
Jede Vervielfältigung dieses Handbuches sowie des Turbo Modula-2 Softwareprogrammes
wird strafrechtlich verfolgt. Die Rechte an der Dokumentation und die Rechte an dem Soft
wareprogramm Thrbo Modula-2 liegen bei Borland International.

Der rechtmäßige Erwerb der Programmdisketten und des Handbuches erlaubt die Nut
zung der Programme analog der Benutzung eines Buches. Entsprechend der Un
möglichkeit, daß ein Buch zugleich an verschiedenen Orten von mehreren Personen
gelesen wird, darf das Softwareprogramm Thrbo Modula-2 nicht gleichzeitig von
verschiedenen Personen an verschiedenen Orten und auf verschiedenen Geräten benutzt
werden. Diskettenkopien dürfen lediglich zum Zweck der Datensicherung angefertigt
werden.

Sie (der Lizenznehmer von Thrbo Modula-2) dürfen eigene Programme, die Sie mit dem
Turbo Modula-2 Sprachcompiler geschrieben und compiliert haben, ohne Einschränkung
oder Verpflichtung zu zusätzlichen Lizenzgebühren verwenden, weitergeben oder
verkaufen. Sie sind ebenfalls nicht verpflichtet anzugeben, daß Ihre Programme mit dem
Turbo Modula-2 Compiler entwickelt wurden, oder daß Sie Quellcode aus Toolboxen der
Borland Sprachprodukte enthalten.

Die Beispielprogramme von Thrbo Modula-2, die auf den Originaldisketten mitgeliefert
werden, demonstrieren die verschiedenen Eigenschaften von Thrbo Modula-2. Sie dürfen
diese Beispielprogramme editieren oder für den eigenen Gebrauch modifizieren. Sie
dürfen diese Programme jedoch nicht als Ganzes oder in Teilen in compilierter Form oder
als Quelltext weitergeben oder verkaufen. Sie dürfen die Routinen aus den Beispielpro
grammen in eigenen Anwenderprogrammen verwenden, solange die resultierenden Pro
gramme nicht einem Beispielprogramm oder einem Teil eines Beispielprogrammes in
Erscheinung oder Funktion gleichen.

Einschränkung der Gewährleistung

Es wird keine Garantie für die Richtigkeit des Inhaltes dieses Handbuches übernommen.
Da sich Fehler, trotz aller Bemühungen, nie vollständig vermeiden lassen, sind wir für
Hinweise jederzeit dankbar.

Herausgeber:
Heimsoeth Software GmbH & Co. Produktions- und Vertriebs-KG
Fraunhoferstr. 13, Postfach 14 02 80
8000 München 5 Telefon: 089/2 60 94 67, Telex: 52 12 637 mcm d
1. Auflage August 1987

Copyright © 1987 by Borland International, INC.

3

MODULA-2
TABLE OF CONTENTS

Introduction 17
Structure of This Manual 17
Typography 18
Acknowledgements 19

Chapter 1. Getting Started 21
Before Use 21
Files on Disk 21
Preparing a Work Disk 23
Running Turbo Modula-2 26

Chapter 2. A Brief Tour of Turbo Modula-2 29
The Menu System 29

Chapter 3. Language Elements 37
Character Set 37
Vocabulary 38
Numbers 38
Whole Numbers 38
Real Numbers 40
Strings and Characters 40
Strings 40
Characters 41
^lim iters and Comments 41

delimiters 41
Comments 42
Operators 42
Reserved Words 43
Identifiers 44
Standard Identifiers 44
User-Defined Identifiers 45
Library Identifiers 45

4 MODULA

Chapter 4. Expressions 49
Properties of an Expression 49
Operands 50
Operators 50
Operator Precedence 51

Chapter 5. Data Structure 53
Data Objects 53
Elementary Data Types 54
Declarations 56
Constant Declarations 57
Type Declarations 58
Variable Declarations 58
User-Defined Unstructured Types 59
Enumeration Types 59
Subrange Types 60
Pointer Types 61
Structured Types 62
Array Types 62
Record Types 64
Variant Records 66
Set Types 67
Procedure Types 68

Chapter 6. Statements 71
Assignment Statements 72
WITH Statements 73
Conditional Statements 75
IF Statements 75
CASE Statements 76
Repetitive Statements 77
FOR Statements 77
WHILE Statements 79
REPEAT Statements 79
LOOP Statements 80
EXIT Statements 80
Procedural Statements 81
Procedure Calls 82
Procedure Declarations 82
Parameters 84

Open Array Parameters 86
Function Procedures 89
RETURN Statements 90
Nested Procedures 91
Scope o f Visibility 92
FORWARD Statements 93
Standard Procedures 94

Chapter 7. Modules 97
The Main Module 97
Library Modules 100
! nit ion and Implementation Modules 101
Compiled Modules 104
Opaque Export 105
Local Modules 106
Scope and Local Modules 107

Chapter 8. Low-Level Facilities ill
TVpe-Transfer Functions 113
Type Transfer and Type Conversion 114
Low-Level Types and the Pseudomodule System 115
Untyped Parameters 116
Absolute Addresses 117
Coroutines and Interrupts 118
Coroutines 118
Interrupts 119

Chapter 9. Turbo Modula-2 Extensions 121
Input and Output Extensions 121
String Extensions 122
^ ' ?tidimensional Open Arrays 122
i^or-Handling Extensions 122
Syntax and Semantics o f Exception Handling 123
Declaration o f Exceptions 124
Raising Exceptions 124
Exception Handlers 125
Exception Propagation 127

6 MODULA

Chapter 10. System Operations 131
File Management Utilities 132
Options 135
Avoiding the Menus 137
The Turbo Editor 138
Operating the Editor 139
Editing Commands 139
Cursor Movement Commands 141
Extended Movement Commands 143
Insert and Delete Commands 144
Block Commands 145
Find and Replace Commands 147
Miscellaneous Editing Commands 149
The Librarian 151
Searching Libraries 151
The Compiler 152
Operating the Compiler 153
The Listing 154
Error Correction 157
Running Out o f Memory 159
When the Compiler Runs Out o f Memory 159
When Your Program Runs Out o f Memory 160
Symbol Files 162
Compiler Options and Switches 163
The Linker 167
Linking with Overlays 169
Linking the Linker 173
Version Control 174
Utilities 175
Linking Microsoft Relocatable Files 175
Profile 178

Chapter 11. The Standard Library 181
Overview of Input and Output Modules 182
Overview of Utility Modules 183
Overview of System and Low-Level Modules 183
Details of the Module Library 184
Input and Output 184
Streams 186
Logical Devices 187

The Texts Module 188
Standard Text Streams 188
Stopping the Program During Input and Output 192
Opening, Creating, and Closing a Text 193
Renaming, Deleting, and Other File Operations 195
Reading and Writing 195
READ and WRITE Statements 201
User-Defined I/O Drivers 205
The InOut Module 207
The Files Module 210
Errors During File Handling 210

/ ~ orations on Entire File 214
V .„e Processing 216

Files with Elements o f Mixed Types 222
The Terminal Module 224
The ComLine Module 229
Redirection o f Input and Output 229
Utility Modules 233
The MathLib and LongMath Modules 233
The Strings Modules 237
The Convert Module 241
The Doubles Module 242
System-Dependent Modules 243
The Processes Module 243
The Pseudomodule SYSTEM 248
Low-Level Access to Data 248
Array o f Word 248
Coroutines and Interrupts 251
ZSO-Specific Procedures 253
Interface to CP/M 253
Assembler Interface 254

s ' Modules in Memory Management 258
v ,ie STORAGE Module 260

Standard Procedures Dependent on Storage 260
Heap Pointer 260
Dynamic Variable Errors 263
The Loader Module 264

Chapter 12. Turbo Modula-2 Reference Directory 271
ABS 273
ADDRESS 273
ADR 275

8 MODULA

ALLOCATE 276
AND 277
Append 278
Arctan 279
ArgumentError 280
ARRAY 281
available 284
Awaited 285
BADOVERLAY 286
BDOS 287
BEGIN 288
BIOS 288
BITSET 290
BOOLEAN 291
BusyRead 292
BYTE 294
Call 295
CAP 296
CAPS 296
CARD 297
CARDINAL 298
CardToStr 299
CASE 300
CHAR 303
CHR 304
clearEol 305
ClearScreen 306
CleaiToEOL 307
Close 308
Closelnput 309
CloseOutput 310
CloseText 311
CODE 312
Col 313
ComLine 314
commandLine 317
ConnectDriver 318
console 319
CONST 320
Convert 321

Copy 322
Cos 323
Create 324
CreateText 325
DeadLock 326
DEALLOCATE 327
DEC 328
DEFINITION 330
Delete Files 332
Delete Strings 333
DeleteLine 334

(viceError 335
DiskFull 336
DISPOSE 337
DIV 339
Done InOut 339
Done Texts 340
DOUBLE 341
Doubles 342
DoubleToStr 343
END 343
EndError 344
Entier 345
EOF 346
EOL 347
EOLN 348
EOT 349
EXCEPTION 350
EXCL 351
EXIT 352

(:tScreen 353
tx p 353
EXPORT 354
FALSE 356
FILE 356
Files 357
FileSize 359
FILL 360
firstDrive 360
FLOAT 361

10 MODULA

Flush 362
FOR 363
FORWARD 364
FREEMEM 365
GetName 366
GotoXY 367
HALT 368
haltOnControlC 368
HIGH 370
Highlight 371
highlightNormal 372
HLRESULT 373
IF 374
IMPLEMENTATION 375
IMPORT 378
INC 379
INCL 382
Init 382
InitScreen 383
inName 384
InOut 385
IORESULT 386
INP 387
input 388
insert 389
InsertDelete 389
InsertLine 391
INT 392
INTEGER 393
IntToStr 394
IOTRANSFER 395
legal 396
Length 397
LoadError 397
LongMath 398
LONGREAL 399
Ln 401
Loader 402
LONG 403
LONGINT 404

LongMath 405
LongToStr 406
LOOP 407
MARK 408
MathLib 409
MAX 410
MIN 411
MOD 412
MODULE 413
NEW 414
NEWPROCESS 416

ixtPos 417
NIL 419
Normal 419
NoTrailer 420
numCols 421
numRows 422
ODD 423
Open 423
Openlnput 425
OpenOutput 426
OpenText 427
OpSet 428
OR 429
ORD 430
OUT 431
outName 432
OUTOFMEMORY 433
output 434
OVERFLOW 435
'OINTER 436
i'os 438
PROC 439
PROCEDURE declaration 440
PROCEDURE type 441 •
PROCESS 443
Processes 445
progName 446
PromptFor 446
QUALIFIED 448

12 MODULA

RAISE 449
Random 450
Randomize 451
READ 452
ReadAgain (Terminal) 453
ReadAgain (Texts) 454
ReadByte 455
ReadBytes 456
ReadCard 458
ReadChar (Terminal) 459
ReadChar (Texts) 459
ReadDouble 460
Readlnt 461
ReadLine (Texts) 462
ReadLine (Terminal) 463
READLN 464
ReadLong 465
ReadReal 466
ReadRec 466
ReadString 468
ReadWord 468
REAL 470
REALOVERFLOW 472
RealToStr 473
RECORD 475
Redirectlnput 479
RedirectOutput 480
RELEASE 481
Rename 482
REPEAT 484
ResetSys 484
RETURN 485
SEND 486
SET 487
SetCol 489
SetPos 490
SIGNAL 491
Sin 492
SIZE 493
SpecialOps 494

Sqrt 495
StartProcess 496
StatusError 497
STORAGE 498
String 499
StringError 500
Strings 501
StiToCard 502
StiToDouble 503
StiToInt 504
StiToLong 505

(ToReal 506
SYSTEM 506
termCH 508
TEXT 510
TextDriver 511
TextFile 512
TextNotOpen 513
Texts 514
TooLarge 516
TooManyTexts 517
TRANSFER 518
TRUE 519
TRUNC 520
TSIZE 521
TYPE 522
UseError 523
VAL 524
VAR 525
WAIT 526

(HILE 527
.»'ITH 528
WORD 529
WRITE 531
WriteByte 532
WriteBytes 533
WriteCard 533
WriteChar (Terminal) 534
WriteChar (Texts) 535
WriteDouble 536

14 MODULA

WriteHex 537
Writeint 538
WRITELN 538
WriteLn (Terminal) 540
WriteLn (Texts) 541
WriteLn (InOut) 541
WriteLong 542
WriteOct 543
WriteReal 544
WriteRec 545
WriteString (Terminal) 545
WriteString (Texts) 546
WriteWord 547

Appendices

Appendix A. Turbo Modula-2 and Turbo Pascal 549
What’s the Difference 550
Vocabulary 551
Identifier Names 551
Characters 551
Numbers 551
Strings 552
Set Constants 553
Comments 553
Declarations 554
Constant Declarations 554
Type Declarations 555
Arrays 555
Records 556
Procedure Types 557
Variable declarations 559
Procedure Declarations 559
Open Array Parameters 559
Untyped Parameters 560
Function Procedures 560
Expressions 561
Set Operators 562
Statements 564
Procedure Calls 564

Looping Statements 564
CASE Statements 565
WITH Statements 566
RETURN Statements 566
Standard Procedures in Turbo Modula-2 566

Appendix B. Installation Procedures 571
Installing M2 571
Screen Installation 572
Manual Installation 573
Using the Turbo Pascal TIN ST. DIA File 574
 ̂ ‘ering Terminal Codes 574
lcrminal Properties 575
Installation of Editing Commands 577
Compiler Installation (Miscellaneous) 581

Appendix C. Summary of Compiler Directives 583

Appendix D. Error Diagnosis 585
Format of a Runtime Error Message 585
Errors Detected by the Interpreter 586
Errors Detected by Support Modules 589
Exceptions Issued by Module Files 589
Exceptions Issued by Module Loader 589
The Calling Chain 590
Finding Runtime Errors 592
Compiler Error Messages 592

Appendix E. BNF Syntax for Turbo Modula-2 597

Introduction 17

Introduction

This book is a reference manual for the Tbrbo Modula-2 system, implemented for
the CP/M-80 operating system running on Z80 computers. Although there are
many examples throughout the book, this is not a tutorial for Modula-2 program
ming; a basic knowledge of Modula-2 or Pascal is assumed.

The Modula-2 language was designed in 1980 by Niklaus Wirth, who also
(lored Pascal. While Modula-2 provides the powerful data and statement struc
tures of Pascal, it also incorporates a modular structure as well as basic facilities
for multiprogramming applications. T\irbo Modula-2 is Borland’s practical im
plementation of Modula-2. It follows closely the definition of standard Modula-2
as defined by N. Wirth in his book, Programming in Modula-2 (3rd Ed. New
York: Springer Verlag, 1984). However, it differs from Modula-2 in two main
areas: It has an easy-to-use I/O library and optional extensions.

Because of the wide range of possible external devices, and in order to make
the language truly machine-independent, the strict definition of Modula-2 does
not include any input/output or low-level facilities. Turbo Modula-2, however,
provides an extensive and flexible library of these facilities, which for the most
part follow Wirth’s suggestions.

Turbo Modula-2 also includes several constructs not mentioned in the original
definition; for example, general-purpose READ and WRITE statements, string
comparison and assignment, multidimensional open arrays and exception handl
ing.

(
Structure of This Manual

This manual is divided into four main areas: an introduction, the module library,
a look-up section, and appendices.

Chapter 1 will get you started using the T\irbo Modula-2 system, walking you
through such operations as copying your distribution disk and running your first
program.

18 MODULA

Chapters 2 through 7 provide a thorough description of Turbo Modula-2 pro
gramming, with a general discussion of the Modula-2 language elements and a
more detailed explanation of data, statement, and program structures, as well as
local and library modules. Chapters 5 and 6 serve as your guide to writing simple
Modula-2 programs.

Chapters 8 and 9 cover the more advanced topics in Turbo Modula-2, including
system-specific functions and extensions and low-level facilities.

Chapter 10 covers system operations, including discussion of the editor, the
compiler, the linker, the librarian, and other operational features.

Chapter 11 contains the library modules, which consist of 14 modules contain
ing over 100 procedures. You may want to read the short description of each
library module now, and go back to study the specifics when you need to use a
particular module.

Chapter 12 comprises Turbo Modula-2’s extensive alphabetical look-up section,
which contains entries of reserved words standard identifiers, and library iden
tifiers.

The five appendices provide information on the operation of Modula-2, while
also presenting some comparisons between Turbo Pascal and Turbo Modula-2.
Appendix A provides the language comparisons. Appendix B details the instruc
tions for installing Turbo Modula-2 on your system. Appendix C summarizes the
compiler directives discussed in Chapter 9. Appendix D lists error messages and
their definitions/diagnoses. Appendix E provides the BNF syntax diagrams of
Turbo Modula-2.

Typography

The body of this manual is printed in a normal typeface. Special typefaces are us-
ed for the following purposes:

A lte rn a te Alternate characters are used to illustrate program examples and
screen displays.

Italics Italics are used to emphasize certain concepts and first-mentioned
terms.

Introduction 19

Boldface Boldface is used to mark reserved words in text as well as in pro
gramming examples.

Acknowledgements

Several programs, languages, and operating systems are referenced in this manual;
the following lists them and their respective companies.

□ Turbo Pascal is a registered trademark of Borland International.

WordStar is a registered trademark of MicroPro International.

□ CP/M is a registered trademark of Digital Research Inc.

□ Microsoft is a registered trademark of Microsoft Corp.

Getting Started 21

Chapter 1
Getting Started

Before Use

When you receive your Turbo Modula-2 disk, complete and mail in the license
agreement at the front of this manual. This agreement allows you to make as many
(ies as you need for your personal use and backup purposes only.

For your own protection, make a backup copy of the distribution disk with your
file-copy or disk-copy program before you start using Turbo Modula-2. Make cer
tain all files have transferred successfully, then store the original disk in a safe
place. If anything happens to the backup copy, you can make a new backup copy
from the original.

Files on Disk

The files you have just copied from the distribution disk to your backup disk are
described here.

System Files

M2.COM The Türbo Modula-2 system file contains the M-code inter
preter, the Overlay Manager, and the runtime system. Enter
ing the command M2 on your terminal will load this file and

r a get Turbo Modula-2 up and running.

M2.0VR Overlay file for M2.COM.

SHELL.MCD The Turbo Modula-2 menu shell.

COMPILE.MCD The l\irbo Modula-2 M-code compiler.

GENZ80.MCD The Turbo Modula-2 compiler’s optional second-pass used
for generating native Z80 code.

22 MODULA

ERRMSGS.OVR

LIBRARY. MCD

SYSLIB.LIB

LINK. MCD

Installation Files

D1STM2.COM

INSTM2.0VR

INSTM2.DTA

Example Files

*.MOD

Other Files

READ. ME

Utility Files

REL.MCD

Text file containing error messages.

A library manager that combines several compiled modules
into a single .LIB file.

The standard modules supplied with the Birbo Modula-2
system.

The Turbo Modula-2 static overlay linker that is used to pro
duce stand-alone (.COM) files.

This installation program allows you to install the Turbo
Modula-2 compiler (M2.COM), as well as other .COM pro
grams produced by the linker.

Installation program overlay file.

Installation data file compatible with Thrbo Pascal’s
TINST.DTA file (see Appendix B, »Installation Pro
cedures«, for more details).

Sample Modula-2 programs.

If present, this file contains the latest corrections or sugges
tions on the use of the system.

A Turbo Modula-2 utility that converts Microsoft REL
(relocatable) object files into the .MCD format used by Tur
bo Modula-2.

Getting Started 23

PROFILE.MCD A Tbrbo Modula-2 utility that counts instructions in the
various procedures of ar. M-code program. This utility can
help you improve the efficiency of your Tbrbo Modula-2
programs.

Preparing a Work Disk

The most effective way to use Turbo Modula-2 is to have the system files on your
boot disk, allowing you to use other drives for programs and data. To make your

fo rk in g disk, follow these steps:

1. Prepare a system boot disk, which will become your work disk; also include
a file-copy program such as PIP. For more information on this step, consult
your operating system’s user manual.

2. Now boot your system using the work disk, and place the Tbrbo Modula-2
backup disk (the one you made after reading the first paragraph of this
chapter) into a free disk drive.

3. Copy the following files from your Tbrbo Modula-2 backup disk to the work
disk:

M2.0VR
M2.COM
SHELL.MCD
INSTM2.COM
INSTM2.MSG
INSTM2.DTA

Q . Now run the installation program by typing INSTM2 and pressing (ret |at
the system prompt. This message will appear:

I n s t a l l program ([RETURN] fo r M2.COM):

Press 1 ret 1 again and the following screen will appear:

24 MODULA

Modula-M2 system in s ta l la t io n menu.
Choose in s ta l la t io n item from the fo llow ing:

[S]creen in s ta l la t io n I [C]ommand in s ta l la t io n
[M]iscellaneous I [Q]uit

E nter S, C, M, o r Q:

5. Press I s 1 for Screen installation and pick the appropriate terminal type. For
more details on installing your system, see Appendix B.

Note: For Turbo Pascal owners with custom terminals, you may substitute
your Turbo Pascal terminal data file for INSTM2.DTA by copying the Pascal
data file to your work disk and renaming it from TINST.DTA to
INSTM2.DTA.

6. Now press I m 1 for Miscellaneous. Tell the system which drives to search in
for library and work files (generally, all your drives will be included).

Note: Do not try to install the keyboard commands until you become more
familiar with the editor.

7. Now select I Q 1 for Quit and delete the installation files from your work disk
(INSTM2 *). Then delete the file-copy program we had you install in Step 1.
Your bootable work disk should contain an installed copy of M2.COM,

- M2.0VR, and SHELL.MCD.

8. With your work disk in drive A and your backup disk in drive B, type M2
at the system prompt. The Turbo Modula-2 main menu will appear.

Selected drive: A

Work file:

Edit Compile Run eXecute

Link Options Quit liBrarian

Dir Filecopy Kill reName Type

>

25Gettimmtarted

I: Do not attempt to execute any menu items (except Filecopy) until all
jfssary files have been copied to the work disk.

finish preparing your work disk, you must copy some files using Ibrbo
iula-2. To begin, press I f 1 for Filecopy at the main menu. Then at the
spy from: “ prompt, type in the name of the file you want to copy; for ex-

Iple:

Ipy from: B:*.MCD [RET]

ress I ret I to get the “Copy to :“ prompt:

^opy to : A: [RET]

)r do it in one step, like so:

[Copy from: B:ERRMSGS.OVR A: [RET]

or

Copy from: B:SYSLIB.LIB A: [RET]

Copy the following files using any of the preceding procedures:

COMPILE.MCD
SYSLIB.LIB
ERRMSGS.OVR

And optionally, if there is room left on your disk, copy these files as well:

GENZ80.MCD
LIBRARY. MCD
LINK.MCD
REL.MCD
PROFILE. MCD

(The files M2.COM, M2.0VR, and SHELL.MCD should already be on your
work disk.)

26 MODULA

At this point, it would be wise to make a backup of your work disk to avoid having
to reinstall the system. Now you’re ready to try out the Thrbo Modula-2 compiler.

Running Turbo Modula-2

Now that you’ve prepared a work disk and logged onto the drive containing it,
you are ready to load Thrbo Modula-2 into memory. After the system prompt,
type M2, press 1 ret L and the following message will appear (but your terminal
will be listed):

Turbo Modula-2 System Version 1.00
CP/M-80, Z80

Copyright(C) 1984, 1985,1986 Borland In te rn a tio n a l

Terminal: No Terminal S elected

This w il l be followed by the main menu:

S e lec ted d riv e : A

Work f i l e :

E d it Compile Run execute

Link Options Q uit l iB ra r ia n

D ir Filecopy K i l l reName

>

To run a program, place the backup disk containing the sample programs
(*.MOD) in the B drive. At the main menu, press 1 c l . You will see this
message:

Getting Started 27

Workfile name:

Type Hello and press 1 ret 1. Hirbo Modula-2 will now compile the sample
program. The compilation terminates with the following message:

Compiled b y tes: 32
M-code f i l e A00:HELLO.MCD produced.

Now press I R 1 and then f ret 1 to run the program. The screen will look like
this:

(\ Run MCD-file: A00:HELLO

Hello World!

>

After the prompt (>) appears in the main menu, quit Tlirbo Modula-2 by press
ing I Q 1; this will return you to the operating system.

A Brief Tour o f Turbo _ odula-2 29

Chapter 2
A Brief Tour of Turbo Modula-2

For those of you who want to learn Turbo Modula-2 quickly, or are already ac
quainted with some aspects of it, this chapter gets you into the thick of things in
a hurry. Only a minimum of explanation is given here; to use Turbo Modula-2
to its full potential, you should refer to Chapter 10. This chapter will take you
thr̂ vh the menu system and briefly explain how to use each feature.

The Menu System

To start, place your work disk in the logged drive (to make a work disk, refer to
Chapter 1), then type M2 and press I ret I to bring up the following screen:

Turbo Modula-2 System Version 1.00
CP/M-80, Z80

Copyright(C) 1984,1985, 1986 Borland International

Terminal: No terminal selected

This screen will be quickly followed by the main menu:
Selected drive: A

C ork file: •

Edit Compile Run eXecute

Link Options Quit liBrarian

Dir Filecopy Kill reName

>

30 MODULA

The main menu contains all of the major functions performed by Tbrbo
Modula-2. The following section describes each element of the main menu and
displays a sample screen where appropriate. (Note: The italicized items in the ex
ample indicate that you must type in your own data.) To select each item, you
press the letter highlighted on your screen.

Selected drive. Use this to change the default drive; press I s 1 and type the
letter of the drive that is to become the new default drive. You can also use this
function to reset the system or to log the disk; this is handy when you need to
insert a new disk to copy files to.

> S

New d riv e : a : ___

Work file. Sets a default file name for other menu commands to use, such as Edit,
Compile, Link, and so on. You can override this default by pressing the space bar
before selecting the desired menu item (see the section ^Avoiding the Menus« in
Chapter 10).

> V

W orkfile name: M yfile

Edit. Invokes the Thrbo Editor, a WordStar-like editor. This editor is similar to
the Tbrbo Pascal editor; however, it is a »one-pass« virtual editor that limits file
sizes to the disk space available rather than internal memory.

>E

E dit f i l e : COO:MYFILE.MOD

Compile. Thrbo Modula-2 is an incremental compiler, which means it saves its
state when a compile-time error is found. You can then enter the editor, correct
the error and exit, at which point compilation continues at the closest block to
where the error was corrected.

>C

Compile f i l e : COO:MYFILE.MOD

A Brief Tour o f Turbo wdula-2 31

Run. Runs compiled code without going through the linking step. The Run com
mand does dynamic linking while it is reading in the support modules to run a
program.

>R

Run MCD-file: COO:MYFILE

eXecute. Provides a way to run most external programs, such as STAT or even
the T\irbo Modula-2 installation program.

X -Ute COM-file: INSTM2.COM

Link. This command serves two purposes: It links separately compiled modules
into a stand-alone .COM file and links specified modules so that they will load
quickly when linked dynamically during the Run command. In addition, the
linker provides the facility to generate overlays.

>L

Link main module: COO:MYFILE

Options. This command invokes the following Options menu:

compiler options:

List (OFF) Native (OFF) extensions (ON)
Test (OFF) Overflow (OFF) Upper=lower(OFF)

Path to search: SYSLIB

^ nid run-time error

Save current selection Quit

>
The compiler options are global; that is, they influence the entire compilation

unless overridden with internal switches. You can toggle the compiler options by
pressing the key for the capital (highlighted) letter in each option (for example,
L for List). The following describes the function of each compiler option:

32 MODULA

□ List determines if source output is displayed on the monitor during compila
tion.

□ Native determines which type of code is produced, M-code or Native.

□ extensions tells the compiler to issue warning messages if a program is using
any of the Ibrbo Modula-2 extensions.

□ Test determines if the compiler generates test code for array bounds and
subrange checking.

□ Overflow determines if the compiler generates code to check for integer
overflow.

□ Upper=lower tells the compiler whether or not to be case-sensitive.

□ Path to search tells the system which library files to search when looking for
external modules.

>P

New search path : SYSLIB MYLIB

□ Find run-time error helps you find the runtime error position.

> F

Module name: COOrMYFILE.MOD

Enter PC: 23

□ Save current selection allows you to save the options and search path you find
most comfortable.

□ Quit returns you to the main menu.

Now we’ll get back to describing the main menu options.

Quit. Returns you to the operating system.

A Brief Tour o f Turu , Modula-2 33

liBrarian. This command prompts you for a library name and then displays the
librarian menu, as shown in the following:

The library keeps many precompiled library modules in one file. The compiled
versions of the definition module and the implementation module are contained
in the library as .SYM files and .MCD files, respectively.

Notice that the librarian menu has a different prompt, distinguishing the follow
ing library management utilities from the main menu’s file- management routines.
Again, initiate each option by pressing the capital (or highlighted) letter of its
name.

□ Selected library prompts for a name prior to displaying the librarian menu.
Press 1 s i to change the selected library without returning to the main menu.

*S

S e lec t l ib ra ry :

Dir lists the .SYM and .MCD files, that are stored in the selected library. In
addition, it lists the size of each file and the cumulative size of all the files.
*D

>B

S elec t l ib r a ry : SYSLIB

Selected l ib ra ry : A00:SYSLIB.LIB

D ir Include Copy

(.1 Ompress Quit

34 MODULA

D irectory o f l ib ra ry : COO.SYSLIB
1: COMLINE .MCD
2: CONVERT .MCD
3: DOUBLES .MCD
4: FILES .MCD
5: INOUT .MCD
6: LOADER .MCD
7: LONGMATH .MCD
8: MATHLIB .MCD
9: PROCESSE .MCD

10: STRINGS .MCD
11: TERMINAL .MCD
12: TEXTS .MCD

T otal s iz e :

0.5K .SYM 0.5K
2 .OK .SYM 1.0K
3.5K .SYM 1.0K
3 .OK .SYM 1.5K
1.0K .SYM 1.0K
2.5K .SYM 1.0K
2 .OK .SYM 0.5K
1.5K .SYM 0.5K
0.5K .SYM 0.5K
0.5K .SYM 1.0K
1.0K .SYM 1.0K
2 .OK .SYM 2 .OK

3 9 .5K Unused: 8 .OK

□ Include takes external files (either .SYM files or .MCD) and places them in
the library.

*1

Include f i l e :

□ Copy copies files from the selected library to either another library or to a
stand-alone .SYM or .MCD file.

*C

Copy module:

□ Kill erases a specified library module.

*K

K ill module:

□ cOmpress eliminates unnecessary space in the library files. Since this com
mand can take some time, we recommend using it only on stable (debugged)
library files.

A Brief Tour o f Turb^ Modula-2 35

*0

Compressing l ib ra ry , p lease w a it.

*

□ Quit returns you to the main menu.

The remainder of the main menu options described here are file-management
commands.

Dir. The directory command allows you to display a full or partial directory
of any disk. It accepts drive name, user areas, and wildcard file names (such
as * MOD or *.*) to build the directory listing. When a directory listing is
displayed, it is shown with a number before each file name. These numbers
may be used in subsequent file-management commands, such as Filecopy and
Kill.

> D

D irectory mask:
1: COMPILE .MCD 4: LIBRARY .MCD 7: M2 .OVR 10: SHELL .MCD
2: ERRMSGS .OVR 5: LINK .MCD 8: MYFILE .BAK 11: SYSLIB • LIB
3: GENZ80 .MCD 6: M2 .COM 9: MYFILE .MOD
Bytes Remaining on A: 96K

□ Filecopy. This command will accept a drive name, a user number, and a
wildcard file name as the source file. In addition, the source file may be a
list or range of numbers that reference the last directory command.

' > F

Copy from : 1 3-5
Copy to : b :

□ Kill. This command allows you to delete disk files without leaving the shell.
It also accepts drive names, user numbers, and wildcard file names, as well
as a list or range of numbers referencing the last directory command.

36 M ODULA

>K
K ill f i l e : *.bak
D eleting DOO:MYFILE.BAK

□ reName. This command accepts one new file name (with optional drive and
user area) for the old name and one file specification for the new name.

>N

Rename from : myfile.mod
Rename to : m y file .d e f

□ Type This command displays the specified file on the screen. You can pause
output by pressing | Ctrl [| s 1 and terminate output by pressing | Ctrl || c | .

>T

Type f i l e : m y file .d e f

DEFINITIONMODULE MyFile;
PROCEDUREMyProc;

ENDMyFile.

Language Elements'' 37

Chapter 3
Language Elements

Language elements are the building blocks that form a program and are the fun
damental units recognized by the compiler. Each element is used to build a dif
ferent level of abstraction. For example, a digit is an element that can be combined
with other digits to form a number that is an element at a different level of abstrac
tion. Thus, we can continue abstracting until a level is reached where an entire
program is represented by one word, such as My Program.

This chapter describes the elements used to assemble meaningful program
statements in Türbo Modula-2. In the following section, we will look at the first
level of abstraction used by Turbo Modula-2; namely, the characters that comprise
symbols.

Character Set

The Turbo Modula-2 character set includes all characters that are legal in
Modula-2 declarations, expressions, and statements. This set is made up of
alphabetic, numeric, and special characters.

Alphabetic (uppercase and lowercase)

A to Z and a to z

Numeric

0 1 2 3 4 5 6 7 8 9

Special Characters

- + - * / = a < > () [] () .
Not all characters are available on all terminals; thus Turbo Modula-2 recognizes
the following synonyms:

38 M ODULA

(. for c Left parentheses and period for left index bracket
.) for] Period and right parentheses for right index bracket
(: for (Left parentheses and colon for left brace
:) for } Colon and right parentheses for right brace
! for 1 Exclamation mark for vertical bar

Using these available symbols, it is possible to create a great number of
Modula-2 programs.

Vocabulary

The Modula-2 compiler recognizes certain groups of characters as symbols
themselves, including numbers, characters, strings, delimiters, operators, and
reserved words and identifiers. These symbols (or characters) comprise the se
cond level of abstraction, providing you with the means to form sentences and thus
programs in Modula-2.

The Turbo Modula-2 vocabulary can be divided into five classes: numbers,
strings and characters, delimiters and comments, operators, and reserved words
and identifiers (user-defined, standard, and library).

Numbers

There are two types of numbers defined in Modula-2: whole numbers and real
numbers. T\irbo Modula-2 recognizes three subtypes of whole numbers and two
subtypes of real numbers.

Whole Numbers

Turbo’s three types of ' /hole numbers may be further defined as two signed
numbers and one unsigned number. The two signed whole numbers are single
precision and double precision, which are INTEGER and LONGINT, respective
ly. The unsigned whole number is single precision and is called a CARDINAL.

Language Elements 39

Following are the raages for whole numbers:

Type Range

INTEGER (single-precision,
signed whole number)

-32,768 to 32,767

LONGINT (double-precision,
signed whole numbers)

-2,147,483,648 to 2,147,483,647

CARDINAL (single-precision,
unsigned whole numbers)

0 to 65,535

Single-precision integers can be formed in any of these three bases: decimal,
octal, or hexadecimal (hex). Decimal numbers consist of the digits 0 to 9. Octal
numbers comprise the digits 0 to 7, followed by the letter B. Hex numbers consist
of the digits 0 to 9 and the letters A to F The first character in a hexadecimal
number must be a digit and the hexadecimal number must end with the letter H.
The following are examples of legal and illegal single-precision whole numbers:

Legal (base)

Single Precision Illegal Single Precision

1986 (Decimal) 12.34 Decimal point illegal.
-10 (Decimal) FH First character must be a digit.
10B (Octal) 08B 8 is not a legal octal digit.
OFFFFH (Hex) OF Requires H for hexadecimal.
1AH (Hex) OGH G is not a legal hexadecimal digit.
62345 (Decimal) -60000 Too small for single-precision integer.

Double-precision integers, or long intejprs, can only be formed in decimal
notation, followed by the letter L. Following are legal and illegal long integers:

Legal Double Precision Illegal Double Precision

123L 123 This is a normal integer.
456L 45.6 This is a real number.
120392237L OFFFFFFFH Only decimal base allowed.

40 M ODULA

Real Numbers

Single-precision and double-precision numbers are the two types of real numbers
recognized by Turbo Modula-2. They are called REAL and LONGREAL, respec
tively.

Single-precision real numbers can be accurate up to 6 decimal points, while
double-precision reals can be accurate up to 14 decimal points. The ranges of
REAL and LONGREAL are as follows:

Type Range

REAL -6.80565E+38 to 6.80565E+38
LONGREAL -3.5953862697246D+308 to 3.5953862697246D+308

As shown in the previous ranges, a real number contains a sequence of numeric
characters, containing a decimal point with an optional scale factor. The scale fac
tor is specified by the letter E or D (E for single precision and D for double preci
sion) and an integer, beginning with an optional plus (+) or minus (-) sign. The
following are samples of legal and illegal real numbers:

Legal Real Numbers Illegal Real Numbers

12.34 Single precision 1 453 Blank space illegal
0.1E3 Equals 100.0 12 Needs decimal point
3.6E-5 Equals 0.000036 3.6E-99 Exponent too large
12.34D0 Double precision 1,423.0 Comma is illegal
0.1D3 Equals 100.0 12d-10 D and E must be uppercase
3.6D-5 Equals 0.000036 12.0D-999 Exponent too small

Strings and Characters

Strings
A string is a portion of text that can be handled as a single unit, such as a message
to be written on the screen. Strings provide a means of manipulating text within
a program. Constant strings are formed by enclosing a sequence of printable
characters in either single or double quotation marks. The opening and closing
quotation marks must be of the same kind, and that kind cannot occur within the
string. Here are some examples of legal and illegal constant strings:

Language Element^

Legal Constant Strings Illegal Constant Strings

41

’My name is:* “Hello* Quotes must match
’He said, “What is the time?“’ “She said, “The Opening quote type
“12 34“ time is 4 p.m .““ cannot occur within

the string

Characters

A character is a single, printable ASCII symbol enclosed in matching quotes
(single or double), or an octal integer (up to 377) followed by the letter C. In
theory, characters occupy 1 byte of storage, and thus may take on any value bet
ween 0 and 255 decimal (or 377 octal). In practice, characters may occupy an en

tire word (2 bytes) in memory. The only time a character actually takes 1 byte
is when it is declared as part of an array (arrays pack characters together). Any
other declaration involving a character always results in the character occupying
2 bytes. Following are legal and illegal characters:

Legal Characters Dlegal Characters

“A“ The letter A “AB“ Only one character allowed
>*> Asterisk “Q, Must have matching quotes
15C Carriage return 8C 8 is not an octal digit
377C Largest character 777C Octal number too large for

character

When a string contains only one character enclosed in quotes, the string is con
sidered a special case and is compatible with a character. This only applies to con
stant strings like “A“ or ’*’, not character variables.

Delimiters and Comments

Delimiters

A delimiter is one or more characters that separate other syntactic entities. For
example:

Blanks separate identifiers and reserved words.

The vertical bar separates CASE, exception, and variant
record statements.

42 M ODULA

, The comma separates items in parameter lists and declara
tions.

; The semicolon separates program statements and declara
tions.

* + , - , / The mathematical symbols (or operators) also serve as
delimiters between operands.

Comments A comment may appear anywhere one of the preceding
delimiters is allowed. In addition, a comment may serve as
a substitute for a blank space between symbols.

Comments

Comments contain descriptive or explanatory text about a program. Since, for the
most part, they are ignored by the compiler (except for compiler switches, see
Chapter 10), they can contain any characters enclosed by a set of parentheses and
asterisks.

Unlike Pascal, which allows either the symbol sets (* and *) or (and] to delimit
comments, Modula-2 uses only (* and *) to delimit comments and uses (and)
exclusively to delimit sets. Comments may be nested to any depth (limited only
by memory space). They may occur anywhere a delimiter is allowed, and are
treated as blanks. The following is a sample of legal and illegal comments:

Legal Comments Illegal Comments

(# This i s a comment *) (This i s n ' t a comment] Braces not
allowed

(*Comments can be nested
(* l ik e th i s #) *)

(* Hi (# th e re #) M issing second
c lo sin g comment

Operators

Operators in Modula-2 are made up of either special symbols or reserved
words. In the case of reserved words, they are always printed in uppercase letters
(see “Compiler Switches,“ in Chapter 10) and cannot be used as identifiers. The
following lists the special symbol and function of each operator:

Language Elements - 43

+ Addition and set union
- Subtraction and set difference
* Multiplication and set intersection
/ Division and symmetric set difference
& Logical AND
~ Logical NOT
A Dereferencing
: = Assignment
= Equality
< > Inequality
< Less than
> Greater than
< = Less than or equal
> = Greater than or equal
() Parentheses
[] Index brackets
(} Set braces

. • . J u Punctuation

In addition to these special symbols, the following reserved words are also
operators:

AND Logical AND
OR Logical OR
NOT Logical NOT
IN Set membership
DIV Integer division
NOD Integer modulus

Operators are closely related to the operands they work on. In most cases, an
perator will only work with certain kinds of operands; for example, to divide real

numbers you must use the real division operator: 2.8/2.9. In addition, the result
of an operation could be of a different type from the original operands; for exam
ple, comparing two integers results in a Boolean value: 1 = 2 . (Chapter 4
discusses operators and operands in more depth.)

Reserved Words

Reserved words in Modula-2 are symbols with a predefined and static meaning;

44 M ODULA

they cannot be used for any other purpose. They are always written in uppercase
letters.
AND ELSIF LOOP REPEAT
ARRAY END MOD RETURN
BEGIN EXIT MODULE SET
BY EXPORT NOT THEN
CASE FOR OF TO
CONST FROM OR TYPE
DEFINITION IF POINTER UNTIL
DIV IMPLEMENTATION PROCEDURE VAR
DO IMPORT QUALIFIED WHILE
ELSE IN RECORD WITH

The following Turbo Modula-2 reserved words provide useful extensions to the
Modula-2 standard:

EXCEPTION FORWARD RAISE

In this manual (and other Borland manuals), all reserved words are in boldface
type; however, they will not appear on your screen this way.

The preceding symbols and reserved words will be discussed in the next few
chapters. For an immediate discussion of reserved words, refer to Chapter 12,
“Tbrbo Modula-2 Reference Directory.“

Identifiers

Identifiers are unique names given to constants, types, variables, procedures, and
modules. Identifiers are sequences of alphabetic and numeric characters; the first
character must always be a letter. Note that Tbrbo Modula-2 distinguishes bet
ween uppercase and lowercase letters; thus, unlike in Pascal, in Tbrbo Modula-2
Varl and VAR1 are considered two unique identifiers.

Standard Identifiers

Tbrbo Modula-2 has a number of predefined identifiers for special purposes.
Standard identifiers are “visible“ and available in all modules without explicitly
importing them. The standard identifiers can be redefined, but doing so will cost
you the function offered by the predefined identifier. Also, a redefined standard

Language Elements ^ 45

identifier only affects the module where it is redefined, not other imported
modules. (Again, note that the use of uppercase and lowercase is significant.)

ABS DISPOSE INT ODD
BITSET DOUBLE INTEGER ORD
BOOLEAN EXCL LONG PROC
CAP FALSE LONGINT REAL
CARD FLOAT LONGREAL SIZE
CARDINAL HALT MAX TRUE
CHAR HIGH MIN TRUNC
:hr INC NEW VAL
DEC INCL NIL

The following standard procedures provide extensions to the Modula-2 stan
dard:

READ READLN WRITE WRITELN

User-Defined Identifiers

Users may declare their own identifiers; however, there are two rules to follow:
Identifiers must begin with an alphabetic character and may consist only of
alphabetic and numeric characters; spaces, underscores, and other special
characters are not allowed. The following is a sampling of legal and illegal user-
defined identifiers:

Legal Identifiers Illegal Identifiers

MyName

Tr612
hello
Modula2

My Name

Public-Transit
1st
LAST__PRIME

Blank space illegal
Hyphen illegal
First character must be a letter
Underscore illegal

Library Identifiers

Turbo Modula-2 contains an extensive library (in SYSLIB.LIB) with a number of
predefined modules. The modules and their identifiers can be redefined, but doing

46 M ODULA

so will cause you to lose the function offered by them, or at least make using them
more awkward.

In one sense, library identifiers are no different than user-defined identifiers
since you can create libraries with new identifiers, thus adding to the list of
available library identifiers. However, there are two differences.

One is that Turbo Modula-2 provides a set of standard identifiers that are
necessary for programming in Modula-2. We presume that some of these standard
identifiers are in every implementation of Modula-2, while we have added others
for machine-specific reasons. The second difference is that Turbo Modula-2
“comprehends“ the functions of system-dependent library modules, such as
SYSTEM and STORAGE. Thus, when an item is used from the machine-dependent
SYSTEM module, the compiler already knows about it and has no need to look
at additional symbol files to determine usage. Table 3-1 is a list of library iden
tifiers.

Table 3-1

ADDRESS
ADR
ALLOCATE
Append
Arctan
Argument Error
available
Awaited
BDOS
BIOS
Busy Read
BYTE
Call
CAPS
CardToStr
clearEol
ClearScreen
CleaiToEOL
Close
Closelnput
CloseOutput
CloseText
CODE

EndError
Entier
EOF
EOL
EOLN
EOT
ExitScreen
Exp
FILE
Files
FileSize
FILL
firstDrive
Flush
FREEMEM
GetName
GotoXY
haltOnControlC
Highlight
highlightNormal
HI RESULT
Init
InitScreen

Open
Openlnput
OpenOutput
OpenText
OpSet
OUT
outName
OUTOFMEMORY
output
OVERFLOW
Pos
PROCESS
Processes
progName
PromptFor
Random
Randomize
READ
ReadAgain
ReadByte
ReadBytes
ReadCard
ReadChar

SpecialOps
Sqrt
StartProcess
StatusError
STORAGE
String
String Error
Strings
StiToCard
StiToDouble
StiToInt
StrToLong
StiToReal
SYSTEM
termCH
Terminal
TEXT
TextDriver
TextFile
TextNotOpen
Texts
TooLarge
TooManyTexts

Language Elements - 47

Col inName ReadDouble TRANSFER
ComLine InOut Readlnt TSIZE
commandLine INP ReadLine UseError
ConnectDriver Insert ReadLn WAIT
console insertDelete READLN WORD
Convert InsertLine ReadLong Write
Copy IntToStr REALOVERFLOW WRITEBYTE
Cos IORESULT ReadReal WRITEBYTES
Create IOTRANSFER ReadRec WriteCard
CreateText legal ReadString WriteChar
DeadLock Length ReadWord WriteDouble
DEALLOCATE Ln RealToStr WriteHex
Delete Loader Redirectlnput Writelnt
DeleteLine LoadError RedirectOutput WriteLn
DeviceError LongMath RELEASE WRITELN
DiskFull LongToStr Rename WriteLong
DISPOSE MARK ResetSys WriteOct
Done MathLib SEND WriteReal
Doubles NEW SetCol WriteRec
DoubleToStr NEWPROCESS SetPos WriteString

Nextfos
Normal
NoTrailer
numCols
numRows

SIGNAL
Sin
SIZE

WriteWord

For more detailed information regarding library modules, refer to Chapter 11,
“The Standard Library.“ For information regarding the preceding library iden
tifiers, refer to Chapter 12, “T\irbo Modula-2 Reference Directory“

Expressions 49

Chapter 4
Expressions

An expression is a sequence of language elements that combine to form a tem
porary data object with a possibly different value and type than either original ele
ment. An expression consists of operators and operands that perform certain
operations when an expression is “evaluated.“

(

In the previous chapter, we looked at the character set and vocabulary used to
build Modula-2 programs. Here we’ll take the next step by showing you how to
form expressions with language elements, while also providing the foundation for
our discussion of abstract data types in the next chapter.

Properties of an Expression

To explain expressions, let’s look at a simple example from mathematics:

1 + 2

1. The expression consists of operands and an operator: The two operands are
1 and 2, and the operator is + .

2. Expressions have a result value that can be assigned or used in further expres
sion evaluation. The preceding example has a result value of 3.

addition, the expression is considered to have a type that is determined by
Uie result. In this example, the result type is CARDINAL.

Expressions are evaluated by applying each operator to its operands. In general,
expressions are evaluated from left to right. Operators that take precedence over
others are executed first, despite the position of the operator within the expression
(see the later section, “Operator Precedence“).

50 M ODULA

Operands

In Turbo Modula-2, the operands of an expression can be any elementary type
(such as INTEGER or REAL), including function procedures that return an
elementary type (such as standard function procedures ABS, CHR, or SIZE).
However, operands within a particular expression must be of the same type; for
instance, in the previous example both operands are integers. The following shows
an illegal expression, one that mixes integers and reals:

3.4 + 30

The purpose of this type-checking is to make explicit the types of operands in
volved in the expression. Unlike Pascal and some other languages, Modula-2 in
general has no implicit type conversions; however, there are ways to override this
strict type-checking. The explicit conversion in the following example makes the
preceding example legal:

3.4 + FLOAT (30)

The result of this expression is 33.4 and is of type REAL. Note that it is possible
for the result type to be different from its operands. Consider the following:

1 = 2

Here is an expression containing integer operands and one operator. When the
operator is applied to the operands, the resulting value is FALSE and the result’s
type is BOOLEAN.

Operators

The most distinguishing feature of an operator is the type (or types) it works on.
There are four classes of operator:

Arithmetic Performs normal mathematical operations. Operations are
performed on numbers, such as INTEGER and REAL.

Relational Does a comparison of like items to obtain a BOOLEAN
result of TRUE or FALSE. The items compared can be of
any elementary type; for example, INTEGER, POINTER,
string, and so on.

Expressions 51

Logical Performs the combination and the negation of BOOLEAN
expressions. For example, the expression, NOT Raining
AND (Todays= Friday) combines the negation of Raining and
the truth of (Today—Friday).

Set Performs bit operations on operands of type BITSET or
logical set operations on user-defined SET types; for exam
ple, you may wish to mask the high bit of bytes in a WordStar
document file, or you may want to include the enumerated
value Red in a user-defined set of colors.

,e the selection of operators is dependent on the type they’re operating on,
we’ll defer further description of each operator until its type is introduced in
Chapter 5.

Operator Precedence

When more than one operator appears in an expression, its meaning or result is
dependent on the order of evaluation. Operations of highest precedence are
resolved first; operations of equal precedence proceed from left to right. Opera
tions within parentheses are of the highest priority, and thus are evaluated first.
Operator precedence is defined as follows:

1st (H ighest) priority:
2nd priority:
3rd priority:
4th (Lowest) priority:

NOT, ~
* /, DIV, MOD, AND, &
+ , -, OR
= , # , < , > , > = , > = , < > , IN

As an example, let’s look at a simple mathematical expression:
(

1.0 + 2.0 * 3.0

Evaluation begins on the left with 1.0 + 2.0; however, this subexpression is not
fully evaluated until the priority level of the next operator is determined. The
previous table, indicates that multiplication has a higher priority than addition;
thus the subexpression 2.0 * 3.0 is evaluated first, with its product added to 1.0
tor a result of 7.0 (type REAL).

52 M O D U

Parentheses can alter the interpretation of operator precedence. Whene^
parantheses are found in an expression, the contents within the parantheses ;
evaluated before being combined with any other item in the expression.

If the prior example is changed to include parantheses, as shown in the folic
ing:

(1.0 + 2.0) * 3.0

then evaluation will start with the contents of the parantheses, and the sum v
be multiplied by 3.0. This time the result will be 9.0 (type REAL).

Boolean expresssions are evaluated almost the same as other expressio
However, in Boolean expressions, it is not always necessary to evaluate the eni
expression in order to determine that expression’s result. This is called she
circuit evaluation. For example, consider the following Boolean expression:

(2+4=4) AND (3+4=7)

To begin evaluation, we would first resolve the contents of the first parenthe
(2+4=4); its result is FALSE, which is saved. The AND operator is next, ,
because both operands to an AND must be TRUE for the entire expression tc
TRUE, we need only evaluate the contents of the second set of parentheses if
first operand is TRUE. In this case, the first operand of the AND is FALSE
the second operand to AND is not evaluated (the expression is short-circuit«

* This order of evaluation is useful for certain algorithms that need to access
element of an arra^ onh' if the index is not a number that would cause an ai
bounds error. Thus, assuming you understand arrays, the following express
would not cause a bounds error if I is 0 and the array a is undefined when
equal to 0:

(I # 0) AND (a[I]=100)

Other Boolean operators, such as OR, are evaluated in a similar manner. T
if the first operand of an OR expression is TRUE, the second operand is
evaluated.

Data Structure 53

Chapter 5
Data Structure

Modula-2 is often described as a language that encourages structured programm
ing. It permits a large program to be broken down into smaller, more manageable
sections that can be separately compiled into object code. Within a program, ob
jects are structured into logical units that make them easier to manipulate.

Modula-2 has, as you might expect, many components that join to form a
modern block-structured language. As Wirth has pointed out, programs are a
combination of algorithmic structures and data structures. Modula-2 has well-
defined constructs for expressing both structures. In this chapter, we will look at
object manipulation in programs and the data structures used to describe these ob
jects.

Data Objects

Data objects are the information a program processes. This information can be
numbers, characters, or anything the program problem requires. Every data object
in your Modula-2 program has the following properties:

Identifier A unique name distinguishing one data item from another. An iden
tifier is given to most variables, any defined types, many constants,
and program parts. Identifiers (except for standard identifiers) must
be defined in a declaration.

Value Each data item has a value. This value may be constant and un
changeable throughout the program or the data item may take on dif
ferent values at different times during the course of the program.

Type Each data item has a type that determines its use. The type of a data
item dictates the values it can be assigned and the operations that can
be performed on it.

54 M ODULA

As an example, suppose your program includes the variable County which can take
any whole number as a value. The variable Count has the following properties:

□ Count is the identifier, or unique name, of this data item.

□ The value of the variable Count is determined at runtime by an assignment
and may be changed at any point.

□ The type of Count is INTEGER, which means that it may receive only the
values in the range -32K to 32K and that only integer math operations may
be performed on it.

There are two categories of types: unstructured and structured. First, we will
look at the elementary data types in Modula-2, which are predefined unstructured
types. Then we will see how declarations define a data item’s type, identifier, and
value. Next, we will discuss user- defined unstructured types. And lastly, for more
complicated objects, we will examine the building blocks Modula-2 provides tc
define larger structures—structured types.

Elementary Data Types

In the previous chapter, we described some of the objects that might b
manipulated in a program (numbers, strings, and so on). In addition, we showe
that an object, such as a number, may have different representations called types
For simple items, Modula-2 has predefined names that represent these types; fc
example, INTEGER, LONGINT, REAL, and so forth. These are called elemer
tary data types.

The following eight types are predefined in Modula-2. They are considere
basic types and are always available. Generally, variables are declared as one (
these types; however, you can also build new types from these basic types.

CHAR type: Range [OC to 377C]. Takes a single character as a value. A CHA
constant is denoted by enclosing a printable ASCII character in single or doub
quotation marks, or by specifying the octal value of the ASCII character followi
by a C (as in the range given here). Sample CHAR values include the followin

"A" '2 ? f " 1 1C 377C

Data Structure 55

BOOLEAN type: Range [FALSE to TRUE]. Assumes one of two logical truth
states denoted by the standard identifiers TRUE and FALSE. Use BOOLEAN-
type variables when you expect a yes/no- or on/off-type answer. For example, “Is
it raining?“ has a yes/no answer that could be represented as

Raining = TRUE

or

Raining = FALSE

CARDINAL type: Range [0 to 65535]. Use CARDINAL-type variables anytime
values are limited to positive whole numbers or zero, such as for a person’s age
or address, or lengths and distances. The type CARDINAL is used more frequent
ly than the type INTEGER, and a CARDINAL’S range is also double that of an
INTEGER in the positive direction. Sample CARDINAL values:

8088 2132 0 64000

INTEGER type: Range [-32768 to 32767]. Use the INTEGER type when values
are expected to drop below zero (for instance, in temperature ranges). In practice,
this type is not used often since most values in programs are non-negative. Ex
amples of INTEGER values:

8088 -2132 0

BITSET type: Range [0..15] (bit-wise). BITSET is a predefined set type (see
“Set Types“ later in this chapter), whose primary use is in performing bit-wise
operations (such as masking) on word-length variables. BITSETs (and sets in
general) has several predefined operations. Operators provided are union(+), in
tersection(-), difference(*), and symmetrical difference(/). In addition, there are
standard procedures (INCL and EXCL) that are used to include and exclude any
element from a set variable, and a reserved word (IN) to test whether a particular
element is a member of a set element.

Sets are designated by enclosing the members in curly brackets, like this:
(3,4,6). You can visualize the type BITSET by comparing the set notation to its
binary representation:

56 MODULA

(} = 0000000000000000
[4, 5, 6 , 7 , 12, 13, 14, 15) = 1111000011110000

[0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,1 0 ,1 1 ,1 2 ,1 3 ,1 4 ,1 5) = 1111111111111111

In the first example, all the bits are clear which means there are no members
in the set. In the second example, bits 4 through 7 and bits 12 through 15 are set
(the right-most bit is bit 0). In the last example, all bits are set.

REAL type: Range [-6.80565E+38 to 6.80565E+38]. Use REAL numbers to
represent objects with a fractional part or to represent numbers that are very large
or very small, including money, the distance to the sun (93,000,000 miles), or
measurements of temperature and time. Real numbers have 6 digits of precision;
for example:

3.0E+8 98.6 0.0 2.3E-11

Turbo Modula-2 supports two types of double-precision numbers, LONGINT
and LONGREAL. Double precision means the number is stored in twice the
storage space as its single-precision counterpart, resulting in greater accuracy
since the number is represented with more bits. Compare the ranges and number
of significant digits in the single- and double-precision numbers.

LONGINT type: Range [-2147483648 to 2147483647]. Double-precision in
tegers are used when a whole number greater than 65535 or less than -32768 is
needed. For example, the size of a file may be expressed with a LONGINT as
100000L bytes. Other examples of long integers include the following:

0L 1234567889L -20000000L

LONGREAL type: Range [-3.5953862697246D+308 to
3.5953862697246D+308]. These are double-precision reals. Variables of this
type have a precision of 14 digits; for example, multiplication is accurate to 14
decimal points. Use LONGREALs when numbers must be very large or require
great accuracy.

Declarations

In general, Modula-2 programs have a declaration part and a program part. The
declaration part must contain all constant, type, and data declarations necessary

Data Structure 57

to describe the data objects used in the program part. Data items must be defined
before they are used.

Constant Declarations

Constants benefit programs in two ways: (1) They place a descriptive name where
otherwise obscure numbers may be. (2) They simplify future modifications by
limiting certain changes to those constant definitions that have a global effect.

A constant declaration associates an identifier with a value and a type. Constant
declarations start with the reserved word CONST and are followed by any number
of declarations terminated by semicolons. Each declaration statement contains an
identifier followed by an equal sign, followed by a constant expression. A constant
expression is an expression containing only constants.

In the following declaration, the identifier Code represents the value A and Rate
represents the value 1.20:

CONST
Code = nAn;
Rate = 1.20;
Amount = 350.0 * Rate;

These values determine the type of the constant, which for Code is CHAR and
for Rate is REAL. In the third expression, the identifier Amount represents the
value obtained when the constant expression is evaluated. Notice that the iden
tifier Rate must be a constant that has already been defined.

In some cases, the constant’s type is not obvious; for example:

CONST
N = 100;

Is the constant N of type INTEGER or of type CARDINAL? In this case, the
answer is both. However, if N had been declared as

CONST
N = 60000;

58 M ODULA

then its type would be only CARDINAL, since the value is out of the range for
integers.

Type Declarations

Each data item has a type defining the possible values it can assume and the opera
tions that can be performed on it. In addition, a item type implies its structure
and how much storage the data item occupies. The type can be one of the predefin
ed types (such as REAL or CARDINAL) or can be a user-defined type.

A type declaration begins with the reserved word TYPE and is followed by any
number of declarations terminated by semicolons. Each declaration contains an
identifier, followed by an equal sign, followed by a type identifier or statement.
For example:

TYPE
Ages = CARDINAL;
Time = INTEGER;

Here two new types are introduced into the program. These types can now be
used to declare data items with descriptive type names. This method has the same
advantage as that of naming constants: By using a descriptive name for a defined
type that is to be used several times in the variable declaration, the declaration
becomes more readable and easier to modify. For instance, in the previous exam
ple, you can change all variables declared as type Time from INTEGER to REAL
by simply changing the word INTEGER to REAL.

Variable Declarations

Two things are required to describe a variable: a unique identifier and a type. The
value of the variable is left undefined so it may assume different values at runtime.
Modula-2 has no provision for initialization of variables at load time; all variables
must be initialized at runtime.

The variable declaration defines the variable’s type and identifier and optional
ly the location in memory where the variable will exist. The declaration begins
with the reserved word VAR and is followed by any number of variable declara
tions terminated by semicolons. Each declaration starts with an identifier list, op
tionally followed by an absolute location, then by a colon, and lastly by the type

Data Structure 59

of the variable. The absolute location is specified by a left square bracket ([),
followed by an address, and a right square bracket (]). For example:

VAR
Count: CARDINAL;
SwitchOn: BOOLEAN;
S creen[0C000H] : ScreenType;

This example defines three variables: a CARDINAL called Count, a
BOOLEAN called SwitchOn, and an absolute variable called Screen residing at
memory location 0C000H (the location must be a constant). This latter variable

(of type ScreenType. These three variables are completely defined and ready to
use in a program (assuming the type ScreenType has been defined previously).

User-Defined Unstructured "types

We have already seen some predefined unstructured types; however, there are also
user-defined unstructured types, which can be used to define variables that can
hold one value at a time.

Users can define three unstructured types: enumeration, subrange, and pointer
In general, user-defined types may be declared directly in the variable declara
tion, or they may be defined as types in the type definition section.

Enumeration types

Often, predefined types such as INTEGER or REAL are not sufficiently descrip
tive for certain applications. For instance, suppose you are trying to describe the
four points of a compass. One solution is to decide that North is equal to 1, East

f ̂2, and so on. However, when you are reading and writing the code, you must
k diways remember which number stands for the compass point you need. Also, the

variables you are working with are declared as CARDINAL or INTEGER, which
tells you nothing about how the variables should be used. Enumeration types (with
a user- defined range) provide an elegant solution to this problem. First, you
define a new type:

TYPE
CompassPoints = (North, E ast, South, W est);

60 M ODULA

Then, you may declare variables of this type, like so:

VAR
D irec tio n : CompassPoints;

When you use the variable, you simply assign or test for the values you have
defined for that type:

D irection := North; (# Assign the v a r ia b le the value North #)
D irec tion >= E ast; (# Compare the v a r ia b le to the value East #)

Enumeration types can also be declared directly in the variable section. Once
an enumeration type is defined, the names of its values are also declared and can
not be used in another enumeration type. Here the type Weather can assume the
values Clear, Rain, Wind, or Snow. For example,

VAR
Weather : (Clear,Rain,W ind,Snow);
Water : (Clear,M urky,Opaque);
Color : (V io let,O range,G reen ,B lack);

The use of the value Clear in defining Water would produce a compiler error
because the value Clear has already been defined as a value assigned to Weather.
If the second Clear were changed to Transparent, then the compiler would accept
the declaration.

Enumeration types have an implied order by the way they are declared. In the
first example, Clear is the first value of the type Weather, with an ordinal value
of 0. The value Snow is greater than Clear, Rain, or Wind. Variables of enumera
tion types can be compared to find their relative rank. Thus a statement like
Clear< Snow is TRUE and Rain>Wind is FALSE.

Subrange Types

The subrange type includes certain variables that can be included in one of the
previously mentioned types but which never takes values outside of a restricted
range. For example, tods/s date is of the type INTEGER, but is always in the
range of 1 to 31. We can state this by declaring it a subrange of the CARDINAL
type. You may define subranges of INTEGER, CARDINAL, or enumeration
types. Sample subrange types include the following:

Data Structure 61

TYPE
Today = [1. .31]; (* CARDINAL type w ith range 1 to 31 #)
Unusual = [Rain. .Snow]; (# Subrange o f Weather

To specify a subrange of positive integers, you may prefix the subrange with the
word INTEGER.

VAR
C ents: INTEGER[0 ..1 0 0];

However, in general, the compiler will know which type is specified. If the
(ange contains a negative bound, then it assumes INTEGER; otherwise, it
assumes CARDINAL.

Pointer Types

Pointers point to another variable that can be of any type, including another
pointer. Pointer operations include comparison and assignment, plus a special
dereferencing operator that allows you to access the object pointed to by the
pointer. Pointers are used mainly for pointing to other structured data types such
as records or arrays (see “Structured Types“ later in this chapter). These pointers
are used to build dynamic structures such as linked lists or trees. Sample pointer
types include the following:

TYPE
CharPtr = POINTER TO CHAR;
In tP tr = POINTER TO INTEGER;
CardPtr = POINTER TO CARDINAL;
RealPtr = POINTER TO REAL;
S etP tr = POINTER TO BITSET;

(igP tr = POINTER TO LONGINT;
DoolPtr = POINTER TO BOOLEAN;
LRealPtr = POINTER TO LONGREAL;
P trP tr = POINTER TO POINTER TO CHAR;
Person = POINTER TO PERSONRECORD

The value of a pointer is an address in memory. Thus, you may assign a pointer
value a 16-bit address. Assuming the following variable declarations:

62 M ODULA

VAR
cpl,cp2 : CharPtr;

you may make the following assignments:

cp l := ADDRESS(39283) ; (* Assign an abso lu te address to cp l #)
cp2 := cp l; (* Make cp2 p o in t to where cp l p o in ts *)

Notice that the ADDRESS operator converts the CARDINAL number to a
generic pointer type, which can be assigned to any pointer. (See ADDRESS in
Chapter 12, “Turbo Modula-2 Reference Directory,“ or in the module SYSTEM.)

Dereferencing is used to access the item pointed to by a pointer. The operator
used is the caret (A). To dereference a pointer, you simply append the caret to
the end of the pointer’s identifier. For example, to assign a character to the loca
tion pointed to by the previous declaration, you would use the following statement:

c p l A := 1 A! ;

Structured Types

A structured type is a composite of more than one data object. A structured type
is analogous to a group of compartments, where each compartment may hold
another structured or unstructured type.

There are two types of structures in Modula-2: arrays and records. Arrays are
structured types that contain a predefined number of variables of the same type.
In contrast, a record contains a fixed number of different types.

Both structured types can be accessed as a whole, or the parts of the structure
can be accessed individually.

Array Types

Arrays have a fixed number of elements of an identical type. The type of each in
dividual element is called the base type of the array. Each element of the array
is accessed via an index. Arrays are declared as follows:

VAR
In te g e rL is t: AHRAY[1..5] OF INTEGER;

Data Structure 63

IntegerList is an array of five integers. The integer elements can be accessed
as IntegerList[1], IntegerUst[2'\i and so forth, where the number in the square
bracket is the index.

Arrays can be very descriptive when used in combination with enumeration and
subrange types. For example, we could use arrays to record the hours of sunshine
in each day of the week by using thd following declarations:

TYPE
Hours = [1 ..2 4] ;
lays = (Sunday, Monday, Tuesday, Wednesday, Thursday, F riday,

S a tu rday);
DaysOfTheWeek = [Sunday ..Saturday];
WeeklySunshine = ARRAY DaysOfTheWeek OF Hours;

VAR
Sunshine: WeeklySunshine;

Then to store the fact that Monday was gloomy and Friday was sunny, we would
use the following:

Sunshine[Monday] := 1;
Sunshine[Friday] := 12;

Notice that each element can be accessed by an identifying index. The second
item in the Sunshine array is accessed with the value Monday,

It is also possible to treat the array as a unit:

V rhisWeek,LastWeek: WeeklySunshine;

With this declaration, and assuming the array LastWeek already has some
values, we can make this assignment:

ThisWeek := LastWeek; (* More o f th e same weather #)

Multidimensional arrays (such as matrixes) are also possible. Given our
previous definition of Weather, we can build a structure that will store the weather
conditions for each hour of every day for a week. The declaration is as follows:

64 M O D U L

VAR
WeeksWeather: ARRAY Days OF ARRAY Hours OF Weather;

An alternative and identical declaration is

VAR
WeeksWeather: ARRAY Days,Hours OF Weather;

We can access the elements in several ways, two of which are shown here:

WeeksWeather[Sunday],[12] := C lear;

assigns Clear weather to the 12th hour on Sunday; and

WeeksWeather[Monday] := WeeksWeather[Sunday] ;

assigns Sunday's weather to Monday.

Record Types

While an array must consist of elements of identical type, a record may consi
of elements or fields of different types. Each field can be accessed by a uniqi
name. Records are used to group different types of information into a single dz
type. Use record varr'c ble: to handle such information as the attributes of a perso
for example, his or her name, age, address, phone number, or favorite color. T1
is easily done with the following record declaration:

TYPE
People = RECORD

Name : ARRAY[1..30] OF CHAR;
Age : CARDINAL;
Address: ARRAY[1..40] OF CHAR;
Phone : ARRAY[l..l4] OF CHAR;
P referredC olor: Color;

END;

This is a record containing five fields: Name, Age, Address, Phone and Prej
redColor. Each is a different type: three different arrays (Name, Address, <
Phone), a CARDINAL, and the user-defined type Color. Each field in the rec<
can be accessed with the name of the variable, followed by a period and the na

Data Structure 65

of the field to be accessed. For example, if the variable Friend is defined as type
People, like so:

VAR
Friend : People;

then we can access each field as follows:

Friend.Name := 'J o n 1;
Friend.Age := 23;
Friend.Address := '234 Anywhere D rive ';
Friend.Phone := '333-3456 ';
F riend .P referredC olor := Blue;

We can also nest records two different ways. We can include the nested record
directly in the record definition.

TYPE
People = RECORD

Name : RECORD
First, :
Middle,
L ast: ARRAYfl..15] OF CHAR;

END:
Age : CARDINAL;

Or we can declare the type separately and nest it using the new type’s name:

TYPE
Names = RECORD

F ir s t ,
Middle,
L ast: AHRAT[1..15] OF CHAR;
END;

People = RECORD
Name : Names;
Age : CARDINAL;
END;

66 M ODULA

VAR
Person: People;

BEGIN
P erson.N am e.F irst[1] = ?Lr ; (* f i r s t i n i t i a l #)
Person.Name.M iddle[l] = 1J 1; (* middle i n i t i a l #)
Person.N am e.Last[l] = fG»; (* l a s t i n i t i a l *)
END

Notice that we can now access the initials of a name by selecting the Name field
with each of the nested fields (First, Middle, Last), and then index into the first
character of each array.

Variant Records

A record type can also have one or more dynamic variant parts. The variant is
selected by the value of a tag field.

Employee = RECORD
Name: ARRAY[1 . . 20] OFCHAR;
Age: CARDINAL;
CASE OvnHome: BOOLEAN OF
TRUE: Payment : CARDINAL;

OwnedSince : Date
I
FALSE :Rent: CARDINAL
END
END;

In the preceding record, there are two fixed fields, Name and Age, and a varian
part consisting of one or two fields, depending on the value of the tag fiel
OwnHome. If OwnHome is TRUE, then the fields Payment and OwnedSince ar
presumed to exist and the Rent field should not be accessed. If OwnHome i
FALSE, then only the Rent field should be accessed.

Note: It is possible to access any of the fields regardless of the value of the tz
field; it is up to the programmer to ensure that variant fields are only access*
when the tag field has the correct value.

Sometimes you may not want to specify a tag field. In this case, the tag fie

Data Structure 67

can be omitted, producing a record with fields that overlap one another. The colon
and type must be present to indicate that no tag field was chosen.

TYPE
HiLo = RECORD

CASE : BOOLEAN OF
TRUE: by te: ARRAY[0 ..1] OFCHAR;
I
FALSE: A ll: CARDINAL;

END
END;

VAR
My Word : HiLo;

The variable MyWord of type HiLo can be accessed as follows:

MyWord.byte[l] := A '; (# Assign ch a rac te r 'A' to the low byte *)
MyWord .A ll : = 65; (* Assign the CARDINAL 65 to the e n t i r e word *)

Set Types

A set type defines a collection of related members. The members may be of any
scalar type. Within a particular set, all members are of the same type and must
have an ordinal value between 0 and 15. For example,

TYPE
Color = (Red, Green, B lue);
D ig its = SET OF [0 . . 9];
Colors = SET OF Color;

The set Digits has members that are a subrange of type CARDINAL. The
members of Digits have ordinal values ranging from 0 to 9. Colors is a set con
sisting of members of an enumerated type. The members have ordinal values rang
ing from 0 to 2.

The value of a set variable is the collection of members that it contains at any
point in time. Operations on sets include assignment and comparison, as well as
some special set operations. If we define set variables like this:

68

VAR
C olSetl,C olSet2: C olors;

M ODULA

we can make the following statements:

C olSetl := Colors(Red,Blue);
ColSet2 := Colors(Red,Green);

Thus, a variable of type Colors may take as a value any combination of the three
members; for example, (Red,Blue), (Blue), (Green,Blue), and [), which is the
empty set.

Notice that the type cf the set must prefix the constant set. If no prefix is pre
sent, the type of the set is assumed to be BITSET. The same operations applicable
to BITSET are valid for user-defined sets (see BITSET in Chapter 12). Thus, we
have the following:

C olSetl + ColSet2
C olSetl - ColSet2
C olSetl * ColSet2
C olSetl / ColSet2
C olSetl - C olSetl
C olSetl / Colors(Green)

= ColorsfRed,Green,Blue)
= Colors(Blue)
= Colors(Red)
= Colors(Green,Blue)
= Colo rs ()
= Colors (Red, Green, Blue)

Procedure Types

Procedure types are an advanced language feature included here for completeness.
Thus, you may wish first to read more about procedures and parameters (ir
Chapter 6), and then come back to procedure types.

Procedures can be assigned to a variable in order to be passed as arguments t(
other procedures. A procedure-type declaration specifies the number and type o
its parameters and an optional function result. The following is a sample pro
cedure type:

TYPE
P ro d = PROCEDURE (CARDINAL, VAR INTEGER);

This is a procedure type with two arguments. The first argument is a valu

Data Structure 69

parameter of type CARDINAL and the second is a variable parameter of type IN
TEGER. For example, suppose P is a procedure variable of type Procl\ declared
as

VAR
P: Prod;

The procedure variable P can take two arguments: one a CARDINAL, the other
an INTEGER variable, and only in that order. The variable P could then be pass
ed as an argument to another procedure.

A procedure variable may only take on the value of a globally defined procedure
(see “Procedure Declarations“ in Chapter 6) with an identical parameter list. For
example, the variable P may take the value of procedures declared as follows:

PROCEDURE Test(:CARDINAL; VAR i : INTEGER);
BEGIN
END Test;

or

PROCEDURE Fees (accountNo: CARDINAL; VAR Balance .-INTEGER);
BEGIN
END Fees;

The assignment operation is the only operation allowed on procedure variables.

P := Test;
P := Fees;

Assuming that Fees is assigned to P and that CurrentBalance is declared as an
INTEGER variable, the procedure Fees can be called as follows:

P(121,CurrentBalance);

The most useful aspect of procedure variables is passing them as parameters
to algorithms accessing complicated data structures (such as tree traversal pro
cedures). The benefit is that many different operations can be performed on each
element of the data structure, but only one data- access routine need be written
to do so.

Statements 71

Chapter 6
Statements

In the previous chapter we discussed how to define data with constant, variable,
and type declarations. Now we’ll provide you with the remaining item you’ll need
to write your program, the statement.

Statements provide a means to handle data and define the flow of control.
Modula-2 program statements can be divided into four classes: assignment, con
ditional, repetitive, and procedural (which includes procedure calls and a special
flow of control statements). Each statement type will be examined in detail, but
first we’ll talk about programs in general in Modula-2.

In Modula-2, programs are called modules. Every main program begins with
the reserved word MODULE, followed by the name of the program and a
semicolon. The module statement is followed by a series of declaration statements
that include the data declarations discussed in the last chapter (namely constant,
type, and variable declarations), and possibly external and procedure declarations
(discussed in the following chapter and at the end of this chapter, respectively).

The following sample program outlines the general form of a Modula-2 pro
gram:

MODULE Skeleton;
(#.External Declarations (Next Chapter) *)

CONST
(* Constant Declarations (Last Chapter) *)

TYPE
(* Type Declarations (Last Chapter) *)

VAR
(* Variable Declarations (Last Chapter) *)

(* Procedure Declarations (This Chapter) #)

72 M ODULA

BEGIN
(# Program statem ents (This Chapter) *)

END Skeleton.

The program body follows the declaration section, and contains statements
separated by semicolons. The statements are within a block enclosed by the
reserved words BEGIN and END, followed by the name of the program and a
period. Modula-2 statements can be divided into the following classes:

Assignment Assignments are made to variables, resulting in a change in the
value that the variable holds. The source of the assignment may
be any expression that has the same resulting type as the destina
tion. A simple assignment may look like this: X := 4.

Conditional This class groups statements together so that they are executed
only if a specified condition is TRUE; for example, »If it’s rain
ing, then.. . .« This group includes the IF and CASE statements.

Repetitive Looping statements group one or more statements that are to be
executed a number of times. For example, a loop may »Switch
a light on and off ten times.« This group includes the FOR,
WHILE, REPEAT, and LOOP statements.

Procedural These statements call and control subroutines. They include
procedure calls and the RETURN statement, which affects the
flow of control in procedures.

Assignment Statements

A simple assignment statement replaces the current value of a variable with the
result of an expression. The expression may be as simple as a constant or another
variable, or it may be a complicated mathematical expression containing con
stants, variables, and funcrions. For example:

NODULE Assignment;
CONST
Pi = 3.14159;

Statements 73

VAR
X,Y: CARDINAL;
CireleArea,Radius,Z : REAL; .

BEGIN
(* simple *)
X := 2;
Y : = X + 1;
Z :=3.23;

(* complex #)
CircleArea := 2.0 * Pi * Radius;
Z := (CircleArea*(45.2/29.3)+Z*(Z+2.0))/Pi;

END Assignment;

The result of the expression on the right must be assignment compatible with
the variable on the left. In the first two examples, the expressions result in type
CARDINAL; thus X and Y must be of type CARDINAL. The second set of ex
pressions have REAL results; thus CircleArea and Z are of type REAL.

Note that := is the assignment operator and should be read as »becomes« (or
gets), as in 1 becomes 1+1, or 1 gets 1+2,

WITH Statements

The WITH statement is used to alter the scope of identifiers, and is often used
with assignment statements (though it is not itself an assignment statement).
WITH is used with record variables, eliminating the need to name the record
identifier for each field accessed within the WITH block. The WITH statement
takes the following form:

WITH record identifier DO
Statement sequence

END

This statement improves code readability when you are assigning values to
fields of record variables, because the code reflects the immediate action of
assignment to individual fields without the clutter of additional identifiers. For ex
ample:

74 M ODULA

MODULE WithStateraent;
TYPE
Months = (Jan,Feb,Mar,Apr,May,Jun,July,Aug,Sep,Oct,Nov,Dec);
Date = RECORD

Day:[1..31];
Month:Months;

Year .-CARDINAL
END;

Person= RECORD
Name : ARRAY[0..30] OFCHAR;
Age : CARDINAL;
Height : REAL;
BirthDay : Date;

END;
VAR
Friend: ARRAY [1..2] OF Person;

BEGIN
Friend[1].Name := 'Rodney';
Friend[l].Age := 28;
Friend[1].Height := 5.5;
Friend[l].BirthDay.Day:= 3;
Friend[l].BirthDay.Month:= Dec;
Friendfl].BirthDay.Year:= 1958;
VITHFriend[2] DO
Name := 'Judith';
Age := 32;
Height := 5.4;
WITH BirthDay DO
Day := 27;
Month := Oct;
Year:= 1954;

END
END

ENDWithStatement.

The first record, Friend [I], receives values by simple assignment. Note that
for every field accessed the name of the record is present. The second record is
accessed using the WITH statement. Notice that the structure of the code reflects
the structure of the data. The change in scope is accentuated by the indentation
used to code the W ITH statement.

Statements 15

Conditional Statements

IF Statements

The IF statement executes a different statement sequence depending on the result
of a Boolean expression. The IF statement has the form

IF BOOLEAN expression THEM
Statement sequence

(EÜ5IF BOOLEAN expression THEN
Statement sequence)

[ELSE
Statement sequence]

END

The ELSIF (else if) and ELSE parts are optional. If the Boolean expression
following the IF is TRUE, the first statement sequence is executed and control
continues with the first statement after the END. If the first expression is FALSE
and the ELSIF part is present, then its Boolean expression is evaluated. If it is
TRUE, then its statement sequence is executed; otherwise, the next ELSIF is
evaluated. There may be any number of ELSIF parts after the IF THEN, in
cluding none. If all expressions are FALSE, then the ELSE part, if present, is
executed. For example:

MODULE IfThenEls ifElse;
VAR
SwitchOn,PowerOn: BOOLEAN;
Status : (OK, Danger, Emergency);

BEGIN
(* Statements that set Boolean flags *)
IF SwitchOn AND PowerOn THEN
Status := OK

ELSIF NOT SwitchOn THEN
Status := Danger

ELSE
Status := Emergency

END;
(# Other statements #)

END IfThenElsifElse.

76 M O D U L/

After the Boolean flags have been set, the expression following the IF i:
evaluated. If it is TRUE, then Status gets OK and execution continues after th<
END; otherwise, the ELSIF expression is evaluated. If it is TRUE, then Statu,
gets Danger. However, if the ELSIF expression is FALSE, the ELSE is execute«
and Status is set to Emergency. After either the IF part, the ELSIF part, or th<
ELSE part is executed, control continues with the first statement after the END

CASE Statements

The CASE statement executes a different statement sequence according to th
value of an expression. The result of the expression is compared against value
in a constant list (a list of constants separated by commas) until a match is foun
or there are no constants left. A CASE statement may have several constant lists
each associated with a statement sequence and separated by vertical bars.

The elements of the constant lists must be of the same type as the expressio
following the CASE. The CASE statement takes the form

CASE expression OF
Constant List : statement sequence
I
Constant List : statement sequence

EISE
statement sequence

END

where a particular statement sequence is executed if the expression results
a value contained in the constant list. The optional ELSE part is executed if noi
of the constants match the expression. If none of the constants match the expre
sion and there is no ELSE part, the behavior of the code is dependent on the se
ting of the TEST switch when the source was compiled (see »Compiler Optio
and Switches,« in Chapter 10). If TEST is ON, then the exception CaseSelectE
ror is generated. If TEST is OFF, then execution continues with the instructii
after the END that corresponds to the CASE. For example:

Statements 77

NODULE Cases;
VAR
Temp : (Freezing, Cold, Cool, Perfect, Warm, Hot, Searing);
HeaterOn,
AirConditionerON : BOOLEAN;

BEGIN
(* Statements which set Temp #)
CASE Temp OF
Freezing..Cool : HeaterOn := TRUE
I
Perfect, Warm, Hot : HeaterOn := FALSE

ELSE(# must be Searing #)
HeaterOn := FALSE;
AirConditionerON := TRUE;

END
END Cases.

This example executes one of three statement sequences depending on the value
of Temp. If Temp has a value between Freezing and Cool, then the heater is turned
on. If the value is between Perfect and Hot, then the heater is turned off. However,
Temp may take on a value that is in neither constant list. In that case, the ELSE
part of the CASE statement is executed and the heater is turned off and the air
conditioner is turned on.

Note: The CASE statement is for situations where the lists of constants have
adjacent ordinal values. When conditional execution is dependent on nonadjacent
values, the IF THEN ELSIF statement should be used; otherwise, nonadjacent
values used in CASE statements will generate a relatively large amount of code.

Repetitive Statements

FOR Statements

The FOR statement encloses a sequence of statements that is repeated a fixed
number of times. The FOR statement takes the form

FORVar:= First TO Last BY Step DO
statement sequence

END

78 M O D I

where Var is a variable called the control variable, First is the initial value of 1
Last is the final value of Var, and Step is the increment added to Var for each it(
tion. First, Last, and Var can be any ordinal type, but they must all be of the st
type.

The statement sequence is repeatedly executed and the control variable
cremented until the control variable equals or exceeds the value of Last. For ex:
pie:

MODULE ForLoop;
CONST
Increment = 0.1;

VAR
I:CARDINAL;
Result:REAL;
BEGIN

FOR I : = 0 TO 10 BY 2 DO
Result := Result + Increment

END
END ForLoop.

This example repeats the statement sequence six times, with I equal to
values 0, 2, 4, 6, 8, and 10. If the optional step value is omitted, then it is assui
to be 1. The step can also be negative; for example:

MODULE ForLoopCountDown
VAR
Time, Add: INTEGER;
BEGIN

FORTime:= 3 TO -3 BY -1 DO
Add := 2 * Time

END
END ForLoopCountDown.

Note that the control variable can take part in the statement sequence but cai
be altered by it.

Statements 79

WHILE Statements

The WHILE statement repeats a statement sequence until a Boolean expression
yields a FALSE result. The WHILE statement takes the form

VHILE Boolean expression DO
statement sequence

END

where the statement sequence is repeatedly executed when the Boolean expres
sion is TRUE. For example:

MODULE WhileLoop;
VAR
Control: CARDINAL;

BEGIN
Control:= 4;
WHILE Control >0 DO
Control:= Control - 1

END
END WhileLoop.

This example repeats the statement sequence until Control is equal to 0.

Note that the Boolean expression is evaluated before the statement sequence;
therefore, it is possible that the statement sequence will not be executed. In the
preceding example, this would be true if Control was set to 0 instead of 4. Also
note that the values that make up the control expression must be affected by some
part of the loop, otherwise the loop will never end.

REPEAT Statements

The REPEAT statement replicates a statement sequence until a Boolean expres
sion yields TRUE. The REPEAT statement differs from the WHILE statement
in that the expression is evaluated after the statement sequence; therefore, the
statement sequence is always executed at least once. The REPEAT statement has
the form

80 M ODULA

REPEAT
Statement sequence
UNTIL Boolean expression

where the statement sequence is repeatedly executed until the expression is
TRUE. For example:

MODULE RepeatLoop;
VAR
N: REAL;
BEGIN
• N := 1.0;
REPEAT
N := 2.0 * N;
UNTILN > 100.0;
END RepeatLoop.

This loop repeats until the value of N is greater than 100.

LOOP Statements

The LOOP statement repeats a statement sequence until terminated by an EXIT
statement. The LOOP statement has the form

LOOP
statement sequence
END

This statement is generally used when the termination condition can only be
determined in the middle of the loop. Since Modula-2 has no GOTO statement,
the EXIT statement is used to terminate the loop and continue control at the state
ment after the END.

EXIT Statements

The EXIT statement specifies termination of a LOOP statement. A common ex
ample of this occurs in sequential processing, where a data object is obtained and
then processed. In this instance, a problem can occur if the program can only test
if the object was obtained successfully after the statement to obtain it. Thus, there
must be a test directly after the Obtain statement to see if it was successful. If

Statements 81

it was not, no further processing can be done and control must be passed around
the processing statements and go to the statement after the loop. The following
example simulates this situation with arrays:

MODULE LoopLoop;
TYPE
DataObject = RECORD

Name : AHRAY[0. *30] OFCHAR;
Age : CARDINAL

END;
VAR

Record: ARRAY[1.*10] OFDataObject;
WorkRecord : DataObject;
BEGIN
I := 0;
Record[10] .Name := 'L astR ecord1;
LOOP
I := I + 1;
WorkRecord := R ecordfl];
IFWorkRecord.Name = 'LastRecord* THEN EXIT END;
(* statem ents to process the record *)
END
END LoopLoop.

This example presents a more common problem with sequential file processing:
The flag in the Name field represents the end-of-file condition; thus, the records
are continually read and processed until the end-of-file condition is TRUE. At this
point the EXIT statement is executed and control continued after the loop’s END.

More than one EXIT can be present in a loop. However, if there are too many
,XIT statements, it is difficult to understand the meaning of the loop and to deter

mine when and where it will terminate.

Procedural Statements

Procedures are named subroutines and subroutines are pieces of code declared
elsewhere and invoked by name. In the following, we will look at how a procedure
is called and how it is defined.

82 M O D U L/

Procedure Calls

A procedure call is an identifier, optionally followed by a parameter list. Th<
identifier represents a sequence of statements defined elsewhere. When a pro
cedure call is encountered in a statement sequence, the flow of control is transfer
red to the statements that that identifier represents. A procedure call may have
parameters specified by listing variables or constants, which are separated b)
commas and enclosed in parentheses. These are called actual parameters. Th<
following example shows three procedure calls in the body of the module:

MODULE ProcedureCall;
(* Statements that define the procedure Read #)

VAR
Number,
Count : CARDINAL;
First : INTEGER;

BEGIN
Read(Number); Read(Count); INC(First);

END ProcedureCall.

The first Read statement has one actual parameter, Number. This parameter cai
be different each time the procedure is invoked, as with the second procedure cal
of Read, where Count is the actual parameter.

Note that there must be a declaration statement defining Read. However, thi:
is not so with the third procedure call in the example, (INC(First)\). This i:
because it is a standard procedure, predefined in Modula-2 and callable fron
anywhere without explicit declarations. (There is a list of standard procedures a
the end of this chapter.)

Procedure Declarations

Procedure declarations allow the programmer to define a statement sequence onc<
and use it many times. Procedures allow a series of actions to be abstracted int<
a single meaningful name. For example, it could take hundreds of lines of codi
to implement the following procedure calls:

ReadChar;
AccessFile;
WriteScreen;

Statements 83

However, these three statements abstract the lines of code into names that
describe the action the code performs. (This lends itself to the concept of informa
tion hiding: The details of each procedure are not relevant to the immediate code;
they are hidden in the declarations of each procedure.)

As mentioned at the beginning of this chapter, the declaration section of a
module may contain procedure declarations. Each procedure declaration starts
with the reserved word PROCEDURE and is followed by the procedure’s iden
tifier name, an optional parameter list, an optional function result type, and a
semicolon. Next is a declaration section that contains constant, type, variable, and
possibly additional procedure declarations. The following example shows a
skeleton procedure declaration:

PROCEDURE Skeleton((# parameter declarations *));
CONST
(* Constant Declarations #)
TYPE
(# Type Declarations #)

VAR
(* Variable Declarations *)

(* Procedure Declarations #)

BEGIN
(* Program Statements #)
END Skeleton;

Notice the similarities between this procedure skeleton and the module skeleton
at the beginning of this chapter. Both have a declaration section and a body, which
is convenient when you need to convert a stand- alone program to a subroutine.
The following example shows how procedures are declared and how they can be
called repeatedly:

NODULE ProcedureDeclaration;
VAR
x: CARDINAL;

PROCEDURE ExampleProcedure;
BEGIN
x := x + 1;

84 MODULA

END ExampleProcedure;

BEGIN
x := 0;
ExampleProcedure;
ExampleProcedure;
ExampleProcedure;

END ProcedureDeclaration.

The module ProcedureDeclaration has defined one procedure called Ex
ampleProcedure. The body of the module calls it three times, incrementing x by
1 each time the procedure is invoked.

Parameters

Procedure declarations may have parameters that are passed to the procedure in
a procedure call. The parameters are specified in the procedure statement after
the procedure identifier, and enclosed in parentheses. This is called a parameter
declaration.

The parameter declaration defines the names and types of each parameter,
which are its formal parameters. For example:

PROCEDURE fo o (a ,b ,c : INTEGER; d: CARDINAL; e: REAL);

Notice that parameters of the same type may be grouped together, as in variable
declarations. Each group of parameters is separated by semicolons. In addition
to name and type, the declaration determines the kind of parameter that is being
passed.

There are two kinds of parameters: variable parameters and value parameters.
Variable parameters link actual and formal identifiers, and are identified by
prefixing a group of parameters with the reserved word VAR. Value parameters
pass a value as an initial condition to a formal identifier. Since W R does not ap
pear in the preceding declaration, all of the parameters are value parameters.

To explain the difference between variable and value parameters, let’s look at
the procedure call. When a procedure call passes a parameter to a subroutine, the
program may or may not want the variable it passes to be changed. If it does not,
the formal parameter should be declared as a value parameter. But if the call is

Statements 85

expecting the procedure to do some work on the variable and return the new value,
then the formal parameter should be a variable parameter.

When a value parameter is passed, a copy of the value is made. Any reference
to that parameter will affect only the copy and not the original; thus, constants
as well as variables may be passed as value parameters. For example:

NODULE ValParameters;

PROCEDURE Power (VAR A .-REAL; I: CARDINAL);
VAR
Temp: REAL;

BEGIN
Temp := 1.0;
WHILE I > 0 DO
Temp := Temp * A;
1:= 1-1
END;
A := Temp;
END Power;

VAR
x : REAL;
e : CARDINAL;

BEGIN
x := 10.0; e := 2;
Power(x,e); (* Raise 10 to the 2nd power #)
(* Now x = 100.0 #)
Power(x,3)> (* Raise 100 to the 3rd power #)
(* Now x = 1000000.0 *)

END ValParameters.

(The reserved word VAR in the procedure heading declares A to be a variable
parameter; the cardinal I is a value parameter.)

In the first call, the value parameter is the variable e set to the value 2. Notice
that the value of I is changed. This will not be reflected in the value of e\ it will
remain the same. In the second call, the constant 3 is passed as a value parameter.
A copy of this value is made within the procedure, thus it may be treated as a
variable within the procedure.

86 M ODULA

When a variable parameter is passed, the address of the variable is passed.
Thus, any reference to that parameter is to the original copy. For this reason, con
stants cannot be passed as variable parameters.

The following example shows the use of variable parameters:

MODULE VarParameters;

PROCEDURE Swap (VAR I,J: INTEGER);
VAR
Temp: INTEGER;

BEGIN
Temp := I;
1:= J j
J:= Temp;
END Swap;

VAR
a,b,c: INTEGER;

BEGIN
a := 1; b := -1; c := 0;
Swap(a,b); (# Now a
Swap(c,a); (* Now c
END VarParameters.

The integers I and J are formal parameters. The formal parameters are used in
side a procedure in place of the external actual parameters (a, b, c) in the example.

In the first call to Swap, a and b are aliases for I and 7, respectively, which
allows the procedure to change the values that a and b contain. The procedure in
terchanges the values of / and 7, as well as the values of the external variables
a and b. The second call then interchanges c and a , whereby c ends up with Vs
original value, a gets the value of c, and b holds the original value of a.

Open Array Parameters
Modula-2 has a special feature that allows an array of unspecified size to be passec
as a parameter to procedures. These are called open array parameters. They are
specified in the parameter declaration list in the following form:

= -1 and b = 1 *)
= -1 and a = 0 *)

Statements 87

ARRAY OF T

where T is the type of the item in the array. The lower bound of the array is
always 0, and the upper bound is determined by a call to the standard procedure
HIGH. HIGH returns the highest legal index value based on the declaration of the
array that was passed, but which has been adjusted so that the lower bound is zero.
For example, consider this module:

NODULE OpenArrays;
TYPE
Employee = RECORD

Name : ARRAY[0 ..2 0] OF CHAR;
Age : CARDINAL;
Wage : REAL;

END;
VAR

AllEmployees : ARRAY[1 ..2 0] OF Employee
CurrentEmployees : ARRAY[0 ..9] OF Employee;

PROCEDURE PrintEmployeeRecords(VAR e: ARRAY OF Employee);
VAR

I: CARDINAL;
BEGIN

FOR I := 0 TO HIGH(e) DO
WITH e [I] DO

WRITELN(Name, Age:10, Wage: 5 :2);
END

END
END PrintEmployeeRecords;

VAR
I: CARDINAL;
BEGIN

FOR I := 1 TO 20 DO
WITH AllEmployees[I] DO

Name := 'H i la ry ';
Age := 11;
Wage := 3 -35;

END
END;

88 M ODULA

FOR I : = 0 TO 9 DO
WITH CurrentEmployees[I] DO
Name := 'Nate';
Age := 2;
Wage := 3-35;

END
END;
PrintEmployeeRecords(AllEmployees);
PrintEmployeeRecords(CurrentEmployees);

END OpenArrays.

The procedure PrintEmployeeRecords will accept and correctly print the two
Employee arrays even though they have different bounds. Note that the function
HIGH gives the highest legally accessible item in the array.

Although HIGH provides the largest index, you may still need another way to
determine how full the array is. For instance, it is often useful to define procedures
that have open arrays of characters, because you need to pass strings of differing
length to the same algorithm. However, the character arrays may not be complete
ly filled when passed to the open array; thus, HIGH points to the end of the array
rather than the end of the string. Modula-2 appends a null character (0C) if a con
stant string is passed to a procedure with an open array. Thus, the procedure can
determine the actual length by scanning for the null character.

With open arrays of other types that may not be completely filled, you must pro
vide some mechanism for the procedure to determine the last valid item in the
array. This may be a flag record or an additional parameter that gives the count.

There is an even more powerful version of an open array that allows you to pass
any type to a procedure; for more details, refer to Chapter 8. Turbo Modula-2
allows multidimensional open-array parameters, specified as

M: ARRAY OF ARRAY OF T

The high bound of the first dimension is HIGH(M) and the high bound of the
second dimension is HIGH(M[0~\). Thus you may find the high bound of the nth
dimension by passing HIGH the array with n-1 subscripts.

Statements 89

Function Procedures

As mentioned earlier, a procedure may return a result. This is called a function
procedure. A call to a function procedure is either an expression or part of an ex
pression. The types of values they return must be defined in the procedure state
ment, as follows:

PROCEDURE Foo(): INTEGER;

This procedure heading defines a function that returns a value of type IN-
TF'TER. Note that even though there are no parameters, the empty parameter list
nl be present. This is true for both formal and actual parameter lists. For exam
ple, if the preceding function is used to assign a value to an integer variable, then
it will look like this:

IntVar := Foo();

With the empty parameter list, it is clear whether an identifier occurring in an
expression is a variable or a function procedure. This is not a problem with nor
mal parameterless procedures, because they cannot occur in expressions.

As an example, we will change the Power procedure we used earlier to a func
tion:

MODULE FunctionProcedure;

PROCEDURE Power(A:REAL;I:CARDINAL):REAL;
VAR
Temp: REAL;

BEGIN
(np:= 1.0;
WHILE I > 0 DO
Temp := Temp * A;
1 := 1 -1 ;
END;
RETURN Temp;

END Power;

90 M ODUL

VAR
x: REAL;
e: CARDINAL;

BEGIN
x := 10.0; e := 2;
x := Power(x,e); (* Raise 10 to the 2nd power #) .
(# Now x = 100.0 #)
x := Power(x,3); (# Raise 100 to the 3rd power *)
(* Now x = 1000000.0 *)

END FunctionProcedure.

The FunctionProcedure example has the same outcome as the procedure Pow
example, but the methods are different. The parameter declaration for A has be<
changed from a variable parameter to a value parameter. Thus, the actu
parameter is not changed by the body of the function, but by the assignment stat
ment in the body of the module. Another difference is that the function Power h
an explicit RETURN statement to define the result and terminate the procedur

In general, it is a good practice to have only value parameters in a function pr
cedure. When a function’s variable parameter or global variable is changed with
the course of the function call, it is called a side effect.

RETURN Statements

The value returned by a function procedure is explicitly named by a RETUR
statement. This statement takes the form

RETURN value;

where value is an expression with the same resulting type as the function pi
cedure. Thus, in an earlier example, the statement

RETURN Temp;

specifies the result of the function. The RETURN statement may also be us
in normal procedures with no statement after RETURN. In a normal procedu
the RETURN statement has the same effect as if the procedure had come to t
final END statement. This permits procedures to be exited at any point. As w

Statements 91

the EXIT statement previously described, too many RETURN statements in a
procedure make it difficult to understand.

Examples of RETURN statements:

RETURN ; (* normal procedure #)
RETURN 26; (* function procedure returning an Integer #)

Nested Procedures

As shown in the skeleton procedure, the declaration section can also include addi
tional procedure declarations called nested procedures, or local procedures. (The
procedures described earlier are global procedures.) The following is an example
of a nested procedure:

MODULE NestedProcedures;

PROCEDURE LevelOne;

PROCEDURE LevelTwo;

PROCEDURE LevelThree;
BEGIN
END LevelThree;

BEGIN (# LevelTwo procedure body #)
END LevelTwo;

PROCEDURE AnotherLevelTwo;
BEGIN
END AnotherLevelTwo;

BEGIN (# LevelOne procedure body #)
END LevelOne;

BEGIN (# Module body #)
END NestedProcedures.

This example defines four procedures: one is global (procedure LevelOne) , and
the remaining three are nested. Two are considered local to the procedure

92 MOD

LevelOne\ they are LevelTwo and AnotherLevelTwo. The procedure LevelTwc
a local procedure called LevelThree. At certain points in this program, only
tain procedure identifiers are available to be called. This is because proced
restrict the visibility of identifiers declared within them. This is referred to a:
scope of an identifier.

Scope of Visibility

Here we present the rules for the scope o f visibility of an identifier for a
cedure. The rules for modules are slightly different and are presented in the
chapter.

The procedure in which an identifier is declared defines the scope of visit
for that identifier. For procedures, the rules are as follows:

□ An identifier exists while the declaring procedure is active.

□ An identifier is visible within the declaring procedure after the identifi
declared and it is also visible within nested procedures unless redeclare
a nested procedure. The new identifier exists until the redeclaring proce
is inactive, then the identifier reverts to the original declaration condit

□ All identifiers that are visible outside of the procedure are also visible ii
the procedure, unless redeclared in that procedure.

For example consider the following module:

NODDLE ProcedureScope;

PROCEDURE A;
VAR
i,j: CARDINAL;

PROCEDURE B;
VAR
j : REAL;

BEGIN (* i and j (the REAL) are visible here #)
END B;

Statements 93

PROCEDURE C;
BEGIN (* i and j (th e CARDINAL) are v is ib le here *)
END C;

BEGIN (* i and j (th e CARDINAL) a re v i s ib le here #)
END A;

BEGIN
END ProcedureScope.

An identifier declared in A is visible in A, B, C, and all the procedures nested
within B and C. On the other hand, an identifier declared in procedure B is visible
only in B and any of B 's nested procedures, but not in A or C.

Notice that the identifier j is declared in both A and B. The A version of j (the
CARDINAL) is visible throughout A, C, and the procedures nested in C. In pro
cedure B, the A version is invisible, being replaced by the B version of j (the
REAL). The B version is therefore visible in B and all the procedures nested in B.

FORWARD Statements

The original definition of Modula-2 specified that identifiers declared at the same
level have the same scope. Thus a procedure declared textually at the top of a pro
gram could call a procedure that was declared later in the text. This was possible
because the first Modula-2 compilers were multipass compilers (in most cases
four passes) that could resolve an undeclared reference on a subsequent pass.

Ttirbo Modula-2 and Wirth’s latest compilers are one-pass, recursive-decent
compilers, which means there must be additional syntax to allow a single pass.
This is done with the FORWARD statement. Its syntax and usage is similar to
that of Pascal’s. To use the FORWARD statement, simply copy the entire pro
cedure heading, including the parameter list and the optional function result, to
the location where it is needed. Then append the FORWARD statement and a
semicolon. You need not change the procedure at all. The syntax is as follows:

PROCEDURE in d e n t i f ie r (param eter l i s t) : r e s u l t type ; FORWARD ;

This statement is required for algorithms involving mutual recursion, where one
procedure calls another, which then calls the first. For example:

94 MODU

MODULE MutualReeursion;

PROCEDURE One; FORWARD ;
PROCEDURE Two;
BEGIN

WRITELN(' Procedure Two') ; READLN;
One;
END Two;

BEGIN
WRITELN(»Procedure Two*) ; READLN;
One;
END Two;

PROCEDURE One;
BEGIN
WRITELN(»Procedure One»); READLN;
Two;
END One;

BEGIN
One;
END M utualReeursion.

Thus, the FORWARD statement is a way of extending the scope of a pi
cedure’s identifier, making it available over a larger program area.

Standard Procedures

Modula-2 includes several predefined procedures that are visible anywhere with
a program; in other words, the identifiers do not require importing into a modu
(To see examples of these procedures, turn to the respective entries in Chapter L
The following is a list of all standard procedures in Modula-2:

ABS(X) Absolute value of variable X
CAP(Ch) Uppercase of letters Ch
CARD(X) Conversion of X to CARDINAL
CHR(X) The character with ordinal number X
DEC(X) Replace X by its predecessor

Statements 95

DEC(X,N)
EXCL(S,I)
FLOAT(X)
HALT
HIGH(A)
INC(X)
inc(x.n)
INCL(S,I)
FLOAT(X)
HALT
HIGH(A)
INC(X)
INC(X,N)
INCL(S,I)
INT(X)
LONG(X)
MAX(T)
MIN(T)
ODD(X)
ORD(X)
SIZE(X)
SIZE(T)
TRUNC(X)
VAL(T,X)

Replace X by its Nth predecessor
Exclude element I from set S
Conversion of X to REAL
Halt program execution
Upper index of array A
Replace X by its successor (X : = X + l)
Replace X by its Nth successor (X : = X + N)
Include element I in set S
Conversion of X to REAL
Halt program execution
Upper index of array A
Replace X by its successor (X : = X + 1)
Replace X by its Nth successor (X : = X + N)
Include element I in set S
Conversion to INTEGER
Conversion to LONGINT
Largest element of type T
Smallest element of type T
Returns Boolean TRUE if X is odd
Ordinal number of X in its type
Returns the size in bytes of variable X
Returns the size in bytes of type T
Truncate real X to CARDINAL
Value with ordinal number X and type T

98 M O D U L/

Figure 7-1: Hierarchy of Modula-2 Program

Application programm

Input/Output
Library

Mathematical
Library

String
Library

User-Defined
Library

SYSTEM
Library

STORAGE
Library

Operating
System

The application program is the main module, requiring the services of the Ir
put/Output, Mathematical, String, and User-defined Library modules. Thes
modules in turn may require the services of the so-called, »low- level« module
(SYSTEM and STORAGE Libraries), which in turn require the services of tf
underlying operating system.

Each library module is a self-contained unit that is compiled separately. Use
can build their own library modules and use them as if they were provided by tl
Modula-2 system. When a main module uses library procedures, the facilities
that library are linked to the main program. In general, this process is the san
for both predefined and user-defined modules.

As in any hierarchy, the application program may bypass the intermedia
modules to use the services of the low-level modules.

When a module requires the services of a library module, it must explicitly sfc
this as the first item in its declaration section. This is done with the IMPOI
declaration, which can take the following forms:

FROM < module name> IMPORT < identifier list> ;

IMPORT < id e n t i f i e r l i s t > ;

The first form names a library module after the reserved word FROM, tl
names the identifiers it requires from that module after the reserved word I
PORT. The identifier list is terminated with a semicolon.

or

Modules 97

Chapter 7
Modules

In Modula-2, the module is a syntactical construct that serves to encapsulate cer
tain parts of a program, letting the outside world see only identifiers that are ex
plicitly made visible. Up till now, all the sample modules we have seen have been
stand-alone programs, or main modules (which are analogous to entire Pascal pro-

^ ms). typically, though, Modula-2 programs are made up of many modules,
where each support module contains a small amount of code to do its part.

In the Tbrbo Modula-2 system, the smallest modules have less than 100 lines,
the most complex ones nearly 1,500. (The upper limit also mirrors the memory
limitations of the computer we’re working on [Z80].) How large should a module
be? There is no general rule. The task is to break the problem into natural pieces
and to have little interconnection between the parts. The amount of interconnec
tion is mirrored by the size of import and export lists; the smaller the lists, the
better.

In this chapter, we’ll examine the types of modules that can be used in
Modula-2.

The Main Module

The main module defines a program. When a main module is running, it usually
requires the services of library modules and the underlying operating system.
?' -e these may be viewed as disjoint units (only minimal connection), we may
\wK at a Modula-2 program as hierarchically structured, as shown in Figure 7-1.

Modules 99

The second form imports all identifiers made available by the module specified
after the reserved word IMPORT and followed by a semicolon. However, unlike
the first form, use of imported identifiers requires qualification. This means that
any identifiers used from this module must be prefixed with the module name,
as follows:

ModuleName.IdentiferName

Typically, this form is used when identifiers imported from different modules
have the same name. Thus, the module name specifies which identifier is intend
ed. The following example shows the use of the two forms of the IMPORT state
ment:

MODULE ImportLists;
FROM Terminal IMPORT WriteChar, WriteString, WriteLn, ReadChar;
IMPORT Texts;

VAR
ch: CHAR;
num: INTEGER;

BEGIN
WriteString('Enter a character: ');
ReadChar(ch); WriteLn;
WriteString('The character you entered was " *);
WriteChar(ch);
WriteString(' " . WriteLn;

Texts.WriteLn(Texts.output);
Texts.WriteString(Texts.output, 'Enter an integer and*)
Texts. WriteString (Texts, output, 'press return: ');
Texts.Readlnt(Texts. input,num);
Texts. WriteString (Texts, output, 'The number you entered was *);
Texts.WriteInt(Texts.output,num,2);
Texts.WriteLn(Texts. output);

END ImportLists.

The facilities of the two library modules Terminal and Texts are used in the pro
gram ImportLists. Individual identifiers are imported from the module Terminal:
WriteString, Write Char, ReadChar, and WriteLn. All facilities from the module

100 MODULA

Texts are made available, though they must be qualified. The identifiers used from
Texts are output, input, WriteLn, WriteString, Readlnt, and Writelnt. Notice that
some procedures are available in both modules, which is why the module Texts
was imported as a whole and then its identifiers qualified. (For more details on
the operations of Texts and Terminal, refer to Chapter 11, »The Standard Library,«
or the specific procedures in Chapter 12.)

Library Modules

Library modules have two advantages over stand-alone modules: information
hiding and module decoupling.

In Modula-2, library modules hide the operation and details from the module
user; information needed to use the library facilities is separate from the im
plementation details.

In the preceding example, we needed to know the types and number of
parameters of the WriteString procedure in order to use it in the module Terminal.
The declaration

PROCEDURE WriteString(s: ARRAY OF CHAR);
(* Write String to Screen *)

tells us that the procedure WriteString takes an array of characters and prints
them to the screen. This information is contained in a definition module (explain
ed in the next section). Thus by looking at the definition module, we can deter
mine how to use its facilities.

In addition to information hiding, library modules allow the details of opera
tions to be changed without affecting modules that depend on its definition. This
is called module decoupling. This feature of Modula-2 aids in the development
of large programs by minimizing recompilation after code changes. Thus, if a
library module is made more efficient, users (or »clients«) of that module will on
ly notice the increase in efficiency and will not need to recompile (unless produc
ing a .COM file) or change their source code. A client need only recompile or
change source code when the actual definition (and therefore meaning) of a
module changes.

Modules 101

Definition and Implementation Modules

Modula-2 formalizes the separation of a module’s definition and its implementa
tion with these two modules: the definition module and the implementation
module. Every library module consists of one definition module and one im
plementation module.

The definition module contains all the declarations of the library module that
are to be made public, which may include constants, types, variables, and pro
cedures. These declarations do not contain code, but instead contain the interface
needed to use the procedures they export, along with comments that describe how

le exported identifiers should be used. Definition modules take the following
form, beginning with the reserved words DEFINITION MODULE:

DEFINITION NODULE < module name > ;

< Import Sections >
< Export Sections >

END < module name> .

where Import Sections declare any external identifiers needed to define ex
ported objects and procedures. The Export Sections include the constant, type,
variable, and procedure declarations that define identifiers exported by this library
module.

Note: Definition modules may not contain an EXPORT list (see »Local
Modules,« later in this chapter). All identifiers appearing in the definition module
are automatically exported.

(The following definition module is an example of a library module that provides
v random-number facilities:

DEFINITION NODULE RandomNumbers;
(* This module provides a reproducible set of random numbers. *)

PROCEDURE Randomize(NewSeed: Cardinal);
(# Randomize sets the internal seed to the specified value, thus

allowing a random sequence to be reproduced when the same value is
passed to Randomize.

102 MODULA

*)

PROCEDURE Random(): REAL;
(# The Random function returns a random real between 0 and 1 *)

END RandomNumbers.

This module provides information about the use of the random-number
facilities its implementation provides. By reading this Modula-2 text, clients may
incorporate random numbers into their programs without writing their own
random-number generator or understanding how it works. The corresponding im
plementation module hides all the details from the client.

The implementation module holds the code that performs the actions stated in
the definition module. Objects declared in the definition module are visible in the
implementation module. Thus, constants, types, and variables should not be
redeclared in the implementation module; doing so will cause a duplicate defini
tion error during compilation. Also, the procedure heading declared in the defini
tion module must be identical to the procedure heading in the implementation
module or the compiler will flag the implementation’s procedure in error as »Two
different declarations of same procedure.«

Implementation modules must define all procedures mentioned in the definition
module or the compiler will flag unresolved identifiers.

Implementation modules can be considered identical to main modules with two
exceptions. The first is the form of declaration, as shown in the following:

IMPLEMENTATION MODULE < module name > ;
(* Import Declarations *)
(* Data Declarations *)
(* Procedure and Module Declarations #)

BEGIN
(# Initialization Code *)
end < module name> .
Note that the module name must be the same one used in the definition module.

Modules 103

The second exception is the optional initialization code, which follows the
reserved word BEGIN. This code is used primarily to set up variables before any
procedure is called or any variable is accessed. Thus, you are guaranteed that this
initialization code will be executed before the client modules use any function pro
vided by the library module.

If the initialization code is not present, then the reserved word BEGIN is op
tional. Of course, the reserved word END, followed by the module name and a
period, must be present.

The following module implements the previously defined module Random-
Numbers:

IMPLEMENTATION MODULE RandomNumbers;
CONST
multiplier = 100;
modulus = 257;

VAR
Seed: CARDINAL;

PROCEDURE Randomize(NewSeed: CARDINAL);
BEGIN
Seed := NewSeed MOD modulus;

END Randomize;

PROCEDURE RANDOM(): REAL;
BEGIN
Seed := (Seed * multiplier) MOD modulus;
RETURN FLOAT (Seed) / FLOAT (modulus);

END Random;
BEGIN
Randomize(1986)

END RandomNumbers.

To complete the examples presented in this section, we can define a main
module that imports the facilities of RandomNumbers:

MODULE PrintRandomNumbers;
FROM RandomNumbers IMPORT Randomize,Random;
FROM Texts IMPORT output, WriteReal, WriteLn;

104 M ODULA

VAR
Count: CARDINAL;

BEGIN
FOR Count := 1 TO 10 DO
WriteReal(output,Random() ,5 ,3) ; WriteLn(output);

END
END PrintRandomNumbers.

As mentioned earlier, most Modula-2 programs are made up of several
modules. The preceding module depends on two library modules, each made up
of two modules (a definition and an implementation module). We have defined the
two modules required for random numbers, and thus have the source to both.
However, the module Texts is a standard library module provided by Turbc
Modula-2. This means the source code is not available, though the definitior
module is listed in the next chapter. So how does the program know the interface
and code? This information is stored in compiled form; there is one file for the
definition module and one for the implementation module.

Compiled Modules

When a definition module is compiled, the result is stored in a symbol file wit!
the extension .SYM. This file is basically a symbol table containing the name:
and types of exported identifiers. When the compiler is resolving the import lis
of a module, it looks in this file to obtain information about the imported iden
tifiers. This information is then inserted into the working symbol table of th(
module being compiled.

Thus, the compiler can tell if an externally declared identifier is being used cor
rectly, at least in a syntactic sense. This concept is referred to as type-checking
across compilation units. To compile a module that imports identifiers, the com
piler must have access to the identifier’s corresponding .SYM file. For example
if there is an import from a module named Texts, then there must be a file name<
Texts.SYM.

When an implementation module is compiled, its result is stored in a specia
code file with the extension .MCD. This file contains the code that is linked ii
when a program is either loaded or linked.

For convenience, T\irbo Modula-2 provides a library manager that groups th

Modules 105

.SYM and .MCD files of various library modules into one file with the extension

.LIB. For example, all of the standard library modules provided with Turbo
Modula-2 are in the library file called SYSLIB.LIB. (For more information on the
library manager, refer to Chapter 10, »System Operations.«).

Opaque Export

Sometimes library modules must ensure that variables of an exported type are on
ly manipulated by procedures of the library module itself.

Consider a module that exports a file type. One approach is to export the whole
structure of this record, making all fields accessible to user programs. If,
however, a program updates such descriptor records, chaos may ensue (in the file
example, valuable information on disk may be destroyed). In such cases, we would
like to hide the fields of the record.

To avoid such problems, Modula-2 offers opaque export. This means a name
of a type is exported without giving its structure (the actual structure is given in
the corresponding implementation module). Thus, user programs may declare
variables of that type, but the only operations applied to them will be the provided
library procedures. The following example may help clarify this:

DEFINITION MODULE Files;
TYPE
FILE;

PROCEDURE Open (VAR f: FILE; filename: ARRAY OF CHAR);

(# Other declarations #)

END Files.

MODULE OpaqueExport;
FROM Files IMPORT FILE, Open;

106 M ODULA

VAR
f : FILE;

BEGIN
0pen(f, "A:TESTDATA.DAT")
END OpaqueExport.

Since the definition module Files does not provide information about the type
FILE the user program cannot apply any operations to it, except for those explicit
ly provided by Files (which in this case is Open).

When compiling the example OpaqueExport, the compiler must know the space
requirements of the variables of opaque types, which in this case is FILE.
However, it can only inspect the definition module. Therefore, to be able to find
out the space needs of opaque-type variables, a restriction must be imposed on
opaque export: Only pointer types can be exported in opaque mode.

Local Modules

The remaining module type in Modula-2 is a local module, one that is nested
within either a main module or an implementation module. Local modules serve
to hide details of some task or object from the surrounding environment. Since
they are nested, they cannot be separately compiled. Additionally, they have
special scope rules.

Local modules may be declared anywhere a procedure declaration is permitted.
Thus, local modules may appear in the declaration section of either a module
(main, implementation, or local) or a procedure. In general, modules and their
contents are static, meaning they exist throughout the duration of the program that
surrounds them. There is one exception: When a module is declared local to a
procedure, then the module exists only while the enclosing procedure is active.

A local module declaration is similar to a main module and takes the following
form:

MODULE < module name> ;
(# Import D eclara tions #)
(# Export D eclara tions #)
(* Data D eclara tions *)
(# Procedure and Module D eclara tions #)

Modules 107

BEGIN
(# I n i t i a l i z a t io n Code #)

END < module name> ;

Its export declaration is what makes it different from other modules. These
declarations cause the listed identifiers to become visible in the surrounding en
vironment. Both import and export declarations cause the scope of identifiers to
be altered in both the external and internal environment of the local module.

Scope and Local Modules

Unlike procedure walls, local module walls are not only opaque from the outside
but also from the inside. Identifiers that are to be used within a local module must
be imported (via an import declaration), and identifiers declared inside a local
module that must be visible outside must be exported (via an export declaration).
The rules for importing and exporting are completely symmetrical:

□ An identifier exists while the declaring module is active. The declaring
module is active while its surrounding environment is active.

□ An identifier is only visible in a local module if declared by the module or
imported from the surrounding scope.

□ An identifier declared in a local module is only visible within the module,
unless explicity exported.

The form of import declaration for local modules is identical to that for other
kinds of modules. The major difference is that any identifier in the surrounding
scope may be imported; thus, you may find import lists grouping many different
identifiers from many different sources within the same list.

The export declaration that makes identifiers visible outside the local module
has the following form:

EXPORT < id e n t i f i e r l i s t > ;

where the identifier list may contain constants, types, variables, and pro
cedures. The identifier list is prefixed with the reserved word EXPORT and ter
minated with a semicolon.

108 MODULA

An export declaration introduces an identifier to the next highest scope. For ex
ample, an export declaration in a local module would introduce an identifier to
the surrounding environment. And an import declaration would introduce an
identifier into the local module from the next highest scope.

This modular separation hides many details from the programmer and protects
the abstraction of the data structure, which is defined in the local module.

The following stack example demonstrates this:

MODULE LocalModules;
FROM Terminal IMPORT W riteS tring , WriteLn;
TYPE
StackElement = CARDINAL;

MODULE AbstractStack;
IMPORT StackElement, WriteString, WriteLn;
EXPORT Push, Pop;

CONST
StackSize = 100;

VAR
SP : [0. .StackSize]; (* The stack pointer #)
Stack : ARRAY [0..StackSize-1] OF StackElement;

PROCEDURE Push (item : StackElement);
BEGIN
IF SP < StackSize THEN
Stack[SP] ;= item;
INC(SP);
ELSE
WriteString(fERROR: S tack overflow . *) ; WriteLn; HALT;

END
END Push;

PROCEDURE Pop (VAR item : StackElem ent);
BEGIN

IF SP > 0 THEN
DEC(SP);
item := Stack [SP]

Modules 109

ELSE
WriteString(‘ERROR: Stack underflow *); WriteLn; HALT;

END
END Pop;

BEGIN (* initialization *)
SP := 0;

END AbstractStack;

VAR
i; CARDINAL;

(TIN (* main program for LocalModules *)
push(2);
Pop(i);
IF i = 2 THEN WriteString('The stack worked!') END

END LocalModules.

Since the stack pointer variable SP is not exported, it is not visible outside the
module. Note that all objects declared outside of the module must be imported
if they are used. The only exception to this rule are standard identifiers, such as
INTEGER, BOOLEAN, ORD, and so forth. Notice the use of the standard pro
cedure HALT to stop execution when a stack error occurs.

There is a further facility to restrict the number of visible identifiers: qualified
export. If we had written

MODULE AbstractStack;
IMPORT ...
EXPORT QUALIFIED Push, Pop;

/ m the procedures Push and pop would have to be denoted by Abstract
i v e . Push and AbstractStack. Pop, respectively, in the surrounding scope.

Since it is sometimes difficult to avoid name clashes of different modules’ iden
tifiers, qualified export allows you to clarify ambiguous names. Note that iden
tifiers exported from library modules are always exported in a qualified mode, but
the qualification is usually overridden with the FROM statement.

Local modules may also overrride the qualified statement by importing with the
FROM clause. This allows local modules to share data without cluttering the next

110 M ODULA

highest scope with unnecessary identifier names. The following example
demonstrates QUALIFIED exports:

MODULE t ;

MODULE one;
EXPORT QUALIFIED a;

MODULE two;
EXPORT QUALIFIED a;
VAR
a: CARDINAL;

BEGIN
a := 4;
END two;

MODULE th ree ;
FROM two IMPORT a;
BEGIN

a := 5;
END th ree ;

BEGIN
WRITELN(1one1,two.a);
END one;

BEGIN
WRITELN(one.a);
END t .

Note: In the main body of module one, the identifier a must be qualified;
however, it is not qualified in the body of module three.

Low-Level Facilities ■ 111

Chapter 8
Low-Level Facilities

Modula-2 is a strongly typed language, an aspect that greatly contributes to its
programming safety, yet one that is often too restrictive for system programming.
Low-level facilities are the avenue to system programming in Modula-2. They in
clude type-transfer functions, special types of the pseudomodule SYSTEM, ab-

(ute addresses, and coroutines and interrupts. It is helpful to restrict their use
to small sections of code grouped into one module, so that when the program is
moved to another system only the one module need be changed.

Before we begin discussing low-level facilities, though, we should consider
some of the decisions that were made in implementing Turbo Modula-2. These
decisions have a direct impact on certain low-level facilities, such as type-transfer
functions and SYSTEM types. The general philosophy at Borland is small and
fast; thus we have restrictions like word alignment of variables and benefits such
as register variables.

Register variables are used whenever possible. Programmers can hand-optimize
procedures by declaring important variables in the first four words of local
storage. Only simple variables of unstructured types are chosen as register
variables. If there are not four words of storage declared in a procedure, then the
procedure’s parameters are placed in registers. Consider the following procedure:

PROCEDURE RegVars(x,y: CARDINAL);
VAR

, i , j ,amount: CARDINAL;
\ j£GIN

END RegVars;
In this procedure, three words of local storage (ij,amount) and one word of

parameters (x) would be allocated to the registers as follows:

x sits in BC
amount sits in DE
j sits in BC’
i sits in DE’

112 M ODULA

A consequence of using register variables is that while a variable sits in a
register that variable will have no address. We impose the following restriction:
Simple variables o f unstructured type are not accepted by ADR.

Of course, these variables do not have to be kept in registers during the entire
procedure. For example, they may be placed in memory if a procedure is called.
However, if a procedure has no procedure calls, then the register variables will
not be moved to memory, and the procedure can be very efficient and fast.

Word alignment provides both advantages and disadvantages. Word alignment
means placing all variables on word boundaries, and the variables that require less
than a word of storage are allocated a full word anyway. Thus, a character that
needs only 1 byte of storage is allocated one word.

The reason for allocating variables in a word-aligned fashion is that it makes
M-code and the M-code interpreter highly efficient and small. Since the M-code
interpreter is part of the runtime system (always present), it makes sense to use
M-code for non-time-critical operations. This is because M-code takes up approx
imately one-third the space of native (machine) code, allowing more code to be
fit into Z80 memory space. Tirbo Modula-2 allows a single program to be made
up of both M-code and native code modules so that very large and efficient pro
grams can be written.

The choice to use an efficient M-code interpreter, however, does impose certain
restrictions on accessing memory. To keep the interpreter efficient, it may only
access entire words at a time. Thus variables are word aligned, which leads to
the following restrictions:

□ Byte-sized array elements cannot be substituted for \A R parameters.

□ Byte-sized array elements cannot be arguments for INC or DEC.

Notice these restrictions are only for byte-sized array elements. This is because
byte-sized array elements are not word aligned, they are packed. This is apparent
when contrasting arrays and records. A record variable that contains two character
fields will always occupy two words of storage. An array that is declared to contain
two character elements is always packed into 2 bytes (one word).

When considering certain low-level facilities, keep in mind that variables are
usually word aligned. Word alignment impacts transfer functions that involve
characters and bytes and the SYSTEM type BYTE.

Lew-Level Facilities 113

Type-Transfer Functions

Modula-2 offers facilities to relax strict type-checking, forsaking some portability
for the ability to perform system programming.

For this purpose, type identifiers are used as function names. The type- transfer
function allows programs to explicitly override the type-checking of the compiler.
Type-transfer functions are not meant to perform any computation or manipula
tion. They merely change the interpretation of the bit pattern contained in their
argument.

(,ince the machine representations of types are entirely implementation depen
dent, so are the correspondences between representations. Modula-2 does not, for
example, define which bit pattern corresponds to the integer value 15. Therefore,
the use of type-transfer functions makes a program nonportable.

Type-transfer functions can only be applied to simple types. Moreover, type
transfers are only allowed between types that occupy the same amount of storage.
Since different systems may have types of different sizes, the applicability of type-
transfer functions depends upon the implementation.

In Turbo Modula-2 implementation on Z80 computers, simple types have three
sizes: REAL and LONGINT occupy 4 bytes, LONGREAL occupies 8 bytes, and
the rest (including pointers, set, characters, and subranges) occupy 2 bytes.
Because of the nature of the M-code interpreter, all data objects in Turbo
Modula-2 are word aligned. This means that a single character declaration
allocates one word, not 1 byte. Further, a record structure consisting of two
characters occupies 4 bytes. Only arrays are packed so that characters are in an
adjacent byte. Thus, an ARRAY[0..1] OF CHAR occupies only one word.

^ 'pe-transfer functions are illustrated in the following module:

MODULE TypeTransfer;
VAR
ch : CHAR;
c : CARDINAL;
i : INTEGER;
b : BOOLEAN;
s : BITSET;

114 M ODULA

r : REAL;
1 : LONGINT;

BEGIN
ch:= CHAR(c);
s := BITSET(i)#BITSET(b); (* bitwise AND operator #)
r := REAL(l);

END TypeTransfer.

This module shows the use of type-transfer functions. The first line in the body
allows the CARDINAL c to be assigned to the CHAR ch. The second line
transfers two different types into type BITSET, performs a set operation, and then
assigns the resulting set to the variable s. The last line transfers the LONGINT
1 to a REAL. No physical conversion takes place in any transfer; the bits of the
variables remain the same, but are viewed in a different way.

T yp t Transfer and Type Conversion

There is a difference to note between type-transfer functions and type conversions.
While conversions try to preserve meaning, changing the bit patterns if necessary,
type-transfer functions leave the bit pattern unchanged but interpret it differently.
For example, in the type conversion call

LONG(l.O) = 1L

the real value is truncated and converted to type LONGINT. But in the type-
transfer call

LONGINT(1.0) = 1065353216
the bit pattern standing for the real value 1.0 is interpreted as a LONGINT

number.

In addition, type-transfer functions perform no checking. The statement

b := BOOLEAN(3)
where b is declared as a BOOLEAN, will compile and execute without any er

ror messages. Execution may, of course, lead to somewhat strange results.

In some cases it may appear as if there is no difference between a type- transfer

Low-Level Facilities 115

function and a type-conversion function. Consider the following code:

PROCEDURE TransferAndConversion(i: INTEGER);
VAR
c : CARDINAL;

BEGIN
c := CARDINAL(i); (# Type transfer #)
c := CARD(i); (* Type conversion #)
END TransferAndConversion;

. As long as the value of i is positive, the two statements will have the same mean-
l and effect. However, if the value of i is -1, the first statement will execute fine,

but the value that c receives may not be what you think (65535). And if i is -1,
the second statement will cause a runtime error because the conversion is impossi
ble using CARD—you cannot convert a negative number to a CARDINAL value.

If you intend to look at the same bits in a different way, then you need the low-
level facilities of type-transfer functions.

Low-Level Types and the Pseudomodule System

Besides type-transfer functions, there are the special types BYTE, WORD, and. AD
DRESS exported by the pseudomodule SYSTEM (so-called because it does not
really reside in a library module).

Type WORD is compatible with all types that occupy one machine word of
storage. Since objects of type WORD are considered to have no specific interpreta
tion, no operations (except assignment) may be applied to them. Type-transfer
functions must be used to indicate the desired interpretation.

There is also the type BYTE, which is compatible with 8-bit types such as
CHAR. Like WORD, the assignment operation is the only one that may be applied
to variables of type BYTE. Note that whether a variable of type BYTE takes only
1 byte or 2 bytes of memory is dependent on the declaration used (see the beginn
ing of this chapter).

The type ADDRESS is compatible with all pointer types and has the declaration

116 M O D U L/

TYPE
ADDRESS = POINTER TO WORD

In contrast to type WORD, arithmetic operators may be applied to operand:
of type ADDRESS; such operands will behave like CARDINAL operands. Thi:
feature is especially useful for storage management algorithms (also called pointe
arithmetic). The resulting type from pointer arithmetic is ADDRESS.

All knowledge about the pseudomodule SYSTEM is built into the compiler
Although there is no actual implementation module that corresponds to the defini
tion module of SYSTEM, you may use SYSTEM as if it were defined as the defini
tion module presented in Chapter 11, »The Standard Library.«

Untyped Parameters

Modula-2 allows a procedure to declare a parameter that will accept any typ<
passed to it. This is called an untyped parameter. Untyped parameters have th<
following type declaration form:

PROCEDURE Foo(chunk: ARRAY OF WORD);

Notice that the untyped parameter declaration is similar to an open arra;
parameter declaration. The difference is that it uses the low-level type WORD ex
ported from the pseudomodule SYSTEM.

Untyped parameters are functionally different from open array parameters ii
that they accept any type of variable as an actual parameter, not just arrays of om
type. You may pass either a single character or a large record structure to a pro
cedure with an untyped parameter. For example:

MODULE UntypedParameters;
FROM SYSTEM IMPORT WORD;

PROCEDURE HowBigIs(chunk: ARRAY OF WORD);
BEGIN

WRITELN(fS ize i s SIZE(chunk):3 , ' High i s 1, HIGH(chunk):3) ;
END HowBigls;

Low-Level Facilities 117

VAR
c : CARDINAL;
r : REAL;
s : ARRAY [0 . . 20]OF CHAR;
t : RECORD

a,b,c,d: LONGREAL;
END ;

BEGIN
WRITE('CARDINAL : '); HowBigls(c);
WRITE('REAL : '); HowBigls(r);
WRITE('String literal : »
s := 'This is a string';

); HowBigIs('This is a string1);

WRITE('String variable : '); HowBigls(s);
WRITE('Record variable : '

END UntypedParameters.
); HowBigls(t);

The following are the results of this program:

CARDINAL : Size is 2 High is 0
REAL : Size is 4 High is 1
S tring l i t e r a l : Size is 16 High is 7
S tring v a ria b le : Size is 22 High is 10
Record v a ria b le : S ize is 32 High is 15

The standard function SIZE gives you the number of bytes that were passed,
and the standard function HIGH tells you the index of the last valid word in the
open array.

Absolute Addresses

Modula-2 has a facility to explicitly specify the address of a variable and thus
^rride the space allocation scheme used by the Modula-2 system. This is

especially useful for memory-mapped I/O devices. In the example that follows,
a memory-mapped video screen is declared to reside at address 0C000H:

VAR
screen[0C000H] : ARRAY [0 ..3 1] ,[0 ..1 2 7] OF CHAR;

The desired address is specified in brackets after the variable identifier; in every
other respect, this is a normal variable declaration. The programmer must ensure

118 MODUL

correct and consistent use of such variables. Declaring the previous scree
variable on a computer with a different screen would lead to chaos.

A useful application of this facility is to define an array that stretches aero:
all memory. Using the low-level types WORD and BYTE, we can define an arn
from the start to finish of memory, like so:

VAR
Mem [1] :RECORD

CASE : BOOLEAN OF
TRUE: b : ARRAY [1..65535] OF BYTE I
FALSE: w: ARRAY [1..32767] OF WORD I

END
END ;

Memory locations can be accessed like this:

Mem.b[10] := 0C;
Mem.w[CARDINAL(ADR(SomeDataRecordOrArray))+SomeOffset] := 39201;

Note that you cannot define an absolute variable at location 0. However, the s<
cond byte of a word defined at location OFFFF resides at location 0.

Coroutines and Interrupts

The pseudomodule SYSTEM provides certain mechanisms to implement co
outines and interrupt handlers, in a high-level manner. These facilities ai
machine-specific but are presumed to be in all implementations of Modula-2. Tt
actual synchronization and scheduling of processes must be done by suppo
modules. As an example, the standard library module Processes offers one poss
ble implementation of coroutines; there are many other ways.

Coroutines
Coroutines can be created by calling the procedure NEWPROCESS exported t
SYSTEM. Switching between coroutines must be done explicitly by calling tt
procedure TRANSFER. Both the source and destination coroutines have to t
identified in the TRANSFER statement.

Low-Level Facilities - 119

Programs using coroutines can be thought of as consisting of several programs,
each with their own program counters. Each program corresponds to a coroutine:
One is always active, the others are sleeping or frozen. TRANSFER freezes the
currently active coroutine and activates another one. Unlike procedures, when a
coroutine is reactivated it will always continue processing from the point where
it was frozen. In contrast, when a procedure is activated, processing always starts
at the beginning.

Note that more than one coroutine may use the same procedure. However, each
coroutine must have its own PROCESS variable and its own work space. This
allows several processes to share the same code.

Interrupts
Usually, an interrupt is an unscheduled jump to some special code triggered by
a hardware condition, although, software may also trigger interrupts. The code
that receives control after an interrupt is called an interrupt handler. It services
the interrupt and then returns control to the interrupted program.

In Modula-2, interrupts are considered coroutine transfers and interrupt
handlers are coroutines. When an interrupt occurs, the currently executing code
is suspended, and an unscheduled transfer to the coroutine waiting to service that
interrupt takes place. When the interrupt handler is finished, control is returned
to the suspended code by using a special transfer statement, IOTRANSFER, ex
ported from the pseudomodule SYSTEM. This procedure not only acts as a cor
outine transfer but also initializes (or re-initializes) the interrupt vector for the
next interrupt.

Of course, the coroutine waiting for an interrupt must somehow notify the
system which interrupt it wants. For this purpose, interrupt vectors are used. (The
Z80 CPU uses this scheme when it is in interrupt mode 2.) Note that it is up to

:e programmer to ensure that the processor is in the correct interrupt mode and
that the interrupt jump table is in the correct location.

Note that the CP/M operating system is not reentrant, making it difficult to use
interrupts. To guarantee proper functioning, be certain the operating system is not
active when user interrupts are possible.

Turbo Modula-2 Excisions 121

Chapter 9
Turbo Modula-2 Extensions

Turbo Modula-2 offers several extensions to Wirth’s definition that are not covered
by standard Modula-2, such as general-purpose READ and WRITE statements,
string comparison and assignment, multidimensional open arrays, and exception
handling. These extensions can be suppressed with the embedded compiler option
* _ x - *), or from the Options menu. If this option is turned off, the compiler

will flag all extensions with a warning message.

Input and Output Extensions

Although the various input/output modules provide procedures for reading and
writing data to external devices, T\irbo Modula-2 defines four new statements that
allow a simplified approach to input/output: READ, WRITE, RE ADLN, and
WRITELN.

The four statements provide you with a quick way to do output. The following
program shows some of the many possible uses for these extensions.

MODULE READWRITE;
VAR aNumber: CARDINAL;

aCharacter: CHAR;

BEGIN
/RITELN(’The READ and WRITE statements', ’ take any number ’,

’of arguments');
WRITE('Enter a number and a character: ’);
READ(aNumber,aCharacter);
WRITE(’You may even mix types. The number is ',aNumber);
WRITELN(’ The character is ’,aCharacter);
WRITELN(’Number may be formatted, as in Pascal ’);
WRITELN(’The number 3 in a field of length of 4: " * ,3:4, 1 ■ 1) ;
WRITELN('A real number ’,34.556:10:2);
END READWRITE.

122 MODUL

READ and WRITE extensions have essentially the same function as the
Pascal equivalents: They eliminate the need to use Modula-2’s precise library pr
cedures.

During compilation, the READ and WRITE statements are translated into cal
to the appropriate input/output procedures from the library module Texts. Usii
these statements replaces the need to import the specific procedure from the Tei
module.

For a more thorough discussion of these statements, refer to the module Tei
in Chapter 11, »The Standard Library.«

String Extensions

Standard Modula-2 allows the assignment of arrays only if both sides are of tl
same type, and it completely forbids comparisons of arrays. In Turbo Modula-
assignments and comparisons of strings are allowed. A string is any variat
whose type is an array with elements of type CHAR. The starting and endii
bounds do not matter; strings are assigned and compared as if both strings invol
ed start at the same lower bound.

The end of a string is denoted either by the end of the array (if the array is coi
pletely filled) or by the null character OC. Any two strings can be assigned to ea<
other, even if they are defined as different lengths or start at different bound

Additionally, any two strings can be compared using the relational operators :
< > , # , < , > , < = , or > = .

Multidimensional Open Arrays

Turbo Modula-2 allows open array parameters to be of any dimension. This exte
sion is invaluable for programs that use matrixes. The standard procedure HIC
will return the highest bound for each dimension. The next higher bound is foui
by passing HIGH the variable with »[0]« appended (see Chapter 6, »Open Arr
Parameters«).

Error-Handling Extensions

Program errors can be divided into the following three types:

Turbo Modula-2 te n s io n s 123

Compiler-time
errors

I/O errors

Runtime errors

Syntax errors discovered by the compiler (for example,
a missing semicolon or a misspelling)

Problems occurring during input/output operations (for
example, file not on disk or file not open)

Errors occurring while executing a program (for exam
ple, division by zero or integer type passing out of range)

Compiler errors are corrected before the program can be run. However, I/O and
runtime errors are only apparent while executing a program.

Should an error occur while running a program, the computer has two options:
(1) to write an error message on the screen and halt the program, or (2) to send
an error signal to the program.

The first option is fine for simple programs, but could have disastrous results
in real-time applications. The second method requires that the running program
test some kind of flag after each operation capable of producing an error. This
can clutter up the program’s logic and reduce efficiency, particularly if the tested
condition occurs only in rare circumstances.

As an example, consider a disk-write operation. Testing for a full disk after each
disk write is clearly inconvenient. On the other hand, halting the program uncon
ditionally prevents the running program from reacting to this error.

Pascal solves this problem by using a compiler option that determines the pro
gram’s reaction to I/O errors. However, this is not possible in Modula-2 since disk
writes are performed in a library module not within the control of the compiler.
It is evident that a system consisting of several largely independent modules needs
ome way to signal error conditions.

Exceptions serve this purpose well. We do suggest, however, that you use excep
tions only if there is no other appropriate way to handle errors. In general, their
use should be confined to the signaling of errors across module boundaries.
(There are a number of predefined exceptions in Appendix D.)

Syntax and Semantics of Exception Handling

An exception consists of three parts: the exception declaration, which defines the

124 M O D I

exception identifier and uses the reserved word EXCEPTION; the except
handler, which is the programmed response to the error condition; and the RA
statement, which calls the exception.

An advantage of exception handling is that handlers are present statically in
program text, near the location they are needed. In comparison to other eri
handling methods, exception handlers are much clearer. They also follow
nested structure of the Modula-2 language itself.

Declaration of Exceptions

An exception declaration contains the reserved word EXCEPTION, followed
a list of identifiers. Exception declarations have the following form:

EXCEPTION < identifier list > ;

And the following example is taken from the module Files:

EXCEPTION
EndError, StatusError, UseError, DeviceError, DiskFull;

All of the usual scope rules of Modula-2 apply here. Exception identifiers ■
be exported and imported like normal Modula-2 identifiers.

Raising Exceptions

Exceptions are raised when the program detects an error condition; for examj
when the module Files has detected that the disk is full. Raising an exception \
transfer control to an exception handler that is provided by either the user or
system.

A program may raise an exception with the reserved word RAISE, followed
the exception identifier and optionally by a string. The RAISE statement ta
the form

RAISE < exception identifier> , <string> ;

This next example is taken from the standard module MathLib.

Turbo Modula-2 extensions 125

IF x < 0.0 THEM
RAISE ArgumentError, Negative argument for Sqrtf;
END)

When an exception is raised, the system looks in the current procedure for a
matching exception handler. If none is found, the calling procedure is examined,
then the caller of that procedure, and so on, until a matching exception handler
is found. This handler is then executed, and the procedure containing the handler
is exited. If no handler is found, the system prints the exception identifier’s name
and the optional message string.

There is an alternate form of the RAISE statement that is only allowed within
exception handlers. It is the reserved word RAISE by itself, as shown in the
following:

RAISE ;

This has the effect of passing an exception through one handler and on to the
next in the calling chain.

Exception Handlers

Exception handlers are written at the end of procedures and modules to handle
exceptions issued by a RAISE statement. The syntax is similar to the familiar
CASE statement. Exception handlers have the following form:

EXCEPTION
< vertical bar>
< exception identifier list> : < statement sequence>
< vertical bar>
< exception identifier list> : < statement sequence>

ELSE
< statement sequence>

END <procedure identifier> ;

Exception handlers consist of the reserved word EXCEPTION, followed by any
number of exception cases. Each exception case is separated by a vertical bar, and
each consists of a list of exception identifiers followed by a colon and a statement

126 M O D U

sequence. In addition, an ELSE part is executed if the raised exception is not
any of the exception identifier lists.

In the following example, pretend you are running a program-controlled la;
experiment and want to guarantee that the experiment turns off in all cases.

MODULE LaserExperiment;
IMPORT MathLib;

MODULE GuardedMath;
FROM MathLib IMPORT Exp;
EXPORT ExpG, UndefinedExp;

EXCEPTION UndefinedExp; (# Exception Declaration #)

PROCEDURE ExpG(X,Y:REAL) :REAL;

BEGIN
IF (l.E-10<X> AND (XC1.E10) THEN RETURN Y/X
EISE RAISE UndefinedExp (* Signal an error #)
END

END ExpG;

END GuardedMath;

(x Procedure Declarations #)

BEGIN
SetUpExperiment;
PerformExperiment;

(* Normal termination #)
TurnOffLaser;
ShutDownLab;
PrintOutResults;

EXCEPTION (* Exception Handler #)
UndefinedExp: WRITELN (n WARNING: Bad Math");

TurnOffLaser;
ShutDownLab;
DumpProgramVars;

Turbo Modula-2 intensions 127

ELSE
TurnOffLaser;
ShutDownLab;

END LaserExperiment.

There is one explicit exception raised in a special exponentiation routine. The
exception handler in the main body of code has two clauses: one to catch the ex
ception explicitly raised in ExpG, the other to catch all other possibilities.

If no exception handler is present for a given exception condition, the RAISE
statement writes the exception identifier and an optional message to the screen,
and halts the program. For example:

RAISE ZeroDivision;

would react to an error by printing the following message:

ZeroDivision in module Division
Press nCn for calling chain >

If a more comprehensive error message is desired, an additional string can be
included in the RAISE statement. The string can be a literal or any variable
whose type is an array with elements of type CHAR. The string will be printed
below the exception name, like so:

DiskFull in module MYPROG
While processing file OUTDATA
Press nCn for calling chain >

A program can respond to an exception by appending a handler to the end of
the program unit where an exception may be raised. Such a program unit can be
a procedure or the main program. When an exception is raised, normal execution
is suspended and the corresponding exception handler is invoked; that is, the
handler is executed instead of the rest of the program unit.

Exception Propagation

A scheme requiring an exception handler in the program unit where the exception
is raised is really not very useful. After all, you need exceptions to signal your

128 MODULA

program that an error has occurred in a called library module. There must be
some way to propagate exceptions. If the procedure that raises an exception does
not contain a handler for it, the procedure is aborted completely and its caller is
searched for a handler.

If the calling procedure also does not contain a handler, the search is continued
in the procedure that called the caller, and so on. This continues until a handler
for the raised exception is found, or until the main program (or a coroutine) is
reached. Note that the order in which procedures are searched for exception
handlers duplicates the order in which they are displayed in the calling chain.

If a handler for a raised exception is found in the calling chain, it is invoked
and thus replaces the rest of the procedure containing the handler. If all statements
in the handler are executed, the procedure returns. Note that a program cannot
be restarted at the point where the exception is raised. This restriction makes the
exception-handling mechanism relatively safe. The restriction is not severe, since
an exception can easily be converted into a flag that indicates an unsuccessful
operation.

A handler for an exception can of course raise an exception itself. In this case
the exception is always propagated to the next procedure in the calling sequence
thus preventing an infinite loop where every time an exception is handled, anothei
is raised. To propagate the handler exception to higher-level procedures, a handle)
can raise the handled exception again by using the short form of the RAISE state
ment. If the following statement is found in some exception handler, the handle(
exception is propagated to the calling procedure (or module):

EXCEPTION
EndError,DeviceError: Close(infile); RAISE
END ReadFile;

If a library module should signal an exception, it must first be declared wit
an exception declaration. An exception declaration can be given anywhere in
program where constant, variable, or type declarations would be legal. And lik
other identifiers, exceptions can be exported and imported.

Many of the library modules export exception identifiers that can be incoi
porated into programming error handlers. For example, the following prograi
reads data input from the keyboard and writes it to disk. The exception DiskFu

Turbo Modula-2 Extensions 129

is declared in the module Files and raised when the disk is full (Texts is im
plemented with Files).

NODULE DataWrite;
FROM Files IMPORT DiskFull;
FROM Texts IMPORT TEXT,OpenText,CloseText;
FROM Comline IMPORT PromptFor;
VAR Value: CARDINAL;
DataFile: TEXT;
Str: ARRAY [0..30] OF CHAR;

BEGIN
Jtr: = "Input value (99 to stop): ";
(* Request filename and open file #)
PromptFor("Data file name: " ,DataName);
OpenText(DataFile,DataName);
(* Request data from keyboard and write to file #)
WRITELN(Str);
READ(Value);
WHILE Value # 99 DO
WRITE(DataFile,Value);
WRITELN(Str);
READ(Value2);
END ;

(* Close completed file #)
CloseText(DataFile);

(*If disk full, die *)
EXCEPTION
DiskFull: WRITELN("DISKFULL - YOU JUST LOST ALL YOUR INPUT") ;
END DataWrite.

System Operations 131

Chapter 10
System Operations

Turbo Modula-2 is a menu-driven package similar to Thrbo Pascal. However, T\ir-
bo Modula-2 is a more complex system, containing more menu options and
operating differently than T\irbo Pascal.

In this chapter, we’ll take a look at the basic system operations of Turbo
Modula-2. As shown in Chapter 2, the Turbo Modula-2 main menu looks like
this:

Selected drive: A

Work file:

Edit Compile Run execute

Link Options Quit liBrarian

Dir Filecopy Kill reName Type >
The first two items on the main menu (Selected drive and Work file) are default

values used by the other menu items.

Selected drive

Allows you to log a drive as the default disk drive. This command has the side
effect of resetting the drive that is specified, so the BDOS read- only error is
avoided. (This command is the same as Turbo Pascal’s L command.)

Work file

Work file is a file name or partial file name that can be prompted with certain
menu commands, such as Compile, Link, Run, Edit, and Find runtime error. It
is essentially a default user response in which the user can either specify a whole
file name (like A:MYMOD) or a partial string (like B:). These default responses
can be overridden; see the section in this chapter, »Avoiding the Menus.«

132 MODULA

The Run and eXecute commands are used to execute runnable files from within
the shell. The remaining menu items are used for file management. (Note: Each
item is initiated by pressing the item’s capital letter.)

File-Management Utilities

The following five file-management commands provide most of the file
facilities you will need when writing Modula-2 programs. Whenever these com
mands accept a drive specifier, you may also specify a user area. It takes the form

DU:filename.ext

where D stands for the drive letter (A through P) and U stands for a user area
(0 through 32). Hard disk users will find this facility invaluable for isolating dif
ferent projects in different user areas.

Dir

Lets you display a directory. You can mask certain file names by specifying an
ambiguous file name at the mask prompt. In addition, the Dir command lists the
remaining space on the disk from which the directory is read.

You can use question marks (?) and asterisks (*) as »wild cards« in the mask.
A question mark represents an arbitrary letter (including none) and an asterisk
represents an arbitrary string. Here are some examples of allowed directory
masks:

A: Lists the names of all files on disk drive A:

B:*.SYM Lists the names of all files having extension .SYM on
drive B:

A:TEXTS* Lists the names of all files with the file name TEXTS,
regardless of extension

p m * Lists the names of all files on the logged drive whose file
name begins with a T and has five letters or less

A10:*.* Lists the names of all files on drive A: in user area 10

System Operations 133

If you enter nothing after the prompt and press I J I then the names of all
files on the currently logged disk drive are displayed.

The files are listed by number, which you can use to refer to individual files
or groups of files in the Filecopy and Kill commands. Groups of files are
specified as a range, for example, 4-9 or 1-20. If there are more file names than
will fit on the screen, you will receive the following prompt:

"C" to continue >

r Press | c l to continue the directory listings; pressing any other key will stop it.

Filecopy

Allows you to copy a file to another file. The source can be specified either as
a complete or ambiguous file name, or as file numbers; the two methods cannot
be mixed. The files can be referred to by number only if a Dir command has been
performed. As an example, if copying files by numbers:

>D

Directory mask: a:
PIPES .DEF 4: PIPES .SYM 7: PIPETEST .MOD 10:T2 .MOD
PIPES .MCD 5: PIPETEST .BAK 8: T .MOD 11: T3 .MOD
PIPES .MOD 6: PIPETEST .MCD 9: T1 .MOD 12: TYPETRAN .MOD

Bytes Remaining on A: 145K

> F
Copy from: 1 2 8-11
Copy to : c:
Copying A00:PIPES .DEF
Copying A00:PIPES .MCD

(pying A00:T .MOD
copying A00:T1 .MOD
Copying A00:T2 .MOD
Copying A00:T3 .MOD
>

Kill

Allows you to delete a file. The files may be referred to by their number if a Dir
command has been performed. When Killing by number, you are prompted for

134 MODUL

each deletion. If you specify only a mask (ambiguous file name), then you ar
not prompted at all. For instance, look at this example of Killing by numbers

> D

Directory mask: B:
1: SAMPLE .DEF
2: SAMPLE .MCD
3: SAMPLE .MOD
4: SAMPLE .SYM
Bytes Remaining on B: 75K

>K

Kill file: 2 4
Delete BOO:SAMPLE.MCD (Y/N)? Y
Delete BOO:SAMPLE.SYM (Y/N)? N

Note that since CP/M allows numbers as file names, the Kill commar
distinguishes between names and file numbers by insisting that a space be place
before file names that consist of numbers (this also applies to Filecopy).

reName

Allows you to change the name of a file. You may only change one name at a tim
A warning is given if you overwrite another file. For example:

>N

Rename from: sample.mod
Rename to : sample.mud

Type

Allows you to display the contents of a file on the screen without leaving T\ir
Modula-2 or using its editor. (This works the same as CP/M’s TYPE utility.) Pn
1 Ctrl | | s 1 to pause and (ctrl'I I c l to stop. For example:

System Operation* 135

> T

Type file: sample.mod

MODULE sample;

END sample.

Options

Provides you with a collection of infrequently used but occasionally useful op
tions. If you press I o I (for Options), the following submenu will appear:

compiler options:

List (ON) Native (OFF) extensions (ON)
Test (OFF) Overflow (OFF) Upper=lower (OFF)

Path to search: SYSLIB

Find run-time error

Save current selection Quit

>

The first six items on the option menu are compiler switches, which affect the
way source code is compiled. These switches are global in that they affect the
whole file; however, they are overridden if the source being compiled has
embedded switches.

Each of the six switches has an embedded counterpart. A brief description of
each is given here. (For a complete description of the following compiler switches
and how to use embedded compiler switches, refer to the section in this chapter,

136 M ODULA

»Compiler Options and Switches.« A brief description is also given in Appendix
C.)

□ List toggles compiler listing on and off.

□ Native toggles native code generation on and off.

□ extensions allows or disallows Turbo Modula-2 extensions.

□ Test toggles bounds-checking by assignment-compatible assignments
assignments (for more information see »Compiler Options and Switches,«
later in this chapter).

□ Overflow toggles INTEGER overflow-checking.

□ Upper=lower toggles case sensitivity on and off in identifiers.

Path to search

This entry holds the names of the libraries files that will be searched to find
separately compiled imported modules. Library files are created with the librarian
(see the section, »The Librarian,« later in this chapter). This option contains the
entry SYSLIB, which refers to the file SYSLIB.LIB that contains the standard
library modules.

Find runtime error

This utility helps you find bugs that occur at runtime. By accepting a module
name and a PC number, it can determine where a program has stopped. The
module name and PC number are obtained from the calling chain that is displayed
when the error occurs. (For details on the calling chain, refer to the section Ap
pendix E, »The Calling Chain.«)

Save current selection

This option selects the current switch settings and library path as the new default
setting. The current selections are made permanent by writing them to the
M2.COM file; thus, this file must always be available.

System Operation*. 137

Quit

This selection returns you to the main menu.

Avoiding the Menus

A menu-driven shell makes life a lot easier for beginners, but for experienced
users it can sometimes be tiresome. Therefore, we have included a way to circum
vent the menu scheme. If you answer the menu prompt with the space bar, you
are allowed to enter the full selection sequence, optionally followed by additional
arguments on the same line. After the selected command is executed, you are
again placed in the menu where the blank was entered. The following examples
demonstrate this:

> C B:MYPR0G

Compiles the file B.MYPROG.MOD at once. It is equivalent to this dialogue:

>W

Work File: B.-MYPROG

>C

Compile file: B:MYPR0G

This next example shows how prompts are avoided:

> D B:

lists the directory of drive B, as the following dialogue would

> D

Directory mask: B:

This method only works on the main menu; you cannot, for example, toggle
the native code generation option with the string > ON.

138 M ODUL

The Turbo Editor

The built-in editor is a screen editor specifically designed for creating prograi
text. If you are familiar with Tlirbo Pascal or WordStar, you’ll need little instrui
tion in the use of the editor. The l\irbo editor includes some extensions, plus yc
can install your own commands on top of the WordStar commands (described i
Appendix B, »Installation Procedures«) and the WordStar commands will rema:
usable.

Using the Turbo editor is simple: After you have defined a work file and presse
r e 1 (for Edit), the menu will disappear and the editor is activated,
die work file exists on the logged drive, it is loaded and the first page of text
displayed. If it is a new file, the screen is blank, apart from the status line at ti
top.

To terminate a line, press the [<J | key. When you have filled the screen wii
text, the top line will scroll off the screen, out of view. You may page back ar
forth in your text with the editing commands described later in this section.

First, let’s take a look at the information the status line provides at the top <
the screen.

X:FILENAME.TYP. Shows the drive, user area, and name of the file beir
edited.

Line n. Shows the line number that contains the cursor, counting from the sta
of the file.

Col n. Shows the column number that contains the cursor, counting from the le
side of the screen.

Char n. Shows the character number that contains the cursor, counting from ti
beginning of the file.

Insert. Indicates that characters entered on the keyboard are inserted at the curs<
position. Existing text in front of the cursor is pushed to the right. The inse
mode on/off command, I Ctrl 1 | v 1 , switches this message to Overwrite, whic
means text entered on the keyboard overwrites characters under the cursor, instez
of being inserted.

139System Operatic,,.

Indent. Indicates that auto-indentation is active. It may be switched off with the
auto-indent on/off command, I Ctrl 1 | q 1 | i 1 , in which case this space on the
status line is blank.

Operating The Editor

This editor is a full-screen editor, which means you can move the cursor anywhere
on the screen and begin writing. This is done by using a special group of control
characters: pressing the | Ctrl | key while simultaneously pressing any of the keys,
i~a~i , cm , c m . c m . c m . c m . c m . ° r c m

The characters are arranged on the keyboard in a manner that logically indicates
their use. For example, in the following display:

E
S D

X

pressing | Ctrl 1 | e 1 will move the cursor up, I Ctrl 1 1 x 1 moves it down,
1 Ctrl 1 | s l moves it to the left, and I ctn 1 | p 1 moves it to the right. If your
keyboard has repeating key capability, you may hold down the | Ctrl 1 key and
one of these four keys to move the cursor rapidly across the screen.

Editing Commands

The editor accepts and uses many editing commands that move the cursor, page
through the text, find and replace text strings, and so on. These commands can
be grouped into the following categories:

□ Cursor movement commands
□ Extended movement commands
□ Insert and delete commands
□ Block commands
□ Find and replace commands
□ Miscellaneous commands

Each group contains logically related commands that are described in the
following sections. (A summary of the commands is provided in Table 10-1.) The
following descriptions consist of a command definition, followed by the default
keystrokes used to activate the command. If you would like to redefine the com
mands, refer to »Installation of Editing Commands« in Appendix B.

140 M ODULA

Table 10-1 Summary of Türbo Editor Commands

Cursor Movement Commands

Character left 1 Ctrl 1 h d
Character right fctriTI h d
Word left [c m] h d
Word right ran m
Line up fcM~1 HD
Line down [c m] m
Scroll up fcM~) I~w1
Scroll down [c m] CD
Page up [c m] m
Page down l~CM~1 m
Extended Movement Commands

Left on line [CM~| m m
Right on line [c m] m fp i
Top of window fcüH r ä [id
Bottom of window [c m] (HD HD
To top of file fCM~| I~qD HD
To end of file [~c m] HD HD
To beginning of block fcM] HD HD
To end of block fCM] HD HD
To last cursor position (~CM~1 HD HD
Insert and Delete Commands

Insert mode on/off [c m] HD
Delete left character ran
Delete character under cursor (~c m 1 HD
Delete right word [c m] HD
Insert line fCM] HD
Delete line l~CM~1 HD
Delete to end of line f~CM~l HD HD
Delete line up to cursor position (~c m] HD HD

System Operations 141

Cursor Movement Commands

Block Commands

Mark block begin l~Ctri~| l~K~1 | B |
Mark block end f~Ctrt~| CO CO
Hide block f~ctri~l m co
Copy block fcün CO CO
Move block fctril m co
Delete block fctril m r n
Read block from disk few! CO CO
^ te block to disk fetrn CO CO
Find and Replace Commands

Find fctril CO CO
Find and replace fctril CO CO
Repeat last find fctril CO
Miscellaneous Editing Commands

Delete file on disk fctril CO CO
Save file, exit fctril GO CO
Save, edit fctri~| CO
Quit, no save | CTRL | CO CO
Tab 1 CTRLl CO
Auto-indent on/off | CTRL | CO CO
Control character prefix | CTRL | CO
Abort operation | CTRLl CO

^ ~sor Movement Commands

. Character left I Ctrl 1 | s 1

Moves the cursor one character to the left nondestructively (without affecting any
characters). When at the start of the line, the cursor will move to the end of the
previous line.

Character right Ictrl I 1 d 1
Moves the cursor one character to the right nondestructively (without affecting

142 M ODULA

any characters). When the last character on the line is reached, the cursor will
move to the first character on the next line.

Word left

Moves the cursor to the beginning of the word to the left.

Word right

Moves the cursor to the beginning of the word to the right.

Line up

Moves the cursor to the preceding line. If there is no character in the current col
umn, the cursor is moved to the end of the line.

Line down Icrnil I x

Moves the cursor to the proceeding line. If there is no character in the curren
column, the cursor is moved to the end of the line.

Scroll Up 1 CTRL I | w

Scrolls the file up one line toward the beginning of the file (the entire screei
scrolls down).

Scroll down | Ctrl I | z

Scrolls the file down one line toward the end of the file (the entire screen scroll
up).

Page up I ctrl 1 I T

Moves the cursor one page up.

Page down |ctrl| fc~

Moves the cursor one page down.

[c t r l] m

(CTRL) (T

I CTRL | | E

System Operation 143

Extended Movement Commands

The editor provides commands to quickly move to either end of a line, to the
beginning and end of the text, and to the previous cursor position. These com
mands require two control characters to be entered simultaneously: press
I ctrl I I q I and then one of the control characters, I s I , I d I , | e I , | x 1
I r 1 , or | c | . Their keyboard arrangement repeats the pattern previously
shown.

E R
S D
X C

Left o n l in e IctrlI CXI e x

Moves the cursor to the far left of the screen (column 1).

Right on line 1 CTRL | e x c x

Moves the cursor to the far right (the end) of the current line.

Top of window 1 ctrl 1 (X C X

Moves the cursor to the top of the screen.

Bottom of window I ctrlI e x e x

Moves the cursor to the bottom of the screen.

Top of file I ctrlI e x c x

Moves to the first character in the file unless the top of the file has been paged
out, in which case the cursor is moved to the first character in the buffer. To move
to the start of a file that has had the beginning paged out, you must use
I ctrl I I k 1 I s I, which also saves any changes the were made. If you don’t want
to save your changes, you must quit (I K] | o |) and restart the editor.

End of file I ctrl | | q | I c I

Moves to the last character in the file.

144 MODULj

Beginning of block (ctrlI I Q 1 f~F

Moves the cursor to the block-begin marker set with |ctrlI 1 K 1 1 b 1.
End of block 1 Ctrl 1 I q 1 p T
Moves the cursor to the block-end marker set with 1 Ctrl 1 1 k I | k 1. (Bloc
commands only work if a block is fully marked.)

Last cursor position |ctrl| | o | f~p~
Moves to the last position of the cursor. This command is particularly useful aft<
a find or find/replace operation has been executed and you’d like to return to tl
last position before its execution.

Insert and Delete Commands

Insert mode on/off | ctrlI [j

When you write text, you may choose between two entry modes: Insert and Ov<
write. The current mode is indicated in the status line. The 1 Ctrl) [v | co:
mand allows you to switch between these modes.

Insert mode inserts characters at the cursor position; existing text to the right
the cursor will move to the right as you write new text.

Overwrite mode may be chosen if you wish to replace old text with new te
Characters entered will overwrite any characters under the cursor.

Delete left character (1

Deletes the character to the left of the cursor. This can also be used to rem
line breaks.

Delete character under cursor I Ctrl I
Deletes the character under the cursor.

System Operatic 145

Delete right word I Ctrl 1 I t 1

Deletes the word or part of the word to the right of the cursor. It may also be used
to remove line breaks.

Insert line 1 Ctrl I | n |
Inserts a new line at the cursor position.

Delete line I ctrl I [v I

Deletes the line containing the cursor. No provision exists to restore a deleted line,
so use this cautiously.

Delete to end of line I ctrl 1 1 Q 1 I v 1
Deletes all text from the cursor position to the end of the line.

Block Commands

All block commands are extended commands (that is, the standard command
definition consists of two characters). You can use them to move, delete, or copy
whole chunks of text, and to perform certain file operations.

A block of text (which you determine) is marked by placing a block-begin
marker at the first character and a block-end marker after the last character of
the desired text.

The marked block may be copied, moved, deleted, or even written to a disk file.
There are also commands to read or write an external disk file into or out of the
editor as a block.

Mark block begin |ctrl| I k 1 | b 1

Marks the beginning of a block. The marker itself is not visible on the screen,
and the block only becomes visibly marked if the block-end marker is set. (This
only applies if your terminal has highlight capabilities.)

146 MODULA

Mark block end 1 ctrlI I k 1 I k 1
Marks the end of a block. As stated previously, the marker itself is not visible
on the screen; it is only visible if the block-begin marker is also set.

Hide block [ctrlI 1 k I 1 h 1
Causes the visual marking of a block to be switched off and removes block
markers. After this command, no block markers are visible and all block com
mands are invalid.

Copy block I ctrlI I k 1 | c 1

Copies a previously marked block to the cursor position. The original block is
left unchanged, and the markers are placed around the new copy of the block.

Move block | ctrlI | k I | v 1

Moves a previously marked block from its original position to the cursor position.
The markers remain around the block in its new position. If no block is marked,
nothing happens.

Delete block |ctrlI 1 k 1 | y

Deletes the previously marked block. No provision exists to restore a delete(
block, so use this cautiously.

Read block from disk 1 ctrlI I k I f~T~

Reads a file into the current text at the cursor position, exactly as if it were a bloc!
that was moved or copied. The text read in from the disk is marked as a block

When using this command, you are prompted to give the name of the file to b
read (after which you must press I J I). The file specified may be any legal fil
name; no default extension is supplied.

Write block to disk I Ctrl I I k I (~w~

Writes a previously marked block to a file. The block is left unchanged, and th
markers remain in place. When this command is issued, you are prompted for tf

System Operations 147

name of the file to write to. If the file specified already exists, you are asked if
you want to continue before the existing file is overwritten. If no block is marked,
you will get an error message.

The file specified may be any legal file name; no default extension is supplied.

Find and Replace Commands

These commands allow you to search for a string of characters or replace one
string with another, which is useful when correcting a repetitive error.

"ind | CTRL | (Q 1 | F 1
Lets you search for any string of up to 30 characters. When you enter this com
mand, the status line is cleared and you are prompted for a search string. Enter
the string you desire and terminate by pressing 1 J | .

Search strings may be edited with the Character left, Character right, Word left,
and Word right commands. To recall the previous search string, press I Ctrl I
1 l 1 when prompted for the new string. A search operation may be aborted with
the Abort command, I ctrl 1 [u 1 .

The search string may contain any characters, even control characters. Enter
control characters into the search string by using a I ctrl 1 | p | prefix. For ex
ample, to enter a Control-A, hold down the | ctrl | key and press I p 1 , then
press [a | . Thus you may include a line break in a search string by including
Control-M/Control-J (press I ctrl 1 \ p 1 | m | and I ctrl I I p 1 I J L respec
tively.

When the search string is specified, you are requested for search options. The
following options are available:

U Ignores uppercase/lowercase. Uppercase and lowercase alphabetic
characters are regarded as equal.

W Searches for whole words only; skips matching patterns that are embedd
ed in other words.

B Searches backward.

148 MODULA

digits Finds the Aith occurrence of a search string.

For example:

BU Searches backward and ignores uppercase/lowercase. ’Block’ will match
both ’blockhead’ and ’BLOCKADE’.

W Searches for whole words only. The search string ’term’ will only match
the word ’term’, not the word ’terminal’.

B5 Searches backward and finds the fifth occurrence.

Terminate the list of options (if any) by pressing 1 1 ; the search will then
begin. If the text contains a target matching the search string, the cursor is posi
tioned at the end of the target, unless you’re searching backward, in which case
the cursor is positioned at the start of the target.

The search operation may be repeated by the Repeat-Last-Find command, \ Ctrl !CD •
Find and replace 1 Ctrl 1 | q 1 | a
Lets you search for any string of up to 30 characters and replace it with any othei
string of up to 30 characters.

When you enter this command, the status line is cleared and you are promptec
for a search string. Enter the string you require and terminate by pressing | j
Again, however, control characters entered into the search string must use a Ictrl
1 p 1 prefix. (See the previous example in the »Find« section.)

As mentioned in the »Find« section, search strings may be edited with th<
Character left, Character right, Word left, and Word right commands. (Refer tc
the »Find« section for more information.)

When the search string is specified, you are asked to enter the string that wil
replace the search string. You can enter up to 30 characters; control-character en
try and editing is performed as stated previously. If you press | J 1 , the targe
string will not be replaced but will be deleted.

System Operations 149

Finally you are prompted for options. The find-and-replace options include the
following:

G Global search and replace; searches and replaces in the entire text, star
ting at the current cursor position.

N Replaces every item without asking Replace (Y/N) for each occurrence of
the search string.

U Ignores uppercase/lowercase; uppercase and lowercase alphabetic
characters are considered equal.

W Searches and replaces whole words only; skips matching patterns that are
embedded in other words.

For example:

GWU Find and replace whole words in the remaining text. Ignore upper
case/lowercase.

Terminate the list of options (if any) by pressing | J 1 ; the search- and-
replace operation will begin. If found (and the N option is not specified), the cur
sor is positioned at the end of the target and you are asked

Replace (Y/N)?

You may abort the search-and-replace operation at this point with the Abort
command, I Ctrl) I u 1 .

The search-and-replace operation may be repeated by the Repeat-Last-Find
command, I ctrl) I l 1 .
Repeat last find I ctrl I | l 1

Repeats the latest find-and-replace operation exactly as if all information had been
reentered.

Miscellaneous Editing Commands

This section lists the commands that do not fall into any of the earlier categories.

150 MODULA

Save and quit I ctrl I I k 1 I d 1

Saves the text file and also gives the original file (if any) the last name .BAK. You
are then returned to the Turbo Modula-2 shell.

Tab 1 TAB 1 1 CTRL 1 | 1 1

Unlike Tbrbo Pascal, tab positions are fixed to multiples of eight; however,
Modula-2 contains the same Autotab feature present in Turbo Pascal.

Indent on/off 1 ctrl 1 1 q | | T 1

The indent feature provides automatic indentation. When active, the indentation
of the current line is repeated on each following line. To change this indentation,
use the space bar and | — | keys to select the new column.

When indent is active, the message INDENT is displayed in the status line; when
passive, the message is removed. Autotab is active by default.

Save and edit I ctrl I | k I 1 s 1

Saves the file and remains in the editor. Press Ictrl 1 | Q 1 1 p 1 to return to
where you issued the command.

Quit/no save I ctrl 1 | k 1 | Q1

Terminates the editor. If changes were made to the text, you are prompted as to
whether or not you want to abandon the edited file. Press 1 Y 1 for yes; other
wise, press any other key.

Delete file I ctrl 1 I k 1 1 j1

Allows you to delete files fiom within the editor. This is handy if you run out of
disk space after entering lots of text you want to save.

Abort operation 1 ctrl 1 1 u l

Pressing (ctrlI 1 u | will let you abort any command whenever it pauses for in
put.

System Operations 151

The Librarian

A typical Modula-2 development system uses a large number of files. There are
four files for each library file: two that define it and two that make it usable. It
is typical in Modula-2 to write and debug a library routine once and then use it
many times. Thus it is the it is the second two files that must be kept around.
These are the .SYM and .MCD files, which hold the compiled definition and the
compiled code, respectively.

The liBrarian makes the storage of these files easier by allowing you to keep
many .SYM and .MCD files in a CP/M file called a library file. Thus, if you
& lop 10 library modules for your general use, you can store the compiled ver
sions in one file instead of 20.

So, the compiler, the program loader, and the linker all need to know which
libraries should be searched for files. This information is given in the search path.
As mentioned earlier, the search path can be changed in the Options submenu,
which initially consists only of the entry SYSLIB.

Searching Libraries

After a library has been created, the modules included in the library will be invisi
ble to the system until the name of the new library is entered in the »Path to
search« selection of the Options submenu.

Libraries are manipulated via the liBrarian, which is selected by pressing [b 1
in the main menu. The liBrarian first prompts the user to select which library to
work on:

>B
Select library:

If you enter MYLIB.LIB, then the following menu will appear:

Selected library: A:MYLIB.LIB
Dir Include Copy
Kill cOmpress quit

152 MODULt

You may enter your selection from this menu after the * prompt. The choice
have the following effects:

Include A CP/M file is included in the specified library. Only th<
CP/M extensions .MCD or .SYM are allowed.

Dir Displays all the modules already included in the use(
library; includes size information.

Copy Moves files out of the library, either by copying them int
another library or to a CP/M file. If the destination nam
has a drive code, it is considered to be a CP/M file name
without a drive code, the name specifies the destinatio
library.

Kill Terminates a module’s existence inside the used library

cOmpress Copies all files in a library in such a way that there ar
no unused »holes.« This command is used quite rareb
since it takes a lot of time.

Select Selects another library.

Quit Returns the user to the main menu.

The Compiler

The Turbo Modula-2 compiler translates a Modula-2 program (the source) int
a sequence of instructions (the M-code) that form the code of a virtual machini
They are optimized for compactness, to make possible execution of large prc
grams in the limited address space of 8-bit computers.

The Z80 processor cannot execute M-code directly; instead, every instructic
is executed by a special program, the M-code Interpreter. In comparison to
directly interpreted language like BASIC, M-code operates much faster. In mo
applications, it approaches machine speed but needs less memory. For those cas<
where speed is critical, there is a native code option that tells the compiler to pr<

System Operations 153

duce Z80 machine code. (For more on this topic, see the section, »Compiler Op
tions and Switches,« later in this chapter.)

The translated program is called an object program. The source can only be
read by the programmer, while the instructions of an object program can only be
executed by the computer. The translation proceeds in a single pass through the
source program; in other words, 'Ibrbo Modula-2 uses a one-pass compiler for
generating M-code. When native code is desired, an additional pass is executed.

The Türbo Modula-2 compiler serves another purpose: If several modules are
designed to work together, the programmer must first prepare one or more defini
tion modules. A definition module contains information about parts of the cor
responding implementation module that can be used by other modules. The com
piler translates the definition module’s information into a symbol file. These files
do not contain M-code instruction; they merely reference parts of the correspon
ding implementation module. Whether a program’s text constitutes a definition
module or not is decided by the reserved word DEFINITION in the header line
of the module. (Definition modules usually have the extension .DEF in their file
name.)

Operating the Compiler

Before a source program is compiled, its program text is written using the editor
and then stored on disk. You will have usually provided Turbo Modula-2 with a
work-file name for this purpose. The compiler is started from the Turbo Modula-2
shell by pressing [c 1 . Assuming a work-file name of DEMO and a default disk
drive of B, Turbo Modula-2 will respond by prompting you with the message:
Compile file:B:DEMO. You can confirm this by pressing I J 1 .

Source programs usually have the extension .MOD. This extension can be omit
ted in the file name, and the compiler will append it automatically.

Note: If a source file has no extension at all, the file name cannot be entered »as
is,« since the compiler will then look for a file with the extension .MOD. This
problem is solved by appending a single period (.) to the file name. Also note
that the Thrbo Modula-2 editor assumes the default extension .MOD.

Once the name of the source is entered, the compiler starts execution. It con
tinuously reads the source from disk and, if the List option is on, displays the
translated portion of the source on the screen. When compilation is finished, the

154 MODUL

object file is written to the disk where the source resides. You can override thi
convention by including a drive code (letter plus a colon) on the command line
somewhere after the name of the source. For example, Compile file:B:DEMO A
translates B: DEMO. MOD into A:DEMO.MCD.

The generated file now assumes the same name as the source file. If it is ai
object module, it is given the extension .MCD; if it is a symbol file, it assume
the type SYM.

The Listing

During translation the compiler can produce a listing of the compiled progran
text. The listing can be switched on and off in the Options submenu. When switch
ed on, it is usually displayed continuously on the screen, constantly updating yoi
about how far the compiler has proceeded in the source text. The listing can b
redirected to a disk file or to any of CP/M’s logical output devices, such as th
printer, by including a redirection argument n the command line after the Compil
command. Remember that an argument for output redirection consists of the >
symbol, followed by the name of the desired output medium. For example:

Compile file:B: POWERS > B:DEMO.LST

creates a file B: DEMO. LST and sends the listing to this file.

A program listing could like this:

(* $U- *)
NODULE Powers;
FROM Texts IMPORT Done,input;
FROM SYSTEM IMPORT ADR,MOVE,WORD;

0
9
12
21
25
27

PROCEDURE Power(x: REAL; i: INTEGER): REAL;
VAR t: REAL;
BEGIN
t:=1.01
WHILE i > 0 DO
t := * x;
i := i - 1;
END ;
RETURN t

System Operations 155

27l

0
11
11
16
22
33
38
47
50
50
57

01
2l
81
181
281

8888.
341

911
91l

END Power;
Size = 31

PROCEDURE GetNum(s: ARRAY OF CHAR; VAR n: ARRAY OF WORD);
VAR rec: RECORD

CASE : BOOLEAN OF
I TRUE : r: REAL;

I FALSE : c: INTEGER;
END

END ;
BEGIN
WITH rec DO
REPEAT
WRITE(s);
IF SIZE(n) = SIZE (REAL) THEN
READLN(r); M0VE(ADR(r),ADR(n),SIZE(r))
ELSE
READLN(c); M0VE(ADR(c),ADR(n),SIZE(c))
END
UNTIL Done (input)
END
END GetNum;
Size = 59

VAR
x: REAL; n: INTEGER;
BEGIN
LOOP
WRITELN;
GetNum(f,X= ",x);
GetNum(nN= ",n);
IF n < 0 THEN EXIT END ;

WRITELN(x :8:4,n to the power of n,n :0, n
= ",Power(x,n):8:4);
END
END Powers.
Size = 94

156 MODULA

End of source reached.
Compiled bytes: 208
M-code file D00:POWERS.MCD produced.

Besides displaying the program text, this listing offers other information. Aftei
each procedure and each module, the line »Size =« indicates the length in bytes
of the M-code that was generated. The line »Compiled bytes:« indicates the tota
length of the M-code generated by the compiler.

The left margin of the source program text is marked by a column of vertica
bars. The numbers at the left of the bars are only given on lines that actuall)
generate M-code. They indicate the amount (in bytes) of M-code that is generatec
between the start of the procedure or module and the current line. These number:
form a coordinate system (procedure name and offset) that allows you to find the
location of an error should one occur during execution. Notice that this offset i:
only correct with M-code. If the native code generation switch has been togglec
on, these numbers are meaningless.

If a program’s execution fails, the calling chain specifies the offset of the poin
of error from the enclosing procedure or module. This offset corresponds (in thi
case of M-code) directly to the numbers in the compiler listing, thereby indicatin)
the error’s location in the source. You can demonstrate this effect by entering an<
compiling the previous program example. If you then run the program and presen
input that is too large, the program will fail.

In the case of native code, the offset from the calling chain of a runtime erro
corresponds to the set of numbers given during the second native code pass of th
compiler. The numbers will look like this:

End of source reached.

NAME START len
POWER 4 102
GETNUM 110 240
POWERS 35 4 313

Compiled bytes: 675

Native-code file D00.POWERS.MCD produced

System Operations 157

s, a runtime error with offset = 53 refers to the second line:

POWER 4 102

since 53 is within the first 106 bytes of the file. Since the procedure power is
102 bytes in length, you know the error occurred about halfway through the pro
cedure. An easier method to finding runtime errors is to use the Find runtime er
ror utility provided in the compiler Options menu (described earlier).

The primary use for the numbers in the listing is to determine the size of pro
cedure and modules. This is helpful when using overlays. Normally you will want
o keep the listing option off; using the List option reduces compiler speed by

about 30 percent.

Error Correction

The Turbo Modula-2 compiler provides for an interactive error-correction
scheme. If an error is detected during the compiler run (for example, a syntax er
ror or a type mismatch), the compiler stops and displays the type of error and the
point at which it occurred. You are given the option of loading the source im
mediately into the editor for correction or stopping the compiler. When correction
is completed, the compiler takes over again, resuming its work near where you
corrected the error (usually at the start of the same line). This is all done
automatically, without having to use the Edit and Compile commands everytime
an error occurs. The correction cycle is explained further in the following exam-
ple.

Assume that the ninth line (labeled by the byte offset 12) of the program listing
in the preceding section reads t = t * x instead of t := t * x. This line is now
illegal, since assignment must be expressed by : = instead of = . The compiler will
translate up to the first illegal line, displaying all processed lines in the listing.
When it detects an error, it lists the currently processed line in full before giving
a message and stopping. With the List option on, it would look like this:

I (# $U- *)
I MODULE Powers;
I
I PROCEDURE Power(x: REAL; i: INTEGER): REAL;
I VAR t: REAL;
I BEGIN

158 M0DU1

21 t:=1.0*
91 WHILE i > 0 DO
121 t = t * x;

A Error in Syntax:
" := n expected, but " = n found
E(dit, Q(uit >
The caret (A) points to the last symbol read before detection of the error. \

can abort the compiler run by pressing | Q] , or you can correct the error
pressing | e 1 . If you select I E 1 , the editor is started for correction, yc
program is loaded automatically, and the cursor is positioned at the place whc
the error was detected. In the example, the following line would be in the cen
of your screen:

t = t # x;

The cursor (denoted by the A) is already placed on the faulty “ = “ You c
insert the missing “ : “ at once.

The editing commands available are those in the Turbo Modula-2 editor,
course, you can also »walk around« in the source, fixing other pieces of text,
make space for a text buffer, the compiler must store some of its internal data
disk before editing takes place. The amount needed varies between 0 and 15
depending on the length of your program. To be on the safe side, reserve a w<
space of about 15K on your source disk, plus the size of a .BAK file if there h
one yet.

Once correction is completed, you can leave the editor. To save your corr
tions, press I Ctrl I I k 1 I d 1 . As in normal editing, the old version is still p
sent, but now has the extension .BAK. The compiler takes over again and tram
tion is resumed near the initial change in your program. (Pressing | Ctrl I Q
I Q I will save the old version of your source file and the old .BAK file; j
changes you have made will be lost and compilation will be aborted.)

If, after saving your changes and continuing on with compilation, there are <
more errors in your program, the correction cycle will be repeated.

System Operationo 159

Running Out of Memory

Following are two instances of memory shortage and their respective causes and
solutions.

When the Compiler Runs Out o f Memory
The compiler uses the free memory space for two purposes: for its own runtime
stack and the heap (that is, the symbol table). Note that the size of the compiled
code is inconsequential since it is written to disk as soon as the compiler’s internal
buffer gets full. In most cases, it’s the symbol table that gets too big, which means
too many identifiers are visible at a certain point in time. In order to circumvent
space problems, you must reduce the number of identifiers. Following are several
approaches:

□ First check whether your program imports objects that it doesn’t use. Note that
unqualified import (for example, IMPORT Texts) causes all objects exported
by the imported module to be put into the symbol table. The space it occupies
equals about the length of the module’s .SYM file. It is therefore more
economic to import only those identifiers that are actually used; for example,

FROM Texts IMPORT TEXT, OpenText, CloseText;

□ Second, try to structure your program. After compiling a procedure, the com
piler no longer needs to know about the objects local to the procedure (except
for the parameters). Therefore, it can throw away all the information concern
ing local objects and reuse the space for other purposes. After compiling a
local module, the compiler keeps only the exported identifiers. Declare ob
jects as global only as necessary and also declare them as local as possible.
Use local modules to hide information that is unimportant to the rest of the
program. The number of exported identifiers should be as small as possible.
This not only reduces symbol table space, it also makes for a better program.

□ As a last resort, you may eliminate symbolic constants and enumerated types,
replacing their occurrences by their values. For readability and maintenance,
the names should be placed in comments. For example:

VAR
co lo r : (* (red ,g reen ,b lu e)#) CARDINAL

BEGIN
FOR co lo r := 0(*red*) TO 2(*blue*) DO

160 MODULA

END
END

Note that changing red to 0(*red*) in the whole program can be achieved most
efficiently via the editor’s global replacement command (ICtrl 1 1 Q 1 I a 1).
When Your Program Runs Out o f Memory
When this happens, your program probably has too much data and code to fit into
memory. You might use overlays if your program has too much code. When you
have compiled to M-code, data is usually more critical than code. Following are
some common pitfalls that can be avoided and some techniques to make better use
of memory:

□ Be sure to close all your files as soon as possible. Closing a file frees the space
used for the file buffer and the file descriptor. When you reopen a file without
first closing it, you allocate a new buffer and a new file descriptor without
first giving back the old one. Thus, the memory occupied by it is never reus
ed. If you do that within a loop, you will quickly run out of memory.

□ Passing arrays as value parameters is not bad practice. It ensures that the
parameter is not changed by the called procedure. However, it forces the com
piler to make a copy of the entire array. If the array is large, this also eats up
your memory space. So if you are having space troubles, pass large arrays as
VAR parameters instead. This also applies to large records.

□ In contrast to other languages (for example, the CP/M version of T\irbo
Pascal), the data space of a procedure is not allocated statically, but is created
only when you enter the procedure. Therefore, it might be advantageous to
declare large structures local to a procedure. Here is an example:

MODULE example;
VAR a, b : ARRAY [1..10000] OF CHAR;

PROCEDURE p;
BEGIN
(# statements involving a #)
END p;

System Operations 161

PROCEDURE q;
BEGIN
(* statements involving b #)

END q;

BEGIN
p; q;
END EXAMPLE.

This module requires 20 Kbytes of data space to run (10 Kbytes for each of
the arrays). This can be reduced to 10 Kbytes:

MODULE example;

PROCEDURE p;
VAR a : ARRAY [1..10000] OF CHAR;
BEGIN
(* statements involving a #)

END p;

PROCEDURE q;
VAR b : ARRAY [1..10000] OF CHAR;
BEGIN
(* statements involving b *)

END q;

BEGIN
p; q;
END example.

In the second example, the arrays a and b have been declared local to the
procedures p and q. Thus, a and b never exist at the same time. As soon
as p is called, 10 Kbytes of memory are used for a. When p is finished, the
space is given back and used for b when q is called. Thus, you never need
more than 10 Kbytes of memory for the data.

□ Sometimes you don’t know exactly how large an array should be, and using
a large one to be safe would take up too much memory. In this situation, you
might use a pointer to an array and allocate only as much as you need:

162 MODULA

NODULE example;
FROM STORAGE IMPORT ALLOCATE;
VAR a, b : POINTER TO ARRAY [1. .10000] OF CHAR;

BEGIN
(* Let us assume the program knows at this point that a #)
(* and b need only be 2000 characters long *)
ALLOCATE(a,2000#SIZE(CHAR)); ALL0CATE(b,2000*SIZE(CHAR));
END example.

This technique is not without danger, however. The compiler does not
know that the array is actually shorter than the declaration says. When
the array is accessed, it will therefore check index expressions against
the declared bounds and not against the actual bounds. Thus, in the
preceding example you can access a A _8000[without receiving a
runtime error. Instead, you will access memory that does not
belong to a. You may thus destroy other variables, your program, or
the operating system, and make your program crash in very interesting
ways—use this technique with caution.

Symbol Files

Quite often a module imports objects from other modules. It then contains one
or more IMPORT statements following the header line. An IMPORT statement
could look like this:

FROM MathLib IMPORT Sin,Cos, Exp;

The compiler must »know« how the imported procedures Sin, Cos, and Exp are
defined in MathLib; for example, in order to check for type mismatches. This is
achieved by compiling the definition part of the imported module into a symbol
file (a file with the extension .SYM). This file must be on the disk either by itself
or in a library file (a file with the extension .LIB, which contains many .SYMs
and their corresponding .MCD files).

The example presented expects the file SYSLIB.LIB to be on your work disk.
If the importing module is compiled, the compiler must access the symbol files
of all definition modules from which objects are imported. In the example, the
compiler would search for a file called MATHLIB.SYM, in order to »leam« about

System Operations 163

the definitions of Sin, Cos, and Exp. If not found, then the compiler would check
the library path and search for any files found there.

All symbol files needed during a compiler run must be online. Specifications
concerning the drive where one particular symbol file resides need not be given.
This is because the compiler automatically searches all drives that you indicated
when you installed the compiler with INSTM2 and searches all libraries in the
search path for a needed symbol file.

The fact that all needed symbol files must be online can cause problems when
the source files of one large programming project are distributed over several

isks. The recommended scheme in this case is to combine all the .SYM files and
their .MCD files into a common library. This is done with the Turbo Modula-2
liBrarian (described in the previous section).

Compiler Options and Switches

The compiler accepts some options that affect the set of programs that are
recognized as valid, the generated object code, and the output of a compiler
listing. An option can be set or reset in the source program itself. You can either
set options globally by using the switches on the Option menu or set options local
ly by embedding switches in the code.

This is done by including a dollar sign ($), an uppercase letter, and either the
symbol 4- or - anywhere between two comment brackets; for example, (* $71 +
*). As you would expect, 4- turns on the option denoted by the uppercase letter;
using - turns it off. An option remains set until the opposite option is given.

Options are set to either on or off by default. The default settings are displayed
in the Options submenu of the Turbo Modula-2 shell, where they may also be
hanged for the current session and, if desired, saved for future sessions by using

me S option.

Default settings are save directly in the M2.COM file. Thus, the M2.COM file
must be online. Remember the switches on the option menu are global and may
be overridden with embedded switches. All available options appear on the menu
as follows:

L ist (OFF) N ative (OFF) eX tensions (OFF)
T est (OFF) 0 verflow (OFF) Ü pper=lower (OFF)

164 MODULA

Each of these switches has the same effect as their embedded counterparts, but
these may be overridden. One exception is the Native switch, which is only effec
tive from this menu. The following describes each switch and presents its
embedded code:

$L The List Option

□ $L+ generates a listing.

□ $L- generates none.

If this option is on, the compiler will emit a listing. The listing appears on the
screen unless it is redirected, which is done by entering »> listfile« after the
»Compile file« message. For example:

>C
Compile file: BrMYFILE >MYFILE:LST

If $L is turned off, the listing is suppressed; however, the names of procedures
and modules will be displayed when encountered.

$0 The Overflow Check Option

□ $ 0 + checks for INTEGER and CARDINAL overflow.

□ $0- does not check for overflow.

If this option is on, the generated object program checks for an overflow wher
certain operations are performed. An overflow occurs when the result of an opera
tion is too large (or too small) to be represented in the computer’s memory. Foi
example: 1 2

1. VAR a,b: INTEGER; c: CARDINAL
2. BEGIN
3.
4.
5.
6 .
7.
8 .

a := 20000;
b: =a + 15000;
c:=10;
WHILE c > = ODO

c := c - 1
END ;

System Operation» 165

In both the fourth and seventh line an overflow will occur. In the fourth line
the sum evaluates to 35000, while 32767 is the largest representable INTEGER.
In the sixth line the program loops. The CARDINAL c takes values from 10 down
to 0, then c is decremented to -1. Since -1 is not a value that can be represented
by a CARDINAL, an overflow occurs in line seven. Overflows are signaled by
the runtime error message shown here:

OVERFLOW in (Name of module)
Press nCn for Calling Chain >

If $0 is turned off, no error message is given on overflow; instead, the result
of the operation is computed modulo 2 A 16. This method is sometimes desirable
for computations; for example, in a random-number generator. Furthermore, sup
pression of overflow checks can speed up a program considerably. The reader
should be warned, however, against some unexpected results, particularly in the
case of CARDINAL arithmetic. In the previous example, the variable c would be
decremented from 0 to 65535; hence the condition c> =0 would always be fulfill
ed and the program would loop infinitely!

Overflow checks can be suppressed only for operations involving CARDINAL
and INTEGER addition and subtraction and CARDINAL multiplication. Other
operations, such as INTEGER multiplication and all operations dealing with
REALs and LONGINTs, should always be checked for overflow or have exception
handlers provided to trap errors.

#T The Test Option

□ $T+ checks array indices and subrange variables.

□ $T- does not check them.

If this option is on, code for several tests is inserted into the generated object
program. The tests include checks for subrange variables or array indices lying
outside their admissible bounds; functions returning no result; and CASE
statements with an ELSE clause, where none of the other alternatives apply. If
it is turned off, none of this test code is generated. Like overflows, turning off
the test option can speed up a program and make it more compact. As a rule,
however, the resulting safety loss does not make up for this advantage until a pro
gram is completely debugged.

166 MODULA

$U The Upper=Lower Case Option

□ $U+ does not distinguish between uppercase and lowercase letters.

□ $U- does distinguish between them.

If this option is on, the Turbo Modula-2 compiler treats an uppercase letter ex
actly like its lowercase equivalent. If it is off, an uppercase letter and its lowercase
equivalent are considered to be different characters. For example:

VAR n,N: CARDINAL;
BEGIN
if n < N THEN

If this program fragment is compiled with $U turned on, the VAR declaration
would be illegal because n and N would denote the same identifier.

Compilation with $U turned off would cause no problems in this line. However,
the third line of the program fragment would then be illegal, since i f would be
considered an identifier rather than the reserved word IF. The Modula-2 standard
prescribes that lowercase and uppercase letters are different; that is, that $U
should be turned off. Programmers conscious of the standard can reset this option
permanently in the Options menu by pressing I s i .

$X The Extension Option

□ $X+ allows Tbrbo Modula-2 extensions.

□ $does not allow them.

Turbo Modula-2 supports several programming constructs not included in the
standard, including the following:

□ Pascal’s READ and WRITE statements can be used for readable input and out
put.

□ Exceptions similar to Ada’s are supported.

□ Two arrays with elements of type CHAR (strings) can be assigned even if they
are not of the same type.

System Operations 167

□ Any two arrays of CHAR can be compared.

□ Open arrays can be multidimensional.

These extensions are supported only if $X is turned on. If this option is turned
off, nonstandard constructs are flagged by the compiler as errors.

If a programmer intends to use only standard Modula-2, he can turn off $X per
manently in the options menu and save it.

$N The Native Code Generation Option

□ N ON generates native code for the Z80.

□ N OFF generates M-code.

Turbo Modula-2 can also generate native Z80 machine code that will execute
faster than the M-code normally generated. In particular, floating-point math
operations and I/O will probably not benefit from this option. The generated
native code will be about three times as large as the equivalent M-code, and may
run more than ten times faster.

Since this option applies only to compilation units, it must be specified from
the Options menu; using (* $N+ *) in the text will have no effect.

The Linker

Turbo Modula-2’s linker combines several separately compiled modules in a
single file. A typical large program system consists of a main module and several
other support modules. Before such a program is executed, the main module and
ill needed support modules are loaded into main memory.

How these modules are loaded depends on the type of output the linker pro
duces. There are two output formats produced by the linker: (1) an .MCD file that
contains object code and (2) a .COM file that contains executable code.

The purpose of linking many object files into one object .MCD file is to speed
up loading time by eliminating disk searching and the time it takes to open more
than one file.

168 M ODULA

If a program’s support modules exist as separate files, they are automatically
brought into main memory. Every module involved in the program must be found
on disk before it can be read in. The Turbo Modula- 2 system optimizes the search
for the necessary files, achieving relatively short loading times. Nevertheless,
some gain in speed can be attained if all modules, or even only part of them, are
contained in a single file.

The second function of the linker is to produce an executable .COM file by com
bining the main module, all support modules, and a runtime system.

The linker takes several object files with the extension .MCD and combines
them into a single file. Its output consists of either another .MCD file or a .COM
file. While .MCD files are run from inside the Turbo Modula-2 environment,
.COM files are executed directly form the operating system. For example, if the
file DEMO exists with both extensions .COM and .MCD, you would use the ex
ecute command to run DEMO.COM and the Run command to execute
DEMO.MCD. In addition, you could run the DEMO.COM file from your
operating system prompt like any other program.

You start the linker by pressing | l 1 at the main menu. You are then
prompted for the program’s main module and the name of the linker’s output, like
so:

Link main module:
Output file:

If any of these arguments do not contain an extension, the default extension
.MCD is supplied. If the output file name has an extension, it must be either
.COM or .MCD. You must specify the extension .COM if you wish to produce
an executable file.

After that, you are asked:

Include all needed modules (Y/N)?

Normally, you would press | y 1 (for yes), in which case the linker does the
rest of the work for you. It searches for all the modules needed on all the drives
that are present in the search path. These modules are combined into one file,
which is then written to disk.

System Operations 169

If you have several versions of the same object file on different disks and want
to pick out one of these to be included in the linked file, you would press | n 1
(for no) and be prompted like this:

Include modules:

You can then enter all modules you wish to include on one line. The .MCD ex
tension can be omitted; it will be supplied as a default. If you want to include more
modules than would fit on a single line, terminate the line by pressing the space
bar and a | + 1 , The »Include modules:« prompt is then repeated:

(delude modules: TEXTS FILES B:MATHLIB +
Include modules: B:WINDOWS B:GRAPHICS

The linker then displays a list of all linked modules (and produces a linked ob
ject file), all modules that are referred to but not linked, and all modules that are
missing. An executable file is produced only if all modules are accounted for and
unresolved.

Note that unresolved references are perfectly legal if the output file is of type
.MCD. The loader will bring all modules that are referred to but not linked
automatically into memory during a Run command.

It would be a waste of memory to link one of the modules Tests, Files, ComLine,
Convert, Loader, or Doubles into a .MCD file, since they already reside in
memory. If you let the linker search library modules automatically, all these
modules are left out. When linking a .COM file, the situation changes. When a
.COM file is started directly from CP/M, the flexible Tlirbo Modula-2 loader is
not available. Therefore, all modules the main program imports from must be in
cluded in the linked file.

(The included files usually consist of a single object module. It is possible,
however, that they are linked and include several modules. In that case, all
modules are transferred to the new linked file.

Linking with Overlays

The linker can produce .COM files with overlays. The scheme is more flexible
than the one employed in Turbo Pascal, but a bit more difficult. Every overlay
consists of a full module; you need not change the module’s source code to make
it an overlay.

170 M ODULA

To link a file with overlays, the user must answer the initial question whether
to include all needed modules with »No.« The user must then specify all modules
that should be linked, but not overlaid. These modules must be entered on a single
line or on several lines terminated by I + 1 characters. If a module is not
preceded by a drive code, its .MCD file is first searched in all libraries of the
search path, then on all drives of the system. A name with a drive specification
will cause the module to be searched only on the specified drive. After all these
modules are processed, the user is asked whether overlays should be used. Typing
Y will cause the following prompt to appear:

Include overlay module:
Map onto linked module:

First, the name of the module to be overlaid is entered. Next, the module whose
space is to be used when it is loaded is entered. Now both modules will be linked
to occupy the same memory segment. The prompts will be repeated until the user
answers the first question with a single carriage return.

Note: The second module must already have been included n the linked file,
otherwise its space will not be available to the overlay module at runtime. Also,
more than one overlay module may be mapped onto the same linked module.

As an example, suppose you want to link the module MAIN with three overlay
modules (OVERI, OVER2, and OVER3,) and one resident module (SUPPORT) in
to the file MYPROG.COM. The dialogue with the linker would look like this:

> L •

Link main module : MAIN
Output file : MYPROG,COM

Include all needed modules (Y/N)? N

Include modules : SUPPORT OVERI

Linking MAIN
Linking SUPPORT
Linking OVERI

Use overlays (Y/N)? Y

System Operations 171

Include overlay module : 0VER2
Map onto linked module : 0VER1
Linking 0VER2

Include overlay module : 0VER3
Map onto linked module : 0VER1
Linking 0VER3

Include overlay module : (RETURN)

figure 10-1. Diagram of Linking Overlay Files

Low

High

Memory

Main

Support

Overl Over2 Over3

Initial Load 1st Overlay 2nd Overlay

Always present

Always present

Swapped

Note that the linker accepts input redirection. Complicated schemes for linking
overlay files can be edited once in a file and are then fed to the linker as input.
A file to accomplish the task in Figure 104 could look like this:

SUPPORT 0VER1 (modules to be included)
0VER2 0VER1 (first overlay)
0VER3 0VER1 (second overlay)

If the file had the name LINKPROG and you started the linker with

> L

172 M ODULA

Link main module : MAIN < LINKPROG
Output file : MYPROG.COM

you would you would only have to answer two (Y/N) questions; entering all
modules to be included or used as overlays would be unnecessary. Of course, in
put such as this:

>L

Link main module : MAIN MYPROG.COM < LINKPROG

or even

L MAIN MYPROG.COM < LINKPROG

is also legal.

A few restrictions must be made for overlay modules. First, an overlay module
may not contain an initialization part (if so, the linker will issue an error
message). Second, two overlay modules residing in the same segment should not
import from each other. If the import concerns only constants, types, and
variables, this is harmless. However, calling a procedure in another overlay
module in the same segment will lead to trouble. In this case the linker issues only
a warning message.

A program with overlays will be linked into two files with the extensions .COM
and .OVR. The .OVR files contain all overlays needed for the program. They must
be online when the program is started.

Every time a procedure in an overlay module is called, the module is brought
into memory (provided it is not already there), overwriting whatever was in the
segment previously. The same thing happens if a procedure returns to its caller
and the caller has moved out of memory in the meantime. The calls to procedures
in overlay modules do not need to follow a tree-like structure; they can proceed
circularly. By specifying the mapping scheme, you can minimize overlay disk
feeds and not bother with address computations, which is done by the linker.

The linker writes all overlay modules to disk as they are processed. Therefore,
the length of all overlays is not restricted by memory size (the .OVR file can have
a length of up to 256 Kbytes). However, the linker buffers modules that are not

System Operations 173

overlays in main memory. Therefore, the size of the .COM file is restricted by the
memory available to the linker.

Linking the Linker

If you experience an OUTOFMEMORY error during linking, you can increase
the available memory by making the linker smaller. The linker consists of the file
LINK.MCD, which is loaded on top of the Thrbo Modula-2 system. The T\irbo
system contains several modules that are unnecessary for the linker’s operation
and that may be taking up valuable memory space (the editor, for example). These
modules can be removed by linking the linker itself. To do so, simply give the
f<(̂ ving commands:

> L

Link main module : LINK
Output file : LINK.COM

and answer the question

Link all needed modules (Y/N)?

with | Y | . The result is a file LINK.COM. If the linker is now started from
CP/M with the command A > LINK, the memory available for its operation is in
creased. If this is still not sufficient, you can use overlays for the linker, producing
the files LINK.COM and LINK.OVR. You can do this by editing a file called
LINKLINK or something similar that consists of the lines

TEXTS TERMINAL COMLINE LOADER

(\ES LOADER
CONVERT LOADER

Next, start the linker with this file as input, and answer »No« to whether to in
clude all modules. The modules Files and Convert, which are needed by the
linker, are both mapped as overlays onto the segment of the module Loader. They
no longer use main memory for themselves. Therefore, the space needed by these
modules is free to link even longer files.

174 M ODULA

Notice that the standard, but less efficient, »overlay scheme« that uses the pro
cedure Call in Loader is also available.

Version Control

To prevent a program from running erroneous versions of separately compiled
modules, a version number is given to each definition module. There are several
ways to generate version numbers. T\irbo Modula-2 determines a version number
by calculating a checksum of the output produced when compiling a definition
module. The number is kept in the symbol (.SYM) files as well as code (.MCD)
files that are imported from each library module.

This method of generating numbers is handy since recompiling an unchanged
module does not produce a new version number and requires unnecessary recom
pilation of dependent modules. With this process, you can even add comments to
the definition module and then recompile it, which will have no effect on the ver
sion number generated.

Version control is the act of checking version numbers for consistency. There
are three distinct points where version control is performed: compile time, link
time, and runtime.

The compiler checks .SYM files for version numbers. Version conflicts occur
when a library module’s definition and implementation modules both import from
another library module at different times (that is, different definitions, or version
numbers, of the imported module are used by the definition and implementation
modules). This situation is resolved by recompiling the module that was first com
piled of the two importing modules.

If a library definition and implementation module both import from the same
library module, then the compiler checks to make sure the definition (version
number) has not changed between compiling the definition module and compiling
the implementation module.

The linker and loader check .MCD files for version numbers. Version conflicts
occur when trying to link or load a module that imports from a library module
that has had its definition and implementation modules changed (and recompiled).
The importing module must be recompiled to resolve the conflict.

System Operations 175

Conflicts can also occur when a module imports from two library modules that
in turn import from another library module at different times (that is, the lowest
level module being imported from has changed its definition). To resolve this con
flict, you must recompile the first compiled of the two library implementation
modules.

The linker compares the version numbers of all the import modules. Thus, if
more than one module imports a particular library module, all the version
numbers for that module must match. In that case, the version numbers are found
in the importing .MCD files.

(nee the loader does dynamic linking, it can also find the same kind of version
conflicts the linker finds (in case linking was not done). The loader can also detect
version conflicts when loading overlays, which occurs when an overlay module
imports from its caller and the caller’s definition subsequently changes. This con
flict is resolved by recompiling the overlay module.

Utilities

The following utility programs will add to your collection of programming tools.
The first utility converts preexisting object files to a form usable by the Thrbo
Modula-2 system. The second tool allows you to evaluate the performance of your
programs.

Linking Microsoft Relocatable Files

In some applications, it is desirable to use existing libraries with Modula-2. On
Z80-CP/M systems, these libraries exist mostly in Microsoft relocatable format.
Object files in this format are generated by such translators as the Microsoft
(ro assembler M80, the Microsoft FORTRAN compiler F80, Pascal MT/H-,
and others.

Turbo Modula-2 offers a utility to link programs in the Microsoft .REL format
with Modula-2 programs. Only library procedures can be called from Modula-2,
but constants and variables cannot be accessed. Nor can, say, a FORTRAN
subroutine call a Modula-2 procedure.

Linkage is accomplished by a special program named REL. It takes as input
a compiled definition module (with the extension .SYM) and one or more

176 MODULA

relocatable files (with the default extension .REL). Its output is a normal
Modula-2 .MCD file.

In the Modula-2 definition module, all procedures to be called from Modula-2
must be declared with their parameter lists. The names of the procedures musi
appear as entry points in the relocatable files. Parameters are normally passed or
the stack. The definition module could look like this:

DEFINITION MODULE Z80Stuff;

FROM SYSTEM IMPORT ADDRESS, BYTE;

PROCEDURE MoveL(source,dest : ADDRESS; 1 : CARDINAL);

< other procedure declarations >

END ZÖOStuff.

The input file (called, for example, Z80STUFF.MAC) to the M80 macr<
assembler consists of the following:

.Z80
PUBLIC MOVEL <more identifiers >

MOVEL:POP HL; return address
POP BC; length
POP DE; source
EX (SP),HL; exchange return address and destinatio
EX DE,HL; exchange source and destination
LD A,B
OR A, C
RET Z
LDIR
RET

<more code>

You can then translate these files by invoking the Tiirbo Modula-2 compiler ar
M80. Next, REL is executed by entering REL after the run-file prompt; for exar
pie:

Run MCD-file: REL ZÖOSTUFF Z80 STUFF

System Operations 111

The first parameter given is the name of the definition module. No extension
may be given; the extension .SYM is always used. The second parameter given
is the name of the relocatable file. If no extension is given, .REL is assumed.

REL produces an M-code file with the name of the definition module and the
extension .MCD. This file may be used normally by a program, for example:

MODULE demo;

FROM Z80Stuff IMPORT MoveL;

BEGIN
s .- • • •) d .~ • • •; I *” • * •;
MoveL(s,d,l);
END demo.

The Microsoft FORTRAN convention for passing parameters, however, is dif
ferent from the scheme explained previously. The difference between these two
schemes when linking (for example, FORTRAN routines or libraries) is that
parameters are not passed on the stack but in registers. REL offers the command
line switch »F/« (/FORTRAN) to accommodate this. The FORTRAN switch may
be given anywhere on the command line-its effect is global. The FORTRAN
parameter-passing scheme is used for all REL files on the command line.

REL also has a search switch (»S/«) that permits the user to search libraries and
link only those modules that are actually needed. Unlike the FORTRAN switch,
the search switch has only a local effect. It is given after a file name and causes
only that file to be searched.

Here is a FORTRAN example:

FUNCTION IDIV(I,J)
IDIV = I/J
RETURN
END

And the Modula-2 definition module might look like this:

178 MODULA

DEFINITION MODULE divide;

PROCEDURE idiv(i, j : INTEGER) : INTEGER;

END divide;

After compiling both programs, link them by entering the following:

Run MCD-file: REL DIVIDE IDIV /F FORLIB /S

(We call our FORTRAN source file IDIV.FOR.) Once again, you can use func
tion procedure IDIV any way that it’s allowed in Modula-2.

Warnings: Parameters of structured types are always passed as VAR parameters
to FORTRAN, even if a value parameter is specified in the definition module
(such parameters are not copied).

FORTRAN routines are not reentrant, nor is the scheme used by REL to pass
parameters. Since FORTRAN routines cannot currently call Modula-2 pro
cedures, there are no problems with recursive procedures. Programs using inter
rupts, however, may have trouble.

Profile

Profile is a utility included with Tbrbo Modula-2 that allows you to estimate the
time spent in various procedures of your program.

If the profiler is invoked with the command

>R
Run MCD-file .-PROFILE

the main menu prompt > will reappear on the screen as if nothing happened.
The profiler actually loads a second version of the shell. You can then run the pro
gram to be profiled by giving another Run command. When this program has ex
ecuted, the profiler outputs a detailed list of all procedures and modules and the
percentage of time spent in them.

The profiler can only monitor M-code procedures; native code procedures will
not appear in its output. In fact, the profiler simply counts M-code operations.

System Operations 179

Since all M-code instructions do not execute in the same amount of time, the
measurement is slightly inaccurate; but it should be sufficient to find out which
modules and procedures are time-critical.

With this information you can now proceed to compile modules into native code
or to write extremely time-critical procedures in assembly.

Since output of the profiler is quite long, output redirection is normally used.
For example:

Run MCD-file: PROFILE >MYPROG.PRO.

(le following example monitors MYPROG.MCD performance using PRO
FILE and then routes the report to file MYPROG.PRO.

>R
Run MCD-file: PROFILE > MYPROG.PRO

> R
Run MCD-file: MYPROG.PRO

The Standard Library 181

Chapter 11
The Standard Library

Some constructs needed for programming are not covered by the language
Modula-2. Instead, these operations are performed by a set of predefined modules
that cover input and output, mathematical functions, string handling, and storage
and process management. A good part of the modules deal with input and output,
anl .ius form a hierarchy (see Figure 11-1).

Figure 11-1. Library Module Hierarchy

ComLine InOut
I___________________,__________________ I;

Texts

Terminal Files Convert

STORAGE

The arrows in Figure 11-1 denote dependencies on other modules. In general,
modules at the top of this drawing can be regarded as high-level modules, and
those at the bottom as low-level modules. The module Terminal is an independent
low-level module; that is, it does not depend on other modules and no module
dd[Js on it. The module STORAGE does not deal with input and output, but
manages heap memory for control blocks and buffers.

The modules MathLib, Long Math, Strings, and Doubles comprise what is call
ed a utility library. They provide facilities for manipulating objects.

The low-level modules Loader, SYSTEM, STORAGE, and Processes are system-
dependent. Loader and Processes are higher level in that the programs that use
them can become portable with minor changes. The modules SYSTEM and
STORAGE constitute a special case: They enclose system-dependent primitives

182 M ODULA

needed for low-level programming. The compiler translates all operations im
ported from them directly into code. SYSTEM and STORAGE have neither a defini
tion nor an implementation module (nor compiled counterparts), since technically
they are not library modules. Because the compiler knows about them in advance,
the use of the facilities from these two modules forces the programmer to explicit
ly specify (in an import list) the use of system-dependent, low-level constructs.
Figure 11-2 displays the interdependencies of these modules.

Figure 11-2. Interdependencies of System-Dependent, Low-Level Modules

Loader Processes

SYSTEM STORAGE

We can see that the Modula-2 library can be divided into three sections: input/out-
put modules, utility modules, and system and low-level modules. In the next sec
tion we will briefly discuss the function of each library module within these three
module types; a detailed description of each module will follow.

Overview of Input and Output Modules

Most programs involve input and output of data; for example, entering characters
at the keyboard or writing program output to a disk file. Although these processes
are different, Turbo Modula-2 treats them in a similar manner.

ComLine Module. Gives a program access to command-line parameters. The
standard texts input and output can be redirected from the standard devices with
this module.

Files Module. Procedures providing low-level access to disk files, including ran
dom access as well as sequential access. This module is used by the higher-level
modules InOut and Texts to interface with the operating system.

InOut Module. Wirth’s standard procedures for high-level input and output.

Terminal Module. Procedures to read the keyboard and write to the console with

The Standard Library 183

highlighting and cursor control. Includes a procedure to clear the screen and one
to check for characters in the keyboard buffer or console.

Texts Module. Procedures to read and write text (character streams) to and from
external files and devices. Includes provisions for installable input/output device
drivers.

Overview of Utility Modules

Utility modules provide string-handling procedures, mathematical functions, and
(version from numbers to strings and back again.

Convert Module. Contains procedures to convert strings into numbers and
numbers into strings; handles CARDINAL, INTEGER, and REAL numbers.

Doubles Module. Contains procedures to convert strings into double- precision
numbers and double-precision numbers into strings; handles LONGINT and
LONGREAL numbers.

LongMath Module. Contains several mathematical functions for double- preci
sion numbers, including the common transcendental functions and the natural
power functions.

MathLib Module. Contains several mathematical functions for single- precision
numbers, including the common transcendental functions and the natural power
functions; this module also includes a random-number generator.

Strings Module. Contains procedures for string handling, including deletion, in
sertion, and copying of substrings.

(
Overview of System and Low-Level Modules

These modules provide an interface to the operating system, memory, and ports.
They allow the programmer to develop system routines for memory management,
multiprogramming, and other low-level constructs.

Processes Module. Enables the formulation of loosely coupled processes that are

184 M ODULA

implemented as coroutines. You can use this module to simulate concurrent pro
gramming.

STORAGE Module. Handles memory managment for allocation and dealloca
tion of dynamic variables; also keeps track of available memory.

SYSTEM Module. Contains system-dependent procedures that work with ad
dresses, ports, operating systems and assembly language calls, and facilities for
low-level process control.

Loader Module. Handles loading and execution of compiled object modules,
enabling the splitting of large programs into smaller parts; the less commonly us
ed parts are loaded from a disk as overlays. This allows the program to manage
its own overlays rather than having it done by the runtime system, which is how
the overlays produced by the linker are handled.

Details of the Module Library

Rather than defining specific input/output and system-specific statements in the
language, these operations are provided in a hierarchy of modules. The modular
structure has the effect (and advantage) of hiding computer- specific details, while
also providing a means of including new machine- dependent routines when re
quired. What follows is a full description of the services offered by the predefined
modules.

Input and Output

Input and output remain one of the biggest problems in high-level language
design. This is not surprising, since these operations have to deal with a large
number of peripheral devices whose characteristics cannot be contained in a few
simple abstractions. In every input/output system, simplicity and brevity of details
are in conflict with efficient and flexible use of peripheral devices.

In Modula-2, this dilemma has been circumvented by not including any in
put/output primitives in the language at all. Instead, all communication with ex
ternal devices is provided by a set of modules supplied with the system. And since
these primitives are not part of the language (or the compiler), they can be freely
supplemented according to the user’s needs.

The Standard Library 185

However, such a library of input/output functions has an intrinsic disadvantage:
It leads to a large set of different primitives that must be remembered by the user.
This is because Modula-2 does not allow procedure names to be overloaded
(which is when more than one procedure has the same name, but is differentiated
by the types of its parameters). Instead, there must be a separate routine for pro
cessing each type, even if each routine is essentially the same. For example, you
must have one routine to write a character to the screen, another to write an IN
TEGER, another to write a REAL, and so on.

In addition, Modula-2 does not allow procedures to have a variable number of
parameters. Thus, when you wish to write three strings to the screen, you must
cal HteString three separate times rather than make one call that passes three
parameters.

On the other hand, the advantage of having one call for one parameter for each
type means you need not guess at the type of the parameter or search out its
definition—it is made explicit directly in the code.

In our experience, it is often more difficult to remember the correct usage of
the various input/output operations than to deal with the syntax of Modula-2. This
is clearly an undesirable situation, particularly for the novice. In Turbo
Modula-2, we opted for the best of both worlds: We have included all input/output
modules postulated by the standard and allowed the use of general-purpose read
and write statements as well, namely READ, READLN, WRITE, and WRITELN.

The form of these read and write statements is similar to that of procedures,
but they accept varying numbers of parameters, where each may be a different
type. This type of procedure is seen with other standard procedures such as INC
and DEC, which accept any scalar type and an optional count parameter.

(ID, READLN, WRITE, and WRITELN are not declared in any standard
module; instead, they must be thought of as extensions to the language Modula-2.
The compiler translates these statements into corresponding procedure calls to the
module Texts. This occurs transparently since you can supply your own drivers
to the Texts module. You lose nothing in terms of efficiency or flexibility, but gain
a lot in simplicity of input and output.

The input and output operations form a hierarchy: At its top are the general
READ and WRITE statements, and at its bottom the underlying operating system.
Between the extremes there is a sequence of modules incorporating primitives

186 MODULA

with varying degrees of abstraction. Before we delve into the explanation of these
modules, let’s work out some of the characteristics of most input and output
operations.

Input and output usually consists of the reading and writing of a sequence of
data items. The process is often strictly sequential; for many peripheral devices,
this is the only way to do input or output. A line printer, for example, prints one
character after the other, and input from the keyboard consists of a sequence of
characters as well. Even if some peripheral device allows random access to data
(for example, to a disk drive or a video screen where it is possible to write
characters at any position), the sequential operation is often the most convenient.
A structure that consists of a sequence of data items is called a stream. (This is
a purely abstract notion and is not part of the Modula-2 language.)

Streams
As you type at the keyboard, picture a stream of data flowing into the computer
from the keyboard. The data output to the disk file is another stream disappearing
from the program and being stored on the disk.

A stream, as discussed here, is a sequence of data that is either input from or
output to an external medium. The external medium may be either a disk file or
a logical device (the keyboard, video screen, or printer); both forms are treated
in the same way.

In general, the predefined input/output procedures allow you to link either an
input or an output stream to a medium, pass data down the stream, and then sever
the connection upon completion.

The following lists the main characteristics of a stream:

□ The number of elements of a stream, called the length of a stream, can vary.

□ Only one element of a stream is visible at any one time. Reading starts at the
beginning of a stream. After a read operation, the next element in the stream
becomes visible.

□ A stream can be modified only by appending elements at its end. Appending
an element is called writing.

The Standard Library 187

□ A stream has a mode that can be either read or write. The mode is specified
before any reading or writing is carried out and cannot be changed thereafter.

Notice that none of these characteristics specify the type of the elements of a
stream. They can be of any type; however, it is useful to make a broad classifica
tion. We generally distinguish between legible and illegible input and output. A
legible stream consists of elements of type CHAR, which is also called a text.
Texts provide the means of communication between the user and the computer,
where illegible streams store data for further processing by the computer.

There are several input/output modules that differ in both flexibility and type
of st(n handled. For example, the module Terminal deals only with the screen
and keyboard text streams, while the module Files can handle common sequential
I/O or random access files that are not streams at all.

A special stream type is the text stream, which contains only objects of type
CHAR; for example, a stream of characters input from the keyboard or output
to the screen or a printer. Text streams are a special case because they are format
ted with EOT and EOL characters. (An EOT character marks the end of the text
stream, while an EOL character terminates a line.)

Logical Devices
We have just discussed where data originates from and how a program may
abstract it; where the data ends up is also relevant. In general, operating systems
permit you to write to either a disk file or to logical devices. A logical device acts
as a code word, specifying to the operating system which path leads to which
device, whether it is a printer, a terminal, or another device. Which logical
devices you have available will depend on your operating system and your hard
ware. For example, the CP/M operating system recognizes the following code
names: . ,

('
CON: The video screen for output, the keyboard for input

LST: The printer (output only) , ,

RDR: An additional input interface

PUN: An additional output interface

188 MODb

Note: Your configuration determines which devices can be accessed by RDR: s
by PUN:.

The Texts Module

Texts provides the means to input and output a legible stream to and fr
peripheral devices. The module Texts uses the following characters to format l
streams:

□ EOL (=36C, 30 decimal) denotes the end of a line.

□ EOT (=32C, 26 decimal) denotes the end of the text.

Note that EOT is not defined as a constant in Texts.

Peripheral devices usually employ either a single carriage return (15C,
decimal) or a carriage-return/line-feed (12C, 10 decimal) pair to denote line er
The conversion from these control codes to the EOL character and reverse is d<
automatically by the module Texts.

At the center of this module is the type TEXT. It describes any legible, sequ
tial input and output. This type is declared as a subrange:

TYPE TEXT: [1..16];

Variables of type TEXT serve as indices to various internal tables of this modi
The tables themselves are not exported; they remain hidden to guarantee the
tegrity of the system.

Standard Text Streams
Texts exports three standard predefined texts that are declared as

input, output, console: TEXT;
The frequently used text streams are offered as predefined standard texts alre

linked to commonly used mediums. These standard texts do not require the r
mal linking and severing operations mentioned earlier. For example:

□ Input is the primary input stream usually assigned to the keyboard, but
be redirected to another medium, such as a card reader or other input dev

The Standard Lib. y 189

□ Output is the primary output stream to the video console, but can be redirected
to another medium, such as a printer or a file.

□ Console is the output stream to the video console; it cannot be redirected. It
is used to print error messages to the screen when the normal output stream
is redirected elsewhere.

190 MODULA

Texts Module Specification

DEFINITION MODULE Texts;
FROM Files IMPORT FILE;
TYPE TEXT = [1..16];

VAR input,output,console: TEXT;

PROCEDURE ReadChar (t: TEXT; VAR ch: CHAR);

PROCEDURE ReadString (t: TEXT; VAR s: ARRAY OF CHAR);
PROCEDURE Readlnt (t: TEXT; VAR i: INTEGER);
PROCEDURE ReadCard (t: TEXT; VAR c: CARDINAL);
PROCEDURE ReadLong (t: TEXT; VAR 1 : LONGINT);
PROCEDURE ReadReal (t: TEXT; VAR r: REAL);
PROCEDURE ReadLn (t: TEXT) J

PROCEDURE WriteChar (t: TEXT; ch: CHAR);
PROCEDURE WriteString (t: TEXT; s: ARRAY OF CHAR);
PROCEDURE Writelnt (t: TEXT; i: INTEGER; n: CARDINAL);
PROCEDURE WriteCard (t: TEXT; c, n: CARDINAL);
PROCEDURE WriteLong (t: TEXT; 1 : LONGINT; n: CARDINAL);
PROCEDURE WriteReal (t: TEXT; r: REAL; n: CARDINAL;

digits: INTEGER);

PROCEDURE WriteLn (t: TEXT) t

PROCEDURE ReadLine (t: TEXT; VAR s: ARRAY OF CHAR);
PROCEDURE ReadAgain (t: TEXT) i

PROCEDURE Done (t: TEXT): BOOLEANf

PROCEDURE EOLN (t: TEXT): BOOLEAN>

PROCEDURE EOT (t: TEXT): BOOLEANf

PROCEDURE Col (t: TEXT) : CARDINAL;
PROCEDURE SetCol (t: TEXT; column: CARDINAL);
PROCEDURE TextFile (t: TEXT) : FILE;
PROCEDURE OpenText (VAR t: TEXT; name: ARRAY OF CHAR):

BOOLEAN;
PROCEDURE CreateText (VAR t: TEXT; name: ARRAY OF CHAR);
PROCEDURE CloseText (VAR t: TEXT);

The Standard Libra. 191

CONST EOL=36C;

TYPE TextDriver = PROCEDDRE(TEXT, VAR CHAR);

PROCEDURE ConnectDriver(VAR t: TEXT; p: TextDriver);

PROCEDURE Init; (# used only by system *)

VAR haltOnControlC : BOOLEAN; (* TRUE by default *)

EXCEPTION TextNotOpen, TooManyTexts;

END Texts.

192 MODULA

The following example shows the use of the Texts module. It reads ten from the
keyboard and writes them to a disk file.

MODULE DataSave;
FROM Texts IMPORT TEXT, input, Done, CreateText, CloseText,

ReadCard, WriteCard;
VAR
DataFile: TEXT;
Value,Count: CARDINAL;
BEGIN
(* Create disk file and link text stream *)
CreateText(DataFile, 1 DATA.DTA1);
(# Read 10 values, save on disk #)
FOR Count: = 1 TO 10 DO
ReadCard(Input,Value);
IF Done(Input) THEN
WriteCard(DataFile,Value,16)
END
END; (* Close disk file *)
CloseText(DataFile)
END DataSave.

Note that since input is a standard type TEXT declared in module Tacts, it does
not require opening or closing.

Stopping the Program During Input and Output
The following variable lets the programmer determine when a program can be in
terrupted while using the Texts module:

VAR haltOnControlC: BOOLEAN;

The variable haltOnControlC is exported by Texts and can be specified by the
user. If haltOnControlC is TRUE (the default), then the program will halt on
either of the following conditions:

□ If you enter a (ctrl) 1 c 1 as the first character of an input line;

□ If you enter a IctrlI | s 1 to stop the output to the screen, followed by a [ctrl]
(c 1 . (Note that WriteLn is the only output statement that checks for
keyboard input; thus output to the screen can only be stopped if it is used.)

The Standard Library 193

If haltOnControlC is set to FALSE by the programmer, then the user may only
interrupt by program control.

Opening, Creating, and Closing a Text
Before data can be written or read, a connection must be established between a
variable of type TEXT and some external medium, such as a disk file or a line
printer. This is accomplished with the three procedures that follow.

OpenText (VAR t: TEXT; Name: ARRAY OF CHAR): BOOLEAN;

Associates an internal text value assigned to t with an existing external file iden
tic by the string Name. The variable t can be used only for input. The parameter
Name must be the name of a disk file or the code name for one of the operating
system’s logical input devices, such as CON: or RDR:. In the case of a disk file,
a new internal file is created and connected to the existing external file using the
procedure Open in module Files. When an input device is specified, the variable
t is linked to the external device. In either case, OpenText returns TRUE if the
text or device is opened successfully; FALSE if the file or device is not found.

CreateText(VAR t: TEXT; Name: ARRAY OF CHAR);

Establishes a new external text specified by Name and connects it to the text
variable t. The text t can be used only for writing. Usually, the parameter Name
identifies a new disk file, which is then created by the procedure Create in module
Files. If the specified name denotes one of the logical output device names, such
as CON: or LST:, then the text t is connected to that particular device.

After input or output has been completed on a text, the association with an ex
ternal medium can be severed by use of the procedure CloseText. It is always
recommended to close a text when processing is complete; otherwise, output files

10t be updated and input files will not have control blocks disposed of pro-
periy.

CloseText (VAR t: TEXT);

Severs the connection between the given internal text t and its associated external
text. If the external medium is a disk file, this file is closed using Close in module
Files. When t is used for output, the EOT character is appended to the text before
it is closed.

194 MODULA

A special convention is used for the standard texts input, output, and console.
These texts are always open and connected by default to the terminal (imagine
them opened with the name CON:). Thus, when reading from the keyboard or
writing to the video screen, input, output, or console do not need to be opened
or created. When OpenText is applied to input, the standard input text is redirected
to the external medium identified by the parameter Name. Likewise,
CreateText(outputyname) redirects standard output to the medium given by name.
Closing input or output will establish the default connection again. Following are
some examples.

OpenText(t,MCON: “);

Establishes t as an input text with data from the keyboard.

OpenText(input,MRDR: “);

Opens the standard text input with a different device. This time the standard text
input is linked to the RDR: device instead of the keyboard; that is, input is
redirected.

OpenText(InText,“BrINDATA.DAT“);

Opens existing file INDATA.DAT on drive B for input. Subsequent input from
text InText is taken from this external file.

CreateText(Printer,“LST: “);

Connects the internal output text Printer with the external printer device.

CreateText(OutText,“OUTDATA.DAT“);

Creates a new output file on the currently logged drive. Output statements specify
ing OutText write to this file.

CreateText(output,“ PROTOCOL“) ;

Redirects the standard output text. Standard output is no longer displayed on the
screen; it is written to a file PROTOCOL that is created by this call.

The Standard Lib ...y 195

CloseText(OutText);

Closes the output file B: OUTDATA. DAT, thereby establishing this file in the
directory of drive B.

CloseText(input)

Returns the standard input from the RDR: device to the keyboard.

CloseText(output)
r
k Closes file PROTOCOL and returns output to the video screen.

Renaming, Deleting, and Other File Operations
In addition to the previously described functions, you may need to rename, delete,
or perform other operations on text files. This can be done via the module Files
described on page # . All of the services offered in Files can be performed on
Texts by using the function TextFile.

TextFile(VAR t: TEXT): FILE;

Returns the value of FILE variable associated with the TEXT t. If this text has not
yet been opened, the value NIL is returned. Here are some examples.

Rename(TextFile(t) ,’NEWNAME. DAT)

Renames the file associated with the text t to ’NEWNAME.DAT,* and also closes
it.

^ Size := FileSize (TextFile(t))

Puts the size of t in bytes in the variable Size of type LONGINT.

Flush(TextFile(t))

Flushes the t file buffer.

Reading and Writing
Once a text has been opened, data can be read from it. Reading generally involves
two operations: (1) the transmission of one or several characters from the external

196 MODULA

medium into the computer’s memory, and (2) an interpretation of these characters.
If, for example, a variable of type INTEGER is read, the decimal representation
on the external device must be translated into the binary form used internally by
the computer. The following set of procedures are applicable when inputting for
matted data.

ReadChar(t: TEXT; VAR ch: CHAR);

Reads a single character from text t into ch.

ReadString(t: TEXT; VAR s: ARRAY OF CHAR);

Reads a string; that is, a sequence of characters not containing blanks or control
characters. Any leading blanks are skipped. The string s receives as many legal
characters as will fit into it. Input is terminated by a blank, an EOL character,
or any other control code (a character with a decimal value less than 32). Note
that strings cannot be separated by commas.

The next procedures can be used for numeric input.

Readlnt(t: TEXT; VAR i: INTEGER);

Reads a string and converts it to an integer. Again, leading blanks are ignored.
Valid input is any sequence of digits 0 to 9, possibly preceded by an arithmetic
sign (+ or -). The integer must be in the range MINQNTEGER) to MAX(IN-
TEGER).

ReadCard(t: TEXT; VAR c: CARDINAL);

Reads a string and converts it to CARDINAL. Leading blanks are ignored and
no sign is allowed. The CARDINAL must be in the range from 0 to MAX(CAR-
DINAL).

ReadReal (t: TEXT; VAR r: REAL);

Reads a string and converts it to a real number. Leading blanks are ignored. The
string may contain a decimal point, a mantissa, and an exponent, but these are
optional.

The Standard Library 197

ReadLong(t: TEXT; VAR 1: LONGINT);

Reads a string and converts it to a number of type LONGINT. Leading blanks
are ignored.

Note: To read and write double-precision real numbers, use the module Doubles
described later in this chapter.

Note that when t is the standard text input, all characters read from the keyboard
are echoed on the screen. Line editing is possible until a I ret 1 is entered. If
y wish to either input a character from the keyboard without echo or to enter
a carriage return, use the procedure ReadChar provided in the module Terminal.

Done(t :TEXT): BOOLEAN;

Monitors correct execution of numeric input requests. When applied after a
numerical read operation, Done returns a Boolean value that indicates whether
the input is valid.

Thus, when a number is read, Done is FALSE if the input is syntactically illegal
(for example, ABC) or too large to be converted (for example, 1000000) when a
cardinal is requested.

Done is unaffected by all other operations. Note the following examples:

Declarations:
VAR ch: CHAR; i: INTEGER; c: CARDINAL; r: REAL;

s: ARRAY [0..20]OF CHAR;
t: TEXT;

d eration :
Done is TRUE:
Done is FALSE:
Valid Range:

Readlnt(input,i);
"0% "123% n-10n.
nABC", n1.0", <E0L> , "60000" (too large).
-32768 to +32767

Operation:
Done is TRUE:
Done is FALSE
Valid Range:

ReadCard(input,c);
"0", "123", "60000",
"ABC", "1.0", "100000" (too large), "-1."
0 to 63535

198 M ODULA

Operation:
Done is TRUE:
Done is FALSE:
Valid Range:

ReadReal(t,r);
"0", "-3.", "3.14", " 10.00E+10fl, " 10E10".
"EO", <E0L>, "10E40" (too big)
-6.80564E38 to +6.80564E38

Operation:
Done is TRUE:
Done is FALSE:
Valid Range:

ReadLong(t,l);
"0% "-10000000% "78"
"ABC", "1.0", "10000000000" (too big)
-2,147,483,624 to +2,147,483,623

ReadLine(t: TEXT; VAR Line: ARRAY OF CHAR);

Reads a whole line of text into the string variable Line. This is similar to ReadStr-
ingy but no leading blanks are skipped and input is terminated only by an EOL
or EOT character.

ReadLn(t: TEXT);

Advances the read position past the EOL character of the last line read. All
characters on the current line, including the next EOL, are skipped. The next read
position starts a new line. This procedure is useful to catch trailing blanks on a
line or for skipping over unwanted input.

ReadAgain(t: TEXT);

Causes the last character read from text t to be returned upon the next read opera
tion. For example:

Read(t,ch); ReadAgain(t);
IF (ch> = "0") & (ch< ="9") THEM ReadCard(t,x)
YLSE
ReadString(t,s)
END ;

EOLN(t: TEXT): BOOLEAN;

Returns TRUE if the last character read was an EOL (36C) character.

EOT(t: TEXT): BOOLEAN;

Returns TRUE if the last character read was an EOT (32C) character.

Once a text has been created, data can be written to it. Again, writing involves
two operations: (1) the translation of the internal representation of data in the com
puter’s memory to one or more characters, and (2) the transmission of these
characters to the external medium. Following are procedures to write data.

WriteChar(t: TEXT; ch: CHAR);

writes a single character to the text t.

WriteString(t: TEXT; s: ARRAY OF CHAR);

All characters in the given string s are written, starting from the first element
(with index 0) up to the first null character (0C) or the end of s.

Writelnt(t: TEXT; i: INTEGER; FieldWidth: CARDINAL);

Write the integer i to text t. The given number appears right-justified in a field
of FieldWidth characters. If FieldWidth is too small, more space is allocated.

WriteCard(t: TEXT; c,FieldWidth: CARDINAL);

Write the CARDINAL c to text t. The given number appears right-justified in a
field of FieldWidth characters. If FieldWidth is too small, more space is allocated.

WriteReal(t: TEXT; r: REAL; FieldWidth: CARDINAL; Digits:INTEGER);

Writes real number r, using at least FieldWidth characters; r is right- justified in
the FieldWidth character field.

The parameter Digits controls the number of digits used in the mantissa of r.
If it is positive, r is written in fixed-point format with Digits characters after the
decimal point. If it is zero, the decimal point is omitted. A negative value of Digits
indicates scientific notation; that is, the decimal point follows the most significant
digit and an exponent is present. In this case, the number of digits in the mantissa
is equal to ABS(Digits).

The Standard Library___ 199

200 M ODULA

WriteLong(t: TEXT; 1: LONGINT; FieldWidth: CARDINAL);

Writes long integer /, right-justified in a FieldWidth character field. If more than
FieldWidth columns are needed to print /, more space is allocated.

WriteLn(t: TEXT);

Terminates output line. WriteLnit) is equivalent to WriteChar(t,EOL). The EOL
character is translated to a carriage-retum/line-feed pair.

SetCol(t: TEXT; Col: CARDINAL);

Advances the write position of text t to column Col in the current output line. If
Col is not greater than the current column number of r, nothing happens. Columns
are numbered from 0; that is, the left-most column has number 0.

Col(t: TEXT): CARDINAL;

Returns the current column position of text t. After a WriteLn, Col returns 0; it
increases by 1 with every character written.

The following are examples of the preceding procedures:

Operation Output

Writelnt(output,1025,5);
Writelnt(t,1025,7);
WriteReal(output,12.28,10,);
WriteReal(output,12.28,5,0);
WriteReal(output,12.18,12,-5);
WriteLong(output,-1000L#1000L,10);
SetCol(output, Col (output) DIV 10 + 1) * 10);

" 1025 "
" 1025"
n 12.3"

" 12"

" 1.21800E+01"
" ' -1000000"

Tabs to the next
multiple of 10

The following example sums up input line by line. (This is recommended for
very portable code; for an easier method, see the READ and WRITE statements
that follow.)

The Standard Library 201

NODULE SumUp;
FROM Texts IMPORT input, output, EOLN, EOT, ReadReal, Done,

WriteChar, WriteReal, WriteLn, WriteString;

VAR
item,sum: REAL;
BEGIN
REPEAT
WriteString (output,n enter real numbei'S > n);
sum:=0.0;
(PEAT
ReadReal(input,item);
IF Done (input) THEN sum:=sum+item END ;
UNTIL EOLN(input) OR EOT(input);
IF NOT EOT (input) THEN
WriteString(output,"Sum =n);
WriteReal(output, sum,1 2 ,-5);
WriteLn(output);
END
UNTIL EOT (input)
END SumUp.

READ and WRITE Statements
The number of procedures in the preceding section may seem overwhelming;
however, the READ and WRITE statements are much easier to use. The compiler
translates them into appropriate calls to procedures in the module Texts, which
causes an implicit import from that module. READ, READLN, WRITE, and
WRITELN are predeclared identifiers, not reserved words. Note that READ and
WRITE statements are an extension to Modula-2 and their use may not be portable
to ^ ?r Modula-2 implementations. Their full definition follows:

□ Let t denote a variable of type TEXT and let v,vl,...,vn denote variables of a
readable type; that is, of one of the types INTEGER, CARDINAL, CHAR,
any subrange of them, REAL, LONGINT, or any ARRAY with CHAR
elements.

□ Let p,pi,...,pn denote parameters of one of the forms el, el : e2, or el : e2
: e3, where el is an expression of a readable type, e2 is a cardinal expression,
and e3 is an integer expression.

202 MODULA

READ(t,vl,...,vn)

Causes vl, . .. ,vn to be read from text t. The read items must be separated by blanks
or line ends. The text variable t may be omitted.

READ(vl,...vn) Causes vl,...,vn to be read from the standard text input.

READLN(t,vl,... ,vn)

Works exactly like READ, except that the remainder of the last line read is skip
ped.

W RITE(t,pl,... ,pn)

Causes p i , . .. ,pn to be written to text t. If the text variable is omitted, output goes
to the standard text output, for example.

W RITE(pl,...,pn)

Characters and strings are written without preceding or subsequent blanks (except
for blanks in the string itself).

Integers and cardinals are written right-justified in a field of six characters,
which can be overridden with a field specifier.

Reals are displayed in scientific notation, right-justified in a 12-character field.
However, this may be overridden with a field specifier.

The field width of numbers can be changed by appending a colon and the
desired width to the expression. The representation of real numbers can be chang
ed to fixed-point by appending a second colon and the desired width of the frac
tional part (also see points 6 and 7 that follow).

W RITELN(t,pl,... ,pn)

Works exactly like WRITE, except that the line is terminated when all parameters
are written. The argument list may be empty; if so, only the EOL character is
written.

The Standard Library 203

The translation process from the READ and WRITE statements to calls of pro
cedures in module Texts is as follows:

1. READ(vl,... ,vn) is translated to READ(Input,vl,... ,vn).
WRITE (pi,... ,pn) is translated to WRITE (Output, pi,... ,pn).

The same equivalence holds for READLN and WRITELN.

2.READLN(t,vl,..., vn) is translated to READ(t,vl,... ,vn) ;
ReadLn(t).

j TTRITELN(t,pl,... ,pn) is translated to WRITE(t,pi,... ,pn);
' WriteLn(t).

3. READ(t,vl,... ,vn) is translated to
READ(t,vl);...;READ(t,vn).

WRITE(t,pl,..,pn) is translated to
WRITE(t,pl);...;WRITE(t,pn).

4. READ(t,v) is translated to

ReadChar(t,v)
ReadString(t,v)
Readlnt(t,v)
ReadCard(t,v)
ReadReal(t,v)
ReadLong(t,v)
ReadDouble(t,v)

if v is of type CHAR,
if v is of type ARRAY OF CHAR,
if v is of type INTEGER,
if v is of type CARDINAL,
if v is of type REAL,
if v is of type LONGINT.
if v is of type LONGREAL.

5. WRITE(t,p) is translated to

(.riteChar(t,p)
WriteString(t,p)
Writelnt(t,p,6)
WriteCard(t,p,6)
WriteReal(t,p,12,-5)
WriteLong(t,p,12)
WriteDoubles(t,p,22,

if p is of type CHAR,
if p is of type ARRAY OF CHAR,
if p is of type INTEGER,
if p is of type CARDINAL,
if p is of type REAL,
if p is of type LONGINT.

-14) if p is of type LONGREAL.

Note that the standard width for the representation of a number is 6 in the case

204 M ODULA

of integers and cardinals and 12 in the case of reals; reals are normally written
in scientific notation with a 5-digit mantissa.

Also note that you cannot replace the procedure call ReadLine with a READLN
statement. READLNQint) would only read the first string of a line, stopping at
the first blank encountered, then skipping to the end of the line without reading
anything. On the other hand, ReadLineQnput, Linel) reads in the full line from
the start to the next EOL character.

6. If x is of type INTEGER, CARDINAL, or LONGINT and n is a cardinal ex
pression, then WRITE(tyx:n) is translated to Writelnt{t,x,n), WriteCard(t,x,n),
or WriteLong(tj:,n), respectively; that is, the default width specification is
overridden.

7. If x is of type REAL or LONGREAL, then WRITE(t,x:n) is translated to
WriteReal(t,x,n,-5). Again, the default width specification is overridden.

Furthermore, if i is an integer, WRITE(t,x:n:i) is translated to
WriteReal(t

In this case, the form of notation (scientific or fixed-point) is indicated by the
programmer. As in the previous explanation of procedure Write Real, positive
values of m indicate fixed-point notation with i digits behind the decimal point,
whereas negative values stand for scientific notation.

The following example presents the same example from the earlier »Reading
and Writing« section, except this time we make use of l\irbo Modula-2’s READ
and WRITE extensions. The module becomes shorter and easier to read, even
though it is translated into (nearly) the same code as the previous example. The
READ and WRITE extensions do not in themselves shorten code generated by the
compiler, rather they help to write shorter and clearer source programs.

MODULE SumUp;
FROM Texts IMPORT input, EOLN, EOT, Done;

VAR
item,sum: REAL;
BEGIN
REPEAT
WRITE("enter real numbers> ");

The Standard Library 205

sum:=0.0;
REPEAT
READ (item);
IF Done(input) THEN sum:=sum+ item END ;
UNTIL E0LN(input) OR EOT (input);
IF NOT E0T(input) THEN WRITELN("Sum =" ,sum:12:-5) END
UNTIL EOT(input)
END SumUp.

User-Defined I/O Drivers
f ts provide communication with disk files and the logical devices of the
operating system. If you wish to communicate with some device not falling into
these categories, you can install your own I/O drivers and procedure for input and
output. Such a procedure must match the following procedure type:

TYPE
TextDriver = PROCEDURE(TEXT, VAR CHAR);

TextDriver is a template for the many possible I/O drivers. All of these pro
cedures must accept a TEXT as their first parameter. Their second argument must
be a VAR parameter of type CHAR.

If a text is used for output, the I/O driver sends its second argument; while a
driver used for input deposits a character that was read in this parameter. Driver
procedures must provide for the correct conversion of the EOL character into end-
of-line character sequences used by the external device. The first parameter (of
the subrange type TEXT) may serve as an index into a table that contains further
information about the text on which the I/O takes place. In most situations it can
be ignored.

^ 10 install a user-defined I/O driver, use the following procedure:

ConnectDriver(VAR t: TEXT; driver: TextDriver);

After a call to this procedure, I/O on text t will be handled via the procedure
that was substituted for the driver argument. This procedure has the effect of
opening text t\ no further OpenText or CreateText need be given.

The following is an example of installing a driver for an IEEE interface. We
have presented the sketch of a local module, exporting the two texts InlEEE and

206 M ODULA

Out IEEE, communicating with an IEEE interface. It is assumed that line ends are
denoted by single carriage-return characters.

IMPLEMENTATION MODULE IEEE;
FROM Texts IMPORT TEXT,EOL,ConnectDriver;
EXPORT InlEEE,OutIEEE;
CONST CR=15C;
VAR
InlEEE,OutIEEE: TEXT;
PROCEDURE Put(t: TEXT; VAR ch: CHAR); (* Output driver *)
BEGIN
IF ch = EOL THEN ch:=CR END ;
(* code to write ch to the IEEE interface *)
END Put;

PROCEDURE Get(t: Text; VAR ch: CHAR); (# Input driver #)
BEGIN
(* code to read ch from IEEE interface #)
IF ch = CR THEN ch : = EOL END ;
END Get;

BEGIN (# Initialization: Install Get and Put #)
ConnectDriver(inIEEE, Get);
ConnectDriver(OutIEEE ,Put)
END IEEE;

The texts InlEEE and OutlEEE may now be used to input or output characters,
strings, or numbers. Statements like the following are now possible:

READ(InIEEE,x,y,s);
WRITELN(OutIEEE, "Size of Sample: " ,SampleSize);

The Standard Library 207

The InOut Module

InOut serves about the same purpose as the module Texts: It provides communica
tion to external mediums without any assumptions about the nature of peripheral
devices. The module InOut is postulated to be present in every Modula-2 system.
It is included in the Turbo Modula-2 system for the sake of compatibility, even
if abstract input and output is generally accomplished more conveniently by using
the READ and WRITE extensions to Turbo Modula-2 in conjunction with the
module Texts.

f The operations provided by InOut can be thought of as a subset of those provid-
by Texts. InOut is more restrictive, however. Only operations on the standard

text streams input and output are allowed. These standard streams are hidden by
InOut, but can be accessed directly from Texts. As a consequence, procedures
provided by InOut do not require a parameter to indicate which text stream is us
ed. Read operations always use input, while write operations work on output.
Correct execution of input procedures is monitored in the global variable Done,
and the global variable termCH always contains the last character read.

In addition to the procedures provided by Texts, InOut exports two more output
procedures.

VriteOct (c,n: CARDINAL);

Writes cardinal c in octal representation (range 0 to 177777 octal).

VriteHex (c,n: CARDINAL);

Writes cardinal c in hexadecimal representation (range 0 to FFFF hex).

f Jur implementation of InOut reads and writes real numbers as well as CAR
DINALS and INTEGERS. The user should k^ep in mind that other implementa
tions might choose to separate these tasks. Procedures to read and write REALs
would most likely be imported from the modules ReallnOut or ReallO.

Note that when using the procedures Openlnput or OpenOutput, no file name
is provided by the program. Instead, the name is requested from the user at the
terminal, which limits the usefulness of these procedures.

208 M ODULA

InOut Module Specification

DEFINITION MODULE InOut;
CONST E0L=36C;
VAR Done: BOOLEAN;
termCH: CHAR;

PROCEDURE Openlnput (defext: ARRAY OF CHAR);
(# Requests a file name at the terminal and connects input with that

file. The file name may indicate one of the logical devices of
CP/M. If the file name does not contain an extension itself, the
default extension defext is appended.

*)

PROCEDURE OpenOutput (defert: ARRAY OF CHAR) ;
(* Same as above but for output #)

PROCEDURE Closelnput;
(# Closes input file, returns input to terminal. #)

PROCEDURE CloseOutput;
(* Closes output file, returns output to terminal. #)

PROCEDURE Read (VAR ch: CHAR);
(# Done := Not past end of input #)

PROCEDURE ReadString (VAR as: ARRAY OF CHAR);
(* Reads string as in Texts. Done := the returned string is not empty
*)

PROCEDURE Readlnt (VAR x: INTEGER);
(* Reads integer as in Texts. Done := integer was read *)

PROCEDURE ReadCard (VAR x: CARDINAL);
(* Done := cardinal was read *)

PROCEDURE Write (ch: CHAR);
PROCEDURE WriteLn;
PROCEDURE WriteString(s: ARRAY OF CHAR);
PROCEDURE Writelnt(x: INTEGER; n: CARDINAL);

The Standard Library 209

PROCEDURE W riteCard(x,:
PROCEDURE WriteHex(x,n
PROCEDURE W riteO ct(x,n

: CARDINAL);
: CARDINAL);
: CARDINAL);

PROCEDURE ReadReal (VAR x: REAL);
PROCEDURE W riteReal(x: REAL; n ,d ig i t s : CARDINAL);
END InOut.

210 MODULA

The Files Module

The next lower level of the module hierachy connecting InOut and Texts with the
computer’s disk-operating system embodies the concept of a file. There arc two
ways to look at a file. The first is as an external object: A file describes a collec
tion o f data stored on a magnetic disk. Often the data is of the same type. The
second is as an internal object: A file represents an internal data structure that
describes the external data and how it is accessed. The two notions should not
be confused. The type FILE as exported by the module Files describes access to
data items, not the data itself. In some operating systems this is referred to as a
file control block.

Files offers the possibility to access data collected in a disk file. The elements
of a file may be of any type and can be legible or illegible. No interpretation is
performed; elements in a file are represented in computer internal binary form.
As an example, writing the integer 279 to a TEXT consists of the output of the three
numerals 2, 7 and 9, or in binary form:

I 00110010 I 00110111 I 00111001 I

When writing the same number as an integer to a file, its internal representation
is written without prior conversion into ASCII digits, like so:

I 00000001 I 00011001 I

Physically, a file is a sequence of bytes on disk that can be read or written. The
read or write position can be set to any byte of the file, thus allowing data to be
accessed randomly.

It is often convenient to think of files at a higher level of abstraction. At this
level, files are ordered collections of variables that are usually all of the same
type. The type of the file elements is arbitrary—it could be CHAR, a record, or
any other type.

Errors During File Handling
Files signals error conditions by raising one of five exceptions. If such an excep

The Standard Library 211

tion is raised, the executing program is stopped and a message describing the
cause of the error is displayed on the screen. Programs may recover from such
error conditions if the programmer provides an exception handler for the excep
tion raised (refer to Chapter 9). Files defines the following exceptions:

StatusError Indicates request of an illegal file-processing operation, such as
reading from an unopened file or opening a file twice.

212 MODULA

Files Module Specification

DEFINITION MODULE F ile s ;
FROM SYSTEM IMPORT BYTE, WORD, ADDRESS;
TYPE FILE;

PROCEDURE Open (VAR f : FILE; name: ARRAY OF CHAR):
BOOLEAN;

PROCEDURE Create (VAR f : FILE; name: ARRAY OF CHAR);
PROCEDURE Close (VAR f : FILE);
PROCEDURE D elete (VAR f : FILE);
PROCEDURE Rename (VAR f : FILE; name: ARRAY OF CHAR);

PROCEDURE GetName (f : FILE; VAR name: ARRAY OF CHAR);

PROCEDURE F ileS ize (f : FILE): LONGINT;
PROCEDURE EOF (f : FILE): BOOLEAN;

PROCEDURE ReadByte (f : FILE; VAR ch: BYTE);
PROCEDURE ReadWord (f : FILE; VAR w: WORD);
PROCEDURE ReadRec (f : FILE; VAR rec : ARRAY OF WORD);
PROCEDURE ReadBytes (f : FILE; buf: ADDRESS; nbytes: CARDINAL)

CARDINAL;

PROCEDURE WriteByte (f : FILE; ch: BYTE);
PROCEDURE WriteWord (f : FILE; w: WORD);
PROCEDURE WriteRec (f : FILE; VAR rec : ARRAY OF WORD);
PROCEDURE W riteBytes (f : FILE; buf: ADDRESS; nbytes: CARDINAL)

PROCEDURE Flush (f : FILE);
(* Flushes the f i l e ' s in te rn a l b u ffe r to d isk . Is used to d e te c t

D iskFulls a t once #)

PROCEDURE NextPos (f : FILE): LONGINT;
PROCEDURE SetPos (f : FILE; pos: LONGINT);

PROCHJURE N oT railer (f : FILE);

();PROCEDURE ResetSys

213The Standard Library-

EXCEPTION EndError, S ta tu sE rro r, UseError, D eviceError, D iskFull;

END F ile s .

214 MODULA

EndError Indicates attempt to read past the end of a file.

UseError Indicates file creation, renaming, or deletion on a write-
protected disk, like the CP/M-message BDOS ERROR ON
(drivename): R/O, which is suppressed in this case. Note that
changed disks are always write-protected before a system reset.
Also note that CP/M will not recognize a physically write-
protected disk as R/O when reset; thus, UseError is not
reliable for physically write-protected disks.

DeviceError Indicates data is not readable, presumably because of a bad
disk sector. This exception is also raised if a Close operation
is unsuccessful.

DiskFull Indicates that data cannot be written due to a full disk, or files
or extents cannot be created due to a disk- directory overflow.

Operations on Entire Files
Before any processing can be carried out, the internal file must be connected with
an external (disk) file. After the connection is made, the file is then said to be
open. New files are opened with Create and existing files are opened with Open:

Open (VAR f : FILE; name: ARRAY OF CHAR): BOOLEAN;
C reate (VAR f : FILE; name: ARRAY OF CHAR);

These procedures connect an internal file/w ith an external file. Open searches
the directory for an existing file with the given name, returning FALSE if no such
file is found. Create always creates a new empty file; if a file with the same name
already exists, it is deleted.

The following procedure performs a reset of the disk system. It is useful to pre
vent UseErrors caused by changed disks.

ResetSys;

After a call to ResetSys, it is possible to write to drives where disks have been
swapped, but all open output files will be lost.

After processing has been completed on a file, the connection may be severed
by the Close procedure.

The Standard Library 215

Close(VAR f: File);

Disconnects/with its associated external file. If output has been sent to/ , closing
is mandatory; otherwise, all data o f /w ill be lost. Since closing a file recovers
the memory used for control blocks and data buffering, it is advisable to close
a file in any case, even if it has only been used for input.

The following procedures are used to delete or rename a file:

D elete (VAR f : FILE);
^ "ename (VAR f : FILE; name: ARRAY OF CHAR);

Both procedures assume that / is open. Delete deletes the directory entry that
corresponds to / while Rename renames the entry to its given name. Both pro
cedures have the side effect of closing the internal file /.

The external name of file / i s returned by the following:

GetName(f: FILE; VAR name: ARRAY OF CHAR);

The name is returned in a standard format: The first character is the drive code,
which can assume the values A through R The second and third characters are
the user area of the file. The fourth character is always a colon. The file name
is next, consisting of up to 8 characters, with its end marked by a period. If the
file name contains an extension, it is appended. To hold a returned file name, the
name parameter should be declared with at least 16 characters.

For example, assuming the procedure calls

, Open (f , n B4: INDATA. DAT n);
^ Create (o u t, n OUTDATA n)

then the results will be GetName(fJname), which will yield *B04:IN-
DATA.DAT,« and GetName(out,outname), which will yield » A00:OUTDATA.«

The following procedure returns the size of an external file:

F ileS ize (f : FILE): LONGINT;

This returns the exact number of bytes in the file. Since files can be larger than

216 MODI

65535, the maximal CARDINAL value, the result is of type LONGINT. (-
since its maximum value is in the trillions, it should be adequate for some tir

Unfortunately, CP/M has no means to determine the exact size of a file in b)
To correct this restriction, T\irbo Modula-2 uses a special convention: The
byte of the last CP/M record (128 bytes) in a file indicates the number of def
bytes in the record. This last byte has an offset value of 128; that is, if it is
no bytes in the record are defined. A value of 255 indicates 127 defined bytes,
value below 128 means that the last record is completely filled. Using this
byte and the BDOS function that returns the number of 128-byte records in a
the file’s exact size can be computed.

This scheme imposes almost no restriction on the file formats that can be r
In particular, reading ASCII files generated by WordStar or other progran
possible without encountering problems. If you run into problems transfer
files between Turbo Modula-2 programs and other software, you can use this
cedure:

N oTrailer (f : FILE);

Note that the file /m ust be already open, thus allowing NoTrailer to cause
last byte of the last CP/M record o f / to be interpreted as a data byte instcii
a length byte. Consequently, a subsequent call of FileSizeij) will always reti
multiple of 128. If the length of / is changed by write operations, no length
will be appended to / when it is closed.

File Processing
We can think of a file as a sequence of bytes stored on disk. The number of \
in a file is called the length of the file. A file’s elements are all of the same
and each can consist of several bytes. However, only one element can be accc
at a time.

The position number of the accessible element is called the current positu
the file. The current position can point to any element, or it may denote the
of the file; that is, it can range from 0 up to the FileSize(f). Initially, if no pro
ing has been carried out, the current position will be 0. Reading advances the
rent position past the read data. Likewise, writing advances the current pos
past the modified data.

Once a file is open (an Open or Create operation applied to it), reading

The Standard U b ^ry 217

writing becomes possible. The following operations are available for file process
ing and can be carried out only on open files. If one of these operations is applied
10 a file that is not open, the exception StatusError is raised. The file operations
that follow read data from the given file/and differ in the kind of data that is read:

ReadByte (f: FILE; VAR ch: BYTE);
ReadWord (f: FILE; VAR w: WORD);
readRec (f : FILE; VAR re c : ARRAY OF WORD);

Read Byte reads a single byte and assigns it to the parameter ch. BYTE is a
>pecial type, imported from the pseudomodule SYSTEM. It matches every variable
occupying 1 byte of memory. This includes variables of the type CHAR,
BOOLEAN, subrange types with bounds in the range 0 to 255, and enumeration
r\pes with, at most, 256 elements. If the file elements are one of these types,
ReadByte should be used for reading.

Read Word reads 2 bytes (a word) and assigns them to the parameter w. The type
WORD is also imported from the pseudomodule SYSTEM. It matches any variable
ccupying 2 bytes of memory. Examples are variables of type INTEGER, CAR
DINAL, BITSET, sets, and all pointers. If the file elements are one of these types,
Headword should be used for reading.

ReadRec reads everything not covered by ReadByte and ReadWord. The type
\RRAY OF WORD matches variables of any type. This works since the storage
"t every element is rounded up to a word offset. As many words as are needed
to fill out the given parameter are read. Employing this procedure for reading is
appropriate for file elements occupying more than one word; in particular, for
records, arrays, long integers, and reals.

In all three procedures, the current position is advanced by as many bytes as
ire read. A subsequent read operation will then access the next element in the
*i!e If the current read position is higher than the end position, the exception
1 ndError is raised.

The following file operations write data to the given file /and differ in the kind
'1 data that is written:

218 MODULA

VriteByte (f: FILE; ch: BYTE);
VriteWord (f: FILE; w: WORD);
WriteRec (f: FILE; VAR rec: ARRAY OF WORD);

These procedures give the value specified in the second parameter to the ele
ment at the current position in the given file/. If the current position is not higher
than the end position, the corresponding file element is modified. If the current
position points to the end of the file, data is appended and the length of the file
is incremented.

While WriteByte is appropriate for file elements occupying 1 byte, WriteWord
is used for word-sized elements and WriteRec applies to elements of a larger size
(for example, records, arrays, or reals).

If writing is impossible, the exception DiskFull is raised. There are also two
lower level procedures for reading and writing data.

ReadBytes (f: FILE; buf: ADDRESS; nbytes: CARDINAL): CARDINAL;

Reads as many bytes as are specified in the nbytes parameter into consecutive
addresses, starting at the address denoted by buf. If less than nbytes bytes remain
in the file/, only the number of remaining bytes are read. Hence, a call to this
procedure will never cause the exception EndError to be raised. The number of
bytes read is returned as a function result.

WriteBytes (f: FILE; buf: ADDRESS; nbytes: CARDINAL);

Writes as many bytes as are specified by the given nbytes. Data is written from
consecutive addresses, starting at the address buf.

EOF(f: FILE): BOOLEAN;

Returns TRUE if the end of file /is reached; returns FALSE if there are still bytes
i n / to be read.

Note that this procedure provides a limited form of lookahead. You know that
the end of a file has been reached before undefined data has been read. This works
even if the file is empty, a fact that distinguishes a FILE from a TEXT. With TEXT
you have to read the EOT character to know that the TEXT has been completely
read. The appropriate form to process a FILE is a WHILE loop:

The Standard Libru y 219

IF Open(f,fname) THEN
WHILE NOT EOF(f) DO
ReadRec(f,data);
Process(data);
END;
Close(f);
END

SetFos(f: FILE; pos: LONGINT);

Allows data to be accessed randomly. Sets the current position of the file / to
pos. This parameter denotes the byte position where subsequent file processing
will take place. The next read operation will then access the element at position
pos. The next write operation will modify the element at this position. The
parameter pos can point to any element in the file or it can point to the end of
the file; its legal range is 0 up to and including FileSizetf). If pos is larger than
FileSize(fl, the exception EndError is raised.

If all file elements are of the same type T, and you know the ordinal number
n of the selected element in the sequence (counting again from 0), you can com
pute its byte position as

BytePosition := n * SIZE(T)

Thus, a call like SetPos(f,LONG(n)*LONG(SIZE(T))) would set the current file
position correctly. Note that SetPos requires a parameter of type LONGINT.
Since type coercion is not performed in Modula-2, the construct SetPos(f,0) is il
legal; use SetPos(f,LONG(0)) or SetPosifßL) instead.

The current file position can be examined by calling

NextPos (f: FILE): LONGINT;

which will return the current position of the given file /.

To demonstrate how files work we will present two examples. The first example
shows a series of operations on a file (represented by boxes) and how these pro
cedures affect the file and the file pointer (the up arrow). The declarations VAR
f: FILE; c: CHAR; are used in the procedure calls in Example 1.

220 MODULA

Example 1

1. 0pen(f, nINDATA");

I 01001100 I 01100101 ! 01101100 I 01101100 I

A

Steps 2 through 4 show how to modify a file element; First read it in, then set
the current position back by one and write the modified data.

2. R eadB yte(f,c);

I 01001100 I 01100101 I 01101100 I 01101100 I

A

c now has the value 01001100 binary (»L«).

3. S e tP o s(f,N ex tP o s(f)-lL);

I 01001100 I 01100101 I 01101100 I 01101100 I

A

4. INC(c); W rite B y te (f ,c);

I 01001101 I 01100101 I 01101100 I 01101100 I

A

The Standard Library 221

Steps 5 and 6 show how to append data at the end of a random access file: Set
the position to the length of the file and write the data to be appended.

5. S e tP o s (f ,S iz e (f)) ;

I 01001101 I 01100101 I 01101100 101101100 I

A

öf writeByte(f,"y");

I 01001101 I 01100101 I 01101100 I 01101100 I 01111001 I

A

Example 2 is a practical implementation of a file copy utility that shows the
typical usage of the Files module. Its operation is similar to the Filecopy com
mand in the Turbo Modula-2 shell. Data is first written into a temporary file with
the extension------ . If the transfer succeeds, the temporary file is renamed to
whatever the user indicates. This scheme avoids an accidental loss of data.

Among others, two procedures of the module FileExtensions are imported,
StripExt and AppendExt. (This module is not in the standard library. It is used
as a programming example in the section on the module Strings.) In short,
StripExt strips the extension from a file name and AppendExt appends an exten
sion "Hie procedure PromptFor, imported from the standard module Comline,
reacio ^ext from the command line or, if none is found, prompts the user for input.

Example 2

MODULE FileCopy;
FROM SYSTEM IMPORT ADR;
FROM FileExtensions IMPORT StripExt,AppendExt;
(* See the discussion of the Strings Module for a listing of the

FileExtensions routines.
*)

222 MODULA

FROM ComLine IMPORT PromptFor;
FROM Files IMPORT FILE,Open,Create,Close,Rename,Delete,ReadBytes,

WriteBytes,DiskFull;

CONST BufferSize = 20000;
VAR
inFile,outFile
inName,outName,tempName
buffer
fetched

BEGIN
PromptFor("Copy file: ", inName);
IF inName [0] # 0C THEN (# no empty string entered #)
PromptFor("Copy to : ", outName);
IF outName [0] # 0C THEN
IF 0pen(inFile, inName) THEN
tempName:=outName;
StripExt(tempName);
AppendExt (tempName, " $$$");
Create(outFile, tempName);
REPEAT
fetched := ReadBytes(inFile,ADR(buffer),BufferSize);
WriteBytes(outFile, ADR(buffer), fetched);
UNTIL fetched < BufferSize;
Rename(outFile, outName);
Close(inFile);

ELSE WRITELN(inName, " not found.") END
END
END
EXCEPTION
DiskFull: WRITELN("DISK FULL"); Delete(outFile)
END FileCopy.

Files with Elements o f Mixed Types
Up to now, we have only encountered files with elements all of the same type.
However, sometimes it is convenient to include elements of varying types in one
file; for example, a file can have a header as its first element, containing various
information about a file’s data. The actual data would follow the header in a dif
ferent format. You can process such a file the same way you would a file with

FILE ;
ARRAY [0..20] OF CHAR;
ARRAY [1..BufferSize] OF CHAR;
CARDINAL;

The Standard Library 223

uniform elements. The procedures ReadByte, ReadWord, ReadRec, ReadBytes,
Write Byte, WriteWord, WriteRec, and WWteZfytes are functional. Of course, the
procedure chosen must match the type of accessed element. For example, Read-
Byte would be used to read a character, while ReadRec would serve to input a
record.

224 MODULA

The Terminal Module

The module Terminal provides communication over the operator’s terminal (the
keyboard and the video screen), without the abstraction of a text stream. The
following procedures show how to implement basic input/output routines.

ReadChar(VAR ch: CHAR);

Reads a single character from the keyboard. The character is not echoed on the
screen, which distinguishes the module Terminal from Texts or InOut. Line ends
are denoted by carriage returns (15C); no conversion to the EOL character is per
formed.

BusyRead(VAR ch: CHAR);

Tests to see if a character has been typed. A typed character is returned in the
given ch. If no key is pressed, ch is set to OC.

ReadAgain;

Causes the last character read to be returned again upon the next call of ReadChar
or any read statement from Texts or Terminal.

ReadLine(VAR s: ARRAY OF CHAR);

Reads a line (terminated by a carriage return) into a string.

WriteChar(ch: CHAR);

Writes a single character; no conversion from EOL to carriage-retum/line- feed
pairs is performed.

WriteLn;

Terminates a line.

WriteString(s: ARRAY OF CHAR);

Writes a string to the terminal.

The Standard Lib _ ry 225

Terminal Module Specification

DEFINITION MODULE Terminal;

PROCEDURE ReadChar (VAR ch: CHAR);
PROCEDURE BusyRead (VAR ch: CHAR);
PROCEDURE ReadAgain;
PROCEDURE ReadLine (VAR CHAR); s: ARRAY OF

PROCEDURE WriteChar (ch: CHAR);
PROCEDURE WriteLn;
PROCEDURE WriteString (s: ARRAY OF CHAR);

TYPE
SpecialOps (clearEol, insertDelete, highlightnormal);
OpSet = SET OF SpecialOps;

VAR available : OpSet;
VAR numRows,numCols : CARDINAL;

PROCEDURE ClearScreen;
PROCEDURE GotoXY(x,y: CARDINAL);

PROCEDURE ClearToEOL;
PROCEDURE InsertLine;
PROCEDURE DeleteLine;

PROCEDURE Highlight;
PROCEDURE Normal;

PROCEDURE InitScreen;
PROCEDURE ExitScreen;

END Terminal

226 MODULA

Terminals may require a different set of control codes to do certain screen func
tions, such as cursor positioning or clearing the screen. Thus the following pro
cedures of this module work only if the Turbo Modula-2 system has been properly
installed for the terminal running the system. Note: It is possible to install stand
alone Turbo Modula-2 programs as well as the system (see Appendix B »Installa
tion Procedures«).

Some of the screen functions available in the module Terminal are described
here.

ClearScreen ();

Clears the screen and homes the cursor (places it in the upper left comer of the
screen).

GotoXY(x,y: CARDINAL);

Places the cursor on column x, row y of the screen. Columns and rows are
numbered from 0. The upper left corner is at (0,0). A typical display has 80 col
umns and 24 lines, as shown in Figure 11-3.

Figure 11-3. Typical Display Using GotoXY.
(0,0) x (79,0)

(0,23) (79,23)

Inside the module Terminal are two variables, numRows and numCols, set by

The Standard Library 227

the terminal initialization to give the screen height and width. They are defined
as follows:

VAR
numRows,numCols: CARDINAL;

where for common terminals, numRows = 24 and numCol = 80.

You can highlight a piece of text with the procedures Highlight and Normal.

^ Highlight highlights output to the screen by underlining it, using inverse video,
V.* changing its brightness. This effect is dependent on the characteristics of your
terminal and how the system is installed. Normal returns you to normal display
mode.

The remaining procedures, ClearToEOL, DeleteLine, and InsertLihe, are used
mainly for text editing.

ClearToEOL deletes all characters from the cursor position to the end of the cur
sor line. DeleteLine deletes the cursor line completely and moves all following
lines up one to close the gap. InsertLine inserts a blank line at the current cursor
position.

After a call to any of these three functions, the cursor position is undefined.
The cursor has to be placed explicitly with a call to GotoXY.

Since these functions are not available on all terminals, there is an emumeration
type (SpecialsOps)and a set variable (OpSet) exported by Terminal that allow you
to determine which functions were installed. They are shown in the following:

l /PE
SpecialOps = (clearEol, insertDelete, highlightNormal);
OpSet = SET OF SpecialOps;

VAR
available : OpSet;

The variable available can be used as shown in the following examples. To clear
to the end of a line, first determine if the procedure ClearToEOL is installed on
the terminal.

The Standard Library 229

The ComLine Module

A, This module provides access to the command line and handles the redirection of
Z . input and output. The command line consists of any arguments that follow the

command that began the program. ComLine will work in both CP/M and Turbo
Modula-2 modes. The command line is simply declared in ComLine as a text.

VAR
commandLine: TEXT;

Once imported, it can be read like any other text; for instance, READ(com-
mandLinefileName) works perfectly. Of course, this text is quite short, consisting
of only a single line terminated by one EOT (32C) character. The text does not
need to be opened explicitly; ComLine does it on initialization.

You may have noticed that all Turbo Modula-2 system programs accept
arguments on the command line. If no argument is given there, the user is pro
mpted to enter it. This is accomplished by a call to the following procedure:

PromptFor (prompt: ARRAY OF CHAR; VAR s: ARRAY OF CHAR);

This returns an input string in the result parameter s. PromptFor first tries to
perform a ReadString from the command line. If no further data is found there,
it displays the prompt string and performs a ReadString on s from the terminal.
This method is user friendly, since it allows for interactive use and batch process
ing with command line arguments.

Redirection o f Input and Output
The command line can contain redirection arguments: The symbol < , followed

I ' y a file name, redirects the standard text input; while the symbol > , followed
V oy a file name, redirects output. Since many interactive programs will not work

with I/O redirection, redirection of input or output is not automatic; instead, there
are the procedures Redirectlnput and RedirectOutput.

If an input redirection argument is given on the command line, Redirectlnput
connects the standard text input with the file or device specified by that argument.
Similarly, RedirectOutput connects the standard text output with some device or
file, provided an output redirection argument is included in the command line.

230 MODULA

If the command line is read, any redirection arguments are ignored to avoid in
terference with normal command line arguments.

Note: Redirected files are not automatically closed when a program terminates.
Therefore, if output goes to a disk file, you must close the text (and the associated
file) explicitly with the CloseText procedure from Texts.
CloseText(output) called before program termination will cause the redirected out
put file to be correctly closed.

ComLine Module Specification

DEFINITION MODULE ComLine;
FROM Texts IMPORT TEXT ;

PROCEDURE Redirect Input;
PROCEDURE RedirectOutput;

PROCEDURE PromptFor (prompt:ARRAY OF CHAR; VAR s:ARRAY OF CHAR);

VAR
commandLine
inName,outName
progName

TEXT ;
ARRAY [0..19] OF CHAR;
ARRAY [0..7] OF CHAR;

END ComLine

The Standard Library 231

The names following the symbols < or > on the command line are saved in
the two variables inName and outName. These are declared ARRAY [0..19] OF
CHAR;. If no redirection arguments are given, both inName and outName are set
to »CON:«.

The last item exported by ComLine is the variable ProgName. It is declared as
ARRAY [0..7] OF CHAR;.

This contains the name of the executing program (without drive code or exten
sion). If a program is called from CP/M, this string is empty.

As an example, for Comline the following program CO copies the standard in
put to the standard output text. Using I/O redirection, it can be used for a large
number of purposes, displayed in the following:

CO <B:TEXTFILE
Displays the contents of TEXTFILE

CO <B:TEXTFILE >LST: Prints out TEXTFILE
CO >B:TEXTFILE Enters characters typed at the keyboard into

TEXTFILE until a A Z is read
CO (no arguments) Guess

MODULE CO;
FROM ComLine IMPORT RedirectInput,RedirectOutput;
FROM Texts IMPORT EOT, input,output,CloseText;
VAR
ch: CHAR;
BEGIN
Redirectlnput; RedirectOutput;
LOOP
READ (ch);
IF E0T(input) THEN EXIT END ;
WRITE (ch);
END ;
CloseText(input); CloseText(output)
END CO.

The module ComLine has an unexported exception called NoInputFile. This ex-

232 MODULA

ception is not usually trapped by user programs. If necessary it can be trapped
with the ELSE clause in an exception handler, like so:

MODULE TrapUnexportedException;
FROM ComLine IMPORT Redirectlnput, inName;
BEGIN
WRITELN(n inName is % inName);
Redirectlnput;
EXCEPTION
ELSE
WRITELN('Must be non-existent file»);

END TrapUnexportedException.

The exception is only raised if the name found in inName is not found. Thus,
if »JUNK« is not a valid file, the following invocation of the program causes the
error

Run MCD-file: MOOrUNEXPEXC < junk

inName is JUNK
Must be nonexistent file

The Standard Library 233

Utility Modules

This section describes library modules that provide common mathematical and
string-handling functions, and conversions to and from strings and numbers.

The MathLib and LongMath Modules

MathLib provides common mathematical functions, while LongMath provides the
same functions for double-precision variables, replacing every declared REAL
with a LONGREAL. Following are the functions provided by MathLib.

r
< >qrt(x: REAL): REAL;

Computes the square root of the (positive) argument jc. If jc is negative, the excep
tion ArgumentError is raised.

Exp(x: REAL): REAL;

Computes the natural exponent of the argument jc. To prevent overflow from oc
curring, x must be smaller than 87.4; otherwise, the exception ArgumentError is
raised.

Ln(x: REAL): REAL;

Returns the natural logarithm of the (positive) argument jc. The exception
ArgumentError is raised on negative x.

Sin(x: REAL): REAL;
Cos(x: REAL): REAL;

, Returns sine and cosine of the argument jc. The argument must be given in ra
dians (radians = degrees * pi/180).

ArcTan(x: REAL): REAL;

Returns the arc tangent of argument x. The result is given in radians and lies
within the interval of -pi/2 to pi/2.

234 M ODULA

DEFINITION MODULE MathLib;

PROCEDURE Sqrt
PROCEDURE Exp
PROCEDURE Ln
PROCEDURE Sin
PROCEDURE Cos
PROCEDURE ArcTan
PROCEDURE Entier

(x: REAL): REAL;
x: REAL): REAL;
x: REAL): REAL;
x: REAL): REAL;
x: REAL): REAL;
x: REAL): REAL;
x: REAL): INTEGER;

PROCEDURE Randomize(n: CARDINAL);
PROCEDURE Random (): REAL;

EXCEPTION ArgumentError;
(# Is raised if an argument is outside its legal range #)

END MathLib.

LongMath Module Specification

DEFINITION MODULE LongMath;

PROCEDURE Sqrt x:
PROCEDURE Exp x:
PROCEDURE Ln x:
PROCEDURE Sin x:
PROCEDURE Cos x:
PROCEDURE ArcTan x:
PROCEDURE Entier x:

LONGREAL): LONGREAL;
LONGREAL): LONGREAL;
LONGREAL): LONGREAL;
LONGREAL): LONGREAL;
LONGREAL): LONGREAL;
LONGREAL): LONGREAL;
LONGREAL): LONGINT;

EXCEPTION ArgumentError;
(* Is raised if an argument is outside its legal range »)

END LongMath.

The Standard Library 235

Entier(x: REAL): INTEGER;

Returns the integer part of a real number rounded toward negative infinity. For
example:

\i x > = 0, then entier(x) = INT(x)
if jc < = 0, then entier{x) = INT(x-I)

Thus,

Entier(2.7) = 2
Entier(- 2.7) = -3
Entier(- 1.1) = 2
Entier(1.1) = 1

Other mathematical functions can be easily constructed by combining the
preceding functions. For example:

Tan(x) = Sin(x) / Cos(x)
x raised to the y______ — Exp(Ln(x)*y)

The last tranformation is recommended only when y is not a whole number.
For integer y, the following algorithm is more efficient:

NODULE PowerTest;

PROCEDURE power(x: REAL; n: INTEGER): REAL;
VAR
i: CARDINAL;
z: REAL;
BEGIN
i := ABS(n); z := 1.0;
WHILE i>0 DO
(* z * x**i = xO**ABS(n) *)
IF ODD(i) TUEN z := z * x END ;
x := x * x; i := i DIV 2
END ;
IF n> =0 THEN RETURN z
ELSE RETURN 1.0/z
END

236 M ODULA

END power;

BEGIN
WRITELN(power(23.9,2));
END PowerTest.

In addition to the previous functions, MathLib (but not LongMath) contains a
random-number generator. There are two user calls to the random-number
generator: Randomize and Random.

Random(): REAL;

Returns the next element of a pseudo-random-number sequence. Numbers are
distributed evenly in the interval from 0.0 to 1.0.

Randomize(n: CARDINAL);

Reseeds the generator. A different random-number sequence corresponds to every
possible argument n. Any random sequence may be repeated by providing Ran
domize with the same value of n.

Randomize takes one argument, a long (32 bit) integer, and sets the seed for the
random-number generator equal to that number. Random takes no arguments, and
returns a floating-point number x in the range 0 < = x <1. The number may be
single precision or double precision.

Since there is a default value for the seed, most users need only call Random.
Randomize is provided so that users can replicate simulations, since Random is
a deterministic function of the seed. (In computer science jargon, it is a pseudo-
random-number generator and not a true random-number generator.)

You should not call Randomize too frequently, because if Randomize is called
for each call to Random then the numbers will not be much more random than
the arguments to Randomize.

The least-significant bits in the real number returned by Random may not be
particularly random.

The random-number generator maintains a 32-bit seed, which it treats as an un
signed integer. Each call to Random changes the seed by the formula

The Standard Library 237

seed := 134775813 * seed + 1 mod 4294967296

and then returns the real number seed / 4294967296.

For example, if we call Randomize with the argument 1, then the seed is set to
1 and the next call to Random changes the seed to 134775814 and returns

134775814 / 4294967296 + 0.03137994...

No matter what the seed is, the random-number generator will pass through
4,294,967,296 numbers before it repeats.

The default value of the seed is 860098850.

The Strings Modules

A string in Modula-2 is an array with elements of type CHAR. The current con
tents of a string do not have to fill out the array completely; the end of the string
is marked by a null character (0C). For convenience, there is the predefined type

TYPE
String = ARRAY [0..80] OF CHAR;

The module Strings offers a number of functions to manipulate strings, con
catenate them, extract or delete substrings, and so on. Since their parameters are
open arrays, they will work with any array of characters, not only with the
predefined type String. Keep in mind, however, that formal, open array
parameters map an actual array parameter into an index range starting at zero.
Therefore, all index parameters passed to the following procedures are expected
to have a range starting at zero. Thus, we recommend setting the lower bound to
:ero when you define your own string type. The exported string procedures
follow.

Length (VAR str: ARRAY OF CHAR): CARDINAL;

Returns the length of the contents of the given array. The returned length does not
need to coincide with the size of the str. If the array a is filled completely,
HIGH(a)+l is returned; otherwise, Length will yield the index of the first null
character encountered.

238 M ODULA

For example, let Alfa be declared as ARRAY [0..100] OF CHAR. Thus,

Alfa := ""; WRITE(Length(Alfa)) will give 0
Alfa := "ABC"; WRITE(Length(Alfa)) will give 3

Pbs (substr,str: ARRAY OF CHAR): CARDINAL;

Pos scans for the first occurrence of the given string substr in string str. The pro
cedure returns the index of the substring’s first element. If substr is not contained
in str, HIGH(str)+l is returned. Hence, this procedure can give back any value
between 0 (if substr is a prefix of str) and HlGH(str)+l (if substr is not found).

Insert (substr: ARRAY OF CHAR; VAR str: ARRAY OF CHAR; inx: CAR
DINAL);

Inserts the given string substr into the given str at the index position inx. As
always, indices are assumed to start at zero. If the array str is not large enough
to hold the augmented string, the exception StringError is raised. Note that no
error is raised if the substr is inserted at an index greater than the length of the
string but still within the size of the string.

Strings Module Specification

DEFINITION NODULE Strings;
TYPE
String = ARRAY [0..80] OF CHAR;

PROCEDURE Length
PROCEDURE Pos
PROCEDURE Insert

PROCEDURE Delete
PROCEDURE Append
PROCEDURE Copy

PROCEDURE CAPS

(VAR str: ARRAY OF CHAR): CARDINAL;
(substr,str: ARRAY OF CHAR): CARDINAL;
(substr: ARRAY OF CHAR; VAR str: ARRAY OF CHAR;

inx: CARDINAL);
(VAR str: ARRAY OF CHAR; inx,len: CARDINAL);
(substr: ARRAY OF CHAR; VAR str: ARRAY OF CHAR);
(VAR str: ARRAY OF CHAR; inx,len: CARDINAL;
VAR result: ARRAY OF CHAR);

(VAR str: ARRAY OF CHAR);
EXCEPTION StringError;
END Strings.

The Standard Ubru. y 239

Delete (VAR str: ARRAY OF CHAR; inx,len: CARDINAL);

Deletes len characters in the given string str, starting at the element with index
inx.

Append (substr: ARRAY OF CHAR; VAR str: ARRAY OF CHAR);

Appends the given string substr to the given str. If the array str is not large enough
to hold the augmented string, the exception StringError is raised.

Copy(VAR str: ARRAY OF CHAR; inx,len: CARDINAL; VAR result: ARRAY
3F CHAR);

Assigns a substring of str, starting at position inx, consisting of len characters to
string result.

CAPS (VAR str: ARRAY OF CHAR);

Changes all the characters in str to uppercase.

The following utility module demonstrates use of the Strings module. When
dealing with files, it is often necessary to supply default extensions or to use
several files with the same name but different extensions. These tasks can be
simplified by using a library module like the following one:

DEFINITION MODULE FileExtensions;
TYPE
Extension = ARRAY [0. .2] OF CHAR;

PROCEDURE AppendExt (VAR str: ARRAY OF CHAR; ext: Extension);
PROCEDURE StripExt VAR str: ARRAY OF CHAR);
PROCEDURE GetExt (str: ARRAY OF CHAR; VAR ext: Extension);

END FileExtensions.

The procedure AppendExt supplies a default extension if the given str does not
contain an extension itself. StripExt removes any extension in str, while GetExt
returns the extension of str or the empty string if str does not have an extension.
Using the services exported by Strings, these procedures can be implemented as
follows:

240 MODULA

IMPLEMENTATION MODULE FileExtensions;
FROM Strings IMPORT Length, Pos, Append, Copy, Delete;

PROCEDURE AppendExt(VAR str: ARRAY OF CHAR; ext: Extension);
VAR len: CARDINAL;
BEGIN
IF Pos(".", str) = HIGH(str)+l THEN (* no "." in str *)
len := Length(str);
str[len] := n."; (* Strings go from 0 to Length(str)-1 #)
Append(ext, str)
END
END AppendExt;

PROCEDURE StripExt(VAR str: ARRAY OF CHAR);
VAR
period: CARDINAL;
BEGIN
period := Pos(n.n, str);
IF period # HIGH (str)+1 THEN
Delete(str, period, Length(str)-period)
END
END StripExt;

PROCEDURE GetExt(str: ARRAY OF CHAR; VAR ext: Extension);
VAR
period,elen: CARDINAL;
BEGIN
period := Pos(n.n ,str);
elen := HIGH(str)-period;
IF elen > 3 THEN elen := 3 END ;
Copy(str, period+1, elen, ext)
END GetExt;

END FileExtensions. •

The Standard Library 241

The Convert Module

Convert exports procedures to convert strings into standard Modula-2 numeric
types and back again. (Doubles provides the same services for double-precision
real numbers.)

The first four procedures of the Convert module convert strings to INTEGERS,
CARDINALS, LONGINTs, and REALs, respectively. The result is placed into
the second parameter. The Boolean function result indicates whether a conversion
is possible. It is TRUE if the string represents a legal number; otherwise, it is
FALSE.

The second four procedures convert numbers to strings. The number is placed
into the string starting at the right-most index. The left end of the string is padded
with blanks. If the number does not fit into the given string, the exception
TooLarge is raised. The digits parameter of procedure RealToStr has the same
meaning as its equivalent in the procedure WriteReal (see the module Texts): It
controls the size of the mantissa and the form of the string result (scientific or
fixed point). For example, given the declaration

VAR
s: ARRAY [0..11] OF CHAR;
a call of RealToStr(2.5, s , 2); gives »2.50« and RealToStr(2.5, s,-4) gives

»2.5000E+00«.

Convert Module Specification

TRCMD3 DEFINITION MODULE Convert;
PROCEDURE StrToInt (VAR s: ARRAY OF CHAR; VAR i : INTEGER) : BOOLEAN;
PROCEDURE StrToCard (VAR s: ARRAY OF CHAR; VAR c: CARDINAL) : BOOLEAN;
PROCEDURE StrToLong (VAR s: ARRAY OF CHAR; VAR 1: LONGINT) : BOOLEAN;
PROCEDURE StrToReal (VAR s: ARRAY OF CHAR; VAR r: REAL) : BOOLEAN;

PROCEDURE IntToStr (i: INTEGER; VAR s: ARRAY OF CHAR);
PROCEDURE CardToStr (c: CARDINAL; VAR s: ARRAY OF CHAR);
PROCEDURE LongToStr (1: LONGINT; VAR s: ARRAY OF CHAR);
PROCEDURE RealToStr (r: REAL; VAR s: ARRAY OF CHAR; d i g i t s : IN T EG ER);

EXCEPTION TooLarge;
END Convert.

242 MODULA

The Doubles Module

Doubles exports procedures that provide support for double-precision real
numbers (LONGREALs), similar to those provided for single-precision real
numbers (REALs) in Texts and Convert.

As shown in the definition module, the variable legal monitors input from Read-
Double in a similar fashion to Done and ReadReal in Texts. The other routines
are identical to their single-precision REAL counterparts.

Doubles Module Specification

DEFINITION NODDLE Doubles;
FROM Texts IMPORT TEXT;

VAR le g a l: BOOLEAN;

PROCEDURE ReadDouble (t : TEXT; VAR d: LONGREAL);
PROCEDURE WriteDouble (t : TEXT; d: LONGREAL; n: CARDINAL;

m: INTEGER);

PROCEDURE StrToDouble (VAR s: ARRAY OF CHAR;
VAR d: LONGREAL): BOOLEAN;

PROCEDURE DoubleToStr (d: LONGREAL; VAR s : ARRAY OF CHAR;
d ig i ts : INTEGER);

END Doubles.

The Standard Library 243

System-Dependent Modules

The four modules described here provide utilities of a low-level nature. Processes
and Loader are heavily dependent on the underlying system. They are coded in
a high-level manner because SYSTEM and STORAGE provide a standard interface
to machine-dependent operations such as memory allocation and process control.

The Processes Module

This module provides the synchronization between loosely coupled or largely in-
.^oendent processes. A process consists of a piece of program and a work space
v its data. It is realized by the standard Modula-2 concept of a coroutine using
the primitives PROCESS, NEWPROCESS, and TRANSFER in the pseudomodule
SYSTEM.

A process takes the form of a parameterless procedure, which must be declared
at the global level. Processes are not invoked by a procedure call, however. In
stead, flow of control between processes is achieved via variables of type
SIGNAL. Only two operations are applicable to signals: SEND or Awaited. When
a process waits for a signal, its execution is paused; that is, control transfers to
some other process. The waiting process is resumed when the awaited signal is
sent by the currently executing process. More than one process can wait for the
same signal. In that case, waiting processes are inserted into a queue, with the
first process in the queue resuming once it has been sent the required signal. Sen
ding an unanticipated signal has no effect.

The services exported by Processes are described next.

StartProcess(P: PROC; n: CARDINAL);

(rts a concurrent process with program P and a workspace of size n (in bytes).
A minimum workspace consists of about 50 to 100 words. After a call to this pro
cedure, control is transferred to the newly created process. For more information
on this procedure, see the procedure NEWPROCESS in the SYSTEM module and
Wirth’s book.

244 MODULA

Processes Module Specification

D E F IN IT IO N MODULE Processes;
TYPE SIGNAL;

PROCEDURE StartProcessP: PROC; n: CARDINAL);
PROCEDURE SEND
PROCEDURE WAIT
PROCEDURE Awaited
PROCEDURE Init

EXCEPTION DeadLock;

(VAR s: SIGNAL);
(VAR s: SIGNAL);
(s: SIGNAL): BOOLEAN;
(VAR s: SIGNAL);

END Processes.

The Standard Library 245

SEND(VAR s: SIGNAL);

If there is no process waiting for s , SEND has no effect. If one is waiting, it
is resumed. If several processes are waiting for the same signal, they are inserted
into a queue. The first process in the queue is resumed when the call to SEND(s)
occurs.

WAIT(VAR s: SIGNAL);

Causes the currently executing process to be suspended until it receives the signal
 ̂ Drocesses ready for execution are ordered in a queue. After a call to WAIT,\ the
licxt process in the queue is resumed. If no process is ready for execution (that
is, all processes are waiting), the exception DeadLock is raised.

Awaited(s: SIGNAL): BOOLEAN;

Returns TRUE if at least one process is waiting for s; otherwise, it returns
FALSE.

Init(VAR s: SIGNAL);

Initialization of a SIGNAL; this is mandatory before a SIGNAL is used.

DeadLock;

This exception is raised if all current processes are waiting for a signal; it indicates
an error in your signal-sending logic. A procedure constituting the program of a
process cannot be called, nor can it return like a normal procedure. Its instruc
tions are usually enclosed in a LOOP statement whitout a corresponding EXIT.

enable transfer of control to some other process, such a procedure must contain
L least one SEND or WAIT statement.

A state can arise where all processes are waiting for some signal. In this case,
no process can execute and subsequently the system will come to a halt. This
situation is known as a deadlock, or deadly embrace. When it is detected by Pro
cesses, the exception DeadLock is raised.

For example, when polling a number of external devices; assume the computer
is connected to a number of external devices that can be serviced independently
from one another. The computer will ask each device: Do you require service?

246 MODUL

When a service request is found, it sends out the message: Device No. n neei
service. If there is a process ready to serve this device, it then takes control
the processor. When it is finished, this process starts the polling again by puttii
itself into a wait state for the next request. If the service is time-intensive, it cou
just as well enable polling repeatedly in the middle of its operation. This is achie
ed by waiting for the signal RESUME, which transfers control to a further lo<
through the polling routine. Only when no further service is needed is the sign
RESUME sent, causing one of the processes waiting for it to be resumed,
sketch of a module that services devices by polling follows:

MODULE P o ll;
FROM Processes IMPORT SIGNAL, SEND, WAIT, Awaited, I n i t ,
S ta rtP ro cess ;
VAR

S e rv ic e l , . . . ,ServiceN , Resume : SIGNAL;

PROCEDURE D evicel;
BEGIN

LOOP
W AIT(Servicel);
(# "Service device # 1 " *)
IF (* "Service is com plicated"*) THEN

(* Check i f th e re are o th er devices w aiting fo r se rv ice *)
WAIT(Resume)

END ;
(* "Resume se rv ice of device # 1 " *)

END
END D evicel;

PROCEDURE Device2;
(* Body of Device2 s im ila r to D evicel *)
END Device2;

PROCEDURE DeviceN;
(* Body of DeviceN s im ila r to D evicel #)
END DeviceN;

The Standard Library 247

BEGIN (# Main program, con tain ing the p o llin g loop #)
I n i t (S e r v ic e l) ; . . . In it(S e rv ic eN);
In it(D eviceC heck); S ta rtP ro cess(D ev ice l,1 0 0);
S ta rtP rocess(D ev ice2 ,500);

S tartP rocess(D eviceN ,200);
LOOP

IF (#"ServiceRequest o f Device # 1 " *) & A w aited(Servicel) THEN
SEND(Servicel)

EIOIF (# ,fServiceRequest of Device # 2 " *) & Awaited(Service2) THEN
SEND(Service2)

ELSIF (*"ServiceR equest o f Device #N "*) & Awaited(ServiceN) THEN
SEND(ServiceN)

ELSE
(* I f th e re are any pending se rv ic e s , resume one o f them *)
SEND(Resume)

END
END

END P o ll.

Note that the polling process encapsulated in the main program does not contain
any WAIT statements. It is always available for execution, excluding the possibility
of a deadlock. Every other process in this module pauses only by executing a
WAIT statement; therefore, the only process ready for execution after issuing a
wait is the polling process~a guarantee that polling occurs regularly.

A more rudimentary polling scheme can be implemented without the notion of
processes and signals. In this scheme, the polling loop calls the service pro
cedures directly when a service request is detected. However, in order to express
a feature like the resume operation conveniently, processes are essential.

248 MODULA

The Pseudomodule SYSTEM

This module contains types and procedures for low-level programming. An im
plementation part for this does not exist; rather, the compiler translates all ex
ported operations directly into code, which is why SYSTEM is called a
pseudomodule. Everything in it must be imported to become available, thereby
making the use of low-level constructs explicit. The following sections describe
the definition part of SYSTEM.

Low-Level Access to Data
The type WORD represents a machine word (2 bytes, 16 bits). Every type occupy
ing a word or less is assignment-compatible with WORD. In particular, a formal
parameter of type WORD accepts any actual parameter occupying one machine
word. No operations (except assignment) can be performed on variables of type
WORD. However, a variable of type WORD can be the argument of a type-transfer
function.

The type BYTE represents a byte. It can be considered a subrange of type
WORD. A BYTE can be assigned any value with a decimal equivalent in the range
of 0 to 255.

Array o f Word
If a formal parameter is declared as an ARRAY OF WORD, its corresponding ac
tual parameter can be of any type. The upper bound of the open array is adjusted
to match the size of the actual parameter; thus, no restrictions are imposed on a
procedure’s arguments. The most common examples of these procedures are
ReadRec and WriteRec found in the library module Files.

The Standard Library 249

Pseudomodule SYSTEM Specification

DEFINITION MODULE SYSTEM
TYPE

WORD; BYTE; ADDRESS; PROCESS;
VAR

IORESULT, HLRESULT: CARDINAL
PROCEDURE ADR(VAR v: AnyType): ADDRESS;
PROCEDURE TSIZE(AnyType): CARDINAL;

PROCEDURE TRANSFEK(VAR source, d e s t: PROCESS);
PROCEDURE IOTRANSFER(VAR source, d es t: PROCESS; n: CARDINAL);
PROCEDURE NEWPROCESS(p: PROC; a: ADDRESS; n: CARDINAL;

VAR q: PROCESS);

PROCEDURE BI0S(n: CARDINAL; w: WORD): CARDINAL;
PROCEDURE BD0S(n: CARDINAL; w: WORD): CARDINAL;
PROCEDURE CODE(AnyStringLiteral);

PROCEDURE MOVE(source, dest : ADDRESS; len : CARDINAL);
PROCEDURE FILL(adr: ADDRESS; len : CARDINAL; v a l: BYTE) ;
PROCEDURE INP(p o rt: WORD): CARDINAL;
PROCEDURE 0UT(p o rt: WORD; d ata : CARDINAL);

EXCEPTION OVERFLOW,REALOVERFLOW,OUTOFMEMORY,BADOVERLAY;

END SYSTEM.

250 MODULA

ADDRESS

ADDRESS is a type that represents memory locations. It can be thought of as a
POINTER TO WORD; thus, dereferencing an ADDRESS will yield a WORD. Ad
dresses can be computed; it is possible to add and subtract CARDINALS from
addresses with the result being of type ADDRESS. ADDRESS is compatible with
a CARDINAL and with every pointer type. In particular, if a formal parameter
is of type ADDRESS, the corresponding actual parameter may be of any pointer
type.

ADR

The procedure ADR returns the address of its argument. It is declared as

ADR(VAR x: nAnyStructuredType"): ADDRESS;

Note that since Turbo Modula-2 implements register variables in local pro
cedures (see Chapter 8, »Low-Level Facilities«), the ADR function will not accept
simple variables of unstructured types. This is because a scalar variable in a pro
cedure may reside in a register that has no address.

TSIZE

The procedure TSIZE accepts the name of a type as its argument. It returns the
minimum size of any variable of the argument type. Thus, when variable x is
declared as VAR x: T, then SIZE(x) = TSIZE(T).

TSIZE has an alternate syntax similar to the NEW procedure: If T is a record
type whose last field is a variant, a tag value of this variant can be indicated behind
the type. In this case, TSFZE returns the amount of memory used by a variable
created with a call to NEW with the same tag- value indication. If the last variant
contains another variant as its last field, a tag value for this variant may be given,
too. Thus, TSIZE is informally declared as

TSIZE("AnyType")

or

TSIZE("AnyType" ,TagValue,TagValue,. . .)

The Standard Library 251

Coroutines and Interrupts
Modula-2 includes the concept of a coroutine, which consists of instructions and
a workspace separate from the main program. A coroutine can represent a process
or detail how statements will manipulate data. (The main program itself is a pro
cess, since it consists of statements acting on data.) Coroutines lead to the in
troduction of loosely coupled processes. At any one time, a single-processor com
puter can execute only one process. The pseudomodule SYSTEM exports the type
PROCESS to be used to reference a coroutine.

Although the body of a coroutine looks like that of a parameterless procedure,
i*s excecution is more like that of a main program. A coroutine cannot be called

v .ha call statement or exited by a RETURN statement-coroutines should never
reach the final end. Since coroutines are never exited by a RETURN or END
statement, their procedure body is usually enclosed by a LOOP statement without
a corresponding EXIT.

Control to and from a coroutine is done via the TRANSFER statement. When
a coroutine transfers control away from itself, its state is preserved until it is reac
tivated by a transfer from another coroutine. When a coroutine’s state is preserv
ed, all variables retain their values and modules remain initialized. When reac
tivated, the coroutine continues with the statement directly after the last
TRANSFER.

Note that the program bodies of coroutines and processes (as described in the
section, »The Processes Module«) are remarkably similar. In fact, processes are
modeled by coroutines. The module Processes implements StartProcess, SEND,
and WAIT with the primitives that follow.

NEWPROCESS(p: PROC; a. ADDRESS; n: CARDINAL; VARq: PROCESS);

(;ates a coroutine and initializes the given process q with procedure body p and
a workspace of n words starting at address a. This workspace must be large
enough to contain p’s local variables, local stack, and local heap. A subsequent
TRANSFER(r,q) will transfer control to the first statement of procedure p. PROC
is a standard procedure type representing a parameterless procedure. It is ex
ported from the SYSTEM module as

TYPE
PROC = PROCEDURE () ;

252 MODULA

T R A N SFE R IE R source, dest: PROCESS);

Transfers control to the coroutine dest. The currently active coroutine is assigned
to source and suspended. A subsequent TRANSFER to source will resume the
suspended coroutine with the next statement after the transfer.

Coroutines are used to express interrupt handling, such that a coroutine waiting
for an interrupt will transfer control to some other coroutine (the main program)
to do something in the meantime. When the interrupt occurs, control is transferred
back to the interrupt-handling coroutine by an unscheduled TRANSFER statement.

It is as if a transfer instruction is explicitly inserted into the executing coroutine
at the point of interrupt. Since we do not know the state of execution of the inter
rupted routine, no explicit TRANSFER can be used. Thus, a special transfer in
struction is provided to allow unscheduled transfers.

IOTRANSFER(VAR source, dest: PROCESS; n: CARDINAL);

Performs a normal transfer from source to dest. When the interrupt specified by
the given n occurs, control is transferred back to the next statement after
IOTRANSFER. Any available interrupt vector can become n.

Interrupts must sometimes be disabled to avoid disturbing critical program
parts. This is done by placing critical procedures in a module that is given a
priority. Such a module is called a monitor. The priority (a numeric value) is in
dicated in square brackets after the module name; for example:

MODULE C r i t ic a lS tu f f [1];

IMPLEMENTATION MODULE Processes!!];

When a procedure in a monitor is executed, only interrupts of a higher priority
than the monitor are enabled. However, in Tlirbo Modula-2 there are no interrupts
with priorities since the Z80 hardware does not usually recognize them. All inter
rupts are disabled when a piece of a monitor is executed; that is, any number ir
brackets after the module name shuts out all (maskable) interrupts.

Warning: CP/M is not designed for interrupts; in particular, it is not reentrant
Therefore, when a CP/M operation is suspended by an interrupt, the operatior

The Standard Librury 253

(and possibly others as well) cannot be invoked by the interrupting routine. (Since
interrupts are only of limited use when dealing with CP/M, those of you interested
in a more detailed discussion can refer to Wirth’s book.)

Z80-Specific Procedures
The following procedures allow the programmer to take direct advantage of cer
tain Z80 machine instructions. MOVE and FILL are very fast and their use is
recommended anywhere speed is important. INP and OUT are for accessing the
Z80 I/O ports. The native code generator produces highly efficient inline code for
INP and OUT

MOVE(source,destin: ADDRESS);

Moves blocks of data in memory. Its operation is also appropriate for blocks of
overlapping memory: If source <destin, then the upper addresses are moved first;
and if source > =destin, then the lower addresses are moved first.

FILL(adr:ADDRESS; nbytes: CARDINAL; val: BYTE);

Fills the block of memory starting at adr, which is nbytes large, with the byte value
val.

INP(port: WORD): CARDINAL;

Receives (inputs) a value from an I/O port.

OUT(port: WORD; data: CARDINAL;);

Outputs a value to an I/O port.

Interface to CP/M
The next two procedures allow you to directly access the operations of CP/M.

BDOS(n,w: WORD);

Results in a call to memory location 5, the CP/M entry location. The function
number is specified in the given n; w denotes an additional parameter. If some
BDOS operation returns a result in the accumulator A, it can be found in the
variable IORESULT If an operation returns a 16- bit result in register HL, it can
be retrieved from the variable HLRESULT

254 MODULA

IORESULT and HLRESULT are declared as CARDINALs:

VAR HLRESULT, IORESULT: CARDINAL;

The action performed by BDOS is shown in the following:

□ Load register C with n.
□ Load register DE with w.
□ CALL 5.
□ Assign the contents of accumulator A to IORESULT.
□ Assign the contents of register HL to HLRESULT.

BIOS(n,w: WORD): CARDINAL;

Results in a call to the BIOS jump vector. The given n indicates which entry is
called: 0=WARMBOOT, l=CONSTAT, 2=CONIN, and so on. Its exact opera
tion is as follows:

□ Load A with the given n.
□ Load BC with the given w.
□ CALL WARMBOOTf n*5.
□ Assign the contents of accumulator A to IORESULT.
□ Assign the contents of register HL to HLRESULT

For example, to read a character directly from the console, do the following:

BDÖS(l,0); ch:=CHR(IORESULT);

To do the same using a call to the BIOS vector:

BI0S(2,0); ch:=CHR(IORESULT);

Assembler Interface
Assembly routines can be included in a Turbo Modula-2 program by using

C0DE("Any s t r in g l i t e r a l ") ;

A call to CODE can be inserted behind a procedure heading, replacing the body
of the procedure. Its body may not contain a declaration part, BEGIN statement,
or any other statements. The final END must be present. Compilation of a CODE

The Standard Library 255

statement causes the .COM file whose name is given as an argument to be inserted
into the object program. For example:

PROCEDURE MOVE(source,dest: ADDRESS; n: CARDINAL);
CODE (n MOVE n)

END MOVE;

establishes MOVE as an assembly routine. During compilation, the file
MOVE.COM is read from disk and inserted into the object program. A call to
MOVE will execute the assembly routine MOVE.COM. The file extension .COM
 ̂‘ supplied automatically.

Assembly routines can have an arbitrary number of parameters and can return
results; that is, they can be used as function procedures. It is essential to declare
function procedures with the correct result type. Assembly routines that return
a result when none is declared can crash the system.

Since where an object program will be loaded is unknown at compile time, in
cluded assembly routines must be fully relocatable. Only relative jumps may be
used, and calls to subroutines or absolute access to data within the routine are not
allowed. Furthermore, to determine the exact size of a routine, it must contain its
length in the first 2 bytes. These bytes are stripped off by the compiler; they are
not executed.

An assembler routine can expect the following environment:

□ Before an assembly procedure is called, its parameters are pushed onto the
stack exactly as they are declared in the procedure heading. Value parameters
of unstructured types are loaded immediately. VAR parameters and

/ parameters of an ARRAY or RECORD type are loaded by address. The
' return address is at the top of the stack.

□ Upon entry, register HL points to the beginning of the routine’s object code.
Thus, data embedded in the program text can be retrieved using HL plus an
index.

□ If an assembly routine returns a result, it is pushed onto the stack. In this case,
be sure that all parameters have been removed from the stack and the return
address is saved.

256 MODULA

□ The stack itself is 64 bytes deep. If more space is needed, it must be relocated
and restored upon return. All registers can be destroyed.

To continue with the MOVE example, we will show how the stack is set up after
a call to MOVEy but before any of MOVE’S instructions have executed. MOVEs
parameter source was pushed first, followed by desty and then the count n. The
return address is on the top of the stack and the current PC value is in HL.

For example, the parameters for the procedure MOVE are situated on the stack
as follows:

High

Low

source

dest

ret-addr < SP

The assembly code for MOVE pops all parameters off the stack, replacing the
return address. It then checks the count word and if it is greater than zero, it per
forms the move and returns.

A possible implementation of MOVE is shown in the following:

ORG 100H ; unimportant, must be relocatable

DEFW MOVEEND-MOVE ; indicate size of object code

POP HL ;save return address
POP BC ; load BC with count n
POP DE ;load DE with destination
EX (SP),HL ;load HL with source and

;put return address back on stack
LD A,B ; i f BC=0 then return
OR A,C
RET Z

The Standard Library 257

LDIR ;Move

RET

MOVEEND END

258 MODV

Modules in Memory Management

This section introduces the modules STORAGE and Loader. Storage allocates <'
deallocates dynamic data, while Loader loads and executes overlay modu]
Since both modules affect the way data and programs are held in memory, 1
first take a look at the memory organization of Turbo Modula-2.

The memory available for Turbo Modula-2 is the transient program area (T)
of CP/M. The TPA starts at address 100 hex and extends to the start of the BD
part of CP/M. How Turbo Modula-2 uses this area is shown in Figure 11-5,

Figure 11-5. T\irbo Module-2’s Use of TPA

Highest
TPA Address

Address 100H

Runtime Stack
(Grows Downward)

Heap
(Grows Upward)

Area for Programs
and Global Data

System Data

Support Modules:
ComLine
Files
Texts
Loader
Convert
Doubles

T\irbo Modula-2 Core

M-code Interpreter

Can use up the amount
of memory left

Can vary in size

ca IK

ca 7K

ca 1.5K

ca 4.5K

At the bottom of the TPA is the M-code Interpreter. All other parts of the Ti
Modula-2 system and all application programs written within it and not comp
with the native code option exist in an intermediate code called M-code. Th
a variant of the instruction set of Wirth’s Modula computer, Lilith. The coc

The Standard Liurary 259

optimized for space conservation. Every M- code instruction is interpreted by this
part of the system.

The object code of the Turbo Modula-2 core resides directly above the inter
preter. It constitutes a runtime supervisor that has the main tasks of setting up the
rest of the system and diagnosing and handling exceptions (errors).

There are a few support modules used by virtually every program: Texts, Files,
Loader, Convert, and ComLine. A program’s loading time can be improved if
these modules are already present in memory. Thus all of these modules are link
ed together in the file M2.COM, and are loaded into memory when the system
is started.

The resident support modules occupy about 7K of main memory. If an applica
tion does not need these modules and memory space is at a premium, the program
can be transformed into a .COM file using the linker (see Chapter 10 for more
about the linker’s operation). The linker will include into the .COM file only those
modules that are needed. This can result in a memory savings of up to 6K.

There is space for other programs and their data above the area occupied by
M2.COM. Such programs include the system file SHELL.MCD, which interprets
the user’s commands and the compiler COMPILE.MCD as well as application
programs. The object modules together with their global data reside at the bottom
of this area.

The remaining space is partitioned dynamically between the runtime stack for
local data and the heap. The heap holds all variables that were created dynamical
ly by the NEW and ALLOCATE procedures. The stack is used for all local
variables, procedure parameters, and sometimes to evaluate complicated
arithmetic or logical expressions. A program is out of memory when the runtime
stack and the heap meet; in that case, the exception OUTOFMEMORY is raised.

260 MODULA

The STORAGE Module

This module handles allocation and deallocation of dynamically created variables.
All such variables reside in the heap area. Like SYSTEM, STORAGE is a
pseudomodule. It has neither an object file (STORAGE.MCD) nor a symbol file
(STORAGE.SYM). Instead, all the following services offered by this module are
built into Turbo Modula-2. The following procedures are provided by the module
STORAGE.

ALLOCATE(VAR a: ADDRESS; size: CARDINAL);

Allocates a space of size bytes on the heap and makes the pointer a point to the
beginning of the allocated area.

Note: Due to the allocation scheme employed by STORAGE, a minimum of (
bytes is always allocated, even if the size parameter specifies a smaller value.

DEALLOCATE(VAR a: ADDRESS; size: CARDINAL);

Releases the area referred to by the given pointer a . The released area is assume«
to have the given size. The size must be equal to the size indicated when the are;
was created. The deallocated area is available for future allocation of other data
The pointer a is set to nil.

Standard Procedures Dependent on Storage

NEW(a:POINTER TO »AnyType«);

NEW is translated into a call to ALLOCATE of the form ALLOCATED
TSIZE(»AnyType«)). ALLOCATE must be imported if the standard procedure NE\
is used.

DISPOSER: POINTER TO »AnyType«); .

DISPOSE is translated into a call to DEALLOCATE of the form DEALLOCATl
a, TSIZE(»AnyType«)). DEALLOCATE must be imported if a program makes us
of the standard procedure DISPOSE.

Heap Pointer
The top of the heap is marked by the heap pointer, which is inaccessible to a]

The Standard Library 261

plication programs. The heap can contain usable space because of the deallocation
of variables. If a variable residing in the middle of the heap is disposed, the releas
ed area is appended to a free list. There is one exception to this rule: If the variable
residing at the high end of the heap is disposed, its area is not appended to the
free list; instead, the heap pointer is decremented and the heap is compressed.
When a variable is allocated, the free list is searched to find an area large enough
to hold the required data. If the search is unsuccessful, the area is allocated at
the top of the heap; that is, the heap pointer is incremented. Thus, the heap status
consists of two elements: (1) the heap pointer, marking its top end, and (2) the
free list, containing information about holes available for future allocation.

STORAGE Module Specification

D E F IN IT IO N MODULE STORAGE;
FROM SYSTEM IMPORT ADDRESS;

PROCEDURE ALLOCATE (VAR a: ADDRESS; s ize : CARDINAL);
PROCEDURE DEALLOCATE (VAR a: ADDRESS; s ize : CARDINAL);

PROCEDURE MARK (VAR a: ADDRESS);
PROCEDURE RELEASE (VAR a: ADDRESS);

PROCEDURE FREEMEM (): CARDINAL;

END STORAGE.

262 MODULA

A user may want to handle the heap in a stack-like fashion; for example, create
a number of variables and then throw them away all at once. The following pro
cedures allow for this.

MARK(VAR a: ADDRESS);

Creates a new heap segment. The new segment is directly above the old heap
pointer. Its free list is initially empty. Until a call to RELEASE (a), all allocations
will allocate space in the new segment. The given address a is made to point to
the bottom of the segment; that is, it equals the old heap pointer.

RELEASE(VAR a: ADDRESS);

Releases the heap segment created by a call to MARK(a). The heap pointer and
free list of the old segment are restored. The heap pointer is reset to the given
address a. This address must have been set by a previous call to MARK(a). The
address a has the value nil after a call to RELEASE(a).

In a newly created heap segment, variables can be allocated and disposed of in
the normal way. While allocation is always safe, disposing presents some pro
blems. The user must make sure that only variables residing in the currently ac
tive heap segment are disposed. Disposing of a variable that resides in a segment
buried below the one last created by a call to MARK will result in a BadHeap ex
ception. Similarly, disposing of a variable in an already-released segment causes
the same exception to be raised.

The following instruction sequence is legal:

MARK(a);
NEW(p);
NEW(q);
DISPOSE(p);
RELEASE(a)

The Standard Library 263

And the following sequences result in the exception BadHeap:

NEW(p);
MARK(a);
DISPOSE(p); (Disposing a variable in some buried

segment is not allowed)

MARK(a);
NEW(p);
RELEASE(a);
DISPOSE(p); (p is already released)

Note: Creating or opening a file allocates space on the heap. When the file or
text is closed, this area is disposed again. As a result, the preceding precautions
must also be taken when a file or text is closed. For example, the following is il
legal:

Open(f , nINDATA");
MARK(a);
Close(f)

The user can interrogate the space that remains for heap allocation with the next
procedure.

FREEMEM(): CARDINAL;

Returns the number of bytes between the current value of the heap pointer and
the current top of the runtime stack. The size of available holes contained in the
free list is not taken into account. For this reason, FREEMEM gives somewhat
pessimistic information about the space available for heap allocation. The exact
number of available bytes is returned only if procedures ALLOCATE and
DEALLOCATE are used in a stack-like manner.

Dynamic Variable Errors
While dynamic variables are a very powerful concept, they must be used with
some care. The following are common sources of errors and how the module
STORAGE reacts to them:

264 MODULA

□ A variable is disposed when there are still other references to it. In this case,
the value(s) of the disposed variable is undefined. Worse, another variable may
have been allocated in the same area. Assignment to the disposed variable
would result in overwriting other data. Assignment could also ruin the free-list
management, which would result in raising the exception BadHeap.

□ The heap becomes too big. If the heap pointer overruns the runtime stack dur
ing an allocation request, no space is allocated and the exception
OUTOFMEMORY is raised. Since OUTOFMEMORY is exported by
SYSTEM, it can be handled by an exception handler in the application pro
gram. Note that it is possible to generate another OUTOFMEMORY excep
tion in the exception handler by calling a procedure with many or large
parameters (for example, WriteString or other I/O statements). Thus, excep
tion handlers for OUTOFMEMORY must have enough memory to operate
correctly.

□ A variable not residing in the active heap segment is disposed. This error can
only occur if MARK, RELEASE, and DISPOSE are not executed in the correct
order. This problem will usually cause the exception BadHeap to be raised
some time in the future.

The Loader Module

The Loader module handles the allocation and execution of object modules and
provides a standard method to activate overlays. These services may be necessary
if an application requires more memory than is currently available.

Note: The Turbo Modula-2 system linker provides a more flexible and convenient
method for defining overlays, which does not require any code modifications (see
the section, “The Linker,“ in Chapter 10). You should consider using it before us
ing the procedures described here.

If you get an OUTOFMEMORY error during program execution, your program
needed more memory than was available. Overlays provide one possible solution
to memory problems, they work as follows: A large program usually consists of
some number of largely independent pieces, not all of which have to be physically
in memory at the same time. The Loader Module provides a method to
dynamically load only those modules that are required. Once their execution is
terminated, they disappear, freeing the memory space they occupied. Other pro
gram modules can be loaded in their place, and executed. Thus the memory re-

The Standard Library 265

quired to run a large program system can be significantly less than the sum of all
modules used by the program. Loader provides the Call procedure to dynamically
load a module.

Call (modName: ARRAY OF CHAR);

Loads the object module specified by modName into main memory and starts
its execution. When execution is complete, the memory space occupied by the ob
ject code and data is released again. Modules executed by Call involves memory
management and disk operations in addition to normal procedure execution time.

As an example, Call (“OVER“) loads and begins execution of the object file
OVER.MCD. The called module can import and access all objects of the calling
program. Direct communication in the reverse direction is not possible, because
the called module and its data area disappear after execution.

Note: Direct communication between a called module and its caller is not possi
ble. This can be solved by the use of objects (message buffers) imported by the
called procedure from the caller. Such objects can be freely modified by the called
procedure.

Variables created by an overlay with the NEW procedure are preserved after ter
mination of the overlay.

Call searches for the specified module on all logged disk drives (as specified
in the .MCD search path during installation). The variable FirstDrive can be used
to indicate which drive should be searched first for any overlay modules. This can
be used to improve the loading time for external overlays.

VAR
firstDrive: [0..15]

Indicates the first drive to be accessed when searching for the next overlay. The
encoding is 0 for drive A, 1 for drive B, and so on. An application may set
firstDrive to provide the drive where the next execution of Call should start its
search. This is useful if many overlays are used and the program does not know
which drive the overlay files will be on until runtime.

If the loading of a module is unsuccessful, the exception LoadError is raised.

266 MODULA

(The reason for an unsuccessful load is displayed in an additional message.)
LoadError can occur because of the following:

□ The object file is not found.

□ There is not enough space to hold the loaded object modules.

□ A version conflict is detected. T\xrbo Modula-2 maintains a system-wide
version-control scheme. If objects of a definition module are imported, the
importing module remembers the version of this definition module. If the
definition module is later changed and recompiled, all client modules have to
be recompiled as well. If this is not done, a version conflict results when the
client module is loaded. Note that if a definition module is recompiled but not
changed, its version is preserved.

The following example shows communication between overlay modules. The
main module is declared as an implementation module so that it may export a
communication buffer to the overlay modules. Overlays are controlled via this
record.

DEFINITION NODOLE Main;
TYPE

Commands = (SayHello, CallOver, none);
VAR

OverlayCommBuffer: RECORD
Command: Commands;
S trB uf: ARRAY [0 ..8 0] OF CHAR;

END ;

END Main.

The main program imports the Call procedure from the Loader module as
shown in the following:

IMPLEMENTATION MODULE Main;
FROM Loader IMPORT C all;
FROM Terminal IMPORT BusyRead;

) PROCEDURE Pause;
VAR ch: CHAR;

The Standard Library 267

BEGIN
REPEAT BusyRead(ch) UNTIL ch#OC;

END Pause; __\
PROCEDURE DisplayOverString;
BEGIN
WRITE('The string communication buffer ');
IF OverlayCommBuffer. StrBuf # 11 THEN
WRITELN('contains n1,OverlayCommBuffer.StrBuf,1n 1)

ELSE
WRITELN(1 is empty.')

END ;
END DisplayOverString;

BEGIN
WRITELN('Main program about to call overlay one.');
OverlayCommBuffer.Command := SayHello;
OverlayCommBuffer.StrBuf := '*;
Call('OVERl');
WRITELN('Return from call to overlay 1');
DisplayOverString;
WRITELN('Now call overlay one again with a null request.');
WRITELN('Will it be reloaded, press a key to see . . .');
Pause;
OverlayCommBuffer.Command := none;
OverlayCommBuffer.StrBuf := '';
Call("0VER1"); WRITELN('Returned from second c a ll to overlay 1 ',

' did the drive light go on ?');
DisplayOverString;
Pause;
WRITELN('Call overlay two, which will c a ll overlay one .1);
OverlayCommBuffer.Command := CallOver;
OverlayCommBuffer.StrBuf := '';
Call("0VER2");
WRITELN('Return from call to overlay 2',

'the drive light did go on, right!');
DisplayOverString;
WRITELN('That's all folks!');
Pause;

END Main.

268 M ODULA

The overlay modules are defined as follows; notice that they also import the
Call procedure from the Loader Module.

MODULE Overl;
FROM Loader IMPORT Call;
FROM Main IMPORT OverlayCommBuffer,Commands;

BEGIN
CASE OverlayCommBuffer.Command OF
SayHello: WRITELN(’Hello there. This is overlay one running1);

WRITELN('Message left in the string area. Goodbye!');
OverlayCommBuffer.StrBuf : =
'Message from overlay 1 passed to caller';
I

CallOver: WRITELN('Overlay one about to call overlay two. *);
WRITELN(‘Say hello number two . . .');
OverlayCommBuffer.Command := SayHello;
OverlayCommBuffer.StrBuf :=
Call('0VER2');
IF OverlayCommBuffer.StrBuf # '' THEN
WRITELN(’Overlay two passed me this string: *,

OverlayCommBuffer.StrBuf);
END ;
I

ELSE
WRITELN('Overlay two : no command passed*);

END ;
END Overl.

MODULE 0ver2;
FROM Loader IMPORT Call;
FROM Main IMPORT OverlayCommBuff er, Commands;
BEGIN
CASE OverlayCommBuffer.Command OF
SayHello: WRITELN('Hello there.');

WRITELN(’This is overlay two running’);
WRITELN (’Message left in the string area.’);
WRITELN(’Goodbye!’);
OverlayCommBuffer.StrBuf :=

The Standard Library 269

Message from overlay 2 passed to caller1;
I

CallOver: WRITELN(’Overlay two about to call overlay one, ’);
WRITELN(’Say hello number one . . .1);
OverlayCommBuffer.Command := SayHello;
OverlayCommBuffer.StrBuf := ’’;
Call(’OVERl’);
IF OverlayCommBuffer.StrBuf # '' THEN
WRITELN(’Overlay one passed overlay two

this string: ',
OverlayCommBuffer.StrBuf);

END ;
I

ELSE
WRITELN(’Overlay two : no command passed1);

END ;
END 0ver2.

Loader Module Specification

DEFINITION MODULE Loader;
VAR
FirstDrive: [0..15];

PROCEDURE Call(modName: ARRAY OF CHAR);

EXCEPTION LoadError;

END Loader.

Turbo Modula-2 reference Directory 271

Chapter 12
Turbo Modula-2 Reference Director)7

This chapter provides a complete alphabetical directory to Turbo Modula-2’s stan
dard identifiers, extensions, library procedures and modules, and reserved words.

Each entry contains a definition, usage and any restrictions, general comments,
an example, a declaration, and a cross reference(s) to similar items where ap
propriate.

The following notation is used throughout this look-up section to describe
operators, statements, types, procedures, and/or modules.

() Where appropriate, module names are enclosed in
parentheses after an entry.

[] Items enclosed in square brackets are optional; the
items can be used only once or not at all.

[) Items enclosed in curly brackets can be repeated any
number of times, including none.

“[“ , “]“ , , “)“ The use of square or curly brackets within quotation
marks means the bracket is part of the syntax and not
just notational.

< > Items enclosed in angle brackets indicate that another
syntactic construct is defined elsewhere.

UPPERCASE Words written entirely in uppercase characters general
ly have a special meaning. All reserved words and stan
dard identifiers are written in uppercase. All identifiers
exported from the pseudomodules SYSTEM and
STORAGE are also uppercase. Other library identifiers
that are uppercase are usually special; for example, the

272 M ODULAs-

file types TEXT and FILE exported from the modules
Texts and Files are uppercase.

Each entry in the Reference Directory contains a Class descriptor. This is a
quick reference to describe which of the general categories listed below the entry
belongs to. In some cases, an entry belongs to more than one general category,
and is listed appropriately. The Class descriptor can take on the following values:

E = Turbo Modula-2 Extension

L = Library

R = Reserved Word

S = Standard Identifier

Turbo Modula-2 Reference Directory 273

ABS standard function S

Description ABS returns the absolute value of the expression X.

Usage Y: = ABS(X)

Argument X is of type REAL, INTEGER, LONGINT, or
LONGREAL.

Result Y must be the same type as X .

Comments The absolute value is the positive value of a number; thus, if
the function argument X is -12, the result is 12. A positive
value is returned unchanged.

Example CONST
Mass = 120.0;

VAR
XPar,AbsX:INTEGER
A cceleration,A bsForce:REAL

BEGIN
AbsX := ABS(XPar);
AbsForce := ABS(Mass * A cce le ra tio n);

ADDRESS (SYSTEM) L

Description ADDRESS is a type that represents memory addresses.

Declaration TYPE
ADDRESS = POINTER TO WORD;

Usage VAR a:ADDRESS

ADDRESS must be imported from the pseudomodule
SYSTEM.

274 MODULA

Comments

See Also

Example

ADDRESS can be considered as POINTER TO WORD; thus,
dereferencing an ADDRESS will yield a WORD.

Addresses can be computed, and it is possible to add and sub
tract cardinals from addresses. The result of such a computa
tion is again of type ADDRESS.

ADDRESS is compatible with CARDINAL and with every
pointer type. In particular, if a formal parameter is of type AD
DRESS, the corresponding actual parameter may be of any
pointer type.

This is a low-level concept; its use will reduce the portability
of the code that employs it.

Note: Taking the ADR of a simple variable is not allowed.

ADR
SYSTEM
WORD

MODULE WhereAreXandY;
FROM SYSTEM IMPORT ADDRESS, ADR;
FROM InOut IMPORT WriteHex;
TYPE
atype = RECORD

A,B: REAL
END ;

VAR
adrx, adry : ADDRESS;
x, y : atype;
BEGIN
adrx := ADR(x);
adry ADR(y);
WRITE('x is at 1); WriteHex(adrx); WRITELN;
WRITE(fy is at f); WriteHex(adry); WRITELN;
END WhereAreXandY;

Turbo Modula-2 Reference Directory 275

ADR procedure (SYSTEM) L

Description

Declaration

Usage

Comments

See Also

ADR returns the address of a structured variable.

PROCEDURE ADR (VAR v: AnyType): ADDRESS;

y := ADR(x);

ADR must be imported from the pseudomodule SYSTEM.

x may be a variable of any structured type and y must be a
pointer or a cardinal variable.

ADR yields a value of type ADDRESS, which is a 2-byte value
indicating the address of the argument variable.

This is a low-level routine; its use will reduce the portability
of the code that employs it.

ADDRESS
SYSTEM

Example MODULE WhereAreXandY;
FROM SYSTEM IMPORT ADDRESS, ADR;
FROM InOut IMPORT WriteHex;
TYPE
atype = RECORD

A,B: REAL
END ;

VAR
adrx, adry : ADDRESS;
x, y : atype;
BEGIN
adrx := ADR(x);
adry := ADR(y);
WRITE(fx is at '); WriteHex(adrx); WRITELN;
WRITE(ry is at »); WriteHex(adry); WRITELN;

END WhereAreXandY;

276 M O D U Li

ALLOCATE

Description

Declaration

Usage

Comments

See Also

rocedure (STORAGE) L

ALLOCATE allocates an area from the heap.

PROCEDURE ALLOCATE (VAR a: ADDRESS;
size: CARDINAL);

ALLOCATE(a, size)

ALLOCATE must be imported from the pseudomodule
STORAGE.

a must be compatible with type ADDRESS (any pointer).

size must be of type CARDINAL.

A space of size bytes is allocated on the heap, and the pointer
a is made to point to the beginning of the allocated area. If the
memory requested is not available the exception
OUTOFMEMORY is raised. You may check available
memory with FREEMEM.

A safer and more comfortable way to allocate dynamic
variables is by using the procedure NEW, although you must
still import ALLOCATE.

The counterpart routine to release this memory is called
DEALLOCATE.

Note that the size of an ADDRESS is only 2 bytes; thus AD
DRESS is compatible with WORD.

DEALLOCATE
DISPOSE
FREEMEM
OUTOFMEMORY
NEW
STORAGE

Turbo Modula-2 Rc^rence Directory 277

Example

AND R

description

Usage

Comments

See Also

 ̂ Example

Allocate 100 bytes off of the heap:

VAR
work: ADDRESS;
BEGIN
ALLOCATE(work, 100);

AND is a binary logical operator resulting in a Boolean ex
pression.

IF Raining AND NoUmbrella THEN Run U SE Walk END ;

AND is a reserved word.

Raining and NoUmbrella are Boolean expressions.

AND is used to concatenate two logical expressions, where
both subexpressions must be true for the entire expression to
be true.

Note that the second subexpression in an AND expression is
only evaluated if the first subexpression is true. This is called
short-circuit evaluation.

OR
NOT

WHILE statement using an AND to test bounds condition
prior to indexing an array (short-circuit evaluation):

VAR
s : ARRAY [1 . .maxitems] OF In fo ;

BEGIN
WHILE i # 0 AND s [i] > amount DO

(# process s [i] *)
END ;
END ;

278 MODULA

APPEND procedure (STRINGS) L________________________

Description Append appends a substring to a string.

Declaration PROCEDURE Append(substr: ARRAY OF CHAR;
VAR str: ARRAY OF CHAR);

Usage Append(substr, str)

Append must be imported from the library module Strings.

str and substr can be arrays of character with any bounds.

Comments A string’s »end« is marked by a zero byte; thus Append will
tack on substr at the first zero byte in str.

If str has not been declared to be long enough to hold the two
together, the exception StringError is raised.

See Also Delete
Insert
StringError
Strings

Example Write out ’Hello world !’:

MODULE Main;
FROM Strings IMPORT Append;
VAR
str, substr: ARRAY [0..80] OF CHAR;
BEGIN
str := ’Hello';
substr : = ' world ! ';
Append(substr, str);
WRITELN(str);
END main.

Turbo Modula-2 Reference Directory 279

Arctan function (MATHLIB, LONGMATH) L

Description Arctan returns the arc tangent of X , with the result expressed
in radians.

Declaration PROCEDURE Arctan (x: REAL): REAL;

and

PROCEDURE Arctan (x: LONGREAL): LONGREAL;

(Jsage Y:= Arctan(X)

Arctan must be imported from the library module MathLib for
single-precision reals and from LongMath for double- preci
sion reals.

Argument X and the target Y of the result must be the same
type, either both REAL or both LONGREAL.

Comments The result is within the range -Pi/2 to Pi/2 radians. If you want
the result expressed in degrees instead of radians, use the
following expression:

Degrees := Arctan(X) * 180.0/3 . 141592

The inverse of the Arctan function is tangent, which you can
calculate with the Sin and Cos functions:

Tan := Sin(X)/Cos(X).

See Also Mathlib
LongMath
Sin
Cos

Example MODULE ArcTanTest;
FROM MathLib IMPORT A rctan;
CONST
RadsToDegs = 180.0/3 .141592;

280 MODULA

VAR
Opposite, Adjacent, Angle: REAL;

BEGIN
Opposite := 1 .0 ;
Adjacent := 1 .0 ;
Angle := A rctan(O pposite/A djacent) * RadsToDegs;
WRITELN(fAngle=f , A ng le ,1 and i t b e t te r be
45 degrees ! 1) ;
END ArcTanTest.

ArgumentError exception (MATHLIB) L/E

Description ArgumentError is raised by the module MathLib if an invalid
parameter is passed to one of the procedures exported by
MathLib.

Declaration

Comments

See Also

EXCEPTION
ArgumentError;

EXCEPTION
ArgumentError: WRITELN(‘Argument error1);

ArgumentError must be imported from the module MathLib.

This exception is raised if the parameter to a procedure is out
of the valid range for that function.

MathLib
LongMath

Turbo Modula-2 Rtj+rence Directory 281

Example NODDLE MathError;
FROM MathLib IMPORT Exp, Argument Error;
VAR x: REAL;
BEGIN

x := Exp(99.0);
EXCEPTION

ArgumentError:
WRITELN('argument to Exp must be le s s than 8 7 .4 ') ;

END MathError.

-RRAY standard type R

Description An array consists of a fixed number of components all of the
same type, the base type. Each component can be individually
accessed by indices whose values are of the index type. Arrays
can also be treated as a whole when being assigned or passed
as parameters.

Usage a = ARRAY IndexType OF ComponentType

The index type can be BOOLEAN, CHAR, subrange, or
enumeration types. The ComponentType can be of any type.

Multidimensional arrays are expressed with additional index
types separated with commas.

282 MODULA

Comments You can use an array to handle several related items of identical
type; for example, an array of soups of the day could be

Day = (Sun,Mon,Tue,W ed,T hu,Fri,Sat);
Soup = (M inestrone, CreamOfAsparagus,

VegetableBeef, S p litP ea , ChickenNoodle,
Chowder, B o u illab a isse);

SoupOfTheDay = ARRAY Day OF Soup;

Each component in an array has an index with a value defined
by the index type. Thus, in the preceding example, a compo
nent is specified with an index of type Day; for example,
SoupOJTheDay[Mon] , SoupOJTheDay[Sat], and so on.

A component can take values defined by the component type.
In the example, an element of SoupOfTheDay can take any
value from Minestrone to Bouillabaisse.

A multidimensional array is simply an array with an array as
a component type. For example:

a2=ARRAY IndexTypel OF ARRAY IndexType2 OF CARDINAL

This can also be rewritten as

a2 = ARRAY IndexTypel, IndexType2 OF CARDINAL

The components are accessed as either

M ultiD im [Indexl][Index2]

or

M ultiD im [Indexl,Index2]

No operators other than simple assignment are directly ap
plicable to arrays, but any operator applicable to the compo
nent type can operate on a component. Thus, if Numbers is an
array of REAL components, then

Turbo Modula-2 reference Directory 283

Example

Numbers [X]: = Numbers [Y] * Numbers [Z]

Simple assignment is possible for identically structured arrays.
For example, if First and Second are arrays of the same type,
the following assignment makes each component of First equal
to the corresponding component in Second:

F i r s t := Second

MODULE Arrays;
TYPE
Alphabet = [' A ' . . fZ1] ;
Days = (Sun,Mon,Tue,W ed,T hu,Fri,Sat);
S h if t = RECORD

Day : [0 . . 8];
Swing: [0 . . 8];
N ight: [0 ..8]
END ;

VAR
HoursSun : ARRAY Days OF REAL;
C haracter : ARRAY [1..10] OF Alphabet;
CharType : ARRAY CHAR OF (L e t te r ,D ig i t) ;
WorkRecord: ARRAY Day, [1. .100] OF S h if t ;
BEGIN

HoursSun[Tue] := 12.6;
HoursSun[Mon] := HoursSun[Sat] + HoursSun[Sun];
C h arac ter[3] := "R";
C harac ter[1] := C h arac te r[3];
WorkRecord[Sun,1] := 0;
END A rrays.

284 MODULA

available variable (TERMINAL) L

Description

Declaration

Usage

Comments

available holds the currently installed terminal operation,
which may not be available on all terminals.

TYPE
SpecialOps = (clearE o l, insertDelete, h ig h lig h t-
normal) ;
OpSet : SET OF SpecialOps;
VAR

available : OpSet;

IF dearEol IN available THEN CleaxToEOL END ;

available is a predefined variable declared as type OpSet,
which must be imported from the module Terminal.

This variable is useful for writing terminal-independent pro
grams. The value of available is set by the installation program
INSTM2.

See Also SpecialOps
OpSet
Terminal

Turbo Modula-2 Reft. „ tee Directory 285

Example MODULE TermStuff;
FROM Terminal IMPORT a v a ila b le , SpecialOps,

ClearToEOL,
In se rtL in e , numRows, numCols;

VAR
I , CurRow: CARDINAL;
ScreenLine: ARRAY [0 ..2 3] OF ARRAY [0 ..7 9] OF

CHAR;
BEGIN
IF insertDelete HI available THEN InsertLine
ELSE
FOR I := 1 TO numCols DO WRITE(» •) END ; WRITELN;
FOR I := CurRow TO numRows DO
WRITELN(ScreenLine[I])
END ;
END ;
END TermStuff.

Awaited procedure (PROCESSES) L

Description Awaited tests to see if any processes are waiting for a certain
signal.

Declaration PROCEDURE Awaited(s: SIGNAL): BOOLEAN;

Usage fla g := Awaited(siggy)

Awaited must be imported from the library module Pro
cesses, flag must be of type BOOLEAN and siggy must be of
type SIGNAL imported from Processes.

Comments Awaited only makes sense when used with the related routines
WAIT and SEND.

Awaited will not start up the waiting processes, it only lets the
program know if processes are waiting for a certain signal.
Presumably, if Awaited returns TRUE, then the signal will be
sent with the SEND command.

286 MODULA

See Also Init
Processes
SEND
StartProcess
WAIT

Example IF A w aited(P rin ter) THEN SEND(PrinterAvailable) EHD

BADOVERLAY exception (SYSTEM) L/E

Description BADOVERLAY is raised by the module SYSTEM when an
overlay file cannot be read.

Declaration EXCEPTION
BADOVERLAY;

Usage EXCEPTION
BADOVERLAY:

WRITELN(' Bad o v e rla y ') ;
END

BADOVERLAY must be imported from the module SYSTEM.

Comments This exception occurs only when the linker is used to produce
overlays.

See Also SYSTEM
OUTOFMEMORY
OVERFLOW
REALOVERFLOW

Turbo Modula-2 R ej^jnce Directory 287

Example BadOverlays;
FROH Overlayed IMPORT P rocl;
FROM SYSTEM IMPORT BADOVERLAY;
BEGIN

P rocl;
EXCEPTION

BADOVERLAY:
WRITELN(1 Could not load overlayed module. 1) ;

END BadOverlays.

(X)S procedure (SYSTEM) L

Description BDOS invokes a BDOS (CP/M operating system) function.

Declaration PROCEDURE BDOS(n, v: WORD);

Usage BD0S(n,w)

BDOS must be imported from the pseudomodule SYSTEM.

n and w must be compatible with type WORD (which can be
an integer, character, enumeration, and so on).

Comments The BDOS function n will be invoked; w is a parameter to the
operating system, inserted in register DE.

If a function returns a result in the accumulator A , it can be
extracted out of the variable IORESULT

(If a result is returned in the register HL, it can be extracted
from HLRESULT

They are declared in SYSTEM as

VAR

HLRESULT,IORESULT:CARDINAL.

288 MODULA

See Also BIOS
SYSTEM
IORESULT
HLRESULT
Also see the BDOS section of your CP/M manual.

Example Read a character from the console:

BD0S(1,0); ch:=CHR(IORESULT);

BEGIN R

Description BEGIN is a key word that divides the declaration part of *
module or procedure from the statement part of the same.

Usage BEGIN

Comments A BEGIN is used to mark the beginning of the code part o
a procedure or module.

See Also END

Example MODULE Begin;
BEGIN
IF TRUE THEN
WRITE(»Only ') ;
WRiTELN('one BEGIN1)
END ;
END Begin,

BIOS procedure (SYSTEM) L

Description BIOS results in a call to the specified BIOS jump vector.

Declaration PROCEDURE BI0S(n, w: WORD);

Turbo Modula-2 reference Directory 289

Usage

Comments

See Also

Example

BI0S(n,w)

BIOS must be imported from the pseudomodule SYSTEM.

n and w must be compatible with type WORD (which can be
an integer, character, enumeration, and so on).

The given n indicates which vector is called: 0 =WARMBOOT,
l=CONSTAT, 2=CONIN, and so on.

If a function returns a result in the accumulator A, it can be
extracted out of the variable IORESULT.

If a result is returned in the register HL, it can be extracted
from HLRESULT.

HLRESULT and IORESULT are declared in SYSTEM as car
dinals.

BDOS
SYSTEM
HLRESULT
IORESULT

Read a character directly from the console:

BIOS(2,0); ch := CHR(IORESULT);

290 MODULA

BITSET standard type S __________________________________

Description BITSET is a variable type that can assume as a value a set of
up to 16 integers with values between 0 and 15.

Usage As a constant set:

[BITSET] "(n [element {,element]] "}n

element may be a constant, subrange, or variable of type CAR
DINAL with a value between 0 and 15. The standard identifier
BITSET is optional in constant sets.

The standard identifier is used mainly in variable declarations,
as in the following:

VAR
mask: BITSET;

Comments BITSET is a standard predefined set type. All the operators
you can apply to other set types can be used on BITSET-type
variables (see »Operators« in Chapter 3).

You denote BITSET constants in the same way as other set
types:

(0. .9,12,14} () BITSET(6,8,11}.

A BITSET value requires 2 bytes for storage in memory.

Turbo Modula-2 inference Directory 291

Example NODDLE BitSets;
CONST
Mask = (5..7,12)}
VAR
Bits: BITSET;

BEGIN
Bits := [1,3,6..13)}
Bits:= Mask * Bits} (# AND the bits #)
(* Bits is now (6,7,12) *)

Excl(Bits,7)} (# Exclude bit 7 #)
(* Bits is now (6,12) *)
END BitSets.

BOOLEAN standard type S

Description BOOLEAN is a variable type that can assume the logical truth
values FALSE and TRUE.

Comments You can use BOOLEAN variables and expressions when you
want to calculate a statement that will have the answer TRUE
or FALSE; for example, the statement »Today is Tuesday and
it is raining« gives a BOOLEAN result.

There are two groups of operators you can apply to obtain
BOOLEAN expressions: relational operators and logical
operators.

Relational operators compare different variables, constants,
and so on, and give a BOOLEAN result. For example, the ex
pression:

(A ltitu d e > 2000.0)

compares the REAL variable Altitude with the value 2000.0 to
get a TRUE or FALSE result. Thus, relational operators can
compare any items of similar type.

292 MODULA

Example

On the other hand, logical operators are only applicable to
BOOLEAN variables and expressions. For example:

SwitchOn AND (A ltitu d e > 2000.0)

has a logical AND operator and is TRUE only if both parts
of the expression are TRUE.

A BOOLEAN value requires 1 byte for storage in arrays and
2 bytes as stand-alone variables or fields in a record.

MODULE Booleans;
VAR

PowerAvailable, SwitchOn, PowerOn: BOOLEAN;
Tem perature:REAL;
BEGIN

PowerA vailable: = SwitchOn AND PowerOn;
IF PowerAvailable AND (Temperature > 90.0) THEN
WRITELN('Turn on a i r co n d itio n e r f) ;
END
END Booleans.

BusyRead procedure (Terminal) L

Description BusyRead tests to see if a character has been typed at the
keyboard.

Declaration PROCEDURE BusyRead (VAR ch: CHAR);

Usage BusyRead(ch)

BusyRead must be imported from the system library Terminal.

ch must be of type CHAR.

Turbo Modula-^rReference Directory_________________________________ 293

Comments BusyRead, together with ReadAgain, provides much the same
service as Turbo Pascal’s KeyPressed; however, BusyRead and
ReadAgain are more flexible.

If a character is typed at the keyboard, BusyRead will return
it in ch. If nothing is typed, ch is returned as OC (a zero byte).
For example:

PROCEDURE KeyPressed(): BOOLEAN;
VAR ch: CHAR;
BEGIN

BusyRead(ch);
IF ch#0C THEN
ReadAgain; RETURN TRUE
ELSE
RETURN FALSE;
END
END KeyPressed;

The procedure emulates the KeyPressed function. To use the
character again in another portion of the code we can use
ReadAgain.

Notice that using the function KeyPressed requires two steps:
(1) determine if there is a character and (2) if there is, read the
character. This can be a problem in Modula-2 because of its
interrupt handlers.

Suppose a program tests (with KeyPressed) whether a
character is at the keyboard, and before it can read the
character it is interrupted. If the interrupting routine also reads
the keyboard, then when control returns to the interrupted pro
gram the character will not be available. This problem is solv
ed if the procedure that reads a character simply returns a flag
when no characters are available.

See Also ReadAgain
Terminal

294 MODULA

Example Display the ordinal value of a key that is pressed:

MODULE BusyReads;
FROM Terminal IMPORT BusyRead;
VAR ch: CHAR;
BEGIN
REPEAT

WRITELN('P re ss a key ('Qf to quit): 1);
REPEAT

BusyRead(ch);
UNTIL ch#0C ;
WRITELN('The ordinal value is ',ORD(ch));
UNTIL CAP(ch) = 'Q'
END BusyReads.

BYTE type (SYSTEM) L

Description BYTE is a low-level type used to represent the scalar types that
take up 1 byte of memory.

Usage VAR
b :BYTE;

BYTE must be imported from the pseudomodule SYSTEM.

Comments BYTE is declared as a subrange of WORD and is therefore
assignment-compatible with all scalar types.

BYTE is compatible with BOOLEAN, CHAR, and enumera
tion types that have 256 elements or less.

BYTE is compatible with WORD.

Only assignment operations are allowed on variables of type
BYTE. A stand-alone variable of type BYTE takes 2 bytes of
storage (also fields in a record). A BYTE in an array is packed
into 1 byte of storage.

Turbo Modula-2 Reference Directory 295

Example PHOCEDORE pi (b: BYTE);

Call procedure (Loader) L____________

Description Call allocates and executes an overlay in the form of a module.

Declaration PROCEDURE Call(modName: ARRAY OF CHAR);

Usage Call(modname)

Call must be imported from the library module Loader.

modname must be the character array containing the name of
the overlay file.

Comments If modname does not have an extension, .MCD will be ap
pended.

The object module specified by modname will be loaded into
memory and begin executing. In this sense, it is not unlike a
procedure call, but it is much slower due to disk access. Also,
when execution is completed, the memory needed for object
code and data is released again.

Communication between the calling program and the overlaid
module is only possible through variables declared in the call
ing program and imported by the called overlay.

See Also firstDrive
Loader
Also see linker described in Chapter 10.

Example Load and execute the module OVER. MCD:

Call("OVER")

296 MODUL

CAP standard function S

Description CAP returns the capital of an alphabetic character.

Usage Ch := CAP(Ch)

Argument Ch (and result) is of type CHAR.

Comments You can use this function if you want to change lowercase le
ters to uppercase letters. This is useful for testing keyboard ir
put.

Note that if the argument has no uppercase equivalent, th
argument is returned unchanged. In other words, spaces an
punctuation characters will remain unaltered.

Example MODULE CAPs;
VAR ch: CHAR;
BEGIN
LOOP
BusyRead(ch);
IF CAP(ch) = 'Q1 THEN EXIT END
END
END CAPS.

CAPS procedure (Strings) S

Description CAPS makes an entire string variable uppercase.

Declaration PROCEDURE CAPS (VAR Str: ARRAY OF CHAR);

Usage CAPS(str)

CAPS must be imported from the library module Strings,

str must be of type ARRAY OF CHAR.

Turbo Modula-2 Reference Directory 297

Comments CAPS saves you from typing the following code anywhere you
don’t want to distinguish between uppercase and lowercase:

FOR i := 0 TO Length(str)-1 DO
str[i] := CAP(str[i]);

END ;

See Also CAP
Length

Example Capitalize the string »Hello«:

str := "Hello";
CAPS(str);
(* str now has the value "HELLO" #)

CARD standard function S

Description CARD converts a numeric argument to type CARDINAL.

Usage Y:= CARD(X)

Argument X can be of INTEGER, CARDINAL, REAL,
LONGINT, or LONGREAL.

The argument must be in the range 0 to 65535.

Result Y is of type CARDINAL.

Comments *T? When you use this function with a REAL argument, the value
is truncated (the fractional part removed); thus, value 12.35

^ will become 12.

CARD is not applicable to enumeration or BOOLEAN- and
CHAR- type arguments. Use ORD with these types.

If the argument cannot be converted (that is, to negative), the
runtime error BoundsError is raised.

298 M ODULA

Example MODUI£ CARDConversion;
VAR

r : REAL;
c: CARDINAL;

BEGIN
r := 3.14;
c : = CARD(r);
(# c now has the value 3 *)

END CARDConversion.

CARDINAL standard type S

Description CARDINAL is a standard type with variables that can assume
the values between 0 and 65535. In addition, CARDINAL may
be used as a type-transfer function.

Usage VAR c: CARDINAL;

or

c := CARDINAL(-1)

Comments You can use CARDINAL variables whenever you know tha
possible values are limited to positive whole numbers. For ex
ample, if you are counting the number of people in a room
you know the count can only be a positive whole number. I:
your program suddenly produces a negative count, an erroi
message will be written.

The CARD standard function will convert other simple dafc
types into CARDINAL. The use of CARDINAL as a typ<
transfer function should be considered a low-level facility tha
may not be portable.

A CARDINAL value requires 2 bytes for storage.

Turbo Modula-2 Reference Directory 299

Example MODULE CARDINALS;
CONST

SearchValue = 3*65;
N = 20;

VAR
DataArray: ARRAY [0 . .N] OF REAL;
I , Count : CARDINAL;

BEGIN
FOR I := 0 TO N DO

IF (DataA rray[I] = S e a rc h V a lu e) THEN
Count: = Count + 1

END
END

END CARDINALS.

CardToStr procedure (Convert) L

Description CardToStr converts a CARDINAL to a string.

Declaration PROCEDURE CardToStr(c: CARDINAL;
VAR s : ARRAY OF CHAR);

Usage C ardToStr(card, s tr in g)

CardToStr must be imported from the library module Convert,

card must be of type CARDINAL.

string can be any array of characters.

Comments The number is placed into the string starting at the right- most
index. The left end of the string is padded out with blanks. If
the number does not fit into the given string, the exception
TooLarge is raised.

See Also Convert
IntToStr
RealToStr
SttToCard

300 MODULA

Example MODULE x c ts ;
FROM Convert IMPORT CardToStr;
VAR

card: CARDINAL;
s tr in g : ARRAY [0 ..4] OF CHAR;

BEGIN
card := 12;
CardToStr(card, s t r in g) ;
WRITE(' « *, s t r in g ' n 1) ; (* n 12" is ou tput #)

END x c t s .

CASE statement R

Description CASE selects a different statement sequence depending on the
value resulting from an expression.

Usage CASE S e lec to r OF
Case (1 Case)

[ELSE Statem ent sequence]
END

Selector is a variable or expression of type CARDINAL, IN
TEGER, BOOLEAN, CHAR, enumeration, or subrange.

Case = [Case la b e l : S tatem ent sequence]

Statem ent sequence = Statem ent [; Statement)

Each case label can be either a single constant value or a range
of constant values of the same type as the selector, separated
by commas.

The ELSE part is executed if it is present and there are no mat
ching values in the CASE label lists.

Comments The selector, whether it is an expression or a variable, gives
a value that causes the selection and execution of the statement
sequence containing that value in its label. A value can appear
in only one label.

302 M ODULA

Example CASE X + Y OF
i 0 . .5 : Z := 0; Y:= R * X
I 6. .8 : Z := X + Y - 5
I 9 ..1 0 : Z := 8; Y:= R * X

END ;

CASE Day OF
Sun:

Mon..Wed,Fri:

Thu,Sat:

END

M essages 'C losed a l l d ay ';
0penHours:= Ol
Message: = f Normal h o u rsf ;
0penHours:= 8l
M essages h a l f d a y 1;
0penHours:= 4

You can define an empty case if necessary. For example, sup
pose in the last example you have no statement sequence for
the value Sun :

CASE Day OF
Sun:
Mon..Wed,Fri:

Thu,Sat:

END

Notice that the case of Sun explicitly states that no action is
performed. When you have code to execute for every value ex
cept those in the CASE lists, then you can use an ELSE:

CASE Day OF
I Sat : WRITELN(rGo fo r a p ic n ic ') ;
I Sun : WRITELN('Go sh o pp ing ');

ELSE
WRITELN('Go to work')

END ;

I
Message: = ' Normal h o u rs ' ;

OpenHours:= 8l
M essages 'H a l fd a y ';
OpenHours:= 4

Turbo Modula-2 Rejefence Directory 303

CHAR Standard type S___

Description CHAR is a standard type with variables that can assume a
character as a value. In addition, CHAR may be used as a
type-transfer function.

Usage VAR
ch: CHAR;

AND
ch := CHAR(27);

Comments You can use CHAR-type variables and constants wherever you
want to handle text.

A CHAR variable can take any ASCII character as a value
(which are ordered by their ASCII value); for example, the or
dinal of character A is equal to the ASCII value 65, while the
character B has an ordinal of 66.

Constants of type CHAR are denoted by a character enclosed
within single or double quotation marks, or are octal numbers
within the range 0 to 377 followed by a C; for example, »9«,
’D’, 0C.

You cannot apply arithmetic operators directly on CHAR-type
variables, but you can convert the value to CARDINAL and
vice versa. To convert a character to a CARDINAL type, you
use the standard function ORD. To convert a CARDINAL to
a CHAR, use the standard function CHR.

Turbo Modula-2 permits the comparison and assignment of
strings of characters, and the module Strings provides several
procedures for string handling.

A CHAR variable occupies 2 bytes in memory unless it is
declared as an element of an array, in which case it occupies
1 byte in memory.

304 MODULA

See Also

Example

CHR standard

Description

Usage

BYTE
CHR
ORD
VAL

MODULE Characters;
ch: CHAR;

BEGIN
LOOP
READ(ch);
IF CAP(ch) = fQr THEN EXIT END
IF ch < ' r THEN WRITE ('.f)
ELSIF ch > CHR(127) THEN WRITE(r! »)
ELSIF (ch >= ra*) AND (ch <= f f1) THEN
WRITE(CAP(ch))
ELSE WRITE (ch)
END

END
END Characters.

function S___________________________________

CHR returns the character with ordinal X.

Ch:= CHR(X)

Argument X is of type INTEGER or CARDINAL.

Result Ch is of type CHAR.

The argument must be in the range 0 to 255.

Turbo Modula-2 Reference Directory 305

Comments You can use the CHR standard function to convert from an
ASCII value in the range 0 to 255 to the corresponding
character.

Note: The characters A to Z have ASCII values 65 to 90;
characters a to z have ASCII values 97 to 122; numerals 0 to
9 have ASCII values 48 to 57.

Converting a character to ASCII is performed by the standard
function ORD.

^ 'zq Also CHAR
ORD

Example PROCEDURE NumToChar(N: CARDINAL): CHAR;
BEGIN

IF N < 10 THEN RETURN CHR(N + 48)
EISE RETURN CHR(48)
END

END NumToChar;

ClearEol enumerated value (terminal) L

Description clearEol is the first value of the enumerated type Ter
minal. SpecialOps.

Declaration SpecialOps = (c lea rE o l, in se r tD e le te , h igh ligh tN or-
m al);

Usage IF c lea rE o l IN a v a ila b le THEN ClearToEOL END ;

C SpecialOps must be imported from the library module Ter
minal.

306 MODULA

Comments If this value is a member of the set Terminal, available, then
the program may use the procedure ClearToEOL to clear to the
end of the line.

To use this identifier, include SpecialOps in your import list.
The identifiers of each of SpecialOps'values become visible
automatically.

See Also ClearToEOL
available
insertDelete
highlightNormal
Terminal

Example Clear the right half of the screen:

NODULE CheckAvailableOperations;
FROM Terminal IMPORT

a v a ila b le , SpecialO ps, ClearEOL,
GotoXY;

VAR row: CARDINAL
BEGIN

FOR row := 0 TO 24 DO
GotoXY(40,row);
IF C learEol IN a v a ila b le THEN
EESEarToEOL;

ManualClearEOL;
END ;

END ;
GotoXY(0 ,0);

END CheckA vailableOperations.

ClearScreen procedure (Terminal) L________________________ __

Description ClearScreen clears the screen and homes the cursor.

Declaration PROCEDURE ClearScreen;

Turbo Modula-2 Reference Directory 307

Usage ClearScreen

ClearScreen must be imported from the library module Ter
minal.

Comments This function will work only if the T\irbo Modula-2 system has
been installed on your terminal.

See Also CleaiToEOL
GotoXY
Hightlight
Terminal

Example Clear the screen:

MODULE C lear;
FROM Terminal IMPORT ClearScreen;
BEGIN

ClearScreen;
END C lear.

CleaiToEOL procedure (Terminal) L
Description ClearToEOL clears the screen from the current cursor position

until the end of the line.

Declaration PROCEDURE ClearToEOL;

Usage ClearToEOL

ClearToEOL must be imported from the library module Ter
minal.

Comments The cursor position is undefined after a call to this routine;
reposition it with a call to GotoXY.

308 M ODULA

See Also ClearScreen
GotoXY
Highlight
Terminal

Example Clear the right half of the screen:

MODULE C learH alfScreen;
FROM Terminal IMPORT ClearEOL, GotoXY;
VAR row: CARDINAL
BEGIN

FOR row := 0 TO 24 DO
GotoXY(4 0 ,row);
ClearToEOL;

END ;
GotoXY(0,0);

END ClearH alfScreen.

Close procedure (Files) L

Description Close disconnects a FILE variable from an external disk file
and updates the disk directory.

Declaration PROCEDURE Close (VAR f : FILE);

Usage C lo se (f);

Close must be imported from the module Files,

f must be of type FILE imported from Files.

Comments If output has been sent to / closing is mandatory; otherwise,
the file size in the directory and the trailer byte will not be up
dated and f s data could be lost.

Since closing a file frees up the memory used for data buffer
ing, we advise closing a file in any case, even if it has been
used only for input.

Turbo Modula-2 Reference Directory 309

See Also Files
Open
NoTrailer

Example Perform minimal file handling (open and close a FILE):

MODULE OpenAndCloseFile;
FROM F ile s IMPORT FILE, Open, Close;
VAR o ld F ile : FILE;
BEGIN

IF O p en (o ld F ile ,'FILE.DAT1) THEN
C lose(o ldF ile)

END
END OpenAndCloseFile.

Closeinput procedure (InOut) L

Description Closelnput closes an input file and returns input to the ter
minal.

Declaration PROCEDURE C loselnput;

Usage C loselnput

Closelnput must be imported from the library module InOut.

Comments These routines are provided to maintain compatibility with
other Modula-2 implementations (the Texts module is easier to
work with).

Closelnput is equivalent to the call CloseText(input), using the
CloseText procedure from Texts.

See Also Openlnput
CloseOutput
InOut

310 MODULA

Example

CloseOutput

Description

Declaration

Usage

Comments

MODULE Input;
FROM InOut IMPORT
Openlnput, C loselnput, ReadString,
W riteS tring , WriteLn;

VAR
s: ARRAY [0 ..255] OF CHAR;

BEGIN
(# Prompt u se r fo r filenam e #)
(* I f no ex ten tio n given, use MOD *)
OpenInput("MOD") ;
R eadS tring(s); (* Read s t r in g from f i l e #)
W rite S tr in g (s) ; (# D isplay i t *)
WriteLn;
C loselnput;
R ead S trin g (s);
W rite S tr in g (s) ;
WriteLn;

END Inpu t.

(* Sever the l in k to the f i l e *)
(* Input comes from console #)
(# D isplay i t #)

rocedure (InOut) L

CloseOutput closes an output file and returns output to the ter
minal.

PROCEDURE CloseOutput;

CloseOutput

CloseOutput must be imported from the library module InOut.

These routines are provided to maintain compatibility with
other Modula-2 implementations (the Texts module is easier to
work with).

CloseOutput results in the call CloseText(output), using the
CloseText procedure in Texts.

Turbo Modula-2 Reference Directory 311

See Also OpenOutput
Openlnput
Inout

Example MODULE Output;
FROM InOut IMPORT
OpenOutput, CloseOutput, ReadString,
W riteS tring , WriteLn;

VAR
s: ARRAY [0. .255] OF CHAR;

BEGIN
W riteS trin g ('E n te r output f i l e and d a t a : ') ;
WriteLn;
OpenOutput("MOD");
R ead S trin g (s); (* Read d a ta from console #)
(# P lace i t in the f i l e #)
W rite S tr in g (s) ; WriteLn;
CloseOutput; (* Sever the lin k to the f i l e #)
W riteS tring('The f i l e has been c lo s e d . ') ;
WriteLn;

END Output.

CloseText procedure (Texts) L

Description CloseText disconnects a TEXT file variable from an external
disk file.

Declaration PROCEDURE CloseText (VAR t : TEXT);

l age C loseT ext(t)

CloseText must be imported from the module Texts,

t must be of type TEXT imported from Texts.

312 M ODULA

Comments If output has been sent to t> closing is mandatory; otherwise,
the file size in the directory and the trailer byte will not be up
dated and t's data could be lost.

Since closing a file frees up the memory used for data buffer
ing, we advise closing a file in any case, even if it has been
used only for input.

If the external medium is a disk file, the file is closed internal
ly using the procedure Close from the module Files.

Closing input or output re-establishes the default connections
(to CON:).

See Also OpenText
TEXT
Texts
NoTrailer

Example Perform minimal text-file handling (open and close a TEXT):

MODULE OpenAndCloseText;
FROM Texts IMPORT TEXT, OpenText, CloseText;
VAR oldFile : TEXT;
BEGIN

IF OpenText(oldFile,rT.TXTr) THEN
CloseText(oldFile)

END
END OpenAndCLoseText.

CODE procedure (SYSTEM) L

Description CODE allows the user to include an assembler routine.

Declaration PROCEDURE C O D E (s : ARRAY OF C H A R) ;

Turbo Modula-2 Reference Directory 313

Usage

Comments

See Also

Example

Col function

scription

Declaration

C0DE(n Any s t r in g l i t e r a l ") ;

CODE must be imported from the pseudomodule SYSTEM.

The string must be a literal file name.

A call to CODE must be inserted after a procedure heading;
thus replacing the body of the procedure. No declaration part,
BEGIN, or any other statements may be present in its body;
however, the final END must be included.

Compilation of a CODE statement causes the *.COM«-File
whose name is given as argument to be inserted into the object
program. The length of the file must be in the first 2 bytes of
the file.

A CODE procedure may use all Z80 registers without restor
ing them.

SYSTEM

Include MOVE.COM written in assembler:

PROCEDURE MOVE (source: ADDRESS; n: CARDINAL);
CODE (" MOVE ") (* MOVE. COM is in s e r te d *)
END MOVE;

(Texts)

Col returns the current column position of a text file.

PROCEDURE C o l(t: TEXT): CARDINAL;

314 MODULA

Usage currentC ol := C o l(t)

Col must be imported from the library module Texts.

currentCol must be of type CARDINAL.

t must be of type TEXT imported from Texts,

Comments After a WriteLn or a CreateText, the column position is zero;
it increases by one with every written character.

See Also SetCol
Texts

Example Start a new line if the current column position of TEXT t is
greater than 79.

IF C ol(t) > 79 THEN W riteLn(t) END

ComLine module L

Description ComLine enables command line processing (arguments
and redirection).

Declaration DEFINITION MODULE ComLine;
FROM Texts IMPORT Text;

VAR
commandLine: Text;
inName, outName: ARRAY [0 ..1 9] OF CHAR;
progName: ARRAY [0 ..7] OF CHAR;

PROCEDURE R ed irec tln p u t;
(* Input re d ire c tio n as ordered on command l in e . *)

PROCEDURE R edirectO utput;
(* Output re d ire c tio n as ordered on command
l in e .*)

Turbo Modula-2 Rej* fence Directory 315

Comments

PROCEDURE PromptFor(Prompt: ARRAY OF CHAR;
VAR S: ARRAY OF CHAR);

(* Prompts fo r command l in e . *)
END ComLine.

The TEXT variable commandUne contains any arguments
written after the command that started the program. It can
be read like a normal TEXT.

inName contains the input medium, which is normally
CON:.

outName contains the output medium, which is normally
CON:.

progName contains the program name.

The command line consists of any characters or arguments
that follow the command that started the program. The
contents of the command line are accessed through the
TEXT commandUne.

The command line can contain redirection arguments:

>FileName Redirects the standard text Output to
FileName. The new medium FileName is
stored in outName.

< FileName Redirects the standard text Input to
FileName. The new medium FileName is
stored in inName.

The redirection symbols and file names do not appear in
the command line.

Note that if there is no redirection argument, inName and
outName contain the name of the standard medium CON:.

See Also Texts
Also refer to each identifier in the definition module.

316 MODULA

Example If you start a program by typing

MyProg Name

the TEXT commandLine will contain the word Name. You
would access this like so:

READ(commandLine,InputFilename);

If you write a program to compare two disk files, you will
want to specify the file to be compared on the command
line.

By using ComLine procedures you can pass the file names
directly to the program. Your program will include the
following lines:

MODULE Compare;
FROM F ile s IMPORT FILE, Open,Close;
FROM ComLine IMPORT

commandLine, R ed irec tIn p u t, R edirectO utput;
VAR

Filenam el, Filename2: ARRAY [0 ..1 4] OF CHAR;
f l , f 2 : FILE;

BEGIN
R ed irec tInpu t; R edirectO utput;
READ(commandLine,Filename2);
IF 0pen(f2,Filenam e2) THEM
READ(commandLine,Filenamel);
IF O pen(fl,F ilenam el) THEN
READLN(opt io n s) ;
(# compare th e f i l e s #)
(# W rite d iffe ren c es to standard output #)

END
END ;
C lo se (f l) ;
C lose(f2);

END Compare.

Turbo Modula-2 Ac/erence Directory 317

For example, you can start a program and define a command
line by typing

Compare A: t e s t f i l e B r te s t f i l e <B:Compare.Ops
> A:Compared.dif

This line invokes the compare program with two files as
arguments. Any input requested from the console is redirected
from the keyboard to the file COMPARE.OPS. The output of
the program is redirected from the screen to the file COM-
PARED.DIF.

commandLine variable (ComLine) L

Description commandLine is Predefined text that contains arguments pass
ed on the command line when a program is invoked.

Declaration VAR
commandLine: TEXT;

TEXT is imported from the module Texts.

Usage READ(commandLine, filenam e) ;

filename is a string variable

Comments Treat commandLine like any TEXT variable. It contains
anything typed on the command line after the program name,
up to 80 characters long.

See Also PromptFor
ComLine

318 MODUL

Example MODULE OffTheCommandLine;
FROM ComLine IMPORT commandLine;
VAR

x ,y : REAL;
BEGIN

READ(commandLine,x,y);
W R IT E L N (x:5:2 ,'* ',y :5 :2 ,' = ',x * y :5 :2) ;

END OffTheCommandLine.

C o n n e c tD r iv e r p ro c e d u re (T e x ts) L

Description ConnectDriver allows the user to install her own input and oi
put drivers.

Declaration TYPE
TextDriver = PROCEDUREE(TEXT, VAR CHAR);

PROCEDURE ConnectDriver(VAR t : TEXT; p: TextD river

Usage C onnectD river(t, d riv e r)

t must be of type TEXT imported from the library modi
Texts.

Driver must be compatible with the type TextDriver.

Comments Allows users to install their own read and write charac
routines, which are then used by all I/O statements in the st
dard module Texts, including the extensions READ, WRI'
READLN, and WRITELN.

See Also Texts

i Turbo M o d u la r Reference Directory 319

Example Connect the user-defined driver to the text /:

MODULE AlwaysUpCase;
FROM Texts IMPORT TEXT, o u tpu t, ConnectDriver;

PROCEDURE W riteU pcase(t: TEXT; VAR ch: CHAR);
BEGIN

W rite(o u tp u t, CAP(ch)) ;
END WriteUpcase;

VAR t : TEXT;
BEGIN

C onnectD river(t, W riteUpcase);
WRITELN(t, 'T his w il l be d isp layed a l l u p p e rcase ') ;

END AlwaysUpCase.

console (Texts) L

le

er
n-
E,

Description An auxiliary output TEXT attached to the console.

Declaration VAR console: TEXT;

Usage

Comments

See Also

WRITELN(console, 'o u tp u t to th e co n so le1);

console must be imported from the library module Texts and
can be used anywhere an output TEXT can be used.

console is always open and, by default, is connected to the ter
minal. It is as if the call CreateText(console, »CON:«) has
taken place before the execution of the main module.

console is useful if the output text stream has been redirected
but you still want certain messages (prompts, errors, and so-
on) to go to the terminal. The console cannot be redirected.

output
input
Texts

320 MODULA

Example Write out an error message by passing redirection:

NODULE consoleOutput;
FROM Texts IMPORT console;
VAR recnum: CARDINAL;
BEGIN

(* processing loop #)
WRITE (console, 1 E rro r a t reco rd number: 1, recnum);

END consoleO utput.

CONST declaration R

Description The re se rve d word C O N S T precedes the declaration of con
stants.

Usage CONST
Pi = 3*14159265;
TwoPi = 2 .0*P i;

Comments Modula-2 allows the use of constants in the d e fin itio n o f fu r
ther constants, like the Pi in TwoPi.

Example NODULE C onstants;
CONST
nThings = 100;
LastThing = nThings-1;

TYPE
ThingRange = [0 . .L astT hing];

VAR
Things : ARRAY ThingRange OF CHAR;
which : [0 . . l a s t th in g] ;
th ingy : CARDINAL;

BEG IN
FOR th ingy : = 0 TO la s t th in g DO
P ro cess(th ings[w h ich])

END
END C onstan ts .

Turbo Modula-2 Reference Directory 321

Convert module

Description

Declaration

Usage

Comments

See Also

L

Convert is a standard module that you can use when converting
between numeric types and strings.

D E F IN IT IO N NODDLE Convert;

PROCEDURE S trT oIn t (VAR s : ARRAY OF CHAR;
VAR i:INTEGER) :BOOLEAN;

PROCEDURE StrToCard (VAR s : ARRAY OF CHAR;
VAR c : CARDINAL) :BOOLEAN;

PROCEDURE StrToLong (VAR s : ARRAY OF CHAR;
VAR 1:L0NGINT) :BOOLEAN;

PROCEDURE StrToReal (VAR s : ARRAY OF CHAR;
VAR r:REAL) : BOOLEAN;

PROCEDURE In tT oS tr (i:INTEGER
VAR s : ARRAY OF CHAR);

PROCEDURE CardToStr (c : CARDINAL
VAR S : ARRAY OF CHAR);

PROCEDURE LongToStr (1:L0NGINT
VAR s : ARRAY OF CHAR);

PROCEDURE RealToStr (r:REAL
VAR s : ARRAY OF CHAR;

digits:INTEGER);

EXCEPTION TooLarge;

END Convert.

See individual identifiers

The first four procedures convert strings to numeric types; the
next four reverse the conversions.

The exception TooLarge is raised in the last four procedures
if the number is too large to fit in the target string. (TooLarge
is only raised by the second four procedures.)

The module Doubles provides the same functions for double-
precision variables (LONGREAL).

MODUL322

Copy procedure (Strings) L__

Description Copy copies a substring starting at a given position with
given length of a string.

Declaration PROCEDURE Copy (VAR s t r : ARRAY OF CHAR;
in x ,le n : CARDINAL;
VAR r e s u l t : ARRAY OF CHAR);

Usage C opy(string , from, len g th , r e s u l ts t r in g)

Copy must be imported from the library module Strings.

string and result must be character array variables.

from and length must be of type CARDINAL.

Comments A string is terminated by a zero byte. If a zero byte is «
countered before length characters have been processed,
copy will be prematurely interrupted.

See Also Concat
Delete
Insert
Strings

Example Copy ’holes* into holestring:

Copy('Donut h o le s ’ , 6, 5, h o le s tr in g)

Turbo Modula-2 Reference Directory_________________________________ 323

Cos function (MathLib, LongMath) L

Description Cos returns the cosine of X, where X is expressed in radians.

Declarations PROCEDURE Cos(x: REAL): REAL;
PROCEDURE Cos(x: LONGREAL): LONGREAL;

Usage Y:= Cos(X)

Argument X and result Y must be of the same type—either both
REAL or both LONGREAL.

Comments If you want the argument expressed in degrees instead of ra
dians, use the following expression:

R e su lt:= Cos(X * 3-141592/180.0)

If you need to calculate the inverse of cosine, you can use the
ArcTan function in the following expression:

ArcGos: = A rctan(X /Sqrt(l.O - X*X)) - 3.141592/2.0

Example NODULE Cosine;
FROM MathLib IMPORT Cos;
CONST
DegsToRads = 3 . 141592/180. 0;
VAR

Degs, Radians, CosAngle:REAL
BEGIN

R adians:= Degs # DegsToRads;
CosAngle:= Cos(Radians) ;
END Cosine.

324 MODULA

Create procedure (Files) L

Description

Declaration

Usage

Comments

Create creates a file on disk with a given name.

PROCEDORE Create (VAR f : FILE; name: ARRAY OF CHAR);

C rea te (f, filenam e)

Create must be imported from the library module Files,

f must be declared as FILE.

FILE must be imported from the library module Files.

filename must be declared as ARRAY OF CHAR.

filename must be a legal CP/M filename, and there must be
room on the directory and the disk for a new file.

/ can only be used for output after being opened with Creates
use Open for reading a file.

If a file is already present, it will be overwritten, so use cau
tion.

After writing to this file, close it to update the file size in the
directory and the file trailer byte. Failure to do this will pro
bably result in the loss of all written information.

See Also Close
Files
Open
NoTrailer

Turbo Modula-2 Reference Directory_________________________________ 325

Example Create an empty file on disk:

NODULE CreateAnEmptyFile;
FROM F ile s IMPORT FILE, C reate , Close;
VAR

nevFile :FILE;
BEGIN

C rea te (n ew F ile ,’FILE.DAT*) ;
C lose(new File);

END CreateAnEmptyFile.

CreateText procedure (Texts) L

Description CreateText associates a TEXT with an external medium and
opens it for writing.

Declaration PROCEDURE CreateText (VAR
t : TEXT; name: ARRAY OF CHAR);

Usage C rea teT ex t(t, fname)

CreateText must be imported from library module Texts.

t must be of type TEXT imported from Texts,

fname must be of type ARRAY OF CHAR.

Comments fname must be a legal CP/M file name or device, such as
»MYFILE.DAT« or »CON:«.

t can only be used for output after being opened with
CreateText; use OpenText for reading a TEXT file.

If a file is already present it will be overwritten, so use cau
tion.

After writing to this file, close it to update the file size in the
directory and the file trailer byte. Failure to do this will pro
bably result in the loss of all written information.

326 MODUL

See Also CloseText
OpenText
Texts
NoTrailer

Example Create an empty text file on disk:

MODULE CreateAnEmptyText;
FROM Texts IMPORT TEXT, C reateText, CloseText;
VAR

newFile: TEXT;
BEGIN

C reateT ex t(new File ,'EMPTY.TXT');
C loseText(new File);

END CreateAnEmptyText.

DeadLock exception (Processes) L/E

Description DeadLock is raised in the module Processes when all pi
cesses are waiting for a signal.

Declaration EXCEPTION
DeadLock;

Usage EXCEPTION
DeadLock:

WRITELN(* Deadly embrace: a l l p rocesses
te rm in a te d . ') ;
END

DeadLock must be imported from the module Processes.

Comments When a dead lock occurs, your signal handling logic is fal
You can detect this problem by using this exception.

See Also Processes
SYSTEM

Turbo Modula-2 Reference Directory 327

Example MODULE S ignals;
FROM Processes IMPORT Init, SIGNAL, WAIT, Deadlock;
VAR s: SIGNAL;
BEGIN

I n i t (s) ; WAIT(s);
EXCEPTION

DeadLock: HALT;
END S ig n a ls .

DEALLOCATE procedure (STORAGE) L

Description DEALLOCATE deallocates a block of memory on the heap that
had been previously associated with a pointer variable.

Declaration PROCEDURE DEALLOCATE (VAR
a: ADDRESS; s iz e : CARDINAL);

Usage DEALLOCATE(a, s ize)

DEALLOCATE must be imported from the library module
STORAGE.

a must be compatible with type ADDRESS (any pointer).

size must be of type CARDINAL.

Comment You can only deallocate portions of memory that you have
previously allocated. The variables** and size must be the same
location and amount as when they were allocated.

The pointer a will be set to NIL and the deallocated area will
be available for future allocation.

328 MODULA

See Also ALLOCATE
NEW
DISPOSE
STORAGE
MARK
RELEASE
FREEMEM

Example Allocate and deallocate 100 bytes:

MODULE HeapMem;
FROH STORAGE IMPORT ALLOCATE, DEALLOCATE;
TAR

a: POINTER TO ARRAY [0 ..9 9] CHAR;
BEGIN

ALLOCATED, 100);
a A := 'T h is s t r in g i s on th e h e a p ';
DEALLOCATE(a, 100);
(# Now the s t r in g is gone. #)

END HeapMem.

DEC standard procedure S

Description DEC returns a predecessor of argument X.

Usage DEC(X)

or

DEC(X,N)

Argument X may be of type INTEGER, CARDINAL, CHAR,
BOOLEAN, or a user-defined scalar type.

The second form returns the Mh predecessor of X.

Turbo Modula-2 Reference Directory 329

Comments If you subtract 1 from a CARDINAL value, the result is the
value prior to the original value. With DEC, you can do exactly
the same thing with any ordinal type.

When decrementing a value, you may reach its MIN value; for
example, the MIN (CARDIN ALL) is 0. You may choose whether
or not this situation will generate an error by using the
overflow compiler switch. This can be done globally or local
ly. Thus with overflow checking turned off, as in

VAR
i : CARDINAL;
BEGIN

i := MIN(CARDINAL);

DEC(i);
(*$0+*)
WRITELN(i);
END

the i would wraparound to MAX(CARDINAL) and no error will
be generated. If overflow checking has been turned on, then
the exception OVERFLOW will be raised. This can be trapped
as follows:

MODULE dec;
FROM SYSTEM IMPORT OVERFLOW;
VAR
i : CARDINAL;
BEGIN

(*$0+*)
i := MIN(CARDINAL);
DEC(i);

EXCEPTION
OVERFLOW: WRITELN(1 Trapped overflow error1);

END dec.

See Also INC

330 MODULA

Example For example, suppose you have an enumeration variable:

VAE Energy: (K in e tic ,P o te n tia l,H e a t) ;

You can assign any of the three values to the variable Energy.
Now suppose you want to decrement the value of Energy to a
lower value; for example, to the value preceding the current
value:

DEC(Energy)

You have performed a subtraction operation on the enumera
tion variable.

The procedure can operate on any ordinal type.

NODULE Decrement;
VAR

i : INTEGER;
s ta te : BOOLEAN;
BEGIN

i:= 0;
DEC(i,2);
(* now i= -2#)
s ta te := TRUE;
DEC(state);
(* now s ta te i s FALSE*)
END Decrement.

DEFINITION declaration R

Description DEFINITION specifies to the compiler that a compilatior
unit is the definition part of a library module.

Usage DEFINITION MODULE myMod

Turbo Modula-2 Reference Directory 331

Comments The definition module is the »visible« part of a library module
that can be imported into other modules. In the definition
module myMod you will find all the declarations necessary to
use the facilities of myMod.

Every definition module will have a corresponding implemen
tation module that contains the hidden parts of that module. It
will contain all executable code, as well as those definitions
relevant only to the internal operation of the module.

All identifiers mentioned in a definition module are exported.
The identifiers are exported in qualified mode; although, in
most cases, they will be dequalified using the FROM clause
in the module that imports them.

There is no code in a definition module. The compiler simply
produces a symbol table file that can later be used to do type
checking.

Definition modules usually reside in files with the extension
.DEF. Compilation results in the creation of a file with the ex
tension .SYM.

The definition module cannot have the compilation unit in the
same file; thus definition modules and implementation
modules must be in separate files. The resulting .SYM and
.MCD files can be combined, however, into a .LIB file using
the Turbo Modula-2 librarian.

See Also IMPLEMENTATION
MODULE

332 MODULA

Example A simple user-definition module in file ’SIMPLE.DEF’:

DEFINITION MODULE SimpleMath;

PROCEDURE ADD(y,z :INTEGER): INTEGER;

END SimpleMath.

The corresponding implementation module in file ’SIM-
PLE.MOD’:

IMPLEMENTATION MODULE SimpleMath;

PROCEDURE ADD(y,z : INTEGER) : INTEGER;
BEGIN

RETURN (y+z);
END Add;

END SimpleMath.

DELETE procedure (Files) L

Description Delete erases a file from disk.

Declaration PROCEDURE Delete(VAR f: FILE);

Usage Delete(f)

Delete must be imported from the library module Files,

f must be an open file of type FILE imported from Files.

Comments The file must have already been successfully opened.

The file is closed when it is deleted, thus its buffers are freed.

Turbo Modula-2 Reference Directory 333

See Also Close
Files
Open
Rename

Example Delete the file ’SCRATCH. SCR* from disk:

MODULE d e le te F ile ;
FROM F ile s IMPORT FILE, Open, D elete ;
VAR f : FILE;
BEGIN

IF Open(f, 1SCRATCH.DAT1) THEN D ele te (f) END
END d e le te F ile .

DELETE procedure (Strings) L

Description Delete deletes a substring from a string.

Declaration PROCEDURE D elete (VAR s t r : ARRAY OF CHAR;
in x ,le n : CARDINAL);

Usage D e le te (s tr , from, leng th)

Delete must be imported from the library module Strings.

from and length must be of type CARDINAL.

str must be a character array variable.

Comments The counting starts from 0, so the user’s strings should be
declared starting from 0.

See Also Copy
Insert
POs
Strings

Example Delete (»Lover«, 0, 1) will yield the string »over«.

334 M ODULA

DeleteLine procedure (Terminal) L

Description DeleteLine deletes the cursor line completely and to fill the
gap moves up all following lines by one.

Declaration PROCEDURE D eleteLine;

Usage DeleteLine;

DeleteLine must be imported from the library module Ter
minal.

Comments The current cursor line will be deleted. (This can be set by the
procedure GotoXY in Terminal.) Since the cursor position on
a screen is undefined after certain operations, the only way to
determine the current cursor position is by keeping track of it
yourself.

This function will work only if the T\irbo Modula-2 system has
been installed on your terminal.

A program can determine if the option has been installed by
examining the set variable Available exported by Terminal. If
insertDelete IN Available is TRUE, then these functions are
available as installed on the current terminal.

See GotoXY for a map of the screen coordinates.

See Also GotoXY
InsertLine
Terminal

Example Delete the twelfth line from the top:

GotoXY(0,ll);
DeleteLine;

Turbo Modula-2 Reference Directory 335

DeviceError

Description

Declaration

Usage

Comments

See Also

Example

tception (Files) L/E

DeviceError is raised by the Files module when a write opera
tion on a file is impossible because the disk has a bad sector.

EXCEPTION
DeviceError;

EXCEPTION
DeviceError: WRITELN('File e r r o r ') ;
END

DeviceError must be imported from the module Files.

Use the DeviceError exception to prevent your program from
crashing when the program encounters a bad disk.

EndError
StatusError
UseError
DiskFull

MODULE W riteF ile;
FROM F ile s IMPORT

FILE, C reate , WriteWord, C lose, EndError,
S ta tu sE rro r, UseError, DeviceError;
VAR f : FILE; c: CARDINAL;
BEGIN

C re a te (f , ' t e s t f i l e . d a t ') ;
W riteW ord(f,c);
C lose(f)
EXCEPTION

EndError: W RITELN(' End o f f i l e reached . ') ;
C lose(f)

I S ta tu sE rro r: WRITELN(' E rro r f i l e not opened ');
I UseError : WRITELN('D isk not logged i n . ') ;
I DeviceError: WRITELN('E rro r w ritin g d isk :

bad s e c to r ') ;
END W riteF ile .

336 M ODULA

DiskFull exception (Files) L/E

Description DiskFull is raised by the Files module when a write or close
operation on a file is impossible because the disk or directory
is full.

Declaration EXCEPTION
D iskFull;

Usage EXCEPTION
D iskFull: WRITELN(»File e r ro r*) ;

END

DiskFull must be imported from the module Files.

Comments Use the DiskFull exception to prevent your program from
crashing when the program encounters a full disk.

See Also EndError
StatusError
UseError
DeviceError

Turbo Modula-2 Reference Directory 337

Example MIDDLE W riteF ile ;
FROM F ile s IMPORT

FILE, C reate , WriteWord, Close, EndError,
S ta tu sE rro r, UseError, DeviceError, D iskFull;
VAR f : FILE; c: CARDINAL;
BEG IN

C re a te (f , ' t e s t f i l e . d a t ') ;
W riteW ord(f,c);
C lose(f)
EXCEPTION

EndError: WRITELN('End of f i l e re a c h e d .1);
C lose(f)

I S ta tu sE rro r: WRITELN('E rro r f i l e no t opened1) ;
I UseError : WRITELN('D isk not logged i n . ') ;
I DeviceError: WRITELN('E rro r w ritin g d isk : bad

s e c t o r ') ;
I D iskFull: WRITELN('This d isk is FULL, buddy!') ;
END W riteF ile .

DISPOSE standard procedure (STORAGE) S

Description DISPOSE deallocates a dynamic variable from the heap.

Usage DISPOSE(p)

or

DISPOSE(p, t a g l , tag2 , . . . tagn)

To use this procedure, DEALLOCATE must be imported from
the library module STORAGE, or it must be defined in some
other way.

p must be a pointer to a variable.

tagl, . . . tagn are relevant if the type of the variable is a tagged
variant record.

338 M ODULA

Comments

See Also

Example

DISPOSE is essentially an abbreviated DEALLOCATE com
mand. If, for example, p is of type POINTER TO
LONGREAL, then DISPOSER) will be equivalent to
DEALLOCATE(p, TSIZE(LONGREAL)).

p must point to a variable that has been previously allocated
using either ALLOCATE or NEW.

Care must be taken when using DISPOSE and DEALLOCATE
together with MARK and RELEASE.

When variant records are allocated using a tag field, you
should use the same tag when disposing of that record.

DEALLOCATE
MARK
NEW
RELEASE
STORAGE

Allocate a variable and use it:

MODULE Dispose;
TAR

p i , p2, p3: POINTER TO REAL;
BEGIN

NEW(pi);
NEW(p2);
NEW(p3);

(# use them #)
DISPOSE(p2);
DISP0SE(p3);
DISPOSE(pl)
END Dispose.

Turbo Modula-2 Reference Directory 339

DIV standard operator R

Description DIV is an integer division operator; it is a binary operator that
works on operands of the same type. The operands may be
both CARDINAL, both INTEGER, or both LONGINT.

Usage i := i DIV j j

where i and j are of the same type.

The result of the expression is the same type as the operands.

Comments Integer division is useful when you do not care about the frac
tional parts of a quotient.

See Also MOD

Example MIDDLE In tegerD iv ision ;
VAR

i , j : INTEGER;
c ,d : CARDINAL;
l,m : LONGINT;

BEGIN
i := 1; c := 1;
i := 30 DIV i ;
c := d DIV c;
1 := m DIV 344212L;

END In teg erD iv isio n .

Done procedure (InOut) L

Description Done checks for successful completion of input.

Declaration VAR Done: BOOLEAN;

Usage IF Done THEN DoSomething H D ;

Done must be imported from the library module InOut.

340 MODULA

Comments

See Also

Example

Done allows a program to check for valid input before pro
ceeding. Each of the input procedures in InOut sets Done as
follows:

Read Done
ReadString Done
Readlnt Done
ReadCard Done

Not past end of input
The returned string is not empty
Integer was read
Cardinal was read

Texts

Get a number from the user:

NODULE R eadlnteger;
FROM InOut IMPORT Done, Readlnt;
BEGIN
REPEAT

WRITE('Gimme a number> ') ;
R ead ln t(i)

U N T IL Done;
END R eadlnteger.

Done procedure (Texts) L ______________________________________

Description Done checks for successful completion of numeric input.

Declaration PROCEDURE Done(t: TEXT): BOOLEAN;

Usage okay := Done(t)

Done must be imported from the library module Texts.

t must be of type TEXT imported from the library module
Texts.

Turbo Modula-2 Reference Directory 341

Comments Done allows the program to check for valid numeric input
before proceeding.

Done is a function returning TRUE if the numeric input is both
syntactically correct and the input number is in the valid range
for the type being read; otherwise FALSE is returned.

See Also Texts

Example Get a number from the user:

MODULE Done Input;
FROM Texts IMPORT Done;
BEGIN

REPEAT
WRITE('Gimme a number> 1) ;
READ(num);

UNTIL Done (in p u t) ;
END Donelnput.

DOUBLE standard function S

Description DOUBLE converts the argument to type LONGREAL.

Usage Y:= DOUBLE(X)

Argument X is of type CARDINAL, INTEGER, LONGINT,
or REAL.

The result Y is of type LONGREAL.

Comments Do not confuse this function with the LONGREAL type-
transfer function, which transfers data without converting it.

See Also FLOAT
LONGREAL
TRUNC

342 MODULA

Example

Doubles L

Description

Declaration

Comments

MODULE Doubles;
VAR

Converted: LONGREAL;
r : REAL;

BEG IN
r := 234.234;
Converted := DOUBLE(r);

END Doubles.

Doubles is a library module that provides string handling and
I/O support for double-precision variables.

D E F IN IT IO N MODULE Double
FROM T e x ts IMPORT TEXT;

VAR
le g a l .-BOOLEAN

PROCEDURE ReadDouble (t : TEXT; VAR d: LONGREAL);
PROCEDURE WriteDouble (t : TEXT; d: LONGREAL;

w idth: CARDINAL; d ig i t s : INTEGER);

PROCEDURE StrToDouble (VAR s: ARRAY OF CHAR;
d: LONGREAL);

PROCEDURE DoubleToStr (s : ARRAY OF CHAR;
VAR d: LONGREAL);

END Doubles.

This module provides conversions for LONGREALs, which
are similar to the ones that Convert and Texts provide for the
standard types in Modula-2.

Turbo Modula-2 Reference Directory 343

DoubleToStr procedure (Doubles) L

Description DoubleToStr converts a double-precision variable to a string
variable.

Declaration

Usage

PROCEDURE DoubleToStr
(d: LONGREAL; VAR s : ARRAY OF CHAR;

d ig i ts : INTEGER);

DoubleToStr(d, s , d ig i ts)

DoubleToStr must be imported from the library module
Doubles.

s must be a character array variable.

d must be of type LONGREAL.

See Also Doubles
StiToDouble

Example Convert a double-precision number into a string:

d := 2.99D10;
DoubleToStr(d, s t r , 15);

END R

Description END marks the end of the scope of a control structure, pro
cedure, or module.

Usage END

or

END pname

344 MODULA

Comments In the case of a control structure (IF, W ITH, WHILE, or
CASE), the END stands alone. In the case of a module or pro
cedure, the END statement is followed by the name of the
module of procedure it terminates. A semicolon is never need
ed before an END.

Example MODULE endexample;
BEGIN (# Main #)

IF ap p ro p ria te THEN DO
WITH SomeRecord DO

(# code #)
END

END
END endexample.

EndError exception (Files) L/E

Description EndError is raised by the Files module when an attempt is
made to read past the end of the file.

Declaration EXCEPTION
EndError;

Usage EXCEPTION
EndError: WRITELN(’END OF FIL E ');

END

EndError must be imported from the module Files.
1

Comments Use the EndError exception to prevent your program fror
crashing from user input.

See Also StatusError
UseError
DeviceError
DiskFull

Turbo Modula-2 Reference Directory 345

Example MODULE ReadFile;
FROM F ile s IMPORT FILE, Open, ReadWord,
Close, EndError;
VAR f : FILE; c: CARDINAL;
BEGIN
IF Open(f,rt e s t f ile .d a t ') THEN
LOOP

ReadWord(f,c);
END
END ;
EXCEPTION

EndError: WRITELN('End of f i l e reached.') ; Close(f)
END ReadFile.

Entier function (MathLib, LongMath) L

Description Entier returns the integer part of a real number rounded toward
negative infinity.

Declaration PROCEDURE E n tie r(x : REAL): INTEGER;
PROCEDURE E n tie r(x : LONGREAL): LONGINT;

Usage Y:= Entier(X)

Argument X is REAL or LONGREAL.

Result Y is INTEGER or LONGINT.

Comments The Tbrbo Modula-2 predefined function IN T can convert ary
numeric type to INTEGER; for example:

E n tie r (-3 .5) = -4
INT(-3.5) = -3

346 MO

Example MODULE EntierTest;
IMPORT MathLib;
IMPORT LongMath;
VAR

Round: INTEGER;
Number: REAL;
LongRound: LONGINT;
LongNumber: LONGREAL;

BEGIN
Round: = MathLib .Ent ie r(Numb er + 0 .5) ;
LongRound := LongMath.Entier(LongNumber + 0.!

END EntierTest.

EOF function (Files) L

Description EOF returns true if the file pointer is at the end of tl

Declaration PROCEDURE E0F(f: FILE): BOOLEAN;

Usage endOF := EOF(f)

EOF must be imported from the library module File:

f must be of type FILE imported from Files.

Comments This is the normal way to detect the end of defined dat
a file.

See Also Close
Files
Open

Turbo Modula-2 Reference Directory 341

Example Open a file and process it:

MODULE EndOfFile;
FROM F ile s IMPORT FILE, Open, ReadRec, EOF;
VAR

• f : FILE;
data : ARRAY [0 ..9 9] OF REAL;
BEGIN
IF 0 p n (f ,nNumbers. d a tn) THEN
NEELE NOT EOF(f) DO

R eadR ec(f,data);
(# Code to process data *)
END
END
END EndOfFile.

EOL constant (Texts) L

Description EOL holds the value of the end-of-line character, 36C or 30
decimal.

Declaration CONST
EOL = 360;

Usage ch := EOL;

ch must be defined as a CHAR.

EOL must be imported from the module Texts.

Comments The procedures in the module Texts convert the carriage-
retum/line-feed sequence to and from the EOL character.
When input, the carriage-retum/line-feed sequence is con
verted to an EOL character; and when output, the EOL
character is converted to a carriage-retum/line-feed pair. Thus
in a program-processing text file, the end of line is marked
with the EOL character.

348 MODULA

See Also Texts

Example MODULE EndOfTheLine;
FROM Texts IMPORT EOL;
VAR ch: CHAR;
BEGIN

REPEAT
READ(ch)

UNTIL ch=E0L;
END EndOfTheLine.

EOLN procedure (Texts) L

Description EOLN returns TRUE if the TEXT file is at the end of a line.

Declaration PROCEDURE E0LN(t: TEXT): BOOLEAN;

Usage endOL := EOLN (t)

EOLN must be imported from the library module Texts,

t must be of type TEXT imported from Texts.

endOL must be of type BOOLEAN.

Comments EOLN returns TRUE if the last character read from t is an EOL
character.

See Also EOT
Texts

Example Read all characters until the end of the line is encountered:

REPEAT
R eadC har(t,ch);

DHTIL EOLN(t);

Turbo Modula-2 Reference Directory 349

EOT procedure (Texts) L

Description

Declaration

Usage

Comments

See Also

EOT returns TRUE if the TEXT file is at its end.

PROCEDURE E0T(t: TEXT): BOOLEAN;

EndOfText := EOT (t)

EOT must be imported from the library module Texts.

t must be of type TEXT imported from Texts.

EndOJText must be of type BOOLEAN.

EOT returns TRUE if the last character read from t is an EOT
character (for example, Control-Z or 32C).

Notice there is no EOT character defined in T\irbo Modula-2;
it is reserved for the function described here. Note that
sometimes the 32C character is referred to as EOT. Also note
that the EOT character on other systems may not be 32C.

EOF
EOLN
Texts

Example Read all characters until the end of the TEXT file t is en
countered:

REPEAT
ReadChar(t,ch);
UNTIL EOT(t)

350 MODUL

EXCEPTION

Description

Usage

R

EXCEPTION is used to declare exception identifiers and 1
declare code to trap exceptions when they occur.

Exception Declarations

NODULE deviceHandler;
EXCEPTION e xl, ex2, ex3; (# Exception declaration *

PROCEDURE devl;
BEGIN
(# code with RAISES *)
END devl;

END devicehandler;

Exception Handlers

NODULE deviceMonitor;
IMPORT exl,ex2,ex3;
BEGIN

devl; (* Invoke a procedure with RAISES *)
EXCEPTION

1 exl: (* exl code #)
1 ex2: (* ex2 code #)
1 ex3: (* ex3 code #)
ELSE (# other code #)

END deviceMonitor.

The first module declares exceptions and code that will ra
the exceptions in error situations. The second module call,
procedure that may raise an error; therefore, it declares exc<
tion handlers to catch and process the errors.

Turbo Modula-2 ference Directory 351

Comments

See Also

Example

EXCL standard

Description

Usage

Comments

Exceptions are particularly useful in the event of a program
crash; for instance, if you need to turn off a laser, or switch
out of graphics mode. It is possible to do this with the Ibrbo
Modula-2 system, because the runtime system can take over (in
most cases) when something catastrophic happens to your
logic. The ELSE clause in the exception handler catches all
possible exceptions whether imported or not.

RAISE

Declare PowerFailurelmminent as an exception:

EXCEPTION PowerFailurelmminent

Then raise it:

IF ((* some h in t #)) THEN RAISE

PowerFailurelmminent;

Then handle it:

EXCEPTION
PowerFailurelmminent: WRITE(fHelp !) 1;

END someMainModule;

procedure S___

EXCL excludes element I from the set S.

EXCL(S,I)

Argument S is of set type.

Argument I is of the set’s base type.

This standard procedure allows you to remove an element from
a set. This has the effect of turning off a bit in the word that
represents the set.

352 MODI

See Also BITSET
INCL
SET

Example NODULE Exclude;
TYPE

Day = (Sun,M on,Tues,W ed,Thu,Fri,Sat);

VAR
Work: SET OF Day;

BEGIN
Work: = Day (Mon. . Fr i] ;

(* Set Work con tains f iv e elem ents Mon to F r i *)

EXCL(Work,Fri);
(* Set Work con tains fou r elem ents, Wed excluded
END Exclude.

EXIT statement R

Description EXIT enables you to exit from a LOOP statement.

Usage EXIT

Comments EXIT jumps to the statement following the END of the enc
ing LOOP statement.

See Also LOOP

Example LOOP
IF DoneProcessing THEN EXIT END ;

END ;
HALT

I

u Turbo Modula-x, Reference Directory 353

ExitScreen procedure (Terminal) L

Description ExitScreen sends a terminal reset string after a series of screen

Declaration

operations, if needed.

PROCEDURE ExitScreen;

Usage

1

ExitScreen;

ExitScreen must be imported from the library module Ter
minal.

Comments This function will work only if the Turbo Modula-2 system has
been installed on your terminal.

) Many terminals don’t need or have a reset string. If this is the
case with your terminal, the function will do nothing.

Example Send a terminal reset string:

BEGIN
(# Lots o f screen opera tions #)
ExitScreen

END

os-
Exp function (MathLib, LongMath) L

Description Exp returns the natural exponential of X.

Declaration PROCnXJRE Exp(x: REAL): REAL;
PROCEDURE Exp(x: LONGREAL): LONGREAL;

Usage Y:= Exp(X)

Argument X and result Y are both REAL or both
LONGREAL.

354 MODULA

Comments

See Also

Example

EXPORT

Description

Be certain that argument X is less than 87.4 for single- preci
sion numbers and less than 710.47 for double-precisior
numbers; otherwise, the ArgumentError exception is raised.

The inverse of the exponential function is the natura,
logarithmic function Ln.

If you need to calculate X to the power of 7, you can use th<
Exp and Ln functions in the following expression:

XPowerY: = Exp(Ln(X) * Y)

LongMath
MathLib

MODULE Exp;
FROM MathLib IMPORT Exp;
VAR

Argument, R esult:REAL
BEGIN

IF Argument < 87.4 THEN
Result := Exp(Argument)

END ;
END Exp.

EXPORT specifies which identifiers inside a module are to b
visible in the scope surrounding the module.

Usage EXPORT v a r l,v a r2 , typel,type2, procl,proc2

Turbo Modula-2 Keference Directory 355

Comments

Example

IMPORT and EXPORT lists must appear immediately after
the MODULE statement and before any constant, variable,
type, or procedure declarations.

Names identifying constants, variables, types, exceptions, and
procedures may be exported. Modules may not be exported.

Everything in a definition module is exported; thus no export
list is required.

Nothing in an implementation module may be exported, unless
it has been previously exported by its definition module.

Nothing may be exported by a main module since there is
nothing to export to.

Consequently, export lists really only make sense in local
modules or in modules that are embedded inside of a main
module, procedure, or an implementation module.

local's beans is visible to main, but its rice is not:

MODULE main;

MODULE local;
EXPORT beans;
VAR
rice,beans: BOOLEAN;
BEGIN
(* code to set rice and beans *)
END local;

(# Any code here cannot see rice, only beans *)
END main.

356 MODULA

FALSE Standard value S

Description FALSE denotes the Boolean state of falsity.

Usage Finished := FALSE;

Finished is a variable of type BOOLEAN.

Comments The ordinal value of FALSE is 0; thus, WRITE(CAR-
DINAL(FALSE)) will print a 0. In contrast, the ordinal value
of TRUE is 1; thus, truth is greater than falsity.

See Also BOOLEAN
TRUE

Example MODULE F a ls i ty ;
VAR

b: BOOLEAN;
BEGIN

REPEAT b := FALSE UNTIL b; (# re p e a ts fo rev er *)
END F a ls i ty .

FILE type (Files) L

Description FILE is an opaque type representing a low-level file. Variables
of type FILE may represent illegible streams and random ac
cess files.

Declaration TYPE
FILE;

Usage VAR
f: FILE;

FILE must be imported from the module Files.

Comments Use FILE when you are working with files that are not strictly
ASCII characters or if you do not want to interpret the contents
of the file.

Turbo Modula-2 Reference Directory 357

See Also

Example

Files module

Description

Declaration

Files
TEXT
Texts

MODULE F ile E x is ts ;
FROM F ile s IMPORT FILE, Open, Close;
VAR f : FILE;
BEGIN
IF Open(f,1t e s t f ile .d a t ’) THEN

Close(f); WRITELN('File e x is t s .1);
EISE

WRITELN(»File does not e x is t .») J
END ;
END F ile E x is ts .

L

Files facilitates the handling of disk files.

DEFINITION MODULE F ile s ;
FROM SYSTEM IMPORT BYTE WORD, ADDRESS;

TYPE FILE;

PROCEDURE Open (VAR f : FILE;
name: ARRAY OF CHAR): BOOLEAN

PROCEDURE Create (VAR f : FILE; name:
ARRAY OF CHAR);

PROCEDURE Close (VAR f : F ILE);
PROCEDURE Delete (VAR f : FILE);
PROCEDURE Rename (VAR f : FILE; name:

ARRAY OF CHAR) ;

PROCEDURE GetName (f : FILE;
VAR name: ARRAY OF CHAR);

358 MODULA

Comments

See Also

PROCEDURE F ile S iz e
PROCEDURE EOF
PROCEDURE ReadByte
PROCEDURE ReadWord
PROCEDURE ReadRec

PROCEDURE ReadBytes

(f : F IL E): LONGINT;
(f : FILE): BOOLEAN;
(f : FILE; VAR b:BYTE);
(f : FILE; VAR w: WORD);
(f : FILE;
VAR re c : ARRAY OF WORD);
(f : FILE; buf: ADDRESS;
nbytes: CARDINAL): CARDINAL;

PROCEDURE WriteByte
PROCEDURE WriteWord
PROCEDURE WriteRec

PROCEDURE WriteBytes

(f : FILE; b:BYTE);
(f : FILE; w: WORD);
(f : FILE;
VAR re c : ARRAY OF WORD);
(f : FILE; buf: ADDRESS;
nbytes: CARDINAL);

PROCEDURE Flush
PROCEDURE NextPos
PROCEDURE SetPos

PROCEDURE NoTrailer

(f : FILE);
(f : FILE): LONGINT;
(f : FILE; pos:LONGINT);

(f : FILE);

PROCEDURE ResetSys() ;

EXCEPTION EndError, StatusError, UseError,
DeviceError, D isk F u ll;

END F ile s .

This library module performs low-level disk access.

Texts
InOut
Also see individual identifiers declared in the module Files.

Turbo Modula-2 Reference Directory

FileSize procedure (Files) L

359

Description FileSize gets the exact size of the file in bytes.

Declaration PROCEDURE F ile S iz e (f : FILE): LONGINT;

Usage nbytes := F ile S iz e (f)

FileSize must be imported from the library module Files,

nbytes must be of type LONGINT.

/ must be of type FILE imported from Files.

Comments T\irbo Modula-2 uses the last byte of the last record (all CP/M
files have 128 bytes per record) to store the number of bytes
actually used in this record. This number is added to the
number of bytes in the previous records ((nrecs-I)*128) to
determine the actual file size in bytes.
This processing of the last byte can be turned off by a call to
NoTrailer, but then FileSize will only return sizes in 128-byte
multiples.

See Also FILE
Files
NoTrailer

Example To see just how big widgetFile is, do the following:

MODULE F ile S ize s ;
FROM F ile s IMPORT FILE, Open;
VAR

nbytes: LONGINT;
w idgetF ile : FILE;
BEGIN
IF Open(widgetFile, " w id g e ts .d a t") THEN
nbytes := F ileS ize (w id g etF ile)
END
END F ile S ize s .

360 MODULA

FILL procedure (SYSTEM) L

Description FILL fills a block of memory with a given byte.

Declaration PROCEDURE FILL(adr: ADDRESS; len: CARDINAL;
v a l: BYTE);

Usage FILL(start, nbytes, ch)

FILL mu>t be imported from the library module SYSTEM,

start must be of type ADDRESS imported from SYSTEM.

nbytes must be of type CARDINAL.

ch must be of type BYTE imported from SYSTEM.

Comments The block of memory between start and the address start +
nbytes -I is filled with the byte value ch.

See Also MOVE
SYSTEM

Example Fill the array Sieve with the value TRUE:

VAR Sieve: ARRAY [0..8191] OF BOOLEAN;
BEGIN

FILL(ADR(Sieve), 8192,TRUE);

firstDrive variable (Loader) L

Description firstDrive contains the first disk drive to be searched when
looking for overlay files.

Declaration VAR
f i r s tD r iv e : [0 . . 15];

Turbo Modula-2 Reference Directory 361

Usage f irstD riv e := currentDrive;

firstDrive must be imported from the module Loader.

currentDrive is a CARDINAL in the range 0 to 15.

Comments Once the location of the overlay files has been found you may
speed up load time by ensuring that firstDrive is set to the cor
rect drive number.

ee Also Loader

Example MODULE LoadOverlay;
FROM Loader IMPORT f irs tD r iv e , C a ll;
BEGIN

f irstD riv e := 13; (* Search ram disk (M:) f ir s t #)
C a l l(1 overlay. f i l ')
END LoadOverlay.

FLOAT standard function S___

Description FLOAT converts argument X to REAL.

Usage Y:= FLOAT (X)

Argument X can be of type INTEGER, CARDINAL,
LONGINT, or REAL.

The argument must be in the REAL range -1E38 to 1E38.

Result Y is of type REAL.

Comments Be certain that the argument is in the REAL range
-6.80564E38 to +6.80564E38; otherwise, an overflow error
will occur, causing the exception OVERFLOW to be raised.

362 MODULA

Example VAR Count: CARDINAL
Time:REAL

BEGIN
Time:= Time + 0.1 * FLOAT(Count);

END

Flush procedure (Files) L

Description

Declaration

Usage

Flush flushes the file’s internal buffer to disk.

PROCEDURE F lu sh (f: FILE);

F lush (f)

Flush must be imported from the library module Files.

f must be of type FILE imported from Files.

Comments In order to speed up the input and output to disk files, most
computers maintain a file buffer for each open file. In a write
operation this buffer is not normally »flushed« until the buffer
is full. The Flush command forces this process.

This function can be used to detect write errors (like DiskFull)
sooner than they would otherwise appear. (They do not usually
appear until the internal file buffer is full and the Turbo
Modula-2 sytem orders a flush.)

See Also Files

Example Force a DiskFull error at the record where it occurs:

FOR i : = 1 TO nrecs DO
W riteRec(f, w id g e t[i]) ;
F lu s h (f) ;

END ;

Turbo Modula-2 Reference Directory 363

FOR Statement R

Description FOR repeats the execution of a sequence of instructions a
specified number of times.

Usage FOR ControlVar := StartExp TO EndExpr [B Y Step] DO
< S tatem ent> (; < S tatem ent>]

END

ControlVar is of type CARDINAL, INTEGER, CHAR,
enumeration, or subrange. It must not be imported, nor be a
procedure parameter or a structured variable’s component.

StartExp and EndExp are single values or expressions of the
same type as the control variable.

Step is a constant expression of type CARDINAL or IN
TEGER.

Comments The FOR statement repeatedly executes the statement se
quence for a progression of control variable values. It begins
with the value of the start expression and increments by the
value Step until the control variable is equal to or greater than
the value given by the end expression. If you do not specify
a step value, it is assumed to be 1.

As defined in the syntax section, the start and end values can
be the results of expressions.

FOR Y:= X TO X + N BY Ramp DO

A FOR statement cannot be exited before its normal termina
tion. If you want to do this, you can use the REPEAT or
WHILE statements instead.

364 MODULA

Example FOR X:= 0 TO 10 BY 2 DO
(* Some Statem ent sequence #)

END

This example repeats the statement sequence six times, with X
equal to the values 0, 2, 4, 6, 8, and 10. You can use X in the
statement sequence, but you cannot alter its value. For exam
ple, you can do the following:

FOR Count: = 5 TO 3 BY -1 DO
T: = 2 * Count + 4

END

This example is repeated three times for descending values of
Count equal to -5, -4, and -3.

FORWARD statement R

Description FORWARD allows a procedure to be referenced before it is
defined.

Usage PROCEDURE foo() : CARDINAL; FORWARD ;

foo is a procedure or a function heading followed by the
reserved word FORWARD.

The body of foo is given after a normal procedure heading for
foo.

Comments The FORWARD statement allows T\irbo Modula-2 to imple
ment mutual recursion in a one-pass compiler environment.
This statement was not defined in the original definition, but
is needed for a one-pass implementation of the compiler.

Turbo Modula-2 Refe^nce Directory 365

Example MODULE R ecurring;
PROCEDURE one; FORWARD ;

PROCEDURE two;
BEGIN

one; (# C all o f procedure before i t i s defined #)
END two;

PROCEDURE one;
BEGIN

two;
END one;

BEGIN
one;

END R ecurring.

FREEMEM procedure (STORAGE) L

Description FREEMEM finds out how much contiguous dynamic memory
(heap space) is available.

Declaration PROCEDURE FREEMEM(): CARDINAL;

Usage freeman := FREEMEM()

FREEMEM must be imported from the pseudomodule
STORAGE.

freeman must be of type CARDINAL.

Comments This function returns the number of bytes between the heap
pointer and the current top of the runtime stack. The sizes of
holes in the allocated heap is not taken into account.

See Also ALLOCATE
DEALLOCATE
STORAGE
OUTOFMEMORY

366 MODULf

Example WRITELNCThere are ' ,FREEMEM() , ' b y tes fre e on th<
heap ') ;
ALL00ATE(p, 2000);
WRITELN('and now th e re a re 2000 l e s s : , FREEMEM()) ;

GetName procedure (Files) L

Description GetName retrieves the name of an open file.

Declaration PROCEDURE GetName(f: FILE; VAR name:
ARRAY OF CHAR);

Usage GetName(f, fname)

GetName must be imported from the library module Files.

/ must be of type FILE imported from Files,

fname must be a character array variable.

Comments This procedure allows library modules to determine the nam
of a file when only the file variable has been passed.

See Also Create
FILE
Files
Open

Example Get the name of file /:

GetName(f, fname)

Turbo Modula-2 Reference Directory 367

GotoXY procedure (Terminal) L

Description GotoXY positions the cursor on the screen.

Declaration PROCEDURE GotoXY(x,y: CARDINAL);

Usage GotoXY(col, row)

GotoXY must be imported from the library module Terminal,

col and row must be of type CARDINAL.

Comments This function will only work if Turbo Modula-2 has been pro
perly installed on your system.

0, 0 is the upper left-hand corner
79,23 is the lower right-hand comer

(0,0) col (79,0)

row

See Also

(0,23) (79,23)

ClearScreen
CleaiToEOL
DeleteLine ‘
InsertLine
Highlight
Normal
Terminal

368 MODULA

Example Put an ’X’ in the upper right-hand corner:

GotoXY(79,0) ;W riteChar('X') ;

HALT standard procedure S

Description HALT stops program execution.

Usage HALT

Comments The HALT procedure terminates execution of the program and
returns you to Tbrbo Modula-2 or the operating system, depen
ding on where the program execution originated from.

HALT is a standard Modula-2 procedure; a nonstandard way
to stop a program and deliver an error message to the terminal
is available with the RAISE command.

See Also RAISE

Example VAR E rrorC ondition: BOOLEAN
BEGIN

IF ErrorC ondition THEN
HALT

END ;

haltOnControlC variable (Texts) L

Description haltOnControlC holds the current mode of operation o
Control-C during console input and output.

Declaration VAR
haltOnControlC: BOOLEAN;

Turbo Modula-2 reference Directory 369

Usage

Comments

See Also

Example

haltOnControlC := FALSE;

haltOnControlC is a predefined variable that must be imported
from the module Terminal.

This variable is useful for preventing a user from stopping a
program.

The default value of haltOnControlC is TRUE, which means
that the user can press I Ctrl 1 [c 1 during an input statement
or a WRITELN statement to halt the program.

Note that the only output procedure that checks for the
Control-C character is the WriteLn procedure. Thus, programs
that do not use a WriteLn (or WRITELN) statement cannot be
interrupted.

Texts

NODULE HaltTheProgram;
FROM Texts IMPORT haltOnControlC;
VAR I : CARDINAL;
BEG IN

FOR I := 1 TO 20 DO
WRITELN(f P ress co n tro l C to stop the program ')

END ;
haltOnControlC := FALSE;
FOR I := 1 TO 20 DO
WRITELN ('You cannot stop me now . . . ')

END ;
END HaltTheProgram.

370 MODUL

HIGH standard function S

Description To HIGH returns the high-index bound of array A.

Usage Y:= HIGH(A)

Argument A is an array of any index and component type.

Result Y is of the same type as the index type.

Comments This function allows you to find the upper index of any area}
for example, an array defined as

Move: ARRAY (L eft,R ig h t,S to p) OF INTEGER;

has an upper index Stop.

Note that for multidimensional arrays, the upper index of tf
first dimension is returned. For example, if you have define
an array as

MultiDim: ARRAY [1 0 . .2 0] ,(L e ft,R ig h t,S to p) OF
CHAR

the HIGH function will return the result 20, which is the hif
index of the first dimension.

You can also find the other dimensions as well; for exampl
if you have defined

MultiDim: ARRAY [0 ..1 0] OF ARRAY [0 ..2 0] OF WORD:

then HIGH(MultDim) = 10 and HIGH(MultiDim[0]) = 2C

HIGH is very useful for finding the upper bound of an op<
array parameter. The lower bound is always zero and the upp|
bound is HIGH (a) where a is an open array parameter.

See Also ARRAY

Turbo Modula-2 inference Directory 371

Example MODULE High;
TYPE

Weather = (Clear,Rain,W ind,Snow);
Day • = (Mon,Tue,W ed,T hu,Fri,Sat,Sun);
Hour = [1 ..2 4]

VAR
F orecast: ARRAY Day,Hour OF Weather;
H ighForecast: Day;
HighHour: Hour
BEGIN

H ighForecast:= HIGH(F o recast) ;
(# HighForecast is value Sun #)
HighHour := HIGH(Forecast [Sun]) ;

(* HighHour i s 23 *)
END High.

Highlight procedure (Terminal) L

Description Highlight turns on highlighting (brightens text) for terminal
output.

Declaration PROCEDURE H igh ligh t;

Usage H ighligh t

Highlight must be imported from the library module Terminal.

Comments Highlight is only possible on systems with screens capable of
displaying text in at least two of the following modes:
brightness, inverse video, or underlining.

Highlight will work on your system only after the Turbo
Modula-2 system has been properly installed.

Stand-alone programs can see if the terminal they are running
on has this capability by checking OpSet for the element
highlightNormal.

See Also Normal
Terminal
OpSet
highlightNormal

Example Highlight the words »This text is high«:

H ighligh t;
WriteLn('T his te x t is high ') ;
Normal;
WriteLn('And th is te x t i s normal 1)

372 __ MODULA

highlightNormal enumerated value (Terminal) L

Description highlightNormal is the third value of the enumerated type Ter
minal. SpecialOps.

Declaration SpecialOps = (c lea rE o l, in se r tD e le te , h igh ligh tN or
mal) ;

Usage IF highlightNorm al IN av a ila b le THEN H igh ligh t END;

SpecialOps must be imported from the library module Ter
minal.

Comments If this value is a member of the set Terminal, available, then
the program may use the procedure Highlight to enhance text
written to the screen.

To use this identifier, include SpecialOps in your import list.
The identifiers of each of SpecialOps’ values become visible
automatically.

See Also Highlight
available
insertDelete
clearEol
Terminal

Turbo Modula-2 Reference Directory 373

Example Write some enhanced text:

MODULE CheckAvailableOperations;
FROM Terminal IMPORT
a v a ila b le , SpeclalOps, H ig h lig h t, Normal;
FROM S tr in g s IMPORT CAPS;
VAR s : ARRAY [0 ..2 0] OF CHAR;
BEGIN
IF highlightNorm al IN av a ila b le THEN
H igh ligh t;
WRITELN(s);
Normal;
ELSE

CAPS(s)
WRITELN(s);
END ;
HID CheckAvailableOperations.

HLRESULT variable (SYSTEM) L

Description HLRES ULT holds the contents of the HL register after a BDOS
or BIOS call.

Declaration VAR
HLRESULT: CARDINAL;

Usage c := HLRESULT;

HLRESULT must be imported from the pseudomodule
SYSTEM.

c must be of type CARDINAL;

Comments This variable is used to access the register after operating
system calls.

374 MODULA

See Also BDOS
BIOS
HLRESULT
SYSTEM

Example MODULE OperatingSystem Calls;
FROM SYSTEM IMPORT BDOS,BIOS,IORESULT,HLRESULT;
VAR ReadonlyVector: CARDINAL;
BEGIN

BDOS(1,0); WRITE(*The ch a rac te r read i s
1, CHR(IORESULT)) ;
BDOS(2 9 ,0);
ReadOnlyVector := HLRESULT;

END OperatingSystem Calls.

IF statement R

Description IF executes a sequence of statements that depend on the result
of a BOOLEAN expression.

Usage IF BooleanExpression THEN StatementSequence
(EI5IF BooleanExpression THEN StatementSequence)
[EISE StatementSequence]
END

StatementSequence = Statem ent {; Statement)

Comments Each Boolean expression is evaluated until one results in
TRUE. The associated statement sequence is then executed
and the statement ends. If none of the IF or ELSIF expressions
yield a TRUE result, the optional ELSE statement sequence
is executed.

Note that Boolean expressions are only evaluated until one is
TRUE.

Turbo Modula-2 Reference Directory 375

Example VAR
XAxis,YAxis: REAL;

BEGIN
IF XAxis < 10.0 THEN
YAxis:= 2 .0 * XAxis

ELSIF XAxis < 2 0 .0 THEN
YAxis:= XAxis + 10.0

EISE
YAxis: = 30.0

END ;

IMPLEMENTATION declaration R

Description IMPLEMENTATION marks the begining of the implementa
tion code of a module.

Usage IMPLEMENTATION MODULE raoduleName;
< d e c la ra tio n s >
BEGIN
< body>
END moduleNsme.

376 MODULA

Comments

See Also

An implementation module always has a definition module,
and together they form a library module from which objects
can be imported. The definition module contains the declara
tions of all the exported objects. The implementation module
contains the actual code that defines the objects and pro
cedures that are exported.

An implementation module is a separate compilation unit. In
general, it is possible to make a change to an implementation
module and recompile it without changing the client modules.
Other .MCD files that import objects from the changed
module will incorporate those changes without having to be
recompiled. This is possible because Turbo Modula-2 pro
grams are linked at runtime when run from the menu shell.

An implementation module is not normally a stand-alone pro
gram (though it can be); it is usually executed by importing its
code into a so-called »main module«.

The main body of code in an implementation module is ex
ecuted at load time. This is referred to as the initialization sec
tion. It is used to set up variables before any client uses that
library’s services.

DEFINITION
Linker
MODULE

Turbo Modula-2 Reference Directory 371

Example Here’s a definition module in the file COMPUTE.DEF:

DEFINITION MODULE Compute;
VAR
PI: REAL;

PROCEDURE Add(Y,Z : INTEGER): INTEGER
PROCEDURE Sub(Y,Z : INTEGER): INTEGER

END Compute.

And here’s the corresponding implementation module in file
COMPUTE. MOD:

IMPLEMENTATION MODULE Compute;

PROCEDURE Add(Y,Z : INTEGER): INTEGER;
RETURN Y + Z

END Add;

PROCEDURE Sub(Y,Z : INTEGER): INTEGER;
RETURN Y - Z

END Sub;

BEGIN
PI := 3.14159;

END Compute.

378 MODUL

IMPORT declaration R

Description IMPORT specifies which identifiers a module is able to »see
from another module or the surrounding environment.

Usage IMPORT id e n t i f ie r s ;

or

FROM moduleName IMPORT id e n t i f i e r s ;

The first form of IMPORT imports identifiers as a whole.]
the identifier is a module, then that module’s identifiers mu*
be qualified.

The second form de-qualifies identifiers as they are importec

Comments IMPORT lists must come immediately after the MODUL
declaration and before any constant, variable, type, or prc
cedure declarations.

In local modules, the IMPORT declarations must come befoi
the EXPORT declarations.

Qualified identifiers can be accessed by prefixing the identify
with the module name, followed by a ».«, as :
ModuleName. IdentifierName.

Note that you need not name the module the same as the fi
name. However, the compiler, the linker, and the loader u,
the first eight characters of the name given in the MODUL
heading when searching for symbol files, library code file
and linked overlay files. Thus, we recommend that you alwa
use the first eight letters of the module name for the actual fi
name.

See Also EXPORT
QUALIFIED

Turbo Modula-2 Reference Directory 379

Example Input the Append procedure from Strings and use it in the
following:

MODULE SayHello;
FROM S tr in g s IMPORT Append;
VAR

s : ARRAY [0 ..2 0] OF CHAR;
BEG IN

s := 'H e llo 1;
Append(' F o lk s’ , s) ;
WRITELN(s);
END SayHello.

Import all of Strings and do the same thing you did in the
previous example:

MODULE SayHello;
IMPORT S tr in g s ;
VAR

s : ARRAY [0 ..2 0] OF CHAR;
BEGIN

s := 'H e llo ';
Strings.Append(1 Folks1, s); (# Qualified *)
WRITELN(s);
END SayHello.

INC standard procedure S___

Description INC returns a successor of argument X.

Usage INC(X [,N])

Argument X may be of type INTEGER, CARDINAL, CHAR,
BOOLEAN or enumeration.

Optional argument N must be a CARDINAL; it is the incre
ment that will be added to X .

380 MODULA

Comments If you add 1 to a CARDINAL value, the result is the value im
mediately after the original value. With INC, you can do the
exact same thing with any ordinal type. For example, suppose
you have an enumeration variable

VAR Energy: (K in e tic ,P o te n tia l,H e a t) ;

You can assign any of the three named values to the variable
Energy. To increment the value of Energy to a higher value, use
INC (Energy).

Now, you have performed an addition operation on the
enumeration variable. You can increment by more than one
value as shown in the following examples.

The reverse operation selecting the previous value is perform
ed by the standard procedure DEC.

When incrementing a value, you may reach its MAX value; for
example, the MAX(CARDINAL) is 65535. You may choose
whether or not this situation generates an error by using the
overflow compiler switch. This can be done globally or local
ly. Thus, with overflow checking turned off, as in

VAR
i : CARDINAL;

BEG IN
i := MAX(CARDINAL) ;

INC(i);
(*$0+*)
WRITELN(i);
END

the i would wraparound to MIN (CARDINAL), which is zero,
and no error will be generated. If overflow checking has beer
turned on, then the exception OVERFLOW will be raised.
This can be trapped as follows:

Turbo Modula-2 Reference Directory 381

See Also

Example

MODULE inc;
FROM SYSTEM IMPORT OVERFLOW;
VAR
i : CARDINAL;
BEGIN

(*$0+*)
i : = MAX(CARDINAL);
IN C (i);
EXCEPTION

OVERFLOW: WRITELN('Trapped overflow error');
END inc .

DEC

TYPE Color = (Red,Orange,Yellow,Green,Blue,
In d ig o ,V io le t) ;

VAR Rainbow: Color;
Increm ent: CARDINAL

BEGIN
Rainbow := Red;
INC(Rainbow);

(# Rainbow has the value Orange *)

INC(Rainbow,2);
(# Rainbow has the value Green #)
In c rem en ts 1;
INC(Rainbow,Increment);

(* Rainbow has the value Blue #)

382 MODULA

INCL standard procedure S

Description INCL includes element I into the set S.

Usage INCL(S,I)

Argument S is of set type.

Argument I is of the set’s base type.

Comments This standard procedure allows you to include an element into
a set. It has the effect of turning on a bit that represents the
element in the word representing the set.

See Also EXCL

Example TYPE Day = (M on,Tues,W ed,Thu,Fri,Sat,Sun);
VAR Work: SET OF Day;

BEGIN
Work: = Day [Mon. . Fr i};

(# Set Work con tains f iv e elem ents Mon to F ri #)

INCL(Work,Sun);
(# Set Work con tains s ix elem ents, Sun included #)

Init procedure (Processes) L

Description Init initializes a SIGNAL variable.

Declaration PROCEDURE I n i t (VAR s: SIGNAL);

Usage I n i t (s)

Init must be imported from the library module Processes.

s must be of type SIGNAL imported from Processes.

Turbo Modula-2 Reference Directory 383

Comments This is part of a module that gives a standardized set of cor
outine facilities, as well as a rudimentary form of interprocess
communications upon which to base scheduling.

The three routines Init, SEND, and WAIT work together in the
following way: Init initializes a queue belonging to a given
signal. Every time a process calls the procedure WAIT with
this signal, it will be entered in the queue. When a process
calls the procedure .SEND with this signal, the first process in
the queue will be resumed and will be purged from the queue.
A fourth routine, Awaited, returns TRUE if the queue is not
empty.

The initialization of a SIGNAL by Init is mandatory.

See Also Awaited
Processes
SEND
SIGNAL
StartProcess
Wait

Example Initialize the signal DonePrinting:

INIT(DonePrint ing)

InitScreen procedure (Terminal) L___________________________________

Description InitScreen sends an initialization string to the terminal.

Declaration PROCEDURE In itS creen ;

Usage In itS creen

InitScreen must be imported from the library module Ter
minal.

384 MODUl

Comments InitScreen will send the initialization string specified by t
user upon installation of the Thrbo Modula-2 system. Ma
terminals don’t need an initialization string, in which C2
nothing happens.

See Also EditScreen
Terminal

Example Initialize the screen:

InitScreen;

inName variable (ComLine)___ L

Description inName is a string variable that contains a string found al
the input redirection symbol (<) on the command line.

Declaration VAR
inName: AHRAT [0 .-19] OF CHAR;

Usage WRITE(r Input re d ire c te d from ' , inName);

Comments The redirection symbol and inName will not appear in the t
commandLine.

inName contains the standard output string CON: if
redirection argument has been found on the command lin

See Also ComLine
inName
RedirectOutput

Turbo Modula-2 Reference Directory 385

Example NODDLE R edirec t Input;
FROM ComLine IMPORT inName, R ed irec tInpu t;
FROM Texts IMPORT console;
BEGIN

R ed irec tln p u t;
IF inName < > "C0N:n THEN
WRITE(console,1 Input re d ire c te d from 1, inName);

END
END R ed irec tln p u t.

InOut module L

Description InOut performs input and output.

Usage DEFINITION MODULE InOut;

CONST E0L=36C;
VAR Done:BOOLEAN
termCH: CHAR;

PROCEDURE O penInput(defext: ARRAY OF CHAR);
PROCEDURE OpenOutput(defext: ARRAY OF CHAR);
PROCEDURE C loselnput;
PROCEDURE CloseOutput;

PROCEDURE Read(VAR ch: CHAR);
PROCEDURE ReadString(VAR s : ARRAY OF CHAR);
PROCEDURE Readlnt(VAR x: INTEGER);
PROCEDURE ReadCard(VAR x: CARDINAL);

PROCEDURE W rite(ch: CHAR);
PROCEDURE WriteLn;
PROCEDURE W riteS trin g (s: ARRAY OF CHAR);
PROCEDURE W rite ln t(x : INTEGER; n: CARDINAL);
PROCEDURE W riteCard(x,n: CARDINAL);
PROCEDURE W riteHex(x,n: CARDINAL);
PROCEDURE W riteO ct(x,n: CARDINAL);

386 MODUL

PROCEDURE ReadReal(VAR x: REAL);
PROCEDURE W riteReal(x: REAL; n ,d ig i t s : CARDINAL);

END InOut.

Comments This is the original input and output module defined by Wirtl
It is postulated to be present in every implementation ■
Modula-2 and is included here to maintain compatibility wi
other implementations.

The module InOut is usually implemented using the modu
Texts with the input or output text streams.

WriteHex and WriteOct can sometimes prove useful for writii
addresses.

IORESULT variable (SYSTEM) L

Description IORESULT holds the contents of the A register after a BD(
or BIOS call.

Declaration VAR
IORESULT: CARDINAL;

Usage c := IORESULT;

IORESULT must be imported from the pseudomodi
SYSTEM.

c must be of type CARDINAL;

Comments This variable is used to access the register after operati
system calls.

See Also BDOS
BIOS
HLRESULT
SYSTEM

Turbo Modula-2 ̂ Reference Directory 387

Example MODULE OperatingSystem Calls;
FROM SYSTEM IMPORT BDOS, BIOS, IORESULT, HLRESULT;
VAR ReadOnlyVector: CARDINAL;
BEGIN

BDOS(l,0); WRITE('The ch a rac te r read is
' , CHR(IORESULT));
BDOS(29,0);
ReadOnlyVector := HLRESULT;
END OperatingSystem Calls.

INP procedure (SYSTEM) L

Description INP reads a byte from a given I/O port.

Declaration PROCEDURE INP(port: WORD): CARDINAL;

Usage inByte := INP(port)

INP must be imported from the library module SYSTEM.

inByte must be of type INTEGER or CARDINAL.

port can be any scalar type compatible with WORD.

Comments The port, whose number is given by port, is read and the value
is placed in inByte.

See Also OUT
SYSTEM

Example Get a byte by doing the following:

KbdStatus := INP(K bdStatusPort);

388 MODUL

input (Texts) L

Description Input is the standard TEXT variable that can be redefined.

Declaration VAR inpu t: TEXT;

Usage input

input must be imported from the library module Texts,

input is used anywhere an input text is needed.

Comments input is declared in Texts as a variable of type TEXT and
read-only.

input is always open and is connected to the terminal l
default. It operates as if the call

OpenText(input, CON:)

has taken place before the execution of every main modul
The call

C loseText(input)

reestablishes this connection after input has been redirecte

READ and READLN always use input as their default t<
stream (users may use input without knowing it). On occasic
when the user wants to explicitly manipulate the input t<
string, he will have to import input from Texts.

See Also input
console
Texts

Example Read aNumber from input:

R eadlnt(in p u t, aNumber) 1

Turbo Modula-2 Reference Directory 389

Insert procedure (Strings) L

Description Insert inserts a substring into a string.

Declaration PROCEDURE In s e r t (s u b s tr : ARRAY OF CHAR;
VAR s t r : ARRAY OF CHAR; inx: CARDINAL);

Usage In s e r t (s u b s tr , s t r , a t)

substr and str must be of type ARRAY OF CHAR, substr may
be a literal, but str must be a variable.

at is the index of the destination byte and it must be of type
CARDINAL.

Comments Insert actually inserts; the old data in str is not overwritten but
is moved over in the string.

See Also Append
Copy
Delete
Length
Pos
Strings

Example s t r := 'T his is M odula-2';
su b s tr := 'Turbo ' ;
In s e r t (s u b s tr , s t r , 8)
(# s t r now is 'T his i s Turbo Modula-2' #)

insertDelete enumerated value (Terminal) L

Description insertDelete is the second value of the enumerated type Ter
minal. SpecialOps.

Declaration SpecialOps = (c le a rE o l, in se r tD e le te , h igh ligh tN or-
m al);

390 MODULA

Usage

Comments

See Also

IF insertDelete IN availab le THEN InsertLine END ;

SpecialOps must be imported from the library module Ter
minal.

If this value is a member of the set Terminalavailable, then
the program may use the procedures InsertLine and DeleteLine
to manipulate text on the screen.

To use this identifier, include SpecialOps in your import list.
The identifiers of each of SpecialOps’ values become visible
automatically.

InsertLine
DeleteLine
available
highlightNormal
clearEol
Terminal

Turbo Modula-2 Reference Directory 391

Example Insert and delete a line on the screen:

MODULE CheckAvailableOperations;
FROM Terminal IMPORT

a va ila b le , Spec ialOps,
InsertLine, DeleteLine, GotoXY;
VAR

s: ARRAY [0..20] OF CHAR;
BEGIN
IF insertDelete IN availab le THEN
GotoXY(0 ,10);
InsertLine;
WRITELN(s);
GotoXY(0,10);
DeleteLine;

ELSE
GotoXY(0,10);
(# Clear the lin e and move everything down #)
WRITELN(s);
GotoXY(0,10);
(# Move everything back up one lin e #)

END ;
END CheckAvailableOperations.

InsertLine procedure (Terminal) L_________________________________ __

Description InsertLine inserts a blank line onto the screen at the current
cursor position.

Declaration PROCEDURE In se rtL in e ;

Usage InsertLine

InsertLine must be imported from the library module Ter
minal.

392 MODULA

Comments This operation is not available on all systems. To determine if
the operation is on the current system, inspect the variable
Available imported from Terminal. If insertDelete is an ele
ment of the set Available, then insertion and deletion of screen
lines can be performed.

See Also DeleteLine
GotoXY
Terminal

Example Insert the text »Here la m « at the sixth line from the top of the
screen.

GotoXY(0,5)
In se rtL in e ;
GotoXY(0,5);
WRITE('Here I am»);

INT standard function S

Description INT converts the argument to type INTEGER.

Usage Y:= INT(X)

Argument X can be of type INTEGER, CARDINAL,
LONGINT, REAL, and LONGREAL.

The argument must be in the INTEGER range -32768 to 32767.

Result Y is type INTEGER.

Comments When you use this function with a REAL argument, the value
is truncated (the fractional part removed); thus, a value 12.35
becomes 12.

Turbo Modula-2 Reference Directory_________________________________ 393

Example NODULE ConvertToInteger;
VAR

r : REAL;
i : INTEGER;
BEGIN

x := 39.489;
i := INT(x) * 10;
END ConvertToInteger.

YTEGER Standard type S

Description INTEGER is a standard type with variables that can assume
whole values between -32768 and 32767. In addition, IN
TEGER can be used as a type-transfer function.

Usage Variable declarations:

VAR
i , j : INTEGER;

"type transfer:

i := INTEGER(65535)

where i is an integer. This statement assigns -1 to the integer L

Comments You can use INTEGER variables whenever you know that the
possible values are limited to whole numbers. Note that when
the possibilities include only positive whole numbers, you are
better off using CARDINAL types. In practice, you rarely
need to use INTEGER variables.

You may use any arithmetic operator in INTEGER expres
sions, and INTEGER variables may take part in relational ex
pressions.

The INT standard function will convert other numeric data
types into INTEGER.

394 MODUL

See Also

An INTEGER value requires 2 bytes for storage. The bytes a]
stored as two’s complement, with the least-significant by
stored first.

INTEGER is compatible with WORD. Since BYTE is
subrange of WORD, INTEGER is compatible with BYTE ;
well. However, the exception BoundsError can occur if
negative integer is assigned to a byte (or a positive integ
greater than 255).

CARDINAL
LONGINT
WORD

Example MODULE In teg e r;
VAR

D eviation: INTEGER;
Angle: REAL;

BEGIN
FOR D eviation:* -3 TO 3 DO
Angle:* 10.0 * F loa t (D ev iation);

END
END In teg e r.

IntToStr procedure (Convert) L

Description IntToStr converts an integer variable to a string.

Declaration PROCEDURE In tT o S tr(i : INTEGER; TAR s : ARRAY OF
CHAR);

Usage In tT o S tr(i , s)

IntToStr must be imported from the library module Conve

i must be of type INTEGER.

s must be of type ARRAY OF CHAR.

Turbo Modula-2 Reference Directory 395

Comments The string will be right-justified, and the left-most characters
padded with blanks.

If the number is too large to fit into the string, the exception
TooLarge will be raised.

See Also CardToStr
Convert
Doubles
LongToStr
RealToStr
StiToInt

Example Put the string ’5000* into s:

i := 5000;
IntT oS tr (i , s) ;

IOTRANSFER procedure (SYSTEM) L

Description IOTRANSFER sets up an interrupt vector to point to the next
line of code and transfers control to another coroutine.

Declaration PROCEDURE IOTRANSFER (VAR source, d es t: PROCESS;
n: CARDINAL);

Usage I0TRANSFER(inthandler, background, in tv ec to r)

IOTRANSFER must be imported from the library module
SYSTEM.

inthandler and background must be of type PROCESS im
ported from SYSTEM.

intvector must be of type CARDINAL.

396 M O D U L

Comments inthandler and background must have been previously set u
with calls to NEWPROCESS.

intvector must be a legal and available interrupt vector numbe

See Also SYSTEM
TRANSFER

Example IOTRANSFER(KbdlntHandler, MainRoutine, KbdlntVec-
to r) ;

legal variable (Doubles) L

Description legal monitors the input of a LONGREAL during a call
ReadDouble.

Declaration VAR
le g a l : BOOLEAN;

Usage fin ish ed := le g a l;

finished must be of type BOOLEAN.

Comments The variable is usually checked after input of a LONGREA
ReadDouble is the only procedure that can affect it.

See Also Texts
done

Example MODULE In v a lid ln p u t;
FROM Doubles IMPORT le g a l , ReadDouble;
FROM Texts IMPORT in p u t;
VAR d: LONGREAL;
BEGIN
REPEAT

ReadDouble(in p u t ,d) ;
UNTIL le g a l;
END In v a lid ln p u t.

Turbo Modula-2 Reference Directory 397

Length procedure (Strings) L

Description Length finds the current length of a string.

Declaration PROCEDURE Length (VAR s t r : ARRAY OF CHAR): CARDINAL;

Usage s iz e := L eng th (str)

Length must be imported from the library module Strings.

size must be of type CARDINAL.

str must be a character array variable.

Comments Length returns the position of the first byte containing a zero,
which is defined to be the end of the string.

size will not be greater than the originally declared size of str.

See Also Append
Copy
Delete
Insert
Pos

Example Find the length of str:

s iz e := Length(s t r)

LoadError exception (Loader) L/E

Description LoadError is raised by the module Loader when the loading
of an overlay is unsuccessful.

Declaration EXCEPTION
LoadError;

398 M ODULA

Usage EXCEPTION
LoadError: WRITELN(‘Overlay E r r o r ') ;

LoadError must be imported from the module Loader.

Comments This exception is raised if the overlay file is not found, if there
is not enough memory to hold the overlay, or if a version con
flict occurs.

See Also Loader

Example NODULE LoadOverlay;
FROM Loader IMPORT f i r s tD r iv e , C a ll, LoadError;
BEGIN

f irs tD r iv e := 13; (* Search ram d isk (M:) f i r s t #)
C a ll(' o v e rlay . f i l f)
EXCEPTION

LoadError: WRITELN(' Load e r ro r occured ') ; RAISE
END LoadOverlay.

LongMath module L

Description LongMath provides commonly used double-precision
mathematical functions.

Declaration DEFINITION MODULE LongMath;

PROCEDURE S q rt (x : LONGREAL): LONGREAL;
PROCEDURE Exp (x:LONGREAL) .-LONGREAL;
PROCEDURE Ln (x :LONGREAL):LONGREAL;
PROCEDURE Cos (x :LONGREAL):LONGREAL;
PROCEDURE Arctan (x :LONGREAL):LONGREAL;
PROCEDURE E n tie r (x :LONGREAL):LONGINT;

EXCEPTION ArgumentError;

END LongMath.

Turbo Modula-2 Reference Directory 399

Comments These routines are identical to the routines for single- preci
sion real numbers.

The ArgumentError exception is raised when an argument is
outside the permitted range. The following ranges apply:

Sqrt Argument must be positive or zero

Exp Argument must be less than 710.47

Ln Argument must be positive (greater than zero)

If you want to use the same routine from MathUb and
Long Math, the statements

FROM MathLib IMPORT S q rt;
FROM LongMath IMPORT S qrt;

will lead to a conflict. Thus, qualified import must be used.
IMPORT MathLib,LongMath;
BEGIN

dSqr := LongMath.Sqrt(arg) ;
rSqr := M athLib.Sqrt(arg) ;

LONGREAL standard type S

Description LONGREAL is a standard type with variables that can assume
any value between -3.5953862697246D+308 and
+3.5953862697246D+308.

Usage VAR x , y : L O N G R E A L ;

400 M ODULA

Comments

63 62

LONGREALs are particularly useful in arithmetic expressions
that concern a small difference between large numbers or a
sum that results from many (a 1000 or so) additions and sub
tractions. In both cases, the round-off error tends to ac
cumulate; however, it can be kept smaller by using a
LONGREAL. Don’t use them indiscriminately, though, since
your program will pay the price in slower execution times.
You may use any arithmetic operator in LONGREAL expres
sions, and LONGREAL variables may take part in relational
expressions.

The DOUBLE standard function will convert other numeric
data types into LONGREAL.

String and I/O support for LONGREALs are provided by the
library module Doubles.

Mathematical support similar to MathLib for REALs is pro
vided by the library module LongMath.

Turbo Modula-2 uses the IEEE 8-byte, double-precision real-
number format; that is, in the order of their significance, 1
sign bit, 11 exponent bits, and 52 mantissa bits:

52 51 0

exponent I mantissa

The mantissa is in binary format but is offset by 1.0, represen
ting only those digits to the right of the decimal point.

The bytes are stored with the least-significant bytes in the
lower-numbered addresses.

If the exponent is zero, the floating-point value is considered
zero.

Turbo Modula-2 Rejir. ence Directory 401

Sample hex real numbers:

3FF0000000000000H = 1.0
4000000000000000H = 2.0

See the example in WORD for printing out other values.

Example VAR
SquareArea, SquareSide: LONGREAL;

BEG IN
SquareSide:= 4.21D0;
SquareArea:= SquareSide * SquareSide;

Ln function (MathLib, LongMath) L

Description Ln returns the natural logarithm of X.

Declaration PROCEDURE Ln(x: REAL): REAL;
PROCEDURE Ln(x: LONGREAL): LONGREAL;

Usage Y:= Ln(X)

Argument X and result Y are either both REAL or both
LONGREAL.

The argument X must be positive.

Comments You must always make sure that the argument X is a positive
value; otherwise, the ArgumentError exception is raised. The
inverse of the logarithmic function is the natural exponential
function Exp.

See Also Exp
LONGMATH
MATHLIB

402 MODULA

Example MODULE LnTest;
FROM MathLib IMPORT Ln;
VAR

Argument, R esu lt: REAL;
BEGIN

IF Argument > 0 . 0 THEN
R esult := Ln(Argument)

END
END LnTest;

Loader module L

Description Loader is a library module that handles overlays.

Declaration DEFINITION MODULE Loader;

VAR
firs tD r iv e : [0 . . 15];

PROCEDURE Call(modName: ARRAY OF CHAR);

EXCEPTION LoadError;

END Loader.

Comments Loader is used by a program to explicitly overlay certair
modules. The overlay code may not export anything to the
caller; however, the overlay code may communicate with the
caller by importing from the caller a buffer where data anc
messages can be left.

See Also Refer to »The Loader Module« in Chapter 11.

Turbo Modula-2 Rejtrence Directory 403

LONG standard function

Description LONG converts the aigument to type LONGINT.

Usage Y:= LONG(X)

Argument X can be of type INTEGER, CARDINAL,
LONGINT, REAL, or LONGREAL.

The argument must be in the range from -(231-1) to 231-1.

The result Y is type LONGINT.

Comments When you use this function with a REAL argument, the value
is truncated (the fractional part removed); thus, the value 12.35
becomes 12.

Do not confuse this function with the LONGINT-type transfer
function, which transfers data without converting it.

See Also FLOAT
INT
TRUNC

Example VAR
Convert: LONGINT;
BEGIN

Convert: = 2000000L * L0NG(-12);
(# Convert i s -24000000L #)
END

404 MODULA

LONGINT Standard type S

Description LONGINT is a standard type with variables that can assume
whole values between -2147483648 to 2147483647.

Comments You can use LONGINT types when you need a larger range
of whole numbers than that offered by the CARDINAL and
INTEGER types.

You may use any arithmetic operator in LONGINT expres
sions, and LONGINT variables may take part in relational ex
pressions.

The LONG standard function will convert other numeric data
to type LONGINT. Note that even INTEGERtypes must be
converted.

A LONGINT value requires 4 bytes for storage. The bytes are
stored as two’s complement, with the least-significant byte
stored first.

LONGINT is compatible with ARRAY OF WORD, but no
with WORD or BYTE.

See Also CARDINAL
INTEGER
WORD

Example NODULE Longs;
CONST

N = 1000000L;
VAR

BigNumber:LONGINT;
BEGIN

BigNumber:= N;

BigNumber:= 2L * BigNumber;
EHD Longs.

Turbo Modula-2 Rejerence Directory 405

LongMath module

Description Provides commonly used mathematical functions with double
precision accuracy.

Declaration DEFINITION MODULE LongMath;

PROCEDURE S qrt
PROCEDURE Exp
PROCEDURE Ln
PROCEDURE Sin
PROCEDURE Cos

(x:LONGREAL): LONGREAL;
(x:LONGREAL): LONGREAL;
(x :LONGREAL): LONGREAL;
(x :LONGREAL): LONGREAL;
(x :LONGREAL): LONGREAL;

PROCEDURE Arctan (x:LONGREAL): LONGREAL;
PROCEDURE E n tie r (x:LONGREAL): LONGINT;

EXCEPTION ArgumentError;

END LongMath.

For a description of each of these procedures and exceptions,
see Chapter 11 or the appropriate reference in this chapter.

Comments The LongMath module exports a number of mathematical pro
cedures and functions. You can import any of the procedure
and exception identifiers into your own modules, which allows
you to use the predefined facilities.

The ArgumentError exception is raised when an argument is
outside the permitted range. The following ranges apply:

Sqrt Argument must be positive or zero.

Exp Argument must be less than 710.475D00

Ln Argument must be positive (greater than zero).

4 0 6 MODUL

Example If you want to cdll the Cos and Sin functions from a modul
called Problem, you would start the module with:

MODULE Problem;
FROM LongMath IMPORT Cos,Sin;

If Y,Z, Angle, and Radians are defined as LONGREA
variables then the library functions can then be used normall)

Y:= Cos(Angle);
Z:= S in (R ad ians);

LongfToStr procedure (Convert) L

Description LongToStr converts a long integer variable to a string.

Declaration PROCEDURE LongToStr(l: LONGINT; VAR s : ARRAY OF
CHAR);

Usage

Comments

See Also

LongToStr(l, s)

LongToStr must be imported from the library module Comet

l must be of type LONGINT.

s must be a character array variable.

The string will be right-justified, and the left-most characte
will be padded out with blanks.

If the number is too large to fit into the string, the except
TooLarge will be raised.

Doubles
InToStr
CardToStr
RealToStr
Strings
StiToLong

Turbo Modula-2 Reference Directory 407

Example Put the string ’300000* into s :

VAR
s : ARRAY [0 ..6] OF CHAR;
1 rLONGINT;

BEGIN
1 := 300000;
L o n gT oS tr(l,s);

END

LOOP Statement R

Description LOOP rep ea ted ly executes a statem ent sequence u n t i l
term inated by an EXIT sta tem en t.

Usage LOOP StatementSequence END

StatementSequence = Statem ent (; Statement)

Comments There are two main reasons for using a LOOP statement: (1)
when programming a continually cycling process, such as
many real-time systems and concurrent processes, or (2) when
the FOR, REPEAT and WHILE statements are unsuitable
because loop termination can only be determined in the middle
of the loop.

Termination of the loop requires an EXIT statement.

See Also EXIT

Example BEGIN
LOOP

IF Found THEN EXIT END
END ;

408 MODUL

MARK procedure (STORAGE) L

Description

Declaration

Usage

Comments

LOOP marks the beginning of a block of dynamic variables

PROCEDURE MARK (VAR a: ADDRESS);

MARK(a)

MARK must be imported from the library module STORAGl

a must be compatible with type ADDRESS (any pointer).

MARK and RELEASE provide an alternate method of handlir
heap data. The use of these procedures allows the heap to t
treated in a stack-like manner.

A call to MARK creates a new heap that consists of the spac
between the previous top of Heap and the stack pointer. A
variables allocated on the heap prior to the call to MARK a
no longer accessible until a RELEASE with the same point
is called.

See Also DISPOSE
NEW
RELEASE

Example Allocate a mess of variables and then throw them away:

MARK(MessStart);
NEW(Messl);
NEW(Mess2);
NEW(Mess3);
RELEASE(MessStart);

Turbo Modula-2 Reference Directory 409

MathLib module

Description

Declaration

Comments

L

MathLib provides commonly used mathematical functions.

DEFINITION MODULE MathLib;

PROCEDURE Sqrt(xrREAL) :REAL;
PROCEDURE Exp(x:REAL) :REAL;
PROCEDURE Ln(x:REAL) :REAL;
PROCEDURE Sin(x:REAL) :REAL;
PROCEDURE Cos(x:REAL) :REAL;
PROCEDURE A rctan(x:REAL) :REAL;
PROCEDURE Entier(x:REAL): INTEGER;

PROCEDURE Randomize (n : CARDINAL);
PROCEDURE Random () :REAL;

EXCEPTION ArgumentError;

END MathLib.

For a description of each of these procedures and exceptions,
see Chapter 11 or the appropriate reference in this chapter.

The MathLib module exports a number of mathematical pro
cedures and functions. You can import any of the procedure
and exception identifiers into your own modules, allowing you
to use the predefined facilities.

The exception ArgumentError is raised when an argument is
outside the permitted range. The following ranges apply:

Sqrt Argument must be positive or zero.

Exp Argument must be less than 87.4.

Ln Argument must be positive (greater than zero).

410 Ai

Example If you want to call the Cos and Sin functions from z
called Problem, you would start the module with the fc

MODULE Problem;
FROM MathLib IMPORT C os,Sin;

The predefined functions can then be used normally

Y:= Cos(Angle);
Z:= S in (R ad ians);

MAX standard function S

Description MAX returns the largest element of type T.

Usage Y:= MAX(T); 1

Argument T is of type CARDINAL, INTEGER, BO1
CHAR, enumeration, LONGINT, REAL, or LONGI
short, any unstructured scalar type.

Result Y is of the same type.

Comments This function allows you to find the last elemer
unstructured type. Note that the argument is the typ
a variable of the type.

The maximum values of the predefined types are

CARDINAL 65535
INTEGER 32767
BOOLEAN TRUE
CHAR 377C
REAL 2147483647
LONGINT 3.5953862697246D+308
LONGREAL 6.80565E+38

The smallest element of a type is returned y the MIA

Turbo Modula-2 Reference Directory 411

Example MODULE Max;
TYPE

Weather = (Clear, Rain, Wind, Snow);
VAR

MaxWeather: Weather;
MaxCardinal: CARDINAL
BEGIN

MaxWeather := MAX(Weather);
(* MaxWeather is value Snow #)
MaxCardinal: = MAX(CARDINAL);

(* MaxCardinal is value 65535 *)
END Max.

MIN standard function S

Description MIN returns the smallest element of type T.

Usage Y:= MIN(T);

Argument T is of type CARDINAL, INTEGER, BOOLEAN,
CHAR, enumeration, LONGINT, REAL, or LONGREAL; in
short, any unstructured type.

Result Y is of the same type.

Comments This function allows you to find the first element in any
unstructured type. Note that the argument is the type and not
a variable of the type.

The minimum values of the predefined types are

CARDINAL 0
INTEGER -32768
BOOLEAN FALSE
CHAR OC
REAL -6.80565E+38
LONGINT -2147483648
LONGREAL -3.5953862697246D+308

412 M ODULA

Example

The largest element of a type is returned by the MAX function.

MODULE Min;
TYPE

Weather = (Clear,Rain,W ind,Snow);
VAR

MinWeather: Weather;
M inCardinal: CARDINAL

BEGIN
MinWeather:= MIN(Weather);
(# MinWeather is value C lear *)
MinCardinal := MIN(CARDINAL);
(* MinCardinal is value 0 #)

END Min.

MOD Standard operator_____ R

Description MOD is an integer modulus operator; it is a binary operator
that works on operands of the same type. The MOD operator
returns the remainder of integer division. The operands may
be both CARDINAL, both INTEGER, or both LONGINT.

Usage i : = i MOD j ;

where i and j are of the same type.

The result of the expression is the same type as the operands.

Comments The modulus operator can be used to insure that a variable re
mains within a certain defined range.

See Also DIV

Turbo Modula-2 Reference Directory__________________________________ 413

Example MODULE Modulus;
VAR

i : INTEGER;
BEGIN

LOOP
i := (i + 1) MOD 100; (* i w il l range from 0 to 99 *)

END
END Modulus.

1DULE declaration R

Description MODULE serves to declare the beginning of a module.

Usage MODULE moduleName

or

DEFINITION MODULE libraryName

or

IMPLEMENTATION MODULE libraryName

Comments The first form declares a main module, which is a stand-alone
program. It can also start the beginning of a local module.

A local module limits visibility of global objects (variables,
types, constants, procedures). Thus, an object buried inside a
local module can retain its value throughout the program’s
lifetime, while simultaneously remain safe from outside
tampering.

The second and third forms are for libraries, separately com
piled sets of frequently used routines.

See Also DEFINITION
IMPLEMENTATION

}

414 MODULt

Example The following file is an example of a main module ii
’MAIN.MOD’:

MODULE main;
FROM SimpleMath IMPORT add;
BEGIN
WRITELN (' 2 + 2 = * ,ad d (2 ,2));

END main.

The next example is a local module in a main module:

MODULE Main;

MODULE lo c a l;
EXPORT pi;

PROCEDURE p i;
BEGIN
END p i;

PROCEDURE p2;
BEGIN
END p2;

END lo c a l;

BEGIN (# p i is v is ib le h ere , but not p2 *)
END Main.

NEW standard procedure (STORAGE) S

Description NEW allocates a dynamic variable from the heap.

Turbo Modula-2 inference Directory 415

Usage

Comments

See Also

Example

NEW(p);

O T

NEW(p, ta g l , tag2 , . . . , tag n);

p must be of type POINTER.

ALLOCATE must be imported from the pseudomodule
STORAGE.

tagl, ..., tagn are allowed in the case where p points to a
variant record, and the tags are defined in that record.

NEW is translated into an appropriate call to ALLOCATE.

Thrbo Modula-2 expects ALLOCATE to be defined the way it
is in the pseudomodule STORAGE; however, you may
substitute your own allocation scheme by importing
ALLOCATE from your own module instead of STORAGE.

ALLOCATE
DISPOSE
STORAGE

Allocate a new Name:

MODULE A llocate ;
FROM STORAGE IMPORT ALLOCATE;
VAR

n: POINTER TO Name;
BEGIN

NEW(n);
END A llo ca te .

The NEW(n) statement would be translated into a call of the
form ALLOCATE(n, TSIZE(Name)).

416 MODULA

NEWPROCESS procedure (SYSTEM) L

Description NEWPROCESS sets up an independent process (or coroutine).

Declaration PROCEDURE NEWPROCESS(p: PROC; a: ADDRESS;
n: CARDINAL; VAR q: PROCESS);

Usage NEWPROCESS(newProc, wrkAdr, wrkSize, P);

NEWPROCESS must be imported from the pseudomodule
SYSTEM.

newProc must be of the standard type PROC (a parameterless
procedure).

wrkAdr must be compatible with type ADDRESS (any pointer).

wrkSize must be of type CARDINAL. It specifies the number
of bytes of storage.

P must be of type PROCESS imported from SYSTEM.

Comments The procedure newProc contains the code for the new process.

The workspace must be big enough to accommodate any local
stack and heap activity; 100 words is a good size to start with.

Local stack activity consists of local variables, procedure
parameters, and some space for working out expressions.

Local heap activity consists of the user’s calls to NEW anc
ALLOCATE and any file control blocks that are active. If the
allocated workspace is not enough, the exceptioi
OutOfMemory will be raised.

NEWPROCESS allocates space and sets the correspond^;
PROCESS variable, but it does not actually start up th
routines--TRANSFER accomplishes that.

Turbo Modula-2 Reference Directory 417

The procedure StartProcess in Processes is implemented using
this routine.

See Also Processes
PROCESS
PROC
TRANSFER
SYSTEM

Example Start up a driver called Driven

NODULE NewProcess;
FROM SYSTEM IMPORT ADR, PROCESS, NEWPROCESS,

TRANSFER;
VAR
work: ARRAY [0 ..100] OF WORD;
M,P: PROCESS;

PROCEDURE Driver;
BEGIN
(# Driver's code #)

END Driver;

BEGIN
NEWPROCESS(Driver, ADR(work), SIZE(work), P);
TRANSFER(M,P); (* Driver now has control *)

END NewProcess.

NextPos procedure (Files) L________________________________

Description NextPos returns the current byte position in a file.

PROCEDURE NextPos(f: FILE): LONGINT;Declaration

418 MODULA

Usage

Comments

See Also

Example

n := NextPos(f);

NextPos must be imported from the library module Files.

n must be of type LONGINT.

/ must be of type FILE imported from Files.

The result of NextPos is a LONGINT because file can be
larger than MAX(CARDINAL) .

FileSize
SetPos

Keep track of the percentage of file you have completed:

MODULE NextPosPercent;
FROM Files IMPORT FILE, Open, NextPos, ReadRec;
VAR
f:File;
totsize: LONGINT;
wreck: SomeRecord;

BEGIN
IF NOT Open(f,n reckf ilen) THEN HALT END ;
totsize := FileSize(f);
WHILE NOT EOF(f) DO
ReadRec(f, wreck);
n := (100L#NextPos(f)) / totsize;
WRITE (»Finished ',n,' % of the file ')
(* Process wreck *)
END

END NextPosPercent.

Turbo Modula-2 Acference Directory 419

NIL Standard value S___

Description NIL designates an unused pointer variable.

Usage B u ffe rP tr := NIL;

BufferPtr is any pointer type.

NIL is compatible with all pointer variables.

Comments The actual value of NIL is zero; thus, WRTTE(CAR-
DINAL(NIL)) will print a 0.

See Also POINTER

Example NODULE N ilL is t;
FROM STORAGE IMPORT ALLOCATE;
TYPE

NodePtr = POINTER TO Node;
Node = RECORD

elem ent: CARDINAL;
Next: NodePtr;

END ;
VAR

1: NodePtr;
BEGIN

NEW(l); 1 A .Next := NIL;
END N ilL is t.

Normal procedure (Terminal) L______ _______________________________

Description Normal turns off highlighting.

Declaration PROCEDURE Normal;

Usage Normal;

Normal must be imported from the library module Terminal.

420 MODULA

Comments The highlighting will only work if Turbo Modula-2 has been
properly installed. If highlighting has not been turned on, then
the effect of Normal is undefined (it depends on your terminal,
but it is probably harmless).

Example Highlight the word ’high’:

WRITE(fThis i s a example of ’) ;
H igh ligh t;
WRITE(’High»);
Normal;
WRITE(’l ig h tin g ') ;

NoTrailer procedure (Files) L

Description NoTrailer turns off the special Turbo Modula-2 end-of-file
handling.

Declaration PROCEDURE N o T raile r(f: FILE);

Usage N o T ra ile r(f);

NoTrailer must be imported from the library module Files,

f must be of type FILE imported from Files.

Comments Tlirbo Modula-2 handles the last byte of the last record of a
CP/M file so that a program can determine exactly how many
bytes are in a file.

The last byte of the last record contains the length of the last
record plus 128. Thus, if the last byte is 127 or less, then the
record is completely filled; otherwise, the number of bytes in
the last record is found by subtracting 128 from the last byte.
This is how the procedure FileSize works.

If NoTrailer is used on a file, then FileSize will always return
a multiple of 128.

Turbo Modula-2 Reference Directory__________________________________421

See Also

NoTrailer should be used immediately after Open when
reading; it can be used immediately after Create as well.

In general, this function should only be used if you are having
trouble with file communication involving a non- T\irbo
Modula-2 program.

Files
FileSize

(unple Declare a file to have no trailer:

IF Open(f,filename)THEN
N o T ra ile r(f) ;
(* process the f i l e #)

END ;

numCols variable (Terminal) L

Description numCols holds the number of columns available on the cur
rently installed terminal.

Declaration VAR
numCols: CARDINAL;

Usage IF CurCol > numCols THEN CurCol := 0 END ;

<
" comments

numCols must be imported from the module Terminal.

This variable is useful for writing terminal-independent pro
grams. The value of numCols is set by the installation program
INSTM2.

See Also numRows
Terminal

422 MODUL

Example MODULE ColumnNumber;
FROM Terminal IMPORT numCols;
VAR

I: CARDINAL;
BEGIN

I := 0;
WHILE I < numCols DO WRITE(f- ') END ;

END ColumnNumber.

numRows variable (Terminal) L

Description numRows holds the number of rows available on the current
installed terminal.

Declaration VAR
numRows: CARDINAL;

Usage IF CurRowl > numRows THEN CurRow := 0 END ;

numRows must be imported from the module Terminal.

Comments This variable is useful for writing terminal-independent p
grams. The value of numRows is set by the installation progr;
INSTM2.

See Also numCols
Terminal

Example MODULE RowNumber;
FROM Terminal IMPORT numRows;
VAR

I: CARDINAL;
BEGIN

I := 0;
WHILE I < numRows DO WRITELN(11f) END ;

END RowNumber.

423Turbo Modula-2 Reference Directory

ODD standard function S

y

>
m

Description ODD returns TRUE if the ordinal value of X is odd.

Usage Y:= ODD(X);

Argument X is of type CARDINAL or INTEGER.

Result Y is of type BOOLEAN.

Comments This function allows you to find out if a value is odd.

Note that for BOOLEAN types, the first value is FALSE with
an ordinal value of 0.

Example MODULE Odd;
TYPE

S h if t = (E a rly ,L a te ,N ig h t);
VAR

TimeSheet : ARRAY S h if t OF CARDINAL
ShiftToday : S h if t ;
OddNumber : BOOLEAN;

BEGIN
T im eSheet[Early]:= 11;
OddNumber: = ODD (TimeSheet [E a rly]) ;

(* OddNumber is TRUE*)
END Odd.

Open procedure (Files) L__

Description Open opens a binary disk file for input or output.

Declaration PROCEDURE 0pen(VAR f : FILE; name: ARRAY OF CHAR):
BOOLEAN;

424

Usage

Comments

See Also

Example

MODULA

okay := Open(f, name);

Open must be imported from the library module Files.

okay must be declared as type BOOLEAN.

/ must be declared as type FILE imported from Files.

name must be declared as ARRAY OF CHAR.

/ is the internal file identifier. Further operations on this file
must specify /.

name must represent a legal CP/M file name that is on the disk
you are using or a standard CP/M device like RDR: or CON:.

okay is returned TRUE when the file can be opened; it is
FALSE if the file could not be found.

Use Create to start a new file.

Readable files are better handled using routines from the
module Texts.

Close
Create
Files

Open and close a disk file ’SCRATCH.SCR’:

MODULE openandclose;
FROM Files IMPORT FILE, Open, Close;
VAR
f : FILE;
BEGIN
IF Open(f,'SCRATCH.SCRf) THEN
Close(f)
END
END openandclose.

Turbo Modula-2 Inference Directory 425

Openlnput Procedure (InOut) L

Description Openlnput asks the user for a disk file name, then opens it as
standard input.

Declaration PROCEDURE Openlnput(defe x t: ARRAY OF CHAR);

Usage Openlnput(e x t) ;

Openlnput must be imported from the library module InOut.

ext must be a character array.

Comments Notice that calling this procedure causes the program to halt
and ask the user for a file name. The ext parameter will be us
ed only if the user does not specify an extension.

Example NODULE Input;
FROM InOut IMPORT

Openlnput, C loselnput, ReadString,
W riteS tring , WriteLn;
VAR

s: ARRAY [0 ..255] OF CHAR;
BEGIN
(* Prompt u se r fo r filenam e #)
(# Use d e fa u lt ex ten t ion MOD #)
Openlnput (" MOD") ;
(* Read a s t r in g from the f i l e #)
R ead S trin g (s);
W rite S tr in g (s) ;

(# D isplay i t *)
WriteLn;
C loselnput;

(* Sever th e l in k to the f i l e #)
(# Now inpu t comes from the console #)
R eadS tring(s);
W rite S trin g (s);

(# D isplay i t *)
WriteLn;
END Inpu t.

426 MODULA

OpenOutput

Description

Declaration

Usage

Comments

Example

rocedure (InOut) L

OpenOutput asks the user for a disk file name, then opens it
as the standard output.

PROCEDURE OpenOutput(defext: ARRAY OF CHAR);

OpenOutput(ext);

OpenOutput must be imported from the library module InOut.

ext must be a character array.

Notice that calling this procedure causes the program to halt
and ask the user for a file name. The ext parameter will be us
ed only if the user does not specify an extension.

MIDDLE Output;
FROM InOut IMPORT
OpenOutput, CloseOutput, ReadString,
WriteString, WriteLn;
VAR
s: ARRAY [0 . . 255] OF CHAR;
BEGIN
WriteString('Enter output file and then the data:f);
WriteLn;
OpenOutput (" MOD ");
(* Read data from the console #)
ReadString(s);
(* Place it in the file #)
WriteString(s);
WriteLn;
CloseOutput; (# Sever the link to the file #)
WriteString('The file has been closed.');
WriteLn;
END Output.

Turbo Modula-2 Reference Directory 427

OpenText procedure (Texts) L

Description OpenText associates a TEXT with an external medium and
opens it for reading.

Declaration PROCEDURE OpenText (VAR t: TEXT;
name: ARRAY OF CHAR): BOOLEAN;

Usage okay := OpenText(t, fname);

OpenText must be imported from the library module Texts,

t must be declared as type TEXT imported from Texts,

fname must be a character array.

okay must be declared as type BOOLEAN.

Comments fname must either be a valid CP/M file name and be present
on the appropriate disk or represent an existing CP/M device
like ’CON:’.

okay is returned FALSE if the file is not found; otherwise, the
file is sucessfully opened and okay is returned TRUE.

t can only be used for input.

See Also CreateText
TEXT
Texts

428 M ODI

Example

OpSet type

Description

Declaration

Usage

Comments

See Also

Open a text file ’MYTEXT.TXT* and then close it:

MODULE openandclose;
FROM Texts IMPORT TEXT, OpenText, CloseText;
VAR
t : TEXT;
BEGIN
IF OpenText(t, 'MYTEXT.TXT') THEN
CloseText(t)
END
END openAndClose.

(Terminal) L

OpSet holds the set of screen operations available on the
rently installed terminal.

TYPE
SpecialOps = (clearEol, insertDelete,
highlightnor mal);
OpSet : SET OF SpecialOps;

VAR
available : OpSet;

available is a predefined variable declared as type OpS<
must be imported from the module Terminal.

This variable is useful for writing terminal-independent
grams. The value of available is set by the installation pro]
INSTM2.

SpecialOps
available
Terminal

Turbo Modula-2 Reference Directory 429

Example

OR R

Description

Usage

Comments

MODULE TermStuff;
FROM Terminal IMPORT
available, SpecialOps, Highlight, Normal;
BEGIN
IF highlightNormal IN available THEN
Highlight
ELSE
WRITE(’" ’);
END ;
WRITELN(’This is highlighted text! ’);
IF highlightNormal IN available THEN
Normal
ELSE
WRITE(’"1);
END ;

END TermStuff.

OR is a binary logical operator resulting in a Boolean value.

IF InputError OR TimelsUp THEN Beep END ;

OR is a reserved word.

InputError and TimelsUp are Boolean expressions.

OR is used to concatenate two logical expressions. An OR ex
pression is TRUE if at least one of its subexpressions is TRUE.

Note that the second subexpression in an OR expression is on
ly evaluated if the first subexpression is FALSE. This is called
short-circuit evaluation.

430 M O D U L

Example REPEAT statement using OR to test either of two terminatin
conditions.

MODULE Delay;
FROM Terminal IMPORT BusyRead;
VAR
ch: CHAR;
x : CARDINAL;
BEGIN
x := 0;
REPEAT
INC(x);
BusyRead(ch);
UNTIL ch#0C OR x>1000;
END Delay.

ORD Standard function S

Description ORD returns the ordinal number of X.

Usage Y:= ORD(X);

Argument X is of type enumeration, INTEGER, CARDINaI
BOOLEAN, or CHAR.

Result is of type CARDINAL.

Comments Ordinal types have an ordered sequence of values, with
position in the sequence being the ordinal number; thus,
first value has an ordinal of 0, the next has ordinal of 1, <
so forth.

Note that INTEGER values are written in two’s compleir
format so that the lower ordinals correspond to positive val
and higher ordinals to negative values.

Ordinals 0 to 32767 Values 0 to 3Z
Ordinals 32768 to 65535 Values -32768t<

Turbo Modula-z Reference Directory 431

Example

For BOOLEAN types, the first value is FALSE with ordinal 0.

The inverse operation from ordinal to value uses the VAL func
tion, or you can use the CHR function for character variables.

TYPE D irec tio n : (Forward,Backward,Up,Down);
VAR Move: D irec tion ;

Value: INTEGER
O rd in a l: CARDINAL

BEGIN
Move := Up;
Ordinal := ORD(Move);

(* Ordinal i s value 2 #)
Value:= 10; O rd in a l:= ORD(Value);

(# O rdinal is value 10 *)

O rdinal: = 0RD(n?")
(# O rdinal is value 63 #)

OUT procedure (SYSTEM) L

Description OUT outputs a word or a byte to a given I/O port.

Declaration PROCEDURE OUT(p o r t , d a ta : WORD);

Usage OUT(port, outWord);

OUT must be imported from the library module SYSTEM.

outWord must be compatible with type WORD imported from
SYSTEM.

port can be any scalar type compatible with WORD.

Comments The value given by outWord is output to the port whose number
is given by port.

432 MODU

See Also INP
SYSTEM

Example Output a byte to port 23 hex:

OUT(023H, outWord);

outName variable (ComLine) L

Description outName is a string variable that contains a string found a
the output redirection symbol (>) on the command line.

Declaration VAR
outName: ARRAY [0 .,1 9] OF CHAR;

Usage VRITE('Output redirected to ',outName);

Comments The redirection symbol and outName will not appear in
text commandLine.

outName contains the standard output string »CON:« il
redirection argument has been found on the command lii

See Also ComLine
inName
RedirectOutput

Example MODULE RedirectOutput;
FROM ComLine IMPORT outName, RedirectOutput;
FROM Texts IMPORT console;
BEGIN
RedirectOutput;
IF outName < > "C0N:n THEN
WRITE(console,'Output redirected to ',outName
END
END RedirectOutput

Turbo Modula-2 Reference Directory 433L i

OUTOFMEMORY exception (SYSTEM) L/E

Description OUTOFMEMORY is raised by the module SYSTEM when an
allocation operation makes the stack and heap collide.

Declaration EXCEPTION
OUTOFMEMORY;

__ Usage EXCEPTION
OUTOFMEMORY:

ter ^ WRITELN('Out of memory.');
END

OUTOFMEMORY must be imported from the module
SYSTEM.

Comments This exception may occur during explicit allocation or pro
cedure calls.

the
See Also SYSTEM

BADOVERLAY
no
e.

OVERFLOW
REALOVERFLOW

Example

I

MODULE OutOfMemory;
FROM SYSTEM IMPORT OUTOFMEMORY;
FROM STORAGE IMPORT ALLOCATE, FREEMEM;
VAR
p: POINTER TO CHAR;
BEGIN
ALLOCATE(p,FREEMEM()+100);
EXCEPTION
OUTOFMEMORY:
WRITELN('Out of memory.1) ;

END OutOfMemory.

434 M O D U L

output (Texts)

Description

Declaration

Usage

Comments

See Also

Example

L

output is a standard TEXT variable that can be redirected.

VAR output: TEXT;

ou bput

output must be imported from the library module Texts and ca
be used anywhere a TEXT can be used.

output is declared in Texts as a variable of type TEXT and
write-only.

output is always open and by default connected to the terming
It is as if the call CreateText(output, »CON:«) has taken pla<
before the execution of every main module. The a
CloseText(output) reestablishes this connection.

WRITE and WRITELN always use output as their default te
stream.

console
input
Texts

Write the number 5A5A (=23130 decimal) to the output:

MODULE StandardOut;
FROM Texts IMPORT output;
BEGIN
WRITELN(output,5A5AH);

END StandardOut.

Turbo Modula-2 Reference Directory 435

OVERFLOW exception (SYSTEM) L/E

Description OVERFLOW is raised by the module SYSTEM when an integer
or cardinal expression results in a value that is too large or too
small to be represented by the result type.

Declaration EXCEPTION
OVERFLOW;

Usage EXCEPTION
OVERFLOW:
WRITELNCOverflow.1);

END

OVERFLOW must be imported from the module SYSTEM.

Comments This exception occurs only during evaluation of integer expres
sions. Real expressions generate the exception
REALOVERFLOW.

See Also SYSTEM
BADOVERLAY
OUTOFMEMORY
REALOVERFLOW

Example MODULE Overflow;
FROM SYSTEM IMPORT OVERFLOW;
VAR
r: REAL;
BEGIN
r := MAX (REAL) * 2.2;
EXCEPTION
OVERFLOW:
WRITELN(1 Overflow1);

END Overflow.

436 M ODULA

POINTER type

Description

Usage

Comments

R

A pointer references a dynamic variable that can be created,
operated on, and discarded during program execution.

Pointer Type = POINTER OF Referenced Type;

Referenced Type can be any type.

If the precise data structure can only be defined while running
a program, you could use pointers to enable the program to
create the data structure. For example, suppose you want to
record the name and job of each employee in a company.
Assuming there will never be more than 100 employees, you
could declare a fixed data structure of 100 records, or you
could use pointer variables. The program creates new
employee records as you enter data at the keyboard.

A pointer is bound to the referenced type and cannot point to
any other type. For example, if a pointer type is declared as

ArrayPointer = POINTER TO ARRAY [1..10] OF CHAR

then a pointer of type ArrayPointer can only create, reference,
and discard arrays of 10 CHAR components.

The standard procedures NEW and DISPOSE create and
discard referenced variables.

It should be noted that NEW and DISPOSE are translated into
calls to the standard procedures ALLOCATE and
DEALLOCATE, which must be imported from the module
STORAGE.

The referenced variable is designated by the A symbol, the
dereferencing operator.

A pointer’s reference can be assigned to another identical
pointer; in fact, several pointers can reference the same
variable.

Turbo Modula-2 Reference Directory 4 3 7

hmple

A pointer can also be given the value NIL, which means the
pointer does not reference anything; this is not the same as
discarding variables.

A pointer requires 2 bytes of memory. The value NIL cor
responds to 2 zero bytes.

Dynamic variables are stored in the heap area that is handled
by procedures in module STORAGE.

NODULE Company;
FROM STORAGE IMPORT ALLOCATE,DEALLOCATE;

TYPE
PersonPointer = POINTER TO Person;
Person = RECORD

Name: ARRAY [1..2 0] OF CHAR;
Job: ARRAY [1..2 0] OF CHAR;
Next: PersonPointer;
END ;

VAR
FirstPerson,LastPerson,NewPerson:
PersonPointer;

Name: ARRAY [1..20] OF CHAR;

BEGIN
FirstPerson:= NIL;

REPEAT
WRITE (1 Enter name: 1);
READLN(Name);

IF Name < > 1 f THEN
(# Create a person record if name entered *)

NEW(NewPerson);
NewPersonA .Name:= Name;
WRITE('Enter profession: ');
READLN(NewPersonA .Job);
WRITELN;

438 M O D U L

IF FirstPerson = NIL THEM
FirstPerson:= NewPerson

(# FirstPerson references first in list #)
EISE
LastPersonA .Next:= NewPerson

(# Reference to next in list #)
END ;
LastPerson: = NewPerson;

(* LastPerson references last in list *)
LastPersonA .Next:= NIL
END
UNTIL Name = 1';
WRITELN;
(* Write all records on screen #)
WHILE FirstPerson < > NIL DO
WITH FirstPerson A DO
WRITELN(Name,» is a *,Job);
FirstPerson := Next;
END
END
END Company.

Fos procedure (Strings) L_____________________________________

Description Pos finds the position of a substring in a string.

Declaration PROCEDURE P o s (s u b s tr ,s t r : ARRAY OF CHAR): CARDINAI

Turbo Modula-2 Reference Directory 439

Usage p := Pos(substr, str);

Pos must be imported from the library module Strings,

substr and str must be character arrays.

p must be of type CARDINAL.

Comments The first character has the position 0, the second 1, and so on.

If the substring is not found, the value HIGH (str)+1 is return
ed.

See Also Copy
Delete
Insert
Length
Strings

Example VAR
str: ARRAY [0..30] OF CHAR;
index .-CARDINAL

BEGIN
str := ’This is a little t e s t string';
index : = Pos(’This', str);
(* index now equals 0 *)

index := Pos(’little’, str);
(# index now equals 10 *)

index :=Pos(’bigr, str);
(# index now equals 31 *)

PROC standard type S

Description PROC is a predefined parameterless procedure type

Usage PROC = PROCEDURE ;

440 MODUL/

Comments

See Also

Example

PROCESS is an opaque type used to represent an independen
process. In reality, it is nothing more than a storage area fo;
a program counter and local heap and stack pointers. The use:
can manipulate variables of type PROCESS only througl
routines exported from SYSTEM and Processes. Notice that th<
module Processes is implemented using the primitives define<
in SYSTEM.

The procedure NEWPROCESS sets up variables of type PRO
CESS, and the routines TRANSFER and IOTRANSFER provid
cooperative and interrupt driven control functions.

TRANSFER
NEWPROCESS
Processes

MODULE Process;
VAR

M,P: PROCESS;
Workspace: ARRAY [0 ..9 9] OF CARDINAL;
PROCEDURE PP;
VAR

i : CARDINAL
BEGIN
FOR i : = 1 TO 10000 DO END ;
TRANSFER (P,M);
END PP;
BEGIN

NEWPROCESS(PP,ADR(Workspace), SIZE(Workspace),P)
TRANSFER (M,P);
END Process.

Turbo Modula-2 Reference Directory 441

Comments PROCEDURE may be nested to any depth and may enclose
modules. If a procedure has a local module, then that module
is only in existence when the procedure is active. Thus, the
module’s initialization part is executed every time the pro
cedure is called.

Example A procedure:

PROCEDURE Ami;
BEGIN

WRITELN (r I am f) ;
END Ami;

A function:

PROCEDURE NotZero (i : INTEGER) : BOOLEAN
BEGIN

RETURN (i # 0) ;
END NotZero;

PROCEDURE type R

Description PROCEDURE allows procedures to be assigned to variables.

Usage TYPE = PROCEDURE [Param eter Types] [rR esu lt Type];

Parameter types and the result type can be any type.

Comments Procedure types allow you to assign arguments to a variable.
You can use procedure-type variables if you want to call a pro
cedure that has another procedure as a parameter. For exam
ple, suppose you define a procedure type as

TYPE S tringProc = PROCEDURE (ARRAY OF CHAR);

This declares a procedure type StringProc. Any variable of
type StringProc can take as argument an ARRAY OF CHAR.
Note that nothing is mentioned about the contents of the pro
cedure.

442 MODULA

Suppose you have a procedure with StringProc as an argu
ment:

PROCEDURE Example(X:CARDINAL P: StringProc);

END Example;

This procedure expects two arguments: one is a CARDINAL,
the other is a procedure of type StringProc with ARRAY OF
CHAR parameter.

The procedure Example can be called with any parameters of
these types. For example:

Example (12, Openlnput (" . INP ")) ;

Example (21, OpenOutput(n . DTA n)) ;

Example (3 , W riteS tring (n Input d a ta : n))

These three examples all call procedure Example with the twc
expected arguments: a CARDINAL and a procedure with ar
ARRAY OF CHAR argument. The procedures Openlnput.
OpenOutput, and WriteString are from the module InOut.

Note that standard procedures such as EXCL or HALT canno
be assigned to procedure variables, nor can procedures that an
local to other procedures.

The predefined procedure type PROC denotes a procedun
with no parameters.

Turbo Modula-2 Reference Directory 443

Example MODULE Procedures;
FROM InOut IMPORT WriteCard,WriteHex;
TYPE

L is tP o in te r = POINTER TO L is t;
L is t = RECORD

Key .-CARDINAL
Data:CARDINAL
Next: L is tP o in te r
END ;

ProcType = PROCEDURE (CARDINAL, CARDINAL);
VAR F ir s t : L is tP o in te r ;
PROCEDURE Search(X:CARDINAL Q: ProcType);
(* Search fo r record w ith Key X #)
VAR P: L is tP o in te r ;
BEGIN

P:= F ir s t ;
WHILE (P # NIL) AND (PA .Key # X) DO

P:= P a .Next
END ;
IF P # NIL THEN
Q(PA .D ata ,6)
END
END Search;
BEGIN

Search(3,W riteCard) ;
(# Write data from record with Key 3 asCARDINAL#)

Search(3,W riteH ex);
(* Write same data as a Hexadecimal value *)
END Procedures.

PROCESS type (SYSTEM) L

Description PROCESS declares processes or coroutines.

Usage p : PROCESS;

PROCESS must be imported from the library module
SYSTEM.

444 MODU

Comments

See Also

Example

PROCESS is an opaque type used to represent an independ*
process. In reality, it is nothing more than a storage area 1
a program counter and local heap and stack pointers. The us
can manipulate variables of type PROCESS only throu
routines exported from SYSTEM and Processes. Notice that t
module Processes is implemented using the primitives defin
in SYSTEM.

The procedure NEWPROCESS sets up variables of type PR
CESS, and the routines TRANSFER and IOTRANSFER provi
cooperative and interrupt driven control functions.

TRANSFER
NEWPROCESS
Processes

NODOLE Process;
VAR

M,P: PROCESS;
Workspace: ARRAY [0..99] OF CARDINAL;
PROCEDURE PP;
VAR

i : CARDINAL
BEGIN
FOR i:= 1 TO 10000 DO END ;
TRANSFER (P,M);

END PP;
BEGIN

NEWPROCESS(PP, ADR(Workspace),SIZE(WorkSpace),P]
TRANSFER (M,P);

END Process.

Turbo Modula-2 i^erence Directory 445

Processes module

Description

Declaration

Comments

See Also

L

Processes provides standard multiprogramming capabilities.

DEFINITION MODULE Processes;

TYPE SIGNAL;

PROCEDURE S ta rtP ro cess(P : PROC; n:CARDINAL;
PROCEDURE SEND (VAR s: SIGNAL);
PROCEDURE WAIT (VAR s: SIGNAL);
PROCEDURE Awaited(s: SIGNAL):BOOLEAN;
PROCEDURE Init(VAR s: SIGNAL);

EXCEPTION DeadLock;

END P rocesses.

Notice that there are no scheduling facilities associated with
this module; the burden of providing these falls on the pro
grammer.

Processes is implemented using the type PROCESS and the
routines NEWPROCESS and TRANSFER in pseudomodule
SYSTEM.

TRANSFER
PROCESS
NEWPROCESS
Also see the individual identifiers exported from Processes.

446 MOL

progName variable (ComLine) L

Description progName is a string variable that contains the name c
program currently running.

Declaration VAR
progName: ARRAY [0 ..7] OF CHAR;

Usage WRITE(fThe c u rre n tly running program is 1 ,progNa

Comments progName allows for an eight-character name (assun
.COM extension).

progName is only valid if the program is started from v
the Turbo Modula-2 shell. If the program is started froi
operating system, the string is empty.

See Also ComLine

Example MODULE RunFromTheShell;
FROM ComLine IMPORT progName;
VAR

x ,y : REAL;
BEGIN

IF progName < > r ' THEM
WRITELN(’This program is c a lle d ' , progName);

END
END RunFromTheShell.

PromptFor procedure (ComLine) L

Description PromptFor looks for an input string from the commam
if there is not one present, it prompts the user to provid

Declaration PROCEDURE PromptFor (prompt: ARRAY OF
CHAR; VAR s : ARRAY OF CHAR);

Turbo M odular Reference Directory 447

Usage

Comments

Example

PromptFor(prompt, answer);

PromptFor must be imported from the library module Corn-
Line.

prompt and answer must be of type ARRAY OF CHAR.

This procedure essentially performs a ReadString from the
TEXT commandUne exported by ComUne. If an EOT (32C)
is encountered in commandUne, then the user is prompted
with prompt to provide additional input.

Note that in the Turbo Modula-2 system a command line can
be specified by the user with the Run command from inside
the Turbo Modula-2 shell.

MODULE p te s t ;
FROM ComLine IMPORT PromptFor;
BEGIN
FOR i := 1 to 3 DO BEGIN
WRITE(i:3,r f);
PromptFor (!Need more> f , s t r) ;
WRITELN(str);

QQ) ;
END p te s t .

If the user starts the program with

Run MCD f i l e : P te s t a rg l arg2

then the output will be as follows:

1 ARG1
2 ARG2
3 Need more> arg3

448 MODU

QUALIFIED R

Description QUALIFIED forces an identifier exported from a lo
module to be qualified in the surrounding environment.

Usage EXPORT QUALIFIED t h i s , th a t , theNextThing;

Comments When an identifier is qualified, it means that every refere:
must be prefixed by the name of the module it has been defi]
in, followed by a period (.). For example, these identifiers
qualified: Texts.ReadChar, Mathlib.Cos, Files.EOF. 1
these are not: ReadChar, Cos, EOF.

This command only makes sense for local modules, si
main modules and implementation modules can’t ex]
anything , and in definition modules everything is exp
qualified by default.

Example p i in local is EXPORT QUALIFIED:

MODULE main;

MODULE lo c a l;
EXPORT QUALIFIED p i ;

PROCEDURE p i;
BEGIN END ;

END lo c a l;

BEGIN
lo c a l .p l ; (# p i i s v i s ib le , bu t must be q u a l i f y

END main.

Turbo Modula-2 reference Directory 449A

RAISE statement R/E

nl

ai Description RAISE causes an exception to be raised, passing control up the
calling chain to an exception handler or the runtime system.

Usage RAISE [SomeError] [, message] ;

>ce
ied
ire Comments
md

message must be a character array.

When an exception is raised, the current procedure is searched
for the appropriate handler. If one is found, the specified code
is executed. If a handler for the exception is not found, the
caller of the current procedure is searched. This search pro

nee
>ort
ort-

cess continues until a handler is found or the runtime super
visor is reached. The supervisor prints the exception name on
the terminal along with the optional message and the calling
chain, control is then returned to the operating system.

The short form of the exception statement is RAISE, which
may only be used within an exception handler. If this statement
occurs in an exception handler, then the same exception that
the exception handler is currently handling will be raised again
in the next highest procedure of the calling sequence.

See Also EXCEPTION

Example Raise an exception to be caught somewhere:

RAISE MyError

1

d#)
Raise an exception with a message:

RAISE TooLateAtNight, 'Turn me o f f and go home ! *

450 MODI

D o a l it t le b it o f e x c e p tio n -h a n d lin g and th e n pass i t o n :

EXCEPTION
I D iskFull:

WRITELN(» D is k F u ll in th is P r o c 1) ;
C lo se (f) ;
R A ISE ;

ELSE
R A IS E ;

END th isP ro c .

Random function (MathLib) L

Description Random returns a random number between 0 and 1.

Declaration PROCEDURE Random() : REAL;

Usage Y:= Random();

Result Y is REAL.

There is no argument, but the parentheses are required.

Comments The function returns the next element from a pseudo-ran<
number sequence. The same sequence is repeated each
your program is executed unless you select a new sequ
with the procedure Randomize. i

Turbo Modula-2 Reference Directory 451

Example Two ways to randomize the random number generator:

FROM MathLib IMPORT Randomize;
VAR Sequence:CARDINAL
BEGIN

WRITELN(’Input sequence number, 0 to 65535’);
READ(Sequence);
Randomize(Sequence);

or

i := 0;
WRITE('E n te r any c h a ra c te r ') ;
REPEAT

i := i + 1;
BusyRead(ch);

UNTIL ch # 0C;
Randomize(i);

Randomize procedure (MathLib) L

Description Randomize initializes a pseudo-random-number sequence. The
same random sequence can be reproduced by passing the same
seed value to Randomize.

Declaration PROCEDURE Randomize(n: CARDINAL);

Usage Randomize(1986);

Randomize must be imported from the module MathLib.

Comments After randomizing the sequence, call Random to get the ran
dom numbers.

See Also MathLib
Random

452 MODI

Example MODULE RandomMath;
FROM MathLib IMPORT Randomize, Random;
VAR x: REAL;
BEGIN

Randomize(1986);
x := Random()*10.0/Random()*20.0;

END RandomMath.

READ Standard procedure S/E_________________________ _________

Description READ is a generalized read statement.

Usage READ(t, v l i s t)

or

READ(vlist);

t is of type TEXT imported from TEXTS, vlist is simply a
of variables and constants.

Comments READ will be translated by the compiler into the appropi
calls to the module Texts.

Notice that you do not have to import procedures from :
in order to use these commands, but Texts must be somew
on disk.

Although READ, READLN, WRITE, and WRITELN are n
the standard Modula-2 definition, programming without 1
is much more tedious. However, if a program is to be port'
do not use these commands. A good strategy would t
develop the program using these statements for debugging
put and explicitly typed calls to Texts for the user’s outpu
move the program to another enviroment, only the me
Texts must be duplicated in the new enviroment.

Turbo Modula-2 Reference Directory 453

See Also READLN
Texts
WRITE
WRITELN

Example Read an integer i:

READ(i)

Read a string str followed by 4 integers ij,k ,l:

READ(str,

Read a real number r from TEXT t:

READ(t, r)

ReadAgain procedure (Terminal) L

Description ReadAgain causes the last character read from the terminal to
be repeated.

Declaration PROCEDURE ReadAgain;

Usage ReadAgain;

ReadAgain must be imported from the library module Ter
minal.

Comments The last character read before this procedure is called will be
picked up by the next read operation from the terminal.

This procedure works with all the input procedures in Ter
minal, but only works if at least one character has already been
processed since the program began.

With this routine you can achieve a certain amount of
lookahead without having to set up a global buffer and com-
pilicated logic to use is.

454 MODI

See also BusyRead
ReadChar
Terminal

Example Read a character and then read it again:

ReadChar(ch);
ReadAgain;
ReadChar(ch);

ReadAgain procedure (Texts)_____ L

Description

Declaration

Usage

Comments

See A ls o

ReadAgain causes the last character read from a TEXT tc
repeated.

PROCEDURE ReadAgain(t: TEXT);

ReadAgain(t);

ReadAgain must be imported from the library m o d u le 22

t must be of type TEXT imported from Texts.

The last character read from t before this procedure is cs
will be picked up by the next read operation from t.

This procedure works with all the input procedures in Z
but only works if at least one character has already been
cessed since the program began.

With this routine, you can achieve a certain amoun
lookahead without having to set up a global buffer and <
plicated logic to use it.

ReadChar
Texts

Turbo Modula-2 Reference Directory 455

Example Read a character from the TEXT t and then read it again:

ReadChar (t , ch);
R eadA gain(t);
ReadChar (t , c h) ;

Or, using the ReadAgain ’s potential lookahead to good advan
tage, you can read a value as an integer or a string depending
on the first nonblank character:

REPEAT
R eadC har(t,ch);
UNTIL ch # " " ;
R eadA gain(t);
IF (ch > = " 0 ") and (ch < = " 9 ") THEM
R ead ln t(t,x)
ELSE

R ead S trin g (t,s)
END ;

ReadByte procedure (Files) L

Description ReadByte reads a variable of any type compatible with BYTE
from FILE.

Declaration PROCEDURE ReadByte(f: FILE; VAR ch: BYTE);

Usage ReadByte(f, c h) ;

ReadByte must be imported from the library module Files,

f must be of type FILE imported from Files,

ch must be of a type compatible with BYTE.

456 MODULA

Comments Types compatible with BYTE are those whose storage uses ex
actly 1 byte. These include CHAR, BOOLEAN, and enumera
tion types with at most 256 elements; subrange types with
bounds within the range 0 to 255, and word- sized variables as
well (but only 1 byte is read).

See Also Files
ReadWord
ReadRec
WriteByte

Example Open a file ’ONEBYTE.DAT and write out a byte; close it,
and read it back:

MODULE w riteb y te ;
FROM F ile s IMPORT FILE, C reate , C lose, ReadByte,

W riteByte;
VAR f : FILE;

ch : CHAR;
BEGIN

C rea te (f , 'ONEBYTE.DAT');
W riteB yte(f,69);
C lo se (f) ;
IF Open(f, 'ONEBYTE.DAT1) THEM
ReadByte(f, ch);
(* ch now con tains th e ch a rac te r 'E '
(a s c i i code 69) *)
C lo se (f) ;

END w riteb y te .

ReadBytes procedure (Files) L

Description ReadBytes reads a number of bytes into a block of memor
beginning at an address.

Declaration PROCEDURE ReadBytes(f: FILE; buf: ADDRESS; nbytes
CARDINAL): CARDINAL;

Turbo Modula-2 Reference Directory 457

Usage

Comments

See Also

Example

nread := ReadBytes(f , bufadr, nbytes);

ReadBytes must be imported from the library module Files.

/m u s t be of type FILE imported from Files.

buf must be compatible with type ADDRESS (any pointer).

nread and nbytes must be of type CARDINAL.

ReadBytes will attempt to read nbytes from /. It returns the
number of bytes successfully read. It will not raise the escep-
tion EndError, even if the end of the file is encountered before
nbytes bytes are processed.

The variables are read into memory starting at the location
specified in bufadr.

ReadBytes and WriteBytes are low-level routines with which
you can take snapshots of memory to and from the disk, copy
files, and so on. They must be used with care, since you can
easily destroy your program or its variables with them. When
transferring variables, we recommend using an explictly typed
procedure like ReadRec, ReadWord, and the like.

FILE
Files
WriteBytes

Read 1024 bytes from / into memory starting at 8000 Hex:

uread := ReadBytes(f, 8000H, 1024)

The previous example is not very safe since the programmer
doesn’t always know what is at a given address in memory. The
following is more useful:

nbytes := ReadBytes(f, ADR(area), S IZ E (area));

458 MOL

ReadCard procedure (Texts) L

Description ReadCard reads a cardinal number from a TEXT file.

Declaration PROCEDURE ReadCard(t: TEXT; VAR c: CARDINAL);

Usage ReadCard(t, card);

ReadCard must be imported from the library module 1

t must be of type TEXT

card must be of type CARDINAL.

Comments In general, READ is easier to use.

This function works by reading a string into an int
variable and then converting it via StrToCard in Conver

Leading blanks are skipped, and the range must be withir
to MAX(CARDINAL) .

The BOOLEAN variable Done (exported by Texts) can be
to determine whether input was syntactically correci
within the legal range. If Done is FALSE, the number ret
by ReadCard is undefined.

See Also READ
Texts
WriteCard

Example Read a cardinal number called c from the file t:

ReadCard(t, c)

Turbo M odular Reference Directory 459

ReadChar procedure (Terminal) L

Description ReadChar reads a character from the terminal without echo.

Declaration PROCEDURE ReadChar (VAR ch: CHAR);

Usage ReadChar(c);

ReadChar must be imported from the library module Ter
minal.

c must be of type CHAR.

Comments The character is not echoed to the screen.

Line ends are returned as carriage returns, CHR(13).

See Also BusyRead
Terminal
WriteChar

Example Read a character ch from the terminal without echo:

ReadChar(ch)

ReadChar procedure (Texts) L______________________________________

Description ReadChar reads a character from a TEXT file.

Declaration PROCEDURE ReadChar(t: TEXT; VAR ch: CHAR);

Usage ReadChar(t, c);

ReadChar must be imported from the library module Texts,

t must be of type TEXT.

c must be of type CHAR.

460 M ODULA

Comments In general, READ is easier to use than this procedure.

A single character is read in; if the stream is input, then the
character is echoed to the screen. For input without echo, use
ReadChar from the module Terminal.

Input from the console must always be terminated with a
return.

See Also READ
WriteChar

Example Read a character c from the terminal with echo:

ReadChar(input, c)

Read a character from the TEXT file t:

ReadChar(t, c)

ReadDouble procedure (Doubles) L

Description ReadDouble reads a double-precision real variable from a
TEXT file.

Declaration PROCEDURE ReadDouble(t: TEXT; VAR d: LONGREAL);

Usage ReadDouble(t, d);

ReadDouble must be imported from the library module
Doubles.

t must be of type TEXT imported from Texts,

d must be of type LONGREAL.

Turbo Modula-2 Reference Directory 461

Comments This procedure works by reading a string from t and then con
verting it to a LONGREAL using StrToDouble.

The Boolean variable legal (exported from Doubles) is set to
TRUE if a legal double-precision number is read from t.

The READ and READLN procedures use ReadDouble to read
LONGREALs.

See Also WriteDouble

Example Read a double-precision d out of a text t:

ReadDouble(t, d) ;

Readlnt procedure (Texts) L__

Description Readlnt reads an integer from a TEXT file.

Declaration PROCEDURE R ead ln t(t: TEXT; VAR i : INTEGER);

Usage R ead ln t(t, i) ;

Readlnt must be imported from the library module Texts,

t must be of type TEXT,

i must be of type INTEGER.

462 MODULA

Comments In general, READ is easier to use than this procedure.

This routine works by reading a string from text t and conver
ting it to an INTEGER using IntToStr in Convert.

Leading blanks are skipped, and the range must be within
MIN (INTEGER) to MAX (INTEGER).

The BOOLEAN variable Done (exported by Texts) can be used
to determine whether input was syntactically correct and
within the legal range. If Done is FALSE, the number returned
by Readlnt is undefined.

See Also READ
Texts
Writelnt

Example Read an integer from the text t:

R ead ln t(t, i)

ReadLine procedure (Texts) L

Description ReadLine reads a whole line of text into a string variable.

Declaration PROCEDURE ReadLine(t: TEXT; VAR s : ARRAY OF CHAR);

Usage ReadLine(t, l in e) ;

ReadLine must be imported from the library module Texts,

t must be of type TEXT imported from Texts,

line must be an ARRAY OF CHAR.

Comments ReadLine and ReadString are similar except that ReadString
skips over leading blanks and ReadLine doesn’t, and ReadLine
is only terminated by an EOL or an EOT.

Turbo Modula-2 Reference Directory 463

See Also ReadString
Texts

Example Read from TEXT t a string str with leading blanks:

ReadLine(t, s t r)

ReadLine procedure (Terminal) L

^ scription ReadLine reads a line of text into a string variable.

Declaration PROCEDURE ReadLine (VAR s: ARRAY OF CHAR);

Usage ReadLine(line);

ReadLine must be imported from the library module Terminal.

line must be an ARRAY OF CHAR.

Comments ReadLine is similar to Texts. ReadLine, but ReadLine's input is
terminated by a carriage return instead of an EOT character.

See Also Terminal
Texts

Example Read a string str from the console:

NODULE ReadLineEx;
FROM Terminal IMPORT ReadLine;
VAR
s: ARRAY [0..20] OF CHAR;
BEGIN
WRITELN(1 Enter a string and press return 1);
ReadLine(str);
WRITELN('The string you entered is ' ,str);
END ReadLineEx;

464 M ODULA

READLN standard procedure S/E

Description READLN is a generalized read statement that terminates with
a new line.

Usage READLN([t], vlist)

or

READLN(vlist);

t is an optional TEXT file; the default is input,

vlist is simply a list of variables.

Comments If t is omitted, the standard input will be used.

READLN will be translated by the compiler into the ap
propriate calls to the module Texts. Thus do not change the
definition of the module Texts if you want to use this sort of
input and output.

READLN works just like READ except it skips over the text file
being read until an EOL is encountered.

See Also READLN
Texts
WRITE
WRITELN

Example Get a number from the user at the terminal:

WRITE(’Gimme a number, doesn't matter which one > ’);
READLN(number);

Read a bunch of numbers from a TEXT file:

READLN(t, numl, num2, num3, numlast);

Turbo Modula-2 Reference Directory 465

ReadLong procedure (Texts) L

Description ReadLong reads a long integer from a TEXT file.

Declaration PROCEDURE ReadLong(t: TEXT; VAR 1: LONGINT);

Usage ReadLong(t, 1);

ReadLong must be imported from the library module Texts,

t must be of type TEXT.

1 must be of type LONGINT.

Comments In general, READ is easier to use than this procedure.

ReadLong works by reading a string from a TEXT file and con
verting it to a LONGINT using the procedure StrToLong from
Convert.

Leading blanks are skipped, and the range must be within
MIN(LONGINT) to MAX(LONGINT) .

The BOOLEAN variable Done (exported by Texts) can be used
to determine whether input was syntactically correct and
within the legal range. If Done is FALSE, the number returned
by ReadLong is undefined.

See Also READ
Texts
WriteLong

Example Read from TEXT file t a long integer /:

ReadLong(t, 1)

4 6 6 M ODULA

ReadReal procedure (Texts) L

Description ReadReal reads a real number from a TEXT file.

Declaration PROCEDURE ReadReal(t: TEXT; VAR r : REAL);

Usage ReadR eal(t, r) ;

ReadReal must be imported from the library module Texts,

t must be of type TEXT,

r must be of type REAL.

Comments In general, READ is easier to use than this procedure.

Leading blanks are skipped, and the range must be within the
legal real-number range MIN (REAL) to MAX(REAL).

The BOOLEAN variable Done (exported by Texts) can be used
to determine whether input was syntactically correct and
within the legal range. If Done is FALSE, the number returned
by ReadLong is undefined.

See Also READ
Texts
WriteReal

Example Read a real number r from text file t.

ReadR eal(t, r)

ReadRec procedure (Files) L

Description ReadRec reads a record, array, or real from a FILE (a binary
disk file).

Declaration PROCEDURE ReadRec(f: FILE; VAR rec: ARRAY OF WORD);

Turbo Modula-2 Reference Directory 467

Usage

Comments

See Also

Example

ReadRec(f, r);

ReadRec must be imported from the library module Files.

f must be of type FILE imported from Files,

r can be of any type.

This routine can read any variable not covered by ReadByte
and ReadWord. It reads variables compatible with ARRAY OF
WORD; for example, REAL, LONGREAL, LONGINT,AR
RAY, or RECORD.

Files
ReadByte
ReadWord
WriteRec

Open a file ’SOMEWREK.DAT and write out this record,
then read it back:

NODULE w rite f ile ;
FROM Files IMPORT FILE, Create, Close, WriteRec,
ReadRec;
FROM wreck IMPORT wreckRec;
VAR
f : FILE;
wr : wreckRec;

BEGIN
Create(f, 'SOMEWREK.DAT');
WriteRec(f, wr);
Close(f);
IF Open(f, 'SOMEWREK.DAT') THEN
ReadRec(f, wr);
(# wr has whatever it had before in it #)
Close(f);

END ;
END writefile.

468 M ODULA

ReadString procedure (Texts) L

Description ReadString reads a string, which in this case is a sequence of
characters that does not contains blanks or control characters.

Usage R eadS tring (t, s) ;

ReadString must be imported from the library module Texts.

t must be of type TEXT imported from Texts,

s must be of type ARRAY OF CHAR.

Comments In general, READ is easier to use than this procedure.

The routine works by skipping over blanks until it gets to a
nonblank character, at which point it starts to read. Input is
then terminated by a blank or a control character (like EOL or
EOT). Thus, strings cannot be separated by commas.

If you want to read in a line as it is, with leading blanks and
all, use ReadLine.

See Also ReadLine
TEXTS
WriteString

Example Read a string, ignoring leading blanks, from a TEXT file t :

R eadS tring (t, s t r)

ReadWord procedure (Files) L

Description ReadWord reads a variable of any type compatible with WORD
from a FILE.

Declaration PROCEDURE ReadWord(f: FILE; VARw: WORD);

Turbo Modula-2 Reference Directory 469

Usage ReadWord(f, w);

ReadWord must be imported from the library module Files.

/ must be of type FILE imported from Files.

w must be of a type compatible with WORD.

Comments Types compatible with WORD are those whose storage uses
exactly one word (2 bytes); these include INTEGER, CAR

(
See Also

DINAL, BITSET and all pointers (ADDRESS is a pointer).

Files
ReadByte
ReadRec
WriteWord

Example Open a file ’SOMEYEAR.DAT and write out this year for
later:

(

MODULE w r i te f i le ;
FROM F ile s IMPORT FILE, C reate , Open, C lose,
WriteWord,
ReadWord;
VAR

f : FILE;
okay :BOOLEAN
y : CARDINAL;

BEGIN
C rea te (f , 'SOMEYEAR.DAT1) ;

. WriteWord(f, 1985);
C lo se (f);
IF Open(f, 'SOMEYEAR.DAT') THEM
ReadWord(f, y) ;
(# y now has the value 1985 #)

END ;
END w r i te f i le .

470 M ODULA

REAL standard type S

Description REAL is a standard type with variables that can assume any
value between -6.80565E+38 and 6.80565E+38.

Comments You will use REAL variables whenever your computation is
likely to produce a fraction. For example, to record the mass
of liquid emitting from a pipe, use MassUquid: = RateOfFlow
* Density.

In this case, none of the variables are likely to be whole
numbers so REAL types are appropriate.

It should be remembered that REAL computations are not
always exact; a certain amount of rounding occurs. For exam
ple, an expression such as Y:= 3.0* (1.0/3.0) will not give the
expected result of 1.0, but a value slightly less. In practice, the
error is so small that it can usually be ignored. But don’t make
the following mistake:

Y: = 3 .0 * (1 .0 /3 .0) ;
IF Y = 1.0 THEN

The correct solution is

IF (Abs(Y) - 1 .0) < 0.01TBEH

If Y is between 0.99 to 1.01, the statement sequence will be ex
ecuted.

You may use any arithmetic operator in REAL expressions,
and REAL variables may take part in relational expressions.

The FLOAT standard function will convert other numeric data
types into REAL.

It should be noted that the REAL type is not an ordinal type
and cannot be used to index arrays, define subranges or sets,

Turbo Modula-2 Reference Directory 471

control FOR or CASE statements, or take arguments in any
procedure expecting an ordinal type.

Turbo Modula-2 uses the IEEE 4-byte real-number format;
that is, in the order of their significance, 1 sign bit, 8 exponent
bits, and 23 mantissa bits.

31 30 23 22 0

I s I exponent I mantissa I

(
The mantissa is in binary format but offset by 1.0, representing
only those digits to the right of the decimal point. Thus,

000000H = 1.0
4000C0H = 1.5
7FFFFFH = 1.9999999

The exponent is in binary format but with a 80H offset. For
example, an exponent 84H indicates the mantissa is to be
multiplied by

2 A (84H - 80H) = 2 * 4 = 16

If the exponent is zero, the floating-point value is considered
zero.

The least-significant bytes are stored first, at the lower ad-
dresses.

Sample Hex real numbers:

3F800000H = 1.0
40000000H = 2.0
40490FDBH = 3.141592

See the example in WORD for printing out other values.

472 MODULA

Example VAR
SquareArea, SquareSide: REAL;
BEGIN
SquareSide:= 4.21;
SquareArea: = SquareSide * SquareSide;

REALOVERFLOW exception (SYSTEM) L/E

Description REALOVERFLOW is raised by the module SYSTEM when a
real expression results in a value that is too large or too small
to be represented by the result type.

Declaration EXCEPTION
REALOVERFLOW;

Usage EXCEPTION
REALOVERFLOW:
WRITELN('Overflow.')»

END

REALOVERFLOW must be imported from the module
SYSTEM.

Comments This exception occurs only during evaluation of real expres
sions. Integer and cardinal expressions generate the exception
OVERFLOW.

See Also SYSTEM
BADOVERLAY
OUTOFMEMORY
OVERFLOW

Turbo Modula-2 Reference Directory 473

Example MODULE RealOverflow;
FROM SYSTEM IMPORT REALOVERFLOW;
VAR

r : REAL;
BEGIN

r := MAX(REAL) * 2 .2 ;
EXCEPTION

REALOVERFLOW:
WRITELN(f Real Overflow1);

END RealOverflow.
(

RealToStr procedure (Convert) L

Description

Declaration

Usage

Con(̂ its

RealToStr writes a real number into a string.

PROCEDURE R ealT oS tr(r: REAL; VAR s: ARRAY OF
CHAR; d ig i ts : INTEGER);

R ealT oS tr(r, s , d ig i t s) ;

RealToStr must be imported from the library module Convert,

r must be of type Real,

s must be of type ARRAY OF CHAR.

digits must be of type CARDINAL.

The number r will be converted to the string s. This procedure
is similar in form and action to WriteReal in Texts. Here, the
declared length of s is substituted for the width parameter in
WriteReal.

The digits parameter indicates the number of digits to the right
of the decimal point. The sign of digits determines whether or
not scientific notation will be used, with plus for normal nota
tion and minus for scientific.

474 MODULA

See Also

Example

If digits is zero, the decimal point will be dropped.

If s is too small to contain the string representing r, the excep
tion TooLarge will be raised.

CardToStr
Convert
Doubles
IntToStr
LongToStr
StiToReal

Convert a real to a string:

VAR s s t r : ARRAY [0 ..4] OF CHAR;
l s t r : ARRAY [0 ..9] OF CHAR;
r :REAL
BEGIN

r := 3.14159;
RealToStr(r, s s t r , 3);
(# s s t r now has the value 1 3 - l 4 l f #)

RealToStr(r, sstr, 1);
(* s s t r now has the value 1 3 -l* *)

RealToStr(r, sstr, 0);
(# s s t r now has the value f 3* *)

RealToStr(r, sstr, -3);
(* causes th e exception TooLarge to be raised #)

RealToStr(r, lstr, -3);
(* l s t r now has the value f3 .l4 lE + 00r #)

Turbo Modula-2 Reference Directory

RECORD type R_____________

475

Description

Usage

A record consists of a fixed number of bytes that contain fields
of possibly different types. Each field has a name, the field
identifier, which is used to select the field. A record may have
variant parts that allow the record to have more than one field
occupying the same memory.

RecordType = RECORD
Field sequence
END

Field sequence = Field { ; Field)

A field can be either a fixed field or a variant fie ld .

Fixed field = Field identifier: Field type

Variant field = CASE [Tag identifier]: Tag type OF
[Case label: Field sequence] (I
[Case label: Field sequence])

[ELSE Field sequence]
END

The field type can be any type.

The tag type can be of type INTEGER, CARDINAL,
BOOLEAN, CHAR, or enumeration.

Each case label can be either a single value or a range of
values of the tag variable separated by commas.

476 MODULA

Comments You can use a record to handle several related items of different
types; for example, a record of the date could be

Date : RECORD
Day: [1 . .31];
Month: (Jan , Feb, Mar, Apr, May, June,

July,A ug,Sept,O ct,N ov,D ec);
Year: [1900..1999]
END

Each field in a record has an identifier that is used to access
the field. Thus, in the example, a field is specified as
Date.Day, Date.Month, and so on.

A field can take values defined by the field type. In the
previous example, the field Month can take any value from the
enumeration Jan to Dec.

For variant records, the tag variable is used to select the dif
ferent cases depending on its value. For example:

TYPE
Lights = (Red,Orange,Yellow,Green,Blue);
VAR

Example: RECORD
Name: ARRAY [1 ..2 0] OF CHAR;
CASE Color: L ights OF
Red..Yellow: T est : CARDINAL I
Green, Blue: Today: Date I
END
END

In this example, the value of Color selects the form of the
record. Thus, if Select is a record of type Example, altering the
value of the tag Select.Color changes the record’s structure. If
the tag has a value of Red, Orange, or Yellow and the record
is accessed, the field Select.Test exists and can be given a
value.

Turbo Modula-2 Reference Directory All

No operators are directly applicable to records (except assign
ment), but any operator applicable to a field type can operate
on that field. Thus, if a record Value has a field RealNumbers
of type REAL, then the following is valid:

Value.RealNumbers:= 2.31 * Value.RealNumbers

The assignment of values to record fields can either be ex
plicitly stated, specifying both the record identifier and the
field:

Value.CardNumbers:= 34

or can use a WITH statement:

WITH Value DO
CardNumbers:= 34;
RealNumbers: = 2.31 * RealNumbers
END

The memory requirements for a record with fixed fields is the
sum of the individual field lengths, but the fields that have 1
byte types are allocated in 2 bytes. For example, a record with
two character fields actually occupies 4 bytes. A variant field
requires enough memory for the largest of the cases.

478 MODULA

Example NODULE Records;
TYPE
Origin = (Citizen,Alien);
Name = ARRAY [1. .20] OF CHAR;
Date =RECORD

Day: [1 . .31];
Month: (Jan, Feb,Mar,Apr, May,June,

July,Aug,Sept,Oct,Nov,Dec);
Year: [1 9 0 0 ..1999]
END ;

Person = RECORD
PersonName: Name;
BirthDate: Date;
CASE Citizenship: Origin OF
Citizen: BirthPlaceName: Name
I
Alien: CountryOfOrigin: Name;

DateOfEntry: Date
END
END ;

Turbo Modula-2 Reference Directory 479

Redirectlnput

Description

Declaration

Usage

VAR
Passenger: Person;
BEGIN
WITH Passenger DO
WITH B irthD ate DO

Day:= 15;
Month:= Sept;
Year:= 1958
END ;
CASE C itizen sh ip OF

I C itizen : BirthPlaceName:= *New Orleans*
I A lien: CountryOfOrigin:= ,UK*;
WITH DateOfEntry DO
Day := 22;
Month := Aug;
Year:= 1984

END
END
END ;
WRITELN(P assenger.B irthD ate . Y ear);
END Records.

procedure (ComLine) L_______________________________

Redirectlnput allows a filename defined in the command line
to be designated as standard output.

PROCEDURE R ed irec tln p u t;

R ed irec tln p u t;

Redirectlnput must be imported from the library module Corn-
Line.

480 MODULA

Comments The file name preceded by a > < « in the command line will be
reassigned to die standard stream input. No space is allowed
between the » < « and the file name.

If no standard input file is specified in the command line, then
the standard input is defined to be at the terminal console.

The name of the file specified to be the standard input stream
is retrievable in the variable inName exported by ComLine.

See Also Comline
RedirectOutput

Example Redirect the input:

MODULE R edirectThelnput;
FROM ComLine IMPORT R ed irec tlnpu t,R ed irec tO u tpu t;
BEGIN

R ed irec tln p u t;
(# Now input may be re d ire c te d from th e

command l in e #)
END R edirectT helnput.

RedirectOutput procedure (ComLine) L

Description RedirectOutput allows a filename defined in the command line
to be designated as standard output.

Declaration PROCEDURE R edirectO utput;

Usage R edirectO utput;

RedirectOutput must be imported from the library module
ComLine.

Turbo Modula-2 Reference Directory 481

Comments The file name preceded by a » > « in the command line will be
reassigned to the standard stream output.

If no standard output file is specified in the command line,
then output is defined to be the terminal screen.

The name of the file specified to be the standard output stream
is retrievable in the variable outName exported by ComLine.

See Also Comline
Redirectlnput

Example Redirect the output:

MODULE RedirectTheOutput;
FROM ComLine IMPORT R edirec tInpu t,R ed irectO u tpu t;
BEGIN

RedirectO utput;
(# Now output can be re d ire c te d from the

command l in e #)

RELEASE procedure (STORAGE) L

Description RELEASE releases a block of allocated memory from the heap.

Declaration PROCEDURE RELEASE(VAR a: ADDRESS);

Usage RELEASE(a)j

RELEASE must be imported from the pseudomodule
STORAGE.

a must be compatible with type ADDRESS (any pointer).

482 MODULA

Comments

See Also

Example

All of the memory from address a to the top of the heap will
be released; a will become the new top of the heap.

You can only release a block of memory that has been
previously specified with MARK.

After the call to RELEASE, the value of a will be set to NIL ,
and any variable allocated on the heap prior to the MARK call
will again be accessible.

RELEASE should be used with care in conjuction with
DISPOSE, DEALLOCATE, and file handling.

MARK
NEW
STORAGE

Allocate a block of variables and then throw them all away:

MARK(blockStart);
NEW(blockVarl);
NEW(blockVar2);
NEW(blockVar3);

(* Now use th ese v a r ia b le s , and when done: #)

RELEASE(b lo c k S ta r t) ;

Rename procedure (Files) L

Description

Declaration

Rename changes the name of an open file and then closes it.

PROCEDURE Rename (VAR f : FILE; name: ARRAY OF CHAR);

Turbo Modula-2 Reference Directory 483

Usage Rename(f, newname);

Rename must be imported from the library module Files.

f must be a variable of type FILE, imported from the module
Files.

newname must be a character array.

Comments The file /m u st have already been opened under its old name.

newname must be a valid CP/M file name.

This function has the side effect of closing the renamed file.
If you want to use it again, you must reopen it with the new
name.

See Also Close
Delete
Files
Open

Example MODULE renameExample;
FROM F ile s IMPORT FILE, Open, Rename, Close
VAR

f : FILE;
newname : ARRAY [0 ..1 2] OF CHAR;
oldname : ARRAY [0 ..1 2] OF CHAR;

BEGIN
oldname := ' o ld t e s t . t x t 1;
newname := 1n ew test. t x t 1;
IF Open(f, oldname) THEN
Rename(f, newname)

END ;
END renameExample.

484 MODULA

REPEAT statement R

Description REPEAT repeatedly executes a sequence of statements until a
Boolean expression returns a TRUE result.

Usage REPEAT
Statem ent sequence

UNTIL BooleanExpression

Statem ent sequence = Statem ent (; Statement)

Comments The Boolean expression is evaluated only after the statement
sequence has been executed at least once.

The repetition is terminated when the expression gives a
TRUE result.

Example NODULE Repeats;
VAR

Answer: CHAR;
BEGIN

REPEAT
WRITE(!E nter nQn and <RET> to continue . . • ') >
READ(Answer);

UNTIL CAP (Answer) = *Q! ;
END R epeats.

ResetSys procedure (Files) L

Description ResetSys resets die disk drive system.

Declaration PROCEDURE ResetSys() ;

Usage ResetSys;

ResetSys must be imported from the library module Files.

Turbo Modula-2 Reference Directory 485

Comments ResetSys asks CP/M to update the file directory. Thus, after a
call to ResetSys, it is possible to write to drives where disks
have been swapped, but all open output files will then be lost.
Consequently, make sure all your disk files are closed before
using this procedure.

See Also Files

Example Get the user to change disks:

WRITELN('Change d isk and type re tu rn when re a d y ') ;
READLN(ch);
ResetSys;

RETURN statement R

Description RETURN terminates execution and specifies the return value
of a function procedure.

Usage RETURN ;

or

RETURN answer;

answer must be compatible with the type with which the func
tion procedure has been declared.

Comments Normally, there will be only one RETURN in a function pro
cedure, just before the final END. However, it is allowable to
put as many RETURNS as you like throughout the procedure.
When a RETURN is encountered, the procedure will ter
minate, and the value specified at that point will be returned
to the calling procedure.

486 MODULA

Example

SEND procedure

Description

Declaration

Usage

Comments

PROCEDURE m axi3(il> 12, i 3 : INTEGER) : INTEGER
BEGIN
IF ((i l > 12) & (i l > 13)) THEN
RETURN i l
EIBIF (12 >13) THEN
RETURN 12
ELSE
RETURN 13
END
END maxi3;

(Processes) L

SEND transfers control to any process waiting for a given
signal.

PROCEDURE SEND(VAR s : SIGNAL);

SEND(s);

SEND must be imported from the library module Processes.

s must be of type SIGNAL imported from Processes.

SEND is used in conjunction with the other routines in the
module Processes: Init, StartProcesses, Wait, and Awaited.

If no process is waiting for signal s, then SEND has no effect.

If a process is waiting for s (that is, has terminated execution
with the routine WAIT), then control will be transferred to it.

If several processes are waiting, then the first one in the queue
will get control.

Before a signal is used it must be initialized using the pro
cedure Init in Processes.

To find out if processes are waiting for a signal, use the routine
Awaited in Processes.

Turbo Modula-2 Reference Directory 487

See Also Awaited
Init
Processes
StartProcess
WAIT

Example Send the signal done:

SEND(done);

SET type R

Description A set-type variable can assume as a value a set of up to 16 dif
ferent elements with ordinal values in the range of 0 to 15.

Usage Sex Type = SET OF Base Type;

Set Assignment : = Base Type 0(0 Base Type Elements 0)0 ;

Base type can be enumeration or subrange.

Base-type elements are elements of the base type.

Comments A set is a collection of elements that you handle as a whole.

Besides assigning a value to a set, you can also include another
element from the base type into the set, or exclude (or remove)
an element from the set using the standard procedures INCL
and EXCL.

The operators applicable to set expressions are the set
operators and the relational operator IN. These operators
allow you to check if a particular element is present in a set,
to find the difference between two sets, and so forth.

488 MODULA

See Also

Example

There is a predefined set type called BITSET that is defined
as BITSET = SET OF [0..15]. With this set type, you can
define sets with values made up of combinations of CAR
DINAL numbers in the range 0 to 15. A set type value requires
2 bytes for storage in memory.

INCL
EXCL

Suppose you are an automobile manufacturer and wish to
record the state of completion of each vehicle. You could
define a set of the main parts required, like so:

TYPE
Components = (B ody,Engine,C hassis);

Compset = SET OF Components
VAR

S ta te : Compset
The enumeration Components is called the base type of the set
State. The set State can take as a value any combination of
elements from the base type. For example, all of the following
are possible assignments:

Turbo Modula-2 Reference Directory 489

S ta te := Compset(Body, Chassis);
(# S ta te has two elem ents Body and C hassis #)

S ta te := Compset(Body. .C hassis);
(# S ta te has a l l th ree elements *)

S ta te := Compset();
(# S ta te has no elements #)

MODULE S e ts ;
TYPE

Components = (B ody,Engine,C hassis);
Compset= SET OF Components;
VAR

S ta te : Compset;
BEGIN

S ta te := Compset(Body,Engine);
END S e ts .

SetCol procedure (Texts) L

Description SetCol advances the write position of a TEXT file to a given
column.

Declaration PROCEDURE S e tC o l(t: TEXT; column: CARDINAL);

Usage S e tC o l(t, column);

SetCol must be imported from the library module Texts,

t must be of type TEXT imported from Texts,

column must be of type CARDINAL.

Comments SetCol has no effect on input. The current column can be
queried by use of the function Col exported from Texts.

490 MODUL

See Also Col
Texts

Example Cause the string »Hello world !« to be output in the twentiet
column:

S etC ol(output, 20);
WRITE ("H ello world ! ") ;

Example of tabbing to next multiple of 10:

S etC ol(ou tpu t, (C ol(output) DIV 10 + 1) * 10)

SetPos procedure (Files) L

Description Sets the current byte position of a file.

Declaration PROCEDURE S e tP o s (f: FILE; pos: L0NGINT);

Usage S etP o s(f, by tepos);

SetPos must be imported from the library module Files.

/ must be of type FILE imported from Files,

bytepos must be of type LONGINT.

Comments The procedure is used for random access of data. If all the fil
elements of a certain file are of type t, then the file can be posi
tioned at the nth element by the call

S e tP o s(f, L0NG(n)*L0NG(SIZE(t)))

See Also Files
NextPos

Turbo Modula-2 Reference Directory 491

Example Read the fifteenth widget from a file that has a header:

MODULE RandomAccess;
TYPE
widget = RECORD END ;
header = RECORD END ;

VAR
currentW idget : w idget;
pos : LONGINT;

BEGIN
pos := 15L*L0NG(SIZE(widget)) + LONG(SIZE(header)) ;
SetPos(w idgetF ile, pos);
ReadRec(widgetFile, currentW idget);

END RandomAccess.

SIGNAL type (Processes) L

Description SIGNAL references control loosely coupled processes or cor
outines. A SIGNAL may be Sent or Awaited.

Declaration TYPE
SIGNAL;

Usage VAR
s: SIGNAL;

SIGNAL must be imported from the module Processes.

Comments It is mandatory that a SIGNAL variable be initialized by a call
to the procedure Init in Processes.

See Also Processes
SYSTEM

492 MODUL

Example MODULE S igna ls;
FROM Processes IMPORT I n i t , SIGNAL;
VAR s: SIGNAL;
BEGIN

I n i t (s) ;
END S ig n a ls .

Sin function (MathLib, LongMath) L

Description Sin returns the sine of X, where X is expressed in radians.

Declaration PROCEDURE S in(x : REAL): REAL;
PROCEDURE S in(x : LONGREAL): LONGREAL;

Usage Y:= S in(X);

Argument X and result Y are either both REAL or bot
LONGREAL.

Comments If you want the argument expressed in degrees instead of ra
dians, use the expression

Result: = Sin(X * 3.141592/180.0)

If you need to calculate the inverse of sine, you can use th
ArcTan function in the following expression:

Arcsin: = Arctan(X/Sqrt(1.0 - X*X).

See Also Cos
MathLib

Turbo Modula-i, Reference Directory 493

Example MODULE Sine;
FROM MathLib IMPORT Sin;
CONST
DegsToRads = 3.141592/180.0;
VAR

Degs, Radians, sinAngle: REAL;
BEGIN

R adians:= Degs * DegsToRads;
sinA ngle:= S in (R ad ians);
END Sine.

SIZE standard procedure S

Description SIZE returns the minimum required storage in bytes of a type
or variable.

Usage SIZE(x);

x can be a variable of any type or a type identifier.

Comments The SIZE of a CHAR, BOOLEAN, or BYTE variable is 1;
WORD, INTEGER, and CARDINAL variables are 2; REAL
and LONGINT variables are 4; LONGREAL variables are 8.

Note that byte-size variables are only packed in arrays and thus
always take up one word of storage, unless they are in an array.

See Also TSIZE

494 MODULA

Example Multiply 2 x 4 :

MODULE S izes;
TYPE

rec = RECORD
a,b: CHAR;

END ;
aray= ARRAY [0 ..1] OF CHAR;

VAR
r : rec ;
a: aray;

BEGIN
WRITELN(SIZE(r) , SIZE(a));

END S izes .

The output is

4 2

which shows that arrays are packed and records are not.

SpecialOps type (Terminal) L

Description SpecialOps is an enumeration of terminal operations that are
not available on all terminals. It is used to describe a set of
operations available on the currently installed terminal.

Declaration TYPE
SpecialOps = (c lea rE o l, in se r tD e le te , h ig h lig h tn o r
mal) ;
OpSet : SET OF SpecialOps;

Usage VAR
av a ila b le : OpSet;

available is a predefined variable declared as type OpSet; it
must be imported from the module Terminal.

Turbo Modula-2 Reference Directory 495

Comments This variable is useful for writing terminal-independent pro
grams. The value of available is set by the installation program
INSTM2.

See Also available
OpSet
Terminal

Example MODULE TermStuff;
FROM Terminal IMPORT

a v a ila b le , SpecialOps, ClearToEOL, GotoXY, numCols;
VAR I , CurCol, CurRow: CARDINAL;
BEGIN

IF c lea rE o l IN av a ila b le THEN ClearToEOL
ELSE

FOR I := CurCol TO numCols DO WRITE(1 ?) END ;
GotoXY(CurCol,CurRow)

END ;
WRITE(fA l in e o f t e x t . 1);

END TermStuff.

Sqrt function (MathLib, LongMath) L

Description Sqrt returns the square root of positive X.

Declaration PROCEDURE S q rt(x : REAL): REAL;
PROCEDURE S q rt(x : LONGREAL): LONGREAL;

Usage Y:= S qrt(X);

Argument X and result Y are either both REAL or both
LONGREAL.

The argument must be positive or zero.

Comments The argument X must be positive or zero; otherwise, the ex
ception ArgumentError is raised.

496 MODULA

See Also MathLib
LongMath

Example MODULE SquareRoot;
FROM MathLib IMPORT S qrt;
CONST

Pi = 3.141592;
VAR

C ircleA rea, C irc leR ad ius: REAL;
BEGIN

READ (C irc leA rea);
IF C ircleA rea > = 0 . 0 THEN

C ircleR ad ius:= S q rt(C irc leA rea /P i)
END

END SquareRoot.

StartProcess procedure (Processes) L

Description StartProcess allocates space to a process and transfers control
to it.

Declaration PROCEDURE S ta rtP ro cess(P : PROC; n: CARDINAL);

Usage S ta rtP ro cess (p ro c , workSpaceSize);

StartProcess must be imported from the library module Pro
cesses.

proc must be of type PROC.

workSpaceSize must be of type CARDINAL.

Turbo Modula-2 Reference Directory 497

Comments

See Also

Example

StatusError

Description

Declaration

Usage

Comments

proc is a procedure without RETURNS. Normally, its
statements will be enclosed in a LOOP statement without EX
ITS. Control passes to and from the process by calls to SEND
and WAIT.

This routine is implemented using the procedures
NEWPROCESS and TRANSFER of the pseudomodule
SYSTEM.

Awaited
Init
Processes
SEND
WAIT

Start the process serviceh

S ta r tP ro c e s s (se rv ic e l,2 0 0) ;

ception (Files) L/E

StatusError is raised by the Files module when a FILE variable
is used incorrectly; for example, when reading a unopened file
or opening a file twice.

EXCEPTION
S ta tu sE rro r;

EXCEPTION
S ta tu sE rro r: WRITELN('F i le e r r o r 1);
END

StatusError must be imported from the module Files.

Use the StatusError exception to prevent your program from
crashing due to user input.

498 MODULA

See Also EndError
UseError
DeviceError
DiskFull

Example MODULE ReadFile;
FROM F ile s IMPORT

FILE, Open, ReadWord, Close, EndError, S ta tu sE rro r;
VAR f : FILE; c: CARDINAL;
BEGIN

IF Open(f, 't e s t f i l e .d a t ») THEN
ReadW ord(f,c);

END ;
ReadW ord(f,c);
C lose(f)

EXCEPTION
EndError: WRITELN('End of f i l e re ach e d - ') ; C lose(f)

1 S ta tu sE rro r: WRITELN(’E rro r f i l e not opened ');
END ReadFile.

STORAGE pseudomodule L

Description STORAGE is a pseudomodule for managing heap memory in
general and dynamic variables in particular.

Declaration DEFINITION MODULE STORAGE;
FROM SYSTEM IMPORT ADDRESS;

PROCEDURE ALLOCATE(VAR A:ADDRESS; Size: CARDINAL);
PROCEDURE DEALLOCATE(VAR
A:ADDRESS; S ize: CARDINAL);

PROCEDURE MARK(VAR A: ADDRESS);
PROCEDURE RELEASE (VAR A: ADDRESS);

PROCEDURE FREEMEM() : CARDINAL

END STORAGE.

Turbo Modula-2 Reference Directory 499

Comments The procedures NEW and DISPOSE can be considered ab
breviated forms of ALLOCATE and DEALLOCATE. To use the
standard procedures NEW and DISPOSE, ALLOCATE and
DEALLOCATE, respectively, must be imported.

See Also MARK
NEW
RELEASE

c ing type (Strings) L

Description

Declaration

Usage

Comments

String is a predefined array of characters.

TYPE S tr in g = ARRAY [0. .80] OF CHAR;

VAR s i , s2: S tr in g ;

String must be imported from the library module Strings.

Since String is a character array, a variable of this type may
be assigned and compared with any other character array
variable.

Even though the module Strings exports the type String none
of the procedures require this type. Instead, they use open ar
ray parameters that will accept any array of characters.

See Also Strings
(
Example vl and v2 are defined as strings:

FROM S tr in g s IMPORT S tr in g ;
VAR * l,v 2 : S tr in g ;

500 MODULA

StringError exception (Strings) L/E

Description StringError is raised by the module Strings when the destina
tion of a string operation is not large enough to hold the result.

Declaration EXCEPTION
S trin g E rro r;

Usage EXCEPTION
S trin g E rro r WRITELN('String e r r o r 1) ;

END

StringError must be imported from the module Strings.

Comments This exception occurs only during calls to the procedures ex
ported by Strings.

See Also Strings

Example NODULE StringTooShort;
FROM S tr in g s IMPORT S tr in g E rro r, Append;
VAR

s i , s2 : ARRAY [0 ..1 2] OF CHAR;
BEGIN

s i := 'H ello t h e r e ' ;
s2 := 'ev ery o n e ';
A ppend(s2 ,si);

EXCEPTION
S trin g E rro r:

WRITELN('D estin a tio n s t r in g too s h o r t . ') ;
END StringTooShort.

Turbo Modula-2 Reference Directory 501

Strings module

Description

Declaration

Comments

L

Strings is a module for the manipulation of strings.

DEFINITION MODULE S tr in g s ;
TYPE S tr in g = ARRAY [0. .80] OF CHAR;
PROCEDURE Length (VAR s t r : ARRAY OF CHAR) :

CARDINAL;
PROCEDURE Pos (s u b s t r , s t r : ARRAY OF CHAR):

PROCEDURE In s e r t

PROCEDURE D elete

PROCEDURE Append

PROCEDURE Copy

CARDINAL;
(su b s tr : ARRAY OF
CHAR; VAR s t r : ARRAY OF CHAR;

inx:CARDINAL);
(VAR s t r : ARRAY OF CHAR; inx,len:
CARDINAL);
(su b s tr : ARRAY OF
CHAR; VAR s t r : ARRAY OF CHAR);
(VAR s t r : ARRAY OF CHAR; in x ,le n :
CARDINAL;
VAR r e s u l t : ARRAY OF CHAR);

PROCEDURE CAPS (VAR s t r : ARRAY OF CHAR);
EXCEPTION S trin g E rro r;
END S tr in g s .

These procedures exported from Strings work on any array of
characters, not just on variables declared as type String.

These procedures use open arrays; that is, arrays of any size.
You should, however, restrict yourself to arrays with indexing
that start at zero, since the various inx parameters listed earlier
work relative to zero.

See Also String

502 MODULA

StiToCard procedure (Convert) L

Description StrToCard performs conversion from a string variable to a car
dinal variable.

Declaration PROCEDURE StrToCard (VAR s : ARRAY OF CHAR; VAR
CARDINAL): BOOLEAN;

Usage okay := StrToCard(s, c) ;

StrToCard must be imported from the library module Convert,

okay must be of type BOOLEAN.

s must be a character array.

c must be of type CARDINAL.

Comments okay is assigned TRUE if the string represents a valid cardinal
number; otherwise, it is assigned FALSE.

See Also CardToStr
Strings

Example Read a cardinal c out of a string str:

s t r := 1 12323';
IF NOT StrToCard (s t r , c) THEN
WRITELN(str,' i s not c o n v e r t ib le .1) ;
END ;

Turbo Modula-2 Reference Directory 503

StiToDouble procedure (Doubles) L

Description StrToDouble performs conversion from a string variable to a
double-precision real variable.

Declaration PROCEDURE StrToDouble (VAR s: ARRAY OF CHAR;
VAR d: LONGREAL): BOOLEAN;

Usage okay := StrToDouble(s, d) ;

StrToDouble must be imported from the library module
Doubles.

okay must be of type BOOLEAN.

s must be a character array.

d must be of type LONGREAL.

Comments okay is assigned TRUE if the string represents a valid real
number; otherwise, it is assigned FALSE.

See Also Doubles
DoubleToStr

Example Read a double-precision d out of a string str:

s t r := 1 2.99D101;
IF NOT StrToDouble (s t r , d) THEN
W riteln (s t r , ' i s not c o n v e r t ib le ') ;
END ;

504 _____ MODUL

StiToInt procedure (Convert) L

Description StrToInt performs conversion from a string variable to an ir
teger variable.

Declaration PROCEDURE S trT oIn t (VAR s : ARRAY OF CHAR;
VAR i : INTEGER): BOOLEAN;

Usage okay := S trT o In t(s , i) ;

StrToInt must be imported from the library module Comer

okay must be of type BOOLEAN.

.s’ must be a character array.

i must be of type INTEGER.

Comments okay is assigned TRUE if the string represents a valid intege
otherwise, it is assigned FALSE.

See Also IntToStr
Strings

Example Read an integer called i out of a string:

s t r := n 30000 - This number i s alm ost too b ig ";
okay := S trT oIn t (s t r , i) ;

(# i has got 30000 now #)

Turbo Modula-2 Reference Directory 505

StiToLong procedure (Convert) L

Description StrToLong performs conversion from a string variable to a long
integer variable.

Declaration PROCEDURE StrToLong (VAR s : ARRAY OF CHAR;
VAR 1: LONGINT): BOOLEAN;

Usage okay := StrToLong(s, 1);

StrToLong must be imported from the library module Convert,

okay must be of type BOOLEAN.

s must be a character array.

/ must be of type LONGINT.

Comments okay is assigned TRUE if the string represents a valid long in
teger; otherwise, it is assigned FALSE.

See Also LongToStr
Strings

Example Read a longer integer (see the example in StrToInt) out of a
string:

VAR
s t r : ARRAY [0 ..2 0] OF CHAR;
1: LONGINT;
BEGIN

s t r := "40000";
okay := S trToLong(str, 1);
END

506 MODULA

StiToReal procedure (Convert) L

Description StrToReal performs conversion from a string variable to a real-
number variable.

Declaration PROCEDURE StrToReal (VAR s : ARRAY OF CHAR;
VAR r : REAL): BOOLEAN;

Usage okay := StrToR eal(s, r) ;

StrToReal must be imported from the library module Convert,

okay must be of type BOOLEAN.

s must be a character array,

r must be of type REAL.

Comments okay is assigned TRUE if the string represents a valid real;
otherwise, it is assigned FALSE.

See Also RealToStr
Strings

Example Make Pi out of a string:

s tr in g y P i := "3.14159265";
okay := S trT o R eal(strin g y P i, P i) ;
(* P i is now P i *)

SYSTEM pseudomodule L

Description SYSTEM is a pseudomodule that provides low-level support.

Turbo Modula-2 Reference Directory 507

Declaration

Comments

DEFINITION NODDLE SYSTEM

TYPE
WORD; BYTE} ADDRESS; PROCESS;
VAR

IORESULT, HLRESULT: CARDINAL;

PROCEDURE ADR(VAR v: AnyType): ADDRESS;
PROCEDURE TSIZE(AnyType): CARDINAL;

PROCEDURE TRANSFER(VAR source, d e s t: PROCESS);
PROCEDURE IOTRANSFER(VAR source, d e s t: PROCESS;

n: CARDINAL);
FROCHXIEE NEWPROCESS(p: PROC; a: ADDRESS;

n: CARDINAL; VAR q: PROCESS);

PROCEDURE BIOS(n:CARDINAL w: WORD): CARDINAL;
PROCEDURE BDOS(n:CARDINAL w: WORD): CARDINAL;
PROCEDURE CODE(AnyStringLiteral);

PROCEDURE MOVE(source, d e s tin : ADDRESS;
n b y tes : CARDINAL);

PROCEDURE FILL(s t a r t : ADDRESS; nby tes: CARDINAL;
ch: BYTE);

PROCEDURE INP(p o r t: WORD): CARDINAL;
PROCEDURE OUT(port: WORD; outByte: WORD);

EXCEPTION OVERFLOW, READOVERLOW, OUTOFMEMORY,
BADOVERLAY;

END SYSTEM.

For explanations of the various procedures, see the specific en
tries. In general, use of these procedures make a program
much less portable.

508 MODULA

termCH variable (InOut) L

Description termCH always contains the last character read by the module
InOut.

Declaration VAR
termCH: CHAR;

Usage LastChar := termCH;

termCH must be imported from the module InOut.

Comments termCH contains the last character read by any of the five read
procedures in InOut.

See Also InOut
Done
Texts

Example MODULE LastChar;
FROM InOut IMPORT ReadCard, termCH;
VAR ch: CHAR; c: CARDINAL;
BEGIN

ReadCard(c);
WRITELN(fThe c a rd in a l read i s f , c) ;
WRITELN('The l a s t c h a rac te r o f th e c a rd in a l is
1, termCH);

END LastChar.

Terminal module L

Description Terminal provides input/output to the terminal.

Turbo Modula-

Declaration DEFINITION MODULE Terminal;

(# Terminal Input #)

PROCEDURE ReadChar(¥AR ch: CHAR);
PROCEDURE BusyRead(VAR ch: CHAR);
PROCEDURE ReadAgain;
PROCEDURE ReadLine(VAR s : ARRAY OF CHAR);

(* Screen output *)

VAR numRows, numCols:CARDINAL

PROCEDURE W riteChar(ch: CHAR);
PROCEDURE WriteLn;
PROCEDURE W riteS trin g (s: ARRAY OF CHAR);
PROCEDURE C learScreen;
PROCEDURE GotoXY(co l, row: CARDINAL);

PROCEDURE In itS creen ;
PROCEDURE ExitScreen;

TYPE
SpecialOps = (c lea rE o l, in se r tD e le te ,
h ighlightN orm al);
OpSet = SET OF SpecialOps;

VAR
av a ila b le : OpSet;

PROCEDURE ClearToEOL;
PROCEDURE In se rtL in e ;
PROCEDURE D eleteLine;
PROCEDURE H igh ligh t;
PROCEDURE Normal;

2 Reference Directory_________________________________ 509

END Terminal.

510 MODULA

Comments This module, or at least the screen manipulation procedures,
will work correctly only if TUrbo Modula-2 has been properly
installed on your terminal.

TEXT data structure (Texts) L

Description TEXT is a type that represents legible disk files.

Declaration TYPE TEXT = [1 . . 16];

Usage VAR t : TEXT;

TEXT must be imported from the library module Texts.

Comments A TEXT is a character stream. For example, a WordStar docu
ment file is better handled as a FILE, while a nondocument file
can be manipulated as a TEXT

There are a variety of procedures to handle TEXT objects.

See Also Texts

Turbo Modula-2 Reference Directory 511

Example Simulate the CP/M TYPE utility:

MODULE type;
FROM ComLine IMPORT PromptFor;
FROM Texts IMPORT TEXT, R eadString, OpenText,

EOT, ReadChar, WriteChar,
ou tput;

VAR
textName: ARRAY [0 ..2 0] OF CHAR;
t : TEXT;
c : CHAR;
okay :BOOLEAN;

BEG IN
PromptFor(nF ile to type: " , textName) ;
IF OpenText(t, textName) THEN
WHILE NOT EOT(t) DO

ReadChar(t, c) ;
W riteChar(output, c) ;

END
ELSE

WRITELN(textName,f no t found*);
END

END type.

TextDriver type (Texts)___ L

Description TextDriver must be used when installing your own character
device drivers. A procedure of this type may be passed to Con-
nectDriver.

Declaration TYPE TextD river = PROCEDURE (TEXT,VAR CHAR);

Usage VAR
MyDriver: TextD river;

TextDriver must be imported from the module Texts.

Comments You do not need to import the type TextDriver, but the pro
cedure you pass to ConnectDriver must match it.

512 MODULA

See Also Texts
ConnectDriver

Example MODULE CharDriver;
FROM Texts IMPORT TEXT, ConnectDriver, TextD river;
VAR t:TEXT;

PROCEDURE M yDriver(t: TEXT; VAR ch: CHAR);
BEGIN
END MyDriver;

BEGIN
ConnectD river(t,M yD river);

END CharDriver.

TextFile procedure (Texts) L

Description TextFile returns a value of type FILE, as described in the
module Files. Since a text file is implemented as a Files.FILE,
you may obtain this handle to perform »file« operations on a
TEXT.

Declaration PROCEDURE TextFile(T:TEXT): FILE;

Usage f := T e x tF ile (t) ;

TextFile must be imported from the module Texts,

t must be of type TEXT,

f must be of type FILE.

Comments If the file has not been opened, TextFile returns NIL.

See Also Texts
Files

Turbo Modula-2 Reference Directory 513

Example MODULE SizeOfAText;
FROM Texts IMPORT TEXT, T ex tF ile ;
FROM F ile s IMPORT F ileS ize ;
VAR t : TEXT;
BEGIN

WRITE('The s iz e o f the te x t f i l e is ') ;
W RITELN(FileSize(TextFile(t)) , 1 b y te s . ') ;

END SizeOfAText.

^xtN otO pen exception (Texts) L/E

Description TextNotOpen is raised by the module Texts when an attempt is
made to use an unopened text.

Declaration EXCEPTION
TextNotOpen;

Usage EXCEPTION
TextNotOpen: WRITELN('Text not o p en ');

END

TextNotOpen must be imported from the module Texts.

Comments This exception can be raised by all input/output procedures
and the procedure SetCol.

See Also Texts
TooManyTexts

514 MODULA

Example

T e x ts m o d u le

Description

Declaration

MODULE TextNotOpen;
FROM Texts IMPORT TEXT, OpenText, TextNotOpen;
TAR

t : TEXT;
filenam e : ARRAY [0 ..1 5] OF CHAR;
x : REAL;

BEG IN
IF OpenText(t, filenam e) THEN END ;
READ(t,x);
EXCEPTION

TextNotOpen: WRITELN("C an 't read an unopen t e x t . ") ;
END TextNotOpen.

L

Texts manipulates legible disk files.

DEFINITION MODULE Texts;
FROM Files IMPORT FILE;

CONST E0L=36C;
TYPE TEXT = [1 ..1 6] ;
VAR in p u t,o u tp u t,co n so le : TEXT;

PROCEDURE ReadChar
PROCEDURE R eadstring

PROCEDURE Readlnt
PROCEDURE ReadCard
PROCEDURE ReadLong
PROCEDURE ReadReal
PROCEDURE ReadLine

PROCEDURE ReadAgain
PROCEDURE ReadLn

(t : TEXT; VAR
(t : TEXT; VAR
CHAR);
(t : TEXT; VAR
(t : TEXT; VAR
(t : TEXT; VAR
(t : TEXT; VAR
(t : TEXT; VAR
CHAR);
(t : TEXT);
(t : TEXT);

ch: CHAR);
s: ARRAY OF

i:INTEGER);
c:CARDINAL);
1:L0NGINT);
r:REAL);
s: ARRAY OF

PROCEDURE WriteChar (t : TEXT; ch: CHAR);
PROCEDURE W rite S trin g (t: TEXT; s : ARRAY OF CHAR);

Turbo Modula-2 Reference Directory 515

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE

W rite ln t (t : TEXT; i:INTEGER;
n:CARDINAL);

WriteCard (t: TEXT; c, n:CARDINAL);
WriteLong (t : TEXT; 1:L0NGINT;

n:CARDINAL);
WriteReal (t: TEXT; r:REAL; n:CARDINAL;

digits:INTEGER);
WriteLn (t : TEXT);

Done (t : TEXT):BOOLEAN;
EOLN (t : TEXT):BOOLEAN;
EOT (t : TEXT):BOOLEAN;

OpenText (VARt: TEXT; name: ARRAY OF
CHAR):BOOLEAN;

CreateText (VAR t : TEXT; name: ARRAY OF
CHAR);

CloseText (VAR t : TEXT);

Col (t : TEXT): CARDINAL;
SetCol (t : TEXT; column:CARDINAL);

T extF ile (t : TEXT): FILE;

TYPE TextD river = PROCEDURE(TEXT, VAR CHAR);

PROCEDURE ConnectDriver(VAR t : TEXT; p: Text
D riv e r) ;

PROCEDURE I n i t ; (# used only by system #)

VAR haltOnControlC:BOOLEAN; (»TRUE by default *)

EXCEPTION TextNotOpen, TooManyTexts;

END T exts.

5 1 6 MODULA

Comments Rather than use the various read and write procedures in this
module directly, the user is encouraged to use the standard
procedures READ, READLN, WRITE, and WRITELN. These
are translated by the compiler into calls to the appropriate pro
cedures in Texts.

TooLarge exception (Convert) L/E

Comments Rather than use the various read and write procedures in this
module directly, the user is encouraged to use the standard
procedures READ, READLN, WRITE, and WRITELN. These
are translated by the compiler into calls to the appropriate pro-

Description that a conversion from a number to a string
cannot be done because the string representation of the number
is too long for the destination string.

Declaration EXCEPTION TooLarge;

Usage EXCEPTION
TooLarge:
WRITELN('could not convert the number to string');

END

Comments This exception eliminates the necessity to check user input
after every user entry. A common exception handler can be
written that will trap all such conversion errors.

See Also Convert

Example MODULE InputTooLarge;
FROM Convert IMPORT IntToStr, TooLarge;
VAR

i : CARDINAL; s: ARRAY [0..2] OF CHAR;

Turbo Modula-2 Reference Directory 517

BEGIN
WRITE('Give me an c a rd in a l le s s than 1 0 0 ') ;
READLN(i);
C ard To Str(i,s);
WRITELN('The strin g is *, s) ;

EXCEPTION
TooLarge: WRITELN(‘That was too la r g e !1);

END InputTooLarge.

oManyTexts exception (Texts) L/E

Description TooManyTexts is raised by the module Texts when an attempt
is made to open a text and there are already 16 open.

Declaration EXCEPTION
TooManyTexts;

Usage EXCEPTION
TooManyTexts: WRITELN('Too many text f i l e s ') ;

END

TooManyTexts must be imported from the module Texts.

Comments There are three texts that are always open: console, input, and
output. These three texts are part of the 16 allowable texts.

See Also Texts
TextNotOpen

k example MODULE TooManyTextFiles;
FROM Texts IMPORT TEXT, C reateText, TooManyTexts;
VAR

t : ARRAY [0 ..1 5] OF RECORD
t : TEXT;
filenam e: ARRAY [0 ..1 5] OF

CHAR;
END ;

Is CARDINAL;

518 MODULA

BEGIN
FOR I := 0 TO 15 DO

C re a te T e x t (t[I] .t ,t [I] .filenam e);
END

EXCEPTION
TooManyTexts: WRITELN("Can't open another t e x t .");

END TooManyTextFiles.

TRANSFER procedure (SYSTEM) L

Description TRANSFER allows cooperative control between processes.

Declaration PROCEDURE TRANSFER (VAR source, dest: PROCESS);

Usage TRANSFER(source, destination);

TRANSFER must be imported from the pseudomodule
SYSTEM.

source must be of type PROCESS imported from SYSTEM.

destination must be of type PROCESS imported from
SYSTEM.

Comments The source variable will be assigned to the process where the
TRANSFER call is made. This permits the called process to
return control to the caller, if desired.

Before you transfer to a process it must have first been set up
by a call to NEWPROCESS.

We recommend using the module Processes where possible,
since it provides rudimentary signaling support upon which to
base scheduling.

See Also IOTRANSFER
NEWPROCESS
PROCESS

Turbo Modula-2 Reference Directory 5 1 9

Example Mark time:

MODULE TickTock;
FROM SYSTEM IMPORT

NEWPROCESS, TRANSFER, ADDRESS, PROCESS, WORD;
VAR

tick P ro cess , tockProcess, main: PROCESS;
tickWork, tockWork : POINTER TO ARRAY [0 . .99] OF
WORD;

PROCEDURE t ic k ;
BEGIN

WRITELN(1 t ic k ');
TRANSFER(tickProcess, tockProcess);

END ;

PROCEDURE tock;
BEGIN

WRITELN(ftock1);
TRANSFER(tockProcess, tickProcess);

END tock;

BEGIN
NEWPROCESS(tick, tickWork, SIZE(tickW orkA),
tickProcess);
NEWPROCESS(tock, tockWork, SIZE(tockWorkA),
tockProcess);
TRANSFER(main, tickProcess); (* Start of
tick -to ck *)
(* This routine can be hard to stop #)

END TickTock.

TRUE standard value S____________________________

Description TRUE denotes the Boolean state of truth.

Usage Finished := TRUE;

Finished is a variable of type BOOLEAN.

520 MODULA

Comments The ordinal value of TRUE is 1; thus, WRITE(CAR-
DINAL(TRUE)) will print a 1. In contrast, the ordinal value of
FALSE is 0; thus, truth is greater than falsity.

See Also BOOLEAN
FALSE

Example MODULE Truth;
VAR

b: BOOLEAN;
BEGIN

REPEAT b := TRUE UNTIL b; (* does not repeat *)
END Truth.

TRUNC standard function S

Description TRUNC converts from REAL type to CARDINAL type.

Usage Y: = TRUNC(X);

Argument X is of type REAL.
The argument must be in the CARDINAL (0 to 65535) range.

Result Y is of type CARDINAL.

Comments You must make sure that the argument is in the CARDINAL
range, otherwise an overflow error will occur.

The argument is truncated (any fractional part is removed); for
example, the number +16.74 will become a CARDINAL +16.

Note that truncating a number is not the same as rounding the
number to the nearest whole value; for example, 9.99999 will
be truncated to 9, not rounded to 10. If you wish to round a
REAL value to the nearest whole value, use the expression
Rounded:= TRUNC QC + 0.5).

The inverse conversion from CARDINAL or INTEGER to
REAL uses the FLOAT function.

Turbo Modula-2 Reference Directory 5 2 1

Example

TRUNC returns a CARDINAL result; therefore, its argument
must be nonnegative. The result can be assigned to INTEGERS
as well, since INTEGER and CARDINAL are assignment
compatible.

VAR
Values: ARRAY 1 ..1 0] OF REAL;
Rounded: ARRAY [1 ..1 0] OF CARDINAL;
I : CARDINAL;

BEGIN
FOR 1:= 1 TO 10 DO
Rounded[I]:= TRUNC(Values[I] + 0.5)

END ;

TSIZE procedure (SYSTEM) L

Description TSIZE returns the storage requirements of a data type in bytes.

Declaration PROCEDURE TSIZE(AnyType): CARDINAL;

Usage bytes := TSIZE(t);

TSIZE must be imported from the pseudomodule SYSTEM,

bytes must be of type CARDINAL.

t may be any type identifier.

Comments This function returns the size of a type; if you want the size
of a specific variable, use SIZE.

See Also SIZE
SYSTEM

Example re a ls iz e := TSIZE(REAL); (* re a lS iz e = 4 *)

522 MODULA

TYPE declaration R

Description TYPE signals the start of a data-type definition section in the
declaration part of a procedure or module.

Usage TYPE newtype = oldTypeList;

newtype can be any valid identifier.

oldTypeList is a combination of previously defined data types.

Comments This declaration allows you to define objects whether they
comprise sets like Red, Green, Blue; subranges of basic types
like all integers between 1950 and 2000; or combinations of
any length.

Example Define an age type:

TYPE
ageRange = [0 ..114] ;

Define a customer record:

TYPE
personRec = RECORD

firstName,
middleName:
lastName :
age :
married :
company

END ;

Define colors for an RGB monitor:

TYPE
pixelColors = (redPix, greenPix, b luePix);
color = SET OF pixelColors;

ARRAY [0. .12] OF CHAR;
ARRAY [0..20] OF CHAR;
ageRange;
BOOLEAN;
ARRAY [0 ..30] OF CHAR;

Turbo Modula-2 inference Directory 523

CONST
black = c o lo r[) ;
red = color[redPix);
green = color(greenPix);
blue = color(blueP ix);
yellow = color(redP ix , greenPix j;
purple = color[redP ix , bluePix);
cyan = color{ greenPix, bluePix);
white = colorf redP ix , greenPix, bluePix);

VAR
curren tC olor: co lo r;
BEGIN

curren tC olor := red; (# e tc *)

UseError exception (Files) L/E

Description UseError is raised by the Files module when an operation on
a file is impossible because the disk is write-protected.

Declaration EXCEPTION
UseError;

Usage EXCEPTION
UseError: WRITELN('File e r r o r ') ;

END

UseError must be imported from the module Files.

Comments Use the UseError exception to prevent your program from
crashing when the user swaps disks unexpectedly.

See Also EndError
StatusError
DeviceError
DiskFull

524 M ODULA

Example MODULE W riteF ile ;
FROM F ile s IMPORT

FILE, C reate , WriteWord, C lose, EndError,
S ta tu sE rro r, UseError;

VAR f : FILE; c: CARDINAL;
BEGIN

C re a te (f ,1t e s t f i l e . d a t r);
W riteW ord(f,c);
C lose(f)

EXCEPTION
EndError: WRITELN('End of f i l e re a c h e d . ') ; C lose(f)

1 S ta tu sE rro r: WRITELN('E rro r f i l e not opened ');
1 UseError : WRITELN('D isk not logged i n . ') ;
END W riteF ile .

\A L standard function S

Description VAL returns the value of type T with ordinal number X.

Usage Y:= VAL(T,X);

Argument X is of CARDINAL type.

Argument T is a CARDINAL, INTEGER, CHAR,
BOOLEAN, or enumeration-type identifier.

Result Y is of type I

Comments Note that VAL(TfORD(X)) = X for any type I

Turbo Modula-2 Reference Directory 525

Example TYPE
D irec tio n : (Forward,Backward,Up,Down);

VAR
Move: D irec tio n ;
Value: CARDINAL;
C haracter: CHAR;

BEGIN
Move := VAL(Direction,2);

(# Move is value Up #)

Value := 43;
C h a ra c te rs VAL(CHAR,Value);

(* C haracter is value f + f #)

Notice that this example is equivalent to type conversion. The
last example could have been accomplished just as well with
C haracters CHR(Value);). VAL provides a generic method
for all ordinal types.

VAR declaration R

Description VAR signals the start of a declaration section for variables in
side the declaration part of a module or a procedure.

In the parameter list of a procedure, VAR specifies that a
variable is a variable parameter.

Usage VAR v l i s t : anytype;

vlist is simply a list of identifiers.

anytype is any standard, imported, or user-defined type.

Comments Variable declarations may appear anywhere in the declaration
section of procedures and modules.

526 MODULA

Example Declare an integer i :

VAR i : INTEGER;

Declare a couple of characters:

VAR : carney ,g leason : CHAR;

WAIT procedure (Processes) L

Description

Usage

Comments

WAIT causes the currently executing process to stop and wail
for a signal.

WAIT(siggy);

WAIT must be imported from the library module Processes.

siggy must be of type SIGNAL imported from Processes.

WAIT is used in conjunction with the other routines in Pro
cesses.

When WAIT is called from an executing Process, it causes the
execution of that Process to pause. It is then inserted into a
queue associated with the signal siggy. It will not be revived
again until the signal siggy is sent with the procedure SEND.

See Also Awaited
Init
SEND
StartProcess
WAIT

Wait for a signal:

WAIT(signal)

Example

Turbo Modula-2 Reference Directory 527

WHILE statement R

Description WHILE repeatedly executes a sequence of statements as long
as a Boolean expression returns a TRUE result.

Usage WHILE BooleanExpression DO
Statem ent sequence
END ;

Statem ent sequence = Statem ent (; Statem ent];

Comment The Boolean expression is evaluated before the statement se
quence is executed; thus, the sequence is not necessarily ex
ecuted.

The repetition is terminated by an expression that returns a
FALSE result.

Example MODULE While;
CONST
N = 10;
VAR

I , Find: CARDINAL;
DataArray: ARRAY [0 . .N] OF CARDINAL;

BEGIN
WRITE(" Input value to f in d : ■) ;
READ(Find);
1:= 0;
WHILE (I < N) & (D ataArray[I] # Find) DO

1 := 1 + 1
END
END While.

528 M ODULA

WITH statement

Description

Usage

Comments

R

WITH aids access to record fields.

WITH Designator DO
Statement sequence
END ;

Designator is of record type.

Statement sequence = Statement (; Statement j ;

There are two ways to access the values of record fields.

The first method states explicitly both the record identifier and
the field:

Person.Name:= oAlfred Smitho

The other method uses the WITH statement:

WITH Person DO
Name := "Alfred Smith";
Age := 34;
END ;

This second method provides a clearer notation, especially for
large records or records with nested record fields.

Turbo Modula-2 Rejerence Directory 529

Example MODULE With;
TYPE
PersonRecord = RECORD

Name: ARRAY [1 ..2 0] OF CHAR;
Age: [0..200]
END ;

VAR
Patient: PersonRecord;
BEGIN *
WITH Patient DO
WRITE("Enter patient's name: ") ;
READ(Name);
WRITE("Enter patient's age: ");
READ(Age)
END ;
WITH Patient DO
WRITE(Name," is ",Age," years old.")
END
END With.

WORD type (SYSTEM) L

Description WORD is a low-level type with variables that occupy one word
(2 bytes) of memory. All variables occupying one word of
storage are assignment-compatible with type WORD.

Usage PROCEDURE pi (w : WORD);

WORD must be imported from the pseudomodule SYSTEM.

Comments WORD is compatible with INTEGER, CARDINAL, BITSET,
SET, enumeration types, POINTER types (including AD
DRESS), BOOLEAN, and CHAR.

Because BYTE is a subrange of WORD, those variables com
patible with BYTE are also compatible with WORD.

530 M ODULA

Example

ARRAY OF WORD is compatible with every type. It may be
used as a special open array parameter type that allows any
variable to be passed as the actual parameter.

Only assignment operations are allowed on variables of type
WORD; however, type-transfer functions may be applied to
type WORD.

Dump a variable:

MODULE LowLevelDump;
FROM InOut IMPORT WriteHex;
FROM SYSTEM IMPORT WORD,ADR;

PROCEDURE DumpVar (VAR v: ARRAY OF WORD);
VAR
i .-INTEGER
BEGIN
WRITELN('There are ' ,HIGH(v)+l,1 words allocated
for v');
FOR i := 0 TO HIGH(v) DO
WRITE(' Address: $»);
WriteHex(ADR(v[i]),4) ;
WRITE(i:3,‘ Value: $');
WriteHex(v[i],4);
WRITELN;
END ;
END Dump Var;

VAR
r: REAL;

rec: RECORD
a,b,c,d: REAL;
END ;

BEGIN
DumpVar(r);
DumpVar(rec);
END LowLevelDump.

Turbo Modula-2 Reference Directory 531

W RITE standard procedure S/E

Description

Usage

Comments

See Also

WRITE is a generalized write statement.

WRITE(vlist)

or

WRITE(t, vlist);

t must be of type TEXT imported from Texts.

vlist is simply a list of variables or constants and optional for
matting parameters.

If t is not specified, the standard output text output will be us
ed.

WRITE will be translated by the compiler into the appropriate
calls to the module Texts.

WRITELN is the same as WRITE, except WRITELN starts a
new line when the output is complete.

Although WRITE, WRITELN, READ, and READLN are not in
cluded in the Modula-2 definition, programming without them
can be very tedious; however, they are not portable.

One strategy might be to develop the code using these
statements for debugging and development output, and use the
explicit calls to Texts for the actual programmed output.

READ
READLN
Texts
WRITELN

532 M ODULA

Example Write out the variable nthingys with an explanation:

WRITE('Number of things: ',nthingys)

In scientific notation, write out pi in a field 12 spaces wide
with 7 digits in the mantissa.

pi := 4.0*ArcTan(l.0);
WRITE(1 pi =f, pi:12:-7);

WriteByte procedure (Files) L_______________________________________

Description WriteByte writes one byte to a file, which is compatible with
the type BYTE.

Declaration PROCEDURE W riteB yte(f: FILE; ch: BYTE);

Usage W riteB yte(f, b);

WriteByte must be imported from the library module Files.

f must be of type FILE imported from Files.

b must be of a type compatible with BYTE imported from
SYSTEM.

Comments With this routine you can write out a file in small pieces.

WriteByte is appropriate with types that require only 1 byte of
storage, namely BOOLEAN, CHAR, subrange types in the
range 0 to 255, and enumeration types with at most 256
elements.

Example Write out a boolean value okay to a file /:

WriteByte(f, okay)

Turbo Modula-2 Reference Directory 533

WriteBytes procedure (Files) L______________________________________

Description WriteBytes writes a specified number of bytes to a file.

Declaration PROCEDURE W riteB y tes(f: FILE; b u f: ADDRESS; nbytes:
CARDINAL);

Usage

Comments

Example

W riteB ytes(f, b u fS ta r t , nb y tes);

WriteBytes must be imported from the library module Files.

f must be of type FILE imported from Files.

bufStart must be of type ADDRESS imported from SYSTEM.

nbytes must be of type CARDINAL.

nbytes from the file/w ill be written from the block of memory
starting from the address bußtart and extending to bußtart -b
nbytes - 1.

This is a low-level routine that should only be used for special
purposes. When writing out variables, we recommend using
the routines Write Byte, WriteWord, and WriteRec.

Take a snapshot of the entire memory (except for the last byte):

WriteBytes(snap, 0, 65355);

vVriteCard procedure (Texts) L________

Description WriteCard writes out a cardinal number to a TEXT file.

Declaration PROCEDURE W riteC ard(t: TEXT; c, n: CARDINAL);

534 M ODULA

Usage W riteC ard(t, c , w idth);

WriteCard must be imported from the library module Texts,

t must be of type TEXT imported from Texts,

c must be of type CARDINAL.

width must be of type CARDINAL.

Comments The number is output right-justified and blank-padded in a
field width characters wide.

See Also CARDINAL
ReadCard
Texts
WRITE

Example Write the number n to the standard output:

W riteCard(output, n , 6)

WriteChar procedure (Terminal) L

Description WriteChar writes a character to the console.

Declaration PROCEDURE V riteC har(ch: CHAR);

Usage W riteC har(ch);

WriteChar must be imported from the library module Ter
minal.

Comments

ch must be of type CHAR.

WriteString does the same thing for a string.

Example Write out a character X to the screen:

W riteChar("X")

Turbo Modula-2 Reference Directory 5 3 5

WriteChar procedure (Texts) L

Description

Declaration

Usage

Comments

See Also

Example

WriteChar writes a character to a TEXT file.

PROCEDURE WriteChar(t: TEXT; ch: CHAR);

WriteChar(t, ch);

WriteChar must be imported from the library module Texts,

t must be of type TEXT imported from Texts,

ch must be of type CHAR.

In general, the WRITE statement is easier to use than
WriteChar.

WriteString will do the same thing for a whole string.

ReadChar
Texts
WRITE
WriteString

Write out character MrMouse to text comix:

MODOjlE WriteCharacter;
FROM Texts IMPORT TEXT, WriteChar;
VAR
MrMouse: CHAR;
comix: TEXT;

BEGIN
(# other code #)
WriteChar(comix, MrMouse)

END WriteCharacter.

536 M ODULA

WriteDouble

Description

Declaration

Usage

Comments

See Also

rocedure (Doubles) L

WriteDouble writes a double-precision real variable to a TEXT
file.

PROCEDURE WriteDouble(t: TEXT; d: LONGREAL;
n: CARDINAL; m: INTEGER);

WriteDouble(t, d, width, d ig it s) ;

WriteDouble must be imported from the library module
Doubles.

t must be of type TEXT imported from Texts,

d must be of type LONGREAL.

width must be of type CARDINAL.

digits must be of type INTEGER.

The number d is output right-justified in a field width
characters wide with digits digits after the decimal point.

If digits is negative, then the number is output in scientific
notation with digits digits after the decimal point.

If digits is zero, the decimal point is omitted.

The WRITE and WRITELN procedures use this procedure to
write LONGREALs with a default for width of 21 and a default
for digits of -14.------------— -------------------------------------

Doubles
ReadDouble

Turbo Modula-2 Reference Directory 537

Example Write a double-precision d to a text t:

W riteD ouble(t, 2 .99, 5,
W riteD ouble(t, 2 .99, 5,
W riteD ouble(t, 2 .99 , 9,

2); y ie ld s " 2 .99"
0); y ie ld s " 3"
-2)-, y ie ld s " 2.99D+01"

WriteHex procedure (InOut) L

Description

Declaration

Usage

Comments

See Also

(
Example

WriteHex writes a hexadecimal number out to output.

PROCEDURE WriteHex(x,n: CARDINAL);

WriteHex(num, digits);

WriteHex must be imported from InOut.

num must be of type CARDINAL.

digits must be of type CARDINAL.

The number will be converted to hexadecimal and printed out
in a field that is at least digits wide. If the number doesn’t need
that many digits, it will be blank-padded.

This and WriteOct are useful procedures to print out addresses
and storage requirements in their natural form.

InOut
WriteOct

Write in hex the number 32 in a field four digits wide:

WriteHex(32, 4) yields * 20‘

538 MODUL

Writelnt procedure (Texts) L

Description Writelnt writes out an integer number to a TEXT file.

Declaration PROCEDURE W rite ln t(t : TEXT; i: INTEGER; n: CARDINAL;

Usage Writelnt(t, i, width);

Writelnt must be imported from the library module Texts,

t must be of type TEXT imported from Texts,

i must be of type INTEGER.

width must be of type CARDINAL.

Comments The number is output right-justified and blank-padded in
field width characters wide.

See Also INTEGER
Readlnt
Texts
WRITE

Example Write the number n to the standard output:

W rite In t(o u tp u t, n , 6)

WRITELN Standard procedure SIE

Description WRITELN is a generalized write statement that starts a ne
line when it is done.

Turbo Modula-2 Reference Directory 539

Usage

Comments

See Also

WRITELN(elist);

or

WRITELN(t, elist);

t must be of type TEXT imported from Texts.

elist is simply a list of expressions and optional formatting
parameters.

If t is not specified, the standard output stream output will be
used.

WRITELN will be translated by the compiler into the ap
propriate calls to the module Texts. Thus, a change in the
definition module of Texts could lead to WRITELN not work
ing.

WRITELN is the same as WRITE, except WRITELN starts a
new line when the output is complete.

Although WRITE, WRITELN, READ, and READLN are not in
cluded in the Modula-2 definition, programming without them
can be very tedious; however, they are not portable.

A way around this is to develop code using these statements for
debugging and development output, and use the explicit calls
to Texts for the actual programmed output.

READ
READLN
Texts
WRITE

540 MODULA

Example Write out the variable nthingys with an explanation, then start
a new line:

WRITELN('Number o f th in g s : 1, n thingys)

In scientific notation, write out e in a field 12 spaces wide with
7 digits in the mantissa, and start a new line:

e := E xp(l.O);
WRITELN(' e = ' , e :1 2 :-7) ;

WriteLn procedure (Terminal) L

Description WriteLn starts a new line on the screen.

Declaration PROCEDURE WriteLn;

Usage WriteLn;

WriteLn must be imported from the library module Terminal.

Comments The Terminal routines provide input and output to the screen
without the overhead of the stream abstraction in Texts.

See Also Terminal
WriteChar
WriteString

Example Write out an error message:

W riteS trin g ('Help ! ') ; WriteLn;

Turbo Modula-2 Reference Directory 541

WriteLn procedure (Texts) L

Description WriteLn writes an EOL to a TEXT f ile .

Declaration PROCEDURE W riteLn(t: TEXT);

Usage W riteL n(t);

WriteLn must be imported from the library module Texts.

(t must be of type TEXT imported from Texts.

C om m en ts The WRITELN statement is easier to use than this procedure.

WriteLn(t) is equivalent to WriteChar(t,EOL).

See A ls o Texts
WRITELN

Example Write an EOL to th e te x t console:

W riteLn(console);

WriteLn procedure (InOut) L

Description Starts a new line on the current output device.

Declaration
(

PROCEDURE WriteLn;

Usage WriteLn;

WriteLn must be imported from the library module InOut.

Comments WriteLn provides a standard new line routine.

This procedure is defined in terms of the Texts module.

542 MODUL

See Also Terminal
Texts
WRITELN

Example Write out an error message:

NODULE WriteMessage;
FROM InOut IMPORT W riteS tring , WriteLn;
BEGIN

W riteS tring('H elp ! ') ; WriteLn;
END WriteMessage.

WriteLong procedure (Texts) L

Description WriteLong writes out a long integer number to a TEXT fik

Declaration PROCEDURE W riteLong(t: TEXT; 1: LONGINT;
n: CARDINAL);

Usage W riteLong(t, 1, w id th);

WriteLong must be imported from the library module Text

t must be of type TEXT imported from Texts.

1 must be of type LONGINT.

width must be of type CARDINAL.

Comments In general, the WRITE statement is easier to use th
WriteLong.

The number is output right-justified and blank-padded in
field width characters wide.

Turbo Modula-2 deference Directory 543

See Also LONGINT
ReadLong
Texts
WRITE

Example Write the number n to the standard output:

W riteLong(output, n, 6)

WriteOct procedure (InOut) L

Description WriteOut writes an octal number out to output.

Declaration PROCEDURE W riteO ct(x,n: CARDINAL);

Usage WriteOct(num, d ig i t s) ;

WriteOct must be imported from InOut.

num must be of type CARDINAI^

digits must be of type CARDINAL.

Comments The number will be converted to octal and printed out in a field
at least digits wide. If the number doesn’t need that many
digits, it will be blank-padfled.

This and WriteHex are useful procedures to print out addresses
and storage requirements in their natural form.

See Also InOut
WriteHex

Example Write out the number 8 in octal in a field four digits wide:

W rite0ct(8 , 4) yields ‘ 10‘

544 MODULA

WriteReal procedure (Texts) L

Description WriteReal writes out a real number to a TEXT file.

Declaration PROCEDURE W riteR eal(t: TEXT; r : REAL;
n: CARDINAL; d ig i ts : INTEGER);

Usage W riteR eal(t, r , w idth, d ig i ts) ;

WriteReal must be imported from the library module Texts.

t must be of type TEXT imported from Texts.

r must be of type REAL.

width must be of type CARDINAL.

digits must be of type INTEGER.

Comments In general, the WRITE statement is easier to use than
WriteReal.

The number is output in a field width characters wide, and the
mantissa is digits long.

See Also REAL
ReadReal
Texts
WRITE

Example Write the number pi to the TEXT file doc:

W riteReal (doc, p i , 5, 2) y ie ld s n 3« 14"
W riteReal(doc, p i , 12, 2) y ie ld s "3*14"
W riteReal(doc, p i , 5, 0) y ie ld s ” 3"
W riteReal(doc, p i , 10, -3) y ie ld s " 3.141E+00"

Turbo Modula-2 Reference Directory ________________________ 545

WriteRec procedure (Piles) L

Description WriteRec writes a record or an array to a disk file declared as
FILE.

Declaration PROCEDURE W riteRec(f: FILE; VAR re c : ARRAY OF
WORD);

Usage W riteRec(f, r) ;

WriteRec must be imported from the library module Files,

f must be of type FILE imported from Files,

r is any type.

Comments This routine should be used for writing any structure larger
than a byte or a word (see WriteByte and WriteWord).

See Also Files,
ReadRec,
WriteByte
WriteWord

Example Write the record widget[i] to newFlle:

W riteRec(newFile, w idget[i])

WriteString procedure (Terminal) L

Description WriteString writes a string to the terminal at the current cursor
position.

Declaration PROCEDURE W riteS trin g (s: ARRAY OF CHAR);

546 MODULA

Usage W rite S tr in g (s) ;

WriteString must be imported from the library module Ter
minal,

s must be of type ARRAY OF CHAR.

Comments There is no stream (like console, input, or output) associated
with Terminal procedures; thus, output goes directly to the
console and redirection is not possible.

See Also ReadString
Terminal

Example Write a string prompt to the terminal:

W riteS trin g (prompt)

WriteString procedure (Texts) L

Description WriteString writes out a string to a file declared as TEXT.

Declaration PROCEDURE W riteS tring (t : TEXT; s : ARRAY OF CHAR);

Usage W rite S trin g (t, s) ;

WriteString must be imported from the library module Texts,

t must be of type TEXT imported from Texts,

s must be a character array.

Comments In general, the WRITE statement offers easier output than
WriteString.

All of the characters in the string are output up until the first
zero byte or the end of the string is encountered.

Turbo Modula-2 keference Directory 547

See Also ReadString
Texts
WRITE

Example Write the string name to the TEXT file doc:

W riteS tring(doc, name)

WriteWord procedure (Files)

Description WriteWord writes a variable compatible with WORD to a disk
file declared as FILE.

Declaration PROCEDURE WriteWord(f: FILE; w: WORD);

Usage WriteWord(f, w);

WriteWord must be imported from the library module Files.

f must be of type FILE imported from Files.

w must be of a type compatible with WORD, which is imported
from the pseudomodule SYSTEM.

Comments Types compatible with WORD are those with storage of no
more than one word (2 bytes); these include INTEGER, CAR
DINAL, BITSET, all pointers (ADDRESS is a pointer).

See Also Files
ReadWord

Example Write the cardinal nwidgets to newFile:

WriteWord(newFile, nwidgets)

Turbo Modula-2 and Turbo Pascal 549

APPENDIX A
Turbo Modula-2 and Turbo Pascal

This appendix examines the differences between Tbrbo Pascal and Turbo
Modula-2 in a detailed manner. First, we will point out some of the features found
only in Tbrbo Modula-2 and then we will compare the differences in the features
of both languages.

In general, Turbo Modula-2 and Tbrbo Pascal are quite similar. Some features
found in Tbrbo Modula-2 will be more familiar to Tbrbo Pascal programmers than
they will be to regular Pascal programmers. This is because Tbrbo Pascal provides
a rich set of standard procedures and useful extensions that are defined directly
in the Tbrbo Modula-2 language.

Modula-2’s separate compilation and library facilities provide a full and extensi
ble set of primitives. The differences between the language implementations range
from simple items like case sensitivity to complex issues involving type- and
version-checking across compilation units.

Modula-2 can be used for large program development and for expressing
operating system concepts like concurrency and interrupt handling. Rather than
using Include files, Modula-2 separates programs textually into modules. Like
Pascal procedures, modules can be used to control the scope of identifiers. Unlike
procedures, the walls around a module are opaque in both directions, with only
explicitly defined changes in scope. This control of scope occurs in both local
(nested) and library (separately compiled) modules. In the case of a library iden
tifier, any identifier needed from another module must be requested. And both
local and library modules must explicitly make the identifier visible.

Library modules can be separately compiled. Though some other languages
allow separate compilation, Modula-2 does full type- and version-checking. This
helps prevent errors that occur because the program is textually broken into
pieces. Thus you have the same safety as Turbo Pascal’s Include files without hav
ing to recompile support procedures all the time.

Two new low-level features found in Tbrbo Modula-2 a re c o ro u tin e s and in te r-

550 MODULA

nipt handlers. As described in Chapter 8, coroutines simulate concurrent pro
cesses by using their own data space and sharing the processor.

While some people have expressed interrupt handlers in Tlirbo Pascal using in
line code, Modula-2 allows interrupt handlers to be defined in a high-level man
ner. This is done by initializing the machine and then having the interrupt handler
install itself at some predetermined vector. The rest is handled by Turbo
Modula-2.

W hat’s the Difference?

The following overview compares the elements of Tlirbo Modula-2 to Tlirbo
Pascal and should quickly acquaint the Turbo Pascal programmer with Turbo
Modula-2. (For a complete explanation of any feature, refer to the body of this
manual.)

To start, let’s consider the following Pascal and Modula-2 programs:

PROGRAM prime (OUTPUT);
CONST
size = 8190;
VAR
i,k,prime,count : INTEGER;
flags : ARRAY [0..size] OF
BOOLEAN;
BEGIN
count := 0;
FOR i := 0 TO size DO
flags[i] := TRUE;

FOR i := 0 TO size DO BEGIN
IF flags [i] THEN BEGIN
prime := i + i + 3;
k := i + prime;
WHILE k < = size DO BEGIN
flags[k] := FALSE;
k : = k + prime;
END ;
count := count + 1;

MODULE prime;
CONST
size = 8190;

VAR
i,k,prime,count : INTEGER;
flags : ARRAY [0..size] OF
BOOLEAN;
BEG IN
count := 0;
FOR i := 0 TO size DO
flags[i] := TRUE;

END;
FOR i := 0 TO size DO

IF flags[i] THEN
prime := i + i + 3;
k := i + prime;
WHILE k < = size DO
flags[k] := FALSE;
k : = k + prime;

END ;
count := count + 1;

Turbo Modula-2 and Turbo Pascal 551

END)
END;
WRITELN(count,f Primes');

END (# prime *).

END;
END;
WRITELN(count,' Primes');
END prime.

Vocabulary

There are minor differences in the vocabularies of the two language implementa
tions. For the most part, it is simple to convert a Tixrbo Pascal program into T\irbo
Modula-2.

Identifier Names

Turbo Modula-2’s identifiers are written in the same manner as Pascal’s. There
are two major differences: (1) Turbo Modula-2 does not allow underscores in
identifier names, and (2) it is case-sensitive. The latter has been made optional
with a compiler switch. The following are some legal and illegal modula iden
tifiers:

Legal Illegal

Anotherlndent An Indent

N

Characters

Character constants may either be denoted by the character enclosed in single or
double quotes or by the character’s ordinal number written in octal notation and
followed by the letter C. For example:

32C A character constant representing a Control-Z
101C The letter ’A’
‘B‘ The letter ’B’

’C’ The letter ’C’

n

Numbers

The numbers of Turbo Modula-2 are a superset of those allowed in Pascal. In ad-

552 MODULA

dition to the integers and reals in Turbo Pascal, Turbo Modula-2 has an unsigned
integer, called a CARDINAL, and two double-precision types, an integer
(LONGINT) and a real (LONGREAL).

Like Tbrbo Pascal, Tbrbo Modula-2 allows you to specify the base and type of
a constant number. In Turbo Pascal, a hexadecimal number is written starting with
a dollar sign, such as $0F; but in Tbrbo Modula-2 hex numbers are written star
ting with a decimal digit and ending with the letter H , such as OFH. The various
classes are Octal, Hexadecimal, Character, Real, and Long. The following are ex
amples of numeric constants in Tbrbo Modula-2:

23B Octal cardinal (19 decimal)
023H Hexadecimal cardinal (35 decimal)

Real constants are written the same as they are in Tbrbo Pascal-a decimal point
must be present. The scale factor is preceded by E. For example:

1.1414 A single-precision real approximating the square root of 2
3.02E9 A single-precision real in scientific notation

Double-precision constants are just like real constants with a scale factor, but
with a D in place of the E. For example:

0.0D0 A double-precision real that is a very precise zero

In the same way a C following a octal number makes a CHAR constant, an L
following a integer makes a LONGINT constant. Of course, the integer can be
larger than normal integers if followed by an L, as shown in the following:

1483236283L A long integer over a trillion (1,483,236,283).
-1L Internally, this long integer is 4 bytes of ones.

Strings

The two differences between strings in Tbrbo Pascal and Tbrbo Modula-2 are (1)
strings can be enclosed in either single or double quotes, and (2) the quote used
to enclose the string may not appear in the string.

In Pascal, to have a quote within a string you would write the quote twice. In

Turbo Modula-2 and Tutuo Pascal 553

Turbo Modula-2, you may include whichever quote you are not using to enclose
the string. Thus, the following strings yield the same result:

Modula-2 Pascal

ft f If 1 f t 1

f ft 1 1 It t

Here are other examples of legal strings in Modula-2

'The language "Modular"1 "Peter's programs"

Set Constants

Sets in Turbo Modula-2 are substantially different than those in Tbrbo Pascal. In
Turbo Modula-2, sets are represented by one machine word and thus are very effi
cient. Tests for set membership are much faster. However, there is one drawback:
A machine word has only enough bits to represent a set of 16 elements. Pascal
programmers who are used to using SET OF CHAR may miss it; however, there
are other ways to obtain the same results.

The syntactic differences are that sets are delimited by curly brackets instead
of the square brackets used in Pascal. A set must be preceded by its type identifier
when used in expressions, otherwise, it is assumed to be the predefined set type
BITSET. For example:

TYPE
UserSet = SET OF (red, green, blue);

CONST
x hibit = (7);
V CurrentColor = UserSet(green);

Comments

In Turbo Pascal, comments can only be nested one level deep by using one of the
two forms within the other. In Turbo Modula-2, the only form of comment uses
the delimiters (* and *). (As previously shown, the curly braces, (and), are used
to denote sets.) In contrast to Turbo Pascal, Thrbo Modula-2 comments may be
nested to any depth. This is especially useful for debugging programs. For exam
ple:

554 MODULA

c = 2.997925E8; (* the speed of light in meters per second #)
(*D WriteReal(c); (# printout for debugging *) D#)

Declarations

In contrast to standard Pascal, TYirbo Modula-2’s order of declarations (like Turbo
Pascal’s) is not fixed. Constant, type, variable, and procedure declarations can be
written in any order. This gives the programmer more freedom to group related
items together. Of course, every declaration section must be preceded by the ap
propriate CONST, TYPE, VAR, or PROCEDURE symbol.

Constant Declarations
There are two major differences between Turbo Pascal’s constants and Tbrbo
Modula-2’s: (1) Turbo Modula-2 allows constant expressions in declarations. (2)
There is no equivalent for Turbo Pascal’s typed constants (which are actually pre
initialized variables).

Turbo Modula-2’s constant expressions may be used anyplace Pascal allows on
ly constants. Constant expressions consist of constants connected by the usual
operators. Some examples of declarations follow (constant expressions are seen
in lines 2, 5 and 8):

CONST
PiByTwo = 3.141592 / 2.0;
version = n1.6 last changes: Oct 84";
mask = [0. .3,8);
Truth = NOT FALSE;
Size = 1000;
TYPE
a = ARRAY [0..Size-1] OF CHAR;

Turbo Pascal’s typed constants can be simulated with normal Tlirbo Modula-2
variables and the initialization part of modules. The only difference is that the
values are initialized at runtime instead of at load-time.

Turbo Modula-2 and liirbo Pascal 555

Type Declarations
TXirbo Modula-2 has all of the types offered by I\irbo Pascal, whether defined
directly as standard identifiers or as library types. In addition, T\irbo Modula-2
has procedure types. In defining types in Thrbo Modula-2, a constant expression
may be used anywhere a constant is used to define a type in Pascal.

Standard types in Turbo Modula-2 are CHAR, BOOLEAN, BITSET, IN
TEGER, CARDINAL, REAL, LONGINT, LONGREAL, and PROC. Of these,
INTEGER, BOOLEAN, CHAR, and REAL are used exactly as they are in Turbo
Pascal. We have already mentioned the addition numeric type, CARDINAL,
LONGINT, and LONGREAL; the remaining types, BITSET and PROC, will be
explained shortly. The user-defined types of both languages are similar, but have
slight differences.

Subrange and enumeration types are the same for both languages except Turbo
Modula-2 encloses in square brackets (Q) the values defining a subrange. For ex
ample:

TYPE
bitnumber = [O..wordlength-1];
smallint = [0. .255];

The presence of the types INTEGER and CARDINAL causes a slight ambigui
ty when defining a subrange. In the previous example, it’s not known if the base
type of the subrange is INTEGER or CARDINAL. This problem is resolved by
die convention that the base type is assumed to be CARDINAL if the lower bound
is not negative; otherwise, it is INTEGER. You may override this convention by
explicitly specifying the base type as follows:

TYPE
ismall = INTEGER [0.. 255];

Arrays

As with subranges, the syntax of an array is slightly different in each language.
When the bounds of an array are specified by a subrange, brackets are not needed;
for example:

556 M ODULA

TYPE
color = (brown,purple,orange);
c = ARRAY color OF CHAR;
a = ARRAY [0..9],[0..9] OF REAL;
charkind = ARRAY OF CHAR (letter,digit,special, illegal);

R e co rd s

In Turbo Modula-2, records without variant parts are identical to those of Turbo
Pascal. Thrbo Modula-2 variant parts have a somewhat different syntax. If the
name of the tag field is omitted, the colon and the type must still be written. The
vertical bar serves to separate cases. Like Turbo Pascal, label ranges (for example,
0..5) and an optional ELSE part may be used. More than one variant part is
allowed and it need not be written at the end of the record, as in Tlirbo Pascal.
Variant parts in Turbo Modula-2 must have an END statement; for example:

complex = RECORD x, y : REAL END ;

sneaky = RECORD
CASE : BOOLEAN OF
FALSE : c : CARDINAL I
TRUE : p : POINTER TO CARDINAL 1

END
END ;

demo = RECORD
a, b : CARDINAL;
x : REAL;
CASE tl : CARDINALOF

0 . . 3 , 7 : fl,f2 : File
4,6 : name : ARRAY [0..7] OF CHAR
ELSE

link : POINTER TO sneaky
END ;
d, e : BOOLEAN ;
CASE c color OF

Turbo Modula-2 and x^rbo Pascal 557

red, blue : I
green : g : date I
END ;
last : BOOLEAN ;
END

Procedure Types

Procedure types are new to Thrbo Pascal programmers. They can be used to
define the interface of a procedure that is passed to some other procedure as a
^ram eter. This is useful for allowing one data access routine to perform many

^ .iferent functions on the data.

For example, you may pass a tree-traversal procedure a procedure parameter
that prints the node, uses the node for a calculation, or performs some other func
tion on the nodes of the tree. The point is that each of these operations have the
same interface, which can be defined globally and exported.

The type PROC is a predefined procedure type with no parameters. Variables
of this type may receive assignments from procedures declared as

PROCEDURE Foo;
BEGIN
(* Statements #)

END Foo;

Procedure variables are defined with the reserved word PROCEDURE, follow
ed by a formal type list. In contrast to normal parameter lists, the names of the
parameters are not given. Types are separated by commas and may be preceded
Lv a VAR to indicate variable parameters. Function procedures declare a result

v pe (see the section, “Function Procedures“).

Variables of a procedure type may assume as their values procedures whose for
mal parameter list is compatible with the formal type list of the procedure type.
However, procedures local to another procedure and standard procedures may not
be assigned to procedure variables. Note that arithmetic and file-handling pro
cedures (for example, Sin and Open) are not standard procedures in Thrbo
Modula-2. They are library procedures and can be assigned to procedure
variables of the correct type. For example:

558 M ODULA

MODULE ProcedureVars;
FROM Texts IMPORT TEXT;
TYPE .
RealFunc = PROCEDURE (REAL): REAL;
TextDriver = PROCEDURE(VAR Text, CHAR);
VAR
MyExp: RealFunc;
MyWriteChar: TextDriver;
MyClearScreen: PROC; (* Predefined parameterless procedure #)

PROCEDURE MyExponentiation(r:REAL): REAL;
BEGIN
(* Statements #)
END MyExponentiation.

PROCEDURE MyWriteCharacter(VAR t: TEXT; ch: CHAR);
BEGIN

(# Statements *)
END MyWriteCharacter;

PROCEDURE MyClearTheScreen;
BEGIN
(# Statements #)
END MyClearTheScreen;

PROCEDURE ExecuteP (p: PROC);
BEGIN p;
END ExecuteP;

BEGIN (# Assign procedures to the procedure variables #)
MyExp := MyExponentiation;
MyWriteChar := MyWriteCharacter;
MyClearScreen := MyClearTheScreen;
(# Execute procedure variables #)
MyClearScreen;
WRITE(MyExp(29.0));
MyWriteChar(output nA");
ExecuteP(MyClearScreen);
END ProcedureVars.

Turbo Modula-2 and 2u,oo Pascal 559

Variable Declarations

T\irbo Modula-2’s variable declarations are identical to those of Pascal: A list
of variable identifiers are given (separated by commas), along with a colon and
the variable’s type. For example:

i, j, k : INTEGER;
printer : textwriter;

Like Turbo Pascal, Turbo Modula-2 offers a facility to specify the address of
(riable. This must be considered a low-level facility and must be used with
care. The address is specified in brackets after the variable identifier. Unlike Tur
bo Pascal, Turbo Modula-2 restricts absolute variables from assuming dynamic
values. Thus when a l\irbo Pascal program uses a local variable “absoluted“ with
a parameter to the procedure, the Turbo Modula-2 equivalent would simply be
pointer assignments that may require type coercion. Variables in Turbo Modula-2
are made absolute as shown here.

maskregister [OFFCDH]: BITSET;

Procedure Declarations

Procedures in both languages are declared in much the same way. Unlike TYirbo
Pascal but available in other Pascals, Türbo Modula-2’s procedures and functions
may be passed as parameters. The parameter must be declared as an already defin
ed procedure type (shown in the previous section, “Variable Declarations“).

Open Array Parameters

(m array parameters allow arrays declared of different length to be passed to
tne same procedure. In Turbo Pascal, this can be done only with string
parameters, and only when the V compiler option is turned on. In Turbo
Modula-2, there is a provision for open arrays of any type and there is a
mechanism to dynamically obtain the upper bound of open array parameters. .

Within the procedure, the lowest array element always has an index of zero. The
index of the highest array element can be obtained as HIGH (a), a being specified
as ARRAY OF <some type> . For example:

560 M ODULA

PROCEDURE writevector(v : ARRAY OF REAL);
VAR
i : CARDINAL;
BEGIN
FOR i : = 0 TO HIGH(v) DO WRITE(v[i]) END
END writevector;

Untyped Parameters

T\irbo Pascal allows you to skip type-checking with untyped parameters by simply
leaving off the type specification. This is useful for writing generic procedures.
Of course, Turbo Modula-2 also allows this with an explicit declaration that uses
the SYSTEM type WORD. Türbo Modula-2 goes one step further by allowing you
to dynamically determine the size of the object passed with the standard pro
cedures SIZE and HIGH. This is shown in the following example:

NODULE Untyped;

PROCEDURE foo(object: ARRAY OF WORD);
BEGIN
WRITELN(SIZE(object), HIGH(object));
END foo;

VAR
c: CARDINAL;
r: REAL;
BEGIN
foo(c);
foo(r);
END Untyped.

The first call to the procedure foo results in the output of 2 and 0. Thus, the
procedure knows the object passed is 2 bytes and the highest index into the array
of words is 0. During the second call, this procedure outputs a 4 and a 1, in
dicating the object is 4 bytes and occupies positions 0 and 1 of the word array.

Function Procedures

In Turbo Modula-2, FUNCTION is no longer a reserved word; function declara
tions differ from procedure declarations only by the indication of a result type.

Turbo Modula-2 and lurbo Pascal 561

The following is an example of a function declaration that finds the length of a
string:

PROCEDURE len(s: ARRAY OF CHAR): CARDINAL;
(# return length of string s *)
VAR
i : CARDINAL;
BEGIN i := 0;
WHILE (i <= HIGH(s)) & (s[i] # 0C) DO i := i+1 END ;
RETURN i

(ID len;

Expressions

T\irbo Modula-2 expressions are very similar to those of Tbrbo Pascal. The usual
operators, + , * /, DIV, and MOD, are available for operands of type IN
TEGER, CARDINAL, and REAL, (DIV and MOD apply to INTEGER and
CARDINAL, / applies to REAL). Of course, those operators applicable to IN
TEGER also work on LONGINT, and the same is true for REAL and
LONGREAL.

There are, however, no implicit conversions. The following example would
therefore be legal in T\irbo Pascal but illegal in Ibrbo Modula-2, because REAL
and CARDINAL are not compatible:

x := 1.0 + 1;

The logical operators AND (also written &), OR, and NOT (also written ~),
are available. If the first operand of an AND evaluates to FALSE, the second is

(t evaluated. Similarly, the second operand of an OR is not evaluated if the first
one is TRUE. This rule sometimes shortens programs by eliminating a Boolean
flag and a GOTO statement. For example:

WHILE (I#0) AND (s[I]>0) DO
(# Something *)
END ;

would have to be translated to the following Pascal statement if s is not defined
for I equal to 0:

562 M ODULA

while I < > 0 do begin
if s[I]<=0 then goto endwhile;
(# Something *)
end ;
endwhile:

Set Operators
The major benefit of liirbo Modula-2 sets is the ability to treat bits in a word as
elements in a set. This makes bit manipulation very easy and defines it directly
in the language instead of as an extension as in Turbo Pascal.

The type BITSET is a special predefined set type. It is declared as

TYPE
BITSET = SET OF [0. .wordlength-1];
where wordlength is the word length of the computer, which is 16 for Turbo

Modula-2.

Since Turbo Modula-2 sets only take one word, the operations defined for sets
can be viewed as equivalent to Ttirbo Pascal bitwise operations. Thus Türbo
Modula-2 set operators can be viewed as abstract set operations or low-level bit
wise operations as seen in Thrbo Pascal equivalents.

Operation Modula Symbol Pascal Symbol

Union + OR
Difference - XOR and then AND
Intersection * AND
Symmetric Difference / XOR

In terms of set operations available in Turbo Pascal, only / is new. It is called
symmetric set difference and is an exclusive OR. The resulting set contains all
elements that are in either the first set operand or the second, but not in both.
The following is an example using sets:

MODULE ExampleSet;
TYPE
colors = (Red,White,Blue,Orange,Purple,Black,Yellow,Green,Cyan);
flagColors = SET OF colors;

Turbo Modula-2 ana Turbo Pascal 563

CONST
frenchFlag = flagColors (Red, White);

VAR
currentColors: flagColors;
BEGIN
currentColors := flagColors (Red);
currentColors := currentColors + flagC olors (White);
IF (currentColors=frenchFlag) THEN
WRITELN(»Viva la France P);

END ;
END ExampleSet;

Familiar to Turbo Pascal programmers is Turbo Modula-2's alternate use for the
preceding logical operators (AND, OR, XOR); in Turbo Pascal, these are also
bitwise operators. As previously shown, Turbo Modula-2 has set operators that
double as bitwise operators. The only bitwise operators defined in Thrbo Pascal
and not in Turbo Modula-2 are the shl and shr operators. However this is not a
problem because Turbo Modula-2 translates multiplication and division by 2 into
machine-language shifts in the appropriate direction. Thus, we have the following
equivalents for the integer variable /:

Modula Pascal

1 * 2 I s h l 1
1 * 2 * 2 I s h l 2
I * 256 I s h l 8
I DIV 16 I sh r 4

Turbo Modula-2 and Turbo Pascal use the same relational operators. The only
’ifference is that Thrbo Modula-2 provides an additional inequality operator, the

pound sign (#) , which has the same effect as < > . Both symbols are allowed
in Thrbo Modula-2.

Operands in expressions in Thrbo Modula-2 are very similar to those found in
Pascal. The familiar operations of indexing, field selection, dereferencing, and
function invocation are available. One difference is seen in expressions that in
clude parameterless function calls. Thrbo Modula-2 requires the empty parameter
list to be specified in function calls. This helps distinguish function identifiers
from variable and constant identifiers.

564 M ODULA

The following are examples of expressions in Tlirbo Modula-2:

c + b*3
list IN options
sum + a[i,k]#a[k, j]
(ch > = nA") & (ch <= "Z")
s * [0..3)
Exp(Random())

Integer or cardinal expression
Boolean expression
Numeric expression using arrays
Boolean expression with relations
Set expression
Real expression with nested function
calls

Statements

Like Pascal, the most elementary statement in Tlirbo Modula-2 is the assignment
statement. It is stricter in Turbo Modula-2 than in Tlirbo Pascal in that no implicit
type conversions are made. This means you may not assign an integer expression
to a real variable, as is allowed in Turbo Pascal. Of course, Tlirbo Modula-2 pro
vides a mechanism to do this with explicit type-transfer functions; thus we have
the following equalities (where x is a real and i is an integer):

Modula Pascal

x := FLOAT(i); x := i;
i := TRUNC(x * FLOAT(i)); i := trunc(x * i);

Turbo Modula-2’s structured statements have a more modern syntax that does
away with Turbo Pascal’s compound statement (begin ... end). Where Pascal re
quires the compound statement, Turbo Modula-2 allows a statement sequence to
be terminated by an END statement.

Procedure Calls
The procedure call statement remains essentially unaltered in Tlirbo Modula- 2.
If a procedure has no parameters, empty parentheses are allowed but not required,
as in function procedures.

Looping Statements
Tlirbo Modula-2’s WHILE and REPEAT statements are essentially the same as
Tlirbo Pascal’s.

Turbo Modula-2 has an EXIT statement, but it is used to terminate the LOOP
statement. The LOOP statement is the same as a Turbo Pascal’s repeat until

Turbo Modula-2 ana Turbo Pascal 565

FALSE or while TRUE do begin end, except that instead of using a GOTO to
exit the endless loop, Turbo Modula-2 uses the explicit EXIT statement. EXIT
causes control to pass to the statement directly after the END that matches the
LOOP statement.

The FOR statement has been slightly changed. A step value may now be given
using a BY clause (default is +1 if the BY part is left out). The step value must
be a constant expression. The Turbo Pascal downto symbol is no longer used. You
now simply specify a step value of -1. For example:

FOR i : = 0 TO size DO
flags[i] := TRUE
END ;
FOR i : = n-2 TO 2 BY -1 DO
s[i] := (b[i] -

a2[i]*s[i+l])/al[i];
J := J + i
END ;

(* Notice the explicit END *)

(* Pascal's DOWNTO *)

(# Any number of statements *)
(# between DO and END #)

CASE Statements
Thrbo Modula-2’s CASE statement has a different syntax than Pascal’s. The ver
tical bar I is used to separate cases, thus eliminating the need for begin end in
the statement part of the case statement. Like Turbo Pascal, Turbo Modula-2
allows ranges of values for CASE labels (like “A“..“Z“) and an optional ELSE
part. For example:

CASE ch OF
1 "An.."Zn,"an.."z" : chartype := letter
1 "0".."9"
1 " " , '" ' , " # " , . . ,

: chartype := digit

n.n n>n̂ nj-it̂ nAn̂ ?tJit#Bit~l!
I

: chartype := special
l
EISE WRITELN('illegal

character'); chartype := illegal
END ;

Note that the first and last vertical bars in this example are optional.

566 MODULA

WITH Statements
The WITH statement has remained essentially unchanged. While in T\irbo Pascal
a list of record variables is allowed after WITH, Turbo Modula-2 makes you nest
WITH statements to achieve the same effect. For example:

WITH p A DO (* in Pascal, only one WITH would have been used *)
WITH valu A DO
typ := reel; rval := nxrval;
END ;
link := head
END ;

RETURN Statements
There are two reserved words that take the place of Turbo Pascal’s goto statement:
the EXIT statement (already discussed) and the RETURN statement. The
RETURN statement serves to terminate procedures the same way as the exit
statement in Turbo Pascal. In addition, it is used to return function results instead
of an assignment to the Pascal function identifier.

Standard Procedures in Turbo Modula-2

Several standard functions and procedures found in Tbrbo Pascal are no longer
directly available in Turbo Modula-2: Some standard procedures have been added
and some have been left to be implemented in library modules. Only the most im
portant and commonly used standard procedures are still within the language.

Mathematical functions like Sqrt, Sin, Exp, and so on, are no longer standard
functions. They must now be imported from the module MathLib (see Chapter
11). File-handling procedures must also be imported from the appropriate library
modules {Files, Texts, or InOut).

The I\irbo Pascal functions pred and succ can be replaced by the procedures
INC and DEC. These procedures accept one argument of any scalar type and one
count argument that determines the size of the increment or decrement.

Thus, Turbo Pascal statements that look like the following:

i := i + 1;
color := pred(Green);

will look like this in Türbo Modula-2:

Turbo Modula-2 ana Turbo Pascal 567

INC(i);
DEC(color);

NEW and DISPOSE still exist and are translated by the compiler into calls to
procedures ALLOCATE and DEALLOCATE, which must be imported from the
module STORAGE but may also be redefined within the user program. In contrast
to Pascal, a FLOAT function exists in Thrbo Modula-2. You may be surprised to
find that there is no ROUND or EVEN function; instead, use Entier(Value + 0.5)
for negative numbers and TRUNCfValue + 0.5) for positive numbers.

Tables A-l through A-3 show which identifiers remain defined within the
language. If you don’t find what you’re looking for here, try Chapter 12, “'Rirbo
Modula-2 Reference Directory.“ Table A-l. Standard Modula-2 Functions

ABS(x)
Returns absolute value of jc; result type is the same as argu
ment type.

CAP(c) Returns argument and result type are of type CHAR, the
capital letter corresponding to c.

CHR(x) Returns the character with ordinal number x.

FLOAT(x) Converts value x of type CARDINAL to type REAL.

HIGH (a) Returns high index bound of array a.

MAX(T) Returns the largest element of the argument type.
T is CARDINAL, INTEGER, BOOLEAN, CHAR, REAL,
LONGREAL, LONGINT, any enumeration or scalar type.

MIN(T) Returns the smallest element of type T.

ODD(x) Returns TRUE is x is odd; otherwise it returns FALSE.

ORD(x) Returns the ordinal value of x, where x is of type
BOOLEAN, CHAR, INTEGER, CARDINAL, or every
enumeration type.

568 M ODULA

SIZECD Returns the storage requirements of type T in bytes.

SIZE(x) Returns the storage requirements of variable x in bytes.

TRUNC(x) Returns CARDINAL result; x of type REAL truncated to in
tegral part.

VAL(T,x) Returns the value of type I\ which has ordinal number x. T
is BOOLEAN, CHAR, INTEGER, CARDINAL or every
enumeration type.

Table A-2. Additional Functions Offered by Turbo Modula-2

LONG(x) Converts its argument to LONGINT

INT(x) Converts its argument to INTEGER

CARD(x) Converts its argument to CARDINAL

FLOAT(x) Converts its argument to REAL

DOUBLE(x) Converts its argument to LONGREAL

Note: These functions only work on numeric types.

Table A-3. Standard Procedures in Turbo Module-2

DEC(x) x x - 1

DEC(x,n) x := x - n

EXCL(s,i) s : = s - [i)

HALT Terminates program execution

INC(x) x := x + 1

INC(x,n) x := x + n

INCL(s,i) s := s + [i]

Turbo Modula-2 ana^urbo Pascal 569

Note that type identifiers may be used like function identifiers denoting so-
called type-transfer functions. (This is considered a low-level facility and is
discussed in Chapter 8.)

Installation Procea^.es 571

APPENDIX B
Installation Procedures

The installation program INSTM2 has two functions. Its primary function is to
allow you to configure the Turbo Modula-2 system to your hardware and to con
figure the Turbo Modula-2 editor to your own taste. Thus, you may tell the system

, what type of terminal you have and which disk drives you wish it to search for
(;eded files. You may also change the editing commands to more familiar ones.

Note: The installation must be performed if you want Turbo Modula-2 to work
the way it is described in this manual.

The second function of INSTM2 is to allow programs compiled on your setup
to be re-installed on different terminals. This allows you to distribute .COM files
(executable files) to your customers without knowing what type of terminal they
have. All you need to do is include INSTM2 files along with your executable pro
gram.

In this chapter we will describe how to use INSTM2 to install l\irbo
Modula-2, and then discuss programs in general.

Installing M2

By this point we assume you have made a backup copy of the Turbo Modula-2
distribution disk, as well as a working disk. (If not, these procedures are describ-

 ̂ j in Chapter 1, »Getting Started.«)

Place your working disk in the logged drive. It should contain all the installation
files and the M2.COM file, listed as follows:

INSTM2.COM
INSTM2.0VR
INSTM2.DTA
M2.COM

572 M ODULA

TVpe INSTM2 to start the installation program. After the prompt, press I J 1
and the following menu will appear:

There are four possible choices at this menu: Screen installation, Command in
stallation, Miscellaneous, and Quit. To select a choice, enter one of the
highlighted letters shown in square brackets. Any legal selection except Q will
bring up a new menu: Quit will return you to the operating system (unless it is
being run from the M2 shell).

Screen installation allows proper functioning of Turbo Modula-2’s WordStar-
like editor and the various screen manipulation functions in the module Terminal.

Command installation is performed if you wish to alter the WordStar-style
editing commands. We recommend that you become familiar with the capabilities
of the editor before you change any of the editing keys. Generally, you only need
to go through the Command installation if your keyboard is missing the necessary
keys or if you want your Turbo Modula-2 editor to be compatible with a non-
WordStar-like editor. Miscellaneous installation is used in two instances. First, if
your keyboard does not have certain display characters used in standard
Modula-2, this command will allow you to substitute an alternate character or se
quence of characters for those missing from your keyboard. Second, this com
mand allows you to tell Turbo Modula-2 where it should look for files when it
is compiling and linking.

Modula-M2 system installation menu.
Choose installation item from the following:

[S]creen installation
[M]iscellaneous

[Cjommand installation
[Q]uit

Enter S, C, M, or Q:

Screen Installation

When you press I s 1 to perform Screen installation, the following menu will
appear:

Installation Procedure 573

13)
14)
15)
16)

1)
2)

3)
. 4)
5)
6)
7)
8)
9)
10)
<1)

ADDS 20/25/30
ADDS 40/60
ADDS Viewpoint-IA
ADM-3A
DEC Rainbow, 8 bit
Ampex D80
ANSI
Morrow MDT-20
Hazeltine 1500
Hazeltine Esprit
Kaypro with hilite
Kaypro, no hilite
Lear-Siegler ADM-20
Lear-Siegler ADM-31
Liberty
Osborne 1

17) Otrona Attache
18) Qume
19) RC-855 (ITT)
20) Soroc 120/Apple CP/M
21) Soroc new models
22) SSM-UB3
23) Tandberg TDV 2215
24) Teleray series 10
25) Teletex 3000
26) Televideo 912/920/92
27) Texas Instruments
28) Visual 200
29) Wyse WY-100/200/300
30) Zenith
31) None of the above
32) Delete a definition

Which terminal? (Enter no. or A Q to exit):

Select the terminal type you will be using while running Turbo Modula-2 by
entering the appropriate number for your terminal at the prompt. Several things
are dependent on the terminal you are using. Of course, the editor needs to know
about the terminal, but your programs must also know the capabilities of the ter
minal they are running on. This information is available from the standard module
Terminal.

Before installation is actually performed, you are asked the question:

Do you want to modify this definition before installation? (Y/N)?

. This allows you to modify one or more of the values being installed (described
V the next section). If you do not want to modify the terminal definition, type
N to complete the installation and be returned to the Main Installation Menu.

Manual Installation

If your terminal is not on the menu, however, you must define the required values
yourself (refer to your terminal manual for these values). An alternative method
exists if you also own a copy of Tiirbo Pascal and have installed it for your con
figuration.

574 MODUL

Using the Turbo Pascal TINST.DTA File

Many people with unusual terminals have Thrbo Pascal because (like T\irt
Modula-2) it runs on almost anything with a Z80 in it. These people have alreac
gone through a painstaking installation procedure that required searching obscu
manuals for cryptic codes. If you are one of these people, relax; you can use yoi
existing TINST.DTA file simply by renaming it to INSTM2.DTA. (Note that tl
.DTA file only contains data for screen commands not keyboard commands.)

Use the renamed file as if it were the one on the distribution disk. When tl
terminal menu comes up you will see your terminal listed with any others in tl
TINST.DTA file.

Entering Terminal Codes

Enter the number corresponding to »None of the above« and answer the questio
one by one as they appear on the screen.

The following section describes each installable command in detail. If your te
minal does not support a command, press I <J I at the prompt. If Delete lir
Insert line, or Erase to end o f line are not installed, they can be emulated in t
editor. However, these emulation functions are not available in the module 7J
minal, the module Terminal only provides a method to check if the functions i
available so that your programs can emulate them if necessary. Commands m
be entered by pressing the appropriate keys or by entering the decimal or h<
adecimal ASCII value of the command. If a command requires the two characte
[’ESCAPE’] and [’= ’], you may

□ First press the [Esc] key, then the [=], and the entry will be echoed with i
propriate labels.

□ Or you can enter the decimal or hexadecimal values separated by spac
(Hexadecimal values must be preceded by a dollar sign ($); for example,
61, $1B 61, or $1B $3B, which are all equivalent.) These two methods cam
be mixed since once you have entered a specific character (except a dol
sign), the rest of the command must be defined in that mode, and vice ver
If you need to delete an entry, you may enter a hyphen as the first charac
on the line; the text Nothing is echoed. This is only effective on commai
that expect more than a single number of a Yes/No answer.

Installation Procedures 575

Terminal Properties

The following is an explanation of each question asked by the terminal installation
program.

Terminal type:
Enter the name of the terminal you are about to install. When you complete
INSTM2, the values will be stored and the terminal name will appear on the in
itial list of terminals. If you later need to re-install Turbo Modula-2 to this ter
minal, you can do so by choosing the terminal from the list.

Send an initialization string to the terminal?
If you want to initialize your terminal when Tirbo Modula-2 starts (for example,
to download commands to programmable function keys), press I v 1 to
answer this question; otherwise, press I J 1 .

Send a reset string to the terminal?
Define a string to be sent to the terminal when Turbo Modula-2 terminates. The
description of the preceding initialization command also applies here.

CURSOR LEAD-IN command:
Cursor Lead-in is a special sequence of characters that tells your terminal that the
following characters comprise an address on the screen on which the cursor
should be placed. When you define this command, you are asked the following
supplemental questions:

CURSOR POSITIONING COMMAND to send between line and col
umn:
Some terminals need a command between the two numbers defining the row
and column cursor address.

CURSOR POSITIONING COMMAND to send after line and column:
Some terminals need a command after the two numbers defining the row and
column cursor address.

Column first?
Most terminals require the address in the format: first ROW, then COLUMN.
If this is the case on your terminal, press I N 1 . If your terminal re
quires COLUMN first, then ROW, press I y 1 .

576 MODUl

OFFSET to add to LINE
Enter the number to add to the LINE (ROW) address.

OFFSET to add to COLUMN
Enter the number to add to the COLUMN address.

Binary address?
Most terminals need the cursor address sent in binary form. If this is true for yc
terminal, press I y 1 . If your terminal expects the cursor address as ASC
digits, press 1 n 1 . You are then asked the supplemental question

2 or 3 ASCII digits?
Enter the number of digits in the cursor address for your terminal.

CLEAR SCREEN command:
Enter the command that will clear the entire contents of your screen, b<
foreground and background, if applicable.

Does CLEAR SCREEN also HOME cursor?
This is normally the case; if it is not so on your terminal, press | n 1 and <
fine the cursor HOME command.

DELETE LINE command:
Enter the command that deletes the entire line at the cursor position.

INSERT LINE command:
Enter the command that inserts a line at the cursor position.

ERASE TO END OF LINE command:
Enter the command that erases the line at the cursor position, starting from
cursor position through to the end of the line.

START OF ’LOW VIDEO’ command:
If your terminal supports different video intensities, then define the command t
initiates dim video.

START OF ’NORMAL VIDEO’ command:
Define the command that sets the screen to show characters in ’normal vid
Some terminals have one command that toggles the video mode; thus this ci
may be the same as the last one. |

Installation 1 . ocedures 577

Number of rows Oines) on your screen:
Enter the number of horizontal lines on your screen.

Number of columns on your screen:
Enter the number of vertical column positions on your screen.

Delay after CURSOR ADDRESS (0-255 ms):
Delay after CLEAR, DELETE, and INSERT (0-255 ms):
Delay after ERASE TO END OF LINE and HIGHLIGHT On/Off (0-255 ms):
Enter the delay in milliseconds required after the functions specified. RETURN
means 0 (no delay).

Is this definition correct?
If you have made any errors in the definitions, press [N] to be returned to the ter
minal selection menu. The installation data you have just entered will be included
in the installation data file and appear on the terminal selection menu, but installa
tion will not be performed.

When you press | Y 1 in response to this question, installation is completed,
the installation data is written to M2.COM, and you are returned to the main
menu. Installation data is also saved in the installation data file and the new ter
minal will appear on the terminal selection list when you run INSTM2 in the
future.

Installation of Editing Commands

The built-in editor performs a number of commands. Each function may be ac
tivated by either of two commands: a primary command and a secondary com
mand. Primary commands are undefined, but can be easily defined to fit your
taste or your keyboard. The secondary commands are installed by Borland and
comply with the standard set by WordStar. From the installation main menu, press
I c 1 for Command installation. The first command will appear like the follow
ing:

CURSOR MOVEMENTS:

1: Character left Nothing ->

578 MODULA

This means that no primary commands have been installed to move the cursor
one character left. If you want to install a primary command (in addition to the
secondary WordStar-like Control-S, which is not shown here), you may enter the
desired command after the -> prompt in either of two ways:

1. Simply press the key you want to use. It can be a function key; for example,
a left-arrow key or any other key or sequence of keys that you choose (the max
imum is 2).

The installation program responds with a mnemonic of each character it
receives. If you have a left-arrow key that transmits an Escape character follow
ed by a lower case a , and you press this key in the situation given previously,
your screen will look like the following:

CURSOR MOVEMENTS:

1 : Character left Nothing -> < E S C > a

2. Instead of pressing the key you want to use, you may enter the ASCII value(s)
of the character(s) in the command. The values of multiple characters are
entered and separated by spaces. Hexadecimal values are prefixed by a dollar
sign ($1B).

This may be useful to install commands not presently available on your
keyboard; for example, if you want to install the values of a new terminal while
still using the old one.

In both cases, terminate your input by pressing 1+J | . Note that the two
methods cannot be mixed within one command. If you have started defining a
command sequence by pressing keys, you must define all characters in that com
mand by pressing keys and vice versa.

You may enter a minus (-) sign to remove a command from the list or a B to
back through the list one item at a time.

The editor accepts a total of 45 commands, all of which may be installed to your
specifications. If you make an error in the installation, such as defining the same
command for two different purposes, a self-explanatory error message is issued.
You must correct the error before terminating the installation. If a primary com-

Installation Procedure, 579

mand conflicts with one of the WordStar- compatible secondary commands, it will
render the secondary command inaccessible.

Table B-l lists the secondary commands, and allows you to enter any primary
commands you have installed.

Note: Items 2 and 28 let you define alternative commands to Character Left and
Delete Left Character commands. Normally, the Back Spacec key is the alter
native to [1 I s 1 , while there is no defined alternative to 1 Dei 1 . You may
install primary commands to suit your keyboard; for example, to use the Back
^ zt as an alternative to | Del 1 if the Back Space key is more conveniently
located. Of course, the two alternative commands must be unambiguous like all
other commands.

Table B-l Turbo Modula-2 Secondary Commands

Cursor Movements

1: Character left n*n CO
2: Alternative fctin (m 3
3: Character right [m 3 Cm 3
4: Word left fctril CO
5: Word right Im] CO
6: Line up fctril CO
7: Line down fctril CO
8: Scroll up Im) n o
9: Scroll down (m 3 CO

10: Page up 1 Ctrt | CO
11: Page down fctril CO
'7: To left on line fctril CO LsJ
i3: To right on line fctril CO CO
14: To top of page fctril CO CO
15: To bottom of page fctril CO m
16: To top of file fctril CO CO
17: To end of file (m 3 CO CO
18: To beginning of block (m 3 CO CO
19: To end of block fctiT] CO r a
20: To last cursor position 1 Ctrl | CO CO

Summary o f Compiler Directives 583

APPENDIX C
Summary of Compiler Directives

This appendix contains a list of available compiler directives and a brief descrip
tion of each. For a detailed explanation of compiler directives, refer to Chapter
10, »System Operations.«

There are two ways to set the current compiler options. The first is with the
global switches in the Options submenu in the Tirbo Modula-2 shell. These
global switches have an effect over an entire program text. However, the second
method, embedded switches, overrides the first method. Embedded switches ap
pear directly in the program text within comments. In the following list of com
piler options, the switch settings on the left are embedded and the ones on the
right are global (as they appear in the options menu).

List Source Option

Embedded Global

$L+ List(ON) Generates a listing
$L- List(OFF) Generates none

Overflow Check Option (INTEGER and CARDINAL)

Embedded Global

$ 0 + Overflow(ON) Checks for overflows
$0- Overflow(OFF) Does not check for overflow

Test Range Option

Embedded Global

$T+ Test(ON) Checks array indices and subrange variables
$T- Test(OFF) Does not check them

584 MODULA

The Upper= Lower Case Sensitivity Option

Embedded Global

$U+ Upper=lower(ON)

$U - U pper= lower (OFF)

Extension Option

Embedded Global

Does not distinguish between uppercase and
lowercase
Distinguishes between type case

$X+ eXtensions(ON)
$X- eXtensions(OFF)

Native Code Option

Embedded Global

Allows Turbo Modula-2 extensions
Flags extension as nonstandard

N/A Native(ON)
N/A Native(OFF)

Generates native code for the Z80
Generates M-code

Note: Embedded native code switches have no effect.

Error Diagnosis 585

APPENDIX D
Error Diagnosis

This section lists most messages that Tiirbo Modula-2 issues for execution errors.
Usually, an error message is caused by a faulty program; however, some messages
can also result from illegal input to an otherwise correctly executing program.

Format of a Runtime Error Message

While a program is executing, the Turbo Modula-2 system checks for a number
of runtime error conditions. The various error sources are listed in the next two
sections.

An error message can be issued by the runtime system, as well as by some sup
port module or application program. The process is the same in every case: The
executing program is stopped and a message of the following form is given:

(Name of Error) in module (Name of Module)
(possibly a further explaining message)
Press nCn for calling chain >

For example, in module BadStuff the value of an expression computes to 11
where the maximum allowed is 10. The following message is then given:

BoundsError in module BADSTUFF
0 to 10 is legal range, but 11 was evaluated
Press nCn for calling chain >

In another example, an attempt was made to read data from file IN.DAT when
the end of that file had already been reached. This error is not detected by the
interpreter, but rather by the module Files.

EndError in module FILES
While processing file B:IN.DAT
Press ”0" for calling chain >

586 MODULA

In Tbrbo Modula-2, an error constitutes an exception. Exceptions can be issued
by the Turbo Modula-2 interpreter and by any Modula-2 program unit. They can
be trapped in an application program with an exception handler. The raising and
handling of an exception is explained further in Chapter 9, »Tbrbo Modula-2 Ex
tensions.«

Errors Detected by the Interpreter

Errors detected by the interpreter are often caused by faulty program logic, and
with some of these errors there is no reasonable way to continue a program.
Therefore, only part of the following errors can be caught explicitly (by name)
in an exception handler. These exceptions are the ones exported by the
pseudomodule SYSTEM: OVERFLOW, REALOVERFLOW, and
OUTOFMEMORY. The remainder can only be caught with the ELSE clause of
the EXCEPTION statement: BoundsError, DivisionByZero, StringTooLong,
FunctionReturnsNoResult, EndOfCoroutine, CaseSelectError, PointerError, and
Illegalinstruction.

BoundsError. The value of an arithmetic expression lies outside of its admissable
bounds. This can happen when

□ A value is assigned to a variable of some subrange type, some user- defined
scalar type, or one of the types CHAR, BOOLEAN, CARDINAL, or IN
TEGER. The value lies outside of the bounds defined by the type used.

□ A function procedure returns a value exceeding the bounds defined by the type
of the function.

□ An array index lies outside of the admissable bounds.

A check for this error can be suppressed by the compiler option (* $T- *). This
leads to somewhat shorter object modules and slightly faster execution times. As
a rule, however, the efficiency gains do not make up for the resulting safety loss;
therefore, bounds-checking is turned on by default.

Additional messages: (number) to (number) is legal range, but (number)
evaluated. Indicates the maximum or minimum value allowed, as well as the com
puted value. This can occur if a negative INTEGER value is assigned to a CAR
DINAL, or if a CARDINAL above 32767 (the maximum INTEGER value) is

Error Diagnosis 587

assigned to an INTEGER. The system does not know whether the left-hand side
of the assignment is of type INTEGER or CARDINAL; therefore, both
possibilities are displayed. For example:

65535 is assigned to an INTEGER

or

-1 is assigned to a CARDINAL

Note that the same internal bit value denotes 65535 when interpreted as a CAR-
. iNAL and 4 when regarded as an INTEGER.

DivisionByZero. An attempt has been made to divide by 0.

Additional message: None

Overflow. The result of some computation involving CARDINALS, INTEGERS,
or LONGINTs that became too large or too small to be represented in the com
puter’s memory. If the truncated value does not fit into the range of the destination
type, an OVERFLOW can also result from a truncation function such as INT,
CARD, LONG, or TRUNC. The ranges of the three types in question are CAR
DINAL, 0 to 65535; INTEGER, -32768 to 32767; and LONGINT, -2147483648
to 2147483647.

For operations involving INTEGER and CARDINAL arithmetic and CAR
DINAL multiplication, overflow checking can be suppressed by turning the com
piler option $ 0 off.

Additional message: None

RealOverflow. A real value has been computed that exceeds the admissable range
for REALs (-10* 38 to 10* 38).

Additional message: None

StringTooLong. A string expression has been assigned to an array with elements
of type CHAR. The string is too long to be held in its full length in the array.
The string is not truncated to fit; instead, StringTooLarge is raised.

588 MODULA

Additional message: None

FunctionRetumsNoResult. A function procedure reaches its end before ex
ecuting a RETURN statement.

Additional message: None

EndOfCoroutine. A coroutine reaches its end before being left by a TRANSFER
or IOTRANSFER statement.

Additional message: None

OUTOFMEMORY. The program has run out of main memory.

Additional message: Stack = (,number), Heap = (number). Storage is occupied
from two sides: Stack and Heap mark the boundaries of the upper and lower oc
cupied part of memory, respectively. The out-of-memory condition arises when
Stack and Heap meet.

CaseSelectError. A CASE statement without an ELSE clause has executed where
no case alternatives apply.

Additional message: None.

FointerError. Dereferencing of some pointer with the value NIL has been attemp
ted. For example, given the declaration VAR cp: POINTER TO RECORD x,y:
REAL END; and the program fragment cp:=NIL; IF c p A . x > 0.0 THEN ...,
the exception PointerError is raised upon execution of the last statement.

Additional message: None

Illegallnstruction. The interpreter finds a code byte that does not represent a
legal command. This is a rare but severe error. It can occur if some parts of code
have been overwritten by the executing program; for example, if the user er
roneously addresses computations.

Additional message: (1) Absolute PC = 0number), and (2) prints the value of the
instruction counter.

Error Diagnosis 589

Errors Detected by Support Modules

This section concentrates on exceptions that result from presenting illegal input
or exceeding the computer’s limits. All exceptions signaling a programming error
are discussed in their respective modules description in Chapter 11, »The Standard
Library.«

The modules in the Turbo Modula-2 Library recognize some error conditions. An
error issued by a library module can be caught in an exception handler, provided
the exception is imported from the library module.

Exceptions Issued by Module Files

UseError. This usually occurs if writing to a write-protected disk has been at
tempted. This exception is most often caused by a disk swap. You can solve the
situation by resetting the disk before trying again.

Additional message: Drive (Drive-Code) is read-only.

DiskFull. Writing to disk is impossible, presumably because the disk or disk
directory is full.

Additional message: While processing file, (Name): indicates the name of the
file involved in the write operation.

EndError. An attempt has been made to read data after the end of a file has been
reached. This usually constitutes a programming error.

&
Additional message: While processing fil t^f (Name): indicates the name of the

file involved in the read operation.

DeviceError. The disk cannot be read correctly. This is equivalent to the dreaded
BDOS ERROR/BAD-SECTOR message of CP/M.

Exceptions Issued by Module Loader

LoadError. An error has occurred during the loading of a program. The cause
of the error is given in an additional message.

590 MODULA

Additional messages: (1) File not found : (File Name); (2) Read Error : (File
Name)\ (3) Out of memory; (4) Version Conflict : (File Name).

The first three messages are self-explanatory. The fourth, version conflict,
results when the version of an object module does not coincide with the version
required by an importing module. (For a more detailed discussion, refer to the
section about Loader in Chapter 11.)

The Calling Chain

If a program exhibits a runtime error, the Turbo Modula-2 system offers a power
ful diagnosis. Turbo Modula-2 helps to localize the error and gives some clues
about the state of the program at the time of the error’s occurrence. This informa
tion is contained in the calling chain, which displays all active procedures at the
point where they were called. The chain is displayed on the screen if you press
[C] after the following prompt:

Press "C" for calling chain >

This appears next to the actual error message. If you do not want a calling
chain, simply press 1 J 1 or any letter except C. This will return you to the main
menu.

The calling chain consists of one or several lines of the following form:

(Name of Module) (Name of Procedure) (Offset Number) (Program
Counter)

The first line states the module, the procedure, the offset number, and the pro
gram counter where the error occurred. Note that only the first six characters of
the module and procedure are displayed. The left column specifies the module
enclosing the procedure in which the error occurred. The second column shows
the procedure where the error occurred. The offset number corresponds to the
numbers produced in the compiler listing. It specifies the offset (in bytes) of the
error point from the beginning of the enclosing procedure or module, whose name
is listed in the second column. The program counter is used in the Options menu
to find where the error occurred in the source file.

591Error Diagnosis

The second line of the calling chain specifies the point where the procedure in
the first line was called. The same specification holds for the lines that follow.

The chain finishes when the main program is reached. At that point, the name
of the main program is in both the module and the procedure column. The calling
chain also terminates if a procedure representing a coroutine is reached. Since
coroutines are not called by any other part of the program, they are considered
the same as main programs.

If you trace the calling chain from bottom to top, you will experience the same
f aquence of situations that your program went through before the point of the run-
. ,ie error.

A calling chain, caused by some hypothetical program, is shown in the follow
ing example:

BoundsError in module BADSTUFF
0 to 10 is legal range, but 11 was evaluated
Press "C" for calling chain > C

Module Procedure offset PC
BADSTUFF SNEAKY 17 101
BADSTUFF SUB 113 123
TEST Q 55 154
TEST TEST 20 164
>

We can follow the events by starting at the bottom with the main program Test.
Test executes until it reaches the offset of 20 in the main program, then it calls
the procedure Q. The call to procedure Q occurs when the program counter is

(Aual to 164.

Looking at the next line we see that procedure Q exists in the module Test. This
procedure then executes until it reaches an offset of 55 from its beginning. At this
point the program counter is 154, which is pointing at a call to the procedure Sub.

The next line shows that we have called the procedure Sub in module BadStuff.
The procedure Sub executes until it calls Sneaky. When Sneaky is called, the pro
gram counter is 123.

592 M O D U L/

The top line of the calling chain shows that the error occurred in the procedure
Sneaky in module BadStujf. The offset of the error in Sneaky is 17. The progran
counter where the error occurred is 101. We know from the error message tha
there was some type of bounds error; so we can look at that line for assignmen
or indexing problems.

Finding RunTime Errors

To find where this error occurred in the source code without having to guess with
offsets into the procedures or look at a listing, you can use the program countei
and the Find RunTime Error option found in the Options menu.

At the main menu, press I o 1 to enter the Options menu. Then press 1 f |
for Find RunTime Error. You should know the program counter and the name o
the module in which the error occurred. First you are prompted with the nam(
of the main module that was running. If this is not the module where the erroi
occurred, then backspace over it and enter the correct name. If it is the correc
module name, then just press I J 1 .

Next you are prompted to enter the PC. At this point you should enter th<
number you obtained from the calling chain in the program counter column
When the compiler has compiled to this point, you will be thrown into the editoi
with the cursor at the corresponding runtime error position. This utility is helpfu
for finding errors quickly and reducing program development time.

Compiler Error Messages

Error messages sent by the compiler can be synthesized or fixed. The »fixed-
messages are read from a file named ERRMSGS.TXT, which may or may not b<
online during compilation. If it is not, only the error number, not the correspon
ding message, can be displayed. Table D-l provides all of the messages containec
in ERRMSGS.TXT.

Some messages will not be found in this list. For example:

" expected, but n = n found

is not in the list because it is synthesized from parts of the faulty program
together with predefined pieces of text. Other messages are contained only partial

Error Diagnosis 593

ly by ERRMSGS.TXT; the rest are supplied from the faulty program. Items sup
plied by the compiler appear in parentheses.

Table D-l Messages in ERRMSGS.TXT

Error in Identifier

0 (Identifier) is undeclared.
1 (Identifier) is declared twice.
2 (Identifier) is not field of this record.
3 (Identifier) is not exported by this module.
4 (Identifier) already exists outside of module.
5 Unresolved FORWARD reference: (Identifier).
6 Unresolved export: (Identifier).
7 (Identifier) is not readable.
8 (Identifier) is not printable.
9 (Identifier) expected.

10 (File name) not found.
11 CODE must be imported from SYSTEM.
12 Two different versions of (Module name).SYM imported.
13 No standard procedure allowed here.
14 Procedure must be declared at outer-most level.
15 (Identifier) is exported twice.

E r ro r in S y n ta x

20 Illegal key word at start of statement.
21 Illegal start of statement.
22 Identifier, literal, or »(« expected.
23 (Not used).
24 Loop counter may not be external or parameter.
25 Expression must have constant value.
26 No enclosing LOOP for EXIT.
27 No RETURN from module allowed.
28 String literal spans over several lines.
29 Past end of file.
30 Badly formed number.
31 Illegal symbol.
32 End of file expected.
33 String literal expected.

594 M ODULA

34 CODE must follow procedure heading; it is not allowed here.

General Errors

41 Set elements may only range from 0 to 15.
42 (Not used).
43 Modules with unqualified export list may not be exported.
44 Module does not export in QUALIFIED mode.
45 Length of actual string does not match.
46 Second value must be greater.
47 Case label occurs twice.
50 String assignments not allowed in standard Modula-2.
51 String comparisons not allowed in standard Modula-2.
52 Not allowed in standard Modula-2.
53 Procedure ALLOCATE not found.
54 Procedure DEALLOCATE not found.
55 Illegal definition of procedure ALLOCATE.
56 Illegal definition of procedure DEALLOCATE.

Error in Type

60 Function procedure required.
61 No function procedure allowed here.
62 Actual parameter is byte-packed, but F o rm a l VAR p a ram e te r a ss igns a

word.
63 No such variant exists.
64 Element types of actual and formal arrays differ.
65 Types of actual and formal parameters differ.
66 Sizes of type and argument differ.
67 Declarations of procedure variable and procedure differ.
68 Two different declarations of same procedure.

Error in Constant

70 Integer required, but large cardinal value computed.
71 Cardinal required, but negative value computed.
72 Value lies outside of subrange bounds.
73 Number too large.
74 Real number too large.
75 Overflow in constant expression.

Error Diagnosis 595

Error!Compiler Limit Exceeded

80 Case label must not be g re a te r th a n 32767.
81 Too many local variables.
82 Too many procedures, strings, and exceptions.
84 Too many imported modules.
85 Insufficient space for import/export: name-table overflow.
86 Insufficient space for import/export: type-table overflow.
87 Insufficient space for import/export: identifier-table overflow.
88 Insufficient space for import/export.
90 Expression too complex or too many parameters.
91 Boolean expression too long.
92 Too many nested function calls.

Error Implementation Restriction

95 Byte-sized array elements cannot be substituted for VAR parameters.
96 Byte-sized array elements cannot be used as arguments of INC or DEC.

Warning

50 String assignments not allowed in standard Modula-2.
51 String comparisons not allowed in standard Modula-2.
52 & not allowed in standard Modula-2.

BNF Syntax for 'liirbo Modula-2 597

APPENDIX E
BNF Syntax for Turbo Modula-2

The syntax of the Turbo Modula-2 language is presented here using the formalism
known as Backus-Naur Form (BNF). The following symbols are meta symbols
belonging to the BNF formalism; they are not symbols of the language.

< term>

(X)*
[X]
X
X I Y

"X". or 'X'
(X)

Names of language constructs are surrounded by
n < " and " > ".
Represents zero or more repetitions of X.
Means X is optional.
Means X is mandatory.
Indicates that X and Y are alternatives and that
either X or Y must be used.
Means X is written exactly as shown.
Means X must be chosen.

All other symbols are part of the language (reserved words of Tbrbo Modula-
2 are in boldface type). For easy reference, the syntactic constructs are listed
alphabetically.

< ActualParameters> ::= n(n [< E x p L is t>] n) ff

<AddOperator> ::= " + " I n- n I n0Rn

< ArrayType > ::= n ARRAY " < SimpleType > (n , * < SimpleType > }#
"OF"

< type >

<assignment> ::= <designator> ": = " <expression>

<block> ::= (<declaration> }# ["BEGIN" < StatementSequence>]
[<ExceptionHandler>] "END"

<case> ::= [<CaseLabelList> ":" < StatementSequence>]

598 MODULA

<CaseLabelList> ::= <CaseLabels> [",■ <CaseLabels>)#

<CaseLabels> ::= <ConstExpression> [<ConstExpression>]

< CaseStatement > :: = "CASE" < express ion > "OF" <case>
[" ! " [< !case>] j
["ELSE" <StatementSequence>]

"END"

.< character > = < letter> 1 <digit> 1 " "1 "!" 1 f n i | n ^ n

1 "% " 1 i t ^ n | n t n | n ^ it | n) n | " # • " | " + n |

n n | n . n | n n | it y n | n . n | n . n | ni < it | n _ n |

n > n | n ? n | n @ n | it [n | it \ it | n] 1» | n a n | n n

n * | n £ n | n | n | n j n | n ~ n

< CompilationUnit> ::= <DefinitionModule> I ["IMPLEMENTATION"]
< ProgramModule >

<ConstantDeclaration> ::= < ident> n = n <ConstExpression>

<ConstExpression> : := <expression>

<declaration> ::= "CONST" (< ConstantDeclaration> ";")# I
"TYPE" (< TypeDeclaration> " ; ")* I
"VAR " (< VariableDeclaration> ";")# I
< ExceptionDeclaration> ";" I
<ProcedureDeclaration> ";" I
<ModuleDeclaration> ";"

<definition> ::= "CONST" { < Cons tantDeclarat ion > ";")* I
"TYPE" (< ident> [" = "<type>] ";" }* I
"VAR " (< VariableDeclaration> ";")* I
< ExceptionDeclaraton> ";" I
< ProcedureHeading > ";"

< DefinitionModule> ::= "DEFINITION MODULE" < id e n t >
{ < import>)* [< d e f in it ion> }# "END"
< ident > " ."

BNF Syntax for Turbo Modula-2 599

<designator> :: = qualident { ". n < ident>1
n["ExpList"]nI " A "}*

<digit> ::= <octalDigit> I "8" I n9n
<element> ::= <expression> [n..n <expression>]

<enumeration> ::= n(" <IdentList> n)n

<exception> ::= [<IdentList> ":" < StatementSequence>]

^export> :: = nEXPORT" ["QUALIFIED"] <IdentList> ";"

<expression> ::= <SimpleExpression> [<relation>
<SimpleExpression> }#

<ExceptionDeclaration> :: = "EXCEPTION" <ident> <ident>}*

< ExceptionHandler> ::="EXCEPTION" <exception> ["I"
<exception>)*
["ELSE" < StatementSequence>]

<ExpList> ::= <expression> ("," <expression> }#

<factor> :: = <number> I <string> I <set> I <designator>
[<ActualParamters>] I

"(" <expresion> ")" I "NOT" <factor>

<FieldList> :: = [<IdentList> ":" <type> I
"CASE" [< ident >] ":" < qualident >
"OF" < variant> ("I" < variant>)#
["ELSE" < FieldListSequence>] "END"]

< FieldListSequence> ::= <FieldList> [";" <FieldList>)*

<ForStatement> ::="F0R" < ident> <expression> "TO"
< express ion>
["BY" <ConstExpression>]
"DO" < StatementSequence> "END"

600 MODULA

< FormalParamenters> ::= "(" [<FPSection>
(";" < FPSection>)#]")»
[n:n < qualident>]

<FormalType> ::= ["ARRAY OFn < qualident>]

<FormalTypeList> :: = n(n [["VAR"] <FormalType>
{"," [VARn] <FormalType>)*] ")" [":"
< quälident>]

<FPSection> ::= ["VAR"] <IdentList> n: n <FormalType>

<hexDigit> :: = <digit> I "A" I "B" I nCn I ,TDn I "E" I nF"

< ident> ::= letter (letter I < digit>}*

<IdentList> ::= < ident> ("," < ident>)*

< IfStatement> :: = nIFM <expression> "THEN"
< StatementSequence >
("ELSIF" < expression> "THEN"
< StatementSequence>)*
["ELSE < StatementSequence>]
"END"

< import> ::= ["FROM" < ident>] "IMPORT" <IdentList> ";"

< InlineCode> ::= "CODE" "(" <string> ")" "END"

<integer> :: = <digit> (<digit>)# I
[<octalDigit>)# ("B" I "C") I
< digit > (<hexDigit>)*

"A" 1 "B" 1 ■C 1 "D" i "E" i n p n | "G" 1 " H"
"I" 1 "J" 1 "K" 1 "L" i " M" i "N" 1 "0" 1 n p n

" Q " 1 nR" 1 "S" 1 n - p n i "U" i "V" 1 n W n | "X"
n y n | "Z" 1 "a" 1 n b" i "c" i " d n | "e" 1 n p n

"g" 1 "h" 1 "i" 1 r t j n i "k" i " 1 1 "m" 1 "n"
" 0 " 1 "p" 1 "q" 1 n p n i "s" i "tn 1 "u" 1 "v"
"W" i "x" 1 "y" 1 "z"

<letter>

BNF Syntax for Turbo Modula-2 601

< LoopStatement> ::= "LOOP" < StatementSequence> "END"

<ModuleDeclaration> :: = "MODULE” < ident> [<priority>] ";"
(< import >) [< export >] < block >
< ident >

<MulOperator> ::= I "/" I "DIV" I "MOD" I "AND"

<number> ::= <integer> I <real>

<octalDigit> ::= "0" I "1" I "2" I "3" I "4" I "5" I "6" I "7"

<PointerType> ::= "POINTER TO" <type>

<priority> "[" <ConstExpression> "]"

<ProcedureCall> ::= < designator> [<ActualParameters>]

<ProcedureDeclaration> ::= <ProcedureHeading> ";"
(< block > I <InlineCode>)
< ident>

<ProcedureHeading> ::= "PROCEDURE" <ident>
[< Formalparameters>]

<ProcedureType> ::= "PROCEDURE" [FormalTypeList]

<ProgramModule> :: = "MODULE" < ident> [< priority>] ";"
{ < import >)# < block > < ident > "."

< qualident > ::= < ident > ("." < ident >}#

<RaiseStatement> ::= "RAISE" [<ident> [<expression>]]

<real> ::= <digit> [<digit>)* [<digit>]* [ScaleFactor]

<RecordType> ::= "RECORD" < FieldListSequence> "END"

< relation> ">"l "<"l "> = "l "< = " I "#"l " < > "
I "IN"

602 MODULA

< RepeatStatement> :: = "REPEAT < StatementSequence > n UNTIL"
< expression>

<ScaleFactor> ::= ("E" I "D") [" + " I] <digit>
(<digit>}*

<set> ::= [<qualident>] "(" [<element> [","
< element>)*] n]"

<SetType> ::= nSET OF" <SimpleType>

<SimpleExpression> ::= [" + " I] <term> (< AddOperator>
<term>)#

<SimpleType> ::= <qualident> I <enumeration> I
< SubrangeType >

<statement> : : = [assignment I ProcedureCall I IfStatement I
CaseStatement I WhileStatement I RepeatStatement I
LoopStatement I ForStatement I WithStatement I
RaiseStatement I nEXIT" I n RETURNn [expression]]

< StatementSequence> < statement> (< Statement>)#

<string> ::= n 'n {< character >)* n f n I tnt [< character >]# ,lf!

< SubrangeType> :: = [<qualident>] "[" < ConstExpression> ".. "
< ConstExpression> n]n

<term> <factor> (<MulOperator> <factor> }#

<type> : : = <SimpleType> I <ArrayType> I <RecordType> I
<SetType> I <PointerType> I < ProcedureType >

< T ypeD eclaration> ::= < ident> " = " <type>

BNF Syntax for Turbo Modula-2 603

< VariableDeclaration> : := < ident >[" [" < ConstExpression> "]"]
[" ," <ident> [n[n <ConstExpression>
n]n])*
":n < type >

< variant> ::= [<CaseLabelList> n:" < FieldListSequence>]

< WhileStatement> :: = "WHILEn < expression> nD0"
< StatementSequence >
nENDn

< W ith S ta te m e n t> :: = tlWITHn <designator> "DO "
< StatementSequence >
"END"

Index 605

Index

Abort command, 150
ABS, 273
ABS standard function, 273
Absolute Addresses, 117
Acknowledgements, 19
ADDRESS, 252

(ADRESS type, 250
ADDRESS type (SYSTEM) ,273
ADR, 250
ADR procedure (SYSTEM), 275
ALLOCATE, 260
ALLOCATE procedure (STORAGE),

276
AND operator, 277
Append, 239
APPEND procedure (Strings), 278
Arctan, 233
Arctan function (MathLib

LongMath), 278
ArgumentError, 280
Array of Word, 248
ARRAY standard type, 281
Array type, 62
Arrays, 555
Assembler interface, 254
Assignment Statements, 72
available variable, 284

(voiding the Menu, 137
Awaited, 245, 285
Awaited procedure (Processes), 285

BADOVERLAY, 286
BDOS, 253
BDOS procedure (SYSTEM), 287
BEGIN, 288
Begin block, 141
BIOS, 254

BIOS procedure (SYSTEM), 288
BITSET, 55
BITSET standard type, 290
Block Commands, 141, 145

Begin block, 141, 145
Copy block, 141, 146
Delete block, 141, 146
End block, 141, 146
Hide/display block, 141, 146
Move block, 141, 146
Read block from disk, 141, 146
Write block to disk, 141, 146

BNF Syntax, 597
BOOLEAN standard type, 291
Boolean type, 55
Busy Read, 224
Busy Read procedure (Terminal), 292
BYTE type (SYSTEM), 294

Call procedure (Loader), 295
Calling Chain, 590
CAP standard function, 296
CAPS, 239
CAPS procedure (Strings), 296
CARD standard function, 297
CARDINAL standard type, 298
Cardinal type, 55
CardToStr procedure (Convert), 299
CASE statement, 76, 300, 565
CaseSelectError, 588
CHAR standard type, 303
CHAR type, 54, 122
Character left, 140, 141
Character right, 140, 141
Character Set, 37
CHR standard function, 304
ClearEol, 305
ClearScreen, 226, 576
ClearScreen procedure (Terminal), 306
CleaiToEOL procedure (Terminal), 307
Close, 215
Close procedure (Files), 308
Closelnput procedure (InOut), 309

606 MODULA

CloseOutput procedure (InOut), 310
CloseText, 193
CloseText procedure (Texts), 311
CODE procedure (SYSTEM), 312
Col, 200
Col function (Texts), 313
ComLine library module, 182
ComLine Module, 229, 314
commandLine variable, 317
Comments, 42, 553
Compiler, 152
Compiler Directives, 583
Compiler Error Messages, 592
Compiler Installation, 581
Compiler Options and Switches, 163
Compress, 34
Conditional Statements, 75
ConnectDriver procedure (Texts), 318
console (Texts), 319
CONST declaration, 320
Constant Declaration, 57
Control-C, 140
Convert library module, 183
Convert Module, 241, 321
Copy, 34, 239
Copy block, 140, 146
Copy procedure (Strings), 322
Coroutines, 118,
Coroutines and Interrupts, 118, 251
Cos function (MathLib LongMath), 323
Create procedure (Files), 324
CreateText, 193
CreateText procedure (Texts), 325
Ctrl-A, 140
Ctrl-D, 140
Ctrl-E, 140
Ctrl-F, 140
Ctrl-G, 140
Ctrl-K-B, 141
Ctrl-K-C, 141
Ctrl-K-D, 141
Ctrl-K-H, 141
Ctrl-K-K, 141
Ctrl-K-R, 141

Ctrl-K-V, 141
Ctrl-K-W, 141
Ctrl-K-Y, 141
Ctrl-L, 141
Ctrl-N, 140
Ctrl-Q-A, 141
Ctrl-Q-B, 140
Ctrl-Q-C, 140
Ctrl-Q-D, 140
Ctrl-Q-E, 140
Ctrl-Q-F, 141
Ctrl-Q-I, 140
Ctrl-Q-K, 140
Ctrl-Q-P, 140
Ctrl-Q-R, 140
Ctrl-Q-S, 140
Ctrl-Q-X, 140
Ctrl-Q-Y, 140
Ctrl-R, 140
Ctrl-S, 140
Ctrl-T, 140
Ctrl-U, 141
Ctrl-V, 140 .
Ctrl-W, 140
Ctrl-X, 140
Ctrl-Y, 140
Ctrl-Z, 140
Cursor, 579
Cursor Movement Commands, 140

Character left, 140
Character right, 140
Line down, 140
Line up, 140
Page down, 140
Page up, 140
Scroll down, 140
Scroll up, 140
To top of window, 140
Word left, 140
Word right, 140

Data Types, 54
Data

Index 607

identifier, 53,
type, 53
value, 53,

DeadLock, 245, 326
DEALLOCATE, 260
DEALLOCATE procedure (STORAGE),

327
DEC standard procedure, 328
Declarations, 56, 554
Declarations of Exceptions, 124
DEFINITION declaration, 330
Delete, 239
Delete file, 150
Delete block, 141, 146
Delete character under cursor, 140
Delete commands, 140

Delete left character, 140
Delete line, 140
Delete right word, 140
Delete to end of line, 140

Delete left character, 140
Delete line, 140
Delete procedure (Files), 332
Delete procedure (Strings), 333
Delete right word, 140
Delete to end of line, 140
DeleteLine, 334
DeleteLine procedure (Terminal), 334
Delimiters, 41
DeviceError, 335, 589
Dir, 132
directory, 34
DiskFull, 336, 589
DISPOSE standard procedure

(STORAGE), 337
DIV operator, 339
Done, 197
Done procedure (InOut), 339
Done procedure (Texts), 340
Double standard function, 341
Double-precision, 39
Doubles, 342
Doubles Module, 183, 242
DoubleToStr procedure (Doubles), 343

Dynamic Variable Errors, 263

Editing Commands, 139
Character left, 140
Character right, 140
Line down, 140
Line up, 140
Page down, 140
Page up, 140
Scroll down, 140
Scroll up, 140
To beginning of block, 140
To bottom of window, 140
To end of block, 140
To end of file, 140
To last position, 140
To left on line, 140
To right on line, 140
To top of file, 140
To top of window, 140
Word left, 140
Word right, 140

END, 343
End block, 140
EndError, 344, 589
EndOfCoroutine, 588
Entier, 235, 345
Enumeration type, 59,
EOF, 218
EOF procedure (Files), 346
EOL, 347
EOLN, 198
EOLN procedure (Texts), 348
EOT, 199
EOT procedure (Texts), 349
Error/Compiler Limit Exceeded, 598
Error Correction, 157
Error diagnosis, 585
Errors detected by Support Modules, 589
Errors Detected by the Interpreter, 586
Errors during File Handling, 210
Error, General, 594
Error Implementation Restriction, 595

608 MODULA

Error in constants, 594
in Identifier, 593
in Type, 594
in Syntax, 593

Error Implementation, 595
EXCEPTION, 350
EXCEPTION Handling, 123
Exception Issued by Module Loader, 589
EXCEPTION

handlers, 123, 128
propagation, 127
raised from another exception handler,

124
Exceptions Issued by Module, 589
EXCL standard procedure, 351
EXIT statement, 80, 352
ExitScreen procedure (Terminal), 353
Exp, 233
Exp function (MathLib LongMath), 353
EXPORT, 354
Export

opaque, 105
Expressions, 49, 561
Extended Movement Commands, 140,

143
To beginning of block, 140, 143
To bottom of window, 140, 143
To end of block, 140, 144
To end of file, 140, 143
To last position, 140, 144
To left on line, 140, 143
To right on line, 140, 143

To top of file, 140, 143
Extensions, 121

FALSE. 356
Field type, (Files), 356
Filecopy, 35, 133
File Management Utilities, 132
File Processing, 216
Files library module, 182
Files Module, 210, 357
Files On Your Diskette, 21

Files with Elements of Mixed Types, 222
FileSize, 359
FileSize procedure (Files), 359
FILL, 253
FILL procedure (SYSTEM), 360
Find, 141, 147
Find and replace, 141, 148
Find And Replace Commands, 141, 147
Find run-time error, 136, 592
firstDrive, 360
FLOAT standard function, 361
Flush procedure (Files), 362
FOR statement, 77, 363
Format of a Run-Time Error message,

585
Forward statement, 93, 364
FREEMEM, 263
FREEMEM procedure (STORAGE),

365
Function Procedure, 89, 560
FunctionReturnsNoResult, 588

GetName procedure (Files), 366
Getting Started, 21
GotoXY, 226
GoToXY procedure (Terminal), 367

HALT standard procedure, 368
haltOnControlC, 368
heap-pointer, 260
Hide/display block, 141, 146
HIGH standard function, 370
highlightNormal, 372
HighLight procedure (Terminal), 371
HLRESULT, 373

Identifers, 44, 551
Identifiers,

list of library, 46
IF statement, 75, 374
Illegallnstruction, 588

Index 609

IMPLEMENTATION MODULE, 252
Implementation declaration, 375
IMPORT declaration, 378
INC Standard procedure, 379
INCL standard procedure, 382
Indent On/Off, 150
Init, 245
Init procedure (Processes), 382
Initialization string, 575
InitScreen procedure (Terminal), 383
inName variable, 384
InOut module, 182, 207, 385
INP, 253
INP procedure (SYSTEM), 387
Input Output, 184
Input and Output Extensions, 121
Input and Output Modules, 182
input (Texts), 388
Insert, 138
insertDelete, 389
Insert and Delete Commands, 140
Insert commands, 144

Insert line, 140, 145
Insert line, 140, 145
Insert mode, 140, 145
Insert mode on/off switch, 140
Insert procedure (Strings), 389
InsertLine, 145
InsertLine procedure (Terminal), 391
Installation of Editing Commands, 577
Installation of screen, 572
Installation Procedures, 571
INT standard function, 392
Integer Numbers, 39
INTEGER standard type, 393
Integer type, 55
Interface to CP/M, 253
Interrupts, 119
IntToStr procedure (Convert), 394
IORESULT, 386
IOTRANSFER, 252
IOTRANSFER procedure (SYSTEM),

395

Kill, 35, 133

Language Elements, 37
legal variable, 396
Length, 237
Length procedure (Strings), 397
Librarian, 151
Library, 181
Library modules, 100
Library Identifiers, 45

list of, 45
Line down, 140, 142
Line up, 140, 142
Linker, 167, 173
Linking Microsoft .REL-Files, 175
Linking with overlays, 169
Linking

Microsoft, 175
Listings, 154
Ln, 233
Ln function (MathLib

LongMath), 401
Loader module, 184, 264, 402
LoadError, 397, 589
Local Modules, 106
Logical devices, 187
LONG standard function, 403
LONGINT standard type, 56, 404
LongMath, 233
LongMath module, 183, 233, 405
LONGREAL standard type, 56, 399
LongToStr procedure (Convert), 406
LOOP statement, 80, 407
Low Level Access to Data, 248
Low Level Facilities, 111
Low Level Types, 115

Main Module, 97
Manual Installation, 573
MARK, 262
MARK procedure (STORAGE), 408
MathLib, 233

610 MODULA

MathLib module, 183, 233, 409
MAX standard function, 410
Memory Management, 258
Menu

avoiding it, 137
System, 29

MIN standard function, 411
Miscellaneous commands, 141, 149

Abort command, 141
Auto tab on/off, 141
Save file, 141
Tab, 141

Miscellaneous Editing Commands,
141, 149

MOD standard operator, 412
MODULE declaration, 413
Module Library, 100, 184
Modules, 97, 104
MOVE, 253
Move block, 141, 146
Multidimensional Array, 122

Nested Procedures, 91
NEW, 260
NEW standard procedure, 414
NEWPROCESS, 251
NEWPROCESS procedure (SYSTEM),

416
NextPos, 219
NextPos procedure (Files), 417
NIL, 419
Normal procedure (Terminal), 419
NoTrailer, 216
NoTrailer procedure (Files), 420
Numbers, 38
numCols, 421
numRows, 422

ODD, standard function, 423
Opaque export, 105
Open array parameters, 86, 559
open arrays, 122

Open procedure (Files), 423
Opening, Creating, and Closing a Text,

193
Openlnput procedure (InOut), 425
OpenOutput procedure (InOut), 426
OpenText, 193
OpenText procedure (Texts), 427
Operands, 50
Operating the Compiler, 153
Operating the Editor, 139
Operations on Entire Files, 214
Operator, 42, 50
Operator Precedence, 51
Operator

arithmetic, 51
logical, 51
precedence, 51
relational, 50
set, 51

OpSet, 428
Options, 135, 583
OR, 429
ORD standard function, 430
OUT, 253
OUT procedure (SYSTEM), 431
outName variable, 432
OUTOFMEMORY, 433, 588
output (Texts), 434
OVERFLOW, 435, 587

Page down, 140, 142
Page up, 140, 142
Parameter, 84
Pascal, 398
Path to search, 136
Pointer type, 61, 436
PointerError, 588
Pos procedure (Strings), 438
PROC standard type, 439
Procedural Statements, 81
Procedure call, 82
Procedure declarations, 82, 440, 559
PROCEDURE type, 68, 441, 557

Index 611

PROCESS type (SYSTEM), 443
Processes module, 183, 243, 445
Profile, 178
progName variable, 446
PromptFor, 229
PromptFor procedure (ComLine), 446
Pseudo-module, 115, 248

QUALIFIED, 448
Quit, 137

no Save, 150

RAISE, 124
RAISE Statement, 449
Random, 236
Random function (MathLib), 450
Randomize, 236, 451
READ, 452
READ and WRITE Statements, 201,
Read block from disk, 141, 146
ReadAgain procedure (Terminal), 453
Read Again procedure (Texts), 454
ReadAgain, 198

Terminal, 224
ReadByte, 455
ReadBytes, 218
ReadByte procedure (Files), 456
ReadCard, 196
ReadCard procedure (Texts), 458
ReadChar procedure (Terminal), 459
ReadChar procedure (Texts), 459
ReadChar, 196

Terminal, 224
ReadDouble procedure

(Doubles), 460
Reading and Writing, 195
Readlnt, 196
Readlnt (Texts procedure, 461
ReadLine procedure (Texts), 462
ReadLine, 198, 463

Terminal, 224
RE ADLN, 198, 164

ReadLong, 197
ReadLong procedure (Texts), 465
ReadReal, 196
ReadReal procedure (Texts), 466
ReadRec procedure (Files), 466
ReadString procedure (Texts), 468
ReadString, 196
ReadWord procedure (Files), 468
Real Numbers, 40
REAL standard type, 470
Real type, 56
REALOVERFLOW, 472 , 587
RealToStr procedure (Convert), 473
Record type, 64, 475
Records, 556
Redirectlnput, 229
Redirectlnput procedure

(ComLine), 479
RedirectOutput, 229
RedirectOutput procedure

(ComLine), 480
RELEASE, 262
RELEASE procedure

(STORAGE), 481
Rename, 36, 134
Rename procedure (Files), 482
Renameing, Deleteing and other File

operations, 195
REPEAT last find, 141, 149
REPEAT statement, 79, 484
Repetitive Statements, 77
Reserved Words, 43

list of, 43
Reset Options, 575
ResetSys, 214
ResetSys procedure (Files), 484
RETURN statement, 79, 90, 485, 566
RETURN

statement, 90
Routine Statement, 79
Running Out of Memory, 159

612 MODULA

Save and Edit, 150
and Quit, 150

Save current selection, 136
Save file, 141
Scope and local modules, 107
Scope of visibility, 92
Screen Installation, 572
Scroll down, 140, 142
Scroll up, 140, 142
Search, 141
Searching librarys, 151
SEND, 245
SEND procedure (Processes), 486
Set constants, 553
Set Operators, 562
SET TYPE, 67, 487
Set Types, 67
SetCol, 200
SetCol procedure (Texts), 489
SetPos, 219
SetPos procedure (Files), 490
SIGNAL, 491
Sin function (MathLib

LongMath), 492
SIZE procedure, 493
Special Ops, 494
Specification of MathLib and LongMath,

234
Specification of the Module Files, 212
Specification of the module Loader, 269
Specification of the Module

Processes, 244
Specification of the Module

STORAGE, 261
Specification of the Module

Strings, 238
Specification of the module

Terminal, 225
Specification of the Module Texts,

190
Specification of the Pseudo-

Module SYSTEM, 249
Sqrt, 233

Sqrt function (MathLib
LongMath), 495

Standard Identifiers, 44
Standard Library, 181
Standard Procedures, 94, 566
Standard text stream, 188
StartProcess, 243
StartProcess procedure

(Processes), 496
Statements, 71, 564

assignment, 72
CASE, 76
EXIT, 80
FOR, 77
IF, 75
LOOP, 80
REPEAT, 79
repetitive, 77
WHILE, 79
WITH, 73

StatusError, 497
STORAGE Module, 184, 260
STORAGE pseudo-module, 498
String, 499, 552
StringError, 500
Strings, 40
Strings module, 183, 237, 501
StringTooLong, 587
String Extensions, 122
StiToCard procedure (Convert), 502
StrToDouble procedure

(Doubles), 503
StiToInt procedure (Convert), 504
StiToLong procedure (Convert), 505
StiToReal procedure (Convert), 506
Structure of This Manual, 17
Structured Type, 62
Subrange type, 60
Summary of Compiler Directives, 583
Symbol files, 162
Syntax and Semantics of Exception
handling, 122
System and Low Level Modules, 183
SYSTEM Module, 184

Index 613

SYSTEM pseudomodule, 248, 506

Tab, 150
termCH, 508
Terminal Codes, 574
Terminal module, 182, 224, 508
Terminal properties, 575
Terminal Type, 575
TEXT data structure (Texts), 510
TextDriver, 511
^xtFile, 512

' aNotOpen, 513
Text module, 183, 188, 514
The Library Module Convert, 183
The Library Module Doubles, 183
The Library Module Texts, 183, 188
The Library Modules MathLib and

LongMath, 183, 233
The Linker, 167
The Module Loader, 264
The Module STORAGE, 261
The Module Strings, 237
The Pseudo-Module SYSTEM, 248
TINST.DTA, 574
To beginning of block, 144
To bottom of window, 143
To end of block, 144
To end of file, 143
To last position, 144
To left on line, 143
To right on line, 143

. top of file, 143
l j top of window, 143

TooManyTexts, 517
TRANSFER, 252
TRANSFER procedure (System), 518
TRUE standard value, 519
TRUNC standard function, 520
TSIZE procedure (SYSTEM), 521
T\irbo Editor, 138
TURBO Modula Extensions, 121
TURBO Modula

files, 21, 29

load, 26
Type, 36, 39, 134, 237
Type declaration, 58, 522, 555
Type transfer, 113
Type transfer and type conversion, 114
Type

array, 62
Boolean, 55
cardinal, 55
char, 54
enumeration, 59
integer, 55
pointer, 61
procedure, 68
real, 56
record, 64
set, 67
structured, 62
subrange, 60
unstructured, 59

Typography, 18

Unstructured Types, 59
UseError, 523, 589
User-Defined Identifiers, 45
Untyped parameters, 116, 560
Utilities, 175
Utility Modules, 183, 233

VAL standard function, 524
VAR declaration, 525
Variable Declaration, 58, 559
Variant record, 66
Version Control, 174
Vocabulary, 38

WAIT, 245
WAIT procedure (Processes), 526
WHILE statement, 79, 527
WITH statement, 73, 528, 566
WORD, 92,

614 MODULA

WORD type (SYSTEM), 529
WRITE, 531
Write block to disk, 141, 146
WriteByte procedures (Files), 532
WriteBytes, 218
WriteBytes procedures (Files), 533
WriteCard, 199
WriteCard procedure (Texts), 533
WriteChar, 199
WriteChar procedure (Terminal), 534
WriteChar procedure (Texts), 535
WriteChar

Terminal, 224
WriteDouble procedure

(Doubles), 536
WriteHex procedure (InOut), 537
Writelnt, 199
Writelnt procedure (Texts), 538
WRITELN, 538
WriteLn procedure (Terminal), 540
WriteLn procedure (Texts), 541
WriteLn, 200, 224
WriteLn procedure (InOut), 541
WriteLong, 200
WriteLong procedure (Texts), 542
WriteOct procedure (InOut), 543
WriteReal, 199
WriteReal procedure (Texts), 544
WriteRec procedure (Files), 545
WriteString, 199
WriteString procedure (Texts), 546
WriteString procedure (Terminal), 545
WriteString

Terminal, 224, 545
Texts, 546

WriteWord, 547
WriteWord procedure (Files), 547

Z80 Specific Procedures, 253

Reflex
Reflex ist mehr als nur die außergewöhn
liche Kombination aus Datenbank und
Tabellenkalkulation. Reflex ist Daten
analyse. Der direkte Weg zu den ver
steckten Wahrheiten hinter reiner
Information.

In der Verbindung aus grafischen
Eigenschaften, übersichtlicher Fenster-
/ hnik, hoher Programmgeschwindigkeit

-J einem vollständigen Satz von Funk
tionen schafft Reflex eine Transparenz,
die Ihnen bisher kein anderes Datenbank
programm geboten hat.

Reflex macht schnell
Da Reflex’s Daten im Hauptspeicher
gehalten werden, sind die meisten Opera
tionen wie sortieren, filtern etc. sehr
schnell. Durch die Above-Board-Unter-
stützung kann Reflex aber auch mit größe
ren Datenmengen umgehen, ohne Sie auf
die Folter zu spannen.

Reflex kennt fünf verschiedene
Ansichten: Die Listenansicht, die Formu
laransicht, die Kreuztabelle, die Grafik-
und die Berichtsansicht. Während Sie in
der Listenansicht alle Daten auf einen
Blick sehen und erfassen, läßt sich der
vollständige Datensatz im Formular dar
stellen. Was Sie gerade in der einen

(isicht bearbeiten, sehen Sie sofort auch
als Grafik in der Grafikansicht - als
Balken- Kreis- oder Liniendiagramm.

Reflex kann mehr
Mit Hilfe der Kreuztabelle bekommen Sie
ein Instrument, von dem viele Spread-
sheet-Eigner träumen: Denn hier können
Sie verschiedene Datensätze und Daten
felder miteinander in Beziehung setzen,

und zwar so lange, bis Sie nur das sehen,
worauf es Ihnen ankommt.

Reflex ist durch seine grafische Benut-
zeroberläche leicht zu beherrschen.
Pull-down-Menüs und Dialogboxen
führen Sie sicher durch die Vielfalt von
Funktionen. Ihren ersten Bericht oder Ihre
erste Grafik erzeugen Sie schon nach den
ersten 15 Minuten.

Mit unzähligen Funküonen aus den
Bereichen Betriebswirtschaft, Finanzen
Statistik und Mathematik lösen Sie die
meisten kalkulatorischen Probleme. Diese
Kombination finden Sie bei kaum einer
anderen Datenbank.

Technische Daten
■ 250 Felder pro Datensatz
■ 254 Zeichen pro Datenfeld
■ 64.000 Datensätze pro Datenbank
■ Feldformate: numerisch, Ganzzahl,
Datum oder Text
■ suchen und filtern in den verschieden
sten boolsehen Verknüpfungen.
■ automatisch berechnete Felder
■ Logik- und Datumsfunktionen,
■ VARY-Funktion generiert Datensätze
nach bestimmten Verlaufsvorgaben
■ Fremdatenübemahme aus Lotus 1-2-3,
dBase II, DIF (Multiplan) und ASCII

Systemvoraussetzungen
IBM PC bzw. kompatible,
oder Siemens PCD
mindestens 384 KByte Hauptspeicher,
Farbgrafikadapter, Herculeskarte oder
EGA-Karte

HEIMSOETH & BORLAND

	MODULA-2

	TABLE OF CONTENTS

	Introduction 17

	Chapter 1. Getting Started 21

	Chapter 2. A Brief Tour of Turbo Modula-2 29

	Chapter 3. Language Elements 37

	Chapter 4. Expressions 49

	Chapter 5. Data Structure 53

	Chapter 6. Statements 71

	Chapter 7. Modules 97

	Chapter 8. Low-Level Facilities ill

	Chapter 9. Turbo Modula-2 Extensions 121

	Chapter 10. System Operations 131

	Chapter 11. The Standard Library 181

	Chapter 12. Turbo Modula-2 Reference Directory 271

	Appendices

	Appendix A. Turbo Modula-2 and Turbo Pascal 549

	Appendix B. Installation Procedures 571

	Appendix C. Summary of Compiler Directives 583

	Appendix D. Error Diagnosis 585

	Appendix E. BNF Syntax for Turbo Modula-2 597

	Introduction

	Structure of This Manual

	Typography

	Acknowledgements

	Chapter 1 - Getting Started

	Before Use

	Files on Disk

	Preparing a Work Disk

	Running Turbo Modula-2

	Chapter 2 - A Brief Tour

	A Brief Tour of Turbo Modula-2

	The Menu System

	Type file: myfile.def

	Chapter 3 - Language Elements

	Character Set

	Vocabulary

	Numbers

	Strings and Characters

	Delimiters and Comments

	Reserved Words

	Identifiers

	Chapter 4 - Expressions

	Properties of an Expression

	Operator Precedence

	Chapter 5 - Data Structure

	Data Objects

	Elementary Data Types

	Declarations

	User-Defined Unstructured Types

	Procedure Types

	Chapter 6 - Statements

	Assignment Statements

	Conditional Statements

	Repetitive Statements

	Procedural Statements

	Standard Procedures

	IMPORT < identifier list>;

	Chapter 7 - Modules

	The Main Module

	Library Modules

	Local Modules

	Chapter 8 - Low-Level Facilities

	Type-Transfer Functions

	Low-Level Types and the Pseudomodule System

	Chapter 9 - Turbo Modula-2 Extensions

	Input and Output Extensions

	Error-Handling Extensions

	Chapter 10 - System Operations

	File-Management Utilities

	Options

	Avoiding the Menus

	The Turbo Editor

	Table 10-1 Summary of Turbo Editor Commands

	The Librarian

	Version Control

	Utilities

	Chapter 11 - The Standard Library

	Overview of Input and Output Modules

	Overview of Utility Modules

	Overview of System and Low-Level Modules

	Details of the Module Library

	Utility Modules

	The Doubles Module

	System-Dependent Modules

	Modules in Memory Management

	Chapter 12 - Turbo Modula-2 Reference Directory

	ABS
	ADDRESS
	ADR
	ALLOCATE
	AND
	APPEND
	Arctan
	ArgumentError
	ARRAY
	available
	Awaited
	BADOVERLAY
	BDOS
	BEGIN
	BITSET
	BOOLEAN
	BusyRead
	BYTE
	Call
	CAP
	CARD
	CARDINAL
	CardToStr
	CASE
	CHAR
	CHR
	ClearEol enumerated
	CleaiToEOL procedure
	Close
	Closeinput
	CloseOutput
	CloseText
	CODE
	Col
	ComLine
	commandLine
	Connect Driver
	console (Texts)
	CONST
	Convert
	Copy
	Cos
	Create
	CreateText
	DeadLock
	DEALLOCATE
	DEC
	DEFINITION
	DELETE
	DELETE procedure (Files)
	DELETE procedure (Strings)
	DeleteLine procedure (Terminal)
	DeviceError
	DiskFull
	DISPOSE
	DIV
	Done
	DOUBLE
	Doubles
	DoubleToStr
	END
	EndError
	Entier
	EOF
	EOL
	EOLN
	EOT
	EXCEPTION
	EXCL
	EXIT
	ExitScreen
	Exp
	EXPORT
	FALSE
	FILE
	Files
	FileSize
	FILL

	APPENDIX A - Turbo Modula-2 and Turbo Pascal

	What’s the Difference?

	APPENDIX B Installation Procedures

	Installing M2

	Screen Installation

	Installation of Editing Commands

	APPENDIX C

	Summary of Compiler Directives

	APPENDIX D Error Diagnosis

	Format of a Runtime Error Message

	Errors Detected by the Interpreter

	Errors Detected by Support Modules

	The Calling Chain

	Compiler Error Messages

	APPENDIX E

	BNF Syntax for Turbo Modula-2

	Index

