ZCPR3

THE MANUAL

RICHARD CONN

EEEEEEEEEEEEEEE

ZCPR3 The Manual

Copyright 1985, New York Zoetrope, Inc.
All rights reserved.

Reproduction by any means, electronic, photographic, or
otherwise, is strictly forbidden under U.S. and
International copyright laws without the express written
consent of the publisher.

Library of Congress Cataloging in Publication Number:
84-061790

ISBN 0-918432-59-6

New York Zoetrope
80 East 11th Street
New York, NY 10003

ZCPR3 The Manual was set in H-P Times Roman. The
book was printed and bound by Maple-Vail Book
Manufacturing Group at their York, PA. plant.

Production: Mitch Knauffs, Chris Terry, Richard White.
Printed in the United States of America

First Printing: June, 1985
5 4 3 2 1

FOREWORD

This book has been greatly needed since the release of ZCPR3 about six months
ago. It took about eight months to write ZCPR3 and its online documentation.
Surprisingly, it took six months to produce this book; to say the least, this book took
much more effort and time than anticipated. ButI feel it was worth it, and I thank the
community of users who have patiently waited for the book to be completed.

I thank Chris Terry for his monumental effort in performing the technical
editing for this book. I also thank Frank Gaude of Echelon for his support. Finally, I
thank my parents and my second family for the support and encouragement they gave
me throughout the trial of creating the book. I believe that the end result is worth it.

DEDICATED
to my parents and my second family

Richard Conn
December 17, 1984

TABLE OF CONTENTS

Section 1 Using ZCPR3 and Command Definitions
1 ZCPR3 and CP/M

2 Basic ZCPR3 Concepts

3 TOOLSET of ZCPR3

ALIAS (Version 1.1)

CD (Version 3.0)

CLEANDIR (Version 1.0)

CMD (Version 1.0)

CMDRUN

COMMENT (Version 2.0)

CP (SYSRCP)

CPSEL (Version 1.0)

CRC (Version 2.0)

DEYV (Version 1.0)

DEVICE (Version 1.0)

DIFF (Version 2.0)

DIR (Version 1.0)

DIR (CP-Resident)

DIR (RCP-Resident, provided in SYS.RCP)
DPROG (Version 1.0)

DU/DIR Forms

DU3 (Version 1.0)

ECHO (Version 1.0)

ECHO (CP-Resident or RCP-Resident)
ELSE (from SYSFCP Version 1.0)
ERA (CP-Resident)

ERA (RCP-Resident)

ERASE (Version 5.0)

ERRORI1 (Version 1.0)

ERROR2 (Version 1.0)

ERROR3 (Version 1.0)

ERROR4 (Version 1.0)
ERRORX (Version 1.0)

FI (from SYSFCP 1.0)

FINDF (Version 2.0)

GET (CP-Resident)

GO (CP-Resident or RCP-Resident)
GOTO (Version 1.0)

HELP (Version 5.0)

HELPCK (Version 1.0)

HELPPR (Version 1.0)

21
21
23
24
25
26
26
27
28
29
30
3]
31
33
34
34
35
42
43
44
45
45
46
46
47
48
43
49
49
49
50
50
51
52
52
54
55
56

IF (Version 1.1)

IF (FCP-Resident)
IFSTAT (Version 1.0)
JUMP (CP-Resident)
LDR (Version 1.0)
LIST (CP-Resident)
LIST (RCP-Resident)
MCOPY (Version 1.4)
MENU (Version 3.2)
MKDIR (Version 3.0)
MU (RCP-Resident)
MU3 (Version 1.0)
NOTE

P (RCP-Resident)
PAGE (Version 2.0)
PATH (Version 3.0)
POKE (RCP-Resident)
PRINT (Version 2.0)
PROT (RCP-Resident)
PROTECT (Version 2.0)
PWD (Version 1.0)
QUIET (Version 1.0)
RECORD (Version 3.0)
REG (Version 1.0)
REG (RCP-Resident)
REN (CP-Resident)
REN (RCP-Resident)
RENAME (Version 3.0)
SAK (Version 2.0)
SAVE (CP-Resident)
SETFILE (Version 1.0)
SH (Version 1.0)
SHCTRL (Version 1.0)
SHDEFINE (Version 1.0)
SHFILE (Version 1.0)
SHOW (Version 1.0)
SHSET (Version 1.0)
SHVAR (Version 1.0)
SUB (Version 3.0)
TCCHECK (Version 1.0)
TCMAKE (Version 1.0)
TCSELECT

TYPE (CP-Resident)
TYPE (RCP-Resident)
UNERASE (Version 1.0)
VFILER (Version 1.0)
VMENU (Version 1.0)

56

59
59
60
61
61
62
64
65
65
66
69

70
71
72
73
74
75
76
77
77
79
79
80
80
80
81
82
83
84
84
85
85
86
86
88
88
91
91
97
101
101
101
103
103

WHEEL (Version 3.0)
WHL (RCP-Resident)
XD (Version 1.2)
XDIR (Version 2.0)
XIF (Version 1.0)
Z3INS (Version 1.0)
Z3LOC (Version 1.0)
ZEX (Version 3.0)

4 On-Line HELP Subsystem

5 Menu Subsystem
(V)MENU Programming Command Summary
(V)MENU Error Messages
VMENUCK (Version 1.0)
MENUCK (Version 1.0)
6 Shell Subsystem
7 VFILER and File Maintenance
VFILER Command Summary
User Functions

8 DU3 Disk Utility

Section 2 Inside ZCPR3
9 Inside the ZCPR3 Command Processor
10 Inside the ZCPR3 System Segments
11 Inside the ZCPR 3 Message Buffers
12 Inside ZEX
13 Inside the ZCPR3 Shells
14 Inside the ZCPR3 Error Handlers

15 Inside the ZCPR3 Tools

Section 3 Installation
16 Overview of ZCPR3 Installation

17 Step 1: Selcting the Features

104
105
105
107
111
112
113
113
121

133
144
147
147
147
149
153
154
155

161

183
211
219
223
225
227

229

233

243

18 Step 2: Planning the ZCPR3 247

19 Installation Steps 3 -6 253
Step 3: Modifying the BIOS Cold Boot Routine 253
Step 4: Editing Z3HDR.LIB 269
Step 5: Overlaying the old BIOS and the CCP 280
Step 6: Implanting the Operating System Image 280
Sample Session 280

20 Step 7: System Segment Installation 291

21 Step 8: Utility Installation 305

22 TCAP Facility 309

Appendices

A Glossary of Terms 329

B Documentation 333

C References 335

ZCPR3 and SYSLIB2 Publications and Documentation
ZCPR3 Manuals
SYSLIB2 Manuals
Software Upgrades to SYSLIB2 and ZCPR2
Sources
CP/M Books
ZCPR3 Sources
Selected Computer Clubs
ACGNJ and SIG/M
New York Amateur Computer Club
Echelon, Inc.
New York Zoetrope, Inc.
Magazine Articles on ZCPR3
ZCPR3 Newslctters
ZCPR3 Configuration Management
ZCPR3 Electronic Bulletin Board

D Obtaining Free Software 339

Index 347

Section 1

Using ZCPR3 and Command Definitions

"As long as there were no machines, programming was not a problem at all; when we had a few weak
computers, programming became a mild problem and now that we have gigantic computers, programming has
become an equally gigantic problem. In this sense the electronic industry has not solved a single problem, it has only
created them—it has created the problem of using its product.”

E.W. Dijkstra, ACM Turing Award Lecture, 1972

"In the development of our understanding of complex phenomena, the most powerful tool available to the
human intellect is abstraction. Abstraction arises from a recognition of similarities between certain objects,
situations, or processes in the real world, and the decision to concentrate on these similarities, and to ignore for the
time being the differences.”

C.A.R. Hoare, Notes on Data Structuring.

This book is divided into three sections. Section 1 deals with learning and using
the system. In Chapters 1-2, the philosophy of ZCPR3 is presented, ZCPR3 and CP/M
2.2 are comparcd, and the basic concepts of ZCPR3 are outlined. Chapter 3 presents
the ZCPR3 Toolsct in detail; all of the commands are listed in alphabetic order, with
their syntax, their application, and examples of how to use them. After reading these
chapters, a person should be ready to use the ZCPR3 System. Chapters 4 through 8
discuss the online Help, Menu, and Shell subsystems, together with two of the major
tools (VFILER and DU3) in somewhat more detail than could be given in Chapter 3.

Section 2 discusses the internal structure and workings of some parts of ZCPR3;
this section, comprising Chapters 9 through 15, is aimed at the systcms programmer
who will be using, installing, and adapting to his own nceds a ZCPR system.

Section 3 contains dctailed instructions for installing a ZCPR3 system. Chapter
16 presents an overview of the installation process, which is complex and requires
familiarity with assembly language programming and the interface requirements of
CP/M. Chapter 17 offers guidance on how to sclect the many features available if you
don’t have cnough memory or disk space to accommodatc all of them. Chapters 18
through 22 describe in detail the installation procedures and the ZCPR3 tools that
make life easier for the installer.

Do not be put off by the complexities of Section 3. If you mercly want to use
ZCPR3 with all its flexibility and added power, you can obtain a self-installing
version, called Z3-DOT-COM from Echelon, Inc. This version pokes and pries into
your own system until it has all the required information, and then Dbegins the
installation process automatically, reporting on your console as it completes
installation of cach feature and utility. Two very simple commands entcred from the
keyboard do all the work for you.

But if you are installing ZCPR3 from the source files, or if you want to adapt the
system to mect special needs of your own, then you will necd to study Scction 3 very

2 Using ZCPHR3 and Command Definitions Sec. 1

closely.
Throughout this book a working knowledge of CP/M 2.2 is assumed. Further,

since ZCPR3 is not compatible with CP/M versions earlier than 2.2, the reader should
assumec that all references to "CP/M" mean "CP/M version 2.2."

Using ZCPR3 and Command Definitions Sec. 1 3

1 ZCPR3 AND CP/M

This chapter explains the ideas and motivation behind ZCPR3. It describes, in
some detail, what ZCPR3 offers to the user and what the user necds to understand in
order to make effective use of ZCPR3.

A First Look at ZCPR3

To see how ZCPR3 meshes with CP/M, let us first take a look at the memory map
of figure 1-1, which shows the components of a standard CP/M system alongside those
of a ZCPR3-based system.

Address CP/M System ZCPR3 System

High Memory -> ======———=-c———————-= - mmee—————————m— e
| BIOS | | Modified BIOS |

BDOS+0EQOOH => ==——-———emmmmmmmmmmmn | e
| CP/M 2.2 BDOS | | CP/M 2.2 BDOS |

CCP +0800H => =———m——mm e e e
| CP/M 2.2 CCP | T | ZCPR3 |

CCP Base > mmm e P —m——mmmmmmmmmmmm e
| Scratch Area | A* | Scratch Area |

100H I ettt ettt
| CP/M Buffers et al| | ZCPR3 Buffers et al]

OH I e C L I T e PP P P e PP P LT

*TPA = Transient Program Area, which covers the Scratch Area and the CCP or
ZCPR3

Figure 1-1. Components of standard CP/M and ZCPR3 systems

A ZCPR3-based system is structured in almost the same way as a CP/M-based
system. For all intents and purposes, ZCPR3 looks like CP/M to a program designed to
run under CP/M. The differences are in the way ZCPR3 looks to a program designed
to run under ZCPR3 and the way ZCPR3 looks to the user. A program designed to run
under ZCPR3 can extract much more information about the user’s system from ZCPR3
than it could from CP/M, and it can automatically configure itself to use the resources
of the user’ssystem in ways which it could not do under CP/M.

CP/M As an Operating System

CP/M is an Operating System: that is, a computer program whose function is to
manage the resources of thc computer and to provide services in responsc to

4 Using ZCPR3 and Command Definitions Sec. 1

standardized requests from application programs (which manipulate data in ways that
scrve the user’s specific needs). All computers have four basic resources to be managed
by thc operating system:

o Memory

o Proccssors and Processcs (a Process is a running Program)

o Devices

o Information

Memory Management. CP/M does very little in the way of Memory Management. It
mcrely defines the basic memory structure as shown in figure 1-1; it does not allocate
sections of the memory to application programs or do any of the partitioning usually
associated with the memory management function.

Process Management. CP/M does no Process Management. There is only one
processor, SO0 no processor management is needed. Only one process at a time can run,
so CP/M simply starts the process and then relinquishes all control. The process then
has complete control over the entire microcomputer, and CP/M does nothing to stop it
from doing anything it wishes to do. Co-routines or time-sharing between users on the
basis of a clock interrupt are sometimes found, but in such cases the allocation of time
slices to users is a function of a separate process control program, not of CP/M.

Device Management. The beauty of CP/M is the way it does device and
information management. Device Managementis performed by the Basic Input-Output
System (BIOS) of CP/M. The BIOS provides a standardized, hardware-indcpendent
intcrface to the devices attached to the microcomputer. The routines controlling these
devices may be accessed by way of a table of jump instructions located at the
beginning of the BIOS. The parameters passed to these routines, the parameters
returned by thesec routines, and the functions performed by these routines are
precisely defined. The applications programmer does not need to know how the
routines perform their functions, but only what they do and how to communicate with
them. This is a process box , or black box concept, illustrated in figure 1-2.

Input Parameters |

are precisely known | The Process Box is
\Y a "Black Box," and
————————————————————— it is not necessary
| Function is | <=- to know what is in
| Precisely Known | the box in order
--------------------- to use it

Output Parameters
are precisely known

Figure 1-2. Process Box

For example, the fourth entry in the BIOS Jump Table accesses the Console Input
Routine. To obtain a character from the user’s console, regardless of what type of

Chap.1 ZCPR3AND CP/M : 5

device the console may be (such as a CRT or printing terminal), an application
program has only to make a subroutine call to address BIOS + 9 (each Jump Table
Entry is three bytes long); the BIOS will then return the next character from the
console in the A register. To output a character to the console, the sof tware need only
place that character into the C register and make a call to BIOS + 12. The jump table,
which is in a constant location relative to the start of CP/M, ensures that the correct
driver routine will be accessed, regardless of where CP/M is located in the memory
(minimum memory size is 22K, maximum is 4K).

The BIOS performs all of the functions necessary for CP/M (and the programs
which run under CP/M) to control and communicate with the disk subsystem and most
commonly used peripherals such as printers, modems, and so on. Surprisingly, only
seventeen general-purpose functions are required to provide the hardware interfaces
necessary to perform all character and disk I/O under CP/M. They are:

1. Initialization Functions

o Cold boot initialization (when the system is first turned on)

o Warm boot initialization (performed periodically after the system is turncd on)
2. Character Input/Output Functions

o Console status (check for availability of a character at the console)

o Console input

o Console output

o List status (check to see if List Device is ready to output the next character)

o List (printer) output

o Auxiliary output

o Auxiliary input
3. Disk Input/Output Functions

o Home drive (move head to Track 0)

o Select drive (which drive to use)

o Select track

o Select sector

o Sclect memory address to read into or write from

o Read block (at selected track and sector) into memory

(at selected memory address)
o Write block (to selected track and sector) from memory
(at selected memory address)
o Logical-to-physical sector translation (for efficiency of disk use)

The BIOS, then, creates a virtual machine : that is, a hypothetical computer on
which all CP/M software runs (including CP/M itself). This hypothetical computer
always behaves in the same manner and has the same logical interface to application
programs, regardless of the actual hardware used to implement it. It makes no
difference whether 5.25" floppy disks storing 100K per disk, 8" floppy disks storing
600K per disk, or 8" Winchester hard disks storing SM per disk are used. The software
talks to all of these devices in the same way, and this makes such software
transportable at the binary level between any two microcomputers running CP/M. The
only proviso is that the application program must use the standard CP/M function
calls when requesting service; direct calls to the BIOS via the jump table may result in
loss of portability to some systems.

[} Using ZCt'R3 and Command Definitions Sec. 1

Information Management. Information management, in the CP/M context,
consists of the comtrol of files on disk. CP/M shines here too, extending the virtual
machine concept to the management of files on disk. The Basic Disk Operating System
(BDOS) portion of CP/M creates this file-oriented virtual machine. To illustrate this
point, some (but by no means a/l) of the functions provided by the BDOS are:

o Reset disk system

o Sclect disk

o Create file (actually, create a directory entry for a file)
o Open file (make a file ready for reading or writing)

o Close file (terminate the read/write process)

o Delete file

o Rename file

o Sct memory address to read into or write from

o Read next block from file

o Write next block into file

Note the similarity between these BDOS functions and the BIOS disk functions.
These BDOS functions are accessed in a different way from the BIOS, but the process
box concept is maintainecd. All one nceds to know are the input parameters, the output
paramcters, and what the function performed is. Once more, transportability is
realized at the binary level , but this time it is with respect to the information
manipulated by the computer—a more general concept than merely performing disk
and character I/O. It is at this more abstract level that the virtual machine makes
possible the exchange and sale of software. In effect, the creation of CP/M spawned
an industry based on a feature found only in computer systems running the UNIX
operating system: the exchange of software regardless, by and large, of the actual
computer hardware involved and independent of any one computer hardware
manufacturer. CP/M and UNIX differ in that CP/M restricts the microprocessor used
in the computer, while UNIX makes no restriction. It was only this feature, combined
with the open architecture and inexpensive hardware of the machines, that allowed so
many third-party software vendors to develop programs that fired the imagination
and made the industry viable.

Where ZCPR3 Fits In

As we can see from Figure 1-1, the virtual machine of CP/M is left more-or-less
intact in the ZCPR3 environment. The BDOS is unchanged, and though the BIOS is
modified, the changes are minor and the interfaces are left unaffected. Hence, under
ZCPR3, we are dealing with the same virtual machine, so that software which ran
under CP/M 2.2 will also run under ZCPR3, except in a few rare cases in which the
software calls on the CCP to perform some functions (in which cases ZCPR3 may or
may not work).

Chap.2 ZCPR3 AND CP/M 7

2 Basic ZCPR3 Concepts

ZCPR3 provides a more convenient and significantly more powerful human
interface than the standard CCP (command processor) of CP/M. The facilities
provided by ZCPR3 are described below. In this discussion it is assumed that all the
available features have been installed; however, the uscr can choose to install only
those features that will be useful to him.

Directories

Like CP/M, ZCPR3 is able to address up to sixteen logical disks, cach containing
up to thirty-two user areas. A directory under ZCPR3 defincs a user area on a disk,
and is identified by one of two methods. The first method is the combination of the
disk Ictter and the the user area number (e.g., A10 for disk A, user area 10); this will be
referred to as the "DU (disk/user) form." The second method is to use a mnemonic
(such as JEFF, which could be assigned to disk B, user area 5). The naming of a
directory will hereinafter be referred to as the "DIR form." By convention, the name
ROOT is assigned to Disk A/User 15.

The directory is a logical concept. In a multi-user system it serves to separate the
files of the various users; in a single-user system, it is valuable for grouping together
the files related to a specific project and separating them from those of other projects.
It is important to note that, because ZCPR3 uses the file management facilities of the
CP/M BDOS, there is only one physical directory on each logical disk. This physical
directory contains the entries for all files in all user areas on the disk; a user number is
a part of each directory entry and associates the file with the user arca in which that
file logically resides. Physically, there is no distinction between uscr areas, because
when a program requests file space the CP/M file management system allocates the
first free block (i.e., the one with the lowest block number). The free block may have
been releascd by erasure of a file, and may therefore be sandwiched between blocks
belonging to a file of a different user.

General Usage. The ZCPR3 resident commands and ZCPR3-specific utilities may
use either the DU form or the DIR form to identify a directory whenever the simpler
D: form would be used under CP/M; the D part of the DU form is optional if the
desired directory is on the currently logged-in disk, and the U part is optional if it is
the same as that of the current directory. For instance, if the user is logged into disk B,
user 5, the DU reference "A:" refers to disk A, user 5,and the DU reference "10:" refers
to disk B, user 10. References such as "C31:" completely specify a particular disk and
user area, (in this case, disk C, user area 31). The DIR form may be used instead of the
DU form provided that a name has previously been defined for the target directory.
For example, if the name ROOT is assigned to refer to disk A, user 15, then the ZCPR3
commands like "TYPE ROOT:MYFILE.TXT"and "DIR ROOT:" refercnce files on disk
A, user area 135.

The user can be logged into any directory on any disk and readily work with files
in any other directory on any disk. Just as the CP/M user can prefix a COM file with a
disk letter in order to temporarily log into another disk and extract that file from it, so
the ZCPR3 user can prefix a COM file witha DU or a DIR form.

In summary, the DU and DIR forms of directory reference can be employed in
three basic ways:

8 Using ZCPR3 and Command Definitions Sec. 1

1. To reference a directory location for a file, as in commands like "TYPE
AISMYFILE.TXT" or "DIR ROOT:"

2. To rcference a directory location from which to extract a COM file, as in
commands like "ROOT:MYPROG PARAMS"

3. Tologinto a directory, as in commands like "B7:","12:", "C:", and "ROOT:"

Advantages of the DIR Form . The DIR form offers several additional features.
Chicf among these is that cach named directory may also have a password associated
with it. If a password is specified, any reference to such a directory by the user results
in the user being prompted for the password. Should the user enter an invalid
password, access is denied and the directory reference is changed to his current
dircctory. If no password is specified, access is unrestricted.

The DIR form is more easily remembered than the DU form. A directory named
"ASM" is much more easily identified as containing assembly language source code
files than "B7."

Finally, the DIR form provides a mechanism which to some degrce supports
transportability of software between systems. Programs can now look for directorics
by the name in which thcir overlays and other working files may be stored. To
illustrate, the HELP command of ZCPR3 searches for a file named in its parameter list
("HELP ZCPR3" scarches for the file ZCPR3.HLP). When the HELP command is
issued, it scarches along the command search path (discussed below) for the specificd
HLP file, and, if this scarch fails, it looks for the file in a directory named "HELP."
One system may keep the directory named "HELP" on disk A, user area 16, whereas
another system may keep "HELP" on disk B, user area 31. Regardless, the HELP utility
will find the correct directory.

ZCPR3 Prompt

The ZCPR3 prompt usually tells the user what directory he is logged into. ZCPR3
can be configured to present any one of four prompt formats to the user:

1. The prompt may be displayed as ">", in which case no indication is given as to
which dircctory the user is logged into.

2. The prompt may be displayed as "d>" or "du>", in which case just the disk or disk
and user arca are presented to the user. "C>" and "B7>" are examples of such a
prompt.

3. The prompt may be displayed as "dir>", in which case only the directory name is
presented to the user. The user need never concern himself with the DU form and
can think of all of his dircctories mnemonically. "ROOT>" is an example of this
prompt. If the current directory does not have a name, this prompt appears
simply as">".

4. The prompt may be displayed as "du:dir>", in which case all information is
presented. "A15:ROOT>" is an example.

Some of the ncw ZCPR3 utilities are specifically designed to manipulate named
directories. Among these are:

B CD Log Into a Named Directory (like the DU: or DIR: commands, but far more is
done)

Chap.2 Basic ZCPR3 Concepts 9

B PWD Print Working Directory; this command lists the names of the directories
accessible to the user

B MKDIR Make a Directory; create a new set of named directories or modify an
existing sct

All of the ZCPR3 resident commands and utilities respond to the ZCPR3 DU and
DIR forms, but conventional CP/M programs do not. If a DU or DIR form is presented
in the command line of a conventional CP/M program, the form is usually intcrpreted
as the disk referenced by the form. For example, if the "ROOT" directory is disk A,
user area 15, then "WS ROOT:-MYFILE. TXT" will be read by the WordStar program to
mean "WS AAMYFILE. TXT". Some programs, such as PIP, will not respond favorably to
the DU and DIR forms. As a general rule, only the D form should be used in
conjunction with non-ZCPR3 utilities.

Command Search Path

A path is a sequence of directories that are to be searched for a particular file in
the order specified by the sequence. The directories in the path may be specified by
absolute DU forms, by symbolic DU forms, by DIR forms, or by a mixture of all thrce.
The scquence always starts with the directory into which the user is currently logged,
and ends with a special directory (by convention called "ROOT"). The ROOT
directory contains COM files—such as directory display utilitics, telecommunication
packages, editors, and copy utilities—that are frequently used throughout the system
and are sometimes called by application programs.

Although the terms "root" and "path" are taken from UNIX and have some
functional resemblance to their UNIX equivalents, it is important to notc that ZCPR3
directories are not hierarchical in the sense that UNIX directorices are. In UNIX, a
directory is a file containing filenames and other information about the files—and
these names may belong to text files, binary executable files, or command scripts; but
they may also belong to files which are themselves subordinate directory files, so that
a "trec" of directories and subdirectories is possible. The BDOS treats directories in a
different way from files; thus, under CP/M and ZCPR3 all dircctorics arc on the same
level and search paths are arbitrary—there is no physical tree structure. If any tree
structures are to be established, they will have to be done in a "logical" fashion. By
making directories visible or not visible (which is possible when only the DIR form is
used), logical trees can be created. Logging into a directory via CD, for instance, may
run an ST.COM file which loads a ncw set of dircctory names, suddenly establishing
visibility to these directories (establishing a nodc of the trce). Sce the description of
the CD command for more details.

The PATH command is uscd to definc the search path desired by the user. The
following examplcs all define exactly the same path, but use the different forms. At
the start of the path, the user is logged into Disk B, User 5.

Absolute DU: B5 BO A5 AlS5
Symbolic DU: $$ S0 AS AlS
DIR forms: LETTERS WP SPELL ROOT

A dollar sign used in symbolic DU forms specifies "Current Disk" if it appecars in the
first position, or "Current User Number" if it appears in the sccond position. Use of

10

Using ZCPR3 and Command Definitions Sec. 1

the DIR forms assumes that all the names have previously becn assigned to specific
dircctories.

Command Search Processing
Command processing under CP/M is really quite simple:

Input and parse command line from user or file.
Determine if it is a CCP-resident command; if so, run the command.

Dectermine if the current disk and user area contains a COM file with a name that
matches the command; if so, load it and run it.

Print error message if 2 and 3 fail.

ZCPR3 offers a much more sophisticated and flexible command processing

facility. The ZCPR3 command search hierarchy can be expressed as follows (the
command processors to which reference is made will be fully described later):

1.

Input and parse the command line from the user, a running SUBMIT file
($$$.SUB), or a ZEX or ZEX-like input source (ZEX is a memory-based command
file processor which can be thought of as a memory-based SUBMIT).

Check the current Flow Command Package (FCP) to see if it recognizes the
command; if so, run the command through the FCP.

Check the current Flow State to see if it is TRUE; if so, continue; if not, flush the
command and advance to the next one (step 1).

Check the current Resident Command Package (RCP) to sce if it recognizes the
command;if so, run the command through the RCP.

Check the ZCPR3-resident command table for the command; if found, run it
within the ZCPR3 command processor.

Search along the command search path for a COM file which matches the verb in
the command line, logging into the disks and user areas indicated in the path until
either the bottom of the path is reached or the desired COM file is found; load and
run the program, if found.

If an Extended Command Processor has becen specified (at installation time), load
it and pass the command line to it for execution

If steps 2-7 fail, invoke an Error Handler program if one has been installed; if no
Error Handler has been installed, print an error message.

The ZCPR3 command processor follows these steps when it attempts to resolve a

command line presented to it. Because steps 1-5 use memory-resident facilities, this
procedure is quite fast, and the ZCPR3 user realizes a very rcasonable response time
from the system.

Command Sources
In a full ZCPR3 System, there are four places where commands can be found:

1. Within the ZCPR3 command processor itself
2. Within memory-based resident command packages
3. Within memory-based flow command packages

Chap. 2

Basic ZCPR3 Concepts

4, In the form of COM files on disk

Table 2-1: Comparison of ZCPR3 and CP/M CCP Resident Commands

Function

Display $DIR File Names
Display $SYS File Names
Display All File Names

Erase Specified Files
Erase with Verify

Rename File
Rename Over Existing File

Print File on Console
Without Paging

Print File on Console
With Paging

Print File on Printer
Save Memory into File
Without Overwrite Warning
Save Memory into File
With Overwrite Warning
Save Mcmory into File
and Specify Size in Hex
Save Memory into File
and Specify Number of
Blocks

Load File Anywhere into
Memory

Reexecute Last Transient
Without Reloading It

Call Subroutine Anywhere in
Memory

Change Disk
Change User
Change Disk and User at

Same Time

Prefix Commands

ZCPR3 Command
DIR DU:afn

DIR DU:afn S
DIR DU:afn A

ERA DU:afn
ERA DU:afnV

REN DU:ufn=ufn2
REN DU:ufn=ufn2

TYPE DU:ufn P
TYPE DU:ufn

LIST DU:ufn
No Equivalent

SAVE n DU:ufn
SAVE nH DU:ufn
SAVE n DU:ufn S
or

SAVE nH DU:ufn S

GET adr DU:ufn
GO params
JUMP adr

D:

U:

DU:

or DIR:

D:, U:;, DU;, DIR:

CCP Command
DIR D:afn

No Equivalent
No Equivalent

ERA D:afn
No Equivalent

REN DU:ufn=ufn2
No Equivalent

TYPE D:ufn
No Equivalent

No Equivalent
SAVE n D:ufn

No Equivalent
No Equivalent

No Equivalent

No Equivalent

No Equivalent

No Equivalent

D:

USER u

No Equivalent

D:

11

12 Using ZCPR3 and Command Definitions Sec. 1

These four areas are briefly described below; more detailed discussions of the
commands themselves and how the command processors work are contained in a later
chapter.

ZCPR3 Command Processor. Like the CP/M CCP, ZCPR3 contains some built-in
commands. It can contain all of the CCP commands (except USER, which is not
needed) and a few more, but all of the ZCPR3 resident commands arc different
because they have logical extensions that offer features not found in the CP/M
resident commands. Table 2-1 compares the various resident command forms under
the CP/M CCP and ZCPR3.

The Extended Command Processor (ECP) is a program that is run by the ZCPR3
Command Processor. The entire command line is passed to the ECP, so the ECP can sce
the line as it was intended to be executed. It can perform its own additional parsing
and evaluation and then either resolve the command or pass a new command line back
to ZCPR3 for another round of interpretation.

If the ECP is not found, the conventional error message is given, flagging the
original command as being in error. If the ECP (usually named CMDRUN.COM) is
found, then the entire command line is passed to it as though it had been run as a
command in its own right. For instance, if the original command line was:

MASM MYPROG

and the file MASM.COM was not found but the Extended Command Processor
CMDRUN was, then this would be equivalent to issuing the command:

CMDRUN MASM MYPROG'

The utility of this feature can be seen immediately. Imagine that the SUBMIT
program were renamed to CMDRUN. Then the failure of a command would cause
SUBMIT to run and attempt to run a command file.

With this feature in mind, two ZCPR3 transients are provided for use as Extended
Command Processors. They are SUB and ZEX. SUB and ZEX are command file
processors. SUB is like an enhanced SUBMIT, and ZEX is also like an enhanced
SUBMIT but it places its executable text into memory and runs much faster.

Resident Command Packages. Commands may also reside within a Resident
Command Package (RCP). An RCP is a file which contains one or more commands and
is loaded into memory by the LDR utility of ZCPR3 for direct execution by the
ZCPR3 command processor. Each command within an RCP looks and acts like a COM
file, but instead of having to be loaded from disk each time it is executed, the
command executes immediately from within its memory-based RCP. Several standard
RCPs are provided in the ZCPR3 distribution files, and Table 2-2 lists some of these
commands and their functions.

Resident command packages of fer several advantages to the ZCPR3 user:

1. Disk space can be saved, because a number of small commands can be grouped
together in one file and loaded as a group for execution.

2. Time can be saved, because RCP-based commands are memory-resident once their
RCP has been loaded; therefore, no disk activity is involved in locating and
loading them.

Chap. 2 Basic ZCPR3 Concepts 13

3. Some commands, such as those built into the CP/M CCP, which are normally
included in the ZCPR3 command processor, can alternatively be placed into an
RCP, thereby freeing up the command processor for more system-oriented
functions.

4. There is usually more space available in an RCP than within the ZCPR3
command processor, so RCP-based commands can be larger and morec powerful
than their ZCPR3-based counterparts.

5. Commands residing within an RCP generally do not occupy any space in the
Transient Program Area; thus, if debugging facilities are made RCP-resident,
they can examine the TPA after a transient program has been executed in an
undisturbed state.

Table 2-2. Commands Available in Resident Command Packages

Command Function
CP Copy a file
ECHO Echo the command line tail to the console or printer; this

is useful in message display and device programming

ERA Erase files, but an inspect option is available which
displays cach file and allows the user to approve

LIST Print a group of files on the printer

MU Memory utility—this is a screen-oriented memory editor which
allows the user to change any byte anywhere in memory and
examine locations in memory with ease; the TPA is not affected by
running MU, so the last transient program run can be examined

P Peek into memory, producing a dump of memory;
the TPA is not affected

POKE Poke into memory, changing byte values at will
PROT Set protection attributes for files
TYPE Type a group of files on the console

Flow Command Packages. A Flow Command Package (FCP) is very similar in nature to
an RCP—it is a package of commands that is loaded by LDR for execution directly
from memory. Commands that control the Flow State of the system are typically stored
here. Nine flow states may exist at any one time in a ZCPR3 system: the empty state
(which is TRUE) and IF Levels | to 8. The ZCPR3 command processor is constantly

14 Using ZCPR3 and Command Definitions Sec. 1

aware of the current flow state of the system, and if this state is TRUE, the ZCPR3
command processor will allow any command to execute if at all possible. If the flow
state is FALSE, howcver, only commands which reside within an FCP may be
executed. The IF command is usually used to raise the user to the next flow state level
and set its value to TRUE or FALSE as the result of testing some condition. Table 2-3
shows the commands that are usually placed within an FCP.

Table 2-3. Common FCP Commands

Command Syntax Function Examples

IF IF cond Test the indicated condition IF EXIST FILE
and raise to the nextlevel, IF EMPTY FILE
setting the Flow State to IF NULL $1
TRUE if the condition is IF ~NULL $2

TRUE and FALSE otherwise

FI FI cmt Terminate the current Flow FI end inner IF
State and drop down to the
previous level (same meaning
as ENDIF in conventional

terms)

ELSE ELSE cmt Toggle the current Flow ELSE do other
State

XIF XIF cmt Exit all IF Levels, dropping XIF done

to the empty flow state
(which is TRUE), if the
current Flow State is TRUE;
else do nothing

Command (COM) Files on Disk. The fourth type of command recognized by ZCPR3 is
the standard COM file. This is an executable binary image which runs at location
100H. Programs such as WordStar (WS.COM) and dBASE II (DBASE.COM) are
implemented as COM files. ZCPR3 handles COM files in much the same way as CP/M
docs. The difference is that ZCPR3 actively searches for a COM file in all directories
on the current scarch path, whereas CP/M scarches only a specific disk and user arca
and then gives up. The ZCPR3 user can shorten the search by explicitly stating where
the file resides, but with the command search path he does not have to.

The ZCPR3 command processor loads the buffers in low memory in a manner
quite similar to the CP/M CCP, so a COM file loaded by ZCPR3 sees thesc buffers and
parametcrs in the same way it would sce them under CP/M. ZCPR3 also loads some
special buffers with additional information (such as the user areas referenced for the
first two file names in the command lin¢) that is meaningful only to ZCPR3-specific
utilities. However, a normal CP/M COM file will not notice these buffers or be
affccted by them.

Chap. 2 Basic ZCPR3 Concepts 15

Multiple-Command Lines

The multiple-command line feature adds much flexibility and versatility to the
ZCPR3 System. Unlike CP/M, ZCPR3 allows the uscr to spccify, on one line, a
sequence of commands separated by a semicolon. For example:

A>B: ;DIR A7:*,TXT;DIR C22:*%,COM A;C7:;ERA *,COM;DIR

is a valid command line to ZCPR3. This feature buys the ZCPR3 user two important
advantages:

1. A sequence of timc-consuming commands can be issued at onc time, and the user
can leave the systcm and do something else until the sequence completes. A
ZCPR3 utility (SAK), designed with this in mind, rings the consolc bell to alert
the user when the command sequence completes or reaches a critical point.

2. One program can invoke another program by placing a command linc into the
multiple-command line buffer, setting a pointer to the first character of the
command line, and returning to the operating system. ZCPR3 will then resume
command line execution at the pointer location and run the command for the
previous program. This feature makes aliases and shells (among other things)
possible.

Shells

The command search hierarchy described above is fundamental to the ZCPR3
command processor itself, but ZCPR3 also supports the concept of a shell. A shell is a
program that acts as an interface between the user and the ZCPR3 command processor.
Shells can complctely change the user’s mode of interaction with a ZCPR3 system;
their function is to lift the user to a higher level of abstraction which is further away
from the details of the machine he is using and closer to the problem he wants to solve.

Scveral shells are provided with ZCPR3, each with a programming language and
environment of its own. MENU and VMENU are two such shells; they present menu
displays to the user, allow him to select an item from a menu display with a single
keystroke, and then build command lines based on this selection, passing these
command lines to the ZCPR3 command processor for execution. When all commands
in a sequence have been executed, the ZCPR3 command processor automatically
reinvokes the shell, and the user finds himself back at his menu. All shells are
documented in the chapter of this book which describes the commands.

The user never needs to know what commands are built and exccuted—all he
needs to know is how to interpret the menu and strike a single character to select the
function he desires. The shell hides from him all the details of implementation. Thus,
an application coded in the command language associated with one of thesc shells can
be run by a person with no technical knowledge except the little required to turn the
machine on and sclect major functions.

Scripts

A script is a sequence of commands that may be stored in a disk file and executed
as if they wcre a single command, merely by invoking the name of the file. A SUB file
executed by the SUBMIT command of CP/M is an example of a command file of this
type. However, because the ZCPR3 command processor is more powerful and (lexible
than the corresponding CP/M facilities, much more complex opcrations can be

16 Using ZCPR3 and Command Definitions Sec. 1

performed much more conveniently than could be done under CP/M.

There are many situations in which a uscr could find himself issuing the same
scquence of commands, perhaps with minor variations, over and over again. Entering
a complex command many times from the keyboard is not only boring, but leads to
mistakes. These, in turn, can lead to wholly undesirable results that may not even be
discovercd until the last command terminates. At best, time is wasted editing the
command line when a mistake is found before the RETURN key is hit. If each
command is cntcred on a separate line of a script, mistakces are less likely and, better
still, only a few keystrokes (the name of the script) are needed to invoke the sequence.

As a typical examplc the user may want to assemble a program (with the M80
asscmblcr) and, if the assembler found no errors, link it (using the L80 linker) to create
a COM file. To do this, the user might create the following script, in which $1
rcpresents the program to be assembled and linked.

M80 =$1

< if this succeeds >

L80 $1,$1/N,A:SYSLIB/S,/U,/E
ERA *.REL

Since this sct of commands could well be in a file ASM80.SUB to be executed by
the CP/M command "A>SUBMIT ASMS80", you might well ask "Why call it a script
instead of a submit file, and why make a fuss about it?" The point is that this is not the
only form of script, and that ZCPR3 offers the user another convenience to assist him
in cascs like this—the alias. An alias is a script that can be invoked as if it were a
program in a standard COM file, merely by giving its name as a command. In the
above example, the following alias could be created:

ASM8O:
M80 =$1;
IF INPUT;
L80 $1,$1/N,A:SYSLIB/S,/U,/E;
ERA $1.REL;
FI

The IF statement checks to see whether the M80 assembler actually generated a
rclocatable object file; the FI statement terminates the group of statements to be
executed if that condition is true. Now, by issuing the command "ASM80 MYPROG",
the script commands are run, with the following results:

1. The program MYPROG.MAC is assembled.
2. The scquence pauses to allow the user to see the results of the asscmbly; if it is
successful, he may strike the RETURN key and allow commands 3 and 4 to

executc; if it is not successful, the N option aborts commands 3 and 4.

3-4. If the uscr responded in the affirmative at step 2, the L80 linker is run and
MYPROG.REL is erased.

Chap. 2 Basic ZCPR3 Concepts 17

5. TheIF is terminated and the alias returns control to ZCPR 3.

The great advantage of using an alias is that, since it is itself a command, the
ZCPR3 command processors search for the alias name in all directories included in the
current path; thus, there is no restriction as to where it resides, as therc is with CP/M
submit files.

Alias Applications. Aliases are employed in a ZCPR3 System in a varicty of ways:

1. An alias is usually run on cold boot to execute a series of programs that initialize
the system and cstablish an initial operating environment. By convention, this
alias is called STARTUP and is stored in the multiple-command line buffer by
the cold boot routine, for execution as soon as the system comes up. Using
STARTUP, the environment descriptor, initial RCP and FCP, named directory
file,and terminal description can be loaded automatically, and a MENU can then
be invoked to allow the user to select what he wants to do from that point
forward.

2. Another alias, by convention named ST, is used by the CD command. The
command "CD DIR:" will invoke CD to log the user into the indicated directory,
and, if the user has permission to enter this directory, CD looks there for the
command ST.COM. If this command is found, CD runsit. ST can be an alias that
initializes the user’s environment for him by, for example, loading a new named
directory file or bringing up a menu.

3. Commonly used command sequences can be stored in aliases, and those aliases can
be stored in the ROOT directory (at the end of the command search path) for
exccution from any directory on the system.

ZEX Command File Processor

The ZEX command file processor is a special part of the ZCPR3 System. ZEX,
which stands for Z80 EXecutive, is an integral part of the ZCPR3 System, and it
provides a memory-based command file facility which is similar to SUBMIT but stores
the commands in a memory buffer and executes them directly from this buffer.
Unlike SUBMIT, ZEX is integrated with ZCPR3, and utilities can communicate
directly with ZEX, looking at the commands it is about to issue and changing the
command flow within ZEX.

ZEX provides information to the system through the Environment Descriptor,
and a utility can read this information and find out where the next character ZEX is
going to input comes from, where the first character of the command file is, and how
to turn ZEX’s command monitor on and off to control its operation. A program can
then change these pointers and take control of the execution of commands via ZEX.
The potentials unlocked by this capability are yet to be completely explorcd, but
facilities like shells and the GOTO command are aided by this interaction with ZEX.

Environment Descriptor

Under CP/M, a few simple features of the design made it possible to transport
binary files between different CP/M systems. This capability opened the door for the
development of the CP/M world. Software engineers and programmers could write
code that would run on any CP/M system, regardless of the hardware configuration or
other capabilities of the user’s system. A market was thereby created.

18 Using ZCPii3 and Command Definitions Sec. 1

To rcmain compatible with CP/M, these simple features were retained in their
cntirety in the design of ZCPR3, with few changes. ZCPR3, however, offers the
environment descriptor as an additional feature that opens many doors to the software
developers. The environment descriptor specifies the characteristics of the user’s CRT
and printer, as well as the features available under a particular ZCPR3 system. This
information makes it possible to transport programs such as screen-oriented editors
from onec ZCPR3 system to another at the binary level; the only special requirement is
that a pointer to the target system’s environment descriptor has to be installed in the
program. The utility Z3INS performs this installation in a minimum amount of time.

Redirectable I/0O

Redirectable Input /Output refers to the ability of the user to switch to different
Input/Output devices during the course of a session. Optionally implemented through
the I/O Byte, I/O under CP/M supports four logical devices, namely:

Console (CON)input (keyboard) and output (display)
Printer (LST:) output-only

Rcader (RDR:)input-only

Punch (PUN:)output-only

Each of these four logical devices may have any one of four physical devices assigned
to it, allowing the user to work with as many as sixteen physical devices. Refer to the
CP/M 2.2 Alteration Guide by Digital Research Inc. for information on device driver
and parameter-passing requirements.

Device Assignment under CP/M. Under CP/M, the I/O Byte (at memory location 3)
specifics the assignment of these devices. It is divided into four 2-bit fields, each field
associated with a logical device; within a given field, each of the four possible values
(00, 01, 10, 11) is associatcd with a particular physical device. Assignment of a
physical device to a logical device can be done by STAT commands (e.g., "STAT
CON:=CRT:"). Table 2-4 summarizes the logical and physical device assignments and
mncmonics available through the I/O Byte. Table 2-5 lists the standard meanings of
the physical device mnemonics.

Table 2-4. I/0 Byte Assignments

Logical Dcvice --> LST: PUN: RDR: CON:

Bit Position --> 76 54 32 10

Physical Assignment ---- ---- .- ----

0 00 Binary TTY: TTY: TTY: TTY:Physical

1 01 Binary CRT: PTP: PTR: CRT:Device

2 10 Binary LPT: UPIl: URIl: BAT:Mnemomics
3 11 Binary ULIl: UP2: UR2: UCI:

To make use of this structure, each logical device driver must, every time it is
called, examine the value present in the 1/O Byte field associated with that logical
device, and use the value as an offset into a table to obtain the address of driver
routine for the physical device specified in the I/O Byte. This process adds a good deal
of code to the BIOS, and many systems do not implement it. Nevertheless, if you have,
say, a dot matrix printer and a daisywheel printer, you can use either one as the list

Chap.2 Basic ZCPR3 Concepts 19

device by issuing the appropriate STAT command; without this fcature, it would be
necessary to change the physical cable connections to the output port.

Table 2-5.1/0 Byte Devices

Physical Device Typical Meaning
TTY: Teletype
CRT: Cathode Ray Tube Terminal
BAT: Batch Processor (RDR=in, LST=out)
UCI: User-Defined Console
PTR: Paper Tape Reader

URI1:;, UR2: User-Defined Reader Devices
PTP: Paper Tape Punch

UPI1:, UP2: User-Defined Punch Devices
LPT: Line Printer
ULI1: User-Defined List Device

Device Assignment under ZCPR3. Under ZCPR3, a slightly different scheme for
redirectable I/O has been implemented. The implementer, however, has the choice of
continuing to use the CP/M scheme or switching to this new one.

When a ZCPR3 system cold boots, the BIOS loaded from the system tracks of the
disk contains only a few primitive I/O drivers. Only the CRT as a console is enabled,
and the reader, punch, and list devices are assigned to the CRT. No redirection is
permitted at this time.

The BIOS is structured so that all the I/O entries in its jump table branch to a
second jump table that is initialized by the Cold Boot Routine. This second jump table
is placed on a page boundary at the beginning of a scratch area. It is in this scratch
area that the physical device drivers reside. It is recommended that the size of this
scratch area be approximately 2K bytes to allow space for all the drivers that might be
required at any one time. Packages of I/O routines can then be loaded into it via the
LDR utility, the jump table at the beginning of the scratch area being modified to
point to the drivers that have been loaded.

This scheme for dynamically changing I/O device assignments has several
advantages over the CP/M scheme. First, it requires less memory, not only because it
eliminates the code and tables required by CP/M for sampling the I/O Byte and
dispatching the I/O call to the appropriate driver, but also because only those I/0O
drivers currently in use need to be resident in memory—under CP/M, all drivers must
be memory-resident, whether or not they are in use. Second, the assignment
capabilities are more flexible. Under the CP/M scheme, the total number of devices is
limited to sixteen, and of these no more than four can be dynamically assigned to any
one logical device; under the ZCPR3 scheme you can have as many devices as you want
in any mix, merely by loading the appropriate I/O driver packages from disk. Third,
the ZCPR3 command processing facilities make it possible for application programs to
call for a change of I/O device assignments, which is not easy under the CP/M scheme.
Fourth, assignment of devices within an I/O package can still be made in a manner
similar to the CP/M I/0 byte, but ZCPR3 provides a mechanism to refer to devices by
descriptive names (sce the DEVICE and DEV commands).

20 Using ZCPR3 and Command Definitions Sec. 1

Toolset

We have now examined the more important ideas that went into the design of
ZCPR3, and have incidentally seen some examples of how they can make life easier
for the user. But there are many components in ZCPR3—so many that it is easy to
become confused by the complexity of their interaction. What thread can we find
linking these components that will help us to understand and use ZCPR3 effectively?

Perhaps the most fruitful approach is to view the ZCPR3 System as a toolset from
which the user can create his working environment, and change this environment to
suit his changing needs. There are several classes of tools within the ZCPR3 System:

1. Utilities — tools that perform basic functions such as erasing files and displaying
directories.

2. Documentation — tools that provide online help to the user.
Programmer Aids — tools that assist the user in debugging his programs.

4. Shells — tools that act as front-ends to the ZCPR3 command processor and provide
a different type of interface between the user and the ZCPR3 System.

5. Command File Processors — tools that support the processing of files containing
commands.

The following chapters describe the programs of the ZCPR3 Toolset. Chapter 3
contains brief descriptions of all the tools, in alphabetic order by program name.
Chapters 4 through 7 describe some of the more complex tools in greater detail.

Chap.3 Basic ZCPR3 Concepts 21

3 TOOLSET OF ZCPR3

This chapter describes in detail how to use the tools provided as part of the
ZCPR3 system. The tools are described in alphabetic order of their names, for easy
reference. Some of the more complex tools are very briefly described, with references
to the later chapters in which they are more fully covered.

ALIAS (Version 1.1)

Syntax:
ALIAS <-- Define New Command
or
ALIAS dir:ufn <-- Redefine Old Command
Function:

The ALIAS facility is the script expansion utility of ZCPR3. An Alias isa COM
file, created by the ALIAS program, which contains one or more commands
(separated by semicolons) to be placed in the command line buffer. When the Alias
is invoked, parameters from the command line are implanted into the script
contained within the Alias, and the resulting new command line is placed into the
command line buffer and executed.

Options:
None.

Comments:
ZCPR3 MUST be implemented with an External Command Line Buffer in order
for ALIAS to work.

The script of the internal command line supports parameter passing in a manner
similar to ZEX and SUB. The variables $n (where 0 <= n <= 9) may be placed into
the script, and the corresponding parameters will be substituted for the indicated
variables. The variable $0 is the name of the Alias itself. The variable $* is the tail
of the alias command line.

The current disk and user may be referenced by using the variables $D and $U. $D
expands into the letter of the disk which was logged in at the time the Alias was
expanded (the home disk), and $U expands into a number (in ASCII chars)
representing the user area which was logged in at the time the Alias was cxpanded
(the home user).

The ZCPR3 System file names are available to the Alias as the variables $Fn and
$Nn, where 1 <=n <=4. $F1 refers to FILENAME. TYP of System Filc 1, $N1 refers
to FILENAME of System File 1, etc. Note that the SETFILE command is used to
define the contents of the System file names.

22 Using ZCPR3 and Command Definitions Sec. 1

’$$’ expands into a singlc ’$’.

Selected Error Messages:
"Ovfl" means that the expanded command line, combined with the remainder of
the contents of the command line buffer, is too long to fit in the command line
buffer.

Examples of Use:

ALIAS -- define an Alias
ALIAS alias =-- display script of "alias.COM" and edit

Summary of Alias Variables:

The following table summarizes the variables which may be refercnced within the
body of an Alias.

$0 Name of Alias

$n Parameter from Command Line (1 <= n <=9)

$* Tail of Command Line (everything after the verb)
$D Home Disk

s$U Home User

$Fn FILENAME.TYP of System File n (1 <= n <= 4)
$Nn FILENAME of System File n

33 The character $

Examples of Aliases

Casc 1: The user is constantly issuing the following commands in the order
indicated:

ASM myfile.BBZ
LOAD myfile

He can generalize it with the following Alias script:

ASM $1.BBZ;LOAD $1

If this Alias is named MYASM.COM, then typing "MY ASM test" will be equivalent
to "ASM test.BBZ;LOAD test".

Casc 2: Thc user has two printers on his system. He is using redirectable I/O as
implemented under ZCPR3, and he has two versions of Word Star (trademark,
Micropro)—onc for each printer. He can create an Alias containing the following

script:
Script Meaning
IF NEC=$2 Check to see if 2nd param is NEC
DEV L NEC If so, assign LST to NEC
WSN $1 and run NEC version of WS

ELSE If not ...

Chap.3 TOOLSET OF ZCPR3 23

DEV L TTY assign LST to TTY
WST S1 and run TTY version of WS
FI

If the Alias was named WSTAR, then "WSTAR myfile.txt" would be equivalent to
"DEV L TTY;WST myfile.txt"and "WSTAR myfile.txt NEC" would be equivalent to
"DEV L NEC;WSN myfile.txt".

CD (version 3.0)

Syntax:

CD dir:
or
CD du:

Function:
CD (Change Directory) is used to move from one directory to another by using the
names or literal DU forms associated with the directories. CD first logs into the
referenced directory, and, if there is a file named ST.COM in it, CD will log the
user into the referenced directory and invoke ST.COM. If there is no file named
ST.COM in the directory, CD will simply log the user in.

Options:
None.

Comments:
Under ZCPR3, there are two basic ways to log into a directory. One way is by
using the DU: or DIR: prefix (e.g., BI:ASM>TEXT: or BI1:ASM>C7:). The other way
is by using CD (e.g., BI:ASM>CD TEXT: or BI:ASM>CD C7:).

The tradeoff is in user efficiency. If a directory is always used for a particular
function, such as cataloging disks, CD may be preferred because it will not only log
the uscr in but will also run ST.COM, which can set up his environment by running
MENU or some other program or group of programs.

ST.COM is an Alias. The only purpose of ST is to load the multiple command line
buffer with a command line when it is executed without any options. This
command line may contain a reasonable number of commands which perform any
desired set of functions.

In the ZCPR3 environment, good candidates for execution by running ST via CD
include the following commands:

IDR file.NDR <=- Set up a new directory environ
PATH path-exp <-- Set up a new Command Search Path
MENU <-- Invoke the MENU Preprocessor

24 Using ZCPR3 and Command Definitions Sec. 1

ECHO message <=-- Print a Message to the User

Using CD to log into a new directory can drastically change the user’s
environment. The names of the directories he can access can change (LDR changes
the Memory-Based names), the command search path he uses can change, and he
can e¢ven find himseclf in a MENU ecnvironment or other front-end instead of a
ZCPR3 command environment.

Selected Error Messages:
"Command Line Overflow" means that there was not enough room in the command
linc to insert the command to invoke ST.COM.

Examples of Use:

CD TEXT: -- log into directory TEXT

CLEANDIR (version 1.0)

Syntax:
CLEANDIR dir: o
or
CLEANDIR o

Function:
CLEANDIR "clcans" a physical disk directory. It loads the directory of the target
disk into memory, sorts it alphabetically within each user area (ascending order by
default), and writes it out to disk filling unused directory entries with ES5.

A DIR: prefix is allowed, but only the disk reference is meaningful, so if
"CLEANDIR ROOT:" is issued where ROOT: is A15:, then disk A is cleaned.

Options:

D sort user areas and files in descending order

Comments:
CLEANDIR’s sort on the disk directory has several advantages:

1. Utilitics such as XDIR, which sort the disk directory after loading it, run faster
since the directory is already sorted.

2. The possibility of rccovering files by the UNERASE command is increased if
CLEANDIR has been run on the directory recently before the files were erased.
Note that any erased files absolutely cannot be recoverecd by UNERASE if
CLEANDIR was run between the time they were erased and UNERASE was
executed.

3. Uscof DU3 to look at the directory is facilitated if the directory is already sorted
by CLEANDIR.

Chap.3 TOOLSET OF ZCPR3 25

Selected Error Messages:
Sclf-explanatory.

Examples of Use:

CLEANDIR -- clean current disk in ascending order
CLEANDIR D -- clean current disk in descending order
CLEANDIR A: D -- clean disk A in descending order

CLEANDIR TEXT: =-- clean the disk on which the directory

named TEXT is defined, in ascending order

CMD (version 1.0)

Syntax:
CMD cmdl;cmd?2;..
or
CMD or CMD;cmd2;...

Function:
If CMD has an argument, it builds a ncw command line which begins with this
argument and proceeds with thc rest of the command line. For cxample, the first
form "CMD cmdl;cmd2;.." is translated into "cmdl;cmd2;..". This allows sources
such as MENU, VMENU, and VFILER to entcr thec "cmd1" variable from the user

sclection manually.

If CMD has no argument, the user is prompted for input, and this input is inscrted
into the command stream at the point of thc CMD command. This is useful, for
instance, when SHSET is used to definc a shell sequence, and this sequence 1S to be
exited at some time. For example, if the user typed in "mycmd" in responsce to the
prompt, the second form "CMD;cmd?2;..." is translated into "mycmd;cmd?2;...".

CMD scts the error message whenever it runs. ERROR is turned on if no line was
input to CMD.

Options:
None.

Comments:

CMD was built for use specifically with the SHSET command, although it may
find other applications. The problem that CMD addresses is the case where the
main program in the shcll sequence knows nothing about shells, and it is desired to
leave the sequence sometime. CMD providcs this out. For instance, if MU3 is to be
uscd as the main shell, then "SHSET MU3;CMD" will run MU3, allow the user to do
what he wants, and then reenter MU3. If the user entered the command "SHCTRL
POP" the shell stack would be popped and the "MU3:CMD" loop would be broken.

26 Using ZCPR3 and Command Definitions Sec. 1

Additionally, CMD scts the ERROR message of ZCPR3, so that programs on down
the linc can determince whether input was made when CMD was run. If the user
simply strikes a RETURN in response to the CMD prompt, an error is indicated.
Tests can later be made, like IF ERROR, to check this and make the command flow
changc depending on the outcome.

Selected Error Messages:
Sclf-cxplanatory.

CMDRUN

Syntax:
CMDRUN text (this command is usually exccuted by ZCPR3 itself, not by the user)

Function:
CMDRUN is a sample Extended Command Processor. It is invoked automatically
by ZCPR3 when the user command is not found via the command search path and
no error handler is engaged.

The text which follows the verb is the text of the original command line.

Options:
Nonc.

Comments:
CMDRUN is only a simplc sample. It shows that the original command line is now
available in the command tail buffer (at 80H). The formal CMDRUN which the

uscr programs for his ZCPR3 System can extract the original command line from
this buffcr and manipulate it as desired.

Selected Error Messages:
None.

Examples of Use:
Nonc.

COMMENT (version 2.0)

Syntax:
COMMENT

Function:
COMMENT allows the user to type as many lincs as he wishes without them being
processcd by ZCPR3. It has no arguments.

If the uscr strikcs a “P, all subsequent lines he types will be printed on the printer.

Chap.3 TOOLSET OF ZCPR3 27

Options:
None.

Comments:
COMMENT has two main applications in the ZCPR3 environment:

1. When the console displays are being recorded, COMMENT allows thc user to type
notes to a futurc reader without having to begin lines with a semicolon (;); all of
these lines are clearly shown to be comments since they begin with the prompt
"Comment>",

2. When console I1/0 is redirccted to two different users, such as CRT and MODEM
I/0 in parallel, then COMMENT may be uscd to provide a simple mechanism for
them to communicate; both uscrs can type to each other without having any effect
on the system (such as command processing).

COMMENT is aborted by striking a ~C as the first character of a line. Backspace and
Dclcte both ccho as Backspace, space, backspace, and “X and ~U both erase the current
line. ~P toggles printing.

If COMMENT is to be used to chat betwecen two users, it is recommended that an
over/out protocol be employed (as rccommended for the UNIX* WRITE program).
The first user types, and, when finished, terminates with the letter "o" for over. The
second user types and signals completion the samc way. Complction of the
conversation may be signalled by "o+0" for over and out.

*[UNIX is a trademark of Bell Labs]

Selected Error Messages:
COMMENT generates no error messages.

Examples of Use:

Comment> Hi, Charlic, how’s it going? o

Comment> Hi, Rick, fine ... and you? o

Comment> Fine, Charlie

Comment> Herce is how I use XDIR --let me do the typing
Comment> from now on; just watch, and I’ll reentcr COMMENT
Comment> when donc ... here goes 0+0

CP (SYSRCP)

Syntax:
CP dir:ufnl=dir:ufn2

Transient Counterpart:
MCOPY

28 Using ZCPi13 and Command Definitions Sec. 1

Function:
CP copies one file from one directory to another or into the same directory under a
differcnt name.

Options:
None.

Comments:
This is a simple form of MCOPY. One major distinction is that CP can duplicate a
file under a different name in the same directory; MCOPY cannot do this.

Selected Error Messages:
None.

Examples of Use:

CP fl.txt=f2.txt
CP als:=fl.txt
CP als5:f2.txt=c5:fl.txt

CPSEL (version 1.0)

Syntax:
CPSEL cmdl,cmd?2,...

Function:
CPSEL (CRT/Printer SELect) is a ZCPR3 utility that permits the user to select
either CRT 0 or CRT 1, and Printer 0, 1, 2, or 3 from the current ZCPR3
Environment Descriptor. This dynamically changes the characteristics of the
printer and CRT which are used by other ZCPR3 utilities, such as PRINT.

Options:
None.
Comments:
The commands may be any of the following:
Cc,c=0o0r1 Select CRT 0 or CRT 1
Pp, p=0-3 Select Printer 0-3

Dd, d=A (All), C(CRT), P (Printer) Display Selection Values

The valucs affected by these selections include number of lines and columns on the
CRT and number of lines and columns on the printer. The ability of the printer to
form fced is also included.

Selected Error Messages:
None.

Chap.3 TOOLSET OF ZCPR3 29

Examples of Use:

CPSEL DA -- display all devices
CPSEL C1,P3,DA -- Select CRT 1 and Printer 3;
display all devices when done

CRC (version 2.0)

Syntax:
CRC dir:afnl,dir:afn2,...0...

Function:
The CRC Check utility distributed with ZCPR3 uses the same CRC computation
algorithm employed by Keith Petersen in his CRCK program, and the values come
out the same.

The CRC Check utility computes the CRC values of a selected set of files and
prints out the file names, their sizes (in Kb and number of records), and their CRC
values in hexadecimal. A count of the number of lines of code (assuming text files)
and a comment associated with each file can be optionally included. A list of
ambiguous files names may be provided to CRC.

Options:

C Comment Output; add comments to output listing on disk or printer

D Disk Output; send output to the disk file CRC.CRC

I Inspect Files and Approve Each File to be reported on before output is produced
L Count Lines of Text and include in output (assume all files are text files)

P Printer Output; send output to the printer

Comments:
CRC is useful when transferring files from one site to another. The CRC values of
the files can be computed and listed at one site, transferred, and compared at the
other site.

The L option adds the utility of tracking code size (in lines of code).

Selected Error Messages:
Self-explanatory.

Examples of Use:

CRC *.MAC L -- Compute CRCs of all *.MAC files in the
current directory; include lines-of-code
count in display

CRC *.* DLC -- Compute CRCs of all files, include count of
lines of text and comments on each file, and

30 Using ZCPR3 and Command Definitions Sec. 1

write output to disk in file named CRC.CRC

DEV (version 1.0)

Syntax:
DEV command,command,...

Function:
DEYV is a utility which manipulates the ZCPR3 rcdirectable I/O device drivers. It
allows thc uscr to display the names of the current devices and select them.

Unlike its counterpart DEVICE, DEV accepts all input from the command line and
is not interactive.

Options:
Nonc.

Comments:
Any DEV command may take the following forms. Only the first letters are
significant in these commands:

DISPLAY ALL <-- Display names of all devices
(D A is the same as DISPLAY ALL.)
DISPLAY CON <-- Display consoles
DISPLAY LST <-- Display printers
DISPLAY PUN <-- Display punches
DISPLAY RDR <-- Display readers

The full physical device name must be given in the following commands. Only the
first character and the '=" are significant in the rest of the command.

CON:=name LST:=name PUN:=name RDR:=name

C=name is the same as CON:=name.

Selected Error Messages:
"DEV NOT Initialized with I/O Base" means that this ZCPR3 System does not
support Redircctable I/0.

"Redirection Not Supported" means that the loaded drivers in the I/O Package do
not support rcdirection.

Examples of Use:

DEV C=CRT,L=TTY --assign CRT to CON: and TTY to LST:

Chap.3 TOOLSET OF ZCPR3 31

DEVICE (version 1.0)

Syntax:
DEVICE <-- Enter Interactive Command Mode

Function:
DEVICE allows the uscr to interactively display the namcs of the available
physical devices (actually, device drivers) which may be assigned to the logical
devices. The user may also assign a physical device to a logical device by name.

Options:
Nonc.

Comments:
DEVICE runs only in an interactive mode. It responds to singlc-character
commands, complcting the command namcs on the screcn and prompting the user
for further input.

The following commands are recognized by DEVICE:

Display Device Namcs

Selcct Console Device (CON:)

Select List Device (LST:)

Select Punch Device (PUN:)

Select Rcader Device (RDR:)

Exit to ZCPR3 without prompting for confirmation

N i-lalelv)

The Display Device Namcs command (D) asks the user for the devices to display.
The possible responses arc: A - All, C - Consoles, L - Lists, P - Punchcs, or R -
Readcrs.

The C, L, P, and R commands assign dcvices immediately. The uscer types the name
of the device to be assigned. If he strikes a return in responsc to the device name
prompt, thc command is aborted.

Selected Error Messages:
Self-explanatory.

Examples of Use:

DEVICE =-- invoke utility

DIFF (version 2.0)

Syntax:
DIFF dir:ufn o...
or
DIFF dir:ufnl,dir;ufn?2 o...

32 Using ZCFPR3 and Command Definitions Sec. 1

Function:
DIFF compares two files. It can simply state if the two files are different
(stopping immediately after the first difference is located) or it can list all of the
differences between two files on a byte-for-byte basis. The form "DIFF dir:ufn
o.." compares the file in the indicated directory with the file by the same name in
the current directory. The form "DIFF dir:ufnl,dir:ufn2 o.." compares the two

files indicated.
Options:

C Compare Files Only and Stop at First Difference

M Multiple Runs; when a comparison is complete, prompt the user
for new disks, allow him to change disks, and then run the
comparison again until the user says to stop

Comments:
If used to print out differences. Diff presents the following information to the
user:
o Relative Offsct from the beginning of the file
o Byte values in the two files:
- in Decimal
- in Hexadecimal
- in ASCII

Selected Error Messages:
"AFN Not Allowed" mecans that the user specified an ambiguous file name (one
containing wild cards). Both file names must be unambiguous.

Examples of Use:

DIFF text:myfile.txt =-- prints differences between
MYFILE.TXT in TEXT: and MYFILE.TXT
in current directory

DIFF myfile.txt -- compares MYFILE.TXT against itself

DIFF backup:myfile.txt mc

-- compares MYFILE.TXT in BACKUP: with MYFILE.TXT
in the current directory; stops as soon as
a difference is found; when done, prompts
the user to change disks (BACKUP could be a
floppy, and this command is checking to see
that all copies of MYFILE.TXT on several
disks are the same)

Chap.3 TOOLSET OF ZCPR3 33

DIR (version 1.0)

Syntax:
DIR dir:afn o...

Function:
DIR displays a formatted, alphabetized listing of the files in a disk dircctory.

Options:
A Display both non-system and system files

S Display only system files
T Display files sorted by file type and name (sort by name and typc is default)

Comments:
The syntax of DIR is not the same as that of XDIR and XD. DIR is designced to be
small (only 2K) and fast, while providing more utility than the ZCPR3-resident or
RCP-resident counterparts.

If the user wishes to use an option, the AFN must be filled with *.* — otherwise, the
option will be interpreted as a file specification.

A slash used as a delimiter (DIR /A, for instance) automatically causes the built-in
documentation to be displayed.

Selected Error Messages:

"Ovfl" means that there was not enough buffer space in the TPA to contain the disk
directory.

Examples of Use:
DIR -- displays all non-system files in the
current directory in the following fashion:

1. Horizontal display
2. Sorted by file name and type

DIR *.* A -- like above, but both non-system and
system files are selected

DIR (CP-Resident)

Syntax:
DIR dir:afn o...

Transient Counterpart:
DIR, XD, XDIR

34 Using ZCP 13 and Command Definitions Sec. 1

Function:
Display a disk dircctory to the uscr.

Options:
A Select non-system and system filcs
S Sclect system files only
Comments:

The DIR command is used to display the namcs of the files in the current directory
without any bcells or whistles (such as sorted output and file size information). It
has three basic forms:

DIR DU:afn -- Display S$DIR File Names
DIR DU:afn S =-- Display $SYS File Names
DIR DU:afn A =-- Display All File Names

Selected Error Messages:
None.

Examples of Use:
(Assume the user is on disk B)

DIR -- displays non-system files in
current directory

DIR *.* A -- displays both non-system and
system files in current directory

DIR 4: -- shows all non-system files on B4

DIR A4:* HLP A -- shows all files of type HLP on A4

DIR *.* S -- shows all system files on Bl

DIR (RCP-Resident, provided in SYS.RCP)

Syntax:
DIR dir:afn o...

Transient Counterpart:
DIR, XD, XDIR

Function:

Display a sorted disk dircctory to the user. The CP-Resident DIR docs not sort the
dircctory.

Options:

A Sclect both non-system and system files

Chap.3 TOOLSET OF ZCPR3 35

S Select only system files

Comments:
This command is bettcr than the DIR in ZCPR3 in that it sorts the filc listing.
Horizontal display format is used.

Selected Error Messages:
None.

Examples of Use:

DIR -- displays all non-system files in the current
directory in a sorted fashion (by file name and type)
DIR *.% A -- displays both non-system and system files in
current directory
DIR ROOT:*.,* A -- displays both non-system and system files
in ROOT directory

DPROG (version 1.0)

Syntax:
DPROG <-- program from STD.DPG
DPROG filename <--program from filename.DPG
DPROG filename.typ <-- program from filename.typ

Function:
DPROG can be used to send any set of byte values in any desired sequcnce to the
physical device assigned to the consolc, list, or punch logical device (e.g., a control
string to change the font used by a dot matrix printer). DPROG rcads the
indicated or implicd file after a path search, and transmits the byte sequence
containcd in the file to the selected device.

Options:
Nonc.

Comments:
The file used to program the dcvice is a conventional ASCII text file which
contains four basic types of lines:

1. comment lines—lines in which the first non-blank character is a scmicolon (;).

2. word definition lincs—lines that begin with a dash (-) in column onc followed
immediately by a word.

36 Using ZCP1t3 and Command Definitions Sec. 1

3. DPROG command lines—lines beginning with a special DPROG command
character (> or =).

4. output lines—any other line which does not conform to one of the three categories
above; these lines generate the output sent to the device.

Selected Error Messages:
Self-explanatory.

Examples of Use:

DPROG -- program from STD.DPG
DPROG ASM -- program from ASM.DPG

DPROG Programming:

DPROG is a 3K interpreter for a device programming language. This language allows
the definition of words (symbols up to 16 characters long) that contain any
combination of output format control instructions, text strings, and references to
other words. Once a word has been defined, it can be named in an output line, and its
definition (including embedded format controls) will be translated and sent to the
console, printer, or punch device. Word references can be nested up to 128 levels deep.
For example:

Define Basic Words

~e Se o

-esc (%c) "\E" ; the escape character
-ctrly nayn ; the character control-Y
-test (Char: %c %x %d\n) ; character test format
-normal form (%c) ; normal output format

Use Words

~e Seo <~

'This is a test\n" test "ABC" normal_form "\nEnd of Test"

Execution of the output line will cause the device to display/print the following:

This is a test
Char: A 41 65
Char: B 42 66
Char: C 43 67
End of Test

Chap.3 TOOLSET OF ZCPR3 37

The following 2-character escape sequences are output literally when used in format
definitions, but are translated according to the current format definition when they
appear in quoted strings.

~c Define control character

\b Backspace char

\d Delete char (DEL)

\e Escape char (ESC)

\L New Line char (CRLF pair)

\n Line Feed char (LF)

\r Carriage Return char (CR)

\t Tab char (TAB)

\# Numeric value (forms are \d for decimal, \dH for hex, \dq for octal,
\dB for binary:\1, \245,\33h, \OfeH, \111b, \77q, etc)

Additionally, the format cxpression is of the form (<format text>) where <format
text> can contain any character sequence as well as recognize the following output
directives:

%c Output chars as ASCII characters

%d Output chars as floating decimal ASCII chars
%x Output charsas 2 hex ASCII chars

%2 Output charsas 2 decimal ASCII chars

%3 Output charsas 3 decimal ASCII chars

Any text can surround these output directives, and each directive can be used as many
times as desired in a format expression. Once a format expression is given, it is used
until a new expression is defined. For example:

(%x %d) "\12\1OhA" (%c) "\12\1lo0hA"
will output:

0C 12 10 16 41 65 ~L~PA
(where ~L and "P are the ASCII control-L and control-P).

The user can direct output to the console, printer, or punch at any time (for
programming the physical devices attached to these logical devices); there are
debugging commands (pausc to examine output, dump word dcfinition table, dump
format expression); and you can set up as many *DPG files as you want for
programming a variety of functions. DPROG is a true ZCPR3 utility and scarches the
current path for the *DPG files. Thus, if * DPG files arc placed in the ROOT
directory, they will be found from any directory on the systcm.

A word definition under DPROG takes the following form:

-word_symbol text of definition

where "-" is the first character in the line.

38 Using ZCPE.3 and Command Definitions Sec. 1

The following DPROG commands are available for debugging and other purposcs:

Output Direction:

>C Direct Output to Console
>L Direct Output to List (Printer)
>P Dircct Output to Punch

Data Dump:

Dump both Word Table (Symbols) and Format
Dump current Format Specification
Dump currcnt Word Table (Symbol Table)

o
2e)]

Output Pause:
< Pausc and wait for user to strike key (*C will abort)

DPROG can bc uscd within an alias, ZEX command file, or any other ZCPR3
environment. For instance, the following WordStar alias is reasonable:

IF NEC=$2

DEV L NEC <=-- assign printer

WSN $1 <=- run NEC version of WS
ELSE

DEV L TTY <-- assign printer

DPROG CORRESP <-- program printer for

correspondence

WS $1 <==- run proper version of WS

FI

Listing 3-1 provides a clear example of how a .DPG file can be used by DPROG to
program a Tclevideo 950 CRT.

Listing 3-1. Device Programming File ASM.DPG

; Programming Definitions for TVI 950 CRT Terminal

Define Support Words

Ne “eo Seo Se

=escC
;1 —escC

n \lbh"

) The ESCAPE Character
) "<ESC>"

The ESCAPE Character

~o ~eo

Chap.3 TOOLSET OF ZCPR3 39

-cr "\ r" ; <CR>
-ctrly IIAY" : Y
-ctrlp "apn ;i NP

.
’

: Define Functions

~e ~eo =a

Function Key:

; FKEY Fn|FnS FKEY FDX|FKEY LOC|FKEY HDX '"string" CTRLY
i FKEY Prefix

i Fn or FnS Function Key Number or Number Shifted
H (F1 or F1S)

i FKEY FDX or Full Duplex - Send to Computer Only

; FKEY LOC or Local - Send to Terminal Only

i FKEY HDX Half Duplex - Send to Computer and Term
; "string" Contents of Function Key

i CTRLY Terminator

-fkey esc "|"

-fl lllll

-fls ll<ll

_f2 "2"

_f2S n_u

-f3 "3"

_f3s II>II

_f4 II4II

‘f4S ll?"

-f5 Il5|l

-f5s u@u

-f6 ll6ll

'fGS "A"

-f7 "'7"

‘f7S "B"

_f8 Il8ll

-fgs IICII

-fg |l9ll

_fgs HD"

-flo Il:ll

'flOS IIE"

-fll |l;ll

40

-flls

-fkey fdx
-fkey loc
-fkey hdx

.
’

IIFII
Ill"
Il2|l
ll3l|

; Function Key String
; Use: define MY KEY, MY XMIT, and MY _TEXT and then issue
the word FUNCTION_ KEY

-nmy key
-my xmit
-my text

-function key

.
’

; Cursor: C OFF|C_BB|C_SB|C BU|C_SU

; C_OFF
; C_BB
; C _SB
; C_BU
; C _SU
-c_off
-c_bb
-c_sb
-c_bu
-C_su

.
’

fl

fkey fdx

Using ZCPR3 and Command Definitions

Sec. 1

;select function key 1

;select full duplex
sno text

fkey my key my xmit my text ctrly

No Cursor

Blinking Block
Steady Block

Blinking Underline

Steady Underline

esc
esc
esc
esc
escC

; User Line: USER "string" CR
Prefix

7 USER
-user

.
’

esc

.0"
.lll
.2"
.3"
'4"

llf"

; Display User or Status Line: DISP _USER|DISP_STAT

; DISP_STAT Display
7 DISP USER Display
-disp user esc "g"

esc "h"

-disp_ stat

’

; Keyclick:

CLICK OFF|CLICK_ON

Status Line
User Line

Chap.3 TOOLSET OF ZCPR3

i CLICK OFF Turn Off Keyclick
: CLICK ON Turn On Keyclick
-click_off esc "<"

-click on esc ">"

Video: VIDEO NORMAL|VIDEO REVERSE
VIDEO_NORMAL White on Black
VIDEO REVERSE Black on White

~e “e e we =we

-video normal esc "4"
-video reverse esc "b"

Screen: SCREEN OFF|SCREEN_ON

i

i

i SCREEN_OFF Turn Screen Off
H SCREEN_ON Turn Screen On
i

-screen off esc "o"
-screen_on esc "n"

H

: Clear Screen: CLS

: CLS Clear the Screen
H

-cls NAgZN

The following commands actually program the user's terminal

screen off
click off video normal disp user c_bu
$111111111122222222223333333333444444444455555555556
1123456789012345678901234567890123456789012345678901234567890
user
"1-Dir 2-Edit 3-VFiler 4-MAC 5-M80 6-LASM "
"9-CLS 10-Scr 11-SLn" CR

-my_ key fl

-my_text "xd\r"

41

42

function key

-my_ Kkey fls

-my text "xd "
function key

1fkey f1 fkey fdx
ifkey fls fkey fdx
fkey £f2 fkey fdx
fkey f£3 fkey fdx
fkey f3s fkey fdx
fkey f4 fkey fdx
fkey f4s fkey fdx
fkey £5 fkey fdx
fkey £f5s fkey fdx
fkey f6 fkey fdx
fkey fé6s fkey fdx
fkey £9 fkey loc
fkey f10 fkey loc
fkey f10s fkey loc
fkey £f11 fkey loc
fkey flls fkey loc

cls "TVI 950 Programmed:

screen_on

DU/DIR Forms

Using ZCP 3 and Command Definitions

" Xd\r "
" Xd "

"Wm "
"vfiler\xr"
"yfiler "
"zex mac "
"sub mac "
"zex m80 "
"sub m80 "
"zex lasm "
"sub lasm "

"AZ"

esc "8"
esc "9 "
disp_stat
disp_user

ctrly
ctrly

ctrly
ctrly
ctrly
ctrly
ctrly
ctrly
ctrly
ctrly
ctrly

ctrly
ctrly
ctrly
ctrly
ctrly

Assembler Configuration"

Sec. 1

;smooth
shard

Usc the DU form, standing alone, to log into a different directory. This command has

three basic formats:

Changc Disk
Change User
Change both Disk and User

D:
U:
DU:

Chap.3 TOOLSET OF ZCPR3 43

The DIR form standing alone may also be used to log into a different directory. The
format is:

TEXT: (where "TEXT" is the name of the desired directory).

Named directories have passwords associated with them. Any attempt to acccss a
named directory that has a non-blank password will cause the user to be prompted for
the password. If he supplies an invalid password, access is denied and he remains in
his current directory.

The DU: form may be disabled under ZCPR3, leaving only the DIR: form. This option
allows directory access to be strictly controlled, since only named disk/user arcas can
be referenced and password protection is provided.

DU3 (version 1.0)

Syntax:
DU3 <--enter DU3 at command level
or
DU3 command line <-- run initial DU3 command line

Function:
DU3 allows the uscr to manipulate the information on disk as easily as hc can
manipulate memory with DDT and MU3. DU3 completely opens up the disk to the
user, so care should be taken when using this command.

Options:
None (command line)

Comments:
Chapter 8 describes how to use DU3.

Selected Error Messages:
Explained in Chapter 8.

Examples of Use:
See Chapter 8.

Invoking DU3:
DU3 is invoked by a command line of the form:

DU3 <text>

wherc <text> is any valid DU3 command sequence. If the first two characters of
<text> are ’/?, the built-in documentation is displayed, after which the user is
returned to the operating system in accordance with the conventions employed by
the Toolset.

Examples:

44 Using ZCi"R3 and Command Definitions Sec.]
DU3 /? -- Display Built-in Documentation
DU3 1b,g0,e -- Execute commands to Log in Drive B,
goto Group 0, and enter editor at
the first Block of Group O
ECHO (version 1.0)
Syntax:
ECHO tcxt <-- send <text> to console
or
ECHO $text <-- send <text> to printer
Function:
ECHO cchocs the text which follows it to the CON: or LST: devices. If the first
non-blank charactcr of this text is a ’$’, then ECHO sends its output to the LST:
device.
Options:
Nonec.
Comments:
The purpose of ECHO is two-fold:
1. Toprovidc a convenicnt way to send messages to the console during the execution
of a command file or command line; for example:
ECHO Assembling;ASM myfile. BBZ;ECHO Loading;LOAD myfile as a singlc
multiple command line will print the informative messages "ASSEMBLING" and
"LINKING" during the respcctive commands
2. To provide a convecnient way to send escape scquences to the CRT or printer;
ECHO uses direct BIOS calls without any character translation, so sequences for
programming intclligent devices can bc issued by running ccho and typing in
thosc sequencces; for example:
ECHO ~2Z
will clecar the CRT screen if ~Z is the Clear Screen character for the user’s
terminal, and
ECHO $~L
will form fced the printer (assuming that the printer responds to the form feed
character).
NOTE:

Since the command input line editor capitalizes the command lines, all alphabetic
charactersarc automatically capitalized when echoed.

Chap.3 TOOLSET OF ZCPR3 45

Selected Error Messages:
ECHO generates no error messages

Examples of Use:

ECHO hello, world -- sends text "HELLO, WORLD" to console

ECHO (CP-Resident or RCP-Resident)

Transient Counterpart:
ECHO

Syntax:
ECHO tcxt <-- send text to console
or
ECHO S$tcxt <-- send text to printer

Function:
CP- or RCP-resident ECHO commands behave in all respects like the transient
countcrpart previously described.

ELSE (from SYSFCP version 1.0)

Syntax:
ELSE anytcxt

Function:
If the current Flow State is TRUE, ELSE toggles it to FALSE.

If the current Flow State is FALSE and the previous IF Level is in a TRUE Statc,
ELSE toggles the Flow State to TRUE. If the previous IF Level is in a FALSE
State, ELSE does nothing.

Options:
None (any text may follow the verb ELSE).

Comments:
Nonc.

Selected Error Messages:
No error messages are generated.

Examples of Use:

IF NEC=S1
< statements >

46 Using ZCPK3 and Command Definitions Sec. 1

ELSE
< statements >
FI

ERA (CP-Resident)

Transient Counterpart:
ERASE

Syntax:
ERA afn <-- erase files
or
ERA afn V <-- erase files with verify

Function:
The ERA command erases the indicated file(s). If the Verify option is used, a list
of all matching filcs is displayed and the user is prompted for confirmation. If the
user confirms that erasure is desired, all files on the list are erased.

Options:
\% verily erasure
Comments:
Compare this ERA form to the RCP-Resident ERA form.

Selected Error Messages:
None - self-explanatory.

Examples of Use:

ERA b7:*.bak
ERA text:*.tmp V

ERA (RCP-Resident)

Syntax:
ERA afn <-- erase files
or
ERA afn I <-- inspcct files before erasing

Transient Counterpart:
ERASE

Chap.3 TOOLSET OF ZCPR3 47

Function:
The ERA command erases the indicated file(s). It is not able to erase Read/Only
files, but it can erase System files. The name of each file is printed as it is crased.
If the I (Inspect) option is used, ERA prints each matching file name and prompts
the user for approval to crase; if approval is given, the file is erased, othcrwise
ERA leaves the file intact and proceeds to the next matching file name.

Options:

I Inspect each file and request approval to erase.

Comments:
None.

Selected Error Messages:
None.

Examples of Use:

ERA *,TXT -- erase all files matching *.TXT

ERA *,TXT I -- display in turn all filenames matching
* TXT; request approval to erase; if
approved, erase the file, otherwise
display next matching name.

ERASE (version 5.0)

Syntax:
ERASE dir:afnl,dir:afn2,.. o...

Function:
ERASE erascs files in the file list. If no option is seleccted, ERASE does not "scc"
system files, and requests permission to erase read-only files encountcred, but
read/write non-system files are unconditionally erascd.

Options:

S Erase system files encountered in the file list.

R Erase Read/Only files in the list without asking the user for permission.

I Inspect; ERASE displays the name of each file in the list and asks
permission before crasing the file. If the user gives permission but ERASE
discovers that the file is R/O with the R option off, it will rcquest a
second confirmation before performing the erasure.

48 Using ZCPR?2 and Command Definitions Sec. 1

Comments:
Nonec.

Selected Error Messages:
Scif-ecxplanatory.

Examples of Use:

ERASE text:*.txt,asm:*.tmp -- erase all .TXT files in the
TEXT: directory and all .TMP
files in the ASM: directory.

ERASE *.* I -- display all files in the current directory
and request approval to erase each one.

ERROR1 (version 1.0)
ERROR2 (version 1.0)

Syntax:
ERRORI
or
ERROR?2

Function:
ERRORI1 and ERROR?2 are error handlers. If the user runs cither program, that
program installs itsclf as the system error handler. If ZCPR3 cannot find the COM
file referenced by a command verb, it invokes the installed Error Handler and
passes the command line to it.

Options:
None.

Comments:
Both ERRORI! and ERROR?2 display the error line to the uscr and provide him
with four options as to how to process this linc:

1 Recplace the command in crror with a new command

2 Skip thec command in crror and resume execution with the next command
3 Replace the entire command line

4 Throwaway thc command linc and resume user control

Unlikc ERRORI, ERROR2 is screen-oriented, using the Z3TCAP for support in
order to provide a much "flashicr” display.

Chap.3 TOOLSET OF ZCPR3 49

Selected Error Messages:
Self-explanatory.

Examples of Use:

ERROR1 -- install Error Handler Number 1

ERROR3 (version 1.0)
ERROR4 (version 1.0)

Syntax:
ERROR3
or
ERRORA4

Function:
ERROR3 and ERROR4 are error handlers. If the user runs cither program, that
program installs itsclf as the system error handler. If ZCPR3 cannot find the COM
file referenced by a command verb, it invokes the installed Error Handler and
passes the command line to it.

Options:
None.

Comments:
ERROR3 displays the name of the COM file which was not found and then flushes
the command line, returning control to the user.

ERRORA4 prints the name of the COM file which was not found and then advances
to the next command in the command linc buffer. If thcre is no next command,
user control is resumed. If there is a next command, command c¢xccution resumes
there.

Selected Error Messages:
None.

Examples of Use:

ERROR3 -- install ERROR3

ERRORX (version 1.0)

Syntax:
ERRORX

50 Using ZCPR3 and Command Definitions Sec. 1

Function:
ERRORX disengages the current error handlcr, leaving no crror handler cnabled.
The default crror control facility of ZCPR3 is now in effect; if an ¢rror occurs in
thc command linc, the command line from that point forward is printed (followed
by a’?’).

Options:
Nonc.

Comments:
Nonc.

Selected Error Messages:
No crror messages are generated by ERRORX.

Examples of Use:
ERRORX -- disengage any Error Handler currently enabled

FI (from SYSFCP 1.0)

Syntax:
FI anytcxt

Function:
FI terminates the current IF Level. If there is no current IF level, FI docs nothing.

Options:
Nonc (any tcxt may follow the verb FI).

Comments:
Nonec.

Selected Error Messages:
None.

Examples of Use:
IF EXIST MYFILE.ASM
< statements >
ELSE

< statements >
FI

FINDF (version 2.0)

Chap.3 TOOLSET OF ZCPR3 51

Syntax:
FINDF afnl,afn2,...0

Function:
FINDF searches through all of the known disks and user areas for filecs matching
any of the indicated file specifications.

Options:
S Include System Files

Comments:
If the S option is omitted, FINDF will search only for Non-System files. Usc of the

S option causes FINDF to search for both System and Non-System files. The scarch
begins at disk A and extends until FINDF cncounters the last possible drive or a
drive that is not loaded. All user areas (0 to 31) are examined.

FINDF displays the names of the files found, grouped by drive and user arca.

Selected Error Messages:
Self-explanatory.

Examples of Use:

FINDF xdir.com s =-- search all drives and user areas
(both system and non-system) for XDIR.COM

FINDF xd.com,help.hlp,nyfile.txt
-- search all Non-System files for XD.COM,
HELP.HLP, and MYFILE.TXT

GET (CP-Resident)

Syntax:
GET adr ufn

Function:
GET loads a file into memory starting at the spccified page address. It requirces
two arguments: the number (assumed to be hexadecimal) of the 256-byte page in
mcmory at which to start the load; and the name of the file.

Note that "adr" is a page numbcr, not an absolute address. Thus, if adr=1, loading
starts at location 100H; if adr=2d loading starts at location 2D00H, and so on.

Options:
None.

52 Using ZCP1i3 and Command Definitions Sec. 1

Comments:
None.

Selected Error Messages:
"TPA Full" means that the file has hit the top of the TPA in its load.

Examples of Use:

GET 40 myfile.bin -- load MYFILE.BIN into memory at 4000H

GO (CP-Resident or RCP-Resident)

Syntax:
GO parameters

Function:
The GO command rcexecutes the last program loaded into the TPA without having
to rcload it.

The parameters are parsed in the same way as for any transient command, and the
appropriate buffers arc loaded by ZCPR3. After ZCPR3 has finished with the
parsing and buffer loading, it "calls" the program loaded at 100H.

Options:
None.

Comments:
GO must not be uscd when a shell is active, since the shell comes into memory at
100H and overlays the last program loadcd there. If GO is used, the probability is
that the shell, not the last program, will be reinvoked.

Selected Error Messages:
None.

Examples of Use:

XD
GO ROOT: -- rerun XD with ROOT: as a parameter

GOTO (version 1.0)

Syntax:
GOTO label

Chap.3 TOOLSET OF ZCPR3 53

Function:
GOTO is a ZCPR3 utility, designed to be run from within a ZEX command file
that permits branching. It accepts only one argument, a label, which is defined
within the ZEX file as a special comment of the form:

i=label
Any text which follows the "label" phrase is considered to be comment and is not
processed.
Options:
None
Comments:

GOTO works correctly only if executed within a ZEX command file; otherwise
GOTO will issue an error message.

Without the ZCPR3 Flow Control facility, GOTO would be of little value. With IF,
however, GOTO is extremely useful in setting up loops and other flow-control
constructs.

Selected Error Messages:
"ZEX Not Running" means that GOTO was executed from outside a ZEX command
file.

"Label xxx Not Found — Aborting ZEX" means that the refcrenced label was not
found within the command file, so ZEX execution is terminatcd.

Examples of Use:
ZEX Command File 1.

REG S1 O;note Register 1 = 0

j=start

XIF;note Exit all pending IFs

REG Pl;note (Reg 1) = (Reg 1) + 1

ECHO Hello, World

IF ~1 3;note IF Register 1 <> 3
GOTO START

FI

ZEX Command File 2:

M80 =$1;note Assemble File

; Strike ~C if Errors Exist - ~?

if ~nul $3;note IF there are 2 1libs ...
L80 $1/N,$1,$2/S,$3/S,SYSLIB/S,/U/E;note link all
goto done

fi

54 Using ZCI R3 and Command Definitions

if ~nul $2;note IF there is a 2nd arg
180 $1/N,$1,$2/S,SYSLIB/S,/U/E;note link 1lib $2

else;note IF there is no 2nd arg
L80 $1/N,$1,SYSLIB/S,/U/E;note link

;=done

fi

ZEX Command File 3:

if NEC=S$2
echo Terminal is NEC
goto done

fi

if TTY=$2
echo Terminal is TTY
goto done

fi

if DIABLO=$2

echo Terminal is Diablo
else

echo Terminal is Undefined
fi
;=done
xif;note Exit all pending IFs
ws $1l;note Edit file

HELP (version 5.0)

Syntax:
HELP <--display HELP.HLP
or
HELP filename.typ <-- display HELP file (if ’typ’ omitted, HLP is used)

Function:

Sec. 1

HELP displays HELP files in an interactive way to the user on his console CRT. It

is also able to print sclccted screens or information sections on the printcer.

Options:
None.

Chap.3 TOOLSET OF ZCPR3 55

Comments:
See Chapter 4 for an overview of the HELP subsystem and a detailed description of

the structure of HELP files.

Selected Error Messages:
See Overview of Help command, below.

Examples of Use:
HELP -- display HELP.HLP
HELP myfile -- display myfile.HLP
HELP myfile.txt -- display myfile.txt

Summary of User Commands under HELP

Cmd Meaning

~ Go to Prcvious Level

. Go to Root Level

M Go to Mcnu of Current HELP File

S Go to Start of information section

L Go to Prcvious Frame

CR (Carriage Rcturn or Space) Go to Next Frame

~C (Control-C) Return to ZCPR3

P Print Current Screen Display (Frame) or information section

HELPCK (version 1.0)

Syntax:
HELPCK dir:ufn o <-- default file type is HLP

Function:
HELPCK checks the syntax of a HELP file. It analyzes the file, providing a
variety of statistics and rcporting on structural errors. Reports includc a listing of
the options if the file is user-indexed; this listing should be manually checked by
the user to see that all options are included and no additional, hidden options exist.

Options:
P Send report to Printer
Comments:
None.

Selected Error Messages:
Messages arc sclf-explanatory.

56 Using ZCF 23 and Command Definitions Sec. 1

Examples of Use:

HELPCK myhelp -- report on MYHELP.HLP
HELPCK myhelp P -- report on MYHELP.HLP on printer

HELPPR (version 1.0)

Syntax:
HELPPR afnl,afn2,...o...

Function:
HELPPR prints out a HELP filc. It starts each information scction on a ncw page
and ignores form feeds (used to separate frames), so the data is presented in a
scquential fashion.

Options:

H@hcad@ Heading Text that appears at the top of each pagce

I Inspect Files (select) before printing

L Number each line

Occ Offset each line by cc spaces

Snn Skip to page nn before beginning print

T (If TIMELIB installed) turn off time display
Comments:

HELPPR is specifically designed to take advantage of the internal structure of
HELP filcs to print the data in a logical manner. It is therefore preferred over
PRINT when HELP filcs are to be printed.

Selected Error Messages:
Error messages are self-explanatory.

Examples of Use:

HELPPR myfilel,myfile2 o5 -- print myfilel.HLP and
myfile2.HLP offset by 5 spaces
on each line

HELPPR myfile s5 -- print myfile.HLP starting at

the 5th page

IF (version 1.1)

Chap.3 TOOLSET OF ZCPR3 57

Syntax:
IF cond args
or
IF ~cond args

Function:
IF tests the indicated condition to see if it is TRUE and, if so, sets the Flow State to
TRUE (allowing the following commands to execute). If the condition is FALSE,
the Flow State is set to FALSE (allowing only Flow Commands to cxecute).

Options:
Option Mcaning
T TRUE (Flow State is Set to TRUE)
F FALSE (Flow State is Set to FALSE)

EMPTY afn,.. If all files in the indicated list are EMPTY (size is 0K), thcn
Flow State is Set to TRUE

ERROR If the ZCPR3 Error Flag is Set, then Flow State is Sct to TRUE

EXIST afn,.. If allfilesin theindicated list exist, then Flow Statec is Sct to TRUE

INPUT Uscr inputis enabled, and if the user strikes T, Y, <CR>, or
<SP>, the Flow State is Set to TRUE

NULL afn If there is no’afn’ (field is blank), then the Flow State is Sct to
TRUE

TCAP If a Z3TCAP is installed, the Flow State is Set to TRUE

WHEEL If the Wheel Byte is Set, the Flow State is Set to TRUE

rcg value If the indicated register (0-9) has the indicated valuc (0-255),
the Flow State is Set to TRUE

afnl=afn2 If the two AFNs are identical in name (11 char FILENAME.TYP

are same), the Flow State is Sct to TRUE

Comments:
In all cascs, if the indicated condition is TRUE, the Flow State is Sct to TRUE; if
the indicated condition is FALSE, the Flow State is Set to FALSE.

This command is invoked if the current Flow Command Package has the IF.COM
facility enabled. If this is the case, whenever an IF command is issued, the FCP
will load IF.COM from the ROOT directory into memory and cxccute it. The
command tail is passed to IF.COM, and IF.COM acts as a conventional COM file
from that point forward. All buffers arc loaded correctly (FCBs at 5CH and 6CH,
TBUFF at 80H, etc).

A leading tilde (~) character before a condition negates the effect of the condition.
If the condition is FALSE, the Flow State is Set to TRUE, and vice-versa. Example:

"IF ~T" is the same as "IF F"

"IF ~NULL arg" is TRUE if ’arg’ is non-blank

"IF ~EXIST afn,.." is TRUE if ’afn,..’ do NOT

exist (AFN and AFN ... must each not exist)

For each condition given, only the first two characters are significant (eg, NU for
NULL).

58 Using ZCPK3 and Command Definitions Sec. 1

Selected Error Messages:

"No IF Condition Given" means that the condition expressed was not one of the
valid conditions.

Examples of Use:

IF NULL $1
-- 1if the indicated parameter (from within a SUBMIT
or ZEX command file) is not provided, set the
Flow State to TRUE

IF ~EXIST ZEX.ASM,ZEX.ZEX
-- 1if any one of these files does not exist, the
Flow State is set to TRUE

IF EXIST ZEX.ASM,ZEX.ZEX
-- 1f any one of these files does not exist, the
Flow State is set to FALSE (ie, all files
must exist for a TRUE Flow State)

IF NEC=$1
-- 1if the first passed parameter is the same as the
file name "NEC.", then the Flow State is Set to TRUE

IF 5 5
-- 1if Register 5 = 5, the Flow State is Set to TRUE

IF (FCP-Resident)

Syntax:
Samec as for transient IF.

Function:
Same as for transient IF. The IF command described herc is resident within
SYSFCP 1.0 when the COMIF equate is set to FALSE.

Options:

Same as for transicnt IF except that the file lists are not permitted— only one
ambiguous file name.

Chap.3 TOOLSET OF ZCPR3

Comments:

59

This command is invoked if the current Flow Command Package has the IF.COM
facility disabled. If this is the case, whenever an IF command is issued, thec FCP
will resolve it internally, The resolution of the IF command within the FCP itsclf
is noticeably faster (approximately 0.5 to 1.5 seconds) than resolution by loading

and executing IF.COM.

Each of the options of the Resident IF may be independently enabled or disabled.
These options are installation-dependent, and the SHOW command will display the

available options for any installation.

Selected Error Messages:
None.

Examples of Use:
See transient IF.

IFSTAT (version 1.0)

Syntax:
IFSTAT

Function:

IFSTAT displays the current IF level. IFSTAT will report a Level Number from |

to 8 (IFs may be nested up to 8 levels deep) or will reply "No Active TF".

Options:
None.

Comments:
The Flow State must be TRUE for IFSTAT to run.

Selected Error Messages:
None.

Examples of Use:

IFSTAT -- the current IF level is displayed

JUMP (CP-Resident)

Syntax:
JUMP address <-- branch to indicated hex address

60 Using ZCP:3 and Command Definitions Sec. 1

Function:
JUMP can branch to any location in memory. It takes only one argument, which is
the target address, specified as a 16-bit hexadecimal number (leading zeros may be
omitted).

Options:
None.

Comments:
JUMP is useful for entering a PROM- or ROM-based routine, such as a monitor
program.

JUMP 100 is the same as the GO command except that first FCB has ’100’ in it as a
file name. The text following a "JUMP 100" instruction is parsed into the
appropriate buffers as it normally would be.

Selected Error Messages:
None.

Examples of Use:

JUMP 100 -- "call" routine at 100H
JUMP F800 -- "call" the routine at OF800H

LDR (version 1.0)

Syntax:
LDR ufnl,ufn2,...

Function:
LDR is a general-purpose System Segment loader for ZCPR3. It loads all of the
ZCPR3 System Segments into their appropriate buffers, checking their format and
content before approving and completing each load. Each System Segment is
specified unambiguously.

Options:
None.

Comments:
The following System Segments are loaded into memory buffers by LDR:

*ENYV files Environment Descriptors
*FCP files Flow Command Packages
*10P files Input/Output Packages

* NDR files Named Directory Files
*RCP files Resident Command Packages
* 73T files Z3TCAP Entries

Chap.3 TOOLSET OF ZCPR3 61

The contents of each file to be loaded are read into a memory buffer and examined
segment by segment. Segment-unique structural checks, based on the file type, are
performed. If the checks are passed, the segment is copied into the correct memory
buffer as determined by the data contained in the Environment Descriptor. If the
checks are not passed, an error message is issued and the next file in the list is
processed.

Since the Environment Descriptor (currently residing in its own memory buffer)
provides the address at which to load a buffered system segment, it is important
that the Environment Descriptor be the first segment loaded by LDR. An
alternative to this procedure would be to make the BIOS initialize the Environment
Descriptor on Cold Boot, but this would require a relatively large BIOS overhead
(over 128 bytes for the initial Environment Descriptor).

When LDR loads an Environment Descriptor, it places it at the address installed in
LDR during the ZCPR3 System installation. All other system Segments are loaded
at locations specified by the Environment Descriptor currently residing in
memory.

Selected Error Messages:

"filename.typ is not a Valid Type" means that the file type of the indicated file is
not ENV, FCP, IOP, NDR, RCP, or Z3T.

"filename.typ Contains a Format Flaw" means that the structure of the indicated
file was not correct.

Examples of Use:

LDR SYS.ENV,MYIO.IOP,MYCMDS.RCP,MYIFS.FCP

— load SYS.ENYV, and, based on the data in this Environment Descriptor, load the
I/0 Package MYIO.IOP, the Resident Command Package MYCMDS.RCP, and the
Flow Command Package MYIFS.FCP

LDR TERM1.Z3T
—replace the current Z3TCAP entry with TERM1.Z3T

LIST (CP-Resident)
LIST (RCP-Resident)

Syntax:
LIST ufn CP-resident and RCP-resident
LIST afn RCP-resident only

Transient Counterpart:
PRINT

62 Using ZCPR3 and Command Definitions Sec. 1

Function:
LIST displays a file on the printer. No paging or formatting of any kind is
performed.

Options:
None.

Comments:
The CP-Resident version of LIST accepts only an unambiguous file name. The
RCP-Resident version accepts an ambiguous file name. The matching files are
printed sequentially without any page breaks between filcs.

Selected Error Messages:
None.

Examples of Use:

LIST MYFILE.TXT ~- print file on printer
LIST *.txt -- print all .TXT files in the
current directory on the printer.

MCOPY (version 1.4)

Syntax:
MCOPY dir:=dir:afnl,afn2,dir:=dir:afn3,... o...

Function:
MCOPY is a file copy program designed for use under ZCPR3. It supports many
features related specifically to the ZCPR3 System and is intimately tied into the
ZCPR3 System.

The basic purpose of MCOPY is to copy files from one directory (disk/user arca) to
another under ZCPR3.

MCOPY only copies files; it does not rename them. This is a major differcnce
between MCOPY and PIP. An attempt at renaming (e.g., MCOPY text:f 1.txt=f2.txt)
just copics F2.TXT into the TEXT: directory, but it is still named F2.TXT (FL.TXT
isignorced).

Options:

E Test for Existence of File on Destination and User Approves Copy
before Copy is Done

I User Approves Each File before Copy Begins

M Multiple Copy (Rcpeat) Facility. This allows the uscr to backup sevcral
files toseveral disks by copying all the specified files, prompting the
uscr for a new disk, and then copying the files again, continuing until

Chap.3 TOOLSET OF ZCPR3 63

thec user tclls MCOPY to stop
Q Quiet Operation (No Activity Displays)
\% Verify Copics

The E option (Existence Test) looks in the destination directory to sce il the file it
is about to copy is alrcady there. It then tells the user of its findings and asks him
if he wants to go ahcad with the copy. The user may elcct to copy or not copy as he
desires.

The I option (Inspect) displays all filenames that match the indicated source files,
allowing the uscr to select which of them are to be copicd.

The M (Multiple Copy) option pauses before starting the copy opcration. During
the pause, the user may abort the procedure or insert a disk into the source drive,
the destination drive, or both, and then instruct MCOPY to procced. Aftcr copying
all of the indicated files, MCOPY pauses again, allowing the uscr to change disks
again. This sequence continues until the user aborts the procedurc.

The Q (Quiet) option turns off the MCOPY activity display. During "noisy"
operation, MCOPY is constantly telling the user what it is doing. I fccl that this is
better than quietly having problems without the user knowing what is going on.
MCOPY pays attention to the QUIET flag of ZCPR3, and the initial modc of
MCOPY is set by this flag.

The V (Verify) option checks the copied file to insure that the copy is good. With
this option engaged, MCOPY computes a CRC value of the source file during rcad
operations; when copying is complete, MCOPY stores the computed CRC. MCOPY
now reads the destination file and computes its CRC valuc. The two CRC values
arc compared; any difference indicates a copying error.

Comments:
MCOPY can also be used for making multiple backups, pausing between successive
copy passes to allow the user to change disks. Oncc MCOPY has begun operations,
thc user need never warm boot the system aftcr changing disks; MCOPY docs that
for him automatically.

If a destination directory is not specified, MCOPY looks for a dircctory named
BACKUP: and copies to this directory if found. If there is no dircctory named
BACKUP:, MCOPY will copy to BO: (this can be changed by reasscmbling MCOPY
or by modifying it with DDT and then SAVEing thec modificd version).

In copying a file from one directory to anothcr, MCOPY performs the following
steps:

1. Itlogs into the source directory and scans for the files specificd by the uscr.

2. TItlogs into the destination directory, determines if a copy of the file cxists on the
destination and, if so, deletes it.

MCOPY copics the file in the source dircctory into the destination directory:.

4. MCOPY scts the attributes of the file in the destination directory to be the same
as thosc in the source directory.

64 Using ZCt'R3 and Command Definitions Sec. 1

5. MCOPY optionally verifies both files by means of a CRC Check.

Selected Error Messages:

"NO Files — ~C to Abort" means that no files matching the indicated filc spec were
found.

"TPA Ovfl" means that there was not enough room in the Transient Program Arca
to support MCOPY.

"Disk Full" mcans that there is no more room on the destination disk for the files.

Examples of Use:
MCOPY FILEl.*,HELP:FILE2.HLP,TEMP:=TEST.TXT,6 HI.*

Filecs matching FILEL.* in the current directory are copied to BACKUP:, the file
FILE2.HLP in directory HELP is copicd to BACKUP:, the file TEST.TXT in the
current directory is copied to TEMP:, and the files matching HL* in the currcnt
directory are copied to TEMP:.

Oncc a DIR:= is encountered, the default destination is redcfined. Encountering a
differcnt source, however, does not change the default source dircctory.

MENU (version 3.2)

Syntax:
MENU <-- run MENU.MNU
or
MENU ufn <--run menu contained in file

Function:
MENU is the ZCPR3 menu front-end processor. It isa ZCPR3 Shell which reads a
* MNU file and processes commands from it.

Options:
None.

Comments:
MENU i1sa ZCPR3 Shell. Sec Chapter 5.

Selected Error Messages:

"No Command Line" means that the ZCPR3 System does not support an extcrnal
Command Line Buffer. MENU must have this to run.

"No Shell Stack" means that the ZCPR3 System docs not support a Shell Stack.
MENU must have this to run.

“Shell Stack Full" means that the Shell Stack is full and MENU cannot push itself
onto the stack.

Chap.3 TOOLSET OF ZCPR3 65

"Shell Stack Entry Size" means that the Shell Stack elements arc too short for
MENU to store its parameters.

"TPA Full" mecans that there is not enough room in the TPA to load the * MNU file.

Examples of Use:
See Chapter 5.

MKDIR (version 3.0)

Syntax:
MKDIR <-- ¢nter utility
or
MKDIR dir:ufn <-- enter utility and load NDR file

Function:
MKDIR creates Named Dircctory Files; these are disk files containing the
mnemonic names and the disk/user areas with which they are associatcd. MKDIR
is an cditor. It provides a scratch area in which the uscr can sct up a namcd
directory, review it, edit it, and make any changes he wishes. When satisficd, the
user can write it out to disk as a file or abort and throw it away.

Options:
None.

Comments:
See text under "Using MK DIR" in the scction on Named Directories.

Selected Error Messages:
Sclf-explanatory.

Examples of Use:
See text under "Using MKDIR" in the section on Named Dircctories.

MU (RCP-Resident)

Syntax:
MU <-- invoke MU at 100H
or
MU address <-- invoke MU at indicated address

Function:
MU is identical to MU3 in function, with the exception that thec H command
(Hexadecimal Calculator) is not supported. The differcnce between MU and MU3
is that MU executes as an RCP and MU3 executes as a transicnt. As an RCP, MU
allows the user to cxamine the TPA without concern for side effects, so dcbugging

66 Using ZCPR3 and Command Definitions Sec. 1

transients is simplificd by this command. It is the only main command in the
DEBUG.RCP provided in the ZCPR3 release.

Options:
None.

Comments:
MU may be invoked as a Shell by the SHSET command. The C command can be
used from within MU to execute any desired command line, including the
"SHCTRL POP" command which pops MU from the Shell Stack, terminating its
operation as a Shell.

Comments pertaining to MU3 are generally applicable to MU as well.

Selected Error Messages:
None.

Examples of Use:

MU <=-- run MU
MU O0F400 <-- run MU but position at O0F400H

MU3 (version 1.0)

Syntax:
MU3 <-- Invoke MU3 pointing to ZCPR3 Env Desc
or
MU3 address <-- Invoke MU3 pointing to address (hex)

Function:
MU3 provides a screen-oriented editor which may be used to examine and modify
memory at the user’s discretion. It loads as a transient and runs from the TPA,
starting at 100H. Since MU3 does not overlay the ZCPR3 CP, it allows the user to
examine the operating system directly.

Options:
None.

Comments:
MU3 uses the ZCPR3 TCAP for support. WordStar cursor motion conventions
apply, and the user’s arrow keys may be active if they are specified in the TCAP
entry.

All numeric input arguments (such as constants and addresses) are assumed to be
hexadecimal by default. However, decimal numbers may be input by prefixing
them with a ’#’ character. For instance, as an argument to the A (select address)
command, the user may type 7d0 or #2000 to indicate memory location 7D0 hex
(2000 decimal).

Chap.3 TOOLSET OF ZCPR3 67

All commands are simple and self-explanatory. They include:

N Enter Hex Numbers T Enter Text

A Specify Address +/ Next/Last Block
H Hex Calculator Arrows Movement

AR Refresh Screen ~C Exit MU3

C Enter ZCPR3 Command Line

Selected Error Messages:
None.

Examples of Use:

MU3 FO0O0 =-- invoke MU3 and point to address OF00OH

The Commands of MU3

MUS3 is quite simple to use and recognizes only a few commands. These commands
are presented in a menu to the MU3 user as the program is running.

The MU3 display screen is formatted as indicated below:

MU3 Memory Editor
Value

Hexadecimal Memory Dump ASCII Dump

-- Movement -- ————-—m-——eee- Operation -==-—=—-—-c—c—eeee--
~E A Enter Address + Next Block
A H Hex Calculator - Last Block

AS <=+=> AD N Enter Hex Numbers “R Replot Screen
A T Enter Text AC Exit MU3
~X C Enter Command Line

As the user moves the cursor about on the screen, the value in the upper right
corner changes, indicating both the hex value and ASCII character representation
of the byte being pointed to. Also, a cursor moves in the Hexadecimal Mcmory
Dump region, indicating where the user is in the current 128-byte block.

Once the cursor is pointing to a desired byte, N or T commands may be used to
change memory starting at the byte indicated by the cursor.

Movement Commands
The cursor may be moved around the screen using the WordStar cursor movement
convention. If the arrow keys for the user’s terminal are installed via the ZCPR3
TCAP, then they keys may also be used to move the cursor.

68

Using ZCPR3 and Command Definitions Sec. 1

Select address At any time, the user may strike the lettcr A (case makcs no
differcnce) to select a different region of memory to view., MU3 will display 128
bytes of memory starting at the address given by the user.

Move One Block Forward (+) or Backward (-) The commands "+" and "-" move the
display forward and backward, respectively, by one block (128 bytes). The
movement is instantaneous, and the cursor is repositioned to the first byte in the
ncw block.

Value Entry Commands

The N command is used to enter a group of hexadecimal numbers into mcmory
starting at the address indicated by the cursor. The user is prompted for input, and
he¢ may then enter a series of hexadecimal values, separated by spaces. Entry
terminates when the user strikes the RETURN key. Case is not significant. Any
number prcfixed with *#’ is decimal.

For example, the following is a sample sequence of values which may be entered:

0 1f £3 ff 2c c3 0 2 3 4 #192 #255

The T command is used to enter text into memory starting at the address indicated
by the cursor. The user is prompted for input, and he may then enter a string of
characters. All characters input are significant. Entry terminates when the user
strikcs the RETURN key. Case is significant.

If the uscr wishes to embed a numeric value within a text string, the escape format
<nn> is provided, where ’nn’ is a hexadecimal value as shown above. The form
<#nn> is also provided, where ’nn’ in this case is a decimal value. Thec form ’<<’
inscrts a single ’<’ character into memory.

For example, to enter the sequence ’<this is a test>’ followed by carriage return and
line feed characters into memory starting at the cursor, the use would type:

<<this is a test><0d><#10>

’0d’ is OD hex and ’#10’ is 10 decimal or OA hex. The leading ’<<’ translates into one¢

)

<.

Other MU3 Commands

The C command allows the user to enter a command line for immediate exccution
by the ZCPR3 Command Processor. If MU3 is invoked as a shell via the SHSET
command, this command provides an escape mechanism as wcll as a way to execute
a command line from within MU3. The SHCTRL POP command will terminate the
currcnt shell on the shell stack.

The H command invokes a hexadecimal calculator. The user is askcd to cnter two
hexadecimal numbers. The second number is added to and subtracted from the
first number, the results being printed immediately. Again, decimal numbers may
be entered by prefixing them with *#’.

The ~R command refreshes the screen for the user. This is handy if the screen was
garbled in some way, such as by turning of f the CRT.

Chap.3 TOOLSET OF ZCPR3 69

The ~C command causes MU3 to exit to ZCPR3.

NOTE

Syntax:
NOTE anytext

Function:
NOTE is used to express comments. A linc beginning with a secmicolon (;) is a
comment, and a command whose verb is NOTE (there may be many commands on
one line, separated by semicolons) is a comment.

Options:
None.

Comments:
NOTE is available as a CP-Resident command, an RCP-Resident command, and as
a transient. It is recommended that it be implemented as a CP-Resident command
due to its very low cost and high utility in command files and aliases.

Selected Error Messages:
None.

Examples of Use:

NOTE this is a comment

P (RCP-Resident)

Syntax:
P <-- display next 256 bytes
or
P addr <-- display 256 bytes starting at addr
or

P addrl addr2 <-- display memory range

Transient Counterpart:
MU3

Function:
The P (PEEK) command allows the uscr to cxamine an arca of memory. If the user
simply types "P" with no address, the next 256 bytes of memory are displayed. If
the user types "P address", 256 bytes of memory starting at the indicatcd addrcss
are displayed. If the user types "P addrl addr2", memory in thc range addrl
through addr2 is displayed.

70 Using ZCFPR3 and Command Definitions Sec. 1

Options:
Nonc.

Comments:
PEEK does not modify the memory locations it displays.

Selected Error Messages:
None.

Examples of Use:

P 50c0 -- peek starting at 50COH
P 4000 4fff -- peek from 4000H to 4FFFH

PAGE (version 2.0)

Syntax:
PAGE dir:afnl,dir:afn2,... o...

Function:
The PAGE command lists one or more files to the console, one screen at a time.
Unlike TYPE, PAGE knows the width and depth of the screen; thus, when wide
listings (such as those produced by assemblers) generate wraparound lines, the
wraparound lincs are counted by PAGE and do not overflow the screen.

Options:
0-9 Set Character Print Speed Delay
I Inspect files
L Number lines
P Disable pause at end of screen

Sn Skip to page n and then begin

Comments:
While a file is being paged to the user, the user can strike one of the digits to vary
the speed of the output dynamically. 0 is the fastest, 9 is the slowest. This option
allows the user to scan selected portions of a file by running PAGE with the P
option (so it does not stop when the screen is filled) and striking a digit from time
to time to speed up over sections that are of no interest and slow down for sections
he wants to read.

While the output is being directed to the screen, PAGE supports the following
single-character commands to change the output display in various ways:

0to9 change speed (O=slowest, 9=fastest)

Porp toggle pause when screen fills (the user can dynamically turn on and
off the ability to delay when a screen fills)

~X skip to next file

Chap.3 TOOLSET OF ZCPR3 71

~C abort to operating system
~S pause output; any key will resume, and all of these commands
(except *S) will work

PAGE constantly looks for user input, so these commands can be issued at any
time, including the intervals when PAGE has paused after filling the screen (its
default) or has been halted by a ~S. Characters other than the valid command
characters listed above are ignored.

Selected Error Messages:
Self-explanatory.

Examples of Use:

PAGE *.txt p8 -- page all *,TXT files; begin with
paging off; set speed to 8.
PAGE myfile.txt s5 -- page MYFILE.TXT, starting at page 5.

PATH (version 3.0)

Syntax:
PATH
or
PATH path-expression

Function:
PATH allows the user to display the current path or set a new path. The display
shows the path in three formats: Symbolic, Absolute (DU), and Named Directory
(DIR). The path expression may intermix any of these formats as desired to
express the new path.

Options:
None.

Comments:
PATH determines the address of the path with which it is going to work from the
ZCPR3 Environment Descriptor.

The PATH command deals with path expressions—that is, a sequence of directory
names which can be expressed as "ambiguous" DU forms, absolute DU forms, or
Named Directory forms.

To illustrate, let’s say that the user is logged into BI. The path "$0 A$ A0 ROOT"
represents the sequence BOto Al to A0 to ROOT.

Selected Error Messages:
"Bad Expression at <text>" indicates there was an error in the path expression at
the indicated point.

72 Using ZCI'R3 and Command Definitions Sec. 1

Examples of Use:

PATH $0 AS$ Al5 -- set path from current disk/user O
to disk A/current user to disk A/user 15.
PATH A$ ROOT -- set path from disk A/current user to ROOT:

POKE (RCP-Resident)

Syntax:
POKE address vall val2 ... valn
or
POKE address "character string

Function:
The POKE command allows the user to change the content of memory. The user
must specify an address to POKE; the values that follow may bc numeric
(hecxadecimal assumed) or alphabetic (preceded by a double-quote mark). The two
forms may be intermixed with lcading values and a trailing character string:

POKE address vall val2 ... valn "character string

Notc, however, that once text input begins, further hex values are interpreted as
text characters, so hex input is halted for the scope of the command.

Options:
Nonec.

Comments:
There is no restriction on the memory locations that may be changed by the uscr.
Use of this command can be dangerous.

Selected Error Messages:
None.

Examples of Use:

POKE £f400 0 1 2
-- place the values 0, 1, and 2 into memory
starting at O0F400H
POKE f400 "this is a test
-- place the ASCII values for the indicated
characters into memory starting at O0F400H
POKE £f400 1 2 3 "hello, world
-- intermix hex values and text.

Chap.3 TOOLSET OF ZCPR3 73

PRINT (version 2.0)

Syntax:
PRINT dir:afnl,dir:afn2,... o...

Function:
The PRINT command, like the LIST command, prints a file on the LST: device but
offers many more options. It can print a heading, page the file, number thc pages,
number the lines, place a date/time stamp on the output, put the file name on the
output, and perform yet other functions.

Options:
E Exact Print (Expand Tabs, Form Feed, No Linc or Pagc
Numbers, No Heading)
F Toggle default of file name display on pagc header

(default is ON, so F turns of f name display)
H<delim>text<delim> Define Heading text to appear at the top of cach page

I Inspect Files (allow user to select files before printing
begins)

L Enable numbering of each linc

M Disable Multiple Run Flag (if multiple run is ON, then no

"Set Top of Form" message appears for each filc and
PRINT moves from one file to another unattended);
default is with Multiple Run ON

N Disable numbering of each page

On Offset each line. Move each line in the indicated
number of chars from the left of the page

Sn Start printing on pagen

T Toggle date/time stamp in the header of each page

(a TIME subroutine must be assembled into PRINT
to enable the date/time stamp feature)

Comments:
The characteristics of the printer are defined by the ZCPR3 Environment
Descriptor. Such characteristics include the number of physical lines on a page,
the number of lines of text on a page, thec number of characters per line, and
whether the printer can form feed or not. The Environment Descriptor contains
options for four printers,and the CPSEL utility can be used to sclect the desired set
of attributes.

The date/time stamp feature is very machine-dependent, and PRINT has to be
reassembled to support it.

While PRINT is running, the following commands work:

~C Abort and return to operating system
~X Skip to top of next page and skip to next file

74 Using ZCPFP 3 and Command Definitions

Selected Error Messages:
Sclf-explanatory.

Examples of Use:

PRINT text:*.txt,*.txt olOn
-- print all *.TXT files in the TEXT: directory
and in the current directory; offset all
lines by 10 columns, and do not number pages

PRINT myfile.txt s25
-- print MYFILE.TXT starting at page 25

PROT (RCP-Resident)

Syntax:
PROT afn <-- set files to R/W and DIR
PR(C))rT afn R <--set files to R/O and DIR
PRng afn S <-- set filesto R/Wand SYS
PR((?))rT afn RS <--set filesto R/O and SYS

Function:

Sec. 1

The PROT command sets the standard CP/M file protection attributes (i.e., bit 7 of
bytes 1 and 2 of the filetype) for a group of files. The R/O and System attributes
may be set with the R and S options, respectively, given in any order as "RS" or
"SR". Omission of one of these options toggles the opposite (i.e., omission of R

makes the files R/W).

Transient Counterpart:
PROTECT

Options:
R Select R/O [Read-Only] (R/W [Read-Write] otherwise)
S Select SYS [System] (DIR [Non-System] otherwise)
Comments:

None.

Selected Error Messages:
None.

Chap.3 TOOLSET OF ZCPR3 75

Examples of Use:

PROT b7:*.com rs -~ set all *.COM files in B7:
to R/O and SY¥S

PROT text:*.txt -- set all *.TXT files in TEXT:
to R/W and DIR

PROTECT (version 2.0)

Syntax:
PROTECT dir:afnl,dir:afn2,... keys o...

Function:
The PROTECT command replaces the attribute set capabilities of the STAT
transient and adds more flexibility. PROTECT allows the user to set/reset not
only the read-only, system, and archive attribute bits (bit 7 of the three filetype
characters), but also the tag bits (bit 7 of each of the eight characters in the
filename) of a file or set of files. PROTECT always operates on both system and
non-system files.

Options:
The KEYS are the attributes selected. The following keys are allowed:

R,S,A Enableread/only, system, and archive bits

n Set tag bitn (1 <=n <= 38)
I Inspect
C Control

Inspect Mode allows the user to look at each file before it is "protected" and pcrmit
or disallow the function to be performed on a case-by-case basis.

Control Mode allows the user to see the name of each file selected and manually sect
its attributes and tag bits. In response to the Control Mode prompt, the user can
type inany combination of the letters A, R, S, and the digits 1-8 (the tag bits).

Comments:
None.

Selected Error Messages:
Sclf-explanatory.

Examples of Use:

PROTECT A4:*,.COM,ROOT:*.COM RSI

Set the Attributes of all COM files in directories A4 and ROOT to Read/Only and
System. Turn off the Archive attribute and all tag bits. Allow the user to inspect

76 Using ZCPR3 and Command Definitions Sec. 1

cach file before the operation is performed.

PROTECT ROOT: *.TXT

Clcar all attributes and all tag bits of all files of type TXT in the dircctory named
ROOT

PROTECT A: C

Allow the user to manually set all attributes and tag bits of all files on Disk A in
the current user

PWD (version 1.0)

Syntax:
PWD o

Function:
PWD displays the names of all named directories to the user. If the P (Password)
option is included, then the passwords to the directories will be included in the
display (but only if the Wheel byte is set).

Options:
P Display Passwords

Comments:
If the Wheel byte is not implemented for a system, then its address is 0, where the
JMP instruction to the Warm Boot routine in the BIOS is located. Since JMP is non-
zero in value, the Wheel Byte is TRUE, and passwords will be displayed by PWD.

Selected Error Messages:
"Password Request Denied - Not Wheel" means that the P option was given but the
Wheel Byte was not set, so passwords will not be displayed.

"Named Directory Buffer Not Available" means that named directories arc not
implecmented.

Examples of Use:

PWD - display named directories

PWD P -- display named directories and passwords (Since only
P is valid as an option, the command could have been
"PWD PASSWORD",the last 7 characters being ignored).

Chap.3 TOOLSET OF ZCPR3 77

QUIET (version 1.0)

Syntax:
QUIET o

Function:
QUIET sets, rescts, and displays the Quiet flag in the ZCPR3 Environment
Descriptor.

Options:
D Display the Quict Flag

R Resct (turn OFF) the Quict Flag
S Set (turn ON) the Quiet Flag

Comments:
Many ZCPR3 utilities read the Quict flag in the ZCPR3 Environmcnt Dcscriptor
and rcspond accordingly. If the Quiet flag is set (ON), then certain informative
messages are suppressed in order to cut down on the "noise" crcatcd by the
command. If the Quiet flag is reset (OFF), then all messages are displaycd.

Selected Error Messages:
No Error Messages are generated. An invalid command results in the Help screcen
being displayed.

Examples of Use:

QUIET R -- turn OFF (reset) the Quiet flag
QUIET DISPLAY -- Display the Quiet Flag

RECORD (version 3.0)

Syntax:
RECORD ON or OFF <-- Console Recording
or
RECORD ON or OFF PRINTER <-- Printer Rccording

Function:
RECORD controls the Disk Output Facility of the Redircctable I/O Drivers.
Copies of Console and Printcr outputs can be created in disk files by the usc of this
facility, and it may be extendcd into a number of other applications as well.

Options:

ON Enable Recording
OFF Disable Recording
P Reference Printer

78 Using ZCPi3 and Command Definitions Sec. 1

Comments:
For RECORD to perform its function, it must be implemented in the redirectable
I/O drivers. This is left as an exercise for the reader. The subroutines executed by
the RECORD functions are implemented as simple RETurn instructions in the
redirectable I/O drivers supplied with ZCPR 3.

Four routines are accessed in the Redirectable I/O Driver package to control the
RECORD function. They are:

COPEN Enable Recording Console Output
LOPEN Enable Recording List Output
CCLOSE Disable Recording Console Output
LCLOSE Disable Recording List Output

RECORD is indircctly tied into DEVICE. Invoking RECORD itself does not
nccessarily start the recording process immediately. To begin recording output
onto disk files two functions must be performed:

1. RECORD has to turn the appropriate Driver ON
2. DEVICE has to sclect the appropriate Driver

Turning RECORD OFF during a recording session, closes the output file and
makes it available for other uses. If RECORD is later turned ON, the output file
may be deleted (if the same file is selected to record into). However, if a new
device is selected while RECORD is ON (say, DEVICE CON:=CRT is issucd), then
rccording is SUSPENDED (NOT turned off) until the recording device is selected
again. With this capability, if it looks like the recording session is not going well,
recording can be suspended, the problem fixed, and then recording can be resumed.

This combined system of DEVICE and RECORD provides a flexible output
rccording system. In addition, the output recording need not necessarily go to a
disk file. It could be set up to send CON: output to the CRT and, say, a Remote
Computer for processing.

Selected Error Messages:
"I/O Driver Address NOT Defined" means that there is no I/O Package in this
ZCPR3 System.

"Disk Driver Module NOT Loaded" means that the I/O Package does not support
the RECORD facility.

"No I/O Driver Module Loaded" means that LDR has not been run to load an *.I0OP
file.

Examples of Use:

RECORD ON -- turn on recording for the console
RECORD ON P -- turn on recording for the printer

Chap.3 TOOLSET OF ZCPR3 79

REG (Transient, version 1.0)
REG (RCP-Resident)

Syntax:
REG Dr or REG r <-- Display Register r
REG Mr <-- Minus (Set Register r=r-1)
REG Pr <-- Plus (Set Register r=r+1)
REG Sr value <-- Set (Set Register r=value)

Function:
REG displays, adds 1 to, subtracts 1 from, or loads a value into, the indicated
register. A ZCPR3 Register is a one-byte buffer (values may range from 0 to 255
decimal).

The value used to indicate a register is a character from ’0’ to '9’. The character '#’
indicates all registers ("REG S# 0" stores 0 to all ten registers).

Options:
Nonec.

Comments:
Registers arc used for two purposes:

1. tosupportlooping in ZEX command files (do somcthing N times)
2. to pass parameter values from one program to another program which
is executed later

REG has a counterpart command in the System Resident Command Package
provided in the ZCPR3 distribution.

Selected Error Messages:
REG (Transient): "Invld Reg ID: c¢" means that the register indicated was not
symbolized by 0’ to ’9’ or *#°.
REG (RCP-Resident): None.

Examples of Use:

REG SO 4 -- reg O 4
REG S5 --reg 5 =0

REG P ~-- reg 0 =reg O + 1
REG P5 --reg 5 =reg 5 + 1
REG M9 --reg 9 = reg 9 - 1
REG D -- show values

REG ~-- show values

80 Using ZCPR3 and Command Definitions Sec. 1

REN (CP-Resident)
REN (RCP-Resident)

Syntax:
REN dir:ufnl=ufn2

Function:
REN changes the name of a file. The format is newname=oldname (the standard
CP/Morder). The directory prefix on the first unambiguous file name indicates in
which directory the original (and renamed) file resides. REN cannot rcnamc a
rcad/only file, but can rename a system file. If the new name (ufnl) already exists
in the directory, the user is asked whether the file having that name should be
deleted.

Transient Counterpart:
RENAME

Options:
None.

Comments:
None.

Selected Error Messages:
None.

Examples of Use:

REN newfile.txt=oldfile.txt -- rename OLDFILE.TXT to
NEWFILE.TXT in current dir
REN root:sys.rcp=sysl.rcp -- rename SYS1.RCP to SYS.RCP in ROOT:

RENAME (version 3.0)

Syntax:
RENAME dir:afnl=afnol,dir;:afn2=afno2,... o...

Function:

RENAME changes thc names of one or more files. Ambiguous file names and
inspection are permitted.

Options:

C Control Modc; manually specify each file name
I inspect and approve each rename
S Include System files

Chap.3 TOOLSET OF ZCPR3 81

Comments:
The RENAME command is a brother to the REN recsident command. There are
many major dif fercnces, however:

B RENAME allows ambiguous file names to be used.

B RENAME supports an Inspect Mode, which presents the user with cach namec
change and allows him to approve it before the change is made.

B RENAME supports a Control Mode, which presents the user with each filc to be
RENAMEd and allows him to enter the new name or to cancel the renaming.

RENAME accepts a list of files.
RENAME docs not "sce” System files unless told to
RENAME can rename Read/Only files

RENAME sets the attributes (R/O and SYS) of the new file names to be the same
as those on the old file names

Selected Error Messages:
Self-explanatory.

Examples of Use:

RENAME *.txt C -- rename all *.TXT files to something else;
display the file name to the user and
allow him to enter the new name

RENAME asm:*.mac=*.asm -- rename all *.ASM files to *.MAC

SAK (version 2.0)

Syntax:
SAK o...

Function:
SAK (Strike Any Key) provides some simple utility functions, one of which is
associatcd with the Multiple Command Line feature of ZCPR3. The functions are:

1. Allow the user to program a wait in a multiple command line until he instructs the
system to continuec.

2. Allow the user toabort a multiple command line.

3. Allow the user to program an interruptible delay in thc execution of a multiple
command line.

82 Using ZCFR3 and Command Definitions Sec. 1

4. Provide a simple alarm for the user.

Options:

A DO NOT allow the user to abort the command line
B Ring the bell at the user’s terminal occasionally
Pn Pause n seconds and continue if no response by that time

Comments:
If no options are given, SAK waits for user input, and if the user strikes a ~C, then
the multiple command line is aborted and control is returned to the user.

SAK is particularly useful if the user wishes to interject a delay in a multiple
command line gencrated by a Menu. One such application is to display the time to
the user, call his attention to it (via ECHQ), give him a delay (via SAK), and then
invoke dBASE II with an initializing command file.

Selected Error Messages:
Self-explanatory.

Examples of Use:

SAK BP1O -- ring the bell occasionally and pause for 10
seconds; if the user does not strike a command
by that time (AC to abort), then resume
command line execution with the next command.

SAVE (CP-Resident)

Syntax:
SAVE n ufn <--save n pages (256 bytes) to file
or
SAVE n ufn S <--save n sectors (128 bytes) to file

Function:
The SAVE command saves the contents of the TPA onto disk as a file. It accepts
two arguments: a number and a file name. The file name may optionally be
followed by the letter "S" to indicate that the number is the number of 128-byte
Sectors (Blocks) to be saved. If this option letter is omitted, the number is assumed
to be the number of 256-byte pages to be saved.

If the number, n, is followed by the suffix "H", as in "FH" or "2DH", then n is taken
to bc a hexadecimal value. If no suffix is given, n is assumed to be decimal. This
hexadecimal option eliminates the need for conversion from the values supplied by
debuggers such as DDT.

Chap.3 TOOLSET OF ZCPR3 83

If the indicated file already exists, SAVE will ask the user if he wishes to erase it
with the prompt "Erase ufn?".

Options:
S Select sectors (128 bytes) instead of pages (256 bytes)

Comments:
None.

Selected Error Messages:
None.

Examples of Use:

SAVE 10 MYFILE.BIN -- save 10 pages into MYFILE.BIN
SAVE 2FH HISFILE.BIN -- save 2F hex pages into HISFILE.BIN

SETFILE (version 1.0)

Syntax:
SETFILE n afn
or
SETFILE n

Function:
SETFILE sets the name of ZCPR3 System File n (where n is [to 4) to the indicated
ambiguous file name. If no AFN is given, the current contents of the indicated
System File are displayed. A file number is required.

Options:
None.

Comments:
ZCPR3 System Files are referenced by some of the ZCPR3 utilities, MENU and

ALIAS in particular. SETFILE is a means by which the contents of these file name
buffers are defined.

Selected Error Messages:
"Invalid File Name Number (not 1-4)" means that a valid file number was not given
after the SETFILE verb (SETFILE n afn).

Examples of Use:

SETFILE 1 myfile.txt -- System File 1 is set to MYFILE.TXT
SETFILE 4 -- the name of System File 4 is displayed

84 Using ZCPk3 and Command Definitions Sec. 1

SH (version 1.0)

Syntax:
SH

Function:
SH is a Named Variable Shell for ZCPR3. It prompts the user for a command line,
performs an interpretation on the command line, and either exccutes the command
line itsclf or passes the line on to the ZCPR3 Command Processor.

Options:
None.

Comments:
Sec Chapter 6, Shell Subsystem.

SHCTRL (version 1.0)

Syntax:
SHCTRL o

Function:
SHCTRL provides some control of the ZCPR3 Shell Stack from the command line.
The contents of the Shell Stack can be displayed and popped one level or cleared

completcly.
Options:
C Clear the Shell Stack (no Shell is in effect)
D Display Shell Stack
P Pop the Shell Stack (the current Shell is stopped

and the ncxt Shell on the stack is invoked)

Comments:
Only one option may be used in conjunction with the SHCTRL command. Any
characters following this option are ignored.

SHCTRL is intended for use in situations where a directory change is desircd and a
Shell, such as MENU, is in exccution. The Shell Stack can be popped, the directory
change pcrformed, and the original Shell explicitly reinvoked.

For additional information, sec Chapter 6, Shell Subsystem.

Selected Error Messages:
Nonc — Help is printed if invalid option is given.

Examples of Use:

SHCTRL P - pop the Shell Stack one level
SHCTRL D - display the contents of the Shell Stack

Chap.3 TOOLSET OF ZCPR3 85

SHDEFINE (version 1.0)

Syntax:
SHDEFINE ufn <--define variables within file
or
SHDEFINE <--define variables within SH.VAR

Function:
SHDEFINE allows the user to interactively display and edit thc assignment of
variables in a Shell Variable file. He may add, delete, and redcfine Shell Variablces
as well as list all current definitions on the CRT or print them on the printer.

Options:
None.

Comments:
Use of SHDEFINE is explained within the program itself. It is mecnu-driven and
the error and instructional messages are intended to be clear.

The most complex command is the E (for Edit) command. Aftcr issuing this
command, the user is prompted for a variable name. If he gives the name of a
variable not yet defined, the user is prompted for a definition, and the variable is
so defined unless the user responded with just a RETURN at this point. If the
name of the variable has already been defined, the user is asked if he wishes to
delete (D) or redefine (R) the variable. Appropriate action is taken in response to
the user input.

The user must be a Wheel to run the SHDEFINE command.

Selected Error Messages:
Self-explanatory.

Examples of Use:

SHDEFINE myvars -- define variables in MYVARS.VAR

SHFILE (version 1.0)

Syntax:
SHFILE <-- display name of Shell Variable File
or
SHFILE ufn <--sct name of Shell Variable File

86 Using ZCPR3 and Command Definitions Sec. 1

Function:
SHFILE displays or sets the name of the Shell Variable File to be used by SH.
SHFILE may be executed while SH is not running, if desired.

Options:
None.

Comments:

SHDEFINE and SHVAR define variables to be placed into Shell Variable Files.
SHFILE defines which Shell Variable File will be used by SH when it executes.

When SH and SHV AR execute, the named variable file they deal with must reside
in the ROOT directory.

Selected Error Messages:
Self-explanatory.

Examples of Use:

SHFILE -- display name of Shell Variable File
SHFILE myvars.var -- define name of Shell Variable File

SHOW (version 1.0)

Syntax:
SHOW o

Function:
SHOW 1is the ZCPR3 Environment Display utility. SHOW generates numerous
displays which include: details of the ZCPR3 Environment Descriptor, what
system facilitics are available, and the status of these facilities.

SHOW can be invoked as an Error Handler, in which case its Error Handler display
can give the command line status and its other displays, such as memory examine,
may prove useful to analyze the state of the ZCPR3 System.

Options:
E Install SHOW as an Error Handler (no SHOW displays are invoked)

Comments:
SHOW provides the following displays to the user:

1. Package Data 3. ZCPR3 System
-~ Flow Command Package - Environment Descriptor
= Input/Output Package ~ Message Buffers
- Resident Command Package - CRT and Printer Data

-~ ©System File Definitions

Chap.3 TOOLSET OF ZCPR3 87

2. Environment Data
- Error Handler
- Memory Display Utility
- Named Directory Display
- Path Expression
- Shell Stack

SHOW is screen-oriented and will not function correctly without proper Z3TCAP
support. The Environment Descriptor MUST be installed with a valid Z3TCAP entry.

Try it—you’ll like it! SHOW is totally screen-oriented and will not function correctly
without proper Z3TCAP support. If the user enters SHOW without proper support, the
X command exits SHOW.

Selected Error Messages:
Self-explanatory.

Examples of Use:

SHOW E -- install SHOW as an Error Handler

SHSET (version 1.0)

Syntax:
SHSET cmdl;cmd2;...

Function:
SHSET defines the commands which follow it as the command sequence to be
placed on the top of the shell stack. It places this sequence there. Consequently,
once SHSET is executed on a sequence of commands, these commands will be
cycled thru time and time again until the shell stack is cleared or popped.

Options:
None.

Comments:
SHSET provides a simple mechanism through which the user can make any
command sequence into a shell. Consequently, non-ZCPR3 programs, like

MBASIC, DBASE II, WORD STAR, and others can become shells under ZCPR3.

When using SHSET, care should be taken to provide an exit from the shell (e.g., an
exit to ZCPR3 and the system); unless this is done the system, once booted, will
remain permanently in the application program. The CMD utility is sometimes
useful for providing such an exit.

88 Using ZCPR3 and Command Definitions Sec. 1

Selected Error Messages:
None — self-cxplanatory.

Examples of Use:

SHSET MBASIC;CMD -- define the sequence MBASIC;CMD
to be a shell
SHSET WS -- define WordStar to be a shell

SHVAR (version 1.0)

Syntax:
SHV AR <--list variables
or
SHV AR var <--delete variable
or

SHV AR var text <--define/redefine variable

Function:
SHV AR can list all Shell Variables in the currently defined Shell Variable File, or
can cdit this file to delete or change one variable at a time. SHVAR is sometimes
more convenient than SHDEFINE, which is intended for editing groups of
variables in one sitting.

Options:
None.

Comments:
The user must be a Wheel to run SHVAR. SHVAR may be used whether SH is
running or not. If a Shell Variable File is already defined to the ZCPR3 System,
SHV AR uses this file. If one is not defined, SHVAR uses SH.VAR (always located
in the ROOT directory).

Selected Error Messages:
Self-explanatory.

Examples of Use:

SHVAR -~ list shell variables
SHVAR VAR2 -- delete the variable VAR2
SHVAR VARX THIS IS A TEST -- define VARX to "THIS IS A TEST"

SUB (version 3.0)

Chap.3 TOOLSET OF ZCPR3 89

Syntax:
SUB or SUB // <-- Print Help Message
SU};);A Text <-- Abort $$$.SUB File Processing at Uscr’s Discrction
SUI;);AB Text <-- Same as /A but Ring Bell to Alert User
SU};;I <-- Enter Interactive Input Mode
or

SUB filename params <-- As in Standard SUBMIT

Function:
SUB builds a command file on disk (named $$$.SUB). Each time ZCPR3 is rcady
for a command line, it looks for such a file and, if it finds one, extracts the next
command from it.

SUB can be used in any situation where the user would normally usc the CP/M
SUBMIT command. XSUB will execute in conjunction with SUB if desired. SUB
can also be used to sound alarms to the user.

Options:

A Permit abort
AB Permit Abort and Ring Bell
1 Interactive Input

Comments:
The "SUB /A" and "SUB /AB" forms allow the user to gracefully abort a $$$.SUB
file. As under CP/M, entering ~“C at the console can bc used to abort such
processing, but the /A form allows the luxury of starting a command stream and
suspending it at one or more critical points. At each pause, the user can inspcct
what has happened, and then decide whether to proceed or not.

The "SUB /I" form allows the user to create a .SUB file without having to invoke an
editor. If the user has a command stream he wants to exccute immediately and
doesn’t care to do it again, he can use this option. In response, SUB allows him to
enter his command stream (sorry, no parameter passing) a line at a time. When it is
all entered (uscer enters an empty line), the $$$.SUB file is built and executed.

The "SUB filename params" form is identical to the form of the SUBMIT command
supplied with CP/M. The "filename" specifies the name of the .SUB file to be
exccuted, and the parameters are associated with the substitution variables $1, $2,
etc. Up to 20 paramcters may be specified. The sequence "3" places a "$" into the
command linc, and the character sequcnce "~c¢" places the indicated control
character into the command line (uparrow C places Control-C).

The SUB command may be nested into a $$$.SUB file. If a "SUB filcname params"
command is encountercd in a $$$.SUB file, SUB runs, rcalizes that this has
happened, and inserts the indicated command file, with parameter substitution,
into the running command stream at the appropriate place. This may bec nested as
many levels deep as desired.

90 Using ZC1’R3 and Command Definitions Sec. 1

Under ZCPR3, if SUB is executed with the Multiple Command Line Facility
invoked and more commands follow the SUB command, then the rest of the
Multiple Command Line is inserted at the end of the generated $$$.SUB file.

SUB follows the ZCPR3 path when searching for the indicated command file. It is
fully integrated into the ZCPR3 System and is able to employ the External Path
and Multiple Command Line Buffer features of ZCPR3.

Examples of Use:

SUB cmdfile pl p2 p3
-- the file 'cmdfile.SUB' is processed, substituting
'pl' for $1, 'p2' for $2, and 'p3' for $3
SUB /AB
-- during the execution of a command file, this
command causes the bell to ring at the console
and the user is given a chance to abort execution

SUB Error Messages:

SUB provides a number of informative diagnostics to the user. In particular, when
an error is encountered during processing of a command file, the user is informed
of the line number at which the error occurred. The error messages presented by
SUB are:

"Control Character" means that the ¢ form was not followed by a letter A-Z
"Directory Full" means that there is no directory space for the $$$.SUB file
"Disk Full" means that there is no room to write the $$$.SUB file

"Line too Long" means that the current line in the command stream exceeds 128
bytes

"Memory Full" means that there is not enough memory in which to build the
command stream to be placed into the $$$.SUB file

"Param" means that a parameter was referenced and none was given on the
command line.

"Paramcter" means that an Invalid Parameter was specified

"SUBMIT File Empty" means that the .SUB file specified in the command line was
found to be empty

"SUBMIT File Not Found" means that the .SUB file specified in the command line
could not be found along the ZCPR3 path

"Too Many Parameters" means that more than 20 parameters were on the command
line

Chap.3 TOOLSET OF ZCPR3 91

TCCHECK (version 1.0)

Syntax:
TCCHECK ufn <-- default file type is TCP
or
TCCHECK <-- check Z3TCAP.TCP
Function:

TCCHECK checks a Z3TCAP.TCP file for valid format and reports any errors and
statistical information on it.

Options:
None.

Comments:
TCCHECK is intended to run in a non-installed environment (such as when the
user first rcceives ZCPR3), so the Z3TCAP.TCP file becing chccked must be in the
current directory.

Selected Error Messages:
Self-explanatory.

Examples of Use:
TCCHECK is used to check the Z3TCAP file for consistency. Itssole function is to
ensure the validity of the Z3TCAP file and provide some statistics on it. The
commands and responses displayed during a sample run are shown below.

B4 :SCR2>tccheck

TCCHECK, Version 1.0 File Z3TCAP .TCP Not Found - Aborting
-~ Note: Z3TCAP.TCP MUST be in the same directory

B4 :SCR2>root:

Al15:RO0T>tccheck

TCCHECK, Version 1.0

Z3TCAP File Check of Z3TCAP .TCP Version 1.1
File Checks with 44 Terminals Defined

TCMAKE (version 1.0)

Syntax:
TCMAKE ufn <-- default file type is Z3T

Function:
TCMAKE allows the user to interactively define the characteristics of his terminal
and store this information in the file referenced. This file may then be loaded by
the LDR utility.

92 Using ZCFR3 and Command Definitions Sec. 1

Options:
Nonc.

Comments:
None.

Selected Error Messages:
Sclf-explanatory.

Examples of Use:
TCMAKE is used to create a *.Z3T file. Once created, the ZCPR3 utility LDR can
load it into memory at the proper location (command is "LDR filename.Z3T"). The
commands and responses displayed during a sample run of TCMAKE are shown
below.

B4:SCR2>tcmake //
TCMAKE, Version 1.0
TCMAKE - Create a Z3T File
Syntax:
TCMAKE outfile -or- TCMAKE outfile.typ

where "outfile" is the file to be generated by
the execution of TCMAKE. If no file type is
given, a file type of Z3T is the default.

B4:SCR2>tcmake myterm2
TCMAKE, Version 1.0

*% Z3TCAP Main Menu for File MYTERM2 .Z3T *%*
Define: 1. Clear Screen Sequence
2. Cursor Motion Sequence
3. Clear to End of Line Sequence
4. Standout Mode Sequences
5. Terminal Init/Deinit Sequences
6
7

. Arrow Keys
. Terminal Name

Status: S. Print Status (Definitions so far)

Exit: X. Exit and Write File
Q. Quit and Abort Program without Writing File

Chap.3 TOOLSET OF ZCPR3

Command? 2

Cursor Motion Definition

1. Timing Delay

Enter Delay Time in Milliseconds: 5

2. Enter R if Row/Column or C for Column/Row: R
3. Enter Equation for Row: %+

4. Enter Equation for Column: %+

5. Enter Prefix Byte Sequence

Char #1 - Type Char, .=Number, or <CR>=Done: Enter Number:
Char #2 - Type Char, .=Number, or <CR>=Done: Char =

Char #3 - Type Char, .=Number, or <CR>=Done:

6. Enter Middle Byte Sequence

Char #1 - Type Char, .=Number, or <CR>=Done:

7. Enter Suffix Byte Sequence
Char #1 - Type Char, .=Number, or <CR>=Done:

*% Z3TCAP Main Menu for File MYTERM2 .Z3T **
Define: 1. Clear Screen Sequence
2. Cursor Motion Sequence
3. Clear to End of Line Sequence
4. Standout Mode Sequences
5. Terminal Init/Deinit Sequences
6
7

Arrow Keys
Terminal Name

Status: S. Print Status (Definitions so far)

Exit: X. Exit and Write File
Q. Quit and Abort Program without Writing File

Command? 6

Arrow Key Definition
Your Terminal's Arrow Keys may be defined ONLY
if they generate only one character each. If they
do, type Y to continue. If not, type anything else.
Define Arrow Keys (Y/N)? Y
Strike the Appropriate Arrow Key

93

1bh

1.
2. Arrow
3. Arrow
4. Arrow
* %
Define: 1.
2.
30
4.
5.
6‘
7.
Status: S.
Exit: X.
Q.

Command? S

* %
Review: 1.
2.
3.
4.
5.
6.
7.
Exit: X.

Command? 1

Using ZCPR3 and Command Definitions

Arrow UP? 2K
DOWN? AV
RIGHT? ~L
LEFT? ~H

Z3TCAP Main Menu for File MYTERM2 .Z3T *%*

Clear Screen Sequence

Cursor Motion Sequence

Clear to End of Line Sequence
Standout Mode Sequences
Terminal Init/Deinit Sequences
Arrow Keys

Terminal Name

Print Status (Definitions so far)

Exit and Write File
Quit and Abort Program without Writing File

Z3TCAP Status for File MYTERM2 .Z3T *%*

Clear Screen Definition

Cursor Motion Definition

Clear to End of Line Definition
Standout Mode Definition
Terminal Init/Deinit Definition
Arrow Key Definition

Terminal Name Definition

Exit to Main Menu

Review of Clear Screen Definition
1. Timing Delay = 0 Milliseconds

2.

(1) ~I[

Clear Screen Sequence:

1BH (2) * 2AH

Sec. 1

Chap.3 TOOLSET OF ZCPR3

Strike Any Key to Continue -

** Z3TCAP Status for File MYTERM?2

Review:

1
2
3
4
5
6
7

Clear Screen Definition

Cursor Motion Definition

Clear to End of Line Definition
Standout Mode Definition
Terminal Init/Deinit Definition
Arrow Key Definition

Terminal Name Definition

Exit: X. Exit to Main Menu

Command? 2

Review of Cursor Motion Data
l. Timing Delay = 5 Milliseconds
2. Row or Column First: R

3. Row Equation: -=>%+ <--
4., Column Equation: ==->%+ <--
5. Prefix Byte Sequence:

(1) ~[1BH (2) = 3DH

6. Middle Byte Sequence:

-- Empty --

7. Suffix Byte Sequence:

-- Empty --

Strike Any Key to Continue -

** Z3TCAP Status for File MYTERM2 .Z3T

Review:

1l
2
3
4
5
6
7

Exit: X.

Clear Screen Definition

Cursor Motion Definition

Clear to End of Line Definition
Standout Mode Definition
Terminal Init/Deinit Definition
Arrow Key Definition

Terminal Name Definition

Exit to Main Menu

c23T *%*

* %

95

96

Command? 6

Review of

l. Arrow
2. Arrow
3. Arrow
4. Arrow
St

* %
Review: 1.
2.

3.

4.

5.

6.

7.

Exit: X. E

Command? X

* %

Define: 1.
2
3.
4.
5
6
7
Status: S.
Exit: X.
Q.

Command? X

Using ZCPR3 and Command Definitions

Arrow Key Definitions
UP = ~K

DOWN = AV
RIGHT = AL
LEFT = ~H
rike Any Key to Continue -

Z3TCAP Status for File MYTERM2 .Z3T *%*

Clear Screen Definition

Cursor Motion Definition

Clear to End of Line Definition
Standout Mode Definition
Terminal Init/Deinit Definition
Arrow Key Definition

Terminal Name Definition

xit to Main Menu

Z3TCAP Main Menu for File MYTERM2 .Z3T *%*

Clear Screen Sequence

Cursor Motion Sequence

Clear to End of Line Sequence
Standout Mode Sequences
Terminal Init/Deinit Sequences
Arrow Keys

Terminal Name

Print Status (Definitions so far)

Exit and Write File
Quit and Abort Program without Writing File

Sec. 1

Selected Terminal is: Rick's Terminal -- Confirm (Y/N)? Y

Chap.3 TOOLSET OF ZCPR3 97

File MYTERM2 .Z3T Created

TCSELECT

Command:
TCSELECT 1.0

Syntax:
TCSELECT ufn <-- default file type is Z3T
or
TCSELECT <-- selection stored in Env Desc

Function:
TCSELECT allows the user to interactively review the contents of a Z3TCAP.TCP
file and select a terminal from it. If an unambigous file name is specified in the
command line, TCSELECT stores the selection into the indicated file. If no file
name is given, TCSELECT stores the selection directly into the TCAP section of
the memory-based Environment Descriptor.

Options:
None.

Comments:
None.

Selected Error Messages:
Self-explanatory.

Examples of Use:
TCSELECT is used to select a terminal from the standard Z3TCAP file. The
selected terminal may be loaded directly into memory or a *.Z3T file may be
created. If a *.Z3T file is created, the ZCPR3 utility LDR can load it into memory
at the proper location (command is "LDR filename.Z3T").

Sample run of TCSELECT:

B4 :SCR2>tcselect //
TCSELECT, Version 1.0
TCSELECT -~ Select Entry from Z3TCAP.TCP
Syntax:
TCSELECT outfile =~-or- TCSELECT outfile.typ

where "outfile" is the file to be generated by
the execution of TCSELECT. If no file type is
given, a file type of Z3T is the default.

98

Syntax:
TCSELECT

Using ZCPR3 and Command Definitions

where this alternate form may be used to store
the Z3TCAP entry for the selected terminal directly
into the Z3 Environment Descriptor.

Example 1: Create MYTERM.TCP

B4:SCR2>tcselect myterm
TCSELECT, Version 1.0

** Terminal Menu 1 for Z3TCAP Version 1.1 **

AA Ambassador
ADDS Consul 980
ADDS Regent 20
ADDS Viewpoint
ADM 2

ADM 31

ADM 3A

ADM 42

Bantam 550

CDC 456

HID O-HEHOO WY

Enter Selection, + for Next,

HnW O vwo=Z=2 B R

Concept 100
Concept 108

CT82

DEC VT52

DEC VT100
Dialogue 80
Direct 800/A
General Trm 100A
Hazeltine 1420
Hazeltine 1500

or ~C to Exit - +

% Terminal Menu 2 for Z3TCAP Version 1.1 **

Hazeltine 1510
Hazeltine 1520
H19 (ANSI Mode)
H19 (Heath Mode)
HP 2621

IBM 3101

Micro Bee
Microterm ACT IV
Microterm ACT V
P Elmer 1100

U aO"HODOWY

K.
L.
M.
N.
0.
p.
Q.
R.
S.
T.

P Elmer 1200
SOROC 120
Super Bee
TAB 132
Teleray 1061
Teleray 3800
TTY 4424

TVI 912

TVI 920

TVI 950

Sec. 1

Chap.3 TOOLSET OF ZCPR3

Enter Selection, - for lLast, + for Next, or ~C to Exit - +
** Terminal Menu 3 for Z3TCAP Version 1.1 **

A. VC 404

B. VC 415

C. Visual 200

D. WYSE 50

Enter Selection, - for Last, or ~C to Exit - -

** Terminal Menu 2 for Z3TCAP Version 1.1 **

A. Hazeltine 1510 K. P Elmer 1200

B. Hazeltine 1520 L. SOROC 120

C. H19 (ANSI Mode) M. Super Bee

D. H19 (Heath Mode) N. TAB 132

E. HP 2621 O. Teleray 1061

F. IBM 3101 P. Teleray 3800

G. Micro Bee Q. TTY 4424

H. Microterm ACT IV R. TVI 912

I. Microterm ACT V S. TVI 920

J. P Elmer 1100 T. TVI 950

Enter Selection, - for Last, + for Next, or ~C to Exit - T
Selected Terminal is: TVI 950 -- Confirm (Y/N)? N

** Terminal Menu 2 for Z3TCAP Version 1.1 **

A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120

C. H19 (ANSI Mode) M. Super Bee

D. H1l9 (Heath Mode) N. TAB 132

E. HP 2621 0. Teleray 1061
F. 1IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424

H. Microterm ACT IV R. TVI 912

I. Microterm ACT V S. TVI 920

100 Using ZCFP 23 and Command Definitions Sec. 1

J. P Elmer 1100 T. TVI 950
Enter Selection, - for Last, + for Next, or ~C to Exit - S
Selected Terminal is: TVI 920 -- Confirm (Y/N)? Y

File MYTERM .Z3T Created

Example 2: Select terminal and store it in memory

B4 :SCR2>tcselect
TCSELECT, Version 1.0
** Terminal Menu 1 for Z3TCAP Version 1.1 *=*

A. AA Ambassador K. Concept 100

B. ADDS Consul 980 L. Concept 108

C. ADDS Regent 20 M. (CT82

D. ADDS Viewpoint N. DEC VT52

E. ADM 2 O. DEC VT100

F. ADM 31 P. Dialogue 80

G. ADM 3A Q. Direct 800/A

H. ADM 42 R. General Trm 100A
I. Bantam 550 S. Hazeltine 1420
J. CDC 456 T. Hazeltine 1500

Enter Selection, + for Next, or ~C to Exit - +

** Terminal Menu 2 for Z3TCAP Version 1.1 *x*

A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120

C. H19 (ANSI Mode) M. Super Bee

D. H19 (Heath Mode) N. TAB 132

E. HP 2621 O. Teleray 1061
F. 1IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424

H. Microterm ACT IV R. TVI 912

I. Microterm ACT V S. TVI 920

J. P Elmer 1100 T. TVI 950

Chap.3 TOOLSET OF ZCPR3 101

Enter Selection, - for Last, + for Next, or ~C to Exit - T
Selected Terminal is: TVI 950 -- Confirm (Y/N)? Y

ZCPR3 Environment Descriptor Loaded

TYPE (CP-Resident)
TYPE (RCP-Resident)

Syntax:
TYPE ufn <-- type file and page it
or
TYPE ufn P <-- type file but do not page

Transient Counterpart:
PAGE

Function:
TYPE displays one or more files on the console. The file is paged (by default) or
scrolled continuously if the P option is enabled. Flow control (XON/XOFF or
~S/~Q) is in effect.

Options:
P disable paging
Comments:
The CP-Resident version of TYPE accepts only an unambiguous file name. The

RCP-Resident version accepts an ambiguous file name, so several files can be
displayed successively with a single command.

Selected Error Messages:
None.

Examples of Use:

TYPE MYFILE.TXT -- print file on console with paging
TYPE MYFILE.TXT P -- print file on console without paging

UNERASE (version 1.0)

102 Using ZCFR3 and Command Definitions Sec. 1

Syntax:
UNERASE afnl,afn2,... o...

Function:
UNERASE recovers files which have been previously erased if it is possible to do
so. As a rule, UNERASE has a much greater chance of success if it is used
immediately after the files were erased. If anything is written to the disk after
erasing a file, the directory entry or portions of the erased file may be overwritten.

Options:

L List Erased Files Only (do not attempt recovery)
P Pause for Disk Change and then try
Z Place Recovered Filesin User Area 0 (default is current user area)

Comments:
When ZCPR3 (and CP/M) erases a file, the information contained in the file and
the directory reference to that information is not deleted immediately. Instead,
the directory entry is simply marked as being deleted. As a result, by changing this
delete mark back to a user number, the file is recovered.

After a file has been deleted, the directory entry and the blocks allocated to the
deleted file all become available to the system for reallocation. Thus, a simple
expansion of another file can overwrite one or more blocks previously allocated to
the deleted file. Creation of a new file or expansion of an existing file that
requires a new extent, may overwrite the directory entry of the deleted file. In all
these cases, recovery of the deleted file is a complex process quite beyond the scope
of UNERASE.

UNERASE is not always successful, however. If, for instance, the following events
took place:

1 the files MYFILE. TXT, HISFILE.TXT, and T.TXT were created and then erased

2 anew file T.TXT was created and then erased

3 UNERASE T.TXT was issued—it is possible that both previous T.TXT files would
be recovered, and a "weird" dual file named T.TXT would be in your directory

UNERASE prints the names of the files it is recovering, and, if a name appears two
or more times, then these earlier files of the same name are being recovered. Those
experienced with DU3 can probably identify the blocks allocated to the desired
file, reconstruct the proper directory entry, and delete the incorrect directory
entry. Others will simply have a corrupted directory which can only be restored by
erasing T.TXT, thereby losing both files again. Occasional use of the command
CLEANDIR can keep the directory clear to the point where UNERASE will
function correctly most, if not all, of the time.

Selected Error Messages:
Self-explanatory.

Chap.3 TOOLSET OF ZCPR3 103

Examples of Use:

UNERASE myfile.txt,hisfile.txt
-- try to recover MYFILE.TXT and HISFILE.TXT
UNERASE myfile.txt Z
-- try to recover MYFILE.TXT and place it in User 0
UNERASE myfile.txt L
-- =see if MYFILE.TXT can be recovered (duplicates
may also appear in this way)

VFILER (version 1.0)

Syntax:
VFILER <--install VFILER as a shell

Function:
VFILER is a general-purpose, screen-oriented file manipulation utility. It allows
the user to display, print, copy, rename, delete, and compute the size of files which
are listed on the screen. The user can move his pointer about the list, using the
WordStar cursor convention or, if the ZCPR3 TCAP for the user’s terminal
supports it, his own arrow keys may work.

Options:
None.

Comments:
For a detailed description, see Chapter 7.

Selected Error Messages:
Self-explanatory.

Examples of Use:
See Chapter 7.

VMENU (version 1.0)

Syntax:
VMENU <--run MENU.VMN on all files in dir
or
VMENU afn <--run MENU.VMN on files selected by afn
or

VMENU afn ufn <-- run menu (ufn) on selected files

104 Using ZCPR3 and Command Definitions Sec. 1

Function:
VMENU is the ZCPR3 menu front-end processor. It isa ZCPR3 Shell which reads
a * VMN file and processes commands from it.

Options:
None.

Comments:
For a detailed description, refer to Chapter 5, Menu Subsystem.

Selected Error Messages:
See Chapter 5.

Examples of Use:
See Chapter 5.

WHEEL (version 3.0)

Syntax:
WHEEL password S
WI;){ZEL password <-- Set Wheel Byte
WE(I)Ir-:EL password R <-- Reset Wheel Byte
WI;)Ir-:EL /Sor /R <-- Enter Password without echo

Function:
The WHEEL command enables or disables certain privileged commands and
command features. It does this by setting or resetting the Wheel Byte.

Options:

R Reset Wheel Byte
S Set Wheel Byte

Comments:
The Wheel Password is hard-coded into the WHEEL.COM file. It may be changed
by DDT or reassembly.

WHEEL has an RCP counterpart, WHL, which may also be in effect. WHEEL and
WHL can respond to different passwords.

Selected Error Messages:
"Invalid Password" means that the given password was not correct.

Examples of Use:

WHEEL mypass -- set Wheel Byte if MYPASS is the
correct password

Chap.3 TOOLSET OF ZCPR3 105

WHL (RCP-Resident)

Syntax:
WHL <-- make user non-privileged
or
WHL password <-- make user privileged
or

WHLQ <-- determine status

Transient Counterpart:
WHEEL

Function:
The WHL command is used to turn the Wheel Byte off (make the user non-
privileged) or on (make the user privileged). The Wheel password is built into the
RCP.

To find out the current status of the Wheel byte, use the WHLQ command
(described below).

Options:
None.

Comments:
None.

Selected Error Messages:
Self-explanatory.

Examples of Use:

WHL -- make user non-privileged
WHL mypass =-- make user privileged if password is MYPASS
WHLQ -- determine status of user (privileged or not)

XD (version 1.2)

Syntax:
XD dir:afn ooo...
or
XD /ooo...

106 Using ZCPR3 and Command Definitions Sec. 1

Function:
XD displays a formatted, alphabetized listing of the contents of a disk directory.

Options:

Aa Indicate attributes of files to be selected.
a=A for All Files (System and Non-System)
a=N for Non-System Files [default]
a=S for System Files

Oo Sclect Output Featurces
o=A to Disable Display of File Attributes (R, S)
o=F to Form Feed Printer when Display Done
0=G to Group Files by Name and Type
o=H to Display Files in Horizontal Format

P Send Display to Printcr

PF Scnd Display to Printer with Trailing Form Fecd

Comments:
It has been found that the more exotic features of XDIR (particularly the file
scanner and disk output facility) are not used often in some environments. Because
these fcatures increase the size of XDIR.COM and reducc its execution specd,
another version of XDIR.COM, called XD.COM, has been created.

XD is completely compatible with XDIR in terms of the options it accepts and how
it operates. However, the file scanner and disk output facilities have been
rcmoved from XD. Hence, the D, F, and I options are not available. All other
options of XDIR are retained in XD and perform in the same way. As a result, XD
is smaller than XDIR (4K vs 8K), and therefore has a larger memory buffer in
which to load files. In very large hard-disk systems, XDIR may not have cnough
buffer space to perform its functions, but XD almost certainly will.

The defaults of XD can be changed in the same fashion as those of XDIR; for
details, see the "Comments" section of the XDIR command.

Selected Error Messages:
"TPA Error" means that there was not enough room in memory to load the disk
directory.

Examples of Use:

XD -- Display the non-system files in the current
directory in the following fashion:

l. sorted by file type and name
2. vertical format
3. R/0 and SYS attributes included

XD *,COM AAOA =-- display both non-system and system files

which match *.COM in the following fashion:

1. sorted by file type and name
2. vertical format

Chap.3 TOOLSET OF ZCPR3 107

3. no attributes included in display led
XD ROOT:*,COM AAOA -- same as above, but display only
files in directory named ROOT

XDIR (version 2.0)

Syntax:
XDIR dir:afn ooo...
or
XDIR /ooo...

Function:
XDIR displays a disk directory to the user and acts as a file name scanner.

Options:

Aa Indicate attributes of files to be selected
a=A for All Files (System and Non-System)
a=N for Non-System Files [default]
a=S for System Files
D Send Output to Disk File XDIR.DIR
Ff Enable a File Scanner Function
f=L to Log File Names to FNAMES.DIR
f=P to Print File Names Stored in FNAMES.DIR
f=S to Scan Disk and Compare to FNAMES.DIR
Inspect Logged Files (use with FL option only)
N Negate Selection of Files
Oo Select Output Features
o=A to Disable Display of File Attributes (R, S)
o=F to Form Feed Printer when Display Done
0=G to Group Files by Name and Type
o=H to Display Files in Horizontal Format
P Send Display to Printer
PF Send Display to Printer with Trailing Form Feed
U Select All User Areas

Comments:
XDIR is approximately 8K in size. The principal reasons to use XDIR in
preference to the other directory display utilities are:

1 XDIR is able to send its output to disk.
2 XDIR provides the File Scanner Function.
3 XDIR can display all user areas of a disk.

108 Using ZCPR3 and Command Definitions Sec. 1

If the default attributes of XDIR are not to the user’s liking (e.g., if a listing by file
name and type is preferred), there are three alternatives:

1 XDIR can be reassembled

2 The attributes can be patched via DDT (they start at the 6th byte from the
front of the program)

3 An ALIAS can be created which selects the desired attributes for the user

Selected Error Messages:
"TPA Error" indicates memory overflow; there was not enough memory available
in the TPA to load the disk directory

Examples of Use:

XDIR -- displays a listing of the non-system files in
the current directory in the following fashion:
1. Sort is by File Type and Name.
2. Listing is in a Vertical Format.
3. Attributes of Each File (R/O, SY¥S) shown.
4, File Sizes in K.
5. Total of Sizes of All Files.

XDIR /AA -- like the first example, but both non-system
and system files are displayed.

XDIR /OH -- like the first example, but listing format
is horizontal.

XDIR /OG -- like the first example, but sort is by file
name and type.

XDIR *.COM /NFL =-- the names of all non-system files

which do not match *.COM are stored on
disk in a file named FNAMES.DIR.

XDIR Summary
XDIR runs in two basic modes:

- adirectory display utility
- asafile scanner utility

As a directory display utility, XDIR displays information about the files on a
particular disk in all user areas or a particular user area. It provides the following
information:

- Name of File

- Sizeof File (in Kb)

- Attributes of File (Read/Only or System)
- Sum of Sizes of All Files Displayed

- Total Number of Files on Disk

- Amount of Space Remaining on Disk

Chap.3 TOOLSET OF ZCPR3 109

- What Disk and What User Area is being displayed
As a file scanner utility, it does the following:

- Logsa group of selected files to disk

- Prints the contents of such a log file

- Scansalog file and compares it with the files selected by the user,
telling him what files are missing and what files are additional

XDIR is convenient to use, and contains many built-in features that provide
flexibility in meeting the user’s preferences. Some of these include:

- Named Directories may be specified.

- The file listing is alphabetized by file name and type or file type and
name, depending on user preference.

- Thefile listing is organized vertically or horizontally, depending
on user preference.

- Output may be sent to disk or printer as well as to the console.

XDIR Output Control
The Output Control options of XDIR are:

D Send Output to Disk
Oo Output Control
OA - Toggle Display of File Attributes
OF - Toggle Send of Form Feed with Print
OG - Toggle File Grouping (name/type or type/name)
OH - Toggle Format (Horizontal or Vertical)
P Send Output to Printer
PF Same as POF, which sends output to printer and doesa form fecd on
completion

If P is specified, the output goes to the printer (LST: device) as well as to the
console. If D is specified, the output goes to the file XDIR.DIR in the current
directory. If XDIR.DIR already exists, it is replaced.

OA allows the user to display or suppress the file attributes field. This field, which
follows the file size field, contains the letter R or the letter S, indicating,
respectively, that the associated file is Read/Only or a System file. If R is not
present, the file is Read/Write, and if S is not present, the file is Directory (i.e.,
non-system).

OF allows the user to select an automatic form feed when the directory display is
sent to the printer. If printer output is selected (P option) AND the form fecd flag
is ON, then the last line of the printout will be followed by a form fced character.
Many printers respond to this character by advancing to the top of the next page.
Note: the special form PF is provided to act the same as P (for turning on printer
output) and OF (to toggle the form feed function).

OG switches the display order from file name and type to file type and name, and
vice versa. If the display is by file name and type, then files having the same name

110 Using ZCPR3 and Command Definitions Sec. 1

arc grouped and AA.TXT comes before BB.COM. If the display is by file type and
name, then files of the same type are grouped and BB.COM comes before AA.TXT.

OH allows the user to switch from vertical to horizontal format and vice versa.
The display is divided into three columns; vertical format lists files first down
column 1, then down column 2, and finally down column 3. Horizontal format lists
the files sequentially across columns 1, 2, and 3 in row A, then columns 1, 2, and 3
in row B, and so on.

XDIR provides such a wide variety of output displays that the user is advised to
experiment with the various XDIR options to see which format he prefers. The
default settings for the various options can be changed to generate the preferred
format by intelligent use of DDT or by reassembly of the XDIR.MAC source.

XDIR File Selection
The following options (and the DIR: field) control file selection:

Aa Select attributes of the files to be displayed
a=S for system files
a=N for directory (non-system) files
a=A for all files (both system and directory))
N Negate selection; select those files which do NOT match the ambiguous
file name
U Select all user arcas

The A option selects the attributes of the files to be displayed. AA displays both
non-system and system files; AS displays only system files; and AN displays only
non-system files.

The N option selects all files which do not match the ambiguous file name. The
scope of the N option is within the attributes selected, so if the attributes are AS,
only system files are shown.

The U option selects all user areas on the specified or default drive. On the
display, each file name is preceded by the user area in which it resides.

XDIR File Name Scanner
The options of XDIR which deal with the file name buffer facility are:

Ff Engage file name buffer facility

f=L to log file names to disk

f=P to print names logged to disk

f=S toscan disk for file names and compare to log
I Inspect filesselected by FL option

The FL option writes the user numbers and file names of the selected files into the
disk file named FNAMES.DIR. If FNAMES.DIR already exists, then it is
rewritten. The FNAMES.DIR files is used by the FP and FS options. Note that the
attribute selection options may also play a part in selecting the files to be logged.

The FP option prints out the user numbers and names of all the files stored in
FNAMES.DIR. If FNAMES.DIR is not in the current directory, FP will search

Chap.3 TOOLSET OF ZCPR3 111

along the ZCPR3 path until it finds it or reaches the end of thc path.

The FS option scans FNAMES.DIR and the files selected by the uscr (or implied if
no specific file selection option is given) and compares them. If a file exists in
FNAMES.DIR but not in the selected files, its name is printed as a missing file. If a
file exists on disk but not in the FNAMES.DIR file, then its name is printed as an
additional file.

Note that the user should keep in mind what he is scanning for when he uses the
file name buffer facility. For instance, if he selects both non-system and system
files with the FL option and then defaults to Non-System with the FS option, it is
likely that several files will be shown missing even though this may not be truc.

The I option (for inspect) allows the user to manually approve each file before its
name is placed into FNAMES.DIR.

XIF (version 1.0)

Syntax:
XIF anytext

Function:
If the current Flow State is TRUE, XIF exits all pending IFs. It reduces the IF
Level to 0 (no IF in effect).

If the current Flow State is FALSE, XIF does nothing.

Options:
None.

Comments:
None.

Selected Error Messages:
None.

Examples of Use:

7=LOOP
XIF
<statements>
IF 1 3
GOTO LOOP
FI

112 Using ZCPR3 and Command Definitions Sec. 1

Z3INS (version 1.0)

Syntax:
Z3INS ufnl ufn2
UFNI1 must be an Environment Descriptor
UFN2 must be a Z3INS Installation File

Function:
Z3INS is the installation program for the ZCPR3 System. All utilities (except
ZEX) provided in the ZCPR3 distribution may be installed for a target system by
using Z3INS. Z3INS installs the files named in a Z3INS Installation File with data
from the Environment Descriptor specified. All files must be ZCPR3 Utilities.

The default file types are ENV for UFNI1 (the Environment Descriptor) and INS
for UFN2 (the Installation File).

Options:
None.
Comments:
The Environment Descriptor referenced in the command line is a standard ZCPR3

System Environment descriptor which is created by assembling a file like
SYSENV.ASM.

A ZCPR3 Installation File is simply a text file containing two types of lines: a
comment line, which begins with a semicolon (;), and a line containing an
unambiguous file name, which is a file to be installed. An example is shown below:

; This is an installation file for my new utilities
utill.com
util2.com
; UTIL3 is really neat
util3.com

Case is not significant. Leading spaces on each line are ignored. Any file name
referenced in a command line must be unambiguous.

Selected Error Messages:
All error messages are very complete and self-explanatory.

Examples of Use:

Z3INS SYS.ENV NEWFILES.INS -- Install the files listed
in NEWFILES.INS with the
data contained in SYS.ENV
Z3INS NEWENV DIST -- Install the files listed in DIST.INS
with the data contained in NEWENV.ENV

Chap.3 TOOLSET OF ZCPR3 113

Z3LOC (version 1.0)

Syntax:
Z3LOCo

Function:
Z3LOC locates and displays the addresses of the running ZCPR3 Command
Processor Replacement, BDOS, and BIOS. It may also be run under CP/M to locate
and display the addresses of the running CP/M 2.2 Console Command Processor,
BDOS, and BIOS.

Z3LOC 1is also able to display the addresses of a number of ZCPR3 System
Segments and data areas if the Z option is given. The Z option should not be given
if running Z3LOC under CP/M 2.2,

Options:
Z Display addresses and data on ZCPR3 System segments and data areas
Comments:

If the Z option is given (Z should only be given if running Z3LOC under ZCPR3),
the following additional address information is provided:

o External Path o Resident Command Package
o Input/Output Package o Flow Command Package

o Named Directory Buffer o Command Line Buffer

o Shell Stack o Environment Descriptor

o External FCB 0 ZCPR3 Mcssage Buffer

o External Stack o Wheel Byte

Selected Error Messages:
Z3LOC generates no error messages. An invalid option invokes a help screen.

Examples of Use:

Z3L0oC -- run Z3LOC for CPR/CCP, BDOS, and BIOS display
(may be used this way under CP/M 2.2)
Z3LOC Z -- display ZCPR3 data as well

(may be used this way under ZCPR3 only)

ZEX (version 3.0)

Syntax:
ZEX // <-- Print Help
or
ZEX <-- Enter Interactive Mode

or

114 Using ZCF R3 and Command Definitions Sec. 1

ZEX filename params <-- Process .ZEX or .SUB file as with SUBMIT

Function:
ZEX is a memory-based command file processor. It behaves somewhat like a
combination of SUB and XSUB, and because its input source is memory-resident,
the execution speed of ZEX is significantly greater than that of SUB/XSUB.

Options:
None.

Comments:
The interactive mode of ZEX executes like the interactive mode of SUB. The user
enters command lines until he is satisfied and then terminates the process by
entering an empty line (simply hitting RETURN). ZEX then executes the
commands in the sequence entered. No parameter passing is permitted in this mode
of operation.

The "ZEX filename params" form is like the corresponding SUB form. ZEX will
search along the ZCPR3 external path for a command file of the form
filename.ZEX or filename.SUB. If a directory is entcred which contains both such
files, the file of type ZEX will be executed.

Once ZEX has begun execution, it places a ZEX Monitor just under ZCPR3 and
builds the command stream under the monitor. Once complete, the BDOS address
in locations 6 and 7 is adjusted so that the ZEX monitor and its command stream
will not be overwritten by transient programs, and execution begins. Each time the
BIOS Console Input routine is called, ZEX supplies the input character.

As with SUB, a “C from the console aborts execution of a ZEX command stream.
Also, as with SUB, if a command follows ZEX in a Multiple Command Line, ZEX
appends this command to the command stream.

Unlike SUB, ZEX does not permit nesting of command files. ZEX will simply
abortif a ZEX command is encountered in the command stream it is processing.

Unlike SUB, ZEX supports many more embedded commands. Combining the
facilities of SUB and XSUB in this case, the embedded commands of ZEX reflect
the XSUB-like capabilities of ZEX as well as some new ideas.

These extended control commands are discussed in ZEX Directives, below.

Selected Error Messages:
None discussed.

Examples of Use:

ZEX == the user now enters a group of commands

Z2EX mycmds pl p2
-- processing of the file 'mycmds.ZEX', or, if not
found, 'mycmds.SUB' is performed; 'pl' is
substituted for $1 and 'p2' for $2

Chap.3 TOOLSET OF ZCPR3 115

ZEX Directives - Control Commands

The ZEX control commands are summarized below. This summary is also
displayed via the built-in ZEX help facility.

Cmd Meaning Cmd Meaning

| insert <CR> N insert <CRLF>

A rerun command stream A, toggle print suppress
N toggle ZEX messages ~$ define default params
~? wait for user input ~/ ring bell and *?

A¥ ring bell A accept user input

~< display chars only ~> stop display

0 ZEX comment $n l1<=n<=9 for param

58 $ A A

Y | e control char

The following commands simply insert characters into the ZEX command stream
and will not be discussed in any greater detail.

| inserts a <CR> ~ inserts a <CR> <LF> pair
$3 inserts a single $ $ inserts a single *
Y inserts a single | ~e inserts a control character

The ** command causes ZEX to ring the bell. It does not insert a BELL character
into the command file, as a ~G sequence would. It simply rings the bell and
continues processing.

The ;; command introduces a ZEX comment. It and all characters following it up
to and including the following <LF> are simply treated as a commecnt in the ZEX
Command File and ignored. Unlike a conventional ZCPR3 comment, the ZEX
comment does not take up space in the command stream and does not appear when
the command stream is executed.

The “< and *> commands are used to bracket characters which are simply echoed
by the ZEX monitor and not passed back to the calling program. This causcs the
characters between these commands to be echoed to the user during exccution but
not processed by any program. This feature is very useful for embedding
comments to be printed at execution time into the command stream. Unlike the
ZCPR3 comment form, which is a line beginning with a semicolon, comments
enclosed by “<and *> may appear anywhere, such as within an editor scssion.

The ~# command toggles suppression of informative messages gencrated by ZEX.

The ~. command causes console output to cease until the next ~. is encountered.
Character input from the ZEX Monitor continues, but the user does not see it on
the screen.

The ~: command causes the ZEX monitor to restart execution of the loaded
command stream. The entire command stream, as initially processed by ZEX, is
executed again from the beginning.

116

Using ZCFR3 and Command Definitions Sec. 1

$n, where 1<=n<=9, will cause the corresponding specified or default parameter to
be substituted from the command line.

The ~$ command defines or redefines the set of input command parameters. The
rest of the line following the *$ is treated as a set of parameters separated by
blanks.

The ~? and */ commands replace the /A and /AB options of SUB. *? causes ZEX
to stop processing and wait for the user to strike either the space bar or the
RETURN key before continuing. The user can examine the display at leisure and,
if he does not wish to continue, a ~C will abort the command stream. The */
command is like ~?, but it periodically rings the bell at the console, summoning the
user at critical points in the processing.

Finally, the ~" command causes ZEX to stop providing input from the command
stream; the user can then enter whatever he wishes until a special character is
output, at which time ZEX will resume providing input. In this case, ZEX can be
intimately linked with ZCPR3, and it is intended that the special character that
ZEX is waiting for be associated with the ZCPR3 prompt. In my system, I defined
the ZCPR3 prompt as a ">" character with the most significant bit set. This is
unique and appears only when the prompt comes up on my system.

ZEX Examples:

The following examples illustrate applications employing ZEX. Comments appear
out to the side, prefixed by <--.

Bl>zex
ZEX, Version 1.3

1:
2:
3:
4:
5:

A$ this is fun <-- Define 3 params
echo $1 $2 $3

~$ hello from happy acres <-- Define 4 params
echo $1 $2 $3 $4

(ZEX Active) <-- ZEX is running now
Bl>echo this is fun

THIS IS FUN
Bl>echo hello from happy acres

HELLO FROM HAPPY ACRES

B1>

(ZEX Completed)

By Your Command >

Bl>ed demo.zex <-- Demo Command File

NEW FILE

Chap.3 TOOLSET OF ZCPR3 117

 *i
1: ed demo.txt <-- Edit DEMO.TXT
2: i <-- Insert text while in ED
3: This is a test
4: This is only a test
5: This is a demo of ZEX Control
6: ~Z <-- ~7Z 1is 2 chars, xlated into
7: bOlt <-- Ctrl-Z by ZEX
8: 11
9: 01t
10: i <==- Input More Text
11: A" <=-- Allow user to input text
12: type demo.txt <-- When ZEX continues, this
13: era demo.txt <-- is what it does next
14:
: ke
Bl>zex demo <== Run the command file

ZEX, Version 1.3
(ZEX Active)
Bl>ed demo.txt

NEW FILE
: *i <=-- ZEX is typing this in
1l: This is a test
2: This is only a test
3: This is a demo of ZEX Control

4:
: *bO0lt
1: This is a test
1: *11
2: *01lt
2: This is only a test
2: *xi <=-- Now user input begins
: I am now typing this line of my own volition <=-=- User
3: ZEX will allow me to continue doing this until

: 1t sees the ZCPR3 prompt
: <-- User types Ctrl-Z
5: *e <-- User types "e"

118 Using ZCI'R3 and Command Definitions Sec. 1

(ZEX Active)

Bl>type demo.txt <--= ZEX resumes
This is a test

I am now typing this line of my own volition
ZEX will allow me to continue doing this until
it sees the ZCPR3 prompt

This is only a test

This is a demo of ZEX Control

Bl>era demo.txt
DEMO .TXT

B1>

(ZEX Completed)
By Your Command >

Bl>ed demo.mac <-- Now to use ZEX for
<=- program assembly
NEW FILE
*3 <-- User types program
1l: ext print
2:
3: call print
4: db 'Hello, World ... It''s Another Day',0
5: ret
6:
7: end
8:
. *e
Bl>type a:m80.zex <=-- M80.ZEX command file
; M80.SUB -~ MACRO-80 Assembler and Linker
M80 =S$1
; Please Type $~C if Error(s) Exist - ~?
ERA $1.BAK
ERA $1.COM

L80 /P:100,$1,A:SYSLIB/S,$1/N, /U, /E
ERA $1.REL

Chap.3 TOOLSET OF ZCPR3 119

;1 Assembly Complete

Bl>zex m80 demo <=- Run command file on pgm
ZEX, Version 1.3

(ZEX Active)

Bl>; M80.SUB -- MACRO-80 Assembler and Linker

B1>M80 =DEMO
No Fatal error(s)

(ZEX Active)

Bl1>; Please Type ~C if Error(s) Exist - <-- User can abort now
<-- if he wishes

B1>ERA DEMO.BAK

DEMO .BAK

B1>ERA DEMO.COM

No File

B1>L80 /P:100,DEMO,A:SYSLIB/S,DEMO/N, /U, /E

Link-80 3.44 09-Dec-81 Copyright (c) 1981 Microsoft
Data 0100 01C5 < 197>

35936 Bytes Free
Data 0100 01C5 < 197>

35936 Bytes Free
[oooo0 01C5 1]

(ZEX Active)

B1>ERA DEMO.REL

DEMO .REL
Bl>; Assembly Complete
Bl1>

(ZEX Completed)
By Your Command>demo <== Run pgm now

120 Using ZCPRt3 and Command Definitions Sec. 1

Hello, World ... It's Another Day
B1>

Using ZCPR3 and Command Definitions Sec. 1 121

4 On-Line HELP Subsystem

Overview of the HELP Command

The HELP Command provides interactive, online assistance in using ZCPR3 in
general and specific ZCPR3 commands in particular.

HELP pulls in files named <FILENAME>.HLP from disk and displays these to the
user in a paged mode. These files are of two basic types: indexed and non-indexed.

Indexed HELP files, of which HELPSYS.HLP is an example, start with an index.
When HELP loads an indexed file, it displays this index to the user and allows him to
select as many entries as he desires, in any order, by simply typing the letter(s)
corresponding to his selection. Once the user has made his selection, HELP will look
up the associated body of text and display it to him in a paged mode. When the user
has finished reading, HELP returns him to the index menu. Typing a Control-C will
return the user to ZCPR3.

There are two types of indexed HELP files: user-indexed and HELP-indexed. A
user-indexed file (of which HELPSYS.HLP is an example) is one in which the writer of
the file is allowed to create the image of the index on his screen in the form which will
be displayed to the user of the HELP file.

A HELP-indexed HELP file is one which contains a list of the options at the
beginning of it; HELP automatically creates the menu, assigning sequential letters (A,
B, etc) to the menu options.

Non-indexed files do not start with an index. In such cases, HELP will
immediately display the contents of the file to the user and, when the user has finished
looking at it, will return to ZCPR3.

HELP is menu-driven, and all the commands available to the user at any given
time are displayed to him.

The version of HELP described in this manual is designed to work with the
ZCPR3 system and take advantage of some of its special features.

How to Use the HELP Command

The HELP Command is executed in one of three ways:

1. By just typing '"HELP’

2. By typing 'HELP FILENAME’, where FILENAME is the name of a disk file
named FILENAME.HLP

3. By typing '"HELP FILENAME.TYP’, where FILENAME.TYP is the name of a file
created in the format of a help file

If the user types just '"HELP’, he will review the file HELP.HLP, which should
contain a brief summary of how to use the HELP command. For all other forms of the
HELP command, the user will see the specified help file information. Generally
speaking, the name of the help file should be indicative of its subject—i.e., CPM.HLP
should contain help information on CP/M.

HELP File Search Hierarchy

Whenever HELP looks for a specified HELP File (either from the HELP
Command or from an information section which specifies a Node [sce later]), HELP
will perform a search for the indicated file. This search goes as follows:

122 Using ZCPir3 and Command Definitions Sec. 1

1. Under ZCPR3, HELP will follow the command-search path, searching the current
directory (disk and user) first.

2. If the HLP file is not found in the current directory, HELP will search along the
ZCPR3 path for it.

3. If the HLP file is not found along the ZCPR3 path, then HELP will look in the
directory named "HELP" for the indicated file. This is a major difference
between HELP and other ZCPR 3 utilities.

4. If the HLP file is not found, HELP will print an error message.

Moving Around within the HELP Command

Once the user is running HELP, he is given a set of commands by which he can
display the particular items of information he is interested in.

After issuing the HELP command, the user will come up in one of two modes
(depending on the type of HELP file referenced). In indexed mode, a menu of topics is
displayed to the user and he can select the desired topic by typing the character in
front of the topic title. In non-indexed mode, no menu is displayed; instead, the entire
file is viewed as one "information section."

An information section is a collection of screen displays (one screen full of text)
called frames. Typically, an information section should contain a logical grouping of
related data on a particular topic. In indexed mode, each menu topic refers to an
information section. By selecting a topic, the user is placed into the corresponding
information section. In non-indexed mode, the entire HELP file is one information
section.

Moving From the Menu

At the menu of a HELP file, the user has two basic choices: to select a menu topic
for review, or to exit to ZCPR3. If a menu topic is selected, the user is placed into the
corresponding information section.

A third choice is sometimes available at the menu level: to move up to the
previous HELP Level. Some information sections are entire HELP files in their own
right, which can be accessed independently of the HELP file the user is currently in.
If the user enters one of these information sections, the name of the current HELP file
is saved and the new HELP file is loaded. When this happens, the user is placed at the
next HELP level.

HELP levels start at 0 and increase each time the user calls a new HELP file from
his current level. Thus, he starts at level 0, and the first HELP file he calls puts him at
level 1. If he now calls another HELP file, this puts him at level 2. From level 2 he
may have the option of exiting, either to ZCPR3 (which would return him to help level
0) or to the previous level (1).

The HELP files are organized in a tree data structure. To get to a particular
HELP file, the user starts at the root of the tree and then climbs up and down the trunk
and branches to various levels, or nodes. From each node, the user may only move up
or down the tree—he can’t cross over to a node at the same level without first moving
down the tree and then back up. To illustrate, consider the following:

Chap.4 On-Line HELP Subsystem 123

Node A Node B HELP Level
__________________ 5

—————————————— 4

Root of Tree ==> = eccecmmccccccccccaaa- 0

In the above example, the user must always start at the root of the tree (Node J).
This is analogous to HELP Level 0, which is where the user is placed when he issues the
HELP Command. To get to Node C, for example, the user has to climb the tree from
Node J to Node H to Node F to Node D to Node C. This would be like the user entering
four node-type information sections, in which different HELP files are successively
loaded.

Now that the user is at Node C, let’s say that he wants to go to Node E. Under the
HELP System, there are two ways to do this:

1. Jump to the ground and then climb back up to Node E. Here, the user would jump
from Node C to Node J and then go to Node H to Node F to Node E. Under HELP,
the user can do this by exiting to ZCPR3 and then reissuing the HELP Command
or by issuing the Root Command (.); once at the root of the tree, he then climbs it
again by entering the appropriate information sections.

2. Climb down the tree and then back up. The user would move from Node C to
Node D to Node F and then back up to Node E. The HELP user can go to the
previous level by issuing the Up Level () command. In this example, he would
issue the Up Level command twice and then go back down.

Moving Within an Information Section

Once the user is within a textual information section, he has several capabilities
for moving within this section or to another information section.

First, to leave an information section, the user can return to the menu (if the
current HELP file is indexed) or return to ZCPR3. Additionally, if the user is not on
the root (HELP Level 0), he can return to the previous HELP Level (Up Level). If the
user is not in an Indexed HELP file, moving forward beyond the End of Information
(EOI) will return him to ZCPR3 if he is at HELP Level 0, or to the previous HELP
Level if not.

The data within an information secticn is arranged sequentially. Consequently,
the user can move forward to the next frame, or backward to the previous frame or to
the beginning of the information section. The user cannot move backward beyond the

124 Using ZCPE.3 and Command Definitions Sec. 1

beginning of the information section; if he tries to do so, a bell is sounded. Also, if the
user tries to move forward beyond the End of Information (EOI), he is returned to the
menu, returned to ZCPR3, or returned to the previous HELP Level as described above.

HELP Status and Command Prompts

Whenever the HELP system is in use and an information section is being
displayed, the bottom line of the screen displays some status information and the
prompts for HELP commands available to the user.

The status indicators appear at the extreme left of the bottom line; they are
followed by the command prompts. The status indicators may take the following
forms:

<Nothing>command prompts....
__The user is at the menu of Level 0

fff: command prompts....
__Current Frame Number within information section
(the user is at Level 0)

Level 111/command prompts....
_Current Level Number (The user is at a menu frame)
(this is displayed only if the user is NOT at Level 0)

Level 111/fff:command prompts....
\ __Current Frame Number within information section
_Current Level Number
(this is displayed only if the user is NOT at Level 0)

The command prompts take one of the three forms shown below, depending on the
HELP files in use:

~C=ZCPR3 “=Level .=Root M=Menu S=Start L=Last P=Print -
\ \ \ \ \ \ __Print Info/Frame
\ \ \ \ \ __Goto Last (Previous) Frame
\ \ \ \ __Goto Start of Info Section
\ \ \ _Goto Menu of HELP File
\ \ Root if NOT at Level O
\ \(this is displayed only if NOT at Level 0)
\ __Goto Previous Level
\(this is displayed only if NOT at Level 0)
__Return to ZCPR3

Chap.4 On-Line HELP Subsystem 125

EOI ~C=ZCPR3 ~=Level .=Root M=Menu S=Start IL=Last P=Print -

\ \ \ \ \ \ \ _Same
\ as Above
_User is at the End of Information (end of information
section)

Type ~C=ZCPR3 ~=Level .=Root or Enter Selection -
\ \ \ _Enter letter of desired
\ \ \ information section
\ \ _Goto Root
\ \ (this is displayed only if NOT at Level 0)
\ _Goto Previous Level
\ (this is displayed only if NOT at Level 0)
_Return to ZCPR3

Summary of User Commands

Cmd Meaning

n Go to Previous Level

. Go to Root Level

M Go to Menu of Current HELP File

S Go to Start of information section

L Go to Previous Frame

CR (Carriage Return or Space) Go to Next Frame

~C (Control-C) Return to ZCPR3

P Print Current Screen Display (Frame) or information section

Printing HELP Files

The printing of HELP files can be done in two ways: by using the HELPPR
Utility of ZCPR3, or by using the Print function contained within the HELP Utility
itself.

The HELPPR Utility prints an entire Help File. It acts a lot like the PRINT
command, and it has a variety of options, including the ability to plan for printer
output and to support paging and other "appearance-enhancing" features.

The Print Function within HELP is used for quick printouts. It does not page or
perform anything more exotic than simply printing out what is contained in a partof a
Help File. When the P option is given, the current screen is printed immediately. The
user may also issue a *P command (not displayed on any menu), in which case the
entire current information section is printed.

This Print Function is provided as a convenience to the user. It allows the user to
review the Help File, and, when he sees a particular screen display or information
section which he values enough to want to have around for future reference in
hardcopy form, he can simply tell HELP to print it. This capability is intended to
support the concept of establishing HLP files as a convenient and flexible way to pass
documentation of programs to the user on disk, while also making it easy for him to
print it out if it is of significant interest to him.

126 Using ZCPR3 and Command Definitions Sec. 1

For instance, a HLP file which refers to a new program may include an
information section or one frame which contains a command summary. The user can
simply print this without having to print the entire HLP file.

As another example, the HELP subsystem may be used by a homemaker to store
her recipes. If these are organized, using the tree structure, into reasonable categories
(such as roasts, desserts, etc), while reviewing the recipes she may find one she wishes
to try for the evening’s meal or to pass on to a friend. If the recipe covers only one
screen, a Frame Print is very convenient.

HELP Error Messages

The following are the error messages issued by HELP, and their meanings:

File not Found The specified HELP File cannot be found.

AFN Not Allowed The specified HELP File is ambiguous (contains the character
"*¥" or "?"). This is not allowed.

<BELL> The user issued an invalid command.

EOF on HELP File In searching for an information section, HELP ran into the
end of the HELP File. The Indexed HELP file is improperly structured (more index
entries than information sections).

Node Level Limit The limit of the nesting of the HELP Levels is exceeded. HELP
limits the number of HELP Levels that can be traversed to 10 (default, which can be
changed), and an attempt was made to enter HELP Level 11 (or default + 1).

Mem Full The selected HELP File is too large to load into the available memory in
the user’s computer system. The HELP File should be reduced in size; using HELP
Levels (Node references) in the information sections is a good way to do this.

How to Write HELP Files

Files used by the HELP program are either simple CP/M-standard files of ASCII
text or ASCII files generated by the WordStar text editor/formatter. These files are of
two basic types: indexed or non-indexed; both types have the same basic format.

Grouping of Information. Information displayed to the user is grouped by the
index in indexed HELP files and may also be grouped by lines beginning with form-
feed (*L) characters. Grouping is an effective way to organize information logically
so that meaning will be more clear to the user and units of information will not
overrun screen display boundaries.

The information displayed to the user is organized into logical units called
information sections, and screen-sized displays called frames. Using a text editor, the
user can create his own HELP files and organize his information as he desires for
display by the HELP subsystem.

Non-Indexed HELP Files. Non-indexed HELP files are identified by having a
colon (:) as the first character of the first line in the file. The file consists of ASCII
text lines, each line being terminated by a carriage return (0DH) followed by a line
feed (OAH). The information section in such a help file consists of the text following
the leading colon; this text may be terminated either by a new line that starts with a
colon (thus beginning a new information section), or by the end-of-file marker
(control-Z, 1AH).

Indexed HELP Files. Indexed HELP files are simple ASCII files which do not
start with a colon (:) as the first character of the file. An indexed HELP file may be
HELP-indexed or user-indexed.

Chap. 4 On-Line HELP Subsystem 127

A HELP-indexed HELP file is identified by the fact that the first character of
the first line is alphanumeric (not a punctuation mark). The index entries are
contained in one or more such ordinary ASCII text lines; HELP labels these lines with
alphabetic identifiers (A, B, C, etc) during the display of the index. The index is
followed by ASCII lines comprising one or more information sections. The first line of
each information section in the file must have a colon in column 1.

A user-indexed HELP file is identified by having a semicolon (;) as the first
character in the file; the semicolon must be immediately followed by a CR/LF
sequence. The text that starts on line 2 is displayed literally to the user as the menu.
Since the displays generated by HELP are screen-oriented, the menu may be longer
than 24 lines provided that there is a properly installed TCAP entry in the
Environment Descriptor. The menu is followed by one or more information sections.
The start of each information section is denoted by a line starting with a colon (:) and
followed by a series of characters (spaces are not significant between them) which are
the index letters. When the user runs HELP on this file and types a selection letter,
HELP searches through the file, looking for an information section whose first line
contains the character typed by the user. If the character was a letter, it is
automatically capitalized by HELP (in both the user input and the information section
lines).

Note that a colon is not a valid option letter, since this character has a special
meaning to HELP. If a colon is encountered after column 1 in an information section
heading line, the scan for option characters stops and subsequent characters may be
interpreted as another help file name to be invoked by option letters already found in
the line.

Tree Structures

The Indexed HELP File is divided into information sections, each of which starts
with a colon (:). There are two basic types of information section:

1. Information sections containing only textual material. This type of information
section may appear in both HELP-indexed and user-indexed files; it begins with a
single colon and contains reading material which is organized into frames, each
of which is equal to one screen display.

2. Information Sections which reference other HELP files. This type of information
section appears only in HELP-indexed files; it begins with two colons (i) instead
of one. The two colons are immediately followed by the name of the HELP file
(the HELP file type may be optionally specified).

In user-indexed HELP files, this type of information section contains the index
characters followed by a colon () and the name of the HELP file (the file type is
optional).

HELP-Indexed File Skeletons

Skeleton outlines of HELP-indexed files of both types are shown below as samplcs
to follow.

Example 1: Text information sections

INDEX ENTRY
INDEX ENTRY

128

Using ZCPK3 and Command Definitions Sec. 1

:Title for Type 1 information section

<text>

:Title for Type 1 information section

<text>
EOF marker

Example 2: Node information sections

INDEX ENTRY
INDEX ENTRY
: tHLPFILE

<=-= for HLPFILE.HLP

[next information section)

::HLPFILE.TYP

<-- for HLPFILE.TYP

[next information section]

EOF marker

User-Indexed File Skeleton

[Information Displayed
[Information Displayed

[Information Displayed
:f :HELPFILE ([HELPFILE.HLP
: oz

[Information Displayed
EOF marker

Accessing Video Attributes

The displays generated by HELP are screen-oriented.

for Selection X)
for Selection A)

for Selections 1 or B]
is invoked by Selection F]

for Selection Z)

Under ZCPR3 with a

properly installed TCAP entry in the Environment Descriptor, HELP is able to
highlight information on the screen and create "flashy" displays by using the clear
screen command appropriate to the user’s terminal. Use of this feature is automatic;

cach frame is preceded by a clear screen.

The writer of a HELP file can turn text highlighting on and off anywhere in the
HELP file by embedding the following commands into the text;

AA (binary 1)
AB (binary 2)

-- turn highlighting ON
-- turn highlighting OFF

Chap.4 On-Line HELP Subsystem 129

It is recommended that if highlighting is turned on, then it should be turned off
in the same line. Example:

~Athis is highlighted”B while this is not

The file HELPSYS.HLP is an example of one which extensively uses highlighting.
Itis also a user-indexed HELP file.

Tree Structure of HELP

The diagram below illustrates how tree structures can be implemented under
HELP. A new node of the tree is created whenever an information section references a
HELP file instead of merely containing text. Each node becomes the base of a new
tree, which itself may contain references to other HELP files.

From the diagram, we see that SubHelp Level 3 contains two HELP files. These
can be entered from Information Section 2 and Information Section 3 of SubHelp
Level 2. By simply entering one of these two information sections, the appropriate
HELP file is loaded and the user is placed at the next level. From these HELP files, the
user may move within the HELP file itself or move up to the previous level (naturally,
the user always has the option to exit to ZCPR3).

-- Basic HELP File --

|Info Sect 1 |Info Sect 2 |Info Sect 3 |Info Sect 4 | Lo
| Text | HELP File | Text | HELP File |
/ \ / \
-- SubHelp File 1 -- -- SubHelp File 2 -- L1
|[Info Sect 1 |Info Sect 2 | |Info Sect 1 |Info Sect2|
| Text | HELP File | | Text | Text |
/ \
-- SubSubHelp File 1 -- L2
|Info Sect 1 |Info Sect 2 |Info Sect 3 |
| Text | HELP File | HELP File |
/ \ / \
-- Sub3Help File 1 =-- -- Sub3Help File 2 -- L3
| Info Sect | | Info Sect 1 |Info Sect 2|
| Text | | Text | HELP File |
/ \
-- Sub4Help File =-- L4
| Info Sect 1 |Info Sect 2|
| Text | Text |

Sample HELP Files with Trees

The following listings show the source to three HELP Files. DEMO.HLP provides
the Root Node to a tree which includes DEMO2HLP and DEMO3.HLP as subnodes.
Additionally, DEMO3.HLP has a subnode which references DEMO.HLP, so we have a
recursive tree structure.

130 Using ZCPR3 and Command Definitions Sec. 1

DEMO.HLP
TEST 1 - OK <== Menu
TEST 2 - SIMPLE NEST
TEST 3 - INVOLVED NEST
TEST 4 - OK
:TEST 1 <=-- First Info Section (Text)
THIS
IS
TEST
1
: : DEMO2 <=- 2nd Info Section (Node)
: : DEMO3 <=-- 3rd Info Section (Node)
¢:TEST 4 <-- 4th Info Section (Text)

TO BE, OR NOT TO BE, THAT IS THE QUESTION!

TO TAKE ARMS AGAINST A SEA OF TROUBLES AND BY OPPOSING END THEM.
TO DIE, TO SLEEP ... TO SLEEP, PERCHANCE TO DREAM.

AYE, THERE'S THE RUB! FOR IN THAT SLEEP, WHAT DREAMS MAY COME!

DEMO2.HLP

:TEST 2 <== No Menu -- 1 Info Section
THIS

IS

TEST

DEMO3.HLP

TEST 3A <== Menu
TEST 3B
TEST 3C
:TEST 3A <-- First Info Section (Text)
THIS
IS
TEST
3A
the rain in Spain falls mainly in the plain

Chap.4 On-Line HELP Subsystem 131

:TEST 3B <==- 2nd Info Section (Text)
THIS IS TEST 3B
::demo <==- 3rd Info Section (Node)

132 Using ZCPR3 and Command Definitions Sec. 1

Chap.5 On-Line HELP Subsystem 133

5 Menu Subsystem

Overview

The menu subsystem provides two menu-oriented command preprocessors, MENU
and VMENU. Each of these draws its menu data from an associated file designated
*MNU (for MENU) or *VMN (for VMENU). For those users who wish to construct
their own menus, two diagnostic tools are available to check the syntax of a new data
file: MENUCK validates * MNU files,and VMENUCK validates *. VMN files.

The difference between the two preprocessors is that MENU is basically line-
oriented, and can be used whether or not TCAP data is included in the environment
descriptor, whereas VMENU is screen-oriented, relies heavily on screen characteristics
defined in TCAP, and can generate more e¢laborate and "flashy" displays. Generally
speaking, anything that can be done with MENU can also be done with VMENU, but
the reverse is not true.

Given the similarities between the two preprocessors, this chapter describes the
menu subsystem in terms of the capabilities of VMENU, pointing out the differences
between MENU and YVMENU where these are significant. Thus, all references to
VMENU also apply to MENU except where otherwise stated. When discussing areas
that are identical for both programs, we shall refer to "(V)MENU" as a shorthand
notation for "VMENU and/or MENU" (or some similarly cumbersome inclusive
expression). VMENU works with menu files of type * VMN; MENU works with files
of type * MNU. This chapter will refer to all menu files with the VMN file type, and
the reader should be aware that if he is dealing with MENU, the file type is MNU.

Preprocessor Operation

(V)MENU is a ZCPR3 Menu-Oriented Command Preprocessor. It acts as a front-
end to ZCPR3, providing a menu-oriented user interface to ZCPR3. Its function can
be represented by the following diagram:

I I I I I I I
User | M I | I I | I I
Menu --=-->| E |==-=>| P |--=>| O |=--->|] m |
Command | N | | | | | | |

I | | I I | I

The "User Menu Command" is a single character that the user strikes which
instructs (V)MENU to perform a function. Once (V)MENU begins processing this
function, it builds a command line for ZCPR3, optionally asking the user for further
input (such as a file name), and then passes the command line to ZCPR3 via the
Command Line Buffer. ZCPR3 then runs the command line and returns to (V)MENU.

(V)MENU builds command lines based on simple input from the user. The user
necd never know what the actual command line is. The command line itsclf is always
of the form:

<command> <optional user input>

134 Using ZCPR3 and Command Definitions Sec.1

As an example, a command built by (V)MENU to run XDIR with user input for a
file name specification, could look like the following:

XDIR <user input>

When (V)MENU is executed, it looks for the file MENU.VMN in the current
directory. If it finds one, it loads it and begins processing. If it does not find one, it
simply cxits. A file name¢ may be specified in the (V)MENU command line to select a
file othcr than MENU.VMN.

The MENU.VMN file can contain up to 255 menus to be processed by (V) MENU.
The (V)MENU will begin processing at the first menu in MENU.VMN.

(V)MENU itself is a COM file, like any other program under ZCPR3. Unlike most
other programs, however, it generates command lines to be executed by ZCPR3 and
stores its return command in the Shell Stack. In this way a loop is set up:

-->-—+->- (V)MENU ->- ZCPR3 ->-+
A v
I l

4+-<- Command Line —Cm————t

Only (V)MENU itself or a ZCPR3 tool like SHCTRL can terminate this loop. A
MENU.VMN file can be set up to execute any ZCPR3 command or sequence of
commands. The MENU.VMN file can also be set up to not allow the user to leave
(V)MENU, to allow him to leave (V)MENU at will, or to allow him to leave (V)MENU
only if he knows a password.

This chapter is divided into two basic parts. The sections on "Using (V)MENU"
and "Summary of (VMENU Commands" are designed to be read by a person wanting
to use (V)MENU but not wanting to learn how (V)MENU works or how to program it.
These sections describe how to move from one menu to another, how to issue (V)MENU
commands, and how to leave (V)MENU if the option is presented to him.

The other sections describe the programming aspects of (V)MENU and are
intended to be used as a reference for the (V)MENU programmer. The (V)MENU
command programming summary is especially useful because it provides a summary of
the commands which the (V)MENU programmer may issue to (V)MENU within a
* VMN file.

Using MENU and VMENU

MENU Invocation. When MENU is first invoked, one of three things will happen:

1 A menu will appear and be paged up to fill the screen;a command prompt will
appear at the bottom of the menu.

2 A menu will appear and not be paged up to fill the screen; a command prompt
will appear at the bottom of the menu.

3 A command prompt will appear with no menu; this is called the Expert mode.

If at any time a menu display is garbled, or you wish to see the current menu (as
sometimes happens when you are in Expert mode), just strike the Return key. The
Return key refreshes the menu at all times.

Chap.5 Menu Subsystem 135

There can be up to 255 menus in one MENU.MNU file; the command prompt
varies to reflect this. For example, if there were only one menu in the file, and the
option to abort to ZCPR3 were not enabled, then the command prompt would take its
simplest form, looking like:

Command (<CR>=Menu) -

At this time the user may strike Return to refresh the display or strike the character
corresponding to a menu selection. Striking any other character causes the bell to
sound.

For instructions on moving from one menu to another, refer to "Using VMENU,"
below. One option available under MENU but not under VMENU involves access to a
System Menu, intended to give privileged users access to special commands that other
users are not allowed to run.

Access to a System Menu (if one is available) is gained by typing the command "$".
MENU will respond:

Pass?

The user is given only one chance to type the correct password for entering the system
menu. If he enters an invalid password, the message "Password Error" will be
displayed and he will be returned to the menu he came from. If he entered the correct
password, the system menu will be displayed. This is always the last menu in the file
and its command prompt is:

Command (<CR>=Menu, *=1lst Menu, <=Previous Menu) -

If the user is at the last menu before the system menu, the ">" command will not allow
the user to enter the system menu, even though, technically, this is the "next menu."
The only way to enter the system menu is via the "$" command and a valid password.

Using VMENU

When VMENU is first invoked, it will be installed as a Shell, and control will
return to the ZCPR3 command processor for the next command in the line. When the
command line is exhausted, ZCPR3 will realize that a shell has been installed and
invoke YMENU as a shell.

VMENU will then come up, load the names of the files in the current disk
directory, load the menu file, and display up to sixteen files and the first menu in the
menu file to the user. The user will then be prompted for a command.

If at any time a Menu Display is garbled, just strike the “R key. *R refreshes the
menu at all times.

The prompt which appears at the bottom of the Menu display has the following
general form:

Command (<CR>=Menu,~C=2Z3,*=1st Menu,<=Prev Menu,>=Next Menu)

There can be up to 255 menus in one YMENU.VMN file. The YMENU command
prompt varies to reflect this. For instance, if only one Menu is present and the option
to exit from VMENU to ZCPR3 is not available, then the Menu Command prompt
would take its simplest form, looking like this:

136 Using ZCPR3 and Command Definitions Sec. 1

Command (<CR>=Menu) -

Strike “R at this time to refresh the Menu Display or strike the character of a
Menu Option. These are the only choices, and striking a character which is not the
RETURN key or a menu option causes the bell to sound.

If the the option to exit to ZCPR3 is available and there is only one Menu in the
MENU.VMN file, then the command line will look like this:

Command (<CR>=Menu,~C=23) -

The option of aborting to ZCPR3 by striking Control-C (hold down on the
Control, or CTRL, key and strike the letter C) is now available. This will exit VMENU
and return to ZCPR3.

On a brief note on option letters before going on. If one of your options is a letter
in the range A-Z, then case is not significant, and you can invoke the option A, for
example, by striking either an upper- or a lower-case A.

If there is more than one menu in the * VMN file, the command line options
become slightly more complex, but they are still quite easy to follow.

In the following examples, assume that the option to exit to ZCPR3 is off, so the
"~C=Z3" option will NOT appear.

From the first menu in the file, the command line will look like the following:

Command (<CR>=Menu,>=Next Menu) -

To advance to the next menu, strike the ">" or the "" character. On most
keyboards, ">" is the shift of the ".", so VMENU permits easy movement without having
to worry about shifting the keyboard all the time.

If the last menu in the file is on the screen, the command line will look like the
following:

Command (<CR>=Menu, *=1st Menu,<=Prev Menu) -

This allows the user to strike the "*" character to jump back to the first menu in
his * VMN file. If "<"or "," is struck ("<" is usually the shift of the ","), then the user
will back up one menu to the previous menu in the file.

If the user is somewhere in the middle of the MENU.VMN file, his command line
will look like this:

Command (<CR>=Menu, *=1st Menu,<=Prev Menu, >=Next Menu) -

Again, "*" will go directly to the first menu, "<" or "," will go to the previous menu,
and ">" or "." will go to the next menu. Striking the RETURN key will refresh the
menu display.

In summary, moving about within VMENU is quite easy. "*" moves the user to the
first menu, "<" to the previous menu, ">" to the next menu.

Summary of MENU and VMENU Commands

The full menu command line looks like the following:

Command (<CR>=Menu,~C=23,*=1st Menu,<=Prev Menu,>=Last Menu) -

Chap.5 Menu Subsystem 137

The available commands are:

Command Function

<CR> Refresh menu display (MENU only)

“R Refresh menu display (RETURN Key) (VMENU only)
~C Exit to ZCPR3 (Control-C)

* Jump to the first menu

<or, Jump to the previous menu

>or. Jump to the next menu

h) Enter system menu (MENU only)

other Menu Option or Invalid Command; letters are

automatically capitalized, so a=A

Programming *.MNU and *.VMN Files

Data files * MNU (used only with MENU) and * VMN (used only with VMENU)
have identical structures, but MENU has a number of options not available in
VMENU.

The *MNU (or .VMN) file is simply a text file which may be created with any
conventional CP/M editor, including WordStar. (VMENU ignores the most
significant bit of all bytes, so editors such as WordStar, which occasionally set this bit,
can be used.

All * MNU (or .VMN) files have the same general structure. The first line is
either a global option line or the beginning of a menu display. If a global option line,
it begins with the character "-", and this character is immediately followed by global
option characters. The global option line, then looks like this:

-option

After the global option line, if any, comes the first menu. Each menu is structured as
follows:

#option
<Text of Menu Display>
#

menu commands

The following are two sample Menu File structures:

-option #option
#option <Text>
<Text> #
commands
commands ##
#option
<Text>
#

commands

138 Using ZCPR3 and Command Definitions Sec. 1

##

Options. VMENU has only one option character—"X"—which tells VMENU to allow
the user to exit to ZCPR3. In using it, case is not significant. The X option enables the
facility which permits the user to type ~C and return to ZCPR3.

MENU has three additional options, not available to VMENU:

C Display command line to user
D Display menu to user
P Page Out menu display

The C option displays the command line built by MENU to the user. This option is
primarily intended for debugging purposes; however, it can also be instructive to the user.
The D option displays the menu to the user; if the display function is not turned on, we are
in the Expert mode and the commands are available without a menu display. The display
can be turned on at any time by striking Return. The P option clears the screen by issuing
24 successive <CR-LF> sequences to scroll the menu up off the screen. It is useful for
keeping only the current commands and options on the screen, but annoying to a user
accessing the system via a 300-baud modem; the menu programmer therefore is given a
means of turning off this scrolling.

When (V)MENU first comes up, all options are turned off. The user cannot exit to
ZCPR3. The global options line which, if present, is the first line of the file, turns on the
specified options for the course of the session in general. That is, if a global options line
like

-DPx

is used (case is insignificant), then menu display, paging, and exit to ZCPR3 are enabled
for all menus. However, if some of the menus in the file ought to deny exit to ZCPR3,
then the -x option may be temporarily turned off for those menus. This is done by
presenting the X option on the first line of each such menu immediately after the "#"
character. If the X option is NOT included in the global options line, it is turned OFF for
all menus in general. The default selected by using the global options line is overridden on
a per-menu basis by the local menu options.

Example:
-X
#x
No exit to ZCPR3 is permitted
#
commands
#x
No exit to ZCPR3.
#
commands
#

The user may exit to ZCPR3.

Chap.5 Menu Subsystem 139

#

commands

##

*MNU and *.YVMN Commands

This section describes the technique and options available for creating command
lines in menu files. The information herein is organized into the following subject areas:

o Syntax of the command line

o:nn Option

o! Option

o "text" prompts and input

o Variables ($D, $U, $Fn, $Nn, $Tn, $Pp, $3)

o Highlighting (*A, ~B)

Command Structure

The commands in a menu file follow a simple structure. Each command occupies only
one line, and blank lines in the command group are not permitted. The command line is
structured as follows:

1[o] [command]

where:

1 isthesingle character used to invoke the command;
note that it may be upper- or lower-case.
o0 isanopening option, which is one of:
:nn -- go to Menu nn
! --have (V)MENU wait when the command is finished
command is an optional ZCPR3 command; note that if the option is ":nn",
then a command here makes no sense.

:nn Option
The ":nn" option tells (V)MENU to move to a different menu in the * VMN file. The
first menu is number 1. Example:

-X

lst Menu: A - Goto Menu 2 3 - Goto Menu 3

2nd Menu Command: 3 - Goto Menu 3

3rd Menu Command: 2 - Goto Menu 2

140 Using ZCPR3 and Command Definitions Sec. 1

#
2:2
##

In the first menu, the user may strike:
"a" or "A" to goto Menu 2
"3" to goto Menu 3
">"or"." togoto the next menu (Menu 2)
~C to goto ZCPR3

In the second menu, the user may strike:
"3" to goto Menu 3
"*" or "<" or "," to goto Menu |
">"or"." to goto Menu 3
~C to goto ZCPR3

In the third menu, the user may strike:
“2"or "<" or "," to goto Menu 2
"¥" to goto Menu 1

! Option

The "!" option causes (V)MENU to pause after the command line has been processed
and ask the user to "Strike Any Key" before continuing. In this way, if a command
generates information to be read by the user before (V)MENU clears his screen, the "!"
option may be used to give the user all the time he wants to read this display.

" Prompt

Embedded within any command line may be a prompt for user input. This prompt
takes the form of

"prompt to user"

When encountered, (V)MENU will advance to the next line and print the text
contained within the quotes. (V)MENU will then wait for the user to enter any text he
desires followed by a RETURN. At this point, the text entered by the user is capitalized
and placed into the command line at the point of the prompt.

If the prompt appears at the end of a (V)MENU command line, the trailing quote is
not required. As many prompts as desired may appear within a (V)MENU command line.
Examples:

-X
#
A - Run XDIR without Pause or Input
B - Run XDIR and Pause before Returning to (V)MENU
C - Run XDIR, Allow User Input, and Pause before
Returning to (V)MENU
M - Run MCOPY, Allow User Input of Dest Dir, Allow

User Input of Source Dir and File, and Pause
before returning to (V)MENU
Z = Run Any ZCPR3 Command and Pause before

Chap.5 Menu Subsystem 141

Returning to (V)MENU

#
m!mcopy "Destination Dir? "="Source DIR:AFN? "
z!"Enter Command Line --

axdir

b!xdir

c!xdir "Enter Ambiguous File Name --

##

Note the space right before the "Prompt form in the C command. This space is
significant to keep the command and user input from running together. This "run
together" is desired for the Z command. Also note the dual prompt for the M command.

With the M command, the following prompts will appear (and sample input):

Destination Dir? BACKUP:
Source DIR:AFN? *,TXT

and the following command line is built:

MCOPY BACKUP:=*, TXT

The command text specified in the (V)MENU command line can contain embedded
variables which (V)MENU will expand when the command line is processed. These
variables, which are denoted by a dollar sign ($) followed by one or two characters, are
defined as follows:

Variable Expands as

$D Current Disk

$U Current User Area

$Fn FILENAME.TYP for ZCPR3 System File n
$Nn FILENAME for ZCPR3 System File n

$Tn TYP for ZCPR3 System Filen

$Pp Name of File being Pointed to (VMENU only)
$$ Place a single $ in command line

These variables can also be used in the menu display itself, and their values will be
substituted when the display is generated. Example:

-X
#
Menu to Run M80 Assembler
Current File: S$F1
Directory: $DSU
F - Define File
E - Edit $F1 P - Page $F1
A - Assemble SF1

142 Using ZCPR3 and Command Definitions Sec. 1

#

fsetfile 1 "Filename? "
eedit $f1

azex m80 $nl

ppage $fl

##

Notes:

1. The ZCPR3 utility SETFILE is used to define the name of a ZCPR3 System File.
Four System Files are available, and they can be referenced by $F1 to $F4, $N1 to
$N4,and $TI to $T4.

2. The A command shows the execution of ZEX. (V)MENU is a true ZCPR3 Shell,
and therefore ZEX commands can be issued from it and will run on top of it. The
prompt for the ZEX command lines will be "Menu>".

3. Assuming that "MYFILE.MAC" is assigned to the ZCPR3 System File |1 and the
user is logged into disk B user 1, the following screen shows how the display and
the resulting command lines will be expanded when execution occurs:

Display

Menu to Run M80 Assembler
Current File: MYFILE.MAC

Directory: Bl

F - Define File
E - Edit MYFILE.MAC P - Page MYFILE.MAC
A - Assemble MYFILE.MAC

Command Lines

Menu Command Expansion
fsetfile 1 "Filename? " SETFILE 1 "Filename? "
eedit $f1 EDIT MYFILE.MAC
azex m80 $nl ZEX M80 MYFILE
ppage $f1l PAGE MYFILE.MAC

Just as the HELP utility can take advantage of the highlighting facility provided
in the Z3TCAP, so can VMENU. For those ZCPR3 Systems with a properly installed
TCAP, VMENU will use the clear screen command to refresh the user’s screen and
highlighting can be enabled and disabled by embedding “A (to turn on highlighting)
and *B (to turn of f highlighting) into the *. VMN file.

It is recommended that when highlighting is turned on, it should be turned off in
the same line for the sake of consistency and to improve appearance.

Chap.5 Menu Subsystem 143

Example:

#
AAThis is highlighted”B and this is not

#

will appear with "This is highlighted" in a highlighted mode.

VMENU Variables

The $Pp variable is also available to the user under VMENU. $Pp returns
information on the file currently being pointed to by the user on the screcen. This
variable has the following forms:

Form Expands Into

$PF FILENAME.TYP of the pointed-to file
$PN FILENAME of the pointed-to file

$PT TYP of the pointed-to file

For instance, if the file currently being pointed to is named MYFILE.TXT, then
the command line:

ECHO FILENAME.TYP=$PF FILENAME=S$PN TYP=SPT
will output;

FILENAME.TYP=MYFILE.TXT FILENAME=MYFILE TYP=TXT

Example:
-X
#
Menu to Run M80 Assembler
Directory: $DSU
E - Edit Pointed-to File
P - Page Pointed-to File
A - Assemble Pointed-to File
#
eedit $pf
azex m80 $pn
ppage $pf
##
Notes:

1. The E and P commands build command lines containing the full file name and
type of the file being pointed to.

2. The A command shows the execution of ZEX. (V)MENU is a true ZCPR3 Shell,
and, as such, ZEX commands can be issued from it and will run on top of it. The
prompt for the ZEX command lines will be "VMenu>".

144 Using ZCPR3 and Command Definitions Sec. 1

3. Assuming that MYFILE.MAC is being pointed to by the user, the following shows
the expansion of the command lines for this example:

Menu Command Expansion

eedit $pf EDIT MYFILEMAC
azex m80 $pn ZEX M8O MYFILE
ppage $pf PAGEMYFILEMAC

The first entry in any (V)MENU file display is named "No File", and this entry,
when pointed to by the user and expanded into the command line, is translated into a
prompt for the user to input the name of a file. This feature is provided as a
convenience to the user so that he will have the ability to easily specify new files
which do not yet exist to the (V)MENU commands (such as for an editor command in
which the user wants to create a new file).

If the pointer is at "No File" and the command line uses several references to the
pointer (as in the ECHO command example above), then the user is prompted only once
for the name of the file, and each reference derives its information from this name.

Closing Notes

As many commands as the printable ASCII character set (without lower-case
letters and the (V)MENU command characters) will allow are permitted by (V)MENU.
The text, however, for each menu must be able to fit on a screen with the file directory
display at the top and the command prompt at the bottom. This means that the text
cannot exceed 16 lines for VMENU or 20 lines for MENU.

(V)MENU fits in nicely to the ZCPR3 System of programs. The section on
"Relationship of MENU and VMENU to the ZCPR3 System" (following) explains how
(V)MENU and the other ZCPR3 programs work together.

The following ASCII characters may not be used as commands since they are used
elsewhere:

<SPACE> # % , . < > *
<Any Char Less than Space>

(VIMENU Programming Command Summary
Each (V)MENU command occupies only one line, and blank lines in the command
group are not permitted. The command line is structured as follows:

1[o] [command]

where:

1 is the single character used to invoke the command;
note that it may be upper- or lower-case.
o0 isan opening option, which is one of:
:nn -- go to Menu nn
! --have (V)MENU wait when the command is finished
command is an optional ZCPR3 command; note that if the option is ":nn",
then a command here makes no sense.

Chap.5 Menu Subsystem 145

The (V)MENU commands are:

Command Function

‘nn Goto Menu nn, where the first menu is Menu 1
! Wait after command line is executed before processing the menu
"Prompt" Prompt the user for input and accept it
The (V)MENU variables are:

Variable Expands to

$D Current Disk

sU Current User

$Fn FILENAME.TYP for System File n

$Nn FILENAME for System File n

$Tn TYP for System File n

$PF FILENAME.TYP for Pointed-to File (VMENU only)

$PN FILENAME for Pointed-to File (VMENU only)

$PT TYP for Pointed-to File (VMENU only)

§$ 3

Note: System Files can be defined by the SETFILE command.

The Highlighting Embedded Characters are:

AA Turn ON Highlighting
AB Turn OFF Highlighting

Note: It is recommended that if highlighting is turned on, it should be turned off
in the same line.

The following ASCII characters may NOT be used as commands since they are
used elsewhere:

<SPACE> # % , . < > *
<Any Char Less than Space>

Relationship of MENU and VMENU to the ZCPR3 System

(V)MENU is installed by Z3INS. Like most of the ZCPR3 utilities, (V)MENU
interacts with the system as a whole and cannot be used with systems other than
ZCPR3. In particular, (V)MENU requires that the ZCPR3 Multiple Command Line
Buffer and Shell Stack facilities be available to it and cannot run without them.
(VMENU invokes command lines via the Command Line Buffer and returns to itself
thru the Shell Stack. YVMENU (but not MENU) also uses the ZCPR3 System Files for
some of its variables and the Z3TCAP facility for its screen manipulation
(highlighting).

Also, CD (Change Directory) and STARTUP (or, ST for CD) can come into play
with (V)MENU. When CD logs into a new directory, it looks for the file ST.COM and
executes it if there is one. ST is simply STARTUP renamed, and STARTUP will load
the Multiple Command Line Buffer with a command line and then terminate.

146 Using ZCPR3 and Command Definitions Sec. 1

From the point of view of (V)MENU, the command loaded by ST could be
(V)MENU. The effect of this is to automatically enter (V)MENU when the user
employs CD to enter a given directory.

Hcnce, by using CD, a user can enter a directory and suddenly find himself in a
menu instead of at the ZCPR3 command level. This is good for applications where a
directory is set aside for a specific purpose and only certain operations are to be
performed in it, such as cataloging disks or handling accounts.

Now that (V)MENU is running for the directory, a (V)MENU command could be
another CD to another directory. Or it could simply be a DU: form. Example:

#
A - Enter ZCPR Directory

B - Enter AO:
#

acd zcpr:
bao:
#

Here, if A is issued, then CD will move into ZCPR: and execute ST.COM if there
is one there. If B is issued, the user is logged into AQ:. (V)MENU is the next command
in both cases (invoked as a Shell), so (V)MENU automatically reinvokes and looks for
MENU.VMN. If it finds it, we are in another (V)MENU system, and, if it doesn’t, we
arc back to ZCPR3 command level.

Under the A option, if CD finds ST.COM, ST will execute its function and, unless
this function pops the Shell Stack (SHCTRL POP command), (V)MENU will reinvoke
after it is complete.

Under the B option, we will run (V)MENU next and simply exit if a MENU.VMN
file is not found.

VMENU (but not MENU) interacts heavily with the ZCPR3 System Files which
are defined as a part of the ZCPR3 Environment Descriptor. There are four System
Filcs, and three of them are used by VMENU for various purposes:

File Purpose
2 Name of Current File
3 Name of Menu File
4 Name (containing wild cards) used to Select Files for VMENU File Display

System File 2 contains the name of the current VMENU file. By changing this
name, a transient can causc the pointer of VMENU to point to some other file when
VMENU is reinvoked.

System File 3 contains the name of the menu file which VMENU is using to derive
mcnu displays and command from. By changing this entry, a transient can select
different menu files dynamically.

Systcm File 4 is used to indicate which files (such as * TXT or *.*) are selccted for
display by VMENU when it is invoked. By changing this entry, the nature of the file
display can be changed dynamically.

Chap.5 Menu Subsystem 147

(V)MENU Error Messages

In order to make (V)MENU as small as possible, the error messages have becen
reduced to a minimum. (V)MENU provides a minimum indication that something is
wrong and aborts.

The program (V)MENUCK is designed to tell the user more specifically what is
wrong. (V)MENUCK is a * VMN/* MNU Syntax Checker, and it looks for all sorts of
error conditions that can occur in a * VMN/* MNU file.

(V)MENU provides the following minimal error messages:

Message Meaning

No Shell Stack Shell stack not available

No Command Line Command line buffer not available

Shell Stack Full Shell stack is full

Shell Stack Size Shell stack entries are too short for (V) MENU cmd line
File x.typ Not Found Menu file not found

TPA Full Memory is full

<Bell> User command is in error

Structure Error * VMN File structure error

Password Error Invalid password given (MENU only)

VMENUCK (version 1.0)
MENUCK (version 1.0)

Syntax:
VMENUCK dir:ufn <--default file type is VMN
MENUCK dir:ufn <-- default file type is MNU

Function:
(V)MENUCK checks the syntax of a * VMN/*MNU file for the ZCPR3 Menu
Shell, (V)MENU. (V)MENU is optimized for size and speed, and, in keeping it
small, built-in diagnostics were reduced to the minimum. (V)MENUCK analyzes
* VMN/*MNU files and provides informative diagnostics on any syntactical
errors within them.

Options:
None.

Comments:
(VIMENUCK checks to see if the size of the *. VMN file is too large for the TPA
available to the (V)MENU command. This is an additional check beyond thc
normal syntax check.

(V)MENUCK identifies the location of errors by line number. The first line in the
file is line number 1.

Selected Error Messages:
Self-explanatory.

Examples of Use:

VMENUCK MYMENU -- perform check on MYMENU.VMN
MENUCK MYMENU -- perform check on MYMENU.MNU

148 Using ZCFR3 and Command Definitions Sec. 1

Chap.6 Menu Subsystem 149

6 Shell Subsystem

A number of different shells are supplied with ZCPR3, including VFILER and
MENU. The principal shell processor is SH, which permits the user to use Named
Variables. These are expanded in a manner similar to macros in his command lines.
Two programs, SHDEFINE and SHY AR, allow the user to dynamically create Named
Variables, and the SHFILE command allows Named Variable definitions to be
grouped into sets of variables.

A conventional CP/M command line could look something like this:

ED MYFILE.TXT

Using SH, a ZCPR3 command line like
ED $WORKFILE

can be generated, and, as SH substitutes the definition of the variable WORKFILE
when it interprets the command line, "ED %WORKFILE" could be expanded into "ED
MYFILE.TXT" if WORKFILE=MYFILE.TXT. By changing the value of the variable
WORKFILE, the meaning of the command "ED %WORKFILE" is correspondingly
changed.

Once SH is invoked (by typing the command SH), any command typed by the user
is passed thru SH first, expanded as required, and then, if the command is not an SH-
resident command, the expanded command line is passed to ZCPR3 for processing.

SH variables may be nested to any depth. Recursion, however, should be avoided,
and it is the responsibility of the user to ensure that recursion does not occur.

%%’ is interpreted by SH as a single *%’. For example, SH variables may be
assigned as follows:

VARl = "ED %%VAR2" VAR2 = "MYFILE.TXT"

VARI1 is expanded as "ED %VAR2" which is, in turn, expanded to "ED MYFILE.TXT".
This command is then passed to ZCPR3 for execution.

SH-Based Commands

There are three SH-resident commands:

SHCMT switch SH to run in comment mode; in comment mode, all lines which do
not begin with the character!are treated as comments and flushed

SHECHO with Echo enabled, all expanded command lines are printed to the user to
show him what the line looked like after expansion

SHEXIT SH is popped from the Shell Stack, enabling the next lower Shell for
execution

Comment Mode. The normal prompt for SH is "DU:NAME>>", as opposed to
"DU:NAME>" for ZCPR3. If the SHCMT (SH Comment) facility is enabled, the SH
prompt becomes "DU:NAME;".

150 Using ZCPR3 and Command Definitions Sec. 1

Any text issued by the user or from a command file (such as ZEX) will be
processed as a comment unless the first character of the line is an exclamation mark (!),
which is an indicator to process the command text that follows.

The command SHCMT switches to comment mode, and !SHCMT switches back.

SHECHO, SHEXIT, and ?. The SHECHO command is also a toggle, enabling and
disabling the echo of command lines after all variables have been resolved.

The SHEXIT command causes the Shell Stack to be popped one level, which in
turn causes the SH Shell to be terminated since it was on the top of the stack.

Both SHECHO and SHEXIT can be executed from SH Comment mode by
prcfixing these commands with an exclamation mark.

The ? command (a line beginning with a quesiton mark) invokes the built-in help
facility of SH, which simply reminds the user of what the built-in commands are for
SH.

Other Shells. SH is just the beginning of the possible ZCPR3 shell stack
applications. MENU and VFILER are both shells also, and they execute like SH. All
three shells can pass command lines to ZCPR3, have ZCPR3 execute these commands
in its normal fashion (complete with the command-search hierarchy), and then return
to the appropriate shells when done. A shell imposes a new initial command line
interpretation on the input command line.

Selected Error Messages. "No Shell Stack" means that a Shell Stack has not been
installed in the ZCPR3 System and SH cannot run.

"Shell Stack Full" means that there is not enough room on the Shell Stack for SH to
push itself and SH cannot run.

"Shell Stack Entry Size" means that the shell stack entries are too short for SH to
define the parameters it needs to control its operation. SH cannot run.

Potential Problems. Only one noted problem exists with SH. Certain ZCPR3-
rcsident and SYSRCP-resident commands should be avoided. These commands
include:

GO because the TPA has been changed since the desired command executed

SAVE same reason

SH tends to be a little slow in its loading. Unfortunately, SH has already been
compressed as much as possible, so it will probably always take more time than simply
invoking the ZCPR3 command processor directly.

Related Commands . The following commands are related to the SH shell and
have an impact on its operation.

SHCTRL This command can take direct control of the Shell Stack of ZCPR3. It
can display the contents of the stack, pop the top-most shell off of it
(thereby terminating the current shell), or clear the stack entirely
(thereby terminating all shells on the stack).

SHDEFINE This command can be used to interactively define a number of shell
variables at one time. The user can display them and edit them as he
desires.

Chap.6 Shell Subsystem 151

SHFILE This command defines the name of the shell variable file in the ZCPR3
Environment Descriptor. As many shell variable files as desired may be
defined, each containing their own set of variables.

SHVAR This command can be used to interactively define one shell variableata
time. It is slightly more convenient than SHDEFINE in some cases and
can be used in command files and menus.

152 Using ZCI'R3 and Command Definitions Sec. 1

Chap.7 Shell Subsystem 153

7 VFILER and File Maintenance

Overview of the VFILER File Maintenance Tool

VFILER (for Video FILER) version 3.0 gives the ZCPR3 user a specialized file
manipulation utility that takes advantage of the special features of ZCPR3. It
performs the same basic functions as DISK7, CLEANUP, WASH, and SWEEP, but has
additional, ZCPR3-specific, commands and features that make VFILER more
convenient than its predecessors for the ZCPR3 user. VFILER, unlike the tools
mentioned above, is totally screen-oriented, being designed to run on a conventional
CRT that supports cursor address, clear screen, and (optionally) erase to end of line.

VFILER significantly simplifies the user interface. An alphabetized listing of
files is presented to the user along with a pointer. The user employs standard cursor
movement commands to move the pointer up, down, right, or left until it is pointing to
a file of interest. Once pointing to such a file, the user may then perform a number of
operations on the file.

VFILER is invoked by a command line of the following form:

VFILER dir:filename.typ

where all parameters are optional. "DIR" is the directory to be made current; it may be
any valid ZCPR3 directory reference (e.g., a mnemonic such as "ROOT:" or a DU form
such as "B7:" or "12:"). "filename.typ" is an ambiguous file name which specifies an
initial selection of the files to be processed by VFILER.

The reference for the ambiguous file name is stored in System File 4, and can
therefore be dynamically changed by issuing a SETFILE command (e.g. SETFILE 4
afn) during the execution of VFILER. The result is to change the definition of this
ambiguous file reference; the next time VFILER restarts execution, the new
ambiguous file reference takes effect, and the files are selected accordingly.

The following description applies to VFILER 3.0. VFILER 3.0 will run only
under ZCPR3, unless the Environment Descriptor is made internal to VFILER, in
which case VFILER will be 1/4K larger but will run under earlier versions of ZCPR.

Installing VFILER

Installation of VFILER is quite simple, as is installation of most utilitics under
ZCPR3. Installation consists merely in providing VFILER with a pointer to the
ZCPR3 Environment Descriptor (unless VFILER has been assembled to contain an
Environment Descriptor, in which case the entire Environment Decscriptor is
necessary).

Z3INS can be used to install VFILER. To do this, create an INS file (call it
VF.INS) containing the name of the VFILER.COM file on one line. Assuming that
your system Environment Descriptor file is named SYS.ENYV, issue the command:

Z3INS SYS.ENV VF.INS

This completes the normal installation of VFILER.

There are some customization equates at the front of the VFILER.MAC source
file. The user will generally not need to change any of these, but may do so if he so
desires. One such equate enables or disables the built-in documentation (help) feature.
If this feature is disabled, any help reference will chain to a HLP file (VFILER.HLP)

1654 Using ZCP#3 and Command Definitions Sec. 1

and VFILER.COM will be about 1K shorter. Enabling the built-in documentation
fcature provides the user with online help that is more concise but is available much
morc rapidly since it is mecmory-resident while VFILER is running.

VFILER Command Summary

-- Tagging Commands =-- = ===————-- File Operations =-=-====—=—=---
T - Tag File C - Copy File D - Delete File
U - Untag File F - File Size R - Rename File

G - Group Copy/Delete/FSize/Tag/Untag

-- File Print & View -- --- User Functions =---
-- Cursor =-- P - Print V - View 0-9 - Execute # - Help
~E
A -- Movement Commands -- --- Miscellaneous ---
AS <=+-> AD <SP> - File Forward A - Toggle Alpha Sort
v <BS> - File Backward H - Help File
~X + - Screen Forward N - New DIR
- - Screen Backward S - Disk Status
-- Screen -- J - Jump to a File Z - ZCPR3 Command
~A Left Q - Refresh Screen AC - Exit
AF Right

Movement Commands --

~E - Move Up (Wrap to Bottom)

~X = Move Down (Wrap to Top)

~D - Move Right (Wrap to First File of Next Line)
S = Move Left (Wrap to Last File of Previous Line)
~F - Move Screen Right (Wrap to First Screen)

~“A = Move Screen Left (Wrap to Last Screen)

The user’s Z3TCAP entry may define four other single-character commands to
conform to the arrow keys on his specific terminal. These commands will override the
set described above if any conflicts exist (that is, if your down-arrow key generates a
~E, “E will now mean Move Down in all cases).

Screen Left and Right make sense when there are too many files to fit on one
screen. In this case, the files are broken into screen directories, and Screen Left and
Right are used to move between them.

Chap.7 VFILER and File Maintenance 155

User Functions

The VFILER user may invoke up to ten extra commands that he has previously
defined, by means of a set of user-definable functions. These functions are executed
by striking a digit from 0 to 9. To implement user-defined functions, perform the
following steps:

1. Createa file called VFILER.CMD containing your extended command set.
2. Place YFILER.CMD in some directory along your command search path.

3. When in VFILER, if you strike a digit or a pound sign (#) for help, VFILER
searches along the path for the first VFILER.CMD file it finds and extracts the
information from it.

Since YVFILER searches for VFILER.CMD along the path, several VFILER.CMD
files may be available for the user. For instance, if the path is §$§ -> A$ -> A1S5, then
VFILER will look for VFILER.CMD in the current directory, disk A/current user, and
disk A/user 15. A general-purpose VFILER.CMD file may be placed in AlS5, and
special-purpose VFILER.CMD files (e.g., for assembler language development, C
development, word processing, etc.) may be placed in selected user areas on A. For
instance, A7 might contain WordStar and be used for word processing, while B7 is the
scratch area for text files. With this path, a user editing files in B7 will find WS in A7,
VFILER.CMD (for word processing) in A7, and his system commands in A15.

If any of the extended commands require the selection of options, the user is
prompted to supply them. When values for all of the mandatory options have been
supplied, VFILER chains to the new command via the ZCPR3 Command Line Buffer
feature, executes the command line generated, and returns. VFILER is a true shell
under ZCPR3.

The structure of VFILER.CMD is quite simple. It can be created by any CP/M
text editor, and consists of the following types of lines:

1. a command line, which begins with a digit (0-9) and contains the text of the
command to be executed should that digit be typed by the user.

2. a help block, which is printed whenever the user types a pound sign (#); this block
is denoted by a line which begins with a pound sign, and it extends to the end of
the file.

3. a comment line, used for embedding explanatory comments, which are for
reference purposes only and are not seen by the VFILER user.

Command Line. A command line consists of a digit, zero or more spaces (which
are ignored), and the text of the command with embedded prompts for user input.
These prompts are enclosed in single- or double-quotes (" or "). When VFILER executes
these command lines, it prints the prompt contained within the quotes as they are
encountered, and waits for the user to input a line of text (terminated by a RETURN).
At this point the text is substituted in the command line containing the prompt. If a
prompt extends to the end of a command line, it need not be terminated. For example
the following line:

1l copy 'Source File? ' 'Destination Dir?

156 Using ZCPR3 and Command Definitions Sec. 1

defines user function 1. The user is prompted with "Source File?", he enters his text, it
is substituted in the command line, he is prompted for "Destination Dir? ", he again
enters a response, it is substituted, and the resulting command line is executed. In the
above example, if the user responds with "myfile.txt" and "CO0:", respectively, then the
command line

copy myfile.txt CO:

is built. Note that spaces and other characters between the prompts are significant.
If the command line in VFILER.CMD contains the following:

1 mcopy 'Dest Dir? '='Source File? '
then the same responses will generate the command line
mcopy CO:=myfile.txt

Parameter Passing. Three parameters may be passed from VFILER into the
command line being generated. These parameters and their symbols are:

Symbol Parameter
%D Current Disk Letter
%U Current User Number (1 or 2 digits)
%F Current File Name (pointed to by arrow)
%3 DU:FILENAME for Current File

If the user must insert a *%’ character into the command line he is building, %%’
places one %’ into the line. For example:

echo Disk is %d, User is %u, File is %f

prints (if the user is in A15 and pointing to MYFILE. TXT):
Disk is A, User is 15, File is MYFILE.TXT

Help Block. The Help Block in the VFILER.CMD file is simply a block of text
which extends from the pound sign (#) in the file to the end of the file. This help
information is displayed to the user as one screen, and it is the responsibility of the
person who writes the VFILER.CMD file to see that this body of text (including the
line the pound sign is on) does not exceed 22 lines. Example:

Help for Word Processing
1 - Run WordStar
2 - Run WordMaster
3 - Run ROFF4

Comment Line. A comment line is any line which does not begin with a digit or a
pound sign. The text of that line is the comment. It is not displayed to the VFILER
user and is used only for reference to aid in maintaining the VFILER.CMD file. For

Chap. 7 VFILER and File Maintenance 157

example:

! This is a comment
This is also a comment

Running ZEX from VFILER. Like all standard ZCPR3 Shells, VFIHER pupports
the execution of the the ZEX command file processor on top of itself. If ZEX is
running, VFILER will simply prompt ZEX for input rather than entering its normal
screcn-oriented display mode. In this way, a command executcd from the
VFILER.CMD file may invoke ZEX, and all of the ZEX command file processing will
be performed before VFILER is reentered.

Sample VFILER.CMD File. To clarify the use of the user-dcfined functions, A
sample VFILER.CMD file is shown below.

VFILER Command File for Richard Conn

|

1 xdir 'XDIR Options? '

2 protect %D%U:%F 'PROTECT Attributes?

3 wm %$

4 t2a

5 echo Disk=%d User=%u File=%f DU:FILENAME = %$

#VFILER Command File for Richard Conn
The following VFILER Macros are provided --

- XDIR with Options

- PROTECT Current File

Edit Current File

- TERM III

- Echo Current File and Text

O WK
|

Tagging Commands

T Tag file for inclusion for mass file operations (group operations). The file
remains tagged until either a disk log-in or U’ is used to untag it. A 't
marker is placed by the tagged file name as a reminder the file is tagged for
mass copy or mass delete.

U Untag a file previously tagged for mass file operations. U’ can be used to
move cursor ’forward’ for quick untagging of files. Logging-in drive again
with ’N’ also untags all files.

GTor U Group (Mass) Tag or Untag. The user is prompted for the operation, and
two of his options are T and U. If either operation is selected, tagging or
untagging occurs automatically from the cursor position to the end of the
screen on all files in this area. If the user then wishes to sece the

158

Using ZCPR3 and Command Definitions Sec. 1

accumulated sizes of the tagged files, the G F (Group File Size) command
may be issued.

File Display Commands

P

v

Print text file to CP/M list device (printer). Any keypress cancels.

View text file on console, with pagination and single-line turn-up. <CTRL-
C> cancels function. <SPACE> advances to next line, and any other
character advances the screen. Only ASCII characters are processed.

Details on CRT and Printer sizes (number of lines on screen, number of
lines on printer, etc.) are derived from the ZCPR3 Environment Descriptor
and need not be of concern to the user. The command CPSEL can be used to
select the CRT or Printer characteristics from the Environment Descriptor
as desired.

File Operation Commands

C

GC

GD

GF

Copy file to another DIR area with automatic CRC verification. The
standard ZCPR3 DIR form is allowed, and a colon after the specification is
optional. System reset occurs for disk change. The user is prompted to erase
an already existing file on another drive or in other user areas. Before
attempting a copy, check to see that there is enough room on the destination
disk.

Delete file from disk. Reconfirmation is requested before the deletion is
performed.

Display file size in kilobytes, rounded up to next disk allocation block.

Invoke Group (Mass) command. The three options of interest here are C
(Copy all Tagged Files), D (Delete all Tagged Files), and F (File Size of all
Tagged Files).

Group copy of tagged files to another DU area. Auto-erase occurs if file(s)
already exist(s). Prompts for desired DU area as with ’C’ command. Group
copy function can be repeated without re-tagging files.

Group delete of tagged files. Prompts for approval: if the response is Y,
deletion of all tagged files occurs without further user intervention; if the
response is V, user is asked to approve each deletion before it is made. If
the response is any other character, the operation aborts.

Group file size summary. Adds up the file sizes of all tagged files and
displays this sum.

Chap. 7

R

VFILER and File Maintenance 159

Rename file on current drive. Only CP/M convention names pcrmitted.
Wild cards are not permitted. User is prompted for new file name.

Movement Commands

<SP>

<BS>

Arrows

Advance to next file name. Wraparound from last to first may occur. The
WordStar ~D character or your right arrow key (if available in the
Z3TCAP) perform the same function.

Back up to last file name. Wraparound from first to last may occur. The
WordStar ~S character or your left arrow key (if available in the Z3TCAP)
perform the same function.

Jump to a file. Used to quickly jump to a specific file. Uscr is prompted for
a file name, and wild cards (? and *) may be used. User is positioned at
first file which matches wild cards if found; user is positioncd at first file
inring if not found.

Refresh the screen. The current screen will be redisplayed.

Jump to Next Screen (if any). If there is more than one screen of files, the
user is advanced to the next screen. If at the last screen, wraparound occurs
to the first. ~F also performs this function if not overridden by arrow keys.

Jump to Last Screen (if any). Similar to + but in the opposite direction.
Wraparound to last screen may occur. “A also performs this function if not
overridden by arrow keys.

WordStar arrow key movement (if not overriden by arrow keys in Z3TCAP):

AE
A

~rS <=+-> ~D
Y
AX

Miscellaneous VFILER Commands

Toggle Alpha Sort. This command reverses the sense of the sort of the
current directory, reloads the directory, and refreshes the screcn, having
sorted it in the new sense. Sorting is done by file name and type or by file
type and name.

Invokes external HELP Information. VFILER will chain to HELP and
display the information in VFILER.HLP. VFILER checks to sce if HELP
can be found along path (external if available, internal if external path is
not available) and does not attempt to chain if HELP.COM cannot be found.

160

/or?

Using ZCPR3 and Command Definitions Sec. 1

Login new DU area for display and reset system for disk changes. Format
of DU form is same as ’C’ for copy.

Status of requested drive, shows remaining disk storage in kilobytes and
number of files in current directory.

Run any ZCPR3 Command Line. User will be prompted for command line,
and VFILER will be reentered in same DU area as when command was
executed. Command will execute in the original DU area as indicated by
the prompt.

Exit to Operating System.

Print Command Summary (Short Help Info). VFILER may be assembled to
omit built-in help, creating a VFILER which is about 1K shorter than a
VFILER with the built-in help. If the built-in help is omitted, these
commands chain to the VFILER.HLP file instead (see Installation, above).

Chap.8 VFILER and File Maintenance 161

8 DU3 Disk Utility

DU3 is intended for use on a ZCPR3 system, and is designed for installation with
a minimum of trouble. In fact, in almost all cases, no changes to the source file should
be necessary to get DU3 up and running. This is because DU3 uses the disk parameter
block of CP/M to determine the characteristics of the disk environment.

DU3 is installed by running the ZCPR3 utility Z3INS on it. To perform its
functions, DU3 needs only a pointer to the ZCPR3 Environment Descriptor. DU3 is
assembled with VLIB, Z3LIB, and SYSLIB3.

The screen displays shown on the following pages are very close to the actual
screen displays the user will see on his terminal when he runs DU3. The differences
will be cosmetic in nature.

DU3 Command Summary. A command line may consist of one or more commands
separated by commas; the commands are executed sequentially, in the order in which
they appear. The only exceptions to this rule are the :ntext command (which stores the
command line away as a macro) and the *nn command (which repeats the command
line). The commands are listed below in the order in which experience shows that they
are most frequently used.

Editing
E Invoke Editor
Positioning
Tn Position to Track n (dec) Sn Position to Sec n
Gn Position to Group n (hex) G Show position
+n Advance to Next Sector -n Back up to Last Sec
Displaying
An-n ASCII Dump Hn-n Hex Dump
Dn-n ASCII and Hex Dump Vn View n Blocks
M Display Disk Map Mn Display File in Group n
Data Modification
CAn text Enter Text CAnl-n2 char Enter Char over Range
CHn vals Enter Binary Values CHnl-n2 val Enter Value over Range
Disk Read/Write
R Read Current Block W Write Current Block

Exiting DU3
X Exit to ZCPR3 ~C Exit to ZCPR3

162 Using ZCFR3 and Command Definitions Sec. 1

Macros
n Exec Macro (0<=n<=9) :nt Define Macro n w/str t
:Pn Print Macron ‘PA Print All Macros

:P@ Print Prev Command

Block/Group Queueing

< Save Current Block in Temp > Get Saved Block

<B Save Current Block on Queue >B Get Block from Queue
<G Save Current Group on Queue >G Get Current Group
<Gn Save Group N on Queue >Gn Get Group N

Queue Control

Q Print Queue Statistics Qz Zero (Empty) Queue
QSf Save Queue as File f

Data Searching

Ff Find File f =str Search for String
Un Set User Area for Find

Login/Disk Reset
Ld Log in Disk N New Disk Reset

Printer Output

P Toggle Printer
Command Manipulation
@ Exec Prev Command *nn Repeat Command Line
Statistics/Help
Display Disk Stats ? Display Help Info
Halt/Sleep
! Halt and Wait for User Zn Sleep n Seconds

DU3 Commands: Log In, New Disk, Stats
The following commands are discussed in this section:

L Log in Disk

N New Disk (Reset Disk System)
M Map Disk Directory

U Select User Number

Print Disk and Queue Statistics

Command: L[d]. The simple "L" command re-logs in the current disk. The user may
pull out a disk, putin a new, and "L" just to log it in. The form "Ld" (where d is a valid
drive letter) is used to log in a specific disk and permit the user to work on that

Chap.8 DUS3 Disk Utility

particular disk from then on.
Example (actual DU3 session):

DU3 Bl1? 1
DU3 B1l? la
DU3 Al? 1b

Command: N. This tells DU3 that the user just put in a new disk.

163

For those BIOS

implementations that need to be told specifically (Reset) that a disk change has been
made, use this command every time a disk is changed while DU3 is running. Example:

DU3 B1? n

Note:
system reset took place.

There was a significant delay before the prompt returned. A complete disk

Command: M[n]. Dumps a map of the group allocations for files. Mn shows which file
is allocated to group "n". Example (actual DU3 session, edited):

07
00
00

TALK
LDIR
LDIR

00
00
00

UNERA15

07 TALK

DU3 Bl? m
0010-0010 07 STD .MSG 00 : 0011-0011
0012-0012 07 Z2CON .WSH 00 : 0013-0013
0014-0014 00 COMMAND .LBR 01 : 0015-0015
< Detail Left Out >
004B-004B 08 MASTER .CAT 03 : 004C-0050
0051-0051 00 COMMAND .LBR 07 : 0052-0052
0053-0053 08 MENU .CPR 00 : 0054-0057
Type Any Character to Continue or ~C to Abort -
DU3 Bl1l? m54
0054-0057 00 COMMAND .LBR 07 :
Group = 0000:00, Track = 122, Sector =
The entries are divided as follows:
0010-0010 07 STD .MSG 00 : 0011-0011
A A A A
| | Filename Extent

Command: Uu Logs user ’u’ for next F (Find File) command.

User Number
Group Range

Example (actual DU3 session):

DU3 B1?

u7

DU3 B7? ul

COMMAND .LBR

COMMAND .LBR

.SUM
.C
.C

00
00
00

05
00
07

. COM

1, Physical Sector =1

.SUM 00

164

Command: #. Prints the disk parameters:

o Current Disk Drive

o Size of Group in Blocks

o Number of Groups on Disk
o Number of System Tracks

Prints the queue statistics:
o Size of Quecue
DU3 Commands: Movement

Using ZCPR3 and Command Definitions

o Number of Tracks on Disk
o Number of Sectors Per Track
o Number of Directory Entries

o Space Available

The following commands are discussed in this section:

Position to Group

Position to Sector

Position to Track

Read Block

Write Block

Advance to Next Logical Sector
Backup to Last Logical Sector

Pt =EmHQ

Sec. 1

Command: Gnn]. Position to group nn and read block. If the form is simply "G", show

the current position.
Example (actual DU3 session):

DU3 B1? go

Group = 0000:00, Track = 122,
DU3 Bl1l? g4
Group = 0004:00, Track = 122,
DU3 Bl? g
Group = 0004:00, Track = 122,

DU3 B1l? gO
Group = 0000:00, Track = 122,

Sector = 1, Physical Sector = 1
Sector = 129, Physical Sector = 12
Sector = 129, Physical Sector = 12

Sector = 1, Physical Sector =1

Command: Tnn and Snn. "Tnn" does a seek to track nn but does not read a block. "Snn"
positions to sector nn on the current track and reads the block there. Example (actual

DU3 session):

DU3 B1? tl1l24
Group = 0015:00, Track = 124,

DU3 B1l? s24
Group = 0015:17, Track

124,

Sector = 1, Physical Sector =1

Sector

24, Physical Sector = 24

Chap.8 DU3 Disk Utility 165

Command: R and W. R reads the block currently positioned to into memory. Note R
(Read) is implicit in the G, +, and - commands, but NOT in the S and T commands.

W writes back the current block (NOTE: may not be used after an F command, as
CP/M was used to find the file in the directory).

Examples:

DU3 Bl1? r
DU3 Bl1? w

Command: +[nn] and -[nn]. "+" advances 1 sector (if below track 2, this advances to next
numerical sector and if 2 or more, advances based on the system’s sector skewing
algorithm, i.e. so + will get the next logical sector of the file). "-" backups up 1 sector
in the same sense.

Note that "+" and "-" may take an amount: for example, +15 steps in 15 sectors.
Note also that "-" issued at the first logical sector of the disk will wrap back to the last
and "+" issued at last sector will wrap forward to the first.

Examples (actual DU3 session):

DU3 Bl? g0

Group = 0000:00, Track = 122, Sector = 1, Physical Sector
DU3 Bl1? d

00 07535444 20202020 204D5347 00000002 |.STD MSG....|
10 10000000 00000000 00000000 00000000 |eseseoceasa |
20 004C4449 52202020 20432020 00000038 |.LDIR C ...8|
30 13001500 00000000 00000000 00000000 |esseeosaana ceoaea|
40 0843504D 55472020 20434154 01000046 |.CPMUG CAT...F|
50 1COOl1EOO0 38003D0O0 41004300 45000000 |....8.=.A.C.E...|
60 00434F4D 4D414E44 204C4252 01000080 |.COMMAND LBR .
70 14001600 17001800 19001A00 1BOO1DOO |sceeeeensa ceseanal]
DU3 Bl? +d

Group = 0000:01, Track = 122, Sector = 2, Physical Sector
00 0754414C 4B202020 2053554D 00000049 | .TALK SUM...I|
10 11002300 24000000 00000000 00000000 |..#.5cee.n -
20 00554E45 52413135 2041534D 00000060 | .UNERA1l5 ASM...'|
30 3EOO3F00 40000000 00000000 00000000 |>.?2.@ccceeeccscan |
40 075A3249 4E532020 20575348 0000002A |. ZZINS WSH...*|
50 21002500 00000000 00000000 00000000 |!. cese e e |
60 075A3243 4F4E2020 20575348 0000003F |. 2CON WSH...?|
70 12002200 00000000 00000000 00000000 |.."...... .o oo

DU3 B1? +d

166

Group =

00
10
20
30
40
50
60
70

07445532
26002800
04535441
27000000
00434F4D
1F002000
00434F4D
36003700

DU3 Bl1l? +2

Group =

DU3 B1l? d

00
10
20
30
40
50
60
70

084D4153
2D002F00
00464958
65006600
00554E45
52000000
084D454E
53000000

DU3 B1? -3d

Group

00
10
20
30
40
50
60
70

0754414C
11002300
00554E45
3EOO03FO00
075A3249
21002500
075A3243
12002200

0000:02,

0000:04,

20202020
29000000
52545550
00000000
4D414E44
30003100
4D414E44
39004C00

54455220
3A003B0O
54455820
69006B00
52413135
00000000
55202020
00000000

0000:01, Track =

4B202020
24000000
52413135
40000000
4E532020
00000000
4F4E2020
00000000

DU3 Commands: Searching

The commands for searching for data on the disk are:
Ffilename.typ — find all dir entries for file
=string — find next occurrence of string

Command: Ffilename.typ. Print directory for file "filename.typ".
presents the directory entries for all extents of the indicated file.
"Interpreting the DU3 Directory Display" for info on how to interpret the information

Track =

Track =

122,
2042414B
00000000
20C3CF4D
00000000
204C4252
32003300
204C4252
4DO04EOO

122,

20434154
3C004200
2041534D
6C000000
20434F4D
00000000
20C35052
00000000

122,
2053554D
00000000
2041534D
00000000
20575348
00000000
20575348
00000000

Using ZCP1t3 and Command Definitions

Sector = 3,

00000057
00000000
0000001E
00000000
03000080
34003500
05000080
4F005000

Sector

01000080
44004600
0100001E
00000000
00000007
00000000
00000008
00000000

Sector
00000049
00000000
00000060
00000000
0000002A
00000000
0000003F
00000000

| .DU3 BAK...W|

[&e (o) eeeeeananeal
| . STARTUP COM....|
[' eeeeenceanceansl|
| . COMMAND IBR.... |
le. .0.1.2.3.4.5.|
| . COMMAND LBR.... |
|16.7.9.L.M.N.O.P. |
5, Physical Sector
| .MASTER CAT....|
|—./...,.<.B.D F.|
| . FIXTEX ASM....|
le.f.ikeloeeenn
| .UNERA15 COM.... |
JReeeeeoseannoanal
| .MENU CPR....|
|Seeeeeeseoneasansl]
2, Physical Sector
| . TALK SUM...I|
[ee#eSeeenenneans]
| .UNERA15 ASM...'|
[>2.@0iececennes]|
| . ZZINS WSH...||
I T
|.22CON WSH...?|
o eMeeeeeenaanaasl]

Physical Sector

This command
See the section on

Sec. 1

3

2

Chap. 8

DU3 Disk Utility

167

presented. Example (actual DU3 session):

DU3 B1l?

40 015A3830 20202020 204D4143 0O00O0OOOE
50 9A000000 00000000 00000000 00000000

Group =

DU3 B1l?
++ File
Group =

Command:

fz80.mac

.Z80 MAC....|

|
I
Sector = 1, Physical Sector

I
|

0000:00, Track = 122,

ftest.txt
Not Found ++
0000:00, Track = 122, Sector = 1, Physical Sector =1

=string. This command performs a search for the indicated ASCII text,

starting at current sector. <xx> hex may be imbedded, or used alone: To find "IN
OFEH": =<db><fe>. Bit 7 is ignored unless <xx> is used. Note that, due to the parsing
scheme of DU3, forms such as "+=string", which positions to the next sector and then
starts the search, are allowed. Forms like "+2=string" are equally permitted. The
search may be aborted by a ~C. Example:

DU3 Bl1? gO

Group = 0000:00, Track = 122, Sector = 1, Physical Sector =1
DU3 Bl1l? =DU3

= at 24

Group = 0000:0E, Track = 122, Sector = 15, Physical Sector = 15
DU3 Bl1? d

00 07533130 30202020 20545854 0000000C |.S100 TXT....]|

10 0C010000 00000000 00000000 00000000 |eeeveesnscsoscas |

20 07445532 20202020 2042414B 00000068 |.DU3 BAK...h|

30 2A006100 6D007800 00000000 00000000 ||.@cMeXeessoosss |

40 015A3830 20202020 204D4143 0OOOOOOE |.Z80 MAC....|

50 9A000000 00000000 00000000 00000000 |eescescascacscas oo

60 E5444953 4B4F5554 20434F4E 00000020 |eDISKOUT CON... |

70 60000000 00000000 00000000 00000000 |'.veereonsseonsns |

DU3 Bl1l? +=DU3

Group = 0000:0F, Track = 122, Sector = 16, Physical Sector = 16
= at 64

Group = 0000:10, Track = 122, Sector = 17, Physical Sector = 17
DU3 B1? d

00 075A3243 4F4E2020 20575320 05000080 |.Z2CON WS|

10 3DO013EO1 3F014001 41014201 43014401 |=.>.?.Q@.A.B.C.D. |

20 075A3243 4F4E2020 20575320 06000077 | .Z2CON WS...w|

168

Using ZCF' R3 and Command Definitions

Sec. 1

30 45014601 47014801 00000000 00000000 |E.F.G.H......... |

40 E5444953 4B4F5554 20434F4E 00000020 |eDISKOUT CON...|

50 97000000 00000000 00000000 00000000 |eeseoeoessoasass]|

60 07445532 20202020 20484C50 01000006 |.DU3 HLP....|

70 98009900 9B0O09COO0 9D0O0O0O0O0O0 00000000 |eeeeesoasansoansal]|
DU3 Bl1l? +=DU3,d

Group = 0000:11, Track = 122, Sector = 18, Physical Sector =
= at 24

Group = 0000:11, Track = 122, Sector = 18, Physical Sector =
00 E547454FE 494E5320 204D4143 01000080 |eGENINS MAC....|

10 D700EF00 FOOOF400 F500F600 F700F800 |W.o.p.t.u.v.w.X.|

20 E5445532 20202020 2041534D 01000080 |eDU3 ASM....|

30 ECOOEDOO EEOOFAOO 07010BO1l OEO011301 |{l.M.NeZeeeeaoacal]

40 04445532 20202020 20C3Cr4D O0OOO0OO4E | .DU3 COM...N|

50 F100F200 F3000000 00000000 00000000 |eXeS:eeesessoassl]

60 E547454E 494E5320 204D4143 02000039 |eGENINS MAC...9|

70 F9000OF01 00000000 00000000 00000000 |Yiseeesoasesaoanal]

DU3 Commands: Saving, Restoring, Queue
The following commands are discussed in this section:

< Save Current Block
> Restore Saved Block
<B Save Current Block at Tail of Queue

>B Load Current Block from Head of Queue
<G Read and Save Group at Tail of Queue

>G Copy Group from Head of Queue and Write
Q Print Queue Statistics

QZ Zero (Clear) Queue

QS Save Queue as a File

Command: < and >. "<" saves current block in an internal save buffer. ">" copies
the internal save buffer into the current block area (but does NOT write it out to disk).

Command: <B and >B. "<B" saves the current block onto the tail of the DU3
Queue. This Queue, a FIFO (First In-First Out) data structure, can be used to collect a
number of blocks for later copy to a disk file or explicit placement somewhere on the
disk. ">B" extracts the block at the head of the DU3 Queue and places it into the
working buffer area.

Command: <G[nn] and >G[nn]. "<G" reads the current group and saves it on the tail
of the DU3 Queue. The size of a group is dependent on the format of the disk, and
DU3 automatically adjusts to the proper group size without the user having to worry
about what it is. ">G" copies the group at the head of the DU3 Queue onto disk. If nn
is specified (as in "<Gnn" or ">Gnn"), then the indicated group is read from or written
to. If nn is not given, then the group the user is currently positioned to is affected.

18

18

Chap.8 DU3 Disk Utility 169

Command: Q, QZ, and QSfile. Q reports the status of the DU3 Queue, namely how
many blocks are stored in it and how much space remains. QZ zeroes (clears) the DU3

Queue. "QSfilename.typ" saves the DU3 Queue on disk in the current user area as the
indicated file. Examples (actual DU3 session):

DU3 B1? goO

Group = 0000:00, Track = 122, Sector = 1, Physical Sector =1
DU3 Bl1? d

00 07535444 20202020 204D5347 00000002 |.STD MSG. |
10 10000000 00000000 00000000 OOO00000 |evesess ceneacaanl]
20 004C4449 52202020 20432020 00000038 |.LDIR C ...8]
30 13001500 00000000 00000000 00000000 |eesaas-e ceesecens |
40 0843504D 55472020 20434154 01000046 |.CPMUG CAT...F|
50 1COO1EQ0Q 38003D00 41004300 45000000 |....8.=.A.C.E...|
60 00434F4D 4D414E44 204C4252 01000080 |.COMMAND LBR o
70 14001600 17001800 19001A00 1BOO1DOO |eecescoscasonses .|
DU3 Bl? <

DU3 Bl1? chO-7f e5

DU3 B1? 4

00 ESESESES ESESES5ES5 ES5ESESES5 ESESESES |eeceeeeeeeeeeceece|
10 ESES5EBES ESESES5ES5 ESESESES ESESESES | eeeeeeeeceeeececeee|
20 ESESESES5 ESESESES ESESESES ESESESES | eeeeeeeceeeceeceece|
30 ESESESES5 ESESES5ES ESESESES ESESESES | eeeeeeeceeecececeee|
40 ES5ES5ESE5 ES5ES5ESES5 ESESES5ES ESESESES | eeeeeeceeeeeeeeece|
50 E5E5ESE5 ES5ES5ESE5 ESES5ESES ESESESES | eeeeeceeeeeeecee)|
60 ES5ES5ESES5 ESES5ES5ES5 ESES5ESES5 ESESESES | eeeeeeeeeeeceeecee|
70 ES5E5ES5ES5 ESESES5ES5 ESESESES5 ESESESES | eeceeeeeeeceeeceee|
DU3 B1? >,d

00 07535444 20202020 204D5347 00000002 |.STD MSG....|
10 10000000 00000000 00000000 OOOOOOO00 |eseasssseancasas]
20 004C4449 52202020 20432020 00000038 |. LDIR C ...8]
30 13001500 00000000 00000000 00000000 |eeeecceosacnasnna [
40 0843504D 55472020 20434154 01000046 |. CPMUG CAT...F|
50 1COO1EOO 38003D0O0 41004300 45000000 |....8.=.A.C.E...|
60 00434F4D 4D414E44 204C4252 01000080 |.COMMAND LBR....|
70 14001600 17001800 19001A00 1BOO1DOO |. ceeecencanan|

170 Using ZCPR3 and Command Definitions

DU3 Bl1? q

** Queue Status Summary **

0 Blocks in Queue

249 Blocks Left in Queue

Address of Head of Queue: 3E00 Hex
Address of Tail of Queue: 3E00 Hex

DU3 Bl? <g

Reading from Group 0000
32 Blocks in Queue
Group = 0000:00, Track

122, Sector

DU3 Bl? gl
Group = 0001:00, Track

122, Sector =

DU3 B1l? <g

Reading from Group 0001

64 Blocks in Queue

Group = 0001:00, Track = 122, Sector =

DU3 Bl1? q

** Queue Status Summary **

64 Blocks in Queue

185 Blocks Left in Queue

Address of Head of Queue: 3E00 Hex
Address of Tail of Queue: 5E00 Hex

DU3 Bl? gsdir.sys
Queue Saved in File

DU3 Bl? gz

** Queue Status Summary **

0 Blocks in Queue

249 Blocks Left in Queue

Address of Head of Queue: 3E00 Hex
Address of Tail of Queue: 3E00 Hex

DU3 Bl? g0

1, Physical Sector

33, Physical Sector

33, Physical Sector

Group = 0000:00, Track = 122, Sector = 1, Physical Sector

Sec. 1

1

1

33

33

Chap.8 DU3 Disk Utility 171

DU3 Bl? <b
1 Blocks in Queue

DU3 B1l? +<b
Group = 0000:01, Track
2 Blocks in Queue

122, Sector = 2, Physical Sector =

DU3 Bl1l? +<b
Group = 0000:02, Track
3 Blocks in Queue

122, Sector = 3, Physical Sector =

DU3 Bl? +<b
Group = 0000:03, Track = 122, Sector = 4, Physical Sector =
4 Blocks in Queue

DU3 Bl? +2<b
Group = 0000:05, Track
5 Blocks in Queue

122, Sector = 6, Physical Sector =

DU3 Commands: Display
The commands in this section are:

A Display ASCII
D Display ASCII and Hex
H Display Hex
\% View as Text
Command: V[nn]. V views the current block as ASCII characters. The form "Vnn"
views the indicated number of blocks starting at the current one.
Command: A, D, and H. Display a block or portion thereof, using the A command
for ASCII characters only, D for both hexadecimal and ASCII, and H for hexadecimal
numbers only.

DO-#7F is the same as just D
D3-5
A20-#3F

See next section for examples.

DU3 Commands: Changing Data
The commands described in this section are:

CA Change ASCII
CH Change Hex

172

Using ZCPR3 and Command Definitions

Sec. 1

Examples are also given of the various display commands.

Command: CH and CA Allows the user to change the contents of the current block
by specif ying new values as hexadecimal numbers(CH) or as an ASCII character string
(CA). Format is:

CHaddr val val val...
CAaddr char string...

--Change Hex data values in block
--Change ASCII data values in block

NOTE thatan ASCII string may have hex values embedded in it:

Group =

cal0 OK<d>»<a><la>

Use W to write changes to disk. Ranges may be specified; for example, <CHaddr-
addr byte or CAaddr-addr byte> changes a range of bytes to the same value.
Examples (actual DU3 session):

DU3 B7? g0

DU3 B7? d

00
10
20
30
40
50
60
70

07535444
10000000
004C4449
13001500
0843504D
1CO01EO0O
00434F4D
14001600

0000:00,

20202020
00000000
52202020
00000000
55472020
38003D00
4D414E44
17001800

DU3 B7? doO-#f
00 07535444 20202020

DU3 B7? ho-#f
00 07535444 20202020

DU3 B7? aO-#f

00

| .STD

MSG....|

Track =

DU3 B7? fdu2.hlp
20 07445532 20202020
30 28009800 99009B0O
Group = 0000:00,

Track =

122,

204D5347
00000000
20432020
00000000
20434154
41004300
204C4252
19001A00

204D5347

204D5347

20484C50
9C009D00
122,

Sector =

00000002
00000000
00000038
00000000
01000046
45000000
01000080
1B001DO0OO

00000002

00000002

01000039
00000000
Sector =

1, Physical Sector =1

.COMMAND LBR....|

e

| .STD MSG....]|
l.. ...I.l.lll.l
|.LDIR C ...8]
[evennns i
|.CPMUG CAT...F[
... .A.C.E...|
|

I

| .STD MSG....
| .DU3 HLP...9]|
[(eoeeoenoannnans]
1, Physical Sector =1

Chap. 8

DU3 B7? g28

DU3 Disk Utility

173

Group = 0028:00, Track = 125, Sector = 273, Physical Sector = 273
DU3 B7? d

00 496E766F 6B696E67 20445533 20616E64 |Invoking DU3 and|

10 20445533 20496E73 74616C6C 6174696F | DU3 Installatio|

20 6EODOA44 55332043 6F6D6D61 6E642053 |n..DU3 Command S|

30 756D6D61 72790DOA 436F6D6D 616E6473 |ummary..Commands |

40 20666F72 204C6F67 67696E67 20446973 | for Logging Dis|

50 6B732061 6E642045 78616D69 6E696E67 |ks and Examining|

60 20446973 6B205061 72616D65 74657273 | Disk Parameters|

70 ODOA436F 6D6D616E 64732066 6F722050 |..Commands for P|

DU3 B7? v

Invoking DU3 and DU3 Installation

DU3 Command Summary

Commands for Logging Disks and Examining Disk Parameters
Commands for P

Group = 0028:00, Track = 125, Sector = 273, Physical Sector = 273
DU3 B7? v3

Invoking DU3 and DU3 Installation

DU3 Command Summary

Commands for Logging Disks and Examining Disk Parameters
commands for Positioning and Reading Data

Commands for Searching for Data

Commands for Saving and Restoring Data

commands for Viewing data

Commands for Altering Data

Commands for Manipulating Macros and the @ Command

Miscellanea

Examples of command use

Interpret

Group = 0028:02, Track = 125, Sector = 275, Physical Sector = 275
DU3 B77? g28

Group = 0028:00, Track = 125, Sector = 273, Physical Sector = 273
DU3 B7? d

00 496E766F 6B696E67 20445533 20616E64 |Invoking DU3 and|

174

Using ZCPR3 and Command Definitions

10 20445533 20496E73 74616C6C 6174696F | DU3 Installatio]
20 6EODOA44 55332043 6F6D6D61 6E642053 |n..DU3 Command S|
30 756D6D61 72790DOA 436F6D6D 616E6473 |ummary..Commands |
40 20666F72 204C6F67 67696E67 20446973 | for Logging Dis|
50 6B732061 6E642045 78616D69 6E696E67 |ks and Examining]|
60 20446973 6B205061 72616D65 74657273 | Disk Parameters|
70 ODOA436F 6D6D616E 64732066 6F722050 |..Commands for P|
DU3 B7? ch0-10 0

DU3 B7? d

00 00000000 00000000 00000000 00000000 [esesessccscanns o
10 00445533 20496E73 74616C6C 6174696F |.DU3 Installatio|
20 6EODOA44 55332043 6F6D6D61 6E642053 |n..DU3 Command S|
30 756D6D61 72790DOA 436F6D6D 616E6473 |ummary..Commands |
40 20666F72 204C6F67 67696E67 20446973 | for Logging Dis|
50 6B732061 6E642045 78616D69 6E696E67 |ks and Examining]|
60 20446973 6B205061 72616D65 74657273 | Disk Parameters)|
70 ODOA436F 6D6D616E 64732066 6F722050 |..Commands for P|
DU3 B7? call This is a test

DU3 B7? dO-#1f

00 00000000 00000000 O0O0OOO0000 00000000 |eeeeasescesoasasl]
10 00546869 73206973 20612074 6573746F |.This is a testo]|

Sec. 1

DU3 Commands: Macros

A Macro is a shorthand the user can employ to define a command sequence.
Rather than having to type an involved command over and over again, the DU3 macro
facility allows the user to assign this command sequence to a number (0 to 9) and then
execute it by simply presenting this number as a command. The following commands
are associated with this facility.

:ntext and n. ":n<text>" defines the text following the digit ’n’ to be a Macro. As
always, 0 <=n <=9. The macro definitions may be created and redefined at will. If a
macro has already been defined for the indicated number, it will be overwritten by the
execution of this command. "n" (where 0 <= n <= 9) executes the indicated macro.

:Pn and :PA. ":Pn", where 0 <= n <=9, prints the text of Macro Number n. “:PA"
prints the text of all 10 macros.

@ and :P@. "@" executes the most recent command line that did not contain the
"@" Command. This provides an easy way to repeat the last command line typed. For
example:

g0 <-- go to Group 0

Chap.8 DU3 Disk Utility

ch0-7f e5,< <==
>,w,+ <=--
@ <==
@ <==

Initialize the first block and Save
Read in the Saved Block, Write it

out to disk,

logical block
Do the Previous Command Again
And Again

and advance to next

175

"P@" prints the previous command line (without changing it). Examples (edited

DU3 session):

DU3 B7? goO

Group = 0000:00, Track = 122, Sector = 1, Physical Sector
DU3 B7? :1+,d0-#1f

DU3 B7? :pl

Macro Definitions --

1l: +,d0-#1f

DU3 B7? 1

Group = 0000:01, Track = 122, Sector = 2, Physical Sector
00 0754414C 4B202020 2053554D 00000049 |.TALK SUM...I|
10 11002300 24000000 00000000 00000000 |..#eSeeeeecacns .
DU3 B7? 1

Group = 0000:02, Track = 122, Sector = 3, Physical Sector
00 07444953 4B4F5554 20434F4E 00000000 |.DISKOUT CON.... |
10 00000000 00000000 00000000 OOOOOO0O00 |eeeeocessocncoca |
DU3 B7? 1

Group = 0000:03, Track = 122, Sector = 4, Physical Sector
00 04584449 52202020 20C3CF4D 00000054 |.XDIR COM...T|
10 2CO02EQ00 48000000 00000000 00000000 |,+eeHeveeeaoowan]
DU3 B7? g0,do-#1f

Group = 0000:00, Track = 122, Sector = 1, Physical Sector
00 07535444 20202020 204D5347 00000002 |.STD MSG....|
10 10000000 00000000 00000000 OOO00000 |eessaeesanseasaal
DU3 B7? 1

Group = 0000:01, Track = 122, Sector = 2, Physical Sector

176 Using ZCPi3 and Command Definitions Sec. 1

00 0754414C 4B202020 2053554D 00000049 |.TALK SUM...I|
10 11002300 24000000 00000000 00000000 |..#.$Seeveeusn oo

DU3 B7? :pa
Macro Definitions --
0:

1: +,d0-#1f

2:

< Detail Left Out >
9:

DU3 B7? g0,do-#1f,1,1,1
Group = 0000:00, Track = 122, Sector = 1, Physical Sector =
00 07535444 20202020 204D5347 00000002 |.STD MSG....|
10 10000000 00000000 00000000 00000000 |aeewews e e s e cesens |
Group = 0000:01, Track = 122, Sector = 2, Physical Sector =
00 0754414C 4B202020 2053554D 00000049 | .TALK SUM...TI|
10 11002300 24000000 00000000 00000000 |« e#eSeeeeeeonoasl]
Group = 0000:02, Track = 122, Sector = 3, Phy51cal Sector =
00 07444953 4B4F5554 20434F4E 00000000 |.DISKOUT CON....|
10 00000000 00000000 00000000 00000000 |eeeesosceasooeasl]

4

I

l

Group = 0000:03, Track = 122, Sector = 4, Phy51ca1 Sector =

00 04584449 52202020 20C3CF4D 00000054 XDIR COM...T|
10 2CO02EO00 48000000 00000000 00000000 gesesHeeeieetaaann |
DU3 B7? @

Command --

g0,do-#1f,+,d0-#1f,+,d0-#1f,+,d0-#1f

Group = 0000:00, Track = 122, Sector = 1, Physical Sector =
00 07535444 20202020 204D5347 00000002 |.STD MSG.... |
10 10000000 00000000 00000000 00000000 |eweseseesannoansl
Group = 0000:01, Track = 122, Sector = 2, Physical Sector =
00 0754414C 4B202020 2053554D 00000049 |.TALK SUM...I|
10 11002300 24000000 00000000 00000000 |..#.S5ceeeeeceaasl

Group = 0000:02, Track = 122, Sector = 3, Physical Sector =

Chap.8 DU3 Disk Utility 177

00 07444953 4B4F5554 20434F4E 00000000 | .DISKOUT CON. o |
10 00000000 00000000 00000000 00000000 |. |
Group = 0000:03, Track = 122, Sector = 4, Phys1cal Sector = 4
00 04584449 52202020 20C3CF4D 00000054 |. XDIR COM...T|

|

10 2CO02E00 48000000 00000000 00000000 |,.. ceseresens |

DU3 Commands: Miscellaneous Command: ?. "?" gives a command summary and tells
the user what the current values are for Processor Clock Speed and Lines per Page on
CON: as well as the address for the Group Storage Buffer (where the DU3 Queue
begins).

Command: *[nn]. "*nn" repeats the current command line (as entered so far) nn
times. This command defaults to "forever" if nn is not specified. ’nn’ may be 2 to
65535.

Command: !. "!I" halts processing of commands, displays a continuation message to
the user, and waits for the user to type any key. Typing a Control-C aborts command
processing. This command is useful in stopping loops to give the user as much time as
he wants to review the display.

Command: P."P" toggles the printer switch on and off. It allows the user to turn
on and off a recording of your console output.

Command: X."X" exits back to ZCPR3.

Command: Z[nn]. "Znn" causes the program to sleep, or pause, and may be used to
look at a dump quickly in a looping command line. Z is] sec. Znn is nn seconds on an
MHz 8080. The processor speed is specified within the ZCPR3 Environment
Descriptor.

Command: ~C."*C" exits to ZCPR3 and causes a warm boot.

Examples (actual DU3 session):

DU3 B7? g0
Group = 0000:00, Track = 122, Sector = 1, Physical Sector =1

DU3 B7? do-#f,+,!,*
00 07535444 20202020 204D5347 00000002 |. MSG....|
Group = 0000:01, Track = 122, Sector = 2, Phy51ca1 Sector = 2

Type Any Character to Continue or ~C to Abort -
00 0754414C 4B202020 2053554D 00000049 |.TALK SUM...I|
Group = 0000:02, Track = 122, Sector = 3, Physical Sector = 3

Type Any Character to Continue or ~AC to Abort -
00 07444953 4B4F5554 20434F4E 00000000 |.DISKOUT CON....|
Group = 0000:03, Track = 122, Sector = 4, Physical Sector = 4

Type Any Character to Continue or ~C to Abort -
00 04584449 52202020 20C3CF4D 00000054 |.XDIR COM...T|

178 Using ZCPR3 and Command Definitions Sec. 1

Group = 0000:04, Track = 122, Sector = 5, Physical Sector =
Type Any Character to Continue or AC to Abort -

DU3 B7? gl
Group = 0001:00, Track = 122, Sector

DU3 B7? dO-#f,+,*3

00 E5482020 20202020 2042414B 00000004 |eH BAK....|
Group = 0001:01, Track = 122, Sector = 34, Physical Sector =
00 E5535542 32202020 2042414B 0100007B |eSUB2 BAK...{|
Group = 0001:02, Track = 122, Sector = 35, Physical Sector =
00 E5434420 20202020 204D4143 00000047 |eCD MAC...G|
Group = 0001:03, Track = 122, Sector = 36, Physical Sector =
DU3 B7? ~C

B7>

DU3 Command: Editor

DU3 contains a built-in, screen-oriented editor. This editor derives its screen-
oriented functions from the ZCPR3 TCAP, so the DU3 Editor should be invoked only
on ZCPR3 Systems that support a valid TCAP for the user’s terminal.

The DU3 Editor is a complete subsystem under DU3 in its own right. It provides a
variety of user-friendly editing features for the manipulation of data within the
current sector (block) as well as allowing the user to issue any DU3 command line he
desires, returning to the editor when it is completed.

The DU3 Editor presents a screen display to the user which is structured to
include a line showing the contents of the sector at the cursor, several lines of
hex/ASCII (similar to the D command output) which display the entire sector, a menu
of commands, a cursor (which initially points to the first byte in a sector), and a
command prompt.

Command: E. The command "E" invokes the editor. If any other commands follow
E on the same line, these commands are flushed.

The user may employ the WordStar cursor movement commands to move the
cursor about in the current sector. These commands are:

AE = Cursor UP
A

AS = Cursor LEFT <=+-> AD = Cursor RIGHT
v
AX = Cursor DOWN

~“R refreshes the screen display.

33, Physical Sector =

33

34

35

36

Chap.8 DU3 Disk Utility 179

The following commands are also available under the DU3 Editor:

A Enter ASCII Text into block starting at cursor

H Enter Hex/Dec Numbers into block starting at cursor
+ Advance to Next Logical Sector and Edit

- Backup to Last Logical Sector and Edit

W Write the Current Sector to Disk

C Issue Any DU3 Command Line

X Exitto DU3

~C Exitto ZCPR3

All of these commands are self-explanatory except for the A and H commands.

The A command enters ASCII text into the sector starting at the cursor position.
In response to this command, the DU3 Editor will prompt the user for input. He may
then type any text he wishes; upon striking the RETURN key, this text is entered
literally into the sector. If it overflows the end of the sector, it is truncated. If the
user wishes to embed hexadecimal values (such as OD for Carriage Return), he may use
the form "<hh>". Example:

this is a test<OD><0A>

The H command enters a group of hexadecimal and/or decimal values into the
sector starting at the cursor position. Numbers, separated by spaces, are hexadecimal
unless the the form "#nn" is used, in which case decimal values are entered. Example:

1 2 3 3A b7 #25

The Editor is one of the most powerful featues of DU3. It is highly recommended
that the user experiment with it and become acquainted with its capabilities.

DU3 Examples

Multiple commands may be separated by ",".

Any valid command string may be placed as an operand of the original DU3
command, e.g.: A>DU3 G0,D,G2,=0K<D><A><1A>,D

Example: the following commands will fill the B disk directory with E5’s:

1b log in b drive

g0 position to dir.

ch0-7f e5 fill with e5

< save the sector

>,w,+,/16 restore, write, next,
repeat 16

This could be shortened to:

1b,g0,ch0-7f e5,<
>,w,+,/16

If we define the following two macros:

180 Using ZCPR3 and Command Definitions Sec. 1

Macro 0 --
:0g0,ch0~-7f e5,<

Macro 1 =--
t1>,w,+,/16

To initialize the directory first on Drive A: and then on Drive B:, we could issue
the following commands:

La,o0 <=-- Log in A and Initialize first block

1 <=- Perform write

1b,0 <-- Log in B and Initialize first block

1 <=-- Perform write

n,o0 <=-- Declare New Disk and Initialize first block
1 <=-- Perform write

Directory Interpretation
The following diagram explains the format of a CP/M directory entry. Use DU3
with either the F (Find File) command or the D (Dump) command to display the

directory sectors, which are located in groups 0 and 1 on a single density disk. Sample
result of "FSID.COM" command:

First 40 00534944 20202020 20434F4D 0000003A |.SID COM...:
line |1 1 |l I |

| | A== file name-------- A | | ~file name”
|l in hex |] || in ASCII
|| extent-~~ |]

| | file size in sectors-~~

AN ae

00 = file active
E5 = file erased
-displacement of line in directory sector

I
1
|
I
|
|l
I

Second 50 33343536 3738393A 00000000 00000000 |3456789:
line | |

le z9

9 Inside the ZCPR3 System Segments

A ZCPR3 System Segment is a package or data file which can be loaded by the
LDR tool into memory for use by the ZCPR3 System. There are several types of
ZCPR3 System Segments:

*ENV Environment Descriptors

Section 2

Inside ZCPR3

"It was clear that a most powerful addition to any programming language would be the ability to define new
higher level entities in terms of previously known ones, and then to call them by name. This would build the
chunking right into the language. Instead of there being a determinate repertoire of instructions out of which all
programs had to be explicitly assembled, the programmer could construct his own modules, each with its own name,
each usable anywhere inside the program, just as if it had been a built-in feature of the language.”

— D. R. Hofstadter, An Eternal Golden Braid

Inside ZCPR3

This section presents details of the internal operation of various components of
the ZCPR3 System. In particular, the ZCPR3 command processor, ZEX, the system
segments, shells, error handlers, screen-oriented utilities, and elements of the toolset in
general are discussed.

This section is intended mainly for people who want to program utilities for
ZCPR3. It is assumed that the reader is thoroughly familiar with CP/M and has
experience in programming 8080/Z80 assembly language.

181

182 Inside ZCPR3 Sec. 2

Inside ZCPR3 Sec. 2 183

9 Inside the ZCPR3 Command Processor

This chapter describes the internal operations of the ZCPR3 Command Processor,
the heart of the ZCPR3 System. The ZCPR3 Command Processor runs in place of the
CP/M CCP, and it is located directly under the BDOS. To ensure compatibility with
CP/M, the ZCPR3 Command Processor is 2K bytes in size or smaller and supports some
structural and functional similarities. In order to pack all of the functions necessary
to support a full ZCPR3 System into the Command Processor, it is mandatory that the
Command Processor run on a Z80 microprocessor. The size reduction afforded by
using jump-relative and other Z80-specific instructions in the Command Processor is
significant, but, for the sake of those users who do not have Z80s, there is a flag at the
front of the Command Processor which can select 8080 code. The resulting larger code
forces a reduction in features, but very useful ZCPR3 systems can still be created for
the 8080.

Operation of the ZCPR3 CP

Figure 1-1 illustrates the location and structure of the ZCPR3 Command
Processor (CP). At various points in this book, the CP may also be referred to as a
Command Processor Replacement (CPR), and the terms CP and CPR can be used
interchangeably.

The main function of the ZCPR3 Command Processor (CP) can be described in a
few high-level pseudo code instructions. The following is an English-like expression
of the CP’s operation:

initialize-environment
loop forever
input (command_line)
while command_line is not empty
parse (next_command)
resolve (next command)
end while
end loop

As the reader can see, the overall view of the ZCPR3 CP is quite simple. The
major functions performed by the ZCPR3 CP are:

1. Initialize the environment

2. Input the command line

3. Parse the next command in the command line
4, Resolve the next command

We shall now discuss each of these functions in more detail.

Initialize_ Environment

Environment initialization is discussed with reference to Listing 9-1, Code
Sections 1 through 4.

The initialization of the the ZCPR3 CP environment can be expressed in the
following pseudo-code:

184 Inside ZCPR3 Sec.2

entry

set_current user area

set current disk

set DMA address

set running SUBMIT indicator

Entry. The ZCPR3 Command Processor supports two entry points (see Code Section 1).
The first six bytes of the CP contain two jump instructions. The first jump is usually
used for entry on cold boot, and the second jump is usually used on warm boot. In the
original CP/M CCP, the first jump allowed a default command stored in the command
line buffer internal to the CCP to be executed immediately and the second jump did
not allow this command to be executed. This was useful in allowing CP/M to come up
running a particular command line on cold boot (or even warm boot, for that matter,
since the entry into the CCP was controlled by the cold boot and warm boot routines in
the BIOS).

If ZCPR3 is implemented with an external Multiple Command Line buffer, these
two entry points have the same meaning—to continue command line processing.
Without an external Multiple Command Line buffer, the ZCPR3 CP contains a
command line buffer immediately after these two jumps. This buffer is structured as
follows:

ZCPR3_CP: ;beginning of ZCPR3 CP

JMP RUNCMD ;first JMP instruction in CP

JMP NOCMD ;second JMP instruction in CP
BUFLEN EQU 80 ;recommended size of buffer
BUFSIZ:

DB BUFLEN snumber of characters in buffer
CHRCNT:

DB 0 ;input character count provided

; thru the BDOS READLN routine

CMDLIN:

DW BUFLEN ;buffer to contain command line
NXTCHR:

DW CMDLIN pointer to character at which

’
; to begin command processing
An external routine, such as the cold boot or warm boot routine, can store a
command line (terminated by a binary 0) into this buffer at the symbol CMDLIN. Care
should be taken not to exceed the character count at the symbol BUFSIZ (this count
includes the terminating binary 0). Once the command line is stored, the routine may
enter the ZCPR3 CP at the first JMP instruction and this command line will be
executed. If the ZCPR3 CP is entered at the first JMP instruction, the pointer at
NXTCHR will be set to the first byte in CMDLIN, and when the ZCPR3 CP is ready to

-

Chap.9 Inside the ZCPR3 Command Processor 185

accept input it will check to see if this line is empty (the pointer at NXTCHR is
pointing to a binary zero), find such not to be the case, and parse and execute the
command line. If the ZCPR3 CP is entered at the second JMP instruction, it will zero
the byte at CMDLIN, thereby forcing an empty command line, set the pointer at
NXTCHR to this zeroed byte at CMDLIN, and when the ZCPR3 CP is ready to accept
input it will find an empty command line and obtain a new line from the running
SUBMIT file ($$3.SUB) or the user (or ZEX if it is running).

The implementation of the ZCPR3 CP to include the Internal Command Line
buffer is not recommended. Instead, it is recommended that an external Multiple
Command Line buffer be used. This buffer, which must be initialized by the cold boot
routine in the BIOS, has the following structure:

NXTCHR:
DW CMDLIN ;pointer to first character of
; command line
BUFLEN EQU 200 ;recommended size of buffer
BUFSIZ:
DB BUFLEN snumber of characters in buffer
CHRCNT:
DB 0 ;input character count provided
; thru the BDOS READLN routine
CMDLIN:

DW BUFLEN sbuffer to contain command line

If this buffer is implemented, both entries to the ZCPR3 CP have exactly the same
effect. The pointer at NXTCHR will be examined, and command line processing will
resume at the next character in the buffer at CMDLIN. If the character pointed to by
the address in NXTCHR is a binary 0, then the ZCPR3 CP will either input the next
command line into the buffer at CMDLIN from a running SUBMIT file ($$$.SUB) if
there is one, from the user or from ZEX, if ZEX is running. The pointer at NXTCHR
will be reset to point to the first byte of CMDLIN and processing will resume.

Since the External Multiple Command Line Buffer is located in a "safe" place
which is not affected by warm boots, this buffer provides the ability to support a
command stream which does not change each time the system is warm booted. In the
case of the Internal Command Line Buffer, each time a warm boot occurs the ZCPR3
CP would be reloaded from disk (a part of the definition of the warm boot process),
and the internal command line buffer would be replaced by what was on disk. The
warm boot routine in the BIOS may then choose to store a command in this buffer and
enter the CP at the first JMP, but this is not nearly as efficient as simply having a
command line buffer in a location in memory which is not affected by the warm boot
process.

After the initial entry is performed through one of the two JMP instructions at
the front of the ZCPR3 CP and the command line pointer is set (if an internal
command line buffer is used), the initialization continues.

Set_ current__user__area and Set_ current_disk. The warm boot and cold boot
routines must provide an input parameter to the ZCPR3 CP when they enter it at one

186 Inside ZCPR3 Sec.2

of the two entry points. The C register contains the new current user area number in
its upper four bits and the new current disk in its lower four bits. The routines
set__current__user__area and set_current__disk derive their information from the C
register and log the ZCPR3 CP into this directory. This becomes the user’s current, or
working, directory at cold or warm boot time. By the CP/M definition, memory
location 4 (the UD Byte) in the buffer area in low memory contains the current UD
(user area/disk) of the user, and the cold boot routine both sets this value initially and
stores this value in the C register for entry into the ZCPR3 CP. The warm boot routine
typically reads this value from location 4, stores it into the C register, and enters the
ZCPR3 CP.

Set_ DMA __address. This routine sets the address for the load of the next block
from disk to 80H. This is done through BDOS calls.

Set_running SUBMIT __indicator. This routine checks to see if a file named
"$$$.SUB" exists on disk A and sets a flag to indicate the result. The BDOS disk reset
function returns a code in the A register which is non-zero if the current user area on
disk A contains a file beginning with a "$" character, and this clue is used to determine
whether it is necessary to check disk A for a file named "$$$.SUB". If this clue is non-
zero, the current user area on disk A (which is auto-logged by the first byte of the
SUBFCB buffer) is checked for a $$3.SUB file, and the RNGSUB flag is finally set as a
true indication that a $$$.SUB file exists on disk A, current user area. This flag is later
used when the READBUF routine is used to input the next command line.

Input (Command__Line)

Once the initialization is performed, the ZCPR3 CP is ready to input a command
line and process it. Under the recommended ZCPR3 CP configuration, however, the
Multiple Command Line Buffer is available, so a command line may already be in
existence and processing should continue with this line. Note that Code Section 4 of
the initialization code branches to the entry point labelled RS1: after the initialization
is complete; this is where the status of the command line buffer is determined. Listing
9-2, Code Sections 1-2, extracted from the ZCPR3 CP, shows the input command line
processing routine.

The label RS1: 1is the entry point for processing the next command in the
command line buffer. This point is reached when a cold or warm boot occurs and
when a routine simply issues a RET instruction to return to the ZCPR3 CP after it has
completed its function. RSI1: is the principal entry point for command processing
within the ZCPR3 CP.

Upon completion of any command under ZCPR3, the ZCPR3 CP performs two
functions as it resumes control:

1. reset the DMA address
2. reset the current directory

These functions insure that the system is stable and any undesired states left by a
process are negated. The process is invoked by a subroutine call ("CALL TPA"
instruction, which may be translated into a call to some other location if the command
is resolved within the ZCPR3 CP itself, within an RCP, or within an FCP) toward the
end of the ZCPR3 CP source. If the process returns to the CP via a simple RET
instruction, the command after this call is a command which restores the DMA address.
If the process returns to the CP by means of a warm boot or cold boot, code in the front

Chap.9 Inside the ZCPR3 Command Processor 187

of the ZCPR3 CP also performs a restoration of the DMA address. Just after the label
RS1: is a call to the DLOGIN routine which restores the current directory (defined at
memory location 4),

Once this is complete, the pointer to the next character in the command line
buffer is obtained (the LHLD NXTCHR instruction) and the command line from that
point on is capitalized. This insures CP/M compatibility (all CP/M command lines are
interpreted as upper case) and protects the system in the advent that the command line
buffer was modified by the last command and the content was not capitalized in the
process (see the code at CAPBUF: for details).

Now that the command line is secured, processing resumes at label RS2: by
skipping over space characters and testing the last non-space character for (1) end of
line and (2) abort. Additionally, if the Multiple Command Line Buffer is available, a
test is made for the command separator character (a semicolon by recommendation), in
which case the separator is skipped and RS2: is reentered at the character after the
separator. The routine at RS2: is exited in one of two directions:

1. tothe label RESTRT:, where a new command line is input
2. to the label RS3:, where the next command in the current command line is processed

A new command line is input into the Command Line Buffer (whether it is
internal to the ZCPR3 CP or external as a Multiple Command Line Buffer) at the label
RESTRT: (see Code Section 1).

A simple stack reset occurs at the label RESTRT:, and this is followed by the label
RS0:;, which is used as an entry point to flush comment lines (lines beginning with a
semicolon).

The following steps are performed at the label RSO:

1. Indicate that the ZCPR3 CP is in normal execution mode. This indication is made
to the input service routines by storing a zero value in byte 3 of the ZCPR3
Message Buffers. This message is then left on unless conditions elsewhere within
the ZCPR3 CP change it, and its purpose is to pass information to the process
which is next invoked which states that it was invoked as a conventional
command. This message may be changed before the process is finally invoked,
and this change will be explained as this commentary proceeds.

2. Indicate to ZEX (if it is running) that the ZCPR3 CP is now prompting for an
input. This indication is made by storing the number 1 in byte 7 of the ZCPR3
Message Buffers. On the next call to input, if ZEX is running it will see this
message and exit a hibernating state if it is in one.

3. The pointer to the next character in the command line is set to the first character
position and this byte is zeroed. The storing of this zero is most important should
the input routine be aborted and no input stored in the buffer. The zero will
mark an end to the input line and a resumption of control by the ZCPR3 CP.

4. Input the command line via the READBUF routine. The READBUF routine
accepts a command line from one of four sources in the order indicated: (1) the
running SUBMIT file if one is in execution, (2) the shell stack if a command line
is stored in it, (3) the ZEX monitor if it is running, and (4) the user. If the
command line at the top of the shell stack is selected, the message at Z3MSG+3

188 Inside ZCPR3 Sec.2

(byte 3 of the ZCPR3 Message Buffers) is set to 1 to so indicate.

5. Once input is received, the ZEX message byte (byte 7 of the ZCPR3 Message
Buffers) is cleared to zero. This indicates that the ZCPR3 CP prompt is no longer
being presented.

6. Finally, the first character is checked to see if it is a semicolon, indicating a
comment line, and RSO: is re-invoked if such is the case. If not, processing of the
first command in the command line is begun by execution resuming at RS1:.

The READBUF routine is instrumental in selecting the source for the next
command line and merits some further discussion. The source for this routine is shown
in Listing 9-3, Code Sections 1-2.

Submit File Processing. The entry to READBUF begins with a test of the
RNGSUB flag (which was set at initialization) to see if a $$$.SUB file is active. If this
is the case, the following code extracts the next command line from it into the
Command Line Buffer and returns to the caller of READBUF. The SUBMIT file
execution prompt is displayed and the command line buffer is printed; a test for a user
abort (via ~C) is also made and the abort is performed if such a command is given.

If the RNGSUB flag indicates that there is no $$$.SUB file or if there is no other
line in the $$$.SUB file, execution resumes at the label RB1:.. At RBI:, the SUBKIL
routine is called and any running SUBMIT file (as indicated by RNGSUB) is deleted.

Shell Processing. A test is then made to see if the shell stack (if present) contains
any elements. A binary zero in the first shell stack element is used to indicate an
empty shell stack.

Shells are fundamental to the design of the ZCPR3 System, and their execution is
performed like any other command line by the ZCPR3 CP. The only difference is that
the command line stored on the shell stack is executed whenever the ZCPR3 CP
decides to accept a new input line (and $$3.SUB is not running), and the ZCPR3 CP
leaves a dif ferent value in its Command Status message to indicate that it has executed
a shell. See Code Section 2 for details.

If the shell stack is determined not to be empty, then the command line stored in
the top element is copied into the Command Line Buffer. The SHSIZE constant is used
to determine how many characters long the shell command line is for this copy. Once
the command line has been copied, the ZCPR3 CP Command Status message at byte 3
(Z3MSG+3) is set to 1 to indicate that a shell has been invoked. This message is used to
communicate directly with the shell to let it know that it had been invoked as a shell as
opposed to a user-specified command. See the technical detail section on shells later in
the book for more detail.

If the command source is determined to not be either a running SUBMIT file or a
shell, then the routine at RB2: is entered. The conventional ZCPR3 CP prompt is
printed (CPRMPT is output as opposed to SPRMPT by the SUBMIT file processor) and
input is accepted directly into the Command Line Buffer through the BDOS input line
routine.

ZEX Input. If the ZEX monitor is running (the ZEX command has been issued at
some time previously) and the ZEX command file stored in memory is not empty, then
ZEX will start supplying input characters through its BIOS intercept routine. If the
ZEX monitor is not running, normal input will be provided from the user.

Chap.9 Inside the ZCPR3 Command Processor 189

Parse (Next__Command)

The command line is input and residing in the Command Line Buffer at this time,
and the time has come to parse the non-empty command line after the label RS3:. The
code for this parse is invoked by the following simple call:

PARSE COMMAND LINE PTED TO BY HL

Se we “weo

CALL PARSER ;PARSE ENTIRE COMMAND LINE

Command Line. The ZCPR3 Command Line can contain one of several forms of
commands at any one time:

The command line can be empty

The command line can be a comment line: ;comment text

The command line can contain one command: command

The command line can contain a sequence of commands, separated by
semicolons: command__l;command_ 2;...

bl a e

The ZCPR3 command consists of the following general structure:
verb dir:filename.typ dir:filename.typ text

Examples of ZCPR3 commands:

WS MYFILE.TXT
XDIR ROOT: *.TXT
RENAME TEXT:FILEl.TXT=Fl.TXT

The ZCPR3 CP Parser parses each command into buffers as per the following
extended form of the CP/M CCP parsing standard:

Verb : The verb is stored in the File Name field of the External FCB if one exists.
The File Type field is set to COM. Any process can determine its name by examining
the File Name field of the External FCB.

Dir: filename.typ. The first token after the verb is assumed to be in this general
format, and it is taken apart as per the CP/M convention and stored in the FCB at
memory location SCH. If the prefix is DIR: or DU, the disk reference is placed in the
first byte (disk A = 1) and the user area reference is placed in the 13th byte (FCB+13),
which is the S1 field. If the disk is not referenced, then the first byte is set to 0 (at
FCB) to indicate the current disk. If the user area is not referenced, the 13th byte (at
S1) is set to the current user area. The field at FCB+16 (at DO0) is set to zero (a side
effect of the general algorithm and not of general utility).

Second Dir: filename.typ: The second token after the verb is also assumed to be in
this general format, and it is parsed in the same manner as described for the first
token. Again, the disk reference and user area reference are stored in relative
positions 0 (at FCB2) and 13 (at FCB2+13). The field at FCB2+16 (at CR) is zeroed, and
this is significant since it assures that a subsequent open of the file positions the FCB
to the first block of the file.

Tail: The part of the command starting with the space delimiter immediately
following the verb is stored into the buffer area starting at 81H. A character count is

190 Inside ZCPR3 Sec.2

stored at 80H, and the byte immediately following the last byte of the tail is set to a
binary 0 value. This is as per the CP/M convention. This buffer is set during the
CALLPROG routine as opposed to the PARSER routine; PARSER simply saves the
location of the first byte of the tail.

Note 1. If either of the two tokens following the verb are omitted in the command,
the file name and file type fields are filled with spaces as per the CP/M convention.
The disk and user areas are zero-filled in this case.

Note 2: In resolving the Dir: prefix in either of the two tokens, the PARSER
routine can be made to scan for DU forms before DIR forms or vice-versa. This
provides a means of resolving conflicts between the two forms, such as when a disk
named C is available and a directory named C is also available. If the DU form is
resolved first, then a directory named C can never be referenced. If the DIR form is
resolved first, any references to the disk C must include the user area number to
distinguish from the directory named C. A password check is also done when a DIR:
reference is resolved.

Resolve (Next__Command)

The final step in the main ZCPR3 CP functional loop is the resolution of the
parsed command. The code for this step is shown in Listing 9-4.

During the execution of the READBUF routine, the message at Z3MSG+3 (the
ZCPR3 Command Status message) was set to a 1 if the command line associated with a
shell was selected. The same message was cleared to a zero before the READBUF
routine was called.

Shell Command. The first step in resolving a command is to see if the source of
the command is the shell stack, and, if so, to proceed to command resolution for CP-
resident, RCP-resident, and transient commands at the label RS4:. This enables the
shell to be invoked regardless of the Flow Command State; if the Flow Command State
is FALSE, the ZCPR3 Shell must still be invoked so that a command line can be
presented. If this is not allowed for, if the Flow Command State ever becomes FALSE
during the execution of a shell, the system will deadlock. Therefore, this test for a
shell invocation is performed immediately.

FCP Resolution. If the command is not a shell, the command scanner is run on the
FCP command table. It is important that FCP-based commands are always executed
because they control the Flow Command State. If a command (FCP-based or
otherwise) ever sets the Flow Command State to FALSE, the only way to set it back to
TRUE is to execute an FCP-based command. This is why the test for an FCP-based
command is performed before the Flow Command State is checked.

Command Scanner. The Command Scanner in the ZCPR3 CP is used to resolve
FCP-based, RCP-based, and ZCPR3 CP-based commands. Each of these are
implemented as Command Packages, where a package is a collection of commands in
one logical grouping. Like a package in the Ada programming language, a Command
Package in ZCPR3 is divided into two parts—the visible section and the hidden section.
The visible section consists of a table of command names and the addresses of the
routines which implement these commands. The hidden section contains the bodies of
the commands, where each command acts as a COM file would, extracting the
information it needs, such as its verb, the two FCBs, and the command tail, from the
buffers set up by the PARSER routine. Unlike the CP/M CCP, all parsing is done in
one routine, the PARSER, and every command in the ZCPR3 System acts just as a

Chap.9 Inside the ZCPR3 Command Processor 191

COM file would.
RCPs and FCPs. RCPs and FCPs are both implementations of Command Packages
and they support a similar structure. This structure is:

COMMAND PACKAGE:

DB 'Z3xCP! Z3RCP or Z3FCP

e

COMMAND_ PACKAGE+5:

DB NAME SIZE number of bytes
in each command
name
command name
(NAME_SIZE=4 here)

command address

DB 'CMD1'

e ™o wo “o wa “o

DW CMD1_ADR
DB 'CMD2'
DW CMD2_ADR

DB O : 0 terminates table
CMD1_ADR:

PN ; body of command

RET ;s or JMP 0 to end
CMD2 ADR:

cee ; body of command

RET ; or JMP 0 to end

Flow Command State. Returning to the main train of thought, the FCP-resident
command table has now been scanned. If a match is found, the ZCPR3 CP executes the
command immediately. If not, a test is done to determine if the current Flow State is
TRUE. The bytes at Z3MSG+1 (the current IF level) and Z3MSG+2 (the Active IF
indicator) are checked. If the current IF level is O (the byte at Z3MSG+1 is zero), then
command execution is allowed and we proceed. If not, a check has to be done to see
that the current IF level is TRUE. This is done by ANDing the bytes at Z3MSG+1 and
Z3MSG+2. The current IF level ANDed with the Active IF indicator tells the ZCPR3
CP whether the current Flow Command State is TRUE or not. If not TRUE, the
command is flushed and processing is resumed at RS1l. If TRUE, the command
processing resumes at RS4.

At RS4, a check is made to see if the command was prefixed with a directory
reference; that is, the form of the verb was:

DIR:VERB or DU:VERB

If so, the resident command check is bypassed and the search for a COM file begins
immediately. This feature allows the ZCPR3 CP-resident and RCP-resident Command
Packages to be bypassed. If not, a check is first done to see if the command is in the

192 Inside ZCPR3 Sec. 2

ZCPR3 CP-resident Command Package and, if not, if the command is in the RCP-
resident Command Package. Finally, if both of these tests fail, a search is done for the
command as a COM file.

COM File Processing

No description of the ZCPR3 Command Processor (CP) would be complete
without a description of the algorithm used to locate and load COM files. This code is
implemented near the end of the CP in Section 5I. Listing 9-5, Code Sections 1-3 shows
this code.

The entry point at COMDIR (see Code Section 1 below) is entered if a prefix is
attached to the verb in the command:

DIR:VERB or DU:VERB

Upon entry at COMDIR, a check is made to see if the command name (verb) is
blank. If so, then a command to log into a new directory was given:

DIR: or DU:

The directory reference is processed immediately. Note that a check is made of
the selected user area (at FCBDN+13) to ensure that the user area is within range. With
directories under ZCPR 3, thirty-two user areas (numbered 0-31) can be referenced, but
only sixteen (numbered 0-15) can be logged into. If the user area reference is valid, the
directory is logged into and command processing is resumed at RS1.

The resolution of a COM file begins at the label COM: (see Code Section 2). The
TPA is selected as the load address, and the MLOAD routine is called to locate the
COM file and load it into memory at the load address (which is in HL upon entry to
MLOAD). If MLOAD returns, then the COM file has been loaded successfully and the
ZCPR3 CP is logged into the current directory. A new line is issued, the command line
tail is stored in the buffer at 80H, the DMA address is set to 80H, and the TPA is called.

Invoking Any Command

Once a command has been resolved, regardless if it is ZCPR3 CP-resident, RCP-
resident, FCP-resident, or transient, the routine CALLPROG (see Code Section 2) is
used to invoke it. RCP-resident and transient commands are invoked at the label
CALLPROG, which issues a new line before beginning, and CP-resident and FCP-
resident commands are invoked at the label CALLP, which does not issue a new line.
The CALLPROG/CALLP routine is called with the execution address in HL, and the
function of CALLPROG is as follows:

1. Setthe execution address for a subroutine call.

2. Store the command tail into the buffer at 80H. The PARSER routine marked the
beginning of the command tail in the TAILSV buffer during the parse.

Set the DMA address to 80H.

4. Call the routine. If the routine is a transient, a call is made to the TPA (100H).
Otherwise, a call is made to the address returned by CMDSCAN, the ZCPR3 CP
Command Table Scanner.

Chap.9 Inside the ZCPR3 Command Processor 193

5. Restore the DMA address and resume command line processing at the label RS1.
This point is reached if the command routine completed with a simple RET
instead of a JMP 0 (Warm Boot) or other technique.

During the execution of MLOAD, if the COM file is not found, then either the
CMDRUN facility will be invoked or the ERROR routine will be invoked (if
CMDRUN is not available). In the case of CMDRUN, the entire command is passed as
a command tail to the CMDRUN utility.

Path Analysis

The MLOAD routine in the ZCPR3 CP loads a COM file, and, in so doing, it
follows the Command Search Path in searching for the COM file. If the MINPATH
option is not selected, the MLOAD routine simply follows the symbolic path, resolving
each symbol as it goes. This can lead to wasted effort if the same directory is
encountercd more than once as the path is resolved. For instance, if the path is "A$
A15" and the user is logged into A15, then the path resolves into "A15 A15", and the
directory A15 is logged into twice.

The MINPATH option eliminates this potential inefficiency by passing over the
symbolic path once, building an absolute path into the buffer at MPATH. For each
symbolic element encountered, MLOAD/MINPATH checks to see if the absolute path
already contains that directory reference and does not include it if such is the case.
When complete, it is this absolute path which is scanned during the search for the COM
file.

Error Handling

If the command cannot be satisfactorily resolved, the ERROR routine is executed
to determine how to process the current error condition. Listing 9-6, Code Sections 1-2,
shows the code for the ERROR processor.

The ERROR routine first terminates any running SUBMIT file since, if there is
one, the $$3.SUB was the source of the error. It then issues a new line and checks to see
if the error was caused by an attempt to invoke a shell. If Z3MSG+3 (the ZCPR3
Command Status message) is set to 1, then the last command was invoked as a shell by
the ZCPR3 CP. If the error was caused by trying to invoke a shell, the shell stack is
cleared (at ERRSH) and command processing is restarted (at RESTRT).

If a shell was not involved, the Error Handler indicator message at Z3MSG is
checked. If this message is non-zero, then an Error Handler was installed. If zero, then
there is no Error Handler and the command in error is simply echoed followed by a
question mark (the CP/M convention) and the command processing is restarted from
scratch (at RESTRT).

If an Error Handler is available, then the ZCPR3 Command Status message (at
Z3MSG+3) is set to 2 to indicate that an Error Handler is being invoked, the pointer to
the command in error is set at Z3IMSG+4 and Z3MSG+5 (the error line address), and the
command line at Z3MSG+10H (the Error Handler command line) is invoked as any
other command would be at RS1. This, naturally, assumes that the Error Handler
itself can be resolved. It is best to place all Error Handlers in the ROOT directory (at
the end of the Command Search path) to ensure that the ZCPR3 CP does not enter an
infinite loop in trying to invoke a non-existent Error Handler.

ZCPR3 Command Processor— Wrapup

194 Inside ZCPR3 Sec.2

This concludes the technical presentation on the ZCPR3 Command Processor
(CP). Asthe reader has seen, the ZCPR3 CP performs a high degree of interaction with
the messages of the ZCPR3 System, and all must be in tune for the system to work
correctly. Of most importance is that the ZCPR3 messages must be properly initialized
at Cold Boot and that all of the tools must contain a proper pointer to the ZCPR3
Environment Descriptor in order to function correctly. From the ZCPR3 Environment
Descriptor, the details of the ZCPR3 System, including the ZCPR3 Message Buffers,
can be determined, and the tools can adapt themselves to any ZCPR3 System
configuration in this manner.

The following chapters in this section address other key items in the ZCPR3
System. Emphasis is placed on how various classes of tools, such as Error Handlers and
Shells, interact with the ZCPR3 System.

ORG CPRLOC

i ENTRY POINTS INTO ZCPR3

.
’

< Comments omitted >

ENTRY:
JMP CPR ;Process potential default command
JMP CPR1 ;Do NOT process potential default command

H
skkkk Section 1 **xx*
; BUFFERS ET AL

;7 *%*%x], INPUT COMMAND LINE AND DEFAULT COMMAND

~e

IF MULTCMD sMULTIPLE COMMANDS ALLOWED?

<Comments omitted >

NXTCHR EQU Z3CL ;NXTCHR STORED EXTERNALLY (2 byte
BUFSIZ EQU NXTCHR+2 ;BUFSIZ STORED EXTERNALLY (1 byte
CHRCNT EQU BUFSIZ+1 CHRCNT STORED EXTERNALLY (1 byty
CMDLIN EQU CHRCNT+1 ;CMDLIN STORED EXTERNALLY (long)
BUFLEN EQU Z3CLS ;LENGTH OF BUFFER

ELSE

< Comments omitted >

Chap.9 Inside the ZCPR3 Command Processor 195

BUFLEN EQU 80 sMAXTMUM BUFFER LENGTH
BUFSIZ:
DB BUFLEN {MAXIMUM BUFFER LENGTH
CHRCNT:
DB 0] sNUMBER OF VALID CHARS IN COMMAND LINE
CMDLIN:
DB ! ! sDEFAULT (COLD BOOT) COMMAND
DB 0 ; COMMAND STRING TERMINATOR
DS BUFLEN-($-CMDLIN)+1 ;TOTAL IS 'BUFLEN' BYTES
!
NXTCHR:
DW CMDLIN ;POINTER TO COMMAND INPUT BUFFER
!
ENDIF sMULTCMD

~-e

Listing 9-1. ZCPR3 CP: Initialize Environment, Code Section 1

;7 *%*% 2. FILE TYPE FOR COMMAND
7

COMMSG:
COMTYP ;USE MACRO FROM Z3HDR.LIB
IF SUBON ;IF SUBMIT FACILITY ENABLED ...

*k%% 3, SUBMIT FILE CONTROL BLOCK

SUBFCB:
DB 1 ;DISK NAME SET TO DEFAULT TO DRIVE A:
DB 168S! ;FILE NAME
DB]]
SUBTYP ;USE MACRO FROM Z3HDR.LIB
DB 0 ;EXTENT NUMBER
DB 0 ;S1
SUBFS2:
DS 1 ;82
SUBFRC:
DS 1 ;RECORD COUNT

DS 16 ;DISK GROUP MAP

196 Inside ZCPR3

SUBFCR:
DS 1 ; CURRENT RECORD NUMBER

-e

ENDIF ;1 SUBON
;¢ *%%*k 4, COMMAND FILE CONTROL BLOCK

.
’

IF EXTFCB NE O sMAY BE PLACED EXTERNAL TO ZCPR3
FCBDN EQU EXTFCB ;DISK NAME
FCBFN EQU FCBDN+1 ;FILE NAME
FCBFT EQU FCBFN+8 ;FILE TYPE
FCBDM EQU FCBFT+7 sDISK GROUP MAP
FCBCR EQU FCBDM+16 ;s CURRENT RECORD NUMB<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>