
/
f

i

.4
• *

>4

Logic Programming Associates Ltd

A

micro-PROLOG
PRIMER

Clark Ennals

McCabe

JOGUMSINOAU
LONDON bWll 6JC

J) Logic Programming Associates Ltd. w
Us=>v__ ^oJ>

I

)

Primer

tHKATA

Ea&e
26

26

49

50

50

51

51

52

52

53

53

*8

ca

99

'.'9

126

Lit

9

10

IB

25

25

9

-I

12

-13

11

Ht

-13

-12

-19

-12

12

Ifiil
(-77 38)

(-76 45)

and y -z l

(A . X)

A ; . t ._r-: , . .<_;.: . ,

aiM(y1 1 y)

y le r .g t> .~Gf X

y lengU>-Gf X

4 Jength-of y

paruiiettrs

correct

Z len^tti-ol y

"z lentt|-.-o(y »

(38 77)

(45 76)

and z 1 - y

(x l X)

<• ' —> . - » » ..

3l !M(y1 1 z l)

z i< i i l t Lh-u(;

Z ler,bU»-Gf X

4 len^tn-of x

piirenta

connect

x I tn^ t t f -o f y

"x lei .KU.-uf y"

(reduce SUM y 0 x) (reduce il'M y x)

(reduce y 0 x) (rtdui.e Mln y *)

(Y1 X I) (y l X I)

M t i v e l i n t t i u - i . f r is a i : i ,e of text coiiM ! rorr. the t (4> ol U.t t e > . ' , j
n.jT.ber I'IMT the; but t i jn ui the text.

\)

A •icru-PNOLOG Primer

K.L.Clark J.R.Ennals
f.G.McCabe

First Edition December 1981,
Second Edition April 1 9lt!

(c) 1981, 1982 Clark, Enrols, Mcfabe

All rights reserved.

Published by:-

Loijit Progrdmwmy Assoc ia tes Ltd., 36 Gorst Kd. x LONDON SW11 6JE, ENGLAND

Except in the United States, this book is sold subject to the condit ion
that it shall not, by way of trade or otherwise, be lent, re-sold, hired
out, or o therwise c i rculated without the publisher's prior consent in any
f o r m of binding or cover other than that in w h i r h . i t ii publ ished and
without a similar condition being imposed on the ;,uL/L>ni*-nt purchaser.

\ Preface) COMIUHS

1. Basic Logic Programm ing - Sinple f a c t s and queries
1.1 Developing a simple data base program
1.2 Queries
1.3 Ari thmetic
1.4 Evaluation of queries
1.5 Ef f ic ient queries

2. Basic logic programming - using general rules
2.1 Turning queries into rules
2.2 How queries involving rules are evaluated
2.3 Recursive descriptions of relations

Lists
3.1
3.2
3.3
3.4
3.5

Lists as individuals
Getting at the members of a list of f i xed length
Getting at the members of a list of unknown length
The Length of a list
Answer sets as li s ts

4. Complex conditions in queries and rules
4.1 Negative conditions
4.2 The Is-al I condition
4.3 The For—all condition

5. List Processing
5.1 The appendi-to relation
5.2 Rules that use appeuds-to
5.3 Recursive definition of the sort relation
5.4 Parsing sentences expressed as l ists of words

6. Imperative aspects of Micro-PROLOG
6.1 Reading Input
6.2 Writ ing Output
6.3 Rules that ask for information
6.4 Rule use of Add and Delete
6.5 Modifying the behaviour of Micro-PROLOG

7. The internal syntax of Micro-PROLOG
7.1 Clausal Notation
7.2 The Meta-Variable
7.3 The dictionary and modules

12
16

1«
it

2 a
28
.34
37

41
41

u
44
4H
i.5

56
56
60
63

05

65
68
71
74

fti
fA
80
81
8.'
86

91
91
93

101

Appendix A. Instructions tor running micro-PROLOG

Appendix B. Using the Keyboard edit fac i l i t y

Appendix C. The Simple front end program listing

Appendix D. Answers to Exerc ises

Bibllography

105

111

114

117

\)
Preface

Th is P r imer is in tended to serve as an in t roduc t ion for the non-
special ist t o the m ic ro -PROLGG system, w h i c h i s i m p l e m e n t e d fo r
m i c r o c o m p u t e r s based on the Z80 M ic rop rocessor and the C P / M O p e r a t i n g
Syste*. The primer is a companion volume of the micro-PROLOG Programmer 's
Reference manual CMcCdbo 19811, wh ich gives a complete descript ion of the
sys teM but assumes knowledge of PROLOG programming as c o v e r e d by th is
primer.

Since micro-PROLOG is one of the PROLOG fami ly of logic programming
languages (PROgramming in LOGic), the primer also serves as an introduction
to the general concepts of logic programming. The d i f f e rences between
•icro-PROLOG and the other PROLOGS are Mainly syntactic.

I

Ever since von Neumann f i rst described the form of the modern computer
they have been programmed in essent ia l ly the s a m e w a y . The f i r s t
programming language was the binary language of the mach ine i t se l f :
machine code; then came assembler, which is symbolic machine code; then
the so-called high level languages like FORTRAN, COBOL, BASIC, fo l lowed by
today's more modern variants ADA and Pascal. All of these programming
languages share a common character is t ic : the programmer must describe
quite precisely bow a result is to be computed, ratner than wha t it is that
Must be computed".

A computer program in one of these programming languages consists of a
script of instructions each of which describes an action to be performed by
the computer. For example, the meamng of the BASIC statement:

10 LET X = 105

is that the m e m o r y locat ion whose name is X should have i ts con ten ts
changed to 105. They are jfpgeratjye programming languages, s tatements in
them are commands which specify actions to be performed. They are geared
to the descript ion of the behayjour needed to achieve the desired result.
While undoubtedly we somet imes think behavioural ly, most o f ten we do not.
For example, the f i rs t question we ask someone about a particular computer
or program is:

"What does it do?"
not:

"How does it do it?"

Certainly the answer to the f i rs t question wi l l not be:

1 INPUT X,Y
2 IF X>Y THEN A
3 Z=X: X = Y: Y = Z
4 X=X-Y
5 IF X>0 THEN J
6 PRINT Y
7 END

We shall not si nply l ist the program. W h a t we are more l ike ly to do is to
describe the rej.at_ion be tween the input and output of the program. We
might say, for example, "it prints the greatest common divisor of the two
numbers read-in".

S i m i l a r l y the most e f f e c t i v e way to t a c k l e a new programming task is
to f i r s t develop a sp«?u if i cat ion of "what the program has to oo' Thi s

Preface
Preface

•• It I
spec i f ica t ion is also often a description of the relat ion of the output of
the program to the input. Having described this relation, the pr"<jram is
then wr i t ten as a sequence of act ions w h i c h 'compute' the output ih.jt meets
the specified relation to the input.

Given that people find di f f icul ty in thinking purely in impe ra t i ve ways
(as is evidenced by the huge shortage of programmers) it seems archaic to
program compu te rs in this way. Compute rs are supposed to help so lve
problem*, not to create more.

The net effect of forty years of development of programming languages
seems to be that there are very few programmers, and that very few of these
programmers have any solid confidence that their programs a,re correct.
Programming is still essentially a craf t activity. Compare that w i t h
a lmost any other modern product ion/design ac t i v i t y w h i c h is t yp ica l l y
highly automated, with sophisticated (computer) aids for designing and
manufacturing products.

One way of tackling the programming problem is to provide a program-
ming language which is d.esc.rjgjjye. rather than p.rescrjp.tjye: a language in
which programs are descriptions of the input/output relation to be satis-
fied, The execution of the program is then a use of this description to
find an output that satisfies the relation. The way in wh ich the descrip-
tion is used is the secondary, controj. aspect of the program. By taking
into account the way the description is used we might choose one descrip-
tion rather than another. This is the gragmat jcs of programming in a
descriptive language. But it wi l l still remain the case that the program
is primarily a description of what it is supposed to compute, rather than a
prescription of hoy it should compute it.

LISP (at least pure LISP) is an early example of a descriptive lan-
guage; PROLOG is another. A PROLOG program is essent ia l l y a set of
sentences of symbolic logic that define the relat ion that we want to
compute. PROLOG computation is the use of this def ini t ion to f ind an
output that lies in the defined relation to the input. We shall see that
it is otten the case that a single description of some input/output rela-
tion can be used in the inverse mode. It can be used to find all the
inputs that will give rise to a particular output! This invertabi lity of
use is only possibly because the program is descr ip t ive . It its not
limited to one. use because it does not comprise a sequence of instructions
that encode the behaviour of that use.

Finally, since a PROLOG program is a description of a set of rela-
tions, it blurs the distinction between data retrieval and computation.
In PROLOG, they are both the finding of one or more arguments of a relation
using the description of the relation provided by the program.

Chapter 1 introduces micro-PROLOG by using it to develop and query a
s i m p l e data base of fac ts . The ease w i t h w h i c h one can construct and
query such a data base is one of the prime features of the language. The
chapter also introduces the arithmetic facilities of micro-PROLOG. These
are quite different from those of a conventional programming language, we
add and subtract by querying an (impl ici t) data base of f a c t s about the
addition relation, l ikewise we multiply jrid divide by querying a data base
of ' t imes tables'.

Chapter 2 describes how the data base can be augmented by rules.
Rules can be used to abbreviate queries. They can also be used to g ive a
recursive definition of a relation.

In Chapter 3 we introduce l ists and describe how they can be used to
structure information, often compressing many statements into one. The
elements of a list are accessed using special list patterns. This pattern
processing of list structures is another unique feature ot PROLOG. The
chapter also introduces a pr imi t ive of me language that car be used to
wrap up the s.e£ of answers to a database query as a Ust. Th is provides

the interface between the use of PROLOG as a database language and its use
as a list manipulation language.

In Chapter A we describe more complex forms of query. These include
the use of not and for- a 1 1.

In Chapter 5 we discuss programs which use more complex list proces-
sing. These include the "appends-to" program, a list sorting and a s imple
parsing program.

In Chapter 6 we introduce the imperatives of micro-PROLOG. These are
built in relations that have a side-effect when they are evaluated. An
example is the built in re la t ion that reads data f rom the te rmina l .
Dec lara t ive ly it means: someth ing that can be read at the terminal .
Procedural ly, it a l w a y s returns the next thjng to be t^ggd. The
imperatives of micro-PROLOG detract somewhat from its descriptive nature, a
program that uses them is not a purely descriptive program. However, as we
shall see, the use of the i m p e r a t i v e s can of ten be r es t r i c t ed to the
definition of one or two aux i l i a r y relations, the rest of the program
being entirely descriptive.

In Chapter 7 we describe the internal syntax of a micro-PROLOG prog-
ram. This is the fo rm in w h i c h the f a c t s and rules are a c c e s s e d and
evaluated by the micro-PROLOG interpreter. The user fr iendly su r face
syntax, the syntax used previously, is translated into the internal form by
a special micro-PROLOG program called simple. The simple program is wri t-
ten in internal syntax. Any program can be written and entered in internal
syntax form. (The micro-PROLOG reference manual uses the internal syntax.)

All micro-PROLOG programs are really just list st ructures. As in
LISP, one can therefore w r i t e micro-PROLOG programs that manipulate l is ts
that are other micro-PROLOG programs. The translator program, simple, is
such a program. This ability to treat programs as data is an exceeding
powerful tool. It enables one to wr i te programs in micro-PROLOG to modify
and extend the micro-PROLOG system. In Chapter 7 we show how this can be
done and we introduce one or two features of micro-PROLOG that can only be
used by programs wr i t ten in internal syntax.

J£3lJ°DS Si EB2L2

The current ma jo r uses of PROLOG are as a language for A r t i f i c i a l
Intelligence research, as a language for implementing and querying data
bases and in Education to teach both logic and the descript ive approach to
programming. W i t h i n Ar t i f i c ia l Intelligence it is being used for natural
language understanding, problem solving and the implementation of expert
systems.

Logic is particularly useful as i language for data bases where it has
a number of advantages over the conventional data base systems. Logic can
be used both to express data base queries, and to describe the data base
itself. The result of this is that the data base implementor and user
share a common language, enabling users to become programmers: common
queries can be easi ly turned into an extension of the data base. Logic
also plays a role in data bases in maintaining integrity. Integr i ty
constraints can be expressed as special queries of the data base, which are
tested whenever the data base is updated.

PROLOG is not part icular ly suited for applications wh ich need a lot of
routine numerical work, nor for some real tine and some commerc ia l data
processing applications. However in these fields logic is still a suitab-
le specification language, and PROLOG can be used to speedily implement and
test a prototype program.

!

The resea rch w h i c h under l ies many of the ideas presented in th is
primer was supported by the U.K. Science & Engineering Research Council in

Preface

a series of research grants held by R.A,Kowalski and K.UCla. «.' at Imperial
College. Of particular relevance is the "Logic as a Computer Language for
Children" project which is concerned with teaching the pr: ipies of logic
programming to school children. This project ,its « ic i ,-i'HOLOG arid the
user friendly surface syntax described in this pr imer was developed for the
project.

We are also grateful to the groups of people in various parts of the
country who have acted as hosts for demonstrations of •icro-PROLOG, provi-
ding excellent opportunities for testing different methods of explanation
to interested non-specialists.

Finally, the authors would like to thank Diane Reeve and Sandra Evans
whose patient 's laving over a hot word processor* made this pr imer
possible.

ic tit jr .Mini1. Basic logic p.- jr.Mniny - facts and queries

1.1 Deye.ioo.jng 3 sjmoje da^a bd^e fifograj

In this chapter we introduce some of the basic ideas of logic program-
ing by giving an example of the setting up and querying of a data base in
• icro-PROLOG. It the reader has access to a computer w h i c h hjs micro-
PROLOG we recommend that he fo l lows through the example using the computer.
Instructions for the loading of the PROLOG system are gi /en in Appendix A.

Addjng fa

Let us suppose that we want to set up a data base descr ib ing the
family relationships of the Tudor royal fami l y . We wil l do this by making
statements about these relationships, adding them one at a t ime to the data
base.

The statements are expressed as sentences of symbolic logic. There are
two kinds of sentences: sjmoje and c.ofggund. To begin wi th we shall only
need simple sentences which express basic facts.

In any family there are a number of basic f ac t s about the relation-
ships between individuals. Two such "Tudor" f a c t s are:

Henry the 7th is the father of Henry the 8th
Henry the 8th is the father of Mary

(1)
(2)

There are many such facts, each of which describes an instance of one of
the fami l y relationships of the Tudors. Now these English sentences are
almost sentences of micro-PROLOG! The simplest form of micro-PROLOG
sentence has three components:

Name-of-Individual Name-of-relationship Name-of-Indiv idual

In the two sentences (1) and (2) the Na«e-of-relationship is "is the father
of". In micro-PROLOG we have to make this into one word by hyphenating,
we must use: "i s-the-father-of". Similarly, we must name individuals by a
single word. Again we can do this by hyphenating, wr i t ing "Henry-the-
7th", or by abbreviating, using "Henry7". Rewr i t ing (1) and (2) in this
way transforms them into simple sentences of micro-PROLOG.

Henry7 is-the-father-of HenryS
HenryS is-the-father-of Mary

These two simple sentences in the data base are a direct representa-
tion of the two fac t s (1) and (2). We 'tell' the micro-PROLOG system about
these f a c t s by adding each to the data base. We type:

8. Add(Henry7 i s-the-father-of HenryS)
4. Add(Henry8 is-the-father-of Mary)

Notice that the sentence to be added is surrounded by brackets. The "&."
is not typed, it is the prompt printed out by micro-PROLOG to rel l us it is
ready to accept a new sentence. Moreover, each Add ins t ruct ion must be
terminated by a carr iage return. Before typing the carr iage return you
can correct typing m is takes using the Vubout1 or 'backspace1 key. A f t e r
the carriage return any m is take in the form of the added sentence w i l l
produce a response. If the "Add" is misspelt , you wi l l get a "Clause
Error" message. Both indicate that the sentence has not been accepted, so
try again w i th a new Add command.

You do not have to type all of a sentence on a single line. It can be
spread over several lines, but words cannot be split ac ross lines. If you
do type a sentence without f inishing it, you w i l l get the prompt

1.1 Developing a simple data base program

I

This merely indicates that m icrr-pROLOG is wa i t i ng fur
that marks the end jf the sentence to be iddea.

£ill£££Qi ijô s si rsi^ijyi-'

r i .jh I

A relationship such as "i s-the- fa tht r -o f 1 ' hoi Js o e t w e e r ;jairs of
individuals, in this case be tween a ' f a the r * and a 'ch i^ j 1 . it is a
bjnar* relation. Not all relationships are between pairs, some relate
t.nree or more individuals, and some are properties that appt/ to single
individuals. The genders "male" and " female" are propert ies. (.lore
technically, they are unar^ relations.) The relation of SfiT.eone gi/irg
SSJSSIiUDS to 532!£2D£ Si5S is a thr<;e place relation (a ternary relation;.
Simple sentences giving f a c t s abjut these ron-binary relat i j ' is nave a
slightly different syntax. Instead of writ ing

individual- name relation-name individual-name

we write

relatiorrna»e(individual-nawe individual-Dane ... individual-rame)

For example,

Hale(HenryS)
Gives(Henry8 Mary book)
StM(2 3 5)

We ;an also wr i te the bjnar^ simple sentences in th is way:

is-the-father-of(Henry7 HenryS)

out the original way :f writing this is more readable. Je shill uje '•he^'i
"non-B'.nary1 simple sentence* more of ten when we get u ari th'neti : in
PROLOG.

A si*ple sentence te'.ls us that certain indi Jidud' s are i . n t j Ly
some relation. In natn^nati cs and logic the individuals are :ali.eu the
Sl^yiSI'lS °^ the relation. We alio ta lk «bout th^; f i r s t argument, t>. e
second arguaent, etc., of the relation. This names the argument Ly its
position in the li^t of arguments of the sinple sentence. In the sentence

5ives(Henry8 Mary book)

"henry8" is the f i rs t arjument, "Mary" tne secorxj and tne third.

15 2D !i

The spaces between the iiames of the individuals are important. In
m i c r o- r>R 3L OG spaces ana new lir*s and tabs are separators. They are the
only sepa ra to rs . The nunber of spaces you use does not m a t t e r , but
failure to .jse a space na> rnean lhat mi cro-PROLCG makej into one name *hat
you intended to have as two name... Kor more detailed iuforoat ion ir, wha t
is ar is not onderitood by :n i r r u- .-'R OL OG js a w Jrd bo'jndary, w e -- f fer the
reader to the reference manual. If in Joubt use a space. T h - - j r / e r ^ e
of t h i s is the need to hyphenate phrases s j ch as "i;> the f i t d e r of" in
or ile r to mike it into one name, riot *.

1.1 Developing a simple data base program)

)
S921D2 525S SS

Carry ing on, let us enter more of the known f a c t s concerning the
family relationships of the Tudors:

S.Add(Elizabeth-of-York is-the-mother-of Henr/S)
ft. Add ((Catherine i s-the-mother-of Mary)
S.Add(Henry8 is-the-father-of Elizabeth)
&.Add(Ann i s-the-mother-of Elizabeth)
S.Add(Henry8 is-the-father-of Edward)
S.AddCJane is-the-mother-of Edward)
&.Add(Male(Henry7))
&.Add(Male(Henry8))
&.Add(Female(ELizabeth-of-York))
ft. Add (Female ((Catherine))
&.Add(Female(Mary))
ft.Add(Female(Elizabeth))
8.Add(Female(Ann))
S.Add(Female(Jane))
&.Add(Male(Edward))

Notice that we slipped in some "is-the-mother-of" f ac t s and some fac ts
about who is male and female. We can add sentences of any relationship at
any t ime using the "Add" Command. The sentences are collected together by
name of relationship. The vocabulary of a program consists of the names
of the relat ionships and the names of the individuals; the vocabulary
defines the "things" that a subsequent query can talk about. Our vocabu-
lary so far is

Henry?
HenryS
Mary
EUzabeth-of-York
(Catherine
Elizabeth
Ann
Edward
Jane

is-the-father-bf
is-the-mother-of) Names of Relations
Male
Female

Names of Individuals

We can display our program by using another command "List". This
command displays on the screen all the sentences entered, or just those for
speci f ied relations. To l ist the full program we type:

1.1 Developing a simple data base progra*

I
&. List All
Henry? is-the-father-of HeriryS
HenryS i s-the-fa thtr-of Mary
HenryS is-the-tather-of Elizabeth
HenryS i s-the-fa ther-of Edward
Elizabeth-of-York is-the-mother-of HenryS
(Catherine is-the-aother-of Mary
Ann is-the-«other-of Elizabeth
Jane is-the-«other-of Edward
Male(Henry?)
Male(HenryS)
Male(Edward)
Female(Elizabeth-of-York)
Female ((Catherine)
Female(Mary)
Fe»ale(EUzabeth>
Female(Ann)
Fe«ale(Jane)
ft.

The sentences are listed according to name of relationship, not order
of typing. However, the listing of the sentences for each relation does
correspond to the order in which they were entered.

We can choose a particular name of relationship, and list that. For
instance:

ft.List is-the-«other-of
Elizabeth-of-York is-the-mother-of HenryS
(Catherine is-the-«other—of Nary
Ann is-the-aother-of Elizabeth
Jane is-the-mother-of Edward
ft.

By using the co««anO:

ft.List diet

a dictionary of the names of relationships used so far is listed, in this
case we will get:

dict(is-the-father-of)
di ct(i s-the-«other-of)
diet(Male)
dict(Feaale)
ft.

We can save the program on disk, giving it a unique name of our
choice, as follows:

ft. Save tudors

This copies all the sentences of the current program into a file named
"TUDORS.LOG". (The na«e given in the Save command must be different from
the name of any relation in the program.) The sentences still remain in
the data base. However, on a subsequent occasion, we can retrieve these
sentences and have then automatically added to any data base simply by
typing:

&. Load tudors

Developing a simple data base program

Simple editing of the PROLOG progi jm is performed by deleting a whole
sentence and adding a new one. Let us suppose tha t the name of
clizabeth's mother has been misspelt , and that it should be "Anne". The
simplest way to remove the sentence "Ann is-the-mother-of Elizabeth" is to
use:

ft. Oelete(Ann is-the-mother-of Elizabeth)

This use of Delete is the opposite of Add. If the sentence given as the
argument to the command is in the program, the Delete command removes it.
If it is not in the program, you wil l get a "?" response. You will get
this response if there is not an e x a c t match between the sentence to be
deleted and some sentence of the current data base.

There is another way to delete a sentence, we can refer to it by its
position in the listing of the sentences for its relation. In the listing
the relation " is-the-mother-of" given above the sentence "Ann is-the-
mother-of Elizabeth" was the third sentence to be listed. So, instead of
giving the sentence to delete we can use

ft. Delete is-the-mother-of 3

Having deleted the sentence, using either for* of the Delete command,
we can add the new version:

&.Add(Anne is-the-mother-of Elizabeth)

If we now list the "is-the-mother-of" relation we will get:

ft.List is-the-mother-of
Elizabeth-of-York is-the-mother-of HenryS
•Catherine is-the-mother-of Mary
Jane is-the-mother-of Edward
Anne is-the-mother-of Elizabeth
ft.

The new sentence

Anne is-the-roother-of Elizabeth

is now listed at the end of the relation because it was entered last.
Let us now cor rec t the spelling of "Ann" in the "Female" relation.

This time we will reo^ace the sentence•Female(Ann) w i th Female(Anne). We
do this by deleting the old sentence and adding the new one so that it
occup ies the sane pos i t i on in the l ist ing of "Female" sentences. The
fo l l ow ing are the commands (those preceded by "&.") and the PROLOG
responses.

&.List Female
Female(El izabeth-of-tork)
Female(lCathenne)
Female(Mary)
Female(Elizabeth)
Female(Ann)
Female(Jane)
&.Delete Female 5

1.1 Developing a simple data base progr.

4. Add 4 (Female(Anne))
4. List Female
Female(Elizabeth-of-York)
Feaale ((Catherine)
Fe*ale(Mary)
Female(Eli*abeth)
Female (Ann*)
Female(Jane)
&.

I

We have used a variant of the Add command in w h i c h the position after which
the sentence should be added is given. Add 4 (Feiiiale(Anne)) puts it after
the fourth sentence about the Female relation, wh ich is where the deleted
sentence was. For a more sophisticated way of editing programs see the
"Edit" command in Appendix B.

mmary of D£O£ra«

Add
(i) Add (sentence)

will add the 'sentence' argument to the end of the list of sentences
for its relation.

(ii) Add n (sentence)
will add 'sentence1 after the n'th sentence in the L is t of sentences
for its relation. If n - 0, the new sentence w i l l oe placed in
front of these sentences.

(i) Delete (sentence)
will remove 'sentence1 fro* the data base.

(ii) Delete relation n
wil l remove the n'th sentence in the current list of sentences for
•relation*.

(i) List relation
lists all che sentences for relation.

(ii) List All
lists all the sentences in the current program.

SiXS
Save name

wil l save all the
file "name.log".
program.

sentences of the current state of
"name" should be different from

the program in a
any relation of

Kill
Kill

deletes a
relation
i sentences for 'relation1.

Siui
at.

this command ex i ts from PROLOG to CP/M.
your program before using it.

In general you should save

Exerc jsg 1-1

If you are following the text w i th a .computer, at th is stjge you soould
save the program that has been developed, using the commariO:

10

1.1 Developing a simple data tvase program

K.Save tudors

This and following exe rc i ses , can be carr ied out w i t h or without a computer.

1. Using the program developed above

a. Show howN you wou ld ed i t the program to change the spel l ing of
"Katherine" to "Catherine" in each sentence in wh ich it appears. Do
this in such a way tha t the new sentences are in the same
positions in the program as those they replace.

b. Add the two simple sentences necessary to express the information
that Henry? had a son called Arthur. Add these new sentences so
that they wi l l be l isted at the beginning of the sentences for their
relation. [Hint: if you give the sentence number 0 in the Add
command it w i l l add a f t e r the O'th sentence and so place the new
sentence at the beginning.]

2. Set up a database of simple sentences describing countries in different
continents using the fol lowing vocabulary:

Names of Individuals

Washington-DC
Ottawa
London
Paris
Rome
Lagos

USA North-America
Canada Europe
United-Kingdom Af r i ca
Italy
Nigeria

Names of Relations

capi tal-of
country-in

As examples, your data base should contain the sentences:

Washington-DC capital-of USA
USA country-in North-America

!

Save this data for future use using the Save command.

3. Set up a data base of s imp le sen tences descr ib ing the cooks of
d i f ferent kinds w r i t t e n by d i f fe ren t people, using the f o l l o w i n g
vocabulary:

Names of Indivi iuals

Tom-Sayyer
For-Whom-The-Bell-Tolls
01 iver-Twi st
Great-Expectat ions
Macbeth
Romeo-And-Jul iet
Dea th-Of-A-Salesman

Mark-Twain
Ernest-Hemmingway
Arther-Miller
Charles-Dickens
Wil l iam-Shakespeare

Novel
Play

of Relat ions

type

1.1 Developing a s tap le da to base program

written-by
wri ter '

For example, you should have the sentences

Tom-Sawyer written-by Mark-Twain
Tom-Sawyer type Novel
wr i te r (Mark -Twa in)

in your data base. Save this data for future use w i th the Save command.

1 .2 Quer je$

We now look at how a PROLOG program is queried. This is done via one
of the question commands of PROLOG. The questions presented in the
example are based on the Tudor f a m i l y re lat ionships data base that we
developed in 1.1. If this data base is not in the computer (test this by
trying to list the sentences for the "is-the-father-of" relation) load it
with a Load tudors command.

The simplest fora of query is the "Does" query which asks for confir-
mation of some fact. We explain this and other queries by posing some
example questions in 'logicised1 English. Below the questions we give the
PROLOG equivalent and the answers given by the computer. A brief explana-
tion is provided of points arising from the query.

English: Is it the case that HenryS is the father of Elizabeth?
PROLOG: &. Does(Henry8 is-the-father-of Elizabeth)

YES

The query is asking about a particular instance of the "is-the-father-of"
relation. As there is a •atch between the query sentence and the sentence

HenryS is-the-father-of Elizabeth

in the data base, the answer is "YES", an abbreviation for "Yes, fact is
conf i reed".

English: Is it the case that (Catherine is the mother of Edward?
PROLOG: 8. Does(Katherin« i s-the-mother-of Edward)

NO

In this case there was no match between the query sentence and a sentence
in the program, so the answer is "NO", short for "No, fac t is not
confirmed".

English: Do you know who the mother of Mjry is?
PROLOG: &. Does(x i i- the-mother-of Mary)

YES

In this query we are trying to find out whether the data base contains a
sentence that records who the mother of Mary is. The "x" stands for the
mother, whose name is unknown to us. PROLOG searches the c r t e n c e s of the
"i s-the-mother-of " relation, looking for a simple sentence ot ; \e form

x i s-the-mother-of Mary.

12

>
1.2 Queries

It finds the simple sentence

(Catherine i s~the-mother-of Marx

and so returns the answer "YES". It does not tell us that the unknown x is
(Catherine. To retr ieve this information we use a different form of query.

yarjabiej jn guerjes.

The let ters x, /, i, lower or upper case, fo l l owed by one or more
decimal digits, e.g. x1, y31, are the variables of micro-PROLOG. The varia-
ble in a query is a very simple concept: it stands for some unknown
individual. It is a place holder, ready to be f i l led in by a name.
Va r i ab les are the formal equivalent of pronouns in English. Where in
Engl ish we would say something, someone, it or he, in PROLOG we use a
variable. Just as pronouns are never used in English as proper names, so
in PROLOG variables can never be used as proper names. You cannot enter a
fact about an individual whose name is X! The variable names w e r e chosen
so that this problem is highly unlikely to arise.

To retrieve the names of unknown Individuals we use the "Which" form
of query.

English: Who is the x such that x is the father of Edward?
PROLOG: &. Which(x x is-the-father-of Edward)

Answer is HenryS
No (aore) answers -

A "Which" query has two arguments. The second argument is a query
pattern, a sentence which contains variables. Here it is the pattern

x is-the-father-of Edward

The first argument is the answer pattern. Here it is the single variable
x of the query pattern. More generally, the answer pattern is a list of
variables that appear in the query pattern.

In answer ing the query micro-PROLOG f inds a^ the instances of the
query pa t te rn that are f a c t s that can be conf i rmed. In doing th is it
'fills in1 the variable slots of the query w i t h the names of individuals,
which are then printed in accordance w i th the answer pattern. In this
case, there is only one instance of

x is-the-father-of Edward

that can be conf i rmed. This is the instance w i th x = HenryS. It is
confi rmed because

HenryS is-the-father-of Edward

is a sentence of the data base. So we get printed out

Answer is HenryS

followed by the message tn it there are no more answers.

Compound querjes

Cfuer ies w i t h severa l component s imp le sentences can be e x p r e s s e d

13

1.2 Queries

directly in both "Does" and "Which" form.

English: Was Henry? the father of Henry8 and of
PROLOG: &. Does(Henry? i s-the-father-of HenryB

Henry? is-the-father-of Edward)
NO

\

For a compound question prefaced by 'T>oes" to r ece i ve the answer YES all
of the simple sentences must receive the answer YES. O the rw ise the answer
NO is returned. In this case the second sentence is not contained in the
data base, hence the answer to the combjned query is "NO".

Notice how in PROLOG we must Bake explicit the question "was Henry?
the fa ther of Edward" that is imp l i c i t in the Engl ish phrase "and of
Edward".

English: Who had Henry? as a father, and was the father of Elizabeth?
PROLOG: &. w h i c h C x Henry? is-the-father-of x and

x i s-the-father-of Elizabeth)
Answer is HenryS
No (wore) answers

English: Who are the daughters of HenryS?
PROLOG: &. Which(x HenryS i s-the-father-of x & Feraale(x))

Answer is Mary
Answer is Elizabeth
No (More) answers

Notice that in this query we have used "&" as an abbreviation for "and".
This is an abbreviation that PROLOG understands.

English: Who is a mother (of somebody)?
PROLOG: K. Uhich(x x is-the-*other-of y)

Answer is ELizabeth-of-Vork
Answer is (Catherine
Answer is Jane
Answer is Anne
No (iiore) answers

English: Tell me all the father, son pairs that you know about?
PROLOG: WhichUx y) x i s-the-father-of y & Male(y))

Answer is (Henry? HenryS)
Answer is (HenryS Edward)
No (more) answers

In this query the answer pattern is the list "(x y)" of both var iables
appearing in the query pattern. They are the unknown father and unknown
sori re fe r red to in the query pattern. Note that we must use the
vocabulary of the program. The program does not include any facts that
directly describe the father-son relationship, so we describe what we want
using "is-the-father-of" and "Hale".

H

1.2 Queries

Summary gu..-r/jng c.Ofsanj

Doej
Does (s i mpl e-condi t ton [and ... simple-condition)

This query checks to see if rhe given (possibly compound) condition
can be conf i rmed using the f a c t s in the data base. It responds
"YES" if it can, and "NO" if it :annot confirm the

Which(P simple-condition Cand ... simple-condition)
This query returns the answers to the query defined by the simple
condi tion(s). Each answer is in the form: "Answer is P* " where P'
is the answer pattern P w i th the variables replaced by the names
that satisfy the condition, After all the answers have been found
then the message "No (more) answers" is displayed at the console.

One(P simple-condition Cand ... simple-condition)
The One query is similar to the "Which" query except that after each
of the solutions is found the system prompts for input. If you
respond w i t h "C" then the next solution is found, w i t h any other
response the evaluation stops.

For example, we might ask the s y s t e m for jus t one chi ld of
HenryS:

(LOneCx HenryS is-a-parent-of x)
Answer is Hary.C
Answer is Elizabeth. F
&.

Exercjse 1-2

1. Using the Tudor royal family data base developed in this chapter, give
the appropriate answers to the following PROLOG queries:
a. DoesUane is-the-«other-of Elizabeth)
b. Does(Henry? i s-the-father-of x)
c. WhichU Henry? is- the- father- of x)
d. toes(x is-the-mother-of Mary and Female(x))
e. Which(x HenryS is-the-father-of x and Male(x))
f. WhichUx y)x is-the-father-of z and z is-the-father-of y)

2. Using the vocabulary of the Tudor royal fami ly data base, express these
English questions as PROLOG queries:
a. Was (Catherine the mother of Euward?
b. Who is a father?
c. Was Jane the mother of anybody whose father was Henry??
d. Who had HenryS as a father and (Catherine as a mother?

3. Using the geographical data base started in Exerc ise 1, express these
English questions as PROLOG queries:
a. Is Rome the capital of France?
b. Is Washington-DC the capital of a country in Europe?
c. What are the capi ta ls of countries in Europe?
d. Is the capital of Italy known?
e. For which North-American countries is the capital known?
f. For which continents are the capitals of countries known?

4. Us ing the boo» •> data base s t a r t ed in E x e r c i s e 1-1, g i ve the
jppropriate dnswers to the fo l low ing PROLOG queries:

a. oesdl iver- r r f is t *ri t tun-by Wi I liam-Shake ,peare)
b. Does(x wr i t tT i -Dx Mark-Twain and x type Novel)

15

1.2 Queries

,
c. WhichUx y) x type Play and x written-by y)
d. W h i c h C x x type Novel and x written-by Charles-Di cken • .)
e. W h i c h C x y written-by x)

As we have remarked, PROLOG is nut suited for Applications w h i c h need
a lot of routine numer ica l work. However, we can do s imp le integer
ar i thmet ic using the three primitive relations SUM, PROD and LESS.

We use these relations in exactly the same way as we use relations
described by sentences of the data base. Although each relation is imple-
mented in machine code, so as to make use of the hardware operations of the
machine, we can think of them as being defined by an implicit data base of
simple sentences.

SyM Reiatjon

The SUM relation is a three argument relation such that

SUMCx y z) holds if and only if z = x + y.

The implicit data base describing the relation contains sentences such as
SUN(2 3 5) and SUM(-3 10 7). We do addition & subtraction by querying the
implicit data base.

Uses of the SUM re.iat.ion

Checking:

&. Does (SUMC20 30 50))
YES

Adding:

&. W h i c h C x SUMC30 -2 x))
Answer is 28
No (more) answers

Subtracting:

&. Wh ichU SUMCx 3 15))
Answer is 12
No (more) answers

or:

&. Uhich(x SUMC3 x 15)
Answer is 12
No (more) answers

R£Str jct jons on §UM syerjes

A query pat tern for the SUM reldt ion can have at most one unknown
argument. This constraint would not apply if there was a real <Jata base
for the relation. It applies because the m icro PROLOG sys tem s imulates the
data base and for e f f i c i e n c y supports only a r e s t r i c t e d range of query
patterns. This means that a query such as

&. WhichUx y) SUM(x y 10))

wil l not be answered. It w i l l result in a "Control Error" message. Try

16

i t !
>

1.3 Arithmetic

The PROD relation is such that

PROD (x y z) holds if z - x * y

Si IfcS fBSfi IlliliSfD

Checking:

C. Does (PRODC3 4 12))
YES

Checking If one number divides another:

t. Does(PROD(3 y 9))
YES

ft. Does(PROD(JS y 10))
NO

Multiplying:

S. Wh ichCx PROD (S 4 x»
Answer 1s 20
No (»ore) answers

Exact division:

&» Which(x PRODU 2 10))
Answer Is 5
No (more) answers

We Must be careful w i t h the use for division.
division we get no answer.

ft. WhichCx PRODU 3 17))
No (wore) answers

For such * division we need to use a special four argument for* of the PROD
relation. This 1s the safe for* to use for every division. The extra
argument of the relation represents the remainder on division.

Inexact division:

8. UhichUx y) PROD(3 x 17 y))
Answer is (S 2)
No (more) answers

BfiSirJJJJoD 9D PROD g^eriej

The restrictions on the use of the three argument form of PROD are the
same as those for SUM. At most one argument can be a variable, but this
can be any of the three arguments. This covers the use for multipl ication
and exact division. The four argument form can only be used for division.
Thus the last argument, the remainder argument, must a l w a y s be a var iJble
and the second to las t argument, the number to be divided, must be an
integer. The divisor can be given as either the f i rs t or second argument,
but then the other argument must be a variable representing the unknown
quotient. So the above div ision query could have been given as:

If there 1s no exac t

17

1.3 Arithmetic

)
1.4 Evaluation of queries

)
&. W h i c h ((x y) PROO(x 3 17 y))
Ansyer is (5 2)
No (more) answers.

The uses PROD(x M N y>, PROD(M x N y), M and N integers, w i l l both
return x and y values such that

x * M + y = N, y<M

The primitive LESS relation can only be used for checking. LESSU y)
holds if x is less than y in the usual ordering of the integers.

U*£S 3l k tSS.

*. Does(3 LESS 4)
YES

t. Does (4 LESS 3)
NO

LESS can also be used for comparing two words. The ordering used is
that of the dictionary. LESSdc y) holds for worJs x and y if x comes
before y in a dictionary. Example:

K. Does(FRED LESS FREDDY)
YES

i. Does(ALBERT LESS HAROLD)
YES

ft. DoesCSAM LESS BILL)
NO

1-3

1. Answer the following PROLOG queries:
a. Does(SUM(9 6 15))
b. WhichCx SUHU 18 x))
c. W h i c M x SUM(x 23 40))
d. Does (9 LESS 10)
e. Does(SUH(9 8 x) and x LESS 19)
f. Hhich(x PROD(9 7 x))
g. Does(PROD(11 8 80))
h. UhichUx y) PRODC4 x 14 y)

2. Write PROLOG queries to ask the following English questions
a. What is 9 plus 7?
b. What is the remainder when 65 is divided by 7?
c. What is the result if you add 29 and 53, and divide the total by 2?
d. Can 93 be exact ly divided by 5?
e. Is the result of multiplying 17 and 3 less than 50?

1.4 Eyajuatjon oj

This is an appropriate point to say something about th.- «ay if; w h i c h
PROLOG evaluates queries.

When querying a data base of simple sentences we can, for the most
i~i'"t, ignore the way that queries are evaluated. However, we shall see
that the ordering of the conditions in a compound query can e f f e c t the t ime
that PROLOG takes to answer the query. Choking an ordering that
f a c i l i t i e s the eva lua t ion is part of the p r a g m a t i c s of using PROLOG.
Moreover, for certain compound queries, for example the query:

Which(x PROD(37 51 y > & SUM(y 73 x))

we muslt know about the order of evaluation of the component conditions.
Does PFJOLOG answer the SUM or the PROD query f i r s t ? If it is the SUM query
we wi l l get an error message because there are two unknown arguments y and
x. If PROLOG answers the PROD query f i rs t there wil l be no problem provi-
ding the answer obtained for the unknown y is 'passed on* to the SUM query
before it is answered. Fortunately this is exact ly what PROLOG does.

3iif3jJ0D 2l SimB^S 'lP.°e.S" guerjes

The simplest form of query is the "Does" query of the form

Does(S) where S is a simple sentence

PROLOG evaluates this query by searching through the sentences in the
data base for the relat ion of the sentence S. It does not search the
who le data base. PROLOG s tores the sentences about each re la t ion in a
list, the ordering of the sentences on the list being the order in which
they afe displayed by the List command. PROLOG runs down this list, compa-
ring S w i th each sentence in turn. If it finds an exac t ma tch between S
and a sentence in this list it abandons the search and gives the answer
"YES". If it reaches the end of the list of sentences without finding a
match, it displays the *ftO" answer.

Does(Male(Henry8))

The sentences in the Tudors data base about Male are stored in the order

Male(Henry7)
Male(HenryS)
Male (Edward)

because th is is the order in which they are listed by the "List Male"
command. First PROLOG compares the query sentence

Male(HenryS)

wi th the sentence

Male(Henry7)

t h a t heads the list. The sentences do not m a t c h because "HenryS" and
"Henry?" are d i f ferent names. It then moves on to the next sentence. We
now have an exact match, ^o PROLOG abandons the search and gives the answer
"YES".

If we pose the query

Does(Male(Edward3))

PROLOG compares MaU-(Edward3) w i th each sentence in turn. In no case is

18

1.4 Evaluation of queries

there an exac t match. So we get the answer "NO".

1.4 Evaluation of queries

A "Does" query uf the form

Does(S) -here S is a simple sentence

is answered in nuch the same way. The only difference is that when looking
for an exact natch PROLOG is al lowed to give each variable in S a y^ue
which is the name of some individual.

%

Example 2

JoesCx is-the-father-of Elizabeth)

The sentences for the is-the-father-of relation are stored in the order

Henry? is-the-father-of HenryS
HenryS is-the-father-of Mary
Henry 8 is- the- father- of Elizabeth
HenryS is-the-father-of Edward

PROLOG compares the sentence pattern

x is-the-father-of Elizabeth

w i t h each sentence in turn. There is an exact ma tch w i t h the third
sentence when the variable x has the value "Henr/a". At tins point PROLOG
abandons the search and gives the answer "YES".

Example 3

Ooes(x i s- the- fa ther-of x)

This query is asking whether the data base contains any fact that says that
someone is their own father. PROLOG will give us the answer "NO", but it
is instructive to see why.

PROLOG tries to match the sentence pattern

x is-the-father-of x

w i th each of the above sentences. It gets a partial match w i t h the f i rst
sentence

Henry? is-the-father-of Henry8

by giving x the value "Henry?". This makes the sentence pattern become the
sentence:

Henry? is-the-father-of Henry?

But it is not an exac t m a t c h because by giv ing x th i s va lue PROLOG is
implicitly replacing both occurrences of x by "Henry?". This c reates a
mismatch between the names of the children. The same thing happens in the
attempt to match all the other sentences of the iJata base. So the query is
answered, 'W.

Now consider the query

Ooes(x is-the-father-of y)

)
In answer ing thi , .juery, PROLOG Joes not encounter the same problem because
it can give the . J i f f e r e n t v a r i a b l e s x and y d i f f e r e n t va lues. In f a c t
there is an immediate ma tch w i t h x-Henry? and y=Henry8.

In answering a query PROLOG can give d i f ferent var iables d i f fe ren t
values, but it may also give them with the same value. Thus, if we had a
data base that contained just the single "likes" sentence

Tom l ikes Tom

then both

and
Dbes(x likes x)

Does(x likes y)

would be answered af f i rmat ive ly . In the second query we are asking whether
the data base knows anything about some x liking some y. It does, when x
and y are the same person Tom. This convention that different variables
can stand for the same unknown person PROLOG inherits from symbolic logic.
To insist that different variables name different individuals we must add
an extra condition that says just that. We shall see how we can do this in
chapter 3.

yaliSD 2l SJmfile "Whjch" guerjes

The simple "Which" query is of the form

yhichCP S) where P is an answer pattern and S is a simple .entence
pattern.

PROLOG takes the sentence pattern S and compares it w i t h each of the
sentences for its. relation in tne data base. A match of S w i t h a sentence
in the data base results in each variable of S being given a value. For
each match the answer pattern P is displayed w i t h its variables replaced by
the values given for that match.

&. Which(x HenryS is-the-father-of x)

The sentences of the data base are compared w i th the query pattern in
the listing order given above. There is no match with the f i rst sentence

Henry? is-the-father-of HenryS

because the fathers "HenryS", "Henry/"' do not match. There is a match w i th
the second sentence,

HenryB is-the-father-of Mary

providing x^Mary. Because it has found a sentence that matches the query
pattern PROLOG has found one answer to the query. It therefore prints out
the answer pattern, x, w i t h x replaced by the value "Mary". We get the
answer:

Answer is Mary

The evaluat ion continues w i t h the attempt to match the query pattern
"Henryfl is-the-father-of x" w i t h the remaining sentences:

1.4 Evaluation of queries

HenryS is-the-father-of Elizabeth
ilenryS is-the-father-of Edward

There is a match w i th the f i rst _>f these providing x
the second answer:

Answer is Elizabeth

;
i. S6 we get

There is also a match w i th the last sentence, providing x-Edward. This
gives us the last answer

Answer is Edward »
No (more) answers

st ^QSSS^D^ 'IM^i^'l. a^srJ

Ue will illustrate the way that PROLOG answers compound queries by two
examples.

&. HhichCx HenryS is-the-father-of x & Male(x))

This query is a restriction on query of example 4 to find only the male
children of HenryS. What PROLOG has to do is to find all the x's such
that both

and
Henry is-the-father x

Hale(x)

initially ignoring all but the f i rs t
It starts by looking for all the x's

are sentences of the data base.
It finds all these x's by

condition of the compound query,
that satisfy

HenryS is-the-father-of x

Me know that there are three sentences of this form, the f irst one being

HenryS is-the-father-of Mary

PROLOG matches the query condition wi th this sentence and f inds a possible
answer, x=Mary, for the compound query. At this ,.»oint PROLOG interrupts
the search for solutions to the f irst condition in order to see whether
this value for x is compatible with the second condition of the query, the
condition Nale(x). It sees whe the r it can find a success fu l match for
Nale(x) w i t h x already given the value "Hary". This is equivalent to
finding a successful match for the query condition

Hale(Nary)

It tries to confirm this condition by searching the list of sentences
about the "Hale" relation. Since it does not f ind the sentence
Hale(Hary), it cannot conf i rm the extra condition on x, when x-Mary. It
therefore returns to its interrupted search for all the solutions to

HenryS is-the-father-of x

It finds the next solution to this w i t h the nutch jgainbt the sentence

1.4 Evaluation of queries

HenryS is-the .-ther-of Elizabeth

Th is g ives the value x=El izabeth. Again, PROLOG in te r rup ts the
search for other solutions to this first condition to check if Male(x) can
be confirmed when x=£lizabeth. That is, it checks to see if the condition
Male(Elizabeth) can be confirmed. This at tempt also fails. So PROLOG
again returns to its interrupted search for all the x values that sa t i s fy
the condition

"HenryS is- the- father- f x".

It finds the next value w i th the match against

HenryS is-the-father-of Edward

which Bakes x=EdwarcL Interrupting the search once more/ PROLOG tr ies to
conf 1 r»

Hale(x) (with x=£dward), which is Male(Edward).

This ti«e it succeeds, for the sentence Hale(Edward) is in the data base.
PROLOG has at last found an answer to the compound query, which it prints
out.

Since we want all solutions, PROLOG once more returns to its
interrupted search for x's that sat is fy "HenryS is- the- father-of x".
There are no more because PROLOG has already looked at all the sentences
that Match this pattern. It therefore prints out "No (more) answers".

&. Hhich((x z) x is-the-father-of y ft y is-the-father-of z)

This is a request for all the pairs of people in the paternal grand-
father relation. The answers to this query are the names assigned to x
and z for each jo^u^jon to the compound condition query pattern:

x is-the-father-of y ft y is-the-father-of z

A solution is an as.sjc|rijnenj of values to variables in this query pattern
such that each of its sentences become facts in the data base. In this
case, it is an assignment to x, y, z such that

x is-the-father-of y '

y is-the-father-of z

are sentences of the data base.
Again, PROLOG searches for all the solutions to the compound query by

initially ignoring all but the f i rs t condition

x is-the-father-of y . • >

It s t a r t s by looking for all the solutions to this condition. It
finds the f irst solution w i t h the match against

Henry? is-the-fathcr-of HenryS

which makes x=Henry7, y=Henry8. At this point PROLOG interrupts its search
for all the solutions to the f i rst condition. It now looks for ai\^ the
solutions to the rest of the query which are compatible w i t h this solution
(x=He.nry7, y=Henry8) to the first condition. In other words, it looks for

.'1

I

1.4 Evaluation of queries

solutions to the condition

y is-the-father-of z (yith x-Henry7, y=Henry8)

which is the condition

HenryS is-the-father-of z.

There are three solutions to this:

z=Hary, z=Elizabeth, z=Edward.

So PROLOG has found three solutions: *

x=Henry7, y-Henr/8, z=Nary
x-Henry7, y=Henry8, z=Elizabeth
x=Henry7, y=Henry8, z=Edward

to the compound condition

x is-the-father-of y « y is-the-father-of z.

As it finds each solution it prints out the answer pattern (x z) with the
variables replaced by their solution values. Hence PROLOG gives us:

Answer is (Her>ry7 Mary)
Answer Is (Henry? Elizabeth)
Answer is <Heftry7 Edward)

as its first three answers.
Since PROLOG has found all the answers to the second condition "y is-

the-father-of z" for y=Henry8 it can only find Bore answers to the query by
returning to its interrupted search for all solutions to first condition "x
is- the-parent-of y*. The next solution it finds is

x=HenryS, y=Rary

produced by the Batch with

HenryS is-the-father-of "ary.

PROLOG again interrupts the search for all the solutions to "x is-the-
father-of y*, to find all the solutions to the regaining conditions

y is-the-father-of z (with «=Henry8, y=ftory)

which is
)

•ary is-the-father-of z

There are no solutions to the condition for there are no etching sentences
in the data base. So the x=Henry8,y=Nary solution to the first condition
does not produce any solutions to the compound query.

Once Bore PROLOG returns to its search for solutions to "x is-the-
father-of y". The last two solutions it finds are:

x-Henry8, y=Elizabeth
x=Henry8, y=Edward

On finding each solution PROLOG interrupts its search to look for all solu-
tions of y is-the-father-of z with the y it has found, The f irst solution

1.4 Evaluation of queries

causes it to Look . .'all solutions to

Elizabeth is-the-father-of z,

and the second causes it to look for all solutions to

Edward is-the-father-of z.

In each case, there are no solutions; there are no values for z that make
theB sentences of the data base. So PROLOG finds no more answers to the
original query.

Fro» these two examples we can see that micro-PRGLOG sat is f ies the
conditions of a compound query f r o m left to right. When it f inds a
solution to the first condition it passes the solution on to the following
conditions. It then finds all the solutions to the remainder of the query
that are compatible wi th the solution to the first condition it has just
found. To find more answers, it returns to look for the next solution to
the first condition. It then finds all the solutions to the remainder of
the query that are compatible w i th this second solution, and so on. The
evaluation stops when micro-PROLOG can find no more solutions to the f irst
condition. The evaluation method can be summarised by:

To find all the solutions to a compound query:
for each solution to the f irst condition

(i.e. for each successful match of the f irst condition
with a sentence in the data base)

find all the compatible solutions of the remainder of the query.

If the remainder of the query is a compound condit ion th is method of
evaluation again applies. Notice that this means that the f irst condition
in wh ich a var iable appears is the one that is used to f ind d i f fe rent
candidate values for the variable. It is the generator of a set of
possible values for the variable that are passed on and checked by the
later conditions of the query.

Sy.aiua.tjon oj comoound '^Does,^ suerjes.

The evaluation of a "Does" query wi th a compound condition containing
variable's proceeds in exact ly the same way as that of a compound "Which"
query. PROLOG s ta r ts off as though it w e r e trying to f ind d|J, the
solutions for the conjunction of conditions given in the query. It stops
as soon- as it f inds one solution to the query, giving the a n s w e r "YES".
If it completes the search for all solutions without finding one, we get
the answer "NO".

So, to answer a "Does" query such as

S. Does(Henry is-the-father-of x & Ma le (x))

PROLOG wil l again use the f i r s t condition, HenryS is-the-father-of x, to
find values for x that might sat is fy both conditions of the query. As it
finds each x sa t is fy ing this condition, it interrupts the search to check
whether Female(x) can be conf i rmed for the x that has been found. If it
can, it stops and gives us the answer "YES". If it cannot be confirmed,
PROLOG returns to search for the next child of Henry8.

A "Does" query in which the compound query has no vaYubles is checked
in the same left to right fashion. In this case, s'ince there are no
variable values to find, it becomes a check to see if each query condition
is a sentence in the data base. It checks then one at a time, in the left

1.4 Evaluation of queries

to right order in which they are given.

3.

pii i cdl Uj tdbase, g iv ing
of each city, using the

(M?

1. We w i l l add fur ther sen tences to our geugr
information about the latitude and longitude
form

city location (latitude longitude)

with figures given in degrees. Figures North and West are given as
positive integers, figures South and East as negative integers.

Washington-DC location (-77 38)
Ottawa location (-76 45)
London location (51 0)
Paris location (48 -2)
Rome location (41 -12)
Lagos location (6 -3)

Given the PROLOG queries that correspond to the fo l lowing English
questions

a. Which cities are North of London?
b. Which cities are West of Rone?
c. Is there a European country whose capital is North of Rome and South

of London?
d. Which countries in Europe have capitals that are East of London?
e. In which country and continent is there a city that is South and West

of Rome?

2. I have been sent on a shopping expedition, w i t h a database describing
the financial situation.

Wallet contains 98
Cheese costs 84
Bread costs 40
Apple costs < 12

Obtain answers to the following questions, using PROLOG queries:
a. How many apples can I afford to buy?
b. Can I afford to buy the bread and the cheese?
c. How much is l«ft in my wallet after I have bought the cheese and one

apple?
d. How much more money will I need in order to buy f ive apples and three

loaves of bread?

Add information about the year of publication to the books data base
using sentences such as:

Oliver-Twist published 1849
Great-Expectations published 1853
Macbeth published 1623

Guess the dates if need be.

Pose the following as PRXOG queries:
a. Was Oliver-Twist published in 1850?
b. What was published in 1623?
c. When was Tom-Sawyer published?
d. Were Ol iver-Twist and Great-Expectat ions published in the same

26

Evaluation of queries

)
year?

e. Was Macbeth published before Romeo-And-Juliet
f. What was published before For-Whom-The-Bell-Tolls
g. Was anything published before 1600?

1-5 guerjes

MOM that we know how PROLOG evaluates queries, particularly compound
queries, we can see that the way in wh ich we pose a query can e f f e c t the
e f f i c i e n c y with which PROLOG finds the answers. Thus,

and
&. Which(x Henry8 is-the-father-of x and Male(x))

&. Which(x Male(x) and HenryS is-the-father-of x)

dre i°3J5JiiX equivalent queries and will produce exact ly the same set of
answers^ However, in answering the first query, PROLOG will use the
condition* HenryS is-the-father-of x to find values for x that it checks
with the Male(x) condition. In answering the second, it uses the condition
Male(x) to find the different values for x which it then checks wi th the
HenryS 1's-the-father-of x condition. So the queries are not behayjoraiiy
equivalent. Since, in a more general data base, there wil l be far fewer
chi ldren of HenryS than males, the f i rs t query wil l be answered more
efficiently. For each child of HenryS it will do a search through all the
sentences for "Male" relation. In evaluating the second query, for each
male recorded in the data base it will have to search through all the
sentences for the "is-the-father-of" relation. As a general rule, when a
query has two or more conditions on a variable we should put f i rst the
condition w i th the fewest number of solutions.

we must also take into account the order of evaluation of compound
queries when we use relations which have restrictions on their use, such as
the arithmetic pr imi t ives. For example, the queries:

Which(x PRODC17 3 y) and PROD(y 3 x))

WhichCx PRODCy 27 x) and PRODC17 3 y))

are logically equivalent but PROLOG wil l only give us an answer to the
first query. We get an answer to this query because it first finds the
only solution /=51, to the PRODC17 3 y) condition. It then passes this y
value on to the second condition, P R O D C y 27 x), w h i c h becomes
PRODC51 3 x). For this it finds the single solution x=153, wh ich it then
gives as the only answer to the query.

In trying to answer the second query, PROLOG encounters the condition
PRODCy 27 x) first. This it cannot answer because of the restr ict ions on
the use of the PROD relation. So, when we use an ar i thmet ic pr imit ive in a
compound query we should place it after other conditions that can be used
to find values for its variables.

2. Basic Logic Programming - using general rules

Of ten we want to ask the same q u e r y many t imes , in w h i c h c a s e i t
becomes tedious to be a lways repeating the same Lung qm- ;t ion Also we
want to be able to draw conclusions from the basic inf urnm i ion in the data
base. For example, that Henry? is the father of Henry implies that he is a
parent of HenryS. We would like to be able to conclude "Henry? is-the-
parent-of Henry8" without having to have this as an expl ic i t fact in the
data base. To be able to draw conclusions and to abbreviate queries we
need to use rules.

If we look at exercise 1-2. 1(t) we see that we are really asking about
the paternal grandfather relation:

Which((x y) K is-the-father-of z and z is-the-father-of y) (A)

In a sense the query d.efjnes this relation, the pairs (x y) which are
produced as answers to the query are in the "paternal-grandfather-of"
relation.

If we often wanted to find instances of this relation it would be more
convenient if the data base recorded all the instances

(Henry? Mary)
(Henry? Elizabeth)
(Henry? Edward)

that are given as answers to the query. A straightforward way to do this,
is to exo^jcj t l^ record them by adding the simple sentences about the
"paternal-gfandrather-of" relation:

Henry? paterra I-grandfather-of Mary
Henry? paternal-grandfather-of Elizabeth
Henry? paternal-grandfather-of Edward

(1)

We could now get the effect of query (A) with the simpler query

WhichUx y) x paternal-grandfather-of y) (B)

There is an alternative to this explicit recording of the instances of
the new relation defined by a query. We can add just one sentence that
links the new relation to the query pattern that defines it. This new
sentence is a ru^e. that gives an jmoijcjj definition of the new relation.
The rule is expressed using a new fora of sentence, the condjtjona^
Sentencj. The "Which" query:

Wh ichUx z) x is-the-father-of y and y is-the-father-of z)

becomes the rule:

x paternal-grandfather-of y if x is-the-father-of z
and z is-the-father-of y

(2)

A conditional sentence is "Add"ed to the program in just the same way that
ordinary simple sentences are added:

&.Add(x paternal-grandfather-of y if x is-the-father-of z
1. and z is-the-father-of /)

The rule (2) is equivalent to the set of simple sentences (1). Uhen

28

2.1 Turning queries into rules

>
used to answer queiy (B), it has the effect of transforming it into our
original query (A).

The descriptive reading of the rule is:

x is a paternal grandfather of y if x is the father of z and
i is the fatner of y, for some z.

The prescriptive or procedural reading re f lec ts the way it is used.
We should read it as:

To answer a query of the form x paternal-grandfather-of y,
answer the compound query: x father—of z and z father-of y

Soae t imes it takes more than one "Which" query to completely 'cover' a
relation. For example if we want a list of parents and children, because
we do not have this information explicitly stated, we would have to use the
two queries:

and
y) x i s- the- father-of y)

WhichUx y) « is-the-mother-of y)

(0

(0)

ye can reduce these queries to rules for the "is-a-parent-of" relation in
the same way we did for the "paternal-grandfather-of" relation. Taking
(C) and CD) in turn we get the two rules:

and
x is-a-parent-of y if x is-the-father-of y

x is-a-parent-of y if x is—the-mother-of y

(3)

(4)

Adding these to the program gives us two rules wltich together define
the "is-a-parent-of" relation. Both rules contribute towards the defini-*
tion: there is no sense of exclusive definition In general, many rules can
contribute towards a definition of a relation, and -e can even describe a
relation by a Mixture of fac ts and rules.

In technical English our two PROLOG rules can be read:

x is a parent of y if x is the father of y (rule 3)
and

x is a parent of y if x is the mother of y (rule 4)

Providing the data base contains all the fac ts about the mother and father
relationships for some group of people, the definition of the "is-a-parent-
of" relation provided by these two rules is just as good as a set of simple
sentences giving all the fac ts about the relation. micro-PROLOG uses the
rules to answer queries about the new relation. The way they are used is
indicated by the fol lowing imperative reading of the two sentences:

To answer a query of the form x is-a-parent-of y,
answer the query: K is-thc-father-of y.

To answer a query ot the form x i s-a-parent-ot y,
answer the query: x is-the-mother-of y.

Each rule gives us a J i f f e ent way o-f a n s w e r i n g quer ies about the new
relation "is-a-parent-of". Together, they cover all the instances ot the
relation implicitly given by the "i s- the-fa tner-of", "i s-the-mother-of"
f a c t s of the data base.' Tnus, to answer the

2.1 Turning queries into rules

Which(x x is-a-parent-of Elizabeth)

PROLOG wi l l use both rules. Using the fir-,,1 rule t rans forms the query
into:

Which(x x is-the-father-of Elizabeth)

and the second rule transforms it into:

Which(x x is-the-mother-of Elizabeth)

We therefore get the two answers:

Answer is HenryS
Answer is Mary

They come in this order, because the rule (5) was added before Tule (4).

is ry

If we list the rules for the relation we get:

1. List i s-a-parent-of
X is-a-parent-of T if X is-the-father-of Y
X is-a-parent-of T if X is-the-mother-of Y
ft.

Again the rules are listed in the order that they .ere added. But
notice that mi cro-PHOLOt has changed our lower case 'V' and "V" to upper
case "X" and "Y". It can do this because the actual variable nalmes used
in a rule are not important. It can replace a variable, without affecting
the meaning of the rule, providing the replacement appears in exactly the
saae position as the variable it replaces. micro-PKOLOG changes variable
names but never violates this constraint. It actual ly 'forgets* the
original variable names and remembers only the positions tnat they occupied
in the rule.

Conditional, Sentences

The rules we have used so far are examples of conditional sentences.
* condjtjonjU sentence is a sentence of the form

simple sentence if simple sentence Cand and simple sentence]

A conditional sentence is an J5BiJ£at jon. The conclusion (called the
consequent) is the simple sentence on the left of the "if". The condition
of the sentence (called the antecedent) is the simple sentence or a conjun-
ction orf simple sentences on the right of the "if".

Any sentence that contains variables is a ru^e. So far we have only
used simple sentences without variables and conditional sentences w i th
variables. The former we have cal led facjs.. Ue can have conditional
sentences without variables, e.g.

Bill likes Jm if Jim likes BUI,

and we can have simple sentences wi th variables, e.g.

Bill likes x (Bi l l l i k e s everyone).

In the next chapter we shall have frequent need of these s imp le
sentence rules. For the time being we shall continue to use only facts

30

2.1 Turning queries into rules

(simple sentences >.out var iables) and conditional rules (conditional
sentences w i th variables).

The set of all the f a c t s in a PROLOG program is its data base. The
conditional rules enable us to abbreviate queries by defining new relations
in terms of the relations of the data base. When queried about these new
relations PROLOG uses the^e rules to interrogate the data base.

Suppose we have a conditional rule of the form

S if C

Let y1,...,yk be the var iables of the sentence that only appear in the
antecedent C. We can read the rule as the implication:

S if C, for some y1,...,yk.

It is understood that each variable in the consequent S represents an
arbitrary individual. The conclusion S is true whenever the condition C
is true for some values of the variables y1,...,yk.

The procedural reading of the rule is:

to answer a query of the form S, answer the query: C.

Exercjse 2-1

1. Using the Tudor royal fami ly data base, add rules to define the follo-
wing relations:
a. "i s-maternal-grandmother-of "
b. "i s-a-grandparent-of "
c. "i s-a-grandchi Id-of"

2. Using the geographical example developed in exercises, complete these
rules:
a. x c i ty-m Europe if
b. x North-of London if
c. V yest-of y if

3. Using the books example developed in exercises, express the following
information as rules addeu tu the program:
a. A book is c lass i f ied as f i c t ion if it is a novel or a play.
b. Anything wr i t ten by Wi l l i am Shakespeare or Charles-Dickens is a

classi c.
c. Any book published af ter 1900 is contemporary literature.

4. W r i t e a data base describing your own fami ly tree, using appropriate
nanres of relationships.

vss r

The1 relations that we have defined using rules can then selves be used
in rules to define further relations. We can build up a hierarchy of such
relations w i t h the data base relations at the bottom. Ue can, for
instance, define the relat ionship "i s-a-grandparent-of ". In semi-English
we would say:

SI

2.1 Turning queries Into rules

Somebody x is a grandparent of somebody y
if x is the parent of z and z is a parent of y, for some z.

y> can add a conditional sentence to our program expressing th iu i '. lc:

• is-a-grandparent-of y if x is-a-parent-of z and z is-a-parent-of y

Th« imperative reading of the rule is:

To answer a query of the form x is-a-grandparent-of y,
answer the query: x is-a-parent-of z and z is-a-parent-of y;

These rules make use of the "is-a-parent-of" relation which is itself
defined by rules. This does not matter. PROLOG can use this rule defin-
ing the grandparent relation independently of whether the parent relation
is defined explicitly by facts in the data base, or implicitly by rules.
It discovers which is the case, and behaves accordingly, when it reduces a
query about "is-a-grandparent-of" to the compound query about "is-arparent-
of".

The program so f_ar.

Our program, from simple beginnings, has ncfc grown somewhat. To
conclude its development at present, let us list it in its current state,
to see what our changes have produced. •

ft. List All
Henry7 is-the-father-of HenryS
HenryB is—the-fa ther-of Mary
HenryS is-the-father-of Elizabeth
HenryS is-the-father-of Edward •
Elizabeth-of-York ir-the-mother-of HenryS
(Catherine is-the-mother-of Nary
Jane is-the-mother-of Edward
Anne is-the-mother-of Elizabeth ' \ facts
Nale(Henry7)
Nale(HenryS)
Male(Edward) J
Fe»ale(Elizabeth-of-York> l

Female(Katherine) >
FeMle(Hary) •
Female(El izabe th> '
Female(Anne) I
Feaale(Jane)

x pa ternal-grandfather-of y if x is-the-father-of z
and z is-the-father-of y

x is-a-parent-of y if K is-the-father-of y
x is-a-parent-of y if K is-the-mother-of y
K is-a-grandparent-of y if K is-a-parent-of z

and z is-a-parent-of y
ft.

2-2

rules

Give PROLOG rules that define
a. x i s-the-grandf a ther-of y
b. x i $-the-grandmother- of y

Answer the following
base:

PROLOG queries about the Tudor royal fami ly data

2.1 Turning queries into rules

a. Wh ich (x x is-a-parent-of y)
b. One(x Henry? is-the-grandf ather-of x)
c. Does(HenryS i s-a-parent-of x and y is-the grancif a ther-of n)
d. Which(x x Is-the-Bother-of y and HenryS is-the- fa ther-of y)

3. Give the PROLOG queries that would be needed to t rans la te the
following English questions:
a. Who was Edward's paternal grandmother?
b. Who are the mothers of Henry7's grandchildren?
c. Did (Catherine have a male child?
d. Who was the mother of a male child of HenryS?

4. Using the geographical data base, express the fol lowing questions as
PROLOG queries:
a. What cities are there in Europe?
b. Is anywhere north of London?
c. Which places are north of London and west of Rome?

5. With regard to your books program, express the following questions as
PROLOG queries:
a. Which books are classics?
b. Who wrote books published before 1900?

SSLS 3D £0

So far answers to queries have just been values for variables given in
the answer pattern of the query. We can also have text printed out w i t h
each answer. We simply insert the text in the answer pattern of the
query. As an example, consider the query:

English: What are the nanes of mothers and their children?
PROLOG: Which((x y) x is-the-mother-of y)

Answer is (Elizabeth-of-York HenryS)
Answer is ((Catherine Mary)
Answer is (Jane Edward)
Answer is (Anne Elizabeth)
No (more) answers

we just get the pairs of names, which is not very informative. It would
be better to get the message:

Answer is (Elizabeth-of-York is the mother of HenryS) and
Answer is ((Catherine is the mother of Mary) etc.

in which the inserted text "is the mother of" helps us to interpret the
answer. Each of these answers are instances of the answer pattern

(x is the mother of y) .

To get the message, we use this pattern instead of the pattern (x y) of the
original query:

PROLOG: Which((x is the mother of y) » is-the-mother-of y)
Answer is (El izabe th-of-York is the mother of HenryS)
Answer is ((Catherine is the mother of Mary)
Answer is (Jane is the mother of Edward)
Answer is (Anne is the mother of Elizabeth)
No (more) answers

We have simply jdded text to a f f e c t the f o rm of our printed answer. The
text is only coincidental ly similar to the query pattern "* i s-a-niother-
of y". We can insert an* t e x t into the l i s t of v a r i a b l e * of an a n s w e r

''

2.1 Turning queries into rules

pattern. It has no ef fect on the query evaluation. The .rtly constraint
is that the variables must be separated fro* the t e x t by spaces. If they
are not, they become part of the text and their valuf1; w i l l not be printed.

-'•2 How. gue.ries. involving IuiM *LS £vjiuated

We shall just consider the case of the evaluation of "Which" queries.
The other query fo rms are answered in exact ly the same way. The only
difference is that for a "One" query we can exi t the evaluation eaqh t ime
an answer is found and for a "Does" query the evaluation is a lways stopped
when one solution to the query condition is found. We shall also -review
the general method used by micro-PRGLOG to find all the solutions to the
conjunction of conditions of a c CM pound query. This method applies whether
the relations of the query are defined by a sequence of facts, by general
rules or a Mixture of the two.

A compound Which query is of the form:

ft.UMchCP S and- $'...)

w h e r e S and S' are s imple sentences. The query pat tern S and S1... wi l l
contain variables, some or all of which w i l l appear in the answer pattern
P. What PROLOG most do is find all the solutions to the compound condition.
It Bust find all the different ways in which the variables of the compound
condition can be given values so that each of its simple sentences is in
the data base, or can be inferred fro* the data base using the rules. For
each solution that it finds, it prints out the answer pattern P.

PROLOG begins its search for all the solutions to the query by
searching for a solution to the first condition S. As soon as it finds a
solution it interrupts its search. It S contained variables the solution
comprises values for these variables. PROLOG now looks for ai| the solu-
tions to the rest of the compound query that are compatible with these
values. In effect, it 'passes on* the values for the variables in S that
soiX£ s to tne rest °* the query. When it has found all the solutions to
tfie rest of the query that are compatible with this •f i rst solution to S, it
returns to find the next solution to SL On finding the next solution, it
again immediately passes this solution on to the rest of the query. Only
when it has found all the solutions to the rest of the query compatible
with this second solution to S does it return to look for the next solution
to S. It continues in this way until it can find no more solutions to S.

The way that PROLOG searches for all the solutions to a compound
condition is called a ba^ktra^km^ starch. When PROLOG finds a solution to
the first condition S, and passes it on to the remaining conditions S1...,
it is 'tracking forward'. When it returns to find the next solution for S,
it is 'tracking backward*, or ba.cjitracjijnu,.

The evaluation of a compound "Which" query is a -forwards and backwards
shuffle through the conditions of the query. Let us suppose that there are
three conditions

S ft S1 I S".

PROLOG finds the f i rst solution to S and passes it on to

' S' & S".

2.? Vow queries involving rules are evaluated

It now looks for all the solutions to S* & S" that are compat ib le w i t h this
solution to S. It again s t a r t s by looking for a solut ion to the f i r s t
condition S1. It t r ies to solve S' w i th the var iable values given by the
f i rs t solution to S. If it can do this, it moves f o r w a r d to S". It t r ies
to solve S" w i th the variable values given by the solution to S & S' that
it has now found. When it has found all these solutions to S", it back-
t r a c k s to look for the next solution to S1. It shu f f l es b a c k w a r d s and
forwards between S1 and S" until it has found all the solutions of

S1 & S"

compatible w i t h the f i rst solution to S. At that point, it backtracks to
look for the next solution to S.

The process of 'passing* on solutions to the rest of the query repre-
sents a f low of 'information1 f rom left to right in the query. The f irst
condition in which a variable appears is the generator of values for that
variable. These values are passed on tq the other conditions of the query
in which the variable appears.

This backtracking search for all the solutions to a compound query
applies irrespective of whether the relations in the query are defined by
facts, rules or a mixture of the two. The difference occurs only when
mi cro-PROLOG picks off a condition S in the query and starts to look for
all the solutions for that condition

Let us suppose that the condition S refers to a rule defined relation
R. mi cro-PROLOG searches for solutions to the condition S as for a data
base relation. It scans the list of sentences about R looking for a match
wi th the query condition. It scans them in the order in which they were
added to the program (the order in wh ich they are l is ted by the "List"
command).

The extra complication is that it now has to match the query condition
wi th the consequent of a rule, which may contain variables. Then, even
w h e n it has found a match, it has not yet found a solution. It must
interrupt its scan of the sentences for R to find a solution to the query
given by the antecedent of the rule. Each solution to this aux i l ia ry
query is a solution to the condition S.

Each t ime it f inds a solution to the auxi l iary query m i c ro -PROLOG
interrupts its search to pass the solution on to any remaining conditions
of the Original query. Now, backtracking to find the next solution to S
means backtracking to look for the next solution to the auxiliary query.
When it has found each solution to the auxiliary query, it returns to its
scan of the program sentences for the re lat ion R. Each rule w i t h a
consequent that matches S gives rise to an auxiliary query. The solutions
to each of these auxi l iary queries combine to give all the solutions to S.

Let us il lustrate the invocation of rules during the evaluation of a
query by a simple example. Consider the query:

Which(y Henry? is-the-grandfather-of y).

We shall assume that the rule

x i si-the-grandf a the r-of y if x i s-the-father-of 2 and
/ i s-a-parent-of y

(E)

(5)

has beert added to the Kdors program. (This was one of the answers to
exerc ise 2-1.) PROLOG must find all the values for the variable y that
are solutions to the query condition:

Henry? is-the-grandfather-of y (F)

2.2 Hou queries involving rules are ewaluat'd

'
There is only one sentence in the data ba^e about th is re lat ion, the

rule (5) given above. Now, remember itui PROLOd ' < , * • ' . t h e . i t tables
used in a rule. It remembers only their position., wt ien i t t > i i . to
match a condition wi th the consequent of the rule it g ives the.- v i rubles of
the rule names. It always gives them names that are d i f ferent from the
variable names used in the query condition. Let us suppose it gives the x
variable of the rule the name x1, the y variable the name y1, and the z
variable the name zl. PROLOG must match the query condition (F) w i t h the
consequent of the rule

xl is-the-grandfather-of y1 if x1 is-the-father-of z1 and*
z1 is-the-parent-of y1

Matching is now a little more complicated. To obtain a match, varia-
bles of the query condition and variables of the rule may be given values.
In this case only variables of the rule are affected. The values x1=Henry?
and y1-y give an exact match. Notice that yl has a value wh ich is not the
name of an individual but the name of a variable in the query, w i t h x1 and
y1 given these values the antecedent of the rule becomes the compound
condi tion

HenryS is-the-father-of z1 and z1 is-the-parent-of y

The problem of finding all the y values that solve condition (F) has
become the task of finding the answers to the auxiliary query

Which(y Henry? is-the-father-of z1 and z1 is-the-parent-of y) (G)

This is solved in the usual way. PROLOG starts by looking for a solution
to the condition Henry7 is-the-father-of z1. There is only one solution
to this, but immediately this is found, by the match wi th the fact

Henry? is-the-father-of HenryS

PROLOG interrupts its scan of the "is-the-father-of" sentences to find all
the solutions to the next condition

z1 is-the-parent-of y

that are compatible* wi th z1=Henry8.
(G) to the query

Hhich(y HenryS is-the-parent-of y)

PROLOG has temporarily reduced query

(H)

ye have another rule defined relation. This time there are two rules,
which wi th renamed variables are:

x2 i s-a-parent-of y2 if *2 is-the-father-of y2
«2 i s-a-parent-of y2 if x2 is-the-mother-of y2.

The query condition "Henry8 is-the-parent-of y" ma tches both rules
providing x2=Henry8, y2=y. PROLOG tries these rules one at a time, in the
above order. A f t e r the s u c c e s s f u l m a t c h w i t h the f i r s t rule, PROLOG
temporarily replaces (H) by

Which(y Henry8 is-the-father-of y)

The three solutions of this query become solutions of (10 wh ich are,
in turn, solutions of the original query (E). They are pr inted out.
PROLOG returns to the task of answering (H). It uses the second rule for

2.2 How queries involving rules are evaluated

"i s-a-parent-of ". mis gives rise to the auxil iary query

Which (y Henry8 is-the-mother-of /)

to wh ich there are no solutions.
Remember (H) was produced when PROLOG found the f i r s t solution to the

first condition of the query

Uhich(y Henry/ is-the-father-of z1 and z1 is-a-partnt-of y)

To f ind more solut ions to the query, and hence more so lu t ions to the
original query, it returns to the task of solving the condition

Henry? is-the-father-of z1.

It continues its scan of the data base sentences for "is-the-father-of".
There are no more solutions. PROLOG must now return to the original query

Wh ichCy Henry? is-the-grandf ather-of y)

to see if there are other sentences in the data base about "is-the-
grandf ather-of ". It has already used the one and only 'Sentence. So the
search for solutions stops.

2.3 Recur sj^e descf jftjons of rejatjons

So far our rule defined relations have been such that they could be
dispensed with. Queries using these relations could a lways be expanded to
longer queries that used only the relations of the data base. This is
because each rule defined a new relation solely in terms of previously
defined relations. There are some relations that cannot be so s imply
defined. These are relations that can only be described fecursjve^, by
definitions that refer back to the relation being defined. For such rela-
tions the use of rules is essential. As an example, suppose that our
data base describing the Tudor fami ly tree had many generations in it, and
that we wanted to query the data base to find all the ancestors of Edward.
If we knew that the data base referred to exac t l y four ancestors of Edward
we could find all of them w i t h the query:

Which((x1 x2 x3 x1 parent-of-x2 and x2 parent-of x3
and x3 parent-of x4 and xA parent-of Edward)

But if we do not know how many ances to rs are given in the data base we
cannot f ind all the ancestors wi th a single query. This is because we
cannot know how many "parent-of" conditions wi l l be needed to chain back to
the earliest recorded ancestor. To find all the ancestors w i t h a single
query, we need to define the relation "i s-an-ancestor-of ".

If we wanted to expla in to someone who his ancestors are w e might say:

Your ancestors are your parents arid all the ancestors of your parents.

This is i recursive description because the explanation makes use of the
concept oeing explained. If he 'thinks through1 the defini t ion it tel ls
him that his ances tors are:

2.3 Recursive description of relation:;

his parents
his grandparents (who are the parent case ancf.t ors of his , i . - i t .p
his great-grandparents (who are the parent ta jnti.-st i,r-, < / t hi-., 'jr.ind-
parents)
his great-great-grandparents (who are the parent cjse j r . . . to rs of rus
great-grandparents),

and so on until the records run out.

wt- can express this recursive definition as the pair of PROLOG rules:

x i s-an-ancestor-of y if x i s-a-parent-of y
x i s-an-ancestor-of y if 2 i s-a-parent-of y and * i s-an-ancestor-of 2

The declarative reading is quite simply:

x is an ancestor of y if x is a parent of y.
x is an ancestor of y if 2 is a parent of y and x is an ancestor of 2,

for some 2.

The procedural reading is:

To answer a query of the for* x is-an-ancestor-of y
answer the query: x i s-a-parent-of y.

To answer a query of the for* x i s-an-ancestor-of y
answer the query: 2 is-a-parent-of y and x i s-an-ancestor-of 2.

Given the task of finding all the ancestors of Edward by a query:

Mhich(x x is-an-ancestor-of Edward)

• icro-PROLOG will begiin by using the f irst rule to reduce the query to

Which(x x is-a-parent-of Edward)

when this is answered, and the parents of Edward are found and listed, it
wil l backtrack to use the second rule. This converts the query into the
derived query

WhichU z i s-a-parent-of Edward and x i s-arrancestor-of z)

Since the rule defining a parent as a father cones first, the condition "2
i s-a-parent-of Edward" will be solved by making 2 the name of the father of
Edward who, in the Tudors data base, is HenryS. Given this value for 2,
we obtain the new query:

Uhich(x x i s-an-ancestor-of Henry8)

When this has been answered, and all the ancestors have been found, micro-
PROL04 backtracks to the second way of finding a parent of Edward. It
re t r ieves his mo the r Jane. It then f inds and l i s t s all her known
ancestors.

fsiatjon.s.

Logically our two rules defining the ancestor relation dli^ Jet me the
inverse relation "i s-a-descendant-of". To find the descendants of HenryS
we could use the query

58

2.3 Recursive description of relations

Which(y Heriry8 i i- a trance star- of y)

• icro-PROLOG wi l l again begin by using the f i r s t rule to f ind arid l i s t the
children of Henr/8. It w i l l then backtrack to expand the query using the
second rule to get

W h i c h (y 2 is- a- pa rent- of y and HenryB is-an-ancest or-of z)

The evaluation of this derived ^uery is a very ineff ic ient search for
the descendants of the children of henryS. For in order to try to sa t i s f y
the condition "2 i s-a-parent-of y" it will try each parent-offspring pair
in the data base check ing each parent to see if it is a descendant of
Henry8. This is an example where a separate description of the inverse
relation will serve us better as a program for finding descendants.

The problem is to do with the flow of values via the var iables of the
rule. The rule:

x i s-an-ancestor-of y if 2 is- a- pa rent- of y and x is-an-ancestor-of 2

gives efficient retr ieval if y is given. For then the f i rst condition "2
1 s-a-parent-of y", w i t h y known, has a much smal ler set of possib le 2
values to pass on to the "x i s-an-ancestor-of 2" condition. To get a
similar flow for the case when x is given and y is to be found, we should
use the given x, find a child 2 of x, then find all the descendants of z.
So optipise the finding of descendants, we should separately define the
"is-a-de'scendant-of " relation by the rules:

y is-a-descendant-of x if y is-a-child-of x
y is-a-descendant-of x it 2 is-a-child-of x and x i s-a-ciescendant-of y

Th«se constitute a correct alternative definition of the relation that
holds between two people x and y when x is an ancestor of y and y is a
descendant of x. For purely pragmatic reasons, we should use these rules
for finding descendants and the ancestor rules for finding ancestors. For
checking whether two people are in the 'ancestor/descendant relation either
set of rules can be used. The queries]

Do«s(Henry8 i s-an-ancestor-of Edward)
Does (Edward is-a-descendant-of Henry8)

are logically equivalent. m icro-PROLOG does comparable work in answering
each query. To answer the first it walks over the family tree beginning
at Edward, for the second it begins at HenryS. If the fami l i es described
in the data base have on ave rage more than two children, the "is-an-
ancestor-of form" of the query should be used. Why?

2-3

Answer the fo l lowing PROLOG queries, usinj the Tudor royal fami ly data
base:
a. Which((x is male grandchild of y) x 1 s-a-grandch i I d-of y & Male(x))
b. ;0ne((x is a w i f e of MenryB) y is-a-child-of Henry8

& x i s-the-raother-of y)
c. Uhich(x x i s-art-ancestor-of Edward)
d. Which(x x is-a-descendant-of Elizdbeth-of Yo rk)
e. Does(Henry8 i s-a-oescendant-of Mary)
f. W h i c h C x x is-a-descendant-of Henry? and Femdle(x))

Add the "i s-arrancestor-of " and "i s-a-de^cenddnt-of " rules to your
f a m i l y t r e e data base. Use PRuLOG quer ies and t r a c e the order in

2.S Recursive description of relations

which answers are received. N

We have used the built-in pred ica te LESS. T h i s can a l s o be used to
define rules for other relations (as can the other bull : - i n predi-
cates). For instance, to define the relat ion "les'_>eq" ' w h i c h means
less than or equal to) we need just two rules:

x lesseq x
This rule simply s t a t e s that every th ing is less than or equal to
itself. The other rule is:

x lesseq y if x LESS y
This rule says that If two numbers (or words) are in the LESS relation
then they are also in the lesseq relation. v
a. Define the relation "greater~than".
b. Define the relation "greateq" (greater than or equal to).
c. Define the relation "divisible-by".
Notice that because of the restrictions on the use of the arithmetic
pr imi t ives your rules for these relat ions can only be used for
confi rming.

Using the books data base, add rules defining the relations:
a. Nineteenth-Century-Author(x) : x has wr i t ten a book published in the

19th century.
b. Conte*porary-Playwright(x) : x has wr i t t en a play published in

the 20th century.
Add rules to express the following information:
c. A book is available fro* the time it is published.
Express the following questions as PROLOG queries:
d. What books were available in 1899?
e. What works of nineteenth century authors were available in 1980?

i
3. Lists

(2)

SO' far we have only ^een how to handle r d c t s tha t re fe r red lu situjle
individuals. S o m e t i m e s i t is more convenient to hdve d f a c t tha t r e fe rs
to .1 list of individuals. Th i s is quite common in English. We say:

John enjoys fou t tu t i , c r i c k e t and rugby

which vs a fac t that re la tes John to the list (f&o tbaLL c r i c k e t rugby) of
games that he enjoys. We can represent this compound f a c t in PKOLOG by

three simple sentences:

John enjoys footbal I (1)
John enjoys c r i c k e t
John enjoys rugby

We can also represent it by a single sentence:

John enjoys (footbal l c r icket rugby)

in which we collect together the games that John enjoys as a list (football
cr icket rugby). The query:

&. Wh ich(x John enjoys x)

used w i t h this single sentence program (2) ail I produce the response:

Answer is (footbal l c r i cke t rugby)
No (more) answers

because the pattern "John enjoys x" matches the data base sentence only
when x is this list. The advan tage of using l i s t s in p lace of single
individuals is that we of ten get a more natural and compact representation
of information. The disadvantage is that we must somet imes do some w o r k
to get at the ind iv idua ls in a list. W i t h the i n f o r m a t i o n about John
represented by the three sentences (1) we can direct ly query the data base
about 'individual games. The query:

&. Does(John enjoys footbal l)

wil l return the answer "YES". But for representation (2) the query wi l l
get the a n s w e r "NO". T h i s is because there is no sentence in the da ta
base that exact ly matches the query. To find out if John en joys footbal l
we must be able to get at the components of the l ist of games (footbal l

c r icket rugby).

3-1

fou have this PKOi.OG program:
fTom D i e * Har ry) knows Susie
Turn knows (Jane Janet Jul ia)
Answer these PROLOG questions:
a. Does(Tom knows Susie)
b. W h i c h (x x knows Susie)

i. UhlUiix I < «n k r . o w S K)

You have tiiis PROLOG program:

3.1 Lists as individuals

>

3.

(Wimbledon Morden Mitcham) part-of Merton
(Hampton Teddington Haw) part-of Richmond
(Surbiton Norbi ton) part-of Kingston
Answer these PROLOG questions:
a. W h i c h (x x part-of y)
b. Does(x part-of Kingston)
c. Which(x y part-of x)
d. Ooes(x part-of Merton and x part-of Richmond)

Rewr i te the books data base using lists. For example, the sentence:
Oliver-Twis-t writterrby Charles-Dickens

should now read: %

(Oliver T w i s t) written-by (Charles Dickens)
(This enables us- to separate author's surnames fro* their first names)

3l tiiIJD3 Si the mfmbe.r.s. Si

To get at the components of a list we have to elaborate the idea of
forms, patterns and pattern-matching introduced earlier. To illustrate
these ideas, let us look at a different way of representing information
about family relationships which makes use of lists.

Initially we recorded the parent-child information by hawing separate
sentences giving each of the children of each parent. Using lists we can
collect together all the information about a particular family in one sen-
tence of the fora:

(father mother) parents-of (all the children of the marriage)

The simple sentences of the data base are now sentences such as:

(Henry Sally) parents-of (Margaret Bob)
(Henry Mary) parents-of (Elizabeth Bill Paul)
(Bill Jane) parents-of (Jim)
(Paul Jilly) parents-of (John Janet)

The two sentences which have Henry as the father are data for two different
marriages. The sentence

(Bill Jane) parents-of (Jin)

records the only child of the marriage of Bill and Jane in a list with just
. .* name. In this case, we might have expressed this information in the
sentence

(Bill Jane) parehts-of Jim

But then our fac ts about fami l ies would not have all been of the same form.
In some we would have lists of children, in some just single names. It is
important that all sentences about a relation all have a uniform pattern.
PROLOG retrieves data by matching sentences w i t h patterns, and patterns are
critical when we use lists. So, for uniformity, we have recorded the only
child in a list of one name.

The expression "(Jim)" is a list because of the brackets. If we drop
the name altogether, writing "()", we have a list of no ii i i .es: we have an
emipty list. We can use the empty list to record informat ion about famil ies
w i t h no children. We can have a sentence *uch as:

(Samuel Sarah) parents-of ()

This records the fact that Samuel and Sarah are man and wi fe, and it tells

-.2

3.2 6et t *ny at the members of a list of fixed length

us they have no crnl.iren. (To represent this using our previous notation
would have required <JH aux i l ia ry relation "i s-married".)

Suppose that we now want to re t r i eve the children of Henry. The data
giving the children for a fam i l y in which Henry is the father is contained
in all the sentences of the fo rm:

(Henry y) parents-of x

So the query is:

&. «hich(x (Henry y) parents-of x)
Answer is (Margaret Bob)
Answer is (El izabeth Bill Paul)
No (more) answers

Notice that we get the children from the different marr iages as d i f ferent
list answers. This is because the query pattern matches two dif ferent
sentences each of which give x as a list.

Consider the sentence pattern

(x y) parents-of (x1 x2 x3)

This will match any fact in the data base about a family wi th three chil-
dren x1, x2, x3. We can therefore use this to retrieve information about
all the three child families.

ft. UhlchUchildren x1 x2 x3 father x mother y)
(x y) parents-of (x1 x2 x3))

Answer is (children Elizabeth Bill Paul father Henry mother Mary)
No (more) answers

Here we have used an output pattern to rearrange the retrieved data and to
give so«e documentation. The pattern

(x y) parents-of z

matches every fact in the database about families. In this pattern x is
the father, y is the mother and z the list of children.

We can, therefore, define "father-of-chiIdren" and "mother-of-chil-
dren" relations with the rules:

x father-of-chiIdreo z if (x y) parents-of z
y mother-of-children z if (x y) parents-of z

And a typical query to find the children of Jilly would be:

8. Which(z Jilly mother-of-children z)
Answer is (John Janet)
No (more) answers

W e get i list of children because we have defined "mother-of-chiIdren" as a
relat ion be tween an individual and the l ist of children by a single
marriage.

EfS.rc.JSS 3-2

1. Using the notation for the empty list, give a definition of the rela-
tion Chi ld less-wi fe(x) .

2. Ustng the examp le pro- j ram above, answer the fo l lowing PROLOG

;s

3.2 Getting at the Members of a list of fixed length

questions:
a. UhichCx (Bill x) parents-of y)
b. UhichCCx y) Cz x) parents-of Cx y))
c. Does((Henry x) parents-of (y z X))
d. UhichCx Cx y) parents-of z)
e. UhichCCx father y mother z child X child) Cx y) parents-of (z X))
f. UhichCx Paul father-of-children x)

3. Using the rewr i t ten books data base/ answer the fo l lowing PROLOG
questions:
a. UhichCx COliver Twist) written-by (Charles x))
b. Does((Great x) type Novel) *
c. UhichCCx y) x written-by (Hark y))
d. Uh ichCCx was a great playwright) (Macbeth) written-by x)
e. UhichCx Cx y) written-by z)

3-3 Seeing £S iiJS !$•£££§ $1 i ijst of. unknown length

Using the list representation of family relationships we are still not
able to check/ with a single query/ whether or not someone is some particu-
lar child's mother. The trouble is that a single pattern cannot cover all
the different size lists of children that we can get back in response to a
mother-of-children query. The rules:

y mother-of-child x1 if Cx y) parents-of Cx1 x2)
y mother—of child x2 if Cx y) parents-of Cxi x2)

define the mother-of-child relation for two child famil ies because two
child famil ies are recorded by sentences of the form Cx y) parents-of Cx1
x2). Each rule selects out one of the pair of children Cx1 x2). But we
also need a rule to cover single child families:

y mother-of-child z if Cx y) parents-of Cz)

and rules for three/ four and even bigger size families.
We can make do with a single rule:

y mother-of-chiUd z if Cx y) parents-of Z and z belongs-to Z

if we could define the relation z member-of Z that holds for every indivi-
dual z that appears In an arbitrary size list of individuals Z.

An arbitrary siz* list is of the form

Cx1
I

head

Let us call the first individual in the list/ x1, the head of the list.
If we take away the head element we are left w i th a list Cx2 ... xn) which
we shall call the tail of the List. The tail of a list that only contains
one element/ is the «mpty list ().

One rule about Membership of an arbitrary s ize list is:

The head individual of a list is a member of the list.

Another is:

•u

C3)

3.3 Getting at the members of a list of unknown length

An individual i^ a member of a l ist if it is a member of its ta i l . CO

Just like our recursive definition of the ancestor relation these t w o rules
enable us to check whether any individual appears on a list.

To f o r m a l i s e these as PROLOG rules we need to have a pa t t e rn t ha t
enables us to talk about the head and the ta i l of a list. Th i s is the
pat tern (xly).

Ue read the pattern as:

C x l y) is a list which is x fol lowed by the list y.

Without the "I" the pattern (x y) denotes aThe "I" is the "followed by",
list of just two elements.

If PROLOG matches (x l y) against the list (A B C D)
value A and y to the tail list (B C 0). If

it g ives x the
it matches C x l y) against the

list CA) Comprising just the element A then x is bound to A and y is bound
to the ertpty list C). Other examples of the use of "I" are:

Cx y lz)

This denotes a list of two individuals x y fol lowed by some list z. Since
z can be the empty list/ this denotes any list of two or more individuals.
Matched against the list (A B C D) w e get the va lues x=A, y=B/ z = (C D).
It fai ls to match the L is t (A) because this only has one element.

Cx y z lZ)

is a list of three individuals x y z followed by some renainder list Z.
Ue can describe a list of at least n individuals by having n di f ferent

variables before the "I". Ue should a lways fo l low the "I" w i th a var iable
or another pattern that describes a list. For example/ Cx1 x 2 l (x 3 x4)) is
the list; xl x2 fo l lowed by the list of two e lemen ts x3 x4. In other
words / it denotes the list of four individuals (x1 x2 x3 x4). In this
case/ there is no point in using the "I". Indeed there is only a point in
using "I" when we do not know anything about the structure of the remainder
of the list, i.e. when we descr ibe it by a var iab le that can m a t c h any
remainder.

f *e.T.cjse 3-3

1. Uhat values if any, are assigned to the variables when (x y z lZ) is
matched against:
a. CA B C 0 E)
b . (A B C D)
c. (A B C)
d. CA B)

(A)e.
f. 0

Lis ts can have other l is ts as elements/ so show the values given to x
and y that arise from matching ((A B) l x) and (y Cly). Hint: ((A B) lx)
matches any list tha;t has as its f i rs t element the list (A B).

Suppose that we had the data base:
(Piccadil ly V ic tor ia Dis t r ic t Ci rc le Northern) lines-of Underground
(HaCkney Lambeth Richmond Kingston) boroughs-in London

Answer these PROLOG questions:
a. UhichCx CPiccadi l ly V i c to r i a I x) lines-of Underground)
b. D o e s C C x V ic to r ia I y) lines-of z)

c.
d.
e.

3.3 Getting at the •eaters of a list of unknown length

wnicMx x boroL.«jhb-i n London)
whichUx y) (x Lambeth y Kingston) boroughs-in 2)
Does((Hackney I x) boroughs-in London)

Using the "I" pattern, we can express rules (3) and (4) directly as
micro-PROLOG rules:

x belongs-to (xlz) (S)
x belongs-to (ylz) if x belongs-to z * (6)

Let us illustrate how this program works/ using the list (A B C D E). If
we ask:

&. Uhich(x x belongs-to (A 8 C D E))

we first get the answer

Answer is A

This is produced because rule (5) matches the pattern (xlz) against the
list (A B C 0 E) Making x=A, the head of the list.

The next answer is:

Answer is B

This is produced using rule (6) and then rule (5). Rule (6) Batches (ylz)
against (A B C 0 E) and z becomes the tail list (B C D E). It then reduces
the query to

Uhich(x x belongs-to (B C D E»

As w i th the original query this is f i rst answered using rule (5) wh i ch
produces the answer & A new application of rule (6) then reduces this to
the query »

yhich(x x belongs-to (C D E))

The evaluation continues in this way, giving us the next two answers C, D
until the query has been reduced to

Which(x x belongs-to (E)).

A last use of rale (5) prints out the answer E. The last application
of rule (6) Hatches (y I z) against the list (E). For the list (E) the tail
list is empty. So z is bound to 0, and we get the derived query

Uhich(x x belongs-to ())
i

Since there are no rules for belongs-to and the empty list, this query
has no answers and the evaluation t e r m i n a t e s . The full answer to the
query is therefore:

Answer is A
Answer is B
Answer is C
Answer is D
Answer is E

3.3 Getting at the Berbers of a list of unknown length

V
No (wore) drr^. . 1 s

Ue can now bee who are the individual children of Jill/, using our

program for "mother-of-child":

Which(x Jilly mother-of-child x)
Answer is John
Answer is Janet
No (more) answers

Notice that "mother-of-child" is a rule defined relation that is the same
as the fact defined relation "is- the- mother- of" of Chapter 1.

1. You have this PROLOG program:

(English Welsh Gael ic) spoke n- in Uni ted-Kingdom
(English French) spoken-in Canada

Answer these PROLOG questions:
a. Which(x x spoken-in Canada)
b. Which(x (x l y) spoken-in z)
c. Mh ichCx y spokerrin United-Kingdom and x belongs-to y)
d. Does (x spoken-in United-Kingdom and y spoken-in Canada and

z belongs-to x and z belongs-to y)
e. Using the program and queries above, give a def in i t ion of the

relation Bri ti sh- Language(x) wh i ch is def ined to be a language
spoken both in the United-Kingdom and Canada.

f. Assuming that the languages have been listed in order of importance
in each case, give a definition of the relation
Minor-language(x) where a minor language of a community is not the
most important spoken language.

2. Answer these PROLOG questions:

a. Which(x x belongs-to (R O B E R T) and x belongs-to (B 0 B»
b. Does(x belongs-to (A L F) and x belongs-to (F R E D))

The' spaces between the letters in these queries are important; spaces
separate the m e m b e r s of a list. The l ist (R 0 B E R T) has six
elements, each of w h i c h is a single letter. However, the l ist
(ROBERT) has just on« element, the word "ROBERT". It has one element
because there are no spaces.

If you use the micro-PROLOG system to answer (a) you wi l l notice
tha't you get the answer "B" twice. This is because micro-PROLOG can
show that "B" also appears on (B 0 B) in two ways. In answering the
compound query, micro-PROLOG finds each letter in (R 0 B E R T) as a
cartdidate value for x. For each value it looks for all w a y s of
showing that the found x is also on the list (B 0 B). Each t ime it
succeeds in doing this, it prints out that value for x. If (R 0 B E
R f) nad been g iven as (K 0 B B E R T), w i t h the two B's ins tead of
one, "Q" would be printed out four tines. micro-PROLOG would find it
twfc«,and each time- tw ice confirm that it is also on the list (B 0 B).

•,
3. using the program developed in section 3.2, give definitions of

a. x i s-a-parent-of-children y
b. - x is-a-chiId-of y
In each case make use of the "belongs-to" relation.

3.3 Setting at the ambers of a Ust of unknown

3-4 The Lena.th of j. LjsJ

A very common list program is the "has- lerujth" pro<j i <>>. -ni h s imp ly
counts the length of a list. Although very s imple i t hdi m.ir,/ ui.es and
some surprising properties. There are jus t t w o s e n t e n c e s in the "has-
length" program, a fact and a rule:

() has- length 0
(x IX)has- length z if X has- length y and SUM(y 1 i)

The declarative reading of these rules is equally simple:
%

•
The empty list has length zero (as might be expected)
A non-empty 1 1st has length one more than the length of the tail sub-
list 7

To find the length of "(A 8 C 0)" we use the query

Which(x (A B C 0) has-length x) .

ye can use the "has-length" program to check that a list has a given
length:

Does (A B C D) has-length 4)

We can use it to find the length:

UhichCx (S B C O) has-length x>

Ama/ iny ly , we can also use it to find a list of a given length, and to find
all instances of the "has-length" relation. The queries

and

One(x x has-length 4)

One((x y) x has-length y)

wil l both be answered by micro-PROLOG. If you have a computer handy/
define "has-length" and try the queries. Stop the evaluation of the f irst
query a f te r it has given you one list of length 4. There is only one
micro-PROLOG answer to the query. You can run the second query until you
get tired of seeing the answers. It is important that you Add the "has-
length" fact before the rule.

Let us now examine the way mitro-PROLOG answers these queries. This
will explain the answers that we get. We will start by examining the query

One((x y) x has-length y) (A)

This is the same as a W h i c h query wi th the option of stopping genera-
tion of the answers at any point. For this query/ having this option is
very necessary. There are an infinite number of answers to

WhichUx y) x has-length y)

micro-PROLOG answers the query (A) by scanning the sentences for "has-
length" t ry ing to match the sentence w i th the query condition "x has-
length". The first sentence is

() has-length 0

)
3.4 The Length of a List

So there is a successful m a t c h w i t h *-() and y-0. This gives us the f i r s t
answer

Answer is (() 0).

If we type "C", mic ro -PROLOG cont inues w i t h its scan. The second (and
last) sentence for the relation is

(xHXD has-length z1 if X1 has-length y1 & SUM(y1 1 z1)

Notice that we have renamed the variables. Remember that micro-PROLOG
always does this when it uses a rule. It uses variables that are dif ferent
f rom any that appear in the query being evaluated. There is a m a t c h
between

(x l lXD has-length z1

and

x has-length y

providing, x=(x 11X1) and z1-y. Our original query
i *

One(fx y) x has-length y)
» <

is thus reduced to

One((x y) X1 has-Length y1 ft SUMCyl 1 z1)> ^^^
with x*(x1IX1) and(^=zl)

This is the derived query

One«x1lX1) y) X1 has-length y1 ft SUMCyl 1 y)) (B)

The answer to this query are all the remaining answers to (A).
Now,i in answering query (B), the condition "X1 has-length yl" becomes

a generator for candidate values of X1 and y1. The y1 values are handed
over to "SUM(y1 1 y) which finds the value of y of the answer pattern, ye
know that the f irst answer micro-PROLOG wil l give to

X1 has-length y1

i s

X1=() and y1=0

obtained by the match w i th the fact "() has-length 0". The passing on of
the value' y1=0 gives the value y=1. Hence the f i r s t answer to (B) (and so
the second Answer to (A)) is the value of the answer pattern

(U1IX1) y) wi th X1=() and y=1.
j i

This is .

Answer is Uxl; 1).

We get the list (x1) because (x 1 l O) is the list that is the e lement x1
f o l l o w e d by the empty list. That is, it is the one element l ist (x1).
Note that' xl is still a var iab le . The pattern (x l) is the answer:

3.4 The Length of a List

lists of just one element. >
If we continue the evaluation of (A), the r«.-*t Answer i . obtained when

the generator "X1 has-length y1" of (B) pr ...luces 11; <M.<,IHI » < . .wer. But we
know what the second answer to the query cond i t ion \ ., t ' me i ,iv.- it i < , i,
had it given as the second answer to our original query. It is walue for
X1 that is a list pattern representing all l ists of one element, and the
value 1 for y1. The value for X1 w i l l be a l ist pattern, such as («/).
micro-PROLOG wil l not generate the value (x1), because xt already appears
in query (B). This pair of values, gives us the next answer to (B). It is

Uxl lXD y) with X!=(x2) and y=2

But (x1l(x2» is the list of two variables (x1 x2). So we get

Answer is «x1 x2) 2).

You should now see what the general pattern is. The third answer to
(B) is produced by using the second answer, w i t h variables replaced, as the
next solution given by the generator "X1 has-length yl". It gives us an
answer comprising a list of three variables, paired w i th the length 3. The
evaluation continues, always using the last answer to produce the next
answer. Our original query

One((x y) x has-length y) (A)

has an infinite number of d i f fe rent answers, each answer is a List of
different variables paired with its length. The answers are generated in
order of increasing length.

Not ice the importance of the ordering of the sentences for "has-
length". If they had been entered there in the order

I has-length y & SUM(y1 z)has-length z if
() has-length z

there would be no real difference in the yay micro-PROLOG answers length
checking or length finding queries. But in trying the answer query (A),
this ordering will cause micro-PROLOG to enter a bottomless pit.

The reason 1s that •icro-PROLOG always uses the Jjrst sentence that
• atches a query condition for a relation So in answering (A), it will now
use the rule before the fact. It f irst reduces (A) to

One(«x1lX1> y) X1 has-length yl ft SUM(y1 1 y)) (B)

It is answer ing this query, it again encounters an "has-length"
condition. It will again use the f i r s t sentence for the relation, the
rule. This effectively replaces (B) by

One((x1 l (x2IX2)) y) X2 has-length y2 £ SUM(y2 1 yl) & SUfUyl 1 y»

This expansion continues, and wi l l continue indefinitely. tach step
introduces a new query condition for which the rule is the f irst Matching
sentences. mi crcr-PROLOG never has a chance to use the f ac t "O has-length
0)" which gives th* first, crucial answer to the query. Die moral here is
that the ordering of the rules for a r e c u r s i v e l y desc r i bed relation is
important if they wil l be used to find instances ut the relation for such
a use, we should Make sure the facts, (more generally the non-recursive
rules) precede the recursive rules.

Let us now examine the way mi cro-PROLOG answers the query

One(x x has-length 4) (0

50

3.4 The Length of a List

)
We assume that the sentence for "has-length" are as originally given, wi th
the fac t before the rule.

micro-PROLOG f i rs t t r ies to use the f ac t

() has-length 0

to match the query condition

x has-length 4.

It fai ls to get a match, since 4 and 0 are different. It can only get an
answer by using the rule, w h i c h w i t h renamed variables, is

(x l lXD has-length z1 if X1 has-length y1 & SUM(y1 1 (̂)

There is a successful match, w i t h the query condition providing x=(x11X1)
and z1=4. micro-PROLOG reduces (C) to

One((x1lX1) X1 has-length y1 & SUM(y1 1 4))

The condition "X1 has-length y1" now becomes a generator for candidate
values for X1 and y1 w i t h the y1 value checked w i t h the SUM(y1 1 4)
condition. Now we know that there are an infinite number of solutions to
the condition and that the solutions wi l l be generated in order of increa-
sing length. When the solution Xl=(x2 x3 x4), y1=3 is generated we get the
answer (x1 x2 x3 x4) to query (C).

This is, of course, the only answer. But micro-PROLOG does not know
this. It will happily continue generating more and more candidate solu-
tions for the condition "X1 has-length y1" checking if the length is one
less than 4. If we let it, af ter giving us the only answer, micro-PROLOG
wil l enter a bottomless pit.

This is similar to the problem that can arise if we do not choose a
judicious ordering for the rules of a recursively defined relation. In
this case, the problem is that the ordering of the preconditions of the
rule

(x lX) has-length z if X has-length y & SUM(y 1 z)

is not appropriate for the use in which the length is given and a list of
that length is to be found. For this use, we should put the S U M C y 1 z)
condition first. Note that we cannot do this for the finding length use.
For then we would encounter the problem of trying to find a solution to
SUH(y 1 z) w i t h both the arguments y and z unknown. As w i t h ances to r -
of/descendant-of, we need a separate definition of the inverse relation,
"length-of".

The two sentences,

0 length-of () 2
y length-of (x lX) if SUM(z 1 y) 8(£)'length-Gf x

are a definition or the relation w i t h an ordering of the preconditions of
the rule that l imi ts the use to queries in wh ich the lemjth of the list is
given. But for mat use, it is an eff ic ient, safe program. We can even
use it to evaluate the query

Which(x 4 length-of x)
Answer is (X Y Z x)
No (more) answers '

This time, micro-PROLOG stops when it has found the only answer, and tells

1

3.4 The Length off a List

'
us there are no more answers. Folio* through the evaluation by hand. Tou
wil l see that there is only one Answer because the condition SUN(z 1 ,),
with y given, only has one answer.

Conciusjon

To find the length of a list use the "has-length" relation defined by
the rules

() has-length 0
(xlX)has-length z if X has-length y and SUM(y 1 z)

%
To find a list of variables of a given length, use the "length-of

relation defined by the rules *

0 length-of () I
y length-of (x l X) if SUHCz 1 y) 40 length-of X

To check that a given list has a check length, use either relation.

Do not use either relation when both arguments are unknown. This is
because (here are infinite number of answers to the condition

x has-length y

and micro-PROLOG will enter a bottomless pit it tries to answer a Which
query in which this condition is used. On the other hand, micro-PROLOG
will give an error message when trying to answer

y length-of x

This is because it will try to evaluate a "SUM" condition wi th two
arguments unknown.

Taking into account these sorts of restrictions on the use of micro-
PROLOG programs, particularly programs that embody a recursive definition
or use the arithmetic primitives, is part of the pragmatics of programming
in the Language.

Incidentally, the has-length program has no problem finding the length
of a list of variables. The query

X
Which((x y) 4 length-of 0* x has-length y)

will produce the response

Answer is ((X Y Z x) 4)
No (more) answers.

3-5

1. Use the "has-length" program to define a rule wh ich gives the number of
children a mother has, and find out how many children JiLly has.

2. a. Pose the query: Who has f i ve children? (use the "has-length"
program in your queryj

b. Pose the same query, but this t ime use "length-of".
(

3. Supposing that we had the following information about sporting teams:
(Arsenal Chelsea Liverpool Manchester-United) teams Soccer
(Yankees Astronauts Redsox) teams Baseball

3.4 The Length of a List

I
Pose and answe.1" the queries:
a. Which(x y teams i and y has-length x)
b. Which(x (Arsenal ly) teams Soccer & y has-length x)
c. Ooes(x teams/ *rtd x has- length 3)

4. Pose the query

One(x 2 be longs- to x)

Follow through the evaluation, by hand, so that you understand the
answers that you get from micro-PROLOG.

SyJidJL'a i thajn oj descendants

The "length-of" program can be used to construct a list given a number.
Programs that can be used to construct l ists are exceedingly useful. We
shall deal w i t h them mere fully in Chapter 5. We shall comple te th is
section by giving a program that is similar to length-of. It can be used
to find a list of intermediary <gaTamTte rg> that (6orrecQ two individuals in a
parent-of chair. It is a program that defines the relation

(x y) have-descendant-chain X: y is a descendant of x and
X is the list of intermediary parents.

Its definition is:

(x y) have-descendant-chain () if x is-a-parent-of y
(x y) have-descendant-chain (z lX) if x is-a-parent-of i and

(z y) have-descendant-chain x

This program is a classic example of how the data base handling and
the list processing sides of PROLOG cooperate. When used to f ind the
ancestor chain between two individuals, the r e c u r s i v e ' w a l k * over the
parents' data base that is performed is combined wi th the construction of a
list. This list reflects the sequence of steps needed to 'complete1 the
ancestor links between the pair of individuals.

3-6

Using the program for have-descendant-chain, pose and answer these
questions:
a. What is the List of descendants between Arthur and Robert?
b. How many generations are there between Jane and Rooert?
c. Give all the pairs of people separated by one intermediary

parent, i.e. the grandparent, grandchild pairs.

Make use of the following fac ts :

Jane is-a-parent-of Arthur
Arthur is-a-parer,i~uf Peter
Mary is-a-parent-of Peter
Peter is-a-parent-of Robert

Define "is-a-great-yrandparent-of " in terms of "has-descendant-chdin".

3.5 Answe.1 sejs aj lists,

We s'hall now look more closely at the relationship between informat ion
represented by t a t t s about individuals and the same informat ion represented
by facts about lists of individuals. We started the chapter by observing

5J

3.5 Answer sets m* lists

that a Lot of facts can often be «ore compactly represented using lists,
for example, in the fami ly relationship program of Chapter 1 instead of
having sentences about relations such as " is- the- father—ut" be tween indivi-
duals we can have sentences about the relation "par- . tu-ut" b e t w e e n j list
of the two parents and a list of their children.

These two representations of the fami ly in format ion are essential ly
duals of each other, we can 'move* between them. We have already seen that
we can define the "i s-the-father-of" relation in terms of the "parents-of"
relation using "belongs-to". The definition is:

x is-the-father-of y if (x z) parents-of Y and y belongs-to Y
%

Using "belongs-to" we can always define relations over individuals in
te rns of relations over l ists of individuals. Can we do Che reverse
construction? The answer is YES. We nake use of a primitive relation of
• icro-PROLOG, the "Is-All" relation.

What "Is-All" does is wrap up the set of all answers to a query as a
list. Consider the query:

Which(y HenryS i s-the-father-of y)

The answer to this query is the set of all the children of HenryS. PROLOG
prints the* out as:

Answer is Mary
Answer 1s Elizabeth
Answer i s Edward
No (aore) answers

Using "is-All", we can put all these answers into a list in the order in
which they are printed. Thus, the query condition:

x Is-All (y HenryS is-the-fath*r-of y)

has one answer, x is given the list (flary Elizabeth Edward) as us value.
We can therefore use "Is-All" to define the relation "is-the-father-

of-children" in ter*s of the "i s-the-father-of" relation. The latter
relates a father to a single child, the former relates hi* to the list of
all his children. The rule defining the relation is:

x is-the-father-of-children r if Y Is-All (z x i s-the-father-of z) (7)

Now we can see how to achieve the full Mapping fro« the separate "1s-
the-father-of" and "is-the-nother—of" facts to the "parents-of" relation:

(x y) parents-of 2 if Z Is-AU(z x 1 s-the-father-of z and
y is-the-mother—of z)

Just l ike a "Which" query the query component of "Is-ALl" can have a
conjunction of simple conditions.

The "Is-All" progra* has Many useful applications, all stemming fro*
its abil i ty to *ake avai lable in i list all the a n s w e r s to a query. A
simple example is just to count the nunbef of someone's children as in:

x has-ncrof-children y if z Is-*AU(X x i s-a-parent-ot X)
and z has-length y

E*erc.jse. 3-7

1. Give a query which asks how many male children someone (Peter, say)
has.

I
3.5 Answer sets as lists

To extend our Tudor royjl f am i l y data base, we could add informat ion
about the Kings and Uueens of Engljnd:

Henry7 fami ly Tudor
Elizabethl family Tudor
CharlesI family Stuart
George3 family Hanover

Pose and answer the following queries:
a. Give the list of the Tudor Kings of England
b. How many Kings of England have there been?
c. How many Stuart Kings nave there been?

Give the rules which define the relation: the last member of a list.
Hint: an individual is the last member of the list which contains only
that individual as member, i.e.

x last-of (x)

otherwise, it is the Last neiaber of the tail of a list.

4. Define the relation "(x y) adjacent-on z" which holds when the pair of
e lements x and y are next to each other s o m e w h e r e on the list z.
Hint: t reat the two cases, x and y the f i r s t two e lements of the
list, x and y not the f i r s t two elements, i.e. they are ad jacent
elements on the tail of the list.

Test out your answers to 3 and 4 on various forms of query. Note: C
typed with the control key depressed (the control-C combination) will abort
any query evaluation that you think may have got into a bottomless pit.

4. Complex conditions in queries and rules
j

At the end of the last chapter we introduced the "Is-AU" relation.
"Is-AU" is an example of a complex condition; it is a new form of simple
sentence. There are two other comp lex condi t ions that can appear in
queries and rules. They are the "Not" condition and the "For-All" condi-
tion. In this chapter we introduce these other conditions and describe
"Is-AU" more formally.

4.1 iondjtjonj

Sometimes the condition that we want the retr ieved data^to sat isfy is
more naturally expressed by giving a positive condition that it must satis-
fy and then giving an extra negative condition that it must noj satisfy.

As an example, suppose that we wanted to retrieve all the descendants
of HenryS who do not themselves have any children, or rather, who do not
have any children recorded in the data base. What we want are the x 's
such that

x i s-a-descendant-of Henry

can be confirmed, but for which the extra condition

x is- a- pa rent- of y for some y

cannot be confirmed. In micro-PROLOG we express this negative condition
using 'Not". We pose the query:

Which(x x i s-a-descendant-of HenryS and Not (x i s-a-parent-of y)')

Since it is a general property of PROLOG that any query expression can be
used as the right hand side of a rule, negated conditions can also be used
in rules. Thus, the rule:

x childless-descendant-of z if x i s-a-descendant-of z and
Not(x i s-a-parent-of y)

generalizes the query and defines the binary relation of being a childless
descendant.

Dia* Si DS

Syntactically, we have a new type of simple sentence which has the
form:

Not(C), C a conjunction of simple sentences

Notice that this means that we can have nested negations, for one or more
of the simple sentences of C can be a negat ive s imple sentence. The
declarative reading of a negated condition in a query or rule is:

It is not the case that C for some y1,..,yk

Here, y1,..,yk are all the variables ot C that d.o rloj appear elsewhere in
the query or rule. They are the Lficai variables of the negative condition.
Variables that appear in C w h i c h also appear e l sewhere are i ts
variables. The above rule is read:

x is a childless descendant of z if x is a ,jeicendant ot .•
S i t is not the case th .,t .

is a parent of y for -ume y.

S
4.1 Negative conditions

We say, "for some y" because y is a Local variable jf the neyated condi-
tion, The * is global because it appears in the .(.tier conditiun of the
rule and the consequent of the rule.

Another example of the use of negation is in the query:

Which(x x city-of England & x population-is y & Not(y LESS 10000))

Used w i t h a data base of c i t ies and their populations it wi l l give all the
English c i t i es of the data base that have a population greater than or
equal to 10000.

«£$ trjc.ijons. on ys.e. oj Noj

A negated condition can only be used for checkjrKj. It cannot be used
tor generating candidate values for its global variables. This means that
in a query a negative condition must be oreceded by a posit ive condition
for each of its global variables. In the evaluation of the query these
positive conditions wil l be used to find values for the variables that the
negative condition checks.

The checking restriction on the use of negation is reflected in its
imperative reading:

to confirm Not(C), check that the query C cannot be confirmed.

In other words, the evaluation of the negated condit ion Not(C) is the
evaluation of the query boes(C) wi th a *XO" answer interpreted as "YES" and
a "YES" answer interpreted as 'W.

Let us see what happens if we ignore the positioning rule for negative
conditions. Suppose we posed the query about the childless descendants of
HenryS as:

Which(x Not(x 1s-a-parent-of y) 4 x is-a-descendant-of HenryS)

When PROLOG evaluates the query it will now encounter the condition Not(x
i s-a-parent-of y) w i t h x not yet given a value. The evaluat ion of the
condition reduces to the evaluation of

Does(* is-a-pa rent-of y)

which will, of course, be confirmed. (We have at least one person who is
the parent of someone.) Conf i rmat ion of the Does query is fa i lure to
confirm the Not(x i s-a-parent-of y) condition. So PROLOG wil l immediately
print out

No (more) answers.

This incorrect answer is a consequence of not placing the negative
check on x after the posit ive generator for x wh ich is the condition x i s-
a-descendant-of HenryS. For safety PROLOG should give us an error message
when it reaches a negative condition in which there is a global variable
which has not been assigned a value. This would stop it evaluating the
above query because x i s an unbound global var iable of me Not condition.
PROLOG does not give an error message because to check that each global
variable has a value each t ime it evaluates a negative condition is t ime
consuming. The decision was made to put the responsibility for ensuring
that this constraint is a lways satisf ied onto the programmer. He must make
sure negat ive condi t ions w i l l only be used for checking by a sui table
ordering of the query conditions.

57

4.1 Negative conditions

One of the most common uses of negation is the condition Not(x i.u y)
which checks that the individuals given as x .in.i , .10 nut have the same
name. ("EQ" is a primitive relation of micro-PkOLOu. Its d e f i n i t i o n is
the unconditional rule x EQ x. If you p r e f e r to use the symbol "-"
instead of "EQ" simply add the rule x-x to your program.)

Suppose that we wanted to define the relation

x is-a-brother-of y.

We must find some query condition that defines the brother relation. Two
individuals x and y are brothers if: »

they are male Male(x) & Male(y)
they are different people Not(x EQ y)
they have a common parent z is-a-pa rent-of x & i is-a-parent-of y

This gives us the rule:

x is-a-brother-of y if Male(x) 8 Male(y) K Not(x EQ y) &
z i i-a-parent-of x & t i *•-j-fj*iri. iit-of y

Vhe negative condition Not(x EQ y) with global variables x and y comes
after the positive Conditions Male(x), Male(y) that w i l l be generators for
these variables.

Chewing yj generdtjna ru^es
f

When we use "Not" in a rule we need not a lways make sure that it is
preceded by positive conditions for its global variables. But, if we do
not do this, we should make sure that the rule is only used for checking.

As an example, consider the rule:

childless(x) if Not(x is-a-parent-of y)

This is read:

x is childless if it is not the case that x i& a parent of
y for some y.

Because the global variable of the negative condition must have a value
when the condition is evaluated this rule can only be correctly used for
ii35iiJl>i that someone is childless. It £anno£ be used for jindjng child-
less people. For generality of use we would need to add an ex t ra
condi tion:

childless(x) if person(x) ft Notu is-a-parent-of y)

Here person(x) is defined by the two rules:

person(x) if Male(x)
personU) if female(x)

This rule can be used both for checking and generating. When used for
checking that someone is childless the condition person(x) is redundant.
Thus, if we o£ix use the childless condition as a checking condition, the
shorter restricted use rule might be preferred. But to use rules that can
only be used as checking rules is to live dangerously. micro-PROLOG does
not check that the restriction is adhered to. If you make ^ mistake, arid
try to use the rule to generate, you wi l l get incorrect answers.

The rule that has the person(x) condition also has another meri t . It

4.1 Negative condition*

')
makes sure that only £e.oplg dre conf i rmed as childless. The shorter rule
wi l l confirm childless loT," because 6 is something for w h i c h no is-a-parerit
fact can be confirmed.

We can use a negated condition to check that something is not on a
list. As an example, the query:

UhichU x belonys-to (a cow jumped over the moon) &
Not(x belongs-to (a the»

-ill give us all the words in the list (a cow jumped over the moon) which
are not one of the ar t ic les (a the).

The query:

UhichU Z ls-AU(x x belong;,- to (P A L I N D R O M E)
& Not(x belongs-to (A E I 0 U)>

gives the answer

IP L N 0 H H>

which is a list of all the non-vowels in the letters of PALINDROME.

1. Using the built-in Ar i thmet ic relations of micro-PROLOG,
a. Give a definition of an even number using the PROD relation.
b. Give a definit ion of an odd number that m a k e s use of the even
number definition. Hint: use the built-in relation "NUM(x)" wh i ch
tests if x is a nunber.
Notice that your programs can only be used for testing the relations
they define.

2. Answer the following PROLOG questions:
a. W h 1 c h (x x belongs-to (the quick brown fox) and

Not (x li«st uiVjd-to (how now brown cow))
b. Which(x x Is-ALUy y belongs-to (.* R t 0) and

Not(y belongs-to (0 0 R I S)))

3. Using the Tudor Royal fami ly database,
a. Define the relation "a-man-with-no-sons".
b. Define the relation "j-mother-wi th-no-dauijhters".

4. Using the information described in the books database/ we wi l l develop
a library loan system. Our records of book issues w i l l have the
for*:

Issue (Name Tit le Author Issue-Date Due-Date)
tor instance, the sentence:

Issut ((John SmithHOliver TwistHCharles D ickens) (4 6 db)(18 6 HU»

says that John Smith borrowed Oliver Twist by C. Dickens, he borrowed
it on 4th june ivtii, and is supposed to return it by the 16th. Our
records of book returns wi l l have the fora:

Return (Nd*e Ti t le Author Return-Date)
t

for instance:

4.1 Negative conditions

Return ((John S»ith) (Oliver Twi st) (Charles OicM..-/(12 6 80))

says that J. S m i t h returned his book on the 12th , June (before it
became overdue)

a. Add this definition to your program:
"A book (title) is overdue if it has been issued, it has -not been
returned, and the date is after the Due-Date".

b. Give the definition of "after" that you wil l use.
c. Add this definition to your program:

"Anybody Mho has an overdue book is banned froa tne library".

iui Ji'i' JilALl Conoitjon

The Is-All condition is another for* of simple sentence. It has the
font:

L Is-All (A a)

The pair (A 0) arc an a n s w e r - p a t t e r n and a query-pattern as in a W h i c h
query; L is a variable or a list pattern. The condition is read:

L is a list of all the A's such that 0 for so«e y1,..,yk

Here, y1,..,yk are the local var iables of a, the var iables that do not
appear in A or in any other simple sentence of the query or rule in which
the "Is-All" appears. The global var iables of (A a) are those that do
appear in scwe other s imple sentence.

Bfisirjiijona on u f̂

As wi th negative conditions, 'when the "Is-Alk" condition is evaluated
ail the global variables of (A tt) Must have values. So in a query we must
precede an "Is-All" condition w i th posit ive generators for i ts global
variables, and in a rule we must have preceding generators or make sure the
rule wil l only be used to answer queries in which the global variables are
given. micro-HROLOG does not check that the global variables have values
when it evaluates the "Is-All" condition. It is likely to give incorrect
answers in this situation.

Usually, the L argument of the "Is-All" condition wi l l be a variable.
The evaluation of- the condition then generates a single value for the
variable which is the list of all the answers to the query (A Q).

In general, it is not safe to give L as a particular list and use the
"Is-All" in a checking Mode. This is because »h« condition only holds
when L is identical to the list of answers that would be constructed in the
generate use of th« condition. Thus, the query:

DoesUTo* Dick Peter) Is-All(y Mary 1 s-the-mother-of y))

•ay fai l to be conf i rmed even though TOM, D i ck and Peter are the only
answers to the query:

Which (y Itary is-the-Mother-of y) .

This happens if the evaluation of this query would generate the answers in
a different order fro* that of the list (To* Dick Peter). In section O
we- shall see how we can get around this problem using a re la t ion tha t
checks that two lists have the same elements.

Th is res t r ic t ion of the "Is-All" condi t i ori'i i due to the f a c t t ha t
nicro-PROLOG knows nothing about sets. It only knows about lists, and

60

The Is-All Condition

>
l i s t s are ident ica l . ,'f they c o m p r i s e the ^ame sequence of e lements .
When we use l i s t s to represent sets, we must do our own t e s t i n g tor
equality, and removal of duplicate elements. (The problem of removal of
duplicates 1s dealt w i t h in e x e r c i s e t>-1(12) of the next clupter).

If the list L is empty, or only contains one element, this problem of
exact ordering of the elements Joes not ari^e. So "Is-Alt" can be sa fe l y
used to check that there are no answers or that some individual is Uie only

answer.

DoesU) Is-AlUx Tom is- the- father-of x))

checks that Tom has no children. It is equivalent to the query

Does (Not (Tom- ii-the- father -of *;) .

The query

Does((B1ll) Is-AU(x TOM is-the- father-of x)

checks that Bill is the only child of Tom.
Finally, the list L can be given as a list of variables.
The query:

Uhich((x1 x2 x3) (x1 x2 x3) Is-All(y Mary is-the-mother-of y))

checks th«t there are only three children of Mary, and if there are, gives
us their names. The query

yhicMx 3 length-of x & x Is-All(y Wary is-the-MOther-of y))

is equivalent, and wi l l have the saMe answer. It uses the re lat ion
"length-of" that we discussed and defined in Chapter 3.

The>way an Is-All condition is evaluated is reflected in the alterna-
tive procedural reading:

To answer the query L Is-All (A 0)
answer the query U h i c h C A tt)
and check that L is the list of answers in the order they are

found.

Notice that this means that any duplicate answers to Uhich(A Q) appear
as duplicates on the list L.

i
UiS Si Jjs îl 1st conitruitjna ij$t5

The rule:

X intersectiorrof (Y Z) if X Is-All (x x belonys-to Y & x belongs-to 2)

defines the relation that is sat isf ied when x is a list of all the indivi-
duals that appear on the l ists y and z. Because of the restrictions on the
use of "Is-All" it can only be used for constructing such an intersection
list. ''Notice that if Y or Z contains a duplicate of a common member this
dupl icat ion will be repeated on the lilt X. But X will be wi thout
duplicates if Y and I are without duplicates.

Th« rule:

X di f ference-between (Y Z) if X Is-All (y y belonys-to Y &

61

4.2 The Is-All Condition

Not(y beU.-ja-to Z) >

defines the relation that holds when X is the I i - t of elements un Y that
are not on Z. It can only be used for findimj X j in-n Y n i I. The
constructed list X will be without duplicates if Y 11> w i tt.out dupl i ca tes.

4-2

1. Using the relation x member-of-ei ther (y z) definej by the two rules:

x mecber-of-either (y z) if x belongs-to y
x meaber-of -either (y z) if x belongs-to z

give a rule for tie relation "x union-of (y z)" that can be used for
constructing a list x of all the individuals that are members of y or z.

2. Define the "subset-of" relation: x s'ubset-of y holds when all the
elements of x also belong to y. (Hint: the difference between x and the
iriU?i stttiori of x ,\i\d Y is the empty set.) We wil l revis.it this example
t A (. •.,' r .

3. Define the relation: X set-union-of (Y Z) wh i ch is the sane as
"union-of" except that its use will a lways give a list X without duplicates
if Y and Z are without duplicates. Define it in terms of the "union-of",
intersection-of" and "difference-between".

nes Me want to check that the answers to a query all satisfy
some condition. In the next section we wil l show how this can be tested
directly with » single "For-All" condition. As an exercise in the use of
Is-All we show how it can be done using the answer list constructor.

Suppose that w« have used the relations over individuals representa-
tion of f<j»ily relations, that we have a set of facts such as

Bill is-the-fa'ther-of Roy
Sarah is-the-««ther-of Roy

giving the Mother/father relations. Consider the problem of finding all
the men who only have sons.

We can actually pose this query using negation. We can express it:

WhichCx Nale(x) ft NotCx i s- the- fa ther- of y t, Female(y»> (A)

read as:

the x's such that x is Male and it is not the case that
x is the father of a female y, for some y.

We can also express the condition using "Is-All". A «ale x sat is f ies
the condition if all the answers to the query Which(y x i s-the-fa ther-of y)
are male. By wrapping up these answers as a list, we can check the condi-
tion using the "all-Hale" relation defined by:

al l -Male(O)
a l l -Male((u lx» i f Nale (u) f t a l l - f U l e (x)

This is the relation that holds fur a list iff it is a l is t of males. The
query can be posed:

Which(x Nale(x) ft Z Is-AU(y x i s-the-father-ot y) & ai l-Male(Z)) (B)

62

4.2 The Is-All Condition

\
Notice that this query, arid query (A) above, are both sat is f ied by men who
have no children at all. fhi s is a con vet and st r ic t interpretat ion of
the condition "only have sons". If w e wanted to insist that each ..u\ had
at least one hild ue could replace the "Male(x)" condition of buth query
(A) and query (B) by the condition " is-a-father(x)". Th is is defined by
the single rule:

is-father(x) if x i s-the-father-of y.

(A) and (B) are equivalent w a y s of expressing the same query. There
is a t h i r d way:

WhichCx Hale(x) & (Male(y)) For-AlKy x i s- the-fa ther-of y)) (C)

This uses the "For-All" condition we are about to describe. It has the
effect of testing that all the children of x are male without the need to
construct the list of these children. In this respect it is similar to
query (A).. Notice that in (A), (B) jnd (C) the global variable x of the

condition of the each ciuci> has a preceding generator, Male(x).

4-1 JiLS fKrALl condujon

A "For-All" condition is a simple sentence of the form:
f

(C) Fftr-AU (A a)
< •

C is a simple sentence or a conjunction of simple sentences. The (A Q) is
a which query expression in which A is the list of variables that appear in
"C".

Its declarative reading is:

C is true for all the A's such that Q for some y1,..,yk
i

The y1,..,yk are the local var iables of Q.
The global variable restr ict ion applies. All global variables of Q

must be bound before the condition is evaluated, but micro-PROLOG does not
check that this constraint is satisfied. If it is not satisfied, you are
likely to get the wrong answers to the query or rule in which the condition
appears. The moral is, precede it w i t h positive generators for the global
variables, 'or make sure the rule is only used to check a condition in wh i ch
the variables will be given.

The procedural reading is:

to check the condition (C) For-All (A <1)
answer the query W h i c h C A Q),
as each answer A is generated check that C holds,
if C does not hold for some answer conclude that the "For-All"
condition does not hold and abandon the search for answers,
if C holds for every A n s w e r A conclude that the "For-All" condi-
tion holds.

E^mcie. uses 9l fyrjMi

(1) The rule:

X subiet-of Y if (x belongs-to Y) For-All (x x belongs-to X)

can be u^ed to check that all the members of a list Y are members of X.
The rule:

Ihe For-All condition

X same-elements-as Y if X subset-of Y & Y subuet-of X

can be used to chec* that all the members of X .ire members ot Y jnd vice-
versa.

Notice that this defines a set equality w i t h ^ets represented by lists
of their elements. It can also be used to check if some list is just a
permutation of the e lements of another list of the same length. The
relation can be used in conjunction wi th "Is- All" to check whether some
particular set, represented as a list, is the set of answers to some query.

As an example, suppose that w« wanted to check that Mary's children
were Tom, Dick and .Peter. Assuming that information is represented as in
the Tudor's data base, we would pose the query:

Does(x Is-AlUjr Hary is-the-mother-of y) ft
x same-elements-as (Tom Dick Peter)).

This is the way to get around the rest r ic t ion on the "Is-All" that we
discussed above.

(2) An ordered list is a list such that for all pairs of adjacent
elements (x y) the condition x lesseq y holds. This gives us the rule:

ordered(X) if (x lesseq y) For-AU ((x y) (x y) adjacent-on X)

This specification-like rule can be used for checking the ordered condi-
tion. The relation "(x y) adjacent-on X" w h i c h holds when (x y) are a
pair of adjacent elements on a list X can be defined by:

(x y) adjacenf-on (x y I X)
(x y) adjacent-on (z I X) if (x y) adjacent-on X

i i
The definition of the relation was the answer to exercise 3-7(5>. The
relation lesseq was defined in exercise 2-3(3).

1. Using the relations of the books data base, i.e. "writer", "written-
by", "type", "published", define the following relations. Use "For-
AU". •
(i) Novelist(x): x is a writer whose recorded books are all novels.
(ii) Moderrrauthor(x): x is a wri ter whose recorded boolts are all
published in the twentieth century.

2.

3.

Use For-AU to define:
(i) Posi tive-huBs(x): x is a list of numbers greater than 0.
(ii) all-Hale(x): x is a list of names of males.

Define the relation disjoint(X Y): X and Y are lists with no common
element. Define it using:
(i) Not
(ii) Is-All
(iii) For-AU
Any if these programs can be used for testing the relation.

6 <,

S. Lint Process1"<i

IWe have seen A we can access the components of l ists and construct
new lists out of existing l is ts by defining relations wi th lists as argu-
ments. When we query these relations we are processing lists. In this
chapter we look at some more list processing relations arid their use. We
also Illustrate the application of list processing to the parsing of sente-
nces expressed as l ists of words, an application to which PROLOG is we l l
suited.

5.1 The. aD.De.nds-to re.Ujion

We begin by examin ing a very power fu l l ittle list program for the
relation "appends-to". This has many uses apart from the 'normal1 one of
concatenating two l ists together; in particular it can be used to find all
the w a y s of splitting a list, to remove an initial or tail segment of a
list, even to split a list on a given element.

The condition

(x y) appends-to z

holds when z is the result of concatenating the list x to the list y.
An example of this is:

((A B) (C D E)) appends-to (A 8 C D E)

Before defining it, let us consider an example to illustrate its use. I am
try ing to remember w h a t I ate for lunch today. I t was se rved in two
courses. Each course can be described by a list jf its ingredients. Thus

(fish chips) served-in first-course
(rhubarb custard) served-in seconds-course

What I ate al together was the list of things I ate in the f i r s t course
appended to the list of things I ate in the second course. So

Z served-in dinner if x served-in first-course
& x served-in second-course
& (x y) appends-to Z

Wh"ich(x x served in dinner)
Answer is (f ish chips rhubarb custard)
No (more) answers

Notice the difference between this answer, which is one list and the answer
to:

Which(x y) x served-in f irst-course & y served-in second-course)
Answer is ((f i sh chip) (rhubarb custard))
No(more) answers

The answer to t h i s is a pair of lists. The two l is ts are not 'glued1

together in a single list. This is the role of appends-to.
To develop our program for "(x y) appends-to z" we must make

statements about the relat ion that together completely define the relation.
As* a rule of thumb, when defining relations over lists, we should pick

one of the arguments of the relation and have sentences for d i f fe ren t cases
for that argument. The cases should together cover al l the d i f f e ren t
types off l i s ts that miyht appear in that argument of the relation.

For the "(x y) appends-to z" relation, let us pick the f i rs t argument
x. We will comple te ly define the relation by having a sentence about all

65

5.1 The appends- to relation

instances of the relation when x is the empty L is t O, and another sentence
about all instances of the relation when x is a non-empty l i s t represented
by the pattern (x lX) .

When x is O, it is a lways the case that y dn<J / j r . - me •..,(«*. f h i b
is expressed by the unconditional rule

(O y) appends-to y (1)

which we read as,

for all y, the empty list () and y append to y.
%

Notice that we do not have to have an expl ic i t condition that says that y
and i are the same. We express this i m p l i c i t l y by having the same
variable in each argument position.

When x is a non-empty list of the form (x l X) we know that i must also
begin w i t h x. So z must be of the fo rm (x l Z) for some Z. We canr^t
unconuitionally state

« x l x > y) appends-to (x lZ)

because this does not hold for all X, y and Z. The X, y and Z cannot be
arbitrary lists. However, if they are such that

(X y) appends-to i

then we can be sure that

((x l X) y) appends-to (x lz) .

This is illustrated by the picture:

Z

(x l X)

(x lZ)

This gives uj the conditional rule

C (x l X) y) appends-to (x lZ) if (X y) ap.jerds-to Z (2)

(1) anc» (2) are a pair of sentences that together complete ly define the
appends-to relat ion. They are a log ic program for the relation.

SD.U t a t js.t

Queries to The "ippends-to" relation in w h i c h x and y are j ivcn give
back a z that is the concatenat ion of x *nd y. To u-^e it to spl i t a list,
we jive the i and leave x and y as variables.

WhichUx y) (x y; apperids-ta (2 3 4))
Answer is U)(2 3 4))
Answer is ((2X3 4))
Answer is ((2 3) (4))
Answer is ((2 3 4)O)
No (more) answers

*>.1 The appends-to relation

V
In the answers that we got, two were a pair consisting of the empty

list and the original list. To exclude these answers ye simply replace x
and y by patterns that denote dif ferent non empty lists.

W h i c h (((x J X) (y l Y) > ((x l X) (y l Y)) appends-to (2 3 4))
Answer is ((2) (3 4))
Answer is ((2 3) (4))
No (more) answers

By describing the second list w i th the pattern (x lY) we can insist that
the split is at a point where the f i r s t element of the list recurs.

Wh ichU(x lX) (x l Y) > ((x l X) (x lY» appends-to (2 4 2 5 1 2 3))
Answer is «2 4) (2 5 1 2 2))
Answer is ((2 4 2 5 1) (2 3))
No (more) answers

Alternatively, we can insist that the second list begins w i t h some
particular element, say 3. We do this by denoting it by the pat tern
(3 IY) .

WhichUx (3 IY)) (x (3IY» appends-to (2 3 5 3 D)
Answer is ((2) (3 5 3 D)
Answer is ((2 3 5) (3 D)
No («ore) answers

This finds all the spl i t t ings of the list that s tar t at the g iven
number 3.

As a last example of the use of "appends-to", consider the query

Which(x (y (x lX)) appends-to (2 3 4))

What will the answers be?

5-1

Answer these PROLOG questions:

1. w h i c h C x UJ U M) (B 0)) appends-to x)
2. WhichUx y) (x y) appends-to (J O H N))
3. WhichUx y) (x (R l y)) appends-to (C Y R I L»
4. WhichUx y) ((D A M) (S 0 N)) appends-to x and x has- length y)
5. Try the query

OneUx y z) (x y) appends-to z)).
Hand evaluate it to the point where you get 4 different answers if you
have not got a computer.

6. Give the query that checks that the list (2 3 4 2 3 4) is the result
of appending some list to i tself and which returns that list.

7. Give the query that returns the second list of all the splittings of
the list of words

(the man closed the door of the house)
that start w i th the word "the".

8. Use the 'telonys-to" relation to pose a compound query that finds all
the second halves of the splitt ings of

(Sam threw a ball into the lake)
that star t w i t h one of the words in the list (a the).

9. Using "appends-tu" pose the query to find the last element of the list
(2 3 4).

10. Consider the re la t ion
Split-on(y X X1 X 2) : x1 X2 is a splitting of the list X

such that X1 is of length y.

67

S.1 The appends-to relation

(a) Define it using "appends-to" and "has-length".
(b) Give an alternative recursive definition.
Which is the more eff ic ient micro-PROLOG program?

11. Give a recursive definition of the relation
remove-all(x X Y): Y is the list X w i th all uccuri t rni .es ot x removed.
Hint: treat the three cases
(i) x the empty list
(ii) x a non-empty list that begins w i t h x
(iii) x a non-empty list that begins w i th a y di f ferent from x.

12. Give a recursive definition of the relation
X compacti-to Y: * is the list X yith all but the f i rs t occurrence of

any duplicated elements of X removed.
Define it using the "reaove-all" relation of e x e r c i s e 11.
Hint: if X is a no/rempty list beginning w i t h x then Y must also begin
yith x but the tail of Y will be a compacted version of the tail of X
after all recurrences of x have been removed. Nou say this in micro-
PROLOG using list patterns and a conditional rule. Don't forget the
case when X is empty.
Notice that this relation can be used for removing dupl icates fro* a
list of answers given by an Is-AU condition. We use a compound query
condition of the form:

X Is-AlKA Q) & X compact b-to Y
But note that "compacts-to" is a time consuming operation.

5-2 Ruiss. that yse agegndsris
, 1

(1) The rule:

front(x y 2) if (y yD appends-to z. & y has-length x

defines the relation frbnt(x y z) which holds when y comprises the f irst x
elements of z. It can be used for finding the f i rs t x elements of a list
di in: j

i
WhichCx f ront(3 x <A B C D E F))
Answer is (A B C) .
No(more) answers

in answering this query the condition "(y yD appends-to z" of the rule is
used to generate candidate splittings of the list (A B C D E F). micro-
PROtOG will test every splitting wi th the "y has-length x" condition.

Notice that we can also define the relation using length-of :
ft

front(x y z) if (J^ength-of y I (y yD appends-to z

X
Used to. answer the same query, the condition '<J> length-of y" w i l l be used
to construct a list of -three variables (x1 x2 x3) as the value of y that is
passed on to "(y y1) appends-to z". The evaluation of the condition then
finds values for x1, x2 and x3. In other words, a f ter it has evaluated
the f i rst condition of the rule, the query

W h i c h C x front(3 x (A B C D £ F))

is reduced to the evaluat ion of

WhichUxl x2 x3) «x1 x2 «3) yD appends-to (A B C D E F))

Note the p o w e r f u l use of a n s w e r s that are l ist p a t t e r n s , jnd tha t the
evaluation of the query' involves generation of d i f fe ren t sp l i t t i ngs of the
given list. It is much more efficient than the e v a l u a t i o n that u--.es the
first definition of "front". The one drawback of the second definition is

• M

5.2 Mules that use appends-to

that it can only be u,ed if the length of the front list is given. This
is because of the restriction on the use of "length-of" that we noted in
Chapter 3.

(2) The rules:

<*IX) in1 tial-segment-of z if ((x l X) y) appends-to z
(y lY) back-seg«ent-of z if (x (y l Y)) appends-to j.

define the relations suggested by the relation names. Notice the require-
ment that the initial and back segments be non-empty lists.

We can use these relations to define the relation x segment-of z which
holds when x is a non-empty segment of contiguous elements on the list z.
Such a list x is an initial segment of a back segment of z.

x ^egment-of z if y back-segment-of z & x ini tial-segment-of y

Wh>1ch(x x seg*ent-of (A B O>
Answer is (A)
Answer Is (A B)
Answer is (A B C)
Answer is (B)
Answer is (B C)
Answer is (C)
No(more) answers

t
(3) The rules:

(x,0 reverse-of (x)
z , reverse-of C x I X) if Y reverse-of X & (Y (x)) appends-to z

define the relation z reverse-of x that holds when 2 is the list x in
reverse order. They can be used for checking the relation or finding the
reverse of a list with a query in which the second argument is given and
the f i rs t is to be found.

UhichCz z reverse-of (A B C D))
Answer is (D C B A)
NoKmore) answers

Why should it not be used w i t h the first argument given and the second to
be found? Follow through the evaluation to see what happens in this case.

(4) The rule:

delete(x X Y) if (X1 (x l X 2)) appends-to X &
(X1 X2) appends-to Y

defines the relation which holds when Y is the L is t X w i th some single
occurrence of x removed.

We can use this relat ion to give a r ecu rs i ve def in i t ion of the
relation

Y permutatiorrof X; Y is some reordering of the list X

It is defined by the pair of rules:

() permutatiorrof O
(y. lY) permutation-6f X if delete(y X Z)

& Y permutation-of I

5.2 Rules that use appends-to

The second rule tells us that the list (y l Y) is a permutdtion of the
list (x l X) if the f i rs t element y appears s o m e w h e r e on (x l X) j mi the
remainder Y is a permutation of the remainder of (x l X) .hen / i . '.'moved.
Th is diagram illustrates this relationship between (y l Y J jr»J X.

penautation-of

Remember that in Chapter 4 we defined the relation X same-e lemen ts -as Y
w h i c h was true of a pair of lists if every element of X appeared on Y and
vice versa. This is equivalent to Y per mutation-of X when X and Y have
the sane length. H o w e v e r , because "same-elements-as" was indirect ly
defined using "For-AU" it can only be used for testing. Our recursive
definition of Y permutation-of X can be used for testing or generating.
To generate all the permutations of a list we give X and ask for Y.

Uhich(Y Y permutation-of (5 3 7))
Answer is (5 3 7)
Answer is (5 7 3)
Answer is (3 5 7)
Answer is (3 7 5)
Answer is (7 5 3)
Answer is (7 3 5)
No (aore) answers

To find an ordered permutation we pose the query:

One(Y Y permutation-of (5 3 7) & ordered (Y»
Answer is (3 5 7).F

Here, "ordered" is the relation defined using "For-AU" in Chapter 4.
finally, we can give a definition of the sort relation

x sorts-to y: y is a sorted version of the list x

It is:

x sorts-to y if y permutation-of x £ ordered(x)

This can be used, s o m e w h a t ineff ic ient ly, to sort a list w i t h a query
condition in wh ich x is j i v e n and y is to be found. It so r ts the x by
generating successive permutations until one is found that is ordered. In
the next section we shall give an alternative recursive definition of the
sort relation which is a much more efficient PROLOG program.

1. Using the relations defined above, answer:
a. Wh ich(x front(4 x (J K L M N P Q»
b. Which(x x segment-of (F R E D A))
c. Nhich(x x reverse-of (E R I O)

2. Refine the relation "last-of" of exercise 3.7(4) in terms of "appends-
to". Not ice that this is a non-recursive definition of "last-of" in
terms of the recurs ive ly defined "appends-to".

5.2 Rules that use appends-to

3. Define the li--v membership relation "belongs-to" in te rms of "appends-
to".

4. The 'power l ist1 of a l ist is d i r e c t l y analogous to the power set
concept in set theory: i.e. the power-l ist of a list is the list of
all sub-lists of the list. Define the reljtion "x power- l ist y" w h i c h
holds when y is the ,-^mer list of x.
Try your program on the following query:

Uhich(x (A B C D)power-list x)

(Hint: remember that the empty list is also i sublist, but only once.
Don't forget about "Is-All".)

5. Define the relation: palindrome(x) which holds when x is a list that
reads the sane f o rwa rds o r b a c k w a r d s . Thus, (M A D A M) i s a
palindrone list of letters, (1 2 2 1) is a palindrome list of numbers.
Define it in terms of "reverse-of". Use your definition to test the
above two palindromes.

6. Def ine the relat ion "adjacent-on" of e x e r c i s e 3.7(5) but this t i m e
give a non-recursive definition by using "appends-to".

7. Give an alternative recursive definition of the relation delete(x X Y)
which was defined above using "appends-to". Hint: treat the two cases:
(i) the deleted x is the f irst element of X.
(ii) the deleted x is not the f i rs t element of X.

5.3 Recursjy.e defjmtjon oj the sorj relation

Next, we develop a recursive description of the sort relation between
lists that will provide us with a much more eff icient sort program than the
one defined above using "pernutation-of". We start by making one or two
simple observations about the relation.

First we know that a singleton list is already sorted, i.e. a list
wi th one element in it is already in the right order. Similarly the empty
list is sorted by default. These two fac ts about the sort relation are
expressed by:

0 sort-is 0
(x) sort-is (x)

(1)
U)

However, most l ists are neither empty, nor singleton; so we have to be
able to sort these too. One way of dealing wi th bigger l ists is to make
them snail ones; i.e. use some kind of divide and conquer strategy. This
would involve splitting the list (which has at least two elements) into two
smal le r ones, sor t ing each of the b i t s and putt ing them b a c k together
again. This means that we nust look for a recursive description of the
"sort-is" relation for l ists of at least two elements.

The method of splitting that we shall use merely involves dividing the
list into two nearly equal n.nves: i.e. they are wi th in one element of each
other in length. We can do th is by tak ing a front segment and a back
segment such that when depended together again they make up the original
list; making sure at the sane t ime that the lengths are nearly equal.

Let us call this relation split. Thus, split((x1 x2 l x) X1 X2) holds
when X1 and X2 appends-to («1 x 2 l x) and the length of X1 is the length of
X2, plus or minus 1.

Now, if XI, X2 are in the split relat ion to (xl x2 l x) , and y1, y2 are

5.3 Recursive definition of the sort relation

sorted versions of X1, X2 respect ively, then the sort of (x1 x « > l x > is some
y which is an order preserving interleav ing of /1 <*nd /"•. le i us tall
this relation between y1, y2 and y, merge' y1 y2 //. P • f i.i i >>» 1 . 1 j n le
»}ives us a recurs ive description of the "son-is' r i . > . '.i.' lorrepnd.,
o this nethod of sorting:

x1 x2UJ sort-is y if s,j..it((x1 < 2 . x) X1 ,V;
& XI .ort-is >1 & X? s i t- is ,'2 & ner j t (> l y2 y)

(3)

(31 fiirly -at.rail) encodes t ' e GngUsh stat tm-.r t .f sorting
u-.i u the divide ano conquer method. The m< i je pr^gnir, y shall look a*: in
a moment is clearly the 'guts' of the surt program, it has t j b* ahU to
take tb , ordered lists, and merge 'hew <n tJ one. Th is j .b i j easier tran
sorting a list since we can make use of tf e knowledge fiat the t w o 'input'
l ists are alreaay ordered.

In oefining the "merge" relation w e snai.1 need t _> treat several cases.
The first two are wher> either y1 or y2 is tht eirpry list:

mer jeCO x x)
nerge(x () x)

(O
(5)

The rejoining case is where both y1 and y2 are non-empty. In th is
.-ase we have three possibilities: either the f i rst element of each list is
equal, the first element of y1 is less than the the f irst element of y2 or
vice-versa.

Notice that it is here that we have to start discussing w r a t it means
tor an elements of a list to be less than or greater than another element.
Up until now we have not jctually needed to define what cr i ter ia we Lbe tc
sort l ists. He shall ; ust take the built in relat ion "LESS" to def ine
this. This enables js to compare numbers or constants. It loesn't allow
comparison between lists, or betweer objects of different type.

We could define our own notion of order amongst elements w h i c h mxjht
allow comparison amongst different types of individual, however for simpli-
c i ty we shall s t ick w i th the LESS test.

Returning to the problem c.f merging two lists together, having decided
that the f i rst element of one is LESS than tr.e f i rst element of the other
we put that element as the first element of the mergeo list. Assuming that
we are supposed to bt sorting into increasing order, the snailer of the two
elements TUit form the f i rs t element e* the merjeJ iijt.

First the rule for when both the f i r s * e lements of y1 and y2 a r e
i • Je r. t i c a I:

•nerjeUxlyl) (x l y2) Cx x l y > > it ,uerge(y1 y2 y) (6)

T h i s rule s t a t e s tnat the merge o f t he two l is ts w i t h iden t ica l f i r s t
element s tar ts w i t h two of that element, jnd the tail is got by merging the
tail of y1 and y2.

The next rule deals w i t h the case wien the f i rs t element of /1 is LESS
than the f i rs t element of /2. In this ca ,e the f i rs t element of the merged
list is the f i rs t element of y1. The tail of the merged list is found by
merging the tail of y1 »nd the whole of y2:

merge((x1l>1) (x2ly2) (xl ly)) if x1 LESS x2 (f)
& mer.je(y1 (x ^ l / ^) y)

In a s imi lar w a y we get the last rule for merge, which is s y m m e t r i c CJ (7) :

mer je«x1|/1) (x2 ly2) (x 2 l y)) i f »2 LESS x1 (S)
H mer je ((x11/1) y2 >

F inal ly, we need to def ine the sp l i t re la t ion. We c a n bd/ t h a t

5.3 Recursive definition of the sort relation

sp l i tCX X1 X2) holds i f y1 is appro* imately half the length of (x1 x 2 l x)
and X1 X2 are a splitting of X such that X1 has y1 elements. This gives us
the rule:

spl i t(X X1 X2) if X has-length x1 & PROO(2 y1 x1 y2)
& split-on(y1 X XI X2) (9)

Here, "split-on" is the relation defined in exe rc i se 5.1(10).

The complete merge-sort program is as follows:

() sort-is ()
(x) sort-is (x)
(x1 x2 l x) sort- is y if split((x1 x 2 l x) X1 X2)

& X1 sort-is y1 H X2 sort-is y2 & merge(y1 y2 y)

merge(() x x)
merge(x () x)
merge((xly1) (x ly2) (x x l y)) if merge(y1 y2 y)
merge((x1ly1) (x2ly2) (xlly)) if x1 LESS x2

& merge (y1 (x2 ly2) y)
merge((x1ly1) (x2 ly2) (x2 ly)) if x2 LESS x1

& merge((x1ly1) y2 y)

split(X XI X2) if X has-length x1 & PROOC2 y1 x1 y2)
& split-on(y1 X X1 X2)

split-on(0 X () X)
split-on(y (x l X) (x !XD X2) if 0 LESS y & SUM(1 y1 y)

& split-on(y1 X X1 X2)

And, just to make sure it works, let us try sorting a list:

One(x (4 3 6 100 -5 3) sort-is x)
Answer is (-5 3 3 4 6 100). F

^Jtk sorl

The same basic strategy for divide and conquer can lead to completely
different sort programs if we choose slightly dif ferent methods of 'divi-
ding*. For example, in our split, we simply chopped the list into a front
and a back half. If instead we had chosen to partition the list in such a
way that all the elements of one list were LESS than all the elements in
the other ye get a quite d i f ferent recurs ive descr ip t ion of the sort
relati on.

The f i rst thing to notice about this scheme for splitting is that when
we are merging the two l ists back together again we can take advantage of
the fact that one list is entirely LESS than the other. In other words
each element of one partit ioned list (and hence its sorted var ie ty) is LESS
than all the elements of the other list. This enables us to replace the
"merge" part of the sort-is program by a simple "appends-to".

On the other hand the partitioning of the l ists is more complicated;
u has to do the main work of the sort.

txercjsj 5-3

1. A s s u m e tha t you have some sui table de f i n i t i on of the re la t i on
part i t ion(x y z1 it): y is the f i rs t element of list x, each element of x
which is LESS than y appears on the list z1, all the other elements of x
appear on z2. G ive a definition of the sort re la t ion that makes use of
"partition". Call the relation "quick-sort".

5.3 Recursive definition of the sort re lat ion

2. Give the rules for "partition", and v e r i f y that /our qu ick sort
program gives the same results as the merge sort program. How <lo they
compare for speed?

3. Inef f ic iency in the Merge sor t program resu l ts f r o m the need to
continually recompute the length of a list on each recursive call. This
is not necessary since the split relation e f fec t i ve ly finds the lengths of
the lists Xt and X2 that are recursively sorted. Change the definition of
the sort relation so that it Is a relation between a pair (x X) and a list
Y where Y is the sorted version of X and x is the length of X. You will
need to change the recursive rule for "sort-is" and the rule tha*t defines
"split". Call the new sort relat ion "merge-sort", and the new split
relation, "merge-spU t". Don't forget the base cases for "merge- sort".
Compare the speed of this program w i th that for "sort-is" and "quick-sort".

fxorej^ a.* IJjy oj w.ords

One of the more impressive application areas that PROLOG has been used
in is the field of natural language understanding. So let us look at a
very simple example of this, by developing a PROLOG program which can parse
very simple sentences of English while also illustrating some more list
processing using "appends- to".

The most fundamental idea behind our program is that we represent an
English sentence as a list of words. The various ways that t h i s list of
words can be broken up represent the various possible 'parsings' of the
sentence. For example the sentence "the boy kicked the ball" is represen-
ted by the list:

(the boy kicked the ball)

By splitting this list up into sub-lists we can see some of the grammatical
structure of the sentence:

((the boy) (kicked (the ball)))

By augmenting the list w i th iab
speech:

which describe the various parts of

(SENTENCE (NOUN-PHRASE (DETERMINER the) (NOUN boy))
(VERB-PHRASE (VERB kicked)

(NOUN-PHRASE (DETERMINER the) (NOUN ball))))

This structure represents the equivalent of the a fdmmat jca_l structurg
of our sentence, except of course that it is highly simplified: there is no
rerise to the verb, and there is no representation of plurality in the noun
^hrases. Still, th is kind of g rammar is a suitable base for further
development.

The program which recognises sentences like this is composed of rules
and fac ts which are organised around the parts of speech found in senten-
ces. For example the rule for "i s-sentence" can recognise a sentence, and
the rules for "i s- noun- phrase" recognise noun phrase. The most simple rule
for recognizing sentences is:

x is-sentence (S X Y) if
(x1 x2) appends-to x
x1 i s- noun- phrase X and
x2 is-verb-phrase Y

In other words, if we can split the list of words x into two bub-lists
«1 and x2 wh ich form a noun phrase and verb phrase respect ive ly then "x" is

,'A

5.4 Parsi'--- sentences expressed as lists of words

a sentence. The g rammat i ca l structure of the sentence is represented by
the structure: (S X Y) where "X" and "Y" are the g rammat i ca l s t ructures of
the noun phrase and vei i, phrase respectively. (For the sake of brevi ty we
use abbreviations such js "S" to stand for SENTENCE)

Not i ce thd t we are using the "appends-to" p rogram to spli t the
sentence into i t s constituent components. Our simple rule for senten-
ces can only recognise very simple sentences: for example thjjj sentence
would not be recognised! One definition of a noun phrase is a determiner
followed by a noun, i.e. a word like "the" or "a" fo l lowed by a word like
"boy":

x is- noun- phrase (NP X Y) if
(x1 x2) appenJs-to x and
x1 is-determiner X and
x2 i s-noun-expression Y

NP stands for Noun phrase. The program for "is-de term i ner" only recog-
nises determiners, i.e. it only recognises a list which contains just one
word, which is one of the known determiners:

(x) is-determiner (DT X) if
x dictionary DET

The program for dictionary represents the vocabulary of the system it
says what the type of each w o r d is. Only those w o r d s w h i c h are in the
dictionary are known to the program, if we try to parse a sentence w i t h a
-ord not in the dictionary it wil l simply fail. The part ot the dictionary
program concerned w i th determiners is:

the
a
an

dictionary
di ctionary
dictionary

DET
DET
DET

The simplest kind of noun expression is just a noun. This is expres-
sed by:

(K) 1s-noun-expression (N x) if * dictionary NOUN

i.e. a singleton list is a noun expression if the vocabulary has that word
down as a noun, and the nouns we know about are:

boy
ball
girl
apple

etc.

dictionary
di ctionary
dictionary
di cti onary

NOUN

NOUN
NOUN

NOUN

Going back to our rule for sentences we have yet to describe what a
verb phrase is. A very simple kind of verb phrase is a verb expression
followed by a noun phrase, this being the object of the sentence. This
rule is expressed by:

x is-verb-phrase (VP X Y) if
(x1 x2) appends-to x and
x1 is-verb-expression X and
x2 is-nourr phrase Y

By ignoring p rob lems regarding tense we can get a rule for verb
expressions wh i ch is s imi lar to our noun expressions rule. The simplest
form of verb expression is a verb.

5.4 Parsing sentences expressed as lists of yords

(x) is-vtrb-expression (V x) if
x dictionary VERB

>

we extend our knowledge of the dictionary w i t h

kicked dictionary VERB
likes dict ionary VERB
etc.

This more or less completes our f i rst approximation to English syntax.
We can now parse some very simple sentences:

Which(x (the boy kicked the ball) is-sentence x)
Answer is (S (NP (DT the) (N boy))

(VP (V kicked) (NP (OT the) (N boy)))))

This parse gives only the grammatical structure of the sentence, there
is no sense in which the program can be said to understand the sentence.
Still, the grammatical structure is probably a lot easier for a semantic
analysis program to deal with. An example of what such an analysis might
result in could be:

There is an x, y and z such that x is a (unique) boy
and y is a (unique) ball and at a (unique) t ime i an
event occurred. The act ion assoc ia ted w i th z is
"kick", the agent X and the object is y.

This is an English description of the meaning of the sentence, however
it is beyond the scope of this primer to see how th is is a r r i v e d at or
used. We shall content ourselves w i th developing our program so that it
recognises a slightly richer set of sentences.

One simple extension would be to add adject ival phrases. The adject i -
val phrase is simply an extension of the noun expression wh i ch instead of
being just a noun can now also be an ad jec t i ve fol lowed by a noun expres-
sion. Some example noun expressions involving adject ives are:

si Ily boy
sad girl
big fat bouncy ball
etc.

This rule must be added to the program for "is-noun-expression":

x ii-noun-expression (NE X Y) if
<x1 x2) appends-to x and
x1 is-adjective X and
x2 is-noun-expression Y

Th i s recursive description a l lows an arbi t rary number of a d j e c t i v e s to
precede the noun, and the parse structure returned re f lec ts the a d j e c t i v e s
used. Of course we now need to extend the dictionary to include some
adject ives:

(x) is -ad ject ive (A x) if x dictionary AOJ

big
Silly
tat

etc.

di ctionary
di ctionary
dictionary

ADJ
ADJ
AOJ

We can no* parse sentences such as:

.'6

5.4 Par' .[sentences expressed as lists of words

Which (x (the sad boy l ikes the bouncy ball) is-sentence x)
Answer is (S (NP (DT the (NE (A sad) (N buy)))

(VP (V likes)
(NP (OT the) (NE (A bouncy)

(N (ball))))))

We can also use the program, somewha t i ne f f i c i en t l y , to f ind al l
sentences of a given length. A query such as

Which((x1 x2 x3 x<, x5 x2 x3 xA x5 x6) is-sentence x)

will give us all the six word sentences recognised by the program. If you
have been fol lowing the development of the program on a computer try the
query.

We can be more precise. We can insist that x1 is "the" and x5 is "a"
wi th the query:

WhichUthe x2 x3 x4 a x6) (the x2 x3 x4 a x6) is-sentence X)

Finally, it can be used, very inefficiently to generate a sentence
from a parse structure. The query:

One(x (the boy kicked the girl) is-sentence X and
x is-sentence X)

will parse the given sentence and then convert the parse structure back to
the same sentence. Try it! The inefficiency results from the fac t that
the "appends-to" condition of each grammar rule should appear as the Last
condition of the rule for the sentence generate use. Placed as it is, it
will generate larger and larger lists of variables until one is generated
that is long enough to hold the sentence whose parse structure is given,
(Remember exerc ise 5.1(5)J

Exercjse 5-4

1. Find the parses of the fo l lowing sentences (possibly involving an
extension of the vocabulary) :

a. the sad boy likes a happy girl
b. the ball k icked the boy
c. a I one I x ">an wandered the hills
d. a piper plays a tune

2. Extend the above program so that it can cope w i t h verb expressions
that are verbs preceded by a conjunction of adverbs. The new program
should cope w i t h sentences such as:

, man slowly and deliberately climbed the mountain

The extension required is analogous to that wh ich copes w i t h ad jec t ives.
Just add a new rule for "i s-verb-expression" and give rules and dict ionary
en t r i es d e s c r i b i n g adverbs. Use your new g r a m m a r to parse the above
sentence.

you could t rea t an adverb preceded by "and" as an adverb.

6. Imperative primitives of •tcro-PROt.06

In the preceding chapters we have seen that proyum-. and nuerie-. have
a dua^ reading: the d e s c r i p t i v e or logical reading <*\^: r i > e i , i ., ,,i u
reading. We have also seen that some a n s w e r s w h i c h jre poss ib le might
fie>.er be generated. For instance the SUM built-in relat ion can only be
used if at most one of its arguments is a variable, the togjcaUj; possible
query "WhichUx y) SUM(x y 10))" is not answered by mi tro-PKOLOG. This
restr ict ion is due to the fac t that the program for the SUM reldtion is not
w r i t t e n in PROLOG, it is w r i t t e n in machine code and m a k e s ,se of the
a r i t h m e t i c operations of the machine. Such programs can only handle
determinist ic calls, query conditions for wh ich there is only owe answer
binding.

SUM, PROD and LESS are built-in relations wh ich have a logical inter-
pretation even though they are defined by an entirely behavioural program.
When we use these relations in a PROLOG program only the logical interpre-
tation is relevant for this gives the comoUte stor^ of the e j fec t of the
machine code program. This is not true of all the built-in relations of
mi cro-PROLOG. There are some relations, defined by machine code pr grams,
for which the logical interpretation does not fully characterise the e f fec t
of the program. When we use these relations their logical interpretation
is mostly irrelevant. They are used mainly for their non-logical effect.
These are the JaeSUiiyS I£i3lJ2DS °f mi cro-PROLOG.

The imperative relations slightly spoil the logical purity of micro-
PROLOG. Th is is because rules and queries that use them must be read
behavioural ly to understand their purpose. However, the use of the impe-
rat ives can often be isolated. We can use them in PROLOG programs that
must be understood behaviourally but wh ich nonetheless define relations
that have a completely logical interpretation. These PROLOG programs are
analogous to the machine code programs that implement SUM, PROD and LESS.
This isolation o* the imperatives enables us to give the rest of the PROLOG
program a completely declarative reading. It is good PROLOG programming
style.

In this chapter we describe the main imperatives of micro-PROLOG and
illustrate their use. We also show how their use can be packaged so as to
ex tend the power of » icro-PROLOG w i thou t destroying i ts important
declarative nature.

6.1 Jnguj

The first imperative we look at is the read-term relation, R. The
program for R reads in the ne^j i££m typed in at the console and returns it
as the binding of the variable given as the argument to R. The closest
we tan get to a logical reading of R is:

R(x) holds iff x is a term.

The behaviour reading of its machine code program is:

To find a fact of the form R (x)
check that x is a variable, read

return R(t) as the only f ac t .
in a term t f rom the terminal,

The logical interpretation suggests that R can be used to check if
something is a term, or to find a t» r n. The behavioural reusing tel ls us
it can only be used to find a term jnd that this term is j i . i ^ a the next
one to be typed at the terminal. It is the norrlogi tal, e n t i r e ' / beha-
v iou ra l aspect that is c ruc ia l to the use of R. We do nut ,^-,e it to
generate an arbitrary term, we use it to read te rms from ;he t tMrnmat .

An at tempt t j use R in a checking mode resul ts in an e r r o r message.

,'a

I
6.1 Redding Input

A call R(YES) uill result in d "Control Error" Message, as wi l l the call
RU) if x has already beei. bound to a non-variable. If we want to check
that the next term to be typed is some particular term, we use an R(x) call
fol lowed by an equality test. Thus,

R (x) and x EQ YES

tests if the next term typed is the constant YES.

W« can use R to delay the input to queries. In a typical query all
the input parameters must be entered at 'query time'. A trivial example is
in using the "has-length" program of Section kJ*f a typical query being:

Which (x (1 2 3 a b c) has-len^th x)

To allow the list to be supplied at 'run-tine* we use the query:

Which (x R(y) and y has-length x)

The attempt to sat is fy the R(y) condition of the query causes the system to
prompt us for input w i t h the "." charac ter . This is the same "." tha t 's
part of the "i." prompt we get at the top level. We then enter the list
whose length is to be found:

.(1 2 3 a b c)
Answer is 6
No (more) answers

The list is bound to y, and the y has-length x condit ion computes i ts
length.

The declarative reading of the query is:

Find the x's such that x is the length of y for some term y.

The fact that we only get one answer/ and that this is the length of
the list term typed in response to a prompt, can only be deduced from the
behavioural reading of "R". We only get one answer because the "R" prog-
ram only generates one output binding for any call.

The "R" program w i l l read in any term. It may be a number, a con-
stant, a list or a variable. Any variables read in are immediately conver-
ted into internal form: in particular the name of the var iable is not
remembered. This has its advantages and disadvantages, it is beyond the
scop* of this primer to go into them.

The rules about entering a sentence over several lines apply to ente-
ring a list that is to be read by a R(x) call. The list can be entered
Over several lines. The sys tem displays a special prompt on each new line
until the whole l ist has been read in. The prompt is a number which is the
'b racket count*. It is the number of r ight b r a c k e t s to be entered to
complete the list. This corresponds to the current 'depth* at wh ich t e rms
are being read in. T h i s L i t t l e dev i ce makes the problem of en ter ing
complex l ists very much easier.

Finally, to enter constants which contain special characters we quote
the constant w i t h double quotes. Thus, if s is a string of any cha rac te rs
other than the quote sign i tse l f , "s" is a constant. The s t r ing s can
contain blanks. To include the quote sign, we must use a double quote.
Thus, ' " i n a quoted st r ing is the same as ". For more de ta i l s on the
Syn tax of t e rms we re fe r the reader to the mi c ro -PROLCo P r o g r a m m e r ' >
Reference Manual CMcCabe 19K1].

6.1 Reading Input

6.2 Wr.jtjng fiut

The read te rm relation is most o f t en used in c c m b i na t i on y i t h the
w r i t e term relation, P. This relation is unusual HI that it iar> i ave jny
number of arguments. It is a multi-argument relation. An approximate
declarative reading is:

P(t1 t2 tn) is true iff t1 tn are terms.

The behavioural reading is:

To 'confirm a fact* of the form P(t1
on the console and confirm the fact.

tn) display the terms t1 to tn

Again, the crucial property is not that it tr ivially confirms that its
arguments are terms but that it displays these terms on the console. It
is used for its non- logical SJde^ef feet.

tx.dirio.Le use

The P imperative can be used to display partial results earijer than
would be the case with the querying mechanism. A trivial illustration of
this is wi th the "has-length" program, we can display the length before the
query evaluator finishes!

&.Uhich(x (1 2 3 a b c) has-length x and P(x))
6Afiswer is 6
No (More) answers

The declarative reading of the query is:

the x ' s such that x is the length of (1 2 3 a b c) and x is a term.

But the fact that the single answer appears tw ice can only be understood if
we tnou ,iU>ui t)i« sick— e f f ec t of evaluating the condition P(x).

Notice that the result "6" is d isplayed l i teral ly just before the
query evaluation responds. The "P" program does not automatically put a
blank or new line after the terms it has printed. If this is necessary
then we can use the "PP" program. "PP" is the same as "P" w i th two excep-
tions: any term printed using "PP" is guaranteed to be 're-readable' using
the "R" progrm, and it displays terms, par t icu lar ly lists, in a more
readable form, If "PP" is given no arguments it just generates a new line.

("P" if given no arguments does nothing).
more respectable output using "PP",

Our query above would produce a

S.Uhich(x(1 2 3 a b c) has-length x and P P (x) >
6
Answer is 6
No (more) answers

The print imperatives can be used along w i t h the read term program for
wri t ing interactive PROLOG programs. An example is the program

sum() if PP(£nter a list of numbers; & R (x) & sum-up(x ,) &
PP(sum of the list is y)

sum-up(O 0)
su«-up((xlX) z) if suB-up(X z1) & SUMU1 1 z)

An example of its use is:

»u

)
6.2 Writing Output

ft. Ooes(sumO)
Enter a List of
.(3 5 -2 10 4)
SUM of the list is 20
I.

The prints are also useful in the early stages of developing a pro-
gram. The odd print scat tered around the rules of a program does not
ef fect its declarative reading but o f fe rs useful trace information during
an evaluation. O f t e n we can only d iscover that w e need to rev ise a
definition, or change the evaluation order of the preconditions of a rule,
by seeing what happens to the bindings of variables when the rule is used.

As an example of the use of print for tracing, consider the rule:

x is-noun-phrase (NP x y) if
(x1 x2 appends-to x
x1 is-determiner X
x2 is-noun-expression Y

that we give in Chapter 5. Suppose we wanted to trace the attempted use
of the rule. Ue could modify it to:

x is-noun-phrase (NP X Y) if
PP(Rule for noun phrase being used w i t h sentence fragment x) &
(x1 x2) appends-to x &
x1 is-determiner X &
x2 is-noun-expression Y &
PP(Rule for noun-expression successful ly applied to x w i th

result (NP X Y))

Each t ime this rule is invoked we get a message that tells us it is being
used and gives the sentence f ragment to w h i c h it is applied. If this
fragment is a noun phrase, and the rule 1s successfully applied, we get a
message to this e f fec t which also gives the parse structure that has been
produced.

Since var iab les are conver ted into an internal form when they are
input, and their original names are lost, it is not possible to print then
using their original names. The f i rst variable printed by "P" or "PP" is
displayed as "X", the next "Y" and so on in the sequence

X/ Y ,2, x, y, z, x1,..

Each time "P" or "PP" is called the sequence is started afresh. This can
lead to a situation where two apparently dif ferent variables have the same
print fume:

Ooes(PP(x) and PP(y))
X
X
YES

In these two sect ions we have seen how in micro-PROLOG we can interact
w i t h the 'outside world1 by -eading and wr i t i ng terms. Although these are
essentially behavioural functions w i t h little logical correspondence care-
ful use can greatly extend the power of micro-PROLOG programs.

6.3 Rules that ask for Information

We can use the read ana print p r i m i t i v e s to w r i t e j . r . i.ii defaul t
rules for relations. These are rules, wh ich of ten ire tho l.i-.t rule for a
relation, which ask the user to confirm that some lur.t i t rue. Heing the
last rule, they will only be used when all other w a y s i CUM irming the
f a c t have been explored and have failed, hence the name yjjauit rule.

As an example, let us suppose that we have a data base of f a m i l y
relations and that we cannot be sure that each time someone enters informa-
tion about the fam i l y relations of a new person they remember to add an
assert ion telling us that they are male, or that they are female. This
means that on occasion our sets of f ac t s about the male, female relations
may be incomplete. If we have a query that involves confirming that some
new person, Percy, is male we nay fa i l to c o n f i r m the f a c t because
Male(Percy) was not entered. We can anticipate this by having a special
default rule for these relations.

Consider the rule:

Male(x) if PCs x Hale? Answer YES or NO) and R(y) and y EQ YES

Suppose this rule comes after the "Hale" facts. If, during a query eval-
uation, we try to confirm "Hale(Percy)" the fac ts wi l l be scanned to see if
it is given. If it is not given the default rule w i l l be used. The
evaluation of the rule causes the message:

Is Percy male ? Answer YES or NO

to be displayed at the terminal. The name "Percy" is printed because x
has been bound to "Percy". The R(y) cal l then causes the prompt to be
displayed and a term to be read in. This is the user response. If it is
YES the fac t Hale(Percy) is conf irmed by th is rule. If it is NO, the
attempt to confirm the fact with this rule fails.

We can have an exactly analogous default rule for the "female" rela-
tion. Notice that these rules are only sensible if the Male, Female facts
are only used to check the sex of people, not to generate the names of
males and females. They also have the disadvantage that they do not
'remember' any facts that have been confirmed. If the same Male(Percy)
condition comes up again, the default rule wi l l again query the user. Of
course, their use does serve to remind the user to add this fac t after the
current query evaluation finishes. He does this wi th a

Add (Male(Percy))

command. But what if the rule could anticipate this and do the addition
to the data base automatically? This means making a call to "Add" part of
the default rule. "Add" can be used in this way, and when it is it has
the role of imperative relation. This use of "Add" is the topic of the
next section.

6.4 Ru^e use o^ Add and Delete

The read and print imperatives are used because of their s ide-e f fec ts
on the ou ts ide world: they both e f f e c t the s t a t e of the user terminal .
The "Add" and "Delete" imperatives are used because of their s ide-ef fect on
the internal wor ld of the PROLOG data base. The use of "Add" and "Delete"
in rules is an example of a general feature of micro-PROLOG. Commands to
the s y s t e m can be used as re la t ions in rules, and c o n v e r s e l y , c e r t a i n
relations can be used as commands. We shall have more to say about the
use of relat ions as commands in the next chapter.

use of Add

6.4 Rule use of Add and Delete

When "Add" is used as a command it is usually immediately fo l lowed by
the sentence to be added enclosed in brackets. This bracketed sentence is
the argument to the "Add" command. When "Add" is used as an imperative
relation this bracketed sentence becomes the single argument of the condi-
tion which is written:

AddUsentence))

The declarative reading of "Add" as a relation is:

Add(x) holds iff x is a bracketed sentence

Its behavioural reading is:

To confirm a fact of the form Add(x),
check that x is a bracketed sentence,
Add that sentence as a new last sentence for the relation
that it is about, confirm Add(x).

"Add" i> used for its side-effect on the data base, not to check that
something 1s a sentence. If its argument is not a sentence, the Add(x)
condition Mill not be confirmed nor will anything be added to the data
base.

Let us see what will happen if we change the "Bale" default rule to:

Hale(x) if Pds x Hale? Answer YES or NO)
ft R(y) ft y " Efl YES
ft Add<(Hale(x)))

When the rule is used in an attempt to confirm "Hale(Percy)", the message
will be printed as before but i* the response is "YES" the fac t
"Hale(Percy)" will be added as a new last sentence about the "Hale" rela-
tion, That is, it will be added ailSE the default rulle, so we have not
avoided the repeated requests to the user about Percy. To avoid thjs, we
can either >ake sure that the new fact is added at the front of "Hale1

facts, using the two argument fora of "Add" in w h i c h the posit ion is
specified, or we can separate the facts from the default rule by using an
auxiliary relation, Known-Hale.

Taking the first alternative, we modify the default rule to:

Hale(x) if Pds x Hale? Answer YES or NO)
ft R(y) ft y EQ YES
ft Add(0 (Hale(x)))

This two argument form of "Add" corresponds to its command use as in:

Add 0 (Hale(Percy))

We could also wr i te this condition in tne infix form that is allowed for
binary relations; we could use:

0 Add (Hale(x))

instead of

Add(0 (Hale(x)))

The second approach, wh ich we shall shortly discover is a more cjeneral
way of coping wi th data supplied during an evaluation, is to separate the
fac t s from the default rule by storing the f a c t s as assert ions about an
auxiliary relation "Known-Male". Instead of

Male(Bill)
Male(Ken)

6.4 Rule use of Add and belete

we use KnOMn-Hale(Bill)
Knowir-MaUUen)

\

This means thdt the user Must enter information about who is male by adding
"Known-Male" fac ts . Then, in queries and rules that need to check if
someone is male, we use the old relation, "Male", defined by the two rules:

Male(x) if Known-Male(x)
Male(x) if Pds x Male? Answer YES or NO)

& R(y) K y to YES
& Add((Known-MaleU)>)

A request to conf i rm "Male(Percy)" is answered by trying to use the f irst
rule. This searches the assertions about Known-Hale to see if "Known-
Male(Percy)" is in the data base. If it is not, the second rule queries
the user. If the answer is YES, the fact "Known-Male(Percy)" is added to
the data base and the user is not queried about Percy again.

This auxil iary relation solution also enables us to use the fac ts
about 'Xnown-Male" to generate the names of males, something we cannot do
if we use a single relation name. The default rule that queries the user
is uf no use for finding males. If it was invoked w i t h its argument
unbound, it would simply print the message:

"Is X Male? Answer YES or NO"

Thus, when we want to fjeneraje th-e names of males we should use the
relation "Known-Male", not the'relation "Male". A condition, "Known-
Male(x)" wil l be answered by successively giving x the value of the name
of each recorded male. When ue want to check if
someone is male, we use the relation "Male". This includes all the
recorded males as well as any that the user can tell us .ibout.

There ten .a ins one problem wi th our two rule program tor "Male". we
shall deal with this in Section 6.5.

§Jjd£>3 !!>« answ,e£j £o a guerv. aj iacts

We can use Add to'save all the answers to a query as facts. Instead
of the query:

WhichUx y) x i s-the-father-of y SMale(y))

we can use:

WhichUx y) x is-tfce-father-of y ft Male(y) & Add((y son-of-man x)))

At the end of the evaluation each answer is recorded is a "son-of-man"
f a c t in the uata base. We can see the a n s w e r s again by "List ing" the
relation, and we can use the relation "sonrof-man" in subsequent queries.

If we do not want to see the answers to the query immediately, that is
Me just want to have the* recorded, we can use:

Does((Add((y son-of-man »))) for-All((x y) x is-the-father-ot y &
M a l e (y)))

T h i s records the resu l t s of the query as f a c t s . I t is the Ja tJ base
analogue of "Is-All" which records the results in a l i -st.

Use. oj Delete

6.4 Mule use of Add and Delete

The "Delete" command can be used in rules and queries to delete sen-
tences from the data bases. As w i th "Add" the two forms of "Delete" as an
imperative relation correspond closely to the comand forms. If the one
argument form is used, the argument in the sentence to delete is enclosed
in bracketi . An example use is:

Does(Delete((Male(Algernon))))

This 'query1 will delete the sentences "Male(Algernon)" from the program.
It is identical to the command:

Delete(Male(Algernon))

The two argument form of "Delete" puts the program name as the f i rst
argument and the index of the clause to delete as the second. Therefore to
delete the fourth "Male" sentence we could use the pseudo-query

Ddes(Delete(Male A))

S c r a t c h gad memory

Add and Delete in combination enable us to use the data base as a
scratch pad memory. As an example, suppose that we wanted to keep track
of the number of t imes a rule is used during some query evaluation.
Suppose that we wanted to record how many t imes the parsing rule

x is-noun-expression (NE X Y) if
(x1 x2) appends-to x ft
x1 is ad j ec t i ve X ft
x2 is-nounre*pression Y

is used in parsing some sentence. We need to name the rule in some way.
Let us call it "Rule-NE". Before we start to parse the sentence, we can
add the fact

Uses(Rule-N£ 0)

to the data base, recording no uses of the rule,
three extra conditions to the end of the rule.

x is-noun-expression (NE X Y) if

We then modify by adding
This gives us:

x2 is-noun-expresiion Y &
Delete((Uses(Rule-NE x)) & SUM(x 1 x1) &
Add((Uses(Rule-NE xD)

Each t ime the rule is successfully applied the old count of its number
of uses, recorded by the "Uses" fact, is deleted and a new one, w i th the
count increased by 1, is added.

Notice that if we do this monitoring of the use for several rules the
set of "Uses" fac ts is behaving as a table of information that is being
continually updated during the query evaluation.

Another use of the data base as a scra tch pad memory is illustrated by
the following alternative program to find the sun of a list of numbers.

Sum-up(X y) if AddUtota,(0))) &
(Update-total-with(x)) For-AU(x x belongs-to X)
ft total(y)

8S

6.4 Rule use of Add and Delete

update-sum-with(x) if Delete((total(y))) & SUMCx / /1)
& Add((total(y1)))

In th is program, the data base is used to keep > running l o t i l ot the
numbers in the list. As each one is retrieved using the (> x .,t-longs>-to
X) condition, its value is added to the current total.

Varjab^es jn sentences,

Both the "Add" and "Delete" programs accept arbitrary micro-PROLOG
sentences as arguments. The sentences are in f a c t j us t l ists, of con-
stants and variables that sat is fy certain syntact ic conditions concerning
the posit ion of b racke t s and the connect ives "if"/ "and" and "&". Any
unbound variables in these (sentence) lists become var iables in the added
sentence. As w i th the negation operator, "Not", th is means that the
position of the "Add" in a rule is crucial. It must come a f ter any condi-
tions that are intended to give values to the variables before trie sentence
is added. Thus, an evaluation of the pair of conditions

x EQ Algernon & Add((Male(x)))

adds the fact, "Hale(Algernon)". An evaluation of

Add(Male(x)) & x EQ Algernon

adds the rule

Hale(x).

This is because x is unbound when the Add is evaluated.
When using "Add" and "Delete" in rules we really must beware! We

have to pay great attention to the behavioural reading of the rule. You
•ust be especially careful when using "Delete". Theoret ical ly one can use
this in a rule to have the ef fec t of deleting the rule when the rule is
used. But if you try to do this mi cro-PROLOG wil l get hopelessly confused.
It wil l get into an error state from which it cannot recover.

ins iiis &fi)3^jour si sj£i°rfB2t25

We have seen how various faci l i t ies in micro-PROLOG can modify the
outside world, and even the internal program. We conclude this chapter on
the imperative aspects of micro-pROLOG by seeing how we can modify the
behaviour of the evaluator. Essentially this means changing the backtrac-
king behaviour by adding some pseudo condit ions to the ru les of the
program.

There are two imperat ive relations, both of wh ich have no arguments,
which are used to control the evaluator; these are the slash (w r i t t en as
/()) and FAILO. The latter has a per fec t ly good decUvative reading, if
a little trivial.

FAILO is false! i.e. there is no tact of the form FAILO

Of i tse l f "FAIL" is not too useful, after all there are no posit ive results
to be had from it, however it is very useful in conjunction w i t h the slash.

The slash has no declarat ive reading except that it is a l w a y s true,
i.e. it a l w a y s succeeds. It is used purely tor i t s s i de -e f f ec t , w h i c h is
to control the backtracking behaviour of the que • evaluator.

JD

6.5 Modifying the behaviour of •Uro-PHOtOG

The main func t .on of the s lash is to e l iminate a l te rna t i ve w a y s of
solving queries. For example, recalling the 'Tudors1 fami ly relationship
data of Chapter 1, consider this query:

Wh ich (x x is- a- pa rent- of HenryS and / ())

Declarat ively the x's to be retr ieved are those that satisfy the condition:

K 1 s-a-parent-of Henry and TRUE.

But the presence of the logically redundant /() will l imi t this query so
that only one result will be returned:

Answer is Henry?
No (more) answers

Remember that to evaluate a conjunction of conditions that describe
the data to be retrieved the evaluator finds a solution to each component
condition one at a t ime. To find more solutions, it back t racks . It
looks for alternative solutions to each condition. But it does this by
searching for alternatives to the last condition first. Only when all
these are have been exhausted does it look for a l ter ra t ives to the second
to last condition, and so on,

Thus, to find all the x's that satisfy the conjunction of conditons:

x i s-a-parent-of HenryS and /()

the evaluator f i rst finds one parent, Henry?, and then tests the remaining
condition /(). This is a l w a y s true. But it has the s ide-e f fec t of
preventing the evaluator from backtracking to look for alternative solu-
tions to any conditions that precede 1t in the query. That is why we get
only one answer.

§i*sJ> ID raisa

When used in a rule the slash has a s imi lar effect. When the rule is
invoked in order to find a solution to some condition, call it C, the
evaluation of the /() prevents backtracking to find alternative solutions
to any conditions (of the rule) that precede the /(). Additionally, it
prevents the evaluator using any other rule to find a solution to C.

undani search

The slash in rules is often useful for preventing redundant search for
alternative solutions to a condition. To illustrate this consider again
the two rules:

Hale(x) if Known-Male(x)
«ale(x) if P(Is x Hale? Answer YES or NO)

& R(y) & /- YES
& Add((Known-Male (x)))

In the evaluation of the query:

Which(x y) To* is-the-f«ther-of x ft «ale(x) & x 1 s-a-parent-of y)

these rules w i l l be used to check that the o f f sp r ings of Tom found by
evaluating the condition: "Tom is-a-father-of x" are male.

They do this by f irst checking if the given x is a known male and, if
that fails, by asking the user. But suppose that the f i rst child of Tom,
say Bill, is confirmed as male because the assert ion Known-flale(Bi II) is in

6.5 Modifying the behaviour of •icro-PROLOb

the data base. The evaluator wil l proceed by finding all solut ions to the
last condition, x i s-a-pa rent-of y, wi th x as Bill. When .ill the o f f -
springs of Bill hove been found, it returns to fin.J j l t e r r u t u e s^ i ^n - jns
to the preceding conditions. In this case, the i n m. <n j i > - I / pr • .-.IH.J
condition is Male(Bill), (Male(x) w i t h x given as "biU"). Hit- evj luaior
is riot clever enough to rea l i se that there is no point 1,1 l ook ing for
alternative 'solutions' to a condition that has no variables. It back-
t racks to where it finished the proof that Bill was male. Thus, it wi l l
continue searching through the remaining "Known-Male" assert ions to see if
there is a second way of confirming Bill as a known male. When it has
looked at all these assertions, it will try to use the second rule.
Thus, during the backtracking, the user wi l l be asked, redundantly, to
con f i rm that uill is male. To prevent this pointless extra a c t i v i t y we
add a /() to the first rule. Writing the two rules:

Male(x) if Known-Male(x) & /()
Male(x) if Pds x Male? Answer YES or NO)

& R(y) & y = YES
& Add(Known~Male(x))

•eans that as soon as Bill is confirmed as a known male, micro-PROLOG wi l l
abandon its scan of sentences about "Known-Male". This is because it will
not backt rack to look for other w a y s of solving the condit ion Known-
Male(x), w i th x-Bill, of the f i rs t rule. Additionally, it wi l l not try to
use the second rule to find an alternative way of solving "Male(Bill)".

§lash wjth FAIL

The main point about combining the slash .»nd FAIL in j rule is to
deliberately prevent the successful use of the role. We shall, start by
seeing how this combination can be used to define a complement relation,
"Not-Male", which is true if its argument is not male. The rules for "Not-
Male" are:

Not-Male(x) if Male(x) and /() and FAILO
Not-Hale(x)

(1)
(2)

This program can only be read behaviourally; while there may be a declara-
tive reading of "Not-Male", the rules (5) and (6) bear no relation to this.
By tracing the evaluation of two queries on "Not-male" we can see how (1)
and (2) behave. First we look at the query:

Ooes(Not-Male(John)) (A)

By using rule (1) this is reduced to the sub-query:

Male(John) and /() and FAILO (B)

The "Male(John)" condition is satisfied (we shall assume) and (B) is
reduced to:

/() and FAILO CO

The slash is executed, wh i ch removes any possibil ity of finding nore
w a y s of conf i rming that "Male(John)" is true. However it J l^o removes t rom
consideration rule (6) f rom "Not-Male". The (C) query is now:

FAILO in)

According to the definition of "FAIL" th is .(jery hdi, no ', lut iuns, so
the evaluator b a c k t r a c k s looking for an a l te rna t i ve way of sol ing (C) Jnd

6.5 Modifying the behaviour of •1cro-P»OL06

. Xthen because the . Ah has no alternatives retrying (B). Because of the
slash's side e f f e c t s ther ? are no more w a y s of checking for "Male(John)",
so the evaluator b a c k t r a c k s further to (A). Again because rule (2) was
eliminated as a way of solving (A) this also has no more possible solu-
tions: hence the query (A) tajls. This produces the "NO" response to (A).
In other words it is not the case that John is not "Male".

Now let us look at a differed "Not-Male" query:

Does(Not-Male(JUO)

As before (E) reduces to the query:

MaleUill) and /() and FAILO

(E)

(F)

This time the "Male(JiU)" fact is not confirmed (if the default rule was
invoked then the response to "Is Jill Hale?" question was "NO"). The
effect of this 1s for the evaluator to backtrack as before: this time there
is an alternative way of reducing the query (E) using rule (2). The use of
this rule succeeds and the (£) query is accordingly confirmed.

The behavioural reading of the Not-Male program given by the two rules
(1) and (2) is therefore:

To confirm a fact of the fora Not-Male(x):
test if Male(x) can oe confirmed

if it can, fail to confirm Not-Male(x)
if it cannot, confl rm Not-Male (x)

Of course, this behaviour is also that of the alternative definition

Not-Male(x) if NoUMale(x))

that Hakes use of the •icro-PHOLOG pr im i t i ve "Not". This definition also
has the merit of an appropriate declarative reading. However, as we shall
see In the next chapter, "Hot" is itself defined by a micrcr-PROLOG program
that uses "/()" and "FAILO" is just the way.

We have come down to earth a Little in this chapter, and we have seen
some very conventional computing techniques presented. If you were a
determined BASIC hacker, or Pascal fiend, you could be quite easily seduced
Into using these facilit ies indiscriminately. While not taking a totally
purist view (after all if we did this chapter would not exist) there are a
number of points to note.

Firstly many of the common uses of these facil i t ies have already been
'packaged up* into high level features; features such as Not, Fur-All,
Is-Alt and so on. It is quite likely that these are more e f f i c ien t l y
implemented than could be done by someone w i th little experience in PROLOG-
hacking, so why not make use of them - they cost nothing to use!

Secondly, because of fami l iar i ty w i th conventional computing techni-
ques you might be too la/y to 're-work' your particular algorithm to the
higher level logic programming v iew. This may -ell result in clumsy PROLOG
programs and less e f f i c i en t ones. The guiding pr inc ip le should be to
restrict use of behavioural pr imit ives to those cases where it is abso-
lutely necessary.

Thirdly, any use of the behaviour of the mach ine to control the
results produced .i.akes understanding programs much harder. In particular
the logjc, of the program can no longer give the complete picture, and th is
medns that program sjntheijs and jpdnjguljit jon is very difficult.

Finally we note that the imperative features tend to rely very heavily
on the underlying 'machine'. It is quite likely that new computer arch-

89

6.5 nudity I,,.j the behaviour of »icro-«0l06

itectures will make the backtracker obsolete; tor example >.u. , Irs w h i c h
can process queries in a oarai^e^ way would probably not use a bdck.trdi.Ker.
This aeans that when moving to such a new style computer an/ par ts of the
uru.jr dm which depend on the backt racker become obsolete, *liere.j'. the 'pure'
logic program need£ no jhancje. In fact it seems i i i c re . j - . in . j i / l i ke ly thdt
the next generation but one of computers wi l l indeed h a v e , r a d i c a l l y
different architecture: one wh ich may do many thousand d i f fe rent operations
at once in parallel.

7. The internal ^,,/tux of -.icro-PBOt 06

The programs and queries that we have seen up until now dre all in a
special easy to read syntax. There is another internal syntax for programs
and queries which has a simpler structure but . lich is less readdble. The
internal syntax is, in fact , the only syntax direct ly understood by micro-
PROLOG. Programs w r i t t e n in the surface syntax (i.e. the syntax used so
far) are converted sentence by sentence into the internal form. Similarly,
que r i es are c o n v e r t e d to their internal equ iva len ts be fo re they can be
answered. All this is accomplished by a special 'front-end' micro-PROLOG
program. This program is called "simple" and is loaded into micro-PROLOG at
the start of each session.

In this chapter we give a flavour of the internal syntax, and see some
of i ts e x p r e s s i v e power. As might be e x p e c t e d the internal syn tax is
entirely based on lists; this means that programs in internal syntax are
less readable than surface programs, but they are very easy to construct by
S-iLSI •icro-PROLOG programs. PROLOG shares wi th LISP the ability to treat
data objects as programs and vice-versa; a property wh ich is very heavily
used by the front end program.

We also look at the module system of micro-PROLOG. This enables
different programs to be 'put together* from several sources, whi lst at the
s a m e t i m e m in im iz ing name clashes. This is espec ia l l y necessary when
combining programs wr i t t en by more Chan one person The "simple" front end
program is implemented as a module.

We adopt a slightly different terminology when talking about programs
and queries wr i t ten in the internal syntax. This helps to avoid confusion
when we are discussing the differences between the two forms of syntax. For
example, a Sfintenc.e. in surface syntax is a clause in internal syntax. So,
whenever the front end program accepts an "Add" command the sentence is
converted into an equivalent clause and is retained only in the c lause
form. When the program is listed, using the "List" command, the clause is
converted back into sentence form before it is displayed. This means that,
for most applications, the programmer does not need to know about the
internal syntax.

We shall see shortly that a clause is just a list of atoms, an atom
being ttie internal form of tne conditions and conclusions of a sentence.
The first element, called the predicate symbol, 1s the relation name of the
surface level condition and the rest of the list are the arguments of the
condition.

5yil«fi lory

John likes Mary
SUfld 2 3)

(l ikes John Mary)
(SUM 1 2 3)

In general, a binar> torm condition of the form

argl H arg2 becomes the atom IK argl arg2),

and the pref ix form condition

P(arg1....argk) becomes the atom (P argl....argk)

There dre no d i f ferences between the internal and su r face form of jJrjjinents
of atoms. The general name for the argument or a relation is term. Thus,
a term ib a variable, a nunber, an atom or a list.

Just as an atom is a list so a clause is a List . The f i r s t element of

7.1 Clau&al Notation

'•
Che list
sentence,
pretondi tions.

is the a t o m corresponding to the head or conclusion of
and the tail of the list compr ises the a t o m s representing

Thus, a single sentence becomes j l i - ^ t of one .loin.

the
i ts

John likes Mary
x member-of (x ly)
AppU) x x)

((l ikes John Mary))
((member-of x (x l y)))
UApp () x x))

A compound sentence becomes a list of at least two
no keywords between the atoms in the clause l ike the "if
surface form:

atoms. There
and "ana1" of

are
the

ISIS l£D 1210!

» is-*-f riend-of y if
x I ikes y and
y likes x

x member-of (y lz) it
x member—of z

A p p U x l X) Y (x lZ)) if
AppU Y Z)

((is-a-f r i end- of x y)
(likes x y)
(li kes y x))

((member-of x (yl i))
(nember-of x z))

((App(x lX) Y (x l Z)) if
(App X Y Z))

As we can see there is qui te a s imp le correspondence b e t w e e n the
internal and surface syntax for sentences. There tend to be more brackets
in the internal form and there are no keywords to separate out the various
components of the clause. There is a similar correspondence between sur-
face queries and internal goals.

While there is no direct equivalent of the "Which" query in the inter-
nal form, there is an equivalent of the "Does" query: the "?". This takes
as argument a ijsjj of atoms which are tjien evaluated in the same way that
the "Does" query evaluates its conjunctjon of conditions. However the "?"
is silent in comparison w i t h the "Does" command; if the quer, succeeds
there is just a new "&." prompt printed, as in:

ft.?((likes x y))
ft.

Only if the query fails does the system respond wi th a "?"

ft.?((member-of A (B)))
•>
&.

The "?" query faci l i ty at the internal syntax level ii the pr imi t ive
in terms of wh ich all other forms of querying are implemented. Thus, the
Does command is just a combination of a transition to internal form a use
of "?", and the printing of a suitable response. The Winch and One query
forms are s imi lar ly implemented in terms of "?". Shortly, we shall see how
"?" can be used to implement an equivalent to the "Which" tumoidnd for a
query expressed in internal syntax. Let us call th is "Wh". An e*dmple use
of this, corresponding to the "Which" query:

ft. W h i c h U x y) x l ikes y ft y l ikes x)

would be:

S.WhUx y) (l i kes x yMl ikes y
Aiower is (John Mary)
Answer is (Mary John)

x))

/.I Clausal notation

No (more)
>

Remember the "Wh" command is not built-in to m icro-PKOl OG. We ihall see
below how it is defined and how new commands can be added to the system.
In the mean t ime we shall use it as though it w e r e defined.

The "list" command converts clauses back into sentences before they
are displayed. If we want them displayed in their internal form, we must
use the "LIST" command, (same word, but all le t te rs uppercase). "LIST"
command has three forms, two of wh ich we look at now.

To see the entire program use the form TIST ALL". This corresponds
directly wi th the surface level command "List All", except the program
appears 1n Internal form rather than surface form.

&.LIST ALL
((is-the-father-of Henry? HenryB))

((diet 1s-the-father-of))
((diet 1s-a-parent-of))

((is-a-parent-of)))

To list Individual programs or a collection of these, the "ALL" key-
word Is replaced by a list of predicate symbols. For e x a m p l e to list
"likes" and "diet" we would use:

&.LIST (Likes diet)
((Likes John Nary))

((diet is-a-parent-of))

I.

we shall see the third form of "LIST" when we look at modules below.
We can also d i rect ly enter f a c t s and rules wr i t ten in internal syntax.

To do this we simply type in the clause ajthouj using the Add command. The
Add Is the translater t . internal syntax wh ich is not needed in this case.
Thus to add a new fact about the likes relation we can type

ft. ((Likes John J im))

or we can type:

ft. Add(John Likes Jim)

In the second case, Add translates the bracketed sentence (John Likes Jim)
Into the clause ((Likes John Jim)).

The Metavariable

,17

7.2 The Meta-variable

.1What w e have seen of the internal form of mi cro-PROLOG ...̂ responds
quite closely to the su r face level; h o w e v e r because of the i i •> i based
notation of clauses we can ach ieve g rea te r e x p r e s s i v e power . T h e ma in
source of this is the so-called Beta-variable w h e r e d i f f e r e n t p . j r ' s of <j
clause con l/e named by variables. Neta-varlables are ., v e r y , . . . » i - i .1 tool
in • icro-PROLOG; w i t h them we can wr i t e powerful generic programs. There
are many examples of this in the front end program "simple".

The main principle behind the meta-variable is that during the eyaiua^
M ii the Beta-variable will be given a value before mi cro-PfU)LOG comes to
evaluate the part of the clause in which it appears. fh is value must be
such that it is syntactically correct for the part of the clause represen-
ted by the Beta-variable. The clause is then used as though itjiad been
w r i t t e n wi th the value in place of the var iable. It is ca l led meta-
variable because the var iab le names part of a clause, i.e. part of the
program. This is di f ferent f r o m the normal use of v a r i a b l e s to name
unknown individuals that lie in the domain of specified relations.

There are four different ways that the meta-variable can be used in a
clause, these arise naturally fro* the list structure of clauses. These
various uses also have parallels in more conventional programming lan-
guages, notably Pascal, ALGOL and "C". We will point out these analogies
where it is appropriate. Readers not fam i l iar w i th these languages should
ignore these comments.

In this first case, the predicate symbol of an atoB in a query or the
body of a clause is given as a variable. Recall that an atom is a list,
the f i rs t element of which is the predicate symbol. If this is a variable,
the variable Bust have to bound to a constant predicate symbol before the
atoa is evaluated. In practice this means that the variable must appear in
an earlier ate* of the query or clause. The predicate symbol of the head
a tom of a clause can never be g iven as a variable, it must a l w a y s be a
constant. (If it was given as a variable micro-PROLOG *ould not know what
relation the clause was about.)

For example, the "simple" front end program maintains an auxil iary
prograa called "diet" which consists of a table of all the predicate sym-
bols for which there are sentences/clauses. We can make use of this diet
relation to generate names of relations:

Whlx (diet x)(x John Mary))
Answer is likes
Answer i» is-a-friend-of
No(more) answers

yhat this query asks is:

What relationships are known to hold between "John" and "Mary"?

Suppose we v iew a col lect ion of f a c t s about binary relat ions as the
description of a graph in wh i ch the nodes are labelled by the individuals
and the arcs by the relation names as in:

l ikes i s-a-friend-of

J i m - ' John Mary

l i k e :

T h i s use of the B e t a - v a r i a b l e enables us to f ind the names on the a rcs
particular nodes, as in the above query. It also enables us to

7.2 The Mt ta-variable

find all the notus connected to a given node together w i th the name of the
connection:

&.Uh((x z) (diet x) (x John /))
Answer is (likes Mary)
Answer is (is-a-friend-of Mary)
Answer is (likes Jin)
No (More) answers

The clause

((connects x y z) (diet x) (x y z))

is a rule that can be used to walk over this graph.
Clearly this 1s quite a powerful query and it shows off some of the

flexibility of PROLOG. However, the Beta-variable as predicate Symbol has
other uses. For example we can emulate the var ious "MAP" functions of
LISP: those functions wh ich apply a function to each element of a list to
construct a new list. Let us define the three argument relation "mapUst".
The first argument is a predicate symbol, wh ich is assumed to be binary.
The second argument is the 'input list1 and the third is the 'output list1.

In fact (maplist x y z) is true if

y and i have the same length,
and for e a c h element (call it y') of y,
and corresponding element of 2 (call it z')
(x y' z') is true.

The prograa for "«aplist" (in internal fora) is:

('(•aplist x () ()))
((mapl ist x (y l Y) (z l Z))

(x y z)
(•aplist x Y Z))

Another use of the predicate Be ta -va r iab le 1s analogous to the
reduction operator in APL. This operator reduces a vector by iteratively
appfylng soae binary function over the whole vector; for example reduction
of a vector using addit ion adds up all the elements of the vector. If
Multiplication were used instead then the result is the product of the
elements of the vector.

The analogy in micro-PROLOG would be to reduce a list by iteratively
applying a ternary relation to all the elements of the list. For example
reducing a list using addition would total up the list. The program for
reducing a list is very similar to maplist:

C(reduce x (y) y))
((reduce x (y1 y 2 I Y) z)

(* y1 y2 y3)
(reduce x (y 3 I Y) z)>

A typical call like: "(reduce SUM (1 2 3 4) x)" results in "x" becoming the
sua of the list (1 . 3 4).

fly using a double call of "reduce" on a list of pairs of numbers, the
'dot1 product of two v e c t o r s can be defined. Tho def in i t ion of the J o e
product is left as an exerc ise to the reader.

This f o rm of m e t a - v a r i a b l e has an analogy in many conven t i ona l
programming languages: the passing of procedures as parameters. For exam-
ple in Pascal it is possible to have a procedure or function name as the
parameter of another procedure or function (or ev<»n the same one). The
'host' procedure supplies the actual parameters to the 'guest' orocedure

7.2 The 7.2 The Heta-vaHable

\
whose name has been passed. However in Pascal, as in many 01 f similar
languages, the name of a procedure is not a ' f i rst das*' object it cannot
be assigned to a variable or stored in a data s t ruc tu re .

In micro-PROLOG the predicate symbol is such j t i c - . i k l j - . s .jl.ji.-ct; i t
is a constant and as such can be stored, passed around n.j n-t r i cvt 'd w i t h
total f lexibil ity.

Exerose 7-1

1. W r i t e a program, in s u r f a c e form, w h i c h takes a pair of l i s ts and
returr .s a l is t of pairs: each pair coining f rom successive elements of the
two l ists. For example:

W h i c h (x pair((1 2 3) (a b c) x)
Answer is ((1 a) (2 b) (3 c))

2. Use this program, together w i t h "reduce" to wr i te the program "dot"
w h i c h p e r f o r m s the dot product of a pair of l i s t s of numbers. The dot
product is the sum of the pa i r—wise products of the elements of the lists.
Le. given the two lists (a b c) and (d e f) then the dot product is a*d +
b«e » c*f.

3. The meta-variable can be used to implement a very simple . i r i thmet ic
expression evaluator. These ar i thmet ic expressions have essent ia l ly two
shapes; either the expression to evaluate is already a number in w h i c h case
t h e v a l u e of i t is i t s e l f , or i t is a t r i p le in the f o r m
" v i c ' t i d r g oLx.-r«iCur riyJitar-jJ". In th is case the value is gotten uy evalua-
ting the left and right hand arguments and applying the relation given as
the operator to their values. Each operator must therefore be defined as a
three argument relation, the final argument being the result ut 'Applying*
the operator.

Write this program in i.nternai form (call it "has-val") and test it
using the ar i thmet ic operators "+", "-", "*", "md" and "dv". (T h e s e are
defined w i th in the "simple" front end program.) As an example, trie defini-
tion of the operator/relation "-" is the clause:

((- x y i) (SUN y i x))

Remember that to add a clause in internal fo rm you jus t type the
cUu^.e when given the "IL" prompt. A f te r the return is typed, a new "&."
prompt indicates the clause was accepted and entered as a new last clause
for the predicate of its f i rst atom.

Test your program wi th a query such as

Which(x ((2 * 3) dv (-3 + 5)) has-val x)

as an atom

)

Apart from simply naming the predicate symbol of a tall atom, the
whole atom can be named by a variable. Th i s var iab le must nuw be bound to a
list te rm that is an atom. T h i s is the most common meta- var i able in
PROl OG. It is used to implement the Not, Fo r -A l l and Ii-AU operators.

A very simple use is in the clause:

((Holds x) x)

The Holds relation is true of a term if and om / if (i f f) thdf term is an
atom that is proveable. To define the negation uf holds, a r - -u t ion "NOT"
w h i c h is true of a term i f f that t e rm is in atom tha t is not provable, we
o'.e iht- two clauses:

((NOT x) x (/) (FA IL))
((N O T x))

When .,sed to try to establish (NOT A), A some atom, the f i r s t rule ;f th is
program is invoked. It reduces (not A) to A. If A can be proved, the (/)
prevents use of the second rule and the (FAIL) ensures fai lure of the (not
A) call. Only if A cannot be es tab l i shed wi l l the second rule be used.
But this is exact ly the circumstance in which (not A) holds. In internal
syntax we can also wri te the first rule as

((NOT x) x / FAIL)

dropping the brackets from the no-argument predicates "/" and "FAIL".
This definition of "not" rest r ic ts x to a single atom. The "not" that

we have used so far could handle a conjunction of conditions. In internal
syntax a conjunction of conditions is a list of atoms. The fo l lowing rules
define a "Not" that has a list of atoms as its argument:

((Not x) (? x) / FAIL)
((Not x))

The difference is that here the system provided "?" is used to check if all
the atoms on the list x are proveable.

This form of the meta-variable has no obvious counterpart in Lonven-
tional programming languages (apart f rom LISP). There is a link w i th ALGOL
60 and its close counterparts though wi th the 'call-by-NAME' parameter
passing mechanism.

We saw above that the meta-variable as a predicate symbol was close to
the procedure name passing mechanism of Pascal: the name of the procedure
was passed and the actual arguments are given by the host procedure. In
the atom form of meta-variable the whole 'procedure call' is passed, an
operation akin to passing an uneyaj,uated gxDressjion to a procedure. The
time that the expression is evaluated Is determined by where the meta-
variable appears; this is e x a c t l y analogous to call-by-NAME. A value
passed by call-by-NAME in ALGOL 60 is actually passed as a special uneva-
luated expression (called a "thunk" for the technically curious) which then
evaluated as the corresponding formal parameter appears in the text.

aj the. taji oj a clause.

Another variant of the meta-variable is the meta-variable as the body
of a clause. The simplest example of this is the program for the "?"
operator:

? x) l x) (1)

The variable "x" in (1) must be bound to a list of atoms. The meaning of
"?" is quite simple:

(? x) is true if x is a list of atoms w h i c h are all proveable

It ac t s as a 'conj unction operator' which combines a number of atoms into
one call. A typical call to "?" might be:

(? (d ikes x / H M a l e x) (no t (M a l e (y)))))

This program for "?" also defines the command "?" which we saw above
was the internal equivalent of "Does". As an evaluation initiating command
tne dbove call is wr i t ten:

V6

Tme Beta-variable

? ((l ikes x y) 'Hole x) (not (Kale /)))

note that the outermost brackets are dropped. Any un.n/ r c ld t i on can be
used as * command in this way. Instead of the call

(R - ry)

we can enter the command

ft arg
»

Ue can use the "?" program to implement the "Wh" command ue have been
using instead of "Which". Recall that the argument to "uh" is a list, the
head of is the output term and the tail is a query in internal form. Ue
can evaluate this query using the "?", and then print the answer. By using
"FAIL" we can force the repeated evaluation of the query to find all the
answers. The program for "Uh" is:

((Uh (xly))
<? y)
(P Answer is K)
PP
FAIL)

((Uh x)
(PP No (more) answers))

This program makes use of the fact that as the query y is evaluated it
finds values of variables, some of which are also in x. Uhen the output
term x is printed, it is evaluated relative to these solution bindings. So
we get the x for one solution of the query y. The "PP" on its own is the
internal syntax call to print a new line. Recall that the "PP" built-in
projrdM is one of tne print term facilities. It a lways prints a new line
after it has printed its arguments, so "PP" w i th no arguments just prints a
new line. In internal syntax the no argument calT"(PP)" can be simplified
to "PP".

The FAIL is then used to cause backtracking to find the next solution.
Uhen there are no more solutions to be found, i.e. the (? y) call ultimate-
ly fails, the second clause prints the "No (more) answers" message.

The "Uhich" command recognised by the simple translater program is
just a combination of a cnversion of a compound condition to a list of
atoms and a "Uh" evaluation.

There are many other uses for the meta-variables, as the tail of a
clause. Below is a program for the "OR" relation which takes two lists of
atoms as arguments and is true if either list represents a proveable
conj unction:

< (O R x y) l x)
((OR x y) t y)

Another use is the definition of the "IF" relation. "IF" has three argu-
ments, an atom which is the conditional test and two 'arms' which are lists
of atoms and correspond'to the 'then1 and 'else' branches. Thus (IF x y z)
is proveable if x and y are proveable or if x is not proveable and 2 is
proveable. It is defined by:

i (I F x y 2) x / I y)
«IF x y 2) I z)

Notice that we have two types of metd-var idble in trie f i r s t clduse. The x
stands tor an atom, the y for the tail of the clause.

., .

7.2 Ihe «eta-var1abl«

)

Urite a program based on the "Wh" program which is analogous to the
"One" command of the "simple" front end program. This involves prompting
the console after each solution is found. If the response is "C" then use
the "FAIL" to force the system to find the next solution, o the rw ise do
nothing.

sl
The pattern (xly1) is a list w i th head x and tail y. Uhen this

pattern is used in place of an atom, y is a meta-variable standing for the
list of arguments of the atom. This form of meta variable 1s used when
the number of arguments 1s unknown. Thus, the query:

C. UhUxlz) (diet x) (x Tom 1 2))

1s the generalisation of the query
I

ft. Uh((x z) (diet x) (x Tom z)),

that we encountered above. The generalisation removes the restriction to
binary relations. It gives all the tuples, of individuals related to Tom
by any relation. This is because the pattern (x Tomlz) denotes an atom of
any number of arguments beginning with "Tom".

A Beta-variable standing for a list of arguments can appear in the
head atom of a clause. The head of a clause can be an atom (Clx) where C
1s the constant which 1s the predicate symbol. This use enables us to
define relations with a variable number of arguments.

A simple example is the Sum-up relation which has n •*• 1 arguments: the
first is the sum of all the others. It is defined by the single clause:

((Sum-up x ly)
(reduce SUM

This makes use of the reduced relation given in above. A typical call
would1 be (Sum-up x 3 4 5) wh ich binds x to the SDH of the three number
arguments.

In practical terms multi-argument relations enable us to drop brac-
kets.' Ue could have defined Sum-up as a binary relatiion between a number
and a list of numbers. Its definition would then be

((Sum-up x y) (reduce

But to use the program we would now have to wr i te the multi-argument call
(Sum-up x 3 4 5) as the two argument call (Sum-up x (3 4 5)) 1n which we
wrap-up all but the first argument as a list. In this instance, there is
not much advantage to having the multi-argument form, but for other rela-
t ions w i t h atom arguments it o f f fe rs a much more readable syntax.

Earlier we defined a modification of the micro-PROLOG primit ive NOT
which took a J.j$j of atoms as its argument. An example call to the more
general, "not" relation, is

(not ((Tall Tom) (Fat Tom)))

The îDaie aryunent for "not" is the list of atoms

((Tall Tom) (Fat Tom))

7.2 The fete-variable

It is more convenient to have "not" as a multi-argument relation, able to
take any number of atom arguments. we could then w r i t e the call

(not (Tall Tom) (Fat Tom))

Indeed, this 1s the internal syntax equivalent of the surface syntax

Not(TalKTom) & Fat(Tom))

The rules defining the multi-argument "Not" are:
»

((Not lx) (? x) / FAIL)
UNotlx))

In <* similar way wr can define a multi-argument version of the Holds
program which took a sinjle atom as argument. The multi-argument version
of Holds which takes a list of atoms is defined by:

((Holds I x) I x)

A typ ica l call is (Holds (Tall Tom) (Fat Tom)). Compare this w i t h the
single atom argument definition given earlier:

((Holds x) x)

and the definition of "?" w h i c h takes a single list of atoms as its
argument:

((? x) I x)

In the multi-argument definition of Holds x is a meta-variable stan-
ding for the variable length list of arguments and the variable length body
of the clause. In the single atom def in i t ion x stands for the single
argument and the single atom of the body of the clause. In the definition
of ? x is the single list argument which becomes the variable length body
of the clause.

Exercjse 7-3

1. Define the multi -argument version of One-of.

2. Define a binary relation apply wh ich takes the name of a relation and
a list as arguments and it 'applys1 the re la t ion to the list.
That is,

(apply R args)

holds iff args is a tuple of arguments in the relation R.

L'd the. Meta^arjabie. a* Jhj £u£.fa£e. ie

Generally there is no direct equivalent of the Meta-variable available
at the surface level of the system. However , the programs that we have
been defining such JS "Holds" and "?" a.re available for use at the surface
level.

Using them we can obtain the ef fect of the meta-variable used in the
body of a clause. Thus, the sur face f o r m e q u i v a l e n t of the m a p l i s t
program given above is:

100

)
7.2 The Met« variable

mapl ibKx (> ())
maplist(x (y l Y) (z l Z)) i f HoldsUx y z))

& map l is t tx Y Z)

in w h i c h the a t o m (x y z) of the internal program is replaced by the
condi tion

HoldsUx y z))

Instead of 'folds'1, we can use ''One-of". This 1s particularly useful
when we know there is only one way of solving the condition named by the
argument to "One-of". It is particularly useful for test calls. The
query

Wt»1ch(x Tom-is-the-father-of x & One-of((Hale x)))

will be evaluated. Much more ef f ic ient ly than the one in wh ich we use the
condition Male(x) in place of One-of((Male x)). "One-uf" causes nicro-
PROLOG to abandon its search of the "Hale" sentences as soon as it has
confirmed that some given x is male. If we use Male(x), micro-PROLOG will
continue the search to see if it can confirm the condition in another way,
something that we know is unnecessary.

7-3 Jhe and Sod

In this sect ion we look at an important data structure in micro-
PROLOG,; the dictionary; and how it can be structured into modules, micro-
PROL06 is the f i r s t PROLOG s y s t e m which a l lows large programs to be
structured into separate independent sub-programs (called modules) which
can then be combined into one.

This facility is very important since it allows program structure to
reflect function: related clauses can be grouped together in a module with
well defined i n t e r f a c e s to the rest of the program; and modules also allow
programs wr i t ten by di f ferent people to be brought together w i t h the
minimum anxiety about name clashes etc. A classic example of a module is
the "simple" front end program itself..

To fully understand modules it is necessary f i rs t to look at the
internal dictionary of micro-PROLOG, since modules are essentially a super
structure on top of the basic dictionary. The dictionary is quite simply a
list of the constants currently in use in the system!

This list is used by the system when it is reading in a term via the
"R" and "READ" built-in-programs. When a constant is read in the
dictionary list is searched If the constant is already in the dictionary
it is replaced, In the term, by a pointer to its entry in the dictionary.
If it Is not in the dictionary, it is added, and then replaced by a pointer
to the new entry.

This means that constants are represented internally as pointers: this
is the so-called unique reference property of constants. When two con-
s tants are compared during a pat te rn m a t c h i t is the pointers that are
compared noj the grjnt names of the constants.

The only point at w h i . n the print name of a constant is important is
when M is being read in f rom the keyboard (or a file), and when it is
being printed, otherwise only the reference is important.

The system of modules in micro-PROLOG imposes a hierarchy on this
simple dictionary structure. A module has four components. Three of these
are dictionaries, i.e. l i s t s of constants, and the fourth is a constant:
the name, of the module. The name of a module is not pan of the module.

The three dictionaries associated y i th the module are the export list,
the import list and the local dictionary. Constants appearing in the local
dictionary are private to the module.' Whereas constants appearing in the
other two are Cha red in some w a y . The d i c t i o n a r i e s have no names in

7.3 The dictionary and Module:.

I
COM on.

The constants appearing in the local dict ionaries of two d i f fe ren t
modules are distinguished eyen jf. thej haye the same orint name. Hns is
the most crucial property of any system of module-;, it . i l l o w ^ pro-jr- j i i i ' , to
be combined even if some of the names in the progi jms cld^h.

There are two ways that constants can be 'communicated* across mod-
ules, one via the export list, and one via the import list. A constant
appearing in the export list or the local list belongs to the module, and
one appearing in the import list does not.

Modules can be created, opened, naved, loaded and listed. To list a
module the third form of the 1IST" command is used: "LIST module-name".
To exper iment t ry: "LIST Simple", and you w i l l get a l ist ing of the
"simple" front end program. A module is listed in a particular format,
different from the normal listing which consists simply of the clauses in a
program.

The f i rst part of a module listing consists of the module name, then
the export list and then the import list. The f i rs t part of the "Simple"
listing is

SimpleCAdd

\export list

import list

Af te r this preliminary the clauses of the module are listed as in the
normal listing. The listing of the module is terminated by the symbol
"CLMOD". Modules are SAVED on disk in exact ly this format. "LOAD" knows
about files in this format and correctly re-creates the modules.

At any one time there is one 'current* module. It is to this module
that any terms and clauses entered belong. The local dictionary of the
current module is the one which is accessed and extended .hen a new cons-
tant is encountered in the input.

You can use in queries and in clauses entered into the current module
constants wh i ch have been exported by other modules; so long as the
exporting module is either a sub-module of the current module, or if the
current module explicit ly JBCSEll th* constant. So this would allow, for
example, two modules to export to each other different programs.

The current module dictionary is access ib le through the built-in
program "DICT".This has only one clause whose s t ruc tu re r e f l e c t s the
module: the f i rst argument is a constant which is the name of the current
module. The second argument is the export list, the third argument is the
import list. The remaining arguments are all constants (of indeterminate
number) and they form the local dictionary. To see the "DICT" clause, the
second form of *1IST" should be used:

».LIST(DICT)
((D I C T & () V •• • / . • » * • • • • / /

A further point to note: the top level prompt is actually made up by
displaying the current module's name fol lowed by the normal input prompt:
".". The 'root* module has name 'V, hence we get usual prompt of "&." at
the top level. If the current module were "Simple" then the normal top
level prompt becomes "Simple.".

When a module is loaded into the current module, for example «hen
s imp le is loaded into the root module "&", all i t s expo r t ed cons tan ts

102

7.3 The dictionary and Modules

become accessib le .o the current ui.jdule. Thus, when an exported constant
is the name of a relation (e.g. Which, Add, Is-AU, in tne case of simple),
its definition in the loaded module becomes access ib le from the current
module. Conversely, the descriptions of the imported constants of the
module descriptions provided by the current module, become accessible to
the loaded module. The current module description of * constant compr ises
all the clauses about the cons tan t a c c e s s i b l e f rom the current mouule.
T h i s may be clauses about the constant tha t have been "Added" to the
current module, or clauses about the constant that are accessible because
it is in the export l ist of some other module created in, or loaded into,
the current module.

SlfJtjng moduLej
i

There are three built-in programs in micro-PROLOG which manipulate and
access modules. They are "CRMOD" which creates a new module, "OPMOD" which
opens up an existing module (i.e. makes it the current module), and "CLMOD"
which closes a module and 'pops' up to the previously open module. These
three merely provide the bare basics of module construction, and as exper-
ience with the modules grows these faci l i t ies may be extended.

We now see just how to create a module which, like the "simple" front
end program, can be used by others wi th the main concern being the minimi-
zation of name clashes. We shall take 'X)wh" from exercise 7-2 and convert
it into a module fo rma t , w h i c h can then be loaded together w i t h other
modules and programs.

Firstly, since the module system is a function of the dictionary the
module structure can only be c rea ted on input. If the program to be
created into module is already in the system then it is too late. So the
f i rst step to creating a module may be dumping the program onto a disk file
and leaving the micro-PROLOG system!

Assuming that this has been done, we have to determine those symbols
w h i c h are to be exported, and those to imported, and the name of the
module. In this case we export the name of the program which is "Owh".
Since the "Owh" program needs to read in a response from the keyboard and
compare it against the continue command "C", this symbol wi l l have to be
explicit ly imported into the module. Otherwise the constant "C" in the
"X)wh" program remains, private to the module. This would make the program
very frustrating to use since any "C" typed in response would not be the
same "C" as in *X)wh", and therefore it would not behave too weU.~ (Only
one solution would ever be found.)

Having decided the export/ import list we 'evaluate* the following:

?«CRMOD Whmod (Owh)(C)»

The prompt changes f rom "8." to "Whmod" to re f l ec t that the new module
(whose name is Whmod) is now current. The original "Owh" program is then
reLOADed, while the new module is current:

Whmod. LOAD wh2

Any sub-modules that the program needs should be loaded in at this
point. Then the module is f inished off using the built-in program "CLMOD".

Whmod.? ((CLMOD))
I.

*

Now we have c rea ted a module in the sys tem, it can Le saved on d i sk by
using a variant of the "SAvt " command:

?((SAVE WHFILE whmoo))

103

7.3 The dictionary and Nodules

Having ujved the fi le we have t r c d t c O a ipecidl module w h i c h has t h i s "Uh"
procjram in it. If we ever need to use it *e can s i m p t / t/pe LOAD WhHLt
and it wi l l become available, though we would not norinji l / be .it.le to see
it.

To change a module once it has been created we tjn Load it, ana tt ien
open it w i th the "OHMOD" command. So

LOAD WHf lLE
OPMOD Whn.ud

loads and enters the created Whmod module. We can change the clauses in
the module, or add new ones. What we cannot do is change the input/export
lists of the Module. These are fixed when we first issued the "CRMOD"
command. The only way these can be changed is by using a tex t editor on
the text of the module in the file UHFILE. If you examine the text, at
the operating system level, you will see that it is exact ly what is printed
when we do a "LIST" of the Module within • icro-PROLOG. You can edit the
text, by adding or deleting to the input, export lists. Notice that the
SAVED Module is always stored in internal syntax.

7-4

Go through the process of creating a Module using one of your programs
developed froM previous chapters. Verify that it still interfaces properly
w i th the "simple" front end program.

I
Appendix A

A. Loading

To start at the beginning. You wil l need a 2-80 based micro-computer
using the CP/M operating system (such as Research Machines iUOZ, North Star
Horizon, Sharp, Tandy, Hea thk i t /Zen i th) . In the disk dr ive (or the A
drive if your computer has two or more drives) you will place the system
disk, which wil l include "PROLOG.COM" and "SIMPLE.LOG" among its programs.

Having inserted the disk and re^et the computer if necessary, CP/M
should be announced on the screen, followed by

A>

To enter micro-PROLOG, type

A> prolog

and it should be announced on the screen, in a for* such as

Micro-PROLOG 2.XX S/N x x x x
(c) Logic Programaing Associates Ltd. 1981
99999 Bytes Free

(There will be variations in what is announced according to the particular
version of micro-PROLOG used, and the size of the computer.) The prompt

will then appear, indicating that the; computer is ready. To use the form
of micro-PROLOG described in this primer, type

ft. LOAD simple

The prompt

ft.

will appear again when translater program "simple" has been loaded. The
computer is now ready to accept programs and queries in the user friendly
syntax; of this primer.

It is also possible to type, using all lower case letters,

A>prolog load simple

as a shorter means of entering PROLOG and loading simple.
Note that it is possible under most CP/M's to configure the system

disk to automatically start PROLOG, and load simple, when the computer is
f i rst swi tched on. The details of this vary from machine to machine (see
local guide to CP/M).

B. 9l Ib

A Sentence is either a simple sentence,
or a cond i t iona l sentence.

A simple sentence is ei ther a binary simple sentence,
or a non-binary simple sentence.

105

A. Instructions fur Running •icro^PROLOt

A binary staple sentence Is a term followed by d name of relationship
followed by another term.

exaaple: John l ikes Mary

A non-binary staple sentence is a name of relationship fol lowed by a
list of terms.

e*j»ple: SUMO 2 3)

A tera is either a number, e.g. 1 -30 .
or a constant, e.g. FRED "a man"
or a variable, e.g. » y z10
or a list of terms e.g. () (1 2) (x FRED 3 (5 y))

A conditional sentence is a simple sentence fol lowed by the word "if"
followed by a compound condition

exaaple: x 1 s-a-f riend-of y if x likes y and y likes x

A compound condition is a siaple condition, possibly followed by
the word "and" (or "&") followed by a compound condition

A siaple condition is either a siaple sentence,
or a negated condition,
or a For-All condition,
or an Is- All condition.

A negated condition is the word "Not" followed by a compound condition
in parentheses.

exaaple: Female(x) if Person(x) ft Not(Hale(x»

A For- All condition is of the fora:

(Compound-condition) For-All (List-of-vars Compound-condition)

example: No-un»arried-children(x) if (Harried(y)) For-All
((y) x i s-a-parent-of y)

An In-All condition is of the fora:

tera Is-All (tera Compound-condition)

example: x are-children-of y if x Is-AU(i y i s-a-parent-of z)

Cfifiandj rsc.oanjse.ci by. ifee. sjmoif. lia.ns.laje.r SLS2LS9

Any of the following commands can be given immediately a f t e r micro-
PKOL06 has displayed i ts "&." prompt. The simple program must have been
loaded. It is the program that interprets the commands and w h i c h
recognises the surface syntax for micro- PROLOG sentences.

Add

The Add command a l lows you to add a PROt.OG (surface syntax) sentence
into the workspace. The format of the command is: Add(sentence).
For example,

ft. AddUohn l ikes Fred if Fred likes nary)

106

A. istructiofis for Running micro-PHfA.06

adds a new sentence t t < i the l ikes relation into the program.
AJded sen tenies arc a l w a y s added to the end of the program for the

appropriate relation. To add into the middle of j program the f o r m

Add n (sentence)

is used, where the number n is the position a f t e r wh i ch the new sentence is
to be added.

For example, to add to the beginning of the "likes" relat ion use

&. Add 0(Peter l ikes John)

To add a f te r the third sentence for the likes relation, use

8. Add 3(Peter l ikes John)

The List command displays the program on the screen. To display the
whole of your program, type

&. List All

To display just a single relation, the "likes" relation say, use

&. List l ikes

Note. The CP/H Control-P function can be used to cause the screen listing to
be copied on a printer.

Deletes a sentence from the program. Its usage is illustrated by

&. Delete (John likes Nary)

which deletes the sentence named, or

&. Delete l ikes 3

which deletes the third likes sentence.

"Kill" wi l l delete an entire relation: to remove the l ikes relation
type

ft. Kill l i kes

The Does command poses a query w i th a Y E S / N O answer. For example

&. Does (John l ikes Mary)
YES

In general, the argument of Does is a bracketed compound condition.

•in/

Instructions fur Running •1cro-PROL06

The Which command is used to retrieve names sa t i s fy ing ->Ae query
condition. The form of the answer required is specified by the question.
For example, to list people who are parents of Edward, use

ft. Which(x x is-a-parent-of Edward)
Answer 1 s HenryS
Answer Is Jane
No (more) answers

The general form of the compound is Which(term compound-condition). It
the value of term for each answer to the compound condition.

The One query operates in a similar way to "Which", but prompts af ter
finding each answer.

&.0ne(x x is-a-parent-of Edward)
Answer is HenryB.

Type "C" to continue
Type "f" to finish

The general form is One (term compound-condition).

The PROLOG program in the memory can be saved for later use via this
command. The form of the Save command is

&. Save filename

where filename is a file name, with a maximum significant length eight
characters. The program will be saved in a CP/M file called filename.log
on the currently selected drive. To save on another disc dr ive a quoted
f i lename such as "B:tudors" must be given. See Reference Manual for
details.

Load

The Load command is used to re- load a previously Saved PROLOG program.
For example

&. Load fred

This loads the program 1n the CP/M file fred.log of the currently selected

~ f i l e names and relation names must be kept distinct. You cannot
load a file whose name is the same as one of your current relation names,
nor can you save a program in a f i le named by a current relation name. For
example, if "likes" is a name of relation, then it cannot be used as the
name of a file.

(The system ib jects w i th a "CONTROL ERROR" if you try to do this.)

If a lot of data has to be entered, the Accept command can be u^ed as
an aid to entering f a c t s about binary relations. It enables a lot of

Instructions for Running Micro-PROLOG

I
simple sentences to be added wi thout using the Add command all the time.
The Accept command is used as follows:

S.Accept l ikes
I ikes.(John Mary)
likes.(John Peter)
likes.End
4.

The program prompts for each pair w i t h the name of the relat ion
involved. This serves as a useful reminder of what data 1s to be entered.

For larger programs, it is sometimes useful to have parts of it
residing on disk rather than it all being in the computer at one time. The
"External" command takes an ex is t i ng relation, or 11st of relations, and
puts them In a special file on the disk.

Thereafter, Instead of micro-PROLOG access ing them f rom the main
memory of the computer, it accesses it from disk thus saving space. This
accessing of the disk portion of the program is totally transparent to the
rest of the program. There is no need for other rules and queries wh ich
use the af fected parts of the program to know where they are.

The External command is used as in:

or
External file-name relation-name

External file-name (relationf .. relationk)

If X°u us* this f ac i l i t y tnen the simple program must be in the
computer whenever you use any relations which have been dumped onto disk.

As an example

External l ikesfile likes

wil l dump all the sentences for the "likes" relation into a CP/M f i le called
likesfile.log. A query condition that uses l ikes 1s now answered by a
search of this file. The only difference between this search and a search
through sentences for the "likes" relation held in the main store is that it
1s a lot slower. By using "External" you trade t ime for space.

Before using any external relations It is necessary to issue the micro-
PROLOG command:

•
K.OPEN file-name

where file-name Is the file on which the relations are held. When you have
MI i. iitJ u.. .da the e.uertidl relation* on the file give the command:

&. CLOSE file-name

In micro-PROLOG only four f i les can be open at any one time.

If you do not have a version if the "simple" program numbered 2.1 2c
or later you w i l l have to amend your vers ion to support this command.
Appendix C g i v e s the comple te l ist ing of the "simple" as used in th is
PR I Mb R.

0. $ome. buj^ttjn Teutons, of mjc.roH?ROLOG

"S-JPJM BMjrlSjJSQI on us.*

A. Instructions for Running •Icro-PHOI.OS

SuM(x y z)

PROD(x y z)

y z z1>

z * x * y

LESSU y)

CON(x)

NUM(x)

E0(x y)

2 = x * y + z1

x < y

x is a constant,
eg. CON(Sam) true.

x is a number
eg. NUM(-56) true.

x identical to y

At least two arguments must be known
at t ime of eva lua t i on . An/ of the
arguments can be the unknown.

Same as for SUM

z and one of x or y must f e Known.
Other two arguments must oe unknown,

Both arguments must be known.
Can only be used for testing.

x must be known, test only.

Same as CON

No restrictions. Defined by the rule
EQ(x x). In other words a solution
is achieved by making the two
arguments identical.

110

)
Appendix B

For those users who have nicro-PROLOG version 2.12 or later there is a
more sophist icated w a y of changing Logic programs. The simple way of
changing a sentence is to "Delete" it and then "Add" the correct version in
its place. In version 2.12 of micro-PROLOG there is a new command called
"Edit" which allows inplace changes to be made to the sentence.

The "Edit" command has the for*:

&.Edit relation-name n

This allows the nth sentence of the named relation to be edited. The
old version of the sentence is displayed on the screen, surrounded by a
single pair of brackets, w i t h the cursor left underneath the opening brac-
ket. Various edi t ing commands can now be used to change the text of the
sentence; these commands are described below. Once the sentence has been
corrected to your sat is fact ion type <return> and the original sentence is
replaced. The "Edit" command checks that the predicate symbol of the head
of the sentence has not been changed, and that the sentence ex i s t s at all.

If the predicate symbol of the head was changed then the command
responds w i th the usual ".'".

There are two 'modes' in this editor: edjt mode and input mode. In
the edit mode of the line editor edit command* are entered using single
letters. These letters can be in either upper or lower case and are never
echoed to the screen. The edit commands provide fairly simple character
level editing functions such as cursor •ovement, replacing, searching etc.

In the descriptions of the commands below we shall talk about a
'cursor1. This is similar in principle to the cursor on a screen, except
that since the line editor is one dimensional the cursor can only move to
the left or to the right. The cursor can only be 'over* an ex is t ing
character in the keyboard buffer. Any attempt to move it outside exist ing
text will cause the bell to be sounded on the terminal (if it has one!).

Similarly, if a character is typed as an edit command wh ich is not
recognised, or is illegal for soae reason the bell is sounded on the
console, and the command ignored The edit commands are summarised as
follows:

i Insert. Enters input mode (see below). New
text inserted before turser position.

<Return> Exi t . E x i t s the line editor

<space> Cursor right. Move 'cursor' one character to
the right. The c h a r a c t e r is echoed to the
screen. If already at the end of the line
then the bell is sounded instead.

<backspace> or <Rubout> Cursor left. Move the 'cursor1 left one char-
acter. A backspace is echoed to the screen.
If already at the start of the line then the
bell is sounded. Note that unlike in input
mode the backspace does not delete the char
under the cursor.

s <char> Search. Searches the keyboard buffer from the
current position for the <char>. The charac-

111

B. Using the keyboard edit facility

c <char>

te rs be tween the cursor and theI'get are
printed on the screen. If the <chdr> is not
found then the bell is sounded and t h e cursor
is left at the end ot the line.

Change. Replaces the cha rac te r
cursor ui th <char>

under the

k <char>

Delete. Deletes the character under the cur-
sor. C h a r a c t e r s w h i c h are deleted are en-
closed 1n "/"s.

V

Kill. S i m i l a r to search, except that the
characters between the cursor and the target
are deleted. As w i t h delete, the deleted
characters are enclosed by "/"s.

List. L is ts the rest of the line and posi-
tions the cursor at the beginning of the
Une.

Print. Toggles the print mode; analogous to
the Control-P key when in insert node. (A
"p" will toggle a <Control-P> typed in insert
mode). Until the next toggle command all
tex t d isplayed on the screen is printed on
the printer.

Extend. This is used to extend the line.
The rest of the line is displayed and insert
mode is entered.

Delete, and extend. This cancels the rest of
the line fro* the cursor position and enters
input node. Useful when retyping d who le
line.

Input

As characters are typed in they are stored in an internal Line buffer
and are only passed to the system after the carriage return is pressed.
The following control keys have special significance in the input mode:

<Backspace> or <Rubout>
<Control-P>
<Return>
<Escape>
<Control-ft>

will delete the last character typed in
toggles the device (as in CP/M)
Ex i ts the editor
Echos a "S" and enters edit mode.
Quotes the next key (ignore key function)

Note that <Control-C> Joes not have the e f fec t of leaving micro-PROLOG and
reentering CP/H. This 'feature1 was kindly provided by the CP/M line edit
facil i ty and is used by many CP/M programs (including earlier versions of
micro-PROLOG); however, it can be very irritating if pressing <Control-C>
by mistake causes a lot of work to be lost.

The other control keys provided by CP/M are not supported by this line
editor; these include:

<Control-R>
<Control-X>
<Control-U>

Review the line
Cancel input
Same

112

P Using the keyboard edit facility

)

<Control-E> Physical end of line

General use of the line editor

In the input mode the "ESC" character causes a transfer to the edit
mode. This form of entry to the line editor can be used at any t ime whi ls t
entering a line of text into micro-PROLOG. Thus suppose we are entering a
new sentence using the "Add" command and we have typed:

Add(Petr likes P

At that point we realise that we have mispelled "Petr". We could use back-
space to erase back to the "t" and s ta r t again f r o m that point.
Alternatively we can enter the line editor by typing "ESC". The back-space
will now take us back to "r" without losing what we have typed after the
error. We then use the edit "i" command to enter the missing "e". Another
"ESC" brings us back to the editor, and an "x" command wil l jump to the
last "P" and re-enter the input mode. We can now continue entering the
sentence.

Appendix C

flfiDl SQd. 6123132! iJ5lJD

\ T
Staple front end prograa listing

Simple
(Add List Kill Delete Does One Which Save Load Accep t Edit
All Not Is-AU For-All External)

(End diet C * and if RPRED)
((version 2.12c))
((Add X)

(NUM X) / (R t) (Add X r))
((Add X) /

(Add 32767 X))
((Add X V)

(parse ((Z lx) l y) Y) (declare Z) (ADDCL ((Z l x) l y) X))
((Edit x)

(diet x) (R y) (NUM y) (CL Ux lxDlx2) y y)
(parse ((x lx1) lx2) X) (RFILL X) (R Y)
(parse ((xlXDIXZ) Y) (ADDCL ((x l X 1) I X 2) y) (DELCL x y))

((List X)
(NOT Ed X All) / (List-pred X))

((List All)
(CL ((diet x))) (List-pred x) FAIL)

((List AID)
((Which (XlY»

(is-body (?) Z (? I Y) > (Uhichex X Z))
((One (X IY))

(is-body (?) Z (?IY)) (Oneex X Z))
((Does X)

(is-body (?) Y (?IX)) (IF (? Y) ((PP YES)) ((PP NO))))
((Load X)

(LOAD X))
((Save X)

(SAVE X))
((Delete (x ly)) /

(parse z (x l y))
(OR ((DELCL z))((PP No such sentence))))

((Delete X)
(CON X) (R Y) (IF (DELCL X Y) () ((PP No such sentence))))

((Kill X) (DELCL X 1) (Kill X))
((Kill X)

(P Program X deleted) PP)
((Accept X)

(declare X) (Acceptin X))
((External X)

(CREATE X)
(R Y)
(IF (CON Y)

((Ext X (V) 0))
((Ext X Y 0)))

(CLOSE X))
((Ext x () y)/)
((Ext x (y lz) Y)

(Exx x y Y YD
(ADDCL ((ylyl) (RPRED x Y Y1 (y ly l))))
(Ext x z YD)

((Exx x y Y YD
(DtLCL ((y l z) l z D)
(W R I T E x ((y l z) l z l))
(SEEK x Y2)
(E x x x y Y2 YD)

((Exx x y Y Y))
((parse (X l Y) Z)

(Atom Z X x) (is-body (if) Y x))
((is-body X () ()))
((is-body X (YIZ) (xly))

(Me* x X) (Literal Y y z) (is-body (and C) Z z))
((Literal X x y)

(Speclal-Ato* X x y) /)
((Literal. X x y)

(Atoa x X y))
((Atoa (X O I Y) (X) Y)

/)
((Ato» (X Y Z l x) (Y X Z) x)

(CON Y) /)
((AtCH (X (YIZ) lx) (X YIZ) x))
((Special-Atom (NotIx) (Not y Iz) z)

(1s-body (?) x (?ly)))
((Special-Ate. (Is-AU x (y l z)) (x Is-AU (y lZ) IY) Y)

(Is-body (?) z (? I Z)))
((Special-Atoa (For-AU x (y l z)) (X For-All(ylZ)lY) Y)

(is-body (?) x (? I X))
(is-body (?) z (?IZ)))

((List-pred X)
(CL C (X I Y) I Z)) (Rev-parse ((X l Y) l Z) x) <Plx) PP FAIL)

((List-pred X))
((Rev-parse (x ly) z)

(Ato» z x zD
(Rev-body y z1 "if

"))
((Rev-body () () x))
((Rev-body (x ly) (z lZ) z)

(Literal x Z ZD
(Rev-body y Z1 "and

«»

((Oneex X Y)
(? Y) (P Answer is X) (R Z) (IF (EQ Z C) (FAIL) ()))

((OneexIX)
(PP No (More) answers))

((Uhichex X Y)
(? Y) (P Answer is X) PP FAIL)

((Whichex X Y)
(PP No (more) answers))

((A c c e p t i n X)
(P X) (R Y)
(OR ((Ed Y End))

((OR ((EB (Z x) Y) (ADDCL ((X Z x))))
((P What is Y ?)PP))

(Acceptin X))))
((Me* X (XIY)) /)
((Men X (Y IZ))

(Me« X Z))
((declare x)

(OR ((CLUdict x)))) ((A D D C L ((diet x))))))
((Not IX)

(? X) / FAIL)
((Not IX))
((Is-AU X (Y I Z))

(DELCL ((All-nut x))) (SUM x 1 y) (ADDCL ((All-nun y)))
(All-find x X Y Z))

((For-AU x (y lz))
(NOT'?((? z) (NOT ? x))))

1 U

C. Hie Staple front end program listing

((All-find X Y Z x)
(? x) (AODCL ((A l l - l i s t X Z))) FAIL)

((All-find X Y Z x)
(Collect X Y))

((All-nua 0))
((Collect X (V I Z))

(DaCL ((All-list X Y))) /
(Collect X Z»

((Collect X ()))
CLNOO

V,
Appendix D

to Exer.ic.js.es.

Ef29I5S t!£A^ 2D 53£iJD9 store eyaj,uator

"?random?"
(RPR Eft)
O
((RHRfcD x y y1 z)

((SEEK x y) (READ x zD (SEEK x y2)
(OR <(EB z zD)

((LESS y2 y1) (RPRtD x y2 y1 z))))
CLNOO

Evaluate
(Val-of * * - md dv)
O
((Val-of X Y)

(Eval X Y O () 0) /)
((Eval X () (Y Z lx) (y z l X 1) YD

(Y z y ZD (Eval X () x (Z1IXD Z))
((Eval X O O (X) Y»
((Eval X (VIZ) x y z)

(HUM Y) (Eval X Z x (Y ly) z))
((Eval X ((Y l Z) l x) y z X1)

(Eval Y1 (YIZ) () () 0) (Eval X x y (Y1 lz) XD)
((Eval X (Y IZ) x y z)

(Op Y X1 YD (LESS z XD
(Eval X Z (Y zlx) y YD)

((Eval X (YIZ) (x y lz) (X1 Y1IZ1) xD
(Op Y y1 zD (NOT LESS x1 y1) (x Y1 X1 X2) (Eval X (Y I Z) z (X 2 I Z 1) y))

((* X Y Z)
(SUM X Y Z))

(("-" X Y Z)
(SUN V Z X))

((* X Y Z)
(PROD X Y Z))

((dv X V Z)
(PROD Y Z X x))

((Md X Y Z)
(PROD Y x X Z))

((Op * 2 1 > >
((Op - 1 2),
((Op * 3 2))
((Op md 2 3))
((Op dv 2 3))
CLNOD

Chapter 1

Exerc ise 1-1

1.a. (.List is-the-rnother-of
Elizabeth-of-York is-the-mother—of HenryS
(Catherine is-the-mother-of Mary
Anne is-the-mother-of Elizabeth
Jane is-the-mother-of Edward
K.Delete is-the-mother-of 2
ft.Add KCatherine is-the-mother-of Mary)
I.List Female
Female(Elizabeth-of-York)
Female ((Catherine)
Female(Mary)
Female(ELizabeth)
Female(Anne)
Female(Jane)
ft.Delete Female 2
S.Add 1(Female(Catherine))
C.

b. S.Add 0(Henry7 is-the-father-of Arthur)
ft.Add 0(Male(Arthur))

2. Uashington-DC capital-of USA
Ottawa capital-of Canada
London capital-of United-Kingdom
Paris capital-of France
Rome capital-of Italy
Lagos capital-of Nigeria
USA country-in North-America
Canada country-in North-America
United-Kingdom country-in Europe
France country-in Europe
Italy country-in Europe
Nigeria country-in Af r ica

3. tow-Sawyer writterrby Nark-Twain
For-Whom-The-Bell-Tolls written-by Ernest-Hemingway
Oliver-Twist written-by Charles-Dickens
Great-Expectations written-by Charles-Dickens
ftomeo-And-Juliet written-by William-Shakespeare
Death-Of-A-Sales«an written-by Arther Miller
Macbeth written-by William-Shakespeare
Tom-Sawyer type Novel
For-Whom-The-Bell-ToUs type Novel
Romeo-and-Juliet type Play
Death-Of-A-Salesman type Play
Oliver-Twist type Novel
Great-Expectations type Novel
Macbeth type Play
writer(Charles-Die kens)
wr i te r (Wi I Ham-Shakespeare)
wri ter(Arther-Mil ler)
writer(Mark-Twain)
writer(Ernest-Hemingway)

116
117 1:

Answers to Exercises

1
Exercise 1-2

1.a. NO
b. YES
c. Answer is

No (more)
d. YES
e. Answer is

No (more)
f. Answer is

Answer is
Answer is
No (more)

HenryS
answers

Edward
answers
(Henry? Mary)
(Henry? Elizabeth)
(Henry? Edward)
answers

2.a. Does ((Catherine is-the-i»other-of Edward)
b. Which(x x is-the-father-of y)
c. DoesUane is-the-mother-of x and Henry? is-the-father-of x)
d. yhich(x HenryS is-the-father-of x and (Catherine is-the-nother-of x)

3.a. Does(Rone is-the-capital-of France)
b. Does(Washington-DC is-the-capital-of x and x country-in Europe)
c. Uhich(x x capital-of y and y country-in Europe)
d. Does(x is-the-capital-of Italy)
e. Which(x y is-the-capital-of x and x country-in North-America)
f. Which (x y country-in x and z capital-of y)

4.a. NO
b. YES
c. Answer is

Answer is
Answer i s
No (more)

d. Answer is
Answer is
No (More)

e. Answer is
Answer is
Answer is
Answer 1s
Answer is
Answer is
Answer is
No (more)

(Romeo-And-Juliet William-Shakespeare)
(Macbeth William-Shakespeare)
(Death-Of-A-Salesman Arther-Miller)
answers
Oliver-Twist
Great-Expectations
answers
Hark-Twain
E r ne st-Hem i ngw ay
Charles-Dickens
Charles-Dickens
William-Shakespeare
William-Shakespeare
Arther-Miller
answers

Charles-Dickens and William-Shakespeare are both given tw ice because
each is recorded as having written two things. In answering the query

Which(x y writterrby x)

micro-pROLOG finds all the sentences of the form 'V writterrby x" and for
each one it finds it gives us the 'x'.

Exercise 1-3

1.a. YES
b. Answer is 22

No (more) answers
c. Answer is 17 '

No (more) answers
d. YES

118

Answers to Exercises

e. YES
f. Answer is 63

No (more) answers
g. NO
h. Answer is (3 2)

No (more) answers

2.a. Uhich(x SUM(9 ? x))
b. Uhich(x PROD(y 7 65 x))
c. Which(x SUM(29 53 y) and P R O D C x 2 y z))
d. Does(PROD (x 5 93))
e. Does(PROD (17 3 x) and x LESS 50)

Exercise 1-4

1.a. w h i c h C x x location (y z) and London location (X Y) and X LESS y)
b. Which(x x location (y z) and Rome Location (X Y) and Y LESS z)
c. Does(x country-in Europe and y capital-of x and

y location (z X) and Rome location (Y Z) and
London Location (x1 y1) and Y LESS z and z LESS x1)

d. W h i c h (x x country-in Europe and y capital-of x and
y location (z X) and London Location(Y Z) and X LESS Z)

e. Wh1ch((x y) x country-in y and z capital-of x and
z location (X Y) and Rome location (Z x1) and
X LESS Z and x1 LESS Y)

2.a. Which(x Apple costs y and Wallet contains z and PROD(x y z X))
b. Does(Bread costs x and Cheese costs y and Wallet contains z and

SUM(x y X) and X LESS z)
c. Which(x Wallet contains y and Cheese costs z and Apple costs X and

SUM(z X Y) and SUM(x Y y))
d. Which(x Apple costs y & Bread costs z & PROD(y 5 X) & PROD(z 3 Y)

& SUM(X Y Z) & Wallet contains x1 & SUM(x x1 Z))

3.a. Does(Oliver-Twist published 1850)
b. Wh1ch(x x published 1623)
c. Wh1ch(x Tom-Sawyer published x)
d. Does(0liver-Twist published x and Great-Expectations published x)
e. Does(Macbeth published x and Romeo-And-Juliet published y and x LESS y)
f. Which(x x published y & For-Whom-The-BeU-foi ls published z & y LESS z)
g. Does(x published y and y LESS 1600)

Chapter 2

Exercise 2-1

1.a. x Is-maternal-grandaother-of y if x 1s-the-mother-of z and
z is-the-wother-of y

b. x is-a-grandparent-of y if x is-a-parent-of z and z is-a-parent-of y
c. x is-a-grandchild-of y if y is-a-grandparent-of x

2.a. xj city-in Europe if x capital-of y and y country-in Europe
b. x5 North-of London if x location (y z) and London location (X Y) and

X LESS y
c. x West-of y if x location (z X) and y location (Y Z) and Z LESS X)

3.a. x classif ied-as f ict ion if x type Novel
classif ied-as f ic t ion if x type Play
isa c lass ic if x writterrby William-Shakespeare
isa classic if x written-by Charles-Dickens
is contemporary-literature if x published y and 1900 LESS y

119

Answers to Exercise*

!
Exerc ise 2-2

1.a. x is-grandfather-of y if x i s-the-father-of z mcl t !^-j-pjrent-of y
b. x is-grandaother-of y if x i s-the-mother-of z jntl i \ s-d-parent-of y

2.a. Answer is
Answer i s
Answer is
Answer is
Answer is
Answer is
Answer is
Answer is
No (aore)

b. Answer is
c. YES
d. Answer is

Answer Is
Answer is
No (acre)

Henry?
HenryB
HenryB
HenryS
Elizabeth-of-York
•Catherine
Jane
Anne
answers
Mary.

(Catherine
Jane
Anne
answers

3.a. UhichCx y i s-the-father-of Edward and x is-the-mother—of y)
b. UhichCx y is-a-grandchild-of Henry/ and x is-the-mother-of y)
c. DoesCx is-a-child-of (Catherine and MaleCx))
d. UhtchCx y is-a-child-of HenryS and Male(y) and x is-the-wother-of y)

4.a. UhichCx x city-in Europe)
b. Does(x North-of London)
c. UhichCx x North-of London and x Uest-of Ro«e)

5.a. UhichCx x isa classic)
b. UhichCx y written-by x and y published z and z LESS 1900)

Exercise 2-3

1.a. Answer is
Answer is
No (aore)

b. Answer Is
c. Answer Is

Answer is
Answer is
Answer is
No (aore)

d. Answer is
Answer 1s
Answer is
Answer is
No (more)

e. NO
f. Answer is

Answer is
No (nore)

(Edward is aale grandchild of Henry?)
CEduard is aale grandchild of Elizabeth-of-York)
answers
(•Catherine is a w i fe of HenryS).
HenryS
Jane
Henry?
EUzabeth-of-York
answers
HenryS
Mary
Elizabeth
Edward
answers

Mary
Elizabeth
answers

3. a. x greater-than y
b. x greateq y if y
c. z divisible-fay x

if y LESS x
lesseq x
if PRODCx y z)

. a. Nineteenth-Century-Author(x) if y written-by x and y published z and
1800 lesseq z and z LESS 1900

120

Answers to Exercises

b. Conteaporar, Aaywright (x) if y written-by x and y type Play and
y published z and 1900 lesseq z

x available-at y if x published i and z Lesseq yif x publi shed
x available-at 1899)

e. UhichCx x written-by y and Nineteenth-Century-Author(y) and
_ J » _ L I - - «- m f\ r*r\\.

C.

d. WhichCx

x available-at 1980)

Chapter 3

Exercise 3-1

1.a. NO
b. Answer is (To* D ick Harry)

No Caore) answers
c. Answer is (Jane Janet Julia)

No Caore) answers

2.a. Answer is (Uimbledon Morden Nitchan)
Answer is (Haapton Teddington Ham)
Answer is (Surbiton Norbiton)
No Caore) answers

b. YES
c. Answer is Merton

Answer is Richmond
Answer is Kingston
No (aore) answers

d. NO

3. COliver Twist) written-by (Charles Dickens)
(Great Expecations) written-by (Charles Dickens)
(Macbeth) written-by (Uilliam Shakespeare)

Exercise 3-2

1. Childless-wife(x) if x aother-of-children C)

2.a. Answer is Jane
No (aore) answers

b. No (more) answers
C. YES
d. Answer is Henry

Answer i s Henry
Answer is Bill
Answer is Paul
No Caore) answers

e. Answer is (Henry father Sally mother Margaret child Bob child)
Answer is CPaul father Jilly aether John child Janet child)
No (/nore) answers

f. Answer is (John Janet)
No (more) answers

3.a. Answer is Dickens
No (aore) answers

b. YES
c. Answer is ((Toa Sawyer) Twain)

No (aore) answers
d. Answer is ((Uilliam Shakespeare) was a great playwright)

No Caore) answers

121

D. Answers to Exercises

e. Answer is To*
Answer is Oliver
Answer 1s Great
No (more) answers

Exercise 3-3

1.a. x=A; y=8; z=C; Z=(D E)
b. x=A; y=B; z=C; Z=(D)
c. x=A; y=B; z=C; Z=O
d. No «atch
e. No Match
f. No natch

2. x=(Cly); y=(A B) i.e. x=<C A B)

3.a. Answer is (District Circle Northern)
No (.more) answers

b. YES
c. Answer is (Hackney Laabeth Richmond Kingston)

No (More) answers
d. Answer is (Hackney Rictmond)

No («ore) answers
e. YES

Exercise 3-4

1.a. Answer is (English French)
No (aore) answers

b. Answer is English
Answer is English
No (More) answers '

c. Answer is English
Answer is Welsh
Answer is Gaelic
No (More) answers

d. YES
e. British-language(x) if y spoken-in United-Kingdom and

2 spoken-in Canada and x belongs-to y and x belongs-to z
f. Hi nor-language(x) if (ylz) spoken-in X and x belongs-to z

2.a. Answer is 0
Answer is B
Answer is B
No (More) answers

b. YES

3.a. x is-a-parent-of-children y if z parents-of y and x belongs-to z
b. x is-a-child-of y if z parents-of X and x belongs-to X and

y belongs-to z

Exercise 3-5

1. x •other-of-childrerrnuwber y if x mother—of children i and
i has-length y

wh ich(x Jilly •other-of-children-nuiber x)

2.a. Which(x y parents-of z and x belongs-to y and t has-length 5)

122

Answers to Exercises

b. Which(x 5 length-of X ft y parents-of X and x belongs-to y)

3.a. Answer is 4
Answer is 3
No (more) answers

b. Answer is 3
No (More) answers

c. YES

4. One(x 2 belongs-to x)
Answer is (2 IX) .C
Answer is (X 2 |Y) .C
Answer is (X Y 212).C

Exercise 3-6

1.a. Which(x (Arthur Robert) have-descendant-chain x)
Answer 1s (Peter)

b. Which(x (Jane Robert) have-descendant-chain y ft y has-length x)
Answer 1s 2

c. UMchUx y) (x y) have-descendant-chain (z))

2. x Is-a-great-grandparent-of y if (x y) have-descendant-chain (z1 z2>

Exercise 3-7

1. Miich(x y Is-All(z Peter is-a-parent-of z and MaLe(z)) and
y has-length x)

2.a. UMch(x x ls-AU(y y faaily Tudor))
Answer Is (Henry/ Elizabethl)

b. Which(x y Is-All(z z family Z) and y has-length x)
Answer 1s 4

c. Mrfch(x y Is-AU(z z family Stuart) and y has-length x)

3. x last-of (x)
x Last-of (ylz) if x last-of z

4. (x y) adjacent-on (x ylz)
(x y) adjacent-on (zlX) if (x y) adjacent-on X

Chapter 4

Exercise 4-1

1.a. Even(x) 1f PROD(y 2 x)
b. Odd(x) If NUH(x) 1 Not(Even(x))

2.a. Answer is the
Answer is quick
Answer is fox
No (more) answers

b. Answer is (F E)
No (aore) answers

'. \
3-*« a-«an-with-no-sons(x) if Male(x) & Not(x is-the-father-of y & Male(y))

b. a-«other-with-no-daughters(x) if x is-the-Mother-of y ft
Not(* Is-the-Mother-of z S Fe«ale(z))

4.a. Overdue(x) if Issue(y x z X Y) and Not(Return (y x z Z)) and
Today date x1 and x1 after Y

123

D. Answers to Exercises

'•)b. Cx y *> af ter (X Y Z) if I LESS t
(x y z) a f t e r (X Y Z) if Y LESS y
(x y 2) after (X y 2) If X LESS x

c. Banned(x) if IssueCx y z X Y) and Overdue(y)

Exerc ise 4-2

1. x union-of (y z) if x Is-AU(X X »eaber-of-ei ther (y z))

2. x subset-of y if z Intersectiorrof (x y)
ft z1 difference-between (x z) ft z1 EQ ()

»
3. x set-union-of (Y Z) if X1 intersection-of (Y Z)

& X2 difference-between (Y Z)
ft X union-of (X1 X2)

Exercise 4-3

1. (i) Novelist(x) if author(x) ft (y type Novel) For-ALl (y y written~by
x)

(ii> Hodern-authorCx) if author(x) & (1900 lesseq y & y LESS 2000)
For-AU (y Z written-by x ft Z published y)

2. (i) Positive-nuas(x) if (0 LESS y) For-AlUy y belongs-to x)
C1i) all-HaleCx) if (Male(y)) For-All(y y belongs-to x)

3. (i) disjointCX Y) if NotCx belongs-to X ft x belongs-to Y)
(ii) disjointCX Y) if () Is-AlKx x belongs-to X & x belongs-to Y)
(iii) disjointCX Y) if CNotCx belongs-to X)) For-AUCx x belongs-to Y)

Chapter 5

Exercise 5-1

1. Answer is CJ U H B 0)
No Caore) answers

2. Answer is CO CJ O H N»
Answer is C C J) CO H N»
Answer is CCJ 0) CH N))
Answer is CCJ 0 H) (N))
Answer is CCJ 0 H N) ())
No Caore) answers

3. Answer is CCC Y) CI D)
No Caere) answers

4 . Answer i s ((D A M S O N) 6)
No Caore) answers

5. Answer is CC) X X). C
Answer is C C X) Y CX lY)) . C
Answer is CCX V) Z (X VIZ)) . C
Answer is CCX Y Z) x CX Y Zlx)). F

6. WMchCx Cx x) appends-to C2 3 4 2 3 4»
Answer is C2 3 4)
No<*ore) answers

7. UhichCCthely)) Cx Cthtly)) appends-to Cthe aan closed the door of the
house))

Answer is Cthe aan closed the door of the house)
Answer is Cthe door of the house)
Answer is Cthe house)
NoCaore) answers

124

8

0. Answers to Exercises

yh ichCCylz) y belon9s-to(a the) ft Cx Cylz)) appends-to CSaa threw a
ball into the lake))

Answer is Ca ball into the lake)
Answer ii Cthe lake)
NoCaore) answers

9. WhichCy Cx Cy)) appends-to C2 3 4))
Answer is 4
NoCaore) answers

10.Ca) split-onCx X X1 X2) if CX1 X2) append-to X ft X1 has-length x
(b) split-onCO X C) X)

split-onCy C x I X) (x lXD X2) if 0 LESS y * SUMCyl 1 x)
& split-onCyl X1 X2) /

Cb) is auch aore efficient.
11. reaove-allCi C) ())

reaove-alUx C x I X) Y) if reaove-all Cx X Y)
reaove-allCx C y l X) C y l Y)) if NotCx EQ y) ft reaowe-allCx X Y)
C) coapacts-to C)
Cx IX) coapacts-to C x I Z) if reaove-alUx X Y) ft Y coapacts-to Z

12.

Exercise 5-2

1.a. Answer is CJ K L H)
No Caore) answers

b. Answer is CF)
Answer is CF R)
Answer is CF R E)
Answer is (F R E 0)
Answer is CF R E D A)
Answer is CR)
Answer is CR E)
Answer is CR E D)
Answer is CR E 0 A)
Answer is CE)
Answer 1s (E D)
Answer 1s CE 0 A)
Answer Is CO)
Answer is (D A)
Answer 1s CA)
No Caore) answers

c. Answer is CC I ft E)
No Caore) answers
y last-of i if Cx Cy)) appends-to z
x power-list COly) if y Is-AUCz z segaent-of x)
y belongs-to z if Cx C y l Y)) appends-to z
palindroaeCx) if x reverse-of x
<» y) adjacent-on Z if CX Cx y lXD) appends-to Z
deleteCx C x I X) X)
deleteCx CylX) Y) if deleteCx X Y)

2.
3.
4.
5.
6.
7.

Exercise 5-3

1. Cx1 x2 lX) quick-sort y if
part i t ionCCx2IX) xl yl ,i) and
y1 quick-sort Yl and
y2 quick-sort Y2 and
CY1 CmllYZ)) appends-to y

2. par t l t iunCO X C) C)>
P«rt i t ionCCxly) X CxIyD y2) 1f

x LESS X and

125

Answers to Exercises

partition(y X y1 y2)
partition((xly) X y1 (xly2)) If

Not(x LESS X) and
partition(y X y1 y2)

3. (0 ()) merge-sort()
(1 (x) nerge-sort(x)
(y X) aerge-sort Z if 1 LESS y

t «erge-split((y X) Y1 Y2)
C nerge-sort(Yl Z1)

4 ft «erge-sort(Y2 22)
y^ 6. nergeUI 22 2)

•erge-spl1t((y X) t£j)X1) (y2 X2))
if PROD(2 yl y y3) I SUM(y1 y3 y2)
ft split-on(y1 X X1 X2)

plus the old rules for "Merge" and "split-or.".

To sort using this program, we use a query such as
One(x (6 (4 3 6 100 -S 3) urge-sort x)

in which the length of the Ust to be sorted 1s also given.

Exercise 5-4

1. a. (S (NP (DT the)
(NE (A sad)

(N boy)))
(VP (V likes)

(NP (DE a)
(NE (A happy) (N girl)))))

b. (S (NP (DT tht) (N ball))
(VP (V kicked)

(NP (DT the) (N boy))))

c. (S (NP (DT a) (NE (A lonely) (N man)))
(VP (V wandered)

(NP (DT the) (N hills))))

d. (S (NP (DT a) (N piper))
(VP (V plays) (NP (DT a) (N tune))))

2. The extension needed is:

x is-verb-expression (ADV y z) If
(x1 x2) appends-to x and
x1 is-adverb y and
x2 is-verb-expression z

(and x) is-adverb (AD x) if
x dictionary ADVERB

(x) 1s-adverb (AD x) if
x dictionary ADVERB

slowly dictionary ADVERB
deliberately dictionary ADVERB

Chapter 7

&. Answers to Exercises

Exercise 7-1)
1. pair (() () ())

pair ((x l y) (X I Y) ((x X) I 2)) i f
pair (y Y 2)

2. dot (x y z) if
pal r (x y Z) and
reduce (suaprod Z z)

iunprod ((xl x2) y z) it
PROD (xl *2 xi) and
SUM (*3 y z)

3. ((has-val x x)
(MUM x))

((has-val (x y z) Y)

. ..'.i-vai z
(y x Z Y))

Exercise 7-2

((Owh (x l y))
(? y)
(P Answer 1s x)
(R Z)
(IF (Efl z C) ((FAIL)) UPP Finished))))

((Owh x)
(PP No (*ore) answers))

Exercise 7-3

1. ((One-oflx)
(x /)

2. ((apply x y)
(xly))

126
127

- i
Clark,K.U, [19783 Negation as Failure. Logic and Data Bases, (H.Gallaire
and J.Minker, Eds.), Plenum Press, New York, pp. 293-322.

Clark,K.L., [19793 Predicate Logic as a Computational Formal ism. Research
Report, Dept. of Computing, Imperial College.

Clark,K.L., McCabe,F., [19793 Control fac i l i t ies of IC-PROLOG. Exper t
systems in the Microelectronic Age, (ed D.Michie) Edinburgh Univ.Press.

Clark,K.L., McCabe,F., Gregory,S., [19803 IC-PROLOG Language Features.
Research Report, Dept. of Computing, Imperial Coll. To appear* in Logic
Programming (eds. Clark ft Tarnlund), Academic Press, 1982.

Uark,K,U, McCabe,F., [19803 PROLOG : A Language for implementing Expert
Systems. DOC, Imperial College. To appear in Machine Intelligence 10,
(eds. Hayes ft Michie), Ellis Horwood, 1982.

Clocksin.W., Mellish,C., [19813 Programming in PROLOG, Springer-Verlag, New
York.

Coelho,H., Cotta,J.C., Perei ra,L.M., [19803 How to Solve it w i th PROLOG.
Laboratorio Nacional de EngenhaHo Civil, Lisbon.

Colmerauer,A., C19733 Les Systemes-Q ou un Fornalisme pour Analyser et
Synthetiser des Phrases sur Ordinateur. Publication Interne No.43, Dept.
cClnformatique, Universite de Montreal.

Darvas,F., Futo,L, Szeredi,P., [19803 Logic based program for predicting
drug interactions. Int.J.Biomedical Computing, Logic Programming Workshop
1980 (ed. S-A Tarnlund).

Del iyanni,A.J., [19763. A Comparative Study of Semantic Networks and
Predicate Logic. M.Sc.Thesis, CCD, Imperial College.

Deliyanni,A,J., Kowalsk1,R,A,, [19793 Logic and Semantic Networks. Coma.
ACM 22 3 (March 1979) pp184-192.

Ennals,J.R,, [19813 Logic as a Computer Language for Children: A One Year
Course. DOC 81/6, Imperial College.

Ennals,J.R., [19813 Children Program in PROLOG, DOC 81/8, Imperial College.

Ennals,J.R., [19813 PROLOG can link diverse subjects w i t h logic and fun,
(Logic and Computing for Schools), Practical Computing, March 1981.

Hammond,?., [19803 Logic Programming for Expert Systems. M.Sc.Thesis,
Imperial College.
todges,M., [19773 Logic. Penguin, London.

Kanou1,A., Van Canaghem M., [19803 Implementing a very high level language
on a very low cost computer. Groupe d*Intelligence Artificielle, Universite
d'Aix-Marseille, Luminy.

Kowalsk1,R.A*, [19743 Predicate Logic as Programming Language. Proc. IFIP
74, North Holland Publishing Co., Amsterdam, pp. 569-574.

Kowalsk1,R.A,, [19783 Logic for Data Description, Logic and Data Bases,
Plenum Press, New York.

128

Kowalskl

Bibliography

,R.A., L. . /93 Algorithm * Logic *Logic * Control. CACM, August 1979.

Kowalski,R.A,, [1979] Logic for Problem Solving. Art i f ic ial Intelligence
series. North Holland Inc., New York.

Kowalski,R.A., C1980] Position Sta tement . S I G A R T N e w s l e t t e r Feb 1980
No.70. Issue on Knowledge Representation (eds Brackman & Smith).

Markusz,Z., [19773 How to design var ian ts of f l a t s using programming
language PROLOG, based on mathematical logic. Proc.IFIP.

Mayaramani,S., [1979] A Deductive Database. &Sc.(Eng), Imperial College.

McCabe,F., [1981] Micro-PROLOG Programmers Reference Manual, Logic
Programming Associates.

McCarthy,.)., Abraham s,P.W., Edwards,D.J., Hart,.P., Levin,M.L, [19623 LISP
Programmers Manual. MIT Press. Cambridge, Mass.

Perei ra,L., Perei ra,F., Warren,D., [1978] User's guide to DEC sys tem 10
PROLOG. Dept AI University of Edinburgh.

Polya,G., [19463 How to Solve It. Princeton University Press.

Ritchie,*.E., [19773 Query System for Database. B.Sc.(Eng),Imp.Coll.

Roberts,G.W., [1977] An implementation of PROLOG. MSc thesis. Waterloo,
Ontario, Canada.

Robinson,J.A., [19653 A Machine Oriented Logic Based on the Resolution
Principle. J. ACM 12 (January 1965), pp. 23-41.

Robinson,J.A., [1979] Logic: Form and Function. The Mechanizat ion of
Deductive Reasoning, Edinburgh Univ.Press.

Robin$on,J.A>, [1979] The Logical Basis of Programming by Assertion and
Query. Expert Systems in the Microelectronic Age (ed, Michie), Edinbrugh
University Press.

ftoussel,P., [1975] PROLOG: Manuel de Reference et d'Utilisation. Groupe
d1 Intelligence Art i f icielle, Universite d'Aix-Marseille, Luminy.

Santane-Toth,E., Szeredi,P., [1980] PROLOG appl icat ions in Hungary.
Institute of Coordination of Computer Techniques, Budapest. Logic
Programming Workshop (ed. S-A Tarnlund)

Sergot,M., [1980] Programming Law: LEGOL as a Logic Programming Language,
DOC, Imperial College.

S1lva,G., et al (Operating Systems Inc) [19793 A Knowledge-based automated
message understanding methodology for an advanced indications system.
OSI-R79-006, 14.2.79, Woodland Hills, California.

Skuce,D.R., [1979] An Approach to Defining and Communicating the Conceptual
Structure of Data. Report to Systems Development Division of Statistics,
Canada. Department of Computer Science, University of Ot tawa.

Swinson,P.S.G,, [19803 Prescriptive to Descriptive Programming: a way ahead
for CAAD. Department of Architecture, Univers i ty of Edinburgh. Logic
Programming Workshop 1980 (ed. S-A Tarnlund).

129

Bibliography

Warren,0.,, [1979] PROLOG on the DEC-Systen 10 in Expert . / teas in the
Microelectronic Age (ed. D.Michie), Edinburgh University Press.

Uarren,D., C1981D Efficient Processing of Interactive Relat ional Database
Queries Expressed in Logic. DAI Research Paper No.156x Urnv.of Edinburgh.

Warren,D., Perei ra,F.C.N., C19813 An Efficient Easily Adaptable SysteM for
Interpreting Natural Language Queries, DAI, University of Edinburgh.

130

