PMATE rev 2
User Manual
and

Interface Guide

Written by
Michael Aronson
Aox Incorporated

Copyright © 1981 by Phoenix Software Associates Ltd.

Preface
HOW TO USE THIiS MANUAL

Documenting PMATE presents problems. PMATE is useful at many levels, by
persons of vastly differing computer skills. The documentation must then also be
geared to a wide audience. In this uncoventionally organized manual, some ideas
and commands are presented repeatedly in chapter after chapter -- each time, at a
different level. Depending upon your experience and aptitude, you need only read
the appropriate chapters.

Chapter 1 is an introduction for beginners. It is intended to be a complete
course in the most basic use of PMATE for those with little or no computer
background. ol il

Chapter 11 starts in with basic concepts to lay the foundation for a more
thorough understanding of PMATE. You can certainly start here if you have
experience with other text editors.

Chapter 111 explains some more advanced concepts and commands.

Chapter IV gives the complete command set. You can start here if you really
know what you're doing.

Chapter V provides macro exampleﬁ. After you are well aquainted with PMATE,
work through these examples. They show how macros can greatly expand PMATE's
built-in capabilities.

Chapter VI provides configuration information. Read this chapter to get PMATE
up and runniag on your system.

Chapter V11 provides further configuration information for those who would like
to interface with PMATE in assembly language.

Appendix A is a summary of PMATE commands -- a useful reference.

Chapter |
INTRODUCTION FOR BEGINNERS

TEXT EDITING, WORD PROCESSING, CUTPUT PROCESSING...

'y

A 'text editor' is a computer program which helps people to create text, and
modify it. Text editors are written by programmers, and pregrammers write mostly
programs. Therefore, text editors were traditionally geared toward entering and
correcting computer programs. In particular, a line of computer code is always one
line. You might wish to get rid of it, medify it, move it somewhere else, or make a
copy of it, but it is still a line. Writing the English language is different. If you
want to insert a few words in a line, the end of that line needs to wrap around to
the beginning of the next, and the whole paragraph needs rearranging. When
programmers had satisfied their own needs, they attacked this sort of problem with
'word-processing' software and hardware, ranging in complexity from typewriters a
bit smarter than usual, to complete computing systems with CRT's (TV displays)
instead of paper to display the typed material, disks for storing the text, and fast
printers for quick, error~free type out.

Typically, a 'text editor' program was meant for use on a teletype, or some
other type of 'slow' terminal. It would be intclerable to wait while the terminal
prints out all your text every time you make the slightest changa in it. So you work
blind. Sections of text are typed cut only when you request. To make up for the
inconvenience, powerfu! text editing commands can usually be constructed that can
totally rearrange all your text with a few keystrokes. These little command
'programs’' are dearly loved by computer nuts. .

On the other hand, word processing software usvally shows you exactly what
your text is looking like at that time by showing it to you on a video display. As
you changea the text, the display changes instantly. The penalty you pay to achieve
this desirable situation is that the word processor usually allows you to make only
simple-minded changes in the text.

A "text output processor' is an attempt to make a 'text editor' compatible with
the real world of pages, paragraphs, underlines, and such. You use your text editor
to enter text, including a bunch of control words. These words might indicate that
it's time to start a new page, indent that margin 20 spaces, or leave 5 blank lines.
Then you run the output of the text editor through your text output processor,
which types it out on your printer, nicely formatted, maybe even with straight right
hand marginsl Text output processors give you wonderful centrol over the form of
your final document, but have the disadvantage that the required input - the part
created and updated by your text editor - bears little resemblance to the final
output. -

... AND PMATE

PMATE is an attempt to combine some of the best Teaturesiof all thiee.

THE EDITING PROCESS

Text is saved on the disk in the form of ‘files'. Each file has a name. In
CP/M, a name consists of 8 or less characters - 'JOHN', 'CHAPTERT', 'PMATE’, "+&°,
or 'GERTRUDE' are all fine possible names for a file. A filename can optionally
have an 'extension'. This is up to 3 characters following a '." at the end of the
name. So 'BOOK.ONE' and 'BCOK.TWOQO' are different files, possibly representing

-2 PMATE USER MANUAL AND INTERFACE GUIDE

two different chapters in a book. Certain extensions (such as 'ASM','COM’, and
'HEN') have meanings to the CP/M system programs.

PMATE can be used to create a new file, or to modify (change, add to, look at,
or otherwise work on) an old one. Let's start by creating a new one. With CP/M in
control {there should be an 'A>" or a 'B>' on the console), type the command:

PMATE FILE

where 'FILE' is the name of the file you wish to create (which may even be 'FILE").
After a few seconds, PMATE is loaded into memory, and the screen becomes alive.
Look up at the top line. There are a few words and numbers telling you something
about what is going on with the editing process. This is called the 'status line'.

Right below the status line is the 'command line'. Below that, a row of dots
separates that command and status area from the 'text area'. Notice the 'cursor' in
the text area. It is probably blinking, or reversed video; and notice the 'cursor’ on
the command line - just an underline (). These cursors show where things will
happen - where the action is. Now strike a few keys on the keyboard. The
corresponding letters should appear in the command line. This is because you are in
'COMMAND MODE'. The keys you strike go toward forming a command, which then
can affect the text area. Strike a few more keys, and also watch what happens
when you hit the carriage return key. Mow hit the 'delate’ or 'rubout' key. This
will wipe cut the last character in the command line. You can delete the whole
command at once with a 'control-C'. That is the character preduced by holding
down the 'control' key, and striking a 'C'. Control characters will be indicated from
now on by an '@ (a control-C will be written '©C'). _

Now clear the whole command area with a '©C'. Strike a '©N'. You have just
moved into 'INSERT MODE', and this is indicated where the command line used to
be. Now enter some normal letters. You are creating text! Enjoy it for a little
while. Then try hitting '©X' -this will return you to COMMAND MODE. Now go
back to INSERT MODE. Try the delete key. It will delete the character you just
entaered. !t's iust like typing on a typewriter, but you can correct your mistakes.

'SC',8N', and 'OX' are called 'instant Commands'. Yhen you hit these keys, a
character doasn't get entered in the text, or onto the screen, but rather, something
different happens. Instant commands are usually goed in either COMMAND or
INSERT MODE. The most important instant commands are those that can move the
cursor around in the text area. They are '9Y', '©8', '@G', and '©H'. Try them.
Note that these 4 keys are located in a group on the keyboard, and that they are
arranged the right way -~ that is, the bottom one, '©8', moves the cursor down, the
top '@Y’', moves it up, '€G' moves it left, and '"©H' moves it right.

Use the instant commands to move the cursor around, and then try typing in
some more characters. Now you are 'editing' text, as opposed to just entering it.
Learn the action of the 'deleta key', it always deletes the character just before the
cursor. Try the '"©9D' instant command - it deletes the character at the cursor.
'2K' will kill the whole line, starting at the cursor. Lines are separated by the CR
character. Type a carriage return, and you will start a new line. Move the cursor
to a CR (the last character on any row) and try deleting it. See how the two lines
on either side get run together?,

If you haven't already done so, type in more lines than there is room for on the
display. Watch how the display scrolls. Move the cursor back a few lines, and the
display will scroll back the other way. PMATE will display as much text as possible
on both sides of the cursor. This is called 'vertical scrolling'.

Now type a line that is too long for the screen - just keep typing without
hitting a CR. As soon as the cursor is about to move off the screen, the whole
display 'shifts' over. This is called 'horizontal scrolling'. The display continues to

INTRODUCTION FOR BEGINNERS -3

shift as necessary, as your line gets longer and longer -- up to a maximum of 250
characters. Move on to the next line, and the display will return to normal.

Try out the tab key (or 'Ol' if your keyboard doesn't have one). Tab stops are
initially placed every 8 spaces, but later you will learn to place them arbitrarily. If
your keyboard isn't capable of generating lower case, use the '/' key as a 'shift'.
When you type '/', nothing will happen, but the next key you type will be shifted in
case. (To actually enter a /', just type it twice.) Try the '@S' instant command a
few times. It changes the 'default case' from upper to lower, and then back again.
The '/' key (like 'shift') will alter the case from the default for just one character.

As you enter text, and it appears in the text area, it is being entered into the
'current edit buffer'. This edit buffer is just a section of computer memory. The
text area of the display is acting like a 'window' which allows you to see a small
section of this buffer. The section you do see is the section where the action is
about to occur - the place where the cursor points.

Now go back to COMMAND MODE ('©X' - remember?). Any characters you
type now are entered into the 'command buffer'. The command area of the display
just shows the final part of this buffer. Make sure the command area is clear (use a
'oC' if necessary). Now find the 'escape' key (it might be marked 'ESC'). Strike it
a few times. It echoes on the screen as a 'S'. From now on, 'S', when written as
part of a command, will mean the ‘escape key'. Commands are executed by typing
-~ an escape twice. Try this simple command:

DsS
This command deletes the character at the cursor, just like the '©D' instant
command. (Incidentally, don't forget to use the instant commands in COMMAND
MODE also - especially the cursor motion controls.) 'KSS' will kill the whole line.
Now try 'ICARBAGESS' . The 'l' is the insert command, and what ever follows it

-~ until an escape is reached, will be inserted into the text.

Sooner or later, you are bound to give PMATE a command it doesn't like. It
will complain bitterly by displaying an error message, and appearing quite dead. The
only way to wake it is by typing either a 'space' or a CR. In big letters:

YWHEN YOU HAVE MADE AN ERROR, AN ERROR
MESSAGE WILL APPEAR WHICH WILL REFUSE TO GO
AWAY UNLESS YOU STRIKE CR OR SPACE BAR

After a command is executed, it is still displayed in the command area. If you
now type an escape again, the command will be repeated. (Try this after an 'I'
command and see how fast you can fill up space). If you don't want to repeat the
command, but just to enter a new one, ignore it. When you start to enter the new
command, the old one will just disappear.

One very important command is 'FSS'. This takes you into 'FORMAT MODE’,
and if you are already there, it takes you back again. In FORMAT MODE, you don't
have to worry about where a line ends, PMATE takes care of that for you. Try it.
After giving the 'F' command, enter insert mode. Now start typing words, but don't
enter any CR's. Notice how the text automatically wraps around to the next line,
rather than going off the screen. Words are not truncated or divided, but are left
intact. When you reach the end of the paragraph, and you insist that the next word
begins on a new line, then enter a CR. Write a few paragraphs. Move the cursor to
the middle of one of them, and insert some more words. Watch how the whole

1-4 PMATE USER MANUAL AND INTERFACE CUIDE

paragraph is rearranged as those words are entered. It is important not to use a CR
except when the next word must begin a new line. Otherwise, words will not be
able to wrap around properly when changes are later made.

Now that you have some reasonable text in your edit buffer, why not write it
on the disk?. Use the command 'XESS'. That ends the editing pass. 'XHS3' will
then get you back to CP/M with a new file on the disk. Soon, you will want to
modify that file. Again, give the command

PMATE FILE

where 'FILE' is the name of the file you had just created. Quickly, PMATE is back
in control, and you see your old text again. Now add to it, rearrange it, chop it up,
or whatever you please. If you don't like what you did, type "XKSS'. This just
cancels any changes, and leaves 'FILE' as it used to be. Otherwise, type 'XESS' and
'FILE' is updated on the disk to inciude all your modifications. (It is also possible to
leave 'FILE' intact, and write the new version under a different name.) Don't
forget that the only way to get back to CP/M is with an 'XHSS' command (‘H' for
'Home').

Chapter 11
BASIC IDEAS

THE BUFFERS

PMATE operates on text stored in the computer's memory. Text can be placed
in any of 11 'edit buffers'. Text is stored as a continuous stream of characters. If
a character is inserted in the text, all following characters have to be moved up to
make room for the new one. Similarly, if a character is to be deleted, all following
characters must be moved down to fill in the space. 'Lines' are separated by the
carriage return character (CR).

THE DISPLAY

PMATE utilizes a video display to always show a portion of the text in the
current edit buffer. As the text stream in memory is modified, the display
immediately reflects this change. Just imagine your text sits behind a large wall,
and your screen is an opening through which you can see part of it.

- THE CURSOR

It's nice to be able to see part of your text stream, but obviously not enough.
You need to be able to modify it. The 'cursor' indicates on the screen exactly
where this modification is to take place. The character to which the cursor points
is clearly displayed, usually as blinking, underlined, or inverse video. The cursor is
only useful if it can be moved around. This can easily be done just by striking the
appropriate key on your keyboard. As the cursor moves through the text, the
portion of the text dispiayed on the screen changes in such a way that text on
either side of the cursor is always visible. The screen always shows where the
action is. In this way, text scrolls up or down as you move the cursor up or down
{vertical scrolling). Furthermore, if a line is too long to fit on the screen, the
whole text display is shifted over to prevent the cursor from moving off the right
end of the screen (horizontal scrolling). Lines can be up to 250 characters in
length.

MODES OF OPERATION

There are several ways to enter or modify text. "OVERTYPE MODE' or "INSERT
MODE' provide the simplest method. Just type!! The characters you type' are
immediately entered into the text where the cursor is (and of course, appear on the
screen). In 'INSERT MODE' any characters at or beyond the cursor are moved up
to make room for the new ones. If you make a mistake, 'rubout’ or 'delete’ will
cure it (and banish it from the screen). In 'OVERTYPE MODE', the character you
type replaces the one already beneath the cursor. However, neither carriage
returns, nor tabs will be overwritten. OVERTYPE or INSERT modes are indicated on
the bottom line of the display, below the row of dots.

Several keystrokes {usually control codes) are not entered into the text, but
serve some other function. These are called 'Instant Commands'. The keystrokes
that move the cursor are instant commands. Other keystrokes can delete the
character at the cursor, delete a whole line, or shift from upper to lower case.
This sort of text editing is great for entering text, and making minor changes in it.

-2 PMATE USER MANUAL AND INTERFACE GUIDE

For 'serious’ text editing, PMATE executes 'command strings'. For instance, you
might command PMATE: "Find the third occurence of 'George' and change him to
‘Harry', then from that point, delete all characters until you find an 'F', then insert
the numbers from 240 to 1000 in base 5, one per line, and finally tell e how much
(3°46/(5+(3*7))) is". Of course, you wouldn't use exactly that language, but such a
command string could readily be constructed. PMATE executes such commands
when in 'COMMAND MODE'. The 'command line' is the last line of the display.
When there is no mode message in the command line to inidicate OVERTYPE or
INSERT modes, PMATE is in command mode. An underline cursor indicates where
the next keystroke is to be entered.

In COMMAND MODE, your keystrokes don't immediately affect the text, but
rather are entered into the command buffer, and appear on the command line. A
single command is usually one or two characters, but commands can be strung
togather to form command strings. As soon as the command is executed, the display
shows the updated edit buffer, centered on the cursor. While in COMMAND MODE,
PMATE also recognizes instaat commands. These keystrokes are not entered into
the command buffer, but are executed immediately, affecting the text and display.
Included among the instant commands are ones to shift modes - enter COMMAND
MODE, enter OVERTYPE MODE, or enter INSERT MODE.

LINE FORMATTING

A 'line' is just a string of characters which ends with a carriage return. When
you enter a CR character, the cursor moves down to the beginning of the next lina.
PMATE also has an automatic line formatting facility, for entering and editing
textual material. When operating in this mode, text will automatically 'wrap
around' as you enter it after filling out a specified line length. Words will not be
broken up, however - the complete word will be moved down to the next line. This
line formatting is preserved, even as portions of the text are edited. When
operating in this mode, text is normally entered without any carriage returns. Any
carriage return will always indicate the end of a line. They must be used only at
the end of a paragraph, or whenever the following characters must appear on the
next line.

INSTANT COMMANDS

In any mode, instant commands are keystrokes which are not entered into the
command or text, but rather have some other immediate effect. The instant
commands and a description of their action follows. A '®' is used to indicate a
control code, so '©A' indicates the character resulting from holding down the
control key and striking 'A's This choice of control characters for the instant
commands was made either for mnemonic value, or for convenience of location. For.
instance, the 4 commands which move the cursor one position are located in the
center of the keyboard. These instant commands will be used all the time. It is
important that they should be easily accessible. If you are at all unhappy with this
assignment, it is an easy matter to change it (see the Interface Cuide). In
particular, if your keyboard has a cursor pad, or other single stroke control keys,
these may be used for the more important instant commands.

Mode Switching:

BASIC IDEAS -3

The following instant commands set the mode of the editor to INSERT,
OVERTYPE, or COMMAND.

1204 Go into COMMAND MODE.
SN Go into INSERT MODE.
eV Go into OVERTYPE MODE.

Cursor Motion:

The cursor motion instant commands zllow the cursor to be easily moved
throughout the text buffer. As the cursor is moved, the display updates in order to
keep the display centered on the cursor. The cursor is never allowed to move
outside of the text buffer.

DA Move the cursor up to the beginning of the text buffer. If it is already
at the beginning, move it to the end. So hitting this key once gets you
to the beginning, twice gets you to the end.

oG Move the cursor to the left.
- ©H Move the cursor to the right,
©B Move the cursor down one line.
oY -L .\“l_ove the cursor up one line.
U Move the cursor up six lines.
9] Move the cursor down six lines.
-5? Move the cursor to the beginning of the following word. Words are

separated by any combination of spaces, tabs, and carriage returns.

€0 Move the cursor to the beginning of the current word. if it is already
there, move the cursor to the beginning of the preceding word.

Deletion:

The deletion instant commands allow characters to be removed from the text.
The rest of the text buffer is moved down to fill in the space formerly occupied by
the deleted characters.

oD Delete the character at the cursor.

DK Delete the rest of the line, starting at the cursor.

kAW Delete the next word, starting at the cursor.

cQ Delete the word preceding the cursor.

rubout Delete the character just entered. When in command mode, this

deletes the character just entered into the command. When in insert

mode, this deletes the character just before the cursor (9D deletes the
character at the cursor). This is usually the character just entered into

-4 PMATE USER MANUAL AND INTERFACE GUIDE
the text.

Moving text:
These commands provide an easy method of copying or moving sections of text.

DT Tag the current location. This marks one end of the text to be moved.

OF Move the section of text between the tagged location and the present

location of the cursor to a special buffer, The text is deleted from the
current text buffer.

9L Insert the contents of the special buffer at the cursor location.

In other words, to move a block of text, go to the beginning of the block, type '©T’,
go to the end, type '©E'. Move the cursor to the desired destination, and type '®Z'.
In order to copy a section of text without deleting it from its original location, it is
only necessary to type '"©Z' immediately after the '"©€'. Subsequent '©Z's will then
produce copies of the text elsewhere. '

Miscellaneous:

) Edit command string. If an error is made in entering a long command
string, the command string itself can be edited. When ® is typed, the
old command buffer becomes the text buffer, and can be edited just like
text. Striking ©_ again restores the old text, and the new updated
command string is returned to the command area, ready for execution.

eC Abort. Clears the command area. If ©C is typed while a command
string is being executed, execution will be aborted at the earliest
opportunity.

oL ‘Insert a line. Inserts a new line into the text, and leaves the cursor at
the beginning of the new line. - S .o

T Tag. Tag current cursor position -~ more on this later.

oF Redr-aw display.

oS Shift default case. Case will toggle between upper and lower.
oR Restore last deleted item at cursor position.

CURSOR MOTION

The cursor control 'diamond' (consisting of ©Y,2H,©G, and ©B) behaves
differently, depending upon the PMATE configuration. In one possible mode, ®Y and
9B always leave the cursor at the beginning of a line. This is particularly useful
for editing line-oriented text, such as programs.

In another mode, ®Y will move the cursor immediately above its current
position, leaving it in the same column if possible. Since the cursor must always
stay on text, it is not possible to leave the cursor to the right of the carriage return
ending the line, or in the middle of a tab. The cursor is then positioned on the last

BASIC IDEAS ' -5

possible position to the left of the desired column.

Finally, PMATE does have the capability of being able to leave the cursor in this
‘free space' at the right of a line ending, or in the middle of a tab. When
configured in this manner, the cursor can move anywhere on the screen (except
below the very last line of text). When you attempt to enter text in 'free space’,
PMATE fills in the appropriate number of spaces, so that text appears to be entered
right where you expect -~ at the cursor.

COMMANDS

A single command consists of one, two, or three characters which are entered
into the command buffer - just type and watch them appear there. The command is
then executed by striking the 'escape' key twice. Escapes.appear on the screen as
dollar signs 'S'. In the rest of this manual, '$' will indicate an escape. Carriage
returns appear in the command line as '<', and any other control character is echoed
with a carat (). An example of a command is the character 'D', which will delete
the character at the cursor. Suppose the edit buffer contained

This is an example of some text which needs
correcting. The cursor on the scrreen is
indicated by the underline.

Then just type in the command
DsS bt -
(remember that '$' is an escape, and the two escapes are necessary to execute the
command 'D') This is what will be left on the screen:
y This is an example of some text which needs
correcting. The cursor on the screen is
= indicated by the underline.

NUMERIC ARGUMENTS

Many commands can take 'numeric arguments'. That is just a number that
precedes the command that gives additional information to PMATE. For example,
while 'D53' deletes one character from the text, '3DSS' deletes the next 3
characters. Numeric arguments can take integer values from -32768 to +32767.
They can be complex expressions, but this will be explained in greater detail later.
If an argument is missing, it is usually taken to be 1. There are exceptions, but
these will be explicitly mentioned. Typing just a minus sign '~* before a command is
usually equivalent to ~1.

COMMAND STRINGS

PMATE derives much of its real power from being able to string together a
number of commands to form a command string. Commands can be typed in

together to form command strings. 'M' is the command to move the cursor a number
of character positions. 'M55' will move the cursor over one character. the command
string 'DSMDSS' will delete one character, then move over 5 and delete that
character. As the command string is entered, it appears on the bottom of the
screen, and it is not until two consecutive escapes have been entered that any

-6 PMATE USER MANUAL AND INTERFACE GUIDE

change takes place in the text. At this time, the whole command ‘string is
executed. Single escapes can be freely inserted between commands without causing
execution. So ‘DSMDSS', 'D53MSDSS' and 'DSSMSDSS' all have the same effect.

STRING ARGCUMENTS

When certain commands are used in a command string, they require a single
escape to separate them from the following command. While numeric arguments
often precede commands, some commands are followed by 'string arguments'.
These arguments are just a string of characters which you might insert into the
text, search for, or perform some other operation. For example 'I' is the command
that inserts the string argument following it into the text buffer. Suppose the text
buffer contained:

PMATE is a very easy to use and helpful
text editing program.

Typing the command ‘Inot $3%' might help you express your true feelings, leaving
the display reading: :

PMATE is not a very easy to use and helpful
text editing program.

If we wish to enter an insert command 'lI' as part of a command string, we are
faced with the problem of how to indicate to PMATE that the string argument is
finished with, and the next command is being entered. We do this by using one
escape to separzate the string argument from the following command.

If we wish to now change 'a very easy' to 'an easy', we want to move the cursor
one position, insert an 'n' there, and then delete the next five characters. We try
'MIn50DS53', but are dismayed to find we are left with:

PMATE is not an5D_very easy to use and helpful
text editing program.

While '-=2M7D' will repair the damage, we should have commanded 'MIn$5D5$' in the
first place.

REEXECUTING COMMANDS

What happens to the command string after it has been executed? Simple -it's
still there, all ready to be used again. It still sits in the command area of the
display, followed by the two escapes which caused it to be executed. If you now
type another escape this command will be repeated. If a rubout is typed, the
second escape will be deleted, and the old command string can be modified or
extended. If any other command character is entered, the old command string will
disappear, and this new character becomes the first in a new command string.

The ability to easily repeat commands can be extremely useful. Here is one of
many situations where this facility is commonly used. 'S' is the search command.
'ShelloSs' will search through the text starting at the cursor, and leave the cursor
pointing just after the first 'hello' that it finds. The text display shows you
immediately if this is the occurence of 'hello' which you were interested in. If not,
just strike the escape key again, and PMATE will find the next one. Continue until

BASIC IDEAS

you have located the section you want.

ERROR MESSACES

Some commands and conditions will produce error messages. These messages
are usually self-explanatory. If 'Shello$5' command is executed, and 'hello' cannot
be found, then a message saying 'STRING NOT FOUND' will appear where the text
used to be. PMATE terminates execution of the command string as soon as a
command produces an error. The cursor in the command display area will point to
the command just after the offending one.

AT THIS TIME, THE ERROR MESSAGE WILL REFUSE TO GO AWAY UNTIL
YOU STRIKE EITHER "CR" OR THE SPACE BAR.

After typing one of these keys, the command still sits in the command area as if it
had finished executing. It can now be reexecuted, modified, or ignored.

BASIC COMMANDS

PMATE has enough commands to keep you busy for a long time mastering them
all. However, there are a few basic ones which you will use over, and over. They
are all that are really necessary to satisy most text editing needs. A complete
description of all commands follows later. 'n' indicates a numeric argument.

nD Delete n characters starting at the cursor. If n is missing, it is
assumed to be 1.

nK Kill n lines starting at the cursor. If nis missing, it is assumed to be 1.

I Insert the string which follows. The string ends with an escape.
'IgarbageSs' inserts 'garbage' just in front of the cursor.

S Search for the string which follows 'S'. The string ends with an
escape. The search starts at the cursor. 'SgarbageSS’ causes PMATE to
look through the text for 'garbage' and leave the cursor pointing just
after the next occurence . If the string is not found, an error message
is produced. (Remember, don't forget to hit carriage return after an
error!l)

C Change the first occurence of the first string following to the next
string following. 'CgarbageSjunkss' will search for 'garbage' and if it is
found, change it to 'junk'. If 'garbage' is not found, an error message
is given. Remember that search for garbage begins at the cursor.

==The following commands are very useful for moving blocks of text around:

nBC Copy n lines of text into a special buffer. If n is missing, it is assumed
to be 1.
nBM Move n lines of text into a special buffer. If n is missing, it is assumed

to be 1.

11-8 PMATE USER MANUAL AND INTERFACE GUIDE
BG Insert contents of special buffer into text just before cursor.

'BM' is liike 'BC' except that the lines that are copied into the special buffer are
then deleted from the text buffer. To move 5 lines of text, position the cursor at
the beginning of the lines to be moved (using the cursor control instant commands).
Then type the command '5BMSS' . The 5 lines will disappear from the text. Then
move the cursor to the place you wish the lines to be, and type 'BGSS' . This
restores the lines. The special buffer still contains those 5 lines.

TAGS

If you want to move a large block of text around, it may not be obvious how
many lines are in this block to move. There is an alternative to counting lines.
First set the cursor to the baginning of the section of interest. Use a '©T' instant
command to 'tag' that location. Now move the cursor to the end of the block. The
special symbol '#' will cause the next command to act on this whole block. So '#BC'
will copy the block, and '#K' will delete it. The block can be defined with the
tagged position at the beginning, and the cursor at the end, or vica-versa.

The '#' can be used in front of any command which takes a numeric argument
to indicate the number of lines or characters to act upon (such as 'D' or 'K').
Furthermore, even if the command normally acts upon a fixed number of lines (such
as the 'B' commands), by tagging a position, parts of a line can be moved.

THE GARBAGE STACK

When PMATE deletes text, it dumps it on a 'garbage stack'. A certain amount
. of space is reserved for this stack, and any remaining memory space not used by
text is also used for piling up garbage. If you accidentally delete a line, it is then
easy to recover with a '"®R', which 'pops' the last item off the stack, and puts it
back in the text. If you have just typed '©OKOKOK®@K', all the damage can be
recovered by typing '"©RSROROR'. It is the most recently deleted item which is
“available first, and the items long ago lost which may have gone permanently out to
pasture - if there was not enough memory space left to hold all the deleted items.
The garbage stack also provides a very easy method of moving a bit of text
around. For instance, to move a line of text, put the cursor at the beginning of
that line and type '@K'. Then move the cursor to the required destination, and type
'"OR'. Use "OW', and it is very easy to move a word or two around in a sentence.

OPERATION UNDER CPM

PMATE exists as the CPM command file, PMATE.COM , and is called by typing:

PMATE

After a few seconds, PMATE will come on the screen, in Command Mode. You can
now enter and edit text. If you wish to save your work on the disk, you need to
define an 'output file':

XFfile Create and open 'file’' for output (assuming a file by this name doesn't
already exist).

BASIC IDEAS -9

Then when your done, use one of these:
XE End edit pass by writing entire text buffer to output file, and closing it.
XK End edit pass without writing anything on the disk.

Both of these commands wipe out what's in your text buffer. The first saves it on
the disk, but watch out for 'XK'! To get back to CP/M, it is necessary to use:

XH Go 'Home' to CP/M. To prevent you from inadvertently exiting without
writing desirable text to the disk, this command will give an error
message if there are files open. You must take care of them with an
'XK' or "XE' first.

PMATE can be used to modify an already existing file. Now you will need an 'input’
file. Again use:

XFfile Edit *file' (this time, assume 'file' already exists). 'file' is opened for
input, and the text is read in.

You may now modify the text, and again finish up with an 'XE' or an 'XK'. An 'XK'
will leave the original file intact - none of your changes will appear in it. An 'XE',
however, will effectively update the input file to include the changes you have
made. A copy of the input file before modification is retained under the same
filename wtth the extension '.BAK' (any old backup of the same file is deleted).

If you call PMATE from CPM by typing
PMATE file

'file' is opened as the input or output file just as if you used an 'XF' command. If a
file is large, it is often easier to break it into pieces. (This is necessary if the file
is larger than available memory.) These pieces are called 'pages'. More details on
this are given later: =

GO TO IT

At this point, you know enough to utilize PMATE very effectively. Use the
above commands, the instant commands (particularly the cursor motion keys), and
Insert Mode and you'll quickly find yourself confidently entering and modifying
programs or other text. It is important to get experience with these commands
before attempting to learn the complete command set. Remember about
reexecution of commands, and don't forget to try building some command strings.

Chapter 111
MORE CONCEPTS

SIGNED NUMERIC ARGCUMENTS

Up until now, we have assumed that all numeric arguments are positive
integers. They can in fact be much more complex expressions. For now, we will
just extend them to include negative numbers. What would '-3D' do, for instance?
Rather than start at the cursor, and delete characters forward from there,
commands with a negative argument work backwards through the text. '-3D' will
deiete the three characters just preceding the cursor (leaving the cursor pointing at
the same character it used to be). Similarly, '=2K" will delete 2 lines preceding the
cursor. '=§' will search backwards through the text, from the cursor, until it finds
the string which follows the 'S'.

LINE ORIENTED COMMANDS

A number of commands, such as 'K', are 'Line-Oriented'. They all behave
similarly to 'L', the command to move the cursor a specified number of lines. What
happens when 'L' has a numeric argument that is less than or equal to 07 The
easiest way to see is by trying it, but here is an example. Suppose the text buffer
contains: :

— This is line a

o This is line b
" Quess ghich line this is?
This is line d

The command ‘L', or "1L' would leave the cursor:

This is line 2

. Thisis line b
Guess which line this is?
This is line d

~ The command '0L" would have left the cursor:
This is line a
This is line b
Cuess which line this is?
This is line d

The command '-2L' would have left the cursor:

This is line a

This is line b
Guess which line this is?
This is line d

Other line-oriented commands with nurneric argument 'n" affect the text
between the cursor, and the place the cursor would be placed if an 'nl' were
executed. So the command '~K' or '=1K' would have left:

=2 PMATE USER MANUAL AND INTERFACE GUIDE
This is line a

ghich line this is?
This is line d

TEXT FORMATTING

Editing textual material presents very different problems than editing programs.
Suppose you want to use PMATE to write a user's manual for a text editor program
you have written. You write the following paragraph:

Editing textual material presents very different problems
than editing programs. You write the following paragraph:

Soon you decide that this doesn't make sense. A sentence is missing. You need to
be able to add this sentence, and still keep the right number of words on a line. As
you add words between 'prograrns.’ and 'You', first 'paragraph’, and then 'following’',
and so on need to wrap around to the next line. PMATE automatically takes care of
this line formatting when in 'FORMAT MODE'.

To enter FORMAT MODE, use the command 'F'. Repeating the command 'F' will
restore PMATE to normal. In FORMAT MODE, lines end not only on a carriage
return, but also on the last possible 'space' which would keep the line from
exceeding the allowed length., Words are never broken up. So the rule is to enter
text without any carriage returns. PMATE will take care of the line length for you.
Always use a carriage return at the end of a paragraph, or any other place where it
is necessary to always begin a new line. Remember - if you put 2 CR at the end of
~ a line because it looks like you are about to run off the screen, and then later you
delete a few words from that line, the carriage return is still there, now stuck in
. the middle of the line. Moral - let PMATE divide your lines.

PMATE always keeps the screen up to date and properly formatted. You may
actually find this annoying while entering text in the middle of a paragraph -for as
you type, the margination.can change with most every keystroke, producing a
display which jumps around quite a bit. If this bothers you, a control-L instant
command will insert a CR, effectively stabilizing things by putting you at the end of
~a paragraph. As soon as you are finished with the addition, type control-D to
delete that excess CR. }

You can have fun by changing the maximum number of characters allowed in a
line. Use the 'F' command with a numeric argument. '30F' enters FORMAT MODE
and sets the maximum line length to 30. Initially, the maximum line length is set to
the number of characters in a line of the display. One reason you may wish to
change it is to accomodate a printer.

It is very useful to be able to indent sections of text. One approach might be
to precede each line with one or more tab characters. The problem with this is
that the tab character is now fixed between two specific words. As words are
deleted or inserted, these words slide around to different locations on the screen,
playing havoc with your margins. For this reason, when in FORMAT MODE, PMATE
is able to interpret the tab as a margin indent character. If an indent has been set
to the same column as the tab stop, preceding an indented section with a tab will
cause each succeeding line to indent to the same point, until a CR character is
reached. An indent can be set using a 'YI' command. For example, '8Y|’ sets an
indent at column 8, the first tab stop. So the tab (to column 8) following 'nYI’
below causes the rest of the paragraph to be indented. This feature is used

MORE CONCEPTS ie=3

throughout this manual

nYl Set an indent at column 'n'. Any tab to column 'n' will result in causing
the remainder of the paragraph to be indented, until a carriage return is
reached.

When operating in this manner, be sure not to use a tab to indent the first word
beginning a paragraph, for it will indent the whole paragraph instead -type in the
five spaces.

For some applications, you may wish to change the left and right margins for
only a particular section of text. For instance, you may wish to move the left
margin over 40 spaces to accomodate a picture. PMATE allows margin and tab
information to be entered in a special non-printing control line. This control line
begins with a ©F (F for Format), and ends in a CR. The complete set of possible
entries is given later, but for example:

©FL20;R60

will change the left margin to 20 and the right to 60 from that point in the text
onwards. These margins will be reflected in the text display. You might find it
hard to enter that ©F in text, as this is defined as an instant command. See the
section below on how to enter an arbitrary control character into the text. After
altering a format line, a '©F' instant command tells PMATE to recompute its
formatting, and bring everything up to date.

When in FORMAT MODE, it is very important to be able to easily see which lines
end in carriage returns. In this mode, the carriage return character is actually
displayed on the screen. The actual ‘character’ displayed depends upon the
implementation, with '<' being a typical choice.

One final thought: FORMAT MODE can be very useful when writing programs
too. If the language you are using supports a start and stop comment command, so
that comments don't automatically end with.a line (as does the PSA Macro
Assembler, the language 'C', PASCAL and others), using PMATE in FORMAT MODE
allows your programs to read like a book, with extensive, easily modified,
comments. Of course, program lines must all be terminated with CR's, but
comments can wrap around as much as desired.

UPPER AND LOWER CASE

If your keyboard is upper case only, it is still possible to generate upper and
lower case characters. One character is chosen to be the 'case shift' character
(usually a '/', but you can change this with a 'Q' command). When that character is
typed, it is ignored. The next character to be entered is shifted in case. If it is
necessary to enter the shift character itself, just type it twice. The whole
keyboard can be toggled back and forth between upper and lower case by the '9S'
(shift) instant command. After striking '©S' once, all following characters will be
entered as lower case, unless they are shifted up by the shift character. '©S' again
returns things so that characters are entered as upper case unless shifted. Some
keyboards have both upper and lower case, but lower case can only be abtained by
using the shift key. '©S' can also be used to make this keyboard look like a normal
typewriter. On some keyboards, the shift-lock key also shifts the numeric keys

1n1-4 PMATE USER MANUAL AND INTERFACE GUIDE

ike a typewriter). This can be extremely inconvenient if it is necessary to enter
upper case only programs. In this case too, '9S' can be used instead of shift-lock
to shift only the alphabetic keys.

CONTROL CHARACTERS

Since control characters are used as instant commands, it might seem difficult
to actually enter a control character into the text. You can do this using a *control
shift' character. This character is usually '~ ', but it too can be changed using a
'Q' command. \hen you strike this shift character, nothing happens. The next
character to be entered is shifted to the equivalent control character. So to enter
a control=F, strike first ‘A ', and then 'F'.

SOME OF ALL YOU EVER WANTED TO KNOW ABOUT INPUT FILES, OUTPUT
FILES, AND PACES

PMATE (as well as most any other text editor) needs the answer to two
questions before it can do any editing. 'Where do | find the stuff to edit 22, and
"Where should | put it when I'm done ??' Running under CPM, these questions are
answered when you first call the editor.

PMATE GARBAGIN GARBAGOU

is the CPM command to start editing the file GARBAGIN. it is opened as the 'input
file'. Changes and additions are made, and the result is left in the file CARBACQOU
- the 'output file' ;

:: Often the input file is too big to be handled in one big chunk ~--it might not
even all fit into memory at one time. So, we break it into 'pages' -managable
pieces which we can read one or two at a time from the output file, and write a
few at a time to the output file. Don't worry for now about how big a page is.
Just worry about how to turn them. You've already seen 'XA'. This is just the
command to read in the next page, appending it to the text buffer. 'XA' can even
take a numeric argument - the number of pages to read in. 'SXA' will append 5
pages. 'nXW' is the command that writes out 'n' pages from the beginning of the
text to the ocutput file. All the text that is written out is also removed from the
buffer - to modify it further, you must make a complete ‘pass', and start editing
again. 'nXR' is a very useful command. It is equivalent to 'nXAnXR'. '"2XR' will
'replace’ 2 pages in the text buffer by writing two pages from the beginning of the
buffer to the output file, and then reading in two more from the input file. The 'all
done' command, 'XE' first writes the text buffer to the output file, then reads in the
rest of the input file, and writes it to the output file.

The size of a page is a fixed number of lines. This number can be set to 'n' by
the 'nQP' command. '75QP' will set the page size to 75 lines, so that the command
3XA" will append 225 lines, and 'XW' will write 75 lines. Pages can be ended
prematurely by a form feed character (®L). If the page size is set to 0 ("0QP'),
form feeds are the only method of separating pages.

As you are entering text, if you find *memory space exhausted®, do an XW to
write out some of the text at the beginning of the buffer. XA will bring in more
text from the disk to edit. If you need to start a new pass, 'X]* writes all text out
to the output file, and then reopens that for input, and you are ready to start
editing at the beginning of the file. '

MORE CONCEPTS 11-5

Those two numbers separated by a comma in the status line at the top of the
screen are just the input page number and the output page number. You should also
see the name of your input file and your output file sitting up in that same line. At
the beginning of the line, the letter followed by a colon is just the currently logged
in disk drive.

XE does not return you to CPM - you are still in PMATE. You may return to
CPM with an 'XH' command, or open some new input and output files using the 'XF'
command. Just follow 'XF' with the same filenames you would follow PMATE with
in the original command line, then hit two escapes.

'XFCARBAGIN GARBAGOUSS' will open the same files as above.

Often, an editing operation is performed to update a file. When you are cdone,
you really want the new output file to have the same name the old input one did.
One possibility would be to delete the old input file when you are done, and then
rename the output file to the same name the old input one had. PMATE will do this
for you automatically if you only specify one filename in the command line, or in an
'XF' command. This file is operied as the input file, and an output file is opened
with the same name, but an extension '$55'. 'XE' will then output everything to the
output file as usual. The old input file will be renamed to have the extension 'BAK'
(a backup - any old backup is deleted), and the output file will then be renamed to
the original input. For example:

PMATE JUNK.ASM

will open "JUNK.ASM' as the input file, and 'JUNK.$55' as the output file. "XE' will
then rename 'JUNK.ASM' to 'JUNK.BAK', and then rename 'JUNK.55%' to
"JUNK.ASM'.

In the PMATE command lire, or in an XF command, either the input file or the
output file can be preceded by a drive specifier ('A:','B:','C:', etc.) to indicate
which disk to find the file on. If there is no specifier, the currently logged-on disk
" is always referred to.

If the logged-in disk is 'A', 'PMATE B:CARBAGIN GARBAGOU' will look for
input file 'CARBAGIN' on disk 'B', and output file 'CARBAGCOU" on disk 'A'.

DIRECTORY MAINTENANCE

PMATE allows you to perform CPM directory lists and file deletes. One of many
occasions this comes in handy is if you get a “disk full' message upon trying to
write a file to disk. You can then list your directory, delete unwanted files, and
again attempt to write the file you are now working on out to disk.

The command to list the entire current file directory is XL. The directory is
actually entered in the text buffer, at the cursor location. This can be very useful,
because now it is possible to edit this information just like any other text, and scroll
through large listings. It can also be very inconvenient, because the directory may
appear right in the middle of your working text. In this case, it can always be
deleted. An alternative is to edit in another buffer (see below), or to use the '® '
instant command to edit the command string (then do the XL -- one further '© '
and the directory listing becomes the latest command, easily killed with a '©C").

Partial directory listings can be obtained by following 'XL' with a file name. As
in the CCP 'DIR' command, the file name can have 1's and *'s.

'XLJUNK' will insert 'JUNK"' at the cursor if file 'JUNK' exists, otherwise it will do
nothing.

I1-6 PMATE USER MANUAL AND INTERFACE GUIDE
'XL*.COM' will insert the names of all files with extension "COM' at the cursor.

Files can be deleted with the 'XX' command. 'XXfile' deletes 'file' from the
disk. The file name cannot contain the ambiguous characters '2* or '*'. DO NOT
DELETE THE CURRENTLY DEFINED INPUT OR OUTPUT FILES.

It is possible to switch the currently logged in disk drive. This is done with the
XS command. 'XSA' selects drive 'A’, and 'XSC' selects drive 'C'.

ITERATION

It is often very useful to be able to repeat a command or a command string a
whole lot of times. The iteration brackets (“[" and *]") allow us to easily do that.
This command string

5[1good morning!
5]

produces this text display:

good morning!
good morning!
good morningl
good morning!
good morning!

'3[K]" will produce the same result as '3K'. Beware! What will 3{Ihello] do?

.. Iteration brackets can be 'nested'. Make sure you have the same number of left
and right iteration brackets. The command

100{40([1*S]!
5)

will fill up your text buffer with 100 lines of 40 stars each.

If there is no numeric argument in front of the iteration brackets, the operation
will be repeated forever (that is, about 65,000 times) or until some sort of error
occurs. '[1*S]" will fill up all available memory with stars, and then complain that
it has no more memory left. '[K]' will start killing off lines, and continue until it
has none left to kill. '[CgoodSbadsj' will change all occurences of 'good' (after the
cursor) to 'bad'.

OTHER BUFFERS

PMATE actually has 11 different buffers into which text can be entered (as well
as 2 buffers for command strings). These buffers are not of fixed size, any of them
can expand to grab all the remaining available space. If you delete text from one
buffer, this space is now available to any of the others.

MORE CONCEPTS =7

Usually, you will be editing in the 'T' buffer. ('T' stands for 'text'). The 10
other buffers are labeled 0-9. Actually, you already know about the '0' buffer - all
the special buffer commands, like 'BC' and 'BG' copy to and from buffer 0. Those
commands could have also been written 'BOC' and 'BOG' (for instance, 'B3C' will
copy to buffer 3). To start editing a buffer other than the 'T' buffer, type ‘BnE'
(buffer n edit), where nis '0'-'9' or 'T'. 'B3E' gets you to buffer 3, and then 'BTE’
gets you back again. The buffers other than the 'T' buffer are useful mainly for
storing blocks of text that need moving around, and for storing whole command
strings, or 'macros’.

MACROS

A macro is like a subroutine. If you have written a command string that
performs a function you will use a number of times, you can put that command
string in buffer 'n'. Any time you wish, you may execute it with the command
'.n'. There are several possible methods to put this command string into a buffer.
The most straight-forward is just to start editing in this buffer using the 'BnE'
command, and then to go into Insert Mode and enter the command right into the
buffer. (What would happen if you tried to enter a command string, complete with
escapes, into the buffer by using an 'l' command?)

Just as subroutines can be nested, macros can in turn call other macros. Just
as it is often necessary to pass arguments to a subroutine, macros too can require
passed string arguments. You may find you wish to use some macros over and over
again. These can easily be incorporated as a permanent part of PMATE. These
'permanent macros' are executed by the command '.x' where 'x' is any character
except for the digits 0-9. ('.1' will execute buffer 1, not a permanent macro.)
You will learn later how to pass arguments to macros and how to create your own
permanent macros.

ERROR TRACEBACK

Sometimes, errors will occur while executing a macro. The usual error message
will appear in the text area of the screen. Down in the command area, the macro
- string which caused the error will be displayed, with the cursor pointing to the
command character just past the offending one. The status line up top tells which
buffer (or which permanent macro) was being executed at the time of the error.
Now you have a choice of either hitting a CR or the space bar. A carriage return
behaves as usual -- you're all ready to enter the next string. Striking the space bar
'‘pops a level'. It allows you to view the command string which ‘'called' the
troublesome macro. As long as this command string is itself a macro, you may
continue hitting the space bar, and popping levels. Once this command string is just
the original one entered into the command buffer, the space bar and CR keys have
the same effect. If a macro is called from several places in a command string, this
error traceback allows you to find out exactly where the trouble occured.

AUXILLIARY FILE 1/0

At any time, PMATE allows you to output sections of your current edit buffer to
the disk, or to input disk files into this buffer. This can occur while input and
outpput files are defined, and will not upset them. ‘XIfile' will input all of *file' (if

[11-8 PMATE USER MANUAL AND INTERFACE GUIDE

there is enough room in memory), and place it just before the cursor. ‘nXlIfile’ will
read in 'n' pages from 'file'. More pages can subsequently be read in by 'nXI' (if no
file name is specified, input continues from the last named auxilliary input file).

'nXOfile’ outputs the next 'n' lines of text (after the cursor) to *file'. If there
is no numeric argument ‘n’, the entire text buffer is output.

The many uses of these commands include merging sections of files (even if
larger than available memory), loading macros into buffers to be executed, and
using the disk for scratch storage as you might the special buffers.

THE CLONING OF PMATE

You probably have noticed that PMATE has a number of 'parameters’ which can
easily be changed {usualiy with an appropriate 'Q' command). On rare ocassions
(usually), your favorite parameters will differ from mine. If you like a page size of
100 lines, you can give the command '"100QP' every time you begin editing, or you
can create yourself a customized verion of PMATE. Here's how:

First execute PMATE with no input or output files. Now make any desired changes
(use the appropriate commands, create some permanent macros, or even - carefully
please - get in there with your system monitor, and really start hacking away).
Now give the command 'XDfile' ('D' for Duplicate) -where ‘file' is the name of your
new customized version of PMATE (the .COM extension is added automatically).
Name it PMATET or PMATE2 or anything you like (please -only nice names). Use
'XH' to return to the CCP, and then verify the new version. If you are happy with
it, you can erase the original PMATE.COM, and rename your new one to that - or
keep several versions around for different purposes.

GET SOME HARD COCPY

PMATE has a facility to cutput text to a printer. The command 'XT' will
outpit the entire current edit buffer to the listing device. If there is a numeric
argument, 'nXT' will print 'n' lines of text, starting at the cursor. Use this feature
- in order to print out just the changes you have made to your long files. When you
~ are feeling ambitious, you can write macros to output text in almost any format you
would want. For instance, you might have page numbers, titles, and even an index
added to the text output.

Chapter IV
COMPLETE COMMAND SET

.

NUMERIC ARCUMENTS AND VARIABLES

Numeric arguments are integers. Usually they are signed numbers between -
32,768 and 32,767. Sometimes they are considered as unsigned numbers from 0 to
65,535. However, numeric arguments can be more than just decimal numbers. They
can be complex expressions consisting of numbers, variables, arithmetic and logical
operations, and parenthesis. Operations are performed from left to right. Any
operator precedence must be determined by parenthesis. So 5+3*2 has the value
16 and 5+(3*2) has the value 11. There can be up to 15 levels of parenthesis in
an expression. -

Numbers in command strings are usually interpreted as decimal numbers (base
10). However, the base, or 'current input radix' can be changed (see the 'Q’
commands). So '10DSS' usually deletes 10 characters, but if the input radix is 8
(octal), it will delete only 8 characters.

There are very few times when a radix other than decimal is useful, but if the
radix is greater than 10, several rules must be observed. For instance, in hex,
PMATE must know if 'D' is the hex digit 'D' or if it is the command to delete a
character. The rule followed is that any number must begin with a digit from 0-9;
then each succeeding character is interpreted as a digit if that is at all possible.
For example, if the input radix is hex 'DDK' is interpreted to mean to delete two
characters and then kill a line. 'ODDK' however, would kill 221 lines (the value of
'DD" in hex). If it is necessary to terminate a hex number, an escape can be used.
'0DSDK' will delete 13 characters and then kill a line. '2SD' will delete two
characters, while 2D will be interpreted as 45 (decimal).

Numeric arguments can be displayed on the status line. Typing just a numeric
argument, followed by 2 escapes will display the value of that argument in the
current output radix (decimal by default) after the words "ARG=". In this way,
the editor can be used to do integer arithmetic. By making the output radix
different than the input radix, number conversions (such as hex to decimal) can be
performed.
Arithmetic operations:)

The following are valid arithmetic operations within a numeric

argument.
+ Addition.
- Subtraction or negation. =(3+4) is a valid expression.
. Multiplication.
/ Division. Integer division, leaving just the quotient. The remainder of

the last division performed is available as '@R' (see the '@' numeric
arguments below).

Logical operations:

Logical operations leave the value -1 if true, and 0 if false. The following are
valid logical operations within a numeric argument. In the expression '3=5', '3' will
be referred to as the first operand, and '5' will be referred to as the second
operand.

Equal--true if the first and second cperand are equal.
Less than-~true if the first operand is less than the second.
Greater than-~true if the first operand is greater than the second.

AV VAN |

1v=2 PMATE USER MANUAL AND INTERFACE GUIDE

& And--true if both operands are true.
! QOr--true if either operand is true.
Logical complement

Examples:
3<2 has the value 0.
3<2' has the value -1
243 has the value =1
2<31(5=2) has the value -1
2<3&(5=2) has the value 0
5+3=(1+7) has the value -1
5+3=(1+7)" has the value O

Variables and the Number Stack:

There are ten numeric variables (labeled 0-9) available for use. These
variables can be set using the 'V' command (see below). They can be used as part
of a numeric argument using an '@' argument. In addition, there is a Number Stack
available. Any numeric argument can be 'pushed’ on this stack (see ',' below), and
'popped off' later (see '@S'). The stack will hold up to 20 entrres during the
execution of a command, but is cleared upon completion.

Some of the variables used internally in the editor are also available for use in
numeric arguments. The complete list of ‘@' arguments follows.

@i The value of variable 'i', where 'i"' is a digit from 0-9.
aA The numeric argument preceding the last macro call.
acC The current character number. This is the number of characters from

the beginning of the text buffer to the character at the cursor. when
the cursor is at the beginning of the buffer, this has the value 0.

3tk The value of the error flag.

@Ffiles Returns =1 if 'file' exists on the current directory, 0 if it doesn't.

eG The length of the string argument just referenced (by an '1','S’, or 'C’
.command).

@HstrngS Compares 'strng' to the characters at the cursor in the current text
buffer. Returns 0 if they match, otherwise 1 or -1, depending upon
which is 'greater'. Wildcards (as in 'S' command) are acceptable in the
command string.

al The number of the current input page.
akK The ASCII value of the key struck after an 'A' command.
al The current line number. if the cursor is within the first line, this is 0.
aM The amount (in bytes) of working memory space remaining.
a0 The number of the current output page.
aP The absolute memory address to which the cursor is pointing.
aRr The remainder of the last division performed. ’
as The value of the top of the number stack. The number stack is popped.
aT The ASCII value of the character pointed to by the cursor.
Vv The current mode == 0 for Command, 1 for Insert, 2 for Overtype.
aw The current right hand margin.
ax The current column that the cursor is in.
QY The current left hand margin.
ar The column of the next tab stop.
- ea The value of the byte in memory pointed to by variable 9.
"X The ASCII value of the character x, where x is any character.

Block operations:

COMPLETE COMMAND SET Iv-3

Commands which take a numeric argument to indicate the number of characters
or lines can also be used to act upon a defined 'block'.

T Tag the current cursor position as beginning of block. (Equivalent to
'@T"' instant command.)
= Move the cursor to the tagged position, and use the difference between

the old cursor and the tagged position as the numeric argument.

If you wish to type out a large block of text, move the cursor to the beginning of
the block, use 'T55' or 'O©T' to tag that position, then move the cursor to the end of
the block and print out your text with "#XT'. '#' is also very useful with delete
commands, and with buffer ccommands.

VARIABLE AND NUMBER STACK COMMANDS

nVi Set variable i (i is a digit from 0-9) to the value of numeric argument

n. So '@C+3V2' sets variable 2 to 3 more than the current character
position.
nVAI Add the value of numeric argument n to variable i. If n is missing it

has the default value of 1, so variable i is incremented. ‘3VAS' adds 3
to variable 5.
n, Push numeric argument n on the number stack .

THE ERROR FLAG

Certain commands can produce 'non-fatal' error conditions. For example, if
the cursor is already a2t the end of the text buffer, an '"M' command cannot move the
cursor any further. The command string execution will not be interrupted to give
an error message. However, it is possible to determine that an error condition
existed by looking at the 'error flag'. This error flag is set to -1 to indicate an
error cendition following certain commands (these commands will be specified
later). In addition, it is possible to suppress some 'fatal errors', such as would
- occur if a string cannot be found during a search command. If these error messages
_are suppressed, the error flag will indicate whether an error has occurred.

GE Gets the value of the error flag. The error flag is reset before

' executing a command string, and every time it is tested by '@E'. It is
also reset when beginning an iteration.

Eoitn Set the error suppress flag. This flag is reset before executing a

command string, and by every command which might test it.

MODE AND FORMAT COMMANDS

nN Change modes. If n=0, remain in COMMAND MODE. If n=2, go into
OVERTYPE MODE. For any other 'n', or 'n' missing, go into INSERT
MODE. This is similar to the instant commands '©N' or '©V', except
that when '©X' returns to command mode, execution of the original
command can continue.

PMATE has an automatic 'word-wrap' feature, active when in 'FORMAT MODE’.
line will then end on the last complete word which fits within the allowed line

V-4 PMATE USER MANUAL AND INTERFACE GUIDE

length. A carriage return is entered only to indicate that the next word must begin
on a new line (end of paragraph).

nF Enter FORMAT MODE. The line length is set to n'
F Toggle in and out of FORMAT MODE. Go into FORMAT MODE if you're

not there already, and leave it if you are.

CURSOR MOTION COMMANDS

The following commands move the cursor. While the cursor can also be moved
using instant commands, the construction of powerful command strings requires
cursor rnotion Command C!lc‘lfa{:tCTS-

+/=-nM Move the cursor n characters. If n is positive, the cursor is moved
: forward. If nis negative, the cursor is moved backward. If nis 0, no
action is taken.

+/-nL Move the cursor n lines. Consider the following example:

line a
line b
line c
line d
line e

_ Suppose the cursor is on the 'e' in 'line ¢'. “IL' or 'L' will move the
cursor to the beginning of line d. '2L' will move it to the beginning of
line e. 'OL' moves to the beginning of the current line, line c. '~L' or '~
1L" move the cursor to the beginning of line b, while '-2L' moves it to
“line a. :

+/-nP Move the cursor n p'aragraphs. When not in FORMAT MODE, this
behaves just like 'L'. When in FORMAT MODE, it seeks only the CR
which forces the next word to begin on a new line.

+/=n\Y Move the cursor n words. Words are separated by any combination of
- any number of spaces, tabs, and carriage returns. OW moves to the
beginning of the current word. If n is negative, the cursor is moved to
the beginning of the nth preceding word. If n is positive, the cursor is

moved to the beginning of the nth following word.

If in the execution of an 'M','L','P', or 'W' command, the cursor would
be moved past the end of the edit buffer, it is placed at the end, and
the error flag is set. Similarly, if the cursor would be moved before the
beginning of the edit buffer, it is placed at the beginning, and the error
flag is set. The value of the error flag is obtainable by the numeric
argument @E. It is -1 (true) when set, 0 (false) when clear.

A Move the cursor to the beginning of the current text buffer.
2 Move the cursor to the end of the current text buffer.

COMPLETE COMMAND SET

DELETION COMMANDS

+/=-nD

+/-nkK

INSERTION

Delete n characters starting at the cursor. If n is positive, characters
are deleted beginning with the one pointed to by the cursor, and
proceeding towards the end of the current text buffer. If n is 0, no
action takes place. If n is negative, the first character to be deleted is
the one just before the cursor. Characters aree then deleted
proceeding towards the beginning of the text.

Kill n lines starting at the cursor. 'Lines' are defined as in the 'L'
command. So 'K' deletes all characters starting at the cursor, up to
and including the cr at the end of the line. '2K' will delete this and the
next line too. 'OK' deletes characters starting just before the cursor
and proceeding back through the text until, but not including, the cr at
the end of the preceding line. '-1K' deletes this much, and the line
before also. 'OKK', for example, will delete the line which contains the
cursor, no matter where within the line the cursor is.

COMMANDS

ni

'\

nR

Insert the string which follows into the text immediately before the
cursor. 'Istring3®' would insert 'string'.

If 'I' bas a numeric argument, the character represented by that ASCII
value is inserted into the text. If the input radix is decimal, '651" will
insert 'A’'. Using this command, any character at all can be inserted
into the texr.

Insert the ASCII string representing the value of argument n in the
current output radix. The string is inserted immediately before the
cursor. If variable 0 has the value 23, '@0Nl $@0+3\' will insert '23
26' into the text. .

If any of these text insertions would fill uh the available memory space
(leaving 30 bytes free for more commands), the error message '"MEMORY
SPACE EXHAUSTED' is given, and the text is not inserted.

Replace the text immediately following the cursor with the string which
follows. No text is moved around. The new characters just overwrite
what used to be there. If the cursor is near the end of the text buffer,
and there are not enough characters to replace, an error message is
given, and the substitution is not performed.

When 'R' has a numeric argument, the character represented by that
ASCII value replaces the character already at the cursor position.

V-6 PMATE USER MANUAL AND INTERFACE GUIDE

STRING SEARCH COMMANDS

+nS Search forward, starting at the cursor, for an occurence of the string
which follows. If n is present, search only through the next n lines
(defined as in the 'L' command). If n is missing, continue the search
until the end of the edit buffer is reached. The cursor is left
positioned just after the located string.

-nS Search backward, starting just before the cursor, for an occurence of
the string which follows. If n is present, search only through the
preceding n lines (defined as in the 'L' command). If n is missing (i.e.
'-Sstring') continue the search back to the beginning of the edit buffer.
The cursor is left positioned on the first character of the located
string. .

If the string is not found, normally an error message is given. However, in some
instances it is important to be able to continue execution of a command string after
all occurences of the string have been found. No error message will be given, and
command execution will continue, if the "Error Message Suppress Flag® is set. This
flag is set by the 'E' command, and is reset upon the completion of every search. If
this flag is set, and an error does occur, the *Error Flag® will be set. The value of
the error flag is given by "@E's It is =1 (true) when set, O (false) when clear.

Upper case characters in the search string will match only upper case characters in
the text. Lower case characters will match either upper or lower case in text.
(To match only lower case, see 9L wildcard below). '

The following 'wildcards' can be used in the search string to match any of several
specified characters.

SN Match anything but the character following. ‘'SMA®NTES' will find
'MALE' or ‘"MADE' but not 'PMATE'.

OF Match any character. 'MA®EE' will match "MALE', 'MADE', and
'PMATE'. :

oL Take next character literally. This allows an actual wildcard character

to be searched for. 'SMA®LOEE' matches neither 'MALE' nor 'MADE',
but only 'MA®EE',

s Matches either a space or a tab.
oW Matches any word terminator (any character other than a letter or a
number).

STRING CHANGE COMMANDS

nC Search forward or backward for the string which follows as in 'nS'
(wildcards are allowed). Change the located string to the second
following string. 'Cstring1Sstring2$' locates the first occurence of
'string1' and replaces it by 'string2'. If the string cannot be located,
errors arc treated as for 'S'. In particular, error messages can be
suppressed.

COMPLETE COMMAND SET v

7

SETTING TAB STOPS

By default, tab stops are set every 8 spaces, but this assignment can easily be
modified. A maximum of 10 tab stops can be defined.

YK Kill all tab stops. A tab is now equivalent to a space.

nYS Set a tab stop at column 'n'.

nYD Delete the tab stop at column 'n' (if there is one).

nYE Kill all old tab stops, and set new ones at every ‘n'th column. ‘'8YE'

restores the conventional settings.

nYl Set the default indent to column 'n'. If 'n' is 0, no indent is used. See
the next section for use of indents.

3

For example, 'YK10YS30YS' would set up tab stops at columns 10 and 30. This
setting might be useful for assembly language programming with labels in the first
column, then instructions, and then comments. You could then save a version of
PMATE permanently containing these tab settings (see 'XD' command).

The following commands make it easy to change tab settings without altering the

current position of the text.

nYF For the next 'n' lines, beginning at the cursor, replace all tabs with the
appropriate number of spaces.

nYR " For the next 'n' lines, beginning at the cursor, replace blocks of spaces
by tabs wherever possible.

IN-LINE TEXT FORMATTING

When in FORMAT MODE, it is possible to set tab stops and left and right margins
in non-printing control lines embedded directly in the text. This is necessary when
these parameters must change within the text. Even if not, it is still useful to put
this format information on the first line of the text file so you do not need to
remember which margins and tab stops you used the last time you edited this file.
PMATE will recognize up to 30 embeddad formats in memory at one time.

These control lines must begin with a '"©F' and end in a carriage return. Any
such line is not printed by the XT command so that any unprintable language can be
entered here. Certain letters are recognized as 'commands', and must often be
followed by a number. These commands can be strung together when separated by
a semicolon.

Ln Set the left margin to column 'n'.
Rn Set the right margin to column 'n'.
K Kill all tab stops.

n Set a tab stop at column 'n'.

V-8 PMATE USER MANUAL AND INTERFACE GUIDE

Dn Delete the tab stop at column 'n'.
En Kill old tab stops, and set new ones at every 'n'th column.
In Set an indent to column 'n'. If 'n' is also a tab stop, tabbing to this

column will cause all subsequent text to indent to this column until a
CR is reached. For instance, the "©F18' line at the beginning of this
document causes the tab after the 'In' to indent this entire paragraph

The line:
9FL5;R30;E10

sets the left margin to column 5, the right to column 50, and sets a tab stop at
every 10th column.

Any margin or tab stop information not specified in the format line reverts to
the default. That is O for the left margin; the right margin default is set by the 'F'
command; and the tab stop defaults by the 'Y' commands.

FLOW CONTROL COMMANDS

Conditional branching and iteration within commands make possible the
construction of command strings equivalent to small text editing programs.

Iteration is accomplished as follows:

nf...mj

'. . ' represents any command string. This command string will be executed n
times. If n is missing, it will be iterated 64K times. If n is 0, the command string
in brackets will be skipped over. |If n is -1, the command string will be executed
once. Thus, if iteration brackets are preceded by a logical expression, the enclosed
command string will be executed once if the expression is true, and skipped over if
“the expression is false. m is an optional numeric argument. If it is present,
iteration of the loop will end prematurely if m becomes non-zero (true). If m is
missing, its value is that of the error flag. That is, the iteration of the loop will be
terminated if the error flag has been set.

'5[(D]" has the same effect as '5D'.

'5VO(D-VAG20=0]" also has the same effect as 'SD'. '5VO0' initializes variable 0.
Within the iteration brackets, -VAO decrements variable 0. the iteration will
continue until the final numeric argument is true, when variable 0 is 0.

'[ChelloSgoodbyes)' changes all occurences of 'hello' to 'goodbye'.

'(ChelloSgoodbye]' changes the first occurence of ‘hello' to ‘'goodbye]'
(remember, all string arguments must be terminated by an escape).

Iterations can be nested to a maximum depth of 15.

| | Execute the expression in brackets if logical expression 'l'is true. Skip
past matching bracket if it is false,

e 1 |

COMPLETE COMMAND SET Iv-9

Execute instructions within first set of brackets if logical expression 'I’
is true; otherwise execute instructions within second set.

Further control of these iteration and if-then loops is offered by the 'next' and
'break' commands which are only meaningful within matching iteration brackets.

n~ Next =-- if 'n' is non-zero (true) or missing, proceed to the next
iteration
n Break -- if 'n' is non-zero (true) or missing, exit immediately from the

enclosing iteration brackets.

As with other command characters, either upper or lower case brackets ({ } or [])
can be used for iteration. However, the above 'break' and 'next' commands do
distinguish case. They skip right past '}' to the next ']'. Typically, put if-then-
else constructions in upper case ({ }) so that any 'break' or 'next' command within
will exit the desired iteration loop (not just the ‘if' clause).

Conditional and unconditional branching within a command string is permitted.
The proper point to branch to is designated by a label. A label is any character,
preceded by a ':'. ':A' and ":#' are examples of valid labels. The branch command

- is:

Nk If n is missing or non-zero (true), transfer control to the command
immediately following the referenced label. If n is 0, proceed with
normal command execution. '@M>100JLST10K:L' will kill 10 lines if
there aren't more than 100 bytes of memory left. ‘'JLS1000K:L' does
nothing.

Be sure never to jump in or out of an iteration loop. this will lead to
very erratic results.

Finally, it is possible to exit at any point from an entire macro.
n% Exit macro -- if 'n' is non-zero (true) or missing, exit from macro.

If you are a structured programming fanatic, you may find the '}’ command as
useless as the 'CO TO'. All the control structure you will ever need can be found in

the iteration brackets. You've got the 'IF-ELSE-THEN', and the "DO-UNTIL'.
rave fun!! :

BUFFER COMMANDS

The editor actually contains 11 buffers into which text can be entered. The
buffer which is initially used is called the 'T' (for 'text') buffer. The other buffers
are labelled 0-9. Independent text can be contained in each of these buffers.
Text can also be transferred from one to the other. The buffer which is currently
being edited is displayed in the status line when in command mode. The instant
command '® ' causes the command buffer to become the current edit buffer, and
'C' is displayed in the status line.

IvV-10 PMATE USER MANUAL AND INTERFACE GUIDE

All buffer areas, including the command buffer, expand and contract
dynamically. Any buffer grabs as much memory as it needs, until the total available
memory is used up.

In the following buffer commands, 'b' refers to a buffer number, either 0-9, or
'T'. In all cases, b can be left out, and buffer 0 will be referenced. Some
commands have a numeric argument, 'n', which refers to the number of lines to be
moved or copied. 'n' can be positive or negative, and the effected lines are
determined as in the 'L' and 'K' commands. :

BbK Kill buffer b. All the text in buffer b is deleted, and any space it took
up is reclaimed.

BbE Buffer b becomes the current edit buffer. Buffer 'T* is the initial edit
buffer. When the edit buffer is changed, the cursor location of the old
edit buffer is preserved. When the old edit buffer is reinstated, the
cursor is restored.

nBbhC n lines from the edit buffer are copied to buffer b. The old contents of
buffer b are destroyed. The cursor in buffer b is placed at the end of
the entered lines. The copied lines in the edit buffer are preserved,
and the cursor is placed after them.

nBbD n lines from the edit buffer are inserted into buffer b (just before the
cursor). The copied lines in the edit buffer are preserved, and the
cursor is placed after them.

nBbM n lines from the edit buffer are moved to buffer b. The old contents of
buffer b are destroyed. The cursor in buffer b is placed at the end of
the entered lines. The copied lines in the edit buffer are deleted.

-anN n lines from the edit huffer are inserted into buffer b (just before the
cursor). The copied lines in the edit buffer are deleted. :

BbG Cet the contents of buffer b. This is inserted just before the cursor.
The contents of buffer b are not effected. :

One common application of these buffer commands is to move or copy blocks of
text. For example, 'BM' would move one line of text to buffer 0, after deleting
any old text there. 'BN' could then be repetitively executed (keep hitting escape),
each time moving the next line of text to the end of buffer 0. A whole block of
text can in this manner be assembled in buffer 0. This is just an alternative to
counting lines and typing '158MSS'. The cursor in the edit buffer can then be
moved somewhere else, and 'BG' will get back that block of text to this new
position.

COMPLETE COMMAND SET V=11

EXECUTING MACROS

The contents of any buffer can be executed as if it were a command.
b Execute buffer b. Note: there is no default option, b must be present.

An executed buffer can in turn execute another buffer. This can be done to a
level of 15 deep. There are two methods that can be used to easily insert a
command string into a buffer for execution as a macro. The most straight-forward
is to change the edit buffer to the one which is to hold the command string. Then
the command car easily be entered and edited in insert mode. In command mode, it
is difficuit to enter an escape into the text area. Then change the edit buffer back
to the original. An alternative method is to just type the command string, as if it
were to be executed now. When it is done, the instant command '© "' is used to edit
the command string. 'BbM' can then be used to move the macro to buffer b where
it can be executed by the command '.b'.

1% Return early from macro if 'l' is true (non-zero) or missing. This is
B
like a subroutine 'RET' statement. It makes it easy to return when a
specified condition is met.

STRING ARGUMENTS

Commands such as 'I','S', and 'C' take string arguments. String arguments
_usually follow the command directly, but there are methods to get the arguments
from other places. The character that signals to the editor that this is not an
ordinary string argument is a '©A'. One place that string arguments can be taken
from is the contents of a buffer.

SA@b Cet string argument_from buffer b. S

For example, suppose buffer 2 contains 'trash'. then 'S®A@2S' will search through
_ the text for "trash'. ‘'I9A&Q0S' is equivalent to 'BG'.
When a buffer is executed as a macro, it is possible for the macro command to
get string arguments from the command string which called it.
2Aa get string argument from calling command. 'a' is a letter from A-Z.
‘A’ refers to the first passed argument, 'B' the second, etc.

This should be clearer after an example. Suppose buffer 1 contains:

IDear Mr. SI2AASI,

You, Mr. SIDAAS| have the opportunity to be the first on your block in
beautiful SIZABS| to own your own copy of an exciting new editor. Imagine what
you and Mrs. SIDAASI can do with it. The rest of SIDABSI will be so jealous.
Blahhh, blahhh, blahhh%

then the command ‘.1)ones$CambridgeSs' would enter the following in into the text:
Dear Mr. Jones,

You, Mr. Jones have the opportunity to be the first on your block in beautiful
Cambridge to own your own copy of an exciting new editor. Imagine what you and

V=12 PMATE USER MANUAL AND INTERFACE GUIDE

Mrs. Jones can do with it. The rest of Cambridge will be so jealous. Blahhh,
blahhh, blahhh

Unfortunately, that is not all this command will do. After '.1' is executed, the
editor will come back and execute the command '}J'. When it goes off to execute
buffer 1, PMATE has no idea how many string arguments will be required, and so it
doesn't know where in the command string to return to execute the next command.
It is necessary for buffer 1 to tell it where. The number of passed string arguments
must be set in the macro by the 'QA' command (see 'Q' commands).

If buifer 1 contains '1QAIDAAS' , the command '.1' would have the same
effect as the command 'I'. Similarly, if buffer 1 contained '2QACDAASDABS', '.1'
would have the same effect as 'C'.

When macros are nested several levels deep, the string arguments can also be

nested.

COMMAND_ STRING FORMATTING

Since command strings are in fact text editing programs, facilities have been
added for formatting these command strings for easy .reading and modification.
Spaces, tabs, and carriage returns are all ignored as commands.

Space
Tab

CR S ;
: Spaces, tabs, and carriage returns (as commands) are all ignored. Thus
they can be placed between commands to enhance readability.

k A semicolon indicates that what follows is a comment. All characters
through the next CR are ignored.

A command string can then be written to look like a well commented
program. _For example, here's a short command string that will change
all upper case alphabetic characters to lower case, leaving everything
else alone. :

A ;START AT BEGINNING OF EDIT BUFFER

[;BEGIN ITERATION

2T<"A JA ;IF THE CURRENT TEXT CHARACTER IS NOT AN
;ALPHABETIC CHARACTER (IF IT'S ASCII VALUE
;1S LESS THAN THAT OF 'A'), JUMP TO LABEL ‘A’

QT!" VO ;CHANGE CHARACTER TO UPPER CASE BY '"OR'ING

AT WITH ASCIHI VALUE OF SPACE (20H).

;SAVE RESULT IN VARIABLE 0.
D @Ol ;DELETE OLD CHARACTER AND INSERT SHIFTED ONE.
-M ;MOVE BACK TO SAME CHAR

A M ;MOVE CURSOR TO NEXT CHARACTER, SETTING ERROR
;FLAG IF IT IS AT THE END
) SJCONTINUE WITH NEXT CHARACTER, UNLESS ERROR

COMPLETE COMMAND SET : Iv-13
JFLAG HAD BEEN SET

Of c0u}se, the whole command could also have been written as: /
A[aT< AJAQT!® VODGOI-M:AM]

And here's a much better way to do the same thing: %
Ala@T< A[M][@T!" R]@T=0] g

PERMANENT MACROS

You will find that you will write some macros that you will wish to use over and
over again. These can be made permanent. Permanent macros are given a label
that can be any character other than a digit.

.a Execute permanent macro 'a', where 'a' is any character other than 0-
9‘

To add or remove a permanent macro, it is necessary to edit the ‘permanent
macro area's This area can be copied to or from the text buffer by the 'QMG' and
the 'QMC' commands (see 'Q' commands). This area must begin and end with a
'9X'. The '©X' is also used to separate different macros within the area.
Immediately following each '©X' is the character which labels the macro, followed
by the macro itself. Here is a macro area containing macros '#' and 'C':

©X= lyou have just executed macro #S
©XC 2QAECTAASOABS
X

Executing the command '.#' will then insert 'you have just executed macro %'
into the text. The command '.C' will behave just like 'C', except it will not
generate an error message if the string is not found. You can think of this
permanent macro facility as an ability to add your own commands to PMATE's
command set. A new version of PMATE can now be generated incorporating these
new commands (see the 'XD' command).]

It is possible to define a macro which PMATE executes initially every time it is
entered. The first macro in the permanent macro area will be executed as part of
PMATE's initialization procedure if it is preceded by a ©1 (tab), rather than the
vsual ©X. This macro can even end in 'XH', generating a program that acts on a
file and returns, never displaying anything on the screen.

BREAKPOINTS

To aid in debugging complex commands and macros, PMATE includes a
'breakpoint' and 'trace' facility. :

? Cease executing the command. PMATE is now in TRACE MODE. The
cursor in the command area points to the next command to be
executed. The current value of the numeric argument is displayed in
the status line. Instant commands are active, and you can go into, and
out of INSERT MODE. If you strike the escape key, command
execution will resume as normal, until the next '?' command. However,

Iv-14 PMATE USER MANUAL AND INTERFACE GUIDE

if you strike any other key that is not an instant command, PMATE will
execute just the next command, and remain in TRACE MODE.

If you cannot figure out why your macro isn't behaving, insert several 1's into

the macro at strategic locations, and use them to examine what has happened after
partial execution of the command.

KEYBOARD INPUT

G Get a key from the keyboard as follows. Pause during the execution
of the command and update the display. The string argument following
'G' is displayed as a prompt in the command display area.. Instant
commands are active. Execution of the command is continued as soon
as any character (other than an instant command) is entered from the
keyboard. The ASCII value of this key is available by using '@K' in a
numeric argument.

This command gives PMATE 1/0 POWER. PMATE can stop in the middle of an
editing operation, and ask you how to proceed from there. Macros can be written
to expand upon the power of the 'G' command - accepting either character strings
(putting them in an available text buffer), or numbers (putting them in variables).

MISCELLANEQUS COMMANDS

nQA Set the number of passed string arguments to n. See macro
description.

Q8 Ring bell. This is useful for indicating to the operator that a long
command string has finished executing. It is also useful for playing
annoying rhythms.

nQC Set the control shift character to the character represented by the
ASCII value n. This shift character will itself be ignored when input,
but will enter the next character as a control character. This is useful
if you wish to enter a character into the text which would otherwise be
interpreted as an instant command.

nQD Delay for a time proportional to n. This can be used in conjunction
with 'L' to implement variable speed scrolling. It can also be used to
arrange impressive demonstrations, whereby PMATE appears to have a
mind of its own, displaying various messages.

nQE Set type-out mode to 'n'. (See 'XT'.)

nQF Set the 'form feed' character to that represented by the ASCII value n.
This is the character that separates pages on the disk files.

nQH Insert 'n' spaces at the cursor. This is useful for operations such as
centering. Since all spaces are inserted at once, this operation is much
faster than 'n[1 S]'.

nQl

nQK

nQL

QMG

QMC

nQO

nQP

nQR

nQS

nQT

nQX

nQY

nQZ

COMPLETE COMMAND SET V=15

Set the input radix to numeric argument n. If nis missing, the radix is
set to decimal. Remember, if the old input radix is octal, '10QI" will
not set it to decimal, but rather, since the 10 is interpreted in the old
radix, the input radix would remain octal.

Set backup mode for files. If 'n' is 0, don't create a .BAK file from the
old input file. If 'n' is non-zero or missing, create them.

Set number of lines for instant commands ©U and @) to scroll.

Get the contents of the permanent macro area, and insert it into the
current text buffer just before the cursor.

Copy the entire current text buffer to the permanent macro area. The
previous contents of the macro area are lost!! If you wish to save
them, be sure to do a '"QMG' first, then add to or modify the text before
copying it back.

Set the output radix to n. If n is missing, the radix is set to decimal.

Set page size to n. This is the number of lines appended or written as
one page by the disk input and output routines. If n is 0, pages are
delimited by form feed characters, instead of being a fixed number of
lines. :

Redraw screen. The argument '@K' will now contain the value of any
key struck, or O if none. Use this for creating interactive command
strings where PMATE goes on doing something and showing you the
results until you tell it to do something else.

Set the upper case/lower case shift character to the character

represented by the ASCII value n. This shift character will itself be
ignored when input, but will shift the case of the next character
entered._ This is useful if you are using an upper case only keyboard.

Type the character represented by the ASCII value n on the listing
device.

Set screen cursor to column 'n' on the same line it is now on.
Depending on the state of the 'free-space' flag (see QY), the cursor
may or may not be able to move past the last character in a line if the
required column is off the end of the text.

Set the 'free-space’ flag if 'n' is 0 to allow the screen cursor to move
into free space, past the end of a line. When a character is inserted at
such a cursor position, the necessary amount of spaces is inserted into
text to extend the line out to where the cursor appears. If 'n' is non-
zero, reset the flag, so that the cursor is restricted to remain on actual
text.

Don't allow cursor to move past column 'n'. Use this when you wish to
restrict the width of entered text - usually to provide clean output on a
limited width printer. When the cursor reaches the restricted column,
it is inhibited fror advancing, and the bell rings as 2 warning. If 'n' is

IV-1b

nQ!

nQ-

PMATE USER MANUAL AND INTERFACE GUIDE
missing, the default width of 250 columns is restored.

Set byte in memory whose address is held in variable 9 to 'n'. This
command allows PMATE to alter any byte in memory (and of course,
crash the system). In conjunction with '@@', a monitor could be
constructed in macros. Other macros might change (/O driver
parameters. However, for altering text, just move the cursor there and
use nR.

Sets flag to indicate whether numbers are displayed as signed or
positive only. f 'n' is O, display as positive only, otherwise display as
signed number. This effects the argument display (ARG) in the status
line, as well as numbers inserted in the text by the '\ command. If
you type the command '@am3S' in order to discover how much memory
remains, and you see 'ARG=-30536" in the display (which will happen if
more than 32K of memory remains), you may wish to enter '0g-' to get
a more meaningful display.

Set user variable m to value n. m is a‘digit from 0 to 9. These 10 user
variables are availabie for use by user written 1/O drivers. For
instance, you may wish to use one of these to control whether hard
copy output goes to a TTY console, or to a line printer. Or, you may
wish to be able to easily go between black on white, or white on black
video.

INPUT, OUTPUT, AND DIRECTORY MAINTENANCE COMMANDS

All input and output commands begin with an 'X'. This should help prevent
accidental 1/0, which could cause great upheaval.

Disk 1/0:

Files which are toc large for memory must be broken up into ‘pages'. Pages are
divided by a user definable character (usually a form feed), or can be defined to be
a fixed number of lines (see the 'QP' command).

nXA

nXW

nXR

nXY

XFfilel

Append n pages from the input file to the current edit buffer.

Write n pages from the current edit buffer to the output file, deleting
them from the buffer. '

Repiace n pages, appending n pages from the input file, and writing n
pages to the output file.

Yank n pages from the input file. Each page overwrites the old one,
without writing it to the output file. BE CAREFUL - this command is
only useful for reviewing an existing file, and except in special
circumstances, the file should be 'XK'ed when done.

If 'file' already exists, open it as the input file, and open 'file.555" as
the output file (in this case, if 'file.S35' already exists, an error
message will be given). If 'file' does not exist, create it and make it
the output file (this is the way to create a new file). 'file' can be

COMPLETE COMMAND SET Iv-17

preceded by a drive specifier ('A:', 'B:', 'C:', or 'D:")

XFfile1 file2

XE

XEfile

X)

X|file

XC

- XK

XH
XDfile

nXlIfile

nXl

nXOfile

Open 'file1' as input and 'file2' as output. ‘file1’ should already exist
on the disk (if not, it is opened as the output file), and 'file2' should not
(if it does, an error message is given). Both 'file1" and 'file2' may be
preceded by drive specifiers. i N
3 e 2 .

End of editing pass. Write the current text buffer to the output file.
Read in the remainder of the input file and write it to the output file.
Close the input and output files and clear the text buffer. If the
output file is the same as the input (with a S55 extension), rename the
input file to 'file.BAK', deleting any old backup, and rename the output
file to have the same name as the old input file.

End of editing pass, as above - but output file is renamed to 'file’, and
the original input file is left undisturbed. -

Start a new editing pass. Equivalent to an XE and then an XF of the
original file name. Useful for editing a page already written out with
XW or XR. Even on files which fit entirely in memory, don't go too long
without an XJ. This ensures that your editing work will be saved on the
disk in case of power failure, or catastrophic error.

Equivalent to 'XEfile', followed by reopening the new file.
Close input and output files as they are. Neither the contents of the

text buffer, nor the rest of the input file is written to the output file.
Even if the output file is a temporary one (with extension 'S$S') no file

_renaming takes place.

Delete the output file and clear the text buffer.

Reboot CPM, and return to its CCP (Console Command Processor). This
is the usual way to exit from the editor. =

Duplicate PMATE. Write it as it now exists to 'file.COM'. This output
file can later be renamed PMATE.COM

Auxilliary input. Read the first 'n' pages of 'file’ into current edit
buffer at cursor location, even if another file is ‘open' as the input file.
If 'n' is missing, read in the entire file. If the entire file is not read in,
the remainder can be read in later:

Input the next 'n' pages from the input file last defined by the 'XIfile'
command. If 'n' is missing, input the entire remainder of the file.

Create 'file' and write 'n' lines of text, beginning at the cursor, out to
it. If nis missing, write out the entire current edit buffer.

Directory Maintenance:

XSd

Change the currently logged in disk to 'd' ('A', 'B', etc.) For instance,

IV-18

\Lfile

XXfile

Other:

XM

nXT

PMATE USER MANUAL AND INTERFACE GUIDE

\SB logs in drive 'B'. PMATE will not respond to this command while
input and output files are defined. This command also resets the CPM
disk system, and should be used when the current diskette is changed.
(If you are on drive B and change the diskette, type 'XSBSS'.)

Like CPM 'DIR' command. List all files which match 'file' (* and ? can
be included in the file specification). If 'file' is missing, the entire
directory is listed. The directory listing is inserted in the text buffer,
at the cursor. This allows the directory to be printed, and otherwise
manipulated like text. However, if desired text is already in the text
buffer, it may be necessary to delete the directory text. Alternatively,
change the current text buffer before giving the XL command.

Delete 'file' from the disk. Ambiguous file names (containing ®* and ?)
are not permittad.

Call the systemm monitor. You can return without losing any text by
either executing a RET instruction, or jumping to location 103H.

Type n lines, starting at the cursor, on the listing device. If n is
missing, type out the entire current edit buffer. There are 3 type-out
modes (set by the 'QE' command). Mode 1 (the default mode) is
intended for printing programs or text on a regular printer. Tabs are
expanded to spaces. Format lines are not printed, but affect the
margins and tab stop settings. Other control characters are sent
through to the printer. Mode 0 prints text almost exactly like it is
displayed. Format lines are printed, escapes type out as 'S', and other
control characters are printed as an up-arrow followed by an upper
case letter. This mode is useful for printing macros and for draft
output. Mode 2 is intended for use with intelligent printers which do
their own formatting. Carriage returns are only sent at the end of a
paragraph, tabs are not expanded to spaces, and all control sequences
are passed on to the printer.

Chapter V
MACRO EXAMPLES AND IDEAS

SOME DETAILED EXAMPLES

This chapter contains examples of macros, provided for use or study. These
macros are not intended to be polished final products, but are illustrative, and are
meant to provide you with a foundation on which to build, as well as stimulate your
imagination.

The best way to understand how and why these macros work is to enter them,
try them, and then run them in trace mode. You should read up on trace mode and
breakpoints in chapter 4, but here's a summary. Put a question mark (?) at the
beginning of the macro, or at the place where you cease to understand what's going
on. At this point, the macro will 'single step’, show you the results of its latest
operation, and wait for you to strike a key to continue.

This section contains some relatively simple macros, explained in greater detail
than later ones. Here's the first. Programmers often 'comment out' sections of
code. This is a way of deleting them from the program, but preserving the code
just in case. In many languages, this can be accomplished just by putting a
semicolon at the beginning of each line. You could go into insert mode, enter ';’,
then move the cursor down, enter ';', move the cursor, and on and on. This isn't
bad for a few lines, but for more, try the command 'I;SLSS'. This will insert the
semicolon and move the cursor all at once. Keep striking escapes, and the command
wiil be repeated, until you have reached your last line. Finally, try '20[1;SL]SS'.
This command will repeat the above sequence 20 times, commenting out 20 lines at
a time. Any time you need to perform a repetitive sequence, think macro.

Now that you can quickly create comments, the reverse problem might come to
mind. Have you ever needed to delete all the comments from a file? If you've
ever cdone that by hand, you will appreciate this macro which does it for you
a2utomatically. Use it on programs, or on PMATE macros themselves -generating a
~ version that will better fit in available memory (of course, always keep a copy of
the original). This macro assumes that comments begin with a semicolon, and it
deletes the comment starting at the semicolon, as well as any preceding tabs.

[S;S -M ~SONSIS M K |
5]

The left bracket starts a loop - all comments will be deleted. Next, find a
comment by searching for ';'s Now we need to find all tabs preceding the
semicolon. Since the 'S' command left the cursor on the character just past the
semicolon, we must move back one (-M) before looking for tabs. The next 'S’
searches backwards until it finds anything other than a tab (the ©N@I matches
anything except a control-1, which is a tab). The cursor will be left on that first
character found which isn't a tab. Then after 'M', the cursor points to the entire
comment which needs deleteing. 'K' deletes the entire comment, as well as the
carriage return at the end of the line. The carriage return is then restored by the
'I', and the right bracket loops back to the start, looking for the next comment.
The macro will terminate when the first 'S' command is unable to find any more
comments, and so will produce an error message.

V-2 PMATE USER MANUAL AND INTERFACE GUIDE

Escape characters in text present problems for macro strings which need to
operate on them. For instance, if you wish to insert an escape into text, '1SSS" will
clearly not work, but '271' will. However, you may feel search or change is
hopeless. Well, here's a routine to change all escapes in text to dollar signs (in case
you ever need to write a chapter like this one).

(3T=27[36R][M]aT=0)

‘[starts iteration, for we wish to do the entire text buffer. '@T=27' tests the

character under the cursor to see if it's an escape (ASCII code 27). |If it is, the
expression in the first set of brackets, '36R' is executed. This just replaces the
escape with a dollar sign (ASCII code 36). This could have also been expressed
'RS3%, but it wouldn't be obvious to the reader that the first 'S' is a dollar sign, and
the second 'S' is an escape. . Tt . : -
Anyway, if the the character at the cursor is not an escape, the expression in the
second set of brackets is executed = just move the cursor on to the next character.
'aT=0" tests to see if the cursor has reached the end of the text buffer (always a
null). If-so, the iteration ends; if not, go back and check the next character.

The command [CblahSblewS] will change all occurences of 'blah' in the text
buffer to 'blew'. An often requested editing feature is a 'conditional change'
(A.K.A 'interactive search and replace'). This command would not change all
occurences of 'blah’, but would stop at each one and ask you whether or not you
would like a replacement to be made. Put this command string in buffer 1, and type
‘.1blahsSblewss',

~2QA

(: B

SDAAS

GType escape to replaceS
2K=27 [-COAASDAB |

The first line sets the number of string arguments required from the calling
cornmand (in this case, 'blah' is the first, and 'blew’ is the second). The next line
searches for the first argument (blah). The 'G' command then gives a prompt,
displays the text buffer with the cursor pointing past the next 'blah’, and waits for
you to respond. If you respond with an escape, '@K=27" is true, and the expression
in brackets will be executed. This will change 'blah' to 'blew' (the '-C' is necessary
because the cursor has already been moved past 'blah'). If any key other than an
escape is hit, the expression in brackets is ignored. The last line iterates back to
the first '[' ~ keep looking for the blahs. The process will continue until the last
blah, or until you hit control-C. Remember, control-C will halt any runaway macro.

TEXT OUTPUT PROCESSING

PMATE does not internally perform many print functions often associated with
word processors. PMATE can be used with a separate output processor, or macros
can be written to do the job. Here are a few ideas to get you started.

This macro will center a line. Start with the cursor anywhere on the line to be
centered.

MACRO EXAMPLES AND IDEAS V-3

L-M ;move to end of current line

aw-ax/2vo ;get one half the distance from right margin
;to current cursor position
;save it in variable 0.

oL ;back to beginning of line
@0QH ;insert number of spaces computed above
L ;move on to next line

A macro to move the line flush with the right margin is also easy - just get rid
of the '/2' after the 'aW-aX'.

Try this next example. Whichever character you leave the cursor on will be
replicated, leaving the rest of the line flush with the right margin. Use it, for
example, on a table of contents. Start with

Chapter 1.pg 1
Chapter 2.pg 24
Chapter 3.pg 30

Put the cursor on each decimal point in turn, execute the macro three times, and
you are left with '

Chapter 1...... sebstsbravisetserPesessRtasREREb e Ra LS sresssssnasaasapg 1
Chaptef 2!-.-.l..Il.tc.t---..-tl.t.'-i ------------ ssssnassnnae .Il-c--.-opg 24
Chapter 3eeccaccccccssccsccessessncancsorcorsasscascsscssncocascsscsssespPg 30

axvo ;save the current column in variable 0
L-M ;find end of line

aw-axvi ;amount of space needing fill to variable 1
a20QX ;back to original cursor position

aTv2 ;save the character there in V2

a1QH _ ;fill out line with spaces

e0QX ;back to original cursor position again
@1[@2R) ;now overtype the spaces

;with the original character

The last three lines could have been replaced with '@1[@21]'. However, replaces
require much less overhead than inserts, so that the suggested method will execute
faster.

Now we can start to tackle page headings and numbering. Here is one simple=
minded approach. Suppose buffer 1 contains a one line heading which you would
like printed at the top of every page. Suppose further you have put a '#' in that
line at the place where you wish a page number to be inserted. Buffer 1 might
contain:

Chapter 2 EXCITING DOCUMENT! page #

Inter into variable 0 the first page number: '5V055' would be appropriate here if

V-4 PMATE USER MANUAL AND INTERFACE GUIDE

chapter 2 started on page 5. Then the following macro will print out your file,
using the above header, and printing page numbers:

(;start iteration =~ will type till end of buffer
B2K ;empty buffer 2

B2E ;edit buffer 2

81G . ;get prototype page header from buffer 1

A ;find its beginning

S#5-D Jfind '#' and delete it

a0\ ;insert page number there instead

VAO ;increment page number - ready for next page
XT ;type header

10QT ;send a line-feed to skip line after header
BTE ;back to text buffer

60XT ;type next 60 lines of document

4[10QT) ;send 4 line-feeds to complete a 66 line page.
aT=0] ;keep typing until the text buffer is finished

There are lots of ways to expand upon this. For documents larger than
available memory, have the macro read in successive pages. Define a print format
line, starting with a unique character (maybe '®P', or whatever pleases you). The
print macro will not type this line, but use its information for further formatting.
The print format can include output functions like double space, center (see macro
above), etc. Header information no longer needs to to be put in a buffer
beforehand, but can be moved there from the print format line as the macro
proceeds.

FORMS AND MATH

The 'G' command gets a character from the keyboard. Often, you may need a
whole string. The next macro gets a string from the keyboard, echoes what has
_ been typed up in the command/prompt line, and saves that string in buffer 9. The
string ends on_a carriage return. _In order to correct mistakes on entry, 'rubout’
will delete the last character entered.

B9K ;delete old contents of buffer 9

[;start iteration

GCo9AQ@9% ; ;get a character, displaying contents .
;of buffer 9 on command line

aK=13_ ;if character is a CR, break (all done)

B9E ;now go into buffer 9

aK=127[-D][aKl) ;if character is a rubout

;delete previously entered character
;otherwise, insert new character
BTE ;back to text buffer
]

One typical application of the above is in creating an interactive macro to fill
out forms. For instance, a preexisting invoice 'skeleton' might be read in. The
operator could then use the full capabilities of PMATE to fill in the blanks, or an
'invoice macro' could set the cursor into each field, and prempt for information.
The entry would be accumulated in buffer 9, as above, and inserted in the text
when all done. The invoice macro could check for illegal entries, and prevent the

MACRO EXAMPLES AND IDEAS V-5

user from totally destroying the invoice form. Furthermore, the operator need not
know how to use PMATE.

Along with forms often goes the desire to add up some numbers. Some word
processors supply '"Math Packs' of varying sophistication. Here's a macro to get you
started in that direction. It adds the number pointed to by the cursor (the cursor
can point anywhere within) to a number stored in buffer 9.

[M (@aT>*9) ! (@T<"0)]) ;Move cursor until end of number is found

ovi ;initialize carry

B9E ;number to add to is in buffer 9

z ;move to end of that number

[;iterate one digit at a time
;starting with least signficant

BTE :back to first number

-M ;get next most significant digit

(@T>"°9) ! (@T<"Q) ;not a digit?

[M OVO] [;no, don't move past it
;0 to VO is number to be added

aT-"0vo] ;a digit - gets its numeric value to V0.

B9E ;now go to buffer 9

-M ;get next most significant digit

@t _ ;done if out of digits

@T+@0+a1vo ;add digit from text, and carry to it

» ;result to VO

a0>"9[1V1 @0-10 R ;if greater than 9, set carry to 1, subtract 10 -
;and store result in text

J{0V1 @0R] ;not greater than 9, set carry to 0

: ;and store in text

-M ;R has moved cursor, so move back"

] ~;on to next digit

BTE S

The number of digits stored in buffer 9 controls the precision of the result. For
example, if you start with '000000000', numbers up to 999,999,999 can be
accumulated. Automate by using further macros to call this one: add up rows,
columns, or whatever your format requires. The result can be moved back into the
main text buffer. How about subtraction, multiplication, or division?

MORE FUN WITH PRINTERS

This simple macro lets you type directly on your printer, using the keyboard, as
if it were a typewriter.

[

GDIRECT TYPES
aK=13{13QT 10QT](@KQT)
]

The third line implements an auto-linefeed. If it finds a carriage return, it sends a

V-6

PMATE USER MANUAL AND INTERFACE GUIDE

line feed also -~ any other character is sent 'as is'.

Here's a macro which prints an alphabetized directory listing. It should suggest

many other applications:

B1K
B1E
XLS
A

(
BC

(
HOAGOSCO{BC) (L]

2T=0]}
A
S2A@05
-1XT

~K
AaT=0]

BTE

CURSOR MOTION

;clear buffer 1 to hold directory list
;g0 into buffer 1

;get a directory listing

;80 to beginning of directory

;begin overall locop

;copy first file name to buffer 0 == will try to

;find file names earlier alphabetically.

;this loop finds earliest file name

;compare next file name to earliest already
;found - if this one is earlier, copy it to
;buffer 0, otherwise, advance to next
;iterate until end of directory list

;back to top of directory list i
;match the earliest entry stored in buffer 0
;type it out

;and then delete it .

;back to beginning - continue unless

;list is now empty

;back to text buffer when all done

Presented here, without comment, are the macros used by PMATE to implement

the 'mixed' cursor motion instant commands.

motion to your own taste, this should give you a place to start.

up:

down:

left:

right:

aV=2[aX,-LasSQX][-M0L)

aV=2[2X,LaSQX][L]

@V=2{aX>0[aX-1QX])[~M]

aV=2[aX+1QX][M]

If you wish to customize cursor

Chapter VI
CONFIGURATION GUIDE

GETTING STARTED

Your PMATE diskette arrives with the following programs on it.

PMATE.COM renomed. to PMATEDIS.Com
CONPMATE.COM

IOPATCH.ASM

CONFIC.DOC

and a bunch of files with the extension CNF. These are ASCII files which contain
configuration information for a number of popular video terminals and memory
mapped displays. First type out the file CONFIG.DOC. It contains a list of all the
-CNF files on the disk, and which terminal each supports. If you have a Lear
Seigler ADM=-3A, CONFIG.DOC tells you to use file ADM3A.CNF. Then type:

CONPMATE ADM3A.CNF

After disk activity has ceased, CONPMATE will think for about 15-30 seconds,
create a customized version of PMATE in memory, and then PMATE will sign on. (In
case of an error in the format of the .CNF file, CONPMATE will just return control
back to CP/M.) It is now necessary to save this version on disk. Type

XDPMATESS

(if you haven't already read through the rest of the User's Manual, 'S' represents
the ESCAPE key). This duplicates the current version of PMATE -giving it the name
PMATE.COM. If PMATE.COM already exists on this disk, you better use PMATE1
(XDPMATE1SS) and rename it later.

GENERATING YOUR OWN CONFIGURATION FILE

If a configuration file for your terminal is not included among those provided on
the disk, you will need to generate your own. Even if a file for your terminal does
exist, vou will probably later wish to modify it to tailor the interaction more to your
tastes. x

The CNF files contain a series of questions and answers (in ASCIl). You will
need to use your current text editor (such as 'ED') in order to create a custom
configuration file. Later you will be able to use PMATE to make additional changes.

Configuration questions require either a yes/no answer, or a series of numbers.
All answers follow 3 stars (“**). Numbers may be in decimal or hex. Hex numbers
are identified by ending in 'H'. If more than 1 number is required, separate them by
spaces.

CONFIGURING A VIDEO TERMINAL

Are you using a memory mapped display?
Answer no.

Number of lines

Vi-2 PMATE USER MANUAL AND INTERFACE CUIDE
Enter the number of lines on the terminal display (usually 24)

Characters per line
Enter the number of characters on each line of the terminal display (usually 80)

Now you need to enter the codes required by your terminal to perform certain
display functions. For each function, enter a sequence of from 1 to 9 bytes
(remember, hex codes require an 'H' - decimal is assumed). In the next line,
following 'Delay ***', enter any delay your terminal requires after performing the
specified operation. This delay is given in milliseconds and assumes a 4MHZ
machine. If your computer runs at a different speed, it is necessary to scale the
delays accordingly. For instance, if a 20 msec delay is required, enter 10 to get the
proper delay for your 2MHZ processor.

Clear screen code
Enter the sequence which clears the screen.

Clear to end of line code :

If your termiral has this feature, enter the sequence which clears from the
current cursor location to the end of the line. If your terminal does not have this
feature, leave blank.

Line insert and delete can be used to support much faster scrolling of display
text. If your terminal supports these features, fill in both:

Code to insert line
Enter codes to insert a line at the current cursor position (which is guaranteed to
always be at the beginning of a line).

Code to delete line
Enter codes to delete the line the cursor is on (agzain, the cursor is guaranteed to
be at a line beginning).

There are many methods in use of sending cursor addressing information to
video terminals. Most all can be included in the following generalization.
1) send a bunch of codes
2) send either the x or the v coordinate
3) send a bunch more codes
4) send the coordinate not already sent
5) send a finai bunch of codes.

Cursor addressing lead in
Enter the preliminary sequence. (This will always be present.)

Is Y coordinate given first? ;
Enter yes if row information is sent before column information, otherwise enter
no-

Is cursor position information in ASCI1?
Actual cursor coordinates can be sent as 1 byte (binary), or as an ASCII
sequence, 'spelling out' the coordinate in decimal. Answer 'yes' for the latter.

CONFIGURATION GUIDE vi-3

X offset
Enter a number which is added to the desired column before it is shipped to the
terminal. If a byte of 0 gets the left-most column, just enter an offset of 0.

Y offset
Enter the number which gets to the top-most row.

Enter any codes between X and Y
Enter the sequence described in 3) above. Often, this is blank.

Enter any terminating sequence
Enter the sequence described in 5) above. This too is often blank.

Delay)
Enter any delay needed after the entire cursor addressing sequence.

Is it necessary to suppress sending a character to bottom right position of
screen? .

In many terminals, any time a character is written to the last column of the last
row, the entire display will scroll up one line. Note that some terminals (such as
the Lear Siegler ADM-3A) contain a switch to enable or disable this feature. But if
your terminal persists in such behavior, enter 'yes'. PMATE will then refrain from
entering any characters in this corner. Alternatively, decreasing the line size
(usually from 80 to 79) will also prevent any characters from being written in the
last column, and will keep all displayed lines the same length.

CONFICURING A MEMORY MAPPED DISPLAY

Are you using a memory mapped display?
Answer yes. S e

: Now skip past the TERMINAL CONFIGURATION section to the MEMORY
MAPPED CONFIGURATION section, and answer:

Number of lines
Number of text lines on the screen.

Characters per line
Number of characters on each text line.

Location of video memory
Fill in the initial RAM address of the video memory. Remember, add an 'H' to a
hex address.

Spacing between lines

The address difference between the beginning of adjacent lines. This is usually
just the number of characters on each line - but makers of 80 character video
boards often space lines by 128 characters in memory. (This makes for easier
cursor calculations, but uses more addressing space).

V-4 P_.\‘l ATE USER MANUAL AND INTERFACE GUIDE

Next, assembly language routines to perform certain simple functions are
required. Since CONPMATE does not have an assembler built in, these routines must
be hand assembled, and the resulting bytes entered. (Or, use the alternative
configuration procedure given in the next chapter - modify IOPATCH.ASM, and use
an assembler) Each of the following routines can be up to 21 bytes in length.

Routine to store reg A in memory pointed to by DE
This is usually just:
STAX D 12H
RET C9H

If the bvte to be displayed needs any processing (such as setting the high order bit),
this is the place to do it. ’ ’

Routine to display cursor at memory pointed to by HL

This routine displays a cursor at the specified position. If this requires
destroying the character in the video memory at that position, then this character
must be saved for later retrieval by the clear-cursor routine below. (Location
U14EH may be used for this purpose, provided the maximum size of the cursor
display routine is cut to 20 bytes). In many displays, setting the high order bit of a
byte in video memory reverses the video at that point. This makes an effective
cursor, and the cursor set routine is:

MOV A,M 7EH
OR] 80H F6H 80H
MOV M,A 77H
RET ' C9H

Routine ze clear cursor from memery pointed to by HL
This routine must clear the cursor set above, restoring the video memory to its
original state. To clear the cursor of the example above:

MOV A M 7EH
AN 7FH” E6H 7FH
MOV M,A 774
RET C9H

Cursor blink count

Enter a number which determines the cursor blink count. While waiting for
keyboard input, PMATE delays an amount proportional to this number, and then
sending alternately a set cursor sequence, then a clear cursor sequence., This will
turn an inverse video cursor into a blinking cursor. If you do not wish your cursor
to blink, or the hardware blinks the cursor already, enter a 0. Ctherwise, enter a
number to suit your taste. Here's a starting point -30 works well on a 4mhz
processor (equivalent to 15 at 2mhz).

CONFIGURATION GUIDE VI-5

MORE CONFIGURATION INFO

The questions in the MISCELLANEQUS section deal mostly with PMATE display
interaction parameters. Using serial terminals, even at 19,200 baud, presents the
problem that the display cannot always keep up with your keystrokes. If you scroll
1 screenful, it can take 2 seconds (at 9600 baud) to redraw the screen. PMATE is
not 'dead’ during this time, but will halt redraw, and respond to further commands.
PMATE can be customized to respond in different ways in this situation. Try
various combinations of answers until you find the 'feel’ that's best for you.

¢] . . .

How many lines from the center of screen can cursor wander?

Since the display screen can only hold a small portion of the entire text file being
edited, it is necessary to 'scroll' the display as the cursor moves off of it.
Typically, the display scrolls to prevent the cursor from moving down past the
bottom line, or up past the top. However, it is often better to keep 1 or 2 lines
above or below the cursor at all times, so you can better see the context you are
working in. ' - ’

The number entered indicates how far from the center line of the text display
the cursor will be allowed to move before a scroll occurs. If this number is 0, the
cursor will remain on the middle line of the display ==cursor motion up or down will
cause a screen scroll. Using 0 (or a small number) keeps maximum context,
requires the most screen scrolling, and is therefore not recommended for serial
displays which do not support insert and delete line. For these terminals, or if your
preference runs in that direction, use 1/2 the size of the display area, less 1 or 2
lines of 'context' on each side. For example, on a 24 line screen, 21 lines are
dedicated to text display. Entering 10 (don't use anything bigger!!) will produce a
display which scrolls only at either limit; 8 leaves 2 lines on top or bottom before
scrolling; and 1 will restrict the cursor to the 3 center lines.

How many lines do you wish redrawn in foreground?

This determines the number of lines which will be redrawn on the screen before
the next keystroke is responded to. In other words, this many lines are kept up to
date at a!l times, the rest will be redrawn when PMATE has the time. The smaller
this number, the faster PMATE's overall response is, but the less you can see what

effect each of your keystrokes has had.

Should display proceed from top to bottom (or from cursor outward)

PMATE screen redraws can proceed in one of two ways. The traditional method
is to start at the top, and work down. Alternatively, PMATE can start drawing on
the line the cursor is on, and work outward, alternately displaying lines on either
side. This also means that if the cursor is down on the bottom line, the display
proceeds from bottom up, and if the cursor is at the top, the display proceeds in the
usual top~down manner. This method has the advantage of first showing you text
where you are most interested in it - near the cursor. When used with a cursor
constrained to the center few lines of text (see 'cursor wander' question above),
some people find the inside-out redraws annoying. Answer 'yes' to get a top-down
display, and 'no' to get a display proceeding from the cursor outwards. 'Yes' is
recommended for memory mapped displays, as the inside-out display takes slightly
longer fon video terminals, the serial interface limits the display speed, so this
makes no difference),

\Vi-6 PMATE USER MANUAL AND INTERFACE GUIDE

Should cursor be displayed before each line is redrawn?

By addressing the terminals cursor to its final position before each line is
redrawn, you don't lose track of where PMATE's cursor is as the screen redraw
proceeds. As usual, there is a trade-off to be made. Twice as many cursor
addressing sequences now need to be performed. If your terminal requires a
significant delay after each cursor addressing operation, this can slow down a
screen redraw noticably. As usual, take your pick.

Maximum number of instant commands to buffer

PMATE is constantly polling the keyboard to make sure it dgesn't miss any
keysrokes while it is performing other tasks -- such as moving text around,
displaying a line, or executing a command. However, this buffering can allow
certain instant commands (such as deletes or cursor motion) to 'gun away' when
used with auto-repeat. When you take your finger off the key, things can keep
happening on the screen, as buffered keystrokes are executed. You can limit the
maginitude of this run-away by answering the above question with a small number
(but it should be at least 1) =~ but if you quickly strike four control-d's, and only 2
characters are deleted, you will know why. As always, compromise.

Number of characters to shift for horizontal scroll

_PMATE allows lines up to 250 characters in length. Since displays will rarely
show more than 80 of those, PMATE shifts the entire display over to prevent the
cursor from moving off the right end. Enter the number of characters you wish
shifted at one time. |If this is 1, the display will scroll 1 character at a time as you
enter a long line. This is very 'natural’, but you'll notice continual screen activity
~as the line progresses. If this bothers you, choose a larger number. "

_ Are carriage returns and tabs to be inserted while in overtype mode?

- Normally (answer 'no'), in Overtype Mode, carriage returns are only inserted at
the end of text, and tabs are only inserted at the end of a line. At all other times,
these characters just move the cursor - to the beginning of the next line, or to the
character following the next tab. However, if you answer 'yes’, these characters
will be inserted any time they are typed (and the cursor motion keys must used for
moving the cursor).

Is this machine Z-80 based?
Finally, a simple question. Just answer 'yes' if your computer is based on a Z-80
processor, and 'no' for an 8080, 8085, or if you have no idea.

Is there a system monitor?

If your system contains a permanently resident monitor, you can CALL it with an
'XM' command from PMATE if you answer 'yes' to this question, then fill in its entry
point after address?. (Return to PMATE with an RET, or jump to location 103H.)

Do you wish .BAK files to be generated automatically?
Most CP/M based text editors do not delete the original input file after a
completed edit pass, but rename it, giving it the extension '.BAK' (any old file by

CONFIGURATION CUIDE vi-7

that name is deleted). PMATE will do that too (just answer 'yes'), but there are
those of us who do not like to clutter our floppies with two copies of most
everything. (If you have a hard disk, you may not be sensitive to this problem.)
We answer 'no'. See also the 'QK' command to change this while editing.

Reserved size of garbage area

PMATE stacks its garbage (deleted text) in any available memory space -ready to
be retrieved later if needed. By permanently reserving some space for garbage, you
can be sure you can recover at least a small item or two, and be able to use the
stack for moving text. Enter the number of bytes you wish reserved. It must be at
least 1, and please leave some room to edit text.

Size of permanent macro area

Enter the amount of memory (in bytes) you wish to reserve for permanent
macros, PMATE will not allow you to load permanent macros requiring more space
than you have allocated.

CUSTOMIZING THE KEYBOARD .

PMATE allows customizing the keystrokes required to perform instant commands
in order to better suit your preferences and available hardware. At first, stick with
the defauit assignments - that will make understanding the User Manual, and
learning PMATE, much easier.

CONPMATE will configure a version of PMATE wh:ch will assign any keystrokes
you wish to any of a list of commands. If you wish to assign more than one
sequence to a ccemmand, or if you wish to create your own instant commands (as
PMATE macros) and assign them to keystrokes, it will be necessary to modify
IOPATCH, as explained in the next chapter.

Maximum number of codes entered for instant commands below

An Instant Command can require up to eight codes to execute. This could be a
series of keystrokes, or the multi-code sequence sent out by many terminal's
function keys. Enter here the maximum number of codes entered for any of the
commands below.

Shift character
If your kKeyboard does not have a Shlft key, enter the ASCII code of a character
which will serve as a case shift. (See the QS command for more detzils.)

Control shift character

If you are using control codes for instant commands (hard to avoid), a 'control
shift character' is needed if you wish to actually enter these control characters in
text (see the 'QC' command). Enter the ASCII code for that character here (up-
arrow is the usual choice).

Next follows a list of instant command functions. Enter the ASCII codes of the
required keystroke sequence following each function. Not all functions need be
implemented (just leave it blank if not). The .CNF files provided implement the
standard PMATE instant command set.

\Vi-8 ' PMATE USER MANUAL AND INTERFACE GUIDE

The array of cursor motion commands requires further explanation. PMATE rev

1.0 implemented cursor motion as follows: :
left: Move left 1 character. |If already at the beginning of a line, move to

the last character of the preceding line.

right: Move right 1 character. |If already on the last character of a line,
move to the beginning of the following line.

up: Move to the beginning of the current line. If already at the beginning,
move to the beginning of the preceding line.

down: Move to the beginning of the following line.

This combination of cursor motion can be selected by entering codes next to Move
left, Move right, Move up, and Move down. This set of commands make it very
easy to get to either end of a line, and is well suited to editing programs. However,
it does not allow you to easily move the cursor down through columnar material.

Another approach - to wvertical cursor motion is to move the cursor
'seometrically’. If the cursor is at column 5, moving up one.line will [eave the
cursor on the preceding line, still on column 5. Normally, the cursor will not land
past the carriage return at the end of a line, or in the middle of a tab -- it will only
land on a text character. Thus, as you move up or down the screen, the cursor car
be pushed farther and farther over to the left. However, by answering Allow
cursor to move into 'free space'? with a 'yes', the cursor will be allowed to land
anywhere, and will stay in the same column as you scroll up or down through any
document. If you attempt to insert a character while the cursor is 'floating', the
appropriate number of spaces will be inserted so that the character is actually
inserted where you expect. Move right (geometric) and Move left (geometric)
always keep the cursor on the same line, and always move by exactly one column at
a time. Note that this causes trouble if the cursor has not been allowed into free
space -- whenever the cursor reaches a tab, it tries to move over 1 column, can't
land there, so moves back to the beginning of the tab, stuck. If you do not allow
the cursor into free space, there is no advantage to the geometric horizontal motion
anyway.

A final option mixes the above two approaches. Overtype Mode is well suited
for working on columns, as is a geometric cursor (and carriage return can be used to
-move . the-cursor to the beginning of a line). When working on. line-oriented
material, Insert Mode is usually used. By entering codes in the Move up (mixed)
and other (mixed) categories, the line-oriented cursor routines are used while in

- Insert Mode, and the geometric routines are used in Overtype Mode.

The last section of the configuration file allows you to redefine the codes
which perform certain built in PMATE functions. |f you wish to redefine one of
these, just enter the new code (or codes) following the '***’, as for any of the
instant commands. You may want to use backspace (control-H) instead of rubout to
delete the last entered character (but then you must find a new key for cursor
motion). On many terminals, the 'rub' or 'del' code is generated by shift-underline.
If you find this inconvient, just enter a 5FH after Rubout and a 7FH after
Underline. This will effectively redefine the underline key so that the unshifted
character is a rubout, and the shifted one is an underline. Escape, tab, and carriage
return can also be redefined, but you will rarely want to. If you wish to redefine
any other keys, you will have to read the next chapter. (Maybe you always mix up
'q' and 'w', and figure its easier to fix your keyboard than to learn to type.)

Chapter VII
INTERFACE GUIDE

GENERATING CUSTOM VERSIONS OF PMATE

If you really want to mess with PMATE, and you know some B080 assembly
language, then this chapter's for you. A module called IOPATCH.ASM contains the
tables and code which interface PMATE to your keyboard and display. The
configuration program CONPMATE just modifies the same parameters shown here,
but by working with IOPATCH, you have even more control.

After you've modified IOPATCH to your needs, and assembled (getting a HEX
output file), here's how to include it in PMATE. Use the CP/M dynamic debugger to
load PMATE.COM and IOPATCH.HEX. Just type 'DDT PMATE.COM'. When 'DDT’
responds with its prompt '-', you should enter the command 'IIOPATCH.HEX' , and
then 'R'. 'I' sets up IOPATCH.HEX as an input filé, and then 'R’ reads it, overlaying
the appropriate portions of PMATE.

There are now two possible ways to save this new version. One is to hit
control-C, and return to CP/M, then use the SAVE command and your new creation
will be preserved. The preferred method is to now use the debugger to run PMATE
('G100" will do it). If it seems to be working okay, use the 'XD' command to create
a duplicate.

OVERVIEY OF MEMORY ORCANIZATION

Like all CP/M command files, PMATE begins at location 100H (see fig. 6-1).
Location 100H just contains a jump to the starting address of PMATE. \hat follows
is a table of vectors and constants, which you can modify or make use of. Next
comes the main body of object code. Finally, the last part of the code includes the

~__Instant Command table, and the user initialization routine. This entire portion.can

be'éverlé_yed by user written or medified software, extending as far as you wish.
At the end of the executable code (and still a part of the PMATE.COM file) is
the permanent macro area, which you can define to be as large as you wish. Then

‘the remaining RAM is devoted to text buffers for the editing process.

TABLE OF VECTORS AND POINTERS

There are several sections of PMATE which the user can interface to. They
are all contained in IOPATCH, and are explained below. The first is a table of
vectors, constants, and variables, starting at location 100H. Here's the first part
consisting of vectors and pointers:

ORG 100H

JMPINIT JANITIALIZE

JMP RESET ;RESET :

JMP PINIT ;PARTIAL INITIALIZATION
UINITL: JMP UINIT JUSER INITIALIZATION
UEXIT: RET JUSER EXIT ROUTINE

NOP

NOP

Vii-2 PMATE USER MANUAL AND INTERFACE GUIDE
CPM BIOS
CPM BDOS
CORMX
TEXT BUFFERS
CORBEGC
PERMANENT MACRO AREA
MACBEGC/EDEND
INSTANT COMMANDS AND USER ROUTINES
WINIT . . et i
MAIN BODY OF PMATE
TABLE OF VECTORS AND CONSTANTS
0100
CPM BUFFERS AND POINTERS
0000 o -
Fig 6-1. PMATE memory allocation.
Cl: JMP O ;CONSOLE INPUT VECTOR
CSTS: JMP O ;CONSCLE STATUS VECTOR
COouUT: JMP O ;CONSOLE OUTPUT VECTOR
LO: JMPO- ;LIST VECTOR
LSTS: DB 0,0,0 ;LIST STATUS VECTOR
MONTR: RET ;MONITOR VECTOR
NOP
NOP
KEYTAB: DW KEYTB ;POINTER TO INSTANT COMMAND
;KEYSTROKE TABLE)
ICSIZ: D8 3 ;SIZE OF SLOT IN TABLE
UINST: DW UINCM ;POINTER TO TABLE OF USER DEFINED
JINSTANT COMMANDS ’
UINSZ: D8 2 ;NUMBER OF ENTRIES IN TABLE
UCOM: DW USRCOM ;POINTER TO USER COMMAND EXECUTED

;BEFORE INPUT OF NEXT COMMAND

The first 3 entries are jumps to PMATE restart locations. INIT is the main
initialization entry point. It clears all the text buffers, and opens input/output files
defined in the command line. If you interrupt PMATE, and then try to restart by
going to location 100, you may get some strange files being opened because
nonsense has been written into the command line buffer at location 80H - just 'XK'

them.

INTERFACE CUIDE vii-3

Jumping to RESET is equivalent to striking a control-C while in PMATE. The
command area is cleared, the text buffer is left unchanged, and PMATE returns in
Command Mode. After an 'XM' command gets you to the system monitor, this is the
place to return.

PINIT is the partial initialization address. This is useful if there is an already
existing block of text in memory which you wish to edit. Set CORBEG to the first
character of the block, and put a null (0) at the end of the block. Make sure there
are no nulls anywhere in between. Then enter at PINIT, and this block of text
should be in your edit buffer. This can also be useful in recovering from major
catastrophies. For example, if you 'XK' your edit buffer, it appears to be wiped

ut, but most of it will usually be sitting in memory - just a few nulls got moved
down to make the buffer look empty. If you can examine memory with your system

monitor, you should be able to find most of it (look following the CORBEGC). Then
set CORBEC to point to the beginning of usable text, and jl..ll'np to PINIT through
location 106H.

The next two locations are vectors into user written routines. UINITL jumps
to a routine which is called from INIT (see UINIT description below) and UEXIT is
called just before returning to CP/M from an 'XH' command (not normally needed,
but provided for your special requirements). Next come 5 vectors to system 1/0
routines. These routines can be user written - however, they are compatible with
CP/M BIOS routines, and can just vector there. In fact, the addressess of these
routines can be computed at user initialization time (see UINIT), so that you don't
need to generate a new version of PMATE to run in a CP/M system configured for a
different memory size. The responsibilities of these routines are as follows:

Cl Get a character from the console, and put it in register A. If there is
no character currently available, wait until there is. _

CSTS Check to see if there is a character presently available from the
console. If there is, return OFFH in register A, otherwise, return 0.

CcouT Output the character in register C to the console output device. When

"configured for a memory mapped display, PMATE calls this routine only
to ring a beil. \Yhen configured for a serial terminal, PMATE sends its
display output through here.

LO Output the character in register C to the listing device. This is the
place that 'XT' typeouts are sent. -
LSTS Return lister status == not currently implemented.

The final jump vector at MONTR points to the system monitor. An 'XM'
command gets you there. If you have no system monitor (and you don't want to
tack cne on at the end of PMATE), just make this a RET.

KEYTAB contains the address of the instant command table, so that you can
modify it if your keyboard has special cursor keys. This is discussed later (as is
ICSI1Z, UINST, and UINSZ). UCOM points to an optional PMATE command string
(ending in 0) which is executed every time PMATE is preparing to input another
command string while in Command Mode. Use this for your special customizing
requirements.

-4 PMATE USER MANUAL AND INTERFACE GUIDE

DISPLAY PARAMETERS

Next come some display constants. Most of these can be set by CONPMATE
and were explained in the previous chapter - so make sure you've read that.

TDPSZ: OB 21 JNUMBER OF LINES IN TEXT SECTION
;OF DISPLAY = DPSZ-3
DPSZ: D8 24 ;TOTAL NUMBER OF LINES IN VIDEO DISPLAY
CHRLN: D8 80 SNUMBER OF CHARACTERS IN EACH LINE
SHFTCT: DB 1 JSIZE OF SHIFT WHEN CURSOR MOVES
;OFF RICGHT SIDE OF SCREEN
SCRLCT: DB2 MAXIMUM NUMBER OF LINES TO SCROLL USING
SJINSERT AND DELETE LINE CAPABILITIES
WANDER: DB 4 ;NUMBER OF LINES FROM CENTER CURSOR
. ;CAN WANDER
CONTXT: DB 3 JNUMBER OF LINES REDRAWN IN FOREGROUND
NOLSTC: DBO ;OFFH IF LAST CHARACTER OF DISPLAY
* ;MUST BE SUPPRESSED
DOWN: OB OFFH ;IF SET TO OFFH, DISPLAY PROCEEDS FROM
;TOP TO BOTTOM
EVRYLN: D8O ;IF SET TO OFFH, DISPLAY CURSOR
;BEFORE DRAWING EACH LINE
BLNKCT: DB 25 ;CURSOR BLINK COUNT -- 0 FOR NO BLINK
ICNRIC: DB 3 ;IGNORE INSTANT COMMANDS IF DEEPER

~;THAN THIS IN BUFFER

DPSZ holds the total number of lines on your display. Make sure TOPSZ (the
size of the text area on the display) is exactly three smaller than DPSZ. Of the
remaining constants above, the only one not described in the
CONFIGURATION chapter is SCRLCT. If you are using a serial terminal which
supports insert and delete line, PMATE will use that capability to scroll anywhere up
to SCRLCT lines - if it is necessary to scroll further, it will simply redraw the entire
display. CONPMATE sets SCRLCT to one-third the total size of the display. Note
that the flags DOWN and NOLSTC must take the values 0 or =1 (which must be OFFH
on many assembiers).

MEMORY MAPPED DISPLAYS

PUMATE uses the same memory area for different parameters, depending upon
whether you have a terminal, or a memory mapped screen. Notice that in
IOPATCH, there is a constant, MEMMAP, which is set to -1 for a memory mapped
display, or 0 for a serial display. This controls the conditional assembly of the
appropriate code. This is the module for a memory mapped display:

MMAP: D8 OFFH ;SET TO OFFH FOR MEMORY MAPPED DISPLAY
VRAMO: Dw OE000H ;BEGINNING OF VIDEG RAM

LSPAC: DW 128 ;SPACE BETWEEN LINES OF VIDEO RAM
DSPCUR: ;ROUTINE TO DISPLAY CURSOR AT MEMORY

;POINTED TO BY HL
MOV AM

INTERFACE GUIDE VII-5

ORI 80H
MOV M,A
RET
DS 16 ;271 BYTES TOTAL
CLRCUR: JROUTINE TO CLEAR CURSOR FROM MEMORY
;POINTED TO BY HL
MOV A M
ANI 7FH
MOV M,A
RET
DS 16 ;271 BYTES TOTAL
DSPCHR: JROUTINE TO STORE CHAR IN REG A IN
;VIDEO MEMORY POINTED TO BY DE
STAXD
RET
DS 19 ;271 BYTES TOTAL

These all correspond to entries in the .CNF configuration files, and have
already been explained. DSPCUR, CLRCUR, AND DSPCHR must all be exactly 21
" bytes in length (so PMATE knows where to find them) - so adjust the DS's
accordingiy. '

VIDEOQ TERMINALS

For video terminals, set MEMMAP to 0 in IOPATCH, and the following will be
assembled:

MMAP: DB 0 ;0 FOR MEMORY MAPPED DISPLAY
;VIDEO CODES - SEQUENCES END IN 0, THEN NEXT BYTE .
:1S NUMBER OF MILLISECONDS TO DELAY
VIDCLS: DB 26,0,0,0,0,0,0,0,0 ;SEQUENCE OF BYTES TO CLEAR SCREEN
VIDCLL: DB 27,'7",0,0,0,0,0,0,0 ;CLEAR TO END OF LINE

;CURSOR ADDRESSING

VIDASC: DB O ;ASCI FLAG = =1 FOR ASCII
VIDXY: DBO ;XY FLAG -- 0 FOR Y COORDINATE FIRST
;=1 FOR X FIRST
VIDOF1: DB 32 ;OFFSET OF FIRST COORDINATE
VIDOF2: DB 32 ;OFFSET OF SECOND COORDINATE
VIDCUL: LEAD IN
DB 27,':=',0,0,0,0,0,0,0
VIDCUM: ;MIDDLE
D8 0,0,0,0,0,0,0,0,0
VIDCUE: SEND

08 0,5,0,0,0,0,0,0,

VII-6 " PMATE USER MANUAL AND INTERFACE GUIDE

VIDIL: : . ;SEQUENCE TO INSERT LINE -- END IN 0
D8 27,'E',0,10,0,0,0,0,0
VIDDL: ;SEQUENCE TO DELETE LINE -- END IN 0

D8 27,'R',0,10,0,0,0,0,0

All of the above sequences must be exactly 9 bytes long. Each sequence
includes up to 7 characters which are sent to the display, followed by a null,
followed by any delay required after sending this sequence. This delay is in
milliseconds for a 4MHZ CPU. In the example above, a 10msec delay is inserted
after insert and delete line, a 5 msec delay after the entire cursor addressing
sequence, and no delay after clearing the screen or clearing to end of line. The
cursor addressing sequences are exactly as described in the previous chapter.
VIDCUL is the lead-in sequence. VIDCUM is sent between the X and the Y
coordinates, and then VIDCUE is sent. It is possible to insert a delay after each of
these sequences, but one should only be needed at the very end. VIDASC is set to -
1 (OFFH) if the cursor positioning information must be sent out as an ASCII string
(e.g. '2','3"), rather than as one binary byte. VIDXY indicates whether the row or
column information is sent out first, and VIDOF1 and 2 hold offsets. If the offsets
are different, make sure VIDOF1 holds the offset of the first coordinate sent out, be
that X or Y.

MORE
Z80: DB OFFH ;OFFH IF Z-80, O IF 8080
DELAY: DB 100 ;DELAY TIME FOR QD COMMAND
ABRT: DB 'C'-40H ;ABORT CHARACTER
ICRFL: DB 0 ;OFFH IF CR'S AND TABS ARE TO BE
: ;INSERTED IN OVERTYPE
CORBEG: ;FIRST AVAILABLE CORE LOCATION
; DW EDEND+MACSZ+1
CORMX: DWO ;LAST AVAILABLE CORE LOCATION
GCBGCSZ: DW -1000 ;NEGATIVE MINIMUM SIZE OF GARBAGE AREA
TXTEND: DWO ;LAST LOCATION AVAILABLE FOR TEXT
;REST IS RESERVED FOR GARBAGE
MACBEG: DW EDEND ;FIRST AVAILABLE LOCATION
;FOR PERMANENT MACROS
MACEND: ;LAST AVAILABLE LOCATION
;FOR PERMANENT MACROS
DW EDEND+MACSZ
;THE FOLLOWING VARIABLES CAN BE SET BY THE Q COMMANDS
UVARO: DW 0 ;USER DEFINABLE VARIABLES

UVART: DW 0
UVAR2: DW O
UVAR3: Dw 0
UVAR4: DW 0O
UVARS: DwW 0
UVARG: DW 0
UVARTZ: Dw 2

INTERFACE CUIDE Vii-7

UVARS: DWW 0
UVAR9: Dw 0O

SHFCHR: DB 0 ;UPPER OR LOWER CASE SHIFT CHARACTER -- QS
CNTCHR: DB '® ;CONTROL CHARACTER -- QC
PAGSZ: DWO | ;NUMBER OF LINES IN PAGE -- QP
PAGSEP: DB 'L'-40H :PAGE SEPARATOR -- QF
SCRLNS: DW 6 ;NUMBER OF LINES TO SCROLL

JIN INSTANT COMMANDS -- QL
BKUFL: DB OFFH ;0FFH IF BACKUPS ARE TO BE MADE -~ QK
NAAX: DB 250 IMAXIMUM ALLOWED X CURSOR POSITION -- QZ
CRCHR: D8 '<' ;DISPLAYED FOR END OF PARAGRAPH

The variable 'Z80' may be set to OFFH if the host computer is Z-80 based.
PMATE will then use the 7-80 block move instructions to speed up text insertions
and deletions. The 'QD’ command delays for a time proportional to the number
stored in 'DELAY'. If you wish to make that delay an exact time interval for your
hardware, you may play with this number. The character in 'ABRT' is the abort
character (normally control-C). If you change the abort character in the instant
command table, you must also change it here. Set ICRFL to =1 if you wish carriage
returns and tabs to be inserted while in overtype mode, rather than just moving the
Cursor. .

The next 6 words help define PMATE's memory allocation. Normally, the
permanent macro area begins immediately after the end of the editor (defined by
EDEND), and is as large as you want it. Any remaining memory space up to the
BDOS (resident part of CP/M which must remain in RAM) is usually allocated to
PMATE. You can do this 'by hand' - just put the address of the last available
memory location in CORMX. Usually, however, this is done by 'UINIT' (user
initialization routine) so that all available memory is automatically gobbled up.
UINIT can also initialize TXTEND. This is the highest address of memory allocated
te text buffers. Any memory between here and CORMX is reserved for the garbage
stack. Fill in the negative of the amount of space you wish reserved for garbage in
GBGSZ. See the 'User iInitialization' section for more details. :

The ten variables, UVARO through UVAR9 can be set by a 'Q' command. They
can be used to control your keyboard, CRT, or printer drivers, (or anything else you
wish to control with PMATE commands). For instance, if you had 3 different
printers connected to your system, UVARO might control which printer the next 'XT'
output would go to.

The next 7 bytes just initialize paramaters which can be changed with the 'Q’

commands shown (see COMPLETE COMMAND SET chapter). CRCHR holds the
character which is displayed at the end of a paragraph while in Format Mode.

USER INITIALIZATION

The user initialization routine is entered after PMATE is started at its main
initialization point (100H). You should use this routine to initialize any display
hardware (some 'DMA' displays need a byte or two to initialize their mode)-

A routine to initialize the 1/0 vecters CONIN, CONST, CONOQUT, and LIST to
point to the corresponding BI1OS routines in CP/M is given below. This routine also

NVIE-8 PMATE USER MAMUAL AND INTERFACE GUIDE

sets CORMN, appropriating all available memory for PMATE. The B1OS jump table is
located by using the jump to the warm-boot vector normally stored beginning at
location COOOH. CORMKX is set using location 0Q06H, which CP/M sets up to point to
the beginning of the BOOS. The reserved 'garbage stack! area is allocated by using
GCBGSZ, and the result is stored in TXTEMND.

LHLD 06H :POINTER TO BEGINNING OF FDOS

DCX H

SHLD CORMX ~ LAST AVAILABLE CORE LOCATION ;
XCHG

LHLD GBGSZ SNEGATIVE OF SIZE ALLOWED
;FOR GARBAGE AREA

DAD D

SHLD TXTEND

LHLD 01H ;POINTER TO WARM BCOT VECTOR
LXI D,3

DAD D ;CONSOLE STATUS VECTOR

SHLD CSTS+1

DAD D

SHLD Cl1+1 ;CONSOLE IN VECTOR

DAD D

SHLD COUT#+1 ;CONSOLE OUT

DAD D

SHLD LO+1 ;LIST DEVICE

RET

THE INSTANT COMMAND TABLE

The instant command table allows you to define 1 or more keystrokes which
taken together cause any predefined (or user defined) command string to be
executed. The table provided in IOPATCH implements the default instant
commands. UINST, in the table of vectors and pointers, contains a pointer to this
table. ICSIZ contains the maximum number of codes needed for any command.
The first byte in each 'slot' gives the cammand number. These start at 128. if a
numoer of less than 128 is entered, this is treated as an ASC!l code, and not a
command (this can be used to implement translations - such as backspace=>del, or
9X to esc). The following character(s) in the slot are the keystrokes which
together execute the command (or are translated into the ASCIl code) in the first
byte. ICSIZ indicates how many bytes are needed here - fill in the remainder with
0's.

Here is a list of the predefined command codes. Further explanation of their
function is given in the preceding chapter.

128 -- Move to beginning of buffer, if there, move to end
129 -- Move to end of buffer

130 -~ Move cursor left

131 -~ Move cursor left one word

132 -- Move cursor right

133 -- Move cursor right one word

INTERFACE GUIDE V-9

134 -- Move up one line

135 -- Move up 6 lines

136 -- Move down one line

137 -- Move down 6 lines

138 -~ Delete character

139 -- Kill line

140 -- Go to insert mode

141 -=- Edit command

142 -- r\bOl't

143 -~ Shift case :

144 -- Redraw and reformat display
145 -- Tag current cursor position
146 -~ Delete word forward

147 -- Delete word backward

148 -~ Pop garbage stack

149 -- Go to command mode

150 -~ Go to overtyne mode

151 -- Insert line

152 -~ Move cursor left (geometric)
153 -- Move cursor right (geometric)
154 -- Move cursor up (mixed)

155 -- Move cursor down (mixed)
156 -- Move block

157 == Get block

158 -- Move cursor up (geometric)
159 -- Move cursor down (geometric)
160 -- Move to top of buffer

161 -- Move cursor left (mixed)
162 -- Move cursor right (mixad)

- —_ - gy . - = yut. L —

Several sets of keystrokes can all enact the same command, and not all
- commands need be implemented. Add as many slots as you wish to the table, and
end the table with a byte of OFFH. If you change the size of a slot, make sure you
change all of them, and ICSIZ.) ’

You can add your own commands by using a command code starting at 128+64.
The pointer UINST contains the address of a table of user defined instant commands
- here called UINCM. This table is an index containing pointers to command strings
vou provide. The size of the table UINCM (i.e. the number of two byte entries)
must be stored in UINSZ. Command number 192 will execute the macro string
pointed to by the first entry in the table, while 193 refers to the second, etc.
IOPATCH contains, as an example, two added user commands. Use this facility to
customize your own PMATE, or to emulate other editors you are used to working
with. '

Appendix A
COMMAND SUMMARY

The following instant commands are keystrokes which are not entered into
the command or text buffers, but are executed immediately:

Cursor Motion:

A

<H

Y

2B

aUu

2

20

oP
Delete:

¢cD

eK -’

Sy

- eQ

Move to the beginning of the text buffer, and if already
there, move to the end

Move left one character

Move right one character

Move up one line

Move down one line

Move up multiple lines

Move down multiple lines

Move left one word

Move right one word

Delete the character at the cursor

Kill the line beginning at the cursor
Delete one word beginning at cursor
Delete one word backwards from cursor

Text movement and recovery:

eT

CE

(574

SR
Mode:

These characters
meanings:

ESC
TAB

DELETE/RUBOUT

Cal

Tag the current cursor location

Move block between tag and cursor to special buffer
GCet contents of special buffer to cursor location
Pop garbage stack, restoring last deleted item

Co to COMMAND MODE
Go to OVERTYPE MODE
Go to INSFRT MODE

Insert line

Abort any operation in progress, resettmg to command mode
Edit the command string .
Shift default case (useful for non-typewriter style
keyboards)

Redraw and reformat display

are not really instant commands, but they do have special

The escape key separates commands in command mode. Two
consecutive escapes execute the command.

The tab character in text posmons the following character
at the next tab stop. ,
The key marked ‘delete' or 'rubout' deletes the last
character entered. .

The up-arrow itself is ignored, but it shifts the next
character entered to a control character. Strike it twice to
enter an up-arrow.

Now come the real commands. When in Command Mode, these are entered into

PMATE USER MANMUAL AND INTEREACE GUIDE

the command buffer and then executed.

The following commands move the cursar:

L forward 1 line

+nlL forward 'n' lines

-nL backward 'n' lines

M,nM,-nM 'n' characters

W,nW,-n\Y 'n' words

P,nP,-nP 'n' paragraphs _

A to beginning of text buffer .
z to end of text buffer

The following commands delete characters:

D Delete character at cursor

nD Delete n characters, from cursor forward
-nD Delete n characters, frem cursor backwards
K,nK,=nK Deleate lines

The following commands insert text into the text buffer:

Istring Insert 'string' immediately after cursor

nl Insert character with ASCII cade 'n'

Rstring Overwrite text with 'string'

nR Overwrite charactar at cursor with ASCII code 'n’
n\ Insert number 'n' into the text

Search and change:

Sstring Search for next occurence of 'string’
nSstring Search forward for next occurence of 'string’, confining
search to 'n' lines

-Sstring Search backward for next occurence of 'string’

-nSstring Search backward for next occurence of 'string’, confining
- search to 'n' lines

Cstrng13strng2” . . Change next occurence of 'strogl’ to 'strng2’

nC,-C,-nC Search for 'strng1’ as in equivalent 'S’ command, then change

it to 'strng2’

Iteration and control:

i}label Jump if 'lI' is true to 'label’

if..] Execute expression in brackets only if 'l' is true

oo 5) Execute expression in first brackets if 'I' is true, otherwise
execute expression in second sat of brackets

n(..] Iterate expression in brackets 'n' times

[..N Iterate until 'I' is true

I~ Proceed to next iteration if 'lI' is true

L Exit enclosing iteration loop if 'I' is true

Some miscellaneous commands:

E Suppress errcr messages

nf Enter Format Mode, setting line width to 'n’

F Togzle in and out of Format Mode

Gstrng Get key from keybnard, giving user prompt "strng’

N Co into 'Insert Mede'

T Tag current cursor position

COMMAND SUMMARY A-3

Execute macro 'b'

Return early from macro if 'l' is true

Label this position in command with character "x'
Comment - ignore all characters until end of line
Enter trace mode

There are 10 numeric variables and a Number Stack for storing intermediate
results, and some commands to set them:

nVi
VA
nVAI
n

’

Set variable 'i' to value 'n'
Increment variable "i'

Add 'n' to variable 'i'
Push 'n' on number stack

The foilowing 'Q' commands perform miscellaneous functions, usually setting
some internal parameter:

nQA
QB
nQC
nQD
nQE
nQF
nQH
nQl
nQK
nQL
QMmC
QMG
nQO
nQP
nQR
nQsS
n(QX
nQY
'nQZ
nQ!
nQ-

nQm

Set the number of passed string arguments in a macro call
Ring the bel!

Set contral shift character to ASClI 'n'

Delay for a time proportio'lal to 'n'

Set type-out mode to 'n'.

Set p'age separator character to ASClI n'

Insert 'n' spaces at cursor posmon

Set input radix to '

Create .BAK files unless 'n"is 0

Set number of lines for ®U andd ©) commands to scroll
Copy to permanent macro area

GCet contents of permanent macro area

Set output radix to 'n’

Set page size to 'n'

Redraw screen == return any key struck as 2K

Set lower case shift character to ASCII 'n’

Move screen cursor to column 'n'

Allow cursor motion in 'free space' if n=0

Don't allow cursor to move past® column 'n'.

Store 'n' in memory at location pomted to by variable 9.
Display numbers as positive only if n=

Set user variable 'm' (0-9) to 'n' - these 10 user variables
are available to user written 1/0 drivers.

The following 'X' commands generally perform disk 1/0. They begin with an
'X' so that they are hard to accidentally execute, as they cause major upheaval.

XA
nXA
XW
nXW
XR
nXR
XE

X)

XF
XK
XC

Append next page of input file

Append next 'n' pages of input file

Write next page to output file

Write next 'n' pages to output file :

Write one page to output file, read one from input file
Do this 'n' times

End of editing - write out all remaining text from buffer and
input file

Do XE, then reopen file

Define new input and output files

Delete output file and scratch edit buffer

Close input and output files as they are.

A-4 PMATE USER MANUAL AND INTERFACE CUIDE

XH
Xlifile
nXIfile
nXI
XOfile
nXOfile
XM
XDrile

XSd

XT
nXT
XL
XLfile
XXfile

Return to CPM

Input entire file 'file’

Input n pages of 'file' -

Input n pages of last named auxilliary input file

Output entire edit buffer to 'file'.

Output 'n' lines, beginning at cursor, to *file’.

Go to monitor

Create new version of PMATE, including any new changes, or
permanent macros - new version called 'file.COM'

Log' in disk drive 'd' ¢'d' is A,B,C, etc.). KXlso reset disk
system.

Type entire text buffer on printer

Type 'n' lines, beginning at cursor

List disk directory at cursor

List just those files in directory which match 'file'

Delete 'file' from disk

The following '8' cormmands act on buffers 0-9, or the text buffer 'T' ~buffer 0
is assumed, unless the buffer number is placed between the two characters of the

command.
BK

BG

nBC

nBD

nBM

n8N

BE

Tab stop commands:
nYD
nYS
YK
nYE
YF
YR
nYl

Kill the entire contents of the specified buffer
Get the contents of the specified buffer

Copy 'n' lines to the specified buffer

Append 'n' lines to the specified buffer

Move 'n' lines to the specified buffer

Append move 'n' lines to the specified buffer
Edit the specified buffer

Delete tab stop at position 'n'
Set a tab stop at position 'n'
Kill all tab stops

- Set a tab stop every 'n' spaces

fill tabs with appropriate number of spaces
Replace spaces with tabs where possible
Set indent at column n

Numeric arguments (which have been referred to as 'n') can in fact be complex

expressions, involving
i

.%.—\

I vA

up to 15 levels of parenthesis, and the following operations:

Addition
Subtracticn
Multiplication
Division

Logical or

Logical and

Logical complement
Less than

Greater than

Equal

In addition to numbers, the following expressions can be used with the above
operations to form numeric arguments

a

The ASC!I value of character 'a’

2i

aA

ac

QE
aFfile
aG
2Hstrng

al
an

gl

aM
a0
2P
aR
as

aT
aVv
aw
aX
aY
3l

22

COMMAND SUMMARY A-5

The value of numeric variable 'i’

The numeric argument when macro was called

The character number

The value of the error flag

-1 if 'file' exists on the current directory, 0 if it doesn't

The length of the last referenced string

Compare 'strng' to text at cursor - return 0 if equal,
otherwise 1 or -1, depending upon which string is greater.
The current input page

The ASCIl value of the key struck after a 'G' or QR
command

The line number

The amount of memory remaining

The current output page

The absolute memory address to which the cursor is pointing
The remainder of the last division

Pop the number stack -- get value of top

The ASCI1 value of the character pointed to by the cursor
The current mode

The current right margin

The current column

The current left margin

The column of the next tab stop

The byte pointed to by variable 9 _
Move cursor to tagged position, and get difference between
tagged position and current position as argument - can be
used with any character or line oriented command to operate
on a block of text

	Chapter I is an introduction for beginners.
	Chapter II starts in with basic concepts to lay the foundation for a more thorough understanding of PMATE
	Chapter III explains some more advanced concepts and commands
	Chapter IV gives the complete command set.
	Chapter V provides macro examples
	Chapter VI provides configuration information
	Chapter VII provides further configuration inform ation for those who would like to interface w ith PMATE in assembly language.
	A ppendix A is a summary of PMATE commands - a useful reference.

