
SIEMENS

Betriebssystem
^ ProgrammieranleitungQ&®

- OD (Programmer's Guide)

COPYRIGHT

Copyright © 1981, 1982, and 1983 by Digital Research. All rights reserved. No part
of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research, Post Office Box 579, Pacific
Grove, California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M and CP/M-86 are registered trademarks of Digital Research. ASM-86, DDT-86,
and TEX-80 are trademarks of Digital Research. Intel is a registered trademark of Intel
Corporation. Z80 is a registered trademark of Zilog, Inc.

The CP/M-86 Operating System Programmer's Guide was prepared using the Digital
Research TEX-80 text formatter and printed in the United States of America.

Third Edition: January 1983

Foreword

This manual assists the 8086 assembly language programmer working in a
CP/M-86® environment. It assumes you are familiar with the CP/M-86 implementa-
tion of CP/M and have read the following Digital Research publications:

• CP/M 2 Documentation
• CP/M-86 Operating System User's Guide

The reader should also be familiar with the 8086 assembly language instruction
set, which is defined in Intel®'s 8086 Family User's Manual.

The first section of this manual discusses ASM-86™ operation and the various
assembler options which may be enabled when invoking ASM-86. One of these
options controls the hexadecimal output format. ASM-86 can generate 8086 machine
code in either Intel or Digital Research format. These two hexadecimal formats are
described in Appendix A.

The second section discusses the elements of ASM-86 assembly language. It defines
ASM-86's character set, constants, variables, identifiers, operators, expressions, and
statements.

The third section discusses the ASM-86 directives, which perform housekeeping
functions such as requesting conditional assembly, including multiple source files,
and controlling the format of the listing printout.

The fourth section is a concise summary of the 8086 instruction mnemonics accepted
by ASM-86. The mnemonics used by the Digital Research assembler are the same as
those used by the Intel assembler except for four instructions: the intra-segment short
jump, and inter-segment jump, return and call instructions. These differences are
summarized in Appendix B. '

The fifth section of this manual discusses the code-macro facilities of ASM-86.
Code-macro definition, specifiers and modifiers as well as nine special code-macro
directives are discussed. This information is also summarized in Appendix H.

The sixth section discusses the DDT-86™ program, which allows the user to test
and debug programs interactively in the CP/M-86 enviornment. Section 6 includes a
DDT-86 sample debugging session.

V

Table of Contents

1 Introduction

1.1 Assembler Operation 1
1.2 Optional Run-time Parameters 3
1.3 Aborting ASM-86 5

2 Elements of ASM-86 Assembly Language

2.1 ASM-86 Character Set 7
2.2 Tokens and Separators 7
2.3 Delimiters 7
2.4 Constants 9

2.4.1 Numeric Constants 9
2.4.2 Character Strings 10

2.5 Identifiers 11
15.1 Keywords 11
2.5.2 Symbols and Their Attributes 13

2.6 Operators 14
2.6.1 Operator Examples 18
2.6.2 Operator Precedence 20

2.7 Expressions 22
2.8 Statements 23

3 Assembler Directives

3.1 Introduction 25
3.2 Segment Start Directives 25

3.2.1 The CSEG Directive 26
J ' ' 3.2.2 The DSEG Directive 26
"?- ' ' 3.2.3 The SSEG Directive 27

3.2.4 The ESEG Directive 27
3.3 The ORG Directive 28
3.4 The IF and ENDIF Directives 28
3.5 The INCLUDE Directive 29
3.6 The END Directive 29
3.7 The EQU Directive 29
3.8 The DB Directive 30
3.9 The DW Directive 31
3.10 The DD Directive 31

Table of Contents (continued)

3.11 The RS Directive 32
3.12 The RB Directive 32
3.13 The RW Directive 32
3.14 The TITLE Directive 33
3.15 The PAGESIZE Directive 33
3.16 The PAGEWIDTH Directive 33
3.17 The EJECT Directive 33
3.18 The SIMFORM Directive 34
3.19 The NOLIST and LIST Directives 34

4 The ASM-86 Instruction Set

4.1 Introduction 35
4.2 Data Transfer Instructions 37
4.3 Arithmetic, Logical, and Shift Instructions 40 ^
4.4 String Instructions 45 j
4.5 Control Transfer Instructions 47 ^^
4.6 Processor Control Instructions 51

5 Code-Macro Facilities

5.1 Introduction to Code-macros 53
5.2 Specifiers 55
5.3 Modifiers 56
5.4 Range Specifiers 56
5.5 Code-macro Directives 57 \

5.5.1 SEGFIX 57
5.5.2 NOSEGFIX 57
5.5.3 MODRM 58
5.5.4 RELB and RELW 59

t 5.5.5 DB, DW and DD 59
5.5.6 DBIT 60

6 DDT-86

6.1 DDT-86 Operation 63
6.1.1 Invoking DDT-86 6 3 ^ y
6.1.2 DDT-86 Command Conventions 63 ^^
6.1.3 Specifying a 20-Bit Address 64
6.1.4 Terminating DDT-86 65

Table of Contents (continued)

6.1.5 DDT-86 Operation with Interrupts 65
6.2 DDT-86 Commands 66

6.2.1 The A (Assemble) Command 66
6.12 The D (Display) Command 66
6.2.3 The E (Load for Execution) Command 67
6.2.4 The F (Fill) Command 68
6.2.5 The G (Go) Command 68
6.2.6 The H (Hexidecimal Math) Command 69
6.2.7 The I (Input Command Tail) Command 69
6.2.8 The L (List) Command 70
6.19 The M (Move) Command 71
6.110 The R (Read) Command 71
6.111 The S (Set) Command 71
6.112 The T (Trace) Command 72

, f , 6.113 The U (Untrace) Command 73
6.114 The V (Value) Command 73

- , , 6.115 The W (Write) Command) 74
6.116 The X (Examine CPU State) Command 74

6.3 Default Segment Values 76
6.4 Assembly Language Syntax for A and L Commands 78
6.5 DDT-86 Sample Session 80

Table of Contents (continued)

• ' Appendixes
A ASM-86 Invocation 93

B Mnemonic Differences from the Intel Assembler 95

C ASM-86 Hexadecimal Output Format 97

D Reserved Words 101

E ASM-86 Instruction Summary 103

F Sample Program 107

G Code-Macro Definition Syntax 113 . ^

H ASM-86 Error Messages 115

I DDT-86 Error Messages 117

Section 1
Introduction

1.1 Assembler Operation

ASM-86 processes an 8086 assembly language source file in three passes and pro-
duces three output files, including an 8086 machine language file in hexadecimal
format. This object file may be in either Intel or Digital Research hex format, which
are described in Appendix C. ASM-86 is shipped in two forms: an 8086 cross-
assembler designed to run under CP/M® on an Intel 8080 or Zilog Z80® based
system, and a 8086 assembler designed to run under CP/M-86 on an Intel 8086 or
8088 based system. ASM-86 typically produces three output files from one input file
as shown in Figure 1-1, below.

-rr>

SOURCE

<file name>.A.86 - contains source
<file name>.LST - contains listing
<file name>.H86 - contains assembled program in

hexadecimal format
</i'/enawe>.SYM - contains all user-defined symbols

Figure 1-1. ASM-86 Source and Object Files

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1.1 Assembler Operation CP/M-86 Programmer's Guide

Figure 1-1 also lists ASM-86 filename extensions. ASM-86 accepts a source file
with any three letter extension, but if the extension is omitted from the invoking
command, it looks for the specified filename with the extension .A86 in the directory.
If the file has an extension other than .A86 or has no extension at all, ASM-86
returns an error message.

The other extensions listed in Figure 1-1 identify ASM-86 output files. The .LST
file contains the assembly language listing with any error messages. The .H86 file
contains the machine language program in either Digital Research or Intel hexadeci-
mal format. The .SYM file lists any user-defined symbols.

Invoke ASM-86 by entering a command of the following form:

ASM86 <source filename> [$ <optional parameters>]

Section 1.2 explains the optional parameters. Specify the source file in the following
form:

[<optional drive>:]<filename>[.<optional extension>]

where

<optional drive> is a valid drive letter specifying the source file's
location. Not needed if source is on current drive.

<filename> is a valid CP/M filename of 1 to 8 characters.

<optional extension> is a valid file extension of 1 to 3 characters, usu-
ally .A86.

Some examples of valid ASM-86 commands are:

&>ASMB6 B:BIOSB8

&>ASM86 BIOS88.A8B $FI AA HB PB SB

(\>ASM8G D:TEST

Once invoked, ASM-86 responds with the message:

CP/M 8086 ASSEMBLER VER x.x

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 1.1 Assembler Operation

where x.x is the ASM-86 version number. ASM-86 then attempts to open the source
file. If the file does not exist on the designated drive, or does not have the correct
extension as described above, the assembler displays the message:

NO FILE

If an invalid parameter is given in the optional parameter list, ASM-86 displays the
message:

PARAMETER ERROR

After opening the source, the assembler creates the output files. Usually these are
placed on the current disk drive, but they may be redirected by optional parameters,
or by a drive specification in the source file name. In the latter case, ASM-86 directs
the output files to the drive specified in the source file name.

During assembly, ASM-86 aborts if an error condition such as disk full or symbol
table overflow is detected. When ASM-86 detects an error in the source file, it places
an error message line in the listing file in front of the line containing the error. Each
error message has a number and gives a brief explanation of the error. Appendix H
lists ASM-86 error messages. When the assembly is complete, ASM-86 displays the
message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

1.2 Optional Run-time Parameters

The dollar-sign character, $, flags an optional string of run-time parameters. A
parameter is a single letter followed by a single letter device name specification. The
parameters are shown in Table 1-1, below.

Table 1-1. Run-time Parameters

Parameter

A
H
P
S
F

To Specify

source file device
hex output file device
list file device
symbol file device
format of hex output file

Valid Arguments

A, B, C, ... P
A ... P, X, Y, Z
A ... P, X, Y, Z
A ... P, X, Y, Z
I ,D

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1.2 Optional Run-time Parameters CP/M-86 Programmer's Guide

Table 1-2. Run-time Parameter Examples

Command Line Result

ASM86 IO

ASM86 IO.ASM $ AD SZ

ASM86 10 $ PY SX

ASM86 IO $ FD
ASM86 IO $ FI

Assemble file IO.A86, produce IO.HEX, IO.LST
and IO.SYM, all on the default drive.
Assemble file IO.ASM on device D, produce
IO.LST and IO.HEX, no symbol file.
Assemble file IO.A86, produce IO.HEX, route
listing directly to printer, output symbols on
console.
Produce Digital Research hex format.
Produce Intel hex format.

••< A
A

'1 k
•- 5 !

H

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

All parameters are optional, and can be entered in the command line in any order.
Enter the dollar sign only once at the beginning of the parameter string. Spaces may
separate parameters, but are not required. No space is permitted, however, between
a parameter and its device name.

A device name must follow parameters A, H, P and S. The devices are labeled:

A, B, C, ... P or X, Y, Z

Device names A through P respectively specify disk drives A through P. X specifies
the user console (CON:), Y specifies the line printer (LST:), and Z suppresses output
(NUL:).

If output is directed to the console, it may be temporarily stopped at any time by
typing a control-S. Restart the output by typing a second control-S or any other
character.

The F parameter requires either an I or a D argument. When I is specified, ASM-
86 produces an object file in Intel hex format. A D argument requests Digital Research
hex format. Appendix C discusses these formats in detail. If the F parameter is not
entered in the command line, ASM-86 produces Digital Research hex format.

CP/M-86 Programmer's Guide 1.3 Aborting ASM-86

1.3 Aborting ASM-86

You may abort ASM-86 execution at any time by hitting any key on the console
keyboard. When a key is pressed, ASM-86 responds with the question:

USER BREAK. O K (Y / N) ?

A Y response aborts the assembly and returns to the operating system. An N response
continues the assembly.

End of Section 1

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

End of Section 1 / > CP/M-86 Programmer's Guide

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 2
Elements of ASM-86 Assembly

Language
2.1 ASM-86 Character Set

ASM-86 recognizes a subset of the ASCII character set. The valid characters are
the alphanumerics, special characters, and non-printing characters shown below:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9

+ - * / = () [] ; ' . ! , _ : @ $ - I

space, tab, carriage-return, and line-feed

Lower-case letters are treated as upper-case except within strings. Only alphanu-
merics, special characters, and spaces may appear within a string.

2.2 Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source program, much as a
word is the smallest meaningful unit of an English composition. Adjacent tokens are
commonly separated by a blank character or space. Any sequence of spaces may
appear wherever a single space is allowed. ASM-86 recognizes horizontal tabs as
separators and interprets them as spaces. Tabs are expanded to spaces in the list file.
The tab stops are at each eighth column. }

2.3 Delimiters

Delimiters mark the end of a token and add special meaning to the instruction, as
opposed to separators, which merely mark the end of a token. When a delimiter is
present, separators need not be used. However, separators after delimiters can make
your program easier to read.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2.3 Delimiters CP/M-86 Programmer's Guide

Table 2-1 describes ASM-86 separators and delimiters. Some delimiters are also
operators and are explained in greater detail in Section 2.6.

Table 2-1. Separators and Delimiters

Character

20H

09H

CR

LF

»

•

, . .

$

+

—
*

/

@
_

!

'

Name

space « , v

tab

carriage return

line feed

semicolon

colon

period

dollar sign

plus

minus

asterisk

slash

at-sign

underscore

exclamation point

apostrophe

Use

separator

legal in source files, expanded in list
files

terminate source lines

legal after CR; if within source lines,
it is interpreted as a space

start comment field

identifies a label, used in segment
override specification

forms variables from numbers

notation for 'present value of location
pointer'

arithmetic operator for addition

arithmetic operator for subtraction

arithmetic operator for multiplication

arithmetic operator for division

legal in identifiers

legal in identifiers

logically terminates a statement, thus
allowing multiple statements on a sin-
gle source line

delimits string constants

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 2.4 Constants

2.4 Constants

A constant is a value known at assembly time that does not change while the
assembled program is executed. A constant may be either an integer or a character
string.

2.4.1 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the
radix of the constant, is denoted by a trailing radix indicator. The radix indicators
are shown in Table 2-2, below.

Table 2-2. Radix Indicators for Constants

Indicator

B
O
Q
D
H

Constant Type

binary
octal
octal
decimal
hexadecimal

Base

2
8
8

10
16

ASM-86 assumes that any numeric constant not terminated with a radix indicator
is a decimal constant. Radix indicators may be upper or lower case.

A constant is thus a sequence of digits followed by an optional radix indicator,
where the digits are in the range for the radix. Binary constants must be composed
of O's and 1's. Octal digits range from 0 to 7; decimal digits range from 0 to 9.
Hexadecimal constants contain decimal digits as well as the hexadecimal digits A
(10D), B (11D), C (12D), D (13D), E (14D), and F (15D). Note that the leading
character of a hexadecimal constant must be either a decimal digit so that ASM-86
cannot confuse a hex constant with an identifier, or leading 0 to prevent this prob-
lem. The following are valid numeric constants:

1234 1234D 1100B 111100001111OOOOB
1234H OFFEH 33770 137720
33770 OFE3H 1234d Offffh

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2.4 Constants CP/M-86 Programmer's Guide

2.4.2 Character Strings

ASM-86 treats an ASCII character string delimited by apostrophes as a string
constant. All instructions accept only one- or two-character constants as valid argu-
ments. Instructions treat a one-character string as an 8-bit number. A two-character
string is treated as a 16-bit number with the value of the second character in the
low-order byte, and the value of the first character in the high-order byte.

The numeric value of a character is its ASCII code. ASM-86 does not translate
case within character strings, so both upper- and lower-case letters can be used. Note
that only alphanumerics, special characters, and spaces are allowed within strings.

A DB assembler directive is the only ASM-86 statement that may contain strings
longer than two characters. The string may not exceed 255 bytes. Include any apos-
trophe to be printed within the string by entering it twice. ASM-86 interprets the
two keystrokes " as a single apostrophe. Table 2-3 shows valid strings and how they
appear after processing:

Table 2-3. String Constant Examples

'a'-> a
'Ab ' 'Cd ' -> f\b. 'Cd

'I l i K e CP/M' -> I l i k e CP/M
i i i i _ \ /

'ONLY UPPER CASE' -> ONLY UPPER CASE
'only lower case' -> only lower case

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 2.5 Identifiers

2.5 Identifiers

Identifiers are character sequences which have a special, symbolic meaning to the
assembler. All identifiers in ASM-86 must obey the following rules:
i

1. The first character must be alphabetic (A,...Z, a,...z).

2. Any subsequent characters can be either alphabetical or a numeral (0,1, 9).
ASM-86 ignores the special characters @ and _, but they are still legal. For
example, a_b becomes ab.

3. Identifiers may be of any length up to the limit of the physical line.

Identifiers are of two types. The first are keywords, which have predefined mean-
ings to the assembler. The second are symbols, which are defined by the user. The
following are all valid identifiers:

NOLIST ;. ;

WORD < I !

AH
Th i rd_s t r ee t '
How_a re_y ou_ todav
v a r i a b l e @ n u m b e r@ 1234567890

1
2.5.1 Keywords

A keyword is an identifier that has a predefined meaning to the assembler. Key-
words are reserved; the user cannot define an identifier identical to a keyword. For a
complete list of keywords, see Appendix D.

ASM-86 recognizes five types of keywords: instructions, directives, operators, reg-
isters and predefined numbers. 8086 instruction mnemonic keywords and the actions
they initiate are defined in Section 4. Directives are discussed in Section 3. Section
2.6 defines operators. Table 2-4 lists the ASM-86 keywords that identify 8086 registers.

Three keywords are predefined numbers: BYTE, WORD, and DWORD. The values
^^ of these numbers are 1, 2 and 4, respectively. In addition, a Type attribute is associ-

ated with each of these numbers. The keyword's Type attribute is equal to the
keyword's numeric value. See Section 2.5.2 for a complete discussion of Type attributes.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

2.5 Identifiers CP/M-86 Programmer's Guide

Table 2-4. Register Keywords

Register S
Symbol

AH 1
BH 1
CH 1
DH 1

AL 1
BL nsl !••; 1
CL 1
DL 1

rze Numeric
Value

byte 100 B
111 B
101 B
H O B

000 B
Oil B
001 B
010 B

AX 2 bytes 000 B
BX 2
CX 2
DX 2

BP 2
SP 2

SI 2
DI 2

CS 2
DS 2
SS 2
ES 2

Oil B
001 B
010B

101 B
100 B

H O B
111 B

01 B
11 B
10 B
00 B

Meaning

Accumulator-High-Byte
Base-Register-High-Byte
Count- Register-High-Byte
Data-Register-High-Byte

Accumulator- Low-Byte
Base-Register-Low-Byte
Count-Register-Low-Byte
Data-Register-Low-Byte

Accumulator (full word)
Base-Register '
Count-Register '
Data-Register '

Base Pointer
Stack Pointer

Source Index
Destination Index

Code-Segment-Register
Data-Segment-Register
Stack-Segment-Register
Extra-Segment-Register

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 2.5 Identifiers

2.5.2 Symbols and Their Attributes

A symbol is a user-defined identifier that has attributes which specify what kind of
information the symbol represents. Symbols fall into three categories:

• variables
• labels
• numbers

Variables identify data stored at a particular location in memory. All variables
have the following three attributes:

• Segment—tells which segment was being assembled when the variable was
defined.

• Offset—tells how many bytes there are between the beginning of the segment
^ ^ and the location of this variable.

• Type—tells how many bytes of data are manipulated when this variable is
referenced.

A Segment may be a code-segment, a data-segment, a stack-segment or an extra-
segment depending on its contents and the register that contains its starting address
(see Section 3.2). A segment may start at any address divisible by 16. ASM-86 uses
this boundary value as the Segment portion of the variable's definition.

The Offset of a variable may be any number between 0 and OFFFFH or 65535D.
A variable must have one of the following Type attributes:

• BYTE
• WORD
• DWORD

BYTE specifies a one-byte variable, WORD a two-byte variable and DWORD a
four-byte variable. The DB, DW, and DD directives respectively define variables as
these three types (see Section 3). For example, a variable is defined when it appears

v ^ as the name for a storage directive:

VARIABLE DB 0

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

2.5 Identifiers CP/M-86 Programmer's Guide

A variable may also be defined as the name for an EQU directive referencing another
label, as shown below:

MARIABLE EQU ANOTHER_MARI ABLE

Labels identify locations in memory that contain instruction statements. They are
referenced with jumps or calls. All labels have two attributes:

• Segment
• Offset ''i''1 r" win ->'.

Label segment and offset attributes are essentially the same as variable segment
and offset attributes. Generally, a label is defined when it precedes an instruction. A
colon, :, separates the label from instruction; for example:

LABEL: A D D A X » B X

A label may also appear as the name for an EQU directive referencing another
label; for example:

LABEL EQU ANOTHER_LABEL

Numbers may also be defined as symbols. A number symbol is treated as if you
had explicitly coded the number it represents. For example:

N u m b e r _ f i y e EQU 5
MOM A L » N u m b e r _ f i w e

is equivalent to:

M O M A L , 5

Section 2.6 describes operators and their effects on numbers and number symbols.

2.6 Operators

ASM-86 operators fall into the following categories: arithmetic, logical, and rela-
tional operators, segment override, variable manipulators and creators. Table 2-5
defines ASM-86 operators. In this table, a and b represent two elements of the
expression. The validity column defines the type of operands the operator can manip-
ulate, using the or bar character, |, to separate alternatives.

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 2.6 Operators

Table 2-5. ASM-86 Operators

Syntax Result Validity

Logical Operators

a X O R b

a O R b

a A N D b

NOT a

•

bit-by-bit logical
EXCLUSIVE OR of
a and b.
bit-by-bit logical OR
of a and b.
bit-by-bit logical
AND of a and b.
logical inverse of a:
all O's become 1's,
1's become O's.

a, b = number

a, b = number

a, b = number

a = 16-bit number

Relational Operators

a E Q b

a L T b

a LE b „.„

a G T b '

a G E b

a NE b

returns OFFFFH if a
= b, otherwise 0.
returns OFFFFH if a
< b, otherwise 0.
returns OFFFFH if a
< = b, otherwise 0.
returns OFFFFH if a
> b, otherwise 0.
returns OFFFFH if a
> — b, otherwise 0.

"• returns OFFFFH if a
< > b, otherwise 0.

a, b = unsigned number

a, b = unsigned number

a, b = unsigned number

a, b = unsigned number

a, b = unsigned number

a, b = unsigned number

Arithmetic Operators

a + b

)i''cnr

a - b
;

arithmetic sum of a
and b.

!

arithmetic difference
of a and b.

a = variable,
label or number
b = number

a = variable,
label or number
b = number

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

2.6 Operators CP/M-86 Programmer's Guide

Table 2-5. (continued)

Syntax

a * b

a / b

a MOD b '

a SHL b IY~

a S H R b

+ a

- a

<$eg reg>:
<addr exp>

SEGa

OFFSET a

Result

does unsigned mul-
tiplication of a and

'"' b.
does unsigned divi-
sion of a and b.
returns remainder of
a / b .
returns the value
which results from
shifting a to left by
an amount b.
returns the value
which results from
shifting a to the right
by an amount b.
gives a.

gives 0 - a.

Segment Overrid

overrides assem-
bler's choice of seg-
ment register.

Variable Manipulators,

creates a number
whose value is the
segment value or the

' variable or label a.
creates a number
whose value is the
offset value of the
variable or label a.

Validity

a, b = number

a, b = number

a, b = number

a, b = number

a, b = number

a = number
d f ' R

a = number

e

<seg reg> = CS, DS, SS or ES

Creators

a = label | variable

ri K

a = label | variable

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 2.6 Operators

Table 2-5. (continued)

Syntax

TYPE a

LENGTH a

LAST a

a P T R b

.a

Result

creates a number. If
the variable a is of
type BYTE, WORD
or DWORD, the
value of the number
will be 1, 2 or 4,
respectively,
creates a number
whose value is the
LENGTH attribute
of the variable a.
The length attribute
is the number of
bytes associated with
the variable.
if LENGTH a > 0,
then LAST a =
LENGTH a - 1; if
LENGTH a - 0,
then LAST a = 0.
creates virtual vari-
able or label with
type of a and attri-
butes of b.
creates variable with
an offset attribute of
a. Segment attribute
is current segment,
creates label with
offset equal to cur-
rent value of loca-
tion counter; seg-
ment attribute is
current segment.

Validity

a = label I variable

a = label I variable

a = label I variable

a = BYTE)
WORD, | DWORD
b = <addr exp>

a = number

no argument

T ,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

2.6 Operators CP/M-86 Programmer's Guide

2.6.1 Operator Examples

Logical operators accept only numbers as operands. They perform the boolean
logic operations AND, OR, XOR, and NOT. For example:

OOFC MASK EOU OFCH ;

0080 SIGNBIT EQU BOH
0000 B180 MOV CL.MASK AND SIGNBIT
0002 B003 MOM AL .NOT MASK

Relational operators treat all operands as unsigned numbers. The relational opera-
tors are EQ (equal), LT (less than), LE (less than or equal), GT (greater than), GE
(greater than or equal), and NE (not equal). Each operator compares two operands
and returns all ones (OFFFFH) if the specified relation is true and all zeros if it is not.
For example:

OOOA LIMIT1 EOU 10 j
0019 LIMIT2 EOU 25

0004 B8FFFF MOV A X t L I M I T l LT LIMIT2
0007 B80000 MOV AX.LIMIT1 GT LIMIT2

Addition and subtraction operators compute the arithmetic sum and difference of
two operands. The first operand may be a variable, label, or number, but the second
operand must be a number. When a number is added to a variable or label, the result
is a variable or label whose offset is the numeric value of the second operand plus
the offset of the first operand. Subtraction from a variable or label returns a variable
or label whose offset is that of first operand decremented by the number specified in
the second operand. For example:

0002 COUNT EOU 2 ^ !
0005 DISP1 EOU 5

OOOA FF FLAG DB OFFH

OOOB 2EAOOBOO MOV AL»FLAG+1
OOOF 2E8AOEOFOO MOV CL»FLAG+DISP1
0014 B303 MOV BL ,DISP1-COUNT

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 2.6 Operators

The multiplication and division operators *, /, MOD, SHL, and SHR accept only
numbers as operands. * and / treat all operators as unsigned numbers. For example:

0016 BE5500
0019 B310
0050

001B B8AOOO

MOV
MOV

BUFFERSIZE
MOV

SI »256/3
BL,64/4
EOU 80
AX»BUFFERSIZE *

Unary operators accept both signed and unsigned operators as shown below:

001E B123
0020 B007
0022 B2F4

MOV
MOV
MOV

CL » + 35
AL >2--5
DL,-12

When manipulating variables, the assembler decides which segment register to use.
You may override the assembler's choice by specifying a different register with the
segment override operator. The syntax for the override operator is <segment regis-
ter> : <address expression> where the <segment register> is CS, DS, SS, or ES.
For example:

0024 368B472D
0028 2B8BOE5BOO

MOV AX>SS:WORDBUFFERCBXD
MOV CX»ES:ARRAY

A variable manipulator creates a number equal to one attribute of its variable
operand. SEG extracts the variable's segment value, OFFSET its offset value, TYPE
its type value (1, 2, or 4), and LENGTH the number of bytes associated with the
variable. LAST compares the variable's LENGTH with 0 and if greater, then decre-
ments LENGTH by one. If LENGTH equals 0, LAST leaves it unchanged. Variable
manipulators accept only variables as operators. For example:

002D 000000000000 WORDBUFFER DW 0.0»0
0033 0102030405 BUFFER DB 1 ,2 »3 »4 ,5

0038 B80500
003B B80400
003E BB0100
0041 B80200

MOV AX,LENGTH BUFFER
MOV AX,LAST BUFFER
MOV AX,TYPE BUFFER
MOV AX,TYPE WORDBUFFER

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19

2.6 Operators CP/M-86 Programmer's Guide

The PTR operator creates a virtual variable or label, one valid only during the
execution of the instruction. It makes no changes to either of its operands. The
temporary symbol has the same Type attribute as the left operator, and all other
attributes of the right operator as shown below.

0044 C60705 3 MOV BYTE PTR CBX] , 5
0047 8A07 MOV AL »BYTE PTR CBX]
0049 FF04 INC WORD PTR LSI]

The Period operator, ., creates a variable in the current data segment. The new
variable has a segment attribute equal to the current data segment and an offset
attribute equal to its operand. Its operand must be a number. For example:

004B A10000 MOV AX » .0
004E 2BBB1E0040 MOV BX » ES : .4000H

The Dollar-sign operator, $, creates a label with an offset attribute equal to the
current value of the location counter. The label's segment value is the same as the
current code segment. This operator takes no operand. For example:

0053 E9FDFF JMP $
0056 EBFE JMPS *
0058 E9FD2F JMP $+3000H

2.6.2 Operator Precedence

Expressions combine variables, labels or numbers with operators. ASM-86 allows
several kinds of expressions which are discussed in Section 2.7. This section defines
the order in which operations are executed should more than one operator appear in
an expression.

In general, ASM-86 evaluates expressions left to right, but operators with higher
precedence are evaluated before operators with lower precedence. When two opera-
tors have equal precedence, the left-most is evaluated first. Table 2-6 presents ASM-
86 operators in order of increasing precedence. v J

VOM
VOW

20 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

S-/

CP/M-86 Programmer's Guide 2.6 Operators

Parentheses can override normal rules of precedence. The part of an expression
enclosed in parentheses is evaluated first. If parentheses are nested, the innermost
expressions are evaluated first. Only five levels of nested parentheses are legal. For
example:

15/3 + 18/9 = 5 + 2 = 7
15/(3 + 18/9) = 15/(3 + 2) = 15/5 = 3

Table 2-6. Precedence of Operations in ASM-86

Order

1

2

3

4

5

6

7

8

9

10

11

Operator Type

Logical

Logical

Logical

Relational

Addition/subtraction

Multiplication/division

Unary

Segment override

Variable manipulators,
creators

Parentheses/brackets

Period and Dollar

Operators

XOR, OR

AND

NOT

EQ, LT, LE, GT, GE,
NE

+ , -

*, /, MOD, SHL, SHR

+ , -

<segment override>:

SEG, OFFSET, PTR,
TYPE, LENGTH, LAST

() , []

., $

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

2.7 Expressions CP/M-86 Programmer's Guide

2.7 Expressions

ASM-86 allows address, numeric, and bracketed expressions. An address expres-
sion evaluates to a memory address and has three components:

• A segment value
• An offset value € * * \ ? i * < S T c, > c i -
• A type

Both variables and labels are address expressions. An address expression is not a
number, but its components are. Numbers may be combined with operators such as
PTR to make an address expression.

A numeric expression evaluates to a number. It does not contain any variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index- addressing modes. The base regis-
ters are BX and BP, and the index registers are DI and SI. A bracketed expression
may consist of a base register, an index register, or a base register and an index
register.

Use the + operator between a base register and an index register to specify both
base- and index-register addressing. For example:

^ t
MOV u a r i a b l e C b x] , 0 j
MOV AX»[BX+DI]
MOV AX,[SI]

or

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 2.8 Statements

2.8 Statements

Just as 'tokens' in this assembly language correspond to words in English, so are
statements analogous to sentences. A statement tells ASM-86 what action to perform.
Statements are of two types: instructions and directives. Instructions are translated
by the assembler into 8086 machine language instructions. Directives are not trans-
lated into machine code but instead direct the assembler to perform certain clerical
functions.

Terminate each assembly language statement with a carriage return (CR) and line
feed (LF), or with an exclamation point, !, which ASM-86 treats as an end-of-line.
Multiple assembly language statements can be written on the same physical line if
separated by exclamation points.

The ASM-86 instruction set is defined in Section 4. The syntax for an instruction
statement is:

[label:] [prefix] mnemonic [operand(s)] [;comment]

where the fields are defined as: .

label: A symbol followed by ':' defines a label at the current value
of the location counter in the current segment. This field is
optional.

prefix Certain machine instructions such as LOCK and REP may
prefix other instructions. This field is optional.

mnemonic A symbol defined as a machine instruction, either by the
assembler or by an EQU directive. This field is optional unless
preceded by a prefix instruction. If it is omitted, no operands
may be present, although the other fields may appear. ASM-
86 mnemonics are defined in Section 4.

operand(s) An instruction mnemonic may require other symbols to rep-
resent operands to the instruction. Instructions may have zero,
one or two operands.

comment Any semicolon (;) appearing outside a character string begins
a comment, which is ended by a carriage return. Comments
improve the readability of programs. This field is optional.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23

2.8 Statements CP/M-86 Programmer's Guide

ASM-86 directives are described in Section 3. The syntax for a directive state-
ment is:

[name] directive operand(s) [;comment]

where the fields are defined as:

name Unlike the label field of an instruction, the name field of a
directive is never terminated with a colon. Directive names
are legal for only DB, DW, DD, RS and EQU. For DB, DW,
DD and RS the name is optional; for EQU it is required.

directive One of the directive keywords defined in Section 3.
operand(s) Analogous to the operands to the instruction mnemonics. Some

directives, such as DB, DW, and DD, allow any operand while
! . , » . ? . - ... others have special requirements.

comment Exactly as defined for instruction statements.

End of Section 2
•m

bnt. .J Kfbnq

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 3
Assembler Directives

3.1 Introduction

Directive statements cause ASM-86 to perform housekeeping functions such as
assigning portions of code to logical segments, requesting conditional assembly, defining
data items, and specifying listing file format. General syntax for directive statements
appears in Section 2.8.

In the sections that follow, the specific syntax for each directive statement is given
under the heading and before the explanation. These syntax lines use special symbols
to represent possible arguments and other alternatives. Square brackets, [], enclose
optional arguments. Angle brackets, <>, enclose descriptions of user-supplied argu-
ments. Do not include these symbols when coding a directive.

3.2 Segment Start Directives

At run-time, every 8086 memory reference must have a 16-bit segment base value
and a 16-bit offset value. These are combined to produce the 20-bit effective address
needed by the CPU to physically address the location. The 16-bit segment base value
or boundary is contained in one of the segment registers CS, DS, SS, or ES. The
offset value gives the offset of the memory reference from the segment boundary. A
16-byte physical segment is the smallest relocatable unit of memory.

ASM-86 predefines four logical segments: the Code Segment, Data Segment, Stack
Segment, and Extra Segment, which are respectively addressed by the CS, DS, SS,
and ES registers. Future versions of ASM-86 will support additional segments such
as multiple data or code segments. All ASM-86 statements must be assigned to one
of the four currently supported segments so that they can be referenced by the CPU.
A segment directive statement, CSEG, DSEG, SSEG, or ESEG, specifies that the
statements following it belong to a specific segment. The statements are then addressed
by the corresponding segment register. ASM-86 assigns statements to the specified
segment until it encounters another segment directive.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

3.2 Segment Start Directives CP/M-86 Programmer's Guide

Instruction statements must be assigned to the Code Segment. Directive statements
may be assigned to any segment. ASM-86 uses these assignments to change from one
segment register to another. For example, when an instruction accesses a memory
variable, ASM-86 must know which segment contains the variable so it can generate
a segment override prefix byte if necessary.

3.2.1 The CSEG Directive

CSEG <numeric expression>
CSEG
CSEG $

This directive tells the assembler that the following statements belong in the Code
Segment. All instruction statements must be assigned to the Code Segment. All direc-
tive statements are legal within the Code Segment.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Code Segment after it has been interrupted by a DSEG, SSEG, or
ESEG directive. The continuing Code Segment starts with the same attributes, such
as location and instruction pointer, as the previous Code Segment.

3.2.2 The DSEG Directive

DSEG <numeric expression>
DSEG
DSEG $

This directive specifies that the following statements belong to the Data Segment.
The Data Segment primarily contains the data allocation directives DB, DW, DD and
RS, but all other directive statements are also legal. Instruction statements are illegal
in the Data Segment.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Data Segment after it has been interrupted by a CSEG, SSEG, or
ESEG directive. The continuing Data Segment starts with the same attributes as the
previous Data Segment.

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 3.2 Segment Start Directives

3.2.3 The SSEG Directive i

SSEG <numeric expression>
SSEG i
SSEG $

The SSEG directive indicates the beginning of source lines for the Stack Segment.
Use the Stack Segment for all stack operations. All directive statements are legal in
the Stack Segment, but instruction statements are illegal.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Stack Segment after it has been interrupted by a CSEG, DSEG, or
ESEG directive. The continuing Stack Segment starts with the same attributes as the
previous Stack Segment.

3.2.4 The ESEG Directive

ESEG <numeric expression>
ESEG i
ESEG $ [

I
This directive initiates the Extra Segment. Instruction statements are not legal in

this segment, but all directive statements are.

Use the first form when the location of the segment is known at assembly time;
the code generated is not relocatable. Use the second form when the segment location
is not known at assembly time; the code generated is relocatable. Use the third form
to continue the Extra Segment after it has been interrupted by a DSEG, SSEG, or
CSEG directive. The continuing Extra Segment starts with the same attributes as the
previous Extra Segment.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27

I

3.3 The ORG Directive j CP/M-86 Programmer's Guide

3.3 The ORG Directive

ORG <numeric expression>

The ORG directive sets the offset of the location counter in the current segment to
the value specified in the numeric expression. Define all elements of the expression
before the ORG directive because forward references may be ambiguous.

In most segments, an ORG directive is unnecessary. If no ORG is included before
the first instruction or data byte in a segment, assembly begins at location zero
relative to the beginning of the segment. A segment can have any number of ORG
directives.

3.4 The IF and ENDIF Directives

IF <numeric expression>
<source line 1 >
< source line 2 > -- '

. i <source line n >
ENDIF

The IF and ENDIF directives allow a group of source lines to be included or
excluded from the assembly. Use conditional directives to assemble several different
versions of a single source program.

When the assembler finds an IF directive, it evaluates the numeric expression fol-
lowing the IF keyword. If the expression evaluates to a non-zero value, then <source
line 1 > through <source line n> are assembled. If the expression evaluates to zero,
then all lines are listed but not assembled. All elements in the numeric expression
must be defined before they appear in the IF directive. Nested IF directives are not
legal.

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 3.5 The INCLUDE Directive

3.5 The INCLUDE Directive

INCLUDE <file name>

This directive includes another ASM-86 file in the source text. For example:

I N C L U D E E Q U A L S , A8B

Use INCLUDE when the source program resides in several different files. INCLUDE
directives may not be nested; a source file called by an INCLUDE directive may not
contain another INCLUDE statement. If <file name> does not contain a file type,
the file type is assumed to be .A86. If no drive name is specified with <file name>,
ASM-86 assumes the drive containing the source file.

3.6 The END Directive

END

An END directive marks the end of a source file. Any subsequent lines are ignored
by the assembler. END is optional. If not present, ASM-86 processes the source until
it finds an End-Of-File character (1AH).

3.7 The EQU Directive

symbol EQU <nwneric expression>
symbol EQU <address expression>
symbol EQU <register>
symbol EQU instruction mnemonic>

The EQU (equate) directive assigns values and attributes to user-defined symbols.
The required symbol name may not be terminated with a colon. The symbol cannot
be redefined by a subsequent EQU or another directive. Any elements used in numeric
or address expressions must be defined before the EQU directive appears.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 29

3.7 The EQU Directive * t CP/M-86 Programmer's Guide

The first form assigns a numeric value to the symbol, the second a memory address.
The third form assigns a new name to an 8086 register. The fourth form defines a
new instruction (sub)set. The following are examples of these four forms:

0005
0033
0001

FIVE EQU
NEXT EQU
COUNTER EQU
MOVVV EQU

2*2+1
BUFFER
CX
MOV

005D 8BC3 MOVVV AX.BX

3.8 The DB Directive

[symbol] DB <numeric expression>[,<numeric expression>..}
[symbol] DB <string constant>[,<string constant>...]

The DB directive defines initialized storage areas in byte format. Numeric expres-
sions are evaluated to 8-bit values and sequentially placed in the hex output file.
String constants are placed in the output file according to the rules defined in Section
2.4.2. A DB directive is the only ASM-86 statement that accepts a string constant
longer than two bytes. There is no translation from lower to upper case within
strings. Multiple expressions or constants, separated by commas, may be added to
the definition, but may not exceed the physical line length.

Use an optional symbol to reference the defined data area throughout the program.
The symbol has four attributes: the Segment and Offset attributes determine the
symbol's memory reference, the Type attribute specifies single bytes, and Length tells
the number of bytes (allocation units) reserved.

The following statements show DB directives with symbols:

005F 43502F4D2073 TEXT DB
797374656DOO

006B El AA DB
OOBC 0102030405 X DB

'CP/M system' >0

'a' + 80H
1 ,2 ,3 »4 »5

0071 B90COO MOV CX,LENGTH TEXT

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 3.9 The DW Directive

3.9 The DW Directive i

[symbol] DW <numeric expression>[,<numeric expression> ..]
[symbol] DW <string constant>[,< string constant>...]

The DW directive initializes two-byte words of storage. String constants longer
than two characters are illegal. Otherwise, DW uses the same procedure to initialize
storage as DB. The following are examples of DW statements:

0074 0000 CNTR DM 0
0076 63C166C169C1 JMPTAB DW SUBR1 »SUBR2 >5UBR3
007C 010002000300 DM 1 »2 »3 »4 »5 »6

040005000600 i

3.10 The DD Directive

[symbol] DD <numeric expression>[,<numeric expression>..]

The DD directive initializes four bytes of storage. The Offset attribute of the
address expression is stored in the two lower bytes, the Segment attribute in the two
upper bytes. Otherwise, DD follows the same procedure as DB. For example:

1234 CSEG 1234H

0000 6CC134126FC1 LONG JMPTAB DD ROUT1»ROUT2
3412

0008 72C1341275C1 DD ROUT3»ROUT4
3412

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31

3.11 The RS Directive . CP/M-86 Programmer's Guide

3.11 The RS Directive s

[symbol] RS <numeric expression>

The RS directive allocates storage in memory but does not initialize it. The numeric
expression gives the number of bytes to be reserved. An RS statement does not give
a byte attribute to the optional symbol. For example:

0010 BUF RS 80
OOBO " RS 4000H
4060 ;.,, RS 1

3.12 The RB Directive

[symbol] RB <numeric expression> ^

The RB directive allocates byte storage in memory without any initialization. This
directive is identical to the RS directive except that it does give the byte attribute.

3.13 The RW Directive

[symbol] RW <numeric expression>

The RW directive allocates two-byte word storage in memory but does not initial-
ize it. The numeric expression gives the number of words to be reserved. For example:

- ,-, -\-r>n
4061 BUFF RW 128
4161 'JG-l RW 4000H
C161 RW 1

32 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 3.14 The TITLE Directive

3.14 The TITLE Directive

TITLE <string constant>

ASM-86 prints the string constant defined by a TITLE directive statement at the
top of each printout page in the listing file. The title character string should not
exceed 30 characters. For example:

TITLE 'CP/M monitor'

3.15 The PAGESIZE Directive

PAGESIZE <numeric expression>

The PAGESIZE directive defines the number of lines to be included on each print-
out page. The default pagesize is 66.

3.16 The PAGEWIDTH Directive

PAGEWIDTH <nunteric expression>

The PAGEWIDTH directive defines the number of columns printed across the page
when the listing file is output. The default pagewidth is 120 unless the listing is
routed directly to the terminal; then the default pagewidth is 79.

3.17 The EJECT Directive

EJECT

The EJECT directive performs a page eject during printout. The EJECT directive
itself is printed on the first line of the next page.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

3.18 The SIMFORM Directive CP/M-86 Programmer's Guide

3.18 The SIMFORM Directive

SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in the print file with
the correct number of line-feeds (LF). Use this directive when printing out on a
printer unable to interpret the form-feed character.

3.19 The NOLIST and LIST Directives

NOLIST ^
LIST

The NOLIST directive blocks the printout of the following lines. Restart the listing
with a LIST directive. , . ,,5 t , .

End of Section 3

\ *.

34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 4
The ASM-86 Instruction Set

4.1 Introduction

The ASM-86 instruction set includes all 8086 machine instructions. The general
syntax for instruction statements is given in Section 2.7. The following sections define
the specific syntax and required operand types for each instruction, without reference
to labels or comments. The instruction definitions are presented in tables for easy
reference. For a more detailed description of each instruction, see Intel's MCS-86
Assembly Language Reference Manual. For descriptions of the instruction bit pat-
terns and operations, see Intel's MCS-86 User's Manual.

The instruction-definition tables present ASM-86 instruction statements as combi-
nations of mnemonics and operands. A mnemonic is a symbolic representation for
an instruction, and its operands are its required parameters. Instructions can take
zero, one or two operands. When two operands are specified, the left operand is the
instruction's destination operand, and the two operands are separated by a comma.

The instruction-definition tables organize ASM-86 instructions into functional groups.
Within each table, the instructions are listed alphabetically. Table 4-1 shows the
symbols used in the instruction-definition tables to define operand types.

:•:(•.: 'flO't.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

4.1 Introduction CP/M-86 Programmer's Guide

Table 4-1. Operand Type Symbols

Symbol

numb

numbS

ace

reg

reg!6

segreg

mem

simpmem

mem | reg

mem|regl6

label

Iab8

Operand Type

any NUMERIC expression

any NUMERIC expression which evaluates to an
8-bit number

accumulator register, AX or AL

any general purpose register, not segment register

a 16-bit general purpose register, not segment register

any segment register: CS, DS, SS, or ES

any ADDRESS expression, with or without base- and/or index-
addressing modes, such as:

variable
variable -I- 3
variable[bx]
variable[SI]
variable[BX + SI]
[BX]
[BP + DI]

any ADDRESS expression WITHOUT base- and index-
addressing modes, such as:

variable
variable + 4

any expression symbolized by 'reg' or 'mem'

any expression symbolized by 'mem|reg', but must be 16 bits

any ADDRESS expression which evaluates to a label

any 'label' which is within ± 128 bytes distance from the
instruction

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 4.1 Introduction

The 8086 CPU has nine single-bit Flag registers which reflect the state of the CPU.
The user cannot access these registers directly, but can test them to determine the
effects of an executed instruction upon an operand or register. The effects of instruc-
tions on Flag registers are also described in the instruction-definition tables, using the
symbols shown in Table 4-2 to represent the nine Flag registers.

Table 4-2. Flag Register Symbols

AF
CF
DF
IF
OF
PF
SF
TF
ZF

Auxiliary-Carry-Flag
Carry-Flag
Direction-Flag
Interrupt-Enable-Flag
Overflow-Flag
Parity-Flag
Sign-Flag
Trap-Flag
Zero-Flag

4.2 Data Transfer Instructions

There are four classes of data transfer operations: general purpose, accumulator
specific, address-object and flag. Only SAHF and POPF affect flag settings. Note in
Table 4-3 that if ace = AL, a byte is transferred, but if ace = AX, a word is
transferred.

01 <.

to

: -n-

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

4.2 Data Transfer Instructions CP/M-86 Programmer's Guide

38 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Table 4-3. Data Transfer Instructions

Syntax Result

IN

IN

LAHF

LDS

LEA

LES

MOV

MOV

MOV

MOV

MOV

OUT

acc,numb8|numbl6

acc,DX

regl6,mem

regl6,mem

regl6,mem

reg,mem|reg

mem|reg,reg

mem|reg,numb

segreg,mem|reg!6

mem | reg 16 ,segreg

numb8|numb!6,acc

transfer data from input port given by
numbS or numb!6 (0-255) to
accumulator

transfer data from input port given by
DX register (0-OFFFFH) to accumulator

transfer flags to the AH register

transfer the segment part of the mem-
ory address (DWORD variable) to the
DS segment register, transfer the offset
part to a general purpose 16-bit register

transfer the offset:' of the memory
address to a (16-bit) register

transfer the segment part of the mem-
ory address to the ES segment register,
transfer the offset part to a 16-bit gen-
eral purpose register

move memory or register to register

move register to memory or register

move immediate data to memory or
register

move memory or register to segment
register

move segment register to memory or
register

transfer data from accumulator to out-
put port (0-255) given by numbS or
numb 16

CP/M-86 Programmer's Guide 4.2 Data Transfer Instructions

Table 4-3. (continued)

Syntax

OUT

POP

POP

POPF

PUSH

PUSH

XCHG

XLAT

DX,acc

mem|regl6

segreg

mem|reg!6

segreg

PUSHF "

SAHF

XCHG reg,mem|reg

mem|reg,reg

mem|reg

Result

transfer data from accumulator to out-
put port (0-OFFFFH) given by DX
register

4

move top stack element to memory or
register

move top stack element to segment
register; note that CS segment register
not allowed

transfer top stack element to flags

move memory or register to top stack
element

move segment register to top stack
element

transfer flags to top stack element

transfer the AH register to flags

exchange register and memory or
register

exchange memory or register and
register

perform table lookup translation, table
given by 'mem|reg', which is always
BX. Replaces AL with AL offset from
BX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39

4.3 Arithmetic, Logic, and Shift CP/M-86 Programmer's Guide

4.3 Arithmetic, Logical, and Shift Instructions

The 8086 CPU performs the four basic mathematical operations in several differ-
ent ways. It supports both 8- and 16-bit operations and also signed and unsigned
arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic operations to reflect
the result of the operation. Table 4-4 summarizes the effects of arithmetic instruc-
tions on flag bits. Table 4-5 defines arithmetic instructions and Table 4-6 logical and
shift instructions.

Table 4-4. Effects of Arithmetic Instructions on Flags

CF is set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the high-order bit of the result; other-
wise CF is cleared.

AF is set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the low-order four bits of the result;
otherwise AF is cleared.

ZF is set if the result of the operation is zero; otherwise ZF is cleared.

SF is set if the result is negative.

PF is set if the modulo 2 sum of the low-order eight bits of the result of
the operation is 0 (even parity); otherwise PF is cleared (odd parity).

OF is set if the operation resulted in an overflow; the size of the result
exceeded the capacity of its destination.

40 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 4.3 Arithmetic, Logic, and Shift

Table 4-5. Arithmetic Instructions

Syntax

AAA

«,

AAD

AAM

AAS

ADC

ADC

ADC

ADD

ADD

ADD

CBW

CWD

CMP

CMP

CMP

i

DAA

fj*

reg,mem|reg

mem|reg,reg

mem|reg,numb
r

reg,mem reg

mem|reg,reg

mem|reg,numb

reg,mem|reg

mem|reg,reg

mem|reg,numb

• _'•;} in..

Result

adjust unpacked BCD (ASCII) for addition —
adjusts AL

adjust unpacked BCD (ASCII) for division —
adjusts AL

adjust unpacked BCD (ASCII) for multiplica-
tion — adjusts AX

adjust unpacked BCD (ASCII) for subtrac-
tion — adjusts AL

add (with carry) memory or register to register

add (with carry) register to memory or register

add (with carry) immediate data to memory
or register

add memory or register to register

add register to memory or register

add immediate data to memory or register

convert byte in AL to word in AH by sign
extension

convert word in AX to double word in DX/
AX by sign extension

compare register with memory or register

compare memory or register with register

compare data constant with memory or
register

decimal adjust for addition, adjusts AL

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41

4.3 Arithmetic, Logic, and Shift CP/M-86 Programmer's Guide

Table 4-5. (continued)

Syntax Result

DEC mem|reg

INC mem|reg

DIV mem|reg

IDIV

IMUL

MUL

mem|reg

mem|reg

mem|reg

NEG mem|reg >j '*""

SBB . reg,mem|reg "' '

SBB •<• ,- mem|reg,reg

SBB .. mem|reg,numb

SUB reg,mem|reg

SUB mem|reg,reg

SUB mem|reg,numb

decimal adjust for subtraction, adjusts AL

subtract 1 from memory or register

add 1 to memory or register

divide (unsigned) accumulator (AX or AL) by
memory or register. If byte results, AL =
quotient, AH = remainder. If word results,
AX = quotient, DX = remainder

divide (signed) accumulator (AX or AL) by
memory or register—quotient and remainder
stored as in DIV

multiply (signed) memory or register by accu-
mulator (AX or AL)—if byte, results in AH,
AL. If word, results in DX, AX

multiply (unsigned) memory or register by
accumulator (AX or AL)—results stored as
in IMUL

two's complement memory or register

subtract (with borrow) memory or register
from register

subtract (with borrow) register from memory
or register

subtract (with borrow) immediate data from
memory or register

subtract memory or register from register

subtract register from memory or register

subtract data constant from memory or
register

42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 4.3 Arithmetic, Logic, and Shift

Table 4-6. Logic Shift Instructions

Syntax Result

AND reg,mem|reg

AND mem|reg,reg

AND mem|reg,numb

NOT

OR

OR

OR

RCL

RCL

RCR

RCR

ROL

ROL

mem|reg

reg,mem|reg

mem|reg,reg

mem|reg,numb

mem|reg,l

mem|reg,CL

mem|reg,l

mem|reg,CL

mem|reg,l

mem|reg,CL

ROR mem|reg,l

perform bitwise logical 'and' of a register and
memory register

perform bitwise logical 'and' of memory reg-
ister and register

perform bitwise logical 'and' of memory reg-
ister and data constant

form ones complement of memory or register

perform bitwise logical 'or' of a register and
memory register

perform bitwise logical 'or' of memory regis-
ter and register

perform bitwise logical 'or' of memory regis-
ter and data constant

rotate memory or register 1 bit left through
carry flag

rotate memory or register left through carry
flag, number of bits given by CL register

rotate memory or register 1 bit right through
carry flag

rotate memory or register right through carry
flag, number of bits given by CL register

rotate memory or register 1 bit left

rotate memory or register left, number of bits
given by CL register

rotate memory or register 1 bit right

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 43

4.3 Arithmetic, Logic, and Shift CP/M-86 Programmer's Guide

Table 4-6. (continued)

Syntax

ROR

SAL

SAL

SAR

SHL

SHR

SHR

TEST

mem|reg,CL

mem|reg,l

mem|reg,CL

mem|reg,l

SAR mem|reg,CL

SHL mem|reg,l

mem|reg,CL

mem|reg,l

mem|reg,CL

reg,mem|reg

Result

rotate memory or register right, number of
bits given by CL register

shift memory or register 1 bit left, shift in
low-order zero bits

shift memory or register left, number of bits
given by CL register, shift in low-order zero
bits

shift memory or register 1 bit right, shift in
high-order bits equal to the original high-order
bit

shift memory or register right, number of bits
given by CL register, shift in high-order bits
equal to the original high-order bit

shift memory or register 1 bit left, shift in
low-order zero bits—note that SHL is a dif-
ferent mnemonic for SAL

shift memory or register left, number of bits
given by CL register, shift in low-order zero
bits—note that SHL is a different mnemonic
for SAL

r

shift memory or register 1 bit right, shift in
high-order zero bits

shift memory or register right, number of bits
given by CL register, shift in high-order zero
bits

perform bitwise logical 'and' of a register and
memory or register—set condition flags but
do not change destination

44 ALL INFORAAATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 4.3 Arithmetic, Logic, and Shift

Table 4-6. (continued)

Syntax Result

TEST mem|reg,reg perform bitwise logical 'and' of memory reg-
ister and register—set condition flags but do
not change destination

TEST mem|reg,numb perform bitwise logical 'and'—test of mem-
ory register and data constant—set condition
flags but do not change destination

XOR reg,mem|reg perform bitwise logical 'exclusive OR' of a
register and memory or register

XOR mem|reg,reg perform bitwise logical 'exclusive OR' of
memory register and register

XOR mem|reg,numb perform bitwise logical 'exclusive OR' of
memory register and data constant

4.4 String Instructions

String instructions take one or two operands. The operands specify only the oper-
and type, determining whether operation is on bytes or words. If there are two
operands, the source operand is addressed by the SI register and the destination
operand is addressed by the DI register. The DI and SI registers are always used for
addressing. Note that for string operations, destination operands addressed by DI
must always reside in the Extra Segment (ES).

A t(

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45

4.4 String Instructions CP/M-86 Programmer's Guide

Table 4-8 defines prefixes for string instructions. A prefix repeats its string instruc-
tion the number of times contained in the CX register, which is decremented by 1
for each iteration. Prefix mnemonics precede the string instruction mnemonic in the
statement line as shown in Section 2.8.

Table 4-8. Prefix Instructions

Syntax Result

REP

REPZ

REPE

REPNZ

REPNE

repeat until CX register is zero

repeat until CX register is zero and zero flag (ZF) is not zero

equal to 'REPZ'

repeat until CX register is zero and zero flag (ZF) is zero

equal to 'REPNZ'

Table 4-7. String Instructions

Syntax Result

CMPS mem|reg,mem|reg

LODS mem|reg

MOVS mem|reg,mem|reg

SCAS

STOS

mem|reg

memjreg

subtract source from destination, affect
flags, but do not return result.

transfer a byte or word from the source
operand to the accumulator.

move 1 byte (or word) from source to
destination.

subtract destination operand from accu-
mulator (AX or AL), affect flags, but do
not return result.

transfer a byte or word from accumulator
to the destination operand.

46 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 4.5 Control Transfer Instructions

4.5 Control Transfer Instructions

There are four classes of control transfer instructions:

• calls, jumps, and returns
• conditional jumps
• iterational control
• interrupts

All control transfer instructions cause program execution to continue at some new
location in memory, possibly in a new code segment. The transfer may be absolute
or depend upon a certain condition. Table 4-9 defines control transfer instructions.
In the definitions of conditional jumps, 'above' and 'below' refer to the relationship
between unsigned values, and 'greater than' and 'less than' refer to the relationship
between signed values.

Table 4-9. Control Transfer Instructions

Syntax Result

CALL

CALL

CALLF

CALLF '

• - . , fJJfc »1JT

INT

label

mem|reg!6

label

mem

numbS

push the offset address of the next instruc-
tion on the stack, jump to the target label

push the offset address of the next instruc-
tion on the stack, jump to location indicated
by contents of specified memory or register

push CS segment register on the stack, push
the offset address of the next instruction on
the stack (after CS), jump to the target label

push CS register on the stack, push the offset
address of the next instruction on the stack,
jump to location indicated by contents of
specified double word in memory

push the flag registers (as in PUSHF), clear
TF and IF flags, transfer control with an
indirect call through any one of the 256
interrupt-vector elements - uses three levels
of stack

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47

4.5 Control Transfer Instructions CP/M-86 Programmer's Guide

48 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Table 4-9. (continued)

Syntax

INTO

IRET
it- ",:»r;

JA

JAE

JC

JCXZ

JE

JG

JGE

JL

Iab8

Iab8

JB , j r j ,. ., ; labS

I f t

JBE labS

labS

labS

labS

labS

labS

labS

Result

if OF (the overflow flag) is set, push the flag
registers (as in PUSHF), clear TF and IF flags,
transfer control with an indirect call through
interrupt-vector element 4 (location 10H)—
if the OF flag is cleared, no operation takes
place

transfer control to the return address saved
by a previous interrupt operation, restore
saved flag registers, as well as CS and IP—
pops three levels of stack

jump if 'not below or equal' or 'above' ((CF
orZF) = 0)

t

jump if 'not below' or 'above or equal'
(C F = 0)

i f i

jump if 'below' or 'not above or equal'
(C F = 1)

X

jump if 'below or equal' or 'not above' ((CF
or ZF) = 1)

same as 'JB' 'tris*

jump to target label if CX register is zero

jump if 'equal' or 'zero' (ZF = 1)

jump if 'not less or equal' or 'greater' (((SF
xor OF) or ZF) = 0)

jump if 'not less' or 'greater or equal' ((SF
xor OF) = 0)

jump if 'less' or 'not greater or equal' ((SF
xor OF) = 1)

CP/M-86 Programmer's Guide 4.5 Control Transfer Instructions

Table 4-9. (continued)

Syntax

JLE

JMP

JMP

JMPF

JMPS

JNA

JNAE

JNB

JNBE

JNC

JNE

JNG

JNGE

JNL

JNLE

JNO

JNP

labS

label

mem|regl6

label

labS

labS

labS

labS

•. labS

labS

labS

labS

labS

labS

labS

labS

labS

Result

jump if 'less or equal' or 'not greater' (((SF
xor OF) or ZF) = 1)

jump to the target label

jump to location indicated by contents of
specified memory or register

jump to the target label possibly
code segment

jump to the target label within ±
from instruction

same as 'JBE' 8<fd

same as 'JB' Srffti

same as 'JAE'

same as 'JA'

same as 'JNB'

jump if 'not equal' or 'not zero' (

same as 'JLE'

same as 'JL' Stfel

same as 'JGE' fefd

same as 'JG'

jump if 'not overflow' (OF = 0)

jump if 'not parity' or 'parity odd

in another

128 bytes

ZF = 0)

*

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

4.5 Control Transfer Instructions CP/M-86 Programmer's Guide

Table 4-9. (continued)

Syntax

JNS . • i

JNZ

JO

JP

JPE n

JPO

JS

JZ

LOOP

LOOPE

LOOPNE

LOOPNZ

LOOPZ

RET

RET

labS

labS

labS

labS

labS)^i&

labS

labS

labS

labS

labS

labS

labS

labS

lO.VJl , . . ;

numb

Result

jump if 'not sign'

same as 'JNE'

jump if 'overflow' (OF = 1)

jump if 'parity' or 'parity even' (PF = 1)

T same as 'JP' M*!

same as 'JNP'

jump if 'sign' (SF = 1)

same as 'JE' - ' - '

decrement CX register by one, jump to target
label if CX is not zero

decrement CX register by one, jump to target
label if CX is not zero and the ZF flag is set
— 'loop while zero' or 'loop while equal'

decrement CX register by one, jump to target
label if CX is not zero and ZF flag is cleared
— 'loop while not zero' or 'loop while not
equal'

same as 'LOOPNE'

i same as 'LOOPE'

return to the return address pushed by a pre-
vious CALL instruction, increment stack

» pointer by 2 , ...

return to the address pushed by a previous
CALL, increment stack pointer by 2 + numb

50 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 4.5 Control Transfer Instructions

Table 4-9. (continued)

Syntax Result

RETF

RETF numb

return to the address pushed by a previous
CALLF instruction, increment stack pointer
by 4

return to the address pushed by a previous
CALLF instruction, increment stack pointer
by 4-I-numb

4.6 Processor Control Instructions

Processor control instructions manipulate the flag registers. Moreover, some of
these instructions can synchronize the 8086 CPU with external hardware.

Table 4-10. Processor Control Instructions

Syntax Results

CLC

CLD

CLI

CMC

ESC numbS,mem|reg

clear CF flag

clear DF flag, causing string instructions to
auto-increment the operand pointers

clear IF flag, disabling maskable external
interrupts

complement CF flag

do no operation other than compute the
effective address and place it on the address
bus (ESC is used by the 8087 numeric co-
processor), 'numbS' must be in the range 0
to 63

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

4.6 Processor Control Instructions CP/M-86 Programmer's Guide

IUTUH-
End of Section 4

in

J

52 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Table 4-10. (continued)

Syntax

LOCK

HLT

STC

STD

STI

WAIT

Results

PREFIX instruction, cause the 8086 pro-
cessor to assert the 'bus-lock' signal for the
duration of the operation caused by the
following instruction—the LOCK prefix
instruction may precede any other instruc-
tion—buslock prevents co-processors from
gaining the bus; this is useful for shared-
resource semaphores

cause 8086 processor to enter halt state until
an interrupt is recognized

set CF flag

set DF flag, causing string instructions to
auto-decrement the operand pointers

set IF flag, enabling maskable external
interrupts

cause the 8086 processor to enter a 'wait'
state if the signal on its 'TEST' pin is not
asserted

Section 5
Code-Macro Facilities

5.1 Introduction to Code-macros

ASM-86 does not support traditional assembly-language macros, but it does allow
the user to define his own instructions by using the code-macro directive. Like
traditional macros, code-macros are assembled wherever they appear in assembly
language code, but there the similarity ends. Traditional macros contain assembly
language instructions, but a code-macro contains only code-macro directives. Macros
are usually defined in the user's symbol table; ASM-86 code-macros are defined in
the assembler's symbol table. A macro simplifies using the same block of instructions
over and over again throughout a program, but a code-macro sends a bit stream to
the output file and in effect adds a new instruction to the assembler.

Because ASM-86 treats a code-macro as an instruction, you can invoke code-
macros by using them as instructions in your program. The example below shows
how MAC, an instruction defined by a code-macro, can be invoked.

vinO

XCHG BX,WORD3
MAC PAR1 »PAR2
MUL AX»WORD4

Note that MAC accepts two operands. When MAC was defined, these two oper-
ands were also classified as to type, size, and so on by defining MAC's formal
parameters. The names of formal parameters are not fixed. They are stand-ins which
are replaced by the names or values supplied as operands when the code-macro is
invoked. Thus formal parameters 'hold the place' and indicate where and how the
operands are to be used.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

5.1 Introduction to Code-macros CP/M-86 Programmer's Guide

The definition of a code-macro starts with a line specifying its name and its formal
parameters, if any:

CodeMacro <name> [<formal parameter list>]

where the optional <formal parameter list> is defined:

<formal name>:<specifier letter>[<modifier letter>][range>]

As stated above, the formal name is not fixed, but a place holder. If formal param-
eter list is present, the specifier letter is required and the modifier letter is optional.
Possible specifiers are A, C, D, E, M, R, S, and X. Possible modifier letters are b, d,
w, and sb. The assembler ignores case except within strings, but for clarity, this
section shows specifiers in upper-case and modifiers in lower-case. Following sections
describe specifiers, modifiers, and the optional range in detail.

The body of the code-macro describes the bit pattern and formal parameters. Only
the following directives are legal within code-macros:

SEGFIX
NOSEGFIX
MODRM
RELB
RELW j
DB '
DW
DD ,ijr̂ ,,.
DBIT

These directives are unique to code-macros, and those which appear to duplicate
ASM-86 directives (DB, DW, and DD) have different meanings in code-macro con-
text. These directives are discussed in detail in later sections. The definition of a
code-macro ends with a line:

EndM

CodeMacro, EndM, and the code-macro directives are all reserved words. Code-
macro definition syntax is defined in Backus-Naur-like form in Appendix H. The
following examples are typical code-macro definitions.

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 5.1 Introduction to Code-macros

CodeMacro AAA
DB 37H

EndM

CodeMacro DIV d i v i s o r r E b
SEGFIX diviso r
DB 6FH
MODRM d i v i s o r

EndM

CodeMacro ESC opcode : Db(0>B3) »sre:Eb
SEGFIX src
DBIT 5(1BH)>3(opcode(3))
MODRM opcode »s re

EndM
d

5.2 Specifiers w

Every formal parameter must have a specifier letter that indicates what type of
operand is needed to match the formal parameter. Table 5-1 defines the eight possi-
ble specifier letters.

Table 5-1. Code-macro Operand Specifiers

Letter

A

C

D

E

M

R

S

X

Operand Type

Accumulator register, AX or AL.

Code, a label expression only.

Data, a number to be used as an immediate value.

Effective address, either an M (memory address) or an R (register).

Memory address. This can be either a variable or a bracketed regis-
ter expression.

A general register only.

Segment register only.

A direct memory reference.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

5.3 Modifiers CP/M-86 Programmer's Guide

5.3 Modifiers

The optional modifier letter is a further requirement on the operand. The meaning
of the modifier letter depends on the type of the operand. For variables, the modifier
requires the operand to be of type: 'b' for byte, 'w' for word, 'd' for double-word
and 'sb' for signed byte. For numbers, the modifiers require the number to be of a
certain size: 'b' for - 256 to 255 and 'w' for other numbers. Table 5-2 summarizes
code-macro modifiers.

Table 5-2. Code-macro Operand Modifiers

Variables

Modifier

b

w

d

sb

Type M

byte

word

dword

signed byte

Numbers

[odifier Size

b -256 to 255

W anything else

5.4 Range Specifiers - - —

The optional range is specified within parentheses by either one expression or two
expressions separated by a comma. The following are valid formats:

(numberb)
(register)
(numberb,numberb)
(numberb,register)
(register,numberb)
(register,register) 1KV C f

CI

3

M

Numberb is 8-bit number, not an address. The following example specifies that the
input port must be identified by the DX register:

CodeMacro IN d s t : A w t p o r t : R w (D X)

56 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 5.4 Range Specifiers

The next example specifies that the CL register is to contain the 'count' of rotation:

C o d e M a c r o ROR dst : Ew > c o u n t :Rb (CL)

The last example specifies that the 'opcode' is to be immediate data, and may range
from 0 to 63 inclusive:

CodeMacro ESC opcode :Db (0 »B3) »adds :Eb

5.5 Code-macro Directives

Code-macro directives define the bit pattern and make further requirements on
how the operand is to be treated. Directives are reserved words, and those that
appear to duplicate assembly language instructions have different meanings within a
code-macro definition. Only the nine directives defined here are legal within code-
macro definitions.

5.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine whether a segment-
override prefix byte is needed to access a given memory location. If so, it is output
as the first byte of the instruction. If not, no action is taken. SEGFIX takes the form:

SEGFIX <formal name>

where <fortnal name> is the name of a formal parameter which represents the
memory address. Because it represents a memory address, the formal parameter must
have one of the specifiers E, M or X.

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES register for that
operand. This applies only to the destination operand of these instructions: CMPS,
MOVS, SCAS, STOS. The form of NOSEGFIX is:

NOSEGFIX segreg,</brm«flwe>

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57

5.5 Code-macro Directives CP/M-86 Programmer's Guide

where segreg is one of the segment registers ES, CS, SS, or DS and <formname> is
the name of the memory-address formal parameter, which must have a specifier E,
M, or X. No code is generated from this directive, but an error check is performed.
The following is an example of NOSEGFIX use:

C o d e M a c r o MOVS s i _ p t r : E w » d i _ p t r : E w
NOSEGFIX ES»d i_P t r
SEGFIX s i_Ptr
DB OA5H

EndM
•}

5.5.3 MODRM

This directive intructs the assembler to generate the ModRM byte, which follows
the opcode byte in many of the 8086's instructions. The ModRM byte contains either
the indexing type or the register number to be used in the instruction. It also jspecifies
which register is to be used, or gives more information to specify an instruction.

The ModRM byte carries the information in three fields. The mod field occupies
the two most significant bits of the byte, and combines with the register memory
field to form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It specifies either
a register number or three more bits of opcode information. The meaning of the reg
field is determined by the opcode byte.

The register memory field occupies the last three bits of the byte. It specifies a
register as the location of an operand, or forms a part of the address-mode in com-
bination with the mod field described above.

For further information of the 8086's instructions and their bit patterns, see Intel's
8086 Assembly Language Programing Manual and the Intel 8086 Family User's
Manual. The forms of MODRM are:

MODRM <form name>,<fornt name>
MODRM NUMBER?,<form name>

where NUMBER? is a value 0 to 7 inclusive and <form name> is the name of a
formal parameter. The following examples show MODRM use:

58 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 5.5 Code-macro Directives

CodeMacro RCR dst:Ew>count:Rb(CD
SEGFIX dst
DB OD3H
MODRM 3»dst

EndM

CodeMacro OR dst:Rw»sre:Ew
SEGFIX src
DB OBH
MODRh dst »s re

EndM

5.5.4 RELB and RELW

These directives, used in IP-relative branch instructions, instruct the assembler to
w generate displacement between the end of the instruction and the label which is

supplied as an operand. RELB generates one byte and RELW two bytes of displace-
ment. The directives the following forms:

RELB <form name>
RELW <form name>

where <form name> is the name of a formal parameter with a 'C' (code) specifier.
For example:

CodeMacro LOOP place:Cb
DB OE2H 0
RELB p l a c e

EndM

5.5.5 DB, DW and DD

These directives differ from those which occur outside of code-macros. The form
of the directives are:

\^S DB <form name> | NUMBERB
DW <form name> | NUMBERW
DD <form name>

where NUMBERB is a single-byte number, NUMBERW is a two-byte number, and
<form name> is a name of a formal parameter. For example:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59

5.5 Code-macro Directives CP/M-86 Programmer's Guide

CodeMacro XOR dst :Ew>sre:Db
SEGFIX dst
DB 81H HECK
MODRM 6 » d s t ^b**:
DW s re L *d

EndM

5.5.6 DBIT

This directive manipulates bits in combinations of a byte or less. The form is:

DBIT <field description>[,<field description>]

where a <field description>, has two forms:

< number >< combinat ion>
<number>(<form name>(<rshift>))

where <number> ranges from 1 to 16, and specifies the number of bits to be set.
<combmatton> specifies the desired bit combination. The total of all the <num-
ber>s listed in the field descriptions must not exceed 16. The second form shown
above contains <form name>, a formal parameter name that instructs the assembler
to put a certain number in the specified position. This number normally refers to the
register specified in the first line of the code-macro. The numbers used in this special
case for each register are:

d'-
Mi,-joAL:

CL:
DL:
BL:
AH:
CH:
DH:
BH:
AX :
CX:
DX:
BX:

0
1
2
3
4
5
6
7
0
1
2
3

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 5.5 Code-macro Directives

SP: 4
BP: 5
SI: 6
DI: 7
ES: 0
CS: 1
SS: 2
DS: 3

<rshift>, which is contained in the innermost parentheses, specifies a number of
right shifts. For example, '0' specifies no shift, T shifts right one bit, '2' shifts right
two bits, and so on. The definition below uses this form.

CodeMacro DEC dst:Rw
DBIT 5(9H) »3(dst(0))

EndM

The first five bits of the byte have the value 9H. If the remaining bits are zero, the
hex value of the byte will be 48H. If the instruction:

DEC DX

is assembled and DX has a value of 2H, then 48H + 2H = 4AH, which is the final
value of the byte for execution. If this sequence had been present in the definition:

DBIT 5OH) , 3 (ds t (1))

then the register number would have been shifted right once and the result would
had been 48H + 1H = 49H, which is erroneous.

End of Section 5

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 61

End of Section 5 CP/M-86 Programmer's Guide

(U); £ r

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 6
DDT-86

6.1 DDT-86 Operation

The DDT-86™ program allows the user to test and debug programs interactively
in a CP/M-86 environment. The reader should be familiar with the 8086 processor,
ASM-86 and the CP/M-86 operating system as described in the CP/M-86 System
Guide.

6.1.1 Invoking DDT-86

Invoke DDT-86 by entering one of the following commands:

DDT86
DDT86 filename

The first command simply loads and executes DDT-86. After displaying its sign-on
message and prompt character, - , DDT-86 is ready to accept operator commands.
The second command is similar to the first, except that after DDT-86 is loaded it
loads the file specified by filename. If the file type is omitted from filename, .CMD is
assumed. Note that DDT-86 cannot load a file of type .H86. The second form of the
invoking command is equivalent to the sequence:

A>DDTS6
DDT86 x.x
-Efilename

At this point, the program that was loaded is ready for execution.

6.1.2 DDT-86 Command Conventions

When DDT-86 is ready to accept a command, it prompts the operator with a
hyphen, -. In response, the operator can type a command line or a CONTROL-C or
f C to end the debugging session (see Section 6.1.4). A command line may have up
to 64 characters, and must be terminated with a carriage return. While entering the
command, use standard CP/M line-editing functions (f X, f H, | R, etc.) to correct
typing errors. DDT-86 does not process the command line until a carriage return is
entered.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

6.1 DDT-86 Operation CP/M-86 Programmer's Guide

The first character of each command line determines the command action. Table
6-1 summarizes DDT-86 commands. DDT-86 commands are defined individually in
Section 6.2.

Table 6-1. DDT-86 Command Summary

Command

A
D
E
F
G
H
I
L
M
R
S
T
U
V
W
X

Action

enter assembly language statements
display memory in hexadecimal and ASCII
load program for execution
fill memory block with a constant
begin execution with optional breakpoints
hexadecimal arithmetic
set up file control block and command tail
list memory using 8086 mnemonics
move memory block
read disk file into memory
set memory to new values
trace program execution
untraced program monitoring
show memory layout of disk file read
write contents of memory block to disk
examine and modify CPU state

The command character may be followed by one or more arguments, which may
be hexadecimal values, file names or other information, depending on the command.
Arguments are separated from each other by commas or spaces. No spaces are allowed
between the command character and the first argument.

6.1.3 Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands. Because the
8086 can address up to 1 megabyte of memory, addresses must be 20-bit values.
Enter a 20-bit address as follows:

ssss:oooo

64 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.1 DDT-86 Operation

where ssss represents an optional 16-bit segment number and oooo is a 16-bit offset.
DDT-86 combines these values to produce a 20-bit effective address as follows:

ssss 0
+ oooo

eeeee

The optional value ssss may be a 16-bit hexadecimal value or the name of a
segment register. If a segment register name is specified, the value of ssss is the
contents of that register in the user's CPU state, as indicated by the X command. If
omitted, a default value appropriate to the command being executed, as described in
Section 6.4.

6.1.4 Terminating DDT-86

^ j Terminate DDT-86 by typing a \ C in response to the hyphen prompt. This returns
control to the CCP. Note that CP/M-86 does not have the SAVE facility found in
CP/M for 8-bit machines. Thus if DDT-86 is used to patch a file, write the file to
disk using the W command before exiting DDT-86.

6.1.5 DDT-86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled, and preserves the interrupt
state of the program being executed under DDT-86. When DDT-86 has control of
the CPU, either when it is initially invoked, or when it regains control from the
program being tested, the condition of the interrupt flag is the same as it was when
DDT-86 was invoked, except for a few critical regions where interrupts are disabled.
While the program being tested has control of the CPU, the user's CPU state, which
can be displayed with the X command, determines the state of the interrupt flag.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 65

6.2 DDT-86 Commands CP/M-86 Programmer's Guide

6.2 DDT-86 Commands

This section defines DDT-86 commands and their arguments. DDT-86 commands
give the user control of program execution and allow the user to display and modify
system memory and the CPU state.

6.2.1 The A (Assemble) Command

The A command assembles 8086 mnemonics directly into memory. The form is:

As

where s is the 20-bit address where assembly is to start. DDT-86 responds to the A
command by displaying the address of the memory location where assembly is to
begin. At this point the operator enters assembly language statements as described in
Section 4 on Assembly Language Syntax. When a statement is entered,. DDT- 8 6
converts it to binary, places the value(s) in memory, and displays the address of the
next available memory location. This process continues until the user enters a blank
line or a line containing only a period.

DDT-86 responds to invalid statements by displaying a question mark, ? , and
redisplaying the current assembly address.

6.2.2 The D (Display) Command

The D command displays the contents of memory as 8-bit or 16-bit hexadecimal
values and in ASCII. The forms are:

D
Ds
Ds,f
DW
DWs
DWs,f

where s is the 20-bit address where the display is to start, and f is the 16-bit offset
within the segment specified in s where the display is to finish.

Memory is displayed on one or more display lines. Each display line shows the
values of up to 16 memory locations. For the first three forms, the display line
appears as follows:

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.2 DDT-86 Commands

ssssioooo bb bb . . . bb cc . . . c

where ssss is the segment being displayed and oooo is the offset within segment ssss.
The bb's represent the contents of the memory locations in hexadecimal, and the c's
represent the contents of memory in ASCII Any non-graphic ASCII characters are
represented by periods

In response to the first form shown above, DDT-86 displays memory from the
current display address for 12 display lines. The response to the second form is
similar to the first, except that the display address is first set to the 20-bit address s.
The third form displays the memory block between locations s and f. The next three
forms are analogous to the first three, except that the contents of memory are dis-
played as 16-bit values, rather than 8-bit values, as shown below:

ssss: oooo wwww wwww . . . wwww cccc . . cc

During a long display, the D command may be aborted by typing any character at
the console

6.2.3 The E (Load for Execution) Command

The E command loads a file into memory so that a subsequent G, T or U com-
mand can begin program execution. The E command takes the form:

E<filename>

where <filename> is the name of the file to be loaded. If no file type is specified,
.CMD is assumed. The contents of the user segment registers and IP register are
altered according to the information in the header of the file loaded.

An E command releases any blocks of memory allocated by any previous E or R
commands or by programs executed under DDT-86. Thus only one file at a time
may be loaded for execution.

When the load is complete, DDT-86 displays the start and end addresses of each
segment in the file loaded. Use the V command to redisplay this information at a
later time.

If the file does not exist or cannot be successfully loaded in the available memory,
DDT-86 issues an error message.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67

6.2 DDT-86 Commands CP/M-86 Programmer's Guide

6.2.4 The F (Fill) Command ' • -' '<«
•

The F command fills an area of memory with a byte or word constant. The forms
are:

Fs,f,b
FWs,f,w

where s is a 20-bit starting address of the block to be filled, and f is a 16-bit offset
of the final byte of the block within the segment specified in s.

In response to the first form, DDT-86 stores the 8-bit value b in locations s through
f. In the second form, the 16-bit value w is stored in locations s through f in standard
form, low 8 bits first followed by high 8 bits.

If s is greater than f or the value b is greater than 255, DDT-86 responds with a . t
question mark. DDT-86 issues an error message if the value stored in memory cannot
be read back successfully, indicating faulty or non-existent RAM at the location
indicated.

6.2.5 The G (Go) Command

The G command transfers control to the program being tested, and optionally sets
one or two breakpoints. The forms are:

G
G,bl
G,bl,b2
Gs
Gs,bl
Gs,bl,b2

where s is a 20-bit address where program execution is to start, and bl and b2 are
20-bit addresses of breakpoints. If no segment value is supplied for any of these three
addresses, the segment value defaults to the contents of the CS register.

In the first three forms, no starting address is specified, so DDT-86 derives the 20-
bit address from the user's CS and IP registers. The first form transfers control to the
user's program without setting any breakpoints. The next two forms respectively set
one and two breakpoints before passing control to the user's program. The next
three forms are analogous to the first three, except that the user's CS and IP registers
are first set to s.

68 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.2 DDT-86 Commands

Once control has been transferred to the program under test, it executes in real
time until a breakpoint is encountered. At this point, DDT-86 regains control, clears
all breakpoints, and indicates the address at which execution of the program under
test was interrupted as follows:

where ssss corresponds to the CS and oooo corresponds to the IP where the break
occurred. When a breakpoint returns control to DDT-86, the instruction at the
breakpoint address has not yet been executed.

6.2.6 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two 16-bit values. The form

Ha,b

where a and b are the values whose sum and difference are to be computed. DDT-
86 displays the sum (ssss) and the difference (dddd) truncated to 16 bits on the next
line as shown below:

ssss dddd

6.2.7 The I (Input Command Tail) Command

The I command prepares a file control block and command tail buffer in DDT-
86's base page, and copies this information into the base page of the last file loaded
with the E command. The form is:

\<command tatl>

where <command tatl> is a character string which usually contains one or more
filenames. The first filename is parsed into the default file control block at 005CH.
The optional second filename (if specified) is parsed into the second part of the
default file control block beginning at 006CH. The characters in <command tail>
are also copied into the default command buffer at 0080H. The length of <command
tatl> is stored at 0080H, followed by the character string terminated with a binary
zero.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 69

6.2 DDT-86 Commands CP/M-86 Programmer's Guide

If a file has been loaded with the E command, DDT-86 copies the file control
block and command buffer from the base page of DDT-86 to the base page of the
program loaded. 46-bit value at location 0:6. The location of the base page of a
program loaded with the E command is the value displayed for DS upon completion
of the program load.

6.2.8 The L (List) Command

The L command lists the contents of memory in assembly language. The forms
are:

L
Ls
Ls,f ' ' " " l-

where s is a 20-bit address where the list is to start, and f is a 16-bit offset within
the segment specified in s where the list is to finish.

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code.
The last form lists disassembled code from s through f. In all three cases, the list
address is set to the next unlisted location in preparation for a subsequent L com-
mand. When DDT-86 regains control from a program being tested (see G, T and U
commands), the list address is set to the current value of the CS and IP registers.

Long displays may be aborted by typing any key during the list process. Or, enter
f S to halt the display temporarily.

The syntax of the assembly language statements produced by the L command is
described m Section 4.

70 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.2 DDT-86 Commands

6.2.9 The M (Move) Command

The M command moves a block of data values from one area of memory to
another. The form is:

Ms,f,d

where s is the 20-bit starting address of the block to be moved, f is the offset of the
final byte to be moved within the segment described by s, and d is the 20-bit address
of the first byte of the area to receive the data. If the segment is not specified in d,
the same value is used that was used for s. Note that if d is between s and f, part of
the block being moved will be overwritten before it is moved, because data is trans-
ferred starting from location s.

6.2.10 The R (Read) Command

i The R command reads a file into a contiguous block of memory. The form is:

R<filename>

where <filename> is the name and type of the file to be read.

DDT-86 reads the file into memory and displays the start and end addresses of the
block of memory occupied by the file. A V command can redisplay this information
at a later time. The default display pointer (for subsequent D commands) is set to
the start of the block occupied by the file.

The R command does not free any memory previously allocated by another R or
E command. Thus a number of files may be read into memory without overlapping.
The number of files which may be loaded is limited to seven, which is the number of
memory allocations allowed by the BDOS, minus one for DDT-86 itself.

If the file does not exist or there is not enough memory to load the file, DDT-86
issues an error message.

6.2.11 The S (Set) Command
\^/

The S command can change the contents of bytes or words of memory. The forms
are:

Ss
SWs

where s is the 20-bit address where the change is to occur.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 71

6.2 DDT-86 Commands CP/M-86 Programmer's Guide

DDT-86 displays the memory address and its current contents on the following
line. In response to the first form, the display is:

ssss:oooo bb

and in response to the second form

ssss:oooo wwww

where bb and wwww are the contents of memory in byte and word formats,
respectively.

In response to one of the above displays, the operator may choose to alter the
memory location or to leave it unchanged. If a valid hexadecimal value is entered,
the contents of the byte (or word) in memory is replaced with the value. If no value
is entered, the contents of memory are unaffected and the contents of the next
address are displayed. In either case, DDT-86 continues to display successive memory
addresses and values until either a period or an invalid value is entered.

DDT-86 issues an error message if the value stored in memory cannot be read
back successfully, indicating faulty or non-existent RAM at the location indicated.

6.2.12 The T (Trace) Command

The T command traces program execution for 1 to OFFFFH program steps. The
forms are:

T
Tn *
TS '
TSn

).^T C . / Y 'itt{ Hi

where n is the number of instructions to execute before returning control to the
console.

Before an instruction is executed, DDT-86 displays the current CPU state and the
disassembled instruction. In the first two forms, the segment registers are not dis-
played, which allows the entire CPU state to be displayed on one line. The next two
forms are analogous to the first two, except that all the registers are displayed, which
forces the disassembled instruction to be displayed on the next line as in the X
command.

72 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.2 DDT-86 Commands

In all of the forms, control transfers to the program under test at the address
indicated by the CS and IP registers. If n is not specified, one instruction is executed.
Otherwise DDT-86 executes n instructions, displaying the CPU state before each
step. A long trace may be aborted before n steps have been executed by typing any
character at the console.

After a T command, the list address used in the L command is set to the address
of the next instruction to be executed.

Note that DDT-86 does not trace through a BDOS interrupt instruction, since
DDT-86 itself makes BDOS calls and the BDOS is not reentrant. Instead, the entire
sequence of instructions from the BDOS interrupt through the return from BDOS is
treated as one traced instruction.

6.2.13 The U (Untrace) Command

The U command is identical to the T command except that the CPU state is
displayed only before the first instruction is executed, rather than before every step.
The forms are:

U
UB ' .jei>-!>
US
USn

where n is the number of instructions to execute before returning control to the
console. The U command may be aborted before n steps have been executed by
striking any key at the console.

6.2.14 The V (Value) Command

The V command displays information about the last file loaded with the E or R
commands. The form is:

If the last file was loaded with the E command, the V command displays the start
and end addresses of each of the segments contained in the file. If the last file was
read with the R command, the V command displays the start and end addresses of
the block of memory where the file was read. If neither the R nor E commands have
been used, DDT-86 responds to the V command with a question mark, ?.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 73

6.2 DDT-86 Commands CP/M-86 Programmer's Guide

6.2.15 The W (Write) Command

The W command writes the contents of a contiguous block of memory to disk.
The forms are:

i t - - r : i>. ?:

\V<filename>
\(/<filename>,s,t }

where <filename> is the filename and file type of the disk file to receive the data,
and s and f are the 20-bit first and last addresses of the block to be written. If the
segment is not specified in f, DDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the s and f values from the last file read
with an R command. If no file was read with an R command, DDT-86 responds
with a question mark, ?. This first form is useful for writing out files after patches
have been installed, assuming the overall length of the file is unchanged.

In the second form where s and f are specified as 20-bit addresses, the low four
bits of s are assumed to be 0. Thus the block being written must always start on a
paragraph boundary.

If a file by the name specified in the W command already exists, DDT-86 deletes it
before writing a new file.

nc)
6.2.16 The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU state of the
program under test. The forms are:

X
Xr
Xf ,..-, ,{ -Iff , ,t -»,L- -,:,,.-

where r is the name of one of the 8086 CPU registers and f is the abbreviation of
one of the CPU flags. The first form displays the CPU state in the format: y

• • • ' . ' . A X B X C X . . . S S E S I P
xxxx xxxx xxxx . . . xxxx xxxx xxxx

<instruction>

74 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.2 DDT-86 Commands

The nine hyphens at the beginning of the line indicate the state of the nine CPU flags.
Each position may be either a hyphen, indicating that the corresponding flag is not set
(0), or a 1-character abbreviation of the flag name, indicating that the flag is set (1). The
abbreviations of the flag names are shown in Table 6-2. ^instruction^ is the disas-
sembled instruction at the next location to be executed, which is indicated by the CS and
IP registers.

Table 6-2. Flag Name Abbreviations

Character

0
D
I
T
S
z
A
P
C

Name

Overflow
Direction
Interrupt Enable
Trap
Sign
Zero
Auxiliary Carry
Parity
Carry

The second form allows the operator to alter the registers in the CPU state of the
program being tested. The r following the X is the name of one of the 16-bit CPU
registers. DDT-86 responds by displaying the name of the register followed by its
current value. If a carriage return is typed, the value of the register is not changed. If
a valid value is typed, the contents of the register are changed to that value. In either
case, the next register is then displayed. This process continues until a period or an
invalid value is entered, or the last register is displayed.

The third form allows the operator to alter one of the flags in the CPU state of the
program being tested. DDT-86 responds by displaying the name of the flag followed
by its current state. If a carriage return is typed, the state of the flag is not changed.
If a valid value is typed, the state of the flag is changed to that value. Only one flag
may be examined or altered with each Xf command. Set or reset flags by entering a
value of 1 or 0.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75

6.3 Default Segment Values CP/M-86 Programmer's Guide

6.3 Default Segment Values

DDT-86 has an internal mechanism that keeps track of the current segment value,
making segment specification an optional part of a DDT-86 command. DDT-86
divides the command set into two types of commands, according to which segment a
command defaults if no segment value is specified in the command line.

The first type of command pertains to the code segment: A (Assemble), L (List
Mnemonics) and W (Write). These commands use the internal type-1 segment value
if no segment value is specified in the command.

When invoked, DDT-86 sets the type-1 segment value to 0, and changes it when
one of the following actions is taken: '-' •

• When a file is loaded by an E command, DDT-86 sets the type-1 segment
value to the value of the CS register. ^

• When a file is read by an R command, DDT-86 sets the type-1 segment value
to the base segment where the file was read.

• When an X command changes the value of the CS register, DDT-86 changes
the type-1 segment value to the new value of the CS register.

• When DDT-86 regains control from a user program after a G, T or U com-
mand, it sets the type-1 segment value to the value of the CS register.

• When a segment value is specified explicitly in an A or L command, DDT-
86 sets the type-1 segment value to the segment value specified.

The second type of command pertains to the data segment: D (Display), F (Fill),
M (Move) and S (Set). These commands use the internal type-2 segment value if no
segment value is specified in the command.

When invoked, DDT-86 sets the type-2 segment value to 0, and changes it when
one of the following actions is taken:

• When a file is loaded by an E command, DDT-86 sets the type-2 segment
value to the value of the DS register.

• When a file is read by an R command, DDT-86 sets the type-2 segment value
to the base segment where the file was read.

• When an X command changes the value of the DS register, DDT-86 changes
the type-2 segment value to the new value of the DS register.

76 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.3 Default Segment Values

• When DDT-86 regains control from a user program after a G, T or U com-
mand, it sets the type-2 segment value to the value of the DS register.

• When a segment value is specified explicitly in an D, F, M or S command,
DDT-86 sets the type-2 segment value to the segment value specified.

When evaluating programs that use identical values in the CS and DS registers, all
DDT-86 commands default to the same segment value unless explicitly overridden.

Note that the G (Go) command does not fall into either group, since it defaults to
the CS register.

Table 6-3 summarizes DDT-86's default segment values.

Table 6-3. DDT-86 Default Segment Values

Command type-1 type-2

A x
D x
E c c
F x
G c c
H
I
L x
W ' "—-""• X

R c c
S X

T c c
U c c
V
W x
X c c

x — use this segment default if none speci-
fied; change default if specified explicitly

c — change this segment default

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 77

6.4 Assembly Language Syntax CP/M-86 Programmer's Guide

6.4 Assembly Language Syntax for A and L Commands "

In general, the syntax of the assembly language statements used in the A and L
commands is standard 8086 assembly language. Several minor exceptions are listed
below.

• DDT-86 assumes that all numeric values entered are hexadecimal.

• Up to three prefixes (LOCK, repeat, segment override) may appear in one
statement, but they all must precede the opcode of the statement. Alternately,
a prefix may be entered on a line by itself.

• The distinction between byte and word string instructions is made as follows:

byte word

LODSB LODSW
STOSB STOSW '
SCASB SCASW
MOVSB MOVSW — • ----
CMPSB CMPSW

• The mnemonics for near and far control transfer instructions are as follows:

short normal far

JMPS JMP JMPF ° i
CALL CALLF H i
RET RETF

• If the operand of a CALLF or JMPF instruction is a 20-bit absolute address,
it is entered in the form:

ssss:oooo £ \

where ssss is the segment and oooo is the offset of the address.

V

78 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide ' 6.4 Assembly Language Syntax

Operands that could refer to either a byte or word are ambiguous, and must
be preceded either by the prefix "BYTE" or "WORD". These prefixes may
be abbreviated to "BY" and "WO". For example:

INC BYTE [BP]
NOT WORD [1234]

Failure to supply a prefix when needed results in an error message.

Operands which address memory directly are enclosed in square brackets to
distinguish them from immediate values. For example:

ADD AX,5 ;add 5 to register AX
ADD AX, [5] ;add the contents of location 5 to AX

The forms of register indirect memory operands are:

[pointer register]
[index register]
[pointer register + index register]

where the pointer registers are BX and BP, and the index registers are SI and
DI. Any of these forms may be preceded by a numeric offset. For example:

ADD BX,[BP + SI]
ADD BX,3[BP + SI]
ADD BX,1D47[BP + SI]

) > :

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 79

6.5 DDT-86 Sample Session CP/M-86 Programmer's Guide

6.5 DDT-86 Sample Session

In the following sample session, the user interactively debugs a simple sort pro-
gram. Comments in italic type explain the steps involved.

Source file of program to test.

A > t y p e s o r t . a B B

!
;
sort:

done:

s i m p l e sort p ro S ram

MOU
mou
mou

si .0 S i n i t i a l i z e index
b x i o f f s e t nlist ibx = base of list
sw iO

mou

CHIP

jna
x c h s
M O V

mou

inc
CHIP

jnz
t e s t
jnz

al i C b x + si]
al il C b x + si]

inc i
al iHbx + s i]
C b x + si] .al
SW ll

si
si .count
C O M P

sw . 1

s o r t

done

i c l e a r switch flaJ

i jet byte from list
icompare with next byte
idon't switch if in o r d e r
ido first part of switch
ido second part
iset switch f1 as

ii n c rement index i
iend of list'
ino . Keep Joins
idone - any switches 7

i y e s t sort some more

iiet here when list o r d e r e d

nl ist
count
su

dseS
or*

db
esu
db
end

lOOh ileaue space for base pa4e

3,8,a,6.31 > 6 i 4 i l
offset $ - offset n l i s t
0

Assemble program.

sort

CP/M BOBB ASSEMBLER VER 1,1
END OF PASS 1
END OF PASS 2

END OF ASSEMBLY. NUMBER OF ERRORS:

80 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.5 DDT-86 Sample Session

Type listing file generated by ASM-86.

AHype sort•1st

CP/M ASM86 1,1 SOURCE: SORT.A86 PAGE 1

t
1
1
sort:

0000 BEOOOO
0003 BB0001
0006 C606080100

COMP:
OOOB 8AOO
OOOD 3A4001
0010 760A
0012 864001
0015 8800
0017 C606080101

inci :
001C 46
001D 83FE08
0020 75E9
0022 F606080101
0027 75D7

sinple

MOV

MOV

MOV

MOV

CMP

jnt
KCh*

MOV

MOV

inc
CMP

Jnz
test
jnz

sort program

51 lO

bxioffset n
sw >0

al tCbx+si]
al .ILbx+siJ
inci
al .Hbx + si]
Cbx + si] ,al
sw ,1

si
si tcount
COMP

SW tl

sort
done:

0029 E9FDFF

0100 030804061F06 nlist
0401

0008 count
0108 00 sw

«••§
or*

db

e<«u
db

done

{initialize index
ibx = base of list
idea: switch flaJ

i*et byte from list
{compare with next byte
idon't switch if in order
ido first part of switch
ido second part
iset switch flai

•increment index
iend of list'
ino i Keep Join*
idone - any switches7

iyes » sort some more

5*et here when list ordered

lOOh ileave space for base

3,8.4,6,31 ,6,4,1

offset $ - offset nlist
0

END OF ASSEMBLY, NUMBER OF ERRORS:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 81

6.5 DDT-86 Sample Session CP/M-86 Programmer's Guide

Type symbol table file generated by ASM-86.

A/type sort.sym

0000 VARIABLES

0100 NLIST 0108 SW

0000 NUMBERS

0008 COUNT

0000 LABELS

OOOB CDMP 0029 DONE 001C INCI 0000 SORT

Type hex file generated by ASM-86.

AHype sort.h86 :-riao
:0400000300000000F9

:1B000081BEOOOOBB0001C6060801008A003A4001760A8640018800C6060B016C
:11001B810146B3FE0875E9FB0608010175D7E9FDFFEE

:09010082030804061F0604010035
:00000001FF • lt , . «i-*«jj -i-«

Generate CMD dile from .H86 file.

A/Senctod sort " : '> 5'»| ,'..;oc,i* <i«a

BYTES READ 0039 ' tlV* ;7*f

RECORDS WRITTEN 04 " -' ' Mo* " "

DDT-86 and load SORT.CMD. ""

A>ddt86 sort ^ -.,. .

DDT8G 1-0 .. i.8.ii«5.6.6,e ^ j*ii.» SC-
START END

CS 0470:0000 047D:002F j .«,»tr, - > «»»M f «# :.-UJ
DS 0480:0000 0480:010F 0 1t. y, 3̂

Display initial register values.

AX BX CX DX SP BP SI DI CS DS SS ES IP
0000 0000 0000 0000 119E 0000 0000 0000 047D 0480 0491 0480 0000

MOV SI .0000

82 ALL INFORAAATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.5 DDT-86 Sample Session

Disassemble the beginning of the code segment.

-1
047D:
047D:
047D:
0470:
0470:
0470:
047D:
0470:
0470:
0470:
0470:
0470!

0000
0003
0006
OOOB
OOOD
0010
0012
0015
0017
001C
001D
0020

MOV
MOV
MOV
MOV
CMP
JBE
XCHG
MOV
MOV
INC
CMP
JNZ

SI .0000
BX.0100
BYTE [01083 .00
AL,[BX+SI]
A L . O H B X + S I]
001C
A L . O H B X + S I]
CBX+SI] ,AL
BYTE [0108] ,01
SI
SI ,0008
OOOB

Display the start of the data segment.

- d l O O i l O f
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00

Disassemble the rest of the code.

-1
0470:0022
0470:0027
0470:0029
047D:002C
047D:002E
0470:0030
0470:0031
0470:0033
0470:0034
0470:0035
0470:0037
0470:0039

TEST
JNZ
JMP
ADO
ADD
DAS
ADD
79 =

POP

ADD
ADD
99 =

BYTE [0108]
0000
0029
[BX + SI] ,AL
[BX+SI] .AL

[BX + SI] ,AL
6C
ES
[BX] ,CL
[BX+SI] »AX
6F

,01

Execute program from IP (=0) setting breakpoint at 29H.

- i ,29

*047D:0029 Breakpoint encountered.

Display sorted list.

- d l O O . l O f
0480:0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 83

6.5 DDT-86 Sample Session CP/M-86 Programmer's Guide

Doesn't look good; reload file.

-eso rt
START END

CS 0470:0000 047D:002F
DS 0480:0000 0480:010F

i-

Trace 3 instructions.

-t3 t

AX BX CX DX SP BP SI DI IP
Z-P- 0000 0100 0000 0000 USE 0000 0008 0000 0000 MOV 51,0000
Z-P- 0000 0100 0000 0000 119E 0000 0000 0000 0003 MOV BX.0100
Z-P- 0000 0100 0000 0000 119E 0000 0000 0000 0006 MOV BYTE [0108]

*047D:OOOB
00

-t3

Trace some more.

AX BX CX DX SP BP SI 01 IP
Z-P- 0000 0100 0000 0000 119E 0000 0000 0000 OOOB MOV AL,[BX+SI]
Z-P- 0003 0100 0000 0000 119E 0000 0000 0000 0000 CMP AL,OHBX+SI]

S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C
«047D:001C '•-

Display unsorted list.

- d l O O t l O f
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00

Display next instructions to be executed.

-1
047D:001C
0470:0010
0470:0020
0470:0022
0470:0027
0470:0029
047D:002C
047D:002E
0470:0030
0470:0031
0470:0033
0470:0034

INC
CMP
JNZ
TEST
JNZ
JMP
ADD
ADD
DAS
ADO
97 =

POP

SI
SI ,0008
OOOB
BYTE [0108] ,01
0000
0029
[BX-t-SI] ,AL
[BX+SI] ,AL

[BX+SI] ,AL
6C
ES

84 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.5 DDT-86 Sample Session

Trace some more.

-13
DP SI DI IPAX BX CX DX SP

S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 001C INC SI

--C 0003 0100 0000 0000 119E 0000 0001 0000 001D CMP SI ,0008

S-APC 0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ OOOB

*047D:OOOB I

Display instructions from current IP.

-1
047D:

047D:

0470:

0470:

047D:

047D:

0470:

0470:

0470

0470

047Di

047D:

OOOB

OOOD

0010
0012

0015

0017

001C

0010

0020

0022

0027

0029

MOV
CMP

JBE

XCHG
MOV

MOV

INC

CMP

JNZ

TEST

JNZ

JMP

AL,CBX+SI]

AL.01CBX+SI]
001C

AL.OHBX + SI]
CBX+SI] ,AL

BYTE C0108] .01
SI

SI .0008

OOOB

BYTE C0108] ,01
0000

0029

-t3

AX BX CX DX SP BP SI DI IP
S-APC 0003 0100 0000 0000 119E 0000 0001 0000 OOOB MOV

S-APC 0008 0100 0000 0000 119E 0000 0001 0000 OOOD CMP

0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE

*047D:0012

AL.CBX+SI]

AL.OHBX+SI]
001C

-1

0470:0012
0470:0015

0470:0017

047D:001C

0470:0010

0470:0020
0470:0022

0470:0027

0470:0029
047D:002C

047D:002E

0470:0030

XCHG
MOV

MOV

INC

CMP

JNZ
TEST

JNZ

JMP

ADD

ADD

DAS

AL,01[BX+SI]

[BX+SI]»AL
BYTE [0108] ,01

SI
SI ,0008

OOOB

BYTE [0108].01

0000

0029
[BX+SI] ,AL

[BX+SI] ,AL

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 85

6.5 DDT-86 Sample Session CP/M-86 Programmer's Guide

Go until switch has been performed.

- s .20 i'r -
*047D:0020)

- /v

Display list.

-d 100 1 1 Of
0480:0100 03 04 08 06 IF OB 04 01 01 00 00 00 00 00 00 00

Looks like 4 and 8 were switched okay. (And toggle is true.)

AX BX CX DX SP BP SI DI IP
---- S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ OOOB
*047D:OOOB

Display next instructions.

-1
0470:0006
0470:0000
0470:0010
0470:0012
0470:0015
0470:0017
0470: 00 1C
0470:0010
0470:0020
0470:0022
0470:0027
0470:0029

MOV
CMP
JBE
XCHG
MOV
MOV
INC
CMP
JNZ
TEST
JNZ
JMP

AL.CBX+SI]
AL.OHBX + SI]
001C
AL.OKBX + SI]
[BX + SI] ,AL
BYTE [0108] .01
SI
SI .0008
OOOB
BYTE [0108] .01
0000
0029

Since switch worked, let's reload and check boundary conditions.

-eso rl
START END

CS 0470:0000 047D:002F
DS 0480:0000 0480:010F

Make it quicker by setting list length to 3. (Could also have used s47d=le to
patch.)

- a i d
0470:0010 CMP si i3
0470:0020

86 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.5 DDT-86 Sample Session

Display unsorted hst.

-dlOO
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00
0480:0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0480:0120 00 00 00 00 00 00 00 00 00 00 00 00 00 20 20 20

Set breakpoint when first 3 elements of list should be sorted.

-J .29
»047D:OOZ9

See if list is sorted.

-dlOO.lOf
0480:0100 03 04 06 08 IF 06 04 01 00 00 00 00 00 00 00 00 ...,

Interesting, the fourth element seems to have been sorted in.

-eso rt
START END

CS 0470:0000 047D:002F
DS 0480:0000 0480:010F

Let's try again with some tracing.

-aid
0470:0010
0470:0020

-19

-
-

_

7 P

7 P

7 P

7 P

7 P

---S-A-C
---S-A-C

p

---S-A-C

CfflP 51)3

AX
finncv wo
nnnKV \J VO

nnncV WO

nnncW VO

nnmV WO

0003
0003
0003
0003

BX
n 1 onU 1 W

fi 1 finV 1 W

n 1 nnV 1 W

n 1 nnV 1 W

0100
0100
n 1 nnV 1 W

0100

CX
nnnnw w
nnnnw w
nnnnw w
nnnnw w
nnfifiw w

0000
0000
0000
0000

1

ox
nnnnw w

nnnnw w

nnnnw w

nnnnw w

nnnnw w

0000
0000
0000
0000

SP
1 1 QF1 1 3Q

1 1 QF1 i 3C

1 1 QF1 1 3D

1 1 QF1 1 3 D

1 1 QF1 1 3C

119E
119E
1 19E
119E

BP
fifififiw w

fifififiw w

fifififiw w

fifififiw w

fifififiw w

0000
0000
0000
0000

SI
nnmW \J O

fifinnw w
nnnnw w
finnnw w
nnnnw w
0000
0000
nnn 1W v 1

0001

01
nnnnw w

nnfifiw w

nnnnw w

nnnnw w

nnnnw w

0000
0000
0000
0000

IP
fifififiw w
fififiTV W O

fififiRwuo
fififiRW VD

fififinw vu

0010
001C
001 0
0020

Mnunu v
Mnunu v
Mnunu v
Mnunu v

PMPu n r

JBE
INC
CMP
JNZ

*047D:OOOB

SI .0000
B X . 0 1 0 0
BYTE [0108] ,00
A L , [B X + S I]
A L . 0 1 E B X + S I]
001C
SI
SI ,0003
OOOB

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87

6.5 DDT-86 Sample Session CP/M-86 Programmer's Guide

-1
047D:OOOB
0470:0000
0470:0010
0470:0012
0470:0015
0470:0017
047D:001C
0470:0010
0470:0020
0470:0022
0470:0027
0470:0029

MOV
CMP
JBE
XCHG
MOV
MOV
INC
CMP
JNZ
TEST
JNZ
JMP

AL,[BX+SI]
AL ,01[BX+SI]
00 1C
AL.OHBX + SI]
[BX+SI] .AL
BYTE [0108] .01
SI
SI ,0003
OOOB
BYTE [0108] ,01
0000
0029

-t3
AX BX CX OX SP BP SI DI IP

S-A-C 0003 0100 0000 0000 119E 0000 0001 0000 OOOB MOV AL,[BX+SI]
S-A-C 0008 0100 0000 0000 119E 0000 0001 0000 0000 CMP AL ,01[BX+SI]

OOOB 0100 0000 0000 119E 0000 0001 0000 0010 JBE 001C
*047D:0012

-1
0470:0012 XCHG
0470:0015 MOV
0470:0017 MOV
047D:001C INC
0470:0010 CMP
0470:0020 JNZ
0470:0022 TEST

A L . O H B X + S I]
[BX + SI] ,AL
BYTE [0108] ,01
SI
SI ,0003
OOOB
BYTE [0108] ,01

-t3
AX BX CX DX SP BP SI DI IP
0008 0100 0000 0000 119E 0000 0001 0000 0012 XCHG AL,OHBX + SI]
0004 0100 0000 0000 119E 0000 0001 0000 0015 MOV [BX + SI],AL
0004 0100 0000 0000 119E 0000 0001 0000 0017 MOV BYTE [0108] ,01

*047D:001C

-dl O O i l O f
0480:0100 03 04 08 06 IF 06 04 01 01 00 00 00 00 00 00 00

So far, so good.

-13
AX BX CX DX SP BP SI DI IP
0004 0100 0000 0000 119E 0000 0001 0000 001C INC SI
0004 0100 0000 0000 119E 0000 0002 0000 0010 CMP SI,0003

S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ OOOB
*047D:OOOB

88 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.5 DDT-86 Sample Session

-1
047D:OOOB
0470:0000
0470:0010

0470:0012
0470:0015
0470:0017
047D:001C
0470:0010
0470:0020
0470:0022
0470:0027

0470:0029

MOV
CMP
JBE
XCHG
MOV
MOV
INC
CMP
JNZ
TEST

JNZ
JMP

AL,CBX+SI]

AL,01CBX+SI]
001C
AL,OHBX+SI]
[BX+SI] ,AL
BYTE [0108] ,01
SI
SI ,0003
OOOB

BYTE [0108], 01
0000

0029

-13
AX BX CX OX SP BP SI 01 IP

S-APC 0004 0100 0000 0000 119E 0000 0002 0000 OOOB MOV AL,[BX+SI]

S-APC 0008 0100 0000 0000 119E 0000 0002 0000 0000 CMP AL,OHBX+SI]
0008 0100 0000 0000 119E 0000 0002 0000 0010 JBE 001C

*047D:0012

Sure enough, it's comparing the third and fourth elements of the list. Reload the
program.

-eso rt
START END

CS 0470:0000 047D:002F
OS 0480:0000 0480:010F

-1
0470:0000 MOV
0470:0003 MOV
0470:0006 MOV
047D:OOOB MOV
0470:0000 CMP
0470:0010 JBE
0470:0012 XCHG
0470:0015 MOV
0470:0017 MOV
047D:001C INC
0470:0010 CMP
0470:0020 JNZ

SI ,0000
BX,0100
BYTE [0108] ,00
AL,[BX+SI]
AL.OHBX+SI]
001C
AL,01[BX+SI]
[BX+SI] ,AL

BYTE [0108], 01
SI
SI ,0008
OOOB

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89

6.5 DDT-86 Sample Session , CP/M-86 Programmer's Guide

Patch length.

-aid

0470:0010 cmp si ,7

0470:0020 .

Try it out.

i A/*;0«
-s ,29 .
#Of l7D:0029 .^. .j.^ • . • - -

•'

See t/ //sf is sorted. .,:

-dlOO.lOf

0480:0100 01 03 04 04 06 OB 08 IF 00 00 00 00 00 00 00 00

Looks better; let's install patch in disk file. To do this, we must read. CMB file
including header, so we use R command.

- r s o r t . c m d

START END

2000:0000 2000:01FF

First 80h bytes contain header, so code starts at 80h.

-180
2000:0080 MOV SI tOOOO

2000:0083 MOV BX»0100

2000:0086 MOV BYTE [0108] tOO

2000:0086 MOV AL.CBX+SI]

2000:0080 CMP AL.OHBX + SI]

2000:0090 JBE 009C

2000:0092 XCHG ALt O l C B X + S I]

2000:0095 MOV [BX + SI] .AL

2000:0097 MOV BYTE [01081,01

2000:009C INC SI

2000:0090 CMP SI ,0008

2000:OOAO JNZ 008B

Install patch.

-a9d
2000:0090 cmp si ,7

2000:OOAO

90 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide 6.5 DDT-86 Sample Session

Write file back to disk. (Length of file assumed to be unchanged since no length
specified.)

ii
- w s o r t . c m d

Reload file,

- e s o r t

START END
CS 0470:0000 047D:002F
DS 0480:0000 0480:010F

Verify that patch was installed.

-1
0470:0000
0470:0003
0470:0006
0470:0008
0470:0000
0470:0010
0470:0012
0470:0015
0470:0017
047D:001C

0470:0010
0470:0020

MOV
MOV
MOV
MOV
CMP
JBE
XCHG
MOV
MOV
INC
CMP
JNZ

SI ,0000
BX,0100
BYTE [0108] ,00
AL.CBX+SI]
AL,OHBX + SI]
001C
AL.01CBX+SI]
[BX+SI] ,AL
BYTE C0108] ,01
SI
SI ,0007
OOOB

Run it.

-t,2B
#0470:0029

Still looks good. Ship it!

-dlOOdOf
0480:0100 01 03 04 04 06 06 08 IF 00 00 00 00 00 00 00 00 ,

A>

End of Section 6

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 91

End of Section 6 ? fi CP/M-86 Programmer's Guide

11 0 « *

ft' C > . ') " * . c" ^ ' t. . '. £0 i .

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix A
ASM-86 Invocation

Command: ASM86

Syntax: ASM86 <filename> { $ <paratneters> }

where '

<filename> is the 8086 assembly source file. Drive and extension are
optional. The default file extension is .A86.

<parameters> are a one-letter type followed by a one-letter device from the
table below.

Parameters: i

form: $ Td where T = type and d = device
I

' Table A-l. Parameter Types and Devices

i t1 1 '*

l

'

-.

Devices \

A H

A - P x x

X x

Y x

Z x

I

D

x = valid,

•'arameters

P S F

x x

X X

X X

X X

X

d
d = default

ALL INFORMATION PRESENTED .HERE IS PROPRIETARY TO DIGITAL RESEARCH 93

A ASM-86 Invocation CP/M-86 Programmer's Guide

Valid Parameters

Except for the F type, the default device is the the current default drive.

Table A-2. Parameter Types

A
H
P
S
F

controls location of ASSEMBLER source file
controls location of HEX file
controls location of PRINT file
controls location of SYMBOL file
controls type of hex output FORMAT

A- P
X
Y
Z
I
D

Table A-3. Device Types

Drives A - P
console device
printer device
byte bucket
Intel hex format
Digital Research hex format

Table A-4. Invocation Examples

ASM86 10

ASM86 IO.ASM $ AD SZ

ASM86 IO $ PY SX

ASM86 IO $ FD

ASM86 IO $ FI

Assemble file IO.A86, produce IO.HEX IO.LST
and IO.SYM.

vi
Assemble file IO.ASM on device D, produce
IO.LST and IO.HEX, no symbol file.

Assemble file IO.A86, produce IO.HEX, route
listing directly to printer, output symbols on
console.

Produce Digital Research hex format.

Produce Intel hex format.

End of Appendix A

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix B
Mnemonic Differences from the

Intel Assembler
The CP/M 8086 assembler uses the same instruction mnemonics as the INTEL

8086 assembler except for explicitly specifying far and short jumps, calls and returns.
The following table shows the four differences:

Table B-l. Mnemonic Differences

Mnemonic Function

Intra segment short jump:

Inter segment jump:

Inter segment return:

Inter segment call:

CP/M

JMPS

JMPF

RETF

CALLF

INTEL

JMP

JMP

RET

CALL

End of Appendix B

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

End of Appendix B

« '» : >

!> ' u- <=. . Jfh.

CP/M-86 Programmer's Guide

-f.l 5.O

96 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix C
ASM-86 Hexadecimal

Output Format
At the user's option, ASM-86 produces machine code in either Intel or Digital

Research hexadecimal format. The Intel format is identical to the format defined by
Intel for the 8086. The Digital Research format is nearly identical to the Intel format,
but adds segment information to hexadecimal records. Output of either format can
be input to GENCMD, but the Digital Research format automatically provides seg-
ment identification. A segment is the smallest unit of a program that can be relocated.

Table C-l defines the sequence and contents of bytes in a hexadecimal record.
Each hexadecimal record has one of the four formats shown in Table C-2. An exam-
ple of a hexadecimal record is shown below.

Byte number = > 0 1 2 3 4 5 6 7 8 9 n

1 Contents = > : l l a a a a t t d d d cc CR LF

Table C-l. Hexadecimal Record Contents

Byte

0
1—2
3—6
7—8

9— (n-1)
n— (n + 1)

n + 2
n + 3

Contents

record mark
record length
load address
record type
data bytes
check sum
carriage return
line feed

Symbol

:

11
a a a a

1 1
dd d

cc
CR
LF

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

C Hexadecimal Output Format CP/M-86 Programmer's Guide

Table C-2. Hexadecimal Record Formats

Record type

00

01

02

03

11 =>
cc =>
aaaa = >
ssss = >
iiii = >
DT =>
ST =>

Content Format

Data record : 11 aaaa DT <data . . .> cc

End-of-file : 00 0000 01 FF

Extended address mark : 02 0000 ST ssss cc

Start address : 04 0000 03 ssss iiii cc

record length — number of data bytes
check sum — sum of all record bytes
16 bit address
16 bit segment value
offset value of start address t. > ~ ' '. - >\tm .'xv

data record type
segment address record type

It is in the definition of record types 00 and 02 that Digital Research's hexadecimal
format differs from Intel's. Intel defines one value each for the data record type and
the segment address type. Digital Research identifies each record with the segment
that contains it, as shown in Table C-3.

98 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide C Hexadecimal Output Format

Table C-3. Segment Record Types

Symbol

DT

ST

Intel's
Value

00

02

Digital's
Value

81H

82H

83H

84H

85H

86H

87H

88H

Meaning

for data belonging to all 8086 segments

for data belonging to the CODE segment

for data belonging to the DATA segment

for data belonging to the STACK segment

for data belonging to the EXTRA segment

for all segment address records

for a CODE absolute segment address

for a DATA segment address

for a STACK segment address

for a EXTRA segment address

End of Appendix C

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99

End of Appendix C I CP/M-86 Programmer's Guide

JO", O < JO , J,i

n ns v / V "I irf:

• •» '/ x j i;

H18

f n ': jt .?/

'" ' f H8P J.

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix D
Reserved Words

Table D-l. Reserved Words

Predefined Numbers

BYTE WORD DWORD

Operators

EQ
NE
PTR
LAST

GE
OR
SEG
TYPE

GT
AND
SHL
LENGTH

LE
MOD
SHR
OFFSET

LT
NOT
XOR

Assembler Directives

DB
RB
ORG
EJECT
INCLUDE

DD
RW
CSEG
ENDIF
SIMFORM

DW
END
DSEG
TITLE
PAGESIZE

IF
ENDM
ESEG
LIST
CODEMACRO

RS
EQU
SSEG
NOLIST
PAGEWIDTH

Code-macro directives

DB
RELW

DD
MODRM

DW
SEGFIX

DBIT
NOSEGFIX

RELB

8086 Registers

AH
BP
CX
DX

AL
BX
DH
ES

AX
CH
DI
SI

BH
OL
ra-
SP

BL
CS
DS
SS

Instruction Mnemonics—See Appendix E.

End of Appendix D

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 101

End of Appendix D CP/M-86 Programmer's Guide

"ii T.'J 1O

i'.'f I

1V1J

hC
XC!

102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix E
ASM-86 Instruction Summary

Table E-l. ASM-86 Instruction Summary

Mnemonic

AAA
AAD
AAM
AAS
ADC
ADD
AND
CALL

CALLF
CBW
CLC
CLD
CLI

CMC
CMP
CMPS
CWD
DAA
DAS
DEC
DIV
ESC
HLT
IDIV

IMUL
IN

INC
INT

INTO

Description

ASCII adjust for Addition
ASCII adjust for Division
ASCII adjust for Multiplication
ASCII adjust for Subtraction
Add with Carry
Add
And
Call (intra segment)
Call (inter segment)
Convert Byte to Word
Clear Carry
Clear Direction
Clear Interrupt
Complement Carry
Compare
Compare Byte or Word (of string)
Convert Word to Double Word
Decimal Adjust for Addition
Decimal Adjust for Subtraction
Decrement
Divide
Escape
Halt
Integer Divide
Integer Multiply
Input Byte or Word
Increment
Interrupt
Interrupt on Overflow

Section

4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.5
4.5
4.3
4.6
4.6
4.6
4.6
4.3
4.4
4.3
4.3
4.3
4.3
4.3
4.6
4.6
4.3
4.3
4.2
4.3
4.5
4.5

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103

E Instruction Summary CP/M-86 Programmer's Guide

Table E-l. (continued)

Mnemonic

IRET
JA

JAE
JB

JBE
JC

JCXZ

JE
JG

JGE
JL

JLE
JMP

JMPF
JMPS
JNA

JNAE
JNB

JNBE
JNC
JNE
JNG

JNGE
JNL

JNLE
JNO
JNP
JNS
JNZ
JO
JP

JPE
JPO
JS
JZ

LAHF

Description

Interrupt Return
Jump on Above
Jump on Above or Equal
Jump on Below
Jump on Below or Equal
Jump on Carry
Jump on CX Zero
Jump on Equal
Jump on Greater
Jump on Greater or Equal
Jump on Less
Jump on Less or Equal
Jump (intra segment)
Jump (inter segment)
Jump (8 bit displacement)
Jump on Not Above
Jump on Not Above or Equal
Jump on Not Below
Jump on Not Below or Equal
Jump on Not Carry
Jump on Not Equal
Jump on Not Greater
Jump on Not Greater or Equal
Jump on Not Less
Jump on Not Less or Equal
Jump on Not Overflow
Jump on Not Parity
Jump on Not Sign
Jump on Not Zero
Jump on Overflow
Jump on Parity
Jump on Parity Even
Jump on Parity Odd
Jump on Sign
Jump on Zero
Load AH with Flags

Section

4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.2

104 ALL INFORAAATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide E Instruction Summary

Table E-l. (continued)

Mnemonic

LDS
LEA
LES

LOCK
LODS
LOOP

LOOPE
LOOPNE
LOOPNZ
LOOPZ - -
MOV
MOVS
MUL
NEC
NOT
OR

OUT
POP

POPF
PUSH

PUSHF
RCL
RCR
REP
RET

RETF
ROL
ROR
SAHF
SAL
SAR
SBB

SCAS
SHL
SHR
STC

Description

Load Pointer into DS
Load Effective Address
Load Pointer into ES
Lock Bus
Load Byte or Word (of string)
Loop
Loop While Equal
Loop While Not Equal
Loop While Not Zero
Loop While Zero
Move
Move Byte or Word (of string)
Multiply
Negate
Not
Or
Output Byte or Word
Pop
Pop Flags
Push
Push Flags
Rotate through Carry Left
Rotate through Carry Right
Repeat
Return (intra segment)
Return (inter segment)
Rotate Left
Rotate Right
Store AH into Flags
Shift Arithmetic Left
Shift Arithmetic Right
Subtract with Borrow
Scan Byte or Word (of string)
Shift Left
Shift Right
Set Carry

Section

4.2
4.2
4.2
4.6
4.4
4.5
4.5
4.5
4.5
4.5
4.2
4.4
4.3
4.3
4.3
4.3
4.2
4.2
4.2
4.2
4.2
4.3
4.3
4.4
4.5
4.5
4.3
4.3
4.2
4.3
4.3
4.3
4.4
4.3
4.3
4.6

ALL INFORMATION PRESENTED «ERE IS PROPRIETARY TO DIGITAL RESEARCH 105

E Instruction Summary CP/M-86 Programmer's Guide

Table E-l. (continued)

Mnemonic

STD
STI

STOS
SUB

TEST
WAIT
XCHG
XLAT
XOR

Description

Set Direction
Set Interrupt
Store Byte or Word (of string)
Subtract
Test
Wait <!''">-i
Exchange
Translate
Exclusive Or

Section

4.6
4.6
4.4
4.3
4.3
4.6
4.2
4.2
4.3

End of Appendix E

HO
TJO

106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix F
Sample Program

CP/M ASM86 1,1 SOURCE: APPF.AB6 Terminal Input/Output PAGE 1

0000 E90600
0003 E91900
OOOB E92BOO

t i t l e "Terminal Input/Output"
paiesize 50
paieuidth 79
simfo rm
i

;»###»# T e r m i n a l I/O s u b r o u t i n e s *»**«#**
!

The f o l l o w i n g subroutines
are i n c l u d e d :

CONSTAT
CONIN
CONOUT

console status
console input
console output'

Each routine requires CONSOLE NUMBER
in the BL - register

#*******##****#**
* Jump table: /

CSEG

jmp tab:
JMP
JMP
JMP

5 start of code segment

constat
conin
conout

x *#*«****#»#*»#*#**#**#*
I/O port numbers /

Listing F-l. Sample Program APPF.A86

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107

F Sample Program CP/M-86 Programmer's Guide

CP/M ASM86 1,1 SOURCE: APPF.A86 Terminal Input/Output ; J t l PAGE 2

0010
0011
0011
0001
0002

i Te r m i n a l 1
5
install eiu
indatal eiu
outdatal esu
ready inmask 1 eiu
re a d y o u t m a s K 1 equ

lOh i input status port
1 Ih ! input port
1 Ih i output PO rt
Olh i input ready mask
02h i output ready mask

i Terminal 2:

0012
0013
0013
0004
0008

instat2
indataZ
outdataZ
ready inmaskZ
r e a d y o u t m a s k 2

eiu
eiu
esu
eiu
esu

12h
13h
13h
04h
08h

input status port
input port
output port
input ready mask
output ready mask

0009 53E83FOO

0000 52
OOOE BBOO
0010 8A17
0012 EC
0013 224706
0016 7402
0018 BOFF

» CONSTAT / ;
*********** :

Entry: BL - res = terminal no
Exit: AL - rei = 0 if not ready

Offh if ready

cons tat:
push bx ' call o K t e r m i n a l

c o n s t a t l :
push dx
mov dh »0 i
mow d 1 i i n s t a t u s t a b CBX]
in al i d x
and a l * r e a d y i n m a s K t a b [bx]
jz constatout
mov al »0f f h ».»

read status port

Listing F-l. (continued)

108 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide F Sample Program

CP/M ASMB6 1,1 SOURCE: APPF.A86 Terminal Input/Output PAGE

001A 5A5BOACOC3
constatout:

POP dx ' POP bx ' or al »al ! ret

#*#**»#**
* CONIN /
***##*#**

Entry: BL -
Exit: AL -

re* = t e r m i n a l no
re* = read c h a r a c t e r

001F
0023
0026
0028
0029
002B
002E
002F
0031

53E82900
E8E7FF
74FB
52
B600
8A5702
EC
247F
5A5BC3

con in : push
con ill: call

JZ

push
mov
MOV

i in
and
POP

bx ' c a l l c
const at 1
coninl
dx
dh .0

iK

dl i indatatab
al > d x
al .7fh

dx ' POP bx i

o K t e r m i n a l !

CBX]

ret

! test status

i read c h a r a c t e r

i strip p a r i t y bit

t - •• J3
##**#**#
* CONOUT /

Ent rv : BL - re* = t e r m i n a l no
AL - re* = c h a r a c t e r to p r i n t

0034 53E81400
0038 52
0039 50
003A B600
003C 8A17

003E EC
conout 1

push bx ' call o K t e r m i n a l
push dx
push ax
mou dh >0
mow d l t i n s t a t u s t a b [BX]

in al i d x

i test status

Listing F-l. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

F Sample Program CP/M-86 Programmer's Guide

CP/M ASM86 1.1 SOURCE: APPF.A86 T e r m i n a l Input/Output 2 PAGE

003F 224708
0042 74FA
0044 58
0045 8A5704
0048 EE
0049 5A5BC3

arid a l i r e a d y o u t m a s K t a b
j z c o n o u t 1
POP ax
M O M d 1 » o LI t d a t a t a b [BX]
out dx » a l

[B X]

p o p d x p o p b x ' ret

i w r i t e b y t e

+ OKTERMINAL

E n t r y : BL - r e S = t e r m i n a l no

oKte r m i n a l :
004C
00 4 E
0050
0053
0055
0057
0059

OADB
740 A
80FB03
7305
FECB
B700
C3

o r
JZ

CMP

jae
dec
m o u
ret

bl
e r
b l
e r
bl
bh

> b
ro
.1
ro

.0

b l . l e n j t h i n s t a t u s t a b + 1

005A 5B5BC3 e r r o r : POP b x ' POP bx ret i do n o t h i n *

;#*#*#**#****** end of code segment #***#*#***#»###
5
i **************** ;
i # Data segment *
I #***#*********** ' .. .!;•) ' ;&'

dses

Data for each t e r m i n a l
************************** 03 3iuO

Listing F-l. (continued)

110 ALL INFORAAATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M-86 Programmer's Guide F Sample Program

CP/M ASM86 1.1 SOURCE: APPF.A86 Termina l Input/Output PAGE 5

install iinstatZ
indatal »indata2
o u t d a t a l » o u t d a t a 2
read/inmasKliread/inmasK2
r e a d y o u t m a s K l * r e a d x o u t m a s K 2

;«#***#******#*# end of f i l e *#*»*****#*****#**#***
end

0000 1012
0002 1113
0004 1113
0006 0104
0008 0208

instatus tab db
indatatab db
outdatatab db
ready inmasK tab db
ready outmasKt ab db

END OF ASSEMBLY. NUMBER OF ERRORS:

Listing F-l. (continued)

End of Appendix F

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 111

End of Appendix F CP/M-86 Programmer's Guide

112 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix G
Code-Macro Definition Syntax

<codemacro> ::= CODEMACRO <name> [<formal$list>]
[< listofmacro$directives >]
ENDM

<name> ::= IDENTIFIER

<formal$list> ::- <parameter$descr>[{,<parameter$descr>}]

<parameter$descr> ::= <form$name>:<specifier$letter>
<modifier$letter> [(< range>)]

<specifier$letter> ::= A | C | D | E | M | R | S | X

<modifier$letter> ::— b | w | d | sb

<range> :: — <single$range>\<double$range>

<single$range> ::= REGISTER | NUMBERB

<double$range> ::= NUMBERB,NUMBERB | NUMBERB,REGISTER |
REGISTER,NUMBERB REGISTER,REGISTER

<listofrnacro$directives> :: — <macro$directive>
{<macro$directive>}

<macro$directive> ::= <db> \ <dw> \ <dd> \ <segfix> \
<nosegfix> | <modrm> \ <relb> \
<relw> | <dbit>

<db> :: - DB NUMBERB | DB <form$name>

<dw> :: - DW NUMBERW | DW <form$name>

<dd> :: = DD <form$name>

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 113

G Code-Macro Definition Syntax CP/M-86 Programmer's Guide

<segfix> ::= SEGFIX <form$name> ,

<nosegfix> ::= NOSEGFIX <form$name>

<modrm> :: = MODRM NUMBER? \<form$name> \
MODRM <form$name> ,<form$name>

<relb> ::= RELB <form$name>

— : :
<relw> ::= RELW <form$name>

<dbit> ::= DBIT <field$descr>{,<field$descr>} , ^ - .

<field$descr> :: = NUMBER15 (NUMBERB) |
NUMBER15 (<form$name> (NUMBERB

<form$name> ::= IDENTIFIER

NUMBERB is 8-bits
NUMBERW is 16-bits
NUMBER? are the values 0, 1,. . , 7
NUMBER15 are the values 0, 1,. . , 15

End of Appendix G

114 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix H
ASM-86 Error Messages

There are two types of error messages produced by ASM-86: fatal errors and
diagnostics. Fatal errors occur when ASM-86 is unable to continue assembling. Diag-
nostic messages report problems with the syntax and semantics of the program being
assembled. The following messages indicate fatal errors encountered by ASM-86
during assembly:

NO FILE
DISK FULL
DIRECTORY FULL
DISK READ ERROR
CANNOT CLOSE
SYMBOL TABLE OVERFLOW
PARAMETER ERROR

ASM-86 reports semantic and syntax errors by placing a numbered ASCII message
in front of the erroneous source line. If there is more than one error in the line, only
the first one is reported. Table H-l summarizes ASM-86 diagnostic error messages.

Table H-l. ASM-86 Diagnostic Error Messages

Number

0
1
2
3
4
5
6
7
8
9

10
11
12

Meaning

ILLEGAL FIRST ITEM
MISSING PSEUDO INSTRUCTION
ILLEGAL PSEUDO INSTRUCTION
DOUBLE DEFINED VARIABLE
DOUBLE DEFINED LABEL
UNDEFINED INSTRUCTION
GARBAGE AT END OF LINE - IGNORED
OPERAND(S) MISMATCH INSTRUCTION
ILLEGAL INSTRUCTION OPERANDS
MISSING INSTRUCTION
UNDEFINED ELEMENT OF EXPRESSION
ILLEGAL PSEUDO OPERAND
NESTED "IF" ILLEGAL - "IF" IGNORED

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 115

H ASM-86 Error Messages CP/M-86 Programmer's Guide

Table H-l. (continued)

Number

13
14
15

16

17
18
19
20
21
22
23
24

Meaning

ILLEGAL "IF" OPERAND - "IF" IGNORED
NO MATCHING "IF" FOR "ENDIF"
SYMBOL ILLEGALLY FORWARD REFERENCED -
NEGLECTED
DOUBLE DEFINED SYMBOL - TREATED AS
UNDEFINED
INSTRUCTION NOT IN CODE SEGMENT
FILE NAME SYNTAX ERROR
NESTED INCLUDE NOT ALLOWED
ILLEGAL EXPRESSION ELEMENT
MISSING TYPE INFORMATION IN OPERAND(S)
LABEL OUT OF RANGE
MISSING SEGMENT INFORMATION IN OPERAND
ERROR IN CODEMACROBUILDING

End of Appendix H

i 1

116 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix I
DDT-86 Error Messages

Table 1-1. DDT-86 Error Messages

Error Message Meaning

AMBIGUOUS OPERAND

CANNOT CLOSE

DISK READ ERROR

DISK WRITE ERROR

INSUFFICIENT MEMORY

MEMORY REQUEST DENIED

NO FILE

NO SPACE

An attempt was made to assemble a com-
mand with an ambiguous operand. Pre-
cede the operand with the prefix "BYTE"
or "WORD".

The disk file written by a W command
cannot be closed.

The disk file specified in an R command
could not be read properly.

A disk write operation could not be suc-
cessfully performed during a W com-
mand, probably due to a full disk.

There is not enough memory to load the
file specified in an R or E command.

A request for memory during an R com-
mand could not be fulfilled. Up to eight
blocks of memory may be allocated at a
given time.

The file specified in an R or E command
could not be found on the disk.

There is no space in the directory for the
file being written by a W command.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 117

I DDT-86 Error Messages CP/M-86 Programmer's Guide

I

Table 1-1. (continued)

Error Message Meaning

VERIFY ERROR AT s:o The value placed in memory by a Fill,
Set, Move, or Assemble command could
not be read back correctly, indicating bad
RAM or attempting to write to ROM or
non-existent memory at the indicated
location.

ii .-.>-,, tr; f <r.

on ^ •>, tf

End °f Appendix I

.->J t
• 'If . *. It

118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Index

AAA, 41
AAD, 41
AAM, 41
AAS, 41
ADC, 41
ADD, 41
address conventions in

ASM-86, 25
address expression, 22
allocate storage, 32
AND, 43
arithmetic operators, 18-19

B

bracketed expression, 22

CALL, 47
CBW, 41
character string, 10
CLC, 51
CLD, 51 Ki

CLI, 51
CMC, 51
CMP, 41 8

CMPS, 46
code segment, 26
code-macro directives, 57
code-macros, 53
conditional assembly, 28
console output, 4

constants, 9
control transfer

instructions, 47
creation of output files, 3
CSEG, 26
CWD, 41

D

DAA, 41
DAS, 42
data segment, 26
data transfer, 37
DB, 30
DD, 31
DEC, 42
defined data area, 30
delimiters, 7
directive statement, 24
DIV, 42
dollar-sign operator, 20
DSEG, 26
DW, 31

effective address, 25
EJECT, 33
END, 29
end-of-line, 23
ENDIF, 28
EQU, 29
ESC, 51
ESEG, 27
expressions, 22
extra segment, 27

H

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 119

filename extensions, 2
flag bits, 37, 40
flag registers, 37
formal parameters, 53

H

HLT, 52

JNE, 49
JNG, 49
JNL, 49
JNO, 49
JNP, 49
JNS, 50
JNZ, 50
JO, 50
JP, 50
JS, 50
JZ, 50

A

<-£ «•«..;

I

identifiers, 11
IDIV, 42
IF, 28
IMUL, 42
IN, 38
INC, 42
INCLUDE, 29
initialized storage, 30
instruction statement, 23
INT, 47
INTO, 48
invoking ASM-86, 2
IRET, 48

JA, 48
JB, 48
JCXZ, 48
JE, 48
JG, 48
JL, 48
JLE, 49
JMP, 49
JNA, 49
JNB, 49

keywords, 11

label, 23
labels, 13
LAHF, 38
LDS, 38
LEA, 38
LES, 38
LIST, 34
location counter, 28
LOCK, 52
LODS, 46
logical operators, 18
LOOP, 50

M

mnemonic, 23
modifiers, 56
MOV, 38
MOVS, 46
MUL, 42

oi ,<•

120 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

N

name field, 24
NEC, 42
NOLIST, 34
NOT, 43
number symbols 14
numeric constants, 9
numeric expression, 22

o
offset, 13
offset value, 25
operator precedence, 20
operators, 14
optional run-time

parameters, 3
OR, 43
order of operations, 20
ORG, 28
OUT, 38
output files, 2, 3

PAGESIZE, 33
PAGEWIDTH, 33
period operator, 20
POP, 39
predefined numbers, 11
prefix, 23, 46
printer output, 4
PTR operator, 20
PUSH, 39

radix indicators, 9
RB, 32
RCL, 43
RCR, 43
registers, 11
relational operators, 18
REP, 46
RET, 50
ROL, 43
ROR, 43
RS, 32
run-time options, 3
RW, 32

SAHF, 39
SAL, 44
SAR, 44
SBB, 42
SCAS, 46
segment, 13
segment base values, 25
segment override operator, 19
segment start directives, 25
separators, 7
SHL, 44
SHR, 44
SIMFORM, 34
specifiers, 55
SSEG, 26
stack segment, 27
starting ASM-86, 2
statements, 23

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 121

STC, 52
STD, 52
STI, 52
STOS, 46
string constant, 10
string operations, 45
SUB, 42
symbols, 29 31

o
TEST, 44
TITLE, 33
type, 13 •-•> .11*

U

unary operators, 19

variable manipulator, 19
variables, 13

w
WAIT, 52

XCHG, 39
XLAT, 39

122 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

