A
micro~-PROLOG
PRIMER

Clark Ennals
NMcCabe

- ng Associates L : . . 2
i i &Loglc Programming Associates Ltd.§‘ E

W
=

COLLNVG |))

A Micro-PROULOG Primer

EHRATA
bage Live lsal Chapge Lexl Lo
26 9 (<17 38) (38 77)
26 10 (=76 45) (us 76)
49 18 and y=21 and zlzy
50 25 (x.x) (x:X)
50 25 b ¥ gelizeoem s
51 9 UM(y1 1 y) UMyl 1 z21)
51 -9 y lengtr-of X z length-of ¥
52 12 y length-of X Z length-of X
52 -13 4 length-of y 4 lengtn-of x
53 i\ paraneters parents
53 14 correct connect
£8 -13 Z lengtih-of y X lengtt-of y
(4] =12 "2 length-of y" "x lengtr-of y*
99 -19 (reduce UM y 0 x) (reduce 9M y x)
o -12 (reduce y 0 x) (reduce Sy a)
126 2 (Y1 x1) (y1 X1)

A pisitive Line nuster 1s a line of text cowt from the top ol thie ter', a
fwgdllve nuber frar the boltun of Lhe Lext,

AmicroPROLOG Primer

K.L.Clark J.R.Ennals
F.G.McCabe

First Edition December 1981,
Second Edition April 194

(c) 1981, 1982 Clark, Ennals, McCabe
ALL rights reserved.
Published by:-

Logic Programming Associates Ltd., 36 Gorst Rd., LONDON SW11 6JE, ENGLAND

Except in the United States, this book is sold subject to the condition
that it shall not, by way of trade or otherwise, be lent, re-sold, hired
out, or otherwise circulated without the publisher's prior consent in any
form of binding or cover other than that in which. 1t 1s published and
Wwithout a similar condition being 1mposed on the subsyuent purchaser.

S ————

I e

R Tt

N N T bt v AT T TR s b ST e -

Preface

) COMTENIS

1, Basic Logic Programming - Simple facts and queries

1.1

LY B TR N

1is
Vs
1-
1.
2. Basic

2.3

2'2
2.3

3. Lists
3.1
3.2

o A

3
3
3

Developing a simple data base program
Queries

Arithmetic

Evaluation of queries

Efficient queries

Logic programming - using general rules
Turning queries into rules

How queries involving rules are evaluated
Recursive descriptions of relations

Lists as individuals

Getting at the members of a List of fixed Length
Getting at the members of a List of unknown Length
The Length of a List

Answer sets as Lists

4. Complex conditions in queries and rules

4.1
‘-2
4.3

Negative conditions
The Is-all condition
The For-all condition

5. List Processing

6. Impera

6.1
6.2
6.3
6.4
6.5

The appends—to relation

Rules that use appends-to

Recursive definition of the sort relation
Parsing sentences expressed as Lists of words

tive aspects of Micro-PROLOG

Reading Input

Writing Output

Rules that ask for information

Rule use of Add and Delete

Modifying the behaviour of Micro-PROLOG

7. The internal syntax of Micro-PROLOG

7.1 Clausal Notation
7.2 The Meta-Variable
7.3 The dictionary and modules
Appendix A. Instructions for running micru-PROLOG

Appendix B. Using the heyboard edit facility

Appendix C. The Simple front end program Listing

Appendix D. Answers to Exercises

Bibliography

12
16

18
27

28
28

34
37

41
41
L2
L4

48
53

56
56

60
63

65
65

68
[l
74

g
/8

81
B2

91
91
93
10
105
11
114
117

128

<3S

R T T S

o S

Preface

This Primer is intended to serve as an introduction for the non-
specialist to the micro-PROLOG system, which 1s implemented for
microcomputers based on the Z80 microprocessor and the CP/M Operating
System. The primer 15 a companion volume of the micro~PROLOG Proyrammer's
kReterence manual [McCabe 1981), which gives a complete descriptiun of the
system but assumes knowledge of PROLOG programming as covered by this
primer.

Since micro-PROLOG is one of the PROLOG family of Llogic programming
languages (PROgramming in LOGic), the primer also serves as an introduction
to the general concepts of Llogic programming. The differences between
micro-PROLOG and the other PROLOGs are mainly syntactic.

Why program in l(ogic?

Ever since von Neumann first described the form of the modern computer
they have been programmed in essentially the same way. The first
programming lLanguage was the binary language of the machine itself:
machine code; then came assembler, which is symbolic machine code; then
the so-called high level languages Like FORTRAN, COBOL, BASIC, followed by
today's more modern variants ADA and Pascal. ALL of these programming
Languages share a common characteristic: the programmer must describe
quite precisely huw a result 1s to be computed, rather than what i1t 15 that
must be computed. ‘

A computer program in one of these programming languages consists of a
script of instructions each of which describes an action to be performed by
the computer. For example, the meaning of the BASIC statement:

10 LET X = 105

is that the memory location whose name is X should have its contents
changed to 105. They are imperative programming lLanguages, statements in
them are commands which specify actions to be performed. They are geared
to the description of the behaviour needed to achieve the desired result.
While undoubtedly we sometimes think behaviourally, most often we do not.
For example, the first question we ask someone about a particular computer
or program is:

“What does it do?"
not :
"How does it do it?"

Certainly the answer to the first question will not be:

1 INPUT X,Y

2 IF X>Y THEN &4
3 Z=X: X=Y: Y=1
b X=X-Y

5 IF X>0 THEN 2
6 PRINT Y

7 END

We shall not s)yaply List the program. What we are more Likely to do is to
describe the relation between the nput and output of the program. We
might say, for example, "1t prints the greatest common divisor of the two
numbers read-in'.

Similarly the most effective way to tackle a new programming task s
to ftirst develop a specification of "what the program has to oo', This

Preface

%
specification is also often a description of the relation of the output of
the program to the input, Having described this relation, the program is
then written as a sequence of actions which "cumpute' the output that meets
the specified relation to the input.

Given that people find difficulty in thinking purely in 1mperative ways
(as is evidenced by the huge shortage of programmers) it seems archaic to
program computers in this way. Computers are supposed to help solve
problems, not to create more.

The net effect of forty years of development of programming languages
seems to be that there are very few proyrammers, and that very few of these
programmers have any solid confidence that their programs qre correct.
Programming is still essentially a craft activity. Compare that with
almost any other modern production/design activity which is typically
highly automated, with sophisticated (computer) aids for designing and
manufacturing products.

One way of tackling the programming problem 1is to provide a program-—
ming language which is descriptiye rather than prescriptive: a language in
which programs are descriptions of the input/output relation to be satis-
fied The execution of the program is then a use of this description to
find an output that satisfies the relationn. The way in which the descrip-
tion is used is the secondary, control aspect of the program. By taking
into account the way the description is used we might choose one descrip-
tion rather than another. This is the pragmatics of programming in a
descriptive language. But it will still remain the case that the program
is primarily a description of what it is supposed to compute, rather than a
prescription of hoy it should compute it.

LISP (at least pure LISP) is an early example of a descriptive lam
guage; PROLOG is another. A PROLOG program is essentially a set of

sentences of symbolic Logic that define the relation that we want to,

compute, PROLOG computation is the use of this definition to find an
output that lies in the defined relation to the input. We shall see that
it is often the case that a single description of some input/output rela-
tion can be used in the inverse mode. It can be used to find all the
inputs that will give rise to a particular output! This invertability of
use is only possibly because the program i5 descriptive. It is not
Limited to one use because it does not comprise a sequence of instructions
that encode the behaviour of that use.

Finally, since a PROLOG program is a description of a set of rela-
tions, 1t blurs the distinction between data retrieval and computation.
In PROLOG, they are both the finding of one or more arguments of a relation
using the description of the relation provided by the program.

Chapter descriptions

Chapter 1 introduces micro-PROLOG by using it to develop and query a
simple data base of facts. The ease with which one can construct and
query such a data base is one of the prime features of the language. The
chapter also introduces the arithmetic facilities of micro-PROLOG These
are quite different from those of a corventional programming Language. We
add and subtract by querying an (implicit) data base of facts about the
addition relation, likewise we multiply and divide by guerying a data base
of 'times tables'.

Chapter 2 describes how the data base can be augmented by rules.
Rules can be used to abbreviate queries. They can also be used to give a
recursive definition of a relation

In Chapter 3 we introduce Lists and describe how they can be used to
structure information, often compressing many statements 1nto one. The
elements of a List are accessed using special List patterns. This pattern
processing of list structures is another unigue feature of PROLOG The
chapter also introduces a primitive of (he langyuage that car be used to
wrap up the set of answers to a database query as a list. This provides

Preface

)

the interface between the use of PROLOG as a database language and its use
as a List manipulation language.

In Chapter & we describe more complex forms of query. These include
the use of not and for-all.

In Chapter 5 we discuss programs which use more complex List proce.-
sing. These include the "appends-to" program, a list sorting and a simple
parsing program.

In Chapter 6 we introduce the imperatives of micro-PROLOG These are
built in relations that have a side-effect when they are evaluated. An
example is the built in relation that reads data from the terminal.
Declaratively it means: something that can be read at the terminal.
Procedurally, it always returns the next thing to be typed. The
imperatives of micro-PROLOG detract somewhat from its descriptive nature, a
program that uses them is not a purely descriptive program. However, as we
shall see, the use of the imperatives can often be restricted to the
definition of one or two auxiliary relations, the rest of the program
being entirely descriptive.

In Chapter 7 we describe the internal syntax of a micro-PROLOG prog-
ram. This is the form in which the facts and rules are accessed and
evaluated by the micro-PROLOG interpreter. The user friendly surface
syntax, the syntax used previously, is translated into the internal form by
a special micro-PROLOG program called simple. The simple program is writ=
ten in internal syntax. Any program can be written and entered in internal
syntax form. (The micro-PROLOG reference manual uses the internal syntax.)

ALL micro-PROLOG programs are really just List structures. As in
LISP, one can therefore write micro-PROLOG programs that manipulate Llists
that are other micro-PROLOG programs. The translator program, simple, is
such a program. This ability to treat programs as data is an exceeding
powerful tool. It enables one to write programs in micro-PROLOG to modify
and extend the micro-PROLOG system. In Chapter 7 we show how this can be
done and we introduce one or two features of micro-PROLOG that can only be
used by programs written in internal syntax.

Applications of PROLOG

The current major uses of PROLOG are as a language for Artificial
Intelligence research, as a language for implementing and querying data
bases and in Education to teach both logic and the descriptive approach to
programming. Mithin Artificial Intelligence it is being used for natural
Language understanding, problem solving and the implementation of expert
systems.

Logic is particularly useful as 3 language for data bases where it has
a number of advantages over the conventional data base systems. Logic can
be used both to express data base queries, and to describe the data base
itself. The result of this is that the data base implementor and user
share a common langquage, enabling usérs to become programmers: common
queries can be easily turned into an extension of the data base. Logic
also plays a role 1n data bases in maintaining integrity. Integrity
constraints can be cxpressed as special queries of the data base, which are
tested whenever the data base is updated.

PROLOG is not particularly suited for applications which need a Lot of
routine numerical work, nor for some real time and some commercial data
processing applications. However in these fields Logic is still a suitab-
le specificatiun Language, and PROLOG can be used to speedily implement and
test a prototype program.

The research which underlies many of the ideds presented in this
primer wdas supported by the U.K. Science & Engineering Research Council in

s

Preface

a series of research grants held by RAKowalski and K.l.Cla.« at Imperial
Col Lege. 0t particular relevance is the "Logic as a Computer Language for

Children” project which is concerned with teaching the pr iples of Logic
programming to school children This project ..es micro rROLOG and the
user friendly surface syntax described in this primer was developed for the
project.

We are also grateful to the groups of people in various parts of tl'_te
country who have acted as hosts for demonstrations of micro-PROLOG, provi=
ding excellent opportunities for testing different methods of explanation
to interested nomrspecialists.

Finally, the authors would Like to thank Diane Reeve and Sandra Evans
whose patient 'slaving over a hot word processor' made this primer
possible.

1. Basic logic p» _)rauing - facts and queries
1.1 Deyeloping a simple data base program

In this chapter we introduce some of the basic ideas of Logic program=
ming by giving an example of the setting up and querying of a data base in
micro-PROLOG. It the reader has access to a computer which has micro-
PROLOG we recommend that he follows through the example using the computer.
Instructions for the loading of the PROLOG system are gisen in Appendix A.

Adding facts

Let us suppose that we want to set up a data base describing the
family relationships of the Tudor royal family. We will do this by making
statements about these relationships, adding them one at a time to the data
base.

The statements are expressed as sentences of symbolic lLogic. There are
two kinds of sentences: simple and compound. To begin with we shall only
need simple sentences which express basic facts.

In any family there are a number of basic facts about the relation
ships between individuals. Two such "“Tudar" facts are:

Henry the 7th is the father of Henry the 8th Qb
Henry the 8th is the father of Mary (2)

There are many such facts, each of which describes an instance of one of
the family relationships of the Tudors. Now these English sentences are
almost sentences of micro-PROLOG! The simplest form of micro-PROLOG
sentence has three comporents:

Name-of-Individual Name-of-relationship Name-of-Individual

In the two sentences (1) and (2) the Name-of-relationship is "is the father
of", [n micro-PROLOG we have to make this into one word by hyphenating,
we must use: "is-the-father—of'. Similarly, we must name individuals by a
single word. Again we can do this by hyphenating, writing "Henry-the-
7th", or by abbreviating, using "Henry?'. Rewriting (1) and (2) in this
way transforms them into simple sentences of micro-PROLOG.

Henry? is-the-father—of Henry8
HenryB is-the-father-of Mary

These two simple sentences in the data base are a direct representa-
tion of the two facts (1) and (2). We "tell' the micro-PROLOG system about
these facts by adding each to the data base. We type:

E. Add(Henry? is-the-father-of Henry8)
&. Add(HenryB8 is-the-father-of Mary)

Notice that the sentence to be added is surrounded by brackets. The "&"
is not typed, it is the prompt printed out by micro—-PROLOG to r=lLl us it is
ready to accept a new sentence. Moreover, each Add instruction must be
terminated by a carriage returrn. Before typing the carriage return you

can correct typing mistakes using the ‘rubout' or 'backspace' key. After
the carriage return any mistake in the form of the added sentence will
produce a "?" response. If the "Add" is misspelt, you will get a "Clause

Error" message. Both indicate that the sentence has not been accepted, so
try again with a new Add command.

You do not have to type all of a sentence on a single Line. It can be
spread over several Lines, but words cannot be split across Lines. 1f you
do type a sentence without finishing it, you will get the prompt

1.1 Developing a simple data base program

1 .

This merely indicates that micr,-PROLOG i< waiting fur tne righti oracket
that marks the end of the sentence to be iddea.

pifferent kinds of relationship

A r~elationship such as "1s-the-father-of" hol is petweer pairs of
individuails, in this case betweasn a 'father' and a ‘chi.J% It is a
binaryrelatrion Not all relationships are betwaen pairs, some relate
three or more individuals, and some are prepertiecs that appty to single
individuals. The genders "male" and "female" are preperties. (More
technically, they are upary relations.) The relation of somevne givsirg

something to someone g¢lsg is a thre2e place relation (a terpary relatiocni.

Simple sentences giving facts about these ron-binary relatiuns nave a
s.ightly different syntax. Instead of writing

individual-name relationrname individual-name
we write

relatiomrname(individual-name individual-name ... individual-rame)
For example,

Male(Henry8)

Gives(Henry8 Mary book)
suM(2 3 5)

We ‘an also write the bipary simple sentences in this way:
is-the-father-of{(Henry?7 Henry8)

but the original way :f writing this is more readable. Je shill use thess
‘non-Binary' simple sentences more often when we get to arithme=i:z in
PROLOG.

A techpicay tz2rm - argumert of a reggation

[t
- - - el

A simple sentence te.ls us that certain indisidua's are reiate:a by
some relation In nmatnematics and logi: the individuals are zal.ea the
argunerts of the relation. We also talk about the first argurent, the
second arguaent, etc., of the relation.. This names the argument Ly irs
positiun in the List of arguments of the simple seintence. In the sentence

Gives(Henry8 Mary book)
“henry8" is the first argument, "Mary" tne second and "buok" ine third.

A notz op the use of spages

The spaces between the names of the individuals are important, In
micro-PROLOG spaces ana new lires and tabs are separatcrs. They are the
only separators. The number of spaces you use dnes not matter, but

failure to use a space n3y mean that micro-PROLCG niakes into one rame Jhat
you 1ntended to have as two Name., For more detailed information ir what
15 or is not understood by micru-~”ROLOG as a word boundary, we refer the
reader tou the reference manual. If in Joubt use a space. The “Urverse
of thic is the need to hyphenate phrases suach as "is the tather of” 0
order to mike it into one name, not 4.

1.1 Developing a simple data base program

y

Adding some more facts

Carrying on, Let us enter more of the known facts concerning the
family relationships of the Tudors:

B.Add(Elizabe th-of-York is-the-mother-of Henr,8)
B.Add(Katherine is-the-mother-of Mary)
&.Add(Henry8 is-the-father-of ELizabeth)
B.Add(Ann 1s-the-mother—of Elizabeth)
&.Add(Henry8 is-the-father-cf Edward)
B.Add(Jane is-the-mother—of Edward)
&.Add (Male(Henry7))

&.Add(Male(Henry8))
E.Add(Female(ELizabeth-of-York))
&.Add(Female(Katherine))
E.Add(Female(Mary))
B.Add(Female(ElLizabeth))
E.Add(Female(Ann))

k.Add(Female(Jane))

Ek.Add(Male(Edward))

Notice that we slipped in some "is-the-mother-of" facts and some facts
about who is male and female, We can add sentences of any relationship at
any time using the "Add" command The sentences are collected together by
name of relationship. The vocabulary of a program consists of the names
of the relationships and the names of the individuals; the vocabulary
defines the "things" that a subsequent query can talk about. Our vocabu
lary so far is

Henry?

Henry8

Mary

Elizabeth-of-York

Katherine Names of Individuals
Elizabeth

Ann

Edward

Jane

is=the-father-of
is=the-mother-of Names of Relations
Male

fFemale

Listing and saying the program

We can display our program by using another command "List". This
command displays on the screen all the sentences entered, or just those for

specified relations To List the tfull program we type:

1.1 Deweloping a simple data base prograsr)

&. List ALL
Henry? i1s-the-father-of Henry8
Henry8 1s-the-father—of Mary

HenryB is-the-father-of Elizabeth

HenryB is-the-father-of Edward
Elizabeth-of=York is-the-mother—of Henry8
Katherine is-the-aother—of Mary

Ann is-the-mother-of Elizabeth

Jane is-the-mother—of Edward

Male(Henry7)

Male(Henry8) .
Male(Edward)

Female(ELizabeth-of-York)
Female(Katherine)

Female(Mary)

Female (ELizabeth)

Female(Ann)

Female(Jane)

‘-

The sentences are listed according to name of relationship, not order
of typing. However, the Listing of the sentences for each relatien does

correspond to the order in which they were entered.)
We can choose a particular name of relationship, and list that. For

instance:

B.List is-the-mother—of
Elizabeth-of-York is-the-mother—of Henry8
Katherine is-the-mother—of Mary

Ann is-the-mother—of Elizabeth

Jane is-the-mother-of Edward
‘.

By using the command:

8.List dict

a dictionary of the names of relationships used so far is listed, in this
case we will get:

dict(is-the-father—of)
dict(is-the-mother—of)
dict(Male)
dict(Female)

We can save the program on disk, giving it a unique name of our
choice, as follows:

&. Save tudors

This copies all the sentences of the current program into a file named
"TUDORS.LOG". (The name given in the Save command must be different from
the name of any relation in the program.) The sentences still remain in

the data base. However, on a subseq ent occasion, we can retrieve these
sentences and have them automatically added to any data base simply by
typing:

&. Load tudors

Simple editing

1.1 Developing a simple data base program

Simple editing of the PROLOG progium is performed by deleting a whole
sentence and adding a new One. Let us suppose that the name of

clizabeth's mother has been misspelt, and that it should be "Anne'. The
simplest way to remove the sentence "Ann is=the-mother-of Elizabeth” 1s to
use:

E. Delete(Ann is-the-mother-of Elizabeth)

This use of Delete is the opposite of Add. If the sentence given as the
argument to the command is in the program, the Delete command removes it.
If it is not in the program, you will get a "?" response. You will get
this response if there is not an exact match between the sentence to be
deleted and some sentence of the current data base.

There is another way to delete a sentence, we can refer to it by its
position in the Llisting of the sentences for its relatiora In the Llisting
the relation "is-the-mother-of" given above the sentence "Ann is-the-
mother-of Elizabeth" was the third sentence to be listed So, instead of
giving the sentence to delete we can use

. Delete is-the-mother—of 3

Having deleted the sentence, using either form of the Delete command,
weé can add the new version:

&.Add(Anne is-the-mother-of Elizabeth)
If we now List the “is-the-mother—of" relation we will get:

B.List is-the-mother-of

Elizabeth-of-York is=the-mother—of Henry8
Katherine is-the-mother-of Mary

Jane is-the-mother-of Edward

:me is-the-mother-of Elizabeth

The new sentence

Arne is-the-mother-of Elizabeth

is now listed at the end of the relation because it was entered last.

Let us now correct the spelling of "Ann" in the "Female" relation.
This time we will replace the sentence Female(Ann) with Female(Anne). We
do this by deleting the old sentence and adding the new one so that it
occupies the same position in the Listing of “Female" sentences. The

following are the commands (those preceded by "8.") and the PROLOG
responses.

B.List Female
Female(ELlizabe th-of=York)
Female(Katherine)
Female(Mary)

Female (Elizabe th)
Female(Ann)

Female(Jane)

B.Delete Female S

1.1 Dpeveloping a simple data base program

EB.Add & (Female(Anne))
B.List Female
Female(ELizabeth-of-York)
Female(Katherine)
Female(Mary)

Female (ELizabe th)
female(Anne)
Female(Jane)

‘.

We have used a variant of the Add command in which the position after which
the sentence should be added is given. Add 4 (Female(Anne)) puts it after
the fourth sentence about the Female relation, which is where the deleted
sentence was. For a more sophisticated way of editing programs see the
"Edit" command in Appendix B.

Summary of program deyelopment commands

Add

(i) Add (sentence)
will add the 'sentence' argument to the end of the List of sentences
for its relation

(i1i) Add n (sentence)
will add 'sentence' after the n'th sentence in the List of sentences
for its relation. If n =0, the new sentence will ve placed in
front of these sentences.

Delete
(i) Delete (sentence)
will remove 'sentence' from the data base.
(ii1) Delete relation n
will remove the n'th sentence in the current List of sentences for
‘relation’.
List
(1) List relation
Lists all the sentences for relation
(i) List ALL
Lists all the sentences in the current program.

Saye

Save name
will save all the sentences of the current state of the program in a
file "name.log". “name'" should be different from any relation of
program.
kil

Kill relation
deletes all sentences for 'relation'.

Quit
ar.

this command exits from PROLOG to CP/M. In general you should save

your program before using it.

If you are following the text with a .computer, at this stige you snould
save the program that has been developed, using the command:

10

1.1 Developing a simple data base program

)

E.Save tudors

This and following exercises can be carried out with or without a computer.
1. Using the program developed above

a. Show how' you would edit the program to change the spelling of
“Katherine" to "Catherine" in each sentence in which it appears. Do
this in such a way that the new sentences are in the same
positions in the program as those they replace.

b. Add the two simple sentences necessary to express the information
that Henry? had a son called Arthur. Add these new Sentences SO
that they will be Listed at the beginning of the sentences for their
relation. CHint: if you give the sentence number 0 in the Add

command it will add after the 0'th sentence and so place the new
sentence at the beginning.

2. Set up a database of simple sentences describing countries in different
continents using the following vocabulary:

Names of Individuals

Washington-DC USA North-America
Ottawa Canada Europe

London Uni ted-Kingdom Africa

Paris Italy

Rome Nigeria

Lagos -

Names of Relations

capital-of
country=in

As examples, your data base should contain the sentences:

Washington-DC capital-of USA
USA country=in North-Ameérica

Save this data for future use using the Save command.
3. Set up a data base of simple sentences describing the opooks of
different kinds written by different people, wusing the follcwing
vocabulary:

Names of Indiviiuals

TomSawyer Mark-Twain
For-whom-The-Bel L-Tolls Ernest-Hemmingway
Oliver—Twist Arther-Miller
Great-Expectations CharlLes=Dickens
Macbeth WilliamShakespeare
Romeo~And=Juliet
Death=0f-A-Salesman Novel

Play

Names of Relations

Ly pe

1.1 Dbeweloping a simple data base programs

written-by
writer

For example, you should have the sentences

Tom-Sawyer writtenby Mark-Tuain
TomSawyer type Novel
writer(Mark-Twain)

in your data base. Save this data for future use with the Save command.

1.2 Queries

We now look at how a PROLOG program is queried. This is done via one
of the question commands of PROLOG. The gquestions presented in the
example are based on the Tudor family relationships data base that we
developed in 1.1. If this data base is not in the computer (test this by
trying to List the sentences for the "is-the-father-of" relation) load it
with a Load tudors command.

Lonfirmation

The simplest form of query is the '"Does" query which asks for confir
mation of some fact. We explain this and other queries by posing some
example questions in '"logicised' English. Below the questions we give the
PROLOG equivalent and the answers given by the computer. A brief explana~
tion is provided of points arising from the query.

English: Is it the case that Henry8 is the father of ElLizabeth?
PROLOG: &. Does(Henry8 is-the-father—of Elizabeth)
YES

The query is asking about a particular instance of the "is-the-father-of"
relation. As there is a match between the query sentence and the sentence

Henry8 is-the-father-of ElLizabeth

in the data base, the answer is "YES", an abbreviation for "Yes, fact is
confimed".

English: Is it the case that Katherine is the mother of Edward?
PROLOG: . Does(Katherine is-the-mother—of Edward)

NO

In this case there was no match between the query sentence and a sentence
in the program, so the answer is "NO", short for "No, fact is not
conf irmed".

English: Do you know who the mother of Mary is?
PROLOG: L. Does(x 1s-the-mother—of Mary)
YES

In this query we are trying to find out whether the data base contains a
w_n

sentence that records who the mother of Mary is. The "x" stands for the
mother, whose name is unknown to us. PROLOG searches the criences af the
"is-the-mother—of" relation, looking for a simple sentence ot tne form

X 1s=the-mother-of Mary.

12

1.2 AQueries

)

It finds the simple sentence
Katherine is—the-mother-of Mary

and so returns the answer "YES'". It does not tell us that the unknown x is
Katherine. To retrieve this information we use a different form of query.

Variables ip gueries

The Letters x, y, 2z, lower or upper case, followed by one or more
decimal digits, e.g. x1, y31, are the variables of micro-PROLOG. The varia-

ble in a query 1s a very simple concept: it stands for some unknown
individual. It is a place holder, ready to be filled in by a name.

Variables are the formal equivalent of pronouns in English. Where in
English we would say something, someone, it or he, in PROLOG we use a
variable. Just as pronouns are never used in English as proper names, so
in PROLOG variables can never be used as proper names. You cannot enter a
fact about an individual whose name is X! The variable names were chosen
so that this problem is highly unlikely to arise.

Data Retrieyal

To retrieve the names of unknown individuals we use the “Which" form
of query.

English: Who is the x such that x is the father of Edward?
PROLOG: &. Which(x x is-the-father-of Edward)

Answer is Henry8

No (more) answers

A "Which" query has two arguments. The second argument is a query
pattern, a sentence which contains variables. Here it is the pattern

x is-the-father—-of Edward
The first argument is the answer pattern Here it is the single variable
x of the query pattern. More generally, the answer pattern is a LlList of
variables that appear in the query pattern.

In answering the query micro-PROLOG finds all the instances of the
Query pattern that are facts that can be confirmed. [n doing this it
'fills in' the variable slots of the query with the names of individuals,
which are then printed in accordance with the answer pattern In this
case, there is only one instance of :

X is-the-father-of Edward

that can be confirmed. This is the instance with x = Henry8. It is
confirmed because

Henry8 is-the-father-of Edward
15 a sentence of the data base. S0 we get printed out
Answer is Henry8

followed by the message thit thore are no mOre iNSwers,

Jueries with several component simple sentences can be expressed

13

1.2 Queries

directly in both "Does" and "Which” form.

English: Was Henry? the father of Henry8 and of (dwara?
PROLOG: &. Does(Henry? is-the-father-of Henry8 und
Henry? is-the-father-of Edward)
NO

For a compound question prefaced by 'Does” to receive the answer YES all
of the simple sentences must receive the answer YES. Otherwise the answer
NO is returned. In this case the second sentence is not contained in the
data base, hence the answer to the combined query is 'NO".

Notice how in PROLOG we must make explicit the questidn "was Henry?
the father of Edward"” that is implicit in the English phrase "and of
Edward".

English: Who had Henry? as a father, and was the father of Elizabeth?
PROLOG: &. Which(x Henry? is-the-father—of x and
x is-the-father—of Elizabeth)

Answer is Henry8
No (more) answers

English: Who are the daughters of HenryB8?

PROLOG: &. Which(x Henry8 is-the-father-of x & Female(x))
Answer is Mary
Answer is Elizabeth
No (more) answers

Notice that in this query we have used “8" as an abbreviation for “and".
This is an abbreviation that PROLOG6 understands.

English: Who is a mother (of somebody)?
PROLOG: &. Which(x x is-the-mother—of y)
Answer is Elizabeth-of-York
Answer is Katherine
Answer is Jane
Answer is Anne
No (more) answers

English: Tell me all the father, son pairs that you know about?
PROLOG: Which((x y) x is—the-father—of y & Male(y))

Answer is (Henry7 HenryB8)

Answer is (Henry8 Edward)

No (more) answers

In this query the answer pattern is the List “(x y)" of both variables
appearing in the query pattern. They are the unknown father and unknown

son referred to in the query pattern. Note that we must use the
vacabulary of the program. The program does not include any facts that

directly describe the father-son relationship, so we describe what we want
using "is-the-father—of" and '"Male".

14

1.2 AQueries

v/

%
Summary 9f guerying commands

Does

Does(simple-condition Land ... simple-condition)
This query checks to see if rhe given (possibly compound) conditicn
can be confirmed using the facts in the data base. It responds
“YES" if it can, and 'NO" if 1t cannot confirm the juery.

which

Which(P simple-condition [and ... simple-condition)
This query returns the answers to the query defired by the simple
condition(s). Each answer is in the form: "Answer is P' " where P'
is the answer pattern P with the variables replaced by the names
that satisfy the condition After all the answers have been found

then the message “No (more) answers” 1s displayed at the console.

One

One(P simple-condition [and ... simple-condition)
The One query is similar to the "Which" query except that after each
of the solutions is found the system prompts for input. If you
respond with "C" then the next solution is found, with any other
response the evaluation stops.

fFor example, we might ask the system for just one child of

Henry8:

E.One(x HenryB is-a-parent-of x)

Answer is Mary.C

Answer is Elizabeth.F

g.

Exer

o
[
n
1]
-
]
n

1. Using the Tudor royal family data base developed in this chapter, give
the appropriate answers to the following PROLOG queries:
a. boes(Jane is-the-mother-of Elizabeth)
b. Does(Henry? is-the-father—of x)
€. Which(x Henry? is-the-father—of x)
d. boes(x is-the-mother—of Mary and Female(x))
e. Which(x HenryB is-the-father-of x and Male(x))
f. Which((x y)x is-the-father—-of z and z is-the-father-of y)

2. Using the vocabulary of the Tudor royal family data base, express these
English questions as PROLOG queries:
a. Was Katherine the mother of Euward?
b. Who 1s a father? _
C. Was Jane the mother of anybody whose father was Henry7?
d. Who had HenryB as a father and Katherine as a mother?

3. Using the geographical data base started in Exercise 1, express these
English questions as PROLOG queries:
a. Is Rome the capital of France?
b. Is Washingtun—DC the capital of a country in Europe?
c. What are the capitals of countries in Europe?
d. Is the capital or Italy known?
€. for which North-American countries is the capital known?
t. For which continents are the capitals of countries known?

4. Using the bouss dJdata base started in Exercise 1-1, give the
Jppropriate answers tu the following PROLOG queries:

a. boes(liver=Tuist writtemby William=Shake.peare)
b. Does(x writt:n-by Mark-Twain and x type Novel)

15

1.2 AQueries

c. Which((x y) x type Play and x written-by y)
d. Which(x x type Novel and x writtemby Charles-Dicker .
e. Which(x y written-by x)

1.3 Arithmetic

As we have remarked, PROLOG 1s not suited for upplications which need
a Lot of routine numerical work. However, we can do simple integer
arithmetic using the three primitive relations SUM, PROD and LESS.

We use these relations in exactly the same way as we use relations

described by sentences of the data base. AlLthough each reLat‘or_\ is imple-
mented in machine code, so as to make use of the hardware operations of the

machine, we can think of them as being defined by an implicit data base of
simple sentences.

SUM Relation

The SUM relation is a three argument relation such that
SUM(x y z) holds if and only if z = x + y.

The implicit data base describing the relation contains sentences such as
SUM(2 3 S) and SUM(-3 10 7). We do addition & subtraction by querying the
implicit data base.

Uses of the SUM relation
Checking:

&. Does (SUM(20 30 50))
YES
Adding:

&. Which(x SUM(30 -2 x))
Answer is 28
No (more) answers

Subtracting:

&. Which(x SUM(x 3 15))
Answer is 12
No (more) answers

or:

&. Which(x SUM(3 x 15)
Answer is 12
No (more) answers

Restrictions on SUM gueries

argument. This constraint would not apply if there was a real data base
for the relation. It applies because the micro PROLOG system simulates the

data base and for efficiency supports only a restricted range of query
patterns. This means that a query such as

&. Which{(x y) SuM(x y 10))

will not be answered. It will result in a "Controul Errur' message. Try

1.5 Arithmetic

PROD relation
The PROD relation 1s such that

PROD (x y 2) holds if z = x * y

Uses of the PROD relation
Checking:

E. Does (PROD(3 4 12))
YES

Checking if one number divides another:

&. Does(PROD(3 y 9))
YES

8. Does(PROD(3 y 10))
NO

Multiplying:

B. Which(x PROD (5 & x))
Answer is 20
No (more) answers

Exact division:

B. Which(x PROD(x 2 1))
Answer is 5
No (more) answers

We must be careful with the use for divisions If there is no exact
division we get no answer.

&. wWhich(x PROD(x 3 17))
No (more) answers

For such a division we need to use a special four argument form of the PROD
relation This is the safe form to use for every divisionn The extra

argument of the relation represents the remainder on division

Inexact division:

E. Which((x y) PROD(3 x 17 y))
Answer is (5 2)

No (more) answers
Restrigtion on PROD gueries

The restrictions on the use of the three arqument form of PROD are the
same as those for SUM. At most one argument can be a variable, but this
can be any of the three arguments. This covers the use for multiplication
and exact division. The four argument form can only be used for Jdivision
Thus the Last argument, the remainder argument, must always be a variaule
and the second to last aryument, the number to be divided, must be an

integer. The divisor can be given as either the first or second argument,
but then the other argument must be a variable representing the wunknown
quotient. So the above division query could have been given as:

17

1.3 Arithmetic

&. Which((x y) PROD(x 3 17 y))
Answer is (5 2)
No (more) answers.

The uses PROD(x M N y), PROD(M x N y), M and N integers, will both
return x and y values such that

x* M+ y= N, y<M

LESS relation

The primitive LESS relation can only be used for checking. LESS(x y)
holds if x is Less than y in the usual ordering of the integers.

Uses of LESS

&. Does(3 LESS &)
YES

E. Does(4 LESS 3)
NO

LESS can also be used for comparing two words. The ordering used is
that of the dictionary. LESS(x y) holds for words x and y if x comes
before y in a dictionary. Example:

&. Does(FRED LESS FREDDY)
YES

&. Does(ALBERT LESS HAROLD)
YES .

&. Does(SAM LESS BILL)
NO

Exercise 1-3

1. Answer the following PROLOG queries:
a. Does(SUM(9 6 15)?
b. Which(x SUM(4 18 x))
c. Which(x SUM(x 23 40))
d. Does(9 LESS 10)
e. Does(SUM(9 B8 x) and x LESS 19)
f. Which(x PROD(9 7 x))
g. Does(PROD(11 8 80))
h. Which({x y) PROD(4 x 14 y)

2. Write PROLOG queries to ask the following English questiocns
a. What is 9 plus 77
b. What is the remainder when 65 is divided by 77
c. What is the result if you add 29 and 53, and divide the total by 2?

d. Can 93 be exactly divided by 57
e. Is the result of multiplying 17 and 3 Lless than 507

1.4 Eyaluation of queries

This is an appropriate point to say something about the «ay 0 which
PROLOG evaluates queries.

18

1.4 Evaluation of queries

)

When querying a data base of simple sentences we can, for the most
part, fignore the way thal queries are evaluated. However, we shall see
that the ordering of the conditions in a compound query can effect the time
that PROLOG takes to answer the query. Chouusing an ordering that
facilities the evaluation is part of the pragmatics of using PROLOG.
Moreover, for certain compound queries, for example the query:

Which(x PROD(37 51 y) & SuM(y 73 x))

we must know about the order of cvaluation of the cemporent conditions.
Does PROLOG answer the SUM or the PROD query first? If it is the SUM query
we will get an error message because there are two unknown arguments y and
X If 'PROLOG answers the PROD query first there will be no problem provi-

ding the answer obtained for the unknown y is 'passed an' to the SUM query
before it is answered. Fortunately this is exactly what PROLOG does.

Evaluagion of simple “Does” gueries
The simplest form of query is the "Does" query of the form
Does(S) where § is a simple sentence

PROLOG evaluates this query by searching through the sertences in the
data base for the relation of the sentence S. It does not search the
whole data base. PROLOG stores the sentences about each relation in a
List, the ordering of the sentences on the List being the order in which
they are displayed by the List command. PROLOG runs down this list, compa~
ring § with each sentence in turn. If it finds an exact match between §
and a sentence in this list it abandons the search and gives the answer
"YES'". If it reaches the end of the List of sentences without finding a

match, it displays the ‘NO" answer.
Example 1
Does(Male(Henry8))
The sentences in the Tudors data base about Male are stored in the order
Male(Henry?7)
Male(Henry8)
Male (Edward)

because this is the order in which they are Listed by the "List Male"
command. First PROLOG compares the query sentence

Male(Henry8)
with the sentence
Male(Henry7)
that heads the List. The sentences do not match because "HenryB8" and

"Henry?' are aifferent names. It then moves on to the next sentence. We
now have an exact match, 50 PROLOG abandons the search and gives the answer

“YES™.
If we pose the query

Does (Male (Edward3))

PROLOG compares Male(Edward3) with each sentence in turne In no case is

1.4 Evaluation of queries

there an exact match. So we get the answer "NO".
“Does” guery with 3 sentence patterp

A "Does" query of the form

Does(S) «here S i1s a simple sentence pattern

is answered in much the same way. The only difference is that when Looking
for an exact match PROLOG is allowed to give each variable in § a yalue
which is the name of some individual.

Example 2
soes(x is-the-father—of Elizabeth)

The sentences for the is-the-father—of relation are stored in the order

Henry? is-the-father—of Henry8
HenryB is-the-father—of Mary
Henry8 is—the-father—of Elizabeth

Henry8 is-the-father—of Edward
PROLOG compares the sentence pattern
x is-the-father—of Elizabeth
with each sentence in turn. There is an exact match «ith the third

sentence when the variable x has the value "Henry8'. At tnis point PROLOG
abandons the search and gives the answer "YES".

Example 3
Does(x is-the-father-of x)

This query is asking whether the data case contains any fact that says that
someone 15 their own father. PROLOG will give us the answer 'NO", but it

is instructive to see why.
PROLOG tries to match the sentence pattern

x is-the-father—of x

with each of the above sentences. It gets a partial match with the first
sentence

Henry? 1s—the-father-of Henry8

by giving x the value “Henry?”. This makes the sentence pattern become the
sentence:

Henry? is-the-father-of Henry?

But it is not an exact match because by giving x this value PROLOG 1is
implicitly replacing both occurrences of x by “Henry?'. This creates a
mismatch between the names of the childrenn The same thing happens in the
attempt to match all the other sentences of the data base. S0 the query 1S
answered, 'NO.

Now consider the query

poes(x is-the-father—of y)

20

1.4 Evaluation of queries

)

In answering thi. jquery, PROLOG does not encounter the same rroblem because
1T can give the Mfferent varitables x and y different values. In fact

there is an immediate match with x=Henry? and y=Henry8.
In answering a query PROLOG can give different variables different
values, but it may also give them with the same value. Thus, if we had a

data base that contained just the single "Likes" sentence
Tom Likes Tom
then both

Dbes(x Likes x)
and

Does(x Likes y)

would be answered affirmatively. In the second query we are asking whether
the data base knows anything about some x Liking some y. It does, when x
and y are the same person Tom. This convention that different variables
can stand for the same unknown person PROLOG inherits from symbolic Logic.
To insist that different variables name different individuals we must add
an extra condition that says just that. We shall see how we can do this in
chapter 3.

The simple "Which" query is of the form

Which(P §) where P is an answer pattern and S is a simple .entence
pattern.

PROLOG takes the sentence pattern S and compares it with each of the
sentences for 1ts relation in the data base. A match of S with a sentence
in the data base results in each variable of § being given a value. Ffor
each match the answer pattern P is displayed with its variables replaced by
the values given for that match.

Example 4
&. Which(x HenryB is-the-father—of x)

The sentences of the data base are compared with the query pattern in
the Listing order given above. There is no match with the first sentence

Henry? is-the-father—of HenryB

because the fathers "HenryB8'", 'Henry/" do not match. There is a match with
the second sentence,

Henry8 is-the-father-of Mary
providing x=Mary. Because it has found a sentence that matches the query
pattern PROLOG has found one answer to the gquery. It therefore prints out
the answer pattern, x, with x replaced by the value "Mary'. We get the
answer:

Answer 1s Mary

The evaluation continues with the attempt to match the query pattern
“"HenryB is-the-father—of x" with the remaining sentences:

1.4 Evaluation of queries

——

Henry8 1s-the-father—of Elizabeth
denryB is-the-father-of Edward

There is a match with the first of these providing z Flizaweth., S0 we get
the second answer:

Answer is Elizabeth

There is also a match with the Last sentence, providing x=Edward. This
gives us the last answer

Answer 1s Edward .
No (more) answers

Evaluation of compound "Which” gqueries

We will illustrate the way that PROLOG answers compound queries by two
examples.

Example 5
&. Which(x Henry8 is-the-father-of x & Male(x))

This query is a restriction on query of example 4 to find only the male
children of Henry8. What PROLOG has to do is to find all the x's such

that both

Henry is-the-father x
and
Male(x)

are sentences of the data base.
It finds all these x's by initially ignoring all but the first
condition of the compound query. It starts by Llooking for all the «x's

that satisfy
Henry8 is-the-father-of x
We know that there are three sentences of this form, the first one being

HenryB8 is-the-father—of Mary

PROLOG matches the query condition with this sentence and finds a possible
anawer, x=Mary, for the compound query. At this Joint PROLOG interrupts
the search for solutions to the first condition 1n order to see whether
this value for x is compatible with the second condition of the query, the
condition Male(x). It sees whether it can find a successful match for
Male(x) with x already given the value "Mary". This is equivalent ro
finding a successful match for the query condition -

Male(Mary)

It tries to confirm this condition by searching the List of sentences
about the "Male" relation. Since it does not find the sentence
Male(Mary), it cannot confirm the extra condition un x, when x=Mary. It
therefore returns to its interrupted search for all the solutions to

HenryB8 is-the-father-of «x

It finas the pext solution to this with the match against the sentence

22

1.4 Evaluation of queries

Henry8 is-the ..lher—of Elizabeth

This gives the value x=ElLizabeth. Again, PROLOG interrupts the
search for other solutions to this first condition to check if Male(x) can

be confirmed when x=Elizabeth. That is, it checks to see if the condition
Male(ELizabeth) can be confirmed. This attempt also fails. So PROLOG

again returns to its interrupted search for all the x values that satisfy
the condition

"HenryB is-the-father-of «x",
It finds the next value with the match against
Henry8 dis-the-father-of Edward

which makes x=Edward. Interrupting the search once more, PROLOG tries to
confirm

Male(x) (with x=Edward), which is Male(Edward).

This time it succeeds, for the sentence Male(Edward) is in the data base.
PROLOG has at last found an answer to the compound query, which it prints

out.
Since we want all solutions, PROLOG once more returns to its

interrupted search for x's that satisfy “Henry8 is-the-father-of x'.

There are no more because PROLOG has already looked at all the sentences
that match this pattern. It therefore prints out '"No (more) answers'.

Example 6
E. Which((x z) x is-the-father-of y & y is-the-father—of z)

This is a request for all the pairs of people in the paternal grand-
father relation The answers to this query are the names assigned to x
and z for each golution to the compound condition query pattern:

x is=the-father-of y & y is-the-father-of z

A solution is an agsignment of values to variables in this query pattern
such that each of its sentences become facts in the data base. In this
case, it is an assignment to x, y, z such that

x is=the-father-of y

and)
y is-the-father-of z

are sentences of the data base.

Again, PROLOG searches for all the solutions to the compound query by
initially ignoring all but the first condition

x is-the-father-of y.

It starts by Looking for all the solutions to this condition. It
finds the first solution with the match against

Henry7? is-the-fathcr-of Henry8
which makes x=Henry?, y=HenryB. At this point PROLOG interrupts its search
for all® the solutions to the first condition It now looks for all the

solutions to the rest of the query which are compatible with this solution
(x=Henry7, y=Henry8) to the first condition In other words, it Looks for

23

1.4 Evaluation of queries

all solutions to the condition)
y is—the-father-of z (with x=Henry7, y=Henry8)
which is the condition
Henry8 is-the-father—of z.
There are three solutions to this:
z=Mary, z=Elizabeth, z=Edward.
S0 PROLOG has found three solutions:
x=Henry7, y=Henry8, z=Mary
x=Henry?, y=Henry8, z=El izabeth
x=HenryT, y=Henry8, r=Edward
to the compound condition
x is-the-father—of y & y is-the-father—of z.

As jt finds each sblution it prints out the answer pattern (x z) with the
variables replaced by their solution values. Hence PROLO6 gives us:

Ansuer is (Henry7 Rary)
Ansuer is (Henry7 Elizabeth)
Aswer is (Heary? Eduward)

as its first three ansuers.

Since PROLOG has found all the ansuers to the second condition "y is—
the-father-of z* for y=Henry8 it can only find more answers to the query by

returning to its interrupted search for all solutions to first condition *x
is-the-parent-of y". The next solution it finds is

x=Hernry8, y=Rary
produced by the match with
Hernry8 is-the-father—of RMary.

PROLOG again interrupts the search for all the solutions to "x is-the-
father-of y*, to find all the solutions to the remaining conditions

y is—the-father—of z (with x=Henry8, y=Mary)
which is
Rary is—the-father—of z
There are no solutions to the condition for there are no matching sentences

in the data base. So the x=Henry8,y=Mary solution to the first condition
does not produce any solutions to the compound query.

Once more PROLO6 returns to its search for solutions to “x is-the-
father—of y=. The Last two solutions it tinds are:

x=Henry8, y=Elizabeth
x=HernwryB, y=Eduward

OI:I finding each solution PROLO6 interrupts its search to Look for all solu-
tions of y is-the-father—of z with the y it has found The tirst solution

24

M e — e c—

. -

——— p——————— S —— o —

1.4 Evaluation of queries

_)

causes it to Look . -“all solutiuns to
Elizabeth is-the-father-of z,

and the second causes it to Look for all solutions to
Edward is-the-father-of z.

In each case, there are no solutions; there are no values for z that make
them sentences of the data base. S0 PROLOG finds no more answers to the

original query.

General eyaluation method

From these two examples we can see that micro-PROLOG satisfies the
conditions of a compound query from Left to right. When it finds a
solution to the first condition it passes the solution on to the following
condi tions. It then finds all the solutions to the remainder of the query
that are compatible with the solution to the first condition it has just
found. Fo tind more answers, it returns to Look for the next solution to
the first condition. It then finds all the solutions to the remainder of
the query that are compatible with this second solution, and so on. The
evaluation stops when micro-PROLOG can find no more solutions to the first
condition The evaluation method can be summarised by:

To find all the solutions to a compound query:
for each solution to the first condition
(i.e. for each successful match of the first condition
with a sentence in the data base)
find all the compatible solutions of the remainder of the query.

If the remainder of the query is a compound condition this method of
evaluation again applies. Notice that this means that the first condition
in which a variable appears is the one that is used to find different

possible values for the variable that are passed on and checked by the
Later conditions of the query.

Eyaluation of compound “Does” gueries

Thé evaluation of a '"Does" query with a compound condition containing
variablés proceeds in exactly the same way as that of a compound "Which"
query. PROLOG starts off as though it were trying to find all the
solutions for the conjunction of conditions given in the query. It stops
as soon as it finds one solution to the query, giving the answer "YES".
If it completes the search for all solutions without finding one, we get
the answer "NO".

So, to answer a 'Does" query such as

B. Does(Henry is-tne-father—of x & Male(x))

PROLOG will again use the first condition, HenryB8 is-the-father-of x, to
tind values for x that might satisfy both conditions of the query. As it
finds each x satisfying this condition, it interrupts the search to check
whether Female(x) can be confirmed for the x that has ween found. If it
can, it'stops and gives us the answer "YES'. If it cannot be confirmed,
PROLOG returns to search for the next child of Henry8.

A “Does" query in which the compound query has no vdrisbles is checked
in the same Left to right fashion. In this case, since there are no
variable values to find, it becomes a check to see if each query condition
Is a sentence in the data base. It checks them one at a time, in the left

25

1.4 Evaluation of queries

v

to right order in which they are given
Exercises 1:4

1. We will add further sentences to our geugraphical database, giving
information about the latitude and longitude of each city, using the
form

city Llocation (latitude Longitude)

with figures given in degrees. Figures Narth and West are given as
positive integers, figures South and East as negative inteYers.

Washington-DC Location (=77 38) (3% 13;

Ottawa Location (=76 45) (4G
London Location (51 0
Paris Location (48 =2)
Rome Location (41 -12)
Lagos Location (6 -3)

Given the PROLOG queries that correspond to the following English
questions

da. Which cities are North of London?

b. Which cities are West of Rome?

c. Is there a European country whose capital is North of Rome and South
of London?

d. Which countries in Europe have capitals that are East of London?

e. In which country and continent is there a city that is South and West
of Rome?

2. 1 have been sent on a shupping expedition, with a database describing
the financial situation.

Wallet contains 98
Cheese coasts

Bread costs 40
Apple costs . 12

Obtain answers to the following questions, using PROLOG queries:

a. How many apples can I afford to buy?

b. Can I afford to buy the bread and the cheese?

c. How much is Left in my wallet after I have bought the cheese and one
apple?

d. How much more money will I need in order to buy five apples and three
Loaves of bread?

3 Add information about the year of publication to the books data base
using sentences such as:

Oliver-Twist published 1849
Great-Expectations published 1853
Macbeth published 1623

Guess the dates if need be.

Puse the following as PROLOG queries:

a. MWas Oliver-Twist published in 1850?

b. What was published in 16237

c. When was TomSawyer published?

d Were Oliver-Twist and Great-Expectations publishea 1n the same

26

1.4 Evaluation of queries

)
year? ’
e. Was Macbeth published before Romeo-And-Juliet
L £ wWhat was published before For-Whoum The-Bell-Tolls
9. Was anything published before 16007

1.5 Efficient gueries

Now that we know how PROLOG evaluates queries, particularly compound
queries, we can see that the way in which we pcse a query can effect the
efficiency with which PROLOG finds the answers. Thus,

&. Which(x Henry8 is-the-father—of x and Male(x))
and

&. Which(x Male(x) and Henry8 is-the-father-of x)

are logically equivalent queries and will produce exactly the same set of
ansuers. However, in answering the first query, PROLOG will use the
condition, Henry8 is-the-father-of x to find values for x that it checks
with thg Male(x) conditionn In answering the second, it uses the condition
Male(x) ‘to find the different values for x which it then checks with the
Henry8 4is-the-father-of x condition. So the queries are not behayiorally
equivalént. Since, in a more general data base, there will be far fewer
children of Henry8 than males, the first query will be answered more
efficiently. For each child of Henry8 it will do a search through all the
sentencés for "Male" relationn In evaluating the second query, for each
male recorded in the data base it will have to search through all the
sentences for the "is-the-father-of" relationn As a general rule, when a
query has two or more conditions on a variable we should put first the
condition with the fewest number of solutions.

We must also take into account the order of evaluation of compound
queries when we use relations which have restrictions on their use, such as
the arithmetic primitives. For example, the queries:

Which(x PROD(17 3 y) and PROD(y 3 x))
Which(x PROD(y 27 x) and PROD(17 3 y))

are logically equivalent but PROLOG will only give us an answer to the
first query. We get an answer to this query because it first finds the
only solution y=51, to the PROD(17 3 y) condition It then passes this y
value en to the second condition, PROD(y 27 x), which becomes
PROD(51 3 x). For this it finds the single solution x=153, which it then
gives as the only answer to the query.

In trying to answer the second query, PROLOG encourters the condition
PROD(y 27 x) first. This it cannot answer because of the restrictions on
the use of the PROD relation. So, when we use an arithmetic primitive in a
compound query we should place it after other conditions that can be used
to find values for its variables.

2. Basic Logic Programming - using gereral rules

Often we want to ask the same query many times, in which case it
becomes tedious to be always repeating the same lung Qe tiuf AlLso we
want to be able to draw conclusions from the basic infurmation in the data

base. For example, that Henry7 is the father of Henry implies that he is a
parent of Henry8. We would Like to be able to conclude "Henry? is-the-

parent-of HenryB" without having to have this as an explicit fact in the
data base. To be able to draw conclusions and to abbreviate queries we
need to use rules.

2.1 Turning queries into rules .

If we Look at exercise 1-2.1(f) we see that we are really asking about
the paternal grandfather relation:

Which((x y) x is-the-father-of z and z is-the-father—of y) (A)

In a sense the query defines this relation, the pairs (x y) which are
produced as answers to the query are in the "paternal-grandfather-of"

relation.
If we often wanted to find instances of this relation it would be more

convenient if the data base recorded all the instances

(Henry7 Mary)
(Henry? Elizabeth)
(Henry7 Edward)

that are given as answers to the query. A straightforward way to do this,

is to explicitly record them by adding the simple sentences about the
“paternal-gr ather—of” relation:

Henry7 paternal-grandfather—of Mary (1
Henry? paternal-grandfather-of Elizabeth
Henry7 paternal-grandfather—of Edward

We could now get the effect of query (A) with the simpler query
Which((x y) x paternal-grandfather-of y) (8)
There is an alternative to this explicit recording of the instances of

the new relation defined by a query. We can add just one sentence that
Links the new relation to the query pattern that defines it. This new

sentence is a rule that gives an implicjt definition of the new relation
The rule is expressed using a new form of sentence, the copditional
sentence. The “Which® query:

Which((x z) x is-the-father-of y and y is-the-father-of z)
becomes the rule:

Xx paternal-grandfather-of y if x is-the-father-of 2z (2)
and z is-the-father-of y

A conditional sentence is "Add"ed to the program in just the same way that
ordinary simple sentences are added:

B.Add(x paternal-grandfather-of y if x 1s-the-father-of z
1. and z is-the-father—of y)

The rule (2) is equivalent to the set of simple sentences (1), When

28

2.1 Turning queries into rules

used to answer queiy (B), it has the effect of transforming it into our
original query (A).)
The descriptive reading of the rule is:

x is a paternal grandfather of y if x is the father ot z and
2 is the fatner of y, for some z.

The prescriptive or procedural reading reflects the way it is used.
We should read it as:

To answer a query of the form x paternal-grandfather-of y,
answer the compound query: x father—of z and z father—of y

Using seyeral ryles

Sometimes it takes more than one "Which" query to completely 'cover' a
relation For example if we want a List of parents and children, because
we do not have this information explicitly stated, we would have to use the

two queries:

which({x y) x is-the-father-of y))
and
Which((x y) x is-the-mother—of y) ()

We can reduce these queries to rules for the “is-a-parent-of" relation in
the same way we did for the “paterrnal-grandfather-of" relation Taking
(C) and D) in turn we get the two rules:

x 1s—a-parent-of y if x is-the-father—of y (3)
and

x is~a-parent-of y if x is-the-mother—of y (&)

Adding these to the program gives us two rules which together define
the “is—a-parent-of” relation Both rules contribute towards the defini=~

tion: there is no sense of exclusive definition In gen\eral, many rules can
contribute tosards a definition of a relation, and we can even describe a

relation by a mixture of facts and rules.
In technical English our two PROLOG rules can be read:

x is a parent of y if x is the father of y (rule 3)
and
x is a parenmt of y if x is the mother of y (rule &)

Providing the data base contains all the facts about the mother and father
relationships for some group of people, the definition of the "is-a=parent-
of" retation provided by these two rules is just as good as a set of simple

sentences giving all the facts about the relation micro-PROLOG uses the
rules to answer queries about the new relation The way they are used is

indicated by the following imperative reading of the two sentences:

To answer a query of the form x is-a-parent-of y,
answer the query: x 1s-the-father-of y.

To answer a gquery of the form x is-a-parent=-oft y,
answer the query: x 1s-the-mother-of y.

Each rule gives us a drffe ent way of answering quefies about the new
relation "is-a-parent-af", Together, they cover all the instances of the

retation implicitly aiven by the “is-the-fatner-ot", “is-the-mother—of"
facts of the data base.” Tnus, to answer the juery:

2.1 Turning queries into rules

)

Using the ftirut rule transtourms the query

Which(x x is-a-parent-of Elizabeth)

PROLOG will use both rules.
into:

Which(x x is=the-father—of Elizabeth)

and the second rule transforms it into:
Whichi{x x i1s-the-mother—of Elizabeth)
We therefore get the two answers:

Answer is Henry8
Answer is Mary

They come in this order, because the rule (3) was adoed before rule (4).

Changing yariables in rules
If we List the rules for the relation we get:

k. List is-aparent-of
X is—a-parent—of Y if X is—the father—of Y
X is-a-parent-of ¥ if X is-the-mother—of Y

_ Again the rules are listed in the order that they were added. But
notice that micro-PROLO6 has changed our Lower case "x" and "y™ to upper
case "X" and "Y". It can do this because the actual variable ndmes used
in a rule are not important. It can replace a variable, without affecting
the meaning of the rule, providing the replacement appears in exactly the
same position as the variable it replaces. micro-PROLOG changes variable
names but never violates this constraint. It actually 'forgets' the
original variable names and remembers only the positions tnat they.occupied
in the rule. :

Conditional Sentences

The rules we have used so far are examples of conditional sentences.
A conditional sentence is a sentence of the form

simple sentence if simple sentence [and ... and simple sentencel

A conditional sentence is an implicatjon. The conclusion (called the
conseguent) is the simple sentence on the Left of the “if". The candition
of the sentence (called the antecedent) is the simple sentence or a conjun

ction of simple séntences on the right of the "if"
Any sentence that contains variables is a rule. So far we have only
used simple sentences without variables and conditional sentences with

variables. The former we have called facts. We can have conditional
sentences without variables, e.g. ’

Bill Likes Jim if Jim Likes Bill,
and we can have simple sentences with variables, e¢.g
Bill Likes x - (Bill Likes everyone).

In the next chapter we shall have frequent need of these simple
sentence rules. For the time being we shall continue to use only facts

30

T —

2.1 Turning queries intu rules

(simple sentences)’wut variables) and conditional rules (conditional
sentences with variables).

The set of all the facts in a PROLOG program is its data base. The
conditional rules enable us to abbreviate queries by defining new relations
in terms of the relations of the data base. when queried about these new
relations PROLOG uses these rules to interrogate the data base.

Suppose we have a conditional rule of the torm
s if C

Let y1,...,yk be the variables of the sentence that only appear in the
antecedent C. We can read the rule as the implication:

S if C, for some y1,...,yk.

It is understood that each variable in the consequent S represents an
arbitrary individual. The conclusion S is true whenever the condition C
is true for some values of the variables y1,....yk.

Procedural reading

The procedural reading of the rule is:

to answer a query of the form S, answer the query: C.
Exercise 2-1

Als Using the Tudor royal family data base, add rules to define the follo
wing relations:
a. "is-maternal-grandmother-of"
b. “is-a-grandparent-of"
c. "is-a-grandchild-of"

2y Using the geographical example developed in exercises, complete these
rules:

a. x city-in Europe if
b. x North-of London if

C. % West=of ¥y if cuueue

3. Using the books example developed in exercises, express the following
information as rules addeu to the program:
a. A book i1s classified as tiction if it is a novel or a play.
b. Anything written by William Shakespeare or Charles-Dickens 1s a
ctlassic.
€. Any book published after 1900 1s contemporary literature.

4. Write a data base describing your own family tree, using appropriate
names of relationships.

Rules cdn use rule defined relationg

The relations that we have defined using rules can themselves be used
in rules to define further relations. We can build up a hierarchy of such
relations with the data base relations at the bottom. We can, for
instance, define the relationship "is-a-grandparent-of'. In semi-English
we would say:

i

2.1 Turning queries into rules

I

Somebody x is a grandparent of somebody y
if x is the parent of z and z is a parent of y, for some z.

We can add a conditional sentence to our program expressing this roie:
x is—a-grandparent-of y if x is—a-parent-of z and z 1s-a-parent-of y
The imperative reading of the rule is:

To answer a query of the form x is-a-grandparent-of y, y
answer the query: x is-aparent-of z and z is-aparent-of y
-

These rules make use of the “is—a-parent-of"” relation which is itself
defined by rules. This does not matter. PROLOG can use this rule defin-
ing the grandparent relation independently of whether the parent relation
is defined explicitly by facts in the data base, or implicitly by rules
It discovers which is the case, and behaves accordingly, when it reduces a
query about ™is-a-grandparent-of” to the compound query about "is-a-parent—
M-.

The program so far

Our program, from simple beginnings, has now grown somewhat. To
conclude its development at presént, let us Llist it in its current state,
to see what our changes have produced.

& List ALL

Henry7 is-the-father—of Henry8 \
Henry8 is-the-father—of Mary

Herwy8 is-the-father—of Elizabeth

Henry8 is-the-father—of Eduard

Elizabe th-of-York is-the-mother-of Henry8

Katherine is-the-mother—of Nary

Jane is-the-mother—of Edward

Anne is-the-mother—of Elizabeth facts
Rale(Henry7)

Male(HenryB8)

Rale(Edward)

Femal e(Elizabe th-of-York) ’
Female(Katherine) J
Female(Rary) 1
Female (Elizabeth) '
Female(Anne)
Female(Jane)

x paternal-grandfather—of y if x is-the-father—of z
and z is-the-father—of y
x is—aparent-of y if x is-the-father—of y rules
is—a—parent-of y if x is-the-mother—of y
is~a-grandparent-of y if x is—a-parent-of z
and z is-aparent-of y

Exercise 2-2

: = Give PROLOG6 rules that define
a. x is-the-grandfather—of y
b. x is-the-grandmother—of y

25 Answer the following PROLO6 queries about the Tudor royal family data
base:

52

L -

2.1 Turning queries into rules
)
a. Which(x x is-a-parent-of y)
b. One(x Henry? is-the-grandfather-of x)

c. Does(Henry8 is-a-parent-of x and y is-the grandfather—of x)
d. Which(x x {s-the-wmother-of y and Henry8 is-the-father—af y)

3 Give the PROLOG gueries that would bc_e needed to translate the

fol lowing English questions:
a. Who was Edward's paternal grandmother?

b. Who are the mothers of Henry7's grandchildren?

c. Did Katherine have a male child?
d. who was the mother of a male child of Henry8?

4. Using the geographical data base, express the following questions as
PROLOG queries:
a. What cities are there in Europe?
b. Is anywhere north of London?
c. Which places are north of London and west of Rome?
5. With regard to your books program, express the following questions as
PROLOG queries:
a. Which books are classics?
b. Who wrote books published before 19007

More on answer patterny

So far answers to queries have just been values for variables given in
the answer pattern of the guery. We can also have text printed out with
each answer. We simply insert the text in the answer pattern of the
query. As an example, consider the query:

English: What are the names of mothers and their children?
PROLOG: Which((x y) x is-the-mother—of y)

Answer is (ELizabeth-of-York Henry8)

Answer is (Katherine Mary)

Answer is (Jane Edward)

Answer is (Anne ElLizabeth)

No (more) answers

we just get the pairs of names, which is not very informative. It would
be better to get the message: :

Answer is (ELizabeth-of-York is the mother of Henry8) and
Answer is (Katherine is the mother of Mary) elC.

in which the inserted text "is the mother of" helps us to interpret the
answer. Each of these answers are instances of the answer pattern

(x is the mother of y).

To get the message, we use this pattern instead of the pattern (x y) of the
original query: J

PROLOG: Which({(x is the mother of y) # is-the-mother-of y)
Answer is (Elizabeth~of-York is the mother of Henry8)
Answer is (Katherine is the mother of Mary)
Answer 1s (Jane is the mother 'of Edward)
Answer is (Anne is the mother of Elizabeth)
No (more) answers

We have simply sdded teat to affect the form of our printed answer. The
text is only coincidentally similar to the query pattern "x is-a-mother—
of y". We can insert any text 1nto the Llist of variables of an answer

2.1 Turning queries into rules

pattern. It has no effect on the query evaluation The unly constraint
is that the variables must be separated from the text by spaces, I[f they
are not, they become part of the text and their values will not be printed.

2.2 Hoy querieg inyolying rules are eyaluated

We shall just consider the case of the evaluation of "Which" queries.
The other query forms are answered in exactly the same way. The only
difference is that for a "One" query we can exit the evaluation each time
an answer is found and for a "Does” query the evaluation is always ptopped
when one solution to the query condition is found. We shall also.review
the general method used by micro-PROLOG to find all the solwtions to the
conjunction of conditions of a compound query. This method applies whether
the relLations of the query are defined by a sequence of facts, by general
rules or a mixture of the two.

A compound Which query is of the form:

&.Which(P S and §'...)

where § and S§' are simple sentences. The query pattern § and $'... will
contain variables, some or all of which will appear in the answer pattern
P. What PROLOG must do is find all the solutions to the compound condition
It must find all the different ways in which the variables of the c,-pomd
condition can be given values so that each of its simple sentences is in
the data base, or can be inferred from the data base using the rules. For
each solution that it finds, it prints out the answer pattern P,

PROLOG begins its search for all the solutions to the query by
searching for a solution to the first condition S. As soon as it finds a

solution it interrupts its search. If S contained variables the solution

comprises values for these variables. PROLO6 now Looks for all the solu-
tions to the rest of the compound query that are ‘compatible with these

values, In effect, it 'passes on' the values for the variables in'S that

;_Ej,!g S to the rest of the query. When it has found all the solutions to
the rest of the query that are compatible with this first solution to §, it
returns to find the next solution té S On finding the next solution, it

again immediately passes this solution on to the rést of the query. Only
when it has found all the solutions to the rest of the query compatible

with this second solution to § does it return to Look for the next solution
to & It continues in this way until it can find no more solutions to S

Backtracking

The way that PROLOG searches for all the solutions to a compound
condition is called a bagktracking search. When PROLOG finds a solution to

the first condition S, and passes it on to the remaining conditions S'..,
it is 'tracking forward'. When it returns to find the next solution for S,

it is 'tracking backward', or backtracking.
The evaluation of a compound “Which” query is a forwards and backwards
shuffle through the conditions of the query. Let us suppose that there are

three conditions .
S ES'&Ss".
PROLOG finds the first solution to S and passes it on ta

' §' & S".

34

2.2 ow queries imwolving rules are evaluated

It now Looks for all the solutions to §* & S" that are compatible with this
solution to S. It again starts by looking for a solution to the first
condition §'. It tries to solve §' with the variable values given by the

first solution to S. If it can do this, it moves forward to S". It tries
to solve S" with the variable values given by the solution to S & §' that
it has now found. When it has found all these solutions to S", it back=
tracks to Look for the next solution ta S'. It shuffles backwards and
forwards between S' and S§" until it has found all the solutions of

s' & s"

compatible with the first solution to S. At that point, it backtracks to
Look for the next solution to S

The process of 'passing' on solutions to the rest of the query repre—
sents a flow of 'information' from left to right in the query. The first
variable., These values are passed on tq the other conditions of the query
in which the variable appears.

This backtracking search for all the solutions to a compound query
applies irrespective of whether the relations in the query are defined by
facts, rules or a mixture of the two. The difference occurs only when
micro-PROLOG picks off a condition S in the query and starts to look for
all the solutions for that condition

Let us suppose that the condition § refers to a rule defined relLation
R micro-PROLOG searches for solutions to the condition S as for a data
base relation It scans the List of sentences about R Looking for a match
with the query condition It scans them in the order in which they were
added to the program (Lhe order in which they are Listed by the “List"
command) .

Thé extra complication is that it now has to match the query condition
with thé consequent of a rule, which may contain variables. Then, even
when it has found a match, it has not yet found a solution It must
interrupt its scan of the sentences for R to find a solution to the query
given by the antecedent of the rule. Each solution to this auxiliary
query is a solution to the condition S

Each time it finds a solution to the auxiliary query micro-PROLOG
interrupts its search to pass the solution on to any remaining conditions
of the original query. Now, backtracking to find the Aext solution to S
means backtracking to Look for the next solution to the auxiliary query.
When it -has found each solution to the auxiliary query, it returns to its
scan of the program sentences for the relation R. Each rule with a
consequent that matches S gives rise to an auxiliary query. The solutions
to each of these auxiliary queries combine to give all the solutions to &

Example eyaluation

Let us illustrate the invocation of rules during the evaluation of a
query by a simple example. Consider the query:

Which(y Henry? 1s-the-grandfather-of y). (E)
We shall assume that the rule

x is-the-grandfather-of y if x is-the-father-of z and (5
z is-a-parent=of y

has beerd added to the TLuors proyram. (This was one of the answers to
exercise 2-1.) PROLOG must find all the values for the variable y that
are solutions to the query condition:

Henry? is-the-grandfather-of y «F)

2.2 How queries involving rules are ewaluatd

‘}
There is only one sentence in the data base about this relation, the
rule (5) given above. Now, remember that PROLOG forgets the sariables
used in a rule, It remembers only their positiuii.. when 1t .tarts to

match a condition with the consequent of the rule 1t gives the variubles of
the rule names. It always gives them names that are different from the
variable rnames used in the query condition Let us suppose it gives the x
variable of the rulé the name x1, the y variable the name yl, and the z

variable the name z1. PROLOG must match the query condition (F) with the
consequent of the rule

x1 is-the-grandfather-of y1 if x1 is-the-father-of z1 and"
z1 is-the-parent-of y1

Matching is now a Little more complicated. To obtain a match, varia~
bles of the query condition and variables of the rule may be given values.
In this case only variables of the rule are affected. The values x1=Henry7

and yl=y give an exact match. Notice that yl has a value which is not the

name of an individual but the name of a variable in the query. With x1 and
y1 given these values the antecedent of the rule becomes the compound

condition

Henry8 is-the-father-of 21 and z1 is-the-parent-of y

The problem of finding all the y values that solve condition (F) has
become the task of finding the answers to the auxiliary query

which(y Henry? is-the-father—of z1 and z1 is-the-parent-af y) (G)
L]
This is solved in the usual way. PROLOG starts by looking for a solution
to the condition Henry7 is-the-father-of zl. There 1s only one solution
to this, but immediately this is found, by the match with the fact

Henry? is-the-father—of Henry8

PROLOG interrupts its scan of the "is-the-father-of" sentences to find all
the solutions to the next condition

z1 is-the-parent-of y

that are compatible' with z1=Henry8. PROLOG has temporarily reduced gquery
(G) to the query ¢

which(y Henry8 is-the-parent-of y) (H)

We have another rule defined relation. This time there are two rules,
which with renamed variables are:

x2 i1s-a-parent-of y2 if x2 is-the-father—of y2
x2 is-a-parent-of y2 i1f xZ is-the-mother—of y2.

The query condition "HenryB is-the-parent-of y" matches both rules
providing x2=Henry8, y2=y. PROLOG tries these rules one at a time, in the
above order. After the successful match with the first rule, PROLOG
temporarily replaces (H) by

Which(y HenryB is-the-father—of y)
The three solutions of this query become sulutions of (& which are,

in turn, solutions of the original query (E). fhey are printed aut.
PROLOG returns to the task of answering (K. It uses the second rule for

36

2.2 How queries iwolving rules are evaluated

)

"is~a~parent-of'. Ihils gives rise to the auxiliary query
Which(y HenryB is-the-mother-of ;)

to which there are no solutions.
Remember (H) was produced when PROLOG found the first solution to the
first condition of the query

wWhich(y Henry/ 1s-the-father-of 21 and z1 is-a-parent-of y)

To find more solutions to the gquery, and hence more solutions to the
original query, it returns to the task of solving the condition

Henry? is-the-father—of 1.

It continues its scan of the data base sentences for "is-the-father-of'.
There are no more solutions. PROLOG must now return to the original query

Which(y Henry7 is-the-grandfather-of y)

to see if there are other sentences in the data base about "is-the-
grandfather-of'. It has already used the ome and only %entence. So the

search for solutions stups.

2.3 Recursiye descriptions of relations

So far our rule defined relations have been such that they could be
dispensed witha Queries using these relations could always be expanded to
Longer queries that used only the relations of the data base. This is
because each rule defined a new relation solely in terms of previously
defined relations. There are some relations that cannot be so simply
detined. These are relations that can only be described recursively, by
definitions that refer back to the relation being defined. For such rela~
tions the use of rules is essential. As an example, suppose that our
data base describing the Tudor tamily tree had many generations in it, and
that we wanted to query the data base to find all the ancestors of Edward.
If we knew that the data base referred to exactly four ancestors of Edward
we could find all of them with the query:

Which((x1 x2 x3 x4) x1 parent-of=-x2 and x2 parent-of x3
and x3 parent-of x4 and x4 parent-af Edward)

But if we do not know how many ancestors are given in the data base we
cannot find all the ancestors with a single query. This is because we
cannot know how many ‘“parent-of* conditions will be needed to chain back to
the earliest recorded ancestor. To ftind all the ancestors with a single
query, we need to detfine the relation "is-amancestor-of®,

If we wanted to explain to someone who his ancestors are we might say:

Your ancestors are your parents and all the ancestors of your parents.
This is 3 recursive description because the explanation makes use ot the

concept weing explained. If he 'thinks through' the definition it tells
him that his ancestors are: ¢

ar

2.3 Recursive description of relations

his parents
his grandparents (who are the parent case ancestors of his jarents)

his great-grandparents (who are the parent Ca - ancestor, of his yrand-

parents)

his great-great-grandparents (who are the parent case anc .tors ot ns

great-grandparents),

and so on until the records run out. "

We can express this recursive definition as the pair of PROLOG rules:
-

x is-arrancestor-of y if x is-a-parent-of y
x is-amancestor-of y if z is-a-parent-of y and x is-amancestor-of z

The declarative reading is quite simply:

x ?s an ancestor of y if x is a parent of y.
X 1s an ancestor of y if z is a parent of y and x is an ancestor of z,
for some z.

Ihe procedural reading is:

To answer a query of the form x is~amancestor-of y
answer the query: x is-a-parent-of y.

To answer a query of the form x is-amancestor-of y
answer the query: z is-a-parent-of y and x is-amancestor-of z.

Given the task of finding all the ancestors of Edward by a query:
Which(x x is-amancestor-of Edward)

micro-PROLOG will be@n by using the first rule to reduce the query to

Which({x x is-a-parent-of Edward)

When this is answered, and the parents of Edward are found and Listed, it
- will backtrack to use the second rule. This converts the query into the
derived query

Which(x z is~a~parent-of Edward and x is-amancestor-of 2)

Since the rule defining a parent as a father comes tirst, the condition "z
1s-a-parent-of Edward" will be solved by making z the name of the father of

Edward who, in the Tudors data base, is HenryB. Given this value for z,
we obtain the new query:

Which(x x is-amancestor-of Henry8)
When this has been answered, and all the ancestors have been found, micro-

PROLOE backtracks to ‘the second way of finding a parent of Edward. It

retrieves his mother Jane. It then finds and Llists all her known
ancestors.

2¢6paraty definitiop of inyerse relations

Logir.all)_f our two rules defining the ancestor relation al-u def ine the
inverse relation "is-a-descendant-of", To find the descendants of Henry8
we could use the query

38

2.3 Recursive descriptfon of relations

Whichly Henry8 is—darrancestor-ot y)

Micro-PROLOG will again begin by using the first rule to find and List the
children of HenryB. It will then backtrack to expand the quéry using the

second rule to get

Which(y z is-a-parent-of y and HenryB is-an-ancestor-of z)

The evaluation of this derived juery is a very inefficient search for
the descendants of the children of Henry8. For in order to try to satisfy
the condition "z is-a-parent-of y" it will try each parent-offspring pair
in the data base checking each parent to see if it is a descendant of
Henry8. This is an example where a separate description of the inverse
relation will serve us better as a program for finding descendants.

The problem is to do with the flow of values via the variables of the
rule. The rule:

x is-amancestor-of y if z is-a-parent-of y and x is-amancestor-of 2

gives efficient retrieval if y is given For then the first condition “z
is-a=-parent-of y", with y known, has a much smal Ler set of possible 2
values to pass on to the "x is-an-ancestor-of z" condition. To get a
simitar flow for the case when x is given and y is to be found, we should
use the given x, find a child z of x, then find all the descendants of z
So optimise the finding of descendants, we Should separately define the

“js-a-descendant-of" relation by the rules:

y is—a-descendant-of x if y is-a-child-of «x
y is-a-descendant-of x it z is-a=child-of x and «x is-a-descendant-of y

These constitute a correct alternative definition of the relation that
holds between two people x and y when x is an ancestor of y and y 1s a
descendant of x. Ffor purely pragmatic reasons, we should use these rules
for finding descendants and the ancestor rules for finding ancestors. For
checking whether two people are in the 'ancestor/descendant relation either
set of rules can be used. The queries?

Does(Henry8 is-amancestor-of Edward)
Does (Edward is-a-descendant-of Henry8)

are logically equivalent. micro-PROLOG does comparable work in answering
each query. To answer the first it walks over the family tree beginning
at Edward, for the second it begins at HenryB. If the families described
in the data base have on average more than two children, the "is-an-
ancestor-of form" of the query should be used. Why?

Exercise 2-3

2 S Answer the following PROLOG queries, using the Tudor royal family data
base:
a. Which({x is male grandchild of y) x 1s-a-grandchild-of y & Male(x))
b. 'One((x is a wife of HenryB) y is-a-child-of Henry8
& x is-the-mother-of y)
c. Which(x x 1s—arancestor-ot Edward)
d. Which{x x is-a-descendant-of ElLizabeth-of York)
e. Does(Henry8 is-a-descendant-of Mary)
f. Which(x x 1s-a-descendant-of Henry? and Female(x))

2a Add the "is=armancestor-of" and "is-a-descendant-of" rules to your
family tree data base. Use PRuULOG queries and trace the order in

40

2.3 Recursive description of relations

which answers are received. L

We have used the built-in predicate LESS. This can also be used to
define rules for other relations (as can the other buil '-in predi-
cates). For instance, to define the relation "lLesseq" (which means

less than or equal to) we need just two rules:
x lesseq

This rule simply states that everythi i

5 g Sl < Mty ything 1s Less than or equal to
x Lesseq y if x LESS y

This rule says that if two numbers (or words) are in the LESS relation

then they are also in the lesseq relation.

a. Define the relation “greater-than".

b. Define the relation "greateq" (greater than or equal to).

C. Define the relation "divisible=by".

Not_icfe ‘that because of the restrictions on the use of the arithmetic

primitives your rules for these relations can only be used for

confirming.

-

Using the books data base, add rules defining the relations:

a. Nineteenth-Century-Author(x) : x has written a book published in the
19th century.

b. Contemporary-Playwright(x) : x has written a play published in

the 20th century.
Add rules to express the following information:

€. A book is available from the time it is published.

Express the following questions as PROLOG queries:
d. What books were available in 18997 !

e. What works of nineteenth century authors were available in 1980?

)

3.1 Lists as Indiyidudls

3. Lists

So: far we have only seen how to handle racts that referred tou single
individuwals. sometimes it is more convenient to have a fact that refers

to 4 List of individuals. fhis is quite common in English. We say:
John enjoys football, cricket dnd rugby
which is a fact that relates John to the List (foutball cricket rugby) of

games that he enjays. We can represent this compound fact in PROLOG by
three simple sentences:

John enjoys football (N
Juhn enjoys cricket
John enjoys rugby
We can also represent it by a single sentence:
(2)

John enjoys (football cricket rugby)

in which we collect together the games that John enjoys as a List (football
cricket rugby). The guery:

&. Which(x John enjoys x)
used with this single sentcnce program (2) will produce the response:

Answer is (football cricket rugby)
No (more) answers !

becausé the pattern "John enjoys x' matches the data base sentence only
when x is this List. The advantage of using Lists in place ot single
individuals is that we often get a more natural and compact representation
of information The disadvantage is that we must sometimes do some work
to get at the individuals in a List. With the information about John
represented by the three sentences (1) we can directly query the data base
about dndividual games. The query:

&. Does(John enjoys football)

will return the answer “YES'. But for representation (2) the query will
get the answer “NO". This is because there is no sentence in the data
base that exactly matches the query. To find out if John enjoys football
we must be able to get at the comporents of the List of games (football

cricket rugby).

Exgrcise 3-1

1. You have this PROLOG program:
(Tom Dick Harry) knows Susie
Tom knows (Jane Janet Julia)
Answer these PROLOG questions:
a. poes(Tom knows Susie)
b. wWhich(x x knows Susie)
ta Whichtx Tisn kriOws x)

2. You have tnhis PROLOG program:

41

3.1 Lists as individuals

(Wimbledon Morden Mitcham) part-of Merton
(Hampton Teddington Ham) part-ot Richmond
(Surbiton Norbiton) par t-of Kingston
Answer these PROLOG questions:

a. Which(x x part-of y)

b. Does(x part-of Kingston)

€. Which(x y part-of x)

d. Does(x part-of Merton and x part-of Richmond)

5. Rewrite the books data base using Lists. For example, the sentence:
Oliver-Twist writtemby Charles-Dickens
should now read: ~
(Oliver Twist) writtemby (Charles Dickens)
(This enables us to separate author's surnames from their first names)

3.2 Getting at the members of a List of fixed Length

To get at the components of a List we have to elaborate the idea of
torms, patterns and pattermmatching introduced earlier. To illustrate
these ideas, let us Look at a different way of representing information
about family relationships which makes use of Lists.

Initially we recorded the parent-child information by having separate
sentences giving each of the children of each parent. Using Lists we can

collect together all the information about a particular family in one sem
tence of the form:

(father mother) parents-of (all the children of the marriage)
The simple sentences of the data base are now sentences such as:

(Henry Sally) parents-of (Margaret Bob)
(Henry Mary) parents-of (Elizabeth Bill Paul)
(Bill Jane) parents-of (Jim)

(Paul Jilly) parents-of (John Janet)

The two sentences which have Henry as the father are data for two different
marriages. The sentente :

(Bill Jane) parents-of (Jim)

records the only child of the marriage of Bill and Jane in a list with just

ve nameé. In this case, we might have expressed this information in the
sentence

(Bill Jane) parents-of Jim

But then our facts about families would not have all been of the same ‘form.
In some we would have lists of children, in some just single names. ‘It is
mportant that all sentences about a relation all have a uniform pattern
PROLOG retrieves data by matching sentences with patte-ns, and patterns are

critical when we use lists. So, for uniformity, we have recorded the only
child in a List of one name.

The expression “(Jim)" is a List because of the brackets. If we drop
the name altagether, writing "0", we have a List of no rames: we hawe an
empty list. We can use the empty List to record information about families
with mo children. We can have a sentence such as:

(Samuel Sarah) parents-of ()

This records the fact that Samuel and Sarah are man and wife, and 1t tells

42

3.2 Getting at the members of a List of fixed length

)

us they have no cniliren. (To represent tr!is using our previous notation
would have required an auxiliary relation "is-married™.)

Suppose that we nuw want to retrieve the chi_Ldre:. of Henry. The t_iata
giving the children for a family in which Henry is the father is contained

in all the sentences of the form:

(Henry y) parents-of «x
So the query is:

8. Which(x (Henry y) parents-of x)
Answer is (Margaret Bob)
Answer is (ElLizabeth Bill Paul)

No (-pre) answers

Notice that we get the children from the different marriages as different
List answers. This is because the guery pattern matches two different

sentences each of which give x as a list.
Consider the sentence pattern

(x y) parents-of (x1 x2 x3)

This will match any fact in the data base about a family with three chil-
dren x1, x2, x3. We can therefore use this to retrieve information about
all the three child families.

&. Which((children x1 x2 x3 father x mother y)
(x y) parents-of (x1 x2 x3))

Answer is (children ElLizabeth Bill Paul father Henry mother Mary)
No (more) answers

Here we have used an output pattern to rearrange the retrieved data and to
give some documentation The pattern

(x y) parents-of z

matches ‘every fact in the database about families. In this pattern x is
the father, y is the mother and z the List of children _

We can, therefore, define "father-of-children" and "mother-of-chil=
dren" relations with the rules:

x father-of-children z if (x y) parents—of 2z
y mother—of-children z if (x y) parents-of z

And a typical query to find the children of Jilly would be:

&. Which(z Jilly mother—of-children 2)
Answer is (John Janet)
No (more) answers

We get @ List of children because we have defined "nﬁth_er—ofuhlldren': as a
relation between an individual and the List of children by a single

marriage.

Exercise 3-2

1. Using the notation for the empty Llist, give a defimtion ot the rela-
tion Childless-wife(x).

£ Using the example program above, answer the following PROLOG

43

3.2 getting at the members of a List of fixed Length
Y

questions:
a. wWhich(x (Bill x) parents-of y)
b. Which((x y) (z x) parents-of (x y))

Cs Does((Henry x) parents-of (y z X))

d. which(x (x y) parents-of z)
e. which((x father y mother z child X child) (x y) parents=of (z X))

f. Which(x Paul father—of-children x)

3. Using the rewritten books data base, answer the following PROLOG
questions:
a. MWhich(x (Oliver Twist) writtemrby (Charles x))
b. Does((Great x) type Novel)
Co Which({x y) x writtenby (Mark y))
d. Which({x was a great playwright) (Macbeth) written-by x)
e. Which(x (x y) writterby 2)

3.3 Getting a2t the members of 2 list of unkpowp length

Using the List representation of family relationships we are still not
able to check, with a single query, whether or not someone is some particu-

Llar child's mother. .The trouble is that a single pattern cannot cover all
the different size Lists of chilaren that we can get back in response to a
mother-of-children query. The rules:

y mother—of-child x1 if (x y) parents-of (x1 x2)
y mother-of child x2 if (x y) parents-of (x1 x2)

define the mother—of-child relation for two child families because twoO
child families are recorded by sentences of the form (x y) parents-of (x1

xd. Each rule selects out one of the pair of children (x1 x2). But we
also need a rule to cover single ch'il,g:l families:

y mother—of-child z if (x y) parents-of (2)

and rules for three, four and even bigger size families.
We can make do with a single rule:

y mother-of-child z if (x y) parents-of I and z belongs-to 1

if we could define the relation z member—of Z that holds for every indivi-
dual z that appears in an arbitrary size list of individuals Z.

Heads and Tails
‘An arbitrary size List is of the form
(‘1 ‘2 ssas m)‘
. _W
head tail
Let us call the first individual in the Llist, x1, the head of the List.

If we take away the head element we are left with a List (x2 ... xn) which
we shall call the tafil of the Llist. The tail of a List that only contains

one element, is the émpty List O.
One rule about membership of an arbitrary size Llist is:
The head individual of a List is a member of the List. (3)

Another is:

44

3.3 Getting at the members of a List of unknown Length

An individual s 2 member of a list if it is a member of its tail. (4)

Just Like our recursive definition of the ancestor relation these two rules

enable us to check whether any individual appears on a list.
To formalise these as PROLOG rules we need to have a pattern that

enables us to talk about the head and the tail of a List. This is the

pattern (xly).
We read the pattern as:

(xly) is a List which s x followed by the List y.

The "|" is the “followed by'". Without the "|" the pattern (x y) denotes a

List of just two elements. ‘
If PROLOG matches (xly) against the List (A B C D) it gives x the

value A and y to the tail List (B C D). If it matches (xly) against the
List (A) comprising just the element A then x is bound tc A and y is bound
to the empty List (). Other examples of the use of "|" are:

(x ylz)

This dendtes a List of two individuals x y followed by some List z. Since
2z can be the empty List, this denotes any list of two or more individuals.
Matched against the List (A B C D) we get the values x=A, y=B, 2=(C D).
It fails to match the List (A) because this only has one element.

(x y zI2)

is a List of three individuals x y z followed by some remainder List Z.

We can describe a List of at least n individuals by having n different
variables before the "|". We should always follow the "|" with a variable
or anothér pattern that describes a List. For example, (x1 x21(x3 x4)) is
the List' x1 x2 followed by the List of two elements x3 xé. In other
words, it denotes the List of four individuals (x1 x2 x3 x4). In this
case, thsre is no point in using the "|". Indeed there is only a paint in
using "|" when we do not know anything about the structure uof the remainder
of the List, i.e. when we describe it by a variable that can match any
remainder!.

Exercise 3-3

1. What values if any, are assigned to the variables when (x y z|2) is
matched against:
a. (AB CDE)
b. (ABCD

[(AB 0)
d. (A B)
€. (A)

fe)

2. Lists can have other Lists as elements, so show the values given to x
and y that arise from matching ((A B)Ix) and (y Cly). Hint: ((A B)Ix)
matches any List that has as its first element the List (A B).

3 Suppose that we had the data base:
(Piccadilly Victoria District Circle Northern) Llines-of Underground

(Hackney Lambeth Richmond Kingston) boroughs=in London
Answer these PROLOG questions:

a. Which(x (Piccadilly Victoria | x)lines-of Underground)
b. Does((x Victoria | y) Lines-oft z)

L5

i

3.3 Getting at the members of a List of unknown Length

i
¢c. Which(x x boroughs=in London)
d. wWhich((x y) (x Lambeth y Kingston) boroughs-in z)
e. Dues((Hackney | x) boroughs-in London)

Belongs-to

Using the "™|" pattern, we can express rules (i
W e 0 p s (3) and (4) directly as

x belongs-to (xlz) (5)
x belongs-to (ylz) if x belongs-to z . (6)

Let us illustrate how this program work i
e g s, using the List (AB C D E). If

&. Which(x x belongs-to (A B C D E))

we first get the answer
Answer is A

This is produced because rule (5) ;atches
: the pattern (x|2) i
List (AB C D E) making x=A, the head of the List. . against the

The next answer is:

Answer is B

This is produced using rule (& and th

en rule (5). Rule (6) matches (ylz)
against (A B C D E) and z becomes the tail Li A
s ke kb ist (B C D E). It then reduces

Which(x x belongs-to (B C D E))

As with the original quer is i i i
y this is first answered using rule (5) whi
i';oduces the answer & A new application of rule (&) then reduces th‘;s f::‘)
e qQuery 1] A

Which(x x belongs-to (C D E))

The evaluation continues in this wa ivi
n s the
until the query has been reduced to ik - PR R S R

Which(x x belongs-to (E)).

A Last use of rale (5 prints out the answe
r r EE' The last applicati
of rule (& matches ()_«Iz) against the Llist (E). For the Llist (E)ppthe ta?:.‘
List is empty. So z is bound to O, and we get the derived query

Which(x x belongs-to ())

Since there are no rules for belongs-to and the empty Llist, this query

has no answers and the evaluation termi t
e 2 Snsuers o minates, The full answer to the

Answer is A
Answer is B
Answer is C

Answer is D
Answer is E

3.3 Getting at the members of a List of unknown Length

\

No (more) answors

We can now see who are the individual children of Jilly, using our

program for “mother—of-child":
Which(x Jilly mother-of-child x)
Answer is John

Answer 15 Janet
No (more) answers

Notice that “mother-of-child" is a rule defined relation that 1s the same
as the fact defined relation "is-the-mother—of" of Chapter 1.

Exercise 3-4
1. You have this PROLOG program:

(English Welsh Gaelic) spokenin United=Kingdom
(English French) spokemin Canada

Answer these PROLOG questions:
a. Which(x x spoken—in Canada)

b. Which(x (xly) spokemin z)
¢. Which(x y spoker—in United-Kingdom and x belongs-to y)

d. dboes (x spoken-in United-Kingdom and y spoken—in Canada and
z belongs-to x and z belongs-to y)

e. Using the program and queries above, give a definition of the
felation British-language(x) which is defined to be a lLanguage
spoken both in the United-Kingdom and Canada.

f. Assuming that the languages have been Listed in order of importance
in each case, give a definition of the relation
Minor-language(x) where a minor Language of a community is not the
aost important spoken lLanguage.

2. Answer these PROLOG guestions:

a. Which(x x belongs-to (R 0B E R T) and x belongs-to (B 0B))
b. boes(x belongs-to (A L F) and x belongs-to (FRED))

The' spaces between the letters in these queries are important; spaces
separate the members of a list. The List (R 0 B E R T) has six
elements, each of which is a single letter. However, the List
(ROBERT) has just one element, the word “ROBERT'. It has one element

because there are no spaces.
1f you use the micro-PROLOG system tO answer (a) you will notice

tha't you get the answer 'B" twice. This is because micro-PROLOG can
shokw that 'B" also Appears on (B 0 B) in two ways. In answering the
cofpound query, micro-PROLOG finds each letter in (R 0 B E R T) as a
candidate value for «x. For each value it Looks for all ways of
showing that the found x is also on the List (B 0 B). Each time it
sudceeds in doing this, it prints out that value for x If (ROBE
R) nad been given as (R 0B B ER T), with the two B's instead of
oné, "B" would be printed out four times. micro-PROLOG would find it
tufce,and each time twice confirm that it is also on the List (B 0 B).
L)

3. Using the program developed in section 3.2, give definitions of
a. x is-a-parent-of-children y

b.- x is-a-child-of y
In each case make use of the "belongs-to" relation.

47

3.3 &ttling at the members of a list of unknown Length

>
3.4 The Length of a List
A very common List program is the "has-length” progr e &hi h simply
counts the length of a Llist. Although very simple 1t has many uses and

Some surprising properties. There are just two sentences in the "has-
Length" program, a fact and a rule:

() has=-length 0
(xIX)has-Llength z if X has-length y and SUM(y 1 2)

The declarative reading of these rules is equally simple:
The empty Llist has length zero (as might be expected)
A nomrempty List has length one more than the length of the tail sub-
List,

To find the lLength of “"(A B C D)" we use the query

Which(x (A B C D) has-length x).

We can use the "has-length” program to check that a List has a given
Length:

Does(A B C D) has-length &)
We can use it to find the Length:
Which(x (S B C D) has-length x)

Amazingly, we can also use it to find a List of a given length, and to find
all instances of the “has-length™ relation. The queries

One(x x has—-léngth &)
and i
One((x y) x has-Llength y)

will both be answered by micro-PROLOG. If you have a computer handy,
define “has-length" and try the queries. Stop the evaluation of the first
qQuery after it has given you one List of Length 4. There is only one
micro-PROLOG answer to the query. You can run the second query until you
get tired of seeing the answers. It is important that you Add the "has-
Length” fact before the rule.

Let us now examine the way micro-PROLOG answers these queries. This

will explain the answers that we get. We will start by examining the query
One ((x y) x has-length y) (A)

This is the same as a Which query with the option of stopping genera-
tion of the answers at any point. For this query, having this option is
very necessary. There are an infinite number of answers to

Which((x y) x has-length y)

micro-PROLOG ariswers the query (A) by scanning the sentences for "has-
Llength” trying to match the sentence with the query condition "x has-
Length”. The first sentence is .

() has-Llength 0

48

3.4 The Length of a List

)

So there is a successful match with «=() and y=0. This gives us the first
danswer

Answer is (() 0).

If we type "C", micro-PROLOG continues with its scan. The second (and
Last) sentence for the relation 1s

(x11X1) has-length 21 1f X1 has-length y1 & SUM(y1 1 21)

Notice that we have renamed the variables. Ren_enber that mich-PROLOG
always does this when it uses a rule. It uses variables that are different

from any that appear in the query being evaluated. There is a match
be tween

(x11X1) has-length z1
and
X haf—tength y
providing: x=(x11X1) and z1=y. Our original query

One(h y) x has-length y)
i '

is thus reduced to

One((x y) X1 has-length y1 & SUM(y1 1 z1))
- with x=(x11X1) and‘z=zb 2Asy

This is the derived query

One ((x1IX1) y) X1 has-length y1 & SUM(y1 1 y)) (B)

The answeér to this query are all the remaining answers to (A).

Now,. in answering query (B), the condition “X1 has-length y1" becomes
a generator for candidate values of X1 and yl. The yl1 values are handed
over to "SUM(yl 1 y) which finds the value of y of the answer pattern. We
know that the first answer micro-PROLOG will give to

X1 hlas-l.ength y1
is

X1=() and y1=0
obtained by the match with the fact "0 ‘has-—Length 0" The passing on of
the value: y1=0 gives the value y=1. Hence the first answer to (B) (and so

the second answer to (A)) i1s the value of the answer pattern

Cx1IX1) y) Gith X1=0) and yl.

r

This is

Answler is ((x1) 1).

We get the List (x1) because (x1/()) is'the List that is the element x1

followed by the empty list. That is, it is the one element List (x1).
Note that x1 is still a vdriable. The pattern (x1) is the answer:

3.4 The Length of a List

)

If we continue the evaluation of (A), the next answer 15 sbtained when
the generator '"X1 has-length y1" of (B) pr Juces its eicind o wer. But we
knouluha_t the second answer to the query conditiun 15, fif we have al ready
had it given as the second answer to our original yuery., It is value for
X1 that is a Llist pattern representing all Lists of une element, and the
value 1 for yl. TFhe value for X1 will be a List pattern, such as (x2).
micro-PROLOG will not generate the value (x1), because x1 already appears
in query (B). This pair of values, gives us the next answer to (. It is

all Llists of just one element.

((x11x1) y) with X1=(x2) and y=2

-

But (x11(x2)) is the List of two variables (x1 x2). So we get
Answer is ((x1 x2) 2).

You should now see what the general pattern is. The third answer to
(&) is produced by using the second answer, with variables replaced, as the

next solution given by the generator "X1 has-length y1", It gives us an
answer comprising a List of three variables, paired with the Llength 3. The

evaluation continues, always using the last answer to produce the next
answer. Our original query -

One((x y) x has-length y) (A)

h?s an infinite number of different answers, each answer 1s a List of
different variables paired with its length. The answers are generated in
order of increasing length

Notice the importance of the ordering of the sentences for “has-
Length™. If they had been entered there in the order

(x has-length z if () has-length y & SUM(y1 2)
() has-length 2z

there would be no real difference in the Way micro-PROLOG answers Length
chgcking or length finding queries. But in trying the answer query (A),
this ordering will' cause micro-PROLOG to enter a bottomless pit.

The reason is that micro-PROLOG always uses the first sentence that

matches a query condition for a relation So in answering (A), it will now
use the rule before the fact. It first reduces (A) to

One(((x11X1) y) X1 has-length y1 & SUM(y1 1 yD) (8

‘lt_ is answering this query, it again encounters an "has-length"
condition. It will again use the first sentence for the relation, the
rute. This effectively replaces (8) by

One ((x11(x21X2)) y) X2 has-Llength y2 & SUM(y2 1 y1) & SUM(y1 1 y))

This expansion continues, and will continue indefinitely. Etach step
Introduces a new query condition for which the rule is the first matching
sentences. micro-PROLOG never has a chance to use the fact “Q has-length
0)* which gives the first, crucial answer to the query. The moral here is
that the ordering of the rules far a recursively described relation is

important if they will be used to find instances of the recatronn For such
4 use, we should make sure the facts, (more generally the nomrecursive

rules) precede the recursive rules,
Let us now examine the way micro-PROLOG answers the query

One (x x has=length &))

50

3.4 The Length of a List

)

We assume that the sentence for "has-length" are as originally given, with
the fact before the rule.
micro-PROLOG first tries to use the fact

() has-length 0
to match the query condition

x has-length 4.

It fails to get a match, since 4 and O are different. It can only get an
answer by using the rule, which with renamed variables, is

(x11X1) has-Llength z1 if X1 has-length y1 & SUM(y1 1@ 1‘1)

There is a successful match, with the query condition providing x=(x11X1)
and z1=4. micro-PROLOG reduces (C) to

One((x11X1) X1 has-length y1 & SUM(y1 1 4))

The condition "X1 has-length y1" now becomes a generator for candidate
values for X1 and y1 with the y1 value checked with the SUM(y1 1 4)
conditionn. Now we know that there are an infinite number of solutions to
the condition and that the solutions will be generated in order of increa-
sing Length. When the sclution X1=(x2 x3 x4), y1=3 is generated we get the
answer (x1 x2 x3 x4) to query (C).

This is, of course, the only answer. But micro-PROLOG does not know
thise It will happily continue generating more and more candidate solu-
tions for the condition "X1 has-length y1" checking if the length is one
Lless than 4. If we let it, after giving us the only answer, micro~PROLOG
will enter a bottomless pit.

This is similar to the problem that can arise if we do not choose a
judicious ordering for the rules of a recursively defined relation. In
this casé, the problem is that the ordering of the preconditions of the

rule
(xIX) has-Llength z if X has-length y & SUM(y 1 z)

is not appropriate for the use in which the length is given and a List of
that Length is to be found. For this use, we should put the SUM(y 1 2)

condition first. Note that we cannot do this for the finding length use.

For then we would encounter the problem of trying to find a solution to
SUM(y 1 z) with both the arguments y and z unknown. As with ancestor-

of /descendant-of, we need a separate definition of the inverse relation,

"length-of".
The two sentences,

0 Length-of () 2.
y Length-of (xIX) if SUM(z 1 y) &@)'length-of X

are a definition ot the relation with an ordering of the preconditions of
the rule that Limits the use to queries in which the Lenygth of the List is

given. But for tnat use, it is an efficient, safe program. We can even
use i1t to evaluate the query

which(x & Length—of x)
Answer is (X ¥ 1 x)
No (more) answérs

This time, micro-PROLOG stops when it has found the only answer, and tells

3.4 The Length of a List

Y

us there are no more answers. Follow through the evalua.,uon by hand. You
will see that there is only one snswer because the condition SUM(z 1),
with y given, only has one answer,

Congclusion

To find the length of a list use the "has-length" relation defined by
the rules

Q has-length O
(xIX)has-Llength z if X has-length y and SUM(y 1 z)

-
To find a List of variables of a given Length, use the “length-of*
relation defined by the rules X

0 Length-of () ¥ 3
y length-of (xIX) if SUM(z 1 y) G@ Llength-of X

To check that a given List has a check length, use either relation

Do not use either relation when both arguments are unknown. This is
because there are infinite number of answers to the condition

x has-length y

and -iFrrPRQOG will enter a bottomless pit it tries to answer a Which
query in which this condition is used On the other hand, micro-PROLOG
will give an error message when trying to answer

y lLength-of x

This is because it will try to evaluate a "SUM" condition with two
arguments unknown.

Taking into account these sorts of restrictions on the use of micro-
PROLOG programs, particularly programs that embody a recursive definition

or use the arithmetic primitives, is part of the pragmatics of programming
in the lLanguage.)

Incidentally, the has-length program has no problem finding the Length
of a List of variables. The query

x
Which((x y) & Length-of ()& x has-length y)
will produce the response

Answer is ((X Y Z x) 4)
No (more) answers.

Exercise 3-5

1. Use the "has-length" program to define a rule which gives the number of
children a mother has, and find out how many children Jilly has.

2. a. Pose the query: Who has five children? (use the "has=length"
program in your query.

b. Pose the same query, but this time use “length-of".

3. Supposing that we had the following information about sporting teams:
(Arsenal Chelsea Liverpool Manchester-United) teams Succer
(Yankees Astronauts Redsox) teasms Baseball

52

3.4 The Length of a List

.

}
Pose and answe. the queries:
a. Which(x y teams z and y has-length x)
b. Which(x (Arsenally) teams Saccer & y has-length x)

Cs Does(x teams y and x has-length 3)
b Pose the query
One(x 2 belongs-to x)

Follow through the ewvaluation, by hand, so that you understand the
answers that you get froma micro-PROLOG

The "lLength-of" program can be used to construct a Llist given a number.
Programs that can be used to construct Lists are exceedingly useful. We

shall deal with them more fully in Chapter 5. We shall complete this
section by giving a program that is similar to length-of. It can be used

to find a List of intermediaryfarametery that €orrecyd two individuals in a
parent-of chair. It is a program that defines the relation

(x y) have-descendant-chain X: y is a descendant of x and
X is the List of intermediary parents.

Its definition is:

(x y) have-descendant-chain () if x is-a-parent-of y
(x y) have-descendant-chain (z|X) if x is-a-parent-of z and
(z y) have-descendant-chain £

This program is a classic example of how the data base handling and
the List processing sides of PROLOG cooperate. when used to find the
ancestor chain between two individuals, the recursive 'walk' over the
parents' data base that 1s performed is combined with the construction of a
list. This List reflects the sequence of steps needed to 'complete' the
ancestor Links between the pair of individuals.

Exercise 3-6

1. Using the program for have-descendant-chain, pose and answer these

questions:
ae what is the List of descendants between Arthur and Robert?

b. HOw many generations are there between Jane and Roopert?
Ca Give all the pairs of people separated by One intermediary
parent, i.e. the grandparent, grandchild pairs.

Make use of the following facts:
Jane is-a-parent-of Arthur
Arthur is-a-parent-of Peter
Mary is-a-parent-of Peter

Peter is-a-parent-of Robert

£ Define "is-a-great-grandparent-of" in terms of "has-descendant-chain".

3.5 Apswer sets as lists
We shall now look more clLousely at the relationship between information

represented by facts about individuals and the same information represented
by facts about Llists of individuals. We started the chapter by observing

53

f'ﬁl'clﬁts

cownne

3.5 Answer sets as lists

h !
»

that a Lot of facts can often be more compactly represenied using Lists.
For example, in the family relationship program of Chapter 1 instead of
having sentences about relations such as "is-the-father—of" between ndivi-
duals we can have sentences about the relation “par its-ur” between a List
of the two parents and a List of their childrerd

These two representations of the family informatiun are essentially

duals of each other, we can ‘move' between them. We have already seen that
we can define the "is-the-father—of" relation in terms of the "parents-of”

relation using "belongs-to". The definition is:
x is-the-father-of y if (x z) parents-of Y and y belongs-to Y

-
Using “belongs-to" we can always define relations over individuals in
terms of relations over Lists of individuals. Can we do the reverse

construction? The answer is YES. We make use of a primitive relation of

micro-PROLOG, the "Is—-ALLl" relation
What "Is-ALL" does is wrap up the set of all answers to a query as a

List. Consider the query:
wWhich(y Henry8 is-the-father—of y)

The answer to this query is the set of all the children of Henry8. PROLOG
prints them out as:

Answer is Mary
Answer is Elizabeth

Answer 1s Edward
No (more) answers

Using "Is—ALLl", we can put all these answers into a lList in the order in
which they are printed. Thus, the query condition:

x Is-ALL (y Henry8 is—the-father—af y)

has one answer. x is given the list (Mary ElLizabeth Edward) as 1ts value.

We can therefore use "Is-ALL" to define the relation "is-the-father—
of-children” in terms of the “is-the-father-of" relation. The latter
relates a father to a single child, the former relates him to the List of
all his children. The rule defining the relation is:

x is-the-father—of-children ¥ if ¥ Is—-ALL (z x is-the-father—of 2z) (7)

Now we can see how to achieve the full mapping from the separate "is-
the-father—of" and "is-the-mother—of" facts to the “parents-of" relation:

(x y) parents-of Z if Z Is-AlLl(z x is-the-father—of z and
y is-the-mother-of z)

Just Like a "Which" query the query component of "Is-ALL" can have a
conjunction of simple conditions

The “Is=ALLl"™ program has many useful applications, all stemming from
its ability to make available in a List all the answers to a query. A
simple example is just to count the pumber of someone's children as in:

x has-no~of-children y if z Is~ALL(X x is—a-parent-of X)
and z has-length y

Exercise 3-7

1. Give a query which asks how many male chi.Jdren sumeone (Peter, say)
has.

54

3.5 Answer sets as Lists

)

2. To extend our Tudor royal family data base, we could add information
about the Kings and Gueens of England:

Henry? tamily Tudor
Elizabethl family Tudor
CharlesI family Stuart

George3 family Hanover

Pose and answer the following queries:
a. Give the Llist of the Tudor Kings of England

b. How many Kings of England have there been?
C. How many Stuart Kings nave there been?

S Give the rules which define the relation: the last member of a List.
Hint: an individual is the Last member of the List which contains only

that individual as member, 1i.e.

x Last-of (x)
otherwise, it is the Last member of the tail of a Llist.

4, Define the relation "(x y) adjacent-on z" which holds when the pair of
elements x and y are next to each other somewhere on the Llist z.
Hint: treat the two cases, x and y the first two elements of the
List, x and y not the first two elements, i.e. they are adjacent
elements on the tail of the List.

Test out your answers to 3 and 4 on various forms of query. Note: C

typed with the control key depressed (the control-C combination) will abort
any query evaluation that you think may have got into a bottomless pit.

55

y

At the end of the last chapter we introduced the "Is-ALL" relation
“Is=ALL" is an example of a complex condition; it is a rew form of simple
sentence. There are two other complex conditions thdat cdan appear in
queries and rules. They are the "Not" condition and the "For-ALL" condi=
tion In this chapter we introduce these other conditions and describe
“Is=ALL" more formal ly.

4. Complex conditions in queries and rules

4.1 Negatiye gonditions

Sumetimes the condition that we want the retrieved datasto satisfy is
more naturally expressed by giving a positive condition that it must satis-
ty and then giving an extra negative condition that it must not satisfy.

As an example, suppose that we wanted to retrieve all the descendants
of Henry8 who do not themselves have any children, or rather, who do not

have any children recorded in the data base. What we want are the x's
such that

x is-a-descendant-of Henry
can be confirmed, but for which the extra condition
X is=a-parent-of y for some y

cannot be confirmed. In micro-PROLOG we express this negative candition
using "Not'. We pose the query: :

Which(x x is-a-descendant-of Henry8 and Not(x is-a-parent-of 122
Since it i1s a general property of PROLOG that any query expression can be

l._;sed as the right hand side of a rule, negated conditions can also be used
in rules. Thus, the rule:

x childless~descendant-of z if x is~a-descendant-of z and
Not(x is-a-parent-of y)

generalizes the query and defines the binary relation of being a childless
descendant.

Syntax of negatiye copditiong

Syntactically, we have a new type of simple sentence which has the
form:

Not(C), C a comjunction of simple sentences

Notice that this means that we can have nested negations, for one or more
of the simple sentences of C can be a negative simple sentence. The
declarative reading of a negated condition in a query or rule is:

It is not the case that C for some y1,..,yk

Here, yl,..,yk are all the variables of C that dg rot appear elsewhere in
the query or rule. They are the Local variables of the negative condition

Variables that appear in C which also appear elsewhere are its global
variables. The above rule is read:

x is a3 childless descendant of z if x is a Jescendant of
E it is not the case thut x

1s a parent of y for .ume y.

56

4.1 Negative conditions

)

We say, "for some y" becduse y is a Local variable of the negated condi-
tion The x is global because 1t appears in the .ther condition of the

rule and the consequent of the rule.
Another example of the use of negation is in the query:

Which(x x city-of England & x populatiomis y & Not(y LESS 10000))

Used with a data base of cities and their populations it will give all the
English cities of the data base that have a population greater than or
equal to 10000.

Restrictions on use of Mot

A negated condition can only be used for checking. It cannot be used
for generating candidate values for its global variables. This means that
in a query a negative condition must be preceded by a positive condition
for each ot its global variables. In the evaluation of the query these
positive conditions will be used to find values for the variables that the
negative condition checks.

The checking restriction on the use of negation is reflected in its

imperative reading:
to confirm Not(C), check that the query C cannot be confirmed.

In other words, the evaluation of the negated condition Not(C) is the
evaluation of the query Does(C) with a 'NO” answer interpreted as "YES" and

a "YES" answer interpreted as ‘NO".
Let us see what happens if we ignore the positioning rule for negative

conditions. Suppose we posed the query about the childless descendants of
Henry8 as:

Which(x Not(x is-a-parent-of y) & x is~a-descendant-of Henry8)

When PROLOG evaluates the query it will now encounter the condition Not(x
is-a-parent-of y) with x not yet given a value. The evaluation of the
condition reduces to the evaluation of

Does(x is-a-parent-of y)

which wild, of course, be confirmed. (We have at least one person who is
the parent of someone.) Confirmation of the Does query is failure to
confirm the Not(x is-a-parent-of y) conditionn So PROLOG will immediately
print out

No (more) answers.

This . incorrect answer is a consequence of not placing the negative
check on x after the positive generator for x which is the condition x 1s-
a-descendant-of Henry8. For safety PROLOG should give us an error message
when it reaches a negative condition in which there is a global variable
which has not been assigned a value. This would stop 1t evaluating the
above query because x is an unbound global variable of tne Not condition
PROLOG does not give an error message because to check that each global
sariable has a value each time it evaluates a negative condition is time
consuming. The decision was made to put the responsibility for ensuring
that this constraint is always satisfied onto the programmer. He must make
sure negative conditions will only be used for checking by a suitable
ordering of the query conditions.

Negated egualities

57

4.1 Negative conditiuns

)

One of the most common uses of neyation 1s the condition Not(x EG y)
which checks that the individuals given as s and y 30 nut have the same
name. ("EQ" is a primitive relation of microPRULOW Ity definition 1s
the unconditional rule x EQ «x. If you prefer tu use the symbol "="
instead of "EQ" simply add the rule x=x to your program.)

Suppose that we wanted to define the relation

x is-a-brother—of y.

We must find some guery condition that defines the brouther relationn Two

individuals x and y are brothers if: .
they are male Male(x) & Male(y)
they are different people Not(x EQ y)
they have a common parent z is—a-parent-of x & z is-a-parent-of y

This gives us the rule:

x is-a~brother—of y if Male(x) & Male(y) & Not(x EQ y) &
t is—aparent-of u & z 1.i-a-parcut-of y

Ihe negative condition Not(x E@ y) with global variables x and y comes
after the positive conditions Male(x), Male(y) that will be generators for
these variables.

Checking ys generating rules

When we use '"Not" in a rule we need not always make sure that it is
preceded by positive conditions for its global variables. But, if we do
not do this, we should make sure that the rule is only used for checking.

As an example, consider the rule:
childless(x) if Not(x is-a—parent-of y)
This 1s read:

x is childless if it is not the case that x is a parent of
y tor some Yo

Because the global variable of the negative condition must have a value
when the condition is evaluated this rule can only be correctly used for
gcheckipg that someone is childless. It gannot be used for findipg child=
less people. For generality of use we would need to add an extra
condition:

childless(x) if person(x) & Not(x i1s-a-parent-of y)
Here person(x) is defined by the two rules:

person(x) if Male(x)
person(x) if Female(x)

This rule can be used both for checking and generating. When used for
cthecking that someone is childless the condition person(x) is redundant.
Thus, if we only use the childless condition as a checking condition, the
shorter restricted use rule might be preferred But to use rules that can
only be used as checking rules is to live dangeruusly. micro-PROLOG does
not check that the restriction is adhered ta. [If you make o mistake, and
(ry to use the rule to generate, you will get incorrect dnswers.

The rule that has the personi(x) condition also has another merit. It

58

4.1 Negative conditions

)

makes sure that only people are confirmed as childless. The shurter rule
will confirm childless ¢ 5-, because 6 15 something for which 10 15-a-parent
tact can be contirmed.

Not with belongszto

We can use a negated condition to check that something is not oun a
List. As an example, the query:

Which(x x belonys-to (a cow jumped over the moon) &
Not(x belonygs-to (a the))

will give us all the words in the List (a cow jumped over the moon) which
are not one of the articles (a the).
The query:

which(1 1 Is-AlLlL(x x belongs-to (P AL IND RO ME)
& Not(x belongs-to (AE 1 0 U))

gives the answer
(PLNDR M

which 1s a List of all the norrvowels in the Letters of PALINDROME.

Exergise 4-1

1. Using the built-in Arithmetic relations of micro-PROLOG,
a. Give a definition of an even number using the PROD relation.
b. Give a definition of an odd number that makes use of the even
number definition Hint: use the built=in relation "NUM(x)" which
tests if x is a number.
Notice that your programs can only be used for testing the relations

they define.

2. Answer the following PROLOG questions:
a. Which(x x belongs-to (the quick brown fox) and
Not(x belongs~to (how naw brown cowl))
b. Which(x x ls-AlLl{y y belongs~to (F R E D) and
Not(y belongs-to (D O R I S)))

2 1# Using the Tudor Royal family database,
a. Define the relation "a-marwith-no-sons".
b. Define the relation "a-mouther—with-no-daughters".

&, Using the information described in the books database, we Wwill develop
a Library Loan system. Qur records of book issues will have the
form:

Issue (Name Title Author Issue-Date Due-Date)
tor instance, the sentence:

Issue ((John Smith) (Oliver Twist)(Charles Dickens)(4 6 80) (18 & 80))

says that John Smith borrowed Oliver Tuwist by C Dickens, he borrowed

it on 4th june 1980, and {s supposed to return it by the 18th, Our
records of book returns will have the form:

Return (Name Title Author ReturmDate)

Y

for instance:

5%

4.1 Negative conditions

Return ((John Smith) (Oliver Twist)(Charles Dicre..s (12 6 80))

says that J. Smith returned his book on the 12th 1 june (betore it
be came overdue)

a. Add this definition to your program:
“A book (title) is overdue if it has been issued, it has mnot been
returned, and the date is after the Due-Date'

b. Give the definition of "after"” that you will use.

€. Add this definition to your program:
“Anybody who has an overdue book is banned from the Library".

-
4um 1he Is-ALLl Comdition

The Is-ALL condition is another form of simple sentence. It has the
form:

L Is=ALL (A Q@)

The pair (A Q) are an answer-pattern and a query-pattern as in a Which
query; L is a variable or a List pattern. The condition is read:

L is a List af all the A's such that Q@ for some y1,..,yk

Here, y1,..,yk are the Local variables of @, the variables that do not
appear in A or in any other simple sentence of the query or rule in which
the "Is—ALL"™ appenurs. The global variables of (A @) are those that do
appear in some other simple sentenke,

Restrictions op use

As with negative conditions, ‘when the "Is=ALE" condition is evaluated
all the global variables of (A @ must have values. S0 in a query we must
precede an “Is-ALL" condition with positive gererators for its global
variables, and in a rule we must have preceding generators or make sure the
n_:le will only be used to answer queries in which the global variables are
givern. micro-PROLOG does not check that the global variables hawe values
when it evaluates the “Is-ALL" condition. It is Likely to give incorrect
answers in this situation

Usually, the L argument of the "Is-ALL" condition will be a variable.
The evaluation of the condition then generates a single value for the
variable which is ‘the List of all the answers to the query (A Q).

In general, it is not safe to give L as a particular List and use the
“Is-ALL" in a cheeking mode. This is because the condition only holds

when L is identical to the List of answers that would be constructed in the
generate use of the condition Thus, the query:

Does((Tom Dick Peter) Is-AlLL(y Mary is-the-mother—of y))

may fail to be confirmed even though Tom, Dick and Peter are the only
answers to the query:

Which(y Mary is-the-mother—of y).

This happens if the evaluation of this query would generate the answers in
a different order from that of the List (Tom Dick Peter). In seetion 43
we shall see how we can get arocund this problem using a relation that
checks that two Lists have the same elements.

This restriction of the "Is-ALL" uonditim(n due to the fact that
micro-PROLOG knows nothing about sets. It only knows about Llists, and

60

4.7 The 1s—ALL Condition

¥ _ .
Lists are identical -/t they comprise the same sequence of elements.

When we use Lists to represent sets, we must do our wnft“”o“?nt?;;
equality, and removal of dupL'i:,dtle elements. (The probl:;lm (: ri;-:n. v
duplicates is dealt with in exercise 5—1(12) of the next cuplg & " o

If the List L is empty, or only contains one a‘.-le:wnt, E.hn. pro r.'rl; 1
exact ordering of the elements Jdoes not arise. 50 ‘Is—'MI::1 clau} mu.:‘u:ﬂ;
used to check that there are no answers or that some individual 15

answer.

poes(() Is-AlL(x Tom is-the-father-of x))
checks that Tom has no children. It is equivalent to the query
poes (Not (Tom—is=-the-father=of al).

The query

poes((BilLL) Is—AlLL(x Tom is=the-father—of x)

checks that Bill is the only child of Tom. _
finally, the List L can be given as a List of variables.

The query:
Which((x1 x2 x3) (x1 x2 x3) Is-ALL(y Mary is-the-mother—of y))

checks that there are only three children of Mary, and if there are, gives

us their names. The query

Which(x 3 length-of x & x Is=ALL(y Mary is-the-mother—-of y))

is equivalent, and will have the same answer. It uses the relation
“length-of" that we discussed and defined in Chapter 3.

Procedural reading

Therway an Is-ALL condition is evaluated is reflected in the alterna-
tive procedural reading:

To answer the query L Is=ALL (A Q)
answer the query Which(A Q@) ‘
and check that L is the List of answers 1n the order they are

found.

Notice that this means that any duplicate answers to Which(A Q) appear
as duplicates on the List L.

use of Is=All for consiructing L1sts
The rule:

X intersectiomof (Y I) 1t X Is=ALL (x x belongs-to Y & x belongs-to 1)
detines the relation that is satisfied when x is @ List of all the indivi=

' he restrictions on the
duals that appear on the Lists y and z. Because of t ;
use of "Is-ATf"' it can only be used for constructing such an intersection

i i ber this
List. ‘Notice that if Y or I contains a duplicate of a common mem
duplication will be repeated on the List X But X will be without
duplicates if Y and I are without duplicates.

Theé rule:

X difference-between (Y 1) if X Is—ALl (y y belongs-to Y&

61

4.2 The Is-All Condition

N(Jt(y N(u-n_‘:_to 1))

defiies the relation that holds when X is the Li.t of elements on Y that
are not on Z. It can only be used for finding X given ¥ and 2. he
constructed List X will be without duplicates if Y 15 withuut duplitates.

Exercise 4-2
1. Using the relation x member-of-either (y z) defineu by the two rules:

x member—of-either (y z) if x belongs-to y
x member-of-either (y z) if x belongs-to z

give a rule for the relation "x union-of (y z)" that can be used for
constructing a List x of all the individuals that are members of y or z.

2. Define the “subset-of" relation: x subset-of y holds when all the
elements of x also belong to y. (Hint: the difference between x and the
intersection of x and y is the empty set.)) We will revisit this example
Later.

3. Detine the relation: X set-unionmof (Y ZI) which is the same as
"unior-of" except that its use will always give a list X without duplicates
it ¥ and I are without duplicates. Deftine it in terms of the “uniomof",
intersectionrof" and “difference-between".

Sometimes we want to check that the answers to a query all satisfy
some condition. In the next section we will show how this can be tested
directly with a single “For-ALLl" condition. As an exercise 1n the use of
Is-AlLl we show how it can be done using the answer List constructor.

Suppose that we have used the relations over individuals representa—
tion of family relations, that we have a set of fac¥s such as

Bill is-the-fdther—of Roy
Sarah is-the-méther-of ROy

giving the mother/father relations. Consider the problem of finding all
the men who only have sons.
We can actually pose this query using negation., We can express it:

Mhich(x Male(x) & Not(x is—the-father—of y & Female(y))) (A)

read as:

the x's such that x is Male and it is not the case that
x is the father of a female y, for some y.

We can also express the condition using "Is-ALL". A male x satisfies
the condition if all the answers to the query Whichly x is-the-father—of y)

are male. By wrapping up these answers as a List, we can check the condi-
tion using the "all-Male" relation defined by:

all-Male(())
all-Male((ulx)y if Male(u) & al'l-Male(x)

This is the relation that holds for a List iff it is a List of males. The
query can be posed:

Which(x Male(x) & Z Is-ALlL(y x is-the-father—ot y) & all-Male(2)) (B)

62

4.2 The Is=AlLl Condition

\

Notice that this query, and query (A) above, are both satistied by men who
have no children at all. This is a correct and strict interpretation of
the condition “only have sons'. If we wanted to insist that each man had
at Least one .hild we could replace the "Male(x)" condition of buth guery
(A) and query (B) by the conditiun "is=a-father(x)". This is defined by
the single rule:

is-father(x) 1f x is-the-father-of vy.

(A) and (B) are equivalent ways of expressing the same query. There
is a third way:

Which(x Male(x) & (Male(y)) For-AlLl{y x is-the-father-of y)) (9]

This uses the "For-ALL" condition we are about to describe. It has the
effect of testing that all the children of x are male without the need to
construct the List of these children. In this respect it is similar to
query (A).. Notice that in (A), (B) and (C) the global variable x of the
complex copdition of the eath query has a preceding generator, Male(x).

4.3 The For-ALl sondition

A "Fof-ALL" condition is a simple sentence of the form:
() F;r-ML (A Q@
€ is a si-;ate sentence or a conjunction of simple sentences. The '(A Q) is
'a'c:hich quéry expression in which A is the List of variables that appear in
: Its declarative reading is:

C is true for all the A's such that @ for some y1,..,yk
1
The y1,..,9k are the Local variables of Q.

The global variable restriction applies. ALL global variables of Q
must be bobnd before the condition is evaluated, but micro-PROLOG does not
check that this constraint is satisfied. If it is not satisfied, you are
likely to get the wrong answers to the query or rule in which the condition
appears. The moral is, precede it with positive generators for the global
variables, ‘or make sure the rule is only used to check a condition in which
the variables will be givern

The procedural reading 1s:

to check the condition (C) For=ALL (A Q)
answer the query Which(A @,

as each answer A 1s generated check that C holds,

it C does not hold for some answer conclude that the “For-ALL"
tondition does not hold and abandon the search for answers,

if C holds for every answer A conclude that the “For—ALL" condi-
tion holds.

Example uses of ForzAll
(1) The rule:
X subdet-of Y 1t (x belongs-to Y) For-ALL (x x belongs-to X)

can be used to check that all the members of a List Y are members of X.
The rule:

The For—-AlLL condition

X same—elements—as Y if X subset-of Y & Y subset-of X

can be used to check that all the members of X .re members of ¥ and vice-

versa.

Notice that this defines a set equality with sets represented by Lists
of their elements. It can also be used to check if some List is just a
permutation of the elements of another List of the same Length. The
relation can be used in conjunction with "Is-ALL" to check whether some
particular set, represented as a List, is the set of answers to some query.

As an example, suppose that we wanted to check that Mary's children
were Tom, Dick and Peter. Assuming that information is represented as in
the Tudor's data base, we would pose the query:

Does(x Is-AlLlL(y Mary is-the-mother—of y) &
x same—elements-as (Tom Dick Peter)).

This is the way to get around the restriction on the “Is-ALL" that we
discussed above.

(2) An ordered List is a List such that for all pairs of adjacent
elements (x y) the condition x Lesseq y holds. This gives us the rule:

ordered(X) if (x Lesseq y) For=ALL ((x y) (x y) adjacent-on X)

This specificationlike rule can be used for checking the ordered condi-
tion The relation “(x y) ld]acent on X" which holds when (x y) are a
pair of adjacent elements on a List X can be defined by:

(x y) adjacent=on (x y | X)
(x y) adjacent-on (z | X) if (x y) adjacent-on x
P i
The definition of the relation was the answer to exercise 3-7(5). The
relation lesseq was defined in exericise 2-3(3).

Exercise 4-3 b

: IS Using the relations of the bobks data base, i.e. "writer”, "written
by*, “type”, “published”, define the following relations. Use "For=
ALLY. !

(i) Novelist(x): x is a writer whose recorded books are all novels.
(i1) Modermauthor(x): x is a writer whose recorded books are all
published in the tuentieth century.

2. Use For—AlLL to define:
* (1) Positive-nums(x): x is a list of numbers greater than 0.

(i1) all-Male(x): x is a list_of names of males.

3. Define the relation disjoint(X Y): X and Y are Lists with no common
element. Define it using: '
(i) Not
(ii) Is-AlLlL
(iii) For-ALL
Any if these programs can be used for testing the relation.

64

S. Linst Processing

We have seen l we can access the components of lists and construct
new Lists out of existing Lists by defining relations with Lists as argu-
ments. When we query these relations we are processing Llists. In this
chapter we Lock at some more List processing relations and their use. We
also illustrate the application of List processing to the parsing of sente-
nces expressed as lists of words, an application to which PROLOG is well
suited.

5.1 The appends-to relation

We begin by examining a very powerful Little List program for the
relation "appends-to'. This has many uses apart from the ‘normal' one of
concatenating two Llists together; in particular it can be used to find all
the ways of splitting a List, to remove an initial or tail segment of a
List, even to split a List on a given element.

The condition

(x y) appends-to z

holds when z is the result of concatenating the List x to the List y.
An example of this is:

((A B) (C D E)) appends-to (A B C b E)

Before defining it, let us consider an example to illustrate its use. I am
trying ‘to remember what I ate for lunch today. It was served in two
cour ses. Each course can be described by a List of its ingredients. Thus

(tish chips) served=-in first-course
(rhubarb custard) served-in secondrcourse

What I ate altogether was the List of things I ate in the first course
appended to the List of things I ate in the second course. S0

1 served-m dinner if x served-in hrst—course
& x served-im second-course
& (x y) appends-to

Which(x x served in dinner)
Answer is (fish chips r