' ’ .
L TUTE Mu‘u.

| LN

e e '

(VO |

micro-PROLOG 2.12
Programmer's Reference Manual

CP/M Version *

F.G.McCabe

Revised Second Edition

This manual describes the micro-PROLOG system from the programmer's
point of view. It describes the syntax of micro=PROLOG, the various built-
in features, and how to interact with the system. AlLso included is a
chapter which describes the machine code level interface, and how to aug-
ment the system uit@}built-in predicates. In so far as it is specific to
any ?articular aicro-PROLOG implementation, this manual describes the C(P/M
version,

The specification of micro-PROLO6 is subject to change without notice.

September, 1980
May, 1981

2nd printing

(c) F.G. McCabe 198
(c) Logic Programming Associates Ltd., 1981
* CP/M is a registered trade mark of Digital Research Inc.

| SLREIN |

L |

NN NN OO NN NN

Eggtent;
Chapter
Te INCroduCtion ¢« ¢ o« s ¢ ¢ o o ¢ ¢ ¢ ¢ ¢ o
2. Syntax Of micro-PROLOG e ®» @& ® & o & ® @
2.1 Character Set « o o o « o« s e o o o o &
2.2 NUMDErS o« o o @« « @« =« @« o ¢ o © o o o &=
o3 CONSTANTS o o « o ¢ o o 6 06 0 0 0 0 o &
b VAariables ¢« « ¢« o © ¢ o 0 8 0 o o o o o
.S Lists e L] . - L] - L L] L] L] L] L J L] L] L] L] L]
O ALOMS . o« o o o« o « a o o ¢ 0 ¢ s o o o
o7/ Clauses o o« « e« ¢« o o o o o 0o o s o o
.8 Comments e @ » 8 ® ® ® ® ® & ® e ° = =
«? Meta=variable o ¢« ¢ s ¢ o ¢ ¢ ¢ ¢ ¢ o o
.9.1 Meta-variable as Predicate Symbol .
«9.2 Meta-variable as an atam . « o
9.3 Meta-variable as the body of a clause
o10 LelicaL SYNtaX o« ¢ ¢ o« ¢ o o © s & = o
«10.1 Token seperators o . o e o
-10.2 Special tokens . e’ - ® » -
.10.3 Alpha=numeric tokens . . =« .
«10.4 Number tokens . . © ° ® °
.10o5 Graphic tOkenS ™ ™ ™ ® @ -
«10.6 Quoted strings . . . - . -
«10.7 The lexical rules « o« o =« &«

3. Interacting with the micro~PROLOE system

3.1 Keybocard control
3.2 Supervisor commands . « o o o
3.2.1 Entering clauses .
3.2.2 Listing the program . .
3.2.3 Executing programs .
3.2.3.1 Commands in the superv1sor
3.2.3.2 Controlling Execution .
3.2.46 Tracing Execution o« .
3.2.4.1 Warning
3.2.5 Loading and saving programs
3.2.5.1 File specification o
3.2.6 Exiting the system ., .
3.3 The micro-PROLOG Editor . . »
3.3.1 Edit Commands . . .
3.3.2 Cursor Movement Commands
3.3.3 Edit change Commands .
3.3.4 Restructuring Lists « .
3.3.5 Further Extension .« .

3.4 Pragmatic Considerations for Programmers

P 0 8 & 5 & @ ~he @

rom disk

SOs.sumﬂary e ¢ = » ® ® © &8 ® ® ® ®» @ ® ®© o ®

4. Simple PROLOG

4.1 Syntax of Simple PROLOG sentencés o o o

. " 9 [I B] L L] L] L e @ . 0

] L I s a 0 e & & * @& 0 s & » ® @ @]

" o 0 B

e & 5 & @& P » P @ & B B » & p & p 9 e 0 & 9 0

~N

11
13
13
13
14
14
15
15
17

17
17

17

00O ~NSNSNSNSNFCOCOWVWVMESAWWNNNN

18

18
18
19
21
22
22
24

26

26

O~ M0 0000 o0 O
NS NN NN NN NN
¢% oA et o8 a e
2
® 8 & ® 8 & " o 8 9
®
& ® B 0 8 & & 8 ®
)
5 8 ® g & @ ° @ ®
]
@& s €t & & & & 9 = @
.
T ® o & & & 8 " 9 v
L]
9 & 8 ® » & » & o ° @
®
® & ¢ & & ® 8 8 9o ® @
"
e ¢ v & @ © 8 P 8 0
.
e & & t 8 & @ & & 8 @
3
L e & 9 L e 8 e @ @

E
@ ® e ® e B @ @ 8 0° @
'Y
wn
>
Vi & o » @& 8 @ ® @ @ @
O
(&]
m“ . a 8w . 0 0 o o @
o
o
. e * @ . . 0 e &
W
- L
Q [\7] 91
E . L o = L] @
o “ - nu v O v
[7 T & N T [e | W.1 L > o
0 - W L E m O«
Va JONY OZITOWV
L o
Fe—rMmMa N O MO —
" 0 v e LI A
NN NN NN NN NN
e =& » @ » & @ ® B @
~7

S JEC RN JEN X R B R AR

. 29

‘.3 All Sotutions - - L] L] L] L] L L] L] L] L . L L L] L L] - L L . L L] L - L] L] 30

4.4 Summary ® ® ® @ ®m e © ® & © @ ® ® © O W ® ¥ ® e ® ® e .8 ® O 8 & @8 @ 30

4.2.11 Edit

L - L] L] L L L] L] L] . L L L . L] L] L] . . . - L] - L L] 31

5. Built=-in Programs

.I..I......-....l....I.31

Arithmetic Relations

o 31
. 32
. 32

String Operations * ® ® ® ® ® ® ® & ® ® ® ® ® ® ® ® © © ® 5 © @& ® © 32

-1 LESS

« 33
« 33
L] L] . @ . L] 33

)

STRING

. 34
.« 34
. 34
« 35

- - L] L] L] L] L] L L L] L] L L] - L L] L] L L] . L] L . L] L] L] L] - L] 35

Disk I/0

e 35
. 36
« 36
. 36
« 36
« 36
. 36

-7 SEEK

Type Predicates @ o ® & ® ® @ ®» ® o & ° e & ® ® P & © O O ° o " ° w 37

. 37
o« 37
. 38
. 38

. 38
. 38
« 39
¢« 39

L] L L] L] L] L] L] L] L L L L L] L] L L] L] L L} . L] . L] 39

. 40
o 40
o b1

- L] Q L] L] L L] L3 L] L L] L L] - L L L L] L] L] - L] . L] 41

41
. 61
.‘1

L L] - - L L L L L] L] ® L] L] L] L] L] L] L] ‘1

Module Construction Facilities

. 42
. 42
. L2

.2 OFMOD
.3 CLMOD

4

|
Lsid

boad

Ceod Sl

b J

"
S |

) "
o |

e

5.10 Miscel laneous Predicates

$.10.1 DICT
5.90.2 QT 4 & ¢ &
$.10:3 4 &

5.10.4 FAIL . .
5.10.5 <suP> . .

Negation

7.1 Data registers
7.1.1 Warning o . o
7.2 Type tree

7.3 Predicate symbol declaration
7.4 Inserting a program « « o o o

e« = 2 L [I

6. Implementing High-level features

OLOG

A. Error conditions and messages .

B. Useful addresses . o « o o« o o o

C. Changing the lexical rules « . «

D. The Simple PROLOG front end program

E. The micro~PROLOG Editor

References

a2 & 8 8 g @

with low=level primitives

[] []] [] .
T * 2 * @
] L] [] L] L]
] L]] » »

programs

6.1 .« @& @ @9 9 & @8 = B
6.20ne-°f ® ® ® 8 & & ® @& ® @

6.3 Conditionals « « o« o« o o @

6.4 Lists of solutions .+ « o »

6.5 The Simple PROLOG front end

6.5.1 The translator ., . o

6.5.2 Organization of Simple PR

6.5.3 Evaluation of Simple PROLOG queries .
6.5.4 Summary

7

.« Adding assembler coded subroutines . « . «

. &3
. 43
. &3
. &3
. &3
. 43

s 8 & .
v
»

(‘:i!' .

Ny

9

-

- Chapter 1

Introduction

This manual describes the micro~PROLO6 programming system. PROLOG is 2
computer language based on predicate logic, in particular the clausal ferm
of logic [Robinson 1965,1979]. The procedural interpretation of logic was
conceived in 1922 by Kowalski [1974], this enabled lLogic to be viewed as a
concrete programming lLanguage. '

The first PROLOG (which stands for PROgramming in LOGic) was imple-
mented in 1972 in Marseilles by Colmeraur and Roussell [Colmeraur 19731 in
the medium level programming Language ALGOL-W. A more efficient and
improved implementation was made in 1973 (Roussell 1975], this time in
FORTRAN. This implementation reached a wide audience in countries as far
afield as Poland, Hungary, WS.A., Canada, Sweden, Portugal, Belgium and
the U.X. Subsequently to the Marseilles PROLOG various other implementa-
tions have been built, the principal ones being in London [Clark and McCabe
1979], Edinburgh [Warren et al. 1978], Waterloo [Roberts 1977] and a new
implementation from Marseilles [Kanoui & Van Caneghem 19801.

micro-PROLOG is a small, disk based implementation for the Z-80 micro-
processor cperating under CP/M. The objective of micro~-PROLOG has been to
build a very basic system, which can easily be extended by the user. As
part of this philosophy the built-in syntax is very simple and basic, but
also very flexible. Extensibility is further enhanced by the provision of
an interface for adding sub=programs written in other lLanguages, for exam=
ple ASSEMBLER and FORTRAN.

This manual is net a primer for logic programming, but it is intended
to be used as a reference manual by the programmer who already has some
basic knowledge about logic programming. It describes the micro-PROLOG
system in some detail, but does not attempt to teach the principles of
logic programming to the novice. For an introductory text on Legic as a
programming formalism see the primer ™A micro~PROLOG primer" by CClark,
Ennals & McCabe 1981], and the book "Logic for Problem Solving” [Kowalski
1979); for a more formal treatment see “Predicate Logic as a ccmputational

Formalism”, by Clark C[1979].
hould also have some knowledge of the CP/M operating

Chapter 2

Syntax of micro-PROLOG

The syntax of micro-PROLOG6 is very simple, making up in gemerality
what it Llacks in sophistication. Most mainframe PROLOG systems nowadays
have very powerful grammars built into them; typically some kind of opera-
tor prececence grammar., While this might have been desirable, space
Liritations make this difficult to do in micro-PROLOG Instead we model led
the syntax of micro-PROLOE on LISP syntax [McCarthy 1962].

There are only four different kinds of syntactic objects that micro—
PROLOG kncws 2bout: Numbers, Constants, Variables and Lists; which are all
kinds of term. Note that there are no general facilities for arbitrary
function symbols, the only one allowed is tite List constructer and for
which there is a specially condensed syntax c.f. DEC-10 PROLOG and LISP.

2.1 Character set

ricro-PROLOG uses the 7 bit ASCII character set, together with extra
characters, such as special graphics characters, that may be supported by
the underlying machine. Characters are represented intermally by 8 bit
numbers in the range 1..126. The characters corresponding to'0 and 127 are
not legal in micro-PROLOG, and are ignored if used.

2.2 Numbers

Numbers are integers in the range =215.215-1, A positive number is
written as a contiguous sequence of digit characters, with no leading sign
character, eg. 0 30 1025 32767.

A negative number is written with the Leading sign character "="
contiguously followed by a positive number. For example, =1 =30 & =-32767
are all nregative numbers. If a sign character does not have a positive
number contiguously following it, then it is not regarded as the sign
character of a number. Thus "=" on its own is a valid syntactic object,

differing from any number,

Constants are the simple unstructured objects of micro-PROLOG. They
are used to name individuals in the program, such as "fred”, "A1" etc., but
they are also used to Label programs with predicate symbols, such as

“"Append"”, "P" etc.
A constant is normally 'written as a alphabetical letter, followed by a

sequence of letters and digits (though see definition of variable belowl.
This is similar to the way identifiers are written in conventional program=
ming languages. The "=" character also counts as an alphabetic character;
this can be used to split up Long names with several English words, Some
examples of constants are:

A1 Fred A=-1 All=sol .

Constants can also be written using the non alphanumeric characters
such.as """ "!" ","” etc. This kind of constant is written as a sequence of
graphical characters, which include such characters as:

! #8%8'==-~"83°CYC2Y; :,./+*x<>?

o'

Syntax of micro-PRCLCS

Finally, a constant can alsoc be written as a quoted string, in which
case there are no restricticns on the characters that can be used in the
constant. A quoted string consists of a sequence ¢f characters surroundec
by the couble gquote character: ". If the quote character is itselt to be
part of the string then it is typed twice: ", Using this string notation
means that we can have constants of the form:

ll1ll llThe manll llArl lls1 DG“ llA '.lquoted.". Stl"ing"

If an ASCII control character occurs in a constant then it is ncrmally
displayed by the micro-PROLOG system as a "“char” sequence. For exanmple
the Control=A character is displayed by micro-PROLOGE as P o reflect the
key combination needed to enter control characters at the keyboard

2.b Variables

Variables are represented by alphanumeric names which consist of 3
single letter followed by a sequence of digits. The first character must be
one of the variable prefix characters, which in standard micro PROLOG are:
'ix Il' "le’ Ilz II' llx ll’ IIY L1] 8 llz ll. s o' f or e x a m pl e' llxll' l.x 1 " and liY3 0" are
variable names since they consist of a variable prefix character follcwed
by only digits, whereas "yes", '"x12¢" are not variable n.mes. The number
which follows the variable prefix character should be in the range 1..127,
otherwise two apparently distinct names will be mapped to the same
variable. : \

When a variable is recognised on input it is always converted to an
internal form, which means that when a variable is printed the original
name of the variable is not used. Instead, the variables are displayed in
the sequence llxi.l llYll’ llz"' l!xll' !lyl" llz'i' lix1ll’ iy "21"' s The Set of
variable prefix characters can be altered by the user to select from one of
the popular variable conventions (see Appendix ().

Variables and constants are generally seperated from each other by one
or more of the seperator characters: space, carriage-return/new—-line, and
tab. The actual number of seperators between constants and variables is
not important, and they are ignored by the micro-PROLOG system.

See Section 2.10 for a fuller description of micro-PROLOG's lexical
syntax. _

2.5 Lists

The only function symbol recognised in micro—PROLOE is the binary
function symbol "|". Function terms using this symbol are written in fully
bracketed infix form.

We generally view the "|" function symbol as a List constructor in the
same way that "." is used in LISP, and in other PROLOG systems. As in LISP
and in DEC-10 PROLOG there. is a more convenient List notation when a term
names a Llist of items. Such a list is written as the sequence of its
elements separated by spaces or carriage returns, and enclosed with
brackets.

For example, the lList of numbers from 1 to S would be written as

(123 4&35)
which is identical to the term:
C11C21C31C41C5100)))

and both forms are acceptable as input to the system.
Note that the special characters "(", ")" and "|" need no spaces on

Syntax of aicro~PRCLOG

"either side of them, whatever context they are in. Of course these

characters may aprear in a quoted constant in which case they are treated
just as if they were ordinary characters.

The empty Llist just consists of two brackets: "0O" and it is logically
interpreted as a single constant,

When a2 term is displayed by the micro-PROLOG system it is be displayed
in list notation rather than in fully bracketed form.

If a term is not exactly a list, for example if the 'tail' of the term
js a variable, then a bar (“I') is interposed between the (ast element of
the List and the term naming the tail of the list. This allows partial use
of the L(ist notation, reverting to the original bar notation when
necessary. Ffor example, the list structure:

(A B Clx)

refers to the Llist whose first three elements are A, B . and C, and whose
tail is named by the variable "x'". In full bar notation this term would be
written as:

(AI(BI(CIx)))

Elements of lists are in general arbitrary terms,end in particular
can themselves be Lists. The list of unit Lists of numbers from 1 to S is
written as:

(1) (2) (3) &) (5))
In full bar notation this is written as:
CCTTOMICRIOITCITIOITCELEITICSINIONIN

Although the bar is the only function symbol in micro=-PROLOG other
function symbols can easily be simulated by using a prefix notationn In=
stead of writing "f(t1,.,tn)" write the List “(f t*1 ., t*n)” where the
function symbol is named by a constant, and forms the first element of a
List. The rest of the elements t*1 .. t*n of the list correspond to the
arcuments t1,..,tn of the function term.

In fact this method is not much less efficient in terms of space used,
and time of execution, though it is perhaps less convenient to write. Of
course, we can also have terms where the function symbol is no lLonger named
by a constant but by a variable or a list structure, For example the list
"(x t1 .. tn)", has a ‘'function symbol' which is a variable, can be inter-
preted as a term 'for all possible values of "x" ! :

Alternatively, the function symbol may have structure-

((RECORD PAYROLL) employee salary)
((RECORD INVOICE) customer total)

ALL micro-PROLOG constructs are expressed in terms of the four types
of term discussed so far: Numbers, Constants, Variables and Lists. The
higher Level syntactic constructs such as atoms and clauses make use of
these basic objects, and they are generally list structures.

2.6 Atoms

An atem is a term written using the special prefix form described
above for functions. Fer example, an atom which has predicate symbol P and
arguments A, B, C and D would be written as the Llist:

\

Syntax of micro-PRCLOG

(P ABCD)

For implementation reasons the predicate symbol of an atom must te ¢
aicro-PROLOG constant or variable. In particular predicate symbols with
structure, such as "((F x) A)', are not allowed.

Some atoms, in particular those which refer to certain built=in prog-
rams, can have a syntax which is slightly different from that of the normal
atom. If the built=in program can execute without any arguments and it is
an program implemented in assembler, then the atom can be just a constan:
rather than a unit List. For example, the terms:

(PP)

PP
are equivalent atoms if they occur in the body of a clause (where PP is a
built=in program for printing terms, see Chapter 5).

This ability to use just the constant name of a relation is restricted
to the class of built=in programs which are written in assembler and are
normally executed without arguments, (The feature is described here for
the sake of completeness: it is most heavily used by micro~PROLOG itself.)

2.7 Clauses o
A clause is represented 59 a term which consists of a List of atoms,

the first atom being the head of the clause, and the rest of the list being
the body of the clause. The predicate symbol of the head atom must be a

-constant. For example, a simple assertion consists of a unit list of its

head atom:
((Pred x y))

If there is a body to a clause then, unlike conventional PROLOGs, there is
no implication arrow written between the head and the body. For example,
the program for appending two lLists together is written:

((Append f)‘x x))
((Append (xIX) Y (x12))
(Append X Y 2))

Furthermore, there are no explicit connectives Like "&" or "and"
between the atoms in the body.

micro—~PROLOG has no built=in means of handling comments in user prog-
rams. However, one suggestion for adding comments is to have dummy clauses
in the program, clauses which the programmer knows will never unify., For
example:

((Pred) this is a comment)

The advantage of writing comments in this way is that the system
'knows' where each comment is to be kept, and it always prints in the same
relative position in the program. The disadvantage is a slight slowiny
dfgn in execution speed as the system tries, and fails, to use the comment
clause.

-

Syntax of micro-PROLOG

The reader may skip this section on 3 first reading of the manuai.

As an extension to the clausal syntax described above we allow variab-
les in the clause to name 'meta=-level' components of the clause., A
variable can be used in place of the predicate symbol of an atom in the
Body, it can name a whole atem in the body, or it can be used to name the
‘rest' of a body. These various uses of variables in the bodies of clauses
are called the 'meta-variable' facility. This is to indicate that at run-

time the variables concerned will be bound to terms which name the relevant

comporents of the clause.

The meta-variable is very important to the usability of micro—PROLOSG,
it enables many of the second order programs found in LISP (say) to be also
available in micro-PROLOG as PROLOG programs. The meta-variable facility
is still a first order Logic construct however, and it does not affect the
semantics of logic.

The interpreter checks a call atom for the correct form, If the form
is incorrect, or if the variable is unbound for some reason, then the
system reports a "Control Error" and aborts the execution

2¢.9.1 Metacvariable 2s Predicate Symbol M

A variable can be used as the predicate symbol of an atom in the body
cf a clause. In this case the variable must be bound to a constant when
the atom is called. The constant is taken as the predicate symbol of the
atem for this call, and it must have associated with it a program of one
sort or another as in a normal atom; otherwise the execution aborts with a
"Clause Error"” or "Control Error" message.

This form of the meta=variable can be used to implement the equivalent
of the MAP functions in LISP., It is also similar to the facilities to pass
procedures as parameters commonly found in more conventional programming
languages Like Pascal, ALGOL etc. In the example program below "Apply"”
applies a test to each of the elements of its Llist argument. A call to
Apply takes the form: "(Apply OK <List>)" and it succeeds if "(OK <el>)” is
true of each element of '"<list>",

((Apply x Q)
(C(Apply x (ylY))
(x y)
(Apply x Y))

2.9.2 Meta-variable 2s ap atom

A variable can also be used to name an atom in the body of a clause,
In this case the variable must be bound to a term which names an atom when
the variable is 'called'. An atom is, of course, just a Llist whose first
element is a constant (the predicate symbol) followed by the atom's
arguments,

This variant of the meta-variable is used to implement some of the
meta-level extensions to the language. For example, the following program
'evaluates' a list as thcugh it were a List of atoms:

(CEval)
((Eval (x1IX))
X

(Eval X))

This use of the meta=variable does not have a direéf counterpart in

Syntax of micro-PROLOG

procedure; the closest comparison is with the call-by-name mechani m --
ALGOL [Naur 19623]

Pascal, it would correspond to passing an expressicn as a parameter T~ Q

2.9.3 Meta-variable 2s the body of a clause

The final variant of the meta-variable is its use as the body cf a
clause. In particular it names the tail of the body of a clause. A
variable in this case represents a list of procecure calls, rather thar
just a single call. For example, the following program encocdes the dis-
junctive operator OR (uvailable as a built-in program):

((UR x y) | x)

(COR x y) | y)
The use of the bar in these two clauses implies that the variables "x"
& "y" name Lists of atoms, and during execution they must be bcund to Lists
of the correct format., Each list is interpreted as the body of the clause.

Again, this use of the meta-variable has a loose counterpart in con<
ventional prograwming languages; in particular the closest comparison is
with the label parameter passing mechanism of ALGOL 60, the replacement

body is 'jumped to' rather than being called as with the meta-variable as

atom, ,-\

2.10 Lexical syntax

In this section we describe in more detail the lexical syntax that
Bicro-PROLOG uses; the section should be omitted on a first reading of the
manual. The lexical syntax determines how the sequence of characters input
to micro-PROLOG (either from the console or from a disk file) are grouped

In some sense the notion of token is a generalisation of word; in that
tokens form the smallest groups of characters that can have a meaning
associated with them; for example numbers, names and special symbols Llike
"“(" are all tokens. The lexical rules themselves however, do not attach
meaning to tckens, they® merely define what tokens are. In micro—PROLOG
there are five different types of token: special tckens, numeric tokens,
alpha-numeric tokens, graphic tokens, and quoted strings.

2.10.1 Tcken separators

The boundaries between tokens are determined by separator characters
and by certain changes in token type. For example, a number token can be
immediately followed by a graphic token since they are of different type,
however two successive number tokens must be separated by at least one
separator character. The separator characters are space, carriage return,
line feed anc tab. Apart from their role as token separators, separator

characters are ignored on input (but see quoted strings below).

Special tokens consist of single characters, called special charac-
ters. They therefore need no particular consideration as to token boun-
caries: they can be grouped together with no intervening separators. The
special tokens recognised are:

A

Syntax of micro-PROLOG

.2.10.3 Alcha=numeric tokens

Alpha=numeric tokens are defined in a similar way to identifiers in
normal pregramming languages. They consist of a letter (lower or upper
case letter) followed by a sequence of letters, digits. The sign character
can also be used in alpha-numeric tokens to aid readability. Some example

alcha=numeric tokens are:

A A1 x Alb3fred All=sol A-1 =A

2.1C4 Numrber tokens

Numeric tokens are tokens which name integers. They consist of
secuences of digits with possible a Leading negative sign character. Some
example number tckens are:

0 1 -3 100345678 -9009

Note that if 2 .alpha=numeric token occurs';BmediateLy to the left of
a nunber token then they must be separated by at Lleast one separator
character, but an alpha=numeric token can occur immediately to the right

of a number.

Graphic tokens are names which are built up from the non alpha=-numeric
(ard non special) characters. The sign character can also appear in
graphic tokens. This includes such characters as "<' "= "X" etc. Some
exzample graphic tokens are:

= = < ‘=% &

The finmal kind of token is the quoted string. This is used when the
lexical roles of characters need to be ignored; it allows arbitrary charac-
ters to be grouped together as a single token. The quoted string is
defined as a quote character (") followed by an arbitrary sequence of
characters (excepting the quote character itself) and terminated by another
quote character. The quote character can itself be represented in the
string by doubling it: by writing two quote characters in succession. Thus

the string:

"A quoted '™ string”
has the text:

A guwoted " string

2.10.7 The lexical rules

The parser in micro~PROLOG6 has the fairly simple task of parsing the
list syntax described above. It has merely to recognise the List con=-
struct, and to distinguish between variables, numbers and constants.

There is a fairly close correspondence between the lexical types
recognised and the distinctions the parser needs to make: numbers are made
from numeric tokens, graphic tokens and quoted strings form constants.

)

-

Syntax of micro-PRCOLOG

Numbers Constants

(“1_2 ($"A string:,))
>t

Special tokens

The remaining kind of token: the alpha-numeric token is recognised
either as a variable or as a constant by the parser. micro-PROLO6 reccg=-
nises variatles be examining the first character of alpha=numeric tokens

‘(called the prefix character). If this character is a variable prefix

character and the rest of the token is made up of digits then the token is
read as a variatle, otherwise it is taken to be a constant:

Alpha=token
e -

x rest of token S ‘

L____v_ - g
Prefix digits
char

In standard micro-PROLOE the variable prefix characters are "x", "y",
"z", "X", "Y" and "I'". Appendix D gives details of how the set of variable
prefix characters can be modified so that the various popular variable
conventions can be implemented: lLower case/upper case variables, variables
prefixed by the "*" character and so on

Chapter 3

Interacting with the micro-PROLOG systew

The micro—PROLOG supervisor is a8 PROLOG program which provides a
simple operating environment for the user., It allows programs to be en
tered, executed, edited, saved and loaded on disk files. The supervisor
alsc provides some extensions to the Language, in the form of buiilt=in
programs which would otherwise have to be programmed by the user. In this
chapter we describe the user interface to the supervisor.

The stancard micro-PROLOG disk contains the following files:

PROLCG. COM
TRACE.LOG

SIMPLE.LOG .
EDIT.LOG ’-\\

The file "PROLOG.COM" is the micro—~PROLOG system itself, and the other
‘files are actual micro~PROLOG programs. To start micro-PROLOG you should

1. Insert the micro~PROLOG disk (or a disk with micro-PROLOG on it)
into a suitable disk drive (the B drive say).

"Sia Log in to the disk (not strictly necessary but it is easier)
3. Type the command "PROLOG".

For example, if your computer has two disks: the "A" disk and the "B" disk,
to execute micro-PROLOG from the "B" disk type:

A> b:
B> proloeg

When micro—~PROLOG is started up the following banner should appear at
the console:

Micro-PROLOG r.vv S/N xxxxx

(C) 1981 Logic Programming Associates Ltd.
99999 Bytes Free

&

The first two Lines form the micro-PROLOG6 banner, and give details of
the release (r) and version (vv) number, The message 99999 BYTES FREE"
incicates how much memory is allocated for work space. The allocation is
divided into two fixed areas: approximately 12% of the available memory is
dllocated to the storage of text for the dictionary (where the names of
constants in the dictionary are stored), and the rest forms the heap and
stack space. This latter region is where the user programs are stored, and

where evaluation of programs takes place,
The last line which starts with a "8." shous the system level prompt

which is output by the supervisor, It indicates that the system is waiting

for input from the console keyboard.
2icro~PROLOG can also be invoked with an initial command Lline. Any

characters that are typed on the command Lline after the word "prolog" are
taken to be the initial input to the system (i.,e. without waiting for the
prompt). For example,

1N

Interacting with the micro-PROLOG system

B> prolog load file
is equivalent to:

B> prolog

&. LOAD FILE

CP/M automatically converts characters appearing in the command line tc
upper case before passing them on to micro-PROLOG.

3.1 Kevboard control

Older versions of micro—PROLOG used the Lline edit facilities built
into CP/M; the main problem with this is that those facilities are not
especially convenient or powerful. The line editor now built into Micro~
PROLOG is better; it is based on the Linf“g?itor in Micro-SOFT BASIC (V.5);
though with certain simplifications.

wWhen reading from the keyboard the system prompts the user for input
with a "." prompt (this is part of the "&" prompt that micro-PROLOG gives
at the top Level). Any characters typed in are stcred in an internal
buffer and are only 'read' by micro-PROLO6 after the carriage return is
pressed. This corresponds to the 'input mode' of the Line editor. The
following control keys have special significance in the input mode:

<Backspace> or <Rubout> will delete the last character typed in

<Return> exits the entry mode and process input
<Escape> echos a "$" and enters edit mode (see below)
<Control=P> toggles the print device (as in CP/M)
<Control=@> quotes the next key (ignore key function)

Certain other control keys provided by CP/M are not suppbrted by this
line editor; these include:

e
<Control=R> Review the Line
<Control=X> Cancel input
<Control=U> Same

Edit mode ’

In the edit mode of the line editor edit commands are entered using
single letters. These letters can be in either upper or lower case and are
never echced to the screen. The edit commands provide fairly simple char—
acter level editing functions such as cursor movement, replacing, searching
etc.

In the descriptions of the commands below we shall talk about a
'cursor'. This is similar in principle to the cursor on a screen, except
that since the line editor is one dimensional the cursor can only move to
the left or to the righte The cursor can only be 'over' an existing
character in the keyboard buffer. Any attempt to move it outside existing
text will cause the bell to be sounded on the terminal.

Similarly, if a character is typed as an edit command which is not
recognised, or is illegal for some reason the bell is sounded on the
gonsotq, and the command ignored. The edit commands are summarised as

ollows:

i Insert mode (start accepting characters)

11

Interacting with the micro-PROLO6 system

<Return> Echoes the rest of the input buffer and
exits the editor and allows micro-PROLOG to
process the edited line.

<space> Move ‘cursor' one character to the right. The
character is echoed to the screen, If al-
ready at the end of the !ine then the bell is
sounded instead.

>

<backspace> or <Rubout> Move the ‘'cursor' Lleft one character. A
backspace is echoed to the screen, If al=-
ready at the start of the line then the bell
is sounded. Note that unlike in input mode
the backspace does not delete the char under
the cursor,

s <char> Searches the keyboard buffer from the current
position for the <char>. The characters bet-
ween the cursor and the target are displayed
on the screen. If the <char> is not found
then the bell is sounded and the cursor is
Left at the end of the Line,]

¢ <char> Replaces the character under the cursor with
<char>

d Deletes the character under the cursor.
Characters which are deleted are enclosed in
e

k <char> Similar to search, except that the characteEs

between the cursor and the target are de-
leted. As with delete, the deleted characters
are enclosed by "/"s.

L - Lists the rest of the Line and positions the
cursor at the beginning of the line.

o) _ Toggles the print mode; analogous to the
Control=-P key when in insert mode. (A "p"
will toggle a <Control=P> typed in insert

mode) .

X This is used to extend the Line., The rest of
the Line is displayed and insert mode is
entered.

2z This cancels the rest of the Line from the

cursor position and enters input mode. Use-
ful when retyping a whole Lline.

Any number of terms can be typed on a line, and a term can be spread
over many Lines. Any excess terms (terms are read one at a time) are saved
in the buffer until the next 'read console' is executed, in which case the
buffer is read without disturbing the user, Constants and variable names
must not be split across lines. -

When entering a term, which is spread over more than one line, each

12

b

——

-

in:

Interacting with the micro—-PROLO6 systcz

successive line is prompted with "n.', where n is the number of unmatched
lett brackets typed so far. For example we might have the following typec

g.((C
2.Apo(
30x X
2:Y)
&.

From tne user's point of view the supervisor consists of a set cf
commands. Commands are typed in when the supervisor has issued a "8."
prompt. Usually a given command can also be accessed by the apprcgriate
procedure call. Furthermore, the supervisor allows you to define and invoke
your own commands., In this section-u@ describe the various commands
available. The general format of supervisor commands is:

8.<Command verb><Command Data>

where the "command verb” is a constant, and the command data is a term
whose exact form is dependent on the actual command.

The simplest supervisor command consists of just a clause. The clause
is added to the program at the end of the set of clauses defining the

appropriate relation. For example:

g.((Parent Mary John))

E.((Parent Peter John))
E.((AppO)x x))

&. (CAppxIX)Y(x12))

1.App X Y 2)) e
&.

3.2.2 Listing the program

The PROLOG program currently in the workspace can be listed at the
console with the "LIST" command. When a program is listed it is displayed
in an indented format to aid readability of the program.

There are two variants of the LIST command:

LIST ALL
Lists the entire program, whereas

LIST (pred! pred2 .. predn)
lLists the programs predi, pred2,.. ,predn:

8.LIST ALL
(CApp () X X))
: (CApp (X1Y) Z (XIx))
(App Y Z x))
((Parent Mary John))
((Parent Peter John))

13

Interacting with the micro-PRCLOG system

8.LIST (Parent)
((Parent Mary John))

((Parent Peter John))
g.

- - - —— -

micro-PROLOE programs are executed by using the run command "?", This
takes as argument a goal statement. A goal statement has the same form as
the body of a clause, it consists of a Llist of goal atoms; the run command
executes each of the atoms in the goal in turn

If the evaluation is completed successfully then the supervisor dis-
plays its normal prompt:

&?2((Parent x1 x))
&.

/\

otherwise if the evaluation fails then a "?"\is disblayed before the next
prompt:

€.72((Parent x1 x2) (Parent x2 x1))
2
g.

-

micro~PROLOG does not automatically print any response'if the evalua~-
tion of the goal succeeds. If output is needed then it has to be explicitly

programmed into the goal, for example to find a Parent of John, and print
the name we could use the goal statement:

8.7((Parent x John)(PP The parent of John is x))
The parent of John is Mary
g.

3.2.3.1 Commands in the Supervisor

The supervisor also provides an alternative way of invoking certain
kinds of evaluation. Namely, in the special case where the goal is 3

single atom, and that atom is unary (i.e. only one argument) then the goal
can be executed by mentioning the predicate symbol and then its argument;
this is without any extra parentheses and question marks:

8.<predicate> <argument>

This allows you to define new ‘commands' to the system. For example
suppose that we had the clause: '

((Exprint x) (2 x)(PP x))
By typing:
&.Exprint (goall goal2 .. goalm)
the Exprint program is invoked as though it was called with

((Exprint (goall goal2 .. goaln))

It executes the List of goals and then prints the list in its successful
form, i.e. with its variables replaced by their answer bindings.
The "?" command that we saw above is itself defined by the clause:

14

Interacting with the sicro-PROLO6 systeca

(2 x)IX)

This clause uses the meta-variable feature where the body. of the
clause is replaced by the value of the variable "X". Other superviscr
commands are themselves just micro—PROLO6 programs ! at are invoked using
this facility.

3.2.3.2 Controlling Execution

To interrupt the execution of a goal two interrupt keys are provided.
I1f the Control=-S key is pressed, then execution' is susgended. Execution
continues as scon as Control=S is typed again. '

To break into an execution the Control=C key is used. When a break is
Cetected the message

BREAK ! /_\\

is displayed at the console, the current execution is stopped and the
system returns to the supervisor. These interrupt conventions are in Line
with thcse for CP/M as a whole,

When an evaluation is aborted, for whatever reason (see Appendix A for
pessible abort conditions) the reason for the abort and the procedure call
currently being executed are displayed.

A trace package is provided with the system (as a separate file). The
trace program allows, interactively, selective tracing of the execution cf
a goal.

Before invokiny the trace facility it is pecessary to load the trace
“?" for executing goals, use: "??" to trace a goal. The format of a traced
goal is:

&.772((goal1)..(goaln)) -

and each of the subgoals are traced and executed in turn.
When entering a subgoal for the first time the message

ENTER (pred <seq. of args of calld>).

is displayed at the console, At this point one of the trace commands
described below may be entered. The term printed represents the procedure
call just before any attempt at evaluation, with all of the known values of
variables substituted in place.

1f the predicate symbol of the call refers to a built=in program then
the call is immediately executed. (This means that it is only possible to
trace user programs.) If the call is for a user program then the trace
package reads a trace command from the console.)

The trace commands allow selective tracing of the program. For exam=-
ple, Low level (or already debugged) programs can be skipped: i.e. executed
without tracing. The allowed trace commands are:

1. Skip If the Skip command is typed, or if the procedure call is of
a built=in relation, the sub-goal is executed without tracing In
this case one of two things normally happen: either the sub-

15

2.

ALRKCTACiInNg Wil AT &I1LTUT IR Ve 3ysSicm

cemputation fails or it succeeds. If the sub-computation fails
then the message

" FAIL (pred <seq. of arguments of call>)

is displayed at the console, and the system backtracks, 0f course
this may cause calls that previously succeeded to fail, in which
case more than ore FAIL message may appear.

If the sub=-computation succeeds then the message

FINISH (pred <seq. of arguments of call>)

is displayed. In this case the procedure call is printed with the
answer bindings substituted, so that you can see the result of
the sub-computation invoked. If the “call was the Llast in the body
of a clause then the calling computation is also succeeded, 1in
which case a "FINISH" message is displayed for it too, and so on
up to the goal.

After finishing a sub=-computation, any uncompleted sub-gcals
are entered and traced in turn, until the top~level goal ultima-
tely fails or succeeds.

Lontinuve The Continue command allows the trace to be continued
insicde the newly entered sub=computation. When this command is
used the trace program looks for a clause to match the call, and
when it finds one it traces each of the atoms (if any) that occur
in the body of the clause selected. If no clause unifies, or if
backtracking ‘causes failure of the call the fail message for the
call is displayed as described above.

If the clause that unified with the call was an assertion,
then since there are no (more) atoms to trace insicde the sub-
computation, the call is succeeded and a "FINISH" message

displayed. Otherwise each of the atoms in the body of the clause’

are entered and traced in turn.

Fin _;g The FINISH trace command allows one to arbitrarily succeed
a call. This command is most useful when developing programs top
down, in which case the low level programs can be simulated
during a traced execution without causing the "CLAUSE ERROR"

message.

Fail The FAIL trace command allows the user to arbitrarily fail
the call, and cause the system to backtrack. The fail command
causes the "FAIL" message to be displayed before the system
backtracks. Like the FINISH command, FAIL is most useful when
developing programs, where it can fail a particular call without
causing an abort message.

The trace program insists that a legal trace command be typed. If an
erronscus command is 1input the program displays the message:

ENTER S C FINISH OR FAIL

and prompts the user again. ,
Since the trace package is itself written in micro~-PROLOG it would be
possible to implement a more sophisticated version of this simple program.

16

-uu-.

[T

| WITE |

Interacting with the sicro-PROLOG systema

3.2.4.1 ¥arning

The use of the trace program greatly increa_ses space demands on the
workspace, thus programs which run without tracing may well run-—out of

space when traced.

32.5 Loading 2rd saving programs from Disk

The supervisor allows the user program to be saved onto a disk file,
and subsequently lcaded back into the workspace. The two commands "SAVE"

"~ and "LOAD" respectively save and load the user's programs.

‘The formats of the load and save commands are:
|
LOAD <file=name>
SAVE <file-name>

3.2.5.1 File specification

The file name is a constant which describes a file in the CP/M style.
The general format of a (P/M file descriptor is:

<Drive Letter>:<File néme>.<File type>

The drive letter and file type are optional, in which case the colon and
dot (respectively) are ommited. micro-PROLOG uses the file type "LOG" as
the default file type if one is not given, and it uses the current ‘'loggec-
in' disk drive if a drive is not specifically specified. Since the colen
and the dot are not alphabetic characters a file name using them must be
written inside string quotes. Some example constants describing files are:

-"“A:TRACE.LOG"
TRACE
“TRACE.LOG"
"“OTHER. ASM"
“B:OTHER" =~

The "LOAD" command reads a program from the file specified and adds
the program into the user's workspace as if it were typed in. Any program
alrescy in the system is not disturbed in any way by the load: the new
clauses are added to the end of any existing relations. In this way the
programmer can have a library of programs, on a number of different files
and Load from them when building up a new program.

The "SAVE" command saves the program currently in the workspace into
the named file. The entire workspace is saved, this may include such extra
programs as the trace package, if it had been loaded. If the program is
saved onto an already existing file, then the old file is renamed with file
extension ".BAK'. This automatically ensures that back-up copies of files
are created. : ;

To leave the micro~-PROLOG system use the command:

QT. {The """ is arbitrary = it can be anythingl)
A> "

17

[T)

| e e 2 |

.--hm.
l

R

rr-lluu.:‘.l‘ Py
[

L.d LJ

-

.
L..d

L)

il

\

Lt L

'y

Interacting with the micro-PROLOG system

3.3 The_micro-CRCLOG_Editor

The micro-FRCLOS editor allows the PROLOG programmer to edit programs
within the micro-PROLOG environment. It is a context editor which takes
into account the Llist structure of micro-PROLOG clauses and terms. Since

the editor is itself written in micro-PROLOG it is easy to extend and

modify, shculd the need arise, The source of the editor program is given
in Appencix E.

The editor's context consists of a current_term, and the immediate
sub-term that the current term is in, To act as an 'aide de memcire' the
editor uses the current term to form its prompt when the editor is ready to
accept a command. At the top-most level of editing a program (where the
current term is ore of the clauses of the program) the editor prefixes the
prompt with a number; this number indicating the index, within the prog=
ram, of the current clause. If at any time the current term ‘pointer' is
rot a term or clause in the program then the editor displays "No term" or

"No clause'" as its prempt.
33.1 Edit_Commands

Before using the editor it is necessary to LOAD it in to the workspace
using the "LOAD" command. In the standard micro-PROLOG system the editor
is in the file "EDIT.LOG'; so to LOAD it in type:

&.LOAD EDIT

The editor is invoked using the command "Edit program”, for example to
edit the "likes" program type:

&.Edit Llikes

The editor uses the first clause in the program (if the program is
nomempty) as the initial current term pointer. In the case of the likes
program this could be:

C1)J((Likes John Mary)).

When the editor displays its prompt it 15 ready to accept an edit
command, which at the top level can be any of the insert, append, kill,
next, back, enter and out commands, The edit commands are divided into
two groups: t!*ose which move the current term pointer of the structure of

the terms being edited, and those which change the terms in some way.

332 'Cursor_Movement! Commands
There are four commands which can be used to walk over the program;
these are pext, back, enter and out.

Te The n (next) command changes the current term to the next term to
the right in the immediate context. At the top level this means move
to the rext clause. So, for example, if the current term is "(A B)",
and the immediate context is "(C (A B)(D))" then the "n" command moves
the current term to "(D)":

(A B).n
(D).

1f the current term was already at the last term in the immediate
context, or if it was the last clause in the program, the pointer 1S

i8

333

Interacting with the micro~PROLOE system

stepped on, but the current term is ‘No term”, (or "No clause" at the.
top lLevel) indicating that it is not actually pointing to a term, It
is impossible to step beyond this point.

The b (back) command is the inverse of the n command, it is used
to step btack to the term tc the left of the current term in the
immediate context, or to step to the previous clause. To unco the
effect of the previocus 'n"” command above:

(D).b
(A B).

If the current term were already the first term, then the b
command steps back to in front of it, again causing the prompt to
become "No term" ("No clause'). e.qc.

(A B).b
€D
NOo term.

It is not possible to move before this point.

The e (enter) command steps 'into' a term or clause so as to edit
its components. The term being stepped into must be a list structure
(there being no concept of the inside of a number or constant). The
immediate context becomes the List just entered, and the current term
is the first element (if any) of that list. So in our example if we

enter the list "(A B)" we change our immediate context and point to
IIAII:

(A B) .e

A.
or

C1J((likes John X)(likes X Mary)).e

(Likes John X).

]

The o (out) command is the inverse of the enter command. The
current immediate context becomes the current term, and the ‘old’
immediate context (prior to the corresponding e command) is reestabli-
shed as the immediate context. The o command is also used to exit
the editor, when at the top level:

(likes John X).0
C1J((Llikes John X)(lLikes X Hary)).o

Edit of likes finished
&,

The o command may fail if the entered term has been incorrectly
changed, in particular if on returning to the outer level the predi-
cate symbol of the head of the clause has been changed. When an edit
command fails the editor responds with a "?" and re-prompts at the
appropriate level.

With these four cursor control commands any sub-term of a program
can be reached In the next section we lLook at those edit commands
that directly change the current term.

Edit_change_ Commands

There are five commands which directly affect the current term; these

19

,_.,.l
i

E..d

bed

e

| R

Roid usid
11

3
i
I

Interacting with the micro-PROLCG system

are insert a new term, append a new term, kill the current term, substi=-
tute it by another and text edit the term,

1.

The i is followed by the term to insert as in:

(A 8.1 (F)
(F).

The new term just inserted bétomes the new current term, the old
one can be regained by stepping on to it with the n command.

At the top Level the i command inserts a new clause into the
program, In this case .the form of the clause is checked to ensure
that at least the predicate symbol of the clause is the appropriate
one, :

The a (append) command appends a new term (or clause) after the
current term. Otherwise it is like the i command.

The k (kill) command deletes the current term from the immediate
context. The previous term (or clause) to the left becomes the new
current term, if there is not a previous term (or clause) then the
current term becomes '"No term" ("No clause'. We can delete a parti=
cular element of a List by using a3 sequence of cursor movement
commands to move to the required term and then using the k command.

For example, to delete the third element of "(A B C D)":

(AB CD).e
A.n

B.n

Cek

B.o

(AB D).

The s (substitute) command replaces the current term with a new
term. The argument to s is a pair:

(t1 t2)

current term is replaced by té. The use of unification allows quite
powerful pattern matching, but more importantly the specification of
the replacement can make use of variables bound in this match. For

example to reverse the first two elements of a List:

(AB C D).-s((x yl2)Cy x12))
(BACDOD),

Note. The s command is not available at the top level.

The t (text) command allows the current term to be changed using
the Lline editor. It works by displaying the term on a new line and
positioning the cursor ‘underneath the first character. The edit mode
commands described above are then available to modify the text of the
term. Upon typing the <return> key the system reads the text back in
and replaces the current term by it.

Note that variables are not handled properly by this command, in

- particular any variables become new variables after processing. This

is not a serious deficiency when using the "t" command at the clause

<0

Interacting with the micro-PROLOG systea

Llevel ot the editor, or when only changing constants. (future
versions of micro-PROLOG will fix this problem)

Given the importance of lists in micro~PROLOG, it is especially impor-
tant to be able to repair an arbitrarily damaged list. Where it is just
a sub-term of a list that is damaged, the above commands are sufficient,
However, a problem arises if some brackets have been put in the wrong
places. For example, a left bracket can be easily missed as in:

C1) ((Prog A X) PR X Y)

and a right bracket could be put in too far to the left, as in
(2] ((Prog A X)(PR) X Y)

or too far to the right, as in
£3] ((Prog A X (PR X Y)))

The editor has two simple primitives which can be used to repair this kind
of global damage: wrap and unwrap.

T The w (wrap) command takes a number of terms from the immediate
context and wraps them up into a List, which becomes the current term.
The w ccmmand has an argument: the number of terms to wrap starting
from the current term. If O (zero) is used then no terms are wrap-
ped, i.e. the empty Llist "(O" is inserted. If 1 (one) is used then
the current term only is wrapped, if 2 (two) then the current plus the
next term are wrapped, and so on up to the number of the remaining
terms in the immediate context. For example, to wrap up the middle
two elements "(A B C D)':

(AB CD).e

A.n .
Bow 2

(B C).o

(A (B C) D).

r 4 The u (unwrap) command is the inverse of the wrap command, The
current term must be a Llist, the effect is to remove the outer pair of
brackets of the Llist, The first element of the List becomes the
current term, and the other elements are inserted into the immediate
context. To undo the effect of the wrap above we could perform the

following sequence: ‘

(A (B C) D).e
Acn

(B C).u

B.O

(AB C D).

Now we we can see how to use these two commands to repair the various
terms we showed above: '

a) ((Prog A X) PR X Y)

This case is quite simple, we wrap up the sub-list "PR X Y"

21

tu—.ﬁm

(

l.l.h-t \-"

b

Interacting with the aicro-PROLCE system

jnto a single List, so that it is put into the correct form:

C11((Prog A X) PR X Y).e
(Prog A X).n

PR.w 3

(PR X Y).0

{1J((Prog A X)(PR X Y)).’“\

b) (C(PR A X)(PR) X Y)

The second example is a Little more complex, a right bracket has
been inserted too far to the left. To repair this we need to unwrap
the List "(PR)", and re-wrap including the missing arguments:

C21((Prog é& A X)(PR) X Y).e
(Prog A X).n

(PR).u

PR. w3

(PR X Y).0

C2IC(PReSA X)CPR X Y)). 3

c) ((Prog A X(PR X Y)))

In this example we have first to wrap up the sub-list "Prog A s
to form an atom of the right form:

[3JC((Prog A X (PR X Y)).e
(Prog & X (PR X Y)).e
Prog.w 3

"(Prog A X).0
((Prog A X)(PR X Y)).

Now we have one too many pairs of brackets at this level, so we
unwrap:

((Prog A X)(PR X Y)).u
(Prog A X).o
C3J((Prog A X)(PR X Y)).

This last unwrap has 'removed' the right bracket that was too far
to the right.

3.3.5 Further_ Extension

This ed1tor represents a first attempt at the development of a term
oriented structure editor for micro-PROLOG. Further possibilities for
improvement are context searching and combining commands together with a
repeat count. Since the editor is itself written in micro~PROLOG these

enhancements should be quite straight forward.

34 Pragmatic Considerations for Programmers

The principal Limiting resource in micro—PROLOG6 is space. To help to
conserve space micro-PROLOG incorporates a number of space saving features.
To maximise their effect the programmer should be aware of them, so this
section describes some of them and how they operate. Note that space saving
does not affect the logic of the running program; it may only affect

whether a program can run in the space available.
The features of micro~PROLO6 which affect the space used by a program

- 22

| S

are:

2.

3.

Interacting with the micro-PROLOG systea

Organization. The evaiuation area in micro-PROLO6 is organised as
a stack and 3 heap. The stack contains the activation reccorc¢s and
the variables of the execution. This grcws with recursion and
pops normally only on btacktracking. The heap contains the values
of variables, clauses and other permanent data objects.

Periodically the stack and heap collide, at which time the
heap is garbage collected. The garbage collector is actually
called whenever the stack and heap grow too close to each other;
the point at which this is done is automatically computed by the
system depending on the available memory and the relative sizes
of the stack and heap.

The garbage collector is a 'Mark and Collect' garbage col-
lector, which means that all the free space in the heap is
col lected together into a list. The heap is also 'cut down' if
there is free space at the end of it. This has the effect (hope~
fully) of leaving a clear region of memory between the stack and
heap, allowing execution to continue.

If the garbage collecteor fails to find sufficient space
then the evaluation aborts with the message "SPACE ERROR".

Note that the allocation algorithm means that as memcry gets
tight the garbage collector gets called more and more often; this
can have a dramatic effect on the performance of the sytem,
Normally garbage collection takes a very short time (about 0.25
secs) and isn't a big overhead.

Success Popping. micro~PROLOG performs special actions in certain
circumstances, when a procedure call has been deterministic. When
such a call completes it is popped off the stack just Like a
normal recursive call in a more conventional programming lan~
guage, (The record of the evaluation is not needed for
backtracking purposes.)

The alternative situation, where micro—~PROLO6 cannot detect
that a computation is deterministic, results in the record of the
evaluation being lsft even after the successful completion of a

~ procedure call.

_ The expert programmer can give more information about when a
program is deterministic by inserting the "/" control primitive
in suitable places in his program (see Chapter S).

Jail recursion is the name given to that form of recursion which
is actually equivalent to a lLoop. micro-PROLOG can detect this
special case of recursion, and when a tail recursion is also
deterministic then micro—PROLOG optimises the call; it does not
grow the stack when entering the call. For example, if all the
calls preceding the last call are deterministic then, when
entering Qn in:

((Pred ...) (Q1 ...) -ae (Qn ...))

the stack is not grown at all for the first evaluation step of
Qrn. Initially the stack grows in the normal way, but since it is
the Last call and since the evaluation is deterministic then
wicro—PROLO6 ‘knows' that it will eventually be able to success
pop the activation record for "Pred'". Further, since there are no
more references into the procedure "Pred" micro-PROLOS pops the
“pred" entry from the stack as the last call "(@n ...)" is en~
tered. The net effect is not to grow the stack at all for the

23

[}

|

lli‘.q hiiad BLd Ry
v .

HER
f
I

1]

J

m m a
E .« 4 |

KA @

Interacting with the sicro~-PRCOLOG system

last call in a procedure when in a completely deterministic
evaluation.

A classic example of the pcwer of tail recursion in saving
space is in append. 1f we write the append program as:

(Cappend () x x))
(Cappend (x1X)Y(x12))

(append X Y 2)) ~
\

then for normal calls to this append program (appending two Lists
together for example) the stack does not grow during execution
for any length of input. In this way the recursive definition of
append is executed as though it were written in a WHILE (cop.

Often, there may be several calls in the body of a clause
all of which execute deterministically. In this situation after
each of the calls in the body, except for the Last call, have
completed then the stack is popped lLeaving no trace of the eval-
uation of the stack. For the last call the top of the stack is
overwritten with the new record, hence the stack does not grow at
all for the Last call. This has the effect of turning a recursive
evaluation of the sub=-goal into a locop evaluation

L. Nom—structure sharing. micro~PROLOE is a so~called 'nomstructure

sharing' implementation. Briefly this means that when a variable
is bound during unification its value is explicitly computed and
placed, if necessary, in the heap,

The effect of this, together with garbage collection, suc-
cess popping and tail recursion, is to limit the amount of data
currently in the work=space to that which is actually needed,
though it does lead to an overall increase in memory turnover.
It also has 3 space benefit in that for certain simple, but
commen, cases the value of a variable takes actually less space
than in the more normal ‘structure-sharing' implementations.

To take full advantage of these space saving optimizations the
programmer should try to ensure that micro-PROLO6 can always detect deter=-
minism in a program. This means, for example, putting the base case of a
program (such as append) before the general case, and using the conditional
form where it is applicable (see Chapter S). Programs optimised for space

in this way tend to be less optimal with respect to speed of execution, anc ‘

>

vice versa. .
3.5 Summary

Here is a summary of the supervisor commands we have discussed:

<clause> Add a clause.
?(<Goal sequence>) Execute a goal.
?27(<Goal sequence>) Trace execution of a goal.
C Continue trace.
) Skip trace - execute subgoal
without tracing.
FAIL Arbitrarily fail subgoal.
FINISH Arbitrarily succeed a sub-goal.

Edit <predicate symbol> Edit a program. .
next term/clause :

previous term/clause

enter term/clause

exit term/editor

o MmO 3

24

LOAD
SAVE
QT.
LIST
LIST
~C
AS

~p
“Q

Interacting with the micro~PRCLO6 system

t
t

(1 t2)

W n

<file descriptor>
(1]

ALL
(P1 P2 .. Pn)

insert new term/clause

append a rew term/clause

delete tern

unify current term with t1 .

and replace by tZ2 :

text edit the current term with line editor
wrap n terms into a sub-list

unwrap sub-list

Load a program from the file.

Save a program to the file.

Exit micro-PROLOG

List the program on the console,

List the programs named.

Abort execution of a goal

Suspend execution until “#S is

pressed again.

Toggle printer o -oft

Quote the next key pressed on the keyboard

—

-

Chapter & -
Simple PROLOG

In this chapter we Look in detail at a way of extending the basic
micro-PRCLOG system by using a front end program. This technigque allows us
to write PROLOG programs using a more friendly syntax. Sentences of this
The file “SIMPLE.LOG" contains a module which defines a set of commands
which allow one to write and use Simple PROLOG programs rather than micro-
FRGLO6 progranms,

4.1 Syntax of Simple PROLOG sentences
A Simple PROLOG sentence (or clause) consists of either an atomic
sentence or a molezular sentence. Atomic sentences are just atoms, and

can have two forms:

John Likes Mary
PRED(2 3 x)

i.e. an atom is either a binary predicate ('likes"), in which case it is
written in infix form with no parentheses; or a non-binary predicate, in
which case it is written as the predicate symbol ("PRED") followed by a
List of arguments surrounded by parentheses and separated by spaces.
Molecular sentences consist of an atomic head followed by the word

Literals are either atoms:

x likes y if y Likes x1
and
PRED(x y 2) if PQ(x y 2) andey LESS 2

or negated atoms which are written as "Not" followed by a conjunction
encleosed in parentheses, as in:

x Likes y if Not(y Likes Peter)

'd

x GE y if Not(y LESS x)
and

PRED(x y 2z) if x LESS y and Not(PR(y z x) & QUALIFY(x))

Simple PROLOG is implemented as a micro~-PROLOG module that is LOADed
in at the beginning of a session. It provides a small set of commands
that enable you to interact with the micro~PROLOG system as though it were
a Simple PROLOG system.

Thus to start a Simple PROLOG session enter micro—PROLOE using the
LOAD command:

A>prolog load simple N
Micro PROLOG r.vv S/N xxxxx '
(C) 1981 Logic Programming Associates Ltd.

99999 Bytes Free

&8.

25

Simple PRCLCS

In Simple PRCLOG the various functions to add new sentence etc, are
invoked by a set of commands, some of which are described below. Ffor a
more detailed description of how to use this system see the micro-PROLOG
Primer.

4L.2.1 Add N,
The "Add' command allows you to add a simple PROLOG sentence into the
workspace. The format of the command is:_

8. Add (Peter Likes x if Not(x Likes John))
3.

Notice that the sentence to be Added to the program is surrounded by
brackets. This makes it a single list argument to the "Add" command. A
simple PROLOG command can be typed in whenever the micro—PROLOG system
displays its "&" prompt. :

Sentences are usually added to the end of the program for the approp~
riate relation. To add into the middle of a program the form

Add n sentence

is used, where the number "n" refers to where in the relation the new

clause is to be added. For example, to add to the beginning of the
"Likes" relation use

8. Add 0 .(Peter Likes John)
8.

&.,2.2 List

The "List" command displays the program on the console. To display
the whole of your program type '

€. List ALL
Peter Likes John
Peter Likes X if
Not (X likes John)
&.

To display just a single relation, the "likes" relation say, use

& List likes

To pTint a simple program on the printer use the AP toggle functicn
before."L1st“ing the program. This will automatically print the program on
the printer as it is displayed on the screen

"Delete" a single clause from the program. Its usage is

&. Delete Likes 3

which deletes the third Likes sentence.

4.2.4 KiLl' i

"Kill" will delete an entire relation; to remove the likes relation

27

el Pl
|
|

Simple PROLCE

type
&. Xill Llikes

4L.2.5 Dees _—

The "Does" command makes a YES/NO query of the program, It has as
argument a conjunction of Lliterals, Like the body of a molecular sentence,
If the goal is successful the command responds with

YES

otherwise it responds with
NO
For example

€. Does (John Likes Mary)
YES

&. Does (SUM(2 3 x) & x LESS 5)
NO

4.2.6 Which

The "Which" query attempts to find answers to questions. The form of

the answer required is specified by the question. The syntax of this
command is

Which (term body)

where term denotes the form of the answer required, and body is the query
tc be evaluated. For example to List those people that Like John use:

8. Which (x x Likes John) & '
Answer is Peter i
Answer is Mary

No (more) answers
g.

To List the pairs of people who Like each other:
&. Which ((x y) x Likes y and y Likes x)

Answer is (Peter Mary)
No (more) answers

To compute the sum of 3 and §-

8. Which (x SUM(3 S x))

Answer is 8

No (more) answers
4.2.7 QOne .

The "One" query is similar to "Which" except that it prompts after
each sclution. If you respond with "C" then the next solution is sought,

Otherwise use "F" to finish looking for solutions:

8.0re (x x Llikes John)

28

Simple PRCLCS

Answer i35 Peter.(
Answer i3 Mary.(
No (more) answers
g.

4.2.8 Save

The Simple PROLOG prdEFam in the memcry can be saved for later use via
this ccmmand. The form of the "Save"” command is

&. Save file-name
&
where file=name is a file name in the normal micro~-PROLOG form.
4.2.9 Load

The "L

0ag” command 1S used To re~1l0ac a previously >3vec
program. F

or example:
&. Load fred
4.2.10 Accept

If entering a lot of data the "Accept” command can be used as an aid
in generating large relations. It enables binary atomic sentences to be
added without using the "Add" command all the time. It is restricted to
binary relations. The "Accept" command is used as follows:

&. Accept Llikes
likes.(John Mary)
likes.(John Peter)

likes.(P S Q)
What is (P S Q)?
Llikes.

likes.End
g.

The "Accept" command prompts for each pair with the name of the rela=-
tion involved. If a pair is not entered the response is queried and you
are reprompted for another pair.

4.2.11 Edit’

The line editor can be used to edit an individual sentence Llocally by
using this "“Edit" command (Do not confuse with the structure editor). The
Edit command is invoked as fol lows:

E.Edit Likes 1 (the predicate symbol followed by the clause number)

The system responds with the sentence (surrounded by brackets) which

can then be eaited in a similar manner to the "t" command in the structure
editor.

29

Siaple PRQLCS

A special Simple PROLOG predicate "Is-AlLl" can be used to mimic the
action of "Which", Instead of displaying the answers however, it puts
then in a List and returns the Llist of solutions. The general form of the

predicate is:

x Is=All (term conjunction)

fFor example in: _/)

g&. Which (x x Is=AlLL C(y y Likes“John))

the query "(z z Llikes John)" Looks exactly Like a "Which" query in itself,
But instead of printing the answers, they are put into a list and bound to
xs

Answer is (Mary Peter)
No (more) answers
8.

—— ————

Simple PROLOG illustrates how easily the basic micro-PROLOG system can
be augmented by the use of a front end program, In this case Simple merely
adds a few commands which compile to and from the syntax of Simple=- and
micro-PROLOG In Chapter 6 we look at how this is done in more detail.

30

Chapter S

Built=in Prograss

In some ways the character of a PROLOCG system is determined more by
the built-in programs than by any other single factor. The selection prec-
vided, their flexibility and efficiency are all key factors determining the
final usability of the system. ITn micro-PROLO6 this problem is made worse
by the severe space censtraints on a micro-computer.

A special feature of the built=in programs in micro-PROLOG is that
they mocel as closely as possible normal relations. Ffor example the SUM
relation can be viewed as a collection of addition sums, and the PROD
relation consists of the various 'times tables'. Consequently the built=in
programs must attempt to simulate all the various possible patterns of use
of the relation; and the SUM built-in program must be able not only to add
up numbers, but also to subtract them.

For reasons relating to efficient implementation micro-PROLOG
compromises to some extent and generally allows some of the uses of its
built=in programs but not all. In particular the assembler coded built=in
programs only implement the deterministic uses of the relations they repre-
sent.

So, in general each built=in program may have several uses. This helps
to mimimise the number of names the programmer has tc know, and also helps
to keep micro-PROLCG programs 'reversible'.

If a particular call to a built-in program has an illegal use (for
example if SUM is called with two or more arguments as variables) then the
system reports a "Control Error"” and aborts the execution. An error of this
kind usually occurs only if there are too many variables in the catl.

The 35 or so built=in programs are divided into a number of functional
groups: the arithmetic operations, string operations, input/output opera-
tions, type predicates, data base operations, logical operators, module
construction facilities, program Library operations and miscel Laneous
programs. We take each group in turn and describe the formats and semantics
of each built=in program.

The three arithmetic relations SUM, PROD, and LESS cater for the
normal operations on integers of addition, subtraction, multiplication,
division and comparison

5.1.1 SUM.

(SUM x y 2) “x+y=2"

When used with numeric arguments the SUM program can:

1. Check a sus, If all arguments are numbers then SUM succeeds only
if the first two numbers add up to the third. (16 bit arithmetic
is used, with an overflow error trap.) For example, (SUM 20 30
50) succeeds.

2. Add two numbers together, If the first two arguments are numbers
and the third a variable then the call succeeds by binding the
third argument to the sum of the first two., For example, (SUM 30
-2 x) binds "x" to 28.

31

Built=in Prograas

Se Subtract tyo nusbers, If the third argument is a number, and
either the first or the second also a number (with the remaining
argument a variable) then the call succeeds by binding the
variable in the call to the result of subtracting the first
number (or second) from the third. For example, (SUM x 3 15)
binds "x" to 12, as does (SUM 3 x 15),

I1f an addition or subtraction results in an overflow, then micro=-
PROLOG reports an "Overflow’ error, and aborts the current evaluaticn,

S.1.2 PROD
(PROD x y 2z {u)) "x =y {+u} = 2, u is optional”

The PROD program implements multiplication and division. The allowed
uses are: g

1« Check a product. If PROD is called with three arguments, all of
which are numbers, then the product of the first two numbers is
checked against the third number. If they are the same then the

call succeeds, otherwise it fails. For example, (PROD 3 &4 12)
succeeds,

ments knocwn (numbers), and the third argument a variable, the
call succeeds by binding the variable to the product of the two

numbers. For example, (PROD 3 =4 x) results in "x" being bound to
=12 :

3. Division. There are two forms of the PROD program which can be
used for division. For so-called perfect division where the

divisor divides exactly into the dividend the three argument form
is used:

(PROD x 10 30), ,
(PROD 10 x 30) .

In this form the PROD call only succeeds if the division is
perfect, in which case the variable is bound to the quotient.

~_ In the second form the PROD program has four arguments, the
‘fourth argument forms the remainder of the division’ For example,

(PROD 3 x 17 y) results in "x" being bound to S and "y" to 2, as
does (PROD x 3 17 y).

5.1.3 LESS®
(LESS x y) "x is Less than y"

The LESS built-in predicate implements the inequality test for num=
bers. Only one arithmetic usage is allowed, where both arguments are
numbers. In this case the call succeeds if the first number is numerically
less than the second; if they are equal or if the first number is greater
than the second the call fails. For example, (LESS 3 2) sueeeedaafads,

5.2 String operations’

In sicro-PROLOG strings are represented by constants. There are twvo
built=in programs that manipulate the names of constants. The LESS preci~
cate performs a textual comparison of two constants' names and STRING is

32

Built=in Prograoms

used tc transform Lists of characters to constants and vice versa,
921 LESS
(LESS x y) “x texicographically Lless than y"

Like the inequality test for numbers, this test for constants tests
that the first argument (which is a constant) is textually less than the
second (which must also be a constant). The ordering used is the lexico=
graphical orcering, based on the ordering of the uncerlying character set
(namely ASCII), and compares the names of the constants.

For example, (LESS FRED FREDDY) succeeds since "FRED" is Llexically
less than “FREDDY'".

S.2.2 STRING'

(STRING <list> <constant>) the <list> of letters forms <constant>

The STRING built=in program enables the programmer to take apart a
constant into its constituent characters, and vice versa to pack a list of
characters into a single constant. There are essentially two uses of the
program:

1« Unpacking: to produce a List of characters from a constant. In
this use the second argument should be bound to a constant (not a
number or list), and the second unbound. The effect of the
program is to bind the first argument to a list; if the empty
constant ' is used then the result is the empty Llist. So, for
example, "(STRING x fred)" results in "“x" being bound to "(f r e
d)”, and "(STRING x "A=x")" binds "x" to "(A =)",

The first argument may be partially instantiated; this
would allow some comparison of the List of characters and the
constant, as well as being able to 'pick off' some specific
characters of the constant, In the case where the two arguments
are fully gound a check is performed to see that the List does
name the constant. Some examples of this use are:

(STRING (f r x d) fred) x
(STRING (f rlx) fred) «x
f

e
(e d)
(STRING (f rlx) gerry) ails

i

L

The list of characters must be just that: a Llist of
constants which have single character names.

2. Packing. This takes'a List of letters and produces a constant
from it.ei It is the inverse of the unpack use of STRING Some
example uses:

(STRING (f r e d) x) X
(STRING () x) X

fred

0w

The input/output facilities are divided into two groups: Console I/0:
and Disk 1/0." Console I/0 refers to terms read from the keyboard and
displayed on the console, and disk 1/0 transfers terms to and from the disk
system. The 1/0 facilities described here are the first example of a non-
logical feature of micro-PROLO6, this is because they depend on their
behavicur (reading and writing terms) for their meaning.

33

BulLT 1N rrograss

There are four built=in programs for deaLihg with Console 1/0: Read,

Print, PrettyPrint term and RFILL, which respectively read a term from the

console, print 2 list of terms, pretty print a list of terms and 'pre=fill'
the keyboard buffer with a List of terms,

5J3.1 R

(R x) "read a term from the keyboard and bind to x"

The Read program reads a single from the keyboard and binds its argu-
ment to the term Yt reads in. It must be called with a variable as its
argument, otherwisé a "Control Error" is reported.

Any variables typed in appear as variables in the term, though they
are cocmpletely new variables differing from any others that may appear in
the program.

See Section 3.1 for details of how micro~-PROLOG accepts terms from the
keyboard. . :

S3.2 P
(P <seq. of terms>) '"print the <seq. of terms> on the console"

The Print program prints its arguments on the console output device.
Each character in the terms of its arguments are printed as they are,
rather than being specially 'exhibited'. There is no implicit new Line
after the print operation has completed: though it can of course be prog-
rammed by printing control characters.

For example, if the console uses Control=L to clear the screen then

(P L)

clears it. Any variables occurring in the list of terms are displayed as
R, N T e 2" TR 1", 21, "X 2" and 'sE on, c¢Orresponding to the
order that the variables are encountered during the Print, ~ Variables
appearing in more than one term will have the same print name. Note

that if there are more than 128 different variables, then subsequent var-
jables are displayed as "?77",

5.3.3 PP
(PP <seq. of terms>) '"Pretty Print <seq. of terms>

The PP program displays its arguments in a pretty printed format.’ This
is probably the best way to view the structure of terms constructed by the
your program. It is used for example by the LIST program when displaying
clauses. :

The PP program uses a rudimentary algorithm for distributing terms
accross lines. Each time a term of odd nesting depth is encountered it is
put onto a new line with some indentation which depends on the depth. Ffor
example the term “((P (t))(Q (t1 t2)N" is displayed as:

(P (t))
(¢ (t1
t2)))

If a term that happens to name a clause is displayed in this mannrer,
it has the effect of displaying the head of the clause on a single Lline and
each atom in the body on a separate line and slightly indented, exhibiting
the structure of the clause.

34

e

Built=in Progroms

Ary control characters occurring in terms that are pretty printed are
displayed in the "“Kchar>" format. If a quoted string type of constant ics
pretty printed then it is displayed in its quoted form, with two quote
characters on either side. For example the call:

(P "“(The man')
displays:

(The man
on the console, whereas the call:

fPP *(The man'™
displays:

*“(The man"

on the console. The pretty print operation is always completed by a car=-
riage return/line feed, so a new line on the screen is performed by:
ll(PP)II or llPPli. p

5.3.6 RFILL

- - -

(RFILL <seq. of terms>) "Fill keyboard buffer with <seq. of terms>.

The RFILL program is used to ‘pre=fill' the keyboard buffer prior to
keyboard entry.” It is similar to the "PP" built-in program, in that it
takes a List of terms as arguments and 'writes' these terms into the
keyboard buffer. This program is very useful to implement editors in
micro-PROLOGE as in the structure editor and in the Simple front end.

For example, to pre-fill the keyboard buffer with a sentence such as

"John Likes Mary" we would call: "(RFILL (John Likes Mary))'.

When a subsequent read "(R x)" is executed it is as though this term
had already been typed in at the keyboard. The "R" program detects that 2
previous "RFILL" has been executed, and instead of starting the input with
the input mode as is normal, it starts in edit mode. The contents of the
buffer are also displayed. 1In general it is as though the editor were
primed with a "L" command, (as opposed to the "i" command it is normally
primed with).

RFILL also has the side effect of clearing any previous contents of
the keyboard buffer. If several terms had been typed on a line then any
'unused' terms would be ignored.

L e

5.4 Disk 1/0 ¢

micro-PROLO6 supports files of text under CP/M, j.e. files of ASCII
characters. These are accessed sequentially via the built=in programs READ,
W and WRITE or randonmly via the SEEK program. Up to four files may be
active during an evaluation at any one time, any attempt to have more
results in the "Too many files opened" message.

S.4.1 OPEN
(OPEN file-name) “open file for reading”

This built=in program opens a file for reading. The "file-name" is a
constant which names a file according to the CP/M file naming conventions

35

(see Section 3.2.5.1 for details).

If the file was previously open for writing then the file is first
"$Lushed' and closed down before starting the read. This means that it is
not possible to simultanously read and write to a file. The first charac-
ter of the file is read in by the OPEN program, so if the file is empty or
if it is not there then the message: '"File not found" is printed, and the
OPEN call fails.

If the file was already open for reading then the file is 'rewound' to
the beginrning by the OPEN program.

5.4.2 CREATE

(CREATE file-name) ''create a new file for writing”

The CREATE program opens a new file for writing. Any old file of the
same rame is first re-named to have extension ".BAK", and the new file is
then created. This means that files are automatically backed up. :

If the file is already open for writing then it is merely rewound to
the beginning.

. 5.4.3 CLOSE

(- LOSE file=name) "close down the file"

In CP/M there are no special actions associated with closing a file
which is beirg read only; hcwever a file which is being written to must be
explicitly closed down, otherwise the disk file may not contain the right
data. This CLOSE program performs this operation and releases the file
from micro-PROLOG It is also used to close down files opened for read
access.

S.4.4 READ
(READ file~name x) "read a term from <file=name> into x"

The READ program reads a single term from the named file and binds its
argument to the term. If the call reads past the end-of-file then the READ
call fails.

© 545 WRITE
(WRITE file-name <segq. of terms>) "write <seq. of terms> to the file"

The WRITE program writes the terms in the <seq. of terms> into the
file, in the same form as the PP program. This ensures that any term
written onto a disk file can be subsequently read back in as the same term,
with the exception of variables which are renamed,

Sb.6 W

(W fiLe-name'<séq. of terms>) "write <seq. of terms> to the file"

The W program is the same as the WRITE program except that the terms
are written in the same way that "P" displays terms on the console, Note
that terms written using "W" may not be re-readable as terms.

5.4.7

117;]

EEX

(SEEK file-name pos) "file is at pos"

36

Built=in -Programss

The SEEK program identifies 'where' in a file the program is currently
pointing. There are two modes, either the 'pos' argument is unbound cn
entry to SEEX, or it is a number. The 'pos’ number is in terms of the
number of characters from the start of the file.

If the pcsition argument is unbound then SEEK returns the current
nositicn in the file; if the argument is given then the file is positioned
tc the position given.

Extreme care should be exerc1sed if writing into the middle of a file,
as there is no protection against overwriting already existing terms on the
file.

SEEK can be used to implement a8 system where One or more programs can
be on disk instead of in memory. The following proyram will do this

automatically:

((RPRED x y 2) {file x contains clauses of the form (ylY) }
(SEEK x 2) {starting from 2}
(READ x y1) {read in candidate clause}
(SEEK x 21) {where are we now?}
(OR {either its the right clause:)

(CEQ (ylY) y1) 1Y) {and execute the body of clause just read}
((RPRED x ¥y 21)))){or continue down the x file until y is foundl}

To use this program (ignore the bits between the curly brackets)
to keep the clauses for Llikes (say) on the disk file LIKES (say) replace
the clauses for "likes" in the program with the single clause:

(Clikes!ix)
(RPRED LIKES (likesix) 0))

_ The file LIKES must also have been OPENed prior to using the program
for "likes". The LIKES file can be generated either by using SAVE (see
below) or specially written by another program. The Likes clauses in
“"LIKES" can be general (including recursive); and that there can be more
than one file with the "likes" clauses on it (just use more than one rule
as above). °

5.5 Iyge Predicates’

The type pred:cates test a single argument for their type.,uhether it
is numeric, constant etc.

5.5.1 NUM

(NUM n) "n is a number"

The NUM built=in predicate tests to see §if its single argument is
numeric or nnt. If it a number the call succeeds, if the argument is a
variable then the evaluation aborts with a "Control error”, otherwise the

call fails. For example, (NUM 3) succeeds.
5.5.2 CON
(CON ¢) "¢ is a constant"
The CON built-in predicate test to see if its single argument is a

constant. For example, (CON CON) succeeds, whereas (CON ()), and (CON D
both fail. If the argument is a variable then the evaluation aborts with a

37

. Built-in Prcgraas

control error,

5.5.3 SYS

(SYS t) "t names an atom which is built=in"

sfg‘tests to see if its argument is a built=in program or not. It
succeeds if it is, fails if it is a user defined program or if there is no
such program,

5.5.6 VAR

(VAR x) "at the time of the call x is a variable"

Strictly nomlogical, the VAR built=in type predicate checks to see if

its argument is currently a variable. (It is nomlogical because a success-
ful call is invalidated if the variable is subsequently bound)

The basic clausal form of logic programs is extended to include some
other connectives via the logical operator built-in programs. These prog=
rams implement disjunction (0OR), negatiomas=failure (NOT) conditionals
(IF) and identity (EQ). These can be used to increase the efficiency and
(scmetimes) the readability of micro~-PROLO6 programs,

5.6.1 OR

(OR goall goal2) "either goalil or goal2 is true"

-

The disjunctive operator OR has two arguments: each of which is a List
of atoms. The OR program succeeds by succeeding either of the two goals in

the call. For example, (OR ((SUM 3 2 x)(P x OK))((P not ok))) succeeds in
the first branch, and prints "S OK" on the console.

An empty goal (named by the empty List "()") always 5ucceeds, and
hence if used as an argument to OR acts as a ‘true' branch,

5.6.2 NOT.
(NOT pred arguments)

The NOT operator implements negatiomas-failure [Clark 1978]. A neg-
ated atom has the form "(NOT pred args)"” where "(pred args)" is the
corresponding un-negated atom.

Negatiomas-failure is not logical negation, but corresponds to the
rules

If a goal 1is unprovable (i.e. any attempt to prove it
ends in finite failure) then assume that the goal is false.

For a great number of cases (especially when using negation to test a
condition) negatiomas-failure is adequate, and coincides with the clas~-
sical- concept of negation

The negated atem should contain no variables, otherwise the NOT prog=
ram may behave incorrectly. In particular if the atom succeeds by binding a
variable in it then the NOT program fails, whereas the system should abort,
since logically the negated atom can neither be false nor true., A simple
example illustrates the difficulties that can arise: given the two clauses:

38

Built=in Prograas

((Not-test=A B))
((hot=test=B A))

and the goal statement:

. 2((NOT Not-test=A x)(Not-test=B x))

-

/

This goal Logically should succeed, but with our NOT it fails because the
NOT call fails. However the equivalent goal:

2((Not=test=B x)(NOT Not-test-A x))

succeeds, with "x" equal to "A", A logic program should not be this sensi-
tive to ordering of sub=goals.

S.6.3 IF°

(IF atom goalA goalB) "If atom is provable then IF is
provable if goalA is
else it is
provable if goalB is"

The IF program implements the conditional form. It is primarily used
for efticiency because in practice the excessive use of conditionals ham=
pers readability. A statement of the form:

(A ...)J(IF (C ...) (bodyA) (bodyB8))
is (almost) equivalent to the pair of clauses:

((A o..) (C .o-) bOdy A)
(C(A oee) (NOT € ,..) bodyB)

together with control information which says that the conditional test
"(C .«.)" need not be executed more than once, :
Conditionals are a mixed blessing because less use can be made of
unification. For example in the two clauses for A above it could be that
the heads of the two clauses would naturally be slightly different. This
means that when the conditional form is used the head must be the 'most

general' of the two, with extra equalities in the conditional branches to
bind the variables. '

5.6.4 EQ°
(EQ t1 t2) "t1 is identical to t2"

The EQ program implements the identity component of the equality

axioms: viz x=x. For example, (EQ (x1 x2) (A B)) results in "“x1" = "A",
and llKZIl - lla!l.

5.7 Data base operations’

Bicro-PROLO6 has a collection (3) of programs that enable clauses to
be accessed, added and deleted from the user's work-space at run-time, Note
tﬁat these facilities are dangerous (they are nomlogic) and should be used
with care. They are included because the supervisor needs them and also
because they facilitate certain language extensions. (See Chapter 6 for
examples of how they are used in this way.)

Built=in Progroms

. St LA

(CL <clause>) "clause is a clause in the program”
CR (CL <clause> <start-#> <index=#>) '"clause after start-# at index=#"

This program accesses clauses from the user's work-space. This is one
of the few built-in programs that is at all non-deterministic as it can be
used to backtrack through an entire relation. The only input constraint on
CL is that the predicate symbol of the clause is known. For example,
(CL (CAtIx)IX)) succeeds if there are any "At" clauses in the workspace,
in which case the variable "x" is bound to the arguments of the head atom
of the clause, and the variable "X" is bound to the (possibly empty) Llist
of atoms that make up the body cf the clause.

The three argument form of “CL" can be used to find particular clauses
in the program, the start-# is the first clause to start looking at, and
the index-# is the actual index of the clause found in the relation. For
exzmple this can be used to find where a clause is in a relation:

(CL (C(likes John Ix)ly) 1 X)

returns in "X" where the first clause that matches "({likes Johnix)ly)" is
in the "likes" program. (If the three argument form is used the second
arcument must be given). We can also use it to see what the nth clayse is
as in:

(CL ((likesix)ly) & &)
5.7.2 ADDCL
(ADDCL clause {n}) "add clause to the program {after nth clause)"

The ADDCL program is used to insert clauses into the workspace. The
clause to be added is named by a term constructed according to the syntax
of clauses: a list of atoms, with the first atom being the head .

From a logical point of view, the syntax of clauses is such that the
term which names a clause in the meta language is identical to the term
which is the clause in the object language. Any variables that appear in
the term naming a clause appear as variables in the clause that is added to
the workspace. For a detailed examination of the relationship between meta
Eevel terms and object level terms and clauses see chapter 12 of Kowalski

19791.

This way of naming clauses (using '‘real' variables to name variables
of the clause) is actually logically incorrect, but PROLOG has always been
dore in this ‘way.

If ADDCL is used with a single argument then the clause is added ¥ﬁ
the end of the appropriate program. Otherwise it is inserted after the n
clause in the program. For example, if "0" is used as the clause number,
the clause is inserted at the front of the program. For example, (ADDCL
((append O x x))) adds the clause

(Cappend () x x))

to the end of the "append” program.

There is a restr1ction on the use of ADDCL: namely that clauses can
only be added to user defined ‘programs, not to built-in programs. This
means that it is not possible to redefine the built=-in programs, whether
they are implemented in micro~PROLOG or assembler.

40

-

" 5.8.2 SAVE

Built-in Programs

(DELCL clause) '"delete clause from the workspace" or
(DELCL pred n) "delete clause n from program pred”.

The _program DELCL is used to delete clauses from the user's workspace,
In the first form the program is searched for the clause, and if it is
fecund (unified with the clause) then the aporopriate clause is deleted. In
the second form the clause to be deleted is specified by a predicate symbol
and an otfset. For example, (DELCL ((append | x1) | x2)) Looks for an
"append"” clause and deletes it, the variables "x1" and "x2" are unified
with the head arguments and body of the clause respectively.

The restrictions that apply to ADDCL also apply to DELCL: only user
programs can have clauses deleted from them. If the clause is not part of
the program then the call to DELCL fails.

The program Library facilities from the supervisor are also available
as built-in precdicates. These allow saving of programs, Lloading programs
and listing programs at the console.

5.8.1 LIST

(LIST ALL)
or (LIST <list of predicate symbols>) “lList program(s) at console"

The LIST program either lLists the entire user program at the console,
or, if given a2 list of predicate symbols as a parameter, just individual
programs.

For example, LIST ALL lists the whole program,

(LIST(Likes Fred Angie)) Llists programs "Likes", “Fred" & "Angie"

(SAVE file)
or (SAVE file <list of predicate symbols>) "save program on disk”

The SAVE program saves the user's program on the disk file.” The second
ferm of the SAVE program allows selective saving of the user's program onto
disk. For example, (SAVE "A:TEST.LOG") saves the entire work space on the
disk file "TEST.LOG" on drive "A", The old file, possibly from a previous
"“SAVE"”, is renamed with extension ".BAK", ensuring automatic backing up of
programs,

5.8.3 LOAD™
(LOAD file) *load program from disk file"
This program reads the disk file, and loads the program ‘contained on

it. For example, (LOAD TRACE) Lloads the program in the disk file
“TRACE.LOG” on the logged in disk.

5.9 Module Construction Facilities®

mricro-PROLOG offers a limited facility for constructing modules,
These enable programs to be put together from different sources while

41

BullT=1Nn rrograas

avoiding name clashes,

A module has four componentS' a name, (which is a licro-PROLOS cons=
which are pr1vate to that module, a list of names which are be1ng 'made
available' by the nmocdule: the Export list, and a list of names that the
mocdule imports from the outside: the Import lList.

Moduies are LOADed and SAVEd automatically by the LOAD and SAVE prog-
rams. For the LOAD the function is completely automatic: files containing
mocules have a different structure to ordinary program files, and for the
SAVE program there is the extension:

(SAVE file module-name)

which saves the module named (and its sub-modules) on the specified file,
The LIST program can also be used to list the contents of a module; by
using

(LIST module=name)

At any one time there is what is called the 'current' module. This
defimes what programs are currently available. In the current module the
symbols that are available are those appearing in the Import/Export Llists
as well as the Local names. However when the current module is LISTed, or
SAVEd only thcse programs from the Export list and the local programs are
displayed.

The supervisor uses the current module's name as its prompt, so if the
current module were called "simple” then instead of the "&" prompt we get
the prompt:

simple.

There are three programs that are provided to control the uses of
modules: CRMOD, OPMOD and CLMOD.

5.9.1 CR RMOD

(CRMOD module~name <Export Llist> <Import List>) "create module"”

CR¥OD creates a new module of name module-name, and enters it; i.e.
makes it the current module. The Export list and the Import List are as
defirmed above.

5.9.2 OPMOD"
(OPMOD modul e-name) "open module"

OPMOD enters the "already existing module 'named; i.e, it becomes the
new current module. ;

5.9.3 CLMOD®

CLMOD "close module”

CLMOD drops ‘out of the current module back into what was the previous
current module. It is not possible to drop out of the base module.

42

—

Built=in Prograas

5.10 Miscellaneous Predicates

In this secticn we (draw together a rag-bag of functions not covered
above. These include the dictionary relation and some control fynctions.

”

5.10.1 DICT
(DICT module <Export List> <Import Llist> <seqg. of constants>)
The DICT program contains the dic;ionary of the current module.
5.10.2 QT

QT "exit to monitor"

Execution of this program will cause an exit from the micro—PROLOG
system into CP/M,

5.10.3 £

/ for controlling backtracking

The slash program is used to ‘control backtracking. Its effect is to
eliminzte backtracking between the call which invokes the clause, and the
"“/" evaluation. For example, in the program

((P ...)(A .-.)(B -..)/(c ...))

the atoms (A ...) and (B ...) are executed in the normal way. If they
succeed then the slash is executed. Slash always ‘'succeeds'; it is used for
its side etfect,

It suppresses further backtracking in the evaluation of the (A ...)
and (B ...) atoms and it also removes any alternative clauses for P that
have not yet been tried. In other words if (C ...) fails, then the call (P
alternative ways of executing the (A ...) and (B ...) atoms, and there may
have been more (P ...) clauses; none of which will be tried

The slasf can also be used to ‘tell' micro-PROLOG6 that certain prog="

rams are actually deterministic, allowing the system to make space
eptimizations. .

S.10.4 FAIL’

FAIL "false”,

N s s

The FAIL predicate alua}é evaluates to false.! This is used to fail a

branch of the proof, FAIL has no clauses, but the interpreter knows about
1t and dces not report a “CLAUSE ERROR".

5.10.5 <SUP>
<SUP> is the supervisor.

The supervisor appears as the program for the predicate symbol
“<SUP>, It is a very simple program with just a few clauses. Its main

function is to call user programs, and other built-in functions. The
actual program is shown here:

(("<sup>")
(CMOD Y) {find the current module name (system use only)}

43

L

Built=in Programs

(P Y) {print module name as prompt}

(R X) ; {read in command word)

"'<>" X))/ . {process command deterministicallyl .

C'<SUP>")) {tail recurse cn supervisor (lcok for next command)
((Il()lt x)

(CON XD {if command is a constant..)

(R Y) {read in single argument)}

(X Y)) {execute command (using meta-variable)}
O™ (X1Y)) {if command is a micro~-PROLOG clause..)

(ADDCL (X1Y))) {add it to the program}

(O™ X3 {come here if command fails, or illegal input)
(PP 2))

Chapter 6

Implementing High—ilevel features with low-level primitives

This chapter is dedicated to the would be supervisor writer: that is
the programmer who wishes to extend micro~PROLO6 with high level features.
To illustrate how one might go about extending the system we take a numbter
of fairly simple extensions and describe in scme detail how they are imple~
mented using the Low=level primitives given

A common kind of extension involves extending the language towarcs a
richer notation which is closer to full first order standard form [Kowal ski
1979]. However, since we tend to rely on the operational semantics of the
interpreter for the implementation of a new feature, we generally have to
compromise to some extent on its logical nature to achieve a reasonable
efficiency. Usually, a subset only of the full power is implemented.

The extensions we consider are negation, 'One-of', conditionals, lists
cf solutions. Negation and conditionals are already in the supervisor.
Finally we describe how to extend the system by implementing a front end to
the sytem, in particular vwe Look at the "Simple"” system discussed in Chap~
ter 4.

Most PROLOG systems do not support full logical megation, but rather
attempt to implement ‘negatiomas~failure'. This can be shown, under cer—.
tain circumstances, to be equivalent to classical negation and for a rull
treatment of this see Clark [1978]. In this section we concern ourselves
only with its implementation

The essence of the negation~as-failure rule is that an atom is true
with respect to a logic program only if its provably true, and false
otherwise. So negation can be implemented by the simple trick of reversing
the normal failure and success pattern of the interpreter. We fail a ne- .
gated call 1f the call succeeds, and we succeed the negated call if the
call fails. A “simple micro-PROLOG program that does this is:

((NOT x) x / FAIL)
((NOT x))

Operationally (the only way this program can be understood), what occurs
when NOT is called, for example:

(NOT (EQ A B))

is that the argument of NOT (which names an atom) is itself called using
the meta-variable facility.

If the atom in the NOT call succeeds then the slash is executed. The
effect of the slash is to remove all the choice points inside the called
atom. Moreover, it also removes the second NOT clause from consideration
After the slash the built-in predicate FAIL is executed, which of course
fails. Now, since there are no more choices Left for NOT and for the called
atom (they have been explicitly removed) the call to NOT also fails. Hence
if the call to the atom succeeds, then the call to NOT fails.

. If however, the call to the atom fails, then the second clause for NOT
1s tried. This clause always, unconditionally, succeeds. So the NOT call
succeeds if ihe atom fails:

45

Izaplementing High—level features with low—level primitives

£.27C(NOT (FQ A B)))
ENTER (NOT (EQ A B))).C
ENTER (5@ A B).C

FAIL (EQ A B)

FINISH (NOT (EQ A B))
&. '

Roughly then, this is the behaviour we want from the NOT program,
However there is an important case where the program goes wrong. If the
call te the argument atom succeeded, but only by binding a variable in it
then it is wrong to fail the NOT call, what we should do is abort the
execution with a "CONTROL ERROR",

It is too expensive to do the required check though, and for cases
where the atom has no variable in it the check is not necessary anyway, SO

we do rot program it up.

Finally a syntactic convenience: as it stands the NOT program above
requires a single argument that itself names an atom. This leads to two
extra brackets when it is used, compared with a normal atom. A more elegant
approach is to allow NOT to accept a Llist of arguments, this Llist naming an
atom: the first argument is the predicate symbol, and the rest are the
arguments to the atom. The result of this is that we can write our negated
atoms with no extra brackets:

(NOT EQ A B)

The modified program that accepts this is:

(NOT | x) x / FAID
(INOT | x))

6.2 One-of ;
The 'One-of' operator is a useful way of telling the system 'that a
particular call to a program is actually functional: there is only one’

solution. This then allows the system to economise on space by not saving
the backtracking points left after finding the first solution

In writing this program we choose the same format as for negation: the
‘One-of' symbol come=« at the front of the atom involved. For example,

(One-of Member (B x) ((A 32)(B 1)(C 3(B 2)))
only finds the first "(B x)" pair in the list. J
The 'One-of' program is simple: we find the first solution, by using
the meta-variable facility as in NOT, and then remove all the remaining
backtracking points by slash: :
((One=of | x) x /)

63 Conditionals’

Conditionals are used to express conditional branches in a program
clause: one of two branches is executed depending on the result of some
test. The ideal we want to aim for is for a statement of the form:

(CA o) CIF (C) CCTHEN L.)XCCELSE ..2))))
to be logically identical to the pair of clauses:

(CA ..)(C LJICTHEN L))

W e ———

————
i

L, ,fr

Izplementing High—level features with low—level primitives

((A -o.)(HOT C o.o) (ELSE ...))

tccether with control informaticn that the test "(C ..J" only needs to te
perforzed once. However we have to compromise, SO we actually implement the
conditional to be equivalent to the pair of clauses:

((A .o-) (0 nE"Of C ..-) (THEN .-o))
(CA .oo) (NOT c .c.)(ELSE o--))

The IF program has two clauses. The first calls the conditional test,
and if that succeeds it removes the_second clause, by using slash, ans
executes the THEN branch. The se..nd™F clause (which is only entered f
the conditiornal test fails) simply executes the ELSE branch.

((IF x X Y)
X
!
I X)
(KIF x X ¥Y) | Y)

A more complete solution, which allows backtracking on the conditional
test, would call the conditional test twice: once in such a way as to avoid
binding any variables in it, and if that succeeds then to call it again in
the *then' branch to bind the variables. The problem with this solution is
that it calls the conditional test twice which is exactly what we wanted to
avoid! For this reason the simpler program is the one actually embedced in
the supervisor as the IF program,

6.4 Lists of solutions'

A common requirement in logic programs, particularly for data=-base
applications, is for a complete List of answers to be constructed, rather
than a2 single one at a time. To answer this need we extend the Language to
allow a primitive 'set' construct.

What we would Llike 1s for an expression of the form "{(< , , >IP}"
which signifies a set of Luples each corresponding to a different way cf
solving P, to be written in micro—~PROLOG. What we settle for is a program
ALL which has the form "(ALL x y 2)" which unifies "x" with a List of terms
"y'" each of which corresponds to a solution of the atom "z". Note that the
termination of a call to ALl is entirely govermed by whether all of the
answers to "2" can be found in a finite time, and that duplicate solutions
are not removed.

The strategy we follow when programming ALL is to call the atom “z2"
and every time it succeeds add to a global variable the term '"y" and then
artificially fail. When all the alternatives for the atom are exhausted the
call to ALL succeeds by binding the list constructed to the answer
variable,

Although PROLOG is an applicative (i.e. side effect free) language,
the primitives ADDCL and DELCL can be used to program up global variables
which can be overwritten. For example to maintain a variable called
‘Global' we have in the workspace a clause of the form:

((Global Value))

where Value is the current value of the Global variable. To access the
variable's value we simply have a call to Global:

(Global x)

47

Izplesenting High—level features with low—level primitives

To upcdate the value of the aglobal variable we first delete the current
¢clause using DELCL, and then ADDCL 3 new clause with the updated value.

=

(DELCL ((Global oldvalue)))(ADDCL ((Global newvalue)))

1f we wish to simultanecusly access and delete the value of a glecbal
variable we can do so by using the DELCL to unify a variable with the old
value:

(DELCL ((Gleobal x)))
. >
For example in our ALl program we maintain as a global variable the
list of solutions found so far. When a new solution is found we want to add
it to the list, to do this we access the List and remove the global
variable at the same time using

(DELCL ((Global X)))(ADDCL ((Global (newtermlIX))))
The program for finding all solutions can be written as:

(CALL x y 2)

(ADDCL ((GLobal ())))

-

(DELCL ((Global Y)))
(ADDCL ((Global (y1Y))))
FAIL)
((ALL x y 2)

(DELCL ((Global x))))

The difficulty with this program is that it does not allow for the
possibility of more than one ALl call being invoked at once: an ALl call
may itself have AlLL calls imbedded in it.

The program for ALl presented below is a Little more complicated since
it keeps track of different calls to the same program (even nested calls).
To to this we have a second global variable All=num which counts the number
of times the ALl program has been called, and we have renamed the original
global variable to ALl=List. '

(CALL x y 2)
(DELCL (C(All=num X1))) =
(SuM X1 1 X2)
(ADDCL ((ALLl=num X2)))
(ADDCL CCALL=List X10))))
(ALl=find X1 x y 2))

((AlLl=find X1 x y 2)
2
(DELCL (CALL=List X1 Y)))

(ADDCL (CALL=Llist X1 (yIY))))
FAIL)

(CALL=find X1 x y 2)
(CELCL C(CALL=List X1 x))))

((All=num 0))

48

Isplementing High-level features with low-level primitives

In this section we look at the implementation of the Simple PRCLOG
system described in Chapter 4. It illustrates how a more friendly system
can be built from the micro-PROLOG basics.

The main function of the front end program is to compile between
Simple PRCLOG sentences and micro—PROLOG clauses, and to invoke evaluation
of Simple PROLOG queries. 0f course the correspondence is very close:
Simple PRCLCG is essentially syntactic sugar for micro-PROLO6. The prin-
ciples behind the implementation apply to more .omplex transformations,
such as a natural language front end system,

The kernel program in Simple is "parses-to', this translates between
Simple PROLOG and micro~PROLOG. Here we shall look at a simplified version
of the program, one that only knows about binary predicates.

A Simple PROLOG sentence has a very simple (sic) structure: it con=
sists of a list of terms which are grouped into atoms; the atoms of the
sentence are seperated by some constants which act as key words. On the
other hand micro~-PROLOG6 clauses have a Llist structure: a clause consists of
a list of atoms, each atom is itself a List the first element of it being
the predicate symbol.

We can represent a Simple PROLOG sentence as a List of terms:

(John Likes Mary if Mary likes John)

or, more generally, we can represent it by a pair of lists, the differe=-
nce between them being the Simple PROLOG sentence: .

Sentence List2
g < -~

(John Llikes Mary if Mary likes JOhn ees)

List1
e

We can name this difference between the two Lists'by a term of the form
“"(listl to Llist2)":

((John Likes Mary if Mary Likes John ...) tO s..)

This latter representation is very useful when parsing the Simple PROLOG
sentence; we can write the parser as:

((parse (x to y) (XI1Y))
(is-atom (x to x1) X)

(is-body (x1 to y) Y (if)))

The English reading of this is:

To parse the sentence represented by the List "x to y"
into the clause with head X and tail Y, first find an atom X

between x and x1, then parse the body Y from x1 to y using
the ‘" 2yword "if". ;

49

Isplementing High=level features with low—-level primitives

X Y .
1
A — X rrbn
' . Bk
(Jchn Likes Mary if Mary Likes John oo mend
\ ~ 4 . ﬁv_ 3
X Y

Since we are only parsing binary predicates of Simple, the program
for cetermining what an atom is is easy:

((is=atam ((x1 x x2ly) to y) (x x1 x2)))

This sentence says that three terms define an atom, they are represented
using the pair of Llists "(x1 x x2ly)" and "y", the difference between them
is tha list "(x1 x x2)", and this list is the micro~PROLOG atom "(x x1
x2)"., Notice how easy this transformation is, the first three terms of the
List representing the Simple PROLOG sentence only need to be slightly re-
ordered to put them into the micro~PROLOE representation of an atem.

The body of a Simple PROLOG sentence is a sequence of atoms, each atom
is preceded either by the keyword "if" for the first atom, or one of '"§" or
"and" for each remaining atom in the body. This makes the definition of
the "is-body" program straight forward:

((is=-body ((xIx1) to x2) (XIY) 2)
(imkey=-Llist x 2)
(is-atom (x1 to x3) X)
(is=bocdy (x3 to x2) Y (& and)))

The base case, where the body of the sentence is empty is equally
straicht forward:

((is=body (x to x) () 2))

The empty list is named here by the pair "(x to x)"; which says that for
any list x the difference between it and itself is empty.

Although the above programs are written in Simple PROLOG the actual
translator is of course written in micro-PROLOG The program is equally
good at translating from Simple into micro—-PROLOG as it is at translating
from Micro to Simple PROLOG

6.5.2 Organization of Simple PROLOG programs

imple PR rogram

As we mentiored above the Simple front end program compiles Simple

PROLOG programs into micro—~PROLOG format. It also stores the Simple
programs as micro~PROLOG clauses. This allows the micro~-PROLOG system
itself to be used for evaluating Simple PROLOG queries.
. Hcwever, since Simple is itself a micro~-PROLOG program some way has to
be found of separating the two programs: the Simple PROLOG program and the
front end program itself. The reason for wanting to searate them is for
program list .g and saving programs: the Simple PROLOG user does not want
to see the ‘ont end program when his Simple PROLOG program is Listed or
Saved in a3 file,

This separation is achieved by using the module construction tools
described in Chapter 5. The front end program is formed into a module
called "Simple"” which effectively hides the program from the user. ALL
that remains visible is the user's Simple PROLOG program. This also
allows us to use the built=in SAVE and LOAD programs to Save anc Load

50

)

Izplementing High-level features with low—level primitives

Simple PROLOG programs.

In this section we Loock at hcw the "Which" command is implemented,
"which" takes a goal and a term in Simple format, converts the goal to
2icro-PROLOG format and then, using the meta variable, evaluates the gquery.
If the query is successful the term is printed and the next solution to the
query is feund by artificially failing.

"Which" uses the program '"is-body" above to parse the Simple query.
However "is-bcdy" expects either the empty body or a keyword, such as "if"

or "and" on the front of the body; so "Which" tacks-on 2 suitable keyword
t0o the query.

((Which (xly))
(is=body ((ifly) to) z (if))
(exec x 2))

where "exec" executes the micro—-PROLOG query "2" using "?" and displays the
result "x" for each solution:

((exec x 2)
(? 2
(P x)
PP
FAIL)
((exec x 2)
((PP No (more) Solutions))

The "One" command is implemented in essentially the same manner. The
main difference is that instead of just failing after each solution is
printed the console is queried; if the user replies "C" (for continue)

then the next solution is sought, otherwise the "One” command just
terminates.

This section illustrates some of the techniques which can be used to
implement a front end system to micro~PROLOG Simple is a module which

~ defines some new commands which implement the various necessary functions.

It translates from the Simple PROLOG syntax into micro-PROLO6 syntax, and
Simple programs are actually stored in micro-PROLOG form, Queries are

answered by first translating to micro-PROLOG6 form and then using the meta
variable facility to evaluate them,

The Listing of the full Simple program is given in Appendix D,

51

Chapter 7

Adding assembler coded subroutines

It is part of the philosophy of micro~PROLOG that it shculd be as
extensible as possible. This is reflected in the flexibility of the syntax,
as well as in the inherent extensibility of PROLOG. A further kind of
extension provided for in micro~PROLOG is the ability to add programs to
the system that are written in other languages, in particular assembly
codec programs, and have them automatically executed by the system like any
other program. . :

To this end we have an interface which, if followed exactly, allows a
‘foreign' program to be called by the system and parameters to be passed
between it ‘and micro-PROLOG This interface is also used by the bulk of the
built=in programs, so this chapter also gives a flavour of how they are
implemented. .

A user coded program is invoked in the normal way, by an atom in a
goal statement, or in a clause. Like the built-in machine coded programs
the extent to which it behaves Llike a normal program, written as clauses,
depends on how many of the program's uses have been catered for, though
the interface only handles deterministic uses., If a nomdeterministic use
is to be handled, then it can be programmed up using 2 micro~PROLOG program
that explicitly sequences through the nomdeterministic choices.

The principal interface between micro-PROLOG and a user coded (or any
other) machine language program consists of three components. A number of
between micro~PROLO6 and the machine coded program., A Type tree is used to
specify what types of arguments the progriam can accept, how many of them,
and what patterns of use are supported. The type tree also specifies the
actual entry points into the program, so that depending on the particular
call different entry points may be entered. The third component of the
interface is the predicate symbol declaration. This declares to micro-
PROLOE a constant which describes the name to be used to access the program
ancd its initial entry point.

_ To illustrate the method for inserting a new program into micro-PROLOG
we take as a simple case study a psuedo random number generator,

The algorithm we use is based on Knuth([1968]). The most important
properties of this algorithm are that it passes every statistical test for
randemness, and it is guaranteed to have a cycle length of 216 (The maximum
possible length of cycle with a 16 bit number).

The formula for computing the next random number in a sequence is:

rand(n+1) = 13849 + 16385 * rand(n)
The format of a call to our random number generator is:
(RND var)

and it succeeds by binding the variable to the next random number in the
sequence. '

There are eight of these registers provided in the system, corres-
ponding to up to eight arguments in a call. No user coded program may have

52

‘Adding assesbler coded subroutines

more than eight arguments, though the system dces not check this. Of course
most programs have consicerably fewer than eight arguments, in which case
not all of the registers are used. However, those that are not used must
rot be altered in any way by the user program, .

A Data register has two separate components, one for input data to the
user program, and one for returning results. The input side is two bytes
long: sufficient for a 16 bit number, or a pointer. The output side is
three bytes Long and comprises a 'value cell'. A Value cell has a one byte
type field, and a two byte data field. The format of a data register is:

Output Value Cell
.,

N

-~

Type ' Value _: Input Value

. 3

The input component of the data register is determined by the type
tree. It can be either a variable, number, constant or list pointer. The
type is not made explicit as it is assumed that the type checking of the
type tree enables the selected entry point to 'know' the type of cdata in a
given input register. The user must under no circumstances affect the value
in the input register: the value can be read, but not modifiec

The output component has its type field initially set to OFFH. To pass
back a3 value it is necessary to assign the type of the answer to this
field, and to place the appropriate value in the value field. If the type
field is left at OFFH then no value is passed back, and the corresponding
variable is left unbound.

The various data types that are recognised by micro-PROLOG6 include:

NUMBER = & Data field holds a 16 bit number in two's
complement form.

NIL = 16 The empty lLlist. Data field ignored.

CONSTANT = 8 Data field points to a constant structure

LIST = 3 Data field points to a List cell

A Constant has a structure of the form:

Value Cell | Name of Constanfth

A List cell consists simply of two value cells contiguocus in memory,
with the head cell first and on an even byte boundary.

Head Value Cell | Tail Value Cell

7.1.1 ¥arning

There are other types recognised by micro-PROLOG, but all other values

aborted.

In fact it is envisaged that the type most commonly used by user
programs is that of number, It is for the sake of completeness that the

other types have been described,

53

Adding assembler coded subroutines

Type checking of arguments to a machine coded program is.controllec by
the =vpe tree. This is a data structure that is part of the program, and
must be provicded with it. Only if no arguments are expected to a call may
this tree e omitted, but if the programmer wants the system to check that
jt it called with no arguments then a tree can be specified to check for
thiz.

€ach node in the tree has 5 fields, corresponding to the possible
types that an argument in the call can have, Each different type of argu~
ment leads to 3 sub-tree of the type tree, with an empty subtree signifying
that a particular type of argument is not allowed. The empty subtree is -
mark=2d by having the value OFFH in the corresponding field of the ncde.
The Zepth of the tree corresponds with the argument position in the call:
the rcot of the tree deals with the first argument, and the nodes in the
seccend level (i.e. those immediately descended from the root) deal with
the second argument position

Type tree node:
Leaf Num Con List Var

For example the type tree for the SUM predicate may be represented as
follows:

|
num var 1St Arg

| |
|
| | |
num var num 2nd aArg
I | I
- I |
| | I |
num var © num num 3rd Arg
S | | |
Lleaf leaf leaf . leaf :
check add subtract subtract Sub=programs

And for our RND program it is:

!

var 1St Arg
|

Leaf

7. The "Leaf" field refers to the end of the argument Llist: i.e. no
argument. The subtree rooted at the Leaf field is actually an
entry point into the code of the user program proper. At this
point all of the parameters to the call will have been parsed and
the appropriate values placed in the data registers. Furthermore,
since the path from the root node of the tree to the entry point
is unique the code can simply access the values in the know ledge
that the types are as expected. ALl that is left for the program

to do is to compute the answer values, place the result in the
output halves of the data registers and return

54

Adding assesbler coded subroutines

When returning from a Leat program (by executing a "RET"
instruction) the system checks the return coce for success or
failure. If the “I" flag is set then the System assumesS Success,
ang the variables are bound as specified, if however, the "2"
flag is reset then the call 1s assumed to have failed. In this
case the micro-PROLOG system backtracks in the normal way.

2. The "Num" field has rooted from it a non-emptly subtree if a
nunber was allowed in the current argument position. If a numbter
is present, and the number subtree is ncr—empty then the number
in the call is Loaded into the appropriate cdata register, the
number subtree followed and the next argument considered.

3 If the "Con" subtree is numempty then a constant is allowed as a
legal argument. If a constant appears as an actual parameter then
the constant's address is Loaded into the input data register,

A If the "List" subtree is non—empty then a Llist is allowed as an
actual parameter. Note that this means that a nomempty Llist as
well as the empty List is allowed. If a Llist 1s encountered as an
actual parameter then a pointer to a value cell which pocints to
the List (or has NIL as a type) is placed in the cata register:
not a pointer to the list itself.

Se I1¢ the "Var" subtree is nonempty then a variable is allowed as
an actual parameter, If a variable is used where one is not
allowed then a "CONTROL ERROR" is reported, similarly if only a
variable is allowed but a variable not used as an actual para-
meter, then a "“CONTROL ERROR" also results. The Variable subtree
is used when the programmer expects to return a result in that
argument position, although there is no actual compulsion to
return a value. Note that, of course, values can not be returned
other than through a variable!

Each field in the node is a single byte unsigned number in the range
5..255. If a2 Nhon-empty subtree is rooted at a particular field then the
number in the field is a relative offset: it is the distance, in bytes,
between the target node or entry point and the base of the current node. If
an actual parameter is of a type which has no legal subtree for it, for
example if a number is supplied as a parameter but a number is not allowed,
variable was the only type allowed.

To set up the type tree interface, for our RND program for example, we
must start the initial entry point of the program as follows:

ORG <BOS> sWhere <BOS> is the contents of BOS
RNDPRG: LD IX,RNDTRE sload IX with type tree for this prog
JP TRWALK "~ sentry point inside micro—-PROLOG

swhich processes the type tree
The actual RND program, together with its type tree is given here:

RNDTRE: DEFB =1,-1,-1,-1,RNDT2=RNDTRE
RNDT2: DEFB RNDENT-RNDT2,-1,-1,=1,=1

RNDENT: LD HL,(SEED) ;Get Last random number generated
LD DE_16385
CALL MLTPLY smultiply by factor
LD DE,13849 ;add in offset

55

Adding assembler coded subroutines

ACD HL,DE ;New random number generated
LD (SEED) ML ;Store it for the next call
LD (DATA1+QUTDTA) ,HL ;Store in output register for answer
LD 2,4 ;Set up the answer type in the reg.
LD (DATA1+OUTYPE),A
CP A ;Set successful return code
RET ;JReturn to micro~PROLOG
SEED: DEFS 2 ;Storage for random number seed.

The predicate symbol declaration is used to describe the name cf the
new program, and its initial entry point, to the micro-PROLOG system. The
predicate symbol is defimed by a constant structure like that seen above.
Note that the declaration of a constant is not in itself sufficient, since
nicro~-PROLOG cces not yet 'know' about it. The new constant has to be
patched into the system dictionary before the program can be used.

The constant declaration for our RND program can be coded in assembler
as follows:

RND: PEFB & sNumber type
DEFW RNDPRG ;Initial entry to RND program
DEFM 'RND' ;Text string of name of predicate symbol
DEFB OFFH ;Byte terminator of name string

The entry in the dictionary takes the form of a list cell, and can be coded.

as: :
NEWDCT: DEFB 8 ;Constant type
DEFW RND ;Point to new constant
DEFB 3 ;List type
DEFW <SDICT> ;Point to top of system dictionary

sWwhere <SDICT> is the contents of SDICT

7.4 Inserting a program

In the micro-FROLOG system there are two pointers which are necessary
to adjust and know about when inserting a new program. The first is "BOS",
which points to the first available byte of memory.

Appendix B gives a table of useful addresses within the micro-PROLO6
system (including B80%).

micro-PROLOG Available RAM

100H Bdg

The second is a pointer to the top of the system dictionary (SDICT).

The procedure for adding a new program to micro-PROLOG (once it is
assembled into the right location) involves loading the new program star—
ting at (BOS), updating the "BOS" pointer, and updating the system
dictionary pointer.
Note It will be appreciated that any one attempting to augment micro—PROLOG
by adding new assembler built-in programs should be reasonably proficient
in (3a) programming in assembler, (b) interfacing to CP/M (in particular be
able to u=e that effectively and (c¢) using micro-PROLOG Finally, be very
careful as it is very easy to damage micro-PROLOG. (Never modify in any
way the original distribution disk.) The interface described above is a
very simple and powerful one; it is used by the great majority of the

56

<l

-

Adding assembler coded subroutines

built=in programs in standard micro-PROLCG

Acding bduilt=in programs does not invalidate the licence agreement;
hcwever it is not permitted to sell or otherwise distribute an, augmented
version ¢f micro-PRCLO6 without the written permission of the copyright
holders ¢f micro-PROLOG. 0f course any augmentations that you build are
nct the prcoperty of the copyright holcers. '

o7

Error message

Cverflow Error
Clause Error
_ Lecrtrol Error

Space Error
- Dict Error

- Syntax Error

Braak!

Too many files opened
File not found
Directory full

- Disk full

File closing error
File Error

Not write mode

System Abort

Appendix A-

Error conditions and messages

Arithmetic overflow in an arithmetic operation.
When a call is made to a program with no clauses.
When a call is made to a system function,

with too many variables, or when a meta-variable

is used and it is not in the correct form,

The heap has run out of space, (usually only

occurs after extensive calls to garbage collector)
The dictionary area has overflowed. Try to rewrite
program with fewer constants.

Badly formed term. The read operation is restarted.
The user has interrupted the execution of the system,
Too many active files for Micro-PROLOG.

The file specified in a OPEN call was not on disk.
The directory space on the disk is full.

The disk is full.

An error on closing a file.)
Attempted to write or read from an unopened file.
Shouldn't happen.

Shouldn't happen., (Fatal error in Micro-PROLOG)

Name

DIVIDE
INTCHK
LEXTYP
L INKDE
L INKHL
MLTFLY
MSG

Address
0115
0169
0118
01Cc
01CF
0112
0106

PROLOG 01CO

TRWALK

DAT AT
DATAZ
DATA3
DATAL
DATAS
DATAS
DATA7
DATAS
EOS
BOS
SDICT
LEXTAB
NOV ARS
ERRCHR

0103

01AS
01AA
01AF
0184
0189
01BE
01¢C3
01c8
0006
0121
011¢C
0124
0123
01A4

Appendix B

Useful addresses

Entry Parameters Effect
DE=divicdend,BC=divisor DE=quotient,HL=remainder
None Polls for interrupts

A reg. ASCII character. C contains type byte.

DE points to value cell DE dereferenced.

HL n n " " HL "
HL=multiplier,DE=m'cand HL=product

Call followed by text,0 Message displayed on console
Nonre Micro~-PROLOG cold start

IX points to type tree Execute built=in predicate

Data registers 1..8 (five bytes each)

Pointer to end of available memory (two bytes)

Pointer to base of available memory (two bytes)

Pointer to top of system dictionary (two bytes)

Lexical type table (128 bytes)

Number of variable prefix characters (one byte)

Contains character used to print error variables (one byte)

59

Appendix C .

Changing the lexical rules

The Micro=-PROLOG tokeniser is a table driven system that separates the
sequerce of characters in the input into tckens. The table it uses, which
is called LEXTAB, describes the character set in terms of different sub-
sets: the separator characters, the special characters, the digits, the
letters, the graphic characters, the sign and quote characters, and the
variaole prefix characters.

Each character's membership of these subsets is represented by a
single byte in the table, with each bit in the byte representing a diffe=-
rent set. If the appropriate bit in the byte is on (i.e. "1"), then it
signifies that the character belongs to that set.

By modifying these subsets the lexical rules can be made to lock very
differant; for example by merging the graphical and letter sets into one
(the letter set) then the distinction that Micro~PROLOG makes between the
two sets is icnored. This would allow such tokens as:

SA %1 A'B

However, the subset most likely to be of interest is the variable
prefix character set. This subset defines the conventions that Micro=PROLOG
uses to distinguish variables from constants. In standard Micro=PROLOG the
variable prefix subset is:

{llxll llyli llz " llx.l liY.l .lzll}

Tokens beginning with these letters are recognised as variables, By chan-
ging this set we can implement different conventions for variables. This
approach is a response to the current multiplicity of ways of recognising
variables.

To implement the convention of tokens beginning with lower case let-
ters teing recognised as variables, and upper case as constants (as in IC-
FROLOG [Clark & McCabe 1979]) all that is necessary is that the variable
prefix character set be changed to: '

clla!l ltb!l .e .lz ll}

To implement the DEC-10 convention of upper case variables, lower case
constants the variable prefix set should be changed to:

{"A.. llBll ia !iz ll)

Finally to implement the convention, found in the original Marseilles
FROLOG and in Waterloo PROLOG, of using the character '"#" in front of a
token to signal a variable, the variable prefix character set should be:

{l!‘ll}

Note that in this case the character "+ will also have to be made a
letter.

Apart from reading variables, it is necessary to print them, prefe-
rably in the format that variables are read in. In Micro-PROLOG all
variables are printed with a variable prefix character (possibly) followed
by a sequence of digits.

60

Changing the lexical rules

This is of course the kind of token that would subsequently be read as
3 variable. The prefix character used is taken from the table of lexical
types, each variable prefix character defined in the table will be usec
when printing variables, in the order that they appear in the "table. Thus
the first seven variables (in standard Micro-PROLOG) are printed as:

X ¥ T x y 2z X1 .

To actually change types of the various characters it is necessary
to use the CP/M utility "ddt" to modify the prolog program. ‘This utility
is a general debuqging package and is part of standard CP/M. We need to
examine and modify certain lLocations in prolog. ddt is
executed by using the CP/M command:

A> dd: prolog.com
This Loads the proloaq system irto memory and enters the command mode
of ddt. The initial rcsponse of ddt is Like:

DOT VER 2.XX
Next pec
2F80 0100

Be careful to note down the number uncer "next"” as it is needed Later.
ddt works entirely in hex arithmetic. The various addresses we use below
are absolute memory addresses, as this is how CP/M is organized; in parti-
cular you should be careful about modifying memory Llocations other than
described below as "ddt" allows you to chance any memory location including
ddt and CP/M! The table LEXTAB consists of 128 single byte en-
tries. Each character in the ASCII character set has an entry associated
with it; the entry is found by adding the value of the character to the
base address of LEXTAR.

Each bit in the entry corresponds to one of the subsets discussed
above, if the bit is on then the character is said to belong to the approp-
riate set, if off then the character does not belong to the subset in
question. Note that the two characters corresponding to 0 (Nul) and 127
(Del) are illegal, and belong to none of the subsets.

Each byte in LEXTAB is organised as:

Graphic character
Special character
Digit character

— Letter
76563210

—Quote character (")
be———Separator character
——————Variable prefix character
Sign character (=)

Some example entries of LEXTAB are:

Char Hex SVSGGSDL Hex

- - - - — - —— —— -

- 2DH 10001001 89H Sign, Graphic & Letter
"A" L1H 00000001 O1H Letter

“x" 6DH 01000001 41H Var. prefix & Letter
"o 20H 00100000 20H Separator

eeer - 22M 00070000 10K Quote

61

Changing the lexical rules

04K Special
02H Digit

"(" 26H 00000100
"0" 3CH 00000010

So, to implement our "*" convention for variables we have to change
the table entries for "«", "X", "Y", "Z", "x", "y" & "2'. The six letters
have existing table entries of "41" (hex) which reflects that they are both
letters and variable prefix tharacters; these entries have to be changed
to be .just letters. The letters are in two groups of three successive
bytes in the tablLe: "X", "Y" & “Z" and "x", "y" & "2". The table entry
for any character can be found by adding the value of the ASCII representa-
tion of the character to the base address of LEXTAB (which is 0124 in hex).
For example "X" in the 88th character in the ASCII sequence, (which is 58
in hex), so the entry for "X" is 124 + 58 (hex). We can use the ddt "h"
command to do this nhuxadecimal arithmetic for us:

~h38,124

017C FF34

The first number printed is the address in memory (ignore the second num=
ber) of the table entry for "X, the entries for '"Y" and '"Z" immediately
follow it. To medify the entry we use the ddt "s" command. This command
enabies memory locations to be modified in seguence. The old value of the
byte is printed, and it is changed by entering (in hex) the new value of
the byte. After carriage return is pressed the next memory location is
examined, allowing it to be changed too. The "s" command is terminated by
using "." instead of the new value of a byte. To change the "X", "Y' and
'"Z" entries we can type as in: : :

-s17¢C

017¢C 41 1
0170 41 1
017€E 41 1
017F XX .

The "x" character is "78" (hbx) in the ASCII code, so to change "x"-& Myt
and "'z" to be just letters we do:

-h78,124
019C FF54
-s19¢C

019¢C 41 1
0190 41 1
C19€ 41 1
019F XX -

Now we have to declare the "#" character as a variable prefix charac-
ter. We must also change it from being a graphic character to being a
letter, this is so that the tokeniser treats "*123" as a single alpha-
numeric token. The "*'" character must therefore have the code 41 (hex) as
its entry in LEXTAB. To change the entry we do what we did for the
letters, we add the ASCII value of "*" to the base address of LEXTAB and
use the "s" command to change the entry byte. Now "*" has ASCII value 2A
(hex), so the required entry is computed by:

~h124,2A
G14E OOFA

And we change the entry by:

62

Changing the lexical rules

-s1LE

014E 08 41
014F XX .

-

A special counter (NOVARS) contains the number of variable prefix
characters in the table that are to be used when printing variables. This
single byte counter should be changed, if the variable prefix character set
is changed, to reflect the number of prefix characters. This number should
never be greater than the actual number of variable prefix characters in
the zable, and it should also be at least one. So we have to change this
location to 1 (one) which is the new number of variable prefix characters:

This ccmpletes the changes to make the variable convention "#".{fgl=-
lowed by digits. ALL that is now required is to exit ddt and save the
memory image in the file "prolog.com®, which has the effect of updating the
cld prolog system with the changes. ddt is exited by typing:

-‘c
A> Save 47 prolog.com

The number in the save command is found by corverting the original "next"
value printed out by "ddt". When "ddt" is first entered it gives the length
of prolog in pages. The save command expects this number in decimal form,
whereas 'ddt" displays it in hex, so you have to convert it.

¥arning
Some of the entries in LEXTAB should not be changed. In particular the

characters that are special should not be removed from the special set
(otherwise the syntax-analyser may not be able to recognise terms
properly), and no new characters should be added to the special set. Fur=
thermore, the sign character subset should always be {'-"), and the quote
character subset should remai® (""'). Apart from these restrictions, and
from the obvious condition that the digit set should be 0O "1" .. "9'},
there are no contraints.

Seconcly, you should be careful about choosing which letters you use
as variable prefix characters, since the "R" program converts single Llet-
ter tokens into variables if the single letter is a variable prefix
character. This means that certain programs which expect single letter
responses (such as the editor which uses "e", "u" and "w" (among others))
to be constant: may have to be modified. In particular if the letters
"u", 'V" and "w" were added to the standard set of variable prefix charac-
ters then the editor will have to be changed to use something other than
‘0" and "w" for the unwrap and wrap commands.

Note that the various PROLOG programs supplied with Micro=PROLOG will
also have to be changea to reflect the new variable conventicons you have
implemented. This has to be done using a conventional text editor, such
as the CF'M "ed" editor. '

63

| ST
|

!
N T T R A T S

i

[

bl

hasiad

N

Changing the lexical rules

Appendix D

The Simple PROLCG front end program

Simple
(Acdd List Kill Delete Does One Which Save Load Accept Edit
ALL Not Is=-ALlL For—ALLl)
(End dict C & and if)
((versicon 2.12b))
((Add X)
(NUM X) /7 (R Y) (Add X Y))
((Add X) /
(Add 32767 X)) _ "
((Add X Y) _
(parse ((Zix)ly) Y) (declare Z) (ADDCL ((ZIx)ly) X))
((Edit x)
(dict x) (R y) (NUM y) (CL ((xIx1)Ix2) y y)
(parse ((xIx1)1x2) X) (RFILL X) (R Y)
(parse ((xIX1)1X2) Y) CADDCL ((xIXT)IX2) y) (DELCL x y))
((List X)
(NOT EQ X ALL) / (List=-pred X))
(CList ALL)
(CL ((dict x))) (List=-pred x) FAIL)
((List ALL))
((which (X1Y))
(is=body (?) Z (?21Y)) (Whichex X Z))
((One (X1Y))
(is=body (2) Z (21Y)) (Oneex X 2))
((Dces X)
(is=body (2) Y (21X)) (IF (2 Y) ((PP YES)) ((PP NO))))
((Load X)
(LOAD X))
((Save X)
(SAVE X))
((Delete (xly))/
(parse z (xly))
(OR ((DELCL 2)) ((PP No such sentence))))
((Celete X)
(CON X) (R Y) C(IF (DELCL X Y) () ((PP No such sentence))))
((Kill X) (DELCL X 1) (Kill X))
(Kitl X)
(P Program X deleted) PP)
((Accept X)
(declare X) (Acceptin X))
((parse (XI1Y) 2)
(Atem Z X x) (is=-bocdy (if) Y x))
(Cis=bocdy x ())))
((is=body X (YI2Z) (xly))
(Mem x ¥) (Literal Y y 2) (is-body (and 8) Z 2))
((Literal X x y)
(Special=Atom X x y)/)
((Literal X x y)
(Atom x X y))
(CAtom (X O)1Y) XD Y)
/)

(CAtom (X Y ZIx) (Y X 2) x) °

64

(CON YO /)
(CAtom (X (YI)Ix) (X YI2) x))
((Special=Atom (Notlx) (Not ylz) 2)
(is=body (?) x (21y)))
((Special-Atom (Is=AlLl x (yl2)) (x Is=ALl (yl2)iY) Y)
(is=bcdy (2) z (?212)))
((Special=-Atom (For=AlLL x (yl2)) (X For=AlLL(yI2)IY) Y)
(is-body (?) x (21X))
(is-body (?) z (212)))
((List-pred X) _
(CL C(X1Y)1Z)) (Rev=parse ((XI1Y)IZ) x) (PIx) PP FAIL)
((List-pred X))
((Rev=parse (xly) 2)
(Atom z x 2z1) @
(Rev-body y 21 "if
ll))
((Rev=bady () () x))
((Rev-body (xly) (zlZ) 2)
(Literal x Z Z1)
(Rev=-body y 21 "and
'l))
((Oneex X Y)
(2 Y) (P Answer is X) (R Z) (IF CEQ Z C) (FAIL) O))
((Oneex IX)
(PP No (More) answers))
({Whichex X Y)
(? Y) (P Answer is X) PP FAIL)
((Whichex X Y)
(PP No (more) answers))
((Acceptin X)
(P X) (RY) i
(OR (C(EQ Y End))
((OR (CEQ (Z x) Y) CADDCL ((X Z x))))
((P What is Y ?2)PP))
(Acceptin X))))
(C(Mem X (X1Y)) /)
((Mem X (YI12))
(Mem X 2)) . 2
((declare x)
(OR ((CLC((dict x))))CCADDCL ((dict x))))))
((Not IX)
(2 X) / FAIL)
((Rot IX))
(CIs=ALL X CYI2)) :
(DELCL ((All=num x))) (SUM x 1 y) (ADDCL ((All=num y)))
(AlLl=find x X Y 2))
((For=AlLl x (yl2))
(NOT 2(¢(?2 2) (NOT ? x))))
(CALL=find X Y Z x)
(? x) (ADDCL (CALLl=Llist X Z))) FAIL)
(CALL=find X Y Z x)
(Collect X Y))
((All=num 0))
((Collect X CYIZ))
(DELCL C(CALL=Llist X Y)))/
(Collect X 2))
((Collect X ()))
CLMOD

65

The Simple PROLCS front end program

Appendix E

The Ricro~PROLOG Editor

Ed(Edit)(t ns be ouwkia)
((Version 2.12))
((o=-C) O O
((D=C (XI1Y) (X) Y))
((Rev=list () X X))
((Rev=Llist (XIY) Z x)
(Rev=list Y (X1Z) x))
((DcwnC X () Y Z))
(NOT VAR X)
(o=¢ X Y 2))
(CAcp=C () X X))
(CApp=C (X1Y) Z (XIx))
(App=C Y Z x))
((BackC ((X1Y) Z x) (Y (X) y))
(App~C Z x ¥))
((BsckC (O (X) Y) COY O (xIy))»))
((NextC (X Y (ZIx)) Cy (Z) x))
(App=C Y X y))
((NextC (X CY)) yix) O O
((Delete=irm=C C(C) X Y) (OO €) YI)))

((Delete=imC ((XIY) Z x) (Y (X) x)))

((Front=C 0 () X X))
((Front=C X (Y!Z) x (Yly))
(LESS 0 X)
(SUM 1 z X)
(Front=C 2 Z x ¥))
((CisplayC (X O Y))
(P No term)
/)
((DisplayC (X (Y) 2))
(P Y))
((Edit=imC (x y 2) i (x (2) Y))
(R 2)
(App~C y 2z Y))
((Edit=imC (x y 2) a (x1 (2) 2))
(R 2)
(App=C y x x1))
((Edit=imC X k Y)
(Pelete=imC X Y))
(CEdit=im=C (X (Y) Z) s (X (x) 2))
(R y)
(EQ y (Y x)))
((Edit=imC (X (Y) 2) t (X (x) Z))
(RFILL Y)
(R x))
((Edit=imC X n Y)
(NextC X Y))
((Ecit=imC X b Y)
(BackC X Y))
(CEdit=imC (X Y 2) w (X (x) ¥))
(R 2)
(App=C Y Z x1)
(Front=C z x y X1))

€6

(CEdit=imC (X (Y) 2) u (X (x) y))
(NOT VAR Y)
(App=C Y Z (xly)))
((Egit=imC (X (Y) 2) e (X (x) 2))
(DcwnC Y y)
(Ecit=term y x))
(CupC (X Y 2) x)
(App~=C Y Z y)
(Rew=Llist X y x))
((EJC X Y o)
(UpC X Y)
/)
((ECC X Y 2)
(Edit=imC X Z x)
/
(Edit-term x Y))
((EdC X Y 2)
(PP ?)
(Edit-term X Y))
((Edit-term X Y)
(DisplayC X)
(R 2)
(EGC X Y Z))
(CIinsert=imP 0 1Y)
(ADDCL Y O))
((Insert=inmP X X Y)
(SUM 1 Z X)
(ADDCL Y Z))
((Append=imP 0 1 Y)
(ADDCL Y 0))
((Append=imP X Y 2)
(SUM 1 XY)
(ADDCL Z X))
((Goto~P X Y ((XI2)Ix))
(CL (XID)Ix) YY)
/)
((Goto=P X Y "No clause™)
(LESS -1 Y))
(CE=imP XY Z ixy)
(R y)
(Insert=imP Y x y))
(CE=imP X Y Z a Y1 Z1)
(R Z1)
(Append=imP Y Y1 21))

. C(E=im~P X YZ k x ¥)

(DELCL X Y)

(SUM 1 x Y)

(Goto~P X x y))
((E=imP XYZnxy)

(NOT 2 (CEQ Z "No clause™) (LESS 0 Y)))

(SUM 1 Y x)
(Goto=P X x y))
((E-imP XYZDbxy)
(SUM 1 x Y)
(Goto~P X x ¥))
(CE=imP X Y (ZIx) e Y ((XIy)12))
(Edit=term (() (Z) x) ((Xly)I2))

(DELCL X Y)
(SUM 1 X1 Y)

&7

(ADDCL ((XIy)12) X1))
((E=imP X Y (Z121) t Y x)
(RFILL €Z123))
(R x)
2@ x ((X!Ix1)1x2))
(ADDCL x Y)
{DELCL X Y))
((EdP X Y Z o)
(PP Edit of X finished)
/)

(CEdP X Y Z x)

(E=in=P X Y Z x y 2)

/

(Edit=-P X y 2))
((ECP X Y Z x)

(PP ?)

(Edit=P X Y 2))
((Edit=P X Y 2)

(PCYJD

(R x)

(EdP X Y Z x))

((Edit X)

(NOT SYS X)
(OR C((CL CCXIVIIZ) 1T D

(Edit=P X 1 ((X1Y)I2))) ((Edit=P X D "No clause™))))

CLMOD

68

The Ricro~-PROLCS Editor

-

sl

- o
RS, /S

5 e

References

Clark, -K.L., [1978], Negation as Failure. Logic and Data Bases, (H.Gallaire
and J.Minker, Eds.), Plenum Press, New York, pp. 293-322.

Clark, K.l., [1980], Logic as a programming Calculus. To be published in
1981 by Springer-Verlag, New York.

Clark, Kl., McCabe, F., [19791, Control facilities of IC-PROLOG. Expert
systems in the Micro-Electronic Age. Ed D.Michie Edinburgh Univ.Press.

Clark X.L., Ennals, J.R., McCabe, F., [1981], A Micro~PROLOG Primer, Logic
Programming Associates Ltd

Colmeraver, A.,[1973]), Les systemes-Q ou un Formalisme pour Analyser et
Synthetiser des Phrases sur Ordinateur. Publication Interne No..3, Dept.
d'Informatique, Universite de Montreal. |

Colmerauer, A.,L1678], Metamorphosis Grammars. Natural Language Communica-
tion with (omputers, (L, Bol¢, Ed.), Lecture Notes in Computer Science No.
63, Springer~Verlag, pp. 133-189.

Kanoui H., Van Canaghem M., [1980], Implementing a very high level language
on a very Low cost computer. Groupe d‘Intethence Artificielle, Universite

d'Ai x-Marseille, Luminy.

Knuth D.E., [1968) The Art of Computer programming. pp 147-151. Addison
wesley. Volume I1I, Semi-numerical algorithms.

Kowalski, R.A, [1974], Predicate Logic as Programming Language. Proc., IFIP
74, North Holland Publishing Co., Amsterdam. pp. 569=574,

Kowalski, RA, [1979], Logic for Problem Solving. Artificial Intelligence
series, North Holland Inc., New York.

McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, N.1I.,
£1962]), LISP Programmers Manual. MIT Press. Cambridge, Mass.,

Moss, C.D.S., (19791, A New Grammar for Algol 68. Dep. Rep. 79/6, Imperial
College, London.

Naur, P., ed. [1962] Revised Report on the Algorithmic Language Algol 60.
IFIP 1962

Roberts G.W., [1977], An implementation of PROLOG. MSc thesis, Waterloo,
Ontario, Canada.

Robinson, J.A., [1965] , A Machine Oriented Logic Based on the Resolution
Principle. J. ACM 12 (January 1965), pp. 23-41.

Robinson, J.A., [1979], Logic: Form and Function. Edinburgh Univ.Press.

Roussel, P., Groupe d'Intelligence Artificielle, Universite d'Aix-
H‘arsetlle, Luminy, Sept. 1975.

69

