
PM A T E rev 2

U s e r M anual

and

In te r fa c e G u id e

W ritten by
Michael Aronson

A ox In co rp o ra te d

Copyright ® 1081 by Phoenix Softw are Associates L td .

P re fa c e
HOW TO U S E T H IS M A N U A L

Documenting PMATE presents problems. PMATE is useful at many leve ls , by
persons o f vastly d iffering computer s k ills . The documentation must then also be
geared to a w ide audience. In this uncoventionally organized manual, some ideas
and commands are presented repeatedly in chapter a fte r chapter — each tim e, at a
d ifferent le ve l. Depending upon your experience and aptitude, you need only read
the appropriate chapters.

C h a p te r I is an introduction for beginners. It is intended to be a complete
course in the most basic use of PMATE fo r those w ith lit t le or no computer
background. ____

C h a p te r I I sta rts in w ith basic concepts to lay the foundation fo r a more
thorough understanding of PM ATE. You can ce rta in ly s ta rt here if you have
experience w ith other te x t editors.

C h a p te r I I I explains some more advanced concepts and commands.

C h a p te r IV gives the complete command se t . You can sta rt here if you really
know what you're doing.

C h a p te r V provides macro exam ples. A fte r you are w e ll aquainted w ith PMATE,
work through these exam ples. They show how macros can greatly expand PM A TE 's
built-in capab ilities .

C h a p te r V I provides configuration inform ation. Read this chapter to get PMATE
up and running on your system .

C h a p te r V I I provides fu rther configuration inform ation fo r those who would like
to in terface w ith PMATE in assembly language.

A ppend ix A is a summary of PMATE commands - - a useful re fe rence .

C h a p te r 1
IN T R O D U C T IO N FOR B E G IN N E R S

T E X T E D IT IN G , WORD PROCESSING, O U TPUT P R O C ES S IN G ...

A 'te x t editor' is a computer program which helps people to c re a te te x t , and
modify i t . Tex t editors are w ritten by programmers, and programmers w r ite mostly
program s. There fo re , te xt editors w ere trad itionally geared toward entering and
co rrecting computer programs. In p articu la r, a line of computer code is a lw ays one
lin e . You might w ish to get rid of it , modify it , move it somewhere e lse , o r make a
copy of i t , but it is s till a lin e . Writing the English language is d iffe re n t . I f you
want to insert a few words in a line, the end of that line needs to w rap around to
the beginning of the next, and the whole paragraph needs rearrang ing . When
programmers had satisfied their own needs, they attacked this sort o f problem w ith
'word-processing' so ftw are and hardware, ranging in com plexity from typ ew rite rs a
bit sm arter than usual, to complete computing systems w ith C R T ’s (T V displays)
instead of paper to display the typed m ateria l, disks fo r storing the te x t , and fast
printers fo r quick , erro r-free type out.

T yp ica lly , a 'tex t editor' program was meant for use on a te le typ e , o r some
other type o f 'slow' term inal. It would be intolerable to w a it w h ile th e term inal
prints out all your text every tim e you make the slightest change in i t . So you w ork
b lind . Sections of te xt are typed out only when you request. To m ake up fo r the
inconvenience, powerful text editing commands can usually be constructed that can
to ta lly rearrange all your text w ith a few keystrokes. These l it t le command
'programs' are dearly loved by computer nuts.

On the other hand, word processing softw are usually shows you e xa c t ly w hat
your te xt is looking like at that time by showing it to you on a video d isp lay . As
you change the te x t, the display changes in stan tly . The penalty you pay to ach ieve
this desirable situation is that the word processor usually allows you to m ake only
simple-minded changes in the te x t.

A 'te x t output processor' is an attempt to make a 'tex t editor' com patible w ith
the real world of pages, paragraphs, underlines, and such . You use your te x t ed itor
to enter te x t , including a bunch of control w ords. These words might ind icate that
it 's tim e to sta rt a new page, indent that margin 20 spaces, or leave 5 b lank lin e s .
Then you run the output of the text editor through your te x t output processor,
which types it out on your printer, n ice ly form atted, maybe even w ith stra igh t right
hand marginsl T ext output processors give you wonderful control over the form of
your fina l document, but have the disadvantage that the required input - the part
created and updated by your text ed itor - bears litt le resemblance to the fina l
output.

. . .A N D PM ATE

PM A TE is an attempt to combine some of the best "features’«o* a l l t t t fe e .

T H E E D IT IN G PROCESS

T e x t is saved on the disk in the form of 'f i le s ' . Each file has a nam e. In
CP/M , a name consists of 8 or less characters - 'JOHN', 'CH APTER-! ' , 'PM ATE’, '+& ',
or 'C E R T R U D E ' are a ll fine possible names for a f i le . A filenam e can optionally
have an 'extension '. This is up to 3 characters following a at th e end of the
nam e. So 'BOOK.ONE' and ’BOOK.TWO' are d ifferent file s , possibly representing

1-2 P.MATE USER MANUAL AND INTERFACE GUIDE

tw o d ifferent chapters in a book. Certa in extensions (such as ’ASM’/C O M ', and
’H EX ') have meanings to the CP/M system programs.

PMATE can be used to c rea te a new file , or to modify (change, add to , look a t,
or otherw ise work on) an old one. Let's sta rt by creating a new one . With CP/M in
contro l (the re should be an 'A>‘ or a '8>' on the console), type the command:

PMATE F ILE

where 'F IL E ' is the name o f the file you wish to crea te (which may even be 'F IL E ') .
A fte r a few seconds, PMATE is loaded into memory, and the screen becomes a liv e .
Look up at the top lin e . There are a few words and numbers te lling you something
about what is going on w ith the editing process. This is called the 'status lin e ’ .

Right below the status line is the 'command lin e '. Below th a t, a row of dots
separates that command and status area from the 'te x t a re a '. N o tice the 'cursor' in
the text a re a . It is probably blinking, or reversed video; and notice the 'cursor' on
the command line - just an underline (_) . These cursors show w here things w ill
happen - where the action is . Now strike a few keys on the keyboard . The
corresponding le tte rs should appear in the command lin e . This is because you are in
'COMMAND M ODE'. The keys you strike go toward forming a command, w hich then
can a ffe c t the text a re a . S trike a few more keys, and also w atch w hat happens
when you hit the ca rr iag e return k e y . Mow hit the 'delete' or 'rubout' k e y . Th is
w ill wipe out the last ch a racte r in the command lin e . You can delete the whole
command at once w ith a 1 c o n tro l-C . That is the cha racte r produced by holding
down the 'contro l' key, and strik ing a ' C . Control characters w ill be indicated from
now on by an '©' (a contro l-C w ill be w ritten ’© C).

Now c lear the whole command area w ith a '© C . S trike a '©N'- You have just
moved into 'IN SER T M ODE', and this is indicated where the command line used to
be . Now enter some norma! le tte rs . You are creating text! Enjoy it for a litt le
w h ile . Then try h itting '©X' -th is w ill return you to COMMAND M ODE. Now go
back to IN SERT M ODE. T ry the delete k e y . It w ill delete the ch a racte r you just
en te red . It's just like typing on a typ ew rite r, but you can co rrect your m istakes.

’©C',®iN", and '©X' are called 'In stan t Commands'. When you h it these keys, a
ch a racte r doesn't get entered in the te x t , or onto the screen , but ra th er, something
d iffe ren t happens. Instant commands are usually good in e ither COMMAND or
IN SER T MODE. The most important instant commands are those that can move the
cursor around in the text a re a . They are '©Y', '©B', '©G', and '© H'. T ry them .
Note that these 4 keys are located in a group on the keyboard, and that they are
arranged the right w ay — that is, the bottom one, '©8', moves the cursor down, the
top '©Y', moves it up, ’©G' moves it le ft , and '©H' moves it righ t.

Use the instant commands to move the cursor around, and then try typing in
some more ch a ra cte rs . Now you are 'editing' te x t, as opposed to just entering i t .
Learn the action of the 'delete key', it always deletes the cha racte r just before the
cu rso r. T ry the '©D' instant command - it deletes the ch a racte r at the cu rso r.
'©«' w ill k ill the whole line , starting at the cu rso r. Lines are separated by the CR
c h a ra c te r . Type a carriage return , anri you w ill s ta rt a new lin e . Move the cursor
to a CR (the last ch a racte r on any row) and try deleting i t . See how the tw o lines
on e ither side get run together? .

If you haven't already done so, type in more lines than there is room fo r on the
d isp lay . Watch how the display sc ro lls . Move the cursor back a few lines, and the
display w ill scro ll back the o ther w a y . PMATE w ill display as much text as possible
on both sides of the cu rso r. Th is is called 've rtica l scro lling '.

Now type a line that is too long for the screen - just keep typing w ithout
hitting a C R . As soon as the cursor is about to move o ff the screen , the whole
display 'sh ifts ' o ve r. Th is is called 'horizontal scro lling '. The display continues to

INTRODUCTION FOR BEGINNERS 1-3

shift as necessary, as your line gets longer and longer - - up to a maximum o f 250
cha racte rs . Move on to the next line, and the display w ill return to norm al.

T ry out the tab key (or '©I* if your keyboard doesn't have o n e). Tab stops are
in itia lly placed every 8 spaces, but la te r you w ill learn to place them a rb it ra r ily . I f
your keyboard isn't capable of generating low er case , use the '/ ' key as a 's h if t ' .
When you type ’/ ' , nothing w ill happen, but the next key you type w ill be sh ifted in
case . (To actua lly enter a ' / ' , just type it tw ic e .) T ry the ’©S' instant command a
few tim es. It changes the 'default case' from upper to low er, and then back again .
The '/ ' key (like 'sh ift ') w ill a lte r the case from the default for just one ch a ra c te r .

As you enter te x t, and it appears in the te x t a rea , it is being entered into the
'current edit buffer*. Th is edit buffer is just a section o f computer m em ory. The
text area of the display is acting like a 'window' which allows you to see a small
section of this b u ffe r . The section you do see is the section w here the action is
about to occur - the place where the cursor points.

Now go back to COMMAND MODE ('©X' - rem em ber?). Any ch a racte rs you
type now are entered into the 'command b u ffe r '. The command area o f the display
just shows the fina l part of this b u ffe r. Make sure the command area is c le a r (use a
'©C if n ecessary). Now find the 'escape' key (it might be marked 'E S C ') . S trike it
a few tim es. It echoes on the screen as a ‘S ' . From now on, 'S ', when w ritte n as
part of a command, w ill mean the 'escape k e y '. Commands are executed by typing
an escape tw ice . T ry this simple command:

DSS

This command deletes the character at the cursor, just like the '©D' instant
command. (Inc id en ta lly , don't forget to use the instant commands in COMMAND
MODE also - especially the cursor motion co n tro ls .) 'K5S' w ill k ill the whole lin e .
Now try MG ARB AG ESS' . The T is the insert command, and what ever fo llow s it
until an escape is reached, w ill be inserted into the te x t .

Sooner or la te r, you are bound to give PMATE a command it doesn’ t l ik e . It
w ill complain b itte rly by displaying an error message, and appearing quite dead . The
only w ay to wake it is by typing either a 'space' or a C R . In big le tte rs :

V/HEN YO U H AVE M ADE AN E R R O R , AN ERRO R
M ESSA G E W ILL A PPEA R W H ICH W IL L R E F U S E TO C O

AW AY U N LE S S YO U S T R IK E C R OR SP A C E B A R

A fte r a command is executed, it is s till displayed in the command a re a . I f you
now type an escape again, the command w ill be repeated . (T ry th is a fte r an '1'
command and see how fast you can fill up sp ace). If you don't want to repeat the
command, but just to enter a new one, ignore i t . When you sta rt to enter the new
command, the old one w ill just disappear.

One very important command is 'F S S '. Th is takes you into 'FORM AT M ODE',
and if you are already there , it takes you back again . In FORMAT MODE, you don't
have to w orry about where a line ends, PMATE takes care of that fo r yo u . T ry i t .
A fte r giving the 'F ' command, enter insert mode. Now sta rt typing w ords, but don’t
enter any C R 's . Notice how the text autom atica lly wraps around to the next lin e ,
rather than going off the screen . Words are not truncated or divided, but are le ft
in ta ct . When you reach the end of the paragraph, and you insist that the next word
begins on a new line, then enter a C R . Write a few paragraphs. Move the cursor to
the middle of one of them, and insert some more w ords. Watch how the whole

1-4 PM ATE USER MANUAL AND INTERFACE GUIDE

paragraph is rearranged as those words are entered . It is important not to use a CR
except when the next word must begin a new lin e . Otherw ise, words w ill not be
able to w rap around properly when changes are la te r made.

Now that you have some reasonable te x t in your edit buffer, w hy not w rite it
on the d isk ? . Use the command 'X E S S '. That ends the editing p ass . 'XHSS' w ill
then get you back to CP/M w ith a new f ile on the d isk . Soon, you w ill w ant to
modify that f i le . Again, g ive the command

PM A TE F ILE

where 'F IL E ' is the name of the file you had just c re a te d . Q u ickly , PM A TE is back
in contro l, and you see your old text again . Now add to it , rearrange i t , chop it up,
or w hatever you p lease . If you don't like what you did, type 'X K S S '. This just
cance ls any changes, and leaves ’ F ILE ' as it used to b e . O therw ise, type 'XESS' and
'F IL E ' is updated on the disk to include all your m odifications. (I t is also possible to
leave ‘ F IL E ’ in ta ct , and w rite the new version under a d ifferent nam e .) Don't
forget that the only w ay to get back to CP/M is w ith an 'XHSS' command ('H ' for
'Hom e').

C h a p te r ! I
B A S IC ID E A S

THE BUFFERS

PMATE operates on text stored in the computer's memory. T e x t can be placed
in any of 11 'edit b u ffe rs '. T e x t is stored as a continuous stream of c h a ra c te rs . If
a character is inserted in the te x t , all following characters have to be moved up to
make room for the new one. S im ilarly , if a cha racte r is to be deleted, a ll fo llow ing
characters must be moved down to f ill in the space. 'Lines' are separated by the
carriage return character (C R).

THE D ISPLAY

PMATE utilizes a video display to always show a portion o f the te x t in the
current edit b u ffe r. As the text stream in memory is m odified, the d isplay
immediately re flects this change. Just imagine your te xt sits behind a large w a ll,
and your screen is an opening through which you can see part of i t .

THE CURSOR

It's n ice to be able to see part of your text stream , but obviously not enough.
You need to be able to modify i t . The 'cursor' indicates on the screen e x a c t ly
where this m odification is to take p lace . The cha racte r to which the curso r points
is c lea rly displayed, usually as blinking, underlined, or inverse video . The curso r is
only useful if it can be moved around. This can easily be done just by strik ing the
appropriate key on your keyboard. As the cursor moves through the te x t , the
portion of the text displayed on the screen changes in such a w ay th at te x t on
either side of the cursor is always v is ib le . The screen always shows w here the
action is . In this w ay , te xt scro lls up or down as you move the cursor up or down
(ve rtica l scro lling). Furthermore, if a line is too long to f it on the screen , the
whole te xt display is shifted over to prevent the cursor from moving o ff the right
end of the screen (horizontal scro lling). Lines can be up to 250 ch a racte rs in
length.

MODES OF OPERATION

There are several w ays to enter or modify te x t . 'O VERTYPE MODE’ o r 'IN S E R T
MODE' provide the simplest method. Just typ e!! The characte rs you type are
immediately entered into the text where the cursor is (and of course , appear on the
screen). In 'IN SER T MODE' any characters at or beyond the cursor a re moved up
to make room for the new ones. If you make a m istake, 'rubout' or 'de le te ' w ill
cure it (and banish it from the scre en). In 'O VERTYPE MODE', the ch a ra c te r you
type replaces the one already beneath tfie cu rso r. However, neither carriage
returns, nor tabs w ill be o ve rw ritten . O VERTYPE or IN SERT modes are indicated on
the bottom line of the display, below the row o f dots.

Several keystrokes (usually control codes) are not entered into the te x t , but
serve some other function . These are called 'In stan t Commands'. T h e keystrokes
that move the cursor are instant commands. Other keystrokes can de le te the
character at the cursor, delete a whole line, or sh ift from upper to low er ca se .
This sort of text editing is great for entering te x t, and making minor changes in i t .

11-2 PM ATE USER MANUAL AND INTERFACE GUIDE

For 'serious' text editing, PM A TE executes 'command strin gs '. For instance , you
might command PM ATE: 'F in d the third occurence o f 'George' and change him to
'H arry ', then from that point, delete a ll characters until you find an 'F ' , then insert
the numbers from 240 to 1000 in base 5, one per line, and fina lly te ll me how much
(3 *4 6 /(5 + (3 *7))) is ‘ . Of course, you wouldn't use exac tly that language, but such a
command string could readily be constructed . PMATE executes such commands
when in 'COMMAND M ODE'. The 'command line' is the last line o f the d isp lay .
When there is no mode message in the command line to in id icate O VERTYPE or
IN SERT modes, PMATE is in command mode. An underline cursor indicates where
the next keystroke is to be entered .

In COMMAND MODE, your keystrokes don't immediately a ffe c t the te x t , but
rather are entered into the command b u ffe r, and appear on the command lin e . A
single command is usually one or two characters , but commands can be strung
together to form command strings. As soon as the command is executed , the display
shows the updated edit b u ffe r, centered on the cu rso r. While in COMMAND MODE,
PMATE also recognizes insta .it commands. These keystrokes are not entered into
the command b u ffe r, but are executed immediately, a ffecting the te x t and d isp lay .
Included among the instant commands are ones to sh ift modes - en te r COMMAND
MODE, enter O VERTYPE MODE, or enter IN SERT M ODE.

L IN E FO RM ATTIN G

_A 'line' is just a string of characters which ends w ith a carriage re tu rn . When
you enter a CR ch a ra cte r, the cursor moves down to the beginning o f the n ext lin e .
PMATE also has an autom atic line form atting fa c ility , fo r entering and editing
textual m ate ria l. When operating in th is mode, te x t w ill autom atica lly 'w rap
around' as you enter it a fte r filling out a specified line length. Words w ill not be
broken up, however - the complete word w ill be moved down to the n ext lin e . This
line form atting is preserved, even as portions of the text are ed ited . When
operating in this mode, te xt is normally entered w ithout any carriage re tu rns . Any
carriage return w ill a lways indicate the end of a lin e . They must be used only at
the end of a paragraph, or whenever the following characters must appear on the
next line .

IN STA N T COMMANDS

In any mode, instant commands are keystrokes which are not entered into the
command or te x t , but rather have some other immediate e f fe c t . The instant
commands and a description of the ir action fo llow s. A '©' is used to ind icate a
control code, so '©A' indicates the cha racte r resulting from holding down the
control key and strik ing 'A ' . Th is cho ice of control characters fo r the instant
commands was m ade-either fo r mnemonic value , or for convenience o f lo cation . For.
instance, the 4 commands which move the cursor one position are located in the
center of the keyboard . These instant commands w ill be used a ll th e tim e . It is
important that they should be easily accessib le . I f you are at all unhappy w ith this
assignment, it is an easy m atter to change it (see the In te rface C u id e). In
particu lar, if your keyboard has a cursor pad, or other single stroke control keys,
these may be used for the more important instant commands.

Mode Sw itch ing :

BASIC IDEAS 11-3

The following instant commands set the mode of the ed itor to IN SER T ,
O VERTYPE, or COMMAND.

o x Go into COMMAND MODE.

AN Go into IN SERT MODE.

©V Co into O VERTYPE MODE.

Cursor Motion:
The cursor motion instant commands allow the cursor to be e a s ily moved

throughout the text b u ffe r . As the cursor is moved, the display updates in order to
keep the display centered on the cu rso r. The cursor is never allowed to move
outside of the text b u ffe r.

©A Move the cursor up to the beginning of the te x t b u ffe r . I f it is already
at the beginning, move it to the end. So h itting this key once gets you
to the beginning, tw ice gets you to the end.

®C Move the cursor to the le f t .

©H Move the cursor to the right.

©B Move the cursor down one line .

©Y Move the cursor up one line .

©u Move the cursor up six lines.

©J Move the cursor down six lines.

sp Move the cursor to the beginning of the following w o rd . Words a re
separated by any combination of spaces, tabs, and carriage re tu rn s .

©0 Move the cursor to the beginning of the current w o rd , i f it is already
there , move the cursor to the beginning of the preceding w o rd .

Deletion:
The deletion instant commands allow characters to be removed from the te x t .

The rest o f the text buffe r is moved down to fill in the space form erly occupied by
the deleted cha racte rs .

©D D elete the character at the cursor.

©K D elete the rest of the line, starting at the cu rso r.

©W D elete the next word, starting at the cu rso r.

©Q D elete the word preceding the cursor.

rulxsut D elete the character just entered . When in command mode, th is
deletes the character just entered into the command. When in in sert
mode, this deletes the cha racte r just before the cursor (®D deletes the
character at the cu rso r). This is usually the character just entered into

11-4 HM ATE USER MANUAL AND INTERFACE CUIDE

the te x t .

Moving te x t :
These commands provide an easy method of copying or moving sections of te x t .

•S>T Tag the current location . Th is marks one end of the te x t to be moved.

©E Move the section of te xt between the tagged location and the present
location of the cursor to a specia l b u ffe r . The text is deleted from the
current te xt b u ffe r .

©Z Insert the contents of the special buffer at the cursor lo ca tio n .

In other words, to move a block of te x t , go to the beginning of the b lock, type '©T',
go to the end, type '© E'. Move the cursor to the desired destination, and type '©Z‘ .
In order to copy a section of te xt w ithout deleting it from its orig inal location, it is
only necessary to type '©Z' im m ediately a fte r the '© E'. Subsequent '©Z's w ill then
produce copies of the text e lsew here.

M iscellaneous:

© _ Edit command strin g . I f an erro r is made in entering a long command
string , the command string itse lf can be ed ited . When © _ is typed, the
old command buffer becomes the text buffer, and can be edited just like
te x t . Strik ing © _ again restores the old te x t , and the new updated
command string is returned to the command area, ready fo r execution .

2C A bort. C lears the command a re a . I f ©C is typed w h ile a command
string is being executed , execution w ill be aborted a t the earliest
opportunity.

©L Insert a lin e . Inserts a new line into the te x t , and leaves the cursor at
the beginning o f the nev/ lin e . • - -

©T T ag . Tag current cursor position .- more on this la te r .

©F Redraw d isp lay.

©S Sh ift defau lt ca se . Case w ill toggle between upper and lo w er.

©R Restore last deleted item at cursor position.

CURSOR MOTION

The cursor control 'diamond' (consisting of ©Y,©H,©G, and ©B) behaves
d iffe re n tly , depending upon the PMATE configuration . In one possible mode, ©Y and
©B always leave the cursor at the beginning o f a lin e . Th is is p articu la rly useful
for editing line-oriented te x t , such as programs.

In another mode, ©Y w ill move the cursor immediately above its current
position, leaving it in the same column if possible. Since the cursor must always
stay on te x t , it is not possible to leave the cursor to the right of the carriage return
ending the line, or in the middle of a ta b . The cursor is then positioned on the last

BASIC IDEAS 11-5

possible position to the le ft of the desired column.
F ina lly , PM A TE does have the capab ility of being able to leave the cursor in th is

'free space' at the right of a line ending, or in the middle o f a ta b . When
configured in this manner, the cursor can move anywhere on the screen (except
below the very last line of te x t) . When you attempt to enter te x t in 'fre e space’,
PM ATE fills in the appropriate number of spaces, so that te xt appears to be entered
right where you expect - - at the cursor.

COMMANDS

A single command consists of one, tw o, or three characters w h ich are entered
into the command buffer - just type and w atch them appear there- T h e command is
then executed by strik ing the 'escape' key tw ice . Escapes appear on the screen as
dollar signs 'S ' . In the rest of th is manual, '5' w ill indicate an escap e . Carriage
returns appear in the command line as '<', and any other control ch a ra cte r is echoed
w ith a cara t (^) . An example of a command is the character 'D '# w hich w ill delete
the character at the cursor. Suppose the edit buffe r contained

This is an example of some text which needs
co rrecting . The cursor on the scrreen is
indicated by the underline.

Then just type in the command
DSS -----

(remember that 'S' is an escape, and the two escapes are necessary to e xecu te the
command 'D ') This is what w ill be le ft on the screen :

Th is is an example of some text which needs
co rrecting . The cursor on the screen is
indicated by the underline.

NUM ERIC ARGUM ENTS

Many commands can take 'numeric arguments’ . That is ju st a number that
precedes the command that gives additional information to PM A TE. For exam ple,
while 'D 5S' deletes one character from the te x t , '3DSS' deletes the next 3
ch a ra cte rs . Numeric arguments can take integer values from -32768 to +32767.
They can be complex expressions, but this w ill be explained in g reate r deta il la te r .
I f an argument is missing, it is usually taken to be 1 . There a re exceptions, but
these w ill be exp lic itly mentioned. Typing just a minus sign before a command is
usually equivalent to -1 .

COMMAND STR IN G S

PMATE derives much of its real power from being able to string together a
number of commands to form a command strin g . Commands can be typed in
together to form command strings. \M' is the command to move the cursor a number
of character positions. 'MSS' w ill move the cursor over one c h a ra c te r , the command
string 'D5MDSS' w ill delete one ch a racte r, then move over 5 and d e le te that
ch a ra c te r . As the command string is entered, it appears on the bottom of the
screen, and it is not until two consecutive escapes have been entered that any

11-6 PM ATE USER MANUAL AND INTERFACE GUIDE

change takes p lace in the te x t . At this tim e, the whole command -string is
executed . Single escapes can be free ly inserted between commands w ithout causing
execution . So 'D5M DS5', 'D5M SDSS' and 'DS5M SDSS' all have the same e f fe c t .

STR IN G ARGUM EN TS

When certa in commands are used in a command string, they require a single
escape to separate them from the following command. While num eric arguments
often precede commands, some commands are followed by 'string argum ents'.
These arguments are just a string of characters which you might insert into the
te x t , search for, or perform some other operation. For example T is the command
that inserts the string argument following it into the text b u ffe r. Suppose the text
buffer contained:

PMATE is ^ ve ry easy to use and helpful
te x t editing program.

Typing the command 'Ino t SS' might help you express your true fee lings, leaving
the display reading:

PMATE is not ^ very easy to use and helpful
te x t editing program.

If we w ish to enter an insert command T as part of a command string , w e are
faced w ith the problem o f how to indicate to PMATE that the string argument is
finished w ith , and the next command is being entered . We do this by using one
escape to separate the string argument from the following command.
If we wish to now change 'a ve ry easy' to ‘ an easy', we want to move the cursor
one position, insert an 'n' there , and then delete the next five ch a ra c te rs . We try
'M ln5D SS', but are dismayed to find w e are le ft w ith :

_ • PMATE is not an5D _very easy to use and helpful
te x t editing program.

While '-2M 7D' w ill repair the damage, w e should have commanded 'M lnSSDSS' in the
firs t p lace .

R EEX EC U T IN G COMMANDS

What happens to the command string a fte r it has been executed? Simple - it 's
still there , a ll ready to be used again . It s till sits in the command area o f the
display, followed by the tw o escapes which caused it to be executed . I f you now
type another escape this command w ill be repeated. If a rubout is typed, the
second escape w ill be deleted , and the old command string can be m odified or
extended. I f any other command characte r is entered, the old command string w ill
disappear, and this new ch a ra cte r becomes the firs t in a new command s trin g .

The ab ility to easily repeat commands can be extrem ely u sefu l. Here is one of
many situations where th is fa c ility is commonly used. 'S' is the search command.
'ShelloSS' w ill search through the text starting at the cursor, and leave the curso r
pointing just a fte r the fir s t 'hello' that it finds. The text d isplay shows you
immediately if this is the occurence of 'hello ' which you w ere in terested in . I f not,
just s trike the escape key again, and PMATE w ill find the next one . Continue until

BASIC IDEAS

you have located the section you w ant.

ERROR MESSACES

Some commands and conditions w ill produce erro r messages. These messages
are usually se lf-exp lan ato ry . I f 'ShelloSS' command is executed, and 'he llo ' cannot
be found, then a message saying 'STR IN G NOT FOUND' w ill appear w here the te x t
used to be. PM A TE term inates execution of the command string as soon as a
command produces an e rro r. The cursor in the command display area w ill point to
the command just a fte r the offending one.

A T T H IS T IM E , T H E ER RO R M ESSA G E W IL L R E F U S E T O C O A W A Y U N T IL
YO U S T R IK E E IT H E R * C R ’ OR TH E SPA C E B A R .

A fte r typing one of these keys, the command still s its in the command area as i f it
had finished executing . It can now be reexecuted, m odified, or ignored.

BASIC COMMANDS

PM A TE has enough commands to keep you busy for a long tim e m astering them
a ll . However, there are a few basic ones which you w ill use over, and o v e r . They
are all that are really necessary to satisy most te xt editing needs. A com plete
description of all commands follows la te r , 'n' indicates a numeric argum ent.

nD Delete n characters starting at the cu rso r. I f n is m issing, it is
assumed to be 1 .

nK K ill n lines starting at the cursor. I f n is missing, it is assumed to be 1 .

I Insert the string which fo llow s. The string ends w ith an escap e .
'IgarbageSS'.inserts 'garbage' just in front of the cu rso r.

S Search fo r the string which follows 'S ' . The string ends w ith an
escape. The search starts at the cu rso r. 'SgarbageSS' causes PMATE to
look through the text fo r 'garbage' and leave the cursor pointing just
a fte r the next occurence . If the string is not found, an e rro r message
is produced. (Remember, don't forget to h it carriage return a fte r an
e rro r!!)

C Change the first occurence of the firs t string follow ing to the next
string fo llow ing . 'CgarbageSjunkSS' w ill search for 'garbage' and if it is
found, change it to 'ju n k '. If 'garbage' is not found, an e rro r message
is g iven . Remember that search fo r garbage begins at the cu rso r.

— The following commands are very useful fo r moving blocks of te x t around:

nBC Copy n lines o f te xt into a special b u ffe r . I f n is missing, i t is assumed
to be 1 .

nBM Move n lines of text into a special b u ffe r. I f n is missing, it is assumed
to be 1 .

11-8 PM ATE USER MANUAL AND INTERFACE GUIDE

BG Insert contents of special buffe r into text just before cu rso r.

'BM' is hike ‘B C except that the lines that are copied into the specia l b u ffe r are
then deleted from the text b u ffe r . To move 5 lines of te x t , position the cursor at
the beginning of the lines to be moved (using the cursor control instant com m ands).
Then type the command '5BM5S' . The 5 lines w ill disappear from the t e x t . Then
move the cursor to the p lace you wish the lines to be, and type 'B G 5S ' . Th is
restores the lines . The special buffer s till contains those 5 lines.

TAGS

If you want to move a large block of text around, it may not be obvious how
many lines are in th is block to m ove. There is an a lte rnative to counting lin es .
F irst set the cursor to the beginning of the section o f in te re st . U se a '©T' instant
command to ’ tag' that location . Now move the cursor to the end of the b lo ck . T h e
special symbol w ill cause the next command to act on this whole b lo ck . So 'irBC '
w ill copy the b lock, and r K ’ w ill delete i t . The block can be defined w ith the
tagged position at the beginning, and the cursor at the end, or v ic a -v e rsa .

The '£' can be used in front of any command which takes a num eric argument
to indicate the number of lines or characters to act upon (such as ‘ 0 ’ or 'K ') .
Furtherm ore, even if the command normally acts upon a fixed number of lines (such
as the '8 ' commands), by tagging a position, parts of a line can be m oved.

THE G A RBA G E STACK

When PMATE deletes te x t , it dumps it on a 'garbage s ta c k '. A ce rta in amount
of space is reserved fo r this s tack , and any remaining memory space not used by
text is also used for piling up garbage. If you acc identa lly delete a line , i t is then
easy to recover w ith a '©R', w h ich 'pops' the last item o ff the stack , and puts it
back in the te x t . I f you have just typed '©K©K©K©K', all the damage can be
recovered by typing '©RSR©R©R'. It is the most recently deleted item which is
availab le f irs t , and the items long ago lost which may have gone perm anently out to
pasture - i f there was not enough memory space le ft to hold all the deleted item s.

The garbage stack also provides a ve ry easy method of moving a b it o f te x t
around. For instance, to move a line of te x t , put the cursor at the beginning o f
that line and type '© K'. Then move the cursor to the required destination, and type
'© R'. U se '©W', and it is ve ry easy to move a word or tw o around in a sen tence .

OPERATION UNDER CPM

PMATE ex ists as the CPM command file , PMATE.COM , and is ca lled by typ ing :

PMATE

A fte r a few seconds, PMATE w ill come on the screen , in Command Mode. You can
now enter and edit te x t . If you wish to save your w ork on the d isk, you need to
define an 'output f ile ':

X F file C reate and open 'f ile ' for output (assuming a file by th is name doesn't
already e x is t) .

BASIC IDEAS 11-9

Then when your done, use one of these:

XE End edit pass by w riting entire te xt buffer to output f ile , and closing i t .

XK End edit pass without w riting anything on the d isk .

Both of these commands wipe out w hat’s in your te xt b u ffe r . The fir s t saves it on
the d isk, but w atch out for 'X K ‘ ! To get back to CP/M, it is necessary to use :

XH Co 'Home' to CP/M . To prevent you from inadvertently exiting w ithout
w riting desirable text to the disk, th is command w ill g ive an erro r
message if there are files open. You must take care o f them w ith an
’X K ’ or ’XE’ f ir s t .

PM ATE can be used to modify an already existing f i le . Now you w ill need an 'input'
f i le . Again use:

X F file Edit 'f ile ' (this tim e, assume ’ f ile ’ already e x is ts) , 'f i le ' is opened for
input, and the text is read in .

You may now modify the te x t, and again fin ish up w ith an ’X E ’ or an 'X K ' . An 'X K '
w ill leave the original file in tact - none of your changes w ill appear in i t . An 'X E ',
however, w ill e ffe ctive ly update the input file to include the changes you have
made. A copy of the input file before modification is retained under th e same
filenam e w ith the extension '.B A K ' (any old backup of the same file is d e le ted).

I f you ca ll PM ATE from CPM by typing

PM ATE file

'f ile ' is opened as the input or output file just as if you used an 'X F ' command. I f a
f ile is large, it is often easier to break it into pieces. (Th is is necessary if the f ile
is larger than availab le mem ory.) These pieces are called 'pages'. More deta ils on
this are given la te r :

CO TO IT

At this point, you know enough to u tilize PMATE ve ry e f fe c t iv e ly . U se the
above commands, the instant commands (p articu la rly the cursor motion k e y s), and
Insert Mode and you'll quickly find yourself confidently entering and modifying
programs or other te x t . It is important to get experience w ith these commands
before attempting to learn the complete command se t . Remember about
rcexecution of commands, and don't forget to try building some command strin g s .

C h a p te r 111
MORE C O N C EP T S

S IG N ED N UM ERIC ARGUM ENTS

Up until now, we have assumed that all numeric arguments a re positive
in tegers. They can in fact be much more complex expressions. For now , w e w ill
just extend them to include negative numbers. What would ’-3D ' do, fo r instance?
Rather than sta rt at the cursor, and delete characters forward from there ,
commands w ith a negative argument work backwards through the t e x t . '- 3 D ’ w ill
delete the three characters just preceding the cursor (leaving the cursor pointing at
the same characte r it used to b e). S im ilarly , '-2 K ' w ill delete 2 lines preceding the
cu rso r. '-S ' w ill search backwards through the te x t, from the cursor, until it finds
the string which follows the 'S '.

L IN E O R IEN TED COMMANDS

A number of commands, such as 'K ', are 'L ine-O rien ted '. They a ll behave
sim ilarly to 'L ', the command to move the cursor a specified number o f lin e s . What
happens when 'L* has a numeric argument that is less than or equal to 0? The
easiest w ay to see is by trying it , but here is an exam ple. Suppose the te x t buffe r
contains:

----- Th is is line a
— This is line b

Guess which line this is?
This is line d

The command 'L ‘, or '1L ' would leave the cursor:

This is line a
_ Th is is line b

Guess which line this is?
This is line d

The command '0L' would have le ft the cursor:

This is line a
This is line b
Guess which line this is?
Th is is line d

The command '-2 L ' would have le ft the cursor:

Th is is line a
This is line b
Guess which line this is?
This is line d

Other line-oriented commands w ith numeric argument 'n' a f fe c t the text
between the cursor, and the place the cursor would be placed if an ’nL' w ere
executed . So the command '-K ' or '- IK ' would have le f t :

111-2 PM ATE USER MANUAL AND INTERFACE GUIDE

Th is is line a
which line this is?
Th is is line d

TEX T FO RM ATTIN G

Editing textua l m ateria l presents ve ry d iffe ren t problems than editing programs.
Suppose you want to use PMATE to w rite a user's manual for a te x t ed ito r program
you have w r it te n . You w r ite the following paragraph:

Editing textual m ateria l presents very d iffe ren t problems
than editing program s. You w rite the following paragraph:

Soon you decide that th is doesn't make sense . A sentence is m issing. You need to
be able to add th is sentence, and s t ill keep the right number of words on a lin e . As
you add words between 'program s.' and 'You ', f irs t 'paragraph', and then 'fo llow ing ',
and so on need to w rap around to the next lin e . PMATE autom atically takes ca re of
this line form atting when in 'FORMAT M ODE'.

To enter FORMAT MODE, use the command 'F ' . Repeating the command 'F ' w ill
restore PMATE to norm al. In FORMAT MODE, lines end not only on a carriage
return , but also on the last possible 'space' which would keep the line from
exceeding the allowed length . Words are never broken up. So the rule is to enter
te xt w ithout any ca rr iag e re turns. PMATE w ill take care of the line length fo r you .
A lways use a carriage return at the end of a paragraph, or any other p lace w here it
is necessary to a lw ays begin a new lin e . Remember - if you put a C R at the end o f
a line because it looks like you are about to run o ff the screen, and then la te r you
delete a few words from that line , the carriage return is still there , now stu ck in
the middle of the lin e . Moral - let PMATE divide your lines .

PMATE a lw ays keeps the screen up to date and properly fo rm atted . You may
actua lly find this annoying w h ile entering te x t in the middle of a paragraph - fo r as
you type, the rr.argiriation- can change w ith most every keystroke , producing a
display which jumps around quite a b it . I f this bothers you, a co n tro l-L instant
command w ill insert a C R , e ffe c t ive ly stab iliz ing things by putting you at the end of
a paragraph. As soon as you are finished w ith the addition, type con tro I-D to
delete that excess C R .

You can have fun by changing the maximum number o f characte rs a llowed in a
lin e . Use the *F* command w ith a numeric argum ent. '30F' enters FORMAT MODE
and sets the maximum line length to 3 0 . In it ia lly , the maximum line length is set to
the number of characte rs in a line of the d isp lay . One reason you may w ish to
change it is to accomodate a p rin te r.

It is ve ry useful to be able to indent sections of te x t . One approach might be
to precede each line w ith one or more tab ch a ra cte rs . The problem w ith this is
that the tab cha racte r is now fixed between two sp ecific w ords. As words are
deleted or inserted, these words slide around to d ifferent locations on the screen ,
playing havoc w ith your m argins. For this reason, when in FORMAT MODE, PMATE
is able to in terpret the tab as a margin indent ch a ra c te r . If an indent has been set
to the same column as the tab stop, preceding an indented section w ith a tab w ill
cause each succeeding line to indent to the same point, until a C R ch a ra cte r is
reached. An indent can be set using a 'Y I ' command. For exam ple, '0Y I ' sets an
indent at column Ö, the firs t tab stop . So the tab (to column 8) follow ing 'nYP
below causes the rest o f the paragraph to be indented. This fea tu re is used

MORE CONCEPTS 111-3

throughout this manual

nY l Set an indent at column 'n '. Any tab to column 'n' w ill result in causing
the remainder of the paragraph to be indented, until a ca rr iag e return is
reached.

When operating in this manner, be sure not to use a tab to indent the firs t word
beginning a paragraph, for it w ill indent the whole paragraph instead -typ e in the
five spaces.

For some applications, you may wish to change the le ft and right margins for
only a particu lar section of te x t . For instance, you may wish to move the le ft
margin over 40 spaces to accomodate a p ic tu re . PM ATE allows margin and tab
information to be entered in a special non-printing control lin e . Th is control line
begins w ith a ©F (F for Form at), and ends in a C R . The complete set of possible
entries is given la te r, but for example:

©FL20;R60

w ill change the left margin to 20 and the right to 60 from that point in the text
onwards. These margins w ill be reflected in the text d isp lay . You might find it
hard to enter that ©F in te x t , as this is defined as an instant command. See the
section below on how to enter an a rb itra ry control cha racte r into the t e x t . A fte r
altering a format line, a '©F' instant command te lls PMATE to recompute its
form atting, and bring everything up to date .

When in FORMAT MODE, it is very important to be able to easily see w hich lines
end in carriage returns. In this mode, the carriage return cha racte r is actua lly
displayed on the screen . The actual 'ch a racte r' displayed depends upon the
implementation, w ith '<' being a typ ical cho ice .

One final thought: FORMAT MODE can be very useful when w riting programs
too . If the language you are using supports a sta rt and stop comment command, so
that comments don't autom atically end w it h . a line (as does the PSA Macro
Assembler, the language 'C , PASCAL and o thers), using PMATE in FORMAT MODE
allows your programs to read like a book, w ith extensive , easily modified,
comments. Of course, program lines must all be term inated w ith C R 's , but
comments can wrap around as much as desired .

UPPER AND LOWER CASE

If your keyboard is upper case only, it is s till possible to generate upper and
lower case cha racte rs . One character is chosen to be the 'case sh ift' ch a racte r
(usually a ' / ' , but you can change this w ith a 'Q ' command). When that ch a ra cte r is
typed, it is ignored. The next character to be entered is shifted in c a se . If it is
necessary to enter the shift character itse lf , just type it tw ic e . The whole
keyboard can be toggled back and forth between upper and low er case by the '©S'
(sh ift) instant command. A fte r strik ing '©S' once, all following ch a racte rs w ill be
entered as lower case, unless they are shifted up by the sh ift ch a ra c te r . '©S' again
returns things so that characters are entered as upper case unless sh ifte d . Some
keyboards have both upper and lower case, but lower case can only be obtained by
using the sh ift key . '©S' can also be used to make this keyboard look like a normal
typ ew rite r. On some keyboards, the sh ift- lo ck key also sh ifts the num eric keys

111-4 PM ATE USER MANUAL AND INTERFACE GUIDE

vlike a ty p e w rite r) . Th is can be extrem ely inconvenient if it is necessary to enter
upper case only program s. In this case too, '©S' can be used instead of sh ift- lo ck
to sh ift only the alphabetic keys.

CONTROL CH ARACTERS

Since control characte rs are used as instant commands, it might seem d iff ic u lt
to actua lly enter a control ch a racte r into the te x t . You can do this using a 'control
sh ift' ch a ra c te r . Th is ch a racte r is usually *~ ', but it too can be changed using a
'Q ' command. When you s trike th is sh ift character, nothing happens. The next
character to be entered is sh ifted to the equivalent control c h a ra c te r . So to enter
a con tro l-F , s tr ike first ', and then 'F ' .

SOME OF A LL YOU EVER W ANTED TO KNOW ABO UT IN PU T F IL E S , O U TP U T
F ILES , AND PAGES

PM A TE (as w ell as most any other te xt editor) needs the answer to two
questions before it can do any ed iting . 'Where do I find the s tu ff to edit ? ? ', and
'Where should I put it when I'm done ??' Running under CPM, these questions are
answered when you firs t ca ll the ed itor.

PM A TE C A R B A G IN GARBAGO U

is the CPM command to sta rt editing the file G A R B A G IN . It is opened as the 'input
f i le ' . Changes and additions are made, and the result is le ft in the f i le GARBAGO U
- the 'output file '

Often the input file is too big to be handled in one big chunk — it might not
even all f it into memory at one tim e. So, we break it into 'pages' -managable
pieces which we can read one or two at a tim e from the output f ile , and w r ite a
few at a tim e to the output f i le . Don't w orry for now about how big a page is .
lust w orry about how to turn them . You've already seen 'XA*. Th is is ju st the
command to read in the next page, appending it to the text b u ffe r . 'XA ' can even
take a numeric argument - the number of pages to read in . '5XA ' w ill append 5
pages. 'nXVY' is the command that w rites out 'n' pages from the beginning o f the
text to the output f i le . A ll the te xt that is w ritten out is also removed from the
buffe r - to modify it fu rth e r, you must make a complete 'pass', and s ta rt editing
again . 'nXR ' is a ve ry useful command. It is equivalent to 'nX A nX R '. '2X R ' w ill
'rep lace ' 2 pages in the text b u ffe r by w riting two pages from the beginning o f the
buffer to the output f ile , and then reading in two more from the input f i le . The 'a ll
done' command, 'XE' f ir s t w rites the text buffer to the output f ile , then reads in the
rest of the input f ile , and w rites it to the output f ile .

The size o f a page is a fixed number of lines . This number can be set to 'n ' by
the 'nQP' command. '75QP' w ill set the page size to 75 lines, so th at the command
'3XA' w ill append 225 lines, and 'XW' w ill w rite 75 lines. Pages can be ended
prem aturely by a form feed ch a racte r (© L). If the page size is se t to 0 ('O Q P'),
form feeds are the only method of separating pages.

As you are entering te x t , if you find ‘ memory space exhausted", do an XW to
w rite out some of the te x t at the beginning of the b u ffe r. XA w ill bring in more
text from the disk to e d it . If you need to sta rt a new pass, *XJ' w rite s all te x t out
to the output f ile , and then reopens that for input, and you are ready to sta rt
editing at the beginning of the f ile .

MORE CONCEPTS 111-5

Those tw o numbers separated by a comma in the status line at the top of the
screen are just the input page number and the output page number. You should also
see the name of your input file and your output file sitting up in that same lin e . At
the beginning of the line, the le tte r followed by a colon is just the cu rren tly logged
in disk d rive .

XE does not return you to CPM - you are still in PM ATE. You may return to
CPM w ith an 'XH' command, or open some new input and output file s using the ’XF'
command. Just fo llow 'XF* w ith the same filenames you would fo llow PMATE w ith
in the original command line, then hit two escapes.
'XFCA RBA C IN ' G ARBAGO USS1 w ill open the same files as above.

O ften , an editing operation is performed to update a f i le . When you are done,
you rea lly want the new output file to have the same name the old input one d id .
One possib ility would be to delete the old input f ile when you are done, and then
rename the output f ile to the same name the old input one had. PMATE w ill do this
for you autom atica lly if you only specify one filenam e in the command line , o r in an
'XF ' command. Th is file is opened as the input f ile , and an output f ile is opened
w ith the same name, but an extension 'SSS '. 'XE* w ill then output everyth ing to the
output file as usual. The old input file w ill be renamed to have the extension 'B A K '
(a backup - any old backup is deleted), and the output f ile w ill then be renamed to
the original input. For exam ple:

PMATE’ JUN K.ASM

w ill open 'JU N K .A SM ' as the input file , and 'JU N K .S SS ’ as the output f i le . 'X E ' w ill
then rename 'JU N K.ASM ' to 'JU N K .B A K ', and then rename 'JU N K .S S S ' to
'JU N K .A SM '.

In the PMATE command line , or in an XF command, e ither the input f ile o r the
output f ile can be preceded by a drive specifie r ('A : ' , 'B : ' , 'C : ' , e t c .) to indicate
which disk to find the file on . I f there is no specifie r, the currently logged-on disk
is always referred to .

I f the logged-in disk is 'A ', 'PMATE B rG A R BA G IN C A RBA C O U ' w ill look fo r
input file 'G A R B A G IN ' on disk 'B ', and output f ile 'G ARBAG O U ' on disk 'A '.

D IREC TO R Y M AINTENANCE

PMATE allows you to perform CPM d irecto ry lists and f ile de le tes. One o f many
occasions th is comes in handy is if you get a ’ disk fu ll" message upon try in g to
w rite a f ile to d isk . You can then list your d irecto ry , delete unwanted f ile s , and
again attempt to w rite the file you are now working on out to d isk .

The command to list the entire current file d irecto ry is X L . The d irecto ry is
actua lly entered in the text buffe r, at the cursor location . Th is can be ve ry usefu l,
because now it is possible to edit this information just like any other te x t , and scro ll
through large listings. It can also be ve ry inconvenient, because the d irecto ry may
appear right in the middle of your working te x t . In th is case, it can a lw ays be
deleted. An a lte rn ative is to edit in another buffer (see below), or to use the
instant command to edit the command string (then do the XL — one fu rth er '© _’
and the d irecto ry listing becomes the latest command, easily killed w ith a '© C ').

Partial d irecto ry listings can be obtained by following 'X L ' w ith a file nam e. As
in the CCP 'D IR ' command, the file name can have ?'s and * 's .

'X LJU N K ' w ill insert 'JU N K ' at the cursor if f ile 'JU N K ' ex ists , o therw ise it w ill do
nothing.

111-6 PM ATE USER MANUAL AND INTERFACE CUIDE

'X f .C O M * w ill insert the names of all files w ith extension 'COM' at the cu rso r.

Files can be deleted w ith the 'XX ' command. 'X X file ' deletes 'f i le ' from the
d isk. The file name cannot contain the ambiguous characters '? ' o r DO NOT
D ELETE THE C U R R EN TLY D EF IN ED IN PU T OR O U TPU T F IL E S .

It is possible to sw itch the cu rren tly logged in disk d r ive . Th is is done w ith the
XS command. 'XSA ' se lects d rive 'A ', and 'X S C selects drive 'C ' .

ITERA TIO N

It is o ften ve ry useful to be able to repeat a command or a command string a
whole lot o f tim es. The ite ration brackets (' [* and *] *) a llow us to easily do th a t .
This command string

5 [Igood morning!
S]

produces th is te xt d isplay:

good morning!
good morning!
good morning!
good morning!
good morning!

'3 [K) * w ill produce the same resu lt as '3 K '. Bew are! What w ill 3 11 hello] do?

Iteration brackets can be 'nested '. Make sure you have the same number o f le ft
and right iteration b racke ts . The command

1 0 0 (4 0 1 1 11
S)

w ill f i l l up your te xt buffe r w ith 100 lines o f 40 stars each .
I f there is no num eric argument in front of the iteration b rackets , the operation

w ill be repeated fo rever (th a t is , about 65,000 times) or until some sort o f e rro r
occurs . ' [1 * 5) ' w ill f ill up a ll availab le memory w ith stars, and then complain that
it has no more memory le f t . ' (K] ' w ill s ta rt killing o ff lines, and continue until it
has none le ft to k i l l . ’ [CgoodSbadSj' w ill change all occurences o f 'good' (a fte r the
cursor) to 'bad '.

OTHER BU FFER S

PMATE actua lly has 11 d iffe ren t buffers into which text can be entered (as w ell
as 2 buffers for command str in g s). These buffers are not of fixed s iz e , any o f them
can expand to grab a ll the remaining availab le space. I f you de le te te x t from one
buffer, this space is now availab le to any of the others.

MORE CONCEPTS 111—7

U sually , you w ill be editing in the 'T* b u ffe r . ('T ' stands for ' t e x t ') . The 10
other buffers are labeled 0 -9 . Actua lly , you already know about the '0' bu ffe r - all
the special buffer commands, like 'B C and 'B C ' copy to and from buffer 0 . Those
commands could have also been w ritten 'BOC' and 'BOG' (fo r instance , 'B 3 C w ill
copy to buffer 3) . To sta rt editing a buffe r other than the 'T* b u ffe r, type ‘BnE’
(b u ffe r n e d it), where n is '0 '- '9 ' or 'T ' . 'B3E ' gets you to buffe r 3 , and then 'BTE*
gets you back again . The buffers other than the 'T ' b u ffe r are useful m ainly for
storing blocks of text that need moving around, and fo r storing whole command
strings, or 'm acros'.

MACROS

A m acro is like a subroutine. If you have w ritten a command string that
performs a function you w ill use a number o f tim es, you can put that command
string in buffe r 'n '. Any time you w ish, you may execute it w ith the command
' .n ' . There are several possible methods to put this command string into a b u ffe r .
The most stra ight-fo rw ard is just to sta rt editing in this buffe r using the 'BnE'
command, and then to go into Insert Mode and enter the command right into the
b u ffe r. (What would happen if you tried to enter a command string , complete w ith
escapes, into the buffer by using an T command?)

Just as subroutines can be nested, macros can in turn ca ll other m acros. Just
as it is often necessary to pass arguments to a subroutine, macros too can require
passed string arguments. You may find you wish to use some macros over and over
again . These can easily be incorporated as a permanent part of PM ATE. These
'permanent macros' are executed by the command '.x* where V is any cha racte r
except for the digits 0 -9 . (' .1 ' w ill execute buffe r 1 , not a permanent m acro .)
You w ill learn la te r how to pass arguments to macros and how to create your own
permanent m acros.

ERROR TRA CEBA C K •

Sometimes, errors w ill occur while executing a m acro . The usual e rro r message
w ill appear in the text area of the screen . Down in the command area , the macro
string which caused the erro r w ill be displayed, w ith the cursor pointing to the
command characte r just past the offending one. The status line up top te lls which
buffe r (or w hich permanent macro) was being executed at the tim e o f the e rro r.
Now you have a choice of either hitting a CR or the space b ar. A carriage return
behaves as usual - - you're all ready to enter the next strin g . Strik ing the space bar
'pops a le v e l'. It allows you to v iew the command string which 'ca lled ' the
troublesome m acro . As long as this command string is itse lf a m acro , you may
continue hitting the space bar, and popping le ve ls . Once this command string is just
the original one entered into the command buffer, the space bar and CR keys have
the same e f fe c t . If a macro is called from several places in a command string , this
error traceback allows you to find out exactly where the trouble occured .

A U X IIL IA R Y F ILE I/O

At any tim e, PMATE allows you to output sections of your current edit b u ffe r to
the d isk, or to input disk files into this b u ffe r . This can occur w h ile input and
outpput files are defined, and w ill not upset them . 'X If i le ' w ill input all of 'f i le ' (if

111-8 PM ATE USER MANUAL AND INTERFACE GUIDE

there is enough room in m em ory), and place it just before the cu rso r. *nXI file* w ill
read in V pages from 'f i le ' . More pages can subsequently be read in by 'n X I' (i f no
file name is specified , input continues from the last named au x illia ry input f i le) .

'nXO file ' outputs the next 'n' lines of text (a fte r the cursor) to ' f i le ' . I f there
is no numeric argument 'n ', the entire te xt buffe r is output.

The many uses of these commands include merging sections of files (even if
larger than availab le m em ory), loading macros into buffers to be executed, and
using the disk for scra tch storage as you might the special b u ffe rs.

THE CLO N IN G OF PM ATE

You probably have noticed that PM A TE has a number of 'param eters’ which can
easily be changed (usually w ith an appropriate 'Q ' command). On rare ocassions
(u sua lly), your favo rite param eters w ill d iffe r from m ine. If you like a page size of
100 lines, you can g ive the command '100QP' every tim e you begin editing, or you
can c rea te yourse lf a customized verion of PM ATE. H ere’s how:

First execute PMATE w ith no input or output f ile s . Now make any desired changes
(use the appropriate commands, c rea te some permanent m acros, o r even - care fu lly
please - get in there w ith your system monitor, and really s ta rt hacking a w a y).
Now give the command ’X D file ’ (’D ' for D uplicate) -w here 'file ' is the name o f your
new customized version of PMATE (the .COM extension is added au tom atica lly).
Name it PMATE1 or PMATE2 or anything you like (please -only n ice nam es). Use
'XH' to return to the CCP , and then v e r ify the new version . If you are happy w ith
it , you can erase the orig inal PMATE.COM, and rename your new one to that - or
keep several versions around for d iffe ren t purposes.

C E T SOME HARD COPY

PMATE has a fa c ility to output te xt to a p rin te r. The command 'X T ' w ill
outp"t the entire current edit buffe r to the listing d ev ice . I f there is a numeric
argument, 'nXT* w ill print 'n' lines of te x t , starting at the cu rso r. Use this feature
in order to print out just the changes you have made to your long f i le s . When you
are feeling ambitious, you can w rite macros to output te xt in almost any format you
would w a n t . For instance, you might have page numbers, tit le s , and even an index
added to the text output.

C h a p te r IV
C O M PLETE COM M AND S ET

NUM ERIC ARGUM ENTS AND V A R IA B LES

Numeric arguments are in tegers. Usually they are signed numbers between -
32,768 and 32,767. Sometimes they are considered as unsigned numbers from 0 to
65,535. However, numeric arguments can be more than just decimal num bers. They
can be complex expressions consisting of numbers, variab les, arithm etic and logical
operations, and parenthesis. Operations are performed from le ft to rig h t. Any
operator precedence must be determined by parenthesis. So 5+3*2 has the value
16 and 5+(3*2) has the value 11 . There can be up to 15 levels of parenthesis in
an expression.

Numbers in command strings are usually interpreted as decimal numbers (base
1 0). However, the base, or 'cu rrent input radix' can be changed (see the 'Q '
commands). So '10DSS' usually deletes 10 characters , but if the input rad ix is 8
(o cta l) , it w ill delete only 8 ch a racte rs .

There are very few times when a radix other than decimal is useful, but if the
radix is greater than 10, several rules must be observed. For instance , in hex,
PMATE must know if 'D ' is the hex digit 'D ' or if it is the command to delete a
ch a ra cte r. The rule followed is that any number must begin w ith a digit from 0-9 ;
then each succeeding character is interpreted as a digit if that is at all possible.
For example, if the input rad.ix is hex 'D D K ' is interpreted to mean to delete two
characters and then k ill a lin e . 'ODDK' however, would k ill 221 lines (the value of
'D D ' in h e x). If it is necessary to term inate a hex number, an escape can be used.
'ODSDK' w ill delete 13 characters and then k ill a lin e . '2SD ' w ill de le te two
characters , while 2D w ill be interpreted as -15 (decim al).

Numeric arguments can be displayed on the status lin e . Typing just a numeric
argument, followed by 2 escapes w ill display the value o f that argument in the
current output radix (decimal by defau lt) a fte r the words *ARG = ‘ . In th is w ay ,
the editor can be used to do integer arithm etic . By making the output radix
d ifferent than the input radix, number conversions (such as hex to decim al) can be
performed.

Arithm etic operations:
The following are va lid arithm etic operations w ith in a numeric
argument.

♦ Addition.
Subtraction or negation. -(3+4) is a va lid expression.

• M ultiplication.
/ D ivision . Integer division, leaving just the quotient. The rem ainder of

the last division performed is availab le as '@R' (see the '0 ' numeric
arguments below).

Logical operations:
Logical operations leave the value -1 if true , and 0 if fa lse . The follow ing are

valid logical operations w ithin a numeric argument. In the expression '3=5', '3' w ill
be referred to as the first operand, and '5' w ill be referred to as the second
operand.

= Equal--true if the firs t and second operand are equal.
< Less than--true if the first operand is less than the second.
> G reater than— true if the first operand is g reater than the second.

IV-2 PM ATE USER MANUAL AND INTERFACE CUIDE

& And— true if both operands are tru e .
! O r— true if e ither operand is tru e .
' Logical complement

Exam ples:
3<2
3<2'
2<3
2<3!(5=2)
2<3&(S=2)
5+3=(1 +7)
5+3=(1 +7)'

has the value 0 .
has the value -1
has the value -1
has the value -1
has the value 0
has the value -1
has the value 0

Variables and the Number S tack :
There a re ten numeric variab les (labeled 0 -9) availab le fo r use. These

variables can be set using the 'V command (see b e lo w). They can be used as part
of a numeric argument using an '<3' argum ent. In addition, there is a Number Stack
ava ilab le . Any num eric argument can be 'pushed' on this stack (see below), and
'popped o ff' la te r (see 'ö S ') . The stack w ill hold up to 20 entries during the
execution of a command, but is c leared upon completion.

Some o f the variab les used in terna lly in the ed itor are also availab le fo r use in
numeric argum ents. The com plete list o f '0 ' arguments fo llow s.

ai
a a
@c

9E
QFfileS
QG

QHstrngS

ai
QK
QL
QM
QO
0P
QR
QS
QT
av
a w
ax
QY
0Z
a a
•x

The va lue of va riab le ' i ' , w here *i' is a dig it from 0-9 .
The num eric argument preceding the last macro c a ll .
The current cha racte r number. This is the number o f characters from
the beginning o f the text buffe r to the character at the cu rso r, when
the cursor is at the beginning of the b u ffe r, this has the value 0 .
The va lue o f the erro r flag .
Returns -1 if 'f ile ' exists on the current d irecto ry , 0 if it doesn't.
The length of the string argument just referenced (by an T , ' S ' , or 'C
command).
Compares 'strng' to the characte rs at the cursor in the current text
b u ffe r . Returns 0 if they m atch, otherw ise 1 or -1 , depending upon
w hich is 'g re a te r '. W ildcards (as in 'S ' command) are acceptab le in the
command string .
The number of the current input page.
The A S C II value of the key stru ck a fte r an 'A' command.
The current line number, if the cursor is w ithin the first line, th is is 0 .
T h e amount (in bytes) of working memory space remaining.
The number of the current output page.
The absolute memory address to which the cursor is pointing.
The remainder of the last division perform ed.
The value o f the top of the number s ta ck . The number stack is popped.
The A SC II va lue of the ch a racte r pointed to by the cursor.
The current mode — 0 for Command, 1 for Insert, 2 for O vertype.
The current right hand m argin.
The current column that the cursor is in .
The current le ft hand m argin.
The column of the next tab stop.
The value o f the byte in memory pointed to by variable 9 .
The A SC II va lue of the cha racte r x , where x is any ch a racte r.

Block operations:

COMPLETE COMMAND SET IV-3

Commands which take a numeric argument to indicate the number o f characters
or lines can also be used to act upon a defined 'block*.

T Tag the current cursor position as beginning of b lock . (Equivalent to
'©T' instant command.)

= Move the cursor to the tagged position, and use the d iffe rence between
the old cursor and the tagged position as the num eric argum ent.

If you wish to type out a large block of te x t , move the cursor to the beginning of
the block, use ’ T5S' or '© f to tag that position, then move the cursor to the end of
the block and print out your text w ith '£ X T '. '£' is also very useful w ith delete
commands, and w ith buffer commands.

V A R IA B LE AND NUMBER STACK COMMANDS

nVi Set variab le i (i is a digit from 0-9) to the value o f num eric argument
n . So 'QC+3V2' sets variab le 2 to 3 more than the current ch a racte r
position.

nVAi Add the value of numeric argument n to variab le i . I f n is missing it
has the default value of 1 , so variab le i is increm ented. '3VA5' adds 3
to variab le 5 .

n, Push numeric argument n on the number stack •

THE ERROR FLAG

C erta in commands can produce 'non-fata l' erro r conditions. For exam ple, if
the cursor is already at the end of the text b u ffe r, an 'M' command cannot move the
cursor any fu rth e r . The command string execution w ill not be interrupted to give
an erro r m essage. However, it is possible to determine that an erro r condition
existed by looking at the ’erro r f a g ' . Th is error flag is set to -1 to ind icate an
erro r condition following certa in commands (these commands w il l be specified
la te r) . In addition, it is possible to suppress some 'fa ta l e rro rs ', such as would
occur if a string cannot be found during a search command. I f these erro r messages
are suppressed, the error flag w ill indicate whether an erro r has o ccu rred .

9E G ets the value of the e rro r fla g . The erro r flag is reset before
executing a command string, and every tim e it is tested by 'Q E ' . It is
also reset when beginning an ite ra tio n .

E Set the error suppress f la g . Th is flag is reset before executing a
command string, and by every command w hich might te st i t .

MODE AND FORMAT COMMANDS

nN Change modes. If n=0, remain in COMMAND M ODE. I f n=2, go into
O VERTYPE MODE. For any other 'n ', or 'n' missing, go into IN SERT
MODE. This is sim ilar to the instant commands '©N' or ’© V , except
that when '©X' returns to command mode, execution of the original
command can continue.

PMATE has an automatic 'word-w rap' feature , active when in ‘ FORMAT MODE*,
line w ill then end on the last complete word which fits w ithin the allowed line

IV-4 PM ATE USER MANUAL AND INTERFACE GUIDE

length. A carriage return is entered only to indicate that the next word must begin
on a new line (end of paragraph).

nF Enter FORMAT M ODE. The line length is set to 'n'

F Toggle in and out of FORMAT M ODE. Go into FORMAT MODE if you’ re
not there already, and leave it if you a re .

CURSOR MOTION COMMANDS

The following commands move the cu rso r. While the cursor can also be moved
using instant commands, the construction of powerful command strings requires
cursor motion command ch a racte rs .

+/-nM Move the cursor n ch a racte rs . I f n is positive, the cursor is moved
fo rw ard . If n is negative, the cursor is moved b ackw ard . I f n is 0 , no
action is taken .

+/-nL

+/-nP

+ /-nW

Move the cursor n lines . Consider the following exam ple:

line a
line b
linj? c
line d
line e

Suppose the cursor is on the 'e ‘ in 'line c ' . '1L' or '1 ' w ill move the
cursor to the beginning of line d . '21' w ill move it to the beginning of
line e . ‘0 L ‘ moves to the beginning of the current line, line c . *-L ’ or
11' move the cursor to the beginning of line b, while '-2 L ' moves it to
line a .

Move the cursor n paragraphs. When not in FORMAT MODE, this
behaves just like 'L ' . When in FORMAT MODE, it seeks only the CR
which forces the next word to begin on a new lin e .

Move the cursor n w ords. Words are separated by any combination of
any number of spaces, tabs, and carriage returns. 0W moves to the
beginning of the current word . If n is negative, the cursor is moved to
the beginning of the nth preceding w ord . I f n is positive , the cursor is
moved to the beginning of the nth following word.

I f in the execution of an 'M '/L '/P 1, or 'W* command, the cursor would
be moved past the end of the edit b u ffe r, it is placed at the end, and
the erro r flag is s e t . S im ilarly , i f the cursor would be moved before the
beginning of the edit buffer, it is placed at the beginning, and the erro r
flag is s e t . The value of the erro r flag is obtainable by the numeric
argument 9 E . It is -1 (true) when set, 0 (fa lse) when c le a r .

A Move the cursor to the beginning of the current te xt b u ffe r .
2. Stove the cursor to the end of the current te xt b u ffe r .

COMPLETE COMMAND SET

DELETION

V - n D

V - n K

INSERTION

I

nl

n \

R

nR

COMMANDS

D elete n characters starting at the cursor. I f n is positive, characters
are deleted beginning w ith the one pointed to by the cursor, and
proceeding towards the end of the current text b u ffe r. I f n is 0 , no
action takes p lace . I f n is negative, the firs t cha racte r to be deleted is
the one just before the cu rso r. C haracters aree then deleted
proceeding towards the beginning of the te x t .

K ill n lines starting at the cu rso r. 'Lines' are defined as in the 'L '
command. So 'K ' deletes all characters starting at the cursor, up to
and including the c r at the end o f the lin e . '2K ' w ill delete th is and the
next line too . 'OK' deletes characters starting just before the cursor
and proceeding back through the text un til, but not including, the c r at
the end of the preceding lin e . ' - IK ' deletes this much, and the line
before also. 'OKK', for example, w ill delete the line which contains the
cursor, no m atter where w ithin the line the cursor is .

COMMANDS

Insert the string which follows into the text immediately before the
cu rso r. 'IstringS' would insert 'string '.

If '1' has a numeric argument, the cha racte r represented by that A SC II
value is inserted into the te x t . I f the input radix is decim al, '651' w ill
insert 'A '. Using th is command, any ch a racte r at all can be inserted
into the te x t .

Insert the A SC II string representing the value o f argument n in the
current output rad ix . The string is inserted immediately before the
cu rso r. If variab le 0 has the value 23, '© cAl S@0+3\' w ill insert '23
26' into the te x t .

If any of these text insertions would f ill up the availab le memory space
(leaving 30 bytes free for more commands), the error message 'MEMORY
SPACE EXHAUSTED' is given, and the text is not inserted .

Replace the text immediately following the cursor w ith the string which
fo llow s. No text is moved around. The new characters just o ve rw rite
what used to be th ere . If the cursor is near the end of the te x t buffer,
and there are not enough characters to rep lace, an erro r message is
g iven, and the substitution is not perform ed.

When 'R ' has a numeric argument, the cha racte r represented by that
A SC II value replaces the cha racte r already at the cursor position .

IV-6 PM ATE USER MANUAL AND INTERFACE GUIDE

S TR IN G SEARCH COMMANDS

♦nS Search forw ard , starting at the cursor, for an occurence o f the string
w hich fo llow s. I f n is present, search only through the next n lines
(defined as in the *L' command). If n is missing, continue the search
until the end of the edit buffe r is reached . The curso r is le ft
positioned just a fte r the located string .

-nS Search backw ard , starting just before the cursor, for an occurence of
the string w hich fo llow s. If n is present, search only through the
preceding n lines (defined as in the 'L ' command). I f n is missing (i .e .
'-S strin g ') continue the search back to the beginning o f the ed it b u ffe r .
The cursor is le ft positioned on the fir s t character o f the located
strin g .

I f the string is not found, norm ally an e rro r message is g iven . H ow ever, in some
instances it is important to be able to continue execution of a command string a fte r
all occurences of the string have been found. No e rro r message w ill be g iven, and
command execution w ill continue, if the 'E r ro r Message Suppress Flag* is s e t . Th is
flag is set by the *E* command, and is reset upon the completion of eve ry sea rch . If
this flag is set, and an erro r does occur, the 'E rro r F lag ' w ill be s e t . The va lue of
the erro r flag is given by 'Q E '. It is -1 (true) when se t, 0 (fa lse) when c le a r .

Upper case characte rs in the search string w ill m atch only upper case ch a racte rs in
the te x t . Lower case characters w ill m atch either upper or low er case in te x t .
(To m atch only low er case , see ©L w ildcard below).

The following 'w ildcards' can be used in the search string to match any of several
specified ch a ra c te rs .

®N Match anything but the cha racte r fo llow ing . 'SMA©NTES' w ill find
'MALE' o r 'MADE' but not 'PM A TE'.

©E Match any ch a ra c te r . 'MA®EE‘ w ill match 'M ALE', 'M A D E', and
'PM A TE'.

®L T ake next cha racte r lite ra lly . Th is allows an actual w ildcard ch a racte r
to be searched fo r . 'SMA©L©EE' matches neither 'M ALE' nor ’M ADE’,
but only 'MA©EE'.

©S M atches e ither a space or a ta b .
®W M atches any word term inator (any ch a racte r other than a le tte r o r a

num ber).

STR IN G CHANGE COMMANDS

nC Search forw ard or backward fo r the string which fo llow s as in ’nS'
(w ildcards are a llow ed). Change the located string to the second
fo llow ing strin g . 'Cstring1Sstring25' locates the f ir s t occurence of
's tr in g !' and replaces it by 's tr in g 2 '. If the string cannot be located,
errors are treated as fo r 'S ' . In p a rticu la r, erro r messages can be
suppressed.

COMPLETE COMMAND SET IV-7

SET T IN G TAD STOPS

By defau lt, tab stops are set every 8 spaces, but th is assignment can eas ily be
m odified. A maximum of 10 tab stops can bo defined.

YK K ill all tab stops. A tab is now equivalent to a space.

nYS Set a ti\,b stop at column 'n '.

nYD Delete the tab stop at column V (if there is one).

nYE K ill all old tab stops, and set new ones at every 'n 'th co lum n. '8YE'
restores the conventional settings.

nY l Set the default indent to column V . I f 'n' is 0 , no indent is used. See
the next section for use of indents.

For example, 'YK10YS30YS' would set up tab stops at columns 10 and 3 0 . Th is
setting might be useful for assembly language programming w ith labels in the first
column, then instructions, and then comments. You could then save a version of
PMATE permanently containing these tab settings (see 'X D ' command).

The following commands make it easy to change tab settings w ithout a ltering the
current position of the te x t .

nYF For the next ’n' lines, beginning at the cursor, replace a ll tabs w ith the
appropriate number of spaces.

nYR For the next 'n' lines, beginning at the cursor, replace blocks o f spaces
by tabs wherever possible.

IN -L IN E T E X T FORMATTING

When in FORMAT MODE, it is possible to set tab stops and le ft and right margins
in non-printing control lines embedded d irectly in the te x t . Th is is necessary when
these parameters must change w ithin the te x t . Even if not, it is s t il l useful to put
this format information on the first line of the text file so you do not need to
remember which margins and tab stops you used the last tim e you edited th is f i le .
PMATE w ill recognize up to 30 embedded formats in memory at one tim e .

These control lines must begin w ith a *©F' and end in a carriage re tu rn . Any
such line is not printed by the XT command so that any unprintable language can be
entered here . Certain letters are recognized as 'commands', and must o ften be
followed by a number. These commands can be strung together when separated by
a semicolon. . .

Ln Set the left margin to column 'n '.

Rri Set the right margin to column 'n '.

K K ill all tab stops.

fn Set a tab stop at colum n 'n ' .

IV-8 PM ATE USER MANUAL AND INTERFACE GUIDE

Dn D elete the tab stop at column 'n '.

En K ill old tab stops, and set new ones at every 'n'th column.

In Set an indent to column 'n '. If V is also a tab stop, tabbing to this
column w ill cause all subsequent text to indent to this column until a
CR is reached. For instance, the ''3FI8 ' line at the beginning o f this
document causes the tab a fte r the ‘ In' to indent this en tire paragraph

The line:

4FL5;R50;E10

sets the le ft margin to column 5, the right to column 50, and sets a tab stop at
every 10th column.

Any'm arg in or tab stop information not specified in the format line reverts to
the d e fau lt. That is 0 for the le ft margin; the right margin default is set by the ’ F ’
command; and the tab stop defaults by the 'V commands.

FLOW CONTROL COMMANDS

Conditional branching and iteration w ithin commands make possible the
construction o f command strings equivalent to small te x t editing programs.

Iteration is accomplished as fo llow s:

n [. . . m]

' . . represents any command string . Th is command string w ill be executed n
tim es. If n is missing, it w ill be ite rated 64K tim es. If n is 0, the command string
in brackets w ill be skipped o ve r. If n is -1 , the command string w ill be executed
once. Thus, if iteration brackets are preceded by a logical expression, the enclosed
command string w ill be executed once if the expression is true , and skipped over if
the expression is fa lse , m is an optional numeric argument. I f it is present,
iteration of the loop w ill end prem aturely if m becomes non-zero (t ru e) . I f m is
missing, its value is that of the error f la g . That is, the iteration o f the loop w ill be
term inated if the erro r flag has been se t.

'5 (D] ‘ has the same e ffe c t as '5D ‘ .
'5V 0 (D -V A 0Q 0= 0)' also has the same e ffe c t as '5 D '. '5V0' in itia lizes va riab le 0 .

Within the iteration b rackets , -VA0 decrements variab le 0 . the ite ration w ill
continue until the final numeric argument is true , when variab le 0 is 0 .

'(ChelloSgoodbyeS)' changes all occurences of 'hello' to 'goodbye'.
'(ChelloSgoodbyej’ changes the firs t occurence of 'hello' to 'goodbye)'

(remember, all string arguments must be term inated by an escape).

Iterations can be nested to a maximum depth of 15.

! (. . .) Execute the expression in brackets if logical expression T is t ru e . Skip
past matching bracket if it is fa lse .

...](» ••]

COMPLETE COMMAND SET IV-9

Execute instructions w ithin firs t set of brackets if logical expression T
is true; otherwise execute instructions w ithin second se t.

Further control of these iteration and if-th en loops is offered by the 'next' and
'break' commands which are only meaningful w ithin matching iteration b racke ts .

n^ N ext — if 'n' is non-zero (tru e) or missing, proceed to th e next
iteration

n _ Break — if 'n' is non-zero (tru e) or missing, ex it immediately from the
enclosing iteration b rackets .

As w ith other command characters , e ither upper or lower case brackets ({ } or [])
can be used for ite ratio n . However, the above 'break' and 'next' commands do
distinguish case . They skip right past ' } ' to the next ') ' . T yp ica lly , put if- th e n -
else constructions in upper case ({ }) so that any 'break' or 'next' command w ith in
w ill ex it the desired iteration loop (not just the ' i f c lau se).

Conditional and unconditional branching w ith in a command string is perm itted .
The proper point to branch to is designated by a lab e l. A label is any ch a ra cte r,
preceded by a *:A ' and are examples of valid labe ls. The branch command
is:

nj I f n is missing or non-zero (t ru e), transfer control to the command
immediately following the referenced labe l. If n is 0 , proceed w ith
normal command execution . 'eM > 100]LS10K :L' w ill k ill 10 lines if
there aren 't more than 100 bytes of memory le f t . ’JL5 10 00K :L ' does
nothing.

Be sure never to jump in or out o f an iteration loop, th is w ill lead to
ve ry e rra tic resu lts.

F ina lly , it is possible to ex it at any point from an entire m acro .

n% Exit macro - - if V is non-zero (tru e) or missing, ex it from m acro .

I f you are a structured programming fa n a tic , you may find the ’) ' command as
useless as the 'GO T O '. A ll the control stru ctu re you w ill ever need can be found in
the iteration b rackets . You've got the M F-ELSE-TH EN ', and the 'D O -U N T IL '.
Have fu n !!

BU FFER COMMANDS

The ed itor actua lly contains 11 buffers into which text can be en te red . The
buffer which is in itia lly used is called the *T' (fo r 'te x t ') b u ffe r. The other buffers
are labelled 0 -9 . Independent te xt can be contained in each o f these b u ffe rs .
Text can also be transferred from one to the o ther. The buffer which is cu rren tly
being edited is displayed in the status line when in command mode. The instant
command causes the command buffer to become the current edit b u ffe r, and
'C is displayed in the status line.

IV-10 PM ATE USER MANUAL AND INTERFACE CUIDE

A ll buffer areas, including the command buffer, expand and contract
dynam ically . Any buffe r grabs as much memory as it needs, until the to ta l availab le
memory is used up.

In the following buffer commands, 'b* re fers to a buffer number, e ither 0-9 , or
'T ' . In all cases, b can be le ft out, and buffe r 0 w ill be re fe ren ced . Some
commands have a numeric argument, 'n ', which refers to the number o f lines to be
moved or copied, 'n' can be positive or negative, and the e ffe cted lines are
determined as in the 'L ' and ’K* commands.

BbK K ill b u ffe r b . A ll the te xt in buffer b is deleted, and any space it took
up is recla im ed.

BbE B u ffe r b becomes the current edit b u ffe r . B u ffe r 'T* is the in itia l edit
b u ffe r . When the edit buffe r is changed, the cursor location of the old
edit buffe r is preserved . When the old edit buffe r is reinstated , the
cursor is restored .

nBbC n lines from the ed it buffe r are copied to buffer b . The old contents of
buffe r b are destroyed . The cursor in buffe r b is placed at the end of
the entered lines . The copied lines in the edit buffe r are preserved,
and the cursor is placed a fte r them .

nBbD n lines from the edit buffe r are inserted into buffer b (just before the
cu rso r). The copied lines in the edit buffer are preserved, and the
cursor is placed a fte r them.

nBbM n lines from the edit buffe r are moved to buffer b . The old contents of
b u ffe r b are destroyed . The cursor in buffe r b is p laced at the end of
the entered lines . The copied lines in the edit buffe r a re deleted .

nBbN n lines from the edit buffe r are inserted into buffe r b (just before the
c u rso r) . The copied lines in the edit buffe r are deleted .

BbG G et the contents of buffe r b . Th is is inserted just before the cu rso r.
The contents o f buffe r b are not e ffe cted .

One common application o f these b u ffe r commands is to move or copy blocks of
te x t . For exam ple, 'BM' would move one line of te x t to buffer 0 , a fte r deleting
any old te xt th e re . 'BN ' could then be rep etitive ly executed (keep hitting escape),
each tim e moving the next line of te xt to the end of buffe r 0 . A whole block of
text can in this manner be assembled in buffe r 0 . This is just an a lte rn ative to
counting lines and typing '15BM SS'. The cursor in the edit b u ffe r can then be
moved somewhere e lse , and 'B C ' w ill get back that block of te x t to th is new
position.

COMPLETE COMMAND SET iv - n

EX EC U T IN G MACROS

The contents of any buffer can be executed as if it w ere a command.

•b Execute buffer b . Note: there is no default option, b must be present.

An executed buffer can in turn execute another b u ffe r . Th is can be done to a
level of 15 deep. There are two methods that can be used to easily insert a
command string into a buffer for execution as a m acro . The most stra igh t-fo rw ard
is to change the edit buffer to the one which is to hold the command strin g . Then
the command can easily be entered and edited in insert mode. In command mode, it
is d ifficu lt to enter an escape into the text a rea . Then change the edit buffe r back
to the orig inal. An a lternative method is to just type the command string , as if it
w ere to be executed now. When it is done, the instant command '© ’ is used to edit
the command string . 'BbM' can then be used to move the m acro to b u ffe r b where
it can be executed by the command ' .b 1.

1¾ Return early from 'm acro if T is true (non-zero) or m issing. Th is is
like a subroutine 'R ET ' statem ent. It makes it easy to return when a
specified condition is m et.

STR IN G ARGUM ENTS

Commands such as T , ' 5 ’, and 'C take string argum ents. String arguments
usually follow the command d irectly , but there are methods to get the arguments
from other p laces. The character that signals to the editor that th is is not an
ordinary string argument is a ’©A'. One p lace that string arguments can be taken
from is the contents of a buffe r.

SA eb C e t string argumeni_from buffer b . —

For example, suppose buffer 2 contains 'tra sh ', then 'S©AG2S' w ill search through
the text fo r 'tra sh '. 'I© A€0S' is equivalent to 'B G '.

When a buffe r is executed as a m acro, it is possible for the m acro command to
get string arguments from the command string which called i t .

©Aa get string argument from calling command, 'a ' is a le tte r from A - Z .
‘A ’ refers to the first passed argument, 'B ' the second, e t c .

This should be c learer a fter an exam ple. Suppose buffe r 1 contains:

ID ear Mr. 5I©AASI,
You, M r. 5I©AA5I have the opportunity to be the firs t on your block in

beautiful S ISA B S I to own your own copy of an exciting new ed ito r. Imagine what
you and M rs. SI ©A AS I can do w ith i t . The rest of 5I©ABSI w ill be so jea lous.
Blahhh, blahhh, blahhhS

then the command '.1 JonesSCambridgeSS' would enter the following in into the te x t :

Dear Mr. Jones,
You, M r. Jones have the opportunity to be the firs t on your block in beautifu l

Cambridge to osvn your own copy of an exciting new ed ito r. Imagine w hat you and

IV —12 PM ATE USER MANUAL AND INTERFACE GUIDE

Mrs. lones can do w ith i t . The rest of Cambridge w ill be so jea lou s. Blahhh,
blahhh, blahhh

U nfo rtu nate ly , that is not all this command w ill do. A fte r * .T is executed , the
editor w ill come back and execute the command When it goes o f f to execute
buffer 1, P.MATE has no idea how many string arguments w ill be required, and so it
doesn't know w here in the command string to return to execute the next command.
It is necessary fo r buffe r 1 to te ll it w here . The number of passed string arguments
must be set in the macro by the 'QA' command (see '0 ' commands).

If buffe r 1 contains '1QAIDAAS' , the command ' .1 ' would have the same
e ffe ct as the command T . S im ilarly , if buffe r 1 contained '2Q A C 3A A S3A B S ', ' .1 '
would have the same e ffe c t as ' C .

When m acros are nested several levels deep, the string arguments can also be
nested . x

COMMAND S TR IN G FO RM ATTIN G

Since command strings are in fact te xt editing programs, fa c ilit ie s have been
added fo r form atting these command strings fo r easy reading and m odification.
Spaces, tabs, and carriage returns are all ignored as commands.

Space
Tab
CR ------

Spaces, tabs, and carriage returns (as commands) are a ll ignored. Thus
they can be placed between commands to enhance readab ility .

; A semicolon indicates that what follows is a comment. A ll characters
through the next CR are ignored.

A command string can then be w ritten to look like a w e ll commented
p ro g ram ... For example, here's a short command string th at w ill change
a ll upper case alphabetic characters to low er case , leaving everything
else a lone.

:A

A ;S T A R T AT B EG IN N IN G OF E D IT BU FFER
[;B E G IN ITERATIO N
QT<*A JA ; I F THE C U R REN T T EX T CHARACTER IS NOT AN

;A LP H A 8ET IC CHARACTER (IF IT 'S A SC II V A LU E
; IS LESS THAN THAT OF 'A ') , JUM P TO LA B EL 'A'

S T ! ’ VO

D QOI
-M

M

)

CHANGE CHARACTER TO UPPER CASE BY 'O R 'IN G
IT W ITH A SC II VA LU E OF SPACE (20H).
SAVE RESU LT IN V A R IA B LE 0 .
D ELETE OLD CHARACTER A N D IN SER T SH IFTED O N E.
MOVE BACK TO SAME CHAR

;MOVE CURSOR TO N EX T CH A RA C TER , S E T T IN G ERROR
;F LA C IF IT IS AT THE END
;C O N TIN U E WITH N EXT CH ARACTER , U N LESS ERROR

COMPLETE COMMAND SET IV-13

;F LA C HAD BEEN SET

Of course, the whole command could also have been w ritten as:
A [ä T < *A JA @ T !‘ V 0 D 8 0 I-M :A M]

And here's a much better w ay to do the same thing:
A [a T < " A(M] [Q T! * R) @ T = 0]

PERMANENT MACROS

You w ill find that you w ill w rite some macros that you w ill w ish to use over and
over again. These can be made perm anent. Permanent macros a re g iven a label
that can be any character other than a d ig it.

•a Execute permanent macro 'a ', where 'a ' is any cha racte r other than 0-
9 .

To add or remove a permanent m acro, it is necessary to edit the 'permanent
macro a re a '. This area can be copied to or from the text buffe r by the 'QM G' and
the 'QMC' commands (see 'Q ' commands). This area must begin and end w ith a
'©X'. The '©X' is also used to separate d ifferent macros w ith in the a re a .
Immediately following each '©X' is the cha racte r which labels the m acro , followed
by the macro its e lf . Here is a macro area containing macros ’£' and ' C :

©X= lyou have just executed macro £S
©XC 2QAEC©AAS©ABS
©X

Executing the command ' .£ ' w ill then insert 'you have just executed macro
into the te x t . The command ' .C w ill behave just like 'C , except it w ill not
generate an error message if the string is not found. You can th ink of this
permanent macro fa c ility as an ab ility to add your own commands to PMATE's
command se t. A new version of PMATE can now be generated incorporating these
new commands (see the 'X D ' command).

It is possible to define a macro which PMATE executes in itia lly eve ry tim e it is
entered. The first macro in the permanent macro area w ill be executed as part of
PMATE's in itia lization procedure if it is preceded by a ©I (ta b), ra th e r than the
usual ©X. This macro can even end in 'XH ', generating a program that acts on a
file and returns, never displaying anything on the screen .

BREAKPOINTS

To aid in debugging complex commands and m acros, PMATE includes a
'breakpoint' and 'trace ' fa c ility .

? Cease executing the command. PMATE is now in TR A C E M ODE. The
cursor in the command area points to the next command to be
executed . The current value of the numeric argument is displayed in
the status lin e . Instant commands are a c t ive , and you can go into , and
out of IN SERT M ODE. If you strike the escape key , command
execution w ill resume as normal, until the next '? ' command. How ever,

IV —14 PM ATE USER MANUAL AND INTERFACE GUIDE

if you strike any other key that is not an instant command, PMATE w ill
execute just the next command, and remain in TRACE MODE.

If you cannot figure out why your m acro isn't behaving, insert severa l ?'s into
the macro at strateg ic locations, and use them to examine what has happened a fte r
partial execution of the command.

KEYBO ARD IN PU T

G G e t a key from the keyboard as fo llow s. Pause during the execution
o f the command and update the d isp lay. The string argument following
'G* is displayed as a prompt in the command display a rea .. Instant
commands are a c t iv e . Execution of the command is continued as soon
as any cha racte r (o ther than an instant command) is entered from the
keyboard . The A SC II value of th is key is availab le by using 'ß K ' in a
numeric argument.

This command gives PMATE I/O POWER. PMATE can stop in the middle o f an
editing operation, and ask you how to proceed from th e re . Macros can be w ritten
to expand upon the power of the 'G ' command - accepting e ither ch a ra cte r strings
(putting them in an availab le te x t b u ffe r), or numbers (putting them in va riab le s).

M ISCELLANEOUS COMMANDS

nQA

Q8

nQC

nQD

nQE

Set the number of passed string arguments to n . See macro
description .

Ring b e ll. This is useful for indicating to the operator that a long
command string has finished executing . It is also useful fo r playing
annoying rhythm s.

Set the control sh ift ch a ra cte r to the cha racte r represented by the
A SC II value n . Th is sh ift cha racte r w ill itse lf be ignored when input,
but w ill enter the next ch a racte r as a control ch a ra c te r . Th is is useful
if you wish to enter a cha racte r into the te x t which would otherw ise be
interpreted as an instant command.

D elay fo r a tim e proportional to n . Th is can be used in conjunction
w ith V to implement variab le speed scro lling . It can also be used to
arrange impressive demonstrations, whereby PMATE appears to have a
mind of its own, displaying various messages.

Set type-out mode to ’n’ . (See ’X T ' .)

nQF Set the 'form feed' ch a racte r to that represented by the A SC II value n .
Th is is the character that separates pages on the disk f ile s .

nQH Insert 'n ' spaces at the cu rso r. Th is is useful fo r operations such as
centering . Since a ll spaces are inserted at once, this operation is much
faste r than 'n [1 S J ' .

COMPLETE COMMAND SET 1V-15

nQI

nQK

nQL

QMC

QMC

nQO

nQP

nQR

nQS

nQT

nQX

nQY

nQZ

Set the input radix to numeric argument n . I f n is missing, the radix is
set to decim al. Remember, if the old input radix is o c ta l, '10Q I' w ill
not set it to decim al, but rather, since the TO is interpreted in the old
rad ix , the input radix would remain o c ta l.

Set backup mode for f ile s . If 'n' is 0 , don't c rea te a .B A K f ile from the
old input f i le . If V is non-zero or missing, c rea te them .

Set number of lines for instant commands ©U and ©J to sc ro ll.

G et the contents of the permanent macro area , and insert it into the
current text buffer just before the cursor.

Copy the entire current text buffer to the permanent macro a re a . The
previous contents of the macro area are lo st!! I f you wish to save
them, be sure to do a 'QMG' f ir s t , then add to or modify the text before
copying it back .

Set the output radix to n . If n is missing, the radix is set to decim al.

Set page size to n . This is the number of lines appended or w ritten as
one page by the disk input and output routines. I f n is 0 , pages are
delim ited by form feed characters , instead of being a fixed number of
lines .

Redraw screen . The argument '©K' w ill now contain the value o f any
key struck , or 0 if none. Use this for creating in te ractive command
strings where PM ATE goes on doing something and showing you the
results until you te ll it to do something else .

Set the upper case/low er case sh ift cha racte r to the cha racte r
represented by the A SC II value n . This sh ift cha racte r w ill itse lf be
ignored when input, but w ill sh ift the case of the next cha racte r
en te red .- Th is is useful if you are using an upper case only keyboard .

Type the character represented by the A SC II value n on the listing
d ev ice .

Set screen cursor to column V on the same line it is now on.
Depending on the state of the 'free-space' flag (see Q Y) , the cursor
may or may not be able to move past the last cha racte r in a line if the
required column is o ff the end of the te x t .

Set the 'free-space ' flag if 'n' is 0 to allow the screen cursor to move
into free space, past the end of a line . When a cha racte r is inserted at
such a cursor |X3sition, the necessary amount of spaces is inserted into
text to extend the line out to where the cursor appears. I f 'n' is non­
zero , reset the flag , so that the cursor is restricted to remain on actual
te x t .

Don't allow cursor to move past column 'n '. Use this when you w ish to
re stric t the width of entered text - usually to provide c lean output on a
lim ited w idth p rin te r. When the cursor reaches the restric ted column,
it is inhibited from advancing, and the bell rings as a w arn ing . I f ’ n’ is

IV-16

nQ!

nQ-

nQm

missing, the default w idth of 250 columns is restored.

Set byte in memory whose address is held in variab le 9 to 'n ' . This
command allows PMATE to a lte r any byte in memory (and of course,
crash the system). In conjunction w ith 'Q Q ', a monitor could be
constructed in m acros. Other macros might change I/O d rive r
param eters. How ever, for a ltering te x t, just move the cursor there and
use n R .

Sets flag to ind icate whether numbers are displayed as signed or
positive o n ly . I f 'n' is 0 , display as positive only, otherw ise d isplay as
signed number. Th is e ffe cts the argument display (A R C) in the status
line, as w ell as numbers inserted in the text by the command. If
you type the command ''3m$S' in order to discover how much memory
remains, and you see 'ARG=-30536' in the display (w hich w ill happen if
more than 32K of memory rem ains), you may wish to enter '0q-' to get
a more meaningful d isp lay.

Set user va riab le m to value n . m is a -digit from 0 to 9 . These 10 user
variab les are availab le for use by user w ritten I/O d rive rs . For
instance , you may w ish to use one of these to control w hether hard
copy output goes to a T T Y console, or to a line p rin te r. O r, you may
w ish to be able to easily go betsveen b lack on w h ite , o r w h ite on black
video .

PMATE USER MANUAL AND INTERFACE GUIDE

IN PU T , O U TP U T , AND D IREC TO R Y M AINTENANCE COMMANDS

All input and output commands begin w ith an 'X ' . This should help prevent
accidental I/O , which could cause great upheaval.

Disk I/O : _ -
Files which are too large for memory must be broken up into 'plages'. Pages are

divided by a user definable ch a racte r (usually a form feed), or can be defined to be
a fixed number of lines (see the 'QP' command).

nXA Append n pages from the input f ile to the current edit b u ffe r .

nXW W rite n pages from the current edit buffe r to the output f ile , deleting
them from the b u ffe r .

nXR Replace n pages, appending n pages from the input f i le , and w riting n
pages to the output f i le .

nXY Yank n pages from the input f i le . Each page overw rites the old one,
w ithout w riting it to the output f i le . BE C A REFU L - th is command is
only useful for reviewing an existing f ile , and except in special
c ircum stances, the file should be 'XK 'ed when done.

X F file l
I f 'f i le ' already ex ists , open it as the input file , and open ' f i le .555’ as
the output file (in this case , if 'file .S S S ' already ex is ts , an erro r
message w ill be g iven). If 'f ile ' does not ex ist , c re a te it and make it
the output file (th is is the way to create a new f i le) , 'f ile ' can be

COMPLETE COMMAND SET IV-17

preceded by a drive specifie r ('A : ' , 'B : ' , 'C : ' , or 'D :')

X F file l file2

XE

Open ' f i l e r as input and 'file2 ' as output, ' f i le l ' should a lready exist
on the disk (i f not, it is opened as the output f i le) , and 'f ile 2 ' should not
(i f it does, an error message is g iven). Both ' f i le l ' and 'f ile 2 ‘ may be
preceded by drive sp ecifie rs . / x -

End of editing pass. Write the current” te xt buffe r to the output f i le .
Read in the remainder of the input file and w rite it to the output f i le .
Close the input and output file s and c lea r the text b u ffe r . I f the
output file is the same as the input (w ith a SS5 extension), rename the
input file to 'f i le .B A K ', deleting any old backup, and rename the output
f ile to have the same name as the old input f i le .

XE file End of editing pass, as above - but output f ile is renamed to ' f i le ' , and
the original input file is le ft undisturbed.

XJ Start a new editing pass. Equivalent to an XE and then an XF o f the
original file name. Useful fo r editing a page already w ritte n out w ith
XW or X R . Even on file s which f it en tire ly in memory, don't go too long
w ithout an X J . This ensures that your editing work w ill be saved on the
disk in case of power fa ilu re , or catastrophic e rro r.

X Jfile Equivalent to 'X E file ', followed by reopening the new f i le .

XC Close input and output files as they a re . N either the contents o f the
text b u ffe r, nor the rest of the input file is w ritten to the output f i le .
Even if the output file is a temporary one (w ith extension 'SSS ') no f ile
renaming takes p lace .

XK

XH

Delete the output file and c lea r the text b u ffe r .

Reboot CPM, and return to its CCP (Console Command P ro cesso r). Th is
is the usual way to ex it from the ed itor.

X D file Duplicate PM ATE. Write it as it now exists to 'file .C O M '. Th is output
file can la te r be renamed PMATE.COM

n X Ifile A uxillia ry input. Read the firs t 'n' pages o f 'f ile ' into cu rren t edit
buffer at cursor location, even if another f ile is 'open' as the input f i le .
I f 'n' is missing, read in the entire f i le . If the entire f ile is not read in,
the remainder can be read in la te r :

nXI Input the next 'n' pages from the input f ile last defined by the 'X If i le '
command. If 'n' is missing, input the entire remainder of the f i le .

nXOfile
C reate 'file ' and w rite 'n' lines of te x t , beginning at the cursor, out to
i t . If n is missing, w rite out the entire current edit b u ffe r .

D irectory Maintenance:

XSd Change the currently logged in disk to 'd' ('A ', 'B ', e t c .) For instance.

IV -18 PM ATE USER MANUAL AND INTERFACE GUIDE

X Lfile

X X file

Other:

XM

nXT

XSB logs in drive '13'. PM A T E w ill not respond to this command while
input and output file s are defined . This command also resets the CPM
disk system , and should be used when the current d iskette is changed.
(I f you are on d rive B and change the d iskette , type 'X S B 5 S '.)

L ike CPM 'D IR ' command. L ist all file s which m atch 'f i le ' (* and ? can
be included in the file sp e c if ica tio n). I f 'f ile ' is m issing, the entire
d irecto ry is lis ted . The d irecto ry listing is inserted in the text buffer,
at the cu rso r. Th is allows the d irecto ry to be printed, and otherwise
manipulated like te x t . However, if desired text is a lready in the text
b u ffe r, it may be necessary to delete the d irecto ry te x t . A lte rn ative ly ,
change the current te xt buffe r before giving the XL command.

D elete 'f ile ' from the d isk . Ambiguous f ile names (contain ing * and ?)
are not perm itted .

C all the system m onitor. You can return w ithout losing any te x t by
either executing a RET instruction, or jumping to location 103H.

Type n lines, starting at the cursor, on the listing d e v ic e . If n is
missing, type out the entire current edit b u ffe r. There are 3 type-out
modes (set by the 'Q E' command). Mode 1 (the defau lt mode) is
intended fo r printing programs or te xt on a regular p rin te r . Tabs are
expanded to spaces. Format lines are not printed, but a ffe c t the
margins and tab stop settings. Other control characte rs are sent
through to the p rin te r. Mode 0 prints te xt almost e x a c t ly like it is
d isplayed. Format lines are printed, escapes type out as 'S ', and other
control characte rs are printed as an up-arrow followed by an upper
case le t te r . Th is mode is useful for printing macros and fo r draft
output. Mode 2 is intended for use w ith intelligent p rin ters which do
the ir own fo rm atting . C arriage returns are only sent at the end o f a
paragraph, tabs are not expanded to spaces, and all control sequences
are passed on to the p rin te r.

C h a p te r V
M ACRO EXA M PLES A N D ID E A S

SOME D ETA ILED EXAMPLES

This chapter contains examples of macros, provided for use or study. These
macros are not intended to be polished final products, but are illu stra tive , and are
meant to provide you w ith a foundation on which to build, as w ell as stim ulate your
imagination.

The best way to understand how and why these macros work is to enter them ,
try them, and then run them in trace mode. You should read up on trace mode Snd
breakpoints in chapter 4 , but here's a summary. Put a question mark (?) a t the
beginning of the macro, or at the place where you cease to understand w hat's going
on. At this point, the macro w ill 'single step ', show you the results of its la test
operation, and w a it for you to strike a key to continue.

This section contains some re lative ly simple macros, explained in greater detail
than later ones. Here's the f ir s t . Programmers often 'comment out' sections of
code. This is a way of deleting them from the program, but preserving the code
just in case . In many languages, th is can be accomplished just by putting a
semicolon at the beginning of each lin e . You could go into insert mode, enter
then move the cursor down, enter move the cursor, and on and on . Th is isn't
bad for a few lines, but for more, try the command 'l;S LS 5 ‘ . Th is w ill in sert the
semicolon and move the cursor all at once . Keep strik ing escapes, and the command
w ill be repeated, until you have reached your last lin e . Finally, try '2 0 [I ;S L]S 5 '.
This command w ill repeat the above sequence 20 tim es, commenting out 20 lines at
a tim e. Any time you need to perform a repetitive sequence, th in k m a c ro . .

Now that you can quickly create comments, the reverse problem might come to
mind. Have you ever needed to delete all the comments from a file? I f you've
ever done that by hand, you w ill appreciate this macro which does it fo r you
autom atica lly . Use it on programs, or on P.MATE macros themselves -generating a
version that w ill better f it in availab le memory (of course, always keep a copy of
the o rig in a l). This macro assumes that comments begin w ith a semicolon, and it
deletes the comment starting at the semicolon, as w ell as any preceding tab s.

(S ;S -,M -S©N©IS M K I
S]

The le ft bracket starts a loop - all comments w ill be deleted. N ex t, find a
comment by searching for Now we need to find all tabs preceding the
sem icolon. Since the 'S' command le ft the cursor on the character just past the
semicolon, we must move back one (-M) before looking for tabs. The next 'S'
searches backwards until it finds anything other than a tab (the ©N©l matches
anything except a control-1, which is a ta b). The cursor w ill be le ft on th at firs t
character found which isn't a tab . Then a fte r 'M ', the cursor points to the entire
comment which needs deleteing . 'K ' deletes the entire comment, as w e ll as the
carriage return at the end of the line . The carriage return is then restored by the
T , and the right bracket loops back to the s ta rt, looking for the next com m ent.
The macro w ill term inate when the first 'S' command is unable to find any more
comments, and so w ill produce an error message.

V-2 PM ATE USER MANUAL AND INTERFACE CUIDE

Escape characters in te xt present problems for macro strings which need to
operate on them . For instance, if you wish to insert an escape into te x t , ’ ISSS' w ill
c learly not w ork, but '271' w i l l . However, you may feel search or change is
hopeless. Well, here’ s a routine to change all escapes in text to dollar signs (in case
you ever need to w rite a chapter like this one).

(3 T=27 (3 6 R) [M) a T=0]

*l ' sta rts ite ration , for we w ish to do the entire te xt b u ffe r . ’QT=27' tests the
character under the cursor to see if it's an escape (A S C II code 2 7). I f it is , the
expression in the firs t set of b rackets, ’36R' is executed . This just rep laces ‘ the
escape w ith a dollar sign (A S C II code 3 6). This could have also been expressed
■RSS', but it wouldn't be obvious to the reader that the first 'S' is a dollar sign, and
the second ‘5’ is an escape. • 1 * •
\nyw ay, if the the ch a racte r at the cursor is not an escape, the expression in the
second set of brackets is executed - just move the cursor on to the next ch a ra c te r .
'•3T=0' tests to see if the cursor has reached the end of the text buffe r (a lw ays a
n u ll). I f s o , the ite ration ends; if not, go back and check the next ch a ra cte r.

The command [CblahSblew S] w ill change all occurences o f 'blah' in the text
buffer to 'b lew '. An often requested editing feature is a 'conditional change'
(A .K .A 'in te ractive search and re p la ce '). This command would not change all
occurences of 'blah', but would stop at each one and ask you whether or not you
would like a replacement to be made. Put this command string in buffe r 1, and type
'.Ib lah Sb lew SS '.

2QA
i ^ '

SQAAS
C Typ e escape to replaces
3K= 27(-C3A A S '3A BJ

I • ’ _

The first line sets the number of string arguments required from the calling
command (in this case , ‘blah1 is the firs t , and 'blew ' is the second). The next line
searches for the firs t argument (b la h). The ' C command then gives a prompt,
displays the text buffe r w ith the cursor pointing past the next 'blah', and w aits for
you to respond. If you respond w ith an escape, '0 K = 2 7 ‘ is true, and the expression
in brackets w ill be executed . Th is w ill change 'blah' to 'blew' (the ' - C is necessary
because the cursor has a lready been moved past 'b la h ') . If any key other than an
escape is h it, the expression in brackets is ignored. The last line ite rates back to
the firs t ' (' - keep looking for the b lahs. The process w ill continue until the last
blah, or until you hit co n tro l-C . Remember, contro l-C w ill halt any runaway m acro .

T E X T O U TPU T PROCESSING

PMATE does not in terna lly perform many print functions often associated w ith
word processors. PMATE can be used w ith a separate output processor, or macros
can be w ritten to do the job . Here are a fe w ideas to get you started .

This macro w ill cen ter a lin e . S tart w ith the cursor anywhere on the line to be
centered .

MACRO EXAMPLES AND IDEAS V-3

L-M
3VY-Q X/2V0

OL
O0QH
L

;move to end of current line
;get one half the d istance from right margin
;to current cursor position
;save it in variab le 0 .
;back to beginning of line
;insert number of spaces computed above
;move on to next line

A macro to move the line flush w ith the right margin is also easy - just get rid
of the '/2 ' a fte r the 'cW -Q X '.

T ry th is next exam ple. Whichever character you leave the cursor on w ill be
replicated, leaving the rest of the line flush w ith the right m argin. U se it , fo r
example, on a table of contents. Start w ith

Chapter l .p g 1
Chapter 2 .pg 24
Chapter 3 .pg 30

Put the cursor on each decimal point in tu rn , execute the m acro three tim es, and
you are le ft w ith

Chapter 1 .. pg 1
Chapter 2 ... pg 24
Chapter 3 ... pg 30

a x vo ;save the current column in variab le 0
L-M ;find end of line
e w - a x v i ;amount of space needing fill to variab le 1
SOQX ;back to original cursor position
ÖTV2 ;save the cha racte r there in V2
q iq h ;f i l l out line w ith spaces
g o q x ;back to original cursor position again
Q 1[Q 2R] ;now overtype the spaces

;w ith the original character

The last three lines could have been replaced w ith 'S 1 [Q 2 I] ‘ . However, replaces
require much less overhead than inserts, so that the suggested method w ill execute
fa s te r .

Now we can start to tack le page headings and numbering. Here is one simple-
minded approach. Suppose buffer 1 contains a one line heading which you would
like printed at the top of every page. Suppose fu rther you have put a in that
line at the place where you wish a page number to be inserted . B u ffe r 1 might
contain :

Chapter 2 EX C IT IN G DOCUMENT! page e

inter into variable 0 the first page number: '5V0SS' would be appropriate here if

V-4 PM ATE USER MANUAL AND INTERFACE GUIDE

chapter 2 sta rted on page 5 . Then the following macro w ill print out your file ,
using the above header, and printing page numbers:

l ;s ta rt iteration - - w ill type t il l end o f buffe r
B2K ;empty buffer 2
B2E ;ed it buffer 2
B IG ;get prototype page header from buffer 1
A ;find its beginning
St S-D ;find V and delete it
a o \ ;insert page number there instead
VAO ;increm ent page number - ready for next page
XT ;type header
10QT ;send a line-feed to skip line a fte r header
B TE ;back to te x t buffer
60XT ;typ e next 60 lines of document
4 (1 0 Q T] ;send 4 line-feeds to complete a 66 line page.
3 T = 0] ;keep typing until the text buffe r is finished

There are lots o f w ays to expand upon th is . For documents la rger than
availab le memory, have the m acro read in successive pages. Define a print form at
line, starting w ith a unique cha racte r (maybe '©P', or w hatever pleases y o u). The
print m acro w ill not type this line, but use its inform ation fo r fu rther fo rm atting .
The print form at can include output functions like double space, cen ter (see macro
above), e tc . Header inform ation no longer needs to to be put in a buffe r
beforehand, but can be moved there from the print format line as the macro
proceeds.

FORMS A N D MATH

The 'G ' command gets a cha racte r from the keyboard. O ften , you may need a
whole s trin g . The next m acro gets a string from the keyboard, echoes w hat has
been typed up in the command/prompt line, and saves that string in buffe r 9 . The
string ends on_a ca rr iag e re tu rn . In order to co rrect m istakes on e n tr/ , 'rubout'
w ill delete the last ch a racte r entered .

B9K
t
G©AQ95

-3K=13_
B9E
f iK = 1 2 7 (- D] [f iK I)

BTE
)

One typ ica l application of the above is in creating an in te ractive macro to f ill
out form s. For instance , a preexisting invoice 'skeleton' might be read in . The
operator could then use the fu ll capabilities of PMATE to f ill in the blanks, or an
'invo ice macro' could set the cursor into each fie ld , and prompt fo r in form ation .
The entry would be accum ulated in buffe r 9 , as above, and inserted in the text
when all done. The invoice macro could check for illegal entries, and prevent the

;dele te old contents of buffer 9
;s ta rt iteration
;get a ch a racte r, displaying contents .
;o f buffe r 9 on command line
; i f ch a racte r is a C R , break (a ll done)
;now go into buffe r 9
; i f ch a racte r is a rubout
;de le te previously entered cha racte r
;o therw ise , insert new character
;back to text buffer

MACRO EXAMPLES AND IDEAS V-5

user from totally destroying the invoice form . Furthermore, the operator need not
know how to use PM A TE .

Along w ith forms often goes the desire to add up some numbers. Some word
processors supply 'Math Packs' of varying sophistication. Here’s a macro to get you
started in that d irection . It adds the number pointed to by the cursor (the cursor
can point anywhere w ithin) to a number stored in buffer 9 .

(M (<3T>*9) ! (f3T<‘ 0)]
0V1
B9E
Z

BTE
-M
(« T > *9) ! (Q T< '0)
IM 0 V 0)[

<3T-*0V0]
B9E
-M
0 E _
QT + QO+131VO

Q0>'9(1V1 Q0-10 R

J(0V1 SOR]

-M
)
BTE - _

;Move cursor until end of number is found
in it ia l iz e carry
;number to add to is in buffer 9
;move to end of that number
jite ra te one digit at a time
;starting w ith least signficant
;back to first number
;get next most sign ificant digit
;not a digit?
;no, don't move past it
;0 to VO is number to be added
;a digit - gets its numeric value to VO.
;now go to buffer 9
;get next most significant digit
;done if out of digits
;add digit from te x t, and ca rry to it
;resu lt to VO
;i f g reater than 9, set carry to 1 , subtract 10 •
;and store result in text
;not greater than 9 , set carry to 0
;and store in text
;R has moved cursor, so move back -
;on to next digit

The number of digits stored in buffer 9 controls the precision of the resu lt. For
example, if you start w ith '000000000', numbers up to 999,999,999 can be
accum ulated. Automate by using further macros to ca ll this one: add up rows,
columns, or w hatever your format requires. The result can be moved back into the
main text b u ffe r. How about subtraction, m ultiplication, or division?

MORE FUN WITH PRIN TERS

This simple macro lets you type d irectly on your prin ter, using the keyboard, as
if it w ere a typew rite r.

I
C D IR E C T TYPES
£?K=13(13QT 1 0 Q T](Q K Q T]

The third line implements an auto-linefeed . If it finds a carriage return , it sends a

V-6 PM ATE USER MANUAL AND INTERFACE GUIDE

line feed also - - any other cha racte r is sent 'as is '.

Here's a macro w hich prints an alphabetized d irecto ry lis tin g . It should suggest
many other applications:

B1K ,c le a r buffe r 1 to hold d irecto ry list
B1E ;go into buffe r 1
XLS ;get a d irecto ry listing
A ;go to beginning of d irecto ry
(;begin overall loop
BC ;copy first file name to buffe r 0 — w ill try to

;find file names earlie r a lphabetica lly .
l ;th is loop finds earliest file name
3H ® Aö05<0[8C] l L] ;compare next f ile name to earliest already

;found - if this one is e a rlie r , copy it to
;b u ffe r 0 , o therw ise , advance to next

3 T=0) »•iterate until end of d irecto ry list
A

• ;back to top o f d irecto ry list ,
S3AQ0S ,-match the earliest entry stored in b u ffe r 0
-1X T ;typ e it out
-K ;and then delete it
A a T = 0] ;back to beginning - continue unless

; l ist is now empty
B TE ;back to te xt buffe r when all done

CURSOR MOTION

Presented here, w ithout comment, are the macros used by PM A T E to implement
the 'mixed' cursor motion instant commands. If you wish to custom ize cursor
motion to your own taste , th is should give you a place to s ta r t .

up: '
Q V= 2[< aX ,-L£ }SQ X][-M 0L)

down:
3 V = 2 [a X ,L 0 S Q X] (L]

le ft :
0V= 2[Q XX> [9X -1Q X]] [-M]

right:
a v = 2 ia x + iQ X] [M)

C h a p te r V I
C O N F IG U R A T IO N G U ID E

G E T T IN G STA RTED

Your P.MATE diskette arrives w ith the following programs on it .

PMATE.COM - t ----- •hen.cvrvioL -U PlM A TtbTS . CotA
CONPMATE.COM
IOPAT CH.ASM
CONFIG.DOC

and a bunch of files w ith the extension C N F . These are A SC II files w hich contain
configuration information for a number of popular video term inals and memory
mapped d isp lays. First type out the file C O N FIG .D O C . It contains a lis t of all the
.C N F files on the d isk, and which terminal each supports. If you have a Lear
Seigler AÖM-3A, CO N FIG .D O C tells you to use file AD .V .3A .CN F. Then type :

CON PM A TE ADM 3A.CN F

A fte r disk a ct iv ity has ceased, CON PM ATE w ill think fo r about 15-30 seconds,
create a customized version of P.MATE in memory, and then P.MATE w ill sign o n . (In
case of an error in the format of the .C N F file , CON P.MATE w ill just return control
back to C P/M .) It is now necessary to save this version on d isk . Type

XDPMATESS

(if you haven't already read through the rest of the User's Manual, 'S ' represents
the ESCAPE k e y). This duplicates the current version of P.MATE -giving it the name
PM ATE.COM . If PMATE.COM already exists on this d isk, you better use P.MATE1
(XDPM ATE1S5) and rename it la te r .

G EN ERA TIN G YOUR OWN CO N FIG U RATIO N F ILE

If a configuration file for your terminal is not included among those provided on
the disk, you w ill need to generate your ow n. Even if a file fo r your, term inal does
ex ist , you w ill probably la ter wish to modify it to ta ilo r the interaction more to your
tastes .

The CNF files contain a series of questions and answers (in A S C I I) . You w ill
need to use your current text editor (such as 'ED ') in order to c rea te a custom
configuration f i le . Later you w ill be able to use P.MATE to make additional changes.

Configuration questions require e ither a yes/no answer, or a series of numbers.
A ll answers follow 3 stars (* * *) . Numbers may be in decimal or h ex . H ex numbers
are identified by ending in 'H '. If more than 1 number is required, separate them by
spaces.

C O N FIG U R IN G A V ID EO TERM INAL

A re you using a m em ory m apped d isp lay?
Answer no.

N um ber o f lin e s

V I-2 PM ATE USER MANUAL AND INTERFACE GUIDE

Enter the number of lines on the term inal display (usually 24)

C h a ra c te rs p e r lin e
Enter the number of characte rs on each line of the terminal display (usually 00)

Now you need to enter the codes required by your terminal to perform certa in
display functions. For each function , enter a sequence of from 1 to 9 bytes
(remember, hex codes require an 'H ‘ - decimal is assum ed). In the next line,
following 'D e lay • * * ' , enter any delay your terminal requires a fte r perform ing the
specified operation . Th is delay is given in m illiseconds and assumes a 4M HZ
m achine. If your computer runs at a d ifferent speed, it is necessary to sca le the
delays acco rd ing ly . For instance, i f a 20 msec delay is required, enter 10 to get the
proper delay for your 2MHZ processor.

C le a r s c re e n code
Enter the sequence which c lears the screen .

C le a r to end o f l in e code
If your term inal has this feature , enter the sequence which c lea rs from the

current cursor location to the end of the lin e . I f your terminal does not have this
feature , leave b lank.

Line insert and delete can be used to support much fa ste r scro lling of display
te x t . If your term inal supports these features, fill in both:

Code to in s e r t lin e
Enter codes to insert a line at the current cursor position (which is guaranteed to

always be at the beginning of a lin e).

Code to d e le te lin e
Enter codes to delete the line the cursor is on (again, the cursor is guaranteed to

be at a line beginning).

There are many methods in use o f sending cursor addressing inform ation to
video term inals. Most all can be included in the following genera lization .
1) send a bunch of codes
2) send e ither the x or the y coordinate
3) send a bunch more codes
4) send the coordinate not already sent
5) send a fina l bunch of codes.

C u rso r a d d re ss in g lead in
Enter the prelim inary sequence. (Th is w ill a lways be present.)

Is Y c o o rd in a te g ive n f i r s t ?
Enter yes if row inform ation is sent before column information, o the rw ise enter

no.

Is c u rs o r p o s itio n in fo rm a tio n in A S C I I?
Actual cursor coordinates can be sent as 1 byte (b inary), o r as an A SC II

sequence, 'spelling out' the coordinate in decim al. Answer 'yes' for the la t te r .

CONFIGURATION GUIDE V I-3

X o ffs e t
Enter a number which is added to the desired column before it is shipped to the

term inal. I f a byte of 0 gets the left-m ost column, just enter an o ffset of 0 .

Y o f fs e t
Enter the number which gets to the top-most row .

E n te r any codes b e tw een X and Y
Enter the sequence described in 3) above. O ften , th is is b lank.

E n te r any te rm in a tin g seq uence
Enter the sequence described in 5) above. Th is too is often b lank.

D e la y
Enter any delay needed a fte r the entire cursor addressing sequence.

Is i t n e c e s sa ry to sup p ress send ing a c h a ra c t e r to bottom r ig h t p o s itio n o f
sc re e n ?

In many term inals, any tim e a character is w ritten to the last column of the last
row, the entire display w ill scro ll up one lin e . Note that some term inals (such as
the Lear Siegler ADM -3A) contain a sw itch to enable or disable this fe a tu re . But if
your terminal persists in such behavior, enter ’ y e s ' . PM A TE w ill then refra in from
entering any characters in this co rner. A lte rn a tive ly , decreasing the line size
(usually from 80 to 79) w ill also prevent any characters from being w ritten in the
last column, and w ill keep all displayed lines the same length.

C O N FIG U R IN G A MEMORY MAPPED D ISPLAY

A re you using a m em ory m apped d isp la y?
Answer ye s . ~ —

Now skip past the TERM IN AL CO N FIG U RATIO N section to the MEMORY
MAPPED CO N FIG URATIO N section, and answer:

N um ber o f lin e s
Number of te xt lines on the screen .

C h a ra c te rs p er lin e
Number of characters on each text line .

Lo ca t io n o f v id eo m em ory
Fill in the in itia l RAM address of the video memory. Remember, add an 'H' to a

hex address.

Sp ac in g b e tw een lin e s
The address d ifference between the beginning of adjacent lin es . Th is is usually

just the number of characters on each line - but makers of 80 cha racte r video
boards often space lines by 128 characters in mem ory. (Th is makes for easier
cursor calcu lations, but uses more addressing space).

V I-4 PM ATE USER MANUAL AMD INTERFACE GUIDE

N ext, assembly language routines to perform certa in simple functions are
required. Since CON PM A TE does not have an assembler built in , these routines must
l>e hand assembled, and the resulting bytes entered . (O r, use the a lternative
configuration procedure given in the next chapter - modify IOPATCM.ASM, and use
an assembler) Each of the following routines can be up to 21 bytes in length.

R o u tin e to s to re reg A in m em ory p o in ted to by D E
This is usually ju st:

STAX D 12H
RET C9H

If the bvte to be displayed needs any processing (such as setting the high order b it),
this is the place to do i t .

R o u tin e to d isp la y c u rs o r a t m em ory p o in ted to by UL
This routine displays a cursor at the specified position. I f this requires

destroying the ch a racte r in the video memory at that position, then this cha racte r
must be saved for la te r re trieva l by the c lea r-cu rso r routine below . (Location
01-1EH may be used fo r this purpose, provided the maximum size of the cursor
display routine is cut to 20 b y te s). In many displays, setting the high order bit of a
byte in video memory reverses the video at that point. This makes an e ffe c t iv e
cursor, and the cursor set routine is:

MOV A,M
OR I 80H
MOV M,A
RET

7EH
F6H 80H
77H
C9H

R o u tin e to c le a r c u rs o r fro m m em ory p o in ted to by H L
This routine must c lea r the cursor set above, restoring the video memory to its

original s ta te . To c lea r the cursor of the example above:

MOV A,M
AN I 7FH '
MOV M,A
RET

7 EH
E6H 7FH
77H
C9H

C u rso r b lin k co u n t
Enter a number which determ ines the cursor blink count. While w aiting fo r

keyboard input, PMATE delays an amount proportional to this number, and then
sending a lte rnate ly a set cursor sequence, then a c lea r cursor sequence. Th is w ill
turn an inverse video cursor into a blinking cu rso r. If you do not w ish your cursor
to b link, or the hardware blinks the cursor a lready, enter a 0 . O therw ise, enter a
number to suit your ta s te . Here's a starting point -30 works w e ll on a -Imhz
processor (equivalent to 15 at 2m hz).

CONFIGURATION GUIDE VI-5

MORE CO N FIG URATIO N INFO

The questions in the M ISCELLANEOUS section deal mostly w ith PMATE display
interaction param eters. Using seria l term inals, even at 19,200 baud, presents the
problem that the display cannot always keep up w ith your keystrokes. I f you scroll
1 screenful, it can take 2 seconds (a t 9600 baud) to redraw the screen . PMATE is
not ’dead' during this time, but w ill halt redraw , and respond to further commands.
PMATE can be customized to respond in d iffe ren t ways in this s ituation . T ry
various combinations of answers until you find the 'fe e l' that's best for you .

*• • «
How m any lin e s from th e c e n te r o f s c re e n ca n c u rso r w an d e r?

Since the display screen can only hold a small portion of the entire te xt f ile being
edited, it is necessary to 'scro ll' the display as the cursor moves o f f o f i t .
Typ ica lly , the display scro lls to prevent the cursor from moving down past the
bottom line, or up past the top. However, it is often better to keep 1 or 2 lines
above or below the cursor at all tim es, so you can better see the context you are
working in .

The number entered indicates how fa r from the center line o f the te x t display
the cursor w ill be allowed to move before a scro ll o ccu rs . If th is number is 0 , the
cursor w ill remain on the middle line of the display --cu rso r motion up or down w ill
cause a screen sc ro ll. Using 0 (or a small number) keeps maximum context,
requires the most screen scro lling , and is therefore not .recommended fo r seria l
displays which do not support insert and delete lin e . For these term inals, o r if your
preference runs in that d irection , use 1/2 the size of the display area , less 1 or 2
lines of 'context' on each side . For exam ple, on a 24 line screen, 21 lines are
dedicated to text d isp lay. Entering 10 (don't use anything b igger!!) w ill produce a
display which scro lls only at either lim it; 8 leaves 2 lines on top or bottom before
scrolling; and 1 w ill restric t the cursor to the 3 center lines.

How m any lin e s do you w ish re d ra w n in fo reg ro u n d?
This determines the number of lines which w ill be redrawn on the screen before

the next keystroke is responded to . In other words, this many lines are kept up to
date at all times, the rest w ill be redrawn when PMATE has the tim e . The sm aller
this number, the faster PMATE's overall response is, but the less you can see what
e ffe ct each of your keystrokes has had.

Should d isp la y p ro ceed fro m top to bottom (o r fro m c u rso r o u tw a rd)
PMATE screen redraws can proceed in one of two w a ys . The trad itional method

is to start at the top, and work down. A lte rn a tive ly , PMATE can sta rt drawing on
the line the cursor is on, and w ork outward, a lternate ly displaying lines on e ither
side. Th is also means that if the cursor is down on the bottom line, the display
proceeds from bottom up, and if the cursor is at the top, the display proceeds in the
usual top-down m anner. This method has the advantage of first showing you text
where you are most interested in it - near the cu rso r. When used w ith a cursor
constrained to the center few lines of te xt (see 'cursor wander' question above),
some people find the inside-out redraws annoying. Answer 'yes' to get a top-down
display, and 'no' to get a display proceeding from the cursor outw ards. 'Yes ' is
recommended for memory mapped displays, as the inside-out display takes slightly
longer (on video term inals, the serial in te rface lim its the display speed, so this
makes no d iffe ren ce).

VI-6 PM ATE USER MANUAL AND INTERFACE GUIDE

Should c u rso r be d isp la y e d b e fo re e a c h lin e is red raw n ?
By addressing the term inals cursor to its final position before each line is

redrawn, you don't lose tra ck of where PMATE's cursor is as the screen redraw
proceeds. As usual, there is a trad e-o ff to be m ade. T w ice as many cursor
addressing sequences now need to be perform ed. I f your term inal requires a
sign ificant delay a fte r each cursor addressing operation, this can slow down a
screen redraw n o ticab ly . As usual, take your p ick .

M axim um num ber o f in s ta n t com m ands to b u f fe r
PMATE is constantly .polling the^ keyboard to make sure it do.esn't miss any

keysrokes w h ile it is perform ing other tasks — such as moving text around,
displaying a line, or executing a command. However, this buffering can allow
certa in instant commands (such as deletes or cursor motion) to *£un away' when
used w ith au to-rep eat. When you take’ your finger o ff the key, things can keep
happening on the screen , as buffered keystrokes are executed . You can lim it the
maginitude o f this run-aw ay by answering the above question w ith a small number
(but it should be 2 t least 1) - but if you qu ick ly s trike four contro l-d ’s , and only 2
characters are deleted, you w ill know w h y . As a lw ays, compromise.

N um ber o f c h a ra c te r s to s h if t fo r h o r iz o n ta l s c ro ll
PMATE allows lines up to 250 characters in length . Since displays w ill rare ly

show more than 80 of those, PMATE sh ifts the entire display over to prevent the
cursor from moving o ff the right end. Enter the number of characte rs you w ish
shifted at one tim e . I f this is 1 , the display w ill scro ll 1 character at a time as you
enter a long lin e . Th is is very 'n a tu ra l', but you'll notice continual screen a c t iv ity
as the line progresses. I f this bothers you, choose a larger number.

A re c a r r ia g e re tu rn s and ta b s to be in se rte d w h ile in o v e rty p e mode?
Normally (answ er 'no '), in Overtype Mode, carriage returns are on ly inserted at

the end of te x t , and tabs are only inserted at the end of a lin e . At a ll other tim es,
these characters just move the cursor - to the beginning of the next line , or to the
cha racte r following the next tab . However, i f you answer 'yes’, these characters
w ill be inserted any tim e they are typed (and the cursor motion keys must used fo r
moving the cu rso r).

Is th is m ach in e Z -8 0 based?
F ina lly , a simple question. Just answer 'yes' if your computer is based on a Z-80

processor, and 'no' for an 8080, 8085, or if you have no idea.

Is th e re a sy s te m m o n ito r?
If your system contains a perm anently resident monitor, you can C A LL it w ith an

'XM* command from PMATE if you answer 'yes' to this question, then f ill in its en try
point a fte r a d d re s s ? . (Return to PMATE w ith an R ET , or jump to location 103H .)

Do you w ish .B A K f i le s to be g e n e ra te d a u to m a t ic a lly ?
Most CP/M based text editors do not delete the original input file a fte r a

completed edit pass, but rename it , giving it the extension '.B A K ' (any old f ile by

CONFIGURATION GUIDE V I-7

that name is deleted). PM ATE w ill do that too (just answer ’yes’) , but there are
those of us who do not like to c lu tte r our floppies w ith two copies o f most
everyth ing . (I f you have a hard disk, you may not be sensitive to this problem .)
>Ve answer 'no '. See also the 'QK' command to change this while ed iting .

R e se rve d s iz e o f g a rb ag e a rea
PMATE stacks its garbage (deleted te x t) in any availab le memory space -read y to

be retrieved la te r if needed. By permanently reserving some space fo r garbage, you
can be sure you can recover at least a small item or two, and be able to use the
stack for moving te x t . Enter the number of bytes you wish reserved . It must be at
least 1, and please leave some room to edit te x t .

S iz e o f p erm an en t m acro a rea
Enter the amount of memory (in bytes) you wish to reserve fo r permanent

m acros. PMATE w ill not allow you to load permanent macros requiring more space
than you have a llocated .

C U STO M IZIN G THE KEYBOARD

PMATE allows customizing the keystrokes required to perform instant commands
in order to better suit your preferences and availab le hardw are . At f ir s t , s t ic k w ith
the default assignments - that w ill make understanding the User M anual, and
learning PMATE, much easier.

CON PMATE w ill configure a version of PMATE which w ill assign any keystrokes
you wish to any of a list of commands. If you wish to assign more than one
sequence to a command, or if you wish to create your own instant commands (as
PMATE m acros) and assign them to keystrokes, it w ill be necessary to m odify
IOPATCK, as explained in the next chapter.

M axim um num ber o f codes en te red fo r in s ta n t com m ands b e low
An Instant Command can require up to eight codes to execu te . Th is could be a

series of keystrokes, or the m ulti-code sequence sent out by many term inal's
function keys . Enter here the maximum number of codes entered fo r any o f the
commands below .

S h if t c h a ra c te r
If your keyboard does not have a 'sh ift ' key, enter the A SC II code o f a ch a ra cte r

which w ill serve as a case sh ift . (See the QS command for more d e ta ils .)

C o n tro l s h if t c h a ra c te r
If you are using control codes for instant commands (hard to avo id), a 'contro l

sh ift character' is needed if you wish to actually enter these control characte rs in
te xt (see the 'Q C command). Enter the A SC II code for that ch a racte r here (up-
arrow is the usual ch o ice).

Next follows a list of instant command functions. Enter the A S C II codes o f the
required keystroke sequence following each function . Not all functions need be
implemented (just leave it blank if n o t). The .CN F files provided implement the
standard PMATE instant command set.

V I-8 P\lATE USER MANUAL AND INTERFACE GUIDE

The orray o f cursor motion commands requires fu rther explanation- PM A TE rev
1.0 implemented cursor motion as fo llows:
le f t : Move le ft 1 ch a ra c te r . If a lready at the beginning o f a line , move to

the last cha racte r of the preceding line .
right: Move right 1 ch a ra c te r . If a lready on the last c h a ra c te r o f a line,

move to the beginning of the following lin e ,
up: Move to the beginning of the current lin e . If a lready at the beginning,

move to the beginning of the preceding lin e ,
down: Move to the beginning of the following lin e .

This combination of cursor motion can be selected by entering codes next to M ove
le f t , M ove r ig h t , M ove up, and M ove d o w n . This set of commands make it very
easy to get to e ither end of a line, and is w ell suited to editing program s. However,
it does not a llow you to easilv move the cursor down through columnar m ate ria l.

Another approach • to ve rt ica l cursor motion is to move the cursor
'geom etrica lly '. If the cursor is at column 5 , moving up one-line w ill leave the
cursor on the preceding line , s till on column 5 . N orm ally , the curso r w ill not land
past the carriage return at the end of a line, or in the middle of a tab — it w ill only
land on a te xt c h a ra c te r . Thus, as you move up or down the screen , the cursor carr
be pushed fa rther and fa rther over to the le f t . However, by answering A llo w
c u rso r to m ove in to ' f r e e s p a c e '? w ith a 'yes ', the cursor w ill be allowed to land
anywhere, and w ill stay in the same column as you scro ll up or down through any
document. I f you attempt to insert a cha racte r w h ile the cursor is 'flo ating ', the
appropriate number of spaces w ill be inserted so that the ch a racte r is actua lly
inserted where you exp e ct. M ove r ig h t (g e o m e tr ic) and M ove le f t (g e o m e tr ic)
always keep the cursor on the same line, and always move by e xac tly one column at
a tim e. Note that this causes trouble if the cursor has not been allowed into free
space - - whenever the cursor reaches a tab, it tries to move over 1 column, can 't
land there , so moves back to the beginning of the tab , s tu ck . I f you do not allow
the cursor into free space, there is no advantage to the geometric horizontal motion
anyw ay.

A final option mixes the above two approaches. Overtype Mode is w e ll suited
for working on columns, as is a geometric cursor (and carriage return can be used to

-move th e-cu rso r to the beginning of a lin e). When working on line-oriented
m ateria l, Insert Mode is usually used. By entering codes in the M ove up (m ixe d)
and other (m ix e d) categories, the line-oriented cursor routines a re used w h ile in
Insert Mode, and the geometric routines are used in Overtype Mode.

The last section of the configuration f ile allows you to redefine the codes
which perform ce rta in built in PM A TE functions. I f you wish to redefine one of
these, just enter the new code (or codes) following the '* • * ' , as fo r any o f the
instant commands. You may want to use backspace (contro l-H) instead o f rubout to
delete the last entered cha racte r (but then you must find a new key fo r cursor
m otion). On many term inals, the 'rub' or 'del' code is generated by sh ift-u nderlin e .
If you find this inconvient, just enter a 5FH a fte r Rubout and a 7FH a fte r
U n d e r lin e . This w ill e ffe c t ive ly redefine the underline key so th at the unshifted
cha racte r is a rubout, and the shifted one is an underline. Escape, tab , and carriage
return can also be redefined, but you w ill rare ly want to . If you w ish to redefine
any other keys, you w ill have to read the next chap ter. (Maybe you a lw ays mix up
'q' and 'w ', and figure its easier to fix your keyboard than to learn to typ e .)

C h a p te r V I I
IN T E R F A C E G U ID E

G EN ER A TIN G CUSTOM VERSIO NS OF PM ATE

If you rea lly want to mess w ith PM A TE , and you know some ROBO assembly
language, then this chapter's for you . A module called IOPATCH.ASM contains the
tables and code which in terface PMATE to your keyboard and d isp lay . The
configuration program CON PM ATE just modifies the same param eters shown here,
but by working w ith IOPATCH, you have even more contro l.

A fte r you’ve modified IOPATCH to your needs, and assembled (getting a HEX
output f i le) , here's how to include it in PM ATE. Use the CP/M dynamic debugger to
load PMATE.COM and IO PA TC H .H EX . Just type 'D D T PM ATE.COM '. When 'D D T '
responds w ith its prompt you should enter the command ' I IO PA TCH .H EX ’ , and
then 'R ' . T sets up IO PATCH .HEX as an input file , and then 'R ' reads i t , overlay ing
the appropriate portions of PMATE.

There are now two possible ways to save this new version . One is to hit
contro l-C , and return to CP/M , then use the SAVE command and your new creation
w ill be preserved. The preferred method is to now use the debugger to run PMATE
('G100' w ill do i t) . I f it seems to be working okay, use the 'X D ' command to c rea te
a dup licate .

OVERVIEW OF MEMORY O RG AN IZATIO N

Like a ll CP/M command file s , PMATE begins at location 100H (see f ig . 6 - 1) .
Location 100H just contains a jump to the starting address of PM ATE. What fo llows
is a tab le of vectors and constants, which you can modify or make use o f . N ext
comes the main body of object code. F ina lly , the last part of the code includes the

Jn s ta n t Command table, and the user in itia lization routine. This en tire p ortion .can
be overlayed by user w ritten or modified so ftw are , extending as fa r as you w ish .

At the end of the executable code (and still a part of the PMATE.COM file) is
the permanent macro area , which you can define to be as large as you w ish . Then
the remaining RAM is devoted to text buffers for the editing process.

TA BLE OF VECTO RS AND POINTERS

There are several sections of PMATE which the user can in te rface to . They
are all contained in IOPATCH, and are explained below . The fir s t is a tab le of
vecto rs , constants, and variab les, starting at location 100H. Here's the f ir s t part
consisting of vectors and pointers:

ORG 100H

JMP IN IT IN IT IA L IZ E
JMP RESET RESET
JMP PIN IT PA RTIAL IN IT IA L IZ A T IO N

U IN IT L : JMP U IN IT USER IN IT IA L IZ A T IO N
U E X IT : RET USER E X IT RO UTIN E

NOP
NOP

0

V II-2 PM ATE USER MANUAL AND INTERFACE GUIDE

COR.MX

CORBEC

M ACBEC/ED EN D

U IN IT

0100

0000

CPM BIOS

CPM BDOS

TEX T BU FFERS

PERMANENT MACRO AREA

IN STA N T COMMANDS AND USER RO U TIN ES

MAIN BODY OF PM ATE

T A B LE OF VECTO RS AND CONSTANTS

CPM BU FFER S AND PO INTERS

Fig 6 -1 . PMATE memory a llocation .

C l : JM P0
C STS : JMP 0
C O U T : JMP 0
LO: JMP 0
LSTS : DB 0 ,0 ,0
MONTR: RET

NOP
NOP

K EYTA B : DW K EY T B

IC S IZ : DB 3
U IN S T : DW UI.MCM

U IN S Z : DB 2
UCOM: DW USRCOM

CONSOLE IN PU T VECTOR
CONSOLE STA TU S VECTOR
CONSOLE O U TPU T VECTOR
L IS T VECTOR
L IS T STA TU S VECTOR
MONITOR VECTOR

PO IN TER TO IN STA N T COMMAND
KEYSTRO KE TA BLE
S IZ E OF SLOT IN TA BLE
PO IN TER TO TA BLE OF USER D EF IN ED
IN STA N T COMMANDS
NUM BER OF EN TR IES IN TA BLE
PO IN TER TO USER COMMAND EXEC U TED
BEFORE IN PU T OF N EXT COMMAND

The firs t 3 entries are jumps to PMATE restart locations. IN IT is the main
in itia lization entry po in t. It c lears all the text buffers, and opens input/output file s
defined in the command lin e . I f you interrupt PMATE, and then t ry to restart by
going to location 100, you may get some strange files being opened because
nonsense has been w ritte n into the command line b u ffe r at location Ü0H - just 'X K '
them.

INTERFACE CUIDE V I I-3

Jumping to RESET is equivalent to strik ing a contro I-C w h ile in PM ATE. The
command area is c leared , the text buffer is le ft unchanged, and PMATE returns in
Command Mode. A fte r an 'XM' command gets you to the system monitor, th is is the
place to return .

PIN IT is the partial in itia lization address. Th is is useful i f there is an already
existing block of text in memory which you wish to e d it . Set CO RBEC to the firs t
character of the block, and put a null (0) at the end of the b lock . Make sure there
are no nulls anywhere in betw een . Then enter at PIN IT , and th is block of te xt
should be in your edit b u ffe r. This can also be useful in recovering from major
catastrophies. For example, if you 'X K ' your edit b u ffe r, it appears to be wiped
out, but most of it w ill usually be sitting in memory - just a few nulls got moved
down to make the buffer look em pty. If you can examine memory w ith your system
monitor, you should be able to find most of it (look following the C O R B E C). Then
set CORBEC to point to the beginning of usable te x t , and jump to PIN IT through
location 106H.

The next two locations are vectors into user w ritten routines. U IN IT L jumps
to a routine which is called from IN IT (see U IN IT description below) and U E X IT is
called just before returning to CP/M from an ’XH‘ command (not norm ally needed,
but provided for your special requirem ents). Next come 5 vectors to system I/O
routines. These routines can be user w ritten - however, they are com patible w ith
CP/M BIOS routines, and can just vector there . In fa c t , the addressess of these
routines can be computed at user in itia liza tion tim e (see U IN IT) , so that you don't
need to generate a new version of PMATE to run in a CP/M system configured fo r a
d ifferent memory s ize . The responsibilities of these routines are as fo llow s:

C l Get a character from the console, and put it in reg ister A . I f there is
no character currently availab le , w a it until there is .

CSTS Check to see if there is a cha racte r presently availab le from the
console. If there is, return OFFH in register A , otherw ise, return 0 .

COUT Output the character in register C to the console output d ev ice . When
configured for a memory mapped display, PMATE ca lls th is routine only
to ring a b e ll. When configured fo r a seria l term inal, PMATE sends its
display output through here.

LO Output the character in register C to the listing d ev ice . Th is is the
place that 'X T ' typeouts are sent.

LSTS Return lister status — not currently implemented.

The final jump vector at MONTR points to the system m onitor. An *XM*
command gets you there . I f you have no system monitor (and you don't w ant to
tack one on at the end of PM ATE), just make this a R E T .

KEYTA B contains the address of the instant command tab le , so that you can
modify it if your keyboard has special cursor keys . Th is is discussed la te r (as is
IC S IZ , U IN S T , and U IN S Z). UCOM points to an optional PMATE command string
(ending in 0) which is executed every time PMATE is preparing to input another
command string while in Command Mode. Use this for your specia l customizing
requirem ents.

\ 11-4 PM ATE USER MANUAL AND INTERFACE GUIDE

D ISPLA Y PARAM ETERS

N ext come some display constants. .Most of these can be set by CONP.MATE
and w ere explained in the previous chapter - so make sure you've read th a t.

T D P S Z : DB 21

DPSZ : DB 24
CH RLN : DB 80
SH FTC T : DB 1

SC R LC T : DB 2

W ANDER: DB 4

CON T X T : D3 3
N O LSTC : DB 0

DOWN: DB OFFH

EV R YLN : D B 0

B LN K C T : DB 25
IC N R IC : DB 3

NUM BER OF L IN ES IN T EX T SECTION
OF D ISPLA Y = D PSZ-3
TO TA L NUM BER OF L IN ES IN V ID EO D ISPLA Y
NUM BER OF CH ARACTERS IN EACH L IN E
S IZ E OF SH IFT WHEN CURSOR MOVES
OFF R IC H T S ID E OF SCREEN
MAXIMUM NUM BER OF L IN ES TO SCROLL U SIN G
IN SERT AND D ELETE L IN E C A P A B IL IT IE S
NUM BER OF L IN ES FROM C EN TER CURSOR
CAN WANDER
NUM BER OF L IN ES REDRAWN IN FOREGROUND
OFFH IF LA ST CHARACTER OF D ISPLA Y
M UST BE SUPPRESSED

IF SET TO OFFH, D ISPLA Y PROCEEDS FROM
TOP TO BOTTOM
IF SET TO OFFH, D ISPLA Y CURSOR
BEFORE DRAW ING EACH LIN E
CURSOR B L IN K COUN T — 0 FOR NO B L IN K
IGNORE IN STA N T COMMANDS IF DEEPER
THAN TH IS IN BU FFER

DPSZ liolds the total number of lines on your d isp lay. Make sure TD PSZ (the
size of the text area on the display) is exac tly three sm aller than D P SZ . O f the
remaining constants above, the only one not described in the
C O N F IG U R A T IO N chapter is SC R LC T . I f you are using a seria l term inal which
supports insert and delete line, PMATE w ill use that capab ility to scro ll anywhere up
to SCRLCT lines - if it is necessary to scro ll fu rther, it w ill simply redraw the entire
d isp lay. CONPMATE sets SCRLCT to one-th ird the total s ize of the d isp lay . Note
that the flags DOWN and NOLSTC must take the values 0 or -1 (w h ich must be OFFH
on many assem blers).

MEMORY MAPPED D ISPLAYS

PMATE uses the same memory area fo r d iffe ren t param eters, depending upon
whether you have a term inal, or a memory mapped screen . N otice that in
IOPATCH, there is a constant, MEMMAP, which is set to -1 fo r a memory mapped
display, or 0 for a seria l d isp lay. This controls the conditional assembly of the
appropriate code. This is the module for a memory mapped d isp lay :

MMAP: DB OFFH
VRAMO: DW 0E000H
LSPAC: DW 128
D SPCU R:

SET TO OFFH FOR MEMORY MAPPED D ISPLA Y
B EG IN N IN G OF V ID EO RAM
SPACE BETWEEN L IN ES OF V ID EO RAM
RO U TIN E TO D ISPLA Y CURSOR A T MEMORY
PO IN TED TO BY HL

MOV A,M

INTERFACE GUIDE V ll-5

ORI 80H
MOV M,A
RET
DS 16 ;21 B YTES TOTAL

C LR C U R :

MOV A,M
AN I 7FH

;RO U TIN E TO CLEAR CURSOR FROM MEMORY
.-POINTED TO BY HL

MOV M,A
RET •
DS 16 ;21 B YTES TOTAL

DSPCHR:

STAX D
RET

.-ROUTINE TO STORE CHAR IN REG A IN
,-VIDEO MEMORY PO INTED TO B Y DE

DS 19 ;21 B YTES TOTAL

These all correspond to entries in the .C N F configuration f ile s , and have
already been explained. DSPCUR, C LR C U R , AND DSPCHR must all be e xa c t ly 21
bytes in length (so PM ATE knows where to find them) - so adjust the DS's
accordingly.

VIDEO TERM IN ALS

For video term inals, set MEMMAP to 0 in IOPATCH, and the follow ing w ill be
assembled:

MMAP: DB 0 ,-0 FOR MEMORY MAPPED D ISPLA Y

;V1DE0 CODES - SEQUENCES END IN 0 , THEN N EXT B Y T E
;IS NUMBER OF M ILLISECO NDS TO DELAY

V ID C LS : DB 26 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ;SEQ U EN CE OF B Y T E S TO CLEAR SCREEN
V ID C L L : DB 2 7 ,'T ',0 ,0 ,0 ,0 ,0 ,0 ,0 .CLEAR TO END OF L IN E

V ID A SC :
V ID X Y :

V IDO F1:
V IDO F2:

;CURSOR A D D RESSIN C
DB 0
DB 0

DB 32
DB 32

A SC II FLAG - -1 FOR A SC II
XY FLAG — 0 FOR Y CO O RDIN ATE F IR S T
-1 FOR X F IR ST
OFFSET OF F IR ST CO O RDIN ATE

;OFFSET OF SECOND CO O RDIN ATE

V ID C U L : ;LEA D IN
DB 27 ,'- ',0 ,0 ,0 ,0 ,0 ,0 ,0

V ID CU M : ;M ID DLE
DB 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

V ID C U E : ;EN D
DB 0 ,5 ,0 ,0 ,0 ,0 ,0 ,0 ,

V II -6 PM ATE USER MANUAL AND INTERFACE CUIDE

V ID IL : .-SEQUENCE TO IN SERT LIN E — END IN 0
DB 27 ,, E,/0 ,10 ,0 ,0 ,0 .0 .0

V ID D L : .-SEQUENCE TO D ELETE L IN E — END IN 0
DB 2 7 ,^ ,0 ,1 0 ,0 ,0 ,0 ,0 ,0

All of the above sequences must be exac tly 9 bytes long. Each sequence
includes up to 7 characters which are sent to the display, fo llowed by a null,
followed by any delay required a fte r sending this sequence. T h is delay is in
m illiseconds for a 4MHZ C P U . In the example above, a 10msec de lay is inserted
a fte r insert and delete line , a 5 msec delay a fte r the entire cursor addressing
sequence, and no delay a fte r c learing the screen or clearing to end o f lin e . The
cursor addressing sequences are e xac tly as described in the previous chap ter.
V ID C U L is the lead-in sequence. V IDCU M is sent between the X and the Y
coordinates, and then V ID C U E is sen t. It is possible to insert a delay a fte r each of
these sequences, but one should only be needed at the very end. V ID A S C is set to -
1 (0FFH) if the cursor positioning information must be sent out as an A SC II string
(e .g . '2 ' ,'3 ') , rather than as one binary b yte . V ID X Y indicates w hether the row or
column inform ation is sent out f irs t , and VIDOF1 and 2 hold o ffse ts . If the offsets
are d iffe re n t, make sure V ID 0F1 holds the o ffset of the firs t coordinate sent out, be
that X or Y .

MORE

Z80: DB 0FFH
D ELA Y : DB 100
A B R T : DB 'C -4 0 H
1CRFL: DB 0

0FFH IF Z -80 , 0 IF 8080 -.
DELAY TIM E FOR QD COMMAND
ABO RT CHARACTER
0FFH IF C R 'S AND TA BS ARE TO BE
IN SERTED IN O VERTYPE

C O R BEC :

CORMX:
G 8 C S Z :
T X T EN O :

M ACBEC :

MAC EN D:

,-FIRST A V A ILA B LE CORE LOCATION
DW EDEND+MACSZ+1
DW 0
DW -1000
DW 0

DW ED END

;LA ST A V A ILA B LE CORE LOCATION
N EG A T IV E MINIMUM S IZ E OF C A R B A C E AREA
LA ST LOCATION A V A ILA B LE FOR T E X T
REST IS RESERVED FOR GARBAGE
F IR S T A V A ILA B LE LOCATION
FOR PERM ANENT MACROS
LA ST A V A ILA B LE LOCATION
FOR PERMANENT MACROS

DW EDEND+MACSZ

;TH E FOLLOWING V A R IA B LES CAN BE SET BY THE Q COMMANDS

UVAR0 DW 0
UVAR1 DW 0
UVAR2 DW 0
UVAR3 DW 0
UVAR4 DW 0
UVAR5 DW 0
UVAR6 DW 0
UVAR7 DW ;

;U SER D EF IN A B LE VA R IA BLES

INTERFACE GUIDE V I1-7

UVAR8: DW 0
U VAR9: DW 0

SHFCHR: DB 0 UPPER OR LOWER CASE SH IFT CHARACTER - - QS
C N TCH R: DB '0 ' CONTROL CHARACTER — QC
PACSZ: DW 0 NUM BER OF L IN ES IN PACE — QP
PACSEP: DB 'L'-40H PACE SEPARATOR - - QF
SCRLNS: DW 6 NUMBER OF L IN ES TO SCROLL

IN IN STA N T COMMANDS - - QL
B K U FL : DB OFFH OFFH IF BACKUPS ARE TO BE MADE — QK
XV. A X : DB 250 MAXIMUM ALLOWED X CURSOR POSITION - QZ
CRCHR: DB '<' D ISPLAYED FOR END OF PARAGRAPH

The variab le 'Z80' may be set to OFFH if the host computer is Z -80 based.
PM ATE w ill then use the Z-80 block move instructions to speed up te x t insertions
and deletions. The ‘Q D ’ command delays for a time proportional to the number
stored in 'D E LA Y '. If you w ish to make that delay an exact time in terva l fo r your
hardware, you may play w ith this number. The cha racte r in 'ABRT* is the abort

' character (norm ally co n tro l-C). If you change the abort character in the instant
command table, you must also change it here . Set ICRFL to -1 if you wish carriage
returns and tabs to be inserted while in overtype mode, rather than just moving the
cursor.

The next 6 words help define PM A TE 's memory a llocation . N orm ally , the
permanent macro area begins immediately a fte r the end of the ed itor (defined by
ED EN D), and is as large as you want i t . Any remaining memory space up to the
BDOS (resident part of CP/M which must remain in RAM) is usually a llocated to
PM ATE. You can do this 'by hand' - just put the address of the last availab le
memory location in CORMX. U sually , however, this is done by 'U IN IT ' (user
in itia lization routine) so that all availab le memory is autom atically gobbled up.
U IN IT can also in itia lize T X T E N D . This is the highest address of memory allocated
to te xt b uffe rs. Any memory between here and CORMX is reserved fo r the garbage
s ta ck . Fill in the negative of the amount of space you wish reserved for garbage in
G B G S Z . See the 'User In itia liza tio n ' section for more d eta ils .

The ten variab les, UVARO through UVAR9 can be set by a 'Q ' command- They
can be used to control your keyboard, C R T , or printer d rivers, (o r anything e lse you
wish to control w ith PMATE commands). For instance , if you had 3 d iffe ren t
printers connected to your system , UVARO might control which p rin ter the next 'X T '
output would go to.

The next 7 bytes just in itia lize param aters which can be changed w ith the 'Q '
commands shown (see C O M PLETE COM M AND S E T ch ap te r). CRCHR holds the
character which is displayed at the end of a paragraph w h ile in Format Mode.

USER IN IT IA L IZ A T IO N

The user in itia lization routine is entered a fte r PMATE is sta rted at its main
in itia lization point (100H). You should use this routine to in it ia lize any display
hardware (some 'DMA' displays need a byte or two to in itia lize the ir m ode).

A routine to in itia lize the I/O vectors CO.NIN, CO N ST, CONOUT, and L IS T to
point to the corresponding BIOS routines in CP/M is given below . This routine also

V I I -ft PM A TE U SER M ANUAL AND IN TER FA C E G U ID E

sets CORMX, appropriating a ll availab le memory for PM ATE. The FJlOS jump tab le is
located *>v using the jump to the warm-boot vector normally stored beginning at
location CÜÜÜH. COR.MX is set using location 00Q6H, which CP/’M sets up to point to
the beginning of the BD O S. The reserved 'garbage stack ' area is a llocated by using
C B O S Z , ami the result is stored in T X T E N D .

LH LD 06H .-POINTER TO B EG IN N IN G OF FDOS
OCX H
SHLD CORMX ' ;LA ST A V A ILA B LE CORE LOCATION
XCHC
LHLD C B C S Z .‘N EG A T IV E OF S IZ E ALLOWED

;FOR G A RBA G E AREA
DAD Ü
SHLD TX TEN D

LHLD 01H
LX I D,3
DAD D
SHLD CSTS-1
D A D D
SHLD CI+1
DAD O
SHLD COUT+1
DAD Ü
SHLD LOM
RET

; PO INTER TO WARM BOOT VECTOR

;CONSOLE STA TU S VECTOR

;CONSOLE IN VECTO R

.•CONSOLE OUT

;L IS T DEVICE

THE IN STA N T COMMAND TABLE

The instant command table allows you to define 1 or more keystrokes which
taken together cause any predefined (or user defined) command string to be
executed . The table provided in IOPATCH implements the default instant
commands. U IN S T , in the table of vectors and pointers, contains a pointer to this
tab le . ICS IZ contains the maximum number of codes needed fo r any command.
The first byte in each ’slot' gives the command number. These s ta rt at 128 . I f a
number of less than 123 is entered, this is treated as an ASC I! code, and not a
command (th is can be used to implement translations - such as backspace=>del, or
®X to e sc) . The following ch a racte r(s) in the slot are the keystrokes which
together execute the command (or are translated into the A SC II code) in the first
b yte . IC S IZ indicates how many bytes are needed here - f ill in the remainder w ith
O's.

Here is a lis t of the predefined command codes. Further explanation o f the ir
function is given in the preceding chapter.

128 — Move to beginning of b u ffe r, if there, move to end
129 — Move to end of buffer
130 — Move cursor le ft
131 — Move cursor le ft one word
132 - - .Move cursor right
133 — Move cursor right one word

INTERFACE GUIDE V I I-9

134 — Move up one line
135 — Move up 6 lines
136 — Move down one line
137 — Move down 6 lines
138 — Delete character
139 — K ill line
140 — C o to insert mode
141 — Edit command
142 — Abort
143 - - Shift case
144 — Redraw and reform at display
145 - - Tag current cursor position
146 — Delete word forward
147 — Delete word backward
148 — Pop garbage stack
149 — Go to command mode
150 — Co to overtype mode
151 — Insert line
152 — Move cursor le ft (geom etric)
153 — Move cursor right (geom etric)
154 — Move cursor up (m ixed)
155 — Move cursor down (m ixed)
156 — Move block
157 — Get block
158 — Move cursor up (geom etric)
159 — Move cursor down (geom etric)
160 — Move to top of buffer
161 — Move cursor le ft (m ixed)
162 — Move cursor right (m ixed)

Several sets of keystrokes can all enact the same command, and not all
commands need be implemented. Add as many slots as you wish to the tab le , and
end the table w ith a byte of OFFH. If you change the s ize of a slo t, m ake sure you
change a ll of them, and IC S IZ .

You can add your own commands by using a command code starting at 128+64.
The pointer UIN ’ST contains the address of a table of user defined instant commands
- here called U IN C M . This table is an index containing pointers to command strings
you provide. The size of the table UINCM (i .e . the number of tw o byte en tries)
must be stored in U IN S Z . Command number 192 w ill execute the m acro string
pointed to by the first entry in the tab le, while 193 refers to the second, e t c .
IOPATCH contains, as an exam ple, two added user commands. U se th is fa c ility to
customize your own PM A TE , or to emulate other editors you are used to working
w ith .

A p p en d ix A
COMM AND SUM M ARY

The following in s ta n t com m ands are keystrokes which are not entered into
the command or text buffers, but are executed immediately:

C u rso r M otio n :
©A Move to the beginning of the text buffe r, and if already

there , move to the end
~'C
©H
DY
©B
DU
©)
©0
DP

D e le te :
©D
©K
©W

Move left one character
Move right one character
Move up one line
Move down one line
Move up multiple lines
Move down multiple lines
Move le ft one word
Move right one word

Delete the character at the cursor
K ill the line beginning at the cursor
Delete one word beginning at cursor

©Q D elete one word backwards from cursor
T e x t m ovem ent and re c o v e ry :

©T
©E
©Z
©R

M ode:
©X
©V
®.M

O th e r :
©L
©C
■£
©S

Tag the current cursor location
Move block between tag and cursor to special b u ffe r
G et contents of special buffer to cursor location
Pop garbage stack , restoring last deleted item

Co to COMMAND MODE
C o to O VERTYPE MODE
C o to IN SERT MODE

Insert line
Abort any operation in progress, resetting to command mode
Edit the command string
Shift default case (useful fo r non-typew rite r s ty le
keyboards)

SF Redraw and reformat display

These characters are not rea lly instant commands, but they do have special
meanings:

ESC The escape key separates commands in command mode. Tw o
consecutive escapes execute the command.

TAB The tab character in text positions the fo llow ing ch a racte r
at the next tab stop.

D ELETE/R U B O U T The key marked 'delete' or 'rubout* deletes the last
character entered.

A The up-arrow itse lf is ignored, but it sh ifts the next
character entered to a control ch a ra c te r . S trike it tw ice to
enter an up-arrow .

PM ATI-: USER MANUAL AND INTERFACE CUIDEA-2

Now come the real commands. When in Command Mode, these are entered into
the command buffer and then executed .

T h e fo llo w in g com m ands m ove the c u rs o r :
L
+nL
-nL
M,nM,-nM
>V,nW,-nW
P,nP,-nP
A
Z

forw ard 1 line
forward 'n' lines
backward ‘n’ lines
'n' characters
'n' words
'n' paragraphs
to beginning o f text buffer
to end of text buffer

T h e fo llo w in g
D
nD
-nD
K ,n K ,-n K

com m ands d e le te c h a ra c t e r s :
D e lete character at cursor
D elete n characters , from cursor forward
D elete n characters , from cursor backwards
D e lete lines

T h e fo llo w in g com m ands in se rt te x t into the text b u ffe r:
Istring Insert 'string' immediately a fte r cursor
nl Insert cha racte r w ith A SC II code 'n'
Rstring O verw rite text w ith 'string'
nR O verw rite cha racte r at cursor w ith A SC II code
n \ Insert number 'n ' into the text

S e a rc h and ch a n g e :
Sstring
nSstring

-Sstring
-nSstring

C strng lSs :rng 2 . .
n C ,-C ,-n C

Search for next occurence of 'string'
Search forward for next occurence of 'str in g ', confining
search to 'n' lines
Search backward for next occurence of 'string'
Search backward for next occurence of 'str in g ', confining
search to 'n' lines
Change next occurence of 'strnp.1' to 'strng2'
Search for 's trn g l' as in equivalent 'S' command, then change
it to 'strng2'

I t e ra t io n and c o n t ro l :
I j label
1(
1(

n(
(•

• 1
• K

I]

•)

Jump if T is true to 'label'
Execute expression in brackets only if '!' is true
Execute expression in firs t brackets if '1' is true , otherw ise
execute expression in second set of brackets
Ite ra te expression in brackets 'n' times
Ite ra te until T is true
Proceed to next iteration if '1' is true
Ex it enclosing iteration loop if T is true

Som e m isc e lla n e o u s com m ands:
E
nF
F
C strng
N
T

Suppress error messages
Enter Format .Mode, setting line w idth to ’n’
Toggle in and out of Format Mode
G et key from keyboard, giving user prompt ’ strng'
Co into 'In sert Mode'
Tag current cursor position

COMMAND SUMMARY A-3

•b Execute macro 'b'
I“ Return early from macro if T is true
:x Label this position in command w ith cha racte r V
; Comment - ignore all characters until end o f line
? Enter trace mode

T h e re a re 10 n u m eric v a r ia b le s and a N um ber S ta c k for storing interm ediate
results, and some commands to set them:
nVi Set variab le V to value 'n'
VAi Increment variab le V
nVAi Add V to variab le 'i*
n. Push V on number stack

T h e fo llo w in g 'Q ‘ com m ands p erfo rm m isce lla n e o u s fu n c t io n s , usually setting
some internal param eter:
nQA Set the number of passed string arguments in a m acro ca ll
QB Ring the bell
nQC Set control sh ift character to A SC II 'n'
nQD Delay for a time proportional to 'n'
nQE Set type-out mode to 'n '.
riQF " Set page separator character to A SC II V
nQH Insert V spaces at cursor position
nQl Set input radix to 'n'
nQK Create .8 A K files unless 'n' is 0
r.QL Set number of lines for ©U andd ©J commands to scro ll
QMC Copy to permanent macro area
QMG G et contents of permanent macro area
nQO Set output radix to 'n'
nQP - Set page size to 'n'
nQR Redraw screen — return any key struck as 3 K
nQS Set lower case sh ift character to A SC II 'n'
nQX ' Move screen cursor to column 'n'
nQY ~ A llow cursor motion in 'free space' if n=0

-nQZ Don't allow cursor to move past*column 'n '.
nQ! Store 'n' in memory at location pointed to by va riab le 9 .
nQ- Display numbers as positive only if n=0
nQm Set user variab le 'm' (0 -9) to 'n' - these 10 user variab les

are availab le to user w ritten I/O d rive rs .

T h e fo llo w in g 'X ' com m ands g e n e ra lly p erfo rm d isk I / O . They begin w ith an
'X ' so that they are hard to accidentally execute, as they cause major upheaval.
XA Append next page of input file
nXA Append next 'n' pages of input file
XW Write next page to output file
nXW Write next 'n' pages to output file
XR Write one page to output file , read one from input file
nXR Do this 'n' times
XE End of editing - w rite out all remaining te x t from b u ffe r and

input file
XJ Do XE, then reopen file
XF Define new input and output files
XK Delete output file and scratch edit buffer
XC Close input and output files os they a re .

A-4 PM ATE USER MANUAL AND INTERFACE CU ID E

XH
XI file
n X Ifile
nXI
XOfile
nXOfile
XM
XD rile

XSd

XT
nXT
XL
XLfile
XX file

Return to CPM
Input entire file ’ file '
Input n pages of 'f i le 1
Input n pages of last named au x illia ry input f ile
Output entire edit buffe r to ‘ file * .
Output 'n' lines, beginning at cursor, to ’ f ile ’ .
Co to monitor
C reate new version of PM A T E , including any new changes, or
permanent macros - new version called 'file .CO M '
Log' in disk drive 'd' fd ' is A ,B ,C , e t c .) . A lso reset disk
system .
Type entire text buffe r on printer
Type 'n' lines, beginning at cursor
List disk d irecto ry at cursor
List just those files in d irecto ry which m atch 'f ile '
Delete 'f ile ' from disk

T h e fo llo w in g '8 ' com m ands a c t on b u ffe rs 0 -9 , or the text b u ffe r 'T ' -b u ffe r 0
is assumed, unless the buffer number is placed between the tw o ch aracte rs of the
command.
BK
BC
nBC
nBD
nB.M
nSN
BE

K ill the entire contents of the specified b u ffe r
C e t the contents of the specified buffer
Copy 'n' lines to the specified buffer
Append 'n' lines to the specified buffer
Move 'n' lines to the specified buffer
Append move 'n' lines to the specified buffe r
Edit the specified buffer

Tab stop com m ands:
nYD
nYS
YK -
nYE .- -
YF
YR
nYl

Delete tab stop at position 'n'
Set a tab stop at position 'n'
K ill all tab stops
Set a tab stop every 'n' spaces
Fill tabs w ith appropriate number o f spaces
Replace spaces w ith tabs where possible
Set indent at column n

N u m e ric a rg um en ts (w hich have been referred to as 'n ') can in fa c t be complex
expressions, involving up to 15 levels of parenthesis, and the fo llow ing operations:
+ ■ Addition
- Subtraction
• M ultiplication
/ Division
I Logical or
& Logical and1 Logical complement
< Less than
> C rea te r than
= Equal

In addition to numbers, the following expressions can be used w ith the above
operations to form numeric arguments
’ a The A SC II value of cha racte r 'a'

COMMAND SUMMARY A-5

t i
a a
a c
*5E
a Ffile
s C
SHstrng

S I
fiK

6L
SM
eo
3P
8R
3S
@T
3 V
fiW
2X
S Y
3Z
29

The value of numeric variab le 'i'
The numeric argument when macro was ca lled
The character number
The value of the error flag
-1 if ‘ f ile ’ exists on the current d irecto ry , 0 if it doesn't
The length of the last referenced string
Compare 'strng' to text at cursor - return 0 if equal,
otherw ise 1 or -1, depending upon w hich string is g re a te r .
The current input page
The ASCII value of the key struck a fte r a ' C or QR
command
The line number
The amount of memory remaining
The current output page
The absolute memory address to which the curso r is pointing
The remainder of the last division
Pop the number stack — get value of top
The A SC II value of the character pointed to by the cursor
The current mode
The current right margin
The current column
The current le ft margin
The column of the next tab stop .
The byte pointed to by variab le 9
Move cursor to tagged position, and get d iffe re n ce between
tagged position and current position as argument - can be
used w ith any character or line oriented command to operate
on a block of text

	Chapter I is an introduction for beginners.
	Chapter II starts in with basic concepts to lay the foundation for a more thorough understanding of PMATE
	Chapter III explains some more advanced concepts and commands
	Chapter IV gives the complete command set.
	Chapter V provides macro examples
	Chapter VI provides configuration information
	Chapter VII provides further configuration inform ation for those who would like to interface w ith PMATE in assembly language.
	A ppendix A is a summary of PMATE commands - a useful reference.

