPM.S5Y5)

when installed in the SBC 86/12, the BOOT ROM becomes a vart of
the memory address space, beginning at bvte location OFFO000H, and
receives control when the svystem reset button is depressed. 1In a
non-standard environment, the BOOT ROM is reolaced bv an equivalent
initial loader and, therefore, the ROM itself is not included with
CP/M~-86. The BOOT ROM can be obtained from Digital Research or,
alternatively, it can be programmed from the listing given in
Appendix C or directly from the source file which is included on the
distribution disk as BOOT.AB6. The responsibility of the BOOT ROM
is to read the LOADER from the first two system tracks into memory
and pass orogram control to the LOADER for execution.

7.1 The Cold Start Load Operation

The LOADER program is a simple version of CP/M=86 that contains
sufficient File processing capabilitvy to read CPM.S5YS from the
system disk to memory. When LOADER completes its operation, the
CPM.5Y5 program receives control and proceeds to process operator
input commands.

Both the LOADER and CPM.S5YS programs are preceded by the
standard ©CMD header record. The 128-bvte LOADER header record
contains the following single group descriptor.

All Information Presented Here is Proprietary to Digital Research

81

CP/#-86 System Guide 7.1 The Cold Start Load Operation

G-Form | G-Length A-Base G-Min G-Max
1 HXEXRKAKK 0400 XXX KKK KEXKKXKXK
8b 15h léb 16b 1éb

where G-Form = 1 denotes a code group, "x" fields are ignored, and
A-Base defines the varagraph address where the RBOOT ROM begins
filling memory (A-Base is the word value which is offset three bytes
from the beginning of the header). MNote that since only a code
group is present, an 8080 memory model is assumed. further,
although the A-Base defines the base paragraph address for LOADER
{byte address 04000H), the LOADER can, in fact be lcaded and

executed at any paragraph boundarvy that does not overlao CP/M-86 or
the BOOT ROM.

The LOADER itself consists of three parts: the Load CPM
program {(LDCPM}, the Loader Basic Nisk System (LDBDOS), and the
Loader Basic I/0 System (LDBIOS). Although the LOADER is setup to
initialize CP/M-86 using the Intel 86/12 confiquration, the LDBIOS
can be field-altered to account for non-standard hardware using the
same entry points described in a previous section for RIOS
modification. The organization of LOADER is shown in Figure 7-1
below:

GD¥Y O S/
CS DS ES SS 0000H: | JMP 1200H

{LDCPM}

JMPF CPM

0400H;
(LDBDOS)

1200H: JMP INIT
JMP SETIOB
INIT: .. JMP 0003RH

{LDB10OS)

1700H;

Pigure 7-1. LOADER Organization

All Information Presented Here is Proprietary to Digital Research

82

CE/M-86 System Guide 7.1 The Cold Start Load Operation

Byte offsets from the base registers are shown at the left of the
diagram. GD#1 is the Group Descriptor for the LOADER code group
described above, followed immediately by a "0 group terminator.
The entire LOADER program is read by the BOOT ROM, excluding the
header record, starting at byte location 04000H as given by the A-
Field. Upon completion of the read, the BOOT ROM passes control to
location 04000H where the LOADER program commences exescution. The
JMP 1200H instruction at the base of LDCPM transfers control to the
beginning of the LDBIOS where control then transfers to the INIT
subroutine, The subroutine starting at INIT performs device
initialization, prints a sign-on message, and transfers back to the
LDCPM program at byte offset 0003H. The LDCPM module opens the
CPM.S3YS file, loads the CP/M-86 system into memory and transfers
control to CP/M-86 through the JMPF CPM instruction at the end of
LDCPM execution, thus completing the cold start sequence.

The files LDCPM.H86 and LDBDOS.H#6 are included with CP/M-86 so
that you can aopend your own modified LDBIOS in the construction of
a customized loader. In fact, BINS.A86 contains a conditional
assembly switch, called "lcader_bios,” which, when enabled, produces
the distributed LDBIOS. The INIT subroutine portion of LDBIOS is
listed in Appendix C for reference purposes. To construct a custom
LNBI0S, modify your standard BIOS to start the code at offset 1200H,
and change vyour initialization subroutine beginning at INIT to
pecform disk and device initialization. Include a JMP to offset
0003H at the end of your INIT subroutine. Use ASM-86 to assemble
your LDBIOS,AB86 program:

ASM86 LDBIOS

to produce the LDBIOS.H86 machine code file. Concatenate the three
LOADER modules using PIP:

PIP LOADER.H86=LNDCPM.H86,LDBNOS.HE6,LDBIOS.H86

to produce the machine code file for the LOADER program. Although
the standard LOADER program ends at offset 1700H, vour modified
LPBIOS may differ from this last address with the restriction that
the LOADER must fit within the first two tracks and not overlap

CP/M-86 areas. Generate the command {CMD} €ile for LOADER using the
GENCMD utility:

GENCMD LOADER 8080 CODE[A400]

resulting in the file LOADER.CMD with a header record defining the
8080 Memory Model with an absolute raragraph address of 400H, or
byte address 4000H. Use DDT to read LOADER.CMD to location 900H in
your 8080 system. Then use the 8080 utility SYSGEN to copy the
loader to the first two tracks of a disk.

All Information Presented Here is Prowrietarv to Digita) Research
83

CP/M-86 System Guide 7.1 The Cold Start Load Operation

A>DDT

-ILOADER.CHMD

=-R800

-"‘c

A>SYSGEN

SOURCE DRIVE NAME (or return to skip} <cr>
DESTINATION DRIVE NAME (or return to skip) B

Alternatively, if you have access to an operational CP/M-86 system,
the command

LDCOPY LOADER

copies LOADER to the system tracks, You now have a diskette with a
LOADER program which incorporates your custom LDBIOS capable of
reading the CPM,.5YS file into memory. For standardization, we
assume LOADER executes at location 4000dH, LOADER is staticallv
relocatable, however, and its operating address is determined only
by the value of A-Base in the header record.

You must, of course, perform the same function as the BOOT ROM
to get LOADER into memory. The boot operation is usually
accomplished in one of two ways. First, you can program vour own
ROM (or PROM) to perform a function similar to the BOOT ROM when
your computer”’s reset button is pushed. As an alternative, most
controllers provide a power-on "boot” operation that reads the first
disk sector into memory. This one-sector program, in turn, reads
the LOADER from the remaining sectors and transfers to LOADER upon
completion, thereby performing the same actions as the BOOT ROM,
Either of these alternatives is hardware-specific, so you”1l need to
be familiar with the operating environment,

7.2 Organization of CPM.SYS
The CPM,SYS file, read by the LOADER program, consists of the

CCP, BDOS, and BIOS in CMD file format, with a 128-byte header
record similar to the LOADER program:

G-Form | G-Length A-Base G=Min G=Max
1 AXARKARRK 040 XAXKXKHXK MEXXXXX
8b léb leb 16b i6b

where, instead, the A-Base 1o;d address is paragraph 040H, or hyte
address 0400H, immediately following the 8086 interrupt locations.
The entire CPM.5YS file appears on disk as shown in Fiqure 7-2.

all Information Presented Here is Proprietary to niqital Reseatrch

84

CP/M=86 System Guide 7.2 oOrganization of CPM.B5YS

aovtlolrrrrrrirsssie

{0040:0) CS DS ES 55 0000H:

(CCP and BDOS}

(0040:) 2500H: | JMP INIT
JMP SETIOB
(B10S)

INIT: .. JMP O000H

(0040:) 2A00H:

Figure 7-2. CPM.SYS File Organization

where GD#1 is the Group Descrintor containing the A-Base value
followed by a "0" terminator. The distributed 86/12 BIOS is listed
in Appendix D, with an "include" statement that reads the
SINGLES.LIB file containing the disk definition tables. The

SINGLES.LIB file is created by GENDEF using the SINGLES.DEF
statements shown below:

disks 2

diskdef 0,1,26,6,1024,243,64,64,2
diskdef 1,0

endef

The CPM.SYS file is read by the LOADER program beginning at the
address given by A-Base (byte address 0400H), and contrel is passed
to the INIT entry point at offset address 2500H. Any additional
initialization, not performed by LOADER, takes place in the INIT
subroutine and, upon completion, INIT executes a JMP 0000H to begin
execution of the CCP. The actual load address of CPM.SYS is
determined entirely by the address given in the A-Base field which
can be changed if you wish to execute CP/M-86 in another region of
memory. WNote that the region occupied by the operating system must
be exciuded from the BIOS memory region table.

Similar to the LOADER program, vou can modify the BIOS by
altering either the BIOS.A86 or skeletal CBIOS.AB6 assembly language
files which are included on your source disk. In either case,
create a customized BIOS which includes your specialized I/0
drivers, and assemble using ASM-B&6:

ASMBE& BIOS

to produce the file BIOS.HB86 containing vour BIOS machine code.

All Information Presented Here is Proprietary to Digital Research

85

CP/M-86 System Guide 7.2 Organization of CPM,SYS

Concotencie this new BIOS to the CPM.HBS file on your disrribution
disk:

PIP CPMX.H86 = CPM,HE86,BI0S.HES

The tesulting CPMX hex fi1le 15 then converted to CMD file format by
executing

GENCMD CPMX B080 CCDE [A40]

in order to preoduce the CMD memory 1imzge with A-Base = 40,
Finally, rename the CPMX fi1le¢ using the command

REN CPM.SYS5 = CPMX.CMD

and place this file on your 8086 system disk. Now the talloring
process i1s complete; vyou have replaced the BOOT ROM by elther your
own customized BOOT ROM, or & cone-sector cold start loader which
brings the LOADER program, with your custom LDBIOS, 1nto memory at
byte location 04000H. The LOADER progrem, 1n turn, re&ds the
CPM,.SYS flle, wilth your custom BIOS, i1nto memory at byte locat:ion
0400H. Control transfers to CP/M-8%, and you are up and eperating.
CP/M=86 remains 1n memoly until the next cold start operation takes
place,

You can avold the two-step bhoot operation if you construct a
non-stenderd di1sk with sufficient space te hold the entire CPM.5YS
file on the system tracks. In this case, the cold start brings the
CP/M-86 memory 1mage 1nto memory at the loc¢atioen given by A-Base,
and control trensfers to the INIT entry pelnt at offset 2500H.
Thus, the 1ntermediate LOADER progrum 1s eliminated entirely,
although the 1n:itializatien found 1n the LDBIOS must, of course,
take place 1nstead within the BIGS.

Since ASM-86, GENCMD and GENDEF are provided 1in both COM and
CMD formats, either CP/M-80 or CP/M-86 can be used to ai1d the
customizing precess. 1f CP/M-80 or CP/M-86 1s not available, but
you have minimal editing and debugging tools, you <can write
speclalized disk I/0 routines to read and write the system tracks,
as well as the CPM.SYS flle.

The two system trecks are simple to access, but the CPM,SYS
fi1le 15 somewhat more difficult to read. CPM.SYS 15 the first file
on the disk and thus 1t appears 1mmediately following the directory
on the diskette. The directory begins on the third track, and
occuples the first sixteen logicel sectors of the diskette, while
the CPM.5YS 1s found starting at the seventeenth sector. Sectors
are "skewed" by a factor of si1x beginning with the directory track
(the system tracks sre Seguential), so that you must load every
si1xth sector in reading the CPM.S5YS5 fi1le. Clearly, 1t 1s worth the
time #nd effort to use an existing CP/M system to ai1d the conversion
process.

All Information Presented Here is Propriectary to Digital Research

1

Appendix A
Sector Blocking and Deblocking

Upon each call tn the BINS WRITE entry point, the CP/M-86 BDOS
includes information that allows effective sector blocking and
deblocking where the host dAisk subsystem has a sector size which is
a multinle of the basic 128-bvte unit. This avpendix presents a
general =purpose algorithm that can be included within yvour BINS and

that uses the BDOS information to oerform the operations
automaticallv,

ITlpon each call to WRI™E, the BDNS orovides the following
information in register CL:

normal sector write
write to Adirectonrv sector
write to the first sector
of a new data block

0
1
2

Condition 0 occuers whenever the next write ooveration 13 1nto a
nreviously written area, such as a random mode record undate, when
the write is to other than the first sector of an unalloncated black,
or when the write is not into the Airectorv area. CfonAdition 1
occurs when a write into the directory area is performed. Condition
2 occurs when the first record {onlv) of a newlv allocated data
bhlock is written. In most cases, acplication programs read or write
multiple 128-bvte sectors in sequence, and thus there is little
overhead involved in either opberation when blocking and deblocking
records since pre-read operatinons can be aveided when writinng
records.

This aopendix lists the blocking and deblocking algorithm in
skeletal? form {the file 1is included on vour CP/M=-86 Aiskl.
Generally, the algorithms map all TP/M sector read operations onto
the host disk through an intermediate bhuffer which is the size of
the host disk sector. Throughout the vrogram, values and variahles
which relate to the CP/M sector involved in a seek operation are
vrefixed by "sek,” while those related to the host disk svstem are
vrefixed by "hst." The eqguate statements beginning on line 24 of
Appendix F define the manping between CP/M and the host system, and
must be changed if other than the sample host svstem is involved.

The SELDSK entry point clears the host buffer Flag whenever a
new disk is logged-in. Note that althcough the SELDSK entry point
computes and retucns the NDisk Parameter Header address, it does not
vhysically select the host disk at this ooint (it is selected later
at READHST or WRITEHST). Further, SETTRK, SETSEC, and SETDMA simolv
store the wvalues, but do not take anv other action at this point.
SECTRAN performs a trivial function ofF returning the phvsical sector
number .

A1} Information Presented Here is Proprietarvy to nDigital Research
87

CP/M-86 System Guide Appendix A Blocking and Deblocking

The vprincipal entrv points are READ and WRITE. These
subroutines take the place of your orevicug READ and WRITE
operations.

The actual physical read or write takes place at either
WRITEHST or READHST, where all values have been prepared: hstdsk is
the host disk number, hsttrk is the host track number, and hstsec is
the host sector number {which mav require translation to a physical
sector number). You must insert code at this point which verforms
the full host sector read or write into, or out of, the buffer at
hstbuf of length hstsiz. A1l other mapping functions are performed
by the algorithms.

;*******t**t*************t*****t***!*****i*******i****

LRI TN 3
)
>

o Sector Blocking / NDeblocking

:* This algorithm is a direct translation of the

t1* CP/M-BG Version, and is included here for refer-—
:* ence purposes only. The file DERLOCK.LIR is in-
1* cluded on your TP/M=-86 disk, and should be used
+* for actual applications. You may wish to contact
:* Digital Research for notices of updates.

* % %k % % % % N *

stk hdk bbbt brr kb hbrtd kb dd

L2 XETRT SRS SIS RS SRS SSRESESES LSRR S R L)
*
CP/M to host disk constants *
*
(Phis example is setup for CP/M block size of 16K *
with a host sector size of 512 bvtes, and 12 sec— *
tors per track. Blksiz, hstsiz, hstspt, hstblk *
and secshf mav change for different hardware.) *
:*****i******************t*t************i*********l*t*
23: una equ byte ptr [BX] ;name for byte at BY
24: ;
25: blksiz equ 16384 iCP/M allocation size
26: hstsiz equ 512 ;host disk sector size
27: hstsot equ 12 ;host disk sectors/trk
28: hstblk equ hstsiz /128 ;CP/M sects/host buff
29:

¥
30: ’*t******t*******t*t****************it**************t*

LI T T T B L I TR T I T T

B e e
DWW DU E W R DO ~] Oy U Wb

-

[AN

LN

T
W WS MR WE R4 wE e WA
% F % % W * ¥ W

: =+ *
32: ;* secshf is log2{hstblk}, and is listed below for *
33: ;* values of hstsiz up to 2048. *
34; ;* *
35: ;* hstsiz hstblk secshf *
362 ¢+ 2586 2 1 *
37: 512 4 2 *
38: ;% 1024 8 3 *
39: ;¥ 2048 16 4 *
40; ;* *

All Information Presented Here is Proprietary to Nigita) Research

88

CP/M-86 System fuide Arpendix & Blocking and Peblocking

41: ’******t************i*****i******t***t*i**t***i***t***

42: secshf equ 2 :1og2 (hstblk)

43: cpmspt equ hstblk * hstsot ;CP/M sectors/track
44: secmsk equ hstblk=1 ;sector mask

45: ;

45: ;**i*****t**i************************i*i**#**t**t*****
47: ;> *
49: ;* BDOS constants on entry to write »
493 ¥ *
50: :******t*****t*******t*****t***k*****k**k*****tt*t****
$l: wrall equ 0 ;write to allocated
52; wrdirc eqgu 1 iwrite to directory
S3: wrual equ 2 twrite to unallocated
54: ;

55: ;*i********i***i***li****t**t**t*****t****************
56: g* *
57: ;* The BIOS entry points given below show the *
58; ;* code which is relevant to dehlocking only. *
59; ;* *

60: ’*tt**********************tt****t**t***i**i*****i****t
61;: seldsk:

62: ;select disk

63: tis this the €first activation of the drive?
64; test DL,1 :leb = 07

65z inz selset

663 ;this is the first activation, ¢lear host buff
67: mov hstact,0

68: mov unacnt,0

69: selset:

70: mov al,ct ! cbw sput in AX

71: mov sekdsk,al :seek disk number
72: mov cl,4 ¢t shl al,c! stimes 16

73: add ax,offset dpbase

74: mov bx,ax

75: ret

76: 3

77: home:

78: shome the selected disk

79: mov al,hstwrt ;check for pending write
80: test al,al

8l: inz homed

B2: mov hstact,) sclear host active flag
83: homed:

84: mov cx,0 show, set track zero
a5: ; {continue HOME routine)

B6: ret

87: ;

88: settrk:

89: ;set track given by reqisters CX

90: mov sektrk,CX ttrack to seek

9l1: ret '

92: ;

93: setsec:

94: ;set sector given by register ¢l

95: mov seksec,cl isector to seek

All Information Presented Here is Proorietarv to Digital Research

a9

CP/M-86 System Guide

96

97:

98;:

99:
100:
101:
102:
103:
104:
105:
106
107;
108:
109:
110:
111:
112
113:
114
115:
116
117:
118:
119:
120:
121
122
123:
124:
125;
126:
127:
128:
129
130
131:
132:
133:
134:
135
136:
137:
138;
139:
140:
141:
142:
143:
144:;
145:
146
147:
148:
149:
150:

Appendix A Blocking and heblocking

ret

r
setdma:
;set dma address given by X
mov dma_off ,CX
ret
[
setdmab: .
:set segment address given by COX
mov dma_ seg,CX
ret -
H
sectran:
stranslate sector number CX with table at [DX]
test DX,nNX ;test fFor hard skewed
1z notran ;{blocked must be hard skewed)
mov BX,CX%
add BY,DX
mov BL, [BX]
rekt
no_tran:
shard skewed Adisk, physical = logical sector
mov BX,r X
ret
;
read:
;read the selected CP/M sector
mov unacnt,0 ;clear unallocated counter
mov readown,l ;rread overation
mov rsflag,l smust read Adata
mov wrtype,wrual streat as unalloc
jmp rwoper 1to perform the read
!
write:
;write the selected "P/M sector
mov readop,0 ;write overation
mov wrtype,cl
cmp ¢l ,wrual ;write unallocated®
jnz chkuna ;check for unalloc
H
H write to unalleocated, set varameters
r
mov unacnt, {bl1ksiz/128) ;next unalloc recs
mov al,sekdsk ;disk to seek
mov unadsk,al sunadsk = sekdsk
mov ax,sektrk
mov unatrk,ax sunatrk = sektrk
mov al,seksec
mov unasec,al junasec = seksec
r
chkuna:

;check for write to unallocated sector

-
r’

mov bx,offset unacnt
al,una ! test al,al

mov

spOint "UNAY at TNACNT
srany unalloc remain?

All Information Presented Here is Proprieiarv to Digital Research

CP/M-86 System Guide Appendix A Blocking and Deblocking

151: jz alloc s:skip if not

152:

153: more unallocated records remain

154; dec al supacnt = upnacnt-1

155: mov una,al

156: mov al ,sekdsk ;same disk?

157: mov BX,offset unadsk

158: cmp al,una 18ekdsk = unadsk?

159: inz alloc sskin if not

160: ;

161: 3 disks are the same

l162: mov A¥, unatrk

163 cmp AX, sektrk

164: inz alloc iskiv if not

165; ;

166: tracks are the same

167: mov al,seksec 1same sector”®

168; ¢

169: mov BY¥,offset unasec spoint una at unasec

170:

171 omp al,una i1seksec = unasec?

172: inz alloc sskip if not

173:

174: ; match, move to next sector for future ref

175: inc una :unasec = unasec+l

176: mov al,una ;end of track?

177: cnp al,cpmspt ;count CP/M sectors

178: ib noovf ;skip iF below

179:

180: ; overflow to next track

181: mov una,’ tunasec = 0

182: inc unatrk junatrk=sunatrk+l

183: ;

184: noovif:

185: smatch found, mark as unnecessarvy read

186: mov rsflag,0 srsflag = 0

187: jmps rwoper tto perform the write

188: ;

189: alloc:

190: ;not an unallocated record, requires pre-read

191: moy unacnt,0 runacnt = 0

192; mov rsflag,l rrsflag = 1

193: sdrop through to rwoper

194: ;

195= :********tt*t*t******t****t**t*****t*********tt*tt*t**

196: ;* *

197 + Common code for READ and WRITE follows *
. i *

igg; ;*****tt******ﬁttt***t*t*tt*****t*********tt**t*tt****

200: rwoper:

201: ;enter here to perform the read/write

202: mov erflag,0 sno errors {yet)

203: mov al, seksec ;jcompute host sector

204; mov cl, secshf

205: shr al,c¢t

All Information Presented Here is Proprietary to Digita) Research

91

CP/M-86 System Guide Appendix A Blocking and neblocking

206: mov sekhst,al thost sector to seek
207: :

208: ; active host sector?

209: moy al,l

210: xchg al,hstact ;always becomes 1

211: test al,al ;was it already?

212 iz filhst 1£111 host if not

213:

214: ; host buffer active, same as seek buffer?

215; moy al,sekdsk

216: ¢mp al,hstdsk rsekdsk = hstdgk?

217: inz nomatch

218:

219: ; same disk, same track?

220« mov ax,hsttek

221: cmp ax,sektrk thost track same as seek track
222: inz nomatch

223:

224 same disk, same track, same buffer?

225: moy al,sekhst

226+« cmp al,hstsec 1sekhst = hstsec?

227: iz match ;skip if match

?28: nomatch:

229: ivrover disk, but not correct sector

230: mov al, hstwrt

231: test al.,al "Airtvy” buffer *

212 jz filhst tno, don"t need to write
233: call writehst :ves, clear host buff
234: ; {check errors here)

235: ;

236; filhst:

237: :mav have to fill the host buffer

238: mov al,sekdsk ! mov hstdsk,al

239 mov ax,sektrk ! mov hsttrek,ax

240: mov al,sekhst ! mov hstsec,al

241: mov al,rsflag

242 test al,al rneed to rvead”?

243: 9z filhstl

244; ;

245; call readhst jves, if 1

246: ; (check errors here)

247

248: filhstl:

249; mov hstwrt,0 ;no pending write

250:

251: match:

252 ;copy data to or from buffer depending on "reacdon”
253: nov al,seksec smask buffer number

254: and ax,secmsk :1east signif bits are masked
255: mov ¢l, 7 ! shl ax,cl i1gahift Tefe 7 (* 128 = 2#%*7)
256: ;

257: ax has relative host buffer offset

2581 ;

259: add ax,offset hsthuf ;ax bas buffer address
260+ mov si,ax sput in source index register

All Information Presented Here is Proprietary to Digital Research

92

CP/M-86 System Guide Appendix A Blocking and Deblocking

261:
262:
263
264:
265
266
267:
268:
"269:
270
271
272:
273:
274
275;
276:
2773
278
279:
280
281:
2821
283;:
284:
285+
286:
287:
288:
289
2901
291:
292:
293:
294:
295:
296:
297:
298;:
299
g0
301:
302:
303;
304:
305:
306:
307:
308:
309:;
310:
all:
312:
313
314:
315:

All

-

.

-y am

MoV di.dmé_pft sugser buffer is dest if readop
push DS ! push ES 1save seqment registers
mov ES,dma_seq ;set destseg to the users seg

:+S1/01 and DS/ES is swapped
1if write op

mov ©ox,128/2 ;length of move in words
mov al,readop

test al,al swhich way?

inz rwWmove 1skip if read

write operation, mark and switch direction

mav hstwrt,l thatwrt = 1 (dicty buffer now)
xchg si,di ;source/dest index swap
mov ax,hS

mov ES,ax

mov DS,dma_seg ;setup NS,ES for write

cld ! rep movs AX,AX smove as 16 hit words

pop ES ! pop DS irestore zegment registers
data has been moved to/from host buffer

omp wrtype , wrdir iwrite tyove to directorv?
mov al,erflag sin case of errors

inz return_rw tno further processing
¢lear host buffer for directory write

test al,al 1ErTrors?

jnz return_rw ;skip if so

mov hstwet,0 rbuffer written

call writehst
mov al,erflag

return_xw:

ret

r
’****************t***************t*******t*t***t******

t *
¢t* WRITEHST performs the physical write to the host *
3* disk, while READHST reads the physical disk. *
i *

,*****i********t*****t*t*****t**t**t**t***t**t*tt**t*t
writehst:

readhst:

ret

ret

:*i**t*******t********t****t*ﬁt**t****ﬁitﬁt******t****

,*

'L
¥

*

t* UUse the GENDEF utilitv to create disk def tahbles *
*

,**********k***********l*******i***t*****t*****i******

dpbase

equ offset $

Information Presented Here is Proprietary to Digital Research

93

CF/™-50 System Guide Appendix A Blocking and Pebhlncking

316: ; ‘disk varameter tables go here

317: ;

313: :*****tt*i*****it****t***t*****t******t*i*i***********
319: * *
320+ ;* Uninitialized RAM areas follow, including the *
321: ;* areas created by the GENDEF utility listed above. *
322: 3% *

323: :****i**ti****i*t******i*t**t********t***i********t***

324: sek_dsk rb 1 ;seek disk number
325: sek_trk rw 1 ;seek track number
g%g: sek_sec rb 1 sseek sector number
328: hst_dsk rb 1 shost Aisk number
329: hst_trk rw 1 thost track number
330: hst_sec rb 1 shost sector numher
33l: ;
332: sek_hst rb 1 tseek shr secshf
333: hst_act rb 1 thost active flag
224: hst wrt rb 1 thost written flag
5: ;
336: una_cnt cb 1 sunalleoc rec cnt
337: una_ask rb 1 :last unallnc disk
338: una_trk rw 1 tlast unalloc track
gig: una_sec rb 1 ilast unalloc sector
341: erflag rb 1 jerror reporting
342: rsflag rb 1 sread sector flag
343: readop rb 1 ;1 if read operation
344: wrtvpe rb 1 swrite operation tyoe
345: dma_seq rw 1 tlast Ama seament
346: dma off rw 1 ;last Ama offset
347: hstbuf rb hstsiz ;host buffer

348; end

Al). Information Presented Here is Proprietary to Nigital Research

24

Appendix B
Sample Random Access Program

This appendix contains a rather extensive and complete example
of random access operation. The program listed here verforms the
simple function of reading or writing random records upon command
from the terminal. Given that the program has been Created,

assembled, and placed into a file labelled RANDOM.CMD, the CCP Jeve?l
command :

RANDOM X.DAT

starts the test program. The vrogram looks for a file by the name
X.DAT {(in this ovarticutlar case) and, if found, proceeds to prompt
the console for inout. If not found, the file is created before the
prompt is given. FRach prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The inout commands take the form

ng nR 0

where n is an integer value in the range D to 65535, and W, R, and O
are simple command characters corresponding to random write, random
read, and quit processing, reswvectively, If the W command is
issued, the RANNOM program issues the promot

type data:

The operator then responds by tvyping up ko 127 characters, followed
by a carriage return. RANNDOM then writes the character string into
the X.DAT file at record n. If the R command is issued, RANDOM
reads record number n and dismlays the string value at the console.
If the Q command iz issued, the ¥.DAT file is closed, and tha
program returns to the console command wrocessor. The only error
megsage is

error, trvy again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at
the label "ready” where the individual commands are interoreted.
The default file contrcl block at offset 005CH and the default
buffer at offset 00B0H are used in all disk operations. The utility
subroutines then follow, which contain the principal input line
processor, called "readc." This particular oproqram shows the
elements of random access processing, and can be used as the basis
for further program development. In fact, with some work, this
program could evolve into a simple data base management svstem.

All Information Presented Here is Proprietary to Digital Research

95

CP/M-86 System Guide Appendix B Sample Random Access Program

One could, tor example, assume a standard record size of 128
bytes, consisting of arbitrarv fields within the record. & vrogram.
called GETKRY, could be Aeveloped which first reads a sequential
file and extracts a aepecific field defined bv the operator. TFor
example, the command

GETKEY NAMES,DAT LASTNAME 10 20

would cause GETKRY to read the data base fFile NAMES,.DAT and extract
the "LASTNAME® field from each record, starting at position 10 and
ending at character 20. GETKFY builds a table in memorv consisting
of each particular LASTNAME field, along with its 16-bit recorA
number Yocation within the file., The RETKEY program then sorts this
list, and writes & new file, called LASTNAME.KEY, which is an
alphahetical list of LASTNAME fields with their corresponding record
numbers. (This list is called an "inverted index" in information
retrieval parlance.)

Rename the program shown above as ONERY, and enhance it a bit
g0 that it reads a sorted key file into memory. The command line
might appear as:

NUERY NAMES.NAT LASTNAME,XEY

Instead of reading a number, the OIERY program reads an alphanumeric
string which is a carticular kev to find in the NAMES,DAT data base.
Since the LASTNAME.KFY list is sorted, vou can find a particular
entry quite rapidly by performing a "binary search," similar to
looking up a name in the telephone book. That is, starting at both
ends of the 1ist, you examine the entcrv halfway in between and, if
not matched, split either the upper ha'f or the lower half for the
next search. You”ll guickly reach the item vou“re looking for (in
log2(n) steos) where you 1l find the corresponding record number.
Fetch and display this record at the console, just as we have done
in the vrogram shown above.

At this point you’re just getting started. With a little moce
work, you can allow a fixed grouning size which differs from the 128
byte record shown above. This is accomplished by keeping track of
the record number as well as the byte offset within the record.
Knowing the group size, you randomly access the record containing
the proper groun, offset to the beginning of the agroup within the
record read sequentiallv until the group size has been exhausted.

Finally, you can improve QUERY considerablv by allowing boolean
expressions which compute the set of records which satisfy severa?
relationships, such as a LASTNAME between HARDY and LAUREL, and an
AGE ‘'ess than 45. NDisplay all the records which fit this
description. Finally, if vour lists are getting too big to fit into
memory, randomly access your key files from the disk as well.

All Information Presented Here is Proprietary to Nhigital Research

96

CP/M-86 System Guide Appendix B Random Access Sample Program

e BB A e

" o

—
HoOWR AL W N -

1

[T T T |

—
L,

13;
14
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29;:
30:
31:
32
33:
34:
35:
36:
37:
8:
39,
40
41:
42:
43
44
45
46:
47;:
48:
49:
50:
51:
52:
53:
S54:
55:

khhkkkhbhhhhkhhkhbkhbhhhhhhbhhhdhhhhhhkhhhhthhrhkhhhkk
*

Sample Random Access Program for “P/M-86 *
*

khhhhkhrhhrhhhhhhhhdhhbhhhthrhhhkehhhhhhhbhhhrih

* % N %

BDOS Functions

4 mA RE mE WA wA R WA

L

coninp equ 1 iconsole input function
conout egu 2 ;console output function
pstring egu 9 iprint string until “$°
rstring equ 10 ;read console buffer
version egqu 12 ireturn version number
opent equ 15 ;1file oven Function
closef equ 16 :close function

makef equ 22 ;make file function
readr egu 33 rread random

writer equ 34 ;write random

¥

H Bauates for non gravhic characters

cr equ 0dh ;carriage return

Tf equ bDah :line feed

load SP, ready file for random access

WA e W

cseq
pushf ;oush flags in ~CP stack
PoD ax rsave flags in AX
cli ;Aisahle intercupts
mov bx,ds :1a5et 85S register to base
nov s5,bx ;set S9, SP with interru
mov sp,o0ffset stack ; for 80888
push ax scestore the flags
oopf
H
H Ccp/M-86 initial release returns the file
H system version number of 2,.2: check is
: shown below for illustration purposes.
H
mov cl,version
call bdos
cmp at,20h sversion 2.0 or later?
jnb versok
1 bad version, message and go back
mov dx ,offset hadver
call print
imp abort
!
versok:
1 correct version for random access
mnov ¢l ,openf ;oven default fct
mov dx,offset fcb
call bdos

All Information Presented Here is Proprietary to Digital Research

57

CP/M-86 System Guide Appendix B Random Access Sample Program

56: inc al serr 255 becomes Zzero
57: inz ready

58: ;

59: ; cannot open file, so create it

60: mov cl,makef

6l mov dx,offset fcb

62: call bdos

63: ine al serr 255 becomes zero
64: inz ready

65:

66: cannot create file, directory full

67: mov dx,offset nospace

68« call print

69: Amp abort sback to ccp

70: ;

71: ; loop back to "ready* after each command

72: ;

73: ready:

Td: ; file is ready for processing

75: ;

76 call readcom sread next command
T7: mov ranrec,dx sstore input record$
78: mov ranoveE,0h ;clear high byte if set
79: cnp al,” ¢” saquit?

80: inz notqg

81:

B2: ; quit processing, close file

B83: mov cl,closef

Bd: nov dx,offset fcbh

852 call bdos

86: inc al ;err 255 becomes 0

87: iz erroc ;jerror message, retry

88: imps abort :back to cep

89: ;

90: ;

91: ;7 end of quit command, process write

92:

93: ;

94: notq:

95: ; not the quit command, random write?

96 ocmp al.,” w”

97 inz notw

98:

99: this is a random write, fill buffer until ecr
100 mov dx,offset datmsg
101: call print ;data prompt

102: mov cx,127 sup to 127 characters
103: mov bx,o0ffset buff ;destination

104: rloop: ;read next character to buff

105: push cxX :1save loop conntrol
106: push bx jnext destination
107 call getchr scharacter to AL
108: pop bx srestore degtination
109: pop ox jrestore counter
110: onp al,cr send of line?

All Information Presented Were is Proprietary to Digital Research

98

CeE/M-86 System Guide appendix B Random Access Sample Proqram

111: jz erloop

112: ; not end, store character

113: mov byte ptr (bx1,al

114: inc bx rnext to fil?
115; loop tloop tdecrement ¢x ..loop if
116: erlcop:

117: end of read loop, store 00

1%8: nov byte ptr [bx],0h

119:

120: write the record to setected record number
121: mov cl,writer

122: mov dx,offset fcb

123: call bdos

124: or al,al jecror code zero?
125; iz teady ;for another recorqd

126 jmps errox smessage if not

127: ;

128: ;

12%:

130: ; end of write command, process read

131: ;

132:

133: notw:

134: ; not a write command, read record?

135: cmp at,”'mr”

1316 Yz cancead

137; jmps error :skip if not

138: ;

139: read random record

140;: ranread:

141; mov cl ,ceadr

142: mov dx,offset fcb

143: catll hdos

144: or al,al treturn code 00?
145; iz readok

146: imps error

147

148: ; read was successful, write to console
149: readok:

150; call crlf 1new line

151 mov cx,128 imax 12B chacracters
152 mov si,offset buff :next to get

153: wloop:

154: lods al ;next character
155;: and al,07fh rmask parity

156: inz wloopl

157: jmp ready :for another command if
158: wloopl:

159: push o 1save counter
160: push si ;8ave next to get
16l: cmp al,” “ :qraphic?

162: ib skipw iskip output if not grao
163 call putchr soutput character
164: skipw:

165: pop si

All Information Presented Here is Proprietarv to Digital Research

99

CP/M-86 Svstem Guide

166:
167:
168:
169:
170;
171:
172:
173
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
145:
186
187:
188:
189;
190
191:
192;
193:
194;
195;
196:
197;
198
199:
200:
201:
202:
203;:
204:
205:
206:
207
208:
209:
210:
211:
212:
213,
214:
21%:
216:
217:
218:
219;
220:

pop ox
looon wl cop
imp ready

end of read command, al?

WA mp Wy me

Appendix % Random Access Sample Program

sdecrement X and check

errors end-up here

tentry to ANOS iF by INT

jreturn to CCP

tuse function 0 to end e

scharacter to send
s+send character

rcarriage return

s1line feed

;print the string

eryor:
moyv dx,offset errmsqg
call print
jmp ready
: BDOS entry subroutine
bdos:
int 224
rat
H
abort:
mowv cl,d
catl bAos
; utility subroutines for console i/o
getchr s
iread next console character to a
mov ¢l ,conino
call bdos
ret
putchr:
iwrite character from a to console
mov ¢l ,conout
mov dl ,al
call bdos
ret
H
crlf:
:1send carriage return line feed
mov al,cr
call putchr
mov al,1f
call putchr
rat
’ -
print:
sprint the buffer addressed by dx until $
push dx
call crlf
pop dax inew line
mov cl,pstring
call bdos
cet
readcom:

All Information Presented Here ig Prowprietarv to Nigital Research

100

CP/M-86 System GuiAde

appendix 8 Random Access Sample Program

221: ;read the next command line to the conbuf

222: mov dx,offset promot

223 call print scommand?

224; mov cl,rcstring

225: mov dx,offset conbuf

2262 catl bdos ;read command line

227: command Y'ine is present, scan it

228: nov ax,0 rstart with 0000

229; movy bx,offset conlin

230: readc: mov d1, (bx) ;next command character
231: inec bx to next command positio
2321 mov dh, 0 1zero high bvte for add
233; or a1 ,41 scheck for end of comman
234: inz getnum

23%;: ret

236: not zero, numeric?

237: getnum:

238: sub d1,°0"

239; cmp 41,10 jcarry if numeric

240; inb andrd

241: mov cl,10

242 mul cl rmultipy accumulator by
243 add ax,dx s+digit

244: jmps readc s for another char

245: endrd:

246 end of read, restore value in a and return value
247: mov dx,ax steturn value in DX
248: mov at,-1Ibx]

249: cmp al,”a” scheck for lTower case
250: inb transl

251: ret

252; transl: and al,5fR ;translate to upper case

253 ret

254 ;

255: ;

256: ; Template for Page 0 of Data Group

257: Contains default FCB and DMA buffer

258: ;

259: dseg

260+ org 05¢ch

26l1; fcb rb 33 1default file control b)
262: ranrec Iw 1 ;random record positinn
263: ranovf rb 1 thigh order (overflow) b
264: buff rb 128 sdefault DMA buffer
265: ;

266: ; string data area for console messages

267: badver db “sorrv, you need cp/m version 287
268: nospace db “no Airectorv space$”

269: datmsg db “tvpe data: $°

270: errmsg ab “error, try again.$”

271t prompt db “next command? $~

272:

273: ;

274: fixed and variable Aata area

2753 3

All Information Presgented Here is Proprietarv to higital Research

101

CP/M-86 System fuide Appendix B Random Access Sample Program

276: conbuf db conlen ;length of console buffer
277: consiz rs 1 ;resulting size after read
278: conlin rs 32 ;length 32 buffer

279: conlen equ offset § - offset consiz

280:

281; s 31 :16 level stack

282: stack thb 1

283: db 0 rend byte for (ENCMD

284 end

All Information Presented Here is Proprietary to NDigital Reseacch

102

Appendix C
Listing of the Boot ROM

ARRREERRRARA RN ERREREEERRRR AR AR AR AR A RN R AR AT AR AR AL AR AR

* -
* This is the original BOOT ROM distributed with CP/M *
* for the SBC 86/12 and 204 Controller. The listing *
* is truncated on the right, but can be reproduced by *
* assembling ROM.A86 from the distribution Aisk. Note *
* that the distributed source file should alwavs be bod
* referenced for the latest version w
* *
* *

L 22 R4 R R RS2 T AR R RS ER 222 R RSS2 R R RS2SRSS LT)

ROM bootstran for CP/M-86 on an iSBCB6/12
with the
Intel SBC 204 Floppy Disk Controller

Copvright (7)) 1980,1981
Digital Research, Inc.

Box 579, Pacific Grove

California, 93950

kb kit rk btk ki Ak ki hhhn

* This is the BOOT RMM which is initiated *
* by a svstem reset, First, the ROM moves *
* 3 cony of its data areaz to RAM at loca- *
* tion 0O0000H, then initializes the segment®*
* registers and the stack pointer. The *
* various peripheral interface chips on the*
* SB 86/12 are initialized. The 8251 *
* serial interface is configured for a 9600*
* baud asvnchronous terminal, and the in-
* trerrupt controller is setup for inter-

* rupts 10H-17H {vectors at 00040H-0005FH)
* and edge-trigqgered auto-®OI {end of in-
* terrupt) mode with all interrunt levels
* masked-off. Wext, the 5B 204 Diskette
* controller is initialized, and track 1

* sector 1 is read to determine the target
* paragraph address for LOADER. Finallwv,
* the LOADER on track 0 sectors 2-26 and
* track 1 sectors 1-26 is read into the

* target address. Control then transfers
* to LOADER. This program resides in two
* 2716 EPROM s (2K each) at location

* OFFO00H on the SBC 86/12 CPU board, ROM *
* 0 contains the even memory locations, and*
* ROM 1 contains the odd addresses. BOOT *
* ROM uses RAM between 00000H and O00QFFF *
* (ahsolute} for a scratch area, along with*
*
*

the sector 1 buffer. *
I EE Y X R AR 2222220 2222 TXYE LT SRR 2 X

* # & % * F F % ¥ ¥ » % ¥ ¥

h ek wh mp hE e me N4 R M RE R WE WA WE WE W ME WA R WE e MA RS WE TR EE WE ma omp SR W W omg R VN ome e

All Information Presented Here is Proprietary to Digital Research

103

CP/M-86 System Guide Appendix € Listing of the BOOT ROM

oorr
FFO0

0OFF

oooD
000A

HVENY
00AC
00a0
00AR1
00al
00A2
00Aa4
00AS
00AG
00a7
DOAS
00A8
00A9
00AA
ODAF

2580

6008

00DA
ooph

0o0po
00p2
00D4
o0D6

ooco
00C2

FEOD

true equ 0ffh
false aqu not true
debug equ true

:debug = true indicates bootstrao is in same roms
;with SBC 957 "Execution Vehicle®" monitor

:at FE00:0 instead of FPO0:0

H

cr edu 13

1f aqu 10

H

Aisk morts and commands

base204 aagu Dadh
fdccom equ base204+0
fdcstat equ base?04+0
Fdcpacrm equ hase204+1
fdcerslt eaqu basel204+1
fdcrst equ base204+2
dmacadr equ base204+4
dmaccont equ base204+5
dmacscan edqu base204+6
dmacsadr aqu base204+7
dmacmode equ base204+8
dmacstat equ base204+8
fdcse? equ hase2(4+9
fAcsegment equ base204+10
reset204 equ base204+15
;actual console baud rate
baud_rate equ 9600
;value for B253 baud counter
baud eqau 768/ (baud_rate/100)
csts equ OPAh ;iR251 status mort
cdata equ 0ngh P " data vort
tch0 equ on0h 18253 PIC channel 0
tchl equ tch0+2 ;ch 1 port
tch2 equ tch0+4 :ch 2 port
tomd equ tchG+6 ;8253 command port
icpl equ 0COh ;825%a port 0
icp2 equ 0r~2h +B259%a port 1
H
17 NOT DEBUG
ROMSER EQU OFFO0H :;normal
ENDIF
H
IF DREBUG :share orom with 3B
ROMSER EON OPROOR
ENDIF

Al)l Information Presented here is Proorietarv to Nigital Research

104

CP/M=86 System Guide Appendix ¢ Listing of the ROOT RWM

? This long jump prom“d in by hand

1 cseqg DFfffh ;reset goes to here
] TJMEF BOTTOM sboot is at bottom
7 EA 0O 00 0D FF 1¢S5 = bottom of pro
3 ip =0
H SVEN PrRM 0ODn PROM
: 778 - EA 78 - Q0
3 79 - 00 779 - 00
3 TFA - FF ;this is not done |
¥

FEOOD cseq romseq

First, move our data area into RAM at 0000:0200

TR

0000 8CC8 moy ax,cs

0002 BEDS mov As,ax ipoint NS to R for source
0004 REIFOL mov S51,drombeqin ;start of data

0007 BFO0O02 mov M ,o0ffset ram_start ;offset of Aestinat
000A BE800O0O mov ax,0

00an 8ECO mov es,ax ;destination segment is 000
000F BIEG00 mov X,data_length show much to move i
0012 F3Ad ren movs al,al imove out of eprom
0014 BBOOOO mov ax,0

0017 BEDS mov ds,ax :data seament now in RAM
0019 SEDO mov S5,ax

0018 BC2A03 mov so,stack_offset :Initialize stack s
001E FC c1A sclear the directio

IF NOT NEBUG

Now, initialize the console USART™ and baud rate

- wa

mov al,0=h

out csts,al 1give 8251 dummy mode
mov al,40h
out csts,al sreset 8251 to accept mode
mov al,4Eh
out cgsts,al inormal 8 bit asvnch mode,
mov al,3%h
out csts,al ;enable ™ & Rx
mov al,0B6h
out tcmd,al ;8253 ch.2 square wave mode
mov ax,baud
out tch2,al :low of the baud rate
mov al,ah
out tch2,al shigh of the baud rate
H
ENDIF

Setup the 8259 Programmable Tnterrupt Controller

- oup W

001F BO113 mov al,l3h
0021 E6CO out icpl,al :18259a ICW 1 8086 mode
0023 BO10O mov al,l0h

All Information Presented Here is Pronrietary to Nigita) Research

105

CP/M=-86 System Guide

0025
0027
0029
002B
oo2n

002F
0031
0033
0035
0037
0039
003
Q03F
0042
0045
0048
0048
0048

00s1
0054
0057
00s9

0os¢
005F

0062
0066
0069

00sC
006F
0072
0075

0078

007C

0082

0086
o0gs
008a
008cC
008F
00990

E6C2
BOL1F
E6C2
BOFE
ESC2

EGAF
BOO1
E6A2
BOOO
E6AZ
BB1502
EBE100
BB1BO2
ESDBOO
BR2102
ESDS0N0
BRB10602
EG5800

BB2203
BR0OGOQ
8rCo

EBAT00

BRO202
E84700

BE062D03
BBOOGOD
E89%9700

BEOG02
EB3700
BBOBO2
E&3100

8CO6EE802

CT06E6020000

FF2EE602

8a0F
B4C9
7476
E80400
43
ROPIFF

-
L

Appendix € Tisting of the BOOT ROM

out icp?,al 182593 ICW 2 vector A 40-5
mov al,lrh

out icp2,al ;825%a ICW 4 auto ROI mast
mov al ,0FFh

out icp2,al 18259%a W 1 mask all leve

;Reset and initialize the i8RC 204 Diskette Tnterfa

¥
restarckt:

homer @

L

L3

.

~a

pmsg:

ralsc come back here on fatal error
out reset204,AL ;reset ISRC 204 logic and
mov AL,1
out fdecrst AL :1qive 8271 FDC
mov al,0
out fdcrst,alL : a reset command
mov BY,offset specsl
CALL sendcom ;prodaram
mov BX,offset specs2
CALL sendcom : Shugart SA-R00 drive
mov BYX,offset soecsl

call sendcom characteristics
mov BY¥,offset home
CALL eXxecute shome drive @

mov bx,sectorl ;offset for first sector PM
mov ax,0

mov es,ax 1Segment " " " "
call setup_dma

mov bx,offset readld
call execute ;get TO Sl

mov es,ARS
mov bx,0 ;qet loader 'oad address
call setup_dma ;setuv ™A to read loader

mov bx,0ffset readl

call execute reead track O
mov bx,offset read2
call execute sread track 1

mov leao_segment ,ES
getun far Hqump vector
mov leav_offset,0

enter LOADER
jmpf dword ptr lean_offset

mov cl,(BX]
test cl,cl
iz return
call conout
ing BY

jmp pmsg

Al) Information Presented Mere is Proorietary to Digital Research

106

0091
0095
0097
0099
0098
009D

00%E
00AD
00A2
00A4
00a6
00AB

0DA9

00AD

0080
00B4
0OB7
oong
00RC
00RE
0oco
0oc3
00C5
o00c7
10C9

00CB
oocp
00CF

oon3
00Ds5
oon?

00D%
oonB

00nD
00RD

CP/M-86 System Guide

appendix ¢ Listing of the BOOT ROM

conout :
E4DA in al,csts
AB01 test al,l
74FA iz conout
8ACL moy al.cl
E&Ng out cdata,al
3 ret
H
conin:
E4DA in al,csts
ABD2 test al,2
74FA iz conin
E4D8 in al,cdata
247 and al,7%h
c3 ret
H
H
*
axecute: sexecute command string @ IBX}
;<BX> points to length,
;i followed by Command hbvte
:followed by length-1 varameter bvt
H
891w0002 mov lastcom,BX sremember what it w
retry: sretey if not readv
E87000 call sendcom rexecute the comman
jnow, let’s see wha
sof status ooV was
;for that command t
BB1EOQO2 mov BX,Yastcom spoint to command s
8A4701 mov AL,1[BX) :get command or cod
243F and AL, 3fh 1Arop Arive code bi
BYO0OOS mov CX,0800h imask if it will be
3cac cnp AL, 2ch :see if interrupt t
7208 ib execpoll
B93080 mov ~Y,8080hn jelse we use "not ¢
240v% and AL,0fh tunless . . .
3cac¢ omo AL,Och sthere isn”™t
BGOO mov AL,O
7137 ja retucn jany result at all
?
execpol L: ;poll for bhit in b, toagled with c©
E4A0 in AL,PNDOSTAT
2205 and AL,CH
32C174F8 xor AL, L 1 J2 execpall
H
E4Al in AL, fdcrslt ;get result registe
241w and AL,leh :1nok only at resul
7429 iz return 1Zero means it was
H
clie emp al, l0h
7513 ine fatal :1f other than "Not
r
BB1302 mov bx,offset rdstat
E83D0D call sendcom sperform read statu

All Information Presented Here is Proprietary

107

to Digital Research

CP/M-86 System Guide

Q0E3
00ES
ooe?
0o0E9
00ED

0DFO
00F2
00F4

00Fe
0 y:]
00FE
00FF

0102

0103
0105
0107
0109
010
010D
OLQF
0111
0113
0115
0117
0119
011B
0llp
0l1F

0120
0122
0124
0126
0128
0129
0128

0l2p
012F
0131

0132
0134
0136

B420
AB80
75FA
8B1E0002
E9BDFF

B40D
BBDS
8B9r2702

E8BBFF
EBAQFF
58

E92DFF

3

BOO4
E6AB
BOOO
E6AS
B040
E6AS
8CCO
E6AR
8AC4
EGARA
8BC3
E6h4
8ac4d
E6Ad
€3

E4AQ
2480
T5PA
BAOQF
43

8A07
EGAQ

FECY
74Dl
43

E4AD
2420
75FA

appendix C

rd_poll:
in al,fdec_stat
test al,B80h
jnz rd_poll
mov bx,last_com
imp retry

Fatal:
mov ah,C
mov bx,ax

Listing of the BOOT RWM

iwait for command n

srecover last attem
tand try it over ag

: fatal error

;make 16 bits

mov bx,errtbl [BX]

-

call pmsg
call conin
pop ax

imp restart

¥
return:
RET

}

setundma:
mov AL,04h
out amacmode,AL
mov al,0
out dmaccont,AL
mov AL,40h
out dmaccont AL
mov AX,ES
out
mov
out
mov AX,BX
out dmacadr ,AL
mov AL,AR
out Amacadr,AL
RET

AL, AH

H
H
H
sendcom:
in AL, fdcstat
and AL I3 80h
inz sendcom
mov CL, {BX]
inc BX
mov al, [BX]
out fdccom,AL
parmloop:
dec CL
jz return
inc BX
parmpoll:
in AL,fAcstat
and AL,20h
inz parmpoll

print appropriate ercor

message
swait for key strik

;discard unused jte
sthen start all ove

steturn from EXECUT

renable dmac

:get first (dummy)

jforce read data mo

fdcsegment , AL

fdcseqment AL

;toutine to send a command string t

tinsure command not busy
1get count

ipoint to and fetch command
;send command

1see §f any (more) paramete
:spoint to next parameter

:loop until parm not full

All Information Presented Here is Proprietary to Nigital Research

108

CP/M-86 System Guide Appendix ¢ Listing of the BMHYMY" ROM

0138 8a07 mov AL, [R¥]
013a E6AL cut fdcparm,AL ;outout next parameter
013C E9EEFF imp parmloop 190 see about another
H Image of data to be moved to RAM
013F drombegin equ offset §
013F 0000 clastcom dw 0000h ;last command
0141 o3 creadstring Ab 3 :Tength
0142 52 db 52h itead function code
0143 00 db 0 ;track #
0144 01 db 1 ;sector #
?
0145 Q4 creadtrk0 db 4
0146 53 db 53h sread multivle
0147 @0 db 0 ttrack O
0148 02 ab 2 ;sectors 2
0149 19 db 25 sthrough 26
H
0l4n 04 creadtrkl db 4
0148 53 db S3h
0l4ac 01 ab 1 strack 1
014D 01 1b 1 :gectors 1
014E 1A db 26 ;through 28
01l4F 026900 chomel ab 2,69h,0
0152 016cC crdstat0 dab 1,8ch
0154 05350D cspecsl ab 5,35h,04h
0157 QBOSEY db 08h,08h, 0e9%h
015A 0S3510 cspecs? db 5,35h,10h
015D FFFFFF ab 255,255,255
0160 053518 cspecs3 db S,35h,18h
0163 FPFFFP ab 255,255,255
0166 4702 cerrtbl dw offset erQ
0168 4702 Adw offset erl
0le6a 4702 Aw offset er2
016C 4702 Aw offset er3
016E 5702 dw offset erd
0170 6502 aw offzset exrb
0172 7002 dw offset erb
0174 7F02 dw offset er?
0176 9002 aw offset er8
0178 A202 dw offset er9
0178 B202 dw offset erhA
017¢C C502 aw offset erRB
017E D302 dw offgset erC
0180 4702 dw offset erh
0182 4702 dw offset er®
0184 4702 dw offset erF
0186 ODOA4ETS6CEC Cer0 db cr,1f,” Nutl Brror ?7°,0

Al)l Information Presented Here is Proprietary to NDigital Research

109

CP/M-86 System Guide

204572726F72
203F3F00

0186
0186
c186

0196

0la4
OlAP

01BE

01CF

01lEl

01Fl

0204

0212

0DOR436C6F63
6B204572726F
7200
OD0AAC617465
20444p4100
0D0A49442043
524320457272
6F7200
0N0A44617461
204352432045
1272677200
0D0A44726976
65204E6F7420
526561647900
0DOAS7726974
652050726774
65637400
0DOAS4726B20
3030204E6F74
20466F756R64
00
ODOAS57726974
65204661756
7400
ODOAS53656374
6F72204F6F74
20466F756E64
0Q

0186
0186
0186

0225

00E6

0000

0200

0200
0202
0206
0208
0210
0213
0215

Cerl
Cer2
Ter3
Ceord

CerH

teré

ter?

Cer8

Cer9

Cerh

CerR

3

erC

CerD
Cerk
CerF

Appendix

Listing of the ROOT ROM

equ cer0

equ cerl

equ cerl

db cr,1f,"Mlock ®Brror”,0

db ce, V€, "TLate NMpa~, D

db cr, Ff,”ID CRC Frroc”,0

Ab cr,1f, ’npata TR Brror”,N
abn cr,1f, ’nrive Not Ready’,0
Ab cr,1.f,"Write Protect”,l

db cr 1§, Ttk 00 Hot Found”,0
db cr,lf, Write Fault”,0

Adb cr,¥f,“Sector Not Found”,0
egu cer

equ cerl

equ cer0

[
dromend equ offset §

data_length

equ Aromend-drombegin

H reserve space in RAM for data area
] {no hex records generated here)
H

dseg 0

org 0200h
ram_start equ $
lastcom w 1 tlast command
read0 rb 4 ;read track 0 secto
readl b 5 irread T0 $2-26
read2 rb 5 iread Tl 81-26
home rh 3 shome drive 0
rdstat rb 2 ;read status
specsl rb 6

All Information Presented Here is Proprietary to NDigital Research

110

CP/M-86 System Guide

0218
0221
0227
0247
0247
0247
0247
0257
0265
0270
027p
0290
02a2
02B2
02C5
02Dn3
0247
0247
0247

02r6
02ESB

02EA
032A

032a

032a
0328
032n
032F
0331

specs?
specs3
errthl
er(
erl
er2
er3
erd
ers
erh
er?
erB
erd
arh
erB
aer(
erh
erE
erF

lean_offset
leap_ segment

 wm

stack_offset

.
!

*
sectorl

-
’

Toy

Len
Abs
Min
Max

Anpendix ¢ Listing of the ROOT ROM

w
r'w

rw
eqau

16
Tength
er0
erd
erD
length
length
length
length
length
length
Tength
length
length
erl
erl
er0

32
offset

cer(116
cerd 114
cer$ +11
cerh ;15
cer? 117
cerf 1R
cer9 ;16
cerhA :119
cer® 114
cerC :19

:1local stack
$istack from here do

TO S1 read in here
equ offset $§

b
4
rw
f2
4
end

b et et

tABS is all we care

All Information Presented Here is Proprietarvy to Digital Research

111

Appendix D
LDBIOS Listing

LSRR RS ERER S ER R R NSRRI EERSERIEE RS RS E RS S]

*

* This the the LOADER BIOS, derived from the BIOS
* program by enabling the "loader bios" condi-

* tional assembly switch. The listing has been

* edited
* in the BIOS listing which appears in Appendix D
* where elipses "..." denote the deleted portions
* {the listing is truncated on the right, but can
* be reproduced bv assembling the BINS. ABb6 file

* provided with CP/M-86)

*
*

L2 SRR R R ERE LS SRS EEEIESERSSEEESSIELERERER SRERZEES]

PPFP
0000

O remove ovor

'S .2]
'
+ R
L
N
¥
:t

tions which are Auolicated

* & % * % % ¥ % * 3 > »

L2 R EEL SR ES SRR RS2SR 2R R 2R 22T

Basic Inout/Output System (BINS) for
CP/M-R6 Nonfigured for i1i%BC 86/12 with
the iSBC 204 Floopy Nisk fontroller

B % % x

{Note: this file contains both embedded *
tabs and blanks to minimize the list file *

t* width for printing purposes. You mav wish*
t* to expand the blanks before performing *
+* major editing.) *
:*******tt**t*****tﬁ**t*tt*t****ttt****t*t****
3 Copvyriaght (M) 1980,1981

: Digita' Research, Inc.

¥ Box 579, Pacific Grove

¥ California, 93950

r

' (Permission is herebv granted to use

2 or abstract the following program in

H the implementation of CP/M, MP/M or

' CP/NET for the 8086 or 8088 Micro-

] processor)

true equ -1

false equ not true

411 Information Presented Here is Proprietarv to Digital Research

113

CP/M-B6 System Guide Appendix D LDBIOS Listing

FFFF
FFFF
00E0

1200
0003
0406

1200 E93C00
1203 E96100

1239 E96400
123Cc E96400

;******t*I**t**t****ﬁt******t*t******t*****t**

i* Loader bios is true if assembling the

+* LOADER BIOS, otherwise BINS is for the

;* CPM.SYS file. Ble_list is true if we

+* have a serial printer attached to BLCB538
P Bdos*int is interrupt used for earlier

t+* versions.

"+ kRN

:*********t***i****i**i*t**********t*ﬁ***t****

loader_bios equ true
ble_list equ true
bdos_int equ 224 ;reserved BNOS Intertupt
IF not loader_bios
sl !
3 |
’ - . e i e ol W ke e L —— - ——
ENDIF ;not loader_bios
IF loader_bios
: ——————————————————— . ——— —— s T e
d I
bios_code equ 1200h ;start of LNBIOS
cep_offset egu 0003h :;base of CPMLOADER
bdos_ofst equ 0406h ;strioped BDOS entrT

ENDIF ;loader_bios

cseq

org ccpoffset
ceps

orqg bios_code

:***********t****t*******t***i*****tt*******ti
:t *
;* BIOS Jump Vector for Individual Routines *
’* *
:*ttt*******t*tt*t***t*t**it****tt**t*t***t*i*

imp INIT :Enter from BOOT ROM or LOADRR
jmp WROOT tArrive here from BDOS call O
jmp GETIORF ;return I/0 map byte (IOBYTE)
jmup SETIOBF ;set I/0 maop byte (IOBYTE}

All Information Presented Here is Proprietary to Pigital Research

114

123¢
1241
1243
1245

1247
1245

1248
124C
124F

1251
1257
1258

125¢C
125F
1262
1264

1267

CP/M=86 System Guide Appendix D TLDRIOS Listing

8cce
sENG
8EDS
8ECO

BCA916
FC

le
BBOOOO
8EDS

C70680030604
8COE82013
1r

BB1514
ES5A00
B100

E99CED

E99FED

:******i*t**************t******l*********t*.**

- *
:* INIT Entry Point, Differs for LDBIDS and *
;* BIOS, according to “"Loader_BRios™ value :
’*

:i*l****tt**ti**i*ﬁ*****i***t********i***ﬁ****

INIT: ;print signon message and initialize hardwa

mov ax,cs swe entered with a JMPF so
mov £s,ax s MS: as the initial value
mov ds,ax H pS:,

mov es,ax : and ES:

suse local stack during initialization
mov so,offset stkbase
cld :set forward direction

IF not leader_bios

ENDIF ;not loader_bios

IF loader_bios

1This is a BIOS for the LOADER

push ds ;save data segment
mov ax,0
mov ds.,ax rpoint to segment Zero

;BDOS interrupt offset

mov bdos_offsget,bdos_ofst

mov bdos_seqment,S :;bdos interrupt segment
pop As ;restore data segment

ENRDTF 3 loader_bios

mov bx,offset signon

call pmsg ;print signon messaqe

mov cl,0 sdefault to dr A: on coldst

jmp ¢cp ;jump to cold start entry o
WBOOT: Jjmp cep+6 tdirect entry to CCP at com

IF not loader_bios

ENDIF rnot loader_bios

All Information Presented Here is Provrietary to Digita) Research

115

CP/M-B6 System Guide Appendix D LDBIOS Listing

:****t***i*ti**t*t*i****ﬁi**ﬁ*****t****i******

-k *
el CP/M Character T/0 Interface Routines *
* Console is Usart {(iB251a) on i{SmC 86/12 *
i at ports DB/DA *
R *
:******************t**********t***t*****i***t*
cowgm™; iconsole status
126A E4DA in al,csts
const_ret:
1272 c3 ret sReceiver Data Available
CONIN: jconsotle input
1273 B8FAFF ¢atll const
CONOUT : ;console output
127D E4DA in al,csts
LISTOUT: tlist Aevice output
IF ble_list
: | |
1288 E80700 call TLISTST

ENDIF ;blc_list

1291 3 ret
LISTST: ;poll list status
1F blc_list
i |
1292 E44l in al,lsts
31 |
:——-- ——
FNDIF ;ble_list
129¢ C3 ret
PUNCH: jnot implemented in this configquration
READER:
1290 BO1A mov al,lah
1297 C3 ret jreturn EOF for now

All Information Presented Hare is Proprietary to Digital Research

116

CP/M-B6 System Guide

1240
12a2

12A3

12n4
12a6

12a7

12CA

1288

1300
1304

1305
1309

130a

1311
1315

1316
131a

131B
131E

BOOO
c3

c3

2400
c3

ESC9FF

BBOOOO

C606311500

84083115
c3

880E3215
€3

BBD9

890E2A1S
c3

890E2C15
Cc3

BE3B15
Cc3

Appendix ® LDBIOS Listing

GRTIOBF:
mov al,Q :™Y: for consistency
ret :I0BYTE not implemented
SETIORF:
ret ;iobyte not implemented
Zero_ret:
and al,0
ret

;return zero in AL and flag

¢ Routine to get and echo a console character
H and shift it to upper case
uconecho:
call CONIN
- - L]
’**tit****!tt****t*****i*********t****t*****t*
p* *
i* Nisk Input/Output Routines *
.k *
r
;*******************t*****tt*************i*i*t

tget a console character

SELDSK: ;select disk given by register CL
mov bhx,0000h

HOME & ;move selected disk to home position (™rack
mov trk,0 sset disk i/o to track zero

SETTRK: ;:;set track address given by X
mov trk,cl jwe onty use 8 bits of trac
et

SETSEC: :set sector number given by cox
mov sect,cl swe only use B bits of sect
ret

SENTRAN: ;translate sector CX using table at [(nX]
mov bx,cx

SETDMA: ;set DMA offset given by CX
mov Ama_adr ,CX
ret

SETMMAB: ;set NMA segment given by CX
mov dma_seq.CX
ret

GETSEGT: jreturn address of physical memorv table

mov bx,offset seq_table
ret

21l Information Pre=ented Here is Proprietary to Nigital Reseacrch

117

CP/M-B86 System Guide Apvendix © LDBIOS Listing

;*t***t*i***i*t***i*****t*******t******t**ti**

*
1* All disk T/0 parameters are setup: the *
:1* Read and Write entrv points transfer one *
;* sector of 128 bvtes to/from the current *
1* DMA address using the cucrrent Aisk drive :

*

v
’****t*********k*t**k**k**t***t*****tti**i***

READ;
131F BO12 mov al,lzh rbasic read sector command
1321 EBO2 jmps r_w _common

WRITE:
1323 BOOA mov al,0ah :basic write sector command

r_w_common:
1325 BB2FP15 mov bx,offset io_com ;point to command stri

;k*****i***ti***************i********t********

1* *
T NPata Areas *
3 *
:*i***********************i**t*tﬁ*t*t*t*******
1415 data_offset equ of fset §
dseg
orqg data offset ;contiguous with co
ir loader_bios
‘1 l
1415 0DOAODOA signon db ce, €,cr,1f
1419 43502F4D2D38 db “CP/M=-B6 Version 2.27,cr,V€,0
362056657273
696F6E20322F
320n0a00
| !
ENDIF :loader_bios
IF not loader_bios
: I
1! |
ENDIF ;hot loader_bios
142F ODOA4BEFEN6S5 bad_hom db ¢r,1¥, "Home Error”,cr,1f,0
include singles.lib :;read in Aisk definitio
H NISKS 2

A1l Information Presented Were {s Proprietary to nigital Research

118

CP/M-86 System Guide

= 1541
=1668 00

1669
16a9

16a9 00

0000

dpbase

loc stk
stkbage

Appendix D LDBIOS Listing

equ $;Base of Disk Param

db 0 ;Marks End of Modul

rw 32 ;local stack for initialization
equ offset §

db 0 :1fill last address for GENCMD

sARERRERRERERARRALRARRRERARRERRRRARARRRR AR R AR

'
H

’*
:*

*
Dummy Nata Section *
*

gtk bk kbt kA bbb bbbk kbbb sh bbbt bd

dseg 0 ;absolute low memory
oryg] ;i {(interrupt vectors)

LI}

END

All Information Presented Here i3 Proprietary to Digital Research

119

Appendix E
BIOS Listing

Ak khkr kA hkhkhkhrdh kbt hidkhrrhhhsdhiih

*

* This is the CP/M-86 BIOS, derived from the BIOS
* program by disabling the "loader_bios" condi-
* tional assembly switch. The listing has been
* truncated on the right, but can be reproduced
* by assembling the BIOS.A86 file provided with
* CP/M-86,

* with the Intel SBC 86/12 with the SBC 204 con-
* Use this BIOS, or the skeletal CBIOS
* listed in appendix E, as the basis for a cus-
* tomized implementation of CP/M-86,

* provided with CP/M-86)

*
*

trolleg,

L2 s s LR 22 R iR R 2RSSR R SRR E DD

FFFF
0000

This BIOS

-k
’

¥
.k
¥

R e R WR W R W W W

tru

allows CP/M-86 operation

R I IR N B N B N B A

2R E 222 E X RS A2t ARl s 2 s ettt Rl

Basic Input/Output System (BINS) for
CP/M-86 Configqured for i5BC B86/12 with
the iSBC 204 Floppy Disk Controller

LR O B B 3

»

(Note: this file contains both embedded
tabs and blanks to minimize the list file *
width for printing purovoses. You may wish*
to expand the blanks before performing *
major editing.) *
(A2 2SS SRR RS ERESESER SR 2R X2 RS])

Copyright (C) 1980,1%81
Digital Research, Inc.
Box 579, Pacific Grove
California, 93950

(Permission is hereby granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro-
processor)

e equ -1

false egu not true

All Intormation Presented Here is Proprietarv to Digital Research

121

CP/M-86 System Guide Appendix E BIOS Listing

0000
FFPF
00ED

2500
0000
0BOS

00DA
0oDp8

0041
0040
0o60

’*********i***********************tt***i****i*

*
:* Loader_bios is true if assemblina the *
t+* LOADER BIOS, otherwise BIOS is for the *
;¥ CPM.SYS file. Blc_list is true if we *
:+* have a serial printer attached to BLCBS3A »
t* Bdos_int is interrunt used for earlier *
1* versions. *

»*

*

:****k*****t************************i**t**i**

loader bios equ false

ble list equ true

bdos_int equ 224 :reserved BNOS Interruot
IF not loader_bios

} —————————— o -t e

; !

bios_ core equ 2500h

ccp_offset equ 0000h

bdos_ofst equ 0BO6h ;RNNS entry woint

TNDIF snot ‘oader_bios

IF loader bios
§ e mm e mmemaemmmmaamm——mmmm e
tl |
bios code equ 1200h ;start of LDRINS
cop offset equ 0003h ;base ot CPMLOADER

bdos_ofst equ 0406h ;strioped BDOS entrT

ENDIF i1cader_bios

csts equ OPAh ;18251 status ovort
cdata equ DDAh " data oort

IF btc_list
3 | |
1sts aqu 4lh ;2651 Neo, 0 on BLCA538 stat
ldata equ 40h ; " " won " data
ble reset equ 60h ;reset selected USARTS on B

#
ENDI¥ :ble_tist

:*****t***************************t*****ﬁ****t

=% *
* Intel iSBC 204 nisk Controller Ports *
. *

,tt*t*****i*******************t***************

All Information Presented Here is Proprietarv to Digital Research

122

CP/M-B6 Sysatem Guide Appendix E BIOS Listing

0oaD hase204 equ Oalh :5B204 assigned ad
00A0 fdc_com equ base204+0 ;8271 FPC out comma
oon0 fdc_stat equ base204+0 ;8271 in status
00Al fdc_parm equ base204+1 ;8271 out parameterv
oonl fdc_rsit equ base204+]1 18271 in result
00a2 fdc_rst equ base204+2 ;8271 out reset
00A4 dmac_adr equ base204+4 ;8257 DMA base addr
00Aas dmac_cont equ base204+5 ;8257 out control
00p6 dmac_scan equ base204+6 ;8257 out scan cont
00A7 dmac_sadr equ base204+7 18257 out scan addr
oca8 dmac_mode equ base204+8 18257 out mode
00A8 dmac_stat equ base204+B 18257 in status
00A9 fdc_sel equ base2(04+% ;FDC select port (n
00AR fdc_segment equ base204+10 ;segment address re
Q0AFP reset 204 equ base204+15 ;reset entire inter
000a max_retries equ 10 smax retries on dis
sbefore perm error
Q00D cr equ 0dh ;carriage return
000A 1f equ Oah ;line feed
cseq
org cepoffset
ccp:
orq bios_code
:*******t*i*****i*****t*****************t*****
. *
;* BIOS Jump Vector for Individual Routines *
- R *

;*********t*****t*i*******************i*****it

2500 E33C00 jmp INIT 1Enter from BOOT ROM or LOADER
2503 E98400 jme YBOOT ;Arrive here from BDOS call 0
2506 E99000 imp COMST ;return console kevboard status
2509 E99600 jmp CONIN ;return console keyboard char
250C B99nD00 imp CONOUT ;write char to console device
250F E9A500 jmp LISTOUT swrite character to list device
2512 E9B700 jmp PUNCH ;jwrite character to punch device
2515 E9B404Q jmp READER sreturn char from reader device
2518 E9FFO0 jmp HOME smove to trk 00 on cur sel drive
2518 E9DBOO imp SELDSK ;select disk for next rd/write
251E E9)E01 jmp SETTRK i1set track for next rd/write
2521 E91001 imp SETSEC ;set sector for next rd/write
2524 E91901 jmp SETDMA ;set offFset for user buff (DMA}
2527 B924401 jmp READ itead a 128 bvte sector

2523 E92501 imp WRITE swrite a 128 byte sector

252D E99100 jmp LISTST jreturn list status

2530 E90601 jmp SECTRAN sxlate logical->physical sector
2533 E90F01 imp SETDMAB 182t seg base for buff (DMA)
2536 E91101 imp: GETSEGT sreturn offset of Mem hesc Table
2539 E99300 jmp GETIOEF sreturn I/0 map byte (INBYTE)
253C E99300 jmp SETIOBF ;set I/0 map byte {IOBYTE}

All Information Presented Here -is Proprietary to Digital Research

123

CP/M=-86 System Guide

253p
2541
2543
2545

2547
254a

2548
254C
254F
2551

2553
2559
255D
2560
2563
2566

2568
256E

256F
2571
2573
2575
2577
2579
257B
257D

acce
8EDO
8EDS
8ECO

BrE429
FC

1E
B80G0O0O
BED®
8ECO

?70600008D25
8COE0 200
BFN400
BEOOQQ
BO9FEODL

F3AS

£70680030608
1F

BOFFP
E660
BO4E
E642
BOJE
F642
BO37
E643

Avpendix B BIOS Listing

:**i**********i*****i*************t***********

- % *
:* INIT Entry Point, Differs for LDBIOS and *
:* BIOS, according to "Loader Bios" value *
R - *
‘

:t*t**t*t***k***************************k*****

THIT: ;print signon message and initiatize hardwa

mov ax,os :we entered with a JMPF so
mov ss,ax : CS: as the initial value
mov ds,ax H ns:,

mov es,ax : and ES:

suse local stack
mov sp,offset stkbase

cld

e e

Setup al?

during initialization

:set forward direction

not loader_bios

This is a BINS for the rPM,.SYS file.
interrupt vectors in low
memory to address trao

push ds ;save the PS register
mov ax,0

mov ds,ax

mov es,ax rset RS and NS to zero

;setup interrupt 0 to address tram routine

mov int0_offset,offset int _trap
mov int0_segment, S

mov di,4

mov si,0 sthen propagate

mov <x, 510 rtrap vector to

rep movs ax,ax :all 256 interrupts

;BDOS offset to proper interrupt
mov bdos_offset,bdos_ofst
wop ds

;restore the DS register

:**************************i*****ti*****ti*ti*

vk
:* National

*

"BLC 8538" Channel 0 for a serial*

;* 9600 baud printer - this board uses 8 Siq-*
:* netics 2651 lUzarts which have on-chip baud*

+* rate generators. *
- *

'
:********i*********************t**********t***

mov at,0FFh

out ble_reset,al rreset all usarts on 8538

mov al,.4Rh

out ldata+2,al iset usart 0 in asvnc B8 bit

mov al,3Eh

out ldata+2,al j;set usacrt 0 to %600 baud

mov al,37h

out ldata+3,al ;enable Tx/Rx, and set up R

All Information Presented Here is Proprietary to Digital Research

124

CP/M-86 System Guide Appendix E BIOS Listing

-

ENDIF inot loader_bios

IF loader_bios

-
]
]

:This is a BIOS for the LOADER

push ds rsave data segment
mov ax,0
mov ds,ax ;point to segment zero

+tBDOS interrupt offset

mov bdos _offset,bdos_ofst

mov bdos_segment,CS ;bdos interrupt segment
pop ds ;restore data segment

ENDIF tloader_bios

257F BB4427 mov bx,offset signon

2582 EB86600 call pmsg ;print signon message

2585 B10O mov cl,0 sdefautt to dr A: on coldst

2587 E976NA imp cecp ;jump to cold start entry o

258A E979DA WBOOT: iJmp ccp+é tdicrect entry to CCP at com

IF not loader_bios

a1 !
int_trap:

2580 Fa cli ;block intercupts

25BE 8CCS8 mov ax,cs

2590 SEDS mov ds.ax ;get our data segment

2592 BR7927 mov bx,offset int_trp

2595 E85300 call omsg

2598 F4 hit shardstop

= we
—

ENDIF ;not loader_bios

ARRAA AR AR R AR RAARRE AN R AR AR ARk h bR

i* *
s ¥ CP/M Character I/0 Interface Routines *
il Console is Usart (i825la) on iSBC B&/l2 *
R at ports D8/DA *
i A *
:******t***************i************t*i**ﬁt***
CONST: sconsale status

2599 E4DA in al,csts

2598 2402 and al,2

259D 7402 jz const ret

259F OCPP or al,25% treturn non-zero if RDA
const_ret:

25a1 C3 ret tReceiver Data Available

All Information Presented Here is Proprietary to Digital Research

125

CP/M-B6 System Guide Appendix E BIOS Listing

25a2
25A5
25A7
2549
25AB

25AC
25AE
25B0
25B2
25B4
25B6

25B7
25BA
25BC
25BE

25C0

25C1
25C3
25CS
25C7Y
25C9

25CB

25¢CC
25CE

25CF
25D1

ESF4FF
74FB
E4D8
247F
c3

E4DA
2401
T4FA
8acl
E6D8
c2

E80700
T4FB
8acl
E640

c3

E441
2481
3¢81
750A
OCFP

c3

BO1A
c3

BOOO
c3

CONIN: ;console ipout
call const
iz CONIN ;jwait for RDA
in al,cdata
and al,7fh sread data and remove parit
ret
CONOUT « ;console output
in al,csts
and al,l :rget console status
jz CONQUT iwait for TRE
mov al,cl
out cdata,al Pransmitter Buffer Empty
ret tthen return data
LISTOUT: ;list device output
IF Me_1list

B et e e e e e e e e e e o e T i ok ke o e el il ks
H - -

-

¥

call LIsSTST

iz LISTOUT twait for printer not busvy
mov al,cl
out 1data,al :8end char to T1 810

ENDIF tble_list

ret
LISTST: :poll list status
IF bBle list
1 |
in al,ists
and al,Blh tlook at both TxXRDY and DTR
cmp al,8lh
inz zero ret ;jeither false, printer is b

or al,25%5 ;both true, LPT is rery

- e

FNDIF :ble_list
ret
PUNCH: ;ncot implemented in this configuration

READER:
mov al,lah

ret sretucn BOP for now
GETIOBF:

mov al,l 1™Y: for consistency

ret ;IORYTE not implemented

All Information Preszented Here is Proprietary to Digital Research

12¢

25Dp2

2503
25ns

25D6
25n9
25DA
25pC
25DF
25E0
25E2
25E4
25E6
25E8

25Ea

25EB
25ED
258F
25F1
2573
25¥%6
2597

25F9
25FC
25FF
2601
2603
2606
2608
2603

260D
260F
2611

CP/M-86 System Guide Appendix ¥ BIOS Listing

c3

2400
c3

EBCOFF
50
BACSH
EBCDFF
58
cel
7206
3CTA
7702
2020

Cc3

BAD7Y
84C0
7428
8ACE
E8B6FF

EBF2

BBOQOO
80pP902
7318
BO8O
8OF900
7502
B040
A26928

B500
8BDY
BlO4

SETIORF:

ret ;iobyte not implemented
zero_ret:

and al,0
ret steturn zero in AL and flag
;3 Routine to get and echo a console character
H and shift it to upper case
uconecho:

call CONIN ;9et a console character

push ax

mov cl,al ;save and

call CONOUT

pop ax t1echo to console

cmp al,”a”

ib uret tless than "a” is ok

cme al,"z”

ja uret :greater than “z° is ok

sub al,"a"-"A" ;else shift to caps
uret:

ret
: utility subroutine to print messages
PmMEq

mov al,[Bx] tget next char from message

test al,al

jz return $11f zero return

mov CL,AL

call CONOUT sprint it

inc BX

jmps pmsg ;next character and lcoo
:****ﬁ**t***t**t&*t*****t********t************
1* *
;: Disk Input/Output Routines :
[4

:***************************t********t***t****

SELDSK ¢ iselect disk given by register CL
mov bx,0000h
cmp cl,2 tthis BIOS only supports 2
inb return sreturn w/ 0000 in BX if ba
mov al, 80h
cme cl,0
jne sell :drive 1 if not zero
mov al, 40h telse drive is 0

sell: mov sel_mask,al ;save drive select mask
jnow, we need disk paramete
mov ch,0D
mov bx,cx :BX = word (L)
mov c1.,.4

All Information Presented Here is Proprietary to Digital Research

127

CP/M-86 System Guide Appendix E BIOS Listing

2613
2615
2619

261A
261F
2622
2625
2627
2624
262D

262F
2633

2634
2638

2639
2638
263D
263F

2640
2644

2645
2649

264A
264D

264E
2650

D3E3
D Rak rlodt:]
c3

Ce066C2800
EBGE28
EB3500
7482
BBEA2T
EBBEFF
EBEB

880E6C28
C3

BBOE6D28
C3

88D9
03pAa
BALF
C3

890E6528
c3

890E6728
c2

BB7328
Cc3

BO12
EBO2

shl bx,cl imultiply drive code * 16
;create offset from Disk Parameter Base
add bx,offset dp_base

return:
ret

HOME : imove selected disk to home position {Track
mov trk,0 ;set disk i/o to track zero
mov bx,offset hom_com
call execute

42 return :home drive and return if O
mov bx,offset bad_hom jelse print
call pmsg ; "Home Frror”
jmps home ;and retrv

SBETTRK: ;set track address gqiven by CX
mov trk,cl swe only use 8 bits of trac
ret

SETSEC: :set sector number given by ¢x

mov sect,cl iwe only use 8 bits of sect
ret

SECTRAN: :translate sector CX using table at [DX]
mov bx,cx

add bx,dx ;add sector to tran table a
mov bl, [bx] ;get logical sector
ret

SETOMA: ;set DMA offset given by CX
mov dma_adr ,CX
ret

SETDMAR: iset DMA segment given by CX
mov dma_seq 7%
ret

GETSEGT: :return address of ohysical memory table
mov bx,offset seq_table
ret

:***tt**i********t*********t*****************t

:* A1l disk I/0 parameters are setup: the *
:* Read and Write entry points transfer one *
:* sector of 128 bytes to/from the current *
1* DMA address using the current disk drive *
*
*

:ﬁ***tk*i*t***t*t*****i*****t*****tk****tt*t*

READ:

mov al,l2h tbagic read sector command
imps r_w_common

WRITE:

All Information Presented Here is Proprietary to Digital Research

128

CP/M-86 System Guide Appendix ® BIOS Listing

2652

2654
2657

265a

265E

2663
2667

266A
266E
2871
2674
26786
2678
2678
267D
267F
2681

2683
2685
2687
2689

268B
268D
268F

2691
2693
2695
2699

2698

BOOA

BR6A2SB
884701

8%1E6328

C60662280A

BBlE6328
E88900

8BLE6328
BA4701
B9Q0O8
3Cc2c
720B
B9848B0
240F
3coc
B00O
7736

E4A0
22¢s
32cl
74F8

E4AL
241E
7428

3C10
7425

FEOE6228
7508

B40O

mov al,0ah :bagic write sector command

r_w_common:
mov bx,offset io_com ;point to command stri
mov byte ptr 1(BX],al ;put command into str
: fall inte execute and return

execute: execate command string.
[BX] points to length,
followed by Command byte,
followed bv length-1 parameter byte

- e

mov last_com,BX :save command address for r
cuter_retrv:

;allow some retrving

mov ttryv_cnt,max_retries
retrv:
movy BX,last_com
call send com ;transmit command to 18271
check status poll

mov BX,last com

mov al,libxT :get command op code

moy cx,0800h rmask if it will be "int re
cmp al,2ch

ib exec_poll ;ok if it 1s an interrupt t
mov cx,B8080h ;else we use "not command b
and al,Dfh

emp al,Och runless there isn”“t

mov al,0

' anv result
;oolt for bits in CH,
; toggled with bits in CL

ia exec_exit
exec_poll:

in al,fdec stat ;read status

and al,ch
xor al,cl r isolate what we want to
iz exec_pol) ;and loop until it is dAone

iOperation complete,
in al,fdc_rslt ; see if result code indica

and al,leh
1z exec_exit ino error, then exit
;some type of error occurre
cmp al,l0h
ie dr_nrdy twas it a not ready drive *

H =
dr_rdy: ; then we just retry read or write
dec rtry_cnt

inz retry : up to 10 times
] retries do not recover from the
' hard error

mov ah,0

All Information Presented Here is Proprietary to Digital Research

129

CP/M-B6 System Guide Appendix E BIOS Listing

269D
269F
2643
2686
26A8
26AB
26AD
268F
2681
26B3
26B5
2687

2689

26BA
268D
26BF
26C2
26C4
26C7

26CA
26CD
26CF

26D1
26D3

26D4

2607
2609
26DE
26E0

26E2
26E5

26E8
26EA
26EC
26EE
26F0

8BD8
8B9F9127
E845FF
E4D8
E82BFF
ic43
7425
3Cs2
74n8B
3049
741A
OCPF

Cc3

EB1A00
T5h4
E81500
159F
BBO228
EB2Z1FF

EEODADUD
74FB
EB92

2400
c3

E9B3FE

B640
F606692880
7502
B&04

BB7128
EBOBOO

E4AQ
ABB0
75FA
E4Al
84ce

mov bx,ax :make error code 16 bits
mov bx,errthl [BX]

call pmsg ;joprint appropriate message
in al,cdata ;flush usart receiver buffe
call uconecho :read upper case console ch
cmp al;'C'

je wboot 1 ;cancel

emp al,"R°
je outer_retrvy jretry 10 more times
cmp al,’I”

je z_ret signore error

or al,25% ;set code for permanent err
exec_exit:

ret
dr_nrdy: there to wait for drive ready

call test_ready

jnz retry :if it“s ready now we are 4

call test_ready

inz retry :1if not ready twice in row,

mov bx,offset nrdymsg
call pmsg ;"Drive Wot Ready™

nrdy0l;

call test_ready

9z nrdy0l show loop until drive ready

imps retry :then go retry without decr
zret:

and al,0

ret treturn with no ecror code
whoot_1: jcan”t make it w/ a short 1

imp WBNOT

:**********************k**********************

. *

L

:* The i8271 requires a read status command *

:* to reset a drive-not-ready after the *

:* drive becomes ready *

v K *
*

=t*************i******t**************i*****t*

test_ready:

mov dh, 40h ;proper mask if Ar 1

test sel mask,80h

jnz nrdy

mov dh, 04h smask for dAr 0 status bit

nrdy2:
mov bx,offset rds com
call send_com
dr_poll:
in al,fdc_stat j;get status word
test al,80h

jnz dr_poll ;wait for not command busy
in al,fdc_rslt ;get "special result®
test al,.dh :look at bit for this drive

All Information Presented Here is Proprietarv to Digital Research

130

26F2

26F3
26F5
26P7

26F9
26PC
26FE
2700
2702

2704
2706
2708

2704
270C
270E
2710
2712
2714
2716
2719
2718
271D
271F
2722
2724
2726

2728
272a
272B
272D
2731

2733
2735
2737

CP/M-86 System Guide

Cc3

E4a0
AB80
75FA

8A4701
3Cl2
7504
Bl40
EROG

3Coa
7520
B1L80O

BEOO4
E6AS
BOOO
E6AS
8acl
E6AS
Al6528
EGA4
8ACd
E&A4
hlée728
EGAA
BACY
E6AA

BAOF

43

an07?
0A066928
E6AD

FECY
7482
43

ret

:****tt****ti********ii*

Aopendix E RIOS Listing

sreturn status of ready

khkkkkhhkhkhkkthkhhrrhrntih

:+* Send_com sends a command and parameters

;* The DMA controller i
i1* if this is a read or

¥
g ARAERERRRRRNAAERRAR AR

send_com:
in al,fdc_stat
test al,80h
inz send_com

ssee if we have

mov al,l{bx]
cmp al,l2Zh
ine write mavhe
mov cl,40k
imos init_dma
write_mavbe:
cmp al,0ah
jne dma_exit
mov ¢l,80h
init_dma:
swe have a read or write

: to the i8271l: B8X addres<ses parameters.

*
*
*
s also initialized *
write *

*

*

Akkbhdhkt Nk hdhh

sinsure command not busy
s1looo until readv

to initialize for a DMA ope
;get command byte

;if not a read it could be
;is a read command, go set
sleave PMA alone if not rea
;we have write, not cead

operation, setup NPMA contr

H {CL contains proper direction bit)

mov al,04h

out dmac_mode,al
mov al .00

out dmac_cont,al
mov al,c

out dmac_cont,al
mov ax,dma_adr
out dmac_adr,al
mov al,ah

out dmac_adr,al
mov ax,dma_seq

senable dmac

;send first byte to con
s1load direction register
s+send low bvte of DMA

;send high byte

out fdc_seqment,al ;send low bvte of segmen

mov al,ah

out fdc_segment,al ;then high segment addre

dma_exit:
mov ¢l, [BX]
ine BX
mov al, [BX]
or al,sel_mask
out fdc_com,al
parm_loop:
deec el
iz exec_exit
inc BX
parm_poll:

1get count

:get command
smerqge command and drive co
;send’ command byte

sno (more) parameters, retu
;point to (next) parameter

All Information Presented Here is Proprietary to Digita) Research

111

CP/M=86 System Guide

2738
273A
273¢
27138
2740
2742

E4A0
AB20
75F%
8n07
E6AL
EBEF

2744

2744
2748

276A

2779

2791
2799
27al
27n9

0D0AODOA

202053797374
656N2047656E
657261746564
202020203131
204A616€2038
310p0A00

O0DOA4B6F6D6S
204572726F72
onoAQQ

0DOA496ET7465
727275707420
547261702048
616C740D0A00

B127B127B127
Bl127
Cl27p127DE27
EF27
022816282828
ip28
4D28B127B127

in al,fdc stat

test al,20h
inz parm_pcll
mov al, [BX]

Appendix E BIOS Listing

;test “parameter register f
:idle until parm reg not fu

out fdc_parm,al
jmps parm_loop

:send next parameter
;90 see if there are more p

:*i'i**i**t********t**l‘**i*********************

r
:****i‘*i’*i*******i**l‘i****t*t*****t*****tt***i

Data Areas

*
*
*

scontiguous with co

‘Cp/M-86 Version 2.2”°,cr,1€,0

data_offset equ offget S
dsegq
org data offset
IF loader_bios
e mm— o m— - ———————————————————— -—
31
signen 4ab cr,lf,cr,1f
ib
3
: ————————————————————————— o ——— ——— ——— o — ——
ENDIF :loader bios
IF not loader _bios

[
signon db

bad_hom db

int_tro db

er,1f,cr,1¥

-

;not loader_bios

System Generated

= 11 Jan B17,c

cr,1f, Home Error”,cr,1f,0

¢r, 1€, " Intercupt Trap Halt”,ce,1£,0

erctbl Aw er0,ecrl,er2,erl

dw erd,erS,erb,er?

dw er8,er9,erd,erB

dw erC,erD,erE,erF

All Information Presented Here is Proprietary to Digital Research

132

CP/M-86 System Guide

2781

B127

ODOA4RTSECEC
204572726772
203%3F00

27B1
2781
278l

27¢C1

27nl

27DE

27EF

2802

2816

2828

283D

284D

ODOR436C6F6E3
6B204572726F
72203AD0
ONDA4CE1T 465
204440412034
00
0n0R49442043
524320457272
€FT72203A00
0DOA44617461
204352432045
T2726FP72203A
00
ODOR44726978
65204E6F7420
526561547920
3A00

0DOAST 726974
652050726774
656374203A00
0D0AS54726B20
3030204E6F74
20466F7156F64
203A00
O0DOAS7726974
65204661756C
74203400
0DOA53656374
6F72204E6F74
20466F756R64
203A00

27Bl
278l
278l
2802

2862
2863
2865
2867
2869

2864
2868
286C

All Information Presented Here is

00
0000
0000
0000
40

03
00
00

er0 ib
erl equ
er? equ
erl equ
erd db
ers db
eré db
er? dh
erf db
er9 db
erh Ab
arB ab
ert db
erd equ
erk edqu
erFP equ
nrdymsg equ
rtey_cnt db
last_com dw
dma_adr dw
dma_seq dw
sel mask db
: Vari
io_com db 3
rd wr db 0
trk Aab 0

Anpendix B RBIOS Listing

ct.1f,”Nul} Brror »*",0

er(
erl
er0

cr,,1f,”Clock Error :7,0

cr,1f, Late DMA :”,0

er,Vf,”In CRC Error :7,0

cr,1f,"Nata CRC Ercor :”,0

cr,1f,’nrive Not Readv :7,0

cr,lf, Write Protect :”,0

er,1f,”mrk 00 Not Found :”,0

cr,1f, "Write Fault :~,0

cr,)f,”Sector Not Found :”,0

;jdisk error retrv counter
;address of last command string
sIma offset stored here

;dma segment stored here

40h :select mask, 40h or 80h

ous command strinags for 18271

:length

;read/write function code
strack #

Proprietary to Digital Research

133

CP/M-86 System Guide Apvendix E BIOS Listing

2B6D

2B6E
2871

2873
2874
2876
2878
287

00

022900
oL2c

0z

DF(2
2105
0020
0020

287¢

AB280000
00000000
528928
64294529
AB280000
00000000
C5289C28
93297429

= 289

=289C
=289%E
=289F
=28A0
=28A1
=28A3
=28A5
=28n6
=28A7
=28A9

1A00
03
07
00
F200
3700
co
0o
1900
0200

= 28AB

=28AR
=28AF
=28B3
=288B7
=28BB

01070013
19050811
1703090F
1502080
141A060C
1218040A
1016

001F

= 0010

289C
001F
0010
28a8B

28¢5

sect db 0 rsector %
hom_com db 2,29h,0 shome dArive command
rds_com db 1,2¢h ;read status command
H System Memory Seqment Table
segtable db 2 :2 segments

dw tpa_seqg :lst seg starts after BIOS

dw tpa_ len rand extends to 08000

dw 2000h rsecond is 20000 -

dw 2000h :3RPFFPF (128k)

inglude s1ngles.lib jread in disk definitio
H NTSKS 2
dobase equ 8 ;Rase of Tisk Param
dped Aw x1t0,0000h :Translate ™able

dw 0000h,N0O0K ;Scratch Area

dw dirbhuf,dobd tDic Buff, Parm Rlo

dw csvl,alvl sCheck, Alloc Vecto
dpel Aw x1t1,0000h ;Transtate Table

dw 0000h,0000h :Scratch Area

Aaw dirbuf,Apbl :Dir Ruff, Parm Blo

dw csvl,atvl :Check, Allnc Vecto
H NISKDEP 0,1,26,6,1024,243,64,64,2
dpb0 equ offset § ;Nisk Parameter Rlo

dw 26 1Sectors Per Track

db 3 tR1ock shift

db 7 $1Block Mask

db 0 Extnt Mask

Aw 242 :NDigk Size = 1

Aw 63 ;Directorv Max

db 192 Aol

db 1] ;Al1loc]

dw 16 sTheck Size

dw 2 10fFfset
*x1t0 equ offset § s?ranstlate Table

db 1,7,13,19

Ab 25,5,11,17

db 23,3,9,15

db 21,2,8,14

an 20,26,6,12

db 18,24,4,10

db 16,22
als0 egu 31 ;Allocation Yector
cssl equ 16 :Check Vector Size
H PISKDEF 1,0
dpbl equ dpb0 :Equivalent Paramet
alsl equ als0 ;Same Allocation Ve
casl equ cssl :Same Checksum Vect
x1tl aqu x1t0 tSame Translate Tab

ENDEF

ETRE TR 1Y

Uninitialized Scratch Memory Follows:
begdat equ offset $ 1Start of Scratch A

All Information Presented Here is Proprietary to Digital Resgearch

134

CP/M-86 System Guide Appendix € BIOS Listing

=28CS
=2945
=2964
£2974
=2993
a 2973
= 0ODE
=293 00

29A4
29E4
2984
02nF

0521
29E4 00

0000

0000
0002

0004

0380
0382

dirbuf «rs 128 :Directory Buffer

alvd rs als0 +Alloec Vector

csvl rs ¢ss0 sCheck Vector

alvl rs alsl :Alloc Vector

csvl rs cssl ;Check Vector

enddat equ offset § t+End of Scratch Are

datziz equ offset $-begdat ;Size of Scratch Ar
db 0 tMarks End of Modul

loc_stk rw 32 ;local stack for initialization
stkbase equ offgset $

lastoff equ offset §
tpa_seqg equ (lastoff£+0400h+15) / 16
tpa_len equ 0800h - tpa_seg

db 0 ;€111 last address for GENCMD
;*i***********ﬁt*****************t************
’* »
* Nummy Data Section *
:* *
:**t**********t*****************************k*
dseq 0 rabsolute low memory
org 0 ; {interrupt vectors)
int0_offset rw 1
int0_segment rw 1
F pad to svstem call vector
w 2* (bdos_int-1)
bdos_offset rw 1
bdos_segment rw 1
END

All Information Presented ‘Here is Proprietary to Digital Research

135

Appendix F
CBIOS Listing

A kbbbt it hbk bbbt i bbbk hrhhhhk

*

* This is the listing of the skeletal CBIOS which
* you can use as the basis for a customized BIOS
* for non-standard hardware. The essential vpor-
: tions of the BIOS remain, with "rs" statements
*
*

LR B N N B

marking the routines to be inserted.

LA A AR R AR R R S ERE SRR SRS RS RS SR R ST L]

’*******i****i**i*t***t**i***************i****

s] *
:* This Customized BIOS adapts CP/M-86 to *
;* the following hardware configuration *
p* Processor: *
¥ Brand: *
t Controller: *
i =
’Q *
* Programmer : *
g* Revisions : *
,t W
:i****t***i***t****it******i****************ii

FFFF true equ -1

0000 false equ not true

000D or equ 0dh :;carriage return

0qoA 1f equ Oah ;line feed

;***t**************tt**ﬁ*********i********k***
?*

:* Loader_bios is true if assembling the
:* LOADER B10S, otherwise BIOS is for the
t* CPM,.SYS file.

- %

’
FRERENEENRER AR R R RN AU RRRRN AN RRFRRR AR RRE R R A IR AN

PR 3N)

6000 loader_bios equ false
0GED bdos_int equ 224 ;reserved BNOS interrupt
IF not loader_bios
; |
2500 bios_code equ 2500h
0000 ccp_offset equ 0000h
0BOS bdos_ofst equ O0BO6h ;BDOS entry point

¥

All Information Presented Here is Proprietary to Digital Research

137

CP/M-86 System Guide Appendix F (BINS Listing

2500
2503
2506
2509
250C
250F
2512
2515
2518
2518
251E
2521
2524
2527
252a
2529
2530
2533
2536
2539
253¢C

253F

9300
E97900
E98500
E98D00
E99A00
E9a200
E9BS00
E9BDOO
E9F600
E9D900
E90101
E%0301
E90CO]
ES1701
E94701
E98F00
E9F900
E90201
E90401
E9A400
ESAS00

8cce

ENDIF ;not loader bios

Ir loader_bios
: | !
biovs code equ 1200h :start of LDBINS
ccp_offset equ 0003h ;base of CPMLOADER
bdos_ofst equ 0406h ;stripoed BNOS entrY

ENDIF tloader_bhios

cseq

orq cecooffget
cep:

arqg bios_code

:****************t**\b**t**iﬁ*****ti*****t**i**

- *
1* BIOS Jump Vector for Individual Routines *
'R *
'

:******t****t*ﬁ*ﬁ*i*i***********ﬁ*****t*i**i**

jmo INIT rRnter fraom BNOT ROM or TLOADER
jmp WBOOT sArrive here from BDOS call 0
imp CONST ;return console keyboard status
imp COMIN rreturn consale kevboard char
imp CONONUT :iwrite char to console device
jmp LISTOUT :write character to 1list device
imp PTINCH swrite character to punch device
imp READFR sreturn char from reader device
imp HOME :rmove to trk 00 on cur sel drive
jmp SELRSK ;select disk for next rd/write
imp SETTRK rset track for next rd/write

jmp SETSEC ;set sector for next rd/write
jmp SFRTDMA iset offset for user buff (DMA)
imp READ sread a 128 byte sector

jmp WRITE swrite a 128 bvte sector

jmp LISTST ;return list status

imp SECTRAN 1xlate logical->vphvsical sector
imp SETTMAB ;set seq base for huff (NMA)

jmo GETSEGT ;return offset of Mem Nesc Table
dme GRTTIOBP ;return I/0 map byte (IOBYTE)
jmp SETIORP ;set 1/0 map byte {IOBYTE)
:*tt*****i*t*****t**t******t******************
% *

’

:* INIT Entry Point, Differs for LDBIONS and *
7* BIDS, according to "Loader_ Bios"™ value :

+ %

r

:i'*'l‘l‘i'**

INIT: sprint siqnon message and initialize hardwa
mov ax,cs twe entered with a JMPP so

All Information Presented Here is Proprietary to Digital Research

138

CP/M-B6 System Guide

Appendix ¥ CBIONS Listing

2541 BERO mov $S,ax ;1CS: as the initial value o
2543 BED& mov ds,ax NS,
2545 BECO mov es,ax sand FS:
suse local stack during initialization
2547 BCS59%28 mov sn,offset stkbhase
254 PC ¢cld ;set forward direction
Iir not loader_bios
’i ——
; This is a BIOS for the CPM,.SYS file.
¢ Setup all interrupt vectors in low
; memory to address trap
254B 1E push ds ;save the NS reqister
254C C606A72600 mov IORYTE,OQ ;jclear IOBYTE
2551 BB0OOOO mov ax,0
2554 BEDAS moy ds,ax
2556 BECO mov es,ax :;set ES and N8 to zero
;setup interrupt 0 to address trap routine
2558 C70600008225 mov int0_offset,offset int_trap
255E 8COEQ200 mov int0_segment,CS
2562 BF0400 mov di,4
2565 BEO0OOOO mov si,0 :then propagate
2568 BIFEOL mov cx,510 straw vector to
256B F3AS rep movs ax,ax ;all 256 interrupts
;BDOS offset to prover interrupt
256D 70680030608 mov bdos_offset,bdos_ofst
2573 1P pop ds srestore the NS reqgister
H {additional CP/M-86 initialization)
ENDIF :not loader bios
IF loader_bios
i | |
This is a BIOS for the LOADER
push ds ;save data segment
mov ax,0
mov ds,ax tpoint to segment zero
sBNDS interrupt offset
mov bdos_offset,bdos_ofst
mov bdos_segment,”$;bdos interrupt segment
1 (additional LOADER initialization)
| pop ds ;restore data segment
’ ----------- - - - ——t
ENDIF iJoader_bios
2574 BREBl2§ mov bx,offset signon
2577 E86F00 call pmsg ;print signon message
2572 BloO mov ¢l,0 tdefault to Ar A: on coldst
257C E98lDA imp cep siump to ©0l1d start entrv o

All Information Presented Here is Proprietarv to Digital Research

139

CP/M-86 System Guide Appendix F BIOS Listing

257F

2582
2583
2585
2587
258A
258D

258E
2598

2599
259C
259¥%
25A8

25p9
2583

2584
25BE

25BPF
25c9

25Ca
25D4

25D%
25DF

25E0

E984DA

FA
8CC8
8Eps
BBD126
E&5000
F4

c3

ESF2FF
TAFB

ca

c3

~3

c3

C3

AQAT28

WROOT: jmp ccp+6 ;direct entrvy to CCP at com
IF not loader_bios
| |
int_trap:
cli thlock interrupts
mOvV ax,Ccs
mov ds,ax 1get our data segment
mov bx,offset int_tro
call omsg
hlt thardstop

ENDIF :not loader_bios

;***l’****t*!’t**t*i’*********i**t***i**t***t**t*

-k +*
r
g ¥ CP/M Character 1/0 Interface Routines *

.k *
¥
:***************i**t*i***t*i*****it******t****

CONST: sconsole status
s 10 s(FL1V=-in)
ret
CONIN: rconsole input
call CONST
iz CONIN iwait For RDA
rs 10 s(£i1v-in)
ret
CONOUT ¢ rconsole output
rs 10 ;(FLll-in)
ret :then return data
LISTOUT: ;list device output
(4] 10 p(fill=in)
ret
LISTST: 1poOll list status
[of:] 10 s (FiL1-im)
ret
PUNCH: iwrite ounch device
s 10 sifil11-in)
ret
READER:
s 10 1 (Fill-in}
ret
GETIOBF:

mov al,IOBYTE

All Information Presented Here is Proprietary to Digital Research

140

CP/M=-86 System Guide Appendix F CBINS Listing

25p3

25R4
25E8

2589
25EB
25ED
25EF
25F1
25F4
25FS

C3

8BOEAT726
c3

BA07
B4C0
7421
8acs
EEB5FPF
43
EBF2

0002

25F7
25FB
25FE
2601
2603
2605
2607
2609
2608
260E
2610

2611
2617
2621

2622
2626

2627
2628

262¢
262E
2630
2632

880EAB26
BB000O
80F902
73i0m
B500
BBDY
B104
D3E3
BO9FL126
03n9
c3

CTO06A9260000

Cc3

BI90FEA926
3

BI0EAB26
c3

8BDY
03DA
8AlP
c3

cet
SETIOB®:

mov IOBYTE,cl tset iobyte

ret ;iobyte not implemented
PMSY:

mov al, [8X] ;get next char from message

test al.,al

jz return ;if zero return

mov CL, AL

call CONOUT sprint it

inc BX

jmps pmsg snext character and loop
:*******t**t*t******************t*********ﬁ***
. *
+
s ™ Nisk Input/Output Routines *
.} *

;**t*********t****t**t**t*********************

SELDSK: ;select disk given by register rL
ndisks equ 2 :number of disks (up to 16)
mov disk,cl ;save disk number
mov bx,0000h ;cready for error return
cmp ¢l,ndisks s+n beyond max disks?
inb return treturn if so
mov ch,0D ;doubtlein)
mov bx,cx ;b = n
mov cl,4 ;teady for *16
shl bx,cl n = n * 16
mov cox,offset dApbase
add bx,cx ;dpbase + n * 16
return: ret :sbx = .dph
HOME: ;move selected disk to home position {(Track
mov trk,0 ;set disk 1/0 to track zero
s 10 s{fitl-im)
rat

SETTRE: ;set track address given by X
mov trk,CX
ret

SETSEC: :set sector number given by cx
mov sect,CX
ret

SECTRAN: ;translate sector (X using table at [D¥]
mov bx,cx

add bx,dx ;add sector to tran table a
mov bl, [bx] 1get logical sector
ret

SETDMA: ;set DMA offset given by X

All Information Presented Here is Proprietary to Digital Research

41

CP/M-88 System Guide

2633
2637

2638
263C

263D
2640

2641
2673

2674
26A6

890EAD26
c3

B90EAF26
C3

BBES826
ok}

c3

c3

2687

26A7
26A8
26A9
26AB
26AD
26AF

ao
00
0000
0000
o000
0000

Appendix P CBIOS Listing

mov Ama_adr,CX

ret

SETDMAB: ;set DMA segment given by X
mov dma_seq,CX

ret

GETSREGT: ;return address of physical memory table
mov bx,offset seg_ table

ret

:*t**************i****************************

+ % n
*

+* All Aisk I/0 parameters are setup: *
i NISK is Aisk number {SRLMSK)} *
; * TRK is track number (SETTRK)} *
i ¥ SECT is sector number {SETSEr) *
1 * DMA_ADR is the DMA offset {SETNMA) *
i * PMA_SEG is the PMA segment {SETNMAR) *

+* RBAD reads the

selected sector to the NMA*

+* address, and WRITE writes the Aata from *
+* the NMA address to the selected sector *

;* (return 00 if successful, 01 if perm err)*
*

:***********t**********************t**********

READ:
rs 50
ret

WRITE:
rs 50
ret

+fill-in

;(£117-ind

;i***t**t**************t*****t*******i**i*****

:t *
thd Nata Areas *
:* *
}******t***tt*************ttt*****t!**********
data_offsget equ offset $

dseg

org data_offset ;contiguous with co
I0BYTE db 0
disk db 1] ;disk number
trk dw)] rtrack number
sect aw 0 1sector number
dma_adr dw 0 :DMA offset from NS
dma_seq dw 0 :PDMA Base Segment

ir loader_bioes
| }
signon db cr,\f,cr,.1f

All Information Presented Here is Proprietary to nDigital Research

142

26B1
2685

26CE

26D1
26D3

26R6

26E8
26E9
26EB
26ED
26EP

QDOAODOA
53797374656D
2047656E6572
617465642030
302F30302F30
30

0poOAQO

0DOA
496E74657272
757074205472
61702048616C
74

onoa

02

C602
3A05
0020
0020

20270000
00000000
3A271127
D927BA27
20270000
00000000
3a271127
0828E927

= 2711

=2711
=2713
=2714
=2715
=2716
=2718
=271A
=2718

1Aa00
03
07
00
F200
Iroo
co
00

CP/M=-86 System Gulde

signon

db

Aprendix P CBIOS Listing

“CP/M-86 Version 1.0”,cr,1€,0

;loader bios

not loader_bios

cr, O f,cr,F

“System fGenerated 00/00/00°

ecr,1£,0

inot loader_bios

cr,1f¥

“Interrupt ™raop Yalt”

cr,lf

System Memory Segment Table

segtable Ab 2

épbase
dpel

dpel

aob0

{2 segments

1lst seg starte after BIOS
tand extends to 08000

is 20000 -
128k}

include singles.lib ;read in disk definitio

dw tpa_seq

dw tpa_len

dw 2000h :second

dw 2000h 1 JFFFF (
DISKS 2

equ 8

Aw ®x1£0,0000h

dw 0000h, 0000h

aw dirbuf,dpbl

dw csvl,alvo0

dw ®¥1tl,0000h

aw 0000h , 0000k

dw dirbuf,dobl

dw esvl,alvl
DISKDEF 0,1,26,6

equ offset S

Aw 26

db 3

dab 7

db f

dw 242

dw 63

db 192

db 1]

;Base of NDisk Param
sPranslate Table
;Scratch Area

sDir Buff, Parm Blo
;Theck, Alloc Vecto
sPranslate Table
;Scratch Area

t1Dic Buff, Parm Blo
:Check, Alloc Vecto
1024,243,64,64,2
tDisk Parameter Blo
;1Sectors Per Track
1Block Shife

:Block Mask

tEBxtnt Magk

tDisk Size -1
tDirectory Max
1Allocl

s3llocl

All Information Presented Here is Proprietary to Digital Research

143

CP/M-86 Svstem Guide

=271C 1000
=271 0200

= 2720

=2720 01070D13
=2724 19050B11
=2728 1703090F
15020808
141a060C
1218040A
1016
001F

0010

2711
goig
0010

= 2720
=

2819
2859

2859
02C6

053A
2859 00

0000

0000
0002

0004

0380
0382

aw
v
x1t0 adu
db
db
db
db
(] 3
db
ab
alsh equ
¢ss0 equ
dobl edqu
alsl adqu
cssl equ
xltl egu
H
H
begdat edqu
dirbuf rs
alvQ rs
csvi rs
alvl rs
csvl rs
enddat equ
datsiz equ
db

loc_stk w
stkbase equ

lastoff
tpa_seg
tpa_len

egu
aqu
edu

db 0

Appendix

16

2

offset $
1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

31

16

NISKDRF 1,0
Avb0

als0

css0

x1e0

ENDEF

offset 3

128

als0

cssi

alsl

cssl

offset 9§

offset S-begdat
0

F CRIOS Listing

tCheck Size
sNffset
sTranslate Table

tAllocation Vector
:Check Vector Size

1Fgquivalent Paramet
1Same Allocation Ve
1Same Checksum Vect
:Same ™ranslate Tab

fninitialized Scratch Memory Follows:

1Start of Scratch A
sNirectorv Buffer
1Al1loc Vector
:Theck Vector
tAlloc Vector
:Theck Vector

tEnd of Scratch Are
:Size of Scratch Ar
:Marks End of Modul

32 :local stack for initialization

offset $

offset $

{lastof€+0400h+1%) / 16

0800h - tpa_seq

:Fi11l last address for GEMOMD

:*************t****i*********ki****l**********

Dummy Pata Section

*

»
*

’******k****!ti*t*****t*****t****it***********

0 sabsolute low memory
0 : linterrupt vectors)

dseq

org
int0 offset

int0_segment

W 1
tw 1

H pad to system call wvector

w

hdos offset

bdos_segment

ERD

2% (bdos_int-1)

rw 1
rw 1

All Information Presented Here is Proprietary to Digital Research

144

A

allocate absolute memorv, 52
allocate memorv, 52

base vage, 1
BIOS, 121
hootstrao, 4
bootstran ROM, 81

C

CRIOS, 56, 137
close file, 34
™D, 1, 15
cold start loader, 1, 56, 81
compact memorv model, 11, 21
compute file size, 45
CONIN, 61
coNOouUT, 61
console inout, 25
console output, 25
console status, 30
CONST, A0
converting B080 proarams
to Ccp/mM-86, 3, 17, 23
cross develooment tools, 2

D

data block, 72, 74

delete file, 36

direct BIOS call, 47

direct console I/0, 27

directory entries, 71

disk definition tables, 4, 67

disk parameter block, &9

disk parameter header, 62,
67, 75

DMA buffer, 14, 39, 60, 63

) 4

far call, 11, 14

file control Block, 30
file structure, 1

frea all memory, 53

Index

145

G

GENCMD, 2, 3, 15, 17

GFNDEF, 2

get address of disk parameter
hlock, 41

get allocation vector
address, 139

get DMA base, 4B

get I1/0 bvte, 27

get maximum memorv, 51

get or set user code, 41

get read/only vector, 40

GETIONR, BS

GFTSEGR, 65

groun, 2

header record, 20
HOME, Al

I

TNIT™ , 4, 60
Inte! utitities, 17
TOBYTE, 58

L

L-module format, 19

LhoOopy, 2

LIsT, 61

list output, 26

LISTST, &3

LMCMD, 19

Togical to ohysical sector
translation, 64

make file, 37

memory, 14

memory region table, 6%
memory regions, 1

0

offset, 2
open file, 33

P

print string, 28
program load, 53
PUNCH, 61

punch output, 26

crandom access, 95

READ, 63

read buffer, 29

read random, 42

read sequential, 36

READER, 6l

reader inout, 26

release all memory, 53

release memorvy, 52

rename, 38

reserved software interruwnt,
1, 23

reset disk, 33

reset drive, 46

return current disk, 38

return login vector, 38

return version number, 30

s

search for first, 35

search for next, 3%

sector blocking and
deblocking, 87

SECTRAN, 64

segment, 2

segment groUp mMemory
requirements, 17

segment register change, 11

segment register
inittalization, 8

SELDSK, 62

select disk, 33

set M3 address, 39

set DMA base, 48

set file attributes, 41

set I/0 byte, 28

set random record, 46

SETNDMA, 63

SETDMAB, &4

SETIOB, 65

SETSEC, 62

SETTRK, 62

small memary model, 10, 21

system reset, 4, 7, 14, 25
49, 60, 74

Index

146

T

translation vectors, 6%

0

utitlity oroqram operation, 2
w

WBOOT, 60

WRITE, 63

write protect disk, 39

write random, 44

write random with zerc
Fill, 47

8080 memory model, 3, 10,
14, 21

