SIEMENS

Betriebssystem

® Programmieranleitung
CP/ M - 86 (Programmer’s Guide)

COPYRIGHT

Copyright © 1981, 1982, and 1983 by Digital Research. All rights reserved. No part
of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research, Post Office Box 579, Pacific
Grove, California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS
CP/M and CP/M-86 are registered trademarks of Digital Research. ASM-86, DDT-86,

and TEX-80 are trademarks of Digital Research. Intel is a registered trademark of Intel
Corporation. Z80 is a registered trademark of Zilog, Inc.

The CPIM-86 Operating System Programmer’s Guide was prepared using the Digital
Research TEX-80 text formatter and printed in the United States of America.

Third Edition: January 1983

C)

Foreword

This manual assists the 8086 assembly language programmer working in a
CP/M-86® environment. It assumes you are familiar with the CP/M-86 implementa-
tion of CP/M and have read the following Digital Research publications:

8 CP/M 2 Documentation
8 CP/M-86 Operating System User's Gude

The reader should also be familiar with the 8086 assembly language instruction
set, which is defined in Intel®'s 8086 Family User’s Manual.

The first section of this manual discusses ASM-86™ operation and the various
assembler options which may be enabled when invoking ASM-86. One of these
options controls the hexadecimal output format. ASM-86 can generate 8086 machine
code in either Intel or Digital Research format. These two hexadecimal formats are
described in Appendix A.

The second section discusses the elements of ASM-86 assembly language. It defines
ASM-86’s character set, constants, variables, identifiers, operators, expressions, and
statemnents.

The third section discusses the ASM-86 directives, which perform housekeeping
functions such as requesting conditional assembly, including multiple source files,
and controlling the format of the listing printout.

The fourth section is a concise summary of the 8086 instruction mnemonics accepted
by ASM-86. The mnemonics used by she Digital Research assembler are the same as
those used by the Intel assembler except for four instructions: the intra-segment short
jump, and inter-segment jump, return and call instructions. These differences are
summarized in Appendix B. :

The fifth section of this manual discusses the code-macro facilities of ASM-86.
Code-macro definition, specifiers and modifiers as well as nine special code-macro
directives are discussed. This information is also summarized in Appendix H.

The sixth section discusses the DDT-86™ program, which allows the user to test
and debug programs interactively in the CP/M-86 enviornment. Section 6 includes a
DDT-86 sample debugging session.

1

()

()

ORI

rerpf,
e pe wh L

. ’:u{,‘" 2]

gt i L

talg ¥ ’
[RFE]

VrsTEs

0'-

.. Table of Contents

1 Intoduction .
L1 Assembler Operationiiiiiiiiiiiiiiiiaiiiiiiieriiians
1.2 Optional Run-time Parameterscoiiiiiiiinniinniinnn.
1.3 Aborting ASM-86 Frh e aateervaranaaaare s
2 Elements of ASM-86 Assembly Language
21 ASM-B6 Character et ... ittt it iiierans
22 Tokens and Separatorsc.vvevrrirrrrirrarrriaanaraarans
P T 0 T 1] ¢ PN
24 CONSIANIS ..ttt itien i ta e ia e bt s
241 Numeric Constantsoevunercrrsranrrrasnrarrasanss
242 Character Stringsovvirreinierernieranrennrernnanenns
25 Identifiersooiriii i e e e e s
251 Keywords ..ot e e,
2.5.2 Symbols and Their Attributeso,
I O T T o ¢
261 Operator Examplesoiiiiiiinnnriirirraranrannnns
262 Operator Precedencecvirieeinriiraniinaninnnnns
L7 EXPIessIONSttt e e e e
2.8 Statements e e r e e et a e es e e et e e
3 Assembler Directives
T AR 1)V e 1ot o T A U
3.2 Segment Start DITectivesuuir it inairiririaisiiararia
" 321 The CSEG DIrective ...vvuininennarnannanerurannenenes
s 322 TheDSEG DIrectivevinniiiiiiinieneninanaann
- 323 The SSEG DIfectivVe ..vivuneerrineeeiieeeannareannnn.
324 The ESEG Difective ...v.uuivrnrensrnenurieansarnaseens
3.3 The ORG Directiveoorinniveeiiennenereersnnaanacaesonans
34 ThelF and ENDIF DITECEIVES .. .\veurreeiirriiarrarannnreaness
35 The INCLUDE Directiveooiititinnnsriinrnnnvaerssecnnns
36 The END DIIECUIVE ... otttiii it itiiinsrseerernrsreesrrannans
37 The EQU Directive ... ov.vitint i eretrretrereracacsnrsananen
38 The DB Directive ..ottt et it is it reanensrenannns
39 The DWW Directive «..oovviir it iritinrereeersnmasansonsrnnnnns
310 The DD Directive ,..o.oviiiiiintiriiinrrreerusnnanarersrnonnsa

4

5

6

)

Table of Contents (continued)

311 The RS Diretive vuvvtrt e it eeeene et ratrennneennnens 32
3.12 The RB DUIECHIVE . oiiitiira e st rarnarrresnnanarennsnnnns 32
3,13 The RV DireCtIVE .t it tiiite e rnnenssraarenennassnssnssnanns 32
3.14 The TITLE Direclive ..vvv'vvrnrnnenrererronreravinnonserannones 33
3.15 The PAGESIZE DITECHIVE . vvvrnrunrernerioararavonnersorannenes 33
3.16 The PAGEWIDTH DIHIECHIVE v\uerrevennnrarererennersoroonones 33
317 The EJECT DirectiVeureuirrariereruirsnnrarsorarostorirness 33
318 The SIMFORM DIrective . .vurvverunrersoneccrrrnnoronncstnnnns M
3.19 The NOLIST and LIST Dir€Ctives ..vvvrvueuervrrrrronnrrossenens 34
The ASM-86 Instruction Set
O I [T (o0 Lo T o K kR
4.2 Data Transfer Instructionsc.iniiirioreininererrranenannnns 37
4.3 Arithmetic, Logical, and Shife Instructionsc.ccovvuet. 40
4.4 SHODE INSIIUCHIONS it ittt ieiecaeestrtasaranannnannnans 45
4.5 Control Transfer Instructionsccciiiiiiererrnnnenannnn. 47
4.6 Processor Control Instructionsciiiiiiririinnnannnnn M |
Code-Macro Facilities ' -
5.1 Introduction to Code-macroscveevvvrerrerrrvaniavavonses 53
R T 1 1= ¢ A 55
5.3 MoOdIFIErS et e e e 56
5.4 Range SPeCiliersvrverrnrurertrrearearrrerrrrerrerarnarns 56
5.5 Code-macro DITECHIVES ... ittt s eteaneeersrnssosessnnnenna 57
BT T S L] 2 . 57
5.5.2 NOSEGFIX .. et it s et aaann 57
5.5 3 MODRM it i ittt it e e 58
5.5.4 RELB and RELW ...ttt taeaannannas 59
555 DB DWand DD ... ey 59
5.5.6 DBl et e e e 60
DDT-86 . o
6.1 DDT-86 Operationivereieireseriosesiosonssssssssassassnnn 63
6.1.1 Invoking DDT-86c.iviviirineeeaaiearerernnnnass 63
6.1.2 DDT-86 Command Conventionsccoivavuevens 63
6.1.3 Specifying a 20-Bit Addresscoovviniiiinia., 64
6.14 Terminaung DDT-86 i iiiiiiiiiiiniannns 65

Table of Contents (continued)

6.1.5 DDT-86 Opetation with Interruptsooovvvenvnontss

6.2 DDT-86 Commands
6.21 The A (Assemble) Cornmand

6.223 The E (Load for Execution} Command

6.2.16 The X (Examine CPU State} Command

6.3 Default Segment Values ..., it
6.4 Assembly Language Syntax for A and L Commands
6.5 DDT-86 Sample Sessionuiiiiriiiniierareiarrrrrsnrerars

6.22 The D (Display) Command
6.24 TheF(Fill) Commandc.coivveviinnrennn.
625 TheG{Go)Commandcvviinnnerviennnranns
6.2.6 The H (Hexidecimal Math) Command
6.2.7 The I (Input Command Tail) Command
6.28 TheL (List)y Commandcooiiiiviirnnrnnanns
6.29 The M (Move) Commandooiiiiiiiiiinininnns
6.2.10 The R (Read) Commandcoovviivrinnennnns
6.211 The S (Set) Commandcoverivvirrenrarennens
6.2.12 The T (Trace) Commandccvievirevrnrurnnens
6.213 The U {Untrace) Commandcovviviiiniennenss
6.2.14 The V (Value} Command0ciiiunuinn,
6.2.15 The W {(Write) Command}

T o "n m v (o) =

Table of Contents (continued)

- * Appendixes

ASM-B6 INvocationciviniirvinaioririnrarinainnreriarnnes 93
Mnemonic Differences from the Intel Assembler 95
ASM-86 Hexadecimal Queput Formatcoiien.n. 97
Reserved Wordsttt 101
ASM-86 Instruction Summaryc0iiireiiiiaie e, 103
Sample Program iiieiieeicaeiaa e, 107
Code-Macro Definition Syntax it iiiiiiiiisiinnnann. 113
ASM-86 Error Messagesccciiiiiiinirnnnrnitniantnnnnnnnn 115
DDT-86 Error Messagescvuiriiniisieriirranssrionssnninsnnn 117

Section 1
Introduction

1.1 Assembler Operation

ASM-86 processes an 8086 assembly language source file in three passes and pro-
duces three output files, including an 8086 machine language file in hexadecimal
format. This object file may be in either Intel or Digital Research hex format, which
are described in Appendix C. ASM-86 is shipped in two forms: an 8086 cross-
assembler designed to run under CP/M® on an Intel 8080 or Zilog ZB80® based
system, and a 8086 assembler designed to run under CP/M-86 on an Intel 8086 or
8088 based system, ASM-86 typically produces three output files from one input file
as shown in Figure 1-1, below.

LMy

[T

| <

L+ SYMBOLFILE |

<file name>.A86 - contains source
<file name>.LST - contains listing
<file name>> H86 - contains assembled program in
hexadecimal format
< file name=>> SYM - contains all user-defined symbols

Figure 1-1. ASM-86 Source and Object Files

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DAGITAL RESEARCH 1

W1
m~
]
=

1.1 Assembler Operation CP/M-86 Programmer’s Guide

Figure 1-1 also lists ASM-86 filename extensions. ASM-86 accepts a source file
with any three letter extension, but if the extension is omitted from the invoking
command, it looks for the specified filename with the extension ,A86 in the directory.
If the file has an extension other than .A86 or has no extension at all, ASM-86
returns an error Mmessage.

The other extensions listed in Figure 1-1 identify ASM-86 output files. The .LST
file contains the assembly language listing with any error messages. The .H86 file
contains the machine language program in either Digital Research or Intel hexadeci-
mal formact. The .SYM file lists any user-defined symbols.

Invoke ASM-86 by entering a command of the following form:

ASMB6 <source filename> [$ <optional parameters>)

Section 1.2 explains the optional parameters. Specify the source file in the following
form:

[<optional drive>:]|<filename>|.<optional extension=)

where T
<optional drive> is a valid drive letter specifying the source file’s
location, Not needed if source is on current drive,
<filename= is a valid CP/M filename of 1 to 8 characters.
<optional extension> is a valid hle extension of 1 to 3 characters, usu-

ally .A86.
Some examples of valid ASM-86 commands are:
A>ASMBE B:BIOSEE
A>ASMBE BIDS58R.AB6 $FI AA HB PD 5B
A>ASMBE D:TEST
Once invoked, ASM-86 responds with the message:

CP/M 8086 ASSEMBLER VER x.x

2 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

(\

CP/M-86 Programmer’s Guide 1.1 Assembler Operation

where x.x is the ASM-86 version number. ASM-86 then attempts to open the source
fle. If the file does not exist on the designated drive, or does not have the correct
extension as described above, the assembler displays the message:

NO FILE

If an invalid parameter is given in the optional parameter list, ASM-86 displays the
message:

PARAMETER ERROR

After opening the source, the assembler creates the output files. Usually these are
placed on the current disk drive, but they may be redirected by optional parameters,
or by a drive specification in the source file name. In the larter case, ASM-86 directs
the output files to the drive specified in the source file name.

During assembly, ASM-86 abocts if an error condition such as disk full or symbol
table overflow is detected. When ASM-86 detects an error in the source file, it places
an error message line in the listing file in front of the line containing the error. Each
error message has a number and gives a brief explanation of the error. Appendix H
lists ASM-86 error messages. When the assembly is complete, ASM-86 displays the
message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

1.2 Optional Run-time Parameters
The dollar-sign character, $, flags an optional string of run-time parameters. A

parameter is a single letter followed by a single letter device name specification. The
parameters are shown in Table 1-1, below.

Table 1-1. Run-time Parameters

Parameter To Specify Valid Arguments
A source file device ABC, ...P
H hex output file device A.PX Y Z
P list file device A.PLXYZ
S symbol file device A XY Z
F format of hex output file LD

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

1.2 Optional Run-time Parameters CP/M-86 Programmer’s Guide

All parameters ate optional, and can be entered in the command line in any order.
Enter the dollar sign only once at the beginning of the parameter string, Spaces may
separate parameters, but are not required. No space is permitted, however, between
a parameter and its device name,

A device name must follow parameters A, H, P and S. The devices are labeled:
ABC ..PorX Y, Z

Device names A through P respectively specify disk drives A through P. X specifies
the user console (CON:), Y specifies the line printer (LST:), and Z suppresses output
(NUL:).

If output is directed to the console, it may be temporarily stopped at any time by
typing a control-S. Restart the output by typing a second conurol-S or any other
character, :

The F parameter requires either an [or a D argument. When 1 is specified, ASM-
86 produces an object file in Intel hex format. A D argument requests Digital Research
hex format, Appendix C discusses these formats in derail. If the F parameter is not
entered in the command line, ASM-86 produces Digital Research hex format.

Table 1-2. Run-time Parameter Examples

Command Line Result

ASMSs6 10 Assemble file 10.A86, produce IO.HEX, 10.LST
and 10.SYM, all on the default drive.

ASMSBe6 10.ASM $ AD SZ Assemble file 10.ASM on device D, produce
[O.LST and IO.HEX, no symbol file.

ASMSB6 10 § PY 5X Assemble file 10.A86, produce IO.HEX, route
listing directly to printer, output symbols on
console,

ASM86 10 $ FD Produce Digital Research hex format.

ASMS86 10O § FI Produce Intel hex format,

¥ M op A !

PR T Y . b |

~ . A b i
s A0 B 2
id N 4 }

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 1.3 Aborting ASM-86

1.3 Aborting ASM-86

You may abort ASM-86 execution at any time by hitting any key on the console
keyboard. When a key is pressed, ASM-86 responds with the question:

USER BREAK., OK(Y/N)7?
A Y response aborts the assembly and returns to the operating system. An N response

continues the assembly.

End of Section 1

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

End of Section 1 P CP/M-86 Programmer’s Guide

sl LI

[3 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

(\

Section 2
Elements of ASM-86 Assembly
Language

2,1 ASM-86 Character Set

V8]
7]
m
o
o
=
¥}

ASM-86 recognizes a subset of the ASCII character set. The valid characters are
the alphanumerics, special characters, and non-printing characters shown below:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgqrstuvwxyz
01234567829

+ - /=)l .r,_: @68 -
space, tab, carriage-return, and line-feed

Lower-case lexters are treated as upper-case except within strings. Only alphanu-
merics, special characters, and spaces may appear within a string.

2.2 Tokens and Separators : '

A token is the smallest meaningful unit of an ASM-86 source program, much as a
word is the smallest meaningful unit of an English composition. Adjacent tokens are
commonly separated by a blank character or space. Any sequence of spaces may
appear wherever a single space is allowed. ASM-86 recognizes horizontal tabs as
separators and interprets them as spaces. Tabs are expanded to spaces in the list file.
The tab stops are at each eighth column, R |

2.3 Delimiters © O}

Delimiters mark the end of a token and add special meaning to the instruction, as
opposed to separators, which merely mark the end of a token. When a delimiter is
present, separators need not be used. However, separators after delimiters can make
your program easier to read.

. - o
, .

W

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH 7

2.3 Declimiters - CP/M-86 Programmer’s Guide

Table 2-1 describes ASM-86 separators and delimiters. Some delimiters are also
opetators and are explained in greater detail in Section 2.6,]

ik

Table 2-1. Separators and Delimiters

Character Name Use
20H space . . . separator
09H tab legal in source files, expanded in list
¢ hles) :
CR carriage return terminate source lines
LF e line feed legal after CR; if within source lines,

it is interpreted as a space

3 semicolon start comment field
3 colon identifies a label, used in segment
override specification
LT R 1A
. b period forms variables from numbers
$ dollar sign notation for ‘present value of location
. 3
At Ll AT s pointer
+ plus arithmetic opetator for addition
- minus arithmetic operator for subtraction
* asterisk arithmetic operator for multiplication
. EI T
/ slash arithmetic operator for division
@ at-sign legal in identifiers
_ underscore legal in identifiers
! exclamation point logically terminates a statement, thus

allowing multiple statements on a sin-
gle source line

apostrophe delimits string constants

8 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 2.4 Constants

2.4 Constants

A constant is a value known at assembly time that does not change while the
assembled program is executed. A constant may be either an integer or a character
string.

2.4.1 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the
radix of the constant, is denoted by a trailing radix indicator. The radix indicators
ate shown in Table 2-2, below.

Table 2-2. Radix Indicators for Constants

R Indicator Constant Type Base
B binary 2 .
O octal 8
Q octal 8
D decimal 10
H hexadecimal 16

ASM-86 assumnes that any numeric constant not terminated with a radix indicator
is a decimal constant. Radix indicators may be upper or lower case.

A constant is thus a sequence of digits followed by an optional radix indicator,
where the digits are 1 the range for the radix. Binary constants must be composed
of O’s and 1’s. Octal digits range from 0 to 7; decimal digits range from 0 to 9.
Hexadecimal constants contain decimal digits as well as the hexadecimal digits A
(10D}, B (11D), C (12D), D (13D}, E (14D), and F (15D). Note that the leading
character of a hexadecimal constant must be either a decimal digit so that ASM-86
cannot confuse a hex constant with an identifier, or leading 0 to prevent this prob-
lem. The following are valid numeric constants:

1234 12340 1100B 1111000011110000B

1234H OFFEH 33770 1377209
33770 OFE3H 12344 ofttefh

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

2.4 Constants CP/M-86 Programmer’s Guide

2.4.2 Character Strings

ASM-86 treats an ASCI character string delimited by apostrophes as a string
constant. All instructions accept only one- or two-character constants as valid argu-
ments. Instructions treat a one-character string as an 8-bit number. A two-character
string is treated as a 16-bit number with the value of the second character in the
low-order byte, and the value of the first character in the high-order byte,

The numeric value of a character is its ASCIl code. ASM-86 does not translate
case within character strings, so both upper- and lower-case letters can be used. Note
that only alphanumerics, special characters, and spaces are allowed within strings.

A DB assembler directive is the only ASM-86 statement that may contain strings
longer than two characters. The string may not exceed 255 bytes, Include any apos-
trophe to be printed within the string by entering it twice. ASM-86 interprets the
two keystrokes ™ as a single apostrophe. Table 2-3 shows valid strings and how they
appear after processing:

a0 tr |

Table 2-3. String Constant Examples

‘a’ =% a
‘b’ ’'Cd’ -> Ab. ‘Cd
‘1 1ike CP/M* ->1 1ike CP/HM
EEN N | _} 4
*ONLY UPPER CASE "’ -> ONLY UPPER CASE
‘only lower case’ ->only lower case

A T AGO Yy - OREL BEC

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 2.5 Idendfiers

2.5 Identifiers

Identifiers are character sequences which have a special, symbolic meaning to the
assembler. All identifiers in ASM-86 must obey the following rules:

1. The first character must be alphabetic (A,...Z, a,...z).

2. Any subsequent characters can be either alphabetical or a numeral (0,1,.....9).
ASM-86 ignores the special characters @ and _, but they are still legal. For
example, a_b becomes ab.

3. ldentifiers may be of any length up to the limit of the physical line,
Identifiers are of two types. The first are keywords, which have predefined mean-

ings to the assembler. The second are symbols, which are defined by the user. The
following are all valid identifiers:

NOLIST -
WORD C ¢
AH '
Third_street ' -
How_are_vou_todavy
variable@numbe r@1234567850

M ¥
2.5.1 Keywords .o

A keyword is an identifier that has a predefined meaning to the assembler. Key-
words are reserved; the user cannot define an identifier identical to a keyword. For a
complete list of keywords, see Appendix D.

ASM-86 recognizes five types of keywords: instructions, directives, operators, reg-
isters and predefined numbers, 8086 instruction mnemonic keywords and the actions
they initiate are defined in Section 4. Directives are discussed in Section 3. Section
2.6 defines operators. Table 24 lists the ASM-86 keywords that identify 8086 registers.

Three keywords are predefined numbers: BYTE, WORD, and DWORD. The values
of these numbers are 1, 2 and 4, respectively. In addition, a Type attribute is associ-
ated with each of these numbers. The keyword’s Type attribute is equal to the
keyword’s numeric value. See Section 2.5.2 for a complete discussion of Type atuributes.

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 11

2.5 Identifiers CP/M-86 Programmer’s Guide

Table 2-4. Register Keywords

Register Size | Numeric Meaning

Symbol 1 Value
AH 1 byt 100 B Accumulator-High-Byte
BH 1 - 111 B Base-Register-High-Byte
CH i’ 101 B Count-Register-High-Byte
DH 1 110 B Data-Register-High-Byte
AL 1 000 B Accumulator-Low-Byte
BL o 1 011 B Base-Register-Low-Byte
CL 1 001 B Count-Register-Low-Byte
DL 1 010 B Data-Register-Low-Byte
AX 2 bytes 000 B Accumulator (full word)
BX 2 7 011 B Base-Register !
CX 2 001 B Count-Register '
DX P 010 B Data-Register ’
BP 2 101 B Base Pointer
Sp 2 100 B) Stack Pointer
Sl 2 110 B Source Index
DI 2 111 B Destinartion Index
Cs 2 Q1B Code-Segment-Register
DS z 11B Data-Segment-Register
5§ z 108 Stack-Segment-Register
ES 2 008 Extra-Segment-Register

a:rl |

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 2.5 [Identifiers

2.5.2 Symbols and Their Attributes

A symbol is a user-defined identifier that has attributes which specify what kind of
information the symbol represents. Symbols fall into three categories:

® variables
® labels
& numbers

Variables identify data stored at a particular location in memory. All variables
have the following three attributes:

® Segment—tells which segment was being assembled when the variable was
defined.

8 Offset—rells how many bytes there are between the beginning of the segment
and the location of this variable.

® Type—tells how many bytes of data are manipulated when this variable is
referenced.

A Segment may be a code-segment, a data-segment, a stack-segment or an extra-
segment depending on its contents and the register that contains its starting address
{see Section 3.2). A segment may start at any address divisible by 16. ASM-86 uses
this boundary value as the Segment portion of the variable’s definition.

The Offset of a variable may be any number between 0 and OFFFFH or 65535D.
A variable must have one of the following Type attributes:

® BYTE
B WORD
= DWORD

BYTE specifies a one-byte variable, WORD a two-byte variable and DWORD a
four-byte variable. The DB, DW, and DD directives respectively define variables as
these three types (see Section 3). For example, a variable is defined when it appears
as the name for a storage directive;

VARIABLE D8 0

L LI |
‘#!

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 13

2.5 Identifiers CP/M-86 Programmer’s Guide

A variable may also be defined as the name for an EQU directive referencing another
label, as shown below:

VARIABLE EQU ANOTHER_VARIABLE

Labels identify locations in memory thar contain instruction statements. They are
referenced with jumps or calls. All labels have two attributes:

B Segment
a Offset PHT S8 RO -0

Label segment and offser attributes are essentially the same as variable segment
and offset atrributes. Generally, a label is defined when it precedes an instruction. A

colon, :, separates the label from instruction; for example:
2

LABEL: ADD AX:BX

A label may also appear as the name for an EQU directive referencing another
label; for example:

LABEL EQU ANOTHER_LABEL

Numbers may also be defined as symbols. A number symbol is treated as if you
had explicitly coded the number it represents. For example:

Number_five EQU 2
Hov AL 'Number_tfive

is equivalent to:
MDY AL 5

Section 2.6 describes operators and their effects on numbers and number symbols.

2.6 Operators

ASM-86 operators fall into the following categories: arithmetic, logical, and rela-
tional operators, segment override, variable manipulators and creators. Table 2-§
defines ASM-86 operators, In this table, a and b represent two elements of the
expression. The validity column defines the type of operands the operator can manip-
ulate, using the or bar character, |, to separate alternatives.

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide . 2.6 Operators

Table 2-5. ASM-86 Operators

Syntax Resuit Validity
Logical Operators
aXOR b bit-by-bit logical a, b = number
EXCLUSIVE OR of
aandb.
aORb bit-by-bit logical OR a, b = number
of a and b.
a AND b bic-by-bit logical a, b = number
AND of a and b.
NOT a logical inverse of a: a = 16-bit number
all 0’s become 1,
1’s become 0’s.
Relational Operators
aEQb returns OFFFFH if a a, b = unsigned number
= b, otherwise 0.
alTh returns OFFFFH if a a, b = unsigned number
< b, otherwise .
alLEb ._.. - returns OFFFFH if a a, b = unsigned number
< = b, otherwise 0.
aGTb ~ ° returns OFFFFH if a a, b = unsigned number
> b, otherwise 0.
aGEb returns OFFFFH if a a, b = unsigned number
== b, otherwise 0.
aNEb ™" 77 returns OFFFFH if a a, b = unsigned number
< > b, otherwise 0.
Arithmetic Operators
a+b arithmetic sum of a a = variable,
deine and b. label or number
iene | b = number
a—-b arithmetic difference a = variable,
-— of aand b. label or number
b = number

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

2.6 Operators CP/M-86 Programmer’s Guide

Table 2-5. (continued)

Syntax Result Validity
a*b does unsigned mul- a, b = number
"~ ; ° uplication of a and
feirdl” b
alhb does unsigned divi- a, b = number u;
~ sionofaandb,
aMODb " returns remainder of a, b = number
al/b,
aSHL b T returns the value a, b = number

which results from
shifting a 10 left by
an amount b.

aSHR b returns the value a, b = number r
which results from B ¢
. . shifring a to the right e e
& by an amount b.
+ a gives a. a = number I
. 1 di'ef
- a gives 0 — a, a = number
Segment Override
<seg reg>: overrides assem- <seg reg> = (S, DS, SS or ES
<addr exp> bler’s choice of seg-
ment register.
Variable Manipulators, Creators
SEG a creates a number a = label | variable
whose value is the ;
segment value of the TooTs T :
Vet [y] E

" variable or 1abel a,) !

OFFSET a creates a number a = label | variable
whose value 15 the

offset value of the H

variable or label a.

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

;

CP/M-86 Programmer’s Guide 2.6 Operators

Table 2-5. (continued)

Syntax

Result

Validsty

TYPE a

LENGTH a

creates a number, If
the variable a is of
type BYTE, WORD
or DWORD, the
value of the number
will be 1, 2 or 4,
respectively.

creates a number
whose value is the
LENGTH actribute
of the variable a.
The length attribute
is the number of
bytes associared with
the variable.

if LENGTH a > 0,
then LAST a =
LENGTH a - 1;if
LENGTH a = 0,
then LAST a = 0.
creates virtual vari-
able or label with
type of a and attri-
butes of b.

creates variable with
an offset attribute of
a. Segment attribute
is current segment.
creates label with
offset equal to cur-
rent value of loca-
tion counter; seg-
ment attribute s
current segment,

label | variable

w
Il

w
i

label | variable

S
|

label | variable

a = BYTE |
WORD, | DWORD
b = <addr exp>

a = number

no argument

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

— e

17

2.6 Operators CP/M-86 Programmer’s Guide

2.6.1 Operator Examples

Logical operators accept only numbers as operands. They perform the boolean
logic operations AND, OR, XOR, and NOT. For example:

QOFC MASK EQU OFCH

0BO SIGNBIT EQU BOM
0000 B1BO Moy CL 'MASK AND SIGNBIT
0002 BOO3 MDY AL sNDT MASK

T

Relational operators treat all operands as unsigned numbers. The relational opera-
tors are EQ) (equal), LT (less than), LE (less than or equal), GT (greater than), GE
(greater than or equal), and NE (not equal). Each operator compares two operands
and rerurns all ones {OFFFFH]) 1f the specified relation is true and all zeros if it is not.
For example:

000A LIMITL EQU 10 ;
0019 LIMITZ EQU 25 :
- : TR
0004 BBFFFF Moy A¥ LIMIT1 LT LIMIT2
0007 BBOOOO MoV A¥LIMIT1 GT LIMITZ

Addition and subtraction operators compute the arithmetic sum and difference of
two operands. The first operand may be a variable, label, or number, but the second
operand must be a number. When a number is added to a variable or label, the result
is a variable or label whose offset is the numeric value of the second operand plus
the offset of the first operand. Subtraction from a variable or label returns a variable
or label whose offset is that of first operand decremented by the number specified in
the second operand. For example:

0002 COUNT EQU z 2
0005 DISPL EQU 5 :
000A FF FLAC DB OFFH
L] i
’ :
JUE] —_——— !
000B ZEA0GBOO MOV AL JFLAG+1
000F ZESAGEOFO00 MOV CL,FLAG+DISP1
0014 8303 MOV BL,DISP1-COUNT
18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

O

Q)

(.1

CP/M-86 Programmer’s Guide 2.6 Operators

|
The multiplication and division operators *, /, MOD, SHL, and SHR accept only
numbers as operands. * and / treat ail operators as unsigned numbers. For example:

0016 BES500 MoV §1:+256/3
0019 B310 MoV BL:c4/4
0050 BUFFERSIZE EQU 80
0016 BBACOO MoV AXBUFFERSIZE % 2

Unary operators accept both signed and unsigned operators as shown below:

001E B123 Mov CL »+35
0020 BOO7 Mov AL +2--5 ‘,
0022 BZF4 Mov DLs-12

When manipulating variables, the assembler decides which segment register to use.
You may override the assembler’s choice by specifying a different register with the
segment override operator. The syntax for the override operator is <segment regis-
ter> : <address expression> where the <segment register> is CS, DS, $$, or ES.
For example:

0024 368B8472D Mov AX +SS:WORDBUFFERLEBX]
0028 268BOESBOO Mov CX+ES:ARRAY

A variable manipulator creates a number egual to one attribute of its variable
operand. SEG extracts the variable’s segment value, OFFSET its offset value, TYPE
its type value (1, 2, or 4), and LENGTH the number of bytes associated with the
variable. LAST compares the variable’s LENGTH with 0 and if greater, then decre-
ments LENGTH by one. If LENGTH equals 0, LAST leaves it unchanged. Variable
manipulators accept only variables as operators. For example:

002D 000000000000 WORDBUFFER D 0:+0:0
0033 0102030405 BUFFER DB 1:2+3+4+3
[A ITAPR I

0038 BB8050C0 MOV AX :LENGTH BUFFER
0038 BB0400 MOV AX :LAST BUFFER
003E BBO10Q MOV AXsTYPE BUFFER
0041 BBOZ00Q May AX»TYPE WORDBUFFER

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19

2.6 Operators CP/M-86 Programmer’s Guide

The PTR operator creates a virtual variable or label, one valid only during the
execution of the instruction. It makes no changes to either of its operands. The
temporary symbol has the same Type attribute as the left operator, and all other
actributes of the right operarar as shown below.

0044 CE0708 MOV BYTE PTR EBX1: S
0047 BAO7 MOV AL:BYTE PTR ([BX]
0049 FFO4 INC WORD PTR [SI1]

The Period operator, ., creates a variable in the current data segment. The new
variable has a segment atribute equal to the current data segment and an offset
attribute equal to its operand. Its operand must be a number. For example:

004B A10000 Moy AX: 40
004E Z2E68B1E0040 MOV BX: ES: .4000H

The Dollar-sign operator, $, creates a label with an offset attribute equal to the
current value of the location counter. The label’s segment value is the same as the
current code segment. This operator takes no operand. For example:

0053 EO9FDFF JMP $
005SE EBFE JMPS $
0058 ESFDZF JMP $+3000H

2.6.2 Operator Precedence

Expressions combine variables, labels or numbers with operators. ASM-86 allows
several kinds of expressions which are discussed in Section 2.7. This section defines
the order in which operations are executed should more than one operator appear in
an expression.

In general, ASM-86 evaluates expressions left to right, but operators with higher
precedence are evaluated before operators with lower precedence. When two opera-
tors have equal precedence, the left-most is evaluated first. Table 2-6 presents ASM-
86 operators in order of increasing precedence.

:,:uﬂ
- VoM
3 R O

20 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 2.6 Operators

Parentheses can override normal rules of precedence. The part of an expression
enclosed in parentheses is evaluated first. If parentheses are nested, the innermost
expressions are evaluated first. Only five levels of nested parentheses are legal. For
example:

15/3 + 18/9 = 3 + 2 = 7
157¢3 + 18/9) = 15/(3 + 2) = 15/53 = 3

1

Table 2-6. Precedence of Operations in ASM-86

Order Operator Type Operators
1 Logical XOR, OR
2 Logical AND
3 Logical NOT
4 Relational EQ, LT, LE, GT, GE,
| NE
5 Addition/subtraction +, —
6 Multiplication/division * {, MOD, SHL, SHR
7 Unary +, —
8 Segment override < segment override>:
9 Variable manipulators, SEG, OFFSET, PTR,
creators TYPE, LENGTH, LAST
10 Parentheses/brackets {»[]
11 Period and Dollar . $

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

2.7 Expressions CP/M-86 Programmer’s Guide

2.7 Expressions

ASM-86 allows address, numeric, and bracketed expressions. An address expres-
sion evaluates to a memory address and has three components:

® A segment value
® An offset value S B S T -
8 Atype

Both variables and labels are address expressions. An address expression is not a
number, but its components are. Numbers may be combined with operators such as
PTR to make an address expression.

A numeric expression evaluates to a2 number, It does not contain any variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index- addressing modes. The base regis-
ters are BX and BP, and the index registers are DI and SI. A bracketed expression
may consist of a base register, an index register, or a base register and an index
register. ‘

Use the + operator between a base register and an index register to specify both
base- and index-register addressing. For example:

3 |

MOV wvariablelbx]:0 ;

MOV AX[BX+DI] . S TUN N i

MDY AX:[S1)] i

WA s e - ; 8

i TR e Tl L4 !

e T ML T 49 S1OFEIT . I
411

— - - ——_ o ——

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 2.8 Statements

2.8 Statements

Just as ‘tokens’ in this assembly language correspond to words in English, so are
statements analogous to sentences. A statement tells ASM-86 what action to perform.
Statements are of two types: instructions and directives. Instructions are translated
by the assembler intoc 8086 machine language instructions. Directives are not trans-
lated into machine code but instead direct the assembler to perform certain clerical
funcrions.

Terminate each assembly language statement with a carriage return (CR) and line
feed (LF), or with an exclamarion point, !, which ASM-86 treats as an end-of-line.
Multiple assembly language statements can be written on the same physical line if
separated by exclamation points.

The ASM-86 instruction set is defined in Secrion 4, The syntax for an instruction
statement is:

(label:} [prefix) mnemonic | operand(s)] [;comment]

where the fields are defined as: |

label: A symbol followed by ‘:’ defines a label at the current value
of the location counter in the current segment. This field is
optional.

prefix Certain machine instructions such as LOCK and REP may
prefix other instructions. This field is optional,

mnemonic A symbol defined as a machine instruction, either by the

assembler or by an EQU directive. This field is optional unless
preceded by a prefix instruction. If it is omitted, no operands
may be present, although the other fields may appear. ASM-
86 mnemonics are defined in Section 4.

operand(s) An instruction mnemonic may require other symbols to rep-
resent operands to the instruction. Instructions may have zero,
one or two operands,

comment Any semicolon (;) appearing outside a character string begins
a comment, which is ended by a carriage return. Comments
improve the readabiliry of programs. This field is optional.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23

2.8 Statements CP/M-86 Programmer’s Guide

ASM-86 directives are described in Section 3. The syntax for a directive state-
ment is:

[name] directive operand(s) [;comment]
where the fields are defined as:
name Unlike the label field of an instruction, the name field of a
directive is never terminated with a colon. Directive names

are legal for only DB, DW, DD, RS and EQU. For DB, DW,
DD and RS the name is optional; for EQU it is required.

directive One of the directive keywords defined in Secrion 3.
operand(s) Analogous to the cperands to the instruction mnemonics. Some
directives, such as DB, DW, and DD, allow any operand while
Tl others have special requirements. o
comment Exactly as defined for instruction statements. o/
in
End of Section 2
‘26 Loty o0 @
MRS S
gam IR b xidng
ot o anbs
. FErHTRCYS o/
REN (TR RS
24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

(\

Section 3

Assembler Directives

i
3.1 Introduction

Directive statements cause ASM-86 to perform housckeeping functions such as
assigning portions of code to logical segments, requesting conditional assembly, defining
data items, and specifying listing file format. General syntax for directive statements
appears in Section 2.8.

In the sections that follow, the specific syntax for each directive statement is given
under the heading and before the explanation. These syntax lines use special symbols
to represent possible arguments and other alternatives. Square brackets, [], enclose
optional arguments. Angle brackets, <>, enclose descriptions of user-supplied argu-
ments. Do not include these symbols when coding a directive.

3.2 Segment Star¢ Directives

At run-time, every 8086 memory reference must have a 16-bit segment base value
and a 16-bit offset value. These are combined to produce the 20-bit effective address
needed by the CPU to physically address the location. The 16-bit segment base value
or boundary is contained in one of the segment registers CS, DS, SS, or ES. The
offset value gives the offset of the memory reference from the segment boundary. A
16-byte physical segment is the smallest relocatable unit of memory.

ASM-86 predefines four logical segments: the Code Segment, Data Segment, Stack
Segment, and Extra Segment, which are respectively addressed by the CS, DS, SS,
and ES registers. Future versions of ASM-86 will support additional segments such
as multiple data or code segments. All ASM-86 statements must be assigned to one
of the four currently supported segments so that they can be referenced by the CPU.
A segment directive statement, CSEG, DSEG, SSEG, or ESEG, specifies that the
statements following it belong to a specific segment. The statements are then addressed
by the corresponding segment register, ASM-86 assigns statements to the specified
segment until it encounters another segment directive,

b

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

W
T
PI
=
o
3
[

3.2 Segment Start Directives CP/M-86 Programmer's Guide

)

Instruction statements must be assigned to the Code Segment. Directive statements
may be assigned to any segment. ASM-86 uses these assignments to change from one
segment register to another. For example, when an instruction accesses a memory
variable, ASM-86 must know which segment contains the variable so it can generate
a segment override prefix byte if necessary.

3.2.1 The CSEG Directive

CSEG <numeric expression>>
CSEG
CSEG §

This directive tells the assembler that the following stacements belong in the Code
Segment. All instruction statements must be assigned to the Code Segment. All direc-
tive statements are legal within the Code Segment,

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Code Segment after it has been interrupted by a DSEG, SSEG, or
ESEG directive. The continuing Code Segment starts with the same attribures, such
as location and instruction pointer, as the previous Code Segment,

3.2.2 The DSEG Directive

DSEG <numeric expression>
DSEG
DSEG $

This directive specifies that the following statements belong to the Data Segment,
The Data Segment primarily contains the data allocation directives DB, DW, DD and
RS, but all other directive statemnents are also legal. Instruction statements are illegal
in the Data Segment.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Data Segment after it has been interrupted by a CSEG, SSEG, or
ESEG directive. The continuing Data Segment starts with the same attributes as the
previous Dara Segment.

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 3.2 Segment Start Directives

3.2.3 The SSEG Directive

SSEG <numeric expression>
SSEG '.
SSEG §

The SSEG directive indicates the beginning of source lines for the Stack Segment.
Use the Stack Segment for all stack operations. All directive statements are legal in
the Stack Segment, but instruction statements are illegal.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocarable, Use the second form when the segment location
is not known at assembly time; the code generated is relocatable, Use the third form
to continue the Stack Segment after it has been interrupted by a CSEG, DSEG, or
ESEG directive. The continuing Stack Segment starts with the same artributes as the
previous Stack Segment. ;

3.2.4 The ESEG Directive

ESEG <numeric expression>
ESEG !
ESEG § L
I
This directive initiates the Extra Segment. Instruction statements are not legal in
this segment, but all directive statements are.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable, Use the second form when the segment location
is not known at assembly time; the code generated is relocatable, Use the third form
to continue the Extra Segment after it has been interrupted by a DSEG, SSEG, or
CSEG directive. The continuing Extra Segment starts with the same attributes as the
previous Exira Segment.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27

!
‘.
|
|
|

3.3 The ORG Directive CP/M-86 Programmer’s Guide

3.3 The ORG Directive
ORG <numeric expression>

The ORG directive sets the offset of the location counter in the current segment to
the value specified in the numeric expression. Define all elements of the expression
before the ORG directive because forward references may be ambiguous.

In most segments, an ORG directive is unnecessary. If no ORG is included before
the first instruction ot data byte in a segment, assembly begins at location zero

relative to the beginning of the segment. A scgment can have any number of ORG
directives.

3.4 The IF and ENDIF Directives

IF <numeric expression>
<source line 1 >
<source line 2 > n !

. <source line n >
ENDIF

The IF and ENDIF directives allow a group of source lines to be included or
excluded from the assembly. Use conditional directives to assemble several different
versions of a single source program.

When the assembler finds an IF directive, it evaluates the numeric expression fol-
lowing the IF keyword. If the expression evaluates to a non-zero value, then <source
line 1> through <source line n>> are assembled. If the expression evaluates to zero,
then all lines are listed but not assembled. All elements in the numeric expression
must be defined before they appear in the IF directive. Nested IF directives are not
legal.

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 3.5 The INCLUDE Directive

3.5 ' The INCLUDE Directive
INCLUDE <file name>
This directive includes another ASM-86 file in the source text. For example:
INCLUDE EQUALS.A86

Use INCLUDE when the source program resides in several different files. INCLUDE
directives may not be nested; a source file called by an INCLUDE directive may not
contain another INCLUDE statement. if <file name> does not contain a file type,
the file type is assumed 1o be .A86. If no drive name is specified with <file rame>,
ASM-86 assumes the drive containing the source file.

3.6 The END Directive
END

An END directive marks the end of a source file. Any subsequent lines are ignored
by the assembler. END is optional. If not present, ASM-86 processes the source until
it finds an End-Of-File character (1AH).

3.7 The EQU Directive

symbol EQU <numeric expression>
symbol EQU <address expression>
symbol EQU <register>

symbol EQU <instruction mnemonic>

The EQU (equate) directive assigns values and attributes to user-defined symbols.
The required symbol name may not be terminated with a colon. The symbol cannot

be redefined by a subsequent EQU ot another directive. Any elements used in numeric
or address expressions must be defined before the EQU directive appears.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 29

-
|

3.7 The EQU Directive .7 CP/M-86 Programmer’s Guide

The first form assigns 2 numeric value to the symbol, the second a memory address.
The third form assigns a new name to an 8086 register. The fourth form defines a
new instruction {sub)set, The following are examples of these four forms:

0005 iy ~ 1 .yxn: FIVE EQU Z#2+1
0033 NEXT EQU BUFFER
0001 COUNTER EQU CX
Mavyy EQU MOV
W *
005D 8BC3 MOVVY AX 1 BX

3.8 The DB Directive

[symbol] DB <numeric expression>(,<numeric expression>..}
[symbol] DB <string constant>(,<string constant>...)

The DB directive defines initialized storage areas in byte format. Numeric expres-
sions are evaluated to 8-bit values and sequentially placed in the hex output file.
String constants are placed in the output file according to the rules defined in Section
2.4.2. A DB directive is the only ASM-86 statement that accepts a string constant
longer than two bytes. There is no translation from lower to upper case within
strings. Multiple expressions or constants, separated by commas, may be added to
the definition, but may not exceed the physical line length,

Use an optional symbol to reference the defined data area throughout the program.
The symbol has four attributes: the Segment and Offset attributes determine the
symbol’s memory reference, the Type attribute specifies single bytes, and Length tells
the number of bytes {allocation units) reserved.

The following statements show DB directives with symbols:

005F d3502F4D2073 TEXT DB ‘CP/M system’ 0
7973746356000
0068 El AA DB ‘a' + BOH
0GBC 01020360405 X DB 1+2:3+4+5
L]
0071 BI0OCOO MOV CX+(LENGTH TEXT

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DHGITAL RESEARCH

CP/M-86 Programmer’s Guide 3.9 The DW Directive

!
3.9 The DW Directive i

[symbol] DW <mumeric expression>>[,<numeric expression>>..]
[symbol] DW <string constant>[,<string constant>...]

The DW directive initializes two-byte words of storage. String constants longer
than two characters are illegal. Otherwise, DW uses the same procedure to initialize
storage as DB, The following are examples of DW statements:

0074 0000 CNTR DW 0

0076 B3C1GECIG9C1 JMPTAB DM SUBR1 SUBRZ .SUBR3

Q07C 010002000300 DM 1+/2:3+44546
0400035000600

|
r L]
1
3.10 The DD Directive |

[symbol) DD <numeric expression>[,<numeric expression=>..)

The DD directive initializes four bytes of storage. The Offset attribute of the
address expression is stored in the two lower bytes, the Segment actribute in the two
upper bytes. Otherwise, DD follows the same procedure as DB. For example:

1234 CSEG 12344
| :
0000 BCC134126FC1 LONG JMPTAB 60 ROUT1 :ROUTZ2
0008 3géf3&127501 8] 1} ROUT3ROUTA
3412

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31

3.11 The RS Directive . CP/M-86 Programmer’s Guide

3.11 The RS Directive

o

[symbol] RS <stumeric expression>

The RS directive allocates storage in memory but does not initialize it. The numeric
expression gives the number of bytes to be reserved. An RS statement does not give
a byte attribute to the optional symbol. For example:

0010 BUF RS BO
0060 n RS 4000H
4060 e RS 1)

3.12 The RB Directive

[symbol] RB <mumeric expression> 4

The RB directive allocates byte storage in memory without any initialization. This
directive is identical to the RS directive except that it does give the byte anribute,

3.13 The RW Directive

[symbol] RW <numieric expression>

The RW directive allocates two-byte word storage in memory but does not initial-
ize it. The numeric expression gives the number of words to be reserved. For example:

R
4061 BUFF RMW 128
4161 PP R 4000H
CiG1 RW 1

32 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGHAL RESEARCH

CP/M-86 Programmer’s Guide 3.14 The TITLE Dircctive

3.14 The TITLE Directive
TITLE <string constant>
ASM-86 prints the string constant defined by a TITLE directive statement at the
top of each printout page in the listing file. The title character string should not

exceed 30 characters. For example:

TITLE ‘CP/M monitor’

3.15 The PAGESIZE Directive
PAGESIZE <numeric expression>

The PAGESIZE directive defines the number of lines to be included on each print-
out page. The defaulr pagesize is 66.

3.16 The PAGEWIDTH Directive
PAGEWIDTH <numeric expression>
The PAGEWIDTH directive defines the number of columns printed across the page

when the listing file is output. The default pagewidth is 120 unless the listing is
routed directly to the terminal; then the default pagewidth is 79.

3.17 The EJECT Directive
EJECT

The EJECT directive performs a page eject during printout. The EJECT directive
itself is printed on the first line of the next page.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 33

3.18 The SIMFORM Directive CP/M-86 Programmer’s Guide

3.18 The SIMFORM Directive
SIMFORM
The SIMFORM directive replaces a form-feed (FF) character in the print file with

the cotrect number of line-feeds (LF}). Use this directive when printing out on a
printer unable to interpret the form-feed character,

3.19 The NOLIST and LIST Directives

NOLIST)
LIST

The NOLIST directive blocks the printout of the following lines. Restart the listing

with a LIST directive. .., .t

End of Section 3

Fa I =
20 L, e ¢
LLEY L] ; 4
T4
vt N by "’ PERIRS ‘i .;f’!! £
34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Q

O

Section 4
The ASM-86 Instruction Set

4.1 Introduction

The ASM-86 instruction set includes all 8086 machine instructions. The general
syntax for instruction statements is given in Section 2.7. The following sections define
the specific syntax and required operand types for each instruction, without reference
to labels or comments. The instruction definitions are presented in tables for easy
reference. For a more detailed description of each instruction, see Intel’s MCS-86
Assembly Language Reference Manual, For descriptions of the instruction bit pat-
terns and operations, see Intel’s MCS-86 User’s Manual.

The instruction-definition tables present ASM-86 instruction statements as combi-
nations of mnemonics and operands. A mnemonic is a symbolic representation for
an instruction, and its operands are its required parameters. Instructions can take
zero, one or two operands. When two operands are specified, the left operand is the
instruction’s destination operand, and the two operands are separated by a comma.

The instruction-definition tables organize ASM-86 instructions into functional groups.
Within each table, the instructions are listed alphaberically. Table 4-1 shows the
symbols used in the instruction-definition tables to define operand types.

#

LY

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

4.1 Introduction CP/M-86 Programmer’s Guide

Table 4-1. Operand Type Symbols

Symbol Operand Type
numb any NUMERIC expression
numb3 any NUMERIC expression which evaluates to an
8-bit number
acc accumulator register, AX or AL
reg any general purpose register, not segment register
reglé a 16-bit general purpose register, not segment register
segreg any segment register; CS, DS, S8, or ES
mem ' any ADDRESS expression, with or without base- and/or index-

addressing modes, such as:

variable

variable + 3
variable[bx]
variable[SI]
variable[BX + 51)
{BX]

[BP +D1)

simpmem any ADDRESS expression WITHOUT base- and index-
addressing modes, such as:

variable
variable + 4

memireg any expression symbolized by ‘reg’ or ‘mem’
mem|reglé any expression symbolized by ‘mem|reg’, but must be 16 bits
tabel any ADDRESS expression which evaluates to a label

lab8 any ‘label’ which is within + 128 bytes distance from the
instruction

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 4.1 Introduction

The 8086 CPU has nine single-bit Flag registers which reflect the state of the CPU.
The user cannot access these registers directly, but can test them to determine the
effects of an executed instruction upon an operand or register, The effects of instruc-
tions on Flag registers are also described in the instruction-definition tables, using the
symbols shown in Table 4-2 to represent the nine Flag registers.

.
}

Table 4-2. Flag Register Symbols

AF Auxiliary-Carry-Flag
CF Carry-Flag
. DF Direction-Flag
: _ IF Interrupt-Enable-Flag
M OF Overflow-Flag
PF Parity-Flag I
SF Sign-Flag i
? TF Trap-Flag
oo owl ZF Zero-Flag

1
4.2 Data Transfer Instructions
There are four classes of data transfer operations: general purpose, accumnlator
specific, address-object and flag. Only SAHF and POPF affect flag settings. Note in

Table 4-3 that if acc = AL, a byte is transferred, but if acc = AX, a word is
transferred.

!
]
L}
I
T {105A% 03

D InNHIgse 0 1T 10 2

K EICRIM N -

AL

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

4.2 Data Transfer Instructions CP/M-86 Programmer’s Guide

Table 4-3. Data Transfer Instructions

Syntax Result
IN - acc,numb8jnumblé transfer data from input port given by
numb8 or numblé (0-255) o
accumulator
IN acc,DX : : transfer data from input port given by

DX register {0-OFFFFH) to accumulator
LAHF ; transfer flags to the AH register

LDS reglé,mem transfer the segment part of the mem-
ory address (DWORD variable) to the
DS segment register, transfer the offset
part to a general purpose 16-bit register

LEA regl6,mem transfer the offset’ of the memory
address to a (16-bit) register

LES regl6,mem . transfer the segment part of the mem-
ory address to the ES segment register,
transfer the offset part to a 16-bit gen-
eral purpose register

MOV reg,mem|reg move Memory or register to register

MOV mem|reg, reg move register to memory ot register

MOV mem|reg,numb move immediate data to memory or
register

MOV segreg,mem|regl6 move Memory or register to segment
register

MOV mem|regl 6,segreg move segment register to memory ot
register

ouT numb8|numb16,acc transfer data from accumulator to out-
put port (0-255) given by numb8 or
numb16

38 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

(\

CP/M-86 Programmer’s Guide 4.2 Data Transfer Instructions

Table 4-3. (continued)

Syntax Resulr
OUT DX, acc transfer data from accumulator to out-
put port (0-OFFFFH) given by DX
register
POP mem|reg16 move top stack element to memory or
register
POP segreg move top stack element to segment

register; note that CS segment register
not allowed

POPF transfer top stack element to flags

PUSH mem|regl6 move memory or register to top stack
clement

PUSH segreg move segment register to top stack
element

PUSHF ~ i transfer flags to top stack element

SAHF transfer the AH register to flags

XCHG reg,memireg exchange register and memory or
register

XCHG mem|reg,reg exchange memory or register and
register

XLAT mem|reg perform table lockup translation, table

given by ‘mem|reg’, which is always
BX. Replaces AL with AL offset from
BX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TC DIGITAL RESEARCH 39

4.3 Arithmetic, Logic, and Shift CP/M-86 Programmer’s Guide

4.3 Arithmetic, Logical, and Shift Instructions

The 8086 CPU performs the four basic mathematical operations in several differ-
ent ways. It scpports both 8- and 16-bit operations and also signed and unsigned
arithmetic. .-

Six of the nine flag bits are set or cleared by most arithmetic operations to reflect
the result of the operation. Table 4-4 summarizes the effects of arithmetic instruc-
tions on flag bits. Table 4-5 defines arithmetic instructions and Table 4-6 logical and
shift instructions.

qig

Table 4-4. Effects of Arithmetic Instructions on Flags

CF is set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the high-order bit of the result; other-
wise CF is cleared.

AF is set if the operation resulted in a carry out of {from addition) or a
borrow into (from subtraction) the low-order four bits of the result;
otherwise AF is cleared. S

ZF is set if the result of the operation is zero; otherwise ZF is cleared.

SF is set if the result is negative.

PF is set if the modulo 2 sum of the low-order eight bits of the result of

the operation is 0 {even parity); otherwise PF is cleared (odd parity).

OF is set if the operation resulted in an overflow; the size of the result
exceeded the capacity of its destination.

40 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide

4.3 Arithmetic, Logic, and Shift

Table 4-5. Arithmetic Instructions

DAA

Syntax Result
AAA adjust unpacked BCD (ASCII) for addiion—
adjusts AL
AAD adjust unpacked BCD (ASCII) for division—
AN adjusts AL
AAM adjust unpacked BCD (ASCII) for multiplica-
tion—adjusts AX
AAS adjust unpacked BCD (ASCII} for subtrac-
tion—adjusts AL
ADC reg,mem|reg add (with carry) memory or register to register
ADC mem|reg,reg add {with carry) register to memory or register
ADC mem|reg,numb add (with carry) immediate data to memory
3 z or register
ADD reg,mem|reg add memory or register to tegister
ADD mem|reg,reg add register to memory or register
ADD mem|reg,numb add immediate data to memory or register
CBW convert byte in AL o word in AH by sign
extension
CWD convert word in AX to double word in DX/
AX by sign extension
CMP reg,memireg compare register with memory or register
CMP memjreg,reg compare memory or register with register
CMP mem|reg,numb compare data constant with memory or
1 = register
R decimal adjust for addition, adjusts AL

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH 41

4.3 Arithmetic, Logic, and Shift

CP/M-86 Programmer’s Guide

Table 4-5. (continued}

Syntax Result

DAS . decimal adjust for subtraction, adjusts AL

DEC mem|reg subtract 1 from memory or register

INC mem|reg add 1 to memory or register

DIV mem|reg divide (unsigned) accumulator (AX or AL} by
memory or register. If byte results, AL =
quotient, AH = remainder. If word results,

. U AX = quotient, DX = remainder
IDIV meml|reg divide (signed} accumulator {AX or AL) by
L memory or register—quotient and remainder
i stored as 1n DIV

IMUL memireg multiply (signed) memory or register by accu-
mulator (AX or AL)—if byte, results in AH,
AL. If word, results in DX, AX

MUL memjreg muliply (unsigned) memory or register by
accumulator (AX or AL)—results stored as

S o in IMUL

NEG memjreg »*'F two’s complement memory or register

SBB reg,memireg ' + subtract (with borrow) memory or register
from register

SBB + ,- mem|reg,reg subtract (with borrow) register from memory
or register

SBB mem|reg,numb subtract (with borrow) immediate data from
memory or register

SUB reg,memjreg subtract memory or register from register

SUB memjreg,reg subtract register from memory or register

SUB memijreg,numb subtract data constant from memory ot
register

42 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide

4,3 Arithmetic, Logic, and Shift

Table 4-6. Logic Shift Instructions

Syntax Result

AND reg,mem|reg perform bitwise logical ‘and’ of a register and
memory register

AND mem|reg,reg perform bitwise logical ‘and’ of memory reg-
ister and register

AND mem|reg,numb perform bitwise logical ‘and’ of memory reg-

cees ister and data constant

NOT memireg form ones complement of memory or register

OR reg,mem|reg perform birwise logical ‘or’ of a register and
memotry register

OR merm|reg,reg perform bitwise logical ‘or’ of memory regis-
ter and register

OR mem|reg,numb perform bitwise logical ‘or’ of memory regis-
ter and data constant

RCL mem|reg,1 rotate memory or register 1 bit left through
carry flag

RCL mem|reg,CL rotate memory or register left through carry
flag, number of bits given by CL register

RCR mem|reg,1 rotate memory or register 1 bit right through
carry flag

RCR mem|reg,CL rotate memory or register right through carry
flag, number of bits given by CL register

ROL memireg,1 rotate memory ot register 1 bit left

ROL mem|reg,CL rotate memory or register left, number of bits
given by CL register

ROR memlreg,1 rotate memory or register 1 bit right

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

43

4.3 Arithmetic, Logic, and Shift

CP/M-86 Programmer’s Guide

Table 4-6. (continued)

Result

Syntax
ROR memireg,CL
SAL memireg,1
SAL mem|reg,CL
SAR mem|reg,1
SAR mem|reg,CL
SHL memireg,1
SHL mem|reg,CL

SRR [/A
SHR mem|reg,1
SHR mem|reg,CL
TEST reg,memijreg

rotate memory or register right, number of
bits given by CL register

shift memory or register 1 bit left, shift in
low-order zero bits

shift memory or register left, number of bits
given by CL register, shift in low-order zero
bits

shift memory or register 1 bit right, shift in

high-order bits equal to the original high-order
bit

shift memory or register right, number of bits
given by CL register, shift in high-order bits
equal to the original high-order bit

shift memoty or register 1 bic left, shift in
low-order zero bits—note that SHL is a dif-
ferent mnemonic for SAL

shift memory or register left, number of bits
given by CL register, shift in low-order zero
bits—note thar SHL is a different mnemonic
for SAL

¥
shift memory or register 1 bit righe, shift in
high-order zero bits

shift memory ot register right, number of bits
given by CL register, shift in high-order zero
bits

perform bitwise logical ‘and’ of a register and
memory or register—set condition flags but
do not change destination

44 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 4.3 Arithmetic, Logic, and Shift

Table 4-6. (continued)

Syntax Result

TEST mem|reg,reg perform bitwise logical ‘and’ of memory reg-
ister and register—set condition flags but do
not change destination

TEST mem{reg,numb perform bitwise logical ‘and’—test of mem-
ory register and data constant—set condition
flags but do not change destination

XOR reg,mem|reg perform bitwise logical ‘exclusive OR’ of a
register and memory or register

XOR mem|reg,reg perform bitwise logical ‘exclusive OR’ of
memory register and register

XOR mem|reg,numb perform bitwise logical ‘exclusive OR’ of
memory register and data constant

4.4 String Instructions

String instructions take one or two operands, The operands specify only the oper-
and type, determining whether operation is on bytes or words. If there are two
operands, the source operand is addressed by the Sl register and the destination
operand is addressed by the DI register. The DI and SI registers are always used for
addressing. Note that for string operations, destination operands addressed by DI
must always reside in the Extra Segment (ES).

M

o8 & {IN: guit

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45

4.4 String Instructions it CP/M-86 Programmer’s Guide

Table 4-7. String Instructions

Syntax Result

CMPS mem|reg,memjreg subtract source from destination, affect
flags, but do not return resuit,

LODS mem|reg transfer a byte or word from the source
operand to the accumulator.

MOVS mem|reg,memireg move 1 byte (or word) from source to
destination.
SCAS mem|reg subtract destination operand from accu-

mulator (AX or AL), affect flags, but do
e s not return result.

STOS mem|reg transfer a byte or word from accumulator
to the destination operand.

Table 4-8 defines prefixes for string instructions. A prefix repeats its string instruc-
tion the number of times contained in the CX register, which is decremented by 1
for each iteration. Prefix mnemonics precede the string instruction mnemonic in the
statement line as shown n Section 2.8.

Table 4-8. Prefix Instructions

Syntax Result

REP repeat until CX register is zero

REPZ repeat until CX register is zero and zero flag (ZF) is not zero
REPE equal to ‘REPZ’

REPNZ repeat until CX register is zero and zero flag (ZF) is zero
REPNE equal to ‘REPNZ’

46 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

(\

CP/M-86 Programmer’s Guide 4.5 Control Transfer Instructions

4.5 Control Transfer Instructions
There are four classes of control transfer instructions:

calls, jumps, and returns
conditional jumps
iterational control
interrupts

All control transfer instructions cause program execution to continue at some new
location in memory, possibly in a new code segment. The transfer may be absolute
or depend upon a certain condition. Table 4-9 defines control transfer instructions.
In the definitions of conditional jumps, ‘above’ and ‘below’ refer to the relationship
between unsigned values, and ‘greater than’ and ‘less than’ refer to the relationship
between signed values.

Table 4-9. Control Transfer Instructions

Syntax Resulr

CALL label push the offset address of the next instruc-
tion on the stack, jump to the target label

CALL mem|reg16 push the offset address of the next instruc-
tion on the stack, jump to location indicated
by contents of specified memory or register

CALLF label push CS segment register on the stack, push

) the offset address of the next instruction on

AN the stack {after CS), jump to the target label

CALLF ! mem push CS register on the stack, push the offset

address of the next instruction on the stack,

jump to location indicated by contents of
specified double word in memory

SRR 125 At

INT numb$ push the flag registers (as in PUSHF), clear
TF and IF flags, transfer control with an
indirect call through any one of the 256
interrupt-vector elements - uses three levels
of stack

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICGITAL RESEARCH 47

4.5 Control Transfer Instructions

CP/M-86 Programmer’s Guide

Table 4-9. (continued)

Syntax Result

INTO if OF (the overflow flag) is set, push the flag
registers (as in PUSHF), clear TF and IF flags,
transfer control with an indirect call through
interrupt-vector element 4 (location 10H)—
if the OF flag is cleared, no operation takes
place

IRET o transfer control to the return address saved
by a previous interrupt operation, restore

, saved flag registers, as well as CS and 1IP—
e pops three levels of stack

JA lab8 jump if *not below or equal’ or ‘above’ { (CF
or ZF)=0)

JAE - lab8 jump if ‘not below’ or ‘above or equal’

- . (CF=0) e

By ,.' lab8 i jump if ‘below’ or ‘not above or equal’
{CF=1)

JBE . " 1ab8 jump if ‘below or equal’ or ‘not above’ {(CF

or ZF)=1)

JC iy labB same as ‘JB’ e

JCXZ lab8 jump to target label if CX register is zero

JE lab8 jump if ‘equal’ or ‘zere’ (ZF=1)

G . lab8 jump if ‘not less or equal’ or ‘greater’ {{(SF
xor OF) or ZF)=0)

JGE lab8 jump if ‘not less’ or ‘greater or equal’ {(SF
xor OF)=0)

JL lab8 jump if ‘less’ or ‘not greater or equal’ ((SF
xort OF)=1)

48 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Q)

Q)

CP/M-86 Programmer’s Guide

4.5 Control Transfer Instructions

Table 4-9. (continued)

Syntax

Resuit

JLE

JMP

JMP

JMPF

JMPS

JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO

JNP

lab8

label

memijreglé

label

lab8

lab8
lab8
lab8
lab8
lab8
lab8
lab8
lab8
lab8
lab8
lab8

lab8

jump if ‘less or equal’ or ‘not greater’ {{(SF
xor OF) or ZF)=1)

jump to the target label

jump to location indicated by contents of
specified memory or register

jump to the target label possibly in another
code segment

jump to the target label within + 128 bytes
from instruction

same as ‘JBE’ Sd=l
same as ‘JB’ &dai
same as ‘JAE’
Sl
same as ‘JA’
same as ‘JNB*
jump if ‘not equal’ or ‘not zero’ (ZF=0)
same as ‘JLE’
same as ‘JL’ 8dal :
same as ‘|GE’ Bdsd
same as ‘|G’
jump if ‘not overflow’ { OF=0)

jump if ‘not parity’ or ‘parity odd’

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

4.5 Control Transfer Instructions

CP/M-86 Programmer’s Guide

Table 4-9. (continued)

Syntax Result
JNS . - 3 lab8 jump if ‘not sign’
JNZ {ab8 o same as ‘JNE’
Jo lab8 jump if ‘overflow’ (OF=1)
P " lab8 jump if ‘parity’ or “parity even’ (PF=1)
JPE - lab8 3187 same as ‘JP’ bord s
%
JPO lab8 same as ‘JNP’
e - b T
Js lab8 jump if ‘sign’ (SF=1)
JZ lab3 same as ‘JE’ “ e
LOOP lab8 decrement CX register by one, jump to target
label if CX is not zero
LOOPE lab8 decrement CX register by one, jump to target
label if CX is not zero and the ZF flag is set
—‘loop while zero’ or ‘loop while equal’
"3
LOOPNE lab8 decrement CX register by one, jump to target
S PR TR 13 label if CX is not zero and ZF flag is cleared
~—‘loop while not zero’ or ‘loop while not
equal’
100PNZ lab8 same as ‘LOOPNE’
LOOPZ lab8 ‘1 same as ‘LOOPE’
RET return to the return address pushed by a pre-
vious CALL instruction, increment stack
HY . “w.dber. pointer by 2
RET numb return to the address pushed by a previous
CALL, increment stack pointer by 2 + numb

50 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 4.5 Control Transfer Instructions

Table 4-9. {continued)

Syntax Result

RETF return to the address pushed by a previous

CALLF instruction, increment stack pointer
by 4

RETF numb rerurn to the address pushed by a previous
CALLF instruction, increment stack pointer
by 4 + numb

4.6 Processor Control Instructions

Processor control instructions manipulate the flag registers. Moreover, some of
these instructions can synchronize the 8086 CPU with external hardware,

Table 4-10. Processor Control Instructions
Syntax Results
CLC clear CF flag

CLD clear DF flag, causing string instructions to
e e auto-increment the operand pointers

CLI clear IF flag, disabling maskable external
interrupts

CMC) complement CF flag

ESC numb8,mem|reg do no operation other than compute the

cffective address and place it on the address
bus (ESC is used by the B0B?7 numeric co-

processor), ‘numb8’ must be in the range 0
to 63

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

4.6 Processor Control Instructions

CP/M-86 Programmer’s Guide

Table 4-10. (continued)

Syntax Results
LOCK ., ; PREFIX instrucnion, cause the 8086 pro-
. WOl st cessor to assert the ‘bus-lock’ signal for the
duration of the operation caused by the
following instruction—the LOCK prefix
instrucion may precede any other instruc-
tion—buslock prevents co-processors from
gaining the bus; this is useful for shared-
- - T resource semaphores
HLT cause 8086 processor to enter hale state untl
an interrupt 1s recognized
STC set CF flag
STD set DF flag, causing string instructions to
auto-decrement the operand pointers
ST ? set IF flag, enabling maskable external
interrupts
WAIT cause the 8086 processor to enter a ‘wait’
X state if the signal on its “TEST" pin is not
asserted
PN TS FAREA N TN) 1Y
End of Section 4
M !
a 23
EIF I n
L - LA T -
i r
52 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

O

Section 5
Code-Macro Facilities

5.1 Introduction to Code-macros

ASM-86 does not support traditional assembly-language macros, but it does allow
the user to define his own instructions by using the code-macro directive. Like
traditional macros, code-macros are assembled wherever they appear in assembly
language code, but there the similarity ends. Traditional macros contain assembly
language instructions, but a code-macro contains only code-macro directives. Macros
are usually defined in the user’s symbol table; ASM-86 code-macros are defined in
the assembler’s symbol table. A macro simplifies using the same block of instructions
over and over again throughout a program, but a code-macro sends a bit stream to
the output file and in effect adds a new instruction to the assembler.

Because ASM-86 treats a code-macro as an instruction, you can invoke code-
macros by using them as instructions in your program. The example below shows
how MAC, an instruction defined by a code-macro, can be invoked.

a0y o

XCHG BX WORD3
MAC FPAR1.PARZ
MUL AX:WORD4

+

*

*

Note that MAC accepts two operands. When MAC was defined, these two oper-
ands were also classified as w type, size, and so on by defining MAC’s formal
parameters. The names of formal parameters are not fixed. They are stand-ins which
are replaced by the names or values supplied as operands when the code-macro is
invoked. Thus formal parameters ‘hold the place’ and indicate where and how the
operands are to be used.

ALL INFORMATION PRESENTED- HERE 1S PROPRIETARY TO DIGITAL RESEARCH 53

5.1 Introduction to Code-macros CP/M-86 Programmer’s Guide

The definition of a code-macro starts with a line specifying its name and its formal
parameters, if any:

CodeMacro <name> [<formal parameter list>>}
where the optional <formal parameter list> is defined:
<formal name>: <specifier letter>|<madifier letter>][range>)

As stated above, the formal name is not fixed, but a place holder. If formal param-
eter list is present, the specifier letter is required and the modifier letter is optional.
Possible specifiers are A, C, D, E, M, R, S, and X. Possible modifier letters are b, d,
w, and sb. The assembler ignores case except within strings, but for clarity, this
section shows specifiers in upper-case and modifiers in lower-case. Following sections
describe specifiers, modifiers, and the optional range in detail.

The body of the code-macro describes the bit pattern and formal parameters, Only
the following directives are legal within code-macros:

SEGFIX
NDSEGFIX
MODRM
RELE
RELMW
DB
DW
DD T AW T
DBIT

These directives are unique to code-macros, and those which appear to duplicate
ASM-86 directives (DB, DW, and DD) have different meanings in code-macro con-
text. These directives are discussed in detail in later sections. The definition of a
code-macro ends with a line:

EndM
CodeMacro, EndM, and the code-macro directives are all reserved words. Code-

macro definition syntax is defined in Backus-Naur-like form in Appendix H. The
following examples are typical code-macro definitions.

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Q)

CP/M-86 Programmer’s Guide 5.1 Introduction to Code-macros

CodeMacro AAA
0B 37H
EndM

CodeMacro DIV divisor:Eb
SEGF1X divisar

3]] GFH
MODRM divisor
EndM

CodeMacro ESC orcode:Db(0:63) +srciEDb
SEGFIX src
DBIT S{(1BH) 3(orcodel(3))
MODRM orcodesrc
EndM
d

5.2 Specifiers w
Every formal parameter must have a specifier letter that indicates what type of

operand is needed to match the formal parameter. Table 5-1 defines the eight possi-
ble specifier letters.

Table 5-1. Code-macro Operand Specifiers

Letter Operand Type
A Accumulator register, AX or AL.
C Code, a label expression only.
D Data, a number to be used as an immediate value.
E Effective address, either an M (memory address) or an R (register).
M Memory address. This can be either a variable or a bracketed regis-

ter expression.

R A general register only.
5 Segment register only.
X A direct memory reference.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

5.3 Modifiers I 1.7 CP/M-86 Programmer’s Guide

5.3 Modifiers

The optional modifier letter is a further requirement on the operand. The meaning
of the modifier letter depends on the type of the operand. For variables, the modifier
requires the operand to be of type: ‘b’ for byte, ‘w’ for word, ‘d’ for double-word
and ‘sb’ for signed byte. For numbers, the modifiers require the number to be of a
certain size: ‘b’ for —256 to 255 and ‘W’ for other numbers. Table 5-2 summarizes

code-macro modifiers.
1

T

Table 5-2. Code-macro Operand Modifiers

Variables Numbers
Modifier Type Modifier Size
b byte b —256 to 255
w word w anything else
- d dword
sb signed byte
5.4 Range Specifiers e s o

The optional range is specified within parentheses by either one expression or two
expressions separated by a comma. The following are valid formats: 1
Y !

(numberb)

(register} L
(numberb,numberb)

{numberb,register) L
(register,numberb)

(register,register) wvew M

Numberb is 8-bit number, not an address. The following example specifies that the
input port must be identified by the DX register:

CodeMacro IN dst:Aw,rort:iRw(DX)

56 ALL INFORMATION PRESENTED HERE (S PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 5.4 Range Specifiers

The next example specifies that the CL register is to contain the ‘count’ of rotation:

CodeMacro ROR dst:Ew+count:Rb(CL)

The last example specifies that the ‘opcode’ is to be immediate data, and may range
from 0 to 63 inclusive:

CodeMacro ESC orcode:Db(0.,63) radds:Eb

5.5 Code-macro Directives

Code-macro directives define the bit pattern and make further requirements on
how the operand is to be treated. Directives are reserved words, and those that
appear to duplicate assembly language instcuctions have different meanings within a
code-macro definition. Only the nine directives defined here are legal within code-
macro definitions.

§.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine whether a segment-
override prefix byte is needed to access a given memory location. If so, it is output
as the first byte of the instruction. If not, no action is taken. SEGFIX takes the form:

SEGFIX <formal name>

where <formal name> is the name of a formal parameter which represents the
memory address. Because it represents a memory address, the formal parameter must
have one of the specifiers E, M or X.

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES register for that
operand. This applies only to the destination operand of these instructions: CMPS,
MOVS, SCAS, STOS. The form of NOSEGFIX is:

NOSEGFIX segreg,<formname>

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 57

5.5 Code-macro Directives - CP/M-86 Programmer’s Guide

where segreg is one of the segment registers ES, CS, S5, or DS and <formname> is
the name of the memory-address formal parameter, which must have a specifier E,
M, or X. No code is generated from this directive, but an error check is performed.
The following is an example of NOSEGFIX use:

CodeMacro MOVS si_PperiEwsdi_PtriEw
NOSEGFIX ES+di_pPtr

SEGFIX si_pPtr
DB OASH
EndHM

553 MODRM

This directive intructs the assembler to generate the ModRM byte, which follows
the opcode byte in many of the 8086’s instructions. The ModRM byte contains either
the indexing type or the register number to be used in the instruction. It also specifies
which register is to be used, or gives more information to specify an instruction.

The ModRM byte carries the information in three fields. The mod field occupies
the two most significant bits of the byte, and combines with the register memory
field to form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It specifies either
a register number or three more bits of opcode information. The meaning of the reg
field is determined by the opcode byte.

The register memory field occupies the last three bits of the byte. It specifies a
register as the location of an operand, or forms a part of the address-mode in com-
bination with the mod field described above.

For further information of the 8086’s instructions and their bit patterns, see Intel’s
8086 Assembly Language Programing Manual and the Intel 8086 Family User’s
Manual. The forms of MODRM are:

MODRM <form name>,<form name>
MODEM NUMBER7,<form name>

where NUMBER?7 is a value 0 to 7 inclusive and <form name> is the name of a
formal parameter. The following examples show MODRM use:

58 ALL INFORMATION PRESENTED HERE |5 PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 5.5 Code-macro Directives

CodeMacro RCR dst:Ewscount:Rb{(CL)

SEGFIX dst
DB OD3H
MODRM 31dst
EndM
CodeMacro OR dst:Rwssrci:Ew
SEGFIX src
DB OBH
HODRM™ dst:src
EndM

5.5.4 RELB and RELW

These directives, used in IP-relative branch instructions, instruct the assembler to
generate displacement between the end of the instruction and the label which is
supplied as an operand. RELB generates one byte and RELW two bytes of displace-
ment, The directives the following forms:

RELB <form name>
RELW <form name>

where <form name> is the name of a formal parameter with a ‘C’ (code} specifier.
For example:

CodeMacro LOOP place:Ch

DB OEZH o
RELB Place)
EndM

5.5.5 DB, DW and DD

These directives differ from those which occur outside of code-macros. The form
of the directives are:

DB <form name> | NUMBERB
DW <form name> | NUMBERW
DD <form name>

where NUMBERB is a single-byte number, NUMBERW is a two-byte number, and
<form name> is a name of a formal parameter, For example:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59

5.5 Code-macro Directives CP/M-86 Programmer’s Guide

CodeMacro XOR dst:Ew:src:Db

SEGFIX dst

DB 81lH HEQY:

MOORM Gsdst reb ©

DW srC v d
EndM
5.56 DBIT

This directive manipulates bits in combinations of a byte or less. The form is:
DBIT <field description>],<field description>>)
where a <field description>, has two forms:

<number><combination>
<number>(<form name>(<rshift>))

where <number> ranges from 1 10 16, and specifies the number of bits to be set.
<combmnation> specifies the desired bit combination. The total of all the <num-
ber>s listed in the field descriptions must not exceed 16. The second form shown
above contains <form name>>, a formal parameter name that instructs the assembler
10 put a certain number in the specified position. This number normally refers to the
register specified in the first line of the code-macro. The numbers used in this special
case for each register are:
e 1
My 0
LR P

AL:
CL:
DL:
BL:
AH:
CH:
DH:
BH:
AX:
CX:
DXz:
BX:

{ju' *

e WO R BTG TG B0 A Sendr g

LWN = OO RLMN=Q

Boee 0 Himgt vere b

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Q)

@

CP/M-86 Programmer’s Guide 5.5 Code-macro Directives

SP:
BP:
SI:
DI:
ESs
CS:
S58:
DS:

WN=O~Jmu &

<rshift>>, which is contained in the innermost parentheses, specifies a number of
right shifts. For example, ‘0’ specifies no shift, ‘1’ shifts right one bit, ‘2’ shifts right
two bits, and so on. The definition below uses this form.
CodeMacro DEC dst:Rw

DBIT S5{9H),3(dst(0))
EndM

The first five bits of the byte have the value 9H. If the remaining bits are zero, the
hex value of the byte will be 48H. If the instruction:

DEC DX

is assembled and DX has a value of 2H, then 48H + 2H = 4AH, which is the final
value of the byte for execution. If this sequence had been present in the definition:

DBIT S5(9H) »3ldst (1))

then the register number would have been shifted right once and the result would
had been 48H + 1H = 49H, which is erroneous.

End of Section §

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 61

End of Section 5 P

7.

san

62

N TR AT TP R0 © SRR

({1580 .

o oihaemy 30 Vg

[TR R VAR LR LT

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

07 b o= O -~ 8 (L%

xey

CP/M-86 Programmer’s Guide

[\

i

ey
r.
e

noTd

2.3Q

Section 6
DDT-86

6.1 DDT-86 Operation

The DDT-86™ program allows the user to test and debug programs interactively
in a CP/M-86 environment. The reader should be familiar with the 8086 processor,

ASM-86 and the CP/M-86 operating system as described in the CP/M-86 System
Guide.

6.1.1 Invoking DDT-86

Invoke DDT-86 by entering one of the following commands:

DDT86
DDT86 filename

The first command simply loads and executes DDT-86. After displaying its sign-on
message and prompt character, - , DDT-86 is ready to accept operator commands.
The second command is similar to the first, except that after DDT-86 is loaded it
loads the file specified by filename. If the file type is omitted from filename, .CMD is
assumed. Note that DDT-86 cannot load a file of type .H86. The second form of the
invoking command is equivalent 1o the sequence:

A>DDTS8&
DDT86 x.x
-Efifename

At this point, the program that was loaded is ready for execution.

6.1.2 DDT-86 Command Conventions

When DDT-86 is ready to accept a command, it prompts the operator with a
hyphen, -. In response, the operator can type a command line or a CONTROL-C or
1 C to end the debugging session (see Section 6.1.4). A command line may have up
to 64 characters, and must be terminated with a carriage return. While entering the
command, use standard CP/M line-editing functions (1 X, T H, R, etc.) to correct
typing errors. DDT-86 does not process the command line until a carriage return is
entered. - -

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

6.1 DDT-86 Operation CP/M-86 Programmer’s Guide

The first character of each command line determines the command action, Table

6-1 summarizes DDT-86 commands. DDT-86 commands are defined individually in
Section 6.2,

Table 6-1. DDT-86 Command Summary

Command Action

enter assembly language statements
display memory in hexadecimal and ASCl1
load program for execution

fill memory block with a constant

begin execution with optional breakpoints
hexadecimal arithmetic

set up file control block and command tail
list memory using 8086 mnemonics

move memory block

read disk file into memory

set memory to new values

trace program execution

untraced program monitoring

show memory layout of disk file read
write contents of memory block to disk
examine and modify CPU state

XECCHAPEIr=-TOTMmMO >

The command character may be followed by one or more arguments, which may
be hexadecimal values, file names or other information, depending on the command.,

Arguments are separated from cach other by commas or spaces. No spaces are allowed
between the command character and the first argument.

6.1.3 Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands. Because the

8086 can address up to 1 megabyte of memory, addresses must be 20-bit values.
Enter a 20-bit address as follows:

$855:0000

64 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 6.1 DDT-86 Operation

where ssss represents an optional 16-bit segment number and oooo is a 16-bit offset.
DDT-86 combines these values to produce a 20-bit effective address as follows:

s55s50
+ 0000
eecee

The optional value ssss may be a 16-bit hexadecimal value or the name of a
segment register, If a segment register name is specified, the value of ssss is the
contents of that register in the user’s CPU state, as indicated by the X command. If
omitted, a default value appropriate to the command being executed, as described in
Section 6.4.

6.1.4 Terminating DDT-86

Terminate DDT-86 by ryping a 1 C in response to the hyphen prompt. This returns
conttol to the CCP. Note that CP/M-86 does not have the SAVE facility found in
CP/M for 8-bit machines. Thus if DDT-86 is used to patch a file, write the file to
disk using the W command before exiting DDT-86.

6.1.5 DDT-86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled, and preserves the interrupt
state of the program being executed under DDT-86. When DDT-86 has control of
the CPU, cither when it is initially invoked, or when it regains control from the
program being tested, the condition of the interrupt flag is the same as it was when
DDT-86 was invoked, except for a few critical regions where interrupts are disabled.
While the program being tested has control of the CPU, the user’s CPU state, which
can be displayed with the X command, determines the state of the interrupt flag.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 65

6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

6.2 DDT-86 Commands

This section defines DDT-86 commands and their arguments. DDT-86 commands
give the user control of program execution and allow the user to display and modify
system memory and the CPU state.

6.2.1 The A (Assemble) Command

The A command assembles 8086 mnemonics directly into memory. The form is:
As

where s is the 20-bit address where assembly is to start. DDT-86 responds to the A
command by displaying the address of the memory location where assembly is o
begin. At this point the operator enters assembly language statements as described in
Section 4 on Assembly Language Syntax. When a statement is entered, DDT-86
converts it to binary, places the value(s} in memory, and displays the address of the
next available memory location. This process continues until the user enters a blank
line or a line containing only a period.

DDT-86 responds to invalid statements by displaying a question mark, ? , and
redisplaying the current assembly address.

6.2.2 The D (Display) Command

The D command displays the contents of memory as 8-bit or 16-bit hexadecimal
values and in ASCIIL. The forms are:

D

Ds
Ds,f
DW
DWs
DWs,f

where s is the 20-bit address where the display is to start, and f is the 16-bit offset
within the segment specified in s where the display is to finish.

Memory is displayed on one or more display lines. Each display line shows the

values of up to 16 memory locations. For the first three forms, the display line
appears as follows:

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

ssss:oooobbbb .. .bbec...c

where ssss 15 the segment being displayed and 0000 1s the offset within segment ssss,
The bb’s represent the contents of the memory locations 1n hexadecimal, and the ¢’s
represent the contents of memory i ASCIl Any non-graphic ASCII characters are
represented by pertods

In response to the first form shown above, DDT-86 displays memory from the
current display address for 12 display lines. The response to the second form 1s
sumilar to the first, except that the display address 1s first set to the 20-bit address s.
The third form displays the memory block between locations s and f. The next three
forms are analogous to the first three, except that the contents of memory are dis-
played as 16-bit values, rather than 8-bit values, as shown below:

S§55:10000 WWWW WWWW . .. WWWW CCCC ., CC

During a long display, the D command may be aborted by typing any character at
the console

6.2.3 The E (Load for Execution) Command

The E command loads a file into memory so that a subsequent G, T or U com-
mand can begin program execunon, The E command takes the form:

E<filename>

where <filename> 15 the name of the file 1o be loaded. If no file type 1s specified,
.CMD 15 assumed. The contents of the user segment registers and IP register are
altered according to the information in the header of the file loaded.

An E command releases any blocks of memory allocated by any previous E or R
commands or by programs executed under DDT-86. Thus only one file at a ume
may be loaded for execution.

When the load 1s complete, DDT-86 displays the start and end addresses of each
segment 1n the file loaded. Use the V command to redisplay this information at a

later tiume,

If the file does not exast or cannot be successfully loaded in the available memory,
DDT-86 issues an error message.

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 67

6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

6.2.4 The F (Fill) Command PR

The F command flls an area of memory with a byte or word constant. The forms
are:

Fsfb)
FWs,f.w

where s is a 20-bit starting address of the block to be filled, and f is a 16-bit offset
of the final byte of the block within the segment specified in s.

In response to the first form, DDT-86 stores the 8-bit value b in locations s through
f. In the second form, the 16-bit value w is stored in locations s through f in standard
form, low 8 bits first followed by high 8 bits.

If 5 is greater than f or the value b is greater than 255, DDT-86 responds with a
question mark. DDT-86 issues an error message if the value stored in memory cannot
be read back successfully, indicating faulty or non-existent RAM at the location
indicated.

6.2.5 The G (Go) Command

The G command transfers control 1o the program being tested, and optionally sets
one or two breakpoints. The forms are:

G

G,bl
G,b1,b2
Gs

Gs,bl
Gs,b1,b2

where s is a 20-bit address where program execution is to start, and bl and b2 are
20-bit addresses of breakpoints. If no segment value is supplied for any of these three
addresses, the segment value defaults to the contents of the CS register.

In the first three forms, no starting address is specified, so DDT-86 derives the 20-
bit address from the user’s CS and IP registers. The first form transfers control to the
uscr’s program withour setting any breakpoints. The next two forms respectively set
one and two breakpoints before passing control to the user’s program. The next
three forms are analogous to the first three, except that the user’s CS and IP registers
are first set to s.

638 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

Once control has been transferred to the program under test, 1t executes 1n real
nme unnl a breakpoint is encountered. At ths point, DDT-86 regains control, clears
all breakpoints, and indicates the address at which execution of the program under
test was interrupted as follows:

*$555:0000

where ssss corresponds to the CS and oooo corresponds to the [P where the break
occurred. When a breakpoint returns control to DDT-86, the instruction at the
breakpoint address has not yet been executed.

6.2.6 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two 16-bit values. The form
is:

Ha,b

where a and b are the values whose sum and difference are to be computed. DDT-
86 displays the sum (ssss) and the difference (dddd) truncated to 16 bits on the next
line as shown below:

ssss dddd

6.2.7 Thel (Input Command Tail) Command

The 1 command prepares a file control block and command tail buffer in DDT-
86's base page, and copies this information into the base page of the last file loaded
with the E command. The form 1s:

1<command tarl>

where <command tasl> 15 a character string which usually contains one or more
filenames. The first filename 15 parsed into the default file control block at 00SCH.
The optional second filename {(f specified) 1s parsed nto the second part of the
default file control block beginming at 006CH. The characters in <command tal>
are also copied into the default command buffer at C080H. The length of <command
tail> 1s stored at 0080H, followed by the character string terminated with a binary
ZEr0,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 69

6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

If a filc has been loaded with the E command, DDT-86 copies the file control
block and command buffer from the base page of DDT-86 to the base page of the
program loaded. 46-bit value at location 0:6. The location of the base page of a
program loaded with the E command is the value displayed for DS upon completion
of the program load.

6.2.8 The L (List) Command

The L command lists the contents of memory in assembly language. The forms
are:

L
l's .
Ls.f o

where s is a 20-bit address where the list is to start, and £ is a 16-bit offset within
the segment specified in s where the list is to finish.

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code.
The last form lists disassembled code from s through f. In all three cases, the list
address 15 set to the next unlisted location in preparation for a subsequent L com-
mand. When DDT-86 regains control from a program being tested (see G, T and U
commands)}, the list address is set to the current value of the CS and IP registers.

Long displays may be aborted by typing any key during the list process. Or, enter
1S to halt cthe display temporarily.

The syntax of the assembly language statements produced by the L command is
described n Section 4,

70 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

6.2.9 The M (Move) Command

The M command moves a block of data values from one area of memory to
another. The form 1s:

Ms,t,d

where s 15 the 20-bit starting address of the block to be moved, f 1s the offset of the
final byte to be moved within the segment described by s, and d 1s the 20-but address
of the first byte of the area 10 receive the data. If the segment 1s not specified n d,
the same value 1s used that was used for s. Note that if d 1s between s and f, part of
the block being moved will be overwritten before 1t 1s moved, because data 1s trans-
ferred starting from locauon s.

6.2.10 The R (Read) Command

The R command reads a file into a contiguous block of memory. The form is:
R<filename>

where <filename> 15 the name and type of the file to be read.

DDT-86 reads the file into memory and displays the start and end addresses of the
block of memory occupied by the file. A V command can redisplay this informanon
at a later nme. The default display pointer (for subsequent D commands) 1s set to
the start of the block occupted by the file,

The R command does not free any memory previously allocated by another R or
E command. Thus a number of files may be read mnto memory without overlapping.
The number of files which may be loaded 1s limited to seven, which 1s the number of
memory allocanions allowed by the BDOS, minus one for DDT-86 itself.

If the file does not exist or there 15 not enough memory to load the file, DDT-86
issues an error message.

6.2.11 The S (Set) Command

The S command can change the contents of bytes or words of memory. The forms
are:

Ss
SWs

where s 1s the 20-bit address where the change 1s to occur,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 71

6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

DDT-86 displays the memory address and its current contents on the following
line. In response to the first form, the display 1s:

$555:0000 bb

A r
[EPEr 2)

and 1n response to the second form
$585:0000 WWWW

where bb and wwww are the contents of memory in byte and word formats,
respectively,

In response to one of the above displays, the operator may choose to alter the
memory location or to leave 1t unchanged. If a valid hexadecimal value 15 entered,
the contents of the byte (or word) 1n memoty 1s replaced with the value. If no value
1s entered, the contents of memory are unaffected and the contents of the next
address are displayed. In either case, DDT-86 continues to display successive memory
addresses and values unul either a period or an invalid value 15 entered.

DDT-86 issues an error message if the value stored in memory cannot be read
back successfully, indicating faulty or non-existent RAM at the location indicared.

6.2.12 The T (Trace) Command

The T command traces program execunion for 1 to OFFFFH program steps. The
forms are:

T
Tn t
TS e
TSn
Wi g, LA B ¢
where n 1s the number of instructions to execute before returning control to the
console,

Before an instruction 1s executed, DDT-86 displays the current CPU state and the
disassembled instruction. In the first two forms, the segment registers are not dis-
played, which allows the entire CPU state to be displayed on one line. The next two
forms are analogous to the first two, except that all the registers are displayed, which
forces the disassembled instruction to be displayed on the next line as i the X
command.

72 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

Q)

Q)

CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

In all of the forms, control transfers to the program under test at the address
indicated by the CS and IP registers. If n 1s not specified, one instruction 1s executed.
Otherwise DDT-86 executes n instrucnons, displaying the CPU state before each
step. A long trace may be aborted before n steps have been executed by typing any
character at the console.

After a T command, the list address used in the L command s set to the address
of the next instruction to be execured.

Note that DDT-86 does not trace through a BDOS interrupt instruction, since
DDT-86 1itself makes BDOS calls and the BDOS 1s not reentrant. Instead, the entire
sequence of mstructions from the BDOS interrupt through the return from BDOS 1s
treated as one traced instruction.

6.2.13 The U (Untrace) Command

The U command 15 identical o the T command except that the CPU state 15
displayed only before the first instruction 1s executed, rather than before every step.
The forms are;

U

Un ‘ ey
Us

USa

where n 1s the number of instructnons to execute before returning control to the
console. The U command may be aborted before n steps have been executed by
striking any key at the console.

6.2.14 The V (Value) Command

The V command displays mformation about the last file loaded with the E or R
commands. The form 1s:

v

If the last file was loaded with the E command, the V command displays the start
and end addresses of each of the segments contained in the file. If the last file was
read with the R command, the V command displays the start and end addresses of
the block of memory where the file was read. If neither the R nor E commands have
been used, DDT-86 responds to the V command with a question mark, 2.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 73

6.2 DDT-86 Commands CP/M-86 Programmer’s Guide

6.2.15 The W (Write} Command

The W command writes the contents of a contiguous block of memory to disk. .

The forms are: .

W< frlename>

W< filename= 5,1 ,
(A ¥ 1 B
where <filename> is the filename and file type of the disk file to receive the data,
and s and [are the 20-bit first and last addeesses of the block t0 be written. If the
segment is not specified in f, DDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the s and f values from the last file read
with an R command. If no file was read with an R command, DDT-86 responds
with a question mark, ?. This first form is useful for writing out files after patches
have been installed, assurmning the overall length of the file is unchanged.

In the second form where s and { are specified as 20-bit addresses, the low four
bits of 5 are assumed to be 0. Thus the block being written must always start on a
paragraph boundary.

If a file by the name specified in the W command already exists, DDT-86 deletes it
before writing a new file,
L4 L]

6.2.16 The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU state of the
program under test. The forms are:

X
Xr
Xt B Y BT ITT: SISOV

where r is the name of one of the 8086 CPU regist:rs and f is the abbreviation of
one of the CPU flags. The first form displays the CPU state in the format: v —

! AX BX CX ... S8 ES 1P
""""" XXX XXXX XXXX ... XXXX XXXX XXXX
<fnstruction>
. ven bbb rige s ger
74 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 6.2 DDT-86 Commands

The nine hyphens at the beginning of the line indicate the state of the nine CPU flags.
Each position may be either a hyphen, indicating that che corresponding Flag is not set
(0), or a 1-character abbreviation of the flag name, indicating that the flag is set (1). The
abbreviations of the flag names are shown in Table 6-2. <instruction>> is the disas-
sembled instruction at the next location to be executed, which is indicated by the CS and
IP registers.

Table 6-2. Flag Name Abbreviations

Character Name

et o 1 O Overflow
D Direction
I Interrupe Enable
T Trap
S Sign

e e Z Zero

v A Auxiliary Carry
P Parity

ety o, C Carry

et ij

The second form allows the operator to alter the registers in the CPU state of the
program being tested. The r following the X is the name of one of the 16-bit CPU
registers. DDT-86 responds by displaying the name of the register followed by its
current value, If a carriage return is typed, the value of the register is not changed. If
a valid value is typed, the contents of the register are changed to that value. In either
case, the next register is then displayed. This process continues until a period or an
invalid value is entered, or the last register is displayed.

The third form allows the operator to alter one of the flags in the CPU state of the
program being tested. DDT-86 responds by displaying the name of the flag followed
by its current state. If a carriage return is typed, the state of the flag is not changed.
If a valid value is typed, the state of the flag is changed to that value. Only one flag
may be examined or altered with each Xf command. Set or reset flags by entering a
value of 1 or 0.

e GRI

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DHGITAL RESEARCH 75

6.3 Default Segment Values CP/M-86 Programmer’s Guide

6.3 Default Segment Values

DDT-86 has an internal mechanism that keeps track of the current segment value,
making segment specification an optional part of a DDT-86 command. DDT-86
divides the command set into two types of commands, according to which segment a
command defaults if no segment value is specified in the command line.

The first type of command pertains to the code segment: A {Assemble), L (List
Mnemonics) and W (Write). These commands use the internal type-1 segment value
if no segment value is specified in the command.

When invoked, DDT-86 sets the type-1 segment value to 0, and changes it when
one of the following actions is taken: ;

® When a file is loaded by an E command, DDT—86 sets the type-1 segment
value to the value of the CS register.

® When a file is read by an R command, DDT-86 sets thc type-1 segment value
to the base segment where the file was read.

® When an X command changes the value of the CS register, DDT-86 changes
the type-1 segment value to the new value of the C5 register.

® When DDT-86 regains control from a user program after a G, T or U com-
mand, it sets the type-1 segment value 10 the value of the CS register.

® When a segment value is specified explicitly in an A or L command, DDT-
86 sets the type-1 segment value to the segment value specified.

The second type of command pertains to the data segment: D (Display), F (Fill),
M {(Move) and S (Set). These commands use the internal type-2 segment value if no
segment value is specified in the command. '

When invoked, DDT-86 sets the type-2 segment value to 0, and changes it when
one of the following actions is taken:

® When a file is loaded by an E command, DDT-86 sets the type-2 segment
value to the value of the DS register.

B When a file is read by an R command, DDT-86 sets the type-2 segment value
to the base segment where the file was read.

® When an X command changes the value of the DS register, DDT-86 changes
the type-2 segment value to the new value of the DS register.

76 ALL INFORMATION PRESENTED HERE (S PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 6.3 Default Segment Values

® When DDT-86 regains control from a user program after 2 G, T or U com-
mand, it sets the type-2 segment value to the value of the DS register.

B VWhen a segment value is specified explicitly in an D, F, M or S command,
DDT-86 sets the type-2 segment value to the segment value specified.

When evaluating programs that use identical values in the CS and DS registers, all
DDT-86 commands default to the same segment value unless explicitly overridden.

Note that the G {(Go) command does not fall into either group, since it defaults to
the CS register.

Table 6-3 summarizes DDT-86’s default segment values.

Table 6-3. DDT-86 Default Segment Values

Command type-1 type-2
A X
LY LY D x
PO | " ITH E c c
F X
G c c
H
1
L '
3 !3b‘- I . n . PR X
) 3 ¢ c
3 X
T c c
U c c
v
w x
X < ¢

x — use this segment default if none speci-
fied; change default if specified explicitly
¢ — change this segment default

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH 77

6.4 Assembly Language Syntax CP/M-86 Programmer’s Guide

6.4 Assembly Language Syntax for A and L Commands N

In general, the syntax of the assembly language statements used in the A and L
commands is standard 8086 assembly language. Several minor exceptions are listed
below.

8 DDT-86 assumes that all numeric values entered are hexadecimal,

® Up 1o three prefixes (LOCK, repeat, segment override) may appear in one
statement, but they all must precede the opcode of the statement. Alternately,
a prefix may be entered on a line by itself.

® The distinction between byte and word string instructions is made as follows:

byte word

LODSE LODSW

STOSBE STOSW °

SCASB SCASW

MOVSB MOVSW s
CMPSB CMPSW

@ The mnemonics for near and far control transfer instructions are as follows:

short normal far

JMPS JMP JMPF 2 b
CALL CALLF Ho

RET RETF

@ If the operand of a CALLF or JMPF instruction is a 20-bit absolute address,
it is entered in the form:

§§58:0000 é i
where ssss is the segment and o000 is the offset of the address.

M

X x ¢

TR “r

78 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide ' 6.4 Assembly Language Syntax

® Operands that could refer to either a byte or word are ambiguous, and must
be preceded either by the prefix “BYTE” or “WORD”. These prefixes may
ot be abbreviated to “BY” and “WOQ”. For example:
INC BYTE [BP]
NOT WORD {1234]

Failure to supply a prefix when needed results in an error message.

® Operands which address memory directly are enclosed in square brackets to
distinguish them from immediate values. For example:

ADD AX.S ;add $ to register AX
ADD AX,[5] ;add the contents of location § to AX

@ The forms of register indirect memory operands are:

[pointer register]
(index register]
[pointer register + index register]

where the pointer registers are BX and BP, and the index registers are SI and
DL Any of these forms may be preceded by a numeric offset. For example:

ADD BX,[BP+3I1)
ADD BX,3[BP + 5]
ADD BX,1D47[BF + 1)
r
nsy ¥t g i

ta:

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 79

6.5 DDT-86 Sample Session : CP/M-86 Programmer’s Guide

6.5 DDT-86 Sample Session

In the following sample session, the user interactively debugs a simple sort pro-
gram. Comments in 1alic type explan the steps involved.

Source file of program to test.

AXtyee sori,aBE

' simple sort erodram ,x'&
v
sorty 7 W
#ov $1.0 finitialize andex I
1.1 bxroffsev nlist 3bx = base of list
[T Y] swsQ fclear switch flay
COoEP:
noy al[bxr+s1] igdet byie from list
cmP al v Ilbu+s1) jcampare with next brte
Jna 1ne1 iden’t switeh 1f an order
xchd alvllbx+s1) ido first mart of switch
Moy (bx+s1],al ido second part
Mo swusl iset switch flay
IngL:
I LT 51 fancrement 1ndex 3 ALl
tme s1s80uUNt iend of list?
Jn2 come ind: Keer 90119
test swal idone - any switches?
Jn2 sart ivesy SOCt SOME mOTe
done:
imp done idet here when ltst ordered
H
dsed
ors 100k ileave srace for base rage
’
nlist db 3:8:+4:8:3146041
count equ pffset & - offset nlist
sW db [¢]
end
Assemble program.

RsasuBB sort

CP/M BOBE ASSEMBLER VER 1.1

END DF PASS 1

END DF PASS 2

END OF ASSEMBLY., NUMBER OF ERRDRS: 0

80 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide

Type listing file generated by ASM-86.

Artyre sort.lss

CP/M ASHEE 1.1

Q00¢
0003
0006

000
000D
0010
0012
0015
0017

o01cC
0010
0020
0022
0027

0029

BEQ000
BBO001
CE06080100

BAOD
3A4001
760A
B64001
B8OO
CE0E080101

a6

83FE0B
75E8
FBEOB0B0101
7307

EIFDOFF

SOURCE:s SORT.AO6

s0rty

NG

done:

L

0100 0J0804061F06 nlist

0401

0008

0108

ENO OF ASSENBLY. NUMBER OF ERRORS:

410}

count
W

siemle sort rrovram

nov
»ov
“gy

sov
cae
dna
xchy
How
[117

¢
(3 1.4
Jnz
test
JNT

Jae

db
rau

db
and

3140

bxsaffset nlast

sw)

allbx+s1]
alr1lbx+s1)
inel
alllbx+sy)
[bx+s1)ral
suil

51
Slecount
cone
sl
sort

100h

6.5 DDT-86 Sample Session

PAGE 1

finitialize index
ibx = base of list
Sclear switch flay

iset brie Trom list
icompare with next brte
idon’t switch :f in order
ido Tirest part of switch
ido second rart

iset switch flay

iincrement inden

iend of 1list?

inos Kesr soing

idone - any switches?
ires: SOrt 50Me movTe

$9et hate when list ordered

ileave seace for base rade

3:8/4¢6+31.6:4/1

offset ¢ - offset nlist

0

0

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 81

6.5 DDT-86 Sample Session - CP/M-86 Programmer’s Guide

Type symbol table file generated by ASM-86.

AsLYPE SOTL SV
0000 VARIABLES
G100 NLIST 0108 SH

0000 NUMBERS
0008 COUNT

0000 LABELS
0008 COMP 0023 DONE 001C INC! 0000 SORT

Type bex file generated by ASM-86.

A>trre sort.hds 11
10400000300000000F9
+16000081BE0000BB00CICEOG080] QOBANDIAL001 760ABEA0018BOOCE0E0801BC
11100188101 96B3FEQS7SESFG080801017507ESFDFFEE
:09010082030804061F0604010035

100000001FF ' 1a F+eTRES -
Yeue JaR
Generate CMD dile from .H86 file. RN
px A HP
Assencmd sort Yy oanai BTN T LT
N L1] 3 inL
BYTES READ 0039 ' bewa ired
RECORDS WRITTEN 04 -~ -~ ° e - -
toind
3wy ¥
Invoke DDT-86 and load SORT.CMD. * .
tart
A>ddiBE sort ISR ¥ TN A0t L R
poTes 1.0 Y NP T TR o 5
START END
CS 0A7D: 0000 047Ds002F | sy vts . 7 142" 4c —y T _
DS 0480:0000 D4BG:010F a it w2 a0 " Lp
M]
Display initial register values.
. e - a3

AX BX CX DX SFp B8P SI pr €s D05 S5 ES I
--------- 000¢ 0000 0000 0000 119E 0000 0000 0000 0470 0480 0491 0480 0000
HOV S1,0000

82 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Q)

CP/M-86 Programmer’s Guide 6.5 DDT-86 Sample Session

Disassemble the beginning of the code segment.

-1

047D:0000 MOV §1:0000
047D:0003 MOV BX»0100

0470: 0006 MOV BYTE (0108100
0470: 0008 MOV AL r(BX+511]
0470: 0000 CHP AL 101 [BX+S])
0470:0010 JBE 001C

0470: 0012 XCHG AL Q1 IBX+51]
047010013 MOV (BX+513 AL
0470:0017 MOV BYTE [0108],01
047D:001E INC S1

0470:0010 CHP S140008
047D:0020 INZ 0008

Display the start of the data segment.

-d100+107
D480:0100 03 08 04 0B 1F 0B 04 0! 00 Q0 D0 00 00 00 00 00 ,uvivnrvrsarsanes

Disassemble the rest of the code.

-1
0470:0022 TEST BYTE [0108),01
0470:0027 UNZ 0000 A

0470:0028 JMP 0028

04701002C ADD [BX+511.AL

047D:002E ADD [BX+S13 AL

0470:0030 DAS

0470:0031 ADD [BX+SI1.AL

0470:0033 ??x BC ey
0470:0031 POP ES

0470:0035 ADD CBX1,CL

0470:0037 ADD [BX+51]1.AX%

087010039 *2= GF

Execute program from IP (=0} setting breakpoint at 29H.

-4,29

#04703 0028 Breakpoint encountered.
Display sorted list.

-4100:101

04R0:0100¢ 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00 suusvvavnrsanase

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 83

6.5 DDT-86 Sample Session

Doesn’t loor good; reload file.

-¢s01t

START END
CS 0a470:0000 0470:002F
DS 04B0G:0000 04B0:010F

Trace 3 instructions.

-t3

Ax BX CX
eea==Z-P- 0000 0100 0000
mm=a=Z-F- Q000 0100 0000
-=-==Z-P- 0000 0100 0000
*0470:000D

Trace some more.

-t3

Ax BX CX
-----Z-P- 0000 0100 0000
-----2-P- 0003 0100 0000
----5-A-C 0003 0100 0000
#0a70:001C

Display unsorted list.

~d100,10¢

DX
0000
0000
0000

DX
0000
0000
0000

SP BP
119 0000
119 0000
119€E 0000

§FP BP
119 0000
119E 0000
119E 0000

Sl
0008
000
0000

81
ledely)
0000
0000

01
0000
Q000
0000

o1
06090
0000
0009

CP/M-86 Programmer’s Guide

1P
Q000
0003
0006

[P
000B
000D
0010

0480:0100 03 OB 04 06 IF 06 0d 01 00 00 0Q 00 00 00 Q0

Display next instructions to be executed.

-1

0470:001C INC g1
0470:0010 CHP 510008
0470:0020 JNZ 0o0B

047010022 TEST BYTE [01081.:01

04a70:0027 JINZ 0000
0470: 0029 IMF 0029

0470:002C ADD CBX+S1] 8L
0470:002E ADD [BX+51] +AL

0470: 0030 DAS

0470: 0031 ADD [BX+SI11 /AL

0470:0033 7= 6C
0470:0034 POF ES

e

MoV
MOV
MoV

MOV
CMP
JBE

SI.:0000
BX 0100
BYTE (01081 .00

AL [BX+51)
AL 01[BX+E1)
0oIcC

OF vovvnannrrvnsnnn

.-
it

vy

-4

il yreoe erdeny

84 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide : 6.5 DDT-86 Sample Session

Trace some more,

-t3

AX BX CX DX SP B8P SI DI IP
====5-A-C 0003 0100 0000 0000 119E 0000 0000 0000 00IC INC Sl
-------- C 0003 0100 0000 0000 112E 0000 0001 0000 001D CHMP §1.0008
-=--S-APC 0003 0100 0000 0000 119E 0000 0001 0000 Q020 JNZ 00086
*0470: 0008 |

Display instructions from current IP,
-1
0470:0008 MOV AL +[B¥+511
0470:0000 CMP AL ;01 [BX+S1)
0470:0010 JBE 001C
047010012 XCHG AL +01[BX+51)
¢470:0015 MOV [BX+51),AL
0470:0017 WOV BYTE [01081,01
0470:001C INC 1
047D: 001D CNP 51,0008
0470:0020 INZ 0008
047D:0022 TEST BYTE (0108301
087D:0027 JNZ 0000
047010029 JHP 0029

-t3
AX B C¥ DX sP BP S1 01 IP
-===-5-APC 0003 0100 0000 DOQO 119 0000 000L 0000 000B MOV AL, [BX+S1]
====5-APC 0008 0100 0000 DOOO 118E 0000 0OOL 00GO GOOD CHP AL 01[BX+51]
--------- 0008 0100 0000 0000 1189E Q000 00CG1 0000 0010 JBE 001C
#0470:0012
i Lo Q]

-1
0470:0012 XCHG AL.O1[BX+SI)
0470:0015 hQV [BX+51] AL
0470:0017 MOV BYTE [01081.01
047D:001C INC S1

047D0:0010 CHP 51,0008
047D:0020 JNZ QQoe

047D:0022 TEST BYTE [01081.,01
0470:0027 INZ 0000

0470:0028 JMP 0029

0470:002C ADD [BX+SI1 AL
0470:002E ADD [BX+81] AL
047010030 DAS

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 85

6.5 DDT-86 Sample Session CP/M-86 Programmer’s Guide

Go until switch has been performed. . i

-9.+20 B
#0470:0020 1

Display list.

-d109.10¢
048030100 03 04 08 06 1F 06 04 01 0] 00 00 00 Q0 00 00 00 +uvivnnbsnnrsnve

Looks like 4 and 8 were switched okay. (And toggle is true.)
-t
AX BX CX DX 5P BP SI DI IP

----S-APC D004 0100 0000 0000 119E 0000 €002 0000 002G JNZ Qo0
*0a70:0008

Display next instructions.

-1

047D:000B MOV AL [BX+51] iceow L T ar
047010000 CMP AL ,01(BX+51)
0470:0010 JBE 00IC . ®

0470:0012 XCHG AL Q1LBX+S])

0470:0015 NOV [BX+S17.AL

0470:0017 MOV BYTE {01081.:01 ¥
6a70:001C INC 51 3 @7 o FES =2

0470:0010 CMP 810008 -
047030020 JNZ 000B

0470:0022 TEST BYTE [Q1081.,01 PR PO .T

0470:0027 JN2 0000

0470:0029 JNP 0029

Since switch worked, let’s reload and check boundary conditions., i-

R 11: a1

START END AR
€S 047D:0000 0470:002F
DS 0480:0000 04B0:010F

Make it quicker by setting list length to 3. (Could also bave used s47d=1e to
patch.)

-ald
0470:0010 cmp s5id . . . e
0470:0020

86 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 6.5 DDT-86 Sample Scssion

Dusplay unsorted Iist. |

-d100

0480:0100 03 08 04 068 1F 068 04 O1 Q0 00 00 00 00 00 00 00 savvvsrriesnress
0480:0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 D0 vevuvvrvrvaorisn
0480:0120 00 00 00 00 00 00 Q0 OO0 00 00 00 00 00 20 20 20 seevuvnsasiany

Set breakpoint when first 3 elements of list should be sorted.

-9+29
#0470:0029

See of list 15 sorted.

-d100.:10f
0480:0100 02 04 06 0B 1IF 0B 04 01 00 00 Q0 00 00 00 00 00 svvvsvseasravins

Interesting, the fourth element seems to bave been sorted m.

-esort

START END
C5 0470:0000 047D:002F
DS 0480:0000 0480:010F

Let’s try agam wnth some tracing.

-ald
0470:001D cme 513
470:0020

-19

ax BX CX ox SP er 51 DI Ip
=====Z-P- 00CE 0100 0000 0000 118E 0000 0003 0000 0000 MOV SI+0000
-----2-P- 0ODOB 0100 G000 0000 L19E 0000 0000 GOOG 0003 MOV BX 0100
ce=aeZ-P- 0006 0100 0000 G000 119E 0000 0000 COOG 0COE MOV BYTE [01081,00
«eeeeZ«P- 0006 0100 0000 Q000 L18E 0000 0000 QOOO OGOB MOV AL +[BX+SI?
-==-=-=2-P- 0003 0100 Q000 G000 118E 000¢ 0000 GOOC DOOD CHP AL +O1IBX+SI]
----%-84-C 0003 0100 0000 0000 113E 0000 0Q00 0000 0010 JBE 001C
--=-5-A-C 0003 0100 0000 C00CQ L189E 0000 0000 Q000 0CLC INC Sl
-------- C 0063 0100 0000 G000 119E 0000 0001 Q000 001D CHMP S1.+0003
----5-A-C 0003 0100 0000 D000 149E 0000 0001 0000 Q020 INZ Q00B
+0470: 6008

L] 119

200

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87

6.5 DDT-86 Sample Session CP/M-86 Programmer’s Guide

-1 ¥
0a7D: 0008 MOV AL EBX+S1]
Qa70:000GD CHP AL O1[BX+51]
0470:0010 JBE Od1C

0d70:0012 XCHG AL OL1IBX+SI]
0a70:0015 MoV [BX+51] AL
0470:0017 MmOV BYTE (0108101
A47D:001C INC 51

Q0470:00tD CHP §1,0003

G470: 0020 INZ 0008

Q470+ 0022 TEST BYTE L[Q10B) .04 Fl.p.
Gd70:0027 INZ 0000

Q47010029 JNP 0029

-t3

AX BX Cx Ow sSp Bf 8§81 DI IP
----B-A-C 0003 0100 0000 0000 119E 9000 000t G000 00GB MOV AL+ [BX+SI1
----5-A-C 0008 0100 0000 0000 11SE 0000 0001 0000 000D CHP AL ;01[BX+5]1]
--------- 0008 0100 0000 0000 1LSE 0000 0001 0000 0010 JBE 001C
#»0470:0012

_1 _‘4“"
047D0:0012 XCHG AL Q1IBX+S1]

¢a70: 0015 MOV (BX+51] AL

Qaz70: 0017 MOV BYTE [0108].¢!
0470:001C INC 51

0470:0010 CMP 51,0003 P
¢470:0020 JNZ 0008

0470:0022 TEST BYTE (0108],01

-t3

ax BX CX DX SP BP 51 b1 Ip
————————— 0008 0100 0000 0000 119E 0000 0001 0000 0012 XCHG AL.OL[BX+SI]
--------- 0004 010¢ 0000 0000 118E 0000 0001 0000 0015 MOV (BX+SIY AL

--------- 0004 0100 0000 00G00 119E G009 0001 0000 CO17 MOV BYTE (0108101
#0470:001C

-

-d100,101
0480:0100 03 04 08 06 IF 0B 04 01 Q1 00 00 GO 00 00 00 00

LN RN A}

So far, so good.

AX BX Cx OX 1 BP S 01 IP
--------- 0004 010C¢ 0000 0000 119E Q000 0001 0000 O0IC INC S1
--------- 0004 0100 0000 0000 119E Q000 G002 Q0OC 00LD CHP S140003
~---8-APC 0004 Q100 0000 0000 119E 9000 0002 QOO0 0020 JNZ oooB
#Q470: 0008

88 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 6.5 DDT-86 Sample Session

~1 1
0470:0008 MOV AL +[BX+S]]
0470:0000 CHP AL 0106X+S1]
0470:0010 JEE o01C

047010012 XCHG AL.O1LBX+S11 |)
4470:0015 MOV {&X+51].AL
0470:0017 MOV BYTE [01081,01
0470:001C INC Sl

0470:001D CNP S1:0003 !
0470: 0020 JNZ 0008

0a70:0022 TEST @YTE [0108).01
0470:0027 JNZ 0000

0470:0023 JNP 0029 i

-t3
AX BX CX DX SP BF &1 DI IP

==-=5-APC 0004 9100 Q000 0000 119E 0000 0002 QOO0 000B MOV AL [BX+51)

----5-APC 0008 0100 0000 0000 118SE 0000 000Z 0000 000D CMP AL »GILBX+SI1

--------- 0068 0100 0000 0000 113E 0000 0002 0000 0010 JBE 001C

+047D:0012

Sure enough, 1t’s comparing the third and fourth elements of the list. Reload the
program. .

'
TN - I
"

-e50°rt

START END
C5 047010000 0470:002F)
0S 0480:0000 04B0:010F

-1 X
0470: 0000 MOV SI.,0000 .
04670:0000 MOV BY 0100
0470:0006 MOV BYTE [Q108]:00
0A7D: 0008 MDY AL s [BX+51)
0470:;0000 CHP AL.0LLBX+51)
0470:0010 JBE 00IC !
047010012 XCHG AL (01LBX+S12 t
0470:0015 MDY [BX+511,:AL
0470:0017 MOV BYTE [0108) 404
0470:001C INC Sl .
0470:001D CHP 51:0008 f
0470:0020 JINZ 0006

ALL INFORMATION PRESENTED HERE {5 PROPRIETARY TO DIGITAL RESEARCH 89

6.5 DDT-86 Sample Session

Patch length.

-ald
Qa70:0010 cwe s52+7
0470:0020 .

Try it out.

-4:29
#0470:0029

See if list 1s sorted,

-d10010¢

CP/M-86 Programmer’s Guide

VAU O10¢ 01 03 04 04 OB OB OB IF Q0 Q0 00 00 00 00 OO 00 sisvnservssnrian Ly

Looks better; let’s install patch in disk file. To do this, we must read. CMB file

including beader, so we use R commuand.

«rsort.cmd
START END N}
<00D: 0000 2000:01FF

First 80h bytes contain header, so code starts at 80h.

-1890

2000:00B0 HOV S1,0000
Z000:0083 MOV BX 0100
2000:00B5 MOV BYTE (01081400
2000: 0088 MOV AL [BX+51]

2000:0080 CHP AL O1L{BX+8]]
2000:0050 JBE 009cC

20Q0:0092 XCHG AL,01[(BX+SI]
Z000:0085 MOV [BX+E1) AL
2000:0097 MOV BYTE (0108].,01
2000:003C INC SI

2000:0080 CHP 81,0008
2000:00A0 JINZ 0088

Install patch.

-a3%9d
2000:0080 cmP 517
Z2000:00A0

L THY

90 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide 6.5 DDT-86 Sample Session

Write file back to disk. (Length of file assumed to be unchanged since no length
spectfied.)

|
I
-wsort.cmd i
|
|

Reload file.

START END
CS 047D0:0000 0470:002F
DS 0480:0000 0480:010F

-es0rt |
1

Verify that patch was installed.

- l 1
Q470: 0000 MOV 51,0000
0470:0003 MOV BX 0100
0470:0006 MOV BYTE [01081.00
047D:0008 MOV AL [BX+SI]
Q470:0000 CHP AL,0108X+S1)
Q4a70:0010 JBE ¢Q1cC

0470:0012 XCHG ALOQI1(BX+5]]
0a7D:0015 MOV (BX+51] AL
0a70:0017 MOV BYTE [010B1.01
0470:001C INC 51

0470:0061D CNHP S1+0007 P
Q470:0020 JUNZ 0008 t

Run ne.

-4,29
#0470:0029

Still looks good. Ship it!

-d100,:101

0480:0100 01 03 04 04 0B 068 0B 1F 00 00 00 00 00 00 00 00 wvsvvrsrsrvivaes
-C

A>

End of Section 6

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 21

End of Section 6 ?n

CP/M-86 Programmer’s Guide

LA LI [T r‘-;'\q . TOY Tt
F1vae-
Soane
L I -]
B -
RN |
!
o LA A T BN IR T SR ol + B
wiopr, vl by g 1
92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix A
ASM-86 Invocation

Command: ASMS6

Syntax; ASMB86 <filename> { $ <parameters> }
where '
<filename> is the B086 assembly source file. Drive and extension are

optional. The default file extension is .A86.

<parameters> are a one-letter type followed by a one-letter device from the
table below.

Parameters: !

form: $ Td where T = type and d = device

>
=
" Table A-1. Parameter Types and Devices ;
Devices Parameters i
A H P S E
A-T X X X X
X X X X
: 1 Y X X X
; Z X X)4
P’
: I ‘ <
2 D d

P B x = valid, d = default

; ramt 1

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 93

A ASM-86 Invocation CP/M-86 Programmer’s Guide

Valid Parameters ak*M2p

Except for the F type, the default device is the the current default drive.
comidre
. Table A-2, Parameter Types

controls location of ASSEMBLER source file
controls location of HEX file
- 4nr controls location of PRINT file
controls location of SYMBOL file
controls type of hex output FORMAT

muvw I

Table A-3. Device Types

P Drives A - P
console device
printer device
byte bucket
Intel hex format
Dagital Research hex format

O =N

Table A-4, Invocation Examples

ASMS4 IO . Assemble file 10.A86, produce I0.HEX I0.1ST
and 10.5YM.

, <!
ASMS86 [0.ASM § AD §Z Assemble file 10.ASM on device D, produce
I0.LST and 10.HEX, no symbol file.

ASM34 10 $ PY SX Assemble file 10.A86, produce IQO.HEX, route
listing directly to printer, output symbols on
console.

ASM86 10 § FD Produce Digital Research hex format.

ASMS86 10 $ FI Produce Intel hex format.

End of Appendix A

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO IHGITAL RESEARCH

Appendix B
Mnemonic Differences from the
Intel Assembler

The CP/M 8086 assembler uses the same instruction mnemonics as the INTEL
8086 assembler except for explicitly specifying far and short jumps, calls and returns.
The following table shows the four differences:

Table B-1. Mnemonic Differences

Mnemonic Function CPIM INTEL
Intra segment short jump: JMPS JMP
Inter segment jump: JMPF JMP
Inter segment return: RETF RET
Inter segment call: CALLF CALL

End of Appendix B

P
=
)

1

-

o

>

o]

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

End of Appendix B CP/M-86 Programmer’s Guide

- By
(3 Y] -
vt b s oil .
?l»’ r
Mot
by STERAY
- T i '
PHA] il
1} I8

A -8 aquah o g

2 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Appendix C
ASM-86 Hexadecimal
Output Format

At the user’s option, ASM-86 produces machine code in either Intel or Digital
Research hexadecimal format. The Intel format is identical to the format defined by
Intel for the 8086. The Digital Research format is nearly identical to the Intel format,
but adds segment information to hexadecimal records. Qutput of either format can
be input to GENCMD, but the Digital Research format automatically provides seg-
ment identification. A segment is the smallest unit of a program that can be relocated.

Table C-1 defines the sequence and conrents of bytes in a hexadecimal record.
Each hexadecimal record has one of the four formats shown in Table C-2. An exam-
ple of a hexadecimal record is shown below.

Byte number=> 0123456789.............. n

Contents=>> :llaaaattddd......... ccCRLF

T Table C-1. Hexadecimal Record Contents

Byte Contents Symbol
0 record mark :
1—2 record length 11
3—6 load address aaaa
7—8 record type tt -
9—n-1) data bytes dd..... d o)
n—{n+1} check sum c¢ F
n+2 carriage return CR A
n+3 line feed LF X
]

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

C Hexadecimal Output Format CP/M-86 Programmer’s Guide

-
-

Table C-2. Hexadecimal Record Formats

Record type Content Format
00 Data record : Il aaaa DT <data...> cc
01 End-of-fle : 00 0000 01 FF
02 Extended address mark : 02 0000 ST ssss cc
03 Start address + 04 0000 03 ssss iiil cc
Il => record length—number of data bytes
cc => check sum—sum of all record bytes
aaaa => 16 bit address
ssss =2 16 bit segment value
Wit => offset value of start address ¢, : i YT TORPS
DT => data record type
ST => segment address record type
-

It is in the definition of record types 00 and 02 that Digital Research’s hexadecimal
format differs from Intel’s. Intel defines one value each for the data record type and
the segment address type. Digital Research identifies each record with the segment
that contains it, as shown in Table C-3.

!J;'
4 4
A
v

98 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

('\

CP/M-86 Programmer’s Guide | C Hexadecimal Output Format

Table C-3. Segment Record Types

Symbol Intel’s Digital’s Meaning
Value Value

DT o0 for data belonging to all 8086 segments
81H for data belonging to the CODE segment
82H for data belonging to the DATA segment
83H for data belonging to the STACK segment
84H for data belonging to the EXTRA segment

ST 02 for all segment address records
85H for a CODE absolute segment address
86H for a DATA segment address
87H for a STACK segment address
88H for a EXTRA segment address

End of Appendix C

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 99

-

End of Appendix C [CP/M-86 Programmer’s Guide

o ? U os gleeane : .
\ 1
T T T Y | O P ' babg '
i
N LR I IRE HLR : !
) 1 H
N Y I B TR IR Hea
1
3 L3)
A1 . w0 i le)
i 1
b e)
| ‘ -
she ey P TAC Hing ' \
i
11
v oegae AT vt | S !
|
L
e MR -
-~ - —— w m—— - - mn = ke

Pt ooadA o had

100 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Appendix D
Reserved Words

Table D-1, Reserved Words
Predefined Numbers
BYTE WORD DWORD ',
Operators
EQ GE GT LE LT
NE OR AND MOD NOT
PTR SEG SHL SHR XOR
LAST TYPE LENGTH OFFSET
Assembler Directives
DB DD DW IF RS
RB RW END ENDM EQU
ORG CSEG DSEG ESEG SSEG
EJECT ENDIF TITLE LIST NOLIST
INCLUDE SIMFORM PAGESIZE CODEMACRO PAGEWIDTH
Code-macro directives
DB DD Dw DBIT RELB
RELW MODRM SEGFIX NOSEGFIX
8086 Registers
AH AL AX BH BL
BP BX CH L+ R cs
CX DH DI DL DS
DX ES N |) 5

Instruction Mnemonics—See Appendix E,

End of Appendix D

p-
™
2

™

=

5

)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TC DIGITAL RESEARCH 101

End of Appendix D CP/M-86 Programmer’s Guide

' 1 TH § %
LT R
e A
7
h H
wn
Ter 1 TH)
»i
14‘: :f
~ i . :{
¢ 1 i l(‘:
PLofeu Bith \n‘u L'.i 4
102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0%

R §

RLE
X
xai

C

Appendix E

ASM-86 Instruction Summary

Table E-1, ASM-86 Instruction Summary

Mnemonic Description Section
AAA ASCH adjust for Addition 4.3
AAD ASCII adjust for Division 43
AAM ASCII adjust for Multiplication 4.3
AAS ASCII adjust for Subtraction 4.3
ADC Add with Carry 4.3
ADD Add 4.3
AND And 4.3
CALL Call (intra segment) 4.5

CALLF Call {inter segment) 4.5
CBW Convert Byte to Word 4.3
CLC Clear Carry 4.6
CLD Clear Direction 4.6
CLI Clear Interrupt 4.6
CMC Complement Carry 4.6
CMP Compare 4.3
CMPS Compare Byte or Word (of string) 4.4
CWD Convert Word to Double Word 4.3
DAA Decimal Adjust for Addition 4.3
DAS Decimal Adjust for Subtraction 4.3
DEC Decrement 4.3
DIV Divide 4.3
ESC Escape 4.6
HLT Halt 4.6
DIV Integer Divide 4.3
IMUL Integer Muluiply 4.3

IN Input Byte or Word 4.2
INC Increment 4.3
INT Interrupt 4.5
INTO Interrupt on Qverflow 4.5

LR

o+

¢ .1

ik

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

103

e
ot
=
e
-
2
X
m

E Instruction Summary

CP/M-86 Programmer’s Guide

Table E-1. {continued)

Mnemonic Description Section

IRET Interrupt Return 4.5
JA Jump on Above 4.5
JAE Jump on Above or Equal 4.5
jB Jump on Below 4.5
JBE Jump on Below or Equal 4.5
JC Jump on Carry 4.5
JCXZ Jump on CX Zero 4.5
JE Jump on Equal 4.5
JG Jump on Greater 4.5
JGE Jump on Greater or Equal 4.5
JL Jump on Less 4.5
JLE Jump on Less or Equal 4.5
JMP Jump (intca segment) 4.5
JMPF Jump (inter segment) 4.5
JMPS Jump (8 bit displacement) 4.5
JNA Jump on Not Above 4.5
JNAE Jump on Not Above or Equal 4.5
JNB Jump on Not Below 4.5
JNBE Jump on Not Below or Equal 4.5
JNC Jump on Not Carry 4.5
JNE Jump on Not Equal 4.5
JNG Jump on Not Greater 4.5
JNGE Jump on Not Greater or Equal 4.5
JNL Jump on Not Less 4.5
JNLE Jump on Not Less or Equal 4.5
JNO Jump on Not Overflow 45
JNP Jurap on Not Parity 4.5
JNS Jump on Not Sign 4.5
JNZ Jump on Not Zero 4.5
Jo Jump on Overflow 4.5
JP Jump on Parity 4.5
JPE Jump on Parity Even 4.5
JPO Jump on Parity Odd 4.5
Js Jump on Sign 4.5
JZ Jump on Zero 4.5
LAHF Load AH with Flags 4.2

104 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide

Table E-1. (continued)

E Instruction Summary

Mnemonic Description Section
LDS Load Pointer into DS 4.2
LEA Load Effective Address 4,2
LES Load Pointer into ES 4.2

LOCK Lock Bus 4.6
LODS Load Byte or Word (of string) 44
LOOP Loop 4.5
LOOPE Loop While Equal 4.5
LOOPNE Loop While Not Equal 4.5
LOOPNZ Loop While Not Zero 4.5
LOOPZ --——~ Loop While Zero —— 4.5
MOV Move 4.2
MOVS Move Byte or Word (of string) 4.4
MUL Muluply 4.3
NEG Negate 4.3
NOT Not 43
OR Or 4.3
ouT Output Byte or Word 4.2
POP Pop 4.2
POPF Pop Flags 4.2
PUSH Push 4.2
PUSHF Push Flags 4.2
RCL Rotate through Carry Left 4.3
RCR Rotate through Carry Right 4.3
REP Repeat 4.4
RET Return (intra segment) 4.5
RETF Return (inter segment) 4.5
ROL Rotate Left 4.3
ROR Rotate Right 4.3
SAHF Store AH into Flags 4.2
SAL Shift Arithmetic Left 4.3
SAR Shift Arithmetic Right 4.3
SBB Subtract with Borrow 4.3
SCAS Scan Byte or Word (of string) 4.4
SHL Shift Left 4.3
SHR Shifr Right 43
STC Set Carry 4.6
ALL INFORMATION PRESENTED HERE IS PROPRIETARY TC DIGITAL RESEARCH 105

E Instruction Summary

CP/M-86 Programmer’s Guide

Table E-1. (continued)

Mnemonic Description Section
STD Set Direction 4.6
§T1 Set Interrupe 4.6

STOS Store Byte or Word (of string) 4.4
SUB Subtract 4.3
TEST Test 4.3
WAIT Wait ntd 4.6
XCHG Exchange 4.2
XLAT Translate 4.2
XOR Exclusive Or 43
[N .
. End of Appendix E dories
;- N T4
P AacC;
W ‘l'!’ 'T'J(’
L act] i
i S W i
. A28
3
., 'm i
‘I TR
s b 255 S
L Hodd i
L4 Hae -
e ire
Ahe
4 a4z i
: g 2k !
ST
1 Rild :
A p? i
106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

(\

Appendix F
Sample Program

CP/M ASMBE 1.1 SOURCE: APPF.ABE Terminal Inect/Output PAGE 1

choN e title *Terminal Input/Qutput®

payesize 5O
radewidth 79
stmform

]
Fenanns Terminal 1/0 subroutines FERskes

)]
] The followind subroutines
ALANL v are 1ncluded:
L]
L] CONSTAT - console status
Xeom] CONIN - console 1nput
irax i ¥ CONDUT - console outeut

]
} Each routine reaquires COMSOLE NUMBER
L in the BL - resister
L]
'
H ARERRRERBERRERRSY t .
} + Jume table: /
H FRERRRERRSHERRER
1
CSEG i start of code sesment
H
JuP tab:

0000 ES0B0O JWP constat

0002 ESL800 JWP conin

0008 ES2000 JMP congut
§
' r
] B ORANEEEREARANRE RN RERAND
] # /0 Port numbers 7
' BERFRRAARERREFRLERERES4E

Listing F-1. Sample Program APPF.A86

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107

F Sample Program CP/M-86 Programmer’s Guide

CP/M ASMBE 1.1 SOURCE: APPF.A86 Terminal Inrut/Qutrut . 4 4 PAGE 2
]
[Termanal 1:
]
0010 instatl 2y 10k i ainput status rorct
0011 1ndatal eny 11h toinput sort
0011 outdatal equ 11k i outeut port
0001 readrinmackl ey Olh i o1neut ready mask
0002 teadvoutmaskl aay 02Zh i output ready mask
i
i Terminal 2Z:
H
0012 instat2 [L1 12k § 1nPut status Port
0013 indatal eqy 13h i inPut Port
o013 putdataZ gay 13h i outeut pPort
o00d readrinmask2 BqlU Odh i 1nPut readr mask
anog readroutmask? L1 11 (Bh i outrut readv mask
]
i
H FEXRRARERRRR
§ #+ CONSTAT / :
H HEE RS EREN :
i i
L] Entrr: BL - reg = terminal no
L] Exit: AL - reg = ¢ 1f not readv
] Offh a1t tready
‘ -
canstats ;
0008 SIEGIFO0 push bx ! call okterminal -
constatl:
0000 52 Push dx
000E BEOD mov dh .0 i read status poOfrt
001¢ BA17 mov dlsinstatustab [BX]
G012 EC 1n alsdx 1
Q013 224706 and alsreadrinmasktab [bx)
0GIE 7402 42 constatout H
0018 BOFF mov 3l:0ffh o '

Listing F-1. (continued)

108 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide F Sample Program

CP/M ASMBE 1.1 SOURCE: APPF.ABB Terminal Inrut/Duteut PRGE 3

constatouts

001A SASBOACOCT mor dx ! ear bx ' or alral ' ret
H
'
[] ERARRARES
1 % CONIN /
) EARRRERER
1 Entey: BL - res = terminal no
H Exit: AL - res = read character
’
001F 33EBZ900 conin: epush bx ¥ call pKterminmal !
0023 EBE7FF coninl: call constatl i test status
0026 74FB Jz coninl
0028 32 rush dx i read character
0029 BBOO moy dh .0
Q028 BAS5702 mov dlerindatatab [BX]
Q02E EC H n alsdx
002F 247F and al«7th i strar Parity bit
0031 SA3ZEC3 poe dx ' mrop bx ! ret
H
EL 4]
3 FEXFIERBER
v oy Jeo » CONDUT ¢
¥ SEHEARRE RS
YEf W BRED }
§ Entrr: BL - res 2 tetminal no
H AL - rey 3 character to Prant
¥
0034 S3IEB1400 cenout: rush bu ! gall okterminal
0038 52 rush du
0039 30 Push &x
003A BEBOO mov dhs0 § test status
003C BA17 wov dlstnstatustab {BX)
conoutl:
Q03E EC * an 2l rdy '

Listing F-1. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

F Sample Program

CP/M ASMBE 1,1

0G3IF
0042
0044
0043
nnas
a0as

noac
G0aE
G0SQ
0053
0033
0057
0059

0054

110

224708
74FA
EL
8A5704
EE
SASBLC3

0ADB
2a0A
BOFBO3
7305
FECH
B700
c3

S85BL3

CP/M-86 Programmer’s Guide

SOURCE: APPF.ABS Terminal Inmut/Qutput 2 PAGE a

and alrreadvoutmasktab [BX]

42 canoutl

FOP ax i write brte
moy dlsoutdatatab [BX]

out dnral

FoPr dx ' poP bx ' ret i

TERFRI TR R L

H

P T "
+ DRTERMIMAL +
RIS RIS S 2T 2

Entrv: BL - res = terminal no

okterminal:

Al

errors

.
1
.
1

or blsbl

4z BTIDT -
cmpr bl+lendth 1nstatustab + 1

Jae error

dec bl * vboane N
wouv bh.Q H
ret :
poP bx ' Ppe bx ! ret i do nothing

AERRERERRERRAE ond OFf COJE SPIMENt FREEEREARERENES

RERERAAAERAEERRAE H

t Data sedment *

REAERAARERANERNE Voiansg Tt
dsey

FRREAEAARAREERRERRERARER RN
Data for each terminal
ARERRERR RN ¥ Tud

I

Listing F-1. (continued)

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

QO

(\

CP/M-86 Programmer’s Guide F Sample Program

CP/M ASMEE 1.1 SOURCE: APPF.ABE Terwinal Input/Dutrut PAGE 5
L]

0000 1012 instatustab db instatlrinstat2

0002 1113 indatatab db indatalrindataz

0008 1113 outdatatab db outdatalrputdatal

0006 0104 readrinmasktab db readvinmasklrreadrinmask?

0008 0208 readroutmasktab db readyoutmaskl sreadyoutmaskz

L]
FEHARERRRSHRNRER end gf file #ESNAERRANFARERANRRENS
end

END OF ASSEMBLY. NUMBER OF ERRORS: Q

Listing F-1. {continued)

End of Appendix F

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 111

End of Appendix F

Ju [T PN VI R Y)

‘ [ar@yMF s 4 7 I

' e eI R ELEREY oy Y Yo Bay

CP/M-86 Programmer’s Guide

LIRS L T) 8 P T

akc .2 W AIMMUN L LIMIBRA 0 W3

112 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

hY

Appendix G
Code-Macro Definition Syntax

<codemacro> ::= CODEMACRO <mame> [<formal$list>]
[<list§ofSmacro§directives>|
ENDM

<mame> ::= IDENTIFIER

<formal$list> :: = <parameter§descr>[{,<parameter§descr>}]

<parameter§descr> .. = <form$name>:<specifier§letter>
<modifier$letter>[(<range>}

<specifier§letter> ::= A|C|D|E|M|R|S|X
<modifier$letter> ::= b|w]d}sb

<range> ::= <singleSrange>|<doubleSrange>
<single§range> ::= REGISTER | NUMBERB

<double$range> :: = NUMBERB,NUMBERB | NUMBERB,REGISTER |
REGISTER,NUMBERB | REGISTER,REGISTER

<listSof$macro3directives> :: = <macroSdirective>
{<macro$directive>}

<macroS$directive> .= <db> | <dw> | <dd> | <segfix> |
<nosegfix> | <modrm> | <relb> |
<relw> | <dbit>

<db> ::= DB NUMBERB | DB <form$name>

<dw> ::= DW NUMBERW | DW <form$name>

<dd> ::= DD <form¥name>

1
!
C.
D
=
o
x>
O

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TC DIGITAL RESEARCH 113

G Code-Macro Definition Syntax

-t

<segfix> :: = SEGFIX <form$name> , .-
<nosegfix> :: = NOSEGFIX <form$name>

<modrm> ::= MODRM NUMBER7,<form$name> |
MODRM <formSname> < formSname>

<relb> 1= RELB <form$name>

=%
<relw> ::= RELW <form$name>
<dbit> := DBIT <field$descr>{,<field$descr>} -

<field$descr> ::= NUMBER15 (NUMBERSB } |
NUMBER1S5 (<form$name> (NUMBERB })

<form$name> ::= IDENTIFIER

NUMBERB is 8-bits ‘ -
NUMBERW is 16-bits

NUMBER7 are the values 0, 1,.., 7

NUMBERI1S are the values 0, 1,.., 15 s b s

End of Appendix G .

114 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer’s Guide

uh -

(\

(\

Appendix H
ASM-86 Error Messages

There are two types of error messages produced by ASM-86: fatal errors and
diagnostics. Fatal errors occur when ASM-86 is unable to continue assembling. Diag-
nostic messages report problems with the syntax and semantics of the program being
assernbled. The following messages indicate fatal errors encountered by ASM-86
during assembly:

NO FILE

DISK FULL

DIRECTORY FULL

DISKk READ ERROR
CANNOT CLOSE

SyMBOL TABLE OVERFLOW
PARAMETER ERKROR

ASM-86 reports semantic and syntax errors by placing a numbered ASCI! message
in front of the erroneous source line. If there is more than one error in the line, only
the first one is reported. Table H-1 summarizes ASM-86 diagnostic error messages.

Table H-1. ASM-86 Diagnostic Error Messages

Number Meaning

ILLEGAL FIRST ITEM

MISSING PSEUDO INSTRUCTION
ILLEGAL PSEUDO INSTRUCTION
DOUBLE DEFINED VARIABLE

DOUBLE DEFINED LABEL

UNDEFINED INSTRUCTION

GARBAGE AT END OF LINE - IGNORED
OPERAND(S) MISMATCH INSTRUCTION
ILLEGAL INSTRUCTION OPERANDS
MISSING INSTRUCTION

UNDEFINED ELEMENT OF EXPRESSION
ILLEGAL PSEUDO OPERAND .
NESTED “1F” ILLEGAL - “IF”" IGNORED

S\DQ\IC\M-&MNHO

f—
[

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 115

>
2
:‘D'_
-
o8
S
I

H ASM-86 Error Messages CP/M-86 Programmer’s Guide

Table H-1. (continued)

Number Meanng

13 ILLEGAL “IF” OPERAND - “IF” IGNORED

14 NO MATCHING “IF” FOR “ENDIF”

15 SYMBOL ILLEGALLY FORWARD REFERENCED -
NEGLECTED

16 DOUBLE DEFINED SYMBOL - TREATED AS
UNDEFINED

17 INSTRUCTION NOT IN CODE SEGMENT

18 FILE NAME SYNTAX ERROR

19 NESTED INCLUDE NOT ALLOWED

20 ILLEGAL EXPRESSION ELEMENT

21 MISSING TYPE INFORMATION IN OPERAND(S)

22 LABEL OUT OF RANGE

23 MISSING SEGMENT INFORMATION IN OPERAND

24 ERROR IN CODEMACROBUILDING

End of Appendix H

S X}
it !

116 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

e Appendix |
DDT-86 Error Messages

Table I-1.

DDT-86 Error Messages

Error Message

Meaning

AMBIGUOUS OPERAND

CANNOT CLOSE

DISK READ ERROR

DISK WRITE ERROR

INSUFFICIENT MEMORY

MEMORY REQUEST DENIED

An attempt was made to assemble a com-
mand with an ambiguous operand. Pre-
cede the operand with the prefix “BYTE”
or “WORD”.

The disk file written by a W command
cannot be closed.

The disk file specified in an R command
could not be read properly.

A disk write operation could not be suc-
cessfully petformed during a W com-
mand, probably due to a full disk.

There is not enough memory to load the
file specified in an R or E command.,

A request for memory during an R com-
mand could not be fulfilled. Up to eight
blocks of memory may be allocated at a
given time.

NO FILE The file specified in an R or E command
could not be found on the disk.
NO SPACE Thete is no space in the directory for the
file being written by a W command,
ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 117

)
C
)

2

-

N

>

I DDT-86 Error Messages

CP/M-86 Programmer’s Guide

-, » F E
% . ‘
Table I-1. (continued)
Error Message Mearming
VERIFY ERROR AT s:0 The value placed 1n memory by a Fill,
Set, Move, or Assemble command could
me i not be read back correctly, ndicatng bad
r4mts RAM or attempung to write to ROM or
non-existent memory at the indicated
FITTOL Y L L S+ -) T . Iocatlon_
T Cru . Yeipean

dorp g bros

End of Appendix |

8" IO [A
D I
' 4
TS PP PO ST P
rree v L, . Moo
ety aebt e L -
o Lo L
fd L " "
118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Q@

()

A

AAA, 41

AAD, 41

AAM, 41

AAS, 41

ADC, 41

ADD, 41

address conventions in
ASM-86, 25

address expression, 22

allocate storage, 32

AND, 43

arithmetic operators, 18-19

bracketed expression, 22

C

CALL, 47

CBW, 41

character scring, 10
CLC, 51

CLD, 51 L
CLI, §1 '
CMC, 51

CMP, 41 3
CMPS, 46

code segment, 26
code-macro directives, 57
code-macros, 53
conditional assembly, 28
console output, 4

Index

constants, 9

control transfer
instructions, 47

creation of output files, 3

CSEG, 26

CWD, 41

D

DAA, 41

DAS, 42

data segment, 26

data transfer, 37

DB, 30

DD, 31

DEC, 42

defined data area, 30
delimiters, 7

directive statement, 24
DIV, 42

dollar-sign operator, 20
DSEG, 26

DW, 31

E

effective address, 25
EJECT, 33

END, 2%
end-of-line, 23
ENDIF, 28

EQU, 29

ESC, 51

ESEG, 27
cxpressions, 22
extra segment, 27

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

119

F

filename extensions, 2
flag bits, 37, 40
flag registers, 37
formal parameters, $3

H

HLT, 52

I

identifiers, 11

IDIV, 42 i

IF, 28 LE s
IMUL, 42

IN, 38 RSO 12 Y
ING, 42

INCLUDE, 29

initialized storage, 30
instruction statement, 23
INT, 47

INTO, 48

invoking ASM-86, 2

IRET, 48

w ey

J

JA, 48
JB, 48
JCXZ, 48
JE, 48
JG, 48
JL, 48
JLE, 49
JMP, 49
JNA, 49
JNB, 49

120 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

JNE, 49
JNG, 49
JNL, 49
INO, 49
NP, 49
NS, 50
JNZ, 50
1O, 50
P, 50
18, 50
JZ, 50

K ef-af 5

keywords, 11

L 1

label, 23

labels, 13

LAHF, 38

LDS, 38

LEA, 38

LES, 38

LIST, 34

location counter, 28
LOCK, 52

LODS, 46

logical operators, 18
LOOP, 50

M

mnemonic, 23
modifiers, 56
MOV, 38
MOVS, 46
MUL, 42

0! 'f'

N

name field, 24

NEG, 42

NOLIST, 34

NOT, 43

number symbols 14
numeric constants, 9
numeric expression, 22

O

offset, 13

offset value, 25

operator precedence, 20

operators, 14

optional run-time
parameters, 3

OR, 43

order of operations, 20

ORG, 28

QUT, 38

output files, 2, 3

P

PAGESIZE, 33
PAGEWIDTH, 33
period operaror, 20
POP, 39

predefined numbers, 11
prefix, 23, 46

printer output, 4

PTR operator, 20
PUSH, 39

radix indicators, 9
RB, 32

RCL, 43

RCR, 43

registers, 11
relational operartors, 18
REP, 46

RET, 50

ROL, 43

ROR, 43

RS, 32

run-time options, 3
RW, 32

SAHF, 3%

SAL, 44

SAR, 44

SBB, 42

SCAS, 46

segment, 13

segment base values, 25
segment override operator, 19
segment start directives, 25
separators, 7

SHL, 44

SHR, 44

SIMFORM, 34

specifiers, 55

SSEG, 26

stack segment, 27

starting ASM-86, 2
scatements, 23

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

111

STC, 52 TR
STD, 52

STI, 52 Lo

STOS, 46

string constant, 10

string operations, 45

SUB, 42

symbols, 29 71

T
TEST, 44

TITLE, 33
type, 13 LR

U

W %

unary operators, 19 Tt

v

variable manipularor, 19
variables, 13

i
w l b4

WAIT, 52

X

XCHG, 39 i
XLAT, 39

122 ALL INFORMATION FRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1

N ———

