
n\iTERI\iAT8Of\IAL \
DIVISION OF L/F TECHNOLOGIES INC.

1.4

MPLEMENTOR'S
GUIDE

TurboDOS 1.4

Z80 Implementor's Guide

June 1984

Copyright 1984

Software 2000, Inc.
1127 Hetrick Avenue

Arroyo Grande, CA 93420
U.S.A.

All rights reserved.

TurboDOSR is a registered trademark of Software 2000, Inc.

TurboOOS 1.4 Z80
Implementor's Guide

NOTICES

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Copyright Notice Copyright 1984 by Software 2000, Inc. All
rights reserved. No part of this publication
may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated
into any language or computer language, in
any form or by any means, electronic, mecha-
nical, magnetic, optical, chemical, manual or
otherwise, without the prior written permis-
sion of Software 2000, Inc., 1127 Hetrick
Avenue, Arroyo Grande, California 93420,
U.S.A.

Trademark Notice TurboDOS is a registered trademark of Soft-
ware 2000, Inc., and has been registered in
the united States and in most major countries
of the free world.

CP/M, CP/M Plus, and
Digital Research.

MP/M are trademarks of

Disclaimer Software 2000, Inc., makes no representations
or warranties with respect to the contents of
this publication, and specifically disclaims
any implied warranties of merchantability or
fitness for any particular purpose. Software
2000, Inc., shall under no circumstances be
liable for consequential damages or related
expenses, even if it has been notified of the
possibility of such damages.

Software 2000, Inc., reserves the right to
revise this publication from time to time
without obligation to notify any person of
such revision.

First Edition: June 1984

TurboDOS 1.4 Z80
Implementor's Guide

ABOUT THIS GDIDE

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ABOUT THIS GUIDE

Purpose We've designed this Z8Q I m p 1 e me n t o r 's Guide
to provide the information you need to know
in order to generate various TurboDOS config-
urations for Z80-based microcomputers, and to
write the driver modules for various periph-
eral devices. This document describes the
modular architecture and internal programming
conventions of TurboDOS, and explains the
procedures for system generation, serializa-
tion, and distribution. It also provides
detailed interface specifications for hard-
ware-dependent driver modules, and includes
assembler source listings of sample drivers.

Assumptions In writing this guide, we've assumed that you
are an OEM, dealer, or sophisticated TurboDOS
user, knowledgable in Z80-based microcomputer
hardware and assembly-language programming.
We've also assumed you have rea-d both the
User's Guide and the Z80 Programmer's Guide.
and are therefore familiar with the commands,
external features, and internal functions of
Z80 TurboDOS.

Organization This guide starts with a section that de-
scribes the architecture of TurboDOS. It
explains the function of each internal module
of the operating system, and how these
modules may be combined to create the various
configurations of TurboDOS.

The next section explains the system genera-
tion procedure in detail, and describes each
TurboDOS parameter which can be modified
during system generation.

The third section of this guide explains the
TurboDOS distribution procedure, including
licensing, serialization, and support.

TurboDOS 1.4 Z80
Implementor's Guide

ABOUT THIS GUIDE
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Organization
(Continued)

The fourth section is devoted to an in-depth
discussion of internal p rogramming conven-
t ions , a i m e d a t t h e p r o g r a m m e r w r i t i n g
drivers or resident processes for TurboDOS.

The f i f t h section presents fo rmal interface
specif icat ions for implement ing ha rdware -
dependent driver modules.

This guide concludes with a large appendix
c o n t a i n i n g a s semble r s o u r c e listings of
actual driver modules. The sample dr ivers
cover a wide range of peripheral devices, and
prov ide an excel lent s t a r t i ng point for
programmers involved in driver development.

Related Documents In add i t i on to this gu ide , you m i g h t be
interested in four other related documents:

. TurboDQS 1.4 User's Guide

. TurboDOS L.4 Z80 Programmer 's Guide

. TurboDQS 1̂ 4. 8056 Programmer's Guide

. TurboDQS 1.4 8086 Implementor' s Guide

read the first two volumes before
The User 's Guide

You should
start into this document,
introduces the external features and facili-
ties of TurboDOS, and describes each TurboDOS
command. The Z8Q Programmer's Guide explains
the internal workings of Z80 TurboDOS, and
describes each operating system func t ion in
detail.

You'll need the 8086 guides if you are pro-
g r a m m i n g or con f igu r ing a TurboDOS system
that uses 8086-family microprocessors.

TurboDOS 1.4 Z80
Implementor's Guide

TABLE OF CONTENTS

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ARCHITECTURE Nodule Hierarchy 1-1
Process Level 1-1
Kernel Level 1-2
Driver Level 1-2
TurboDOS Loader 1-2
Module Flow Diagram 1-3

Process Nodules 1-4
Kernel Modules 1-5
Driver Modules 1-8
Standard Packages 1-8
Package Contents Table 1-9
Additional Modules 1-10

Memory Required 1-11
Other Languages 1-12

SYSTEM GENERATION Introduction 2-1
GEN Command 2-2
Patch Points 2-7
Network Operation 2-20

Network Model 2-20
Network Tables 2-20
Message Forwarding 2-22

A Complex Example 2-24
Sysgen Procedure 2-26

DISTRIBUTION TurboDOS Licensing 3-1
Legal Protection 3-1
User Obligations 3-2
Dealer Obligations 3-2
Distributor Obligations 3-3
Serialization 3-4
Technical Support 3-5

SERIAL Command 3-6
PACKAGE Command 3-8
Distribution Procedure 3-10

TurboDOS 1.4 Z80
Implementor's Guide

TABLE OF CONTENTS
(Continued)

Copyright 1984 by Software 2000, Inc,
All rights reserved.

CODING CONVENTIONS Assembler Notes 4-1
Undefined External References 4-2
Memory Allocation 4-3
List Processing 4-4
Task Dispatching 4-5
Interrupt Service 4-7
Poll Routines 4-8
Mutual Exclusion 4-9
Sample Driver Dsing Interrupts 4-10
Sample Driver Using Polling 4-11
Special Segments 4-12
7INIT? Segment 4-12
?PAGE? Segment 4-12
7BANK? Segment 4-12

Inter-Process Messages 4-13
Console Routines 4-14
Sign-On Message 4-14
Resident Process 4-15
user-Defined Function 4-16

DRIVER INTERFACE General Notes 5-1
Initialization 5-2
Console Driver 5-3
Printer Driver 5-5
Disk Driver 5-6
Bank-Select Driver 5-9
Network Driver 5-10
Comm Driver 5-14
Clock Driver 5-15
Bootstrap 5-17

APPENDIX Sample Driver Source Listings . . A-l

TurboDOS 1.4 Z80 ARCHITECTURE
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved. - -

ARCHITECTURE This section introduces you to the internal
architecture of the TurboDOS operating sys-
tem. TurboDOS is highly modular, consisting
of more than forty separate functional
modules distributed in relocatable form.
These modules are "building blocks" that you
can combine in various ways to produce a
family of compatible operating systems. This
section describes the modules in detail, and
describes how to combine them in various
configurations.

Possible TurboDOS configurations include:

. single-user without spooling

. single-user with spooling

. network master

. simple network slave (no local disks)

. complex network slave (with local disks)

Numerous subtle variations are possible in
each of these categories.

Module Hierarchy The diagram on page 1-3 illustrates how the
functional modules of TurboDOS interact. As
the diagram shows, the architecture of Turbo-
DOS can be viewed as a three-level hierarchy.

Process Level The highest level of the hierarchy is the
process level. TurboDOS can support many
concurrent processes at this level. There is
one active process that supports the local
user who is executing commands and programs
in the local TPA. There are also processes
to support users running on other computers
and making requests of the local computer
over the network. There are processes to
handle background printing (de-spooling) on
local printers. Finally, there is a process
that periodically causes disk buffers to be
written out to disk.

1-1

TurboDOS 1.4 Z80
Implementor's Guide

ARCHITECTURE

Module Hierarchy
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Level The intermediate level of the hierarchy is
the kernel level. The kernel supports the
various C-functions and T-functions, and -*•
controls the sharing of computer resources
such as processor time, memory, peripheral
devices, and disk files. Processes make
requests of the kernel through the entrypoint
module OSNTRY, which decodes each C-function
and T-function by number and invokes the
appropriate kernel module.

Driver Level The lowest level of the hierarchy is the
driver JLe_v_gJL, and contains all the device-
dependent drivers necessary to interface
TurboDOS to the particular hardware being
used. Drivers must be provided for all peri-
pherals, including console, printers, disks,
communications channels, and network inter-
face. Drivers are also required for the
real-time clock (or other periodic interrupt
source), and for bank-switched memory (if
applicable).

TurboDOS is designed to interface with almost
any kind of peripheral hardware. It operates
most efficiently with interrupt-driven, DMA-
type interfaces, but can also work fine using
polled and programmed-I/0 devices.

TurboDOS Loader The TurboDOS loader OSLOAD.COM is a program
containing an abbreviated version of the -'
kernel and drivers. Its purpose is to load
the full TurboDOS operating system from a
disk file (OSMASTER.SYS) into memory at each
system cold-start.

1-2

TurboDOS 1.4 Z80
Implementor's Guide

ARCHITECTURE

Module Hierarchy
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

TurboDOS Module Hierarchy

Process Level

Loader
OSLOAD
LDRMSG

Despoil LC:L Us r KLet_ Svc B.u£f_er_s
DSPOOL LCLUSR NETSVC FLUSHR

LCLMSG NETTBL
LCLTBL NETFWD
CMDINT
AUTLOD
SGLUSR
AUTLOG
SUBMIT

Kernel Level
P.egQde
OSNTRY

BNKMGR NONFIL
.File _
FILMGR

! ! i
Reg _.,-Cl_Q-cX- Support

NETMGR RTCMGR DSPCHR
BNKI

Dri^

IEQ

Comm Ch
COMMGR

/er Level
1

Comm Ch
COMDRV

CPMSUP
MPMSUP
QUEMGR

Printer
LSTMGR
LSTTBL
SPOOLR
SPLMSG

liSJT.
LSTDRA

1
Console
CONMGR
CONTBL
DOMGR
INPLN

1
-_ _ i __-..

1
1

CONDRA

FILSUP
FILCOM
FILLOK
FFOMGR
DRVLOK
FASLOD
NORLOD

1
Record
BUFMGR
DSKMGR
DSKTBL

1
k__ _ i ___

1
1

Disk
DSKDRA

NETI
MSGI
NET1]
NETI

Net\
CKTI

IEQ
nHT
CBL
,OD

/or k Cli

DSPSGL
MEMMGR
COMSUB

SYS1«IT

DRA RTCDRV HDWNIT
Bank LSTDRB
SELBNK etc.

or DSKDRB
CONREM etc.

CKTDRB or
etc. RTCNUL

1-3

Tu r bo DO S 1.4 Z80
Implementor's Guide

ARCHITECTURE

Process Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Process Nodules Module Function

LCLUSR Responsible for supporting local
user's TPA activities.

LCLMSG Contains all 0/S error messages.

LCLTBL Local user option table.

CMDINT Command interpreter, processes
commands from local user.

AUTLOD Autoload routine which processes
COLDSTRT.AÜT and WARMSTRT.AÜT.

SGLUSR Routine to flush/free disk buf-
fers at each console input. Use
for single-user configurations
instead of FLUSHR.

AUTLOG Automatic log-on routine. Used
when full log-on security is not
desired. See AUTUSR patch point.

SUBMIT Routine to emulate CP/M proces-
sing of $$$.SUB files. (Use is
not recommended.)

NETSVC Services network requests from
other processors on the network.

NETTBL Tables to define local network
topology, used by NETSVC+NETREQ.

NETFWD Manages network message forward-
ing. Requires NETREQ+NETSVC.

DSPOOL Processes background printing.

FLUSHR Periodically flushes disk buf-
fers. Use for network master
configuration instead of SGLUSR.

1-4

TurboDOS 1.4 Z80
Implementor's Guide

ARCHITECTURE

Kernel Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules

OSNTRY Kernel entrypoint module which
decodes each C-function and
T-function by number and invokes
the appropriate kernel module.

FILMGR File manager responsible for
requests involving local files.

FILSUP Support routines for FILMGR.

FILCOM Processes common file requests
always processed locally.

FILLOK File- and record-level interlock
routines called by FILMGR.

FFOMGR FIFO support, called by FILLOK.

DRVLOK Drive interlock routines.

FASLOD Program loader incorporating an
optimizer for fastest loading.

NORLOD Unoptimized program loader, an
alternative to FASLOD.

BUFMGR Buffer manager called by FILMGR.
Maintains pool of disk buffers
used to speed local file access.

DSKMGR Disk manager responsible for
physical access to local disks,
called by BUFMGR and FASLOD.

DSKTBL Table defining drives A-P as
local or remote disk drives.

NONFIL Processes non-file functions.

COMMGR Processes comm-channel funct's.

1-5

TurboDOS 1.4 Z80
Implementor's Guide

ARCHITECTURE

Kernel Modules
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules
(Continued)

Module I

CPMSUP Processes C-functions 7, 8, 24,
28, 29, 31, 37, 107 (optional).

MPMSUP Processes C-functions 141-143,
153, 160, 161 (optional).

QUEMGR Emulates MP/M queues, supports
C-functions 134-140 (optional).
Requires MPMSUP.

CONMGR Responsible for console I/O.

CONTBL Links CONMGR to console driver.

DOMGR Responsible for do-files.

INPLN Console input line editor used
by CMDINT and C-function 10.

LSTMGR Responsible for printer output.

LSTTBL Table defining printers A-P and
queues A-P as local or remote.

SPOOLR Print spooler which diverts
print output to a spool file
when spooling is activated.
Also handles direct printing to
remote printers.

NETREQ Responsible for issuing network
request messages for all func-
tions not processed locally.

MSGFMT Network message format table
used by NETREQ.

NETMGR Network message routing routine
used by NETSVC and NETREQ.

1-6

TurboDOS 1.4 Z80
Implementoc's Guide

ARCHITECTURE

Kernel Modules
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules
(Continued)

Jftodule I

RTCMGR

NETLOD

BNKMGR

BNKREQ

DSPCHR

DSPSGL

Real-time clock manager keeps
system date and time.

Loads programs over the network.

Responsible for bank-switching
in banked-memory systems.

Alternative to NETLOD for use in
banked-memory systems.

Multi-task dispatcher which con-
trols sharing of the local pro-
cessor among multiple processes.

Null dispatcher used as alterna-
tive to DSPCHR when only one
process is required (OSLOAD.COM
and single-user w/o spooling).

Memory manager responsible for
dynamic allocation of memory.

Common subroutines used in all
configurations.

System initialization routine
executed at system cold-start.

Null real-time clock driver,
used in configurations where
there is no periodic interrupt
source.

CONREM Remote console driver for net-
work master to support MASTER
command.

PATCH 128 bytes of zeroes, may be in-
cluded to provide patch area.

MEMMGR

COMSUB

SYSNIT

RTCNUL

1-7

TurboDOS 1.4 Z80
Implementor's Guide

ARCHITECTURE

Driver Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Driver Modules

Standard Packages

CONDR@ Console I/O driver. <>.>

LSTDR@ Printer output driver(s).

DSKDR@ Disk driver(s).

CKTDR@ Network circuit driver(s).

COMDRV Communications channel driver.

RTCDRV Real-time clock driver.

SELBNK Bank-select driver for banked-
memory systems.

HDWNIT Cold-start initialization for
all hardware-dependent drivers.

To s impl i fy the system generat ion process,
the most commonly-used combinations of Turbo-
DOS modules are pre-packaged into the follow-
ing standard configurations:

Package Jte.scjLiD.tion

STDLOADR cold-start loader
STDSINGL single-user without spooling
STDSPOOL single-user with spooling
STDMASTR network master
STDSLAVE simple slave w/o local disks
STDSLAVX complex slave with local disks

The contents of each standard package is
detailed in the matrix on the facing page.
Most TurboDOS requirements can be satisfied
by linking the appropriate standard package
together with a few additional optional
modules plus the requisite driver modules.

1-8

TurboDOS 1.4 Z80
Implementor's Guide

ARCHITECTURE

Standard Packages
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Module
AUTLOD
AUTLOG
BNKMGR
BNKREQ
BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR
CONREM
CONTBL
CPMSUP
DOMGR
DRVLOK
DSKMGR
DSKTBL
DSPCHR
DSPOOL
DSPSGL
FASLOD
FFOMGR
FILCOM
FILLOK
FILMGR
FILSUP
FLÜSHR
INPLN
LCLMSG
LCLTBL
LCLUSR
LDRMSG
LSTMGR
LSTTBL
MEMMGR
MPMSUP
MSGFMT
NETFWD
NETLOD
NETMGR
NETREQ
NETSVC
NETIBL

._. K
.2
.0

2.0
.3

1.1
1.3
.1
.3
.3
.4
.0
.2
.4
.2
.6
.0
.7
.9
.2
.4
.9
.4

1.7
2.1
2.4
.2
.1
.4
.0

1.2
.2
.2
.1
.3
.1
.1
.3
.4
.9

1.5
1.7
ĵ)

LOADR J
-
-
-
-

BUFMGR
-
-

COMSUB
CONMGR
-

CONTBL
-
-
-

DSKMGR
DSKTBL
-
-

DSPSGL
-
-

FILCOM
-

FILMGR
FILSUP
-
-
-

-
-

LDRMSG
-
-
-
-
-
-

--
-
-
-

SINGL |
AUTLOD
AUTLOG

•f
-

BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR
-

CONTBL
+

DOMGR
-

DSKMGR
DSKTBL
-
-

DSPSGL
+

-
FILCOM
-

FILMGR
FILSUP
-

INPLN
LCLMSG
LCLTBL
LCLUSR
-

LSTMGR
LSTTBL
MEMMGR
+
-
-
-
-
-
-
-

S POOL 1
AUTLOD
AUTLOG
+
-

BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR
-

CONTBL
+

DOMGR
-

DSKMGR
DSKTBL
DSPCHR
DSPOOL
-
+

-
FILCOM
-

FILMGR
FILSUP
-

INPLN
LCLMSG
LCLTBL
LCLUSR
-

LSTMGR
LSTTBL
MEMMGR
+
-

-
-

-
-
-
-

.MASTR 1
AUTLOD
AUTLOG
+
+

BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR
+

CONTBL
+

DOMGR
DRVLOK
DSKMGR
DSKTBL
DSPCHR
DSPOOL

-+
FFOMGR
FILCOM
FILLOK
FILMGR
FILSUP
FLÜSHR
INPLN
LCLMSG
LCLTBL
LCLUSR
-

LSTMGR
LSTTBL
MEMMGR
+
+
+
+

NETMGR
+

NETSVC
ÜETTBÎ

SLAVE I
AUTLOD
AUTLOG
+
+

-
CMDINT
COMMGR
COMSUB
CONMGR
-

CONTBL
+

DOMGR
-
-

DSKTBL
DSPCHR
-

-+

-
FILCOM
-

-
-
-

INPLN
LCLMSG
LCLTBL
LCLUSR

-
LSTMGR
LSTTBL
MEMMGR
+

MSGFMT
+
+

NETMGR
NETREQ
+

UETTBL__

_SLAVX__
AUTLOD
AUTLOG
+
+

BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR

—CONTBL
+

DOMGR
-

DSKMGR
DSKTBL
DSPCHR
DSPOOL

-+

-
FILCOM
-

FILMGR
FILSUP
-

INPLN
LCLMSG
LCLTBL
LCLUSR
-

LSTMGR
LSTTBL
MEMMGR
+

MSGFMT
+
+

NETMGR
NETREQ
+

NETTBÎ

1-9

TurboDOS 1.4 Z80
Implementor's Guide

ARCHITECTURE

Standard Packages
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Module !
NONFIL
NORLOD
OSLOAD
OSNTRY
PATCH
QUEMGR
RTCMGR
RTCNUL
SGLUSR
SPLMSG
S POOL R
SUBMIT

i SYSNIT

jĵ
.2
.1

1.3
.5
.1

1.1
.1
.1
.1
.1
.5
.1

^,0

1 LOADR 1
NONFIL
-

OSLOAD
OSNTRY

+

--
+
-
-
-
-
-

SINGL 1
NONFIL
+
-

OSNTRY
+
-

RTCMGR
+

SGLUSR

-
-+

„SJSUIT.

SPOOL 1
NONFIL
+

-
OSNTRY
+

-
RTCMGR
+

SGLUSR
SPLMSG
SPOOLR
+

„SJ-SiLIT

MASTR 1
NONFIL
+
-

OSNTRY
+
+

RTCMGR
+

-
SPLMSG
SPOOLR

+
-SXSNII.

SLAVE 1
NONFIL
+
-

OSNTRY
+
+

—+

-
SPLMSG
SPOOLR

+
5YSUIT_

-S-LÂ L—
NONFIL

+
-

OSNTRY
+
+

RTCMGR
+

SGLUSR
SPLMSG
SPOOLR

+
£YJLliIT !

Optional Modules To supplement the standard packages, certain
optional modules (marked by "+" in the matrix
above) may have to be added. The following
table explains where these optional modules
are required:

Module I Where Required

BNKMGR All systems with banked memory.
BNKREQ Banked systems that load programs over the network.
CONREM Network masters with no console (instead of CONDR@),
CPMSUP To support C-fcns 7, 8, 24, 28, 29, 31, 37 and 107.
FASLOD Non-banked systems that load pgms from local disks.
MPMSUP To support C-fcns 134-143, 153, 160 and 161.
MSGFMT Network masters that make requests over the network.
NETFWD To support forwarding of network messages.
NETLOD Non-banked systems that load pgms over the network.
NETREQ Network masters that make requests over the network,
NORLOD Smaller, unoptimized alternative to FASLOD (above).
PATCH Wherever a supplementary patch area is required.
QUEMGR To support MP/M queue emulation (C-fcns 134-140.)
RTCNUL Wherever no RTC driver is available.
SUBMIT To emulate CP/M processing of $$$.SUB.

1-10

TurboDOS 1.4 Z80
Implementor's Guide

ARCHITECTURE

Memory Required

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Memory Required To estimate the memory required by a particu-
lar TurboDOS configuration, you need to take
into account the combined size of all func-
tional modules, driver modules, disk buffers,
and other dynamic storage.

Drivers typically require IK to 4K, and can
be even larger if the hardware is especially
complex. Disk buffer space should be as
large as possible for optimum performance,
especially in a network master. About 4K of
disk buffer space is reasonable for a single-
user system, although less can be used in a
pinch. Other dynamic storage doesn't usually
exceed IK in single-user systems, 2K in net-
work masters.

The following table gives typical memory
requirements for standard TurboDOS configura-
tions on non-banked hardware:

LOADR SINGL SPOOL MASTR SLAVE SLAVX

0/S
Drivers
Buffers
Dynamic

Total

TPA

10K
2K
4K
IK

17K

-

13K
2K
4K
IK

20K

44K

15K
2K
4K
IK

22K

42K

20K
3K
16K
3K

42K

22K

10K
IK

2K

13K

51K

18K
2K
4K
2K

26K

38K

In banked-memory systems, a full 63K TPA is
always available.

1-11

TurboDOS 1.4 Z80 ARCHITECTURE
Implementor's Guide

Other Languages

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Other Languages To facilitate translation into languages
other than English, TurboDOS has been imple-
mented with all textual messages segregated
into separate modules. All such message
modules are available in source form to
TurboDOS OEM licensees upon request.

The following modules contain all TurboDOS
operating system messages:

Jlfidjiie_J_ _ _ _ _ ----- C^jitaJjLS ___ __________________ I

LCLMSG Most operating system messages.
SPLMSG Spooler error messages.
LDRMSG Loader messages for OSLOAD.COM.

In add i t ion , a separate message modu le is
available for each TurboDOS command.

1-12

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SYSTEM GENERATION

Introduction

This section explains the TurboDOS system
generation procedure in detail. It describes
how to use the GEN command to link a desired
set of TurboDOS modules together, and details
the numerous system patch points which may be
modified during system generation. Step-by-
step procedures and examples are provided.

The functional modules of TurboDOS are
distributed in relocatable form (.REL files).
Hardware-dependent driver modules are fur-
nished in the same fashion. The TurboDOS GEN
command is a specialized linker used to bind
the desired combination of modules together
into an executable version of TurboDOS. The
GEN command also includes a symbolic patch
facility used to modify a variety of opera-
ting system parameters.

To generate a complete TurboDOS system, you
typically must use the GEN command several
times. At minimum, you have to generate both
a loader OSLOAD.COM and a master operating
system OSMASTER.SYS. For a networking system
you also have to generate a slave operating
system OSSLAVE.SYS. Complex networks may
require generation of several different slave
or master configurations. Finally, you may
have to use GEN to generate a cold-start
bootstrap routine for the start-up PROM or
boot track.

At cold-start, the bootstrap routine loads
the loader program OSLOAD.COM into the TPA of
the master computer and executes it. OSLOAD
loads the master operating system from the
file OSMASTER.SYS into the upper portion of
memory. The master operating system then
down-loads the slave operating system from
the file OSSLAVE.SYS over the network into
each slave computer.

2-1

Tu r bo DO S 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

GEN Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

GEN Command

Syntax

Explanation

The GEN command is a specialized linker for
software modules in Microsoft relocatable
format, and is designed primarily for use in
TurboDOS system generation.

GEN srcefile {destfile} C;options}

The GEN command links a specified collection ,,,,
of relocatable modules together into a single
executable program. The "srcefile" argument
specifies the names of two input files: a
configuration file "srcefile.GEN" and a para-
meter file "srcefile.PAR". The "destfile"
argument specifies the name of the executable
output file to be created (normally type .COM
or .SYS). If "destfile" is omitted, then the
"srcefile" argument is also used as the name
of the executable output file, and should
include an explicit file type (.COM or .SYS).

If the configuration file "srcefile.GEN" is
found, it must contain the list of reloca-
table modules (.REL files) to be linked
together. If the configuration file is not
found, then the GEN command operates in an
interactive mode. You are prompted by an
asterisk * to enter a series of directives
from the console. The syntax of each direc-
tive is:

reifile {,reifile}... {;comment}

A null directive terminates the prompting
sequence and causes processing to proceed.

After obtaining the list of modules from the
file or console, GEN links all of the modules
together, a two-pass process that displays
the name of each module as it is encountered.

2-2

TurboDOS 1.4 Z80 SYSTEM GENERATION
Implementor's Guide

GEN Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Explanation When the linking phase is complete, GEN looks
(Continued) for a parameter file "srcefile.PAR" and pro-

cesses it if found. The parameter f i le (if
present) must be a text file containing sym-
bolic patches. The syntax of each .PAR f i le
entry is:

location = value {,value}... {;comment}

where the "value" arguments are to be stored
in consecutive memory locations starting with
the address specified by "location".

The "location" argument may be the name of a
public symbol, a hexadec imal n u m b e r , or an
expression composed of names and hex numbers
connected by + or - operators . Hex n u m b e r s
must begin with a digit (for example, OFFFF)
to dist inguish them f r o m names. The "loca-
t ion" expres s ion m u s t be f o l l o w e d by an
equal-sign = character.

The "value" arguments may be expressions (as
defined above) or quoted ASCII str ings, and
mus t be separa ted by c o m m a s . A "va lue"
expression is stored as a 16-bit word if its
value exceeds 255 or if it is enclosed in
parentheses; otherwise, it is stored as an 8-
bit byte. A quo ted A S C I I s t r i ng may be
enclosed by either quotes "..." or apostro-
phes '...', and is stored as a sequence of 8-
bit bytes. Within a quoted string, ASCII
control characters may be specified by using
circumflex (example: ""X" denotes CTRL-X).

After the .PAR file (if any) is processed and
the necessary patches made, GEN wr i t e s the
executable file out to disk.

2-3

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

GEN Command
(Continued)

-1
* (

r

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Explanation
(Continued)

Each relocatable TurboDOS module is magnetic-
ally serialized with a unique serial number.
The serial number consists of two components:
a n " o r i g i n n u m b e r " w h i c h i d e n t i f i e s t h e
i s su ing T u r b o D O S l icensee , and a "un i t
n u m b e r " w h i c h uniquely iden t i f ies each copy
of TurboDOS issued by that licensee. The GEN
command ve r i f i e s that all modules to be
l i n k e d a r e s e r i a l i z e d c o n s i s t e n t l y , and
serializes the executable file accordingly.

Options Option I

;Kxxxx

;Lxxxx

;M

;S

;Uxxxx

;X

Indicates that a system for a
banked-memory environment is to
be generated, and defines the
hexadecimal base address "xxxx"
of the common (non-switched)
memory segment.

Defines the hexadecimal address
"xxxx" as the lower boundary of
the executable program. Default
for .COM files is ;L0100.

Prints a load map.

Prints a sorted symbol table.

Defines the hexadecimal address
"xxxx" as the upper boundary of
the executable program. Default
for .SYS files is ;UFFFF.

Diagnoses any references to un-
defined symbols. Default is not
to diagnose such references,
since they are quite normal in
TurboDOS system generation.

2-4

TurboDOS 1.4 Z80
Implementor 's Guide

SYSTEM GENERATION

GEN Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example In the fo l lowing example , GEN is used to l ink
a single-user TurbcDOS system for a banked-
memory system, using the modules listed in
BNKSINGL.GEN and the patches in BNKSINGL.PAR,
creating the executable file BNKSINGL.SYS.

0 A> GEH—BMK.SINGL .SYS
Copyright 1984, Software 2000, Inc.
CNFTBL ; CONFIGURATION TABLE
STDSINGL ; STANDARD SINGLE-USER SYSTEM
BNKMGR ;BANK MEMORY MANAGER
CPMSUP ;CP/M FUNCTION SUPPORT
USRSOM ;USER SIGN-ON MESSAGE AREA
NITIMS ;HARDWARE INITIALIZATION
MPENIT ; MEMORY PARITY
CON96 ; ASCII CONSOLE AT 9600 BAUD
LSTCTS ; CLEAR TO SEND SERIAL DRIVER
LSTXON ;X-ON,X-OFF SERIAL DRIVER
etc.

Pass 1
CONFIG LCLUSR LCLMSG LCLTBL CMDINT etc.

Pass 2
CONFIG LCLUSR LCLMSG LCLTBL CMDINT etc.

Processing parameter file:
USRSOM = OD,OA,"IMS International,

TurboDOS-8 1.4 (Bank Single) $"
80 ;LOGON TO USER 0, PRIVILEDGED
0 BO /COMPATIBILITY FLAGS
0 /DEFAULT TO PRINT DIRECT

/NUMBER BUFFERS (2)
;6 MS. STEP RATE FOR 8"
/DRIVES ON 401 CONTROLLER
/12 MS. STEP RATE FOR 5"
/DRIVES ON 431 CONTROLLER

AUTUSR
COMPAT
PRTMOD
NMBUFS
SRT401

2
6

SRT431 = 6

etc.

Writing output file A:BNKSINGL.SYS
OA}

2-5

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

GEN Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Error Messages
File name missing from command
Invalid input file name
Non-privileged user
Serial number violation
NOT: enough memory
Vacuous input file(s)
Unexpected EOF in input file
Disk is full
Can't make output file
No input files
Can't open input file
Load address out-of-bounds
Multiple defined starting address
Duplicate symbol: <name>
undefined symbol: <name>

2-6

Tu r bo DO S 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points

Patch Points

Copyright 1984 by Software 2000, Inc.
All rights reserved.

The following table describes various public
symbols in TurboDOS which you may wish to
modify using the symbolic patch facility of
the GEN command. (Other patch points may
exist in hardware-dependent drivers, but they
are beyond the scope of this document.)

Default ,.aalJLie_

ABTCHR = "~C"

Abort character (after attention) .

CONTBL

ATNBEL = "~G" CONTBL

Attention-received warning character.

ATNCHR = CONTBL

Attention character. May be patched to
another character if the default value of
CTRL-S is needed by application programs.
A common choice is zero (NUL), which al-
lows the console BREAK key to be used as
an attention key.

AUTUSR = OFF AUTLOG

Automatic log-on user number. Default
value of OFF requires that user log-on
via LOGON command. If automatic log-on
desired at cold-start, patch AUTUSR to
the desired user number (00-1F), and set
the sign-bit if a privileged log-on is
desired. Generally patched to 80 in
single-user systems to cause automatic
privileged log-on to user zero.

2-7

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol I Default Value i Module

BFLDLY = (012C) FLUSHR

Buffer flush delay determines how often
disk buffers are written to disk, stated
in system "ticks". Default value (300
decimal) causes buffers to be flushed
about every five seconds (assuming 60
ticks per second).

BUFSIZ = 3 BUFMGR

Default disk buffer size (0=128, 1=256,
2=512, 3=1K,..., 7=16K). Default value
specifies IK disk buffers.

NETTBLCKTAST = (0000),CKTDRA,
(0100),CKTDRB,
(0200),CKTDRC,
(0300),CKTDRD

Circuit assignment table defines network
topology. Contains NMBCKT two-word en-
tries, one for each network circuit to
which this processor is attached. The
first word of each entry specifies the
network address by which this processor
is known on a particular circuit, and the
second word specifies the entrypoint ad-
dress of the circuit driver responsible
for that circuit. (Possibly several cir-
cuits may be handled by the same driver.)

CLBLEN = 9D CMDINT

Command line buffer length defines long-
est permissible command line. The de-
fault value permits two 80-char lines.

2-8

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol l _ ___ .BfifauÜL-Xaliie

CLPCHR = "}" i

Command line prompt character.

CMDINT

CLSCHR = "\" ' CMDINT

Command line separator character.

COLDFN = 0,"COLDSTRT","AUT" AUTLOD

Pile name and drive for cold-start auto-
load processing (in FCB format).

COMPAT = 0 FILCOM

Default compatibility flags which define
rules to be used for file-sharing. Patch
to OF8 to relax most MP/M restrictions.

CONAST = 0,CONDRA CONTBL

Console assignment table defines how con-
sole I/O is handled. First byte passed
to console driver, and commonly defines
the channel number (e.g., serial port) to
be used for the console. Following word
specifies the entrypoint address of the
console driver to be used.

CPMVER = 3 1 NONFIL

CP/M BDOS version number returned by
C-function 12 in L-register.

2-9

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

CURBNK = l BNKMGR

Initial memory bank selected for TPA at
cold-start. Applicable to banked-memory
systems only. Patch to 0 to select non-
banked mode at cold-start.

DEFDID = (0000) NETTBL

Default network destination ID, used for
routing all network requests that are not
related to a particular disk drive, queue
or printer. In a slave, DEFDID should be
set to the network address of the master.

DSKAST = 00,DSKDRA,01,DSKDRB, DSKTBL
. OFF,(0000),OFF,(0000),...

Disk assignment table, an array of 16
three-byte entries (one for each drive
letter A-P) that defines which drives are
local, remote, and invalid.

For a local drive, the first byte must
not have the sign-bit set. That byte is
passed to the disk driver, and is common-
ly used to differentiate between multiple
drives connected to a single controller.
The following word specifies the entry-
point address of the disk driver to be
used.

For a remote drive, the first byte must
have the sign-bit set. The low-order
bits of that byte specify the drive let-
ter to be accessed on the remote proces-
sor. The following word specifies the
network address of the remote processor.

2-10

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

DSKAST

Default Value

(Continued) DSKTBL

For an invalid drive, the first byte must
be OFF, and the following word should be
(0000) .

NOTE: In slave configurations STDSLAVE
and STDSLAVX, the default values are:

DSKAST = 80,(0000) ,81, (0000) ,
82, (0000) ,83, (0000) ,
...,8E,(0000),8F,(0000)

DSPPAT = 01,01,01,... ,01 LSTTBL

De-spool printer assignment table, an ar-
ray of 16 bytes (one for each printer
letter A-P) that defines the initial
queue to which each printer is assigned.
Hex values 01 through 10 correspond to
queues A-P, and 0 means that the printer
is off-line. The default value assigns
all printers to queue A.

ECOCHR = ""P" CONTBL

Echo-print character (after attention).

EOPCHR = 0 LSTTBL

End-of-print character. May be patched
to any non-null character, in which case
the presence of that character in the
print output stream will automatically
signal an end-of-print-job condition.
The value zero disables this feature.

2-11

TurboDOS 1.4 Z80
Iiaplementor' s Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol I ; Default Value

FWDTBL = (OFFFF) ,(OFFFF) , (OFFFF) ,
(OFFFF),OFF

NETTBL

Network forwarding table, an array of
two-byte entries that define any explicit
message forwarding routes to be used by
this processor. The first byte of each
entry specifies a "foreign" circuit num-
ber N, and the second byte a "domestic"
circuit number C. Any messages destined
for circuit N will be routed via circuit
C. This table is variable-length, termi-
nated by OFF, and defaults to empty.

LDCOLD = OFF AUTLOD

Cold-start autoload enable flag. Patch
to zero if you want to disable the cold-
start autoload feature (COLDSTRT.AUT).

LOWARM = OFF AUTLOD

Warm-start autoload enable flag. Patch
to zero if you want to disable the warm-
start autoload feature (WARMSTRT.AUT).

LOADFN = 0,"OSMASTER","SYS' OSLOAD

Default file name and drive (in FCB for-
mat) loaded by OSLOAD.COM. Drive field
(FCB byte 0) may be patched to an expli-
cit drive value to inhibit scanning.

2-12

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

_Jäyjab_p_l_J ^Dej£aiilt^

LOGUSR = IF

User number for logged-off state
fault value is 31 decimal.

Jlo.djiIfi_.

FILCOM

De-

MAXMBS = 0 NETMGR

Maximum number of message buffers that
will ever be allocated. Default value of
0 means number of message buffers is
limited only to size of available memory.

MAXRPS = 0 NETMGR

Maximum number of reply packets that will
ever be allocated. Default value of 0
means number of reply packets is limited
only to the size of available memory.

MEMBLL = (1100) MEMMGR

Memory base lower limit, prevents alloca-
tion of dynamic memory space below this
address when bank 0 is selected. Default
value guarantees minimum of 4K TPA in
bank 0 (enough to run BANK or BUFFERS).

2-13

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

MEMRES (0100) LCLUSR

Memory reserve, used when loading a pro-
gram into TPA to provide a safety margin
between the base of dynamic memory space
and the top of bank 0 TPA. This allows
dynamic space to grow by MEMRES bytes
before the program in bank 0 TPA has to
be aborted by TurboDOS. The MEMRES value
may have to be increased above the 256-
byte default value for reliable operation
especially in non-banked network masters.

MEMTOP = (OFFFF) OSLOAD

Top of memory address for purposes of the
RAM diagnostic test performed by OSLOAD.
Patch to (0000) to omit test altogether.

NMBCKT NETTBL

Number of network circuits to which this
processor is connected.

NMBMBS NETMGR

Number of message buffers pre-allocated
at cold-start. Message buffers are allo-
cated dynamically as needed, but this may
cause fragmentation which prevents you
from obtaining more TPA by reducing the
size of the disk buffer pool. If this is
important, patching NMBMBS to a suitable
positive value will eliminate the problem
(twice the number of network nodes is a
good starting value to try).

2-14

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

-SymJaol I Default Value Module

NMBRPS = 0 NETMGR

Number of reply packets pre-allocated at
cold-start. Reply packets are allocated
dynamically as needed, but this may cause
fragmentation which prevents you from ob-
taining more TPA by reducing the size of
the disk buffer pool. If this is impor-
tant, patching NMBRPS to a suitable posi-
tive value will eliminate the problem.
(The number of network nodes is a good
starting value to try.)

NMBSVC = 2 NETSVC

Number of network server processes to be
activated. (The number of network nodes
is a good starting value to try.)

NMBUFS BUPMGR

Default number of disk buffers allocated
at cold-start. Must be at least 2. For
optimum performance, allocate as many
buffers as possible (consistent with TPA
and other memory requirements).

PRTCHR CONTBL

End-print character (after attention).
This is a console attention-response, not
to be confused with EOPCHR.

2-15

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Default Value _____ L

PRTMOD = l LCLTBL

Initial print mode for local user. The
default value of 1 specifies spooling.
Patch to 0 for direct, or 2 for console.

PTRAST = 00,LSTDRA,OFF,(0000), LSTTBL
OFF,(0000),OFF,(0000)

Printer assignment table, an array of 16
three-byte entries (one for each printer
letter A-P) that defines which printers
are local, remote, and invalid.

For a local printer, the first byte must
not have the sign-bit set. That byte is
passed to the disk printerr, and is com-
monly defines the channel number (e.g.,
serial port) to be used for the printer.
The following word specifies the entry-
point address of the printer driver to be
used.

For a remote printer, the first byte must
have the sign-bit set. The low-order
bits of that byte specify the printer
letter to be accessed on the remote pro-
cessor. The following word specifies the
network address of the remote processor.

For an invalid printer, the entry should
be OFF,(0000).

NOTE: In slave configurations STDSLAVE
and STDSLAVX, the default values are:

PTRAST = 80,(0000),81, (0000) ,
82,(0000) ,83,(0000) ,
...,8E,(0000),8F,(0000)

2-16

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Module

QUEAST = 00,(0000),OFF,(0000), LSTTBL
. OFF,(0000),OFF,(0000),...

Queue assignment table, an array of 16
three-byte entries (one for each queue
letter A-P) that defines which queues are
local, remote, and invalid.

For a local queue, all three bytes must
be set to zero.

For a remote queue, the first byte must
have the sign-bit set. The low-order
bits of that byte specify the queue let-
ter to be accessed on the remote proces-
sor. The following word specifies the
network address of the remote processor.

For an invalid queue, the entry should be
OFF,(0000).

NOTE: In slave configurations STDSLAVE
and STDSLAVX, the default values are:

QUEAST = 80,(0000),81, (0000) ,
82,(0000) ,83, (0000) ,
...,8E,(0000),8F,(0000)

QÜEDLY = (0000) QUEMGR

Polling delay used in unconditional Read
Queue (when queue is empty) and Write
Queue (when queue is full), stated in
system "ticks". If RTC driver is avail-
able, patch to largest delay that yields
reasonable queue performance.

2-17

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol I

QUEDRV = OFF

Drive used for FIFOs that emulate MP/M
queues. Default value OFF means use the
system disk (disk from which TurboDOS was
loaded at cold-start). Patch to 00 - OF
to specify a particular drive A-P.

QUEPTR LCLTBL

Initial queue or printer assignment. If
PRTMOD = 1 (spooling), QUEPTR specifies a
queue assignment. If PRTMOD = 0 (direct)
QUEPTR specifies a printer assignment.
In both cases, hex values 01 through 10
correspond to letters A-P, and zero means
do not queue or print off-line.

RCNMSK = OFF MPMSUP

Mask used in deriving a console number
from a network node in C-function 153.

RCNOFF MPMSUP

Offset used in deriving a console number
from a network node in C-function 153.

RESCHR = "~Q" - CONTBL

Resume character (after attention).

2-18

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

.Symbol J4fidule_.

SCANDN = 0 OSLOAD

Scan direction flag for OSLOAD. Patch to
OFFH to scan P-to-A (instead of A-to-P).

SLVFN = "OSSLAVE n,"SYS" NETSVC

Name and type of file (in FCB format) to
be down-loaded into slave processors.

SPLDRV = OFF LCLTBL

Initial spool drive. Default value OFF
spools to system disk (from which Turbo-
DOS was loaded at cold-start). Patch to
00 - OF to specify a drive A-P.

SRHDRV = 0 CMDINT

Search drive for command files. Patch to
01 - 10 hex to search drive A-P if com-
mand is not found on current drive, or
patch tO OFF to search system disk (from
which TurboDOS was loaded at cold-start).
Default value 0 disables this feature.

SUBFN = 0,"$$$ 'SUB1 SUBMIT

Submit file name searched for by optional
CP/M submit-file emulator.

WARMFN = 0,"WARMSTRT","AUT* AUTLOD

File name and drive for warm-start auto-
load processing (in FCB format).

2-19

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Network Operation

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Operation

Network Model

Network Tables

TurboDOS accomodates a wide var ie ty of net-
w o r k topologies/ ranging f r o m the simplest
point-to-point master/slave networks to the
most complex star, r ing, and h ie ra rch ica l
structures.

A TurboDOS
up to 255

n e t w o r k is de f ined
.cJjjm j. JLS , with up

(processors) on each circuit.
a unique 16-bit

to consist of
to 255 nodes
Each node has

n£Lty_oj:Jc address consisting of
an 8-bit circuit number plus an 8-bit node
number (on that circuit).

Any processor may be connected to several
circuits, if desired. A processor connected
to mul t ip le c i rcui ts has mult iple n e t w o r k
addresses, one for each c i rcui t . Such a
processor even may be set up to perform mes-
sage forwarding f rom one circuit to another,
permitt ing dialogue between ne twork nodes
that do not share a common circui t between
them (more on this later) .

The actual network topology is defined by a
series of tables in each processor. The
tables are set up during system generation,
and define the ne twork as "seen" f r o m the
viewpoint of each processor. The tables are:

Symbol

NMBCKT A byte value that defines the
number of network circuits to
which this processor is connec
ted.

2-20

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Tables
(Continued)

CKTAST The circuit assignment table
containing NMBCKT entries defin-
ing the network address by which
this processor is known on each
circuit, and specifying the net-
work circuit driver responsible
for each handling each circuit.

DSKAST The disk assignment table that
specifies for all drive letters
A-P which are local, remote, and
invalid. This table specifies
a network address for each re-
mote drive, and a disk driver
for each local drive.

PTRAST The printer assignment table
that specifies for all printer
letters A-P which are local, re-
mote, and invalid. This table
specifies a network address for
each remote printer, and a prin-
ter driver for each local prin-
ter.

QUEAST The queue assignment table that
specifies for all queue letters
A-P which are local, remote, and
invalid. This table specifies a
network address for each remote
queue.

DEFDID The default network destination
ID, used for routing all network
requests that are not related to
a specific disk drive, printer,
or queue.

2-21

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Tables
(Continued)

.Symbol.

FWDTBL

Description

The message forwarding table
that specifies any additional
circuits (not directly connected
to this processor) which may be
accessed via explicit message
forwarding, and how messages
destined for such circuits are
to be routed.

These tables are pre-def ined wi th de fau l t
values to make set-up of simple master/slave
ne tworks very easy. For complex mul t i -
circuit networks, the set-up is somewhat more
complicated (as might be expected).

Refe r to the preceding Patch Points sub-
section for details of the organizat ion and
defaults for these network tables.

2-22

TurboDOS 1.4 Z80 SYSTEM GENERATION
Implementor's Guide

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Message Forwarding The forwarding module of TurboDOS (NETFWD)
supports both "implicit" and "explicit" for-
warding of network messages. To understand
the distinction, consider the case of a net-
work with three processors (PI, P2, and P3)
connected by two circuits (Cl and C2) as
follows:

I I I I
PI I Cl I P2 I C2 I P3

A p r o g r a m r u n n i n g in PI m a k e s an access to
drive D. Suppose the disk assignment tables
in the three processors are set up in the
following fashion:

Pi's DSKAST def ines its d r i v e D as a
remote reference to P2's drive B.

P2 's DSKAST defines its dr ive B as a
remote reference to P3's drive A.

P3's DSKAST defines its d r ive A as a
local device attached directly to P3.

In this case, Pi's access to its dr ive D
actually winds up implicit ly accessing P3's
drive A. This is implicit forwarding.

Alternatively, suppose Pi's DSKAST de f ines
its drive D as a remote r e f e r ence to P3's
drive A, and that Pi's FWDTBL provides that
messages destined for c i rcui t C2 may be
routed via Cl. In this case, PI sends a
request to P3 on circuit Cl. P2 receives the
request, recognizes that it should be forwar-
ded, and re t ransmi ts the request to P3 via
circuit C2. Thus, PI accesses P3's dr ive A
with the assistance of P2, but this t ime PI
is not aware of P2's role in the transaction.
This is explicit forwarding.

2-23

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

A Complex Example

Copyright 1984 by Software 2000, Inc.
All rights reserved.

A Complex Example Let's take a reasonably complex network situ-
ation and see how to
.GEN and .PAR files.

construct the required

Our hardware is an S-100 microcomputer system
consisting of a Z80 CPU board, a 64K memory
board, hard disk and floppy disk controller
boards (all these make up the master proces-
sor), and several single-board slave proces-
sors on the same bus. The master processor
is interfaced to two printers, one daisywheel
and the other matrix, via RS232 serial ports.
The daisywheel printer is on serial port 0
and uses XON/XOFF protocol, while the matrix
printer is on port 1 and uses clear-to-send
handshaking. In addition, the master has a
high-speed RS422 interface connecting it to
another S-100 system of similar configuration
some distance away.

We want to configure a TurboDOS system for
this hardware that permits all of the users
of each S-100 system to access the hard disk,
floppy disks, and printers attached to both
the local and remote S-100 system. We might
create the following OSMASTER.GEN file:

; OSMASTER.
STDMASTR ;
FASLOD ;
NETREQ ;
MSGFMT
CONREM ;
LSTXON ;
LSTCTS
DSKHDC ,•
DSKFDC
CKTSLV
CKT422 ;
RTCDRV ;
NITDRV

GEN for complex example
standard master package
non-banked program load
to make requests of other sys
needed by NETREQ
no console on the master
XON/XOFF for daisy (LSTDRA)
CTS for matrix (LSTDRB)
hard disk controller (DSKDRA)
floppy disk control. (DSKDRB)
circuit driver for slaves (CO)
circuit driver for RS422 (CD
real-time clock driver
hardware initialization driver

2-24

TurboDOS 1.4 Z80
Implementor's Guide

SYSTEM GENERATION

A Complex Example
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

A Complex Example
(Continued)

Our system generat ion task is completed by
creating the companion OSMASTER.PAR file:

; OSMASTER.PAR for complex example
NMBCKT = 2 ; 2 net circuits
CKTAST = (0000),CKTDRA ; ckt 0 for slaves

(0100),CKTDRB ; ckt 1 via RS422
DSKAST = 00,DSKDRA ; drv A is local HD

00,DSKDRB
01,DSKDRB
80, (0101)
81, (0101)
82, (0101)

PTRAST = 00,LSTDRA
01,LSTDRB
80,(0101)
81,(0101)

QUEAST = 00, (0000)
00, (0000)
80,(0101)
81, (0101)

DEFDID = (0101)
DSPPAT » 1,2,3,4
MEMRES = (0400)
NMBMBS = OA
NMBRPS = 5
NMBSVC = 5
NMBÜFS =14

drv B is local FDO
drv C is local FD1
drv D is remote HD
drv E is remote FDO
drv F is remote FD1
ptr A is Icl daisy
ptr B is Icl matrix
ptr C is rmt daisy
ptr D is rmt matrix
queue A is local
queue B is local
queue C is remote A
queue D is remote B
default other master
assgn ptrs to queues
IK safety margin
10 message buffers
5 reply packets
5 server processes
20 IK disk buffers

The generation of the second master operating
system could be identical, except that all
occurrences of network addresses (0100) and
(0101) in the OSMASTER.PAR file would be
reversed. Generation of the slave operating
system would be very straightforward, and
identical for both systems.

If you study this example thoroughly until
you understand the reason for every .GEN and
.PAR file entry, you should have little
trouble setting up your own "sysgens".

2-25

TurboDOS 1.4 Z80 SYSTEM GENERATION
Implementor's Guide

Sysgen Procedure

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sysgen Procedure To conclude this section, here is a suggested
step-by-step procedure for generat ing a new
version of TurboDOS:

1. Br ing up a previous version of TurboDOS.
If this is your first attempt to generate
a TurboDOS system, you may br ing up CP/M
instead. However , if you are using CP/M,
all disks will have to be in a f o r m a t
compatible with both CP/M and TurboDOS
(e.g., eight-inch one-sided single-density
with 128-byte sectors).

2. Make a working copy of your TurboDOS dis-
tribution disk. Do not use the original
d i sk (i n case s o m e t h i n g goes w r o n g) .
Insert the work ing diskette in a conven-
ient disk drive.

3. Using your favorite text editor, create or
revise the fi le OSMASTER.GEN containing
the names of the relocatable modules to be
linked together. General ly, this will
consist of the appropriate STDxxxxx stan-
dard package plus selected addit ional
modules and all required device drivers.

4. Using your editor once again, create or
revise the file OSMASTER.PAR containing
any required patches. This may be omitted
if no patches are desired.

5. Using the command GEH QSMASTEJ^fiy-S, gene-
rate an executable system in accordance
wi th the .GEN and .PAR fi les jus t con-
structed. If your hardware has less than
64K installed, don't forget to use the
;Uxxxx option on the GEN command. If your
h a r d w a r e has banked memory , don't fo rge t
to use the ;Kxxxx option.

2-26

TurboDOS 1.4 Z80 SYSTEM GENERATION
Implementor's Guide

Sysgen Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sysgen Procedure 6. In a similar fashion, construct a new
(Continued) loader by creating or revising the files

OSLOAD.GEN and OSLOAD.PAR, then using the
command GEH .OSLQAIL-CDM to generate the
executable loader.

7. For a master/slave network system, con-
struct a slave operating system in the
same manner. Create or revise the files
OSSLAVE.GEN and OSSLAVE.PAR, then use the
command GEN-..QS.£IjAVE.f.SY5 to generate the
down-loadable slave operating system.

8. To test the newly-generated system, eject
all disks other than your working disk
(again, in case something goes wrong).
Enter the command QSLOAD. The new system
should cold-start. If it fails to come up
or to function properly, you will have to
start over at step 1 and check your work
carefully — there is most likely an error
in one of your .GEN or .PAR files, or a
"bug" in one of your drivers.

2-27

TurboDOS 1.4 Z80 SYSTEM GENERATION
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

(Intentionally left blank.)

2-28

TurboDOS 1.4 Z80
Implementor's Guide

DISTRIBUTION

Copyright 1984 by Software 2000, Inc.
All rights reserved.

DISTRIBUTION

TurboDOS Licensing

Legal Protection

This section explains the TurboDOS distribu-
tion procedure in detail. It covers TurboDOS
licensing requirements, and the obligations
of licensed distributors, dealers, and end-
users. It describes how to make up and
serialize TurboDOS distribution disks.

Although this section is of concern primarily
to licensed TurboDOS distributors, we've
included it here so that dealers and end-
users can gain a better perspective on the
overall distribution process.

TurboDOS is a proprietary software product of
Software 2000, Inc. As such, it is protected
by law against unauthorized use and reproduc-
tion. Authorization to use and/or reproduce
TurboDOS is granted only by written license
agreement.

TurboDOS programs and documentation are copy-
righted, which means it is against the law to
make copies without express written authori-
zation from Software 2000 to do so.

The word "TurboDOS" is a trademark owned by
Software 2000 and registered in Class 9 (com-
puter software) and Class 16 (documentation)
with the trademark offices of the united
States and most of the developed countries of
the free world. This means it is against the
law to make use of the TurboDOS trademark
without express written authorization from
Software 2000.

Software 2000 has licensed certain companies
to distribute TurboDOS. Such distributors
are authorized to use the TurboDOS trademark,
and to reproduce, distribute, and sub-license
TurboDOS programs and documentation to deal-
ers and end-users.

3-1

TurboDOS 1.4 Z80
Implementor's Guide

DISTRIBUTION

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

User Obligations TurboDOS may be used only after the user has
paid the required license fee, signed a copy
of the TurboDOS end-user l icense ag reemen t ,
and re turned the signed agreement to the
issuing TurboDOS distributor. Then, TurboDOS
may be used only in strict conformance wi th
the terms of the license.

Each end-user license allows TurboDOS to be
used on one specific computer system identi-
fied by make, model, and serial number. The
end-user license may not be t ransferred f r o m
one computer system to another, and expressly
fo rb id s copying p r o g r a m s and documen ta t ion
except as required for backup purposes only.

A separate license fee mus t be paid and a
separate license signed for each computer
system on which TurboDOS is used. N e t w o r k
slave computers that cannot operate stand-
alone do not have to be licensed separately
f rom the network master. (This would be the
case, for example, if the slave computers
have no local disk storage, or if TurboDOS is
fu rn i shed in a f o r m that cannot be run stand-
alone on the slave computers .) H o w e v e r ,
networked computers that are also capable of
stand-alone operation under TurboDOS must
each be licensed separately.

Dealer Obligations A dealer must sign a TurboDOS dealer agree-
ment and r e tu rn the signed ag reemen t to the
issuing distr ibutor. Then, the dealer is
permitted to purchase pre-serialized copies
of TurboDOS programs and documentation f rom
the dis t r ibutor , and to resell them to end-
users. Dealers may not reproduce TurboDOS
programs or documenta t ion for any purpose.
Before delivering each copy of TurboDOS, the
dealer must see to it that the end-user signs
the TurboDOS end-user license agreement and
returns it to the issuing distributor.

3-2

TurboDOS 1.4 Z80 , DISTRIBUTION
Implementor's Guide

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distributor Each licensed TurboDOS distributor is provi-
Obligations ded a master copy of TurboDOS relocatable

modules and command programs on diskette. A
distributor is allowed to reproduce and
distribute copies of TurboDOS to dealers and
end-users, but only in connection with
certain specifically authorized hardware
(usually manufactured or sold by the distri-
butor). The distributor is required to
serialize each copy of TurboDOS with a unique
sequential magnetic serial number, and to
register each serial number promptly with
Software 2000. (Serialization is described
in more detail below.)

Each distributor is also provided with a
master copy of TurboDOS documentation, either
in camera-ready hardcopy or in ASCII files on
disk. The distributor is responsible for
reproducing the documentation and furnishing
it with each copy of TurboDOS it issues.

A distributor must require each dealer to
sign and return a TurboDOS dealer agreement
before issuing copies of TurboDOS to the
dealer for resale. A distributor must
require each end-user to sign and return a
TurboDOS end-user license agreement before
issuing a copy of TurboDOS directly to the
end-user.

3-3

TurboDOS 1.4 Z80 DISTRIBUTION
Implementor's Guide

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Serialization Each copy of TurboDOS is magnetically serial-
ized with a unique serial number. Such
serialization helps ensure that reproduction
and distribution of TurboDOS is done in
strict accordance with the required licensing
and registration procedures, and facilitates
tracing of unlicensed copies of the software.

Each relocatable module of TurboDOS distribu-
ted to a dealer or end-user has a magnetic
serial number composed of two parts:

an o xJ. c?in jnjfflb_e_r, that identifies the
issuing distributor, and

a sequential imJJ: miisb_e_r_ that uniquely
identifies each copy of TurboDOS issued
by that distributor.

During system generation, the GEN command
verifies that all modules making up a Turbo-
DOS configuration are serialized consistent-
ly, and magnetically serializes the resulting
executable version of TurboDOS accordingly.

The relocatable modules on the master disk
furnished to each licensed TurboDOS distribu-
tor are partially serialized with an origin
number only. Each distributor is provided a
serialization program (SERIAL.COM) that must
be used to add a unique sequential unit num-
ber to each copy of TurboDOS issued by the
distributor. The GEN command will not accept
partially-serialized modules that have not
been serialized with a unit number. Con-
versely, the SERIAL command will not re-
serialize modules that have already been
fully serialized.

3-4

TurboDOS 1.4 Z80 DISTRIBUTION
Implementor's Guide

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Technical Support Software 2000 maintains telephone and telex
"hot-lines" to provide TurboDOS technical
assistance to its distributors. These are
unlisted numbers providing direct access to
the authors of the TurboDOS operating system,
and are furnished only to licensed TurboDOS
distributors. We encourage distributors to
take advantage of this service whenever tech-
nical questions or problems arise in using or
configuring TurboDOS.

It is the responsibility of each licensed
distributor to provide technical support to
its dealers and end-user customers. Software
2000 £AHHfi± assist dealers or end-users
directly. Where exceptional circumstances
seem to require direct contact between Soft-
ware 2000 technical personnel and a dealer or
end-user, this must be handled strictly by
prior arrangement between Software 2000 and
the distributor.

3-5

TurboDOS 1.4 Z80
Implementor's Guide

DISTRIBUTION

SERIAL Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SERIAL Command

Syntax

The SERIAL command enables TurboDOS distribu-
tors to magnetically serialize relocatable
modules of TurboDOS for distribution.

I I
I SERIAL srcefile destfile ;Unnn {options} i
! SERIAL ;Unnn {options} I
l !

Explanation

Options

The SERIAL command w o r k s exactly like the
COPY command, and accepts exactly the same
arguments and options. However , SERIAL has
the addi t ional f u n c t i o n of m a g n e t i c a l l y
serializing relocatable modules as they are
copied. SERIAL serializes files of type .REL
(Z 8 0 modules) and type .0 (8086 m o d u l e s) .
Other files are copied without any change.

The unit number must be specified on the
command line as ;Unnn, where "nnn" represents
a decimal unit number in the range 0-65535.
unit numbers must be assigned sequentially,
starting wi th 1. Unit number 0 is reserved
by convention for in-house use by the distri-
butor.

SERIAL produces fully-serialized modules that
are encoded wi th the d is t r ibutor ' s or igin
number and the specified unit number . GEN
does not accept TurboDOS modules unless they
have been fully serialized in this fashion.

.Explanation
SERIAL accepts all COPY options, plus:

;Unnn Relocatable modules (type .REL
or .0) are magnetically serial-
ized with unit number nnn, which
must be a decimal integer in the
range 0 to 65535. This "option"
is mandatory for SERIAL.

3-6

TurboDOS 1.4 Z80
Implementor's Guide

DISTRIBUTION

SERIAL Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example
OA>.SERJAL_ *,.RJBL_3.:
OA:AÜTLOD
OA:AUTLOG

OA:SYSNIT.
OA>

. _ . _ .
. REL copied to OBrAUTLOD.
.REL copied to OB:AUTLOG.

REL
REL

REL copied to OB-.SYSNIT. REL

Error Messages
SERIAL incorporates all COPY error mes-
sages, plus:

unit number not specified
Origin number violation
File is already serialized
unexpected EOF in .0 or .REL file

3-7

TurboDOS 1.4 Z80
Implementor's Guide

DISTRIBUTION

PACKAGE Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

PACKAGE Command

Syntax

Explanation

The PACKAGE command lets you combine any
collection of relocatable modules into a
single concatenated .REL file.

I
PACKAGE srcefile {destfile}

PACKAGE may be used to construct custom
packages of TurboDOS modules, make additions
or changes to the supplied STDxxxxx packages,
pre-package collections of driver modules,
and so forth.

The "srcefile" argument specifies the name of
an input file "srcefile.PKG" that lists the
modules to be packaged. The "destfile" argu-
ment specifies the name of the concatenated
.REL file to be created. If "destfile" is
omitted, then the "srcefile" argument is also
used as the name of the output .REL file.

If the .PKG file is found, it must contain
the list of relocatable modules (.REL files)
to be linked together. If the configuration
file is not found, then the PACKAGE command
operates in an interactive mode. You are
prompted by an asterisk * to enter a series
of directives from the console. The syntax
of each directive is:

I I
I relf ile {,relf ile}... {,-comment} I
I I

A null directive terminates the prompting
sequence and causes processing to proceed.

After obtaining the list of modules from the
file or console, PACKAGE concatenates all of
the modules together (displaying the name of
each module as it is encountered) and writes
the result to the output file.

3-8

TurboDOS 1.4 Z80 DISTRIBUTION
Implementor's Guide

PACKAGE Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example I
1 OA)PACKAGE STDLOADR
I * ; STDLOADR.PKG standard loader package
I * OSLOAD,LDRMSG,OSNTRY,FILMGR,FILSUP
I * FILCOM,BUFMGR,DSKMGR,DSKTBL,NONFIL
I * CONMGR,CONTBL,DSPSGL,COMSÜB
I OSLOAD LDRMSG OSNTRY FILMGR FILSUP etc.
I OA}

Error Messages I I
I File name missing from command I
I Invalid input file name I
I Non-privileged user I
I Unexpected EOF in input file I
I Disk is full I
I Can't make output file I
I Can't open input file I
I No input files I

3-9

TurboDOS 1.4 Z80 DISTRIBUTION
Implementor's Guide

Distrib. Procedure

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distribution Here is the procedure to be followed by dis-
Procedure tributors when creating each copy of TurboDOS

to be issued to a dealer or end-user:

1. Assign a unique sequential unit number for
this copy of TurboDOS, and register it
immediately by filling out a serial number
registration card (or agreed-to substi-
tute) and mailing to Software 2000, Inc.

2. Format a new disk, and label it with the
following information clearly legible:

. trademark TurboDOSR

. version number (1.4x)

. origin and unit numbers (oo/uuuu)

. statutory copyright notice:
Copyright 198x by Software 2000, Inc.
All rights reserved.

3. Use the SERIAL command to copy and serial-
ize the appropriate files from your dis-
tribution master disk to the new disk.
Use the tables on the following page to
guide you in determining what files to put
on the new disk.

IMPORTANT NOTE: Be absolutely certain
that the new disk does not contain any
unserialized modules or SERIAL.COM!

4. Using the new serialized disk, use the GEN
command to generate an executable loader
and operating system. Follow the system
generation procedure described in the
previous section.

5. In addition to the serialized disk, you
should issue copies of TurboDOS documenta-
tion and a start-up PROM (if applicable).

3-10

TucboDOS 1.4 Z80
Implementor' s Guide

DISTRIBUTION

Distrib. Procedure
(Continued)

Distribution
Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

The following table may be used for guidance
in preparing TurboDOS disks for distribution.
In addition to the files shown, you need to
include hardware-dependent driver modules and
utility programs as appropriate.

single-user 1
_K/I2—SPjaalÄr _L

STDLOADR
STDSINGL

-
-

—
—

FASLOD
BNKMGR
CPMSUP
MPMSUP
RTCNUL
PATCH
SUBMIT
OSBOOT

-
-
-

-
-
-
-

—
AUTOLOAD
BACKUP
BANK

-
BOOT
BUFFERS

-
COPY
DATE

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

•»

.COM

.COM

.COM

.COM

.COM

.COM

.COM

single-user '
with spooler J

STDLOADR
STDSINGL
STDSPOOL

—
—
—

FASLOD
BNKMGR
CPMSUP
MPMSUP
RTCNUL
PATCH
SUBMIT
OSBOOT

-

-

—
-
-
-
-

—
AUTOLOAD
BACKUP
BANK

-
BOOT
BUFFERS

-
COPY
DATE

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.COM

.COM

.COM

.COM

.COM

.COM

.COM

multi-user

STDLOADR
STDSINGL
STDSPOOL
STDMASTR
STDSLAVE
STDSLAVX

FASLOD
BNKMGR
CPMSUP
MPMSUP
RTCNUL
PATCH
SUBMIT
OSBOOT
NETLOD
NETREQ
NETFWD
BNKREQ
MSGFMT
NETSVC
QUEMGR
CONREM

AUTOLOAD
BACKUP
BANK
BATCH
BOOT
BUFFERS
CHANGE
COPY
DATE

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.REL

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

3-11

TurboDOS 1.4 Z80
Implementor's Guide

DISTRIBUTION

Distrib. Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distribution
Procedure
(Continued)

single-user I
w/s .apoolÄr J

DELETE
DIR
DO
DRIVE
DUMP
ERASEDIR

-
FIXDIR
FIXMAP
FORMAT
GEN
LABEL

-

--
PRINT

-
--̂

RELCVT
RENAME

-
SET
SHOW
TYPE
VERIFY

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

single-user
with spooler !

DELETE
DIR
DO
DRIVE
DUMP
ERASEDIR

-
FIXDIR
FIXMAP
FORMAT
GEN
LABEL

-

--
PRINT
PRINTER
QUEUE

-
RELCVT
RENAME

-
SET
SHOW
TYPE
VERIFY

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

multi-user
networkincL

DELETE
DIR
DO
DRIVE
DUMP
ERASEDIR
FIFO
FIXDIR
FIXMAP
FORMAT
GEN
LABEL
LOGOFF
LOGON
MASTER
PRINT
PRINTER
QUEUE
RECEIVE
RELCVT
RENAME
SEND
SET
SHOW
TYPE
VERIFY

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

.COM

M-.

3-12

TurboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Copyright 1984 by Software 2000, Inc.
All rights reserved.

CODING CONVENTIONS

Assembler Notes

This section is devoted to in-depth discus-
sion of TurboDOS internal coding conventions,
aimed at the systems programmer writing hard-
ware-dependent drivers or resident processes.

Drivers and resident processes for Z80 Turbo-
DOS must be written using a Z80 assembler
capable of producing relocatable modules with
symbolic linkage information in the industry-
standard Microsoft relocatable module format.
Both Microsoft's M80 and Digital Research's
RMAC assemblers produce object code in this
format, and are fine choices for use with
TurboDOS.

Another excellent relocatable Z80 assembler
is PASM from Phoenix Software Associates.
However, PASM produces object modules in a
non-standard format.

To make it possible for PASM to be used with
TurboDOS, a conversion utility (RELVCT.COM)
for converting PASM object modules to stan-
dard Microsoft format is furnished with
TurboDOS. The command:

I I
RELCVT filename

converts the specified PASM-format .REL file
into Mic roso f t .REL fo rmat . Dur ing conver-
sion, the character . is converted to ?, and
the character % is converted to @ w h e r e v e r
these characters appear in symbol names.

4-1

TurboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Assembler Notes
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Assembler Notes
(Continued)

undefined External
References

Programming examples and driver listings in
this document are coded for PASM. If you are
used to another assembler, please take note
of certain syntax features of PASM which may
be different in other assemblers.

Names followed by # are external references
to public names defined in other modules.
Labels followed :: are public names available
for reference in other modules. Some assem-
blers require such names to be declared using
an EXTERN or PUBLIC directive.

Program, data, and common segments are intro-
duced with a .LOG directive. Other assem-
blers use different directives such as CSEG,
DSEG, COMMON, etc. to accomplish the same
thing. ,

Finally, the symbol . represents the current
location counter value. Some assemblers use
$ or * instead.

To allow various TurboDOS modules to be in-
cluded or omitted at will, the GEN command
automatically resolves all undefined external
references to the default symbol public ?UND?
(.UND. using PASM). The common subroutine
module COMSUB contains the following subrou-
tine:

,UND.: NO P
NOP
XRA
RET

;two bytes of zero
. 1 1 n n ii
,
;clear A to zero
;done

Thus, it is always safe to load or call an
external name, whether or not it is present
at GEN time. It is bad form to store into an
undefined external name, however!

4-2

TürboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Memory Allocation

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Memory Allocation The TurboDOS resident occupies the topmost
portion of memory in a Z80 system. A common
m e m o r y management module M E M M G R provides
dynamic allocation and deallocation of memory
space required for disk and message buf fe r s ,
print queues, file and record locks, do-file
nesting, and so fo r th . M e m o r y segments are
allocated d o w n w a r d f r o m the base of the
T u r b o D O S r e s iden t , r e d u c i n g the space
available for TPA. Deallocated segments are
concatenated with any neighbors and threaded
on a free-memory list. A best-fit algorithm
is used to reduce memory fragmentation.

Allocation and deallocation requests are
coded in this manner:

;code to allocate a memory segment
LXI H,36 ;HL=segment size
CALL ALLOC* /allocate segment
ORA A ;alloc successful?
JNZ ERROR ;NZ -> not enuf mem
PUSH H ;HL=segment address

••

;code to deallocate a memory segment
POP H ;HL=segment address
CALL DEALOC* ;deallocate segment

ALLOC* prefixes each allocated segment with a
word containing the segment length, so that
DEALOC* can tell how much memory is to be
deallocated. ALLOC* does not zero the newly-
allocated segment.

4-3

TurboDOS 1.4 Z80
Iiaplementor' s Guide

CODING CONVENTIONS

List Processing

Copyright 1984 by Software 2000, Inc.
All rights reserved.

List Processing TurboDOS maintains its dynamic structures as
threaded lists with bidirectional linkages.
This technique permits a node to be added or
deleted anywhere in a list without searching.
The list head and each list node have a two-
word linkage (forward and backward pointers).

List manipulation is coded in this manner:

.LOC .DATA.* ;data segment
;list head (linkage initialized empty)
LSTHED: .WORD LSTHED ;forward pointer

.WORD LSTHED ;backward pointer

;list node (linkage not initialized)
LSTNOD: .WORD 0 ;forward pointer

.WORD 0 ;backward pointer

.BYTE [128]0 ;contents of node

.LOG .PROG.# ;program segment
;code to add node to end of list

LXI H,LSTHED ;HL=head address
LXI DfLSTNOD ;DE=node address
CALL LNKEND* ;link to list end

;code to unlink node from list
LXI H,LSTNOD ;HL=node address
CALL UNLINK* ;unlink node

;code to add node to beginning of list
LXI H,LSTHED ;HL=head address
LXI D,LSTNOD ;DE=node address
CALL LNKBEG* ;link to list beg,

4-4

TurboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Task Dispatching

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Task Dispatching TurboDOS incorporates a flexible, efficient
mechanism for dispatching the Z80 processor
among various competing processes. In coding
drivers for TurboDOS, you must take extreme
care to use the dispatcher correctly in order
to attain maximum system performance.

The dispatcher allows one process to wait for
some event (for example, data-available or
seek-complete) while allowing other processes
to use the processor. For each such event,
you must define a three-word structure called
a "semaphore".

A semaphore consists of a count-word followed
by a two-word list head. The count-word is
used by the dispatcher to keep track of the
status of the event. (At present, only the
LSB of the count word is used, supporting
counts in the range -128 to +127.) The list
head anchors a threaded list of processes
waiting for the event to occur.

Two primitive operations operate on a sema-
phore: waiting for the event to occur
(WAIT*), and signalling that the event has
occurred (SIGNAL*). They are coded in this
following manner:

;this semaphore represents some event
EVENT: .WORD 0 ;semaphore count

.WORD EVENT+2 ;semaphore f-ptr

.WORD EVENT+2 ;semaphore b-ptr

;wait for the event to occur
LXI H,EVENT ;HL=semaphore addr
CALL WAIT* ;wait for event

;signal that event has occurred
LXI H,EVENT ;HL=semaphore addr
CALL SIGNAL* ;signal event

4-5

TurboDOS 1.4 Z80 CODING CONVENTIONS
Implementor's Guide

Task Dispatching
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Task Dispatching Whenever a process waits on a semaphore,
(Continued) WAIT* decrements the semaphore's count-word.

Thus, a negative count -N signifies that
there are N processes waiting for the event
to occur. Whenever an event is signalled,
SIGNAL* increments the semaphore count-word
and awakens the process chat has been waiting
longest.

If an event is signalled but no process is
waiting for it, then SIGNAL* increments the
count-word to a positive value. Thus, a
positive count N signifies that there have
been N occurrences of the event for which no
process was waiting. In this case, the next
N calls to WAIT* on that semaphore will
return immediately without waiting.

Sometimes it is necessary for a process to
wait for a specific time interval (for exam-
ple, a motor-start delay or carriage-return
delay) rather than for a specific event.
TurboDOS provides a delay facility (DELAY*)
that permits other processes to use the Z80
while one process is waiting for such a timed
delay. Delay intervals are specified as some
number of "ticks". A tick is an implementa-
tion-defined interval, usually 1/50 or 1/60
of a second. Delays are coded thus:

I
I ;delay for one-tenth of a second
I . LXI H,6 ;HL=delay in ticks
I CALL DELAY* ;delay process

Accuracy of delays is usually plus-or-minus
one t ick. A delay of z e r o t i cks may be

f /•'V""6'/"») specified to ruling u isji the processor to
other processes on a "courtesy" basis.

All driver delays should be accomplished via
WAIT* or DELAY*, ngyer by spinning in a loop.

4-6

TurboOOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Interrupt Service

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Interrupt Service Dispatching is especially efficient when used
with interrupt-driven devices. usually, the
interrupt service routine just calls SIGNAL#
to signal the interrupt-associated event.

Most interrupt service routines should exit
via the usual EI/RETI sequence. However,
some periodic interrupt (usually a 50 or 60
hertz clock interrupt) should have an inter-
rupt service routine that exits by jumping to
the dispatcher entrypoint ISRXIT* (without
enabling interrupts) to provide periodic
time-slicing of processes. To avoid exces-
sive dispatcher overhead, don't use ISRXITt
more than about 60 times per second.

It is good programming practice for interrupt
service routines to set up an auxilliary
stack, in order to avoid the possibility of
overflowing the stack area of some transient
program. TurboDOS provides a standard inter-
rupt stack area INTSTK# and stack pointer
save location INTSP*. A simple interrupt
service routine might be coded like this:

DEVISR: SSPD INTSP# ;save user SP
LXI SP,INTSTKf ;SP=aux stack
PUSH PSW
PUSH B
PUSH D
PUSH H
IN PORT
LXI H, EVENT
CALL SIGNAL!
POP H
POP D
POP B
POP PSW
LSPD INTSP*
El
RETI

;save registers
. n H,
. 1 1 n
/
. n n
/

;reset interrupt
;HL= semaphore addr
; signal event
;restore registers
. n n/
. n n
,
. n n
/

;restore user SP
;enable interrupts
;return from int.

4-7

TurboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Poll Routines

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Poll Routines Devices incapable of interrupting the Z80
have to be polled by the driver. The dis-
patcher maintains a threaded list of poll
routines, and executes them every dispatch.
The function of each poll routine is to check
the status of its device, and to signal the
occurrence of some event (for example, data-
available) when it occurs. The routine
LNKPOL* links a poll routine onto the poll
list, and UNLINK* removes it.

A poll routine must be coded so that it will
not signal the occurrence of a particular
event more than once. The best way to assure
this is for the poll routine to unlink itself
from the poll list as soon as it has signal-
led the event. An example:

EVENT: WORD 0 ;semaphore
WORD EVENT+2

i WORD EVENT+2

;driver waits for event
LXI D,POLNOD ;DE=poll node addr
CALL LNKPOL* ;activate poll rtn
CALL POLRTN ;optional pretest
LXI H,EVENT ;HL=semaphore addr
CALL WAITt ;waic for event

;poll routine signals event when detected
POLNOD:

POLRTN:

.WORD 0

.WORD 0
IN
AN I
RZ
LXI
CALL
LXI
CALL
RET

;poll rtn linkage
. n n n,

PORT ;get device status
MASK ;did event occur?

;if not, exit
H,EVENT ;HL=semaphore addr
SIGNAL* ;signal event
H,POLNOD ;HL=linkage addr
UNLINK* ;unlink poll rtn

;all done

4-8

TurboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Mutual Exclusion

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Mutual Exclusion TurboDOS is fu l ly re-entrant at the process
and kernel levels. However , most driver
modules are not coded re-ent rant ly (since
most peripheral devices can only do one thing
at a time). Consequently, most
make use of a mutua l -exc lus ion
prevent TurboDOS from invoking
rantly.

drivers must
in te r lock to
them re-ent-

This is very easy to accomplish using the
basic semaphore mechanism of the dispatcher.
It is only necessary to define a semaphore
with its count-word initialized to 1 (instead
of 0). Mutual exclusion may then be accom-
pl i shed by ca l l ing W A I T * u p o n e n t r y and
SIGNAL! upon exit. An example:

;mutual-exclusion semaphore
MXSPH: .WORD 1 ;count-word=l!

.WORD MXSPH+2

.WORD MXSPH+2

DRIVER: LXI
CALL

H,MXSPH
WAIT*

LXI H,MXSPH
CALL SIGNAL*
RET

;HL=semaphore addr
;wait if in-use

;HL=semaphore addr
;unlock mut-excl
;done

Interrupt Status To permit reliable testing of the interrupt
status (enabled or disabled) of the Z80 CPU,
TurboDOS provides the subroutine TSTIFF*. It
is called with no arguments, and returns with
the carry-flag set if and only if interrupts
are disabled.

4-9

TurboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Sample Driver
Using Interrupts

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sample Driver
Osing Interrupts

Here is a simple device driver for an inter-
rupt-driven serial input device. It illus-
trates coding techniques discussed so far:

MXSPH:

RDASPH:

CHRSAV:

.WORD 1

.WORD MXSPH+2

.WORD MXSPH+2

.WORD 0

.WORD RDASPH+2

.WORD RDASPH+2

.BYTE 0

;MX semaphore

;RDA semaphore

;saved input char
/device driver main code
INPDRV::LXI H,MXSPH ;HL=MX semaph addr

CALL WAIT* ;lock MX
El ;need ints enabled
LXI H,RDASPH ;HL=semaphore addr
CALL WAIT* ;wait data avail
LDA CHRSAV ;get input char
PUSH PSW ;save on stack
LXI H,MXSPH ;HL=MX semaph addr
CALL SIGNAL! ;unlock MX
POP PSW ;return char in A
RET ;done

;interrupt service routine
INPISR::SSPD INTSP* ;save user's SP

LXI SP,INTSTKt ;SP=aux stack
PUSH
PUSH
PUSH
PUSH
IN
STA
LXI
CALL
POP
POP
POP
POP
LSPD
El
RETI

PSW
B
D
H
PORT
CHRSAV
H,RDASPH
SIGNAL*
H
D
B
PSW
INTSP*

;save registers
n n

ii n

n n

;get input char
;save for driver
;HL=semaphore addr
;signal data avail
»•restore registers

/restore user SP
/enable interrupts
/return from int.

4-10

TurboDOS 1.4 Z80
Implementor 's Guide

CODING CONVENTIONS

Sample Driver
Using Polling

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sample Driver
using Polling

Here is a simple device driver for non-inter-
rupting serial input device. It illustrates
how polling is used:

MXSPH:

RDASPH:

CHRSAV :
;device
INPDRV :

,

; device
POL NOD:

POLRTN:

.WORD 1 ;MX semaphore

.WORD MXSPH+2

.WORD MXSPH+2

.WORD 0 ?RDA semaphore

.WORD RDASPH+2

.WORD RDASPH+2

.BYTE 0 ; saved input char
driver main code
:LXI H , MXSPH ;HL=MX semaph addr
CALL WAIT! ;lock MX
LXI D,POLNOD ;DE=poll rtn node
CALL LNKPOL* ;activate poll rtn
CALL POLRTN ; optional pretest
LXI H , RDASPH ; HL= semaphore addr
CALL WAITtt ;wait data avail
LDA CHRSAV ;get input char
PUSH PSW ;save on stack
LXI H , MXSPH ;HL=MX semaph addr
CALL SIGNALS ; unlock MX
POP PSW ; return char in A
RET ; done
poll routine with linkage .
.WORD 0 ;poll rtn linkage
.WORD 0
IN STATUS ;get device status
ANI MASK ; data available?
RZ ;if not, exit
IN DATA ;get input char
STA CHRSAV ;save for driver
LXI H, RDASPH ;HL= semaphore addr
CALL SIGNAL! ; signal data avail
LXI H,POLNOD ;HL=linkage addr
CALL UNLINK* ; unlink poll rtn
RET ; done

4-11

TurboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Special Segments

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Special Segments In addition to the usual code and data seg-
ments, GEN command supports three special
location counters (common blocks):

MSO/RMAC J

7INIT?
7 PAGE?
7BANK?

PASM 1

.INIT. #

. PAGE . f

.BANK. *

De.scripiJ.5ii

Initialization code
Page-boundary aligned
Banked-memory common

7INIT? Segment In coding driver modules, you will often find
a considerable amount of initialization code
that is executed only once at cold-start and
never needed again. By assembling such code
under 7INIT? (.INIT.S using PASM), it will be
loaded and executed in lower memory (TPA),
and will not occupy space in the resident
operating system.

7PAGE? Segment Sometimes you may need to force a segment of
code or data to begin on a 256-byte page
boundary. Examples are the simulated CP/M
BIOS branch table, and interrupt vectors for
Z80 interrupt mode 2. By assembling under
7PAGE? (.PAGE.t using PASM), the segment is
guaranteed to be page-aligned.

7BANK? Segment In banked-memory implementations, you need to
be able to place certain code and data in the
topmost part of memory which is common to
both banks (not switched). Anything assem-
bled under 7BANK? (.BANK.* using PASM) will
be assigned to this common region (as speci-
fied by the ;Kxxxx option on the GEN com-
mand) .

4-12

TurboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Inter-Process
Messages

Copyright 1984 by Software 2000, Inc,
All rights reserved.

Inter-Process
Messages

To pass messages f rom one process to another,
a five-word structure called a "message node"
is used. A message node consists of a three-
word semaphore followed by a two-word message
list head. Routines are provided for sending
messages to a message node (S N D M S G f) , and
r e c e i v i n g messages f r o m a m e s s a g e node
(R C V M S G #) . Typically, the sending process
allocates a memory segment in which to build
the message, and the receiving process deal-
locates the segment a f t e r reading the mes-
sage. The f i r s t two words of each message
must be reserved for a list-processing link-
age. Coding is done in this manner:

;message node
MSGNOD: .WORD ;semaphore part

. n it.WORD MSGNOD+2 ;
.WORD MSGNOD+2 ; " "
.WORD MSGNOD+6 ;message list head
.WORD MSGNOD+6 ;

;one process allocates/builds/sends msg
LXI H,12+4 ;HL=message size+4
CALL ALLOC* ;allocate segment

H ;save segment addr
;build msg in seg

D ;DE=message addr
H,MSGNOD ;HL=msg node addr

LXI
CALL
PUSH

•

POP
LXI
CALL SNDMSG* ;send message

;other process reads/deallocates message
LXI H,MSGNOD ;HL=msg node addr
PÄT.T. PPTJMCfüÄ • T - o r - Q i T T Q m/accano
LXI
CALL
PUSH

••

POP
CALL

RCVMSGt
H

H
DEALOCf

, - - ̂ _ . _ _ _ — _.

;receive message
;save message addr
»•process message
;HL=segment addr
/•deallocate seg

4-13

TurboDOS 1.4 Z80
Implementoc's Guide

CODING CONVENTIONS

Console Routines

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Routines TurboDOS includes several handy console I/O
subroutines which may be called from within
driver modules as illustrated:

;raw console I/O routines
CALL CONST* ;get status in A
ORA A ,. ; input char avail?
RZ ;if not, exit
CALL CONIN* ;get input in A
CALL UPRCAS* ;make upper-case
MOV C,A ;C=character
CALL CONOUT* ;output chr from C

;message output routines
;last char of message has sign-bit set

CALL DMS# ;output following
.ASCIS "This is a message"
LXI H,MSGADR ;HL=message addr
CALL DMSHLI ;output msg 8 HL

;binary-to-decimal output routine
LXI H,31416 ;HL=word value
CALL DECOUT* ;displays decimal

Sign-On Message You may add your own custom sign-on message
to TurboDOS. Your message will be displayed
at cold-start immediately following the nor-
mal TurboDOS sign-on and copyright notice.

Your sign-on message must be coded as an
ASCII character string terminated with a $
delimiter, and labelled with the public entry
symbol USRSOM. An example;

USRSOM::.ASCII [ODH] [OAH]
.ASCII "Implementation by "
.ASCII "Trigon Computer Corp.
.ASCII "$"

4-14

TurboDOS 1.4 Z80
Implementoc's Guide

CODING CONVENTIONS

Resident Process

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Resident Process You can code a resident process that runs in
the background concurrent with other system
activities, and l ink it into TurboDOS. The
create-process subroutine CRPROC* may be
called to create such a process at cold-start
as shown:

HDWNIT:

MYPROC :

.LOG
:LXI
CALL

LXI
CALL

•

.LOG
INR
LXI
MVI
CALL
JMP

.INIT.t
H,64
ALLOCt

D, MYPROC
CRPROC*

. PROG . #
COUNT (Y)
0,60*60
C,2
OTNTRY*
MYPROC

I
;init code 1
;HL=workspace size
;alloc workspace
;HL=workspace addr
;DE=entrypoint add
;create process

;code segment
; increment counter
;1 minute in ticks
;T-function 2
; delay 1 minute
;loop forever

CRPROC* automatical ly allocates a TurboDOS
process area (address appears in register X)
and a stack area (address appears in SP). If
the process requires a re-entrant workspace,
it should be allocated with ALLOC# and passed
to CRPROC* in HL (as shown above) , and wil l
appear to the new process in register Y.

The resident process must make all operating
system requests by calling OCNTRY* or OTNTRY*
w i t h a C - f u n c t i o n or T - f u n c t i o n n u m b e r
register C. It mjiSi Hfi£ call location 0005H
or 0050H in the base page, nor make direct
calls on k e r n e l r o u t i n e s such as W A I T t ,
SIGNAL*, DELAY*, SNDMSGt , RCVMSG*, ALLOCS,
and DEALOC*.

4-15

TurboDOS 1.4 Z80
Implementor's Guide

CODING CONVENTIONS

Resident Process
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Resident Process
(Continued)

user-Defined
Function

A resident process is not attached to a con-
sole, so any console I/O requests will be
ignored.

You can do file processing within a resident
process, using the normal C-functions open,
close, read, write, and so forth, called via
OCNTRY*. First, however, you must remember
to warm-start with C-function 0 (OCNTRY*),
and then log-on with T-function 14 (OTNTRY*).

A resident process must always be coded to
preserve the contents of index register X,
which Turbodos relies upon as a pointer to
its process area. The process may use all
other registers as desired.

The User-Defined Function (T-function 41)
provides a means of adding your own special
functions to the normal TurboDOS repertoire
of C-functions and T-functions. To do this,
you simply create a function processor sub-
routine with the public entrypoint symbol
ÜSRFCN.

Whenever a program invokes T-function 41,
TurboDOS transfers control to your USRFCN
routine. On entry, register BC contains the
address of the 128-byte record area passed
from the caller's current DMA address, and
registers DE and HL contain whatever values
the caller loaded into them. Your USRFCN
routine may return data to the caller in the
128-byte record area (address in BC at entry)
and in any of the registers A-B-C-D-E-H-L.

Architecturally, your USRFCN routine is in-
side the TurboDOS kernel. Consequently, it
may call kernel subroutines directly. Any
calls to C-functions and T-functions must
therefore be made by means of two special
recursive entrypoints: XCNTRY* and XTNTRYf.

4-16

TurboDOS 1.4 Z80
Implementor's Guide

DRIVER INTERFACE

Copyright 1984 by Software 2000, Inc.
All rights reserved.

DRIVER INTERFACE

General Notes

This section explains how to code hardware-
dependent device driver modules, and presents
formal interface specifications for each
category of driver required by TurboDOS.

Following this section is a large appendix
that contains assembler source listings of
actual driver modules. The sample drivers
cover a wide range of peripheral devices, and
provide an excellent starting point for your
driver development work.

Drivers modules are coded with standard pub-
lic entrypoint names, and linked to TurboDOS
using the GEN command. You may package your
drivers into as many or few separate modules
as you like. In general, it is easier to
reconfigure TurboDOS for a variety of devices
if the driver for each device is packaged as
a separate module.

TurboDOS is designed to accomodate multiple
disk, console, printer, and network drivers.
For disk drivers, for instance, the DSKAST
is normally set up to refer to disk driver
entrypoints DSKDRA*, DSKDRB*, DSKDRCf, and so
forth. Each disk driver should be coded with
the public entrypoint DSKDR@ (DSKDR% using
PASM). The GEN command automatically maps
successive definitions of such names by
replacing the trailing @ by A, B, C, etc.
The same technique may be used for console,
printer, and network driver entrypoints.

You must code driver routines to preserve the
stack and index registers X and Y, but you
may use other registers as desired.

5-1

TurboDOS 1.4 Z80 DRIVER INTERFACE
Implementor's Guide

Initialization

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Initialization Hardware initialization and interrupt vector
set-up should be performed in an initializa-
tion routine labelled with the public entry
symbol HDWNIT::. TurboDOS calls this routine
during cold-start with interrupts disabled.

Your HDWNIT:: routine mus_t Hfii enable inter-
rupts or make calls to WAIT* or DELAY*. In
most cases, HDWNIT:: will contain a series of
calls to individual driver initialization
subroutines contained in other modules.

One-time initialization code that is not
needed again should be assembled under the
special location counter 7INIT?, so that it
doesn't take up space in the resicieac opera-
ting system.

1 X,

5-2

Tu r bo DO S 1.4 Z80
Implementor's Guide

DRIVER INTERFACE

Console Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Driver A console driver should be labelled with the
public entry symbol CONORS (CONDR%:: using
PASM). A console number (from CQNAST) is
passed in register B. The driver must per-
form a console I/O operation according to the
operation code passed in register E:

E-reci Pjmction.

0 Return status in A, char in C
1 Return input character in A
2 Output character passed in C
8 Enter error-message mode
9 Exit error-message mode

10 Conditional output char in C

If E=0, the driver determines if a console
input character is available. If no charac-
ter is available, the driver returns A=0. If
an input character is available, the driver
returns A=-l and the input character in C,
Jailt mnat nfit -"consume" ihe. character. Turbo-
DOS depends upon this look-ahead capability
to detect attention requests. The driver
must not dispatch (via WAIT* or DELAY*) when
processing an E=0 call.

If E=l, the driver obtains an input character
(waiting if necessary) and returns it in A.

If E=2, the driver displays the output char-
acter passed in C (waiting if necessary).

If E=8, the driver prepares to display a
TurboDOS error message; if E=9, it reverts to
normal. TurboDOS always precedes each error
message with an E=8 call and follows it with
an E=9 call. This gives the driver an oppor-
tunity to take special action (25th line,
reverse video, etc.) for error messages. For
simple consoles, the driver should output a
CR-LF in response to E=8 and E=9 calls.

5-3

TurboDOS 1.4 Z80 DRIVER INTERFACE
Implementor's Guide

Console Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Driver If E=10, the driver determines whether or not
(Continued) it can accept a console output character

without dispatching (via WAIT! or DELAY*).
If so, it outputs the character passed in C,
and returns A=-l to indicate that the charac-
ter was accepted. However, if the driver
cannot accept a console output character
without dispatching, it returns A=0 to indi-
cate that the character was not accepted;
TurboDOS will then make an E=2 call to output
the same character. This special conditional
output call is used by TurboDOS to optimize
console output speed by avoiding certain
dispatch-related overhead whenever possible.

You should make a special effort to code the
console driver to execute the minimum number
of instructions possible, especially func-
tions 0, 2, and 10. Excessive use of subrou-
tine calls, stack operations, and other time-
consuming coding techniques can make the
difference between running the console device
at full rated speed or something less. Study
the sample driver listings in the appendix
with this in mind.

5-4

TurboDOS 1.4 Z80 DRIVER INTERFACE
Implementor's Guide

Printer Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Printer Driver A printer driver should be labelled with the
public entry symbol LSTDR§ (LSTDR%:: using
PASM). A printer number (from PTRAST) is
passed in register B. The driver must per-
form a printer output operation according to
the operation code passed in register E:

E-reg

I 2 Print character passed in C
\ 7 Perform end-of-print-job action

If E=2, the driver prints the output charac-
ter passed in C (waiting if necessary).

If E=7, the driver takes any appropriate end-
of-print-job action. This is quite hardware-
dependent, and may include slewing to top-of-
form, homing the print head, dropping the
ribbon, and so forth.

5-5

TurboDOS 1.4 Z80
Implementor's Guide

DRIVER INTERFACE
* * - ". *"-•=

Disk Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Disk Driver A disk driver should be labelled with the
public entry symbol DSKDR@ (DSKDR%:: using
PASM). The driver performs the physical disk
operation specified by the Physical Disk
Request (PDR) packet whose address is passed
by TurboDOS in index register X. The struc-
ture of the PDR packet is:

_ Offset̂] Contents . _ . . .

; physical disk request (PDR) packet
OCX)
1(X)
2(X)
4(X)
6(X)
8(X)
10(X)
12 (X)
/•copy
14 (X)
15(X)
17 (X)
18 (X)
19 (X)
21 (X)
23 (X)

.BYTE OPCODE

.BYTE DRIVE

.WORD TRACK

.WORD SECTOR

.WORD SECCNT

.WORD BYTCNT

.WORD DMAADR

.WORD DSTADR

; operation code
; drive (base 0)
; track (base 0)
; sector (base 0)
;f sectors to rd/wr
;f bytes to rd/wr
;DMA addr to rd/wr
;DST address

of disk specification table (DST)
.BYTE BLKSIZ
.WORD NMBLKS
.BYTE NMBDIR
.BYTE SECSIZ
.WORD SECTRK
.WORD TRKDSK
.WORD RESTRK

;block size (3-7)
;#blocks on disk
;#directory blocks
;sector size (0-7)
; sector s per track
;tracks on disk
/•reserved tracks

The operation to be performed by the driver
is specified in the first byte of the PDR
packet (OPCODE) as follows:

_ OPCODE

0
1
2
3
4

J ., Function 1
1

Read sectors from disk 1
Write sectors to disk 1
Determine disk type, return DST 1
Determine if drive is ready I
Format track on disk 1

1

5-6

Tf l

TurboDOS 1.4 Z80 DRIVER INTERFACE
Implementor's Guide

Disk Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Disk Driver If OPCODE=0, the driver reads SECCNT physical
(Continued) sectors (or equivalently, BYTCNT bytes) into

DMAADR, starting at TRACK and SECTOR on
DRIVE. The driver returns A=0 if the opera-
tion is successful, or A=-l if an unrecover-
able error occurs. TurboDOS may request
multiple consecutive sectors to be read, but
will never request an operation that extends
past the end of the track.

If OPCODE=1, the driver writes SECCNT physi-
cal sectors (or BYTCNT bytes) from DMAADR,

- starting at TRACK and SECTOR on DRIVE. The
driver returns A=0 if the operation is suc-
cessful, or A=-l if an unrecoverable error
occurs. TurboDOS may request multiple con-
secutive sectors to be written, but will
never request an operation that extends past
the end of the track.

If OPCODE=2, the driver must determine the
type of disk mounted in DRIVE, and must
return, in the DSTADR field of the PDR
packet, the address of an 11-byte disk speci-
fication table (DST) structured as follows:

1 Offset 1
1
1 0
1 1-2
1 3
1 4
1 5-6
1 7-8
1 9-10
1

Des cxipt ion

block size (3=1K,4=2K,. . . ,7=16K)
total number of blocks on disk
number of directory blocks
sector size (0=128, ... ,7=16K)
number of sectors per track
number of tracks on the disk
number of reserved (boot) tracks

The first byte of the DST (BLKSIZ) specifies
the allocation block size in bits 2-0. In
addition, bit 7 is set if the disk is fixed
(non-removable), and bit 6 is set if file
extents are limited to 16K (EXM=0).

5-7

TurboOOS 1.4 Z80 DRIVER INTERFACE
Implementor's Guide

Disk Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Disk Driver The driver returns A=-l if the operation is
(Continued) successful, or A=0 if the drive is not ready

or the disk type is unrecognizable. On
successful return, TurboDOS moves a copy of
the DST into 14(X) through 24(X), where it is
available for subsequent operations.

If OPCODE=3, the driver determines whether
DRIVE is ready, and returns A=-l if it is
ready or A=0 if not.

If OPCODE=4, the driver formats (initializes)
TRACK on DRIVE, using hardware-dependent
formatting information at DMAADR (put there
by the FORMAT command). The driver returns
A=0 if successful, or A=-l if an unrecover-
able error occurs.

5-8

TurboDOS 1.4 Z80 DRIVER INTERFACE
Implementor's Guide

Bank-Select Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Bank-Select Driver Banked-memory systems must include a bank-
select driver labelled with the public entry
symbol SELBNK::. The function of this rou-
tine is simply to select the memory bank (0
or 1) passed in register A. The routine
should be coded under the special location
counter 7BANK? to ensure it is situated in
unswitched common memory. In addition, the
SELBNK:: routine must preserve all registers
other than A.

All interrupt-driven drivers in a banked-
memory system must be designed to service
interrupts properly regardless of which bank
is active when an interrupt occurs. Drivers
for DMA disk controllers must ensure that DMA
operations transfer into or out of bank 0
only. Study the sample drivers in the appen-
dix for suggested techniques.

5-9

TurboDOS 1.4 Z80
Implementor's Guide

DRIVER INTERFACE
.r . J

Network Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver A network circuit driver should be labelled
with the public entry symbol CKTDR@ (CKTDR%::
using PASM). A message buffer address is
passed in register DE. The driver must
either send or receive a network message,
according to the operation code passed in
register C:

C-reg Function
I

0 Receive message into buffer at DE I
1 Send message from buffer at DE I

If C=0, the driver receives a network message
into the message buffer whose address is
passed in DE (waiting if necessary). If a
message is received successfully, the driver
returns A=0. If an unrecoverable malfunction
of any remote processor is detected, the
driver returns A=-l with the network address
of the crashed processor in DE.

If C=l, the driver sends a network message
from the message buffer whose address is
passed in DE. If the message is sent suc-
cessfully, the driver returns A=0. If the
message could not be sent because of an unre-
coverable malfunction of the destination
processor, the driver returns A=-l with the
network address of the crashed processor in
DE.

The structure of a network message buffer is
shown on the next page. The first two words
of the buffer are reserved for a linkage used
by TurboDOS, and should be ignored by the
driver. The 11-byte message header and
variable-length message body should be sent
or received over the circuit. The driver
needs to look at only the first two header
fields (MSGLEN and MSGDID) and possibly the
last field (MSGFCD).

5-10

TurboDOS 1.4 Z80
Implementor"s Guide

DRIVER INTERFACE

Network Driver
(Continued)

Copyright 1984 by Software 2000/ Inc.
All rights reserved.

Network Driver
(Continued) message buffer format

.WORD ? ;

.WORD ? ;
11-byte message header

.BYTE MSGLEN

.WORD MSGDID ;

.BYTE MSGPID ;

.WORD MSGSID ;

.WORD MSGOID ;

.BYTE MSGOPR ;

.BYTE MSGLVL ;

.BYTE MSGFCD ;
variable-length body

.BLKB 7 ,

.BLKB 1 ?

.BLKB 37

.BLKB 128 ;

linkage (ignored)

msg length
destination addr
process id
source addr
originator addr
orig'r process id
forwarding level
msg format code

registers ACBEDLH
user * and flags
optional FCB data
optional record

The message format code field MSGFCD contains
bit-encoded flags that define the format and
context of each network message. This field
may be ignored by most simple drivers, but
its contents may be useful in complex network
environments. Encoding of MSGFCD is:

„Bit! Meaning

0 first message of session
1 last message of session
2 continuation message follows
3 request includes FCB data
4 request includes record data
5 reply includes FCB data
6 reply includes record data
7 this is a reply message

5-11

TurboDOS 1.4 Z80 DRIVER INTERFACE
Xmplementor's Guide

Network Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver The length field MSGLEN represents the number
(Continued) of bytes in the message, including the header

and body (but excluding the linkage). On a
receive request (C=0), TurboDOS presets
MSGLEN to the maximum allowable message
length, and expects MSGLEN to contain the
actual message length on return. On a send
request (C=l), TurboDOS presets MSGLEN to the
actual length of the message to be sent.

In a master/slave network, it is often desir-
able for the circuit driver in the master to
periodically "poll" the slave processors on
the circuit to detect any slave malfunctions
quickly and to effect recovery. If the
driver reports that a slave has crashed (by
returning A=-l and DE=network-address), then
the circuit driver must not accept any fur-
ther messages from that slave until TurboDOS
has completed its recovery process.

TurboDOS signals the driver that such recov-
ery is complete by sending a dummy message
destined for the slave in question with a
length of zero. The driver should not actu-
ally send such a message to the slave, but
could initiate whatever action is appropriate
to reset the slave and download a new copy of
the slave operating system.

A slave must request an operating system
download by sending a special download re-
quest message to the master (usually done by
a bootstrap routine). The download request
message consists of a standard 11-byte header
(with MSGPID, MSGOID and MSGFCD zeroed) fol-
lowed by a 1-byte body containing a "download
suffix" character. The master processor
addressed by MSGDID will return a reply mes-
sage whose 128-byte body is the first record
of the download file OSSLAVEx.SYS (where "x"
is the specified download suffix).

5-12

TurboDOS 1.4 Z80 DRIVER INTERFACE
Implementor's Guide

Network Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver The slave continues to send download request
(Continued) messages and to receive successive download

records until it receives a short reply mes-
sage (1-byte body) signifying end-of-file.
The first word of the downloaded file speci-
fies the base address to which the downloaded
system should be moved, and the second word
specifies the total byte-length of the sys-
tem. The single byte passed as the body of
the final short message identifies the system
disk, and should be passed to the system in
register A.

The entire failure detection, failure recov-
ery, and slave downloading procedure is very
hardware-dependent. Study the driver listing
in the appendix for guidance.

5-13

TurboDOS 1.4 Z80
Implenentor's Guide

DRIVE» INTERFACE

'''** Comm Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Comm Driver The comm driver supports the TurboDOS commu-
nications extensions (T-functions 34-40), and
may be omitted if these functions are not
used. The driver should be labelled with the
public entry symbol COMDRV::. A comm channel
number is passed in register B. The driver
must perform an I/O operation according to
the operation code passed in register E:

E-reg_

0 Return input status in A
1 Return input character in A
2 Output character passed in C
3 Set channel baud rate from C
4 Return channel baud rate in A
5 Set modem controls from C
6 Return modem status in A

If E=0, the driver determines if an input
character is available. If one is available,
the driver returns A=-l, otherwise A=0.

If E=l, the driver obtains an input character
(waiting if necessary) and returns it in A.

If E=2, the driver outputs the character
passed in C

If E=3, the driver sets the channel baud rate
according to the baud-rate code passed in C.
If E=4, the driver returns the channel baud-
rate code in A. See T-functions 37 and 38
in the 280 Programmer's Guide for baud-rate
code definitions.

If E=5, the driver sets the modem controls
according to the bit-vector passed in C. If
E=6, the driver returns the modem status
vector in A. See T-functions 39 and 40 in
the .Zjgjl Programmer's GLuJLd.e for bit-vector
definitions.

5-14

TurboDOS 1.4 Z80
Implementor's Guide

DRIVER INTERFACE

Clock Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Clock Driver The real-time clock driver does not take the
form of a subroutine called by TurboDOS, as
do the other drivers described in this sec-
tion. Rather, the clock driver generally
consists of an interrupt service routine
which responds to interrupts from a periodic
interrupt source (preferably 50 to 60 times a
second). The interrupt service routine
should call DLYTICf once per system tick (to
synchronize DELAY* requests). It should also
call RTCSEC* once per second (that is, every
50 to 60 ticks) to update the system time and
date. Finally, it should exit by jumping to
ISRXIT* to provide a periodic dispatcher
time-slice. Excluding initialization code, a
typical clock driver might be coded thus:

RTCCNT:
RTCISR:

..X:

.BYTE
SSPD
LXI
PUSH
PUSH
PUSH
PUSH
IN
CALL
LXI
DCR
JRNZ
MVI
CALL
POP
POP
POP
POP
LSPD
JMP

60
INTSPf

;dä
;sa

SP,INTSTKf ;
PSW
B
D
H
PORT
DLYTIC*
H, RTCCNT
M
..X
M, 60
RTCSEC*
H
D
B
PSW
INTSP«
ISRXIT*

;sc
*

;

,
;re
;sj
;g«
;d€
;nc
;re
;sj
;r<
;
;
;

;re
;g<

divide-by-60 cntr
save user's SP
;SP=aux stack

save registers

reset interrupt
signal one tick
get div-by-60 cnt
decrement counter
not 60 ticks yet
reset counter
signal one second
restore registers

M

n

restore user's SP
go to dispatcher

5-15

TurboDOS 1.4 Z80 DRIVER INTERFACE
Implementor'a Guide

Clock Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Clock Driver If the hardware is capable of determining the
(Continued) date and time-of-day at cold-start (by means

of a battery-powered clock, for example!. the
clock driver may initialize the following
public symbols in the RTCMGR module:

SECS:: .BYTE 0 ;seconds 0-59
MINS:: .BYTE 0 ;minutes 0-59
HOURS:: .BYTE 0 ;hours 0-24
JDATE:: .WORD 8001H ;Julian date

;base 31-Dec-47

r*

5-16

TucboDOS 1.4 Z80 DRIVER INTERFACE
Implementor's Guide

Bootstrap

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Bootstrap The bootstrap is usually contained in a ROM
or on a boot t rack . Its f u n c t i o n is to
sea rch a l l d i sk d r i v e s fo r the T u r b o D O S
loader program OSLOAD.COM, and to load and
execute it if found. To generate a boot-
strap, use the GEN command to combine the
standard bootstrap module OSBOOT with your
own hardware-dependent driver. Your driver
must def ine the fol lowing public entry sym-
bols: INIT, SELECT, READ, XFER, and RAM.

INIT:: is called once to perform any required
hardware initialization. It returns with the
load base address (where OSLOAD.COM wil l be
loaded) in HL. This address should normally
be 0100H, but may have to be higher for a
bootstrap ROM in low-memory.

SELECT:: is called to select the disk drive
passed in A (0-15). If the selected drive is
not ready or non-existent, it re-turns A=0.
Otherwise, it returns A=-l and the address of
an 11-byte disk specification table (DST) in
HL. The DST format is described on page 5-7.

READ:: is called to read one physical sector
f r o m the last-selected drive. The t rack is
passed in BC, the sector in DE, and the DMA
address in HL. It must return A=0 if suc-
cessful, or A=-l if an unrecoverable error
occurred.

XFER:: is t r ans fe r red to at the end of the
bootstrap process. In most cases, it needs
only to set location 0 0 8 0 H to ze ro (to
simulate a null command tail) and jump to
0100H. However, if INIT re turned a loader
base other than 0100H, then XFER must move
the loader down to 0100H before executing it.

RAM:: defines a 64-byte area that OSBOOT can
use for working storage. It should not be
located where OSLOAD.COM will be loaded!

5-17

TurboDOS 1.4 Z80 DRIVER INTERFACE
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

(Intentionally left blank.)

5-18

Tu r bo DO S 1.4 Z80
Implementor' s Guide

APPENDIX

Sample Driver
Source Listings

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sample Driver
Source Listings

The remainder of this document consists of
assembler source listings of actual drivers.
The l i s t ings c o m p r i s e the d r i v e r s for a
networking TurboDOS system. The master
processor is an S-100 single board computer,
which incorporates 128K of banked m e m o r y , a
floppy disk controller (supporting both 5"
and 8" dr ivers) , and a pair of RS232 serial
ports on-board. The master also has a hard
disk controller board connected to a pair of
Winchester drives. The slave processors are
S-100 single-board computers w i th 128K of
banked memory and a pair of RS232 serial
ports.

The listings appear in the following order:

Jiodule

EQUATE common symbolic equates
MPBMAS master bootstrap driver
NITMAS master driver initialization
INTMAS master interrupt handler
BNKMAS master bank-select driver
CON192 serial console driver, 19.2KB
LSTCTS serial printer driver/ CTS
LSTETX serial printer driver, ETX/ACK
LSTXON serial printer driver, XON/XOFF
SPDMAS master serial/parallel driver
RTCMAS master clock driver
DSKFDC master floppy disk driver
DSTFDC DSTs for 5" and 8" floppy disks
DSKHDC Winchester hard disk driver
MCDMAS master circuit driver
NITSLV slave driver initialization
BNKSLV slave bank-select driver
SCDSLV slave circuit driver
RTCSLV slave clock driver
SPDSLV slave serial/parallel driver
SLVRES general slave-reset subroutine

A-l

TurboDOS 1.4 Z80 APPENDIX
Implementor's Guide

Sample Driver
Source Listings

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ote: Sample driver source listings are available, upon request.

(Intentionally left blank.)

A-2

