INTRODUCTIONTO
DECsystem-10 -
ASSEMBLER
LANGUAGE
PROGRAMMING

‘wag

i e

“‘ » e . T




DOPPEL



fritz
New Stamp_1


Ty et




INTRODUCTION
O
DECsystem-10
ASSEMBLER
LANGUAGE
PROGRAMMING




Ty et




INTRODUCTION
TO
DECsystem-10
ASSEMBLER
LANGUAGE
PROGRAMMING

MICHAEL SINGER
Stanford University

JOHN WILEY & SONS
New York/Santa Barbara/Chichester/Brisbane/Toronto



Copyright © 1978, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of

this work beyond that permitted by Sections

107 and 108 of the 1976 United States Copyright
Act without the permission of the copyright
owner is unlawful. Requests for permission

or further information should be addressed to

the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:
Singer, Michael, 1942—

Introduction to DECsystem-10 assembler language
programming.

Includes indexes.

1. DEGsystem-10 (Computer)—Programming.
2. MACRO-10 (Computer program language)
3. Assembler language (Computer program language)
I. Title.
QA76.8.D4855 001.6'42 78-8586
ISBN 0-471-03458-4

Printed in the United States of America

10 9 87 65 4 3 21



PREFACE

With the widespread availability of higher level languages (such as ALGOL, COBOL,
FORTRAN, PL1) for computer programming, as well as packages put out by the major computer
manufacturers that, almost at the touch of a button, will perform a variety of complex tasks, it is
reasonable to ask why any other than a relatively small number of specialists should trouble to learn
assembler language programming at all.

There are good practical, theoretical, and aesthetic reasons for doing so. On some of the
excellent smaller machines now being used in scientific and commercial applications, the compiler
required to translate a higher level language into machine language would take up so much
computer memory space that little would remain for the user. Even when a higher level language is
in use, the diagnostic records put out by the machine are typically at the assembler language level.
In our opinion, however, the most useful function served by a knowledge of assembler language
programming is to give the user a much closer awareness of how the computer works, as well as
inestimably greater control over its workings, than is feasible with a higher level language. In our
experience, the higher level language user who is familiar with assembler language is a more
efficient—even a happier—programmer than the one who is not.

Every computer facility supplies booklets explaining the LOGIN procedure, by which the user
gains access to the computer. The novice is then too often left facing across a chasm, beyond which,
hopelessly out of reach, lie the manufacturers’ manuals and many superb texts on the theory and
practice of programming. This book is intended to serve as a bridge across that chasm. It is suitable
for use by the higher level language user who would like to learn assembler language; but also, we
would like to stress, by the complete beginner with no knowledge whatsoever of computers. The
notion that assembler language programming is esoteric and inherently difficult is, in our
experience, very much mistaken. On the contrary, for many people it seems to be the natural way to
start off with computers.

This book is equally suitable for commercial, scientific, and any other users. The path to an
easy-going facility with the basics of the subject is the same for all. There is no shortage of texts and
courses dealing with applications to any subject or task the reader may have in mind. But in the
first instance, every user must know how to perform input and output, store and retrieve
information, and manipulate texts and numbers at an elementary level; for these are the
fundamentals of communication with the machine.

All computers have a great deal in common, and much of what is said here applies equally well,
with only minor changes, to many other machines. Computer programming is, however, a practical
art, and must be learned by continual practice. Because the beginner at the computer terminal is a
good deal more aware of the practical differences between different machines than of their structural
similarities, we feel that an introduction of this kind should deal specifically with a particular
computer system.
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Our choice of the DECsystem-10, based on the PDP-10 computer and manufactured by the
Digital Equipment Corporation, is no adverse reflection on other machines made by that company or
any other company. We do, however, feel that it is a suitable computer on which to base these
notes, for several reasons. It is widely and increasingly available, in universities as well as scientific
and commercial installations in the United States, Europe, and elsewhere. Its assembler language is
very flexible, and is equipped with an excellent utility for tracing and resolving program errors
(debugging). Furthermore, it was designed for use oz /ine; that is, the user sits at a terminal and
converses with the machine, rather than wait patiently while laboriously produced punched cards are
processed. And while many machines may be used on line, the design of this one frees the user from
the tedious concern with minor details of formatting, such as spacing, needed with machines
designed primarily to process punched cards. The assembler language of the DECsystem-10 is
commonly known as MACRO-10.

Our approach has the reader writing complete programs, although naturally rather trivial ones,
from the very beginning. Thus, access to a DECsystem-10 installation is helpful from the outset.
There are no other prerequisites. In our numerous examples we have striven for a combination of
comprehensibility and efficiency; but when necessary we have sacrificed the latter to protect the
former, for this is a study guide rather than a manual. We request the tolerance of those
professionals who cannot abide seeing twenty steps being taken when nineteen would suffice.

Chapter 1 is written with the novice particularly in mind, and the reader with any experience of
computers will pass through it rapidly. However,

study with care any statement centered like this one, as it may well be crucial.

Octal and binary numbers must be introduced, and indeed a programmer should ideally be able
to think with numbers in any base. Such a facility, however, may be acquired gradually, and so in
Section 1.3 we go no further than is necessary to understand what follows. At no stage do we
encourage the reader to gain skill in performing calculations in various bases, or in base conversion;
in our experience, once the principles are understood, the student’s time is better spent in learning
how to pass such drudgery to the computer.

Especially in the early stages, the reader may have a sense of being instructed to do things whose
function is not fully explained. It is hard to see how this could be avoided. Even the most trivial
program requires the support of a very complex system to create and to run it. The beginner must
learn the commands that invoke this system in order eventually to gain the experience necessary for
a proper understanding of those very commands. We have tried to foster in the reader an approach
in which thoughtful endeavor to understand what is presented is balanced by trust that dimly
perceived concepts will in due course be clarified.

MACRO-10 is too rich a language to be covered in its entirety in a book of this size.
Nevertheless, we have included virtually all the assembler language instructions with full
descriptions and many programming examples. The main features of creating macros are covered; so
also are FORTRAN subroutines called by MACRO-10 programs, and MACRO-10 subroutines
called by FORTRAN programs. The most frequently used monitor calls are discussed, including
those handling input/output, terminal control, and enabling traps. This is certainly enough for all
normal user programming needs. Those readers who want to proceed further, particularly into
systems programming, will be ready after reading this book to refer to the manuals. A warning
should be given that much less care goes into preparation of the descriptive literature than into the
machine itself and its software, and the manuals contain many obscurities and errors.

There are two appendices. In Section 1.2 we introduce the basic features of the editor TECO.
These are sufficient for the needs of this book, and a treatment of some of the more advanced
features is relegated to Appendix B. Nevertheless, the reader who studies this additional material
will not regret the time spent in acquiring greatly enhanced editing power. Although TECO is the
most complex of the DECsystem-10 editors, we feel that it alone is sufficiently comprehensive for
the assembler language programmer, whom we would discourage from using any other.

Appendix A treats DDT, the debugging facility of the DECsystem-10. Before the advent of
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DDT and similar systems, half of a program could consist of routines to print out information as a
check on the functioning of the part doing the useful work. After all the bugs were removed, these
routines would be discarded. So the time saved by DDT can hardly be exaggerated. But DDT
occupies a more central role in this book; it is a basic tool in our investigation of the workings of
assembler language. Consequently, Appendix A is designed to be read in parallel with the main
body of the book. A start should be made on it when studying Chapter 2, and a first reading of it is
best concluded before beginning work on Chapter 4.

We have endeavored to minimize the possibility of errors, especially in our programming
examples. Every complete program in this book has been directly reproduced from computer
printout. These programs have all been run, and where relevant tested with a variety of input data.
Even our shortest illustrative routines are sections removed from thoroughly tested complete
programs. In this way we hope to have spared students one of the greatest frustrations all too often
engendered by programming texts.

This book will find its main use as a course text; however, a preliminary version has also been
used successfully by individuals working alone. Such persons are strongly encouraged to obtain access
to a DECsystem-10; computer time is a readily available commodity, and with reasonable care the
cost should be at most comparable with that of class instruction. For all users, it is worth
remembering that one of the easiest ways of wasting computer resources is to start thinking out a
program after sitting down at the terminal.

The text contains collections of exercises, at least some of which should always be done before
reading on. Most of the exercises are straightforward tests of understanding, although the time they
require varies greatly. The symbol * marks a few problems of somewhat greater difficulty.

It is a pleasure to acknowledge the encouraging comments and suggestions of students and
colleagues, past and present. Dr. David Ford of Ohio State University was especially helpful during
the early stages of manuscript preparation. Thanks are owed also to the University of Pennsylvania
for its generous provision of facilities, and to the staff of John Wiley & Sons for their understanding
support.

MICHAEL SINGER
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CHAPTER ONE

PRELIMINARIES

1.1 THE TERMINAL

The computer terminal is rather like a typewriter, but with a few special features. There are a
number of different types of terminal; some display characters typed by the user, and the output of
the computer, on a TV-style screen rather than on the more usual paper roll. There are certain
special characters located in different places on different terminals, so the reader should spend a few
minutes in becoming familiar with the characteristics of any new or unfamiliar model.

As on a regular typewriter, there is a SHIFT key. It should be observed, however, that many
terminals have only uppefcase (capital) letters available. This need not trouble the programmer since
computer instructions do not distinguish between upper and lowercase letters. With these terminals,
do not use the SHIFT key to obtain regular letters, because other characters will sometimes result.
For example, on some terminals @ is SHIFT-P, ] is sHIFT-M, while [ is SHIFT-K. Anything of this
kind is normally clearly marked on the respective keys.

Be careful always to distinguish: | (capital i), | (lowercase L) and 1 (one); O (capital o) and O
(zero); parentheses (. .) and square brackets [. .].

An important feature is the CONTROL key. Like SHIFT, this does nothing on its own; but when
held down while other keys are struck, it produces a whole new set of characters. Some CONTROL
characters are just plain characters. If you type CONTROL-A, you will just see A appear on the ‘
paper or screen. If, however, you type CONTROL-C while a program is running, "C will appear, and
in addition the program will stop (if calculation is in progress two "C are needed for this effect).
Several other CONTROL characters have “break” or “interrupt” functions, which we shall study
individually as we need them.

In this book CONTROL will be denoted by the " symbol. Warning: this is not the “up-arrow,” or
on some keyboards “circumflex”” symbol (this symbol is often suiFT-N). Typing ", followed by C,
will also appear as "\C, but will not have the special effects of CONTROL-C.

in this book A etc. always means type the character while holding down CONTROL, unless
specifically stated otherwise.
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On keyboards without a special tabulator key, " produces a tab, normally set at every eighth space.

The ESCAPE (also known as ALTMODE) key has special functions that we explore in the next
chapter. Observe carefully that, although striking it produces a $ sign, it is not the same as the key
marked $. They produce the same symbol on the paper, but not at all the same internal effects. The
same danger of confusion exists as with CONTROL and up-arrow. In this book

$ always means ESCAPE key, unless specifically stated otherwise.

If you type a wrong character by mistake, press the RUBOUT (also known as DELETE) key. You
will see the wrong character appear once more; this may appear preceded by a \ sign. This indicates
that the character will not be transmitted to the computer. You can not delete characters by
backspacing and “typing over.” Any number of characters can be deleted by pressing the RUBOUT
key the appropriate number of times. Remember that spaces are characters too!

It may be easier to delete a whole line and start again. Typing U (remember that this means
coNTROL-U) will delete the line you are currently typing. The machine will automatically move on
to the beginning of the next line on the paper.

To start your session, type "'C. This ensures that you are in communication with the monitor.
The monitor may be regarded as the organizing center of the computer. You know that you are
dealing with the monitor when your terminal of its own accord goes on to the beginning of the next
line, and types a period

You now type LOGIN, using the RUBOUT key to rectify any errors. But nothing will happen until
you press the CARRIAGE RETURN key, denoted here by ._J, for only then is the whole line that you
have typed sent to the monitor. The response is

#
whereupon you type in the identifying number issued to you, followed by a . |. Then
PASSWORD?

is self explanatory. Note that what you now type is not echoed, to preserve secrecy of your password.
Any messages from the (human) operator to all users will now appear, after which you will see

which indicates that the monitor is ready for your instructions.

You have now started a job. As part of a job you may write and run any number of programs.
The job goes on until you £:// it. This must be done by giving the monitor a specific instruction. It
is not enough just to switch off the terminal and walk away. On some installations a job is killed
automatically if there is no activity for some time; but on others a job continues, and accumulates
connection charges indefinitely.

Although we have done nothing constructive yet, it is as well to learn immediately how to kill a
job. The first thing to do is to get in touch with the monitor. If a period has just been typed by the
machine at the beginning of a line, the monitor is already waiting for an instruction. Otherwise,
typing "\C twice will always cause the monitor to intervene and stop whatever else is going on in
your job, and type a period. Now you type KJ/F followed by .| to kill the job. KJ is a mnemonic
for Kill the Job. Various letters can follow after /, but an F ensures that nothing you may have
put into store is destroyed. A message will appear detailing how much time you have used. In some
installations, you will also be told how much money you have spent.

Exercise: Practice starting and killing a job using the RUBOUT (or DELETE) key and U, and using
"C

You do not have to LOGIN for the remainder of this section.
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Another useful CONTROL key is "O. If you are not interested in whatever is being typed out at
your terminal, O will stop the output. Try giving to the monitor the command SYSTAT
followed by a __|. The monitor will type out information about the current usage of the system;
when you have seen enough, type "O.

Make sure the SHIFT key is not down, and type a letter of the alphabet. If an uppercase letter
appears, get in touch with the monitor and give it the instruction SET TTY LC followed by a .
TTY is a standard code representing the terminal, and LC is the mnemonic for lowercase. There
must be at least one space between SET and TTY, and between TTY and LC. You will now be able
to type lowercase letters, as long as your terminal is equipped to produce them. If you later give the
monitor the command SET TTY UC only uppercase letters will then be available. Observe that these
commands have no effect on the action of the SHIFT key to produce symbols other than letters of the
alphabet.

Press the TAB key. If nothing happens, you must tell the monitor that your terminal does not
itself produce tabs, by entering SET TTY NO TAB followed by . |. This command looks
paradoxical, but there is logic in it nevertheless.

Try SET TTY NO ECHO _J. To undo the effect of this, issue the monitor command SET TTY
ECHO __|. Since this time you cannot see what you are typing in, before entering the line with _|
type "*R. This character will always have displayed for you the line you are currently typing to the
monitor. Correct any errors with RUBOUT and enter the line with ..

Now LOGIN, and go on to the next section.

1.2 THE EDITOR

The function of the editor is to render what you type at the terminal into a form with which the
machine is equipped to deal. In other words, you use the editor to create a file. Some of your files
will be lists of instructions to the computer—that is, programs. Others may be collections of data to
be processed by programs.

The editor will also transfer your file from the temporary storage area (memory, or core) in which
it is housed as you write it, to permanent d7sk storage.

Since we do not yet know how to issue instructions to the computer we cannot write a program;
we can nevertheless write a simple file.

Let us write a file called, for example, TEST, which will contain the information.

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

To summon the editor to make a new file, we type after the period issued by the monitor the
command MAKE TEST |, followed by a carriage return. Remember that the initial period comes
from the monitor, not from you. We shall stress that something is typed by the machine rather than
by the user by underlining it. The underlining does not appear at the terminal. So what happens is

-~ MAKE TEST _|

J indicates that you press a CARRIAGE RETURN. Do not type a period after TEST ; there must be
at least one space between MAKE and your program name, but more will do no harm. Your
program name can be any collection of up to six letters and numbers that you care to choose, as
long as the first character is a letter.

The machine will now print an asterisk

Output of an asterisk tells you that you are in contact with TECO, the editor. TECO understands a
wide range of commands, enabling you to insert, amend, or delete text with great ease.

Warning: TECO commands are letters of the alphabet, and it is very easy to confuse them with
the text of the file. TECO command strings in this section should be studied with the greatest care,
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letter by letter. Your own command strings should be typed with similar care, and re-read before being
entered (with $$ as explained below). Be careful: a wrongly typed letter might be a command you do
not yet know that could destroy your entire file!

What you have created so far is an empty file named TEST. To insert text, use the TECO
command | followed by the text you want to write. Finish your text by pressing the $ (ESCAPE) key.
Everything between | and $ , including spaces and carriage returns, becomes part of your text.
So the line looks like this

#ITHE QUICK BROWN FOX JUMPS OVER THE LAZY DOG$

If you make a mistake while typing, use the RUBOUT (or DELETE) key to erase individual
characters. To delete the line on which you are working, use “U. The terminal will go on to the
beginning of the next line, and you will get a new asterisk. Your session might go something like
this

*|THE QYICK VROMNU
*ITHE QUICK BROVVWN FOX JUMPS OVER THWWE LAZY DOGS$

You become disconcerted by all the mistakes on the first line, and use U so that you can start
again. Remember that this erases the whole line, which includes the | command; so you need to
issue another | command before your text. In the next line you accidentally type V in place of W,
and W in place of E. Both of these are corrected using the RUBOUT key, which echoes the original
error.

This is all you planned to put in your file, so you can exit from TECO. The command EX does
this. To actually get your commands performed, however, you must type $$ (ESCAPE twice in
succession). This instructs TECO to carry out all the commands you have issued (since the last $9,
if any). So your whole session, if no errors were made, would look like

#ITHE QUICK BROWN FOX JUMPS OVER THE LAZY DOGS$EX$$

As you see, EX$$ takes you back to the monitor.
If you forgot the $ before EX, the final $$ would cause the performance of the instruction to
insert the text

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOGEX

and you would still be with TECO.
Back with the monitor, type DIR to list the directory of your files.

~DIR_|
As you see, TEST is there! To find out what is in TEST
_ TYPE TEST, |

and see for yourself.
Suppose you want to amend what you have written in your file. If you have exited from TECO,
you get back like this

~TECO TEST_J

Perhaps you want to change JUMPS to JUMPED. This is done by the FS command. You follow
FS by old text, then $, then new text, then $ again. So you could type

* FSJUMPS$JUMPED$
or, more economically,
*FSPS$PED$

or even

*FSS$EDS$
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It will always be the first occurrence of the text that is changed, starting from wherever the
editor’s file position indicator, or pointer is set. Calling in TECO for an already existing file sets the

pointer to the beginning of the file.
After changing JUMPS to JUMPED, the pointer is set after the final D of JUMPED. The
command T will type out a line from the pointer to the end of the line, but

2 FSJUMPS$JUMPEDSTSS
results in the editor typing out

OVER THE LAZY DOG

To see that you have in fact made the proper correction, set the pointer to the beginning of the line
with the command OL (remember that O is zero, not letter O). So the whole command string is

2 FSJUMPS$JUMPEDSOLTSS

Notice that the concluding $$ is necessary to actually get things done! It is the command to carry
out the instructions that until this point have merely been noted.

Perhaps you would like a period after DOG? Use the S command to search for G (there is only
one G; but if there were more, you could always search for OG). This sets the pointer after G, so
you can insert your period. Notice that with S , you end the text with $, just as with FS and .

*SG$LIOLTSS

will have the line typed out as you want it.
Perhaps you dislike the format? A new line after JUMPED might be more pleasing. No
problem.

= SEDSI
$OLTS$S$

After | the required text was just a __|, which is exactly what gets typed by you at the terminal.
The editor’s response is now

OVER THE LAZY DOG.

because T types the current line; and after inserting the _ ] the current line is now the second line of
our text. Notice that we forgot to delete the space between JUMPED and OVER. Since the text is
already entered in the file, the RUBOUT key no longer works, as the function of RUBOUT is to
prevent the character just typed from being entered. However, the D command deletes the next
character after the position of the pointer. So in place of the previous command sequence

2 SED$I
$D%$
would give us the text we want, and the pointer is set to the beginning of line two of our file. To

check, set the pointer back a line with the command —L, and type two lines with the command
2T. Observe that

the T command types from the position of the pointer, but does not itself move the pointer.

After carrying out the last command,
B —L2T$$
yields output of

THE QUICK BROWN FOX JUMPED
OVER THE LAZY DOC.
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The pointer is once again at the beginning of the file. Observe carefully that the same type-out is
obtained, starting with the pointer at the beginning of line 2, by

= -TT$$

but this does not move the pointer at all.
With the pointer at the beginning of line 2, the command string

X FSQUICK$QUICKEST$$
would produce something like this:

¢SRH Cannot Find “QUICK"”

because the editor searches only from the pointer onwards. (Note that an unsuccessful S command sets
the pointer back to the beginning of the file.) So first set the pointer back a line by —L; or, to save
the trouble of counting, simply set the pointer to the beginning of the file, using the command |

*JFSQUICK$QUICKEST$OL2TS$$
produces what you wanted, and types out both lines.

Suppose you now change your mind about spreading the text over two lines. So let us delete the
. No problem, as long as we are aware that

pressing the CARRIAGE RETURN key produces two characters; first a carriage return, then a line feed.

Carriage return is the mechanism that sends the terminal back to the start of the same line; line feed
moves it down one line.
The correct command string is thus

*SJUMPED$2DI $$
in which we remembered to replace the space. And now
ZO0LT$$

will type out the whole text, once again on one line.

In the unlikely event that it is needed, a carriage return alone is produced by typing ‘M. This
returns the terminal to the beginning of the current line. To advance a line, the LINE FEED key, or
equivalently "), will serve. Normally, of course, the carriage return key is used — but remember,
for editing purposes, that it “echoes” a line feed.

Exercise: Practice using these commands with various texts.

Any whole number, positive or negative, may be used with D, L, and T. Note that L and T are
for lines, while D is for characters. To delete whole lines use K, with or without a whole positive or
negative number preceding it.

Observe that —25L sets the pointer 25 lines back. If there are not that many lines, the pointer
is set to the beginning of the file. 30L advances the pointer 30 lines, or, if there are not that many
lines left, to the end of the file.

Counting back from the end is easier if you end your file with _|.
So, in our example, we would insert text as follows

*ITHE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
$

This method is preferable. Using it, you can have the last line of a file (of less than 100 lines) typed
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out by
*100L-T$$

Of course, 100 can be amended as necessary. The pointer would now be in the correct position to
append new lines of text to the file.

If your file is long, TECO will load only the first part of it unless instructed otherwise. So your
first command to TECO should be A, which causes more of the file to be loaded at once. If more
core space is taken up in doing this, you will be informed accordingly.

£ A$S
[3K Core]

When using D, remember that spaces and punctuation marks are also characters, and that |
comprises two characters. A TAB, or ", is one character. —3D would delete the three characters
preceding the position of the pointer; 100D deletes the 100 characters following the position of the
pointer. —3D100D or T00D—3D would do both.

With K it is most important to be aware of the position of the pointer. K will delete the
current line from the position of the pointer to the end, including the _] that terminates the line.
To delete the whole line use OLK. 3K will delete from the pointer to the end of the current line
plus the whole of the next two lines. —K will delete the whole of the previous line, —2K the
previous two lines, and so on; in addition, the current line will be deleted, up as far as the pointer.

T will type out whatever K would delete.

Suppose that throughout your file you have written THRU, and would now prefer to have
THROUGH. Estimate beyond the maximum number of times THRU occurs, say, 1000 times. Put
the command you want between brackets like this <...>, with 1000 in front of it and $$ after it,
and the command will be carried out as many times as possible up to 1000. (You will not be
informed how many times it was actually possible to carry it out.)

*T000<FSTHRU$THROUGH$>$$%

However, since this will result in changing any occurrence of THRUSH to THROUGHSH, more
care is needed.

Exercise: Devise a foolproof way of doing this. (Observe that the separate word THRU can be
followed by only a few possible characters, such as space, comma, period, |, and so on.)

To delete a given text string without troubling to set the pointer, use FS to replace it by a nu//
text. For example, if the first occurrence in your file of IT IS A FACT THAT is superfluous
(including the space after THAT), then

XJFSIT IS A FACT THAT $$

will delete it. Since the form of this command includes two successive $ characters (to delimit the
null text), this command is carried out at once and you get the response of a new line and a fresh
asterisk.

A final words about the RUBOUT key. Suppose you type

*ITHE QUIC
BROW

and notice your error only now. You can simply carry on, and later use
*JFSCJ$CK$$

or, since you have not yet had the current command performed by issuing a $$, you can RUBOUT all
the way back to J, then re-type. As you press the RUBOUT key, the characters deleted will be
echoed. This just looks a little strange at first with spaces, TAB, and _|.

In our example, *U would merely delete BROW. If you prefer to delete the whole of the
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current command (back to after the last $%$, if any), type "G twice; this character also rings the
margin warning bell, which you will hear as you type it! You will be issued a new asterisk, and can
start your command again.

After all this amending, if you ask the monitor to list your directory, you will find not only
TEST but also TEST.BAK, the back-up file which is created while you are amending an already
existing file. Have it typed out by

~TYPE TEST.BAK_|

and see for yourself. You must enter TEST.BAK exactly like that, with the period, and with no
spaces around the period. The file name TEST has now acquired the extension .BAK . This is one of
many file name extensions that convey information, to both user and machine, regarding the file.

If you have no further use for a file such as, say, TEST.BAK, you should

-~ DELETE TEST.BAK_]

You type the word DELETE, rather than press the RUBOUT (or DELETE) key. You should always
conserve disk space by deleting superfluous files.

Exercises: (i) Create a file containing the text

ALL THAT GLISTERS IS NOT GOLD
SHAKESPEARE
1596
and exit from TECO.
(i) Amend the file to contain

ALL IS NOT GOLD THAT GLISTERS
CERVANTES
1615
and exit from TECO.
(iii) Amend the file again to contain

ALL IS NOT GOLD THAT GLISTENETH
MIDDLETON
1617

and exit from TECO.

*(iv) If your terminal has lowercase letters available, change all but the first letters of
each word in the file to lowercase. (In a search command, the text is searched
without regard to upper or lowercase.)

(v) Devise a single sequence of TECO commands to change a file
(a) from single line spacing to double line spacing;

(b) from double line spacing to single line spacing.

(vi) The C command moves the pointer forward one character. It may be preceded by
a positive or negative number, to specify how far, forward or backward, the
pointer is to be moved. Write a file in a “secret” code, as follows: replace all
spaces by letter S, all _| by letter C; insert a __| after every fifth character; type
out the lines of the file, starting from the last line and working backwards (using
one command string); retype the file in this form, and destroy the old version.

Can you now “decode” the file? If not, improve the coding method so that
you can.

(vii) Reduce the storage space taken up by a file, by allowing only one space between
words, after punctuation marks, and at the start of a line to indicate a paragraph.
Also, remove any blank lines.

(viii) Restore the format of a file treated as in the last example. Allow two spaces after
a semicolon or colon, three after a period. Indent new paragraphs five spaces, with
a blank line preceding.



Preliminaries 9

1.3 OCTAL NOTATION

A computer is a machine that deals exclusively with numbers. In order to instruct a computer to
carry out an operation, the operation itself must be encoded as a number meaningful to the
computer. Letters of the alphabet, as part of the text of a file, must also, somehow, be encoded as
numbers. Much of the encoding process is done by the machine without necessitating the
programmer’s concern; but we do need to consider not only how the computer encodes alphabetic
and other symbols as numbers, but also the way in which it registers numbers themselves.

A computer does not have ten fingers. As a result, the number nineteen, say, is not considered
by the computer as being in any essential way one ten plus nine ones. The computer does not
“think decimal.” In fact, the computer “thinks binary,” that is, in the number system in which two
replaces ten as base. In such a system, instead of successive columns, from right to left, denoting
units, tens, hundreds, thousands, and so on, they represent instead units, twos, fours, eights,
sixteens, and so on.

In binary notation, since nineteen is equal to sixteen plus two plus one, it is represented by
10 011. Just as with decimal representation, we group digits in threes for ease of reading. We
write this succinctly as

D19 =B10011

where D stands for decimal, B for binary. In the binary representation, observe the 1 on the left in
the sixteens column, O in both the eights column and the fours column, 1 in the twos column, and
1 in the units column.

These are merely two different ways of representing the same number; one is more convenient to
a human being with ten fingers, the other more convenient to a machine with electrical switches, or
other devices, that have just two “states” (for a switch, the two states are ON and OFF).

The trouble with binary notation is that even quite small numbers are very unwieldy for human
beings to read and interpret. For example, not only is it tedious to find the decimal equivalents of
10010110 101 and 10 010 101 101, it takes more than a glance to see even that they are
distinct numbers! The decimal equivalents are the much more compact 1205 and 1197.

Exercise: Have a try at checking out the equivalence between these binary and decimal
representations.

Nevertheless, communication between user and machine must take into account that the
machine holds numerical information in binary notation. The machine with which we are dealing
has as its number holding unit the word, each of which contains thirty-six individual binary digits;
that is, thirty-six positions each of which can represent a 0 or a 1. “Binary digit” is abbreviated to
bit. You can see from our discussion above that eleven bits are needed to represent D 1205, five for
D 19.

There is a special code, which we shall learn later, that instructs the machine to interpret the
following number as a decimal number. Since performing tedious calculations is the job of a
machine rather than of a human being, we would, for example, write in 1205 as a decimal number,
instead of laboriously converting it into another base.

We do, however, need to know more about how the machine holds information within its
words, in order to take full advantage of the power of assembler language. To make this somewhat
easier, the machine is set up to deal readily with numbers not only in binary form, but also in octa/
form, in which the base is eight.

It is very easy to convert binary representation to octal. Consider again B 10 011. Notice that B
011 is D 3, which is the same thing as octal O 3 (counting to three is the same process with eight
fingers as with ten). B 10 is D 2, so also O 2; but because there are three more columns of binary
digits remaining to the right, this actually means O 2 multiplied by 2 X 2 X 2, that is, by eight.
So B 10011 = O 23, because in base eight, the digit 2 is in the position that means “multiply
by eight.”
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We worked out earlier that this is D 19, which is also obvious from the octal notation: twice
eight plus three equals nineteen.

Consider again D 1205 = B 10 010 110 101. The binary triads are, from left to right, O 2,
O 2, 0 6, O 5. So the octal representation of this number is O 2265, which means 2 X (eight X
eight X eight) + 2 X (eight X eight) + 6 X (eight) + 5.

To convert octal to binary, reverse the process. For example, O 734: O 7 =B 111,03 =B
011,04 =B100.S00O 734 =B 111011 100.
In decimal notation, this is 7 X (8 X 8) + 3 X (8) + 4 = D 476.

It is important to be alert to:

D10 =012
D8=010
D 64 = O 100.

Octal representation is the normal mode in which the machine regards a number. Anything else
must be specifically declared.

Exercises: (i) Why is it so easy to convert between base two and base eight?
(ii) Is it equally easy to convert between
(a) base three and base twelve?
(b) base three and base nine?
(c) base two and base six?
(d) base two and base four?
In the cases where conversion is easy, describe how it is done.
(iii) If you were asked to convert the base seven number 59 to base ten, what
comment would you make?
(iv) Convert to decimal representation
@ O37, (b O40;, (© B1111; (@ B11110.
(v) Convert to octal representation
@ D37, () D40; () B1111; d) B 11 110.
(vi) Convert to binary representation
@ D37, ) O37;, () D -32;, @ O -32.
(vii) What is O 100 — 1
(a) in octal notation?
(b) in decimal notation?
(viii) Is O 15 — O 60 positive or negative? Why?

Now we are ready to discuss how the machine encodes the various symbols that appear on the
keyboard of the terminal. There is a comprehensive code in which to every single symbol there
corresponds a number. This code, which is widely used on many different machines, is called the
American Standard Code for Information Interchange. It is commonly referred to by its acronym
ASCII (pronounced az-key). On the full standard terminal there are in all 127 distinct symbols (this
is D 127). This includes not only upper and lowercase letters, numerals, and special symbols, but
also special combinations such as CONTROL characters, which are regarded as one symbol by ASCII.
When you press a key on the terminal, the corresponding ASCII code number is electronically
transmitted to the monitor. For example, the ASCII code for A is 1. Suppose that we have
somehow contrived to make a certain word in the computer contain the number 1. By this we mean
that, reading from right to left, the first bit in the word is set to 1, and all the rest are O.
Depending on what we are doing, we might want this 1 to mean A, or we might want it to mean
simply the number 1. It is important to realize at the outset that the computer cannot “know”
which we mean until we instruct it accordingly.

Let us now write our first, very simple program. We shall instruct the machine to print the
letter B, then stop. We need to know the ASCII code for B, which is 102. The program is very
short, but contains several new things, which we shall examine one by one.
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START: OUTCHR [1021]
EXIT
END START

The very first word of our program, START, is, in spite of appearances, not an instruction to
the computer. It is merely a /abe/, which serves only to identify the line on which it is found. When
a line has a label, the label must be on the extreme left and followed by a colon, with no
intervening space. After the colon there must be at least one space, but it is convenient to reserve a
column for labels as we have done above, using the TAB key freely to obtain an easily readable
format.

We label this line because we want to refer to it later in the program. To see where we refer to
it, look at the last line of our program. END | which is assembler language terminology, is the
indication to the machine that no further instructions or designations are to follow. What follows
END , on the same line, is a direction to the computer as to where operations are to commence
when the program is executed. In our program, this is to be at the line labeled START

The choice of label is virtually at our disposal. We may use any combination of up to six letters
and digits, as long as the first character is a letter. START is an obvious and suggestive candidate.

OUTCHR is an instruction to the monitor to send the contents of the appropriate word to the
terminal, as an ASCII character. What is the appropriate word? That is what the square brackets
[...] are for. The assembler will find a word within the computer, and set its bits to represent what
it finds between the brackets; in other words, it will create an address for the data between the
brackets.

EXIT is a necessary part of the program. It instructs the monitor to perform certain routine
functions necessary to stop the program, and then to stop it. If you write a program that reaches its
END statement without first encountering EXIT | you will get an error message when you try to
execute the program. (Try it!)

You can see below a reproduction of the terminal session in which the above program was
created and executed. We called the program TEST.MAC . TEST was chosen as a name for obvious
reasons. The extension .MAC should always follow the name of any MACRO (assembler language)
program, as it enables us to use a very simple procedure to execute the program. Nothing should
come between the program name and .MAC | exactly as shown.

To remind you that it is up to us to choose labels, we used a different one for the line at which
operations are to commence.

The command to the monitor to execute a program is EXECUTE, which is conveniently
abbreviated to EX ; this should not be confused with the TECO exit command. Notice that it is
not necessary to use the file name extension in the EX instruction.

+MAKE TEST.MAC

XICOMNCE: OUTCHR [1021
EXIT
END COMNCE
$EX$$

+EX TEST

MACRO: JMAIN

LINK?S Loading

CLNKXCT TEST Executionl
E

EXIT

We now know that the ASCII code for B is 102. We also need to be aware that this means octa/
102. The ASCII code interprets the symbols of the terminal as octal numbers between 0 and O
177.

Observe that D 128 is 2 X (eight X eight), and so is equal to O 200. Subtracting 1 from this
number gives D 127 = O 177 as the number of distinct ASCII symbols.

It is important to understand why O 200 — 1 = O 177,
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Consider what happens when we try to add 1 to O 7. The quantity in the units column is
increased to eight, so we must carry to the left, into the eights column. So O 7 + 1 = O 10.
Similarly, O 17 + 1 = O 20. If we try to add 1 to O 77, carrying 1 into the eights column
increases the quantity there to eight, so we must carry one more column to the left, into the (eight
X eight) column. So O 77 + 1 = O 100. Similarly, O 177 + 1 = O 200, and so on.

Of course it is possible to convert these ASCII codes into decimal representations, but this is not
necessary. It is a much better idea to get used to these numbers in the octal form in which they are
always quoted. Just remember that no digit may exceed 7; and so adding 1 into a column with a 7
in it produces 0, with a 1 carried to the left.

The ASCII codes for A through G are

101
102
103
104
105
106
107

What do you suppose is the ASCII code for H? As you have doubtless guessed, it is the code for
G increased by 1; which of course means

OTMMOO®>

H 110
and so on sequentially through to
W 127
X 130
Y 131
Z 132
The numerals on the terminal have as ASCII codes
0 60
1 61
and so on, through to
7 67
8 70
9 71

It is very convenient that the ASCII codes for successive numerals are themselves successive octal
numbers; observe that one can be obtained from the other by adding or subtracting O 60.

Let us write a program that will add 1 to a number to be chosen by us at execution time. To
instruct the machine to get from the terminal a character that we type in at the appropriate
moment, we need the command INCHWL . This instructs the monitor to take in a character, in
the “wait on line” mode—after typing in the characters, the machine does not receive them until
you enter a __|. There is another instruction that sends characters as you type them, but it has the
disadvantage that if you make a mistake you have no opportunity to amend it with the RUBOUT key.

Our program is

START?! INCHUWL

ADDI 1
OUTCHR

EXIT

END START

The command ADDI is used for ADDition in the “Immediate” mode; that is, when the number
at the end of the line is the actual (octal) number to be added on. You might wonder what other
mode of addition there could possibly be, but the answer to this must wait awhile.
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Let us consider what happens when we create this program with TECO (you must choose a name
for it), then EXecute it. Nothing at all will happen, after the message

[LNKXCT TEST Execution]

until we type in a character. Suppose we type in 5. Then the ASCII code for 5, which is O 65, is
taken in by the machine; 1 is added to it, yielding 66; this is the ASCII code for 6, so the
OUTCHR command causes 6 to appear at the terminal, whereupon the machine will EXIT.

Notice that this program does not manipulate the numbers we type in; rather, it manipulates
their ASCII codes. It will add 1 perfectly well to numbers 0 through 8. But if we type in 9, it will
return the character whose ASCII code is O 72. Try it, and discover which character has that code.
If we type in 10, the first character we type is 1; the program will therefore print out 2. The
remaining O will puzzle the monitor, which will consequently print out, after exiting from the
program, the message

.20¢?

Even if we could somehow carry out the process of adding 1 successively on each digit of 10, this
would not achieve the result of adding 1 to the number D 10 itself. There is no reason why it
should: we have given the machine no indication that 10 is the representation of a number in some
“positional” notation. Until we do so, 10 is simply entered as symbol 1 followed by symbol O.

Since the above program manipulates ASCII codes, we can enter any symbol. If we enter A, then
B is printed out. B would result in C, and so forth. Entering Z (ASCII code 132) results in [
(ASCII code 133).

What follows is an incomplete program fragment, which does nothing at the terminal. It merely
reads a numeral between 0 and 9, which we type in at the terminal, as the actual number, not its
ASCII code.

INCHWL
SUBI 60

The second line is SUBtract Immediate: the number O 60 is subtracted from whatever is there
already. If we have typed in 7_1, its ASCII code of 67 will have been entered by the INCHWL
command. The subtraction command reduces this to 7.

Suppose we type in 8 _|; then O 70 is entered. The subtraction command reduces this to
O 10, which, again, is D 8.

With practice, you will soon find yourself using the SUBI 60 command to convert the ASCII
representation of a digit to the number itself virtually automatically.

Of course, to convert back to ASCII code before using OUTCHR, the quantity O 60 must be
added back on. This is done by the command ADDI 60 .

The following complete program doubles a number. We introduce the IMULI command, for
Integer MULtiply, Immediate.

START?! INCHWL

SUERI 60
IMULI 2
ADIDI 60
OUTCHR

EXIT

END START

Let us follow through what happens when 3 is typed in. Its ASCII code of O 63 is entered.
From this, subtraction of O 60 yields 3. Multiplication by 2 gives 6. Adding O 60 gives O 66.
This is the ASCII code for 6, so 6 is printed out. The machine will now EXIT.

This program works perfectly well on 0, 1, 2, 3, 4. What happens if we type in 5? Its ASCII
code of O 65 is entered. Subtraction of O 60 gives 5. Doubling 5 gives D 10; remember that this
is O 12. Adding O 60 gives O 72. This is the ASCII code for the symbol : which is therefore
printed out. It is clear that dealing with numbers that run into more than one digit will require a
certain amount of care! Observe that, in the last example, the machine does indeed contain the
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correct result of doubling 5. The problem comes when we try to print it out in the usual positional
notation by which we represent numbers.

Typing in other symbols with this program yields meaningless, but nevertheless instructive
results. Type in A, so that O 101 is entered. Subtracting O 60 from this gives O 21 (why?).
Doubling gives O 42. Adding O 60 gives O 122 (why?). This is the ASCII code for R, which
gets printed out.

It must by now be getting tedious to have to EXecute the program for every single input. It is
also wasteful, and we shall learn how to overcome this later.

Exercises: (i) Write a program to print out the text PROGRAM.

(ii) Write a program to accept input of a character, then print out THE CHARACTER
YOU TYPED WAS followed by that character.

(ii1) Write a program to treble a number typed in at the terminal. For what range of
input does your program work? What result does your program yield when p is
input? Why?

(iv) Write a program to accept input of a two digit number, add one to the number,
and print out the result. How do you explain your program’s action
(a) when the second digit is 9?

(b) when a single digit number is input?



CHAPTER TWO

FUNDAMENTALS

2.1 THE ACCUMULATORS

In the previous chapter we learned the command INCHWL | which instructs the monitor to take a
character typed in at the terminal and hold it in the computer. Our programs will be very trivial,
however, if we can only hold one character at a time in the computer. In fact, there is room in the
computer’s memory, or core, for a program to have at its disposal many thousands of locations, or
addresses, in which characters may be placed.

Sixteen of the memory locations available to the user are called accumulators and are of particular
importance. Most of the arithmetical operations can be performed on a number only if that number
is held in an accumulator. If we want, for example, to double a number currently held in some
memory location other than an accumulator, we must do as follows: move the number to an
accumulator; double it in the accumulator; move the new contents of the accumulator back to the

memory location.
The sixteen accumulators are numbered, and are identified by their numbers. Note carefully that

accumulators are numbered octally, starting at 0: 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17.

If no accumulator number is given in your program, the assembler will assume that accumulator
0 is intended. Thus in Chapter 1, the “action” took place in accumulator O.

Let us rewrite the program of Section 1.3 that doubles a number between 0 and 4, using
accumulator 1 instead of accumulator O.

START?! INCHWL 1

SUBI 160
IMULI 192
ADDRI 1,60
OUTCHR 1
EXIT

END START

Notice how, in the second, third, and fourth lines, the number of the accumulator comes before
any other number, and it is followed by a comma if there is more to come on that line.

15
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Be careful not to be confused by a line like
IMULI 1,2

in which 1 is the accumulator number, and 2 is the actual quantity by which the contents of
accumulator 1 are to be multiplied. A good way to avoid confusing the roles of the numbers in lines
like this is to give names to the accumulators your program is going to use. Names are of your own
choosing: up to six letter or number characters, starting with a letter. It is useful to choose a name
having some association with what you are doing. Let us suppose that we want to use accumulator 1
again, and that we will give it the name INT. We must declare INT=1 before the program
instructions; then, whenever the assembler encounters INT, it will understand that 1 is meant. The
above program now looks like this:

INT=1

START: INCHWL INT
SURI INT»60
IMULI INT,»2
ADDI INT» 60
OUTCHR  INT
EXIT
END START

The declaration INT=which is then followed by the accumulator number is one of the few places
where putting in spaces is not allowed. The = sign must follow the chosen name immediately.

Having the accumulators at our disposal will now enable us to increase the scope of the above
program. First, we shall amend it to deal with a two-digit output.

Suppose that our input is 9. Then after the line IMULI INT,2 accumulator INT contains the
number eighteen. But ADDI INT,60 followed by OUTCHR INT will lead to print out as
follows: D 18 = O 22, O 22 + 60 = O 102, and 102 is the ASCII code for B (try it!).

In order to print out the number eighteen in the form 18, we must examine the meaning of this
decimal notation. The symbol 1 gives the number of tens in the number eighteen; the symbol 8
tells us how many units are left over. If we divide eighteen by ten, the result is 1, with remainder
8.

There is a division instruction available that is perfect for our requirements. Suppose we have a
number stored in an accumulator, say, in accumulator 2. Then

IDIVI 2,5

will divide that number by 5, leaving the whole number quotient in accumulator 2; the original
number is lost in this process.

But the division instruction does something else at the same time, which is very useful for our
purposes: the remainder in the division calculation is put in the next accumulator. In our example,
this would be accumulator 3.

Don’t forget that carrying out a division on the contents of accumulator 7 puts the remainder in
accumulator 10 (the next one!). Accumulator 17 has no next one; if its contents are divided by
anything, the remainder goes into accumulator O.

To print out numbers between ten and ninety-nine, what we must do, therefore, is divide by
ten. Then we print out the quotient, followed by the remainder. Remember that the number ten,
by which we want to divide, is to be entered in our program as an octal number; D 10 = O 12.

INT=1
REM=2

START! INCHWL INT
SUBI INT»60

IMULI INT»2
PRINT?! IDIVI INT»12
ADDI INT»60
OUTCHR  INT
ADDI REM» 60
OUTCHR REM
EXIT
END START
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This program uses two accumulators. Division is carried out on the contents of accumulator 1,
so the remainder appears in accumulator 2; hence our choice of the name REM for accumulator 2.

The label PRINT could be omitted; it serves no function in the program. We have included it
solely to mark the point at which, with calculation completed, the process of printing out begins.

Experiment with this program, and see that it will double numbers up to and including 9;
although now if we input, say, 4, the result of doubling is printed out as 08 (why?). We still
cannot input larger numbers.

Now we shall extend the program in another direction. Instead of multiplying always by 2, we
shall choose the number by which to multiply when the program runs. In effect, our program will
now form the product of two single-digit numbers.

We shall need another accumulator to receive the second number. Let us use accumulator 3, and
give it the name NUM . When we have put our numbers into INT and NUM, we want to
multiply the contents of these two accumulators. The instruction for this is

IMUL INT,NUM

and the product goes into INT, because INT is the one that comes before the comma.
The difference between IMUL and IMULI is crucial. Compare

(@) IMULI INT,2
(b) IMUL INT,2

(a) multiplies the contents of the accumulator named INT by the number 2

(b) multiplies the contents of the accumulator named INT by the contents of accumulator number 2.

In both cases, the result of the multiplication is put in accumulator INT. In case (b) the
contents of accumulator number 2 are unaffected (unless in our program we have set INT=2, in
which case the result is to multiply the contents of INT by themselves; in other words, to square the
contents of INT).

The following program now takes in our two numbers, multiplies them together, and prints out
the result. When you EXecute this program (having chosen a name for it and created it with
TECO), the machine will wait until you type in two numbers followed by a .|, then print out the
product and exit.

INT=1

REM=2

NUM=3
START: INCHUWL INT

INCHUWL NUM

SUBI INT»60
SUBI NUM» 60

IMUL INT s NUM
PRINT: IDIVI INT»12
ADODI INT»60
OUTCHR  INT
ADDI REM»s 60
OUTCHR REM
EXIT
END START

If you type in number—space—number, you will not get the correct result. (Why not?)

The instruction for adding the contents of two accumulators is ADD. You should amend the
above program, to make it add two numbers together, by changing

IMUL INT,NUM
to

ADD INT,NUM

Observe that the distinction between ADD and ADDI is analogous to that between IMUL and
IMULI.
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Separator Characters and Skip Instructions

Let us return to the question raised above. Suppose that we execute the above program, with the
desire to multiply 3 by 8. If we type 38 then 24 correctly appears. But if we type 3; ], with a
semicolon used to separate 3 and 8, the result is 33, plus, after exiting, a very enlightening
message from the monitor (Try it!). Other separating characters will produce various exotic results.

We can follow through what happens line by line of the program. The first instruction received
is INCHWL INT . Because INCHWL is a “wait on line” instruction, the machine can do nothing
until a | is received. Then it has the characters 3 followed by ; then 8 and the two characters
comprising | in its “buffer” ready to be processed. Now the instruction INCHWL INT has the
first character, in the form of its ASCII code, placed in INT. The first character is 3 and its ASCII
code is O 63, so O 63 goes into INT. The next instruction is INCHWL NUM . Now the next
character in the buffer is ; and its ASCII code happens to be O 73; this number is placed in
accumulator NUM.

INT=1 O 63
REM=2
NUM=3 0 73

o

-
N oarmemaa

The next two lines, subtracting O 60 from each, leave us with O 3 in INT, O 13 in NUM. Now
O 13 =D8+ 3 =D 11, so the result 33 is “correct.” The program will reach its end without
having the character 8 in the buffer ever reached; it remains there to puzzle the monitor.

As we proceed, it will become plain that the use of assembler language gives precise and total
control over the operations of the computer. For the present, however, the process of actually
exercising that control may appear burdensome, and the rewards nonexistent. As we progress, this
balance will gradually change in our favor.

We must find a way to enable the computer to recognize separator characters in our input. This
is absolutely necessary for even trivial problems. Suppose we extend our last program to multiply
together two numbers of any size. Then somehow the machine must distinguish input of 35 and 62
from input of 3 and 562. This depends on where the separator character occurs.

To begin with, we shall separate our numbers by a _|. Our program must recognize that _|
indicates that input of a number has just ended. It must also refrain from treating the | itself as if
its characters were the next two characters of the input data.

Now .| comprises the two characters:

CARRIAGE RETURN—ASCII code O 15
LINE FEED—ASCII code O 12

We shall prepare the ground for input of a number of more than one digit. We shall input a
character and check whether it is a carriage return. If so, we ignore it, and the following line feed,
and input the next character.

This brings us to the most far-reaching power of the computer: the ability to take alternative
courses of action, depending on the result of a previous step. This is usually achieved by an
instruction that compares two quantities, and depending on the comparison, either skips over the
following line in the program or does not.

We first consider a class of instructions that compare the contents of an accumulator with an
actual number; these are four or five letter codes, of which the first three letters are CAl—acronym
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for Compare Accumulator Immediate. The remaining letters give the circumstances under which the
next instruction in the program is to be skipped. We have

CAIL accumulator,number

which means: skip if the contents of the accumulator are less than the number. Similarly, CAl can
be followed by

LE less than or equal to

G greater than

GE greater than or equal to
E equal to

N not equal to

Thus, for example, the instruction
CAIG INT,71

will cause a line skip if accumulator INT contains a number greater than O 71, and not otherwise.
The following amended form of our program enables the two single-digit inputs to be separated

bya |

INT=1
REM=2
NUM=3

START! INCHWL INT
INCHWL  NUM
CAIN NUM» 15
INCHWL  NUM
CAIN NUMy 12
INCHWL NUM
SURI INT»60

and so on, as before.

Let us follow through carefully what happens. The first character goes into INT. The next
character goes into NUM, and is then compared with 15, the ASCII code of carriage return. If our
character was not a carriage return, then NUM does not contain 15, so we skip. If NUM does
contain 15, we do not skip, and the next line tells the monitor to move on to the next character,
and take it into NUM. The procedure is now repeated, this time so as to exclude 12 (line feed) as
well as 15.

Note what happens on the instruction INCHWL NUM | when accumulator NUM already
contains something. The previous contents are discarded, and replaced with the next character in
line for input.

Our program still suffers from the inelegance of printing out 2 times 4 as 08. This is because
the instruction OUTCHR INT is carried out even if INT (which here contains the number in the
tens column) is zero. We can suppress this leading zero by first comparing the contents of INT with
O 60, the ASCII code for O, and skipping the instruction to print out in case of equality. So the
printing routine becomes

FRINT: IDIVI INT»12
ADDI INT»60
CAIE INT» 60
OUTCHR  INT

and so on. Of course we do not want to suppress the printing out of a zero from REM as well!
(Why not?)

To print out numbers of possibly more than two digits, the process of dividing by ten and
saving the remainder must be repeated the appropriate number of times. Suppose we know that the
contents of INT may be a number of at most four digits; in that case, we must divide by ten three
times over, then print out the contents of INT followed by the three remainders (suppressing INT
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itself if it contains zero). For example, if INT contains 2174, successive division by ten gives

INT REMAINDERS
2174

after 1st division 217 4

after 2nd division 21 7 4

after 3rd division 2 1 7 4

We will need four accumulators: INT itself, and three for the remainders that give the hundreds,
tens, and units. Let us call these three HREM, TREM, UREM. We shall begin by designating

INT=1
HREM=2
TREM=3
UREM=4
If, initially, we suppose that INT contains 2174, then
IDIVI INT,12

puts 217 in INT, and 4 in the next accumulator, HREM. We must move the contents of HREM
into UREM. This is done by

MOVE UREM,HREM

Note the order! Note also that the contents of HREM are not changed by this instruction. The
whole print routine for a four-digit number now looks like this:

FRINT?! IDIVI INT»12

MOVE UREMHREM
IDIVY INT»12
MOVE TREM s HREM
IDIVI INT»12
ADDI INT 60
CAIE INT» 60
OUTCHR  INT

AlDI HREM» 60
OUTCHR  HREM

ADDI TREM» 60
OUTCHR  TREM

ALDI UREM» 60
OUTCHR  UREM

EXIT

END START

This will print out four-digit numbers correctly, and also three-digit numbers, since it suppresses
the leading zero. It will, however, print out 27 as 027, 3 as 003, and zero as 000. At present it
would be complicated to correct this stylistic defect. It is a good exercise to endeavor to do so; it
will familiarize you with the problems involved. Observe that a program that prints 27 as such,
instead of 027, is not much use if as a result it prints 1027 as 127.

Leaving this point for later, let us consider how to input a two-digit number. We have already
managed to mark the end of the input of a number by a carriage return. So we can proceed as
follows, using, for example, 26. We type in 26_|. The machine takes 2 and 6 into different
accumulators; multiplies 2 by ten and adds 6 to the result. This procedure will work if the input is
a single digit, as long as we are careful not to put it into the “tens” accumulator. The following
routine puts a one- or two-digit number correctly into INT. HREM is accumulator 2, as designated
above.

INCHWL INT
INCHWL HREM
SURI INT»60
SUERI HREMy 60

CAIL HREM» O
IMULI INT»12
CAIL HREM» O
ADD INTyHREM



Fundamentals 21

The difficulty in writing this was to ensure that both one- and two-digit numbers are interpreted
correctly. Let us follow through the above routine for both cases. First, suppose we try to input
twenty-seven; so we type 27__|. Then the ASCII code for 2, which is O 62, goes into INT;
similarly, O 67 goes into HREM. Subtraction of O 60 now puts 2 in INT, 7 in HREM.

The next line compares the contents of HREM with zero, and will skip if HREM contains a
quantity less than zero (we shall see the purpose of this step below). Since HREM contains 7, the
program does not skip. The next instruction multiplies the contents of INT by O 12; that is, by
ten. INT now contains twenty, HREM still contains 7. The next skip instruction is the same as the
previous one, and is not effective in this case. So the ADD instruction is carried out. The contents
of HREM are added to the contents of INT, which now, as desired, contains twenty-seven.

Accumulator HREM still contains 7. This will be obliterated later when we divide the contents
of INT by ten, which puts the remainder into HREM in place of any former contents.

Now suppose we want to input five; so we type 5_]. Then the ASCII code for 5, which is
O 65, goes into INT. This time, however, HREM receives O 15, the ASCII code for carriage
return. After subtraction of O 60, INT contains 5; HREM contains a negative number. (It is in fact
O —43, but there is absolutely no reason to perform this octal calculation. It is quite enough to
observe that it must be negative.)

This time the skip instruction does take effect; the skip takes us to the next skip instruction,
which is again effective, and the program skips to whatever follows the above routine. Thus we
finish with INT containing 5. As before, we are not now concerned with the contents of HREM.

INT=1

HREM=2
TREM=3
URENM=4

START: INCHWL INT P (a)

INCHWL HREM

SUBI INT»60

SUBI HREM»y 60

CAIL HREM»O

IMULIT INT»12

CAIL HREM+ O

ADD INT»HREM

INCHWL TREM #(b)
CAIN TREM» 15

INCHWL TREM

CAIN TREM» 12

INCHWL TREM i(c)
INCHWL UREM

SUBI TREM» 60

SUBI UREM» 60

CAIL UREM» O

IMULI TREM»12

CAIL UREM»O

ADD TREMyUREM
IMUL INT» TREM P (d)
PRINT: IDIVI INT»12 ice)

MOVE UREM» HREM
IDIVI INT»12
MOVE TREMyHREM
IDIVI INT»12
ADDI INT»60
CAIE INT»60
OUTCHR  INT

ADDI HREM» 60
OUTCHR HREM

ADDI TREM» 60
OUTCHR TREM

ADDI UREM» 60
OUTCHR UREM

EXIT

END START

FIGURE 2.1 A program to multiply two one- or two-digit numbers.



22 Introduction to DECsystem-10 Assembler Language Programming

We conclude this section with a program that will multiply together any two numbers of one or
two digits each. When the program is executed, the numbers are entered with a __| after each of
them. The program is in Figure 2.1.

Input of the first number is handled using accumulators INT and HREM, with the number
finally reaching INT. For the second number, we use TREM and UREM for its digits, finally
getting the number into TREM. Although we chose these names with printout in mind, they do
not restrict the use to which we can put the accumulators.

Now we multiply the contents of INT by the contents of HREM. Finally, we use our printout
routine on the new contents of INT.

It is vital for your progress that you study this program until you fully understand the effect of
each single step. Make out a table with four columns headed INT, HREM, TREM, UREM. Take
some particular examples for input, and work through the program line by line. In successive lines
of your table, write in what the contents of the four accumulators will be after the corresponding
line of the program has been reached. Doing this exercise thoroughly is very beneficial later on.

After you have done this, try putting these notes aside and constructing the program again for
yourself. Does it run properly for various choices of input? If not, create a table again for your
program, and check through, line by line, what happens to a given input. When you have corrected
all the errors you can find (using TECO), execute the program again. If it still does not work,
repeat the process until it does! Learning to tolerate patiently the tedious chore of “debugging” is
one of the least enjoyable, but regrettably one of the most essential aspects of programming.

When you have done this, you might refer to Appendix A on debugging, and try it over again
using DDT.

Notes on Figure 2.1:

(a) Input first number

(b) Discard carriage return and line feed separating numbers
() Input second number

(d) Form product

() Output product

Comments

In longer programs it can be helpful to include brief notes explaining the purpose of a line or a
collection of lines. This is particularly useful if programs written by one person are to be read by
another. To include comment on a line, precede the comment by a semicolon, just as we did above.
A whole line of comment must begin with a semicolon as its first-nonspacing character. The above
program might include

; now follows the printout routine
PRINT: IDIVI INT,12 ;012 =D 10

How much comment should be included is to some extent a matter of individual taste. Few
programmers would include as much as in the above example. After all, choosing the label PRINT
obviates further comment on the purpose of the routine. Some would include the comment on
division by O 12; for others, such a frequently occurring line requires no comment. Certainly the
comment in such a line as

PRINT: IDIVI INT,10 ;octal printout

is worthwhile; otherwise on later reading, by the programmer who wrote it or anyone else, the
natural assumption would be that a blunder had been made. In general, lines of comment should
indicate program flow from one stage to another. Individual instructions deserve a comment if their
function is not fairly clear, and most certainly if any subtle trickery is involved. It can also be
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helpful to explain accumulator usage:
CT=1 ;character count

Although you should develop your own style regarding comments, be sure it conforms with the
general principles we have outlined.

We have purposely been very sparing with comments in several of the programs in this book,
particularly in the early stages. These programs are exercises as well as illustrations. Your first
approach to each of them should be careful line by line study, writing comments where apt for what
is clear to you, reserving queries for any instruction whose purpose you cannot fathom. Then, and
not before, copy the program as your own file, and work through it using DDT. Try various inputs,
and see that the program does what it should. Do not be satisfied until you understand the function
of every single line. Finally, make and keep a copy of the program that is fully annotated with your
own comments. This approach will rapidly develop your own program writing skills.

Exercises: Write a program that . . .

(i) accepts input of two numbers of up to two digits each, and prints out

(a) the larger of them;

(b) the (positive) difference between them;

(c) the smaller, a semicolon, then the greater.

Be sure that your program can cope when the numbers are equal.

(ii) accepts input of a number of up to three digits followed by a single digit number,
and prints out the quotient when the former is divided by the latter. Have your
program just EXIT if the divisor is zero.

(iii) accepts input of two octal numbers of up to two digits each, and prints out their
product as an octal number. Have your program exit if the numerals 8 or 9 appear
in the input.

(iv) accepts input of an octal number of up to four digits, and prints it out as a
decimal number.

(v) the opposite of (iv).

2.2 JUMP INSTRUCTIONS

The computer carries out the instructions in a program successively, line by line. In the last section
we learned the CAl- instructions, which cause this sequential mode of operation to be changed.
Depending on the result of a certain comparison, the instruction next following may be passed over.
But this hardly helps us if we want the carrying out of a whole routine to depend on a certain
comparison of quantities—a frequent need in programming. Consider the section marked (a) in the
program at the end of Section 2.1, and see the clumsy way in which we managed to make the
performance of the two instructions IMULIINT,12 and ADD INT,HREM depend on the
contents of HREM. Such matters are handled more elegantly using an instruction to jump to
another point in the program. The usual format of instructions is

skip depending on a comparison
jump to appropriate point

so that whatever instruction follows this fragment is carried out in case of a skip. Otherwise, the
jump instruction takes effect, and some special routine, to be found elsewhere in the program, is
performed. The conclusion of this routine might be a jump instruction returning us to the next
instruction after the point of departure.

We introduce the jump instruction JRST. A label at the beginning of the destination line is
used to complete the instruction. The label itself is always followed by a colon, but reference to it in
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the jump instruction must not include the colon. Thus, incorporating the instruction

JRST PRINT
would cause a jump to the line labeled PRINT
PRINT: IDIVI INT,12

in the last program of Section 2.1. It does not matter whether the jump instruction is placed in the
program before or after the destination of the jump.

As an example of how availability of the jump instruction increases our programming
capabilities, we shall write a more general routine to input a number. We want to be able to type
in a number of any size, in the usual decimal notation, and finish with a _|. So the number of
digits to be entered is not predetermined. Our routine will take in the number, digit by digit. At
each stage, if the character taken in is a carriage return, then input is finished, and the number
already stored is what is wanted. Otherwise, the latest digit is added to ten times the number
already stored. Let us examine this process with an example (in decimal notation), say, 234. Input
is successively 2, 3, 4, _|. First, 2 is stored. Since 3 is seen to be the next digit, we form (2 X 10)
+ 3 = 23. The next digit is 4, so we form (23 X 10) + 4 = 234. There follows the _|, so we
are done. Of course, our routine must convert from ASCII codes to the corresponding numbers.
Here is such an input routine. The first command SETZM sets the contents of the stated location
to zero. We then take characters into accumulator DGT. On finding a carriage return, we jump to
some line elsewhere in our program; the line must bear the label DONE . Otherwise, we know
that DGT contains the next digit, and we proceed as indicated above. You should work through
this routine carefully, line by line, for various choices of input.

INT=1

DGT=2

SETZM INT
LABEL: INCHWL DGT

CAIN DGT» 15

JRST DONE

SUEI DGT» 60

IMULI INT»12

ADD INT»DGT
JRST LABEL

This routine will input any whole number not too large to be contained in a single word of the
computer. The 36 bits (this is D 36) of a computer word are numbered O through 35, and all but
bit O can be used in the representation of a positive whole number. It turns out that this permits
holding all decimal numbers of up to ten digits. (Exercise for the reader with some mathematical
knowledge: what precisely is the largest integer that can be held in a single computer word?)

If you try to input too large a number, you will not set an error message, but your results will
be incorrect. Output of numbers comprising varying numbers of digits is somewhat more difficult.
We have to divide by ten, and store the successive remainders. When division by ten has reduced
the original number to zero, we print out the remainders, starting with the last and ending with the
first. You should confirm this method by trying it on a few examples. The trouble is that since we
do not know how large the number to be output may be, we cannot anticipate the number of
accumulators needed for the successive remainders.

Indexing

We can overcome this by indexing. We can set aside one accumulator—Ilet us call it N—for
indexing. This may be any accumulator except accumulator number 0. Accumulator N will never hold
a remainder; rather, it will hold the number of the accumulator into which a particular remainder is
to go. For example, suppose in the accumulator called REM we have a number we want to put in
accumulator 7. Then we first make sure that the contents of N are set equal to the number 7. This
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is achieved by a MOVE Immediate instruction
MOVEI N,7
and now

MOVEM REM,(N)

puts the contents of REM into accumulator 7. There are two new things in this last instruction.
MOVEM is similar to MOVE, except that it goes in the opposite direction, moving the contents of
the location on the left to the one on the right; we shall have more to say about this in the next
section. The notation (N) causes the contents of REM to be moved, not to accumulator N itself, but
to the accumulator whose number is given by the contents of accumulator N. Distinguish carefully
between

(@ MOVEM REM,N
(b) MOVEM REM,(N)

(a) moves the contents of the accumulator named REM into the accumulator named N
(b) moves the contents of the accumulator named REM into the accumulator whose number is
given by the contents of N.

In each case, the contents of REM are unchanged.

Of course MOVE 7,REM or MOVEM REM,7 would each be a simpler way to do this. The
power of indexing, however, lies in our ability to increase the contents of N at each successive step,
stringing out the successive remainders in sequence.

We shall use accumulator 1 for the number to be printed out. On division by ten, the
remainder gets put into accumulator 2. Accumulator N=3 will serve for indexing. This leaves, for
holding the successive remainders, accumulators 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17;
twelve in all, which is more than enough for the decimal digits corresponding to the contents of a
single accumulator word.

We start by setting the contents of accumulator N equal to 3. Thus, accumulator number 3 also
contains the number 3. Since N is to be used as a sort of pointer, we can think of it as starting off
pointing to itself. Each time we divide by ten, we increase the contents of N by 1, so that N points
to the next accumulator; and into that accumulator we put the remainder from the division. We
repeat the process until all remainders are found. Accumulator N now points to the last remainder
found: so we print it out, and decrease the contents of N by 1. This process is repeated until,
finally, the contents of accumulator 4 are printed out. Note how carefully we must ensure that
accumulator N points to exactly the right place: it is all too easy to be inaccurate in this by one
place. (What happens if we start off with N containing 4, the first location to be used for holding
remainders? Rewrite the program below, starting in this way.) Here is such an output routine:

INT=1

REM=2

N=3

MOVEI Ny3
L1: IDIVI INT»12

ADDI Nrl

ADDI REM» 60
MOVEM REMs (N)
CAIE INT»O

JRST L1
L23 CAIGE N»s4
JRST DONE
OUTCHR  (N)
SURI N»s1
JRST L2

You should pay particularly careful attention to this routine; study it with the aid of several
numerical examples.
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A Multiplication Program

Let us use our input and output routines to write a complete program (Figure 2.2). We shall write a
multiplication program more general than that of Section 2.1, in that any two whole numbers can
be multiplied together. If the result of multiplication is too large to be held in one word, this
program will produce incorrect printout.

Notice how we keep a block structure of separate routines. Once we know how to perform a certain
kind of operation, we can carry the routine for it virtually intact from one program to another.

We leave blank lines to stress the block structure. Although TECO is aware of a blank line as
being a line, such lines are wholly ignored when your program is run. In the above routine, if INT
contains zero the instruction CAIE INT,0 will cause a skip to the line bearing the label L2.

Instead of letting our program exit after just one multiplication, we jump from the printout
routine back to the start. At this point we put in a carriage return and two line feeds for a pleasing
format. As a refinement, we have the symbol ¢ (ASCII code O 77) printed out whenever the
program is waiting for input. So, on executing the program, wait for a ¢ then input the first
number followed by . J. A second ? will appear, and you then type in the second number followed
by . The product will now appear, and the whole process will start again.

Since this program never reaches its END statement, there is no need for an EXIT instruction
(refer to Section 1.3). To escape from the program, press °C; if the machine is actually calculating
when you do so, you will need a further C.

Observe how we enable the program to expect input of precisely two numbers. Our input

INT=1
REM=2
NUM=3
START: SETZIM
LO? SETZM INT
QUTCHR [771]
L1 INCHUWL REM
CAIN REM» 15
JRST L2

SUERI REM» 60
IMULI INT»12

ADD INT»REM
JRST L1

L2 CAIE 0
JRST L3
MOVE NUM» INT
ADDI 1
INCHUWL. REM
JRST Lo

L33 IMUL INT» NUM

FRINT: MOVEI NUM»3

F13 IDIVI INT»12
ADDI NUM» 1
ADDI REMy 60
MOVEM REMy (NUM)
CAIE INT»O
JRST F1

P23 CAIGE NUM» 4

JRST REFEAT
OUTCHR  (NUM)
SURI NUMy 1
JRST F2

REFPEAT! OUTCHR [151]
OQUTCHR [12]
QUTCHR [123]

INCHWL REM
JRST START
END START

FIGURE 2.2 A program to multiply any two numbers.
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routine puts a number into INT. We move the first input from INT to NUM, then repeat the
input routine. So we end up with our two numbers in INT and NUM. We make sure that there is
no attempt to carry out the input routine more than twice by using accumulator O as a counter.
(What would happen if we did not take this precaution?) Work out for yourself how this is done,
remembering that instructions referencing an accumulator, but not mentioning any one specifically,
refer to accumulator 0. Thus CAIE O causes a skip if the contents of accumulator O are equal to
zero; and ADDI 1 adds 1 to the contents of accumulator O.

The purpose of the INCHWL REM instructions to be found in routines L2 and REPEAT is to
dispense with the line feeds between and after the two numbers. How does this work? And why is it
necessary?

Notes on Figure 2.2:

L1: This routine puts into INT a number typed at the terminal in normal decimal notation,
and followed by __J. The contents of INT must be zero at the start of this routine. It may
be described as a routine to rezd a number.

L2: This routine transfers the contents of INT to NUM; sets INT to contain zero; disposes of
the line feed between the two numbers being input; and uses accumulator O to ensure that
this routine is carried out exactly once, so that just two numbers are read.

L3: This one line is the whole arithmetical calculation!

PRINT: The print routine was examined previously.

REPEAT: Formats ready for input of further numbers.

Exercises: Werite a program that . . .
(i) reads a number and prints out its square;
(ii) reads a number and prints out its cube;

(iii) reads a number # and prints out »! where n! = n(n—1)(n—2)...2.1;
(iv) reads two numbers and prints out the remainder when the larger is divided by the
smaller;

(v) reads two numbers 7 and z, and prints out the »th power of 7.
Include in your programs any comments you consider suitable.

Counting Data Items

In the above examples, the number of items of data was known in advance. As an example of how
to escape this restriction, we shall construct a program to read a collection of numbers and compute
their mean (average). This program is in Figure 2.3.

To calculate the mean, we will need to know how many data items were input. This is done by
using an accumulator as counter, increasing its contents by 1 every time a number is read.

It is not a good idea to terminate the entire input with _J, since input may need to extend
beyond just one line of type. As convenient a system as any is to use $ (ESCAPE—ASCII code O 33)
to signal the end of all data input, and to let any other nonnumeric character serve as a separator
between numbers. Recall that numerals have ASCII codes O 60 through 71, so it is a simple
matter to check if a character is a numeral or not.

The program must take care of the possibility of more than one separator character between
numbers, or of a separator character before the terminating $. Otherwise, excessive care in typing
will be required at execution time. So, on finding a separator character, the program must go to a
routine that discards any further separator characters, before attempting to read the next data item.

To begin, we set out counter CT to contain 0. Our READ routine reads a number, using
accumulators INT and DGT. On finding a separator character, routine SEP increases the contents
of CT by 1; adds the contents of INT to the running total held in NUM; resets the contents of INT
to zero in preparation for reading the next data item; discards any further separator characters; and,
if a numeral turns up, returns it to the appropriate point in READ (returning to the start of
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START?

READ?

SEF?

S13

MEAN?

FRINT?

Then
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CT=0

INT=1

DGT=2

NUM=3

REM=4

SETZM cT
SETZM INT
SETZM NUM
INCHUWL DGT
CAIGE DGT» &0
JRST SEP
CAILE DGT»71
JRST SEF
SUBI DGT» 60
IMULI INT»12
ADD INT»DGT
JRST READ
ADDI CTy1
ADD NUMy INT
SETZM INT
CAIN DGT»33
JRST MEAN
INCHWL DGT
CAIGE DGT»60
JRST s1
CAILE DGT,71
JRST S1
JRST R1
InIv NUM,CT
IMULI REM»2
SUB CTyREM
CAaIG CT»0
ADDI NUMy 1
JRST FPRINT

surrly for wourself a routine to
rrint out the contents of NUM.

finish the rrodram.

FIGURE 2.3 A program to compute the mean of a collection of numbers.

READ would lose the character!); if $ turns up, the program jumps to MEAN . The process is
illustrated by a flow chart in Figure 2.4.
The mean is calculated to the nearest whole number; analyze for yourself how this is achieved.
The jump instructions of SEP should be studied with especial care.

Notes:

SUB CT,REM subtracts the contents of REM from the contents of CT. The contents of REM

are unchanged.

Observe how we “round up” the result if the remainder indicates that a fractional part of one

half or more has been lost.

Exercise: Write a program to read a collection of numbers and print out the least and the greatest

of them.

SECTION 2.3 MEMORY

In Section 2.2 we considered the problem of reading in a large number of items of data; this was in
the program that calculated the mean of a collection of numbers. We could do this with only the
sixteen accumulators at our disposal simply because we did not need to store all the data items
separately; we totaled as we went along. Not all processes, however, can be dealt with in such a
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{ ]

READ: take in is character R1: treat as
a character a numeral? next digit
A

yes

is character
a numeral?

A

SEP: add current
number to total
initialize in case

more to come

take in a
character

S1: is character

ESCAPE?

yes

4

MEAN: calculate
the mean

Y

FIGURE 2.4 Flow chart to accompany the program in Figure 2.3.

way, and much of the power of the computer depends on its ability to store and retrieve large
quantities of data. To this end, memory (or core) is available. Memory consists of a large number of
computer words accessible to the programmer. It should be mentioned at the outset that memory
space is needed by many users at a time; so the amount available to each individual user, although
considerable, is not unlimited, and should not be unduly wasted.

The sixteen accumulators available to each user are themselves memory locations, but are rather
special ones. There are many operations that can be carried out on the contents of an accumulator,
but not on any other memory word.

The memory space needed by your program must be specifically claimed by it. Single words can
be declared by the special symbol # as the program proceeds. Suppose we want to retain the
contents of accumulator AC for later use in our program. We must invent our own name for the
memory word we want to use; let us call it MEM. In one line we can declare it as such, and using
the MOVE to Memory instruction MOVEM we can deposit the contents of AC in MEM (the
contents of AC remain unchanged):

MOVEM AC,MEM#

When the program is assembled, # indicates that the next available location is to be reserved as
MEM. Thus, # should appear only on the first use of MEM in the program. There must be no
space between MEM and #.

AC and MEM are perfectly good designators for actual program use; but because of their
mnemonic qualities, we shall use them to indicate, in describing an instruction, that some
accumulator and some memory word are involved. The computer manuals often use ADR
(mnemonic for address) or E to indicate that a memory location is involved.

MOVEM is one of a host of instructions that are to be followed by accumulator and memory
addresses, in that order, and separated by a comma. Spaces after the comma are acceptable. MOVE
is another such instruction. In Section 2.1 the memory locations were all accumulators, but now we
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must be aware that
MOVE AC,MEM

moves the contents of MEM into AC. Whatever was formerly in AC is lost; the contents of MEM
are unaffected.

MOVEM AC,MEM
goes in the opposite direction. Avoid

MOVE MEM,AC

it will not work (unless MEM happens to be an accumulator).
If WORD is any memory location, we will indicate its contents by parentheses: (WORD).
Using this notation, we can indicate the effects of MOVE and MOVEM like this:

MOVE AC,MEM (MEM) ———> (AQ)
(MEM) unchanged
MOVEM AC,MEM (AC) — ——> (MEM)

(AC) unchanged
In the group of MOVE- instructions, we have also
MOVEI AC,X X ———>(AC)

in which X denotes an actual number.
In Section 2.1 we learned the Compare Accumulator Immediate instructions:

CAIE AC,X if (AC) = X, skip
CAIN AC,X if (AC) # X, skip
CAIG AC,X if (AC) > X, skip

and so on for CAIGE, CAIL, CAILE.

Analogously we have Compare Accumulator with Mémory instructions:

CAME AC,MEM if (AC) = (MEM), skip
CAMN AC,MEM if (AC) # (MEM), skip
CAMG AC,MEM if (AC) > (MEM), skip

and so on for CAMGE, CAML, CAMLE. The instructions CAIA and CAMA Always skip; CAl and

CAM alone never skip, so these instructions do nothing at all.
The various arithmetical operations are

ADD AC,MEM N (AC) + MEM) — ——> (AQ)
(MEM) unchanged

ADDM AC,MEM (AC) + (MEM) — — — > (MEM)
(AC) unchanged

ADDI AC,X (AC) + X ———~»> (AQ)

IMUL AC,MEM (AC) X (MEM) ———> (AC)
(MEM) unchanged

IMULM AC,MEM (AC) X (MEM) — ——> (MEM)
(AC) unchanged

IMULI AC,X (AC) X X ———> (AC)

The subtraction and division processes require care: subtraction is always subtraction of (MEM)

from (AC), and division is always division by (MEM) into (AC).
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SUB AC,MEM (AC) — (MEM) ———> (AC)

(MEM) unchanged
SUBM AC,MEM (AC) — (MEM) ———> (MEM)

(AC) unchanged
SUBI AC,X (AC) — X ———~> (AQ)
DIV AC,MEM (AC) / (MEM) — ——> (AC)

(MEM) unchanged remainder ———> AC+1
IDIVM AC,MEM (AC) / (MEM) — —— > (MEM)

(AC) unchanged  remainder lost
IDIVI AC,X (AC)/ X ———> (AQ)

remainder ———-> AC+1

Exercises: Worite routines to
(i) interchange the contents of two memory locations;
(i) divide the contents of a memory location by the contents of an accumulator.

Lists

Data with some inherent ordering clearly needs to be retrievable in the order in which it is input,
otherwise essential information may be lost. A reasonable approach is to put consecutive items into
consecutive memory locations. The location after MEM can be referred to simply as MEM+1. Next
follows MEM+2, and so on. These numbers are octal, so after MEM+7 we have MEM+10. There
must be no spaces on either side of the + sign. This method of reference is adequate for a few
locations, but it does not give us a general way to refer to individual locations in a large block of
memory words. To do this we use the full power of /ndexing. The notation

MEM(AC)

means the memory location X locations after MEM, where X is the number contained in AC. AC
may be any accumulator except number 0.

Of course MEM may be an accumulator. If it is accumulator O we may suppress specific
reference to it. So (AC) will mean: X locations after accumulator O, where X is the number
contained in AC. If X is between 0 and O 17, then (AC) is just accumulator number X. This is the
way we introduced indexing in Section 2.2.

The location after MEM(AC) may be referred to as MEM+1(AC), but #otr as MEM(AC)+1;
indexing must come after the addition. (Why is MEM(AC+1) not necessarily the next location after
MEM(AC)? Under what circumstances would it be?)

To ensure that a block of memory locations will be available, we must reserve it. To do so, we
put into our program—after the instruction to be performed but before the END statement—a line
such as

MEM: BLOCK 1000

This demands a block of O 1000 locations, starting from some location in the core, which will be
recognized by the name MEM in your program. The locations are, therefore, MEM through
MEM+777. As a guide to how much memory space to claim, be aware that

O 1000 = D 512
O 10000 = D 4 096

If you cannot be sure exactly how much memory space your program will need, declare a block large
enough to allow a margin of safety; but, in consideration of other users, please do not be overly
extravagant.
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A BLOCK declaration takes the place of individual word declarations. So if you are going to
declare a block with MEM in it, do not write # next to MEM when you introduce it in the body of
your program. Note that the name MEM is our choice, but BLOCK is assembler language
terminology.

It may at times be necessary to ensure that certain individual memory locations are consecutive;
this will not occur automatically unless they make their first appearances in the program
consecutively. Otherwise, we can make declarations, for individual locations as for blocks, after the
end of instructions and before the END statement. For example, if we want MEM, ABL, and WRD
to occupy consecutive locations, we do not introduce them in the program with #, but rather
declare them before the END statement like this

MEM: 0
ABL: 0
WRD: 0

The effect of the O is to set the contents of the word equal to O when the program is assembled;
that is, it declares an initial value for the contents of the word. If we wanted ABL initially to
contain the number ten, we would arrange this by

ABL: 12 ;012 =D10
which saves us the trouble of having
MOVEI AC,12

MOVEM AC,ABL

within the body of our program.

Sorting

To illustrate the use of blocks of memory locations, we shall write a program to read a list of whole
numbers, then print them out in increasing numerical order. This calls for a rearrangement of the
data items into numerical order. Such programming serves as a good introduction to the frequently
occurring problem of arranging a list of words in alphabetical order. There are several different
methods available for this sorting of data; which is most efficient will depend on the circumstances.
Our choice of method is quite efficient, as well as fairly straightforward to program.

To arrange our list of numbers in increasing numerical order, think of them as one long list
across a page. Starting from the left, we move across the list to the right. On reaching each
number, we compare it with its successor to the right. If the successor is greater or equal, we move
on one step to the right. Otherwise, we interchange the two numbers, and move one step to the left
to see if further exchanges of the smaller number are needed (if we are already at the leftmost
number, we carry on to the right). We proceed until we reach the rightmost number.

For example, starting with

2 1 7 5 3

the successive steps are

— —— — — —) — — — ) )
NN NNONNNDNDN
W wwuU1UTul U1 I N
GCTUTUT U1 W NN U1
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On each line we have placed, between the two numbers that have just been compared, a # if they
have been interchanged, a * if not. As you see, when we can compare the last two numbers and find
it unnecessary to interchange them, we are finished.

This may seem rather complicated, but the heart of the program is a simple routine COMPAR
to compare two numbers and possibly interchange them. Suppose we have our data numbers
contained in locations MEM through MEM+X, where X is 2 number contained in accumulator AC.
X is, of course, the number of data items, less 1. (Why “less 17?)

We will use accumulator N to keep track of where we are in the list. We can refer to any item
in the list by the indexed address MEM(N), as long as we have put into N the appropriate number
between O and X. We shall, therefore, be comparing the contents of MEM(N) with the contents of
MEM+T1(N). Neither of these is an accumulator, so we cannot compare them in one instruction.
Instead, we move the contents of MEM(N) into accumulator O, then compare the contents of
accumulator O with those of MEM+T1(N). If the former is greater than the latter, we jump to the
SWAP routine. Otherwise, we increase the contents of N by 1, and, unless we have reached the
end of the list (and so are DONE ), we jump back to COMPAR .

The entire sorting routine is

COMPAR?

ci: MOVE MEMUWD (N)
CAMLE MEMWD+1 (N)
JRST SWAP
A0S N

ca: CAME NsAC
JRST C1

DONE?

SWAF ¢ EXCH MEMWD+1(N)
MOVEM MEMWD (N)
JUMFE NsC2
S0JA N»C1

In the COMPAR routine we have introduced AOS | the general format of which is
AOS MEM

which adds 1 to the contents of MEM. (How could this be achieved using the ADDI instruction?
Using the ADDM instruction? Write the respective routines.)
In the SWAP routine we have three new instructions. EXCH has the general format

EXCH AC,MEM

and exchanges the contents of AC and MEM. Thus, the first two lines of SWAP interchange the
contents of MEM(N) and MEM+1(N).

JUMPE is one of a group of commands; its format is
JUMPE AC,LABEL

and its effect is to jump to the line bearing the given LABEL if the contents of AC are Equal to
zero. Similarly, we have JUMPGE, JUMPL, JUMPLE, and JUMPN (jump if Not equal to zero).
JUMPA Always jumps; JUMP never jumps, and so does nothing at all.

In the above program fragment, observe the destination of the JUMPE instruction! (Why is it to
C2 and not to C1?) If N contains zero, we are back to the beginning of the list, and must move
one place to the right. Otherwise, we move one place to the left and repeat the COMPAR
routine. SOJA is Subtract One and Jump Always. The general format is

SOJA AC,LABEL

it is equivalent to

SOS AC
JRST LABEL
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The general form of the SOS instruction is
SOS MEM

which subtracts 1 from the contents of MEM.

In the program itself (Figure 2.5), there is an additional instruction SOJE AC,DONE at
COMPAR. Notice that this instruction is carried out only once for each set of data, after all data
has been read and before it is sorted. What would happen if we did not include this instruction?

Sorting problems occur so frequently that you should spend some time thinking out exactly how
this routine works. You might like to practice using it to arrange randomly dealt playing cards in
numerical order, or Scrabble letters in alphabetical order. Be careful to keep track of the contents of
“AC” and “N” as you go. The flow chart in Figure 2.6 may be helpful here.

The complete program consists of a routine to read the numbers, and deposit them in a block of
memory locations (we have allowed room for O 1000); then a routine like the above to rearrange
them; finally a printout routine.

In the printout routine, some care has been taken over the format. The numbers are printed out
in five columns. We achieve this by keeping a column count in accumulator CT. We start with 5
in CT. Every time we print out a number, we subtract 1 from the contents of CT. If the result is
greater than 0, we print a TAB (ASCII code O 11). If the result is 0, we add 5 to start the process
again, and print a _|. We also print a carriage return and two line feeds after the last number,
ready for input of the next collection of data.

Our READ routine allows all separators between numbers, except $ (ESCAPE), which it treats as
terminating data input. To escape from the program, use "C.

We need several accumulators for counting purposes, leaving scarcely enough for our printout

AC=1 COMPARS SOJE AC » DONE

N=2 c1s MOVE MEMWIN(N)

K=3 CAMLE  MEMWD+1(N)

CT=4 JRST SWAP

INT=5 cas A0S N

IGT=6 CAME NyAC jare we DONE?
JRST ct

START!: SETZIM AC .
SETZM N DONE ¢ SETZM N

OUTCHR [C15]

MOVEI  CTsS - 2
SETZM  INT QUTCHR [123
OUTCHR  L77] PRINT! MOVE INT y MEMWD (N)
SETZM K
READ:  INCHWL DGT Flt IDIVI  INTs12
CAIGE  DGT»40 MOVEM  DGT»REMS (K)
JRST SEF ADS K
CAILE  DGTy71 JUMEN  INTsF1
JRST SEF F2t S0JL K s FORM
R13 SURI DGTy60 MOVE REMS (K)
IMULI INT,12 gggéHR 60
ADD INT»DGT )
JRST READ JRST P2
SEP!  MOVEM  INT,MEMWD(AC) FORM:  CAML Nints
A0S AC 5046 CTrTAB
SETZM  INT OUTCHR  [151]
51 CAIN DGT»33 OUTCHR [123
JRST COMPAR MOVE T CTyS
INCHWL DGT SKIFA
CAIGE  DGTs60 TAR: OUTCHR  [111
JRST s1 ADJA NyPRINT
CAILE  DGT»71
JRST 81 FINIS: OUTCHR [15]
JRST R1 OUTCHR [123]
DUTCHR €121
SWAFS  EXCH MEMWD+1 (N) JRST START

MOVEM MEMWIN(N)
JUMPE NyC2 jif first item
S0JA NsC1

MEMWD:  BLOCK 1000
REMS? BLOCK 20

END START
FIGURE 2.5 A program to list a collection of numbers in increasing numerical order.
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FIGURE 2.6 Flow chart to accompany the program in Figure 2.5.

routine. In more complicated programs, it would be very burdensome to have to reserve so many
accumulators for printout. The solution is to string out the successive remainders in a block of
memory words, using an accumulator for indexing. We have done this in our program, using
accumulator K.

Notes:
We have used several new instructions.

SOJ- AC,LABEL

means: Subtract One from AC, and then, under the circumstances given by what follows ),

Jump to LABEL.

SOJA jump always
SOJE jump if, after subtracting 1, (AC) = 0
SOJG jump if, after subtracting 1, (AC) > 0
similarly with SOJGE, SOJL, SOJLE, SOJN.
Warning:
SOJ subtracts 1 and never jumps

it is equivalent to SOS AC
The instructions

AOJ- AC,LABEL
Add One to the contents of AC, then compare (AC) with 0, and Jump accordingly.
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The SKIP- instructions compare the contents of a memory location with O, and skip a line
accordingly.

SKIPE MEM

skips if (MEM) = 0. SKIPA always skips.

Warning: SKIP alone never skips.

We also have SKIPG, SKIPGE, and so on.

We used SKIP- only in the routine FORM | to avoid an unwanted TAB after ._J.

Routine P1 strings out the remainders; routine P2 prints them out successively. In P1, the
contents of K are increased by 1 after storing each remainder, in preparation for the next one. But
this means that we enter P2 with K “pointing” to the location one beyond that ar which the last
remainder is stored. This is why, in P2, we decrease the contents of K by 1 before printing out the
contents of the location to which K points. (How does this compare with our treatment of AC?)

In the complete program, we have placed routine SWAP  before routine COMPAR, whereas in
our earlier discussion the opposite was the case. Why does this make no difference?

Exercises: (i) Data is stored in locations starting at MEM. The number of locations is given by

the contents of accumulator |. Write routines to . . .

(a) delete from storage all null items (i.e., when the location contains zero), by
moving subsequent data down to replace them. Of course, the order of nonnull
data items may not be changed, nor may their number be increased by both
moving an item down and leaving it in its old location.

(b) set to zero all data found after any zero data item.

(ii) Check your routines by including each of them in a program that first places
successive integers in a suitable block of locations starting at MEM. Work through
the programs using DDT. Zero a few data items before running and check that
every instruction serves its intended purpose.

(iii) Write a program to read decimal numbers typed in at the terminal, and store each
number on input in increasing numerical sequence in a block of locations starting
at MEM. Do this by going through the locations until the correct place for the
new input is reached, then moving all subsequent numbers up one location to make
room. Do not repeat any number already stored. When end of input is signaled,
have your program print out the numbers in sequence, and start again.

Does your piogram still work if your second input contains fewer numbers than
the first?

(iv) Write a program to read two numbers and print out their quotient to one hundred
decimal places, properly rounded. (Hint: “teach” the computer grade school long
division.) Show the decimal point in your output as a period (ASCII O 56).

*(v) Write a program to read two numbers and print out the period of the decimal
expansion of their quotient (for example, 3/7 = 0.428571 with period 6).

2.4  WORD FORMAT

Recall that, as we stressed in Section 1.3, the computer understands only binary numbers. So what
happens when we enter an instruction like MOVEM ACT,AC2? Well, it is easy enough to find out
directly, using DDT; you should in any case be taking every opportunity gradually to familiarize
yourself with the contents of Appendix A. Write a program, however trivial, with this instruction,
secting ACT=1, AC2=2. If you check with DDT the contents of the word representing that
instruction, you should find the value 202 040 000 002 . What on earth has this got to do with
the original instruction? Certainly a great deal, for if you ask DDT to give you these contents as an
instruction you will indeed get MOVEM AC1,AC2, possibly with machine numbered locations 1
and 2 replacing the names you gave to them. Clearly in some fashion the two are equivalent.
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The equivalence is the outcome of a translation process, which is invoked when you execute a
program with the extension .MAC. The translation is effected by a program known as an assembler.
It is a very straightforward translation process for individual instructions: to each mnemonic
instruction there corresponds a binary code, and vice versa. We could write our programs directly in
the binary code, but doing so would require substantial and utterly pointless feats of memory. We
can happily use mnemonic codes, and let the assembler do the rest; although we need to know what

the assembler is doing.
Execute the following experimental program. Try to work out in advance what will happen.

AC1=1
AC2=2
AC3=3
START: MOVEI AC1+130
A0S LAB
LAB? MOVEM AC1,AC2
OUTCHR AC3
EXIT
END START

On the face of it, this program puts the ASCII code for X into AC1, moves it into AC2, and
then inexplicably chooses to print out the contents of AC3! At the start of program execution, all
memory locations normally have contents equal to zero. Yet this program prints out an X. How
does an X get into AC3? Even better, if you amend the program to print out the contents of AC2,
you will see that the X never reaches AC2!

To find out what is going on, DEBug the program. Check after executing each instruction the
contents of AC1, AC2, AC3 and the line labeled LAB, with the lacter both as binary code and as
an instruction. Assuming that AC2 and AC3 contain zero at the start, using DDT in octal constant

type-out mode you should get

AC1 AC2 AC3 LAB

130 0 0 202040,2 < MOVEM AC1,AC2
130 0 0 202040,3 < MOVEM AC1,AC3
130 0 130 202040,,3 < MOVEM AC1,AC3

for the effects of the first three instructions. When the program is assembled, the label LAB is
everywhere replaced by the integer that is the address of the word representing the line bearing that
label (DDT will tell you the address it uses). The contents of that address are equivalent to the
instruction MOVEM AC1,AC2. The instruction AOS LAB adds 1 to the contents of that address,
and as we have seen the result is the instruction MOVEM AC1,AC3. Since AC2=2 and AC3=3,
we deduce that the 2 on the far right in the octal code for MOVEM AC1,AC2 refers to AC2.

Indeed a much more general statement holds:

in any instruction of the form
instr  AC,MEM
the address of MEM occupies the right half of the binary code word generated.

Thus, any memory location available to the user can be addressed using 18 bits; these locations must
be numbered between O and O 777 777.

Storage
Address  location

000000

000001

000002
|

First sixteen
are accumulators

|
i
777778
777776
777777

Next address
is 000000
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It is, however, not usually a good idea to use numbers rather than names for memory locations
(except for accumulators). If you use names, the monitor will assign memory locations for them;
with numbers, until you know just what you are doing, there is a chance of trying to access a
location unavailable to you, with consequent program failure.

So the left half of the binary code word for an instruction must contain both the code for the
mnemonic instruction, in this case MOVEM, and a reference to the accumulator, in this case ACT.
The instruction code is contained in the leftmost nine bits. The bits are always numbered decimally
0 through 35, starting from the left; so the instruction code occupies bits O through 8. Nine binary
digits correspond to three octal digits, and the code for MOVEM is O 202 = B 010 000 010. The
process of associating the code with the actual operation to be carried out is a matter of hardware
engineering, and need not concern us here.

Bits 9 through 12 of the instruction code word contain the accumulator number; this ranges
from O through O 17, and so can occupy up to four bits. The bit pattern for MOVEM 1,MEM
now looks like

010000010[000 100000 ME M

0 8 9 1213 1718 35

To write the left half as an octal number, group the digits in threes

B 010 000 010000 100 000 = O 202 040.
T --code--11-Ac-1

So the 4 refers to ACT! This confusion is unfortunate, but is an unavoidable consequence of the way
in which grouping the binary digits in threes to obtain the octal equivalent cuts across the bits
reserved for the accumulator reference.

Exercises: (i) Use DDT to discover for yourself the three digit octal codes for the instructions
IMUL, IMULI, IMULM, and IMULB.

(i1) What does IMULB do?

(iif) Using the notation X,,Y to specify a word whose left half (reading from the
rightmost bit of the half word) contains X and whose right half contains Y, what is
the instruction whose octal code is 202400,,4 ? What about 200400,,4 ?

(iv) Compare your results in exercises (i) and (iii). Can you draw any conclusions? Test

them on ADD, SUB, and DIV.

Modes

Instructions referencing an accumulator and a memory location, and performing an arithmetic
operation or a move are available in various forms. For example, integer multiplication is available as
IMUL, IMULI, IMULM, and IMULB. These different forms are called modes. The mode, for such
instructions, determines, as appropriate, which location is to be the source of data, and which is to
be the destination. After your researches in the above exercises, you will not be surprised to learn that
in all these instructions, bits 7 and 8 of the instruction code determine the mode.

The basic mode, like ADD, or MOVE, always has O in bits 7 and 8. It is concise to denote the
format of an instruction like ADD, whose three digit octal code is 270, as

2 170]|~AC ME M

7 13 18 35

in which 7 denotes the mode. This can give the erroneous impression that somehow O 270 is to be
squeezed into the seven bits numbered O through 6. In fact, the notation means that the O 270 is
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to take up the nine bits, numbered O through 8, required to guarantee the housing of a three digit
octal code; the presumption is that the code is such that bits 7 and 8 will be zero. Whatever
represents the mode is then to be entered in bits 7 and 8.

Although we could regard the code for ADD as being two octal digits occupying bits O through
5 (which two octal digits?), this would lead to inconsistency with other arithmetical operations. For
example, the code for SUB is O 274, which cannot be truncated to two octal digits; note that it
still yields zeros in bits 7 and 8.

The contents of bits 7 and 8 determine the mode in the following way.

Bit 7 Bit 8 Mode
0 0 basic
0 1 immediate
1 0 to memory
1 1 to both

For MOVE instructions, “to both” is replaced by “to self,” which is discussed later in this section.

Knowing that the code for SUB is O 274, the above table tells us that the code for SUBI is
O 275; for SUBM it is O 276; and for SUBB it is O 277. If you are at all confused about what
SUBB does, write a program to find out.

The fact that the memory reference occupies the right half of the instruction code word has a
very important consequence for the Immediate mode instructions. Only the rightmost 18 bits of the
data specified in an immediate mode instruction will be taken into account. If an immediate mode
instruction is given with data item X, the assembler will take the rightmost 18 bits of X — let us

call this |X — and form a word containing |X in its right half and zero in its left half: that is,
0,,|X . Thus, MOVEI AC,27 is equivalent to

MOVE AC,MEM
if before the END statement we have
MEM: 27
However,
MOVEI AC,1000000

willln(i)t work. Its effect will be the same as SETZM AC (why?). But we can achieve the desired
result by

MOVE AC,MEM
with later on
MEM: 1000000
or
MEM: 1,0
Another way uses direct representation of data, enclosed in square brackets:
MOVE AC,[1,,0]

Such a representation of data is called a /iteral. The assembler creates a table of all such literals, and

puts into the instruction the appropriate address in the literal table. We have encountered literals
before. (Where?)

Exercises: (i) Investigate the difference between MOVEI AC,—1 and MOVE AC,[-1].

(ii) How could the SUBI instruction be used in a sequence to set the contents of AC
to —17?

(iii) Investigate the representation of negative numbers in a computer word. Use DDT,
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with constant type-out mode, to display the contents of AC after each execution of
the line labeled START in the following program

AC=1
START: SOJA AC,START
END START

Begin with AC containing a small positive integer, and watch what happens. Can
you make any sense of it? Does it perhaps remind you of an automobile mileage
indicator, run backwards?

Effective Address

We have seen that in an instruction the code representing the operation itself occupies the nine bits
O through 8 of the word. And whatever the instruction, any memory location to be referenced is
contained in the right half of the word. If an accumulator is specified as such (rather than merely as
a particular case of the memory reference), its number will be found in bits 9 through 12 of the
word.

If an accumulator is used as an index register, its number will always be housed in the same place,
for every assembler language code that references a memory location: this is in the four bits 14
through 17. Remember that any accumulator except accumulator O may serve as an index register.

Bit 13 has a special function, which we shall consider later. For the present, we shall assume it
is set to 0. Thus we have the general instruction format

INSTR.JAC|MEXY M E M

13 18 35

The control unit of the computer that goes through your program, performing your instructions
line by line, is called the central processor. In the execution of any instruction, the first thing that the
central processor does is calculate what is called the effective address. The procedure is

(i) retrieve the right half of the word;

(ii) if bits 14 throughl7 are set to zero, there is no indexing. Otherwise, add to the address
determined in step (i) the contents of the accumulator whose number is given by bits 14
through 17.

(Plus a step (iii) if bit 13 is set to 1.)

The effective address calculation is carried out for every instruction whose format specifies a
memory reference,™ regardless of whether the result of the calculation will be used. For example, the
instruction SKIPA will be understood by the central processor as SKIPA O . The effective address
calculation will be carried out (and will yield zero) despite the fact that the effect of SKIPA MEM is
wholly independent of MEM. '

Since the effective address calculation is done before anything else when an instruction is
performed,

there is no way at all in which an instruction can have any effect on its own effective address
calculation.

The effective address calculation is just the same for an instruction in immediate mode. The '
difference appears when the instruction itself is carried out. In other modes the effective address is

*With the exception of certain instructions used in running the system; these require special privileges and are not discussed in this book.
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regarded as the address of the information on which the instruction will operate; that is, the
required information forms the contents of the effective address. In immediate mode, however, the
effective address itself is the required data item for the operation.

Negative Numbers

We end this section with a brief discussion of the representation of negative numbers in a computer
word. Bit O of the word is called the sign bit, and is set to 1 for negative numbers. However, as you
have seen in the exercises, the representation of —1 is far from being that of 1, save only for a 1
rather than a O in bit 0. The architecture of the DECsystem-10 uses the convention known as twos
complement to represent negative numbers. If X is a positive number, to form the representation of

-X

(i) form the representation of X; since X is positive, the sign bit will be set to 0, and bits 1
through 35 will contain the binary code for X;
(i1) subtract 1;
(iii) change all O’s to 1’s and all 1’s to O’s.

Familiarity will make this seem less mysterious, so pay careful attention to the exercises. Exercise (ii)
will show you how to form the twos complement of an octal number directly.

Exercises: (i) What is the octal code for
(@ MOVEl 1,WORD(3)
(b) IMULM 2, WORD(2)
(¢ SUB 17,WORD
given that the assembler has assigned WORD to location O 6357.

(i) What is the octal computer code representation for the octal negative numbers:
—1703; —400 000 000 000; —1; —-2; —10.

(iii) What is the largest octal number that can be represented in a single computer
word? How is its negative represented? Is this the negative number of greatest
magnitude that can be represented in a single computer word?

(iv) Does IMUL give correct results when both operands are negative?

(v) Find out what IDIV gives as quotient and as remainder when one or both
operands is negative.

(vi) Write a routine to print out a decimal number comprising any number of digits
(as long as a computer word will hold it) that will work for both positive and
negative numbers. (Hint: the ASCII code for — is O 55.)

(vii) Whether the contents of a word are to be regarded as data or instruction is not
something that the computer can “know” in advance; it depends on how the word
is treated in your program. Suppose a text editing program is searching for the
text /th through a series of locations starting at MEM and indexed by accumulator
12, with the comparison taking place in accumulator 15. Would the following
sequence be the right sort of thing to do?

MOVE 15, TEXT
TEXT: ASCIZ 'Ith’
CAME 15,MEM(12)

(viii) What is the effect of an instruction SOJA 1,LAB(1) when accumulator 1 contains
the number 1?

The negative of the contents of a word, in proper 36-bit twos complement form, can be formed
by the MOVe Negative instruction MOVN. It is available in basic, Immediate and to Memory
modes. So AC can be set to contain —1 by MOVNI AC,1.
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In the same category as MOVE and MOVN we have the MOVe Magnitude instruction
MOVM . MOVM AC,MEM has the same effect as MOVE AC,MEM if the contents of MEM are
positive or zero; but if the contents of MEM are negative (that is, if bit O of MEM is set to 1), then
it is equivalent to MOVN AC,MEM. The contents of the source word, here MEM, are unchanged.

The category is completed with the MOVe Swapped instruction MOVS, which interchanges the
two halves of the source word, and puts the result in the destination word. The contents of the
source word are unchanged.

All of the instructions MOVE, MOVM, MOVN, and MOVS are available with the mode
suffices I, M, and S. | and M are by now familiar, and S means “to self.” The self mode treats the
memory location as both source and destination. It will also put the result in AC, as long as AC is
not accumulator 0. If AC is accumulator O, it is unaffected by an instruction in self mode.

Your answers to the following exercises should be checked using a suitable program. Be sure you
understand what is meant by saying that a word contains, say, 1,,—1 . This is valid assembler
language terminology, as in declaring an initial value

MEM: 1,1
or in a literal
MOVE AC,[1,,—1]

The double comma separates the two halves of the word. To contain 1, the left half of the word
must have its lowest order (rightmost) bit set to 1, and its bits O through 17 set to 0. The right

half of the word must contain the proper 18-bit twos complement representation of —1; that is, all
its bits must be set to 1.

Exercises: Suppose that accumulator O contains 1,,—1; accumulator 1 contains —1; accumulator 2

contains —1,,1; accumulator 3 contains 17; and accumulator 17 contains 2.

(i) Which of the following instructions causes a skip?
(@) SKIPG
(b) SKIPG 2
(c) CAIN 1,—1
d) CAML @(17)

(11) What is the effect of each of the following instructions on the given accumulator
contents?

(@ MOVSM 2,1 (b) MOVMS 21
(c) ADD (17) (d) ADDI (17)
17 () MOVSS 7,3

€ MOVSS 3,
(@ IMUL 1
i MOVNS

1
(h) IMUL 1,2



CHAPTER THREE

PROGRAM STRUCTURE

3.1 SUBROUTINES

In the last chapter, we stressed the block structure of our programs. The general approach was to
divide the problem we want to tackle into small sections. For each section we then write a routine,
and the complete program is made up of the collection of routines together with various
connections; such as ]ump instructions, between them. When the program is executed, it proceeds
through the various routines in some order. Typically, the order has been: input, calculation,
output.

More complicated problems, however, may lead to programs that branch. That is, there may be
various routines leading from or to any given routine. For example, we might want to have results
printed out at different stages of execution. We cannot readily do this using just one PRINT
routine, because when printout is finished, the program has lost track of the point it had reached
before jumping to PRINT ; so it cannot pick up the calculation at the point where it left off. The
crux of the matter is that our PRINT routine is, once written, a fixed entity of the program. We
can jump to it from as many points as we like; but there is only one way to leave it, that which is
written into the routine.

It is true that we could terminate the PRINT routine with conditional jump instructions, and
manipulate these to set us back to the point from which we jumped. But this would be very
complex and cumbersome. It would also be pointless, since we have at our disposal the possibility of
creating a subroutine, which is designed exactly with this difficulty in mind.

Before dealing with how to write subroutines let us consider their effects. If PRINT has been
written as a subroutine, then printout is achieved by the Jump to SubRoutine instruction JSR

JSR PRINT

and not by any of the jump instructions previously considered. The JSR instruction is said to ca//
the subroutine. When PRINT has run its course, operations will continue automatically from the
next instruction after the one that called PRINT

Using subroutines, the approach to complex programming tasks is much simplified. In our
initial sketch of a program, we would not trouble to consider the mechanics of, for example, a
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printout routine. If at some stage we have a quantity in location MEM which we want printed out,
we might write simply

PRINT MEM

in our first draft, just as if PRINT were an assembler language instruction. Of course, it is not; so
before running the program we would replace the above line by JSR PRINT , and write the
appropriate subroutine. :

This is a good approach whenever some task must be carried out many times. To begin with, we
suppose that there is a single instruction to accomplish the task. Then, when the structure of the
program has been worked out, it is time to fill in the necessary subroutines.

Now let us consider how to write a subroutine. Because we are used to writing the various parts
of a program as separate routines, we can concentrate on the differences between routines and
subroutines. Suppose we want to convert routine PRINT to subroutine PRINT . Then
JRST PRINT must be replaced by JSR PRINT

Since a subroutine will return us to the mainstream of the program, a record must be kept of
the location in the program at which the subroutine was called. We need not worry about how to
do this. When the program is assembled, a memory word is formed for each instruction. Use of the
JSR automatically stores the address of the location to which the subroutine will return us; this is
the line after the JSR instruction. All we need to do is give the program room to store that address.
The place for this is the first line of the subroutine. So instead of

PRINT: first instruction

and so on, we have

PRINT: 0

first instruction

The line bearing the label PRINT is now available for storing the return address.

PRINT return address

Indirect Addressing

To leave the subroutine, we use the instruction
JRST @PRINT

in which the symbol (@ indicated indirect addressing. There must be no space between (@ and
PRINT. The symbol (@ implies that the destination of JRST is not the location labeled PRINT,
but rather the address stored at the location labeled PRINT.

Indirect addressing can be used with any memory location. Consider the instruction

MOVEI AC,MEM

This puts in AC the address of MEM. The addresses of memory locations are just numbers. At
assembly time, an address is assigned as MEM; thereafter, the expression MEM is considered
identical with the number that gives that address. So the MOVE Immediate instruction moves that
number into AC. Distinguish:

(a) MOVE AC,MEM
(b) MOVEI AC,MEM

(a) moves the contents of MEM into AC;
(b) moves the address of MEM into AC.

Suppose that (b) has been done. To move the contents of accumulator NUM into MEM, instead of
MOVEM NUM,MEM
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we can now use
MOVEM  NUM, @AC

a facility very useful in handling lists of data.

For example, suppose we have stored data in a block of memory words starting at MEM and
ending at WRD, and that we want to carry out some check on the data items. As a simple
example, we might want to replace any item less than D 100 by zero. A company not interested in
outstanding accounts of less than one dollar might do exactly this (assuming that the number stored
represents cents). We start by putting the addresses of MEM and WRD into accumulators INT and
NUM. To save on move instructions, we hold the key quantity D 100 in the accumulator named
HNDRD. Since D 100 = O 144, we could do this by MOVEI HUNDRD,144 | but we take
this opportunity to indicate how to introduce a number as a decimal number. To do this, precede
the number by "D.

This is not CONTROL-D. On this one occasion, we mean up-arrow N then D.

The “main program” goes through the list, adding 1 to the contents of INT until the contents of
NUM are reached. Since NUM contains the address of WRD, where the last data item is stored,
there is no more to be done.

MOVEI INT»MEM

MOVEI NUM» WRD

MOVEI HNDRD» "D 100
LABEL: CAMLE INT»NUM

JRST FINIS

JSR CHECK
ADJA INT»LAREL
CHECK: ©

CAMLE HNDRDy @INT
SETZM @INT
JRST @CHECK

The CHECK subroutine replaces any item less than D 100 by zero.

In this simple fragment, using a subroutine takes up more instructions than not doing so. As we
shall see, this is not always the case.

Note that the address of the first data item is lost. How could this be avoided?

Exercise: Expand the above fragment into a complete program. Use a subroutine to read in data
items, and another to print them out.

A Text Editing Program

Now we shall use subroutines and indirect addressing to write a text editing program, which
appears in Figure 3.1. The program is of a very limited nature, and the reader is invited to make
improvements.

Our program will delete any superfluous spaces between words and after punctuation marks;
allowing one space between words and after all punctuation marks except a period, after which it
will allow at most two spaces. It will ignore one space at the start of a new line, but will treat two
or more spaces as indications of a new paragraph.

Input text will finish with $ (ESCAPE); we shall put its ASCII code into accumulator ESC
(INCHWL reacts to $, just as it does to __|). Similarly, we use other accumulators to hold the
ASCII codes of characters to which the program will make frequent reference.

Using accumulator LIST to hold addresses, the whole input routine is:

MOVEI  ESC,33
MOVEI  LIST,MEM
LAE1!  INCHWL eLIST

CAME ESCy@LIST
ADJA LISTyLAEL
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TAR=1 FARAS 0
LF=2 CAME SFy@LIST
ESC=3 JRST @FARA
SF=4 ADS LIST
COM=5 CAME SFyRLIST
FER=6 JRST P2
CoL=7 508 LIST
SCOL=10 MOVEM LFs@LIST
LIST=11 A0S LIST
MOVEM TAEy@LIST
START: MOVEI TAEy11 Fi$ A0S LIST
MOVEI LFs12 CAME SFy@LIST
MOVEI ESC»33 JRST @FARA
MOVEI SFs40 SETZM @LIST
MOVEI COMy 5S4 JRST F1
MOVEI FER»S56 P28 S0S LIST
MOVEI COL,72 SETZM @LIST
MOVEI SCOL»73 A0S LIST
LARO! MOVEI LISTyHMEM JRST @FPARA
OUTSTR MESSGE
LAERL? INCHWL @LIST SFACE! 0
CAME ESCy@RLIST 51 A0S LIST
AOJA LISTyLARL CAME SFPRLIST
MOVEI LISTyMEM ireset to bedginning JRST @SFACE
JSR FARA SETZM @LIST
LAR2: ADS LIST JRST §1
CAMN SFy@LIST
JSR SFACE FUNCT: ©
CAMN COMy@LIST A0S LIST
JSR FUNCT JSR SFACE
CAMN SCOLY@LIST JRST BPUNCT
JSR FUNCT
CAMN COLy@LIST PERIOD?: ©
JSR FUNCT ADDNY LIST,2
CAMN FERs@LIST CAME LF»@LIST
JSR FERIOD JSR SFACE
CAMN LFy@LIST JRST @PFERIOD
JSR FREFAR
CAME ESCs@LIST FREFAR: ©
JRST LAR2 A0S LIST
MOVE L LISTyMEM JSR FAaRA
QUTCHR  [153 JRST EGFREFAR
OQUTCHR  L[123]
OUTCHR [121 MEM? BLOCK 1000
LLAR3: CAMN ESCy@LIST
JRST LARO MESSGE?! ASCIZ /
OUTCHR  @LIST
ADJA LISTsLAB3 INSERT TEXT?$
/
END START

FIGURE 3.1 A text editing program.

The AOJA instruction increases the contents of LIST by 1, and jumps back to LAB1. Now,
therefore, @LIST refers to one memory location beyond that used on the previous occasion. In this
way, characters are taken into successive locations.

The editing part of the program starts again at location MEM, and goes on until it encounters
the $ character (which it suppresses in printout).

Upon encountering a space, we jump to subroutine SPACE which suppresses any further
spaces. It does this by replacing the ASCII code for space with O, which is the ASCII code for the
“null character.” But, with punctuation marks, we want to allow one space, or two in the case of a
period, before suppressing further spaces. So, instead of jumping straight to SPACE, we jump to
the respective preparatory subroutines PUNCT and PERIOD . These move on the required
number of characters, then jump to subroutine SPACE to suppress any more spaces. We have here
the phenomenon of a subroutine calling a subroutine—this is referred to as nesting of subroutines.
Suppose we encounter a period. Then PERIOD moves on two characters, and calls SPACE.
SPACE returns by the instruction JRST @SPACE to the line after JSR SPACE in PERIOD. But
this line is JRST @PERIOD , which returns us to the mainstream of the program.

At the beginning of the text, we go directly to PARA to see if indenting is required. Later, we
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check for a new paragraph on encountering a line feed. The preparatory subroutine PREPAR moves
us on to the character after the line feed.

We have included in this program a message telling us to insert text, which will appear every
time editing is finished and the program is ready for new input. The command to output a “string”
of text is OUTSTR . What follows OUTSTR is the label of a line where the text string is to be
found. In our program we have

OUTSTR MESSGE

so the text found at the line labeled MESSGE will be output.

At the line labeled MESSGE, we must first declare that we are going to give ASCII text. This is
done by the declaration ASCIZ . After this comes at least one space or TAB; then the text, between
delimiters. The delimiter is the first nonspacing character after the ASCIZ declaration; it must
precede and terminate the text, but is not treated as text itself. Convenient delimiters are /, " and ".
The text may, as in our program, extend over several lines, until the original delimiter turns up
again.

Exercises: (i) What do you suppose would result from:
OUTSTR MS

MS: ASCIZ I'm all right.’
(i) What is the purpose of the line
CAME LF,@LIST

in subroutine PERIOD ?

(iif) Fully annotate the text editing program in Figure 3.1 with your own comments,
and draw a flow chart for it.

(iv) Try to amend the text editing program so that a single space after a period is
expanded to two spaces.

Effective Address Calculation

Prefixing the memory reference with the symbol @ causes the assembler to set bit 13 to 1 in the
code word representing an instruction. Bit 13 is called the indirect bit.

In Section 2.4 we considered the effective address calculation carried out by the central processor
at execution time on bits 14 through 35 of the instruction code word. The given memory reference
is modified by indexing, if any, to get a new address. If bit 13 is set to O, this completes the
effective address calculation.

If, however, bit 13 has a 1, then the address found so far is not the effective address. Instead,
the processor takes the contents of that address, and performs the whole effective address calculation
over again on them! The process is exactly the same, with this new address as the starting point. So
if the indirect bit in that address contains a 1, yet another level of address retrieval is demanded,
and so on. The process continues until a word is retrieved with a O in bit 13. Then /s right half,
modified by the contents of the accumulator given by the contents (unless zero) of ##s bits 14
through 17, forms the effective address for the origina/ instruction. Remember that the entire
effective address calculation is completed before anything else is done in the performance of an
instruction. Consider the perverse program

START!  JUMF CLAR
LAR? JRST BSTART
EXIT
END START

which will tie up computer time endlessly without result. You run this program at your own peril!
The effective address calculation for the first instruction has the central processor retrieving the
locations labeled START and LAB in eternal alternation.
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STARTl [1] | LAB |

by
LABL I1I l START ]

The central processor never gets to the point of noticing that the instruction JUMP does nothing at
all!

There are many instructions in which the effective address calculation is carried out, just as we
have described, in spite of the fact that the information contained in the right half of the instruction
code word is not regarded by the programmer as an address. One example is the Test instruction

TRNE

TRNE AC,MASK

MASK' here is a number (of at most 18 bits) provided by the programmer; if every bit in this
number that is set to 1 corresponds in position to a bit in the right half of AC that is set to O, then
the instruction causes a skip. The condition for a skip is that every bit masked by MASK must be set
to 0. Consider for example

TRNE AC,1

The mask is 1, and so the only bit in AC to be tested is bit 35. So this instruction skips if, and
only if, bit 35 of AC is set to 0. It tests whether the contents of AC are an even or an odd number.

TRNE AC,1
JRST ACODD
ACEVEN:

Similarly, the instruction TRNE AC,3 causes a skip precisely when the contents of AC are divisible
by four. TRNE is mnemonic for Test the Right half of AC (with No modification of AC) and skip
if Every masked bit equals O.

The entire effective address calculation is performed for a TRNE instruction, although to the
programmer the right half of the code word is merely a collection of bits acting as a mask. Suppose,
for example, that accumulator 5 contains 1; then

TRNE AC,1(5)

is equivalent to
TRNE AC,2

and will cause a skip if bit 34 of AC is 0. If the instruction is
TRNE AC,@1

then the contents of accumulator 1 are retrieved as the starting point of a new effective address
calculation. Suppose that accumulator 1 contains 23,,5 . Bits 13 through 17 of accumulator 1 are
therefore set to 10 011; the indirect bit is set to 1, and the index register field of the word
indicates indexing by the contents of accumulator 3. The memory reference retrieved from the right
half of accumulator 1 is 5. Thus, the effective address calculation on the contents of accumulator 1
yields @5(3). For the next stage, the contents of accumulator 3 are added to the number 5. Since
the indirect bit is 1 at this level also, the result is regarded as an address, and its contents begin the
next stage of the effective address calculation. When the calculation eventually ends (by retrieving a
word with indirect bit set to 0), the result is the mask for the original TRNE instruction.

It is possible to check the indirect bit in AC by

TLNE AC,20

This instruction tests the Left half of AC against the given mask; hence it will skip if the indirect
bit is set to 0. (Why?)
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Exercises: (i) How would you check whether
(a) the index register field (bits 14 through 17)
(b) the accumulator field (bits 9 through 12) of AC is set to zero?
*(ii) Write a routine to check whether the effective address calculation for the
instruction at the line labeled LAB will yield an accumulator.

If the left half of AC contains zero, then (AC) and @AC give the same address. (Why does the
left half of AC make any difference?) In such a case, it is always better to use indexing rather than
indirect addressing because the former is much faster. Our text editing program is grossly at fault in
this respect, but was, of course, designed as an illustration of indirect addressing.

It is impossible to substitute indexing for indirect addressing in the return from a JSR . For
example, JRST @PRINT cannot be replaced by JRST (PRINT). PRINT is the name of a memory
location that is not an accumulator; and only accumulators (other than accumulator 0) may serve as
index registers. If you do this by mistake (try it!), on execution you will get a Q-warning, indicating
that the assembler has found Questionable language. The assembler would then do its best for you;
parentheses have a meaning for it beyond their use in indexing. If EXP is any 36-bit expression,
then (EXP) indicates simply that its two 18-bit halves are to be interchanged. MEM(EXP) is the
word formed by adding the result and the address MEM. In an example we ran, the instruction
labeled PRINT was assembled into location 4724. JRST has the instruction code 254. Interchanging
the two halves of the expression PRINT gives 4724,,0. This was added to 254000,,0 in the
assembly of JRST (PRINT), giving 260724,,0 (octal addition!). This is indeed an instruction, of a
type we shall learn later: its mnemonic code is PUSH] 16,@0(4). Obviously, Q-warnings should be
heeded!

Note that we have nor described two different meanings for parentheses. For example, (7) is
assembled as 7,,0; 4724(7) as 7,,4724. The assembler inserts the 7 into what the central processor
will treat as the index field for an instruction.

Upon performing a JSR PRINT instruction, how does the central processor determine what to
put into the location named PRINT (which you have left free)? It refers to one of its own internal
registers, the 18-bit program counter, referred to as PC. At execution time, the central processor sets
PC to contain the address given in the END statement of your program. In the line

END START

START is the operand supplied by the programmer for the assembler language statement END
Now START is the label of some line of the program; and when the program is assembled, START
is the name of the corresponding memory location. Hence the address of that location forms the
initial contents of PC. The central processor now performs the following steps:

(i) retrieve the contents of the location addressed by PC;

(ii) increment the contents of PC by 1;
(i11) carry out the instruction given by the last word retrieved;
(iv) go to step (i).

In step (1) the central processor places the contents of the left half of the location addressed by
PC into its 18-bit internal instruction register, and the address part into its 22-bit internal memory
address register.

Observe that now step (ii) increases the contents of PC, so that when an instruction is being
carried out PC contains the address of the next location after the instruction. We shall see
exceptions to this later, when an instruction is executed—that is, performed out of the sequence given
by PC. Note that in any case the sequence given by PC need not be consecutive, as many
instructions (such as skips and jumps) change PC itself.

In step (iii) the central processor first finds the effective address, using for each level of retrieval
the contents of the memory address register and the indirect bit. It then performs the instruction,
which, together with any accumulator operand, is in the instruction register; this is done in special
registers within the central processor. As observed above, the instruction may modify PC; for
example, skip instructions add 1 to the contents of PC (why 1, rather than 2 ?).
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Upon finishing with one instruction, the central processor begins again on the current contents
of PC. To the central processor, the location whose address is in PC always contains an instruction.
This is why the sequence in Exercise (vii) at the end of Section 2.4 goes wrong. The central
processor has no way of passing over the location named TEXT as containing data rather than an
instruction.

The internal registers of the central processor are not part of the memory available to a program.
However, the only internal register with which the programmer is likely to be concerned is PC; and
while it cannot be referenced directly, its contents can readily be moved into any memory location.
For example, JSR PRINT places the contents of PC into the right half of the location named
PRINT, and replaces the contents of PC with the address PRINT+1. Note that location PRINT
contains the address of the location next after the JSR PRINT instruction, because PC was
incremented before performing this instruction.

The effect of the instruction JRST is merely to replace the contents of PC with the address
specified in the instruction. So JRST @PRINT is indeed the correct return from a subroutine.

Exercises: (i) If we wanted, under certain circumstances, to return to the second line after
JSR PRINT, could we do it by JRST @PRINT-+1? If not, how could we do it?
(i1) Using DDT, go through any program containing a JSR instruction, and see for
yourself that the return address is put into the right half of the first word of the
subroutine. What happens if you forget to leave the first word of the subroutine
free?

Flags

If you have fully understood the process of effective address calculation, your findings in Exercise (i)
above will have caused you some concern. As you have seen, an instruction JSR PRINT not only
puts the return address into the right half of the location named PRINT, but also stores something
in the left half. What if bits 13 through 17 of the left half were not all zero, so that an attempt to
return by JRST @PRINT could fail? (Why could it fail?)

The computer designers have, however, taken this into account. The half word stored in the left
half of the address given in a JSR instruction always has its bits 13 through 17 set to zero, so there
can be no further indexing or indirect addressing to upset the return procedure.

The left half actually contains information regarding the states of the various flags. The flags are
indicators of certain circumstances arising in the course of the computer’s operations. For example,
you are already aware that the 36-bit limitation on the size of a word can cause arithmetical
operations to produce incorrect results. If AC contains 200 000,,0, representing 234, then
IMUL AC,AC produces zero; while the result of ADD AC,AC is 400 000,,0, representing —235
(correct magnitude, but wrong sign). In each case, the operation has yielded more information than
can be squeezed into a single word, and some has been lost. When such an event occurs, the fact is
recorded within the central processor. The usual rather pleasing image is to think of the appropriate
flag being raised; more prosaically, the appropriate bit is set to 1.

For our purposes, we can regard the various flags as being contained within an 18-bit register
FLAGS, and say that a JSR moves the contents of FLAGS into the left half of the specified address.
Relatively few of the bits in FLAGS will concern us (remember that bits 13 through 17 are always
0).

Exercise: Devise experimental programs to answer the following questions:
(a) do the two arithmetic overflows we discussed above set the same flags? (A flag
is ser if the bit representing it in FLAGS is set to 1; otherwise it is clear.)
(b) what happens if, when an overflow condition occurs, the appropriate flag has
already been set by a previous overflow?
(c) what flags are set by an attempt to divide by zero? What actually happens if
such an attempt is made?
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3.2 PUSHDOWN LISTS

A pushdown list is a collection of items stored in such a way as to make the most recently stored item
the most readily accessible. A common analogy is the type of plate holder found in a cafeteria. An
extra plate is “pushed down” onto the top; in computer terminology, one acquires a plate by
“popping” it up from the top. We shall use this terminology because it conforms with that of the
MACRO-10 instructions, with a warning not to be misled into thinking that a whole list of stored
items in computer memory is moved when a new item is pushed down or the latest addition is
popped up. Pushdown lists are also called stacks, and in many ways the analogy is better: a new
item is put on, or the last one taken off, the rop of a stack. At the bottom of the stack is the first
item put on, which will be the last to be taken off.

l |

| |

PUSH new item —» TOP ——> POP last item

BOTTOM

i I
| !

The subject of pushdown lists is by no means as obscure as might appear on first impressions.
Successive quotients in a printout routine, and the start addresses of successive nested subroutines,
are two of the many examples of information that is handled on just such a “last in, first out” basis.

Our first illustrative program, in Figure 3.2, mimics the collection policy of a (we hope)
mythical utilities company. For each payment, the company keeps a record of whether payment was
timely (enter T), later (enter L) or very late (enter V), by storing O, 1, or 2. If payment is late on
three, or very late on two successive occasions, supply is disconnected. Since only the most recent
payments are of interest, a pushdown list is indicated.

Let us study the program of Figure 3.2, ignoring the first instruction for the moment. The
instruction INCHRW requests the monitor to INput a CHaRacter; if no character has yet been
typed, the monitor will Wait (and the program will not proceed) until one is. This is not a “wait
on line” instruction; the monitor will react as soon as you press a key. Note that in this program,
input of anything except T, L, or V leads to CUTOFF.

Suppose payment is timely. Then no previous payments need be checked. Accumulator STATUS
is being used to hold the information to be pushed down onto the list. So we set STATUS to
contain zero, and then

PUSH P,STATUS

In the instruction PUSH AC,WRD the effective address holds the information to be pushed down
onto the list. Indexing and indirect addressing on WRD are allowed in the usual way. Somehow, of
course, the instruction has to find out where the list is. This information must be put into the
accumulator AC referenced, before the PUSH instruction is used: AC must contain the pushdown
pointer. And memory space for the list must be reserved.

In our program we have reserved, starting at MEM, enough space to record twelve payments.
Accumulator P holds the pushdown pointer, and the first instruction of the program sets it up.

The IOWD statement causes the assembler to create a word in the special format required for a
pushdown pointer. IOWD X,Y assembles as —X,,Y—1. So we have set P to contain —15, MEM—1
(octal notation). Notice that the left half has been set to contain the negative of one more than the
number of words the list may contain. The right half contains an address one less than that of the
start of the list.
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STATUS=1
Fa=2

START! MOVE FyLIOWD 15yMEM]  jrushdown rointer
OUTSTR MESS1
INCHRW jwaits for inrut
CAIN 124
JRST TIMELY
CAIN 114
JRST LATE
CAIN 126
JRST VLATE

CUTOFF?: OUTSTR MESS2
EXIT

TIMELY?S SETZM STATUS
FUSH PySTATUS irush down new status
JRST START+1

VLATE?! FOF FsSTATUS sror uFr last status
CAIN STATUS 2
JRST CUTOFF
FUSH FsSTATUS srush down last status
MOVEI STATUS 2
FUSH F»STATUS jand new status
JRST START+1

LATE? MOVE STATUS» (F) icheck last status
JUMFPE STATUS»L1
MOVE STATUSy~1(F) jand last but one
JUMFN STATUSy CUTOFF

(W 4 MOVE ] STATUS s 1
FUSH F¢STATUS irush down new status
JRST START+1
0
[}

MEM$ BLOCK 14 $0 14 = D 12

MES61: ASCIZ /
FAYMENT FLEASE! /
MESS2: ASCIZ /

SORRYy SUPFLY DISCONNECTED
/
END START

FIGURE 3.2 A program to simulate a mythical utilities company.

The instruction PUSH AC,WRD

(1) adds 1 to the contents of each half of AC;
(it) moves the contents of WRD to the location now addressed by the right half of AC;
(iii) if the left half of AC contains zero, sets the appropriate flag.

So if initially P contains —15, MEM—1, twelve successive PUSH instructions will deposit data
into locations MEM through MEM+13 (octal). P will now contain —1, MEM+13. A thirteenth
PUSH will deposit data into MEM+ 14, which is not one of the locations reserved by us for the
purpose. This does not, however, get any chance to cause problems. The left half of P now contains
zero, and so the appropriate flag is set. This not one of the flags available to the ordinary user in
FLAGS. The effect is to transfer control forthwith to the monitor, which will stop the program and
print the message

2pdl ov at user PC address

Knowing the PC value at which pushdown list overflow occurred can be especially helpful when
using DDT.
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Execute the program in Figure 3.2, and respond to the request for payment with T, twelve
times in succession. Now see for yourself the effect of one more T response.

If the response is V, so that payment is very late, the program must check the previous payment
record. If a 2 was stored last time, we must go to CUTOFF. So we pop the last record up into
accumulator STATUS with

POP P,STATUS
The instruction POP AC,WRD

(i) moves the contents of the location addressed by the right half of AC into WRD;
(ii) subtracts 1 from the contents of each half of AC;
(iii) if the left half of AC contains —1, sets the appropriate flag.

POP sets the same flag as PUSH. POP will overflow if the left half of AC contains the 18-bit
twos complement representation of —1; that is, if all the bits are set to 1. Since PUSH will
overflow if the count in the left half of AC reaches zero, the count cannot be more than —1 when
the first POP instruction is issued. This will reduce the count to no more than —2 before checking
for overflow; so it is hard at present to see what use the overflow condition is for POP.

The point is that we can set up the pushdown pointer to cause overflow either by PUSH or by
POP, but not by both. By starting the count negative in the left half of AC, overflow will occur if
an attempt is made to store more information than available storage allows. This is what we have
done in our program.

On the other hand, we can start the count at zero by setting up the pushdown pointer with
MOVEI P,MEM—1. In this case PUSH will never cause overflow, because the first PUSH increases
the count to 1 before checking to ensure that it is not zero. But now POP will cause overflow, as
soon as an attempt is made to take out more information than has been put in.

Later we shall learn how to keep control, rather than let it pass to the monitor, when pushdown
list overflow occurs. Until then, it does not make much difference which way we set up the pointer
because the program must be written so that overflow never occurs. For consistency, we shall
continue to use a negative starting count.

Having popped up the last payment, if it too was very late (a 2 was stored), we then go to
CUTOFF. Otherwise, we push the previous record down again, then push down a record of the
current payment. We return to START+1 to demand the next payment. (Why not return to
START ?)

If payment is late, we again pass to the appropriate routine. In this we illustrate a way of
referencing items in a pushdown list without popping them up. Since nothing is removed from the
list in this routine, the new payment record is stored with just one PUSH. The address of the last
item stored is in the right half of the pushdown pointer; if this is not clear to you, look again at our
description of the action of the PUSH instruction. So we can retrieve the item into STATUS by

MOVE STATUS,(P)

We repeat: this does not remove the item from the list.

In fact POP does not actually delete any item from its location in memory. But, by amending
the pushdown pointer, POP makes the list look shorter from the point of view of the program. The
location referenced by POP is no longer considered to be part of the list, and we speak of the item
as being removed from the list.

Later in this routine we must refer to the last item but one in the list. We do this by indexing
the mythical address —1 by the contents of accumulator P. The effective address calculation yields
one less than the contents of the right half of P, which is just where the item we want is stored.

Exercises: (i) If you paid late on the last two occasions, and are unable to pay on time this time,
your situation is still not hopeless. Find out why, and amend the program so that
it does what the company management clearly intended.
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(i) How would you reference the zth previous payment, where » is the contents of
accumulator AC ?

(iii) Could the first line of routine LATE be changed to MOVE STATUS,@P ?

(iv) The following routine is an attempt to use a pushdown list for storing the
successive quotients in a print out routine. Does it work? Try it in a program of
your own, and explain what happens.

INT=1
D6T=2
F=3
MOVE PsLIOWD 13,MEMI]
¢ s
L1 IDIVI INT»12
FUSH Py DGT

JUMPN INTsL1

L2 FOP P+DGT
ADDI DGT» 60
OUTCHR DGT
JRST L2
LR

MEM? BLOCK 12

Application to Subroutines

The ideas of this and the last sections are very nicely combined in a subroutine calling instruction
that stores the return address in a pushdown list. This, and the corresponding instruction that
effects the return, are rather subtle and require careful attention, but they are useful enough to
amply repay that attention.

The instruction

PUSH] AC,LABEL

referencing a pushdown pointer contained in accumulator AC, and the line bearing the given

LABEL,

(i) adds 1T to the contents of each half of AC;
(if) if the left half of AC contains zero, sets the appropriate flag;
(iii) puts the contents of PC in the right half and the contents of FLAGS in the left half of the
location now addressed by the right half of AC;
(iv) moves into PC the address of the location named LABEL.

Note that step (iii) stores in the pushdown list the address of the location next following the
PUSH] instruction. (Why?) So the correct return address is stored. Step (iv) is effectively a jump to

LABEL.

INT=1

LGeT=2

F=3

MOVE FyLIOWD 27yMEMI

FUSHJ FyFRINT
treturns here after FRINT routine
FRINT: IDIVI = INT,12

FUSH  F,DBT

SKIFE INT

FUSHJ FsPRINT

FOF FsyDGT
ADDI DGT+60
OUTCHR  DGT
FOFJ Fy
MEM: BLOCK 26

FIGURE 3.3 A printout routine.
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In Figure 3.3 we have made a better job of the printout routine we tried to write in Exercise (iv)
above. The routine PRINT is called by PUSHJ P,PRINT , where P has been set up to contain the
pushdown pointer. After each remainder has been put on the list by a PUSH instruction, we return
to PRINT to find the next remainder, again using a PUSH]J. This continues until we have found all
the digits for printout.

For example, suppose we start with accumlator INT containing D 3154. When the instruction
SKIPE INT finally causes a skip, the pushdown list will look like this:

MEM: flags address 1

4

flags address 2

5

flags address 2

1

flags address 2

3

Address 1 is the location following the first PUSH] instruction; note that this is the address to
which control should return after completing the print out routine. Address 2 is the location
following the other PUSH] instruction; this is the address of the instruction POP P,DGT.

Exercise: Work out why the pushdown list has the appearance illustrated above. Use DDT to
check.

After the instruction SKIPE INT has caused a skip, the digit 3 gets popped up off the list and
printed out. Now we want to return to address 2, and pop up the next digit. The instruction

POPJ AC,

(i) subtracts 1 from the contents of each half of AC;
(ii) if the left half of AC contains —1, sets the appropriate flag;
(iii) moves into PC the contents of the location that was addressed by the right half of AC
before step (i).

Observe that the comma is needed after the reference to AC. The assembler interprets an address
not followed by a comma as a memory reference. So if the comma were forgotten, the assembler,
finding no accumulator reference, would assume that accumulator O was meant and assemble
POPJ 0,AC . In fact POPJ requires no memory reference, and should have none.

So now the POP) P, instruction pops “address 2" up off the list, and causes a jump to address
2; this is the POP P,DGT instruction. Next the digit 1 gets popped up and printed out. The same
thing happens successively with the digits 5 and 4. The only item then remaining on the list is
“address 1,” and this is the location to which the POP] P, instruction returns, finally leaving the
printout routine.

There is no problem in using just one pushdown list to hold both data and jump addresses. You
do have to be careful not to mix up the two kinds of information. It is not generally very useful to
reference a jump address with a POP; and popping up data with a POP) may be disastrous. (Why?)
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Exercises: (i) What is the largest number that can be printed out by the routine in Figure 3.3?
(ii) Why is the first location of a subroutine called by a PUSHJ instruction not a null
word, as it is when the subroutine is called by a JSR ?

Pushdown Pointer as Counter

Very often it is desired to have numerical output of a computer program in tabular form. Columns
in such a table are normally right justified; that is, with all least significant digits in line with one
another, as for example:

3154 8
72 1023
999 50

The correct number of spaces must be printed out before the leading digit, and the left half of the
pushdown pointer provides a convenient counter for this. We have done this in the program of
Figure 3.4. We must not amend the pushdown pointer itself, since it will be needed later; so we
begin the spacing routine by copying the pushdown pointer into accumulator T. The left half of
accumulator T now gives us a count of the number of spaces needed. We increment T after each
space, using the instruction

AOBJN AC,LABEL

which Adds One to Both halves of AC, and Jumps to LABEL if AC is not Negative.
Observe that the condition for a jump with AOBJN is on the sign of the whole word AC. There

will be a jump if and only if bit O of AC contains a 1, after the incrementation has been effected.
In effect, the left half of AC is being checked.

AC=1
N=2
F=3
CT=4
T=5
START: MOVE PyLIOWD  10sMEM]  srushdown rFointer
SETZR CT sinitiaslice
A0S
MOVEM AC
FUSHJ FyS51
JRST 3
S12 IDIVI ACs10 joctal rrint out
HRL.M Ny (F)

JUMFE ACy .13
FUSHJ FrS51

SKIFA
FUSHJ Fy82 ito format routine
HLRZ Ny (F)
ADDT N» 60
OUTCHR N
FOrg Fy
S23 S0JG CTy.t4 icolumrs count

OUTCHR [£151

OUTCHR  [£12]

MOVE T CTy10

MOVE TsF isracing routine
OUTCHR €401

AODEBJN Teo-1

FOFJ  F»
MEM: BLOCK 10
END START

FIGURE 3.4 A program to print out numbers right justified in columns.
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In our program, the AOBJN instruction jumps back one line to output another space, until the
count in the left half of T reaches zero. Thereupon POPJ P, leaves the spacing routine. To jump
back one line, we use the symbol . (a period), which is assembler language terminology for the
address of the current line. Equivalently, the symbol . is equal to the contents of PC, less 1 (why
“less 17°?). Earlier in the program we jumped to the third previous line by JRST .—3 . Similarly, an
alternative to SKIPA is JRST .42 ; in fact the latter is a faster instruction, as SKIPA has to reference
memory. This is a convenient notation, and obviates endless labels. A danger is that one might
amend a program, but forget to make the corresponding emendations to the jump instructions. For
example, if an extra instruction is put into a routine, and the instruction AOJN AC,.—5 has been
used to jump back in order to repeat the routine, then this instruction must be changed to
AOJN AC,.—6 . Of course, the count is octal, although a jump of O 10 lines or more should
certainly be handled with a label. There are enough ways of introducing bugs into programs,
without adding the danger of miscounting lines to their number!

Because we are making no use of the flags stored by the PUSH] instructions in the left halves of
locations in the pushdown list, we can store data in those half words instead. Our program stores
each remainder in the left half of the word stored by the last previous PUSH] instruction. So if D
3154 were being printed out, when the jump to S2 took effect the pushdown list would look like
this:

MEM: 4 address 1
5 address 2

1 address 2

3 address 2

flags address 3

Half Word Instructions

To store our data in this way we need instructions for moving the contents of half words. The basic
mnemonics for these are HRR, HRL, HLR, and HLL. The first letter stands for Half. The second
letter specifies which half of the soxrce word is to be moved, and the third letter specifies which half
of the destination word is to receive it.

In the basic mode, the source is MEM and the destination is AC. For example

HLR AC,MEM

moves the Left half of MEM into the Right half of AC. MEM is unchanged, and so is the left half
of AC.

A suffix, however, may be used to indicate that the other half of the destination word should be
amended: Z means set it all to Zeros; O means set it all to Ones. So

HLRZ AC,MEM

has the effect of HLR AC,MEM and in addition sets the left half of AC to zero.

There is another suffix, E, standing for Extend. It places the leftmost bit of the source half word
into all bits of the other half of the destination. This gives an easy way of changing the
representation of a number from half word to whole word format. Suppose we have a number in the
left half of MEM, and we want to use the whole word AC to house it. If the number is positive,
then HLRZ AC,MEM is all that is required. But if the number is negative, stored in the left half of
MEM in 18-bit twos complement form, then we would need HLRO AC,MEM (why?). However,
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HLRE AC,MEM works whether the contents of the left half of MEM are positive or negative, since
it has the effect of HLRZ in the first case, but of HLRO in the second.

After the suffix, if any, a final letter may be used to indicate the mode: Immediate, to Memory,
or to Self. Thus

HRLM AC,MEM

moves the Right half of AC into the Left half of MEM, leaving AC and the right half of MEM
unchanged.

Note carefully that it is #ot the case that the second letter of the half word instruction
mnemonics refers to AC, and the third letter refers to MEM. This is a mistake often made by
beginners. In fact, the second letter refers to the source word, while the third letter refers to the
destination word. Which of these is AC and which is MEM will depend on the mode.

A number in the right half of MEM may be extended to the whole of MEM by

HRRES MEM
As always with the Self mode,
HRRES AC,MEM

will also put the resulting contents of MEM (the full word result) into AC, as long as AC is not
accumulator 0.

In Immediate mode, the memory reference is regarded as a word whose right half is the given
number, and whose left half is zero. Thus HLLZI AC,X is equivalent to SETZM AC (why?).

Exercises: (i) In the program of Figure 3.4
(a) where are “address 1" “address 2” and “address 3”?
(b) how many spaces between columns will the program give?
(c) what is the largest number that the printout routine can handle without
causing pushdown list overflow?
(d) what is the largest number that the printout routine can handle without
upsetting the tabulation?

(ii) Write a routine to check whether AC and the right half of MEM contain the same
number. If the number is negative, it is in 36-bit twos complement form in AC,
18-bit twos complement form in the right half of MEM. Remember that the left
half of MEM might not be empty. You may alter the contents of AC if you wish,
but not those of MEM.

(iii) Which instruction will cause a skip precisely when the right half of AC contains
zero?

(iv) How would you change the contents of the right half of AC to
(a) the negative of the original contents;

(b) the magnitude of the original contents;
without affecting the other half? (Negatives to be in 18-bit twos complement
form.)

*(v) Write a program to read and evaluate any arithmetical expression composed of
integers, the minus sign, and parentheses. Parentheses here are meant only to
specify the order of evaluation, not to indicate multiplication. (Hint: base your
program on a subroutine EVAL that evaluates an expression from left to right
until it encounters a parenthesis. Make EVAL respond to a right parenthesis with

POPJ P, and to a left parenthesis with PUSH) P,EVAL .)

Extras

We have seen several instructions that (together perhaps with other effects) add 1 to, or subtract 1
from, each half of AC. In addition, there is AOBJP which jumps if the contents of AC, after each
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half has been incremented by 1, are Positive. How all these instructions are carried out depends on
which model of central processor is installed. The older model KA10 processor forms the quantity
1,,1 and adds it to or subtracts it from the whole word. So there can be a “carry” from the right
half into the left half. For example, if AC contained —1,,—1 (all 1's), then AOBJP AC,LABEL
would leave AC containing 1,,0 . Check this for yourself, observing that a 1 carried out of bit O of
AC is lost. (Which flag in FLAGS does this set?)

The more recent KI10 and KL10 central processors amend the two halves of AC independently,
so there can be no “carry” from the right half into the left. Thus, if AC is set to all 1’s, these
instructions will lose a 1 carried out of each half of AC; this will leave AC containing zero.

Exercise: Write a program that will tell you whether or not your installation uses a KA10
processor. Notice that AC can be set to contain all 1’s by any of MOVNI AC, 1T ,
HRROI AC,— 1 or HRREI AC,—1.

-The introduction of a new model of central processor is generally accompanied by a few new
MACRO-10 instructions. These will use operation codes that were previously unassigned. So if an
instruction available only on the KL10 (the most recently introduced processor) is used with a KI10
or KA10, the monitor will stop the program and print an error message. The result will be similar
if an instruction introduced with the KI10 processor is used on a KA10.

An instruction to ADJust the Stack Pointer is available on the KL10 processor only. The
instruction

ADJSP AC,X

will add the quantity X (which may be positive or negative) to each half of AC; the result is formed
in AC.

This is a particularly useful instruction when various collections of data are contained in blocks
in the same pushdown list. For example, suppose we want to move the results of successive
calculations from location WRD into every fifth location in a pushdown list. This is accomplished
if, after every time we

PUSH P,WRD

we then

ADJSP P4

remembering the PUSH itself moves the pushdown pointer up one place. If each time we do this
we also SUBI N,5 then accumulator N (if initially it contained zero) will record the total
adjustment of the pointer. We can set it back to where we started by

ADJSP P,(N)

If a positive adjustment in an ADJSP instruction changes the count in the left half of the
pushdown pointer from negative to positive, then pushdown list overflow occurs. This is also the
case if a negative adjustment changes the count from positive to negative. This ensures that the
overflow checking facility built into PUSH / PUSH] in the first case, or POP / POP]J in the

second, is maintained.

3.3 PROGRAM CONTROL

When a program has to be written to perform a large and complex task, the first approach should
determine only the general plan of attack. Subsidiary problems are left until later. For example, a
complicated file sorting job might involve frequent interchanging of blocks of data. In the initial

sketch it might be convenient to write

SWAP K, MEM,WRD
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to indicate that a number (given by the contents of accumulator K) of locations starting at MEM
should have their contents exchanged with those of the corresponding locations starting at WRD.

Later, the subroutines must be written in detail. It is quite likely that this will produce ideas as
to how the main program can be improved. Writing a large program often involves many stages in
which the scope of a subroutine is slightly extended to enable simplifications to be made in the
routines that precede its calls, and vice versa. It is also worth considering how best to write the
subroutines so that they can be carried unchanged into future programs. For both present and future
use, it is necessary to know

(i) what storage the subroutine uses;
(i1) what data must be passed to the subroutine;
(iii) where the subroutine delivers its results.

(1) Although this problem can be neglected when the first sketches are made, it can cause
disaster if not properly dealt with later. Consider our SWAP “command” above. The subroutine
that replaces it needs an accumulator to effect the word exchanges; a second accumulator is also
called for as a counter if the contents of K will be needed later. It is of course essential not to alter
accumulators containing necessary information. This can cause problems, as there might not be
enough accumulators for each of many subroutines to have exclusive use of those it needs. A
reasonable solution is to keep a block of memory locations at, say, TEMP, and assign them as
needed to subroutines for temporary storage of accumulator contents. Thus, if TEMP+ 6 were the
last such location so far assigned, and the next subroutine to be written required accumulators AC
and N, it could begin with

MOVEM AC, TEMP+7
MOVEM N, TEMP+10

and end with

MOVE AC, TEMP+7
MOVE N, TEMP+10

before the return. Since each subroutine has its own temporary storage, no problem arises if one
subroutine calls another. Of course, all this merely wastes time if other accumulators are unused.

The comments on each subroutine should include a list of the accumulators whose contents may
be changed by the subroutine.

(ii) For example, our SWAP subroutine must know where locations MEM and WRD are, and
which accumulator holds the number of words. This could be done quite simply by always using a
particular accumulator for the word count, and by putting the addresses of MEM and WRD into
the two halves of another specified accumulator, before calling the subroutine. On the other hand,
the subroutine might be more useful if it could do its job regardless of where the data references
were stored. If this is to be the case, the information needed by the subroutine must be passed to it
as parameters. It may be necessary to define precisely a calling sequence for the subroutine, to show just
how the parameters must be passed.

Item (iii) is really incorporated here. Any results should be returned to locations either fixed (and
listed in the comments) in advance, or specified in the calling sequence.

Subroutine Jump Instructions

The program fragment in Figure 3.5 illustrates the process of passing parameters to a subroutine. To
avoid unnecessary complications our subroutine is quite trivial; it merely calculates the unrounded

average of a collection of numbers. Two parameters must be passed to the subroutine: the location of
the first data item, and the accumulator whose contents are equal to the number of data items. Now
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jdata to be rrocessed here contained irn locations
istarting at MEM. Number of data items diven by
jcontents of CT. Calling secuence for routine AV is

JSF TsAV

MEM istartindg location

CT saddress of number of items
ves ireturn to here

cee
javerading routines no round ur. AC usadel! K» INT
iresult returned in INT

AV SETZM INT
MOVE Ky (T)
ADD Ks@1(T)
ALl INTy-1(K)
S0S8 KN
CAMLE Ky (T)
JRST =3
InIV INT»@1(T)
JRST 2(T) ireturn after data refs

FIGURE 3.5 Routine to illustrate passing parameters with JSP.

we could do this by

JSR AV
MEM
CcT

but it would be complicated. We would leave the first line of subroutine AV free for the address of
the line after the JSR ; but in this case, that is not the correct return address. (Why not?) We
would have to amend the address stored at location AV before returning, and this would be rather
tedious.

It is much easier to use the subroutine calling instruction JSP that Jumps and Saves PC in an
accumulator. The instruction

JSP AC,LABEL

(1) places FLAGS in the left half of AC, and the contents of PC in the right half of AC;
(i1) moves into PC the address of the location named LABEL.

AC | FLAGS | old (PC) PC | LABEL

The disadvantage of JSP is that it takes up an accumulator to store the flags and the address of
the location following the JSP instruction. The corresponding advantage is that one can return either
by JRST @AC, or by JRST (AC) . The latter is not only faster, but can be amended to allow for
locations taken up by parameters listed after the JSP instruction. In Figure 3.5 the parameters
occupy two words; so the correct return is JRST 2(T) .

Exercises: (i) Why did we not leave a free line at AV ?
(ii) Study Figure 3.5 carefully, with particular regard to the various effective address
calculations.
(iif) Amend the program so that the average is returned in the same accumulator that
originally held the number of data items.

Where subroutines are nested (that is, where one subroutine calls another) the JSP instruction is
not very suitable because each level of nesting requires a further accumulator. We end the list of
subroutine calling instructions with one that, with its special return instruction, is particularly
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icalling seauence for data swar routine

JSA T»SEARCH
MEM istart of source file
WRD istart of destination file
oo ireturn to here
SEARCH: 0
MOVE I,(T)
CAMN (I
JRST 81
A0S I
SKIFE (I
JRST o4
JRA Tr»2¢T) inot in record
Si MOVE Ns1(I) idelete routine
MOVEM Ny (I)
A0S I
SKIFE (I
JRST S1
JSA Ty INSERT
JRST S1-1 iJob done
LN
INSERT: O
MOVE IyINSERT sdestination file
MOVE Iy1¢(ID)
SKIFN (1)
JRST +3
CAMLE (I
ADJA I,.-3
EXCH (@9
A0S I
SKIFE (@ D]
JRST 3
EXCH (I
JRA Te(T) jinsertion done

FIGURE 3.6 Routine to illustrate nesting subroutines with JSA—JRA.

suitable for passing parameters to nested subroutines. Our illustration, in Figure 3.6, is a routine to

search a file for a given data item; and, if the item is found, to delete it from that file and insert it,

in order, in a second file. The locations of the first words of the files must be passed as parameters.
The instruction Jump and Save Accumulator

JSA AC,LABEL

(i) moves the contents of AC to location LABEL;
(ii) moves the address the location LABEL to the left half of AC, and the contents of PC to
the right half of AC;
(iti) moves into PC the address of location LABEL, plus 1.

AC LABEL | old (PC) PC| LABEL+1

LABEL old (AC)

So although JSA requires an accumulator, it saves its contents in the first location of the
subroutine called; this location must therefore be left free, as with a JSR.

The return from a subroutine called by a JSA instruction is effected by the Jump and Restore
Accumulator instruction:

JRA AC,MEM

(i) moves the contents of the location addressed by the left half of AC into AC;
(ii) moves into PC the address of MEM.
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AC J PC | MEM

(X)

The first step restores the original contents of AC. For the second step to return to the line
following the calling JSA instruction, it is necessary that the address of MEM be equal to the
contents of the right half of AC. That is, the memory location referenced in the returning JRA
instruction must be (AC). Note that AC has already been amended by the first part of the JRA
instruction at this stage.

Thus the correct return to the line after

JSA AC,LABEL
1s
JRA AC,(AC)

If parameters are being passed, the correct return address is obtained by indexing the number of
locations occupied by the parameters with index register AC. This is just the same idea as with a
JSP instruction.

Exercises: (i) In the program fragment of Figure 3.6

(a) what is the accumulator usage of subroutine SEARCH and its subroutine
INSERT?

(b) what test is used to determine when the end of a file is reached?

(c) what happens to the location used to present the data item in question to the
SEARCH and INSERT routines:
(1) if the item is found?
(2) if the item is not found?

(d) what does line INSERT+ 2 do, and why?

(e) consider the bottom line of the fragment; what are the contents of T,
SEARCH, and INSERT both before and after this instruction is carried out?
Which instruction is carried out next?

(if) Write a calling sequence for subroutine INSERT so that it can be used
independently of subroutine SEARCH.

Observe that we can make the location to which a subroutine returns depend on conditions
detected by the subroutine. A subroutine to find the largest factor of a number might be called by

JSP T,FACTOR
P ;holds number

JRST PRIME ;return here if prime
;here if not

If FACTOR puts the largest factor into accumulator AC, the return could be

CAIN AC,1
JRST 1T
JRST 2(T)

The JSP instruction is very useful for examining the flags. We can simply read the flags into
accumulator T by

JSP T,.+1
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FIGURE 3.7 FLAGS

which then continues with the next instruction in sequence. Only the flags specifically marked in
Figure 3.7 will be of interest to us.

Overflow

In complex arithmetical instructions it is essential to be cognizant of the states of the relevant flags.
Overflow can occur within a calculation even when the correct result could readily be held within a
single word. For example,

30.29.28. ... .16
15.14.13. ... .1

is a fraction in which either numerator or denominator alone would cause overflow; yet the fraction

itself is well within bounds. But once overflow has occurred, it is not likely that the results will be
correct if nothing is done about it. See this for yourself by writing a program to successively double
the contents of AC by means of

(@) ADD AC,AC
(b) IMULI AC,2

Each of these will, if repeated often enough, produce nonsensical results because of overflow.
Furthermore, each will produce different nonsense!

An ADD instruction can overflow in two different ways: two positive summands can produce too

large a result; or two negative summands can produce a result of too large a magnitude.

Suppose we try to add 23! + 1 to itself. This number has a O in bit O since it is positive, a 1 in
bits 1 and 35, and zeros elsewhere. The addition is performed like this

010 ...001
+ 010 ...001
100 ...010

which looks just right for binary addition, until we recall that bit O is the sign bit! The bottom line
represents not the correct result 23° + 2, but —23° + 2. Note that the result is 7o the negative of
the correct result. But if we regard the bottom line as a 36-bit positive number, then it is the
correct result. Similarly, the result when the addition of two negative numbers causes overflow is
correct if regarded as a 36-bit negative number. In each case we are supposing that we have all but
the sign bit of a 37-bit number.

There are many possible responses to the discovery of such an overflow; some of them are:

(i) stop the program; this is the normal response in a higher level language;
(i) let the number take up another word; allowing as many words as may be needed to house
all the binary digits of a number is the concept of multiple precision arithmetic;
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(iii) lose accuracy by keeping only the most significant decimal digits of the result. This may
be done by dividing the result by ten, and carrying on with the calculation. Of course
care must be taken that this does not invalidate later calculations. It may be necessary to
keep in a separate location a count of the number of times that ten has been divided out.
If we need to add X and Y, but to avoid overflow X/10 has been stored, then the best
thing is to form X/10 + Y/10, equal to (X + Y)/10. Then at printout, the count of
divisions by (decimal) 10 indicates the number of terminating zeros required.

It is not quite straightforward to divide by ten after overflow has occurred, since we want to
regard the sign bit as part of the number, and division instructions will not do this. We could
divide by two if we could merely shift all the digits one place to the right, losing the rightmost
one, and then adjust the sign bit. This is done by the Logical SHift instruction

LSH AC,X

which shifts the contents of AC the number of bits given by the magnitude of the quantity X: to

the left if X is positive, to the right if X is negative. Anything moved out of AC is lost; bits in AC

vacated by the shift are set to zero. An effective address calculation is carried out for LSH; so a shift

by the number of bits specified by the contents of accumulator CH is achieved by LSH AC,(CH) .
Here we shift one place to the right by

LSH AC,—1

If overflow was caused by addition of positive numbers, then all we now need to achieve division by
ten is

IDIVI AC,5

Otherwise, the sign bit of AC must first be set to 1, since the sign bit of our mythical 37-bit
number is properly carried in by a shift only when that bit is zero, for a positive number.

Let us now consider how in practice to deal in this way with the possibility that
ADD AC,MEM might cause overflow. Overflow will always set OVERFLOW, which is bit O in
FLAGS. Positive overflow will in addition set CARRY 1, which is bit 2 of FLAGS; negative overflow
will instead set CARRY 0, which is bit 1 of FLAGS.

OVERFLOW is generally only set by instructions that have genuinely overflowed, and is indeed set
under such circumstances by all arithmetical instructions. Some of these will also set either CARRY 0
or CARRY 1, but not both. Confusingly, however, CARRY O and CARRY 1 can be set together by a
variety of innocuous conditions which cause no overflow; in such cases therefore OVERFLOW is not
set. Remember also that

once any of these flags are set, they remain set until the program clears them.

Thus, there is no point in checking the flags after ADD AC,MEM unless we have cleared them

first. This is done by a group of instructions that Jump if Flags are set, and CLear them. The
instruction

JFCL F,LABEL

assembles with the quantity F in the accumulator field, so F must represent a number between O
and O 17. However, F does not specify an accumulator; rather, by setting certain of bits 9 through
12 of the instruction code word, it determines which flags should be examined. These four bits in
the accumulator field correspond to the first four bits in FLAGS. Any combination of these flags
may be selected by the appropriate choice of F. If one or more of the flags specified by F is set, the
instruction will clear them, and jump to the address determined by the effective address calculation;
if none of these flags are set, there is no jump. The table in Figure 3.8 lists all possible
combinations, as well as six special mnemonics allowed for certain combinations.

JFCL LABEL (equivalent to JFCL O,LABEL ) is an example of a no-op—an instruction that does
nothing at all. We shall see later that even a no-op can be useful; and since JFCL with zero
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FLOATING

F OVERFLOW CARRY O CARRY 1 OVERFLOW MNEMONIC
0 JFCL
1 X JFOV
2 X JCRY1
3 X X

4 X JCRYO
5 X X

6 X X JCRY
7 X X X

10 X JOV

11 X X

12 X X

13 X X X

14 X X

15 X X X

16 X X X

17 X X X X

FIGURE 3.8 Flag selection in JFCL instructions.

accumulator field does not actually fetch the flags, it is the fastest no-op available. (What other no-
ops have we encountered?)
We can clear OVERFLOW, CARRY 0 and CARRY 1 before our ADD instruction by

JECL 16,.+1

which continues in sequence regardless of whether any of these flags were actually set. Afterwards we
check ovERFLOW with the JOV instruction. We want to carry on if it is clear, but if it is set we
must do other things first. The overflows may be handled in a subroutine OVRFLW; but JOV alone
cannot be used to call the subroutine, as there would be no way to enable the return. Some trickery
like this is needed:

JOV 42
SKIPA
JSR OVRFLW

although there are faster skips than SKIPA. (For example?)

Exercises: (i) Write a program that will add together the contents of locations starting at MEM
(the number of locations is housed in AC). The result should be in the form: A
multiplied by 10 to the power B; where the numbers A (to as many significant
figures as possible) and B are housed in accumulators.

(if) Write a routine to print out a number stored in the form given by Exercise (i).
(iii) Check for yourself that SUB overflows when the magnitude of the result is too
large, in just the same way as ADD.

A multiplication instruction that overflows sets OVERFLOW, but neither of the CARRY flags.
However, the only thing generally worth doing if an IMUL instruction overflows is to stop the
program. The product of an X-digit number with a Y-digit number may contain up to X + Y
digits (regardless of the base). The IMUL instruction stores only the least significant 35 bits of the
product, together with the correct sign; so more information may have been lost than mere
awareness that overflow has occurred could recover. For example, the squares of 8 X 10% and 9 X
10® are both stored as zero.
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The instruction IDIV sets OVERFLOW if the divisor is zero. It does so also if the dividend is
—235 and the divisor is 1 or — 1. In any of these cases, no attempt is made to carry out the
instruction, and the flag NO DIVIDE is set. This flag is not examined by any JFCL instruction, so to
check it we must read the flags into an accumulator. Since NO DIVIDE is bit 12 in FLAGS, the
sequence

JSP T,.+1
TLNE T,40

will skip if NO DIVIDE is clear. So a call to a suitable error subroutine can follow this sequence. To
skip if NO DIVIDE is set, the second instruction should be

TLNN T,40

This is Test the Left half of AC (with No modification of AC) and skip if Not every masked bit
equals O. (It is enough for a skip that even one masked bit is set to 1.)

If it is possible to continue the program after NO DIVIDE, this flag should first be cleared. Since
NO DIVIDE is not set by any other kind of condition, it is all right to clear it after rather than before
each check. First we set up the left half of accumulator T to contain the flags as we want them to
be. If all flags are to be cleared, HLLI T, will serve. Otherwise we can clear the appropriate bit in T
at the same time as we check it. With NO DIVIDE, for example, this is done by

TLZE 1,40

which Tests the Left half of T against the given mask, skips if Every masked bit is O, and Zeros all
masked bits in any case. Or the routine could be

JSP T,.+1
TLZN T,40
JRST OK

followed by a routine for dealing with the NO DIVIDE condition. If it is possible to continue, the
routine could return with JRST (T) since the TLZN instruction cannot now skip. (Why not?) But
this does not reset the flags in FLAGS. We need instead the Jump and ReSTore the Flags
instruction

JRSTF (M

Apart from the flags, this instruction has the same effect as JRST. Indeed, they are in the collection
JRST X,LABEL where X indicates a particular function. For JRST alone, X is zero, while JRSTF is a
mnemonic for JRST 2, . The other instructions in this collection are illegal for the ordinary user.

The instruction JRSTF will set the contents of FLAGS equal to the contents of the left half of
the final word retrieved in the effective address calculation carried out for the instruction. This is
subject to the proviso that no change will be made in certain bits of FLAGS that the ordinary user
is not permitted to change. In the effective address calculation for the instruction JRSTF (T) the last
word retrieved is T; so the left half of T is used to reset the flags, which is as we wanted.

Exercises: (i) Could we restore the flags and jump to LABEL by JRSTF LABEL ? (Hint: which
is the final address retrieved?)

(if) Could we avoid, in the above sequence, repeating the instruction TLZN T,40 by
returning with JRSTF 1(T) ?

(ii1) The name /logical is applied to instructions that regard a word merely as a
collection of 36 bits; LSH is in this category. Besides LSH there is the Arithmetic
SHift instruction ASH. The difference is that ASH regards a word as a sign bit
plus 35 bits representing the magnitude of a number. Consequently, ASH never
affects the sign bit; the shift works on bits 1 through 35 only.

Investigate the differences among LSH AC,1 ASH AC,1 and IMULI AC,2 for
positive and negative contents of AC. Do the same with LSH AC,—1
ASH AC,—1 and IDIVI AC,2.
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(iv) Determine the value of X if the sequence

ADDI AC,X

ASH AC,—5
gives the same quotient in AC as IDIVI AC,40 when AC contains a negative
integer.

(v) Can LSH or ASH set flags?

*(vi) Use your conclusions in Exercises (iv) and (v) to write a routine to replace division
when the divisor is a power of 2.

Test Instructions

The format of the instruction code part of the Test instructions is

O N

[~ T\

1{10

o 1 2 3 4 5 6 7 8
CZB/ AEL,
(N) 7S S
Since bits 0 and 1 are set to 1, and bit 2 to O, the 9-bit instruction code for Test instructions is
always between O 600 and O 677. All sixty four combinations give valid instructions. The
mnemonics are three or four letter codes, of which the first is T. The second letter is R (right), L
(left), D (direct) or S (swapped).

If the second letter is L or R, then on assembly bit 5 is set to zero. Also, bit 8 is set to O for R,
to 1 for L. In these instructions, the effective address calculation itself yields the mask, which is
compared with the appropriate half of AC.

On the other hand, D as the second letter assembles with 1 in bit 5, and O in bit 8. In this
case, the contents of the effective address act as a mask for the whole word AC. S as the second
letter indicates that the contents of the effective address with its two halves swapped will be the
mask for the whole word AC; it assembles with 1 in bits 5 and 8.

Bits 3 and 4 are assembled according to the third letter, and indicate the modification
prescribed for AC. If the third letter is N, both bits are O, and there is No modification. If Z, bit
3 is O and bit 4 is 1; all masked bits are set to Zero. If C, bit 3 is 1 and bit 4 is O; all masked
bits are Complemented: 1’s are changed to 0’s and vice versa. The letter O assembles with bits 3
and 4 set to 1, and all masked bits are set to One.

The fourth letter, if any, indicates the conditions for a skip, and corresponds to bits 6 and 7. If
there is no fourth letter, the instruction assembles with O in bits 6 and 7; these instructions never
cause a skip. Letter A, however, corresponds to 1 in bit 6 and O in bit 7, and Always skips. Letter
E assembles with O in bit 6 and 1 in bit 7, and skips if Every masked bit is O. Finally, letter N

assembles 1 in bits 6 and 7, and causes a skip if Not every masked bit is set to O.
The possible combinations may be illustrated by

RY (NY (—
Lzl e
"o[icia
sJ lo) N
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Exercises: (i) Suppose there were no MOVN or MOVM instructions. Write routines to simulate
each.

(ii) Write a routine that tests the contents of a location to determine whether the
location contains a Test instruction that always causes a skip.

(iii) Write a routine to determine whether a location contains an instruction that,
conditional on a comparison, could jump more than O 200 locations (in either
direction).

(iv) Which single Test instruction will increase all positive even numbers by 1,
without affecting positive odd numbers? What will it do to negative numbers?

*v) If AC contains zero, the instruction Jump if First Find One

JFFO AC,LABEL

will set AC+ 1 to zero and continue in sequence. Otherwise it will count the
number of zeros to the left of the first 1 in AC, place the count in AC+ 1, and
jump to the instruction at LABEL. Write a routine using this with Test and shift
instructions to check whether a positive number in AC is

(a) a power of two;

(b) a power of eight.

3.4 EXTENDED LANGUAGE CAPABILITIES

In this section we discuss various ways to extend the capabilities of MACRO-10 according to
individual requirements. Let us begin with the problems of inputting and outputting data, which
have occupied so much of our time in previous sections. We now have both of these processes
systematized very satisfactorily. But do we have to write out the routines in full in every program in
which we need to read and write data? That would be tedious enough, and would increase the
danger of making typing errors.

A simple-minded way of avoiding this is to use the COPY command to the monitor. This
command causes the monitor to run a special system program for manipulating files, called PIP,
acronym for Periphera<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>