

Mastering the
Colour Genie

1an Sinclair

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London WIX 3LA

Copyright ® 1983 by lan Sinclair
Brinsh Library Cataloguing in Publication Data

Sinclair, lan R
Mastering the Colour Genie.
1. Colour Genie (Computer)
L Title
001.64°04 QA76.8.C/

1SBN 0-246-12190-4

First published in Great Britain by Granada Publishing 1983
Reprinted 1984

Typeset by V & M Graphics Ltd. Aylesbury, Bucks
Printed in Great Britain by Mackays of Chatham, Kent

All rights reserved. No part of this publication may be reproduced.
stored in a retrieval system, or transmitted in any form or by any
means, . hanical, ph pying, g or otherwise,
without the prior permission of the publishers

Contents

Preface

O NN WL A W N

10

Setting Up the Colour Genie

Getting Your Name in Lights

A Bit of Variation

Repetitions and Decisions

Programs with Strings Attached
Filing and Designing

Graphics, Plain and Fancy

Smaller Pieces Make Prettier Pictures
Sound Decisions

Miscellany Corner

Appendix A: Cassette Head Adjustment

Appendix B: Graphics Codes for the Colour Genie

Appendix C: Non-printing Codes

Appendix D: Machine Code

Appendix E: Miscellany

Index

112
129
135
138
14]
142
143

145

Preface

Among the many computers that compete in its price class, the
Colour Genie stands out by its ancestry, its careful use of memory,
and by its quite outstandingly good sound system. This book is
intended as a guide for the complete beginner to computing who is
learning by means of a Colour Genie. I have assumed that you, the
reader, have no previous experience of computing or electronics. I
have not even assumed that you have electrical knowledge or can
tune a TV receiver. The ownership of a computer, after all, should
not have to depend on any more technical knowledge than the
ownership of a car.

Even if you are not a complete beginner to computing, you will
still find much of this book very useful. The two Colour Genie
manuals contain much that is of interest, but the information is not
always casy to extract. The guide to the colour graphics and the
sound system of the Colour Genie will, I believe, be of considerable
help to anyone who is using the Genie for the first time, and will be a
valuable reference guide thereafter.

A book such as this does not appear without a considerable
amount of help from a lot of people. I am most grateful to Lowe
Computers, distributors of the Genie range of computers, who lent
me the Colour Genie. I am also indebted to Keith Bedford of Lowe
Computers who answered questions over the telephone at odd hours
of the day.

As always, the team at Granada Publishing worked hard and with
astonishing efficiency. Richard Miles kept the project moving and
exercised tender loving care over the manuscript at all stages. The
editing work of Sue Moore also merits my gratitude, because her
sharp eyes can always detect errors that the rest of us have
overlooked.

Finally, the program listings in this book have been set directly
from a printout produced immediately after running each program.

viii Preface

This ensures a standard of accuracy in listings which is unobtainable
by any other methods, and which greatly adds to the usefulness of
the book. All zeros have been slashed through in the listings to avoid
confusion with the letter O. All examples have been kept as short as
possible so as to ensure that they can be typed reasonably quickly.

Ian Sinclair

Chapter One
Setting Up the
Colour Genie

By the time that you read this, you will have found that the Colour
Genie is not the type of computer that can be carried away in a light
breeze. It is a ‘one piece’ computer, so that it's ready to go into
service whenever you connect a mains plug to it. A computer is a
more complicated device than a kettle or a toaster, however, and
connecting a mains plug is just the start of getting the Colour Genie
working its magic for you.
Earth (not used)

Fig. 1.1. Connecting the mains plug. Note that the earth pin is not
connected. If you haven’t wired a mains plug before, take it to an electrician

The plug is connected as indicated in Fig. 1.1. There are only two
leads, one blue and the other brown, and the cable should be tightly
clamped. The fuse should be a 3 amp type, not the 13 amp variety
which usually comes with the three-pin plug. If you are accustomed
to fitting plugs for yourself then the diagram should be enough to
remind you of what is needed. If you don’t want to have anything to

2 Mastering the Colour Genie

do with mains supplies, then take the Genie along to an clectrician
and get a plug, with a 3A fuse, connected or ask your Colour Genie
retailer to fit a plug for you.

With that hurdle over, you are almost ready to work some Genie
magic, but you need the use of a TV receiver. A computerisa device
which is arranged so as to send signals to a TV receiver, and unless
you connect a TV receiver to the Colour Genie you won't be able to
see what it is doing. It will still compute for you just as well, but you
won't see what is going on.

Unlike many other small computers, the Colour Genie comes with
its TV cable ready-attached and with an aerial plug at the end of the
lead. You could, of course, simply plug this lead into the TV receiver,
but a better option is to use the type of 2-to-1 adaptor that is
illustrated in Fig. 1.2. This allows you to keep an acrial cable
plugged in, and to connect or disconnect the Colour Genie as you
wish without disturbing the TV receiver. It's useful if you have to
share a colour TV with the family. It also saves wear on the aerial
connector of the TV receiver itself. If you have a TV that you can
reserve for use with the Colour Genie then you won't need this device
which is sold in my local radio shop as a Panda Pack.

Lead from Genie in here

Aerial Lead in here

Plugs into TV,
Fig. 1.2. A typical 2-t0-1 TV aerial adaptor.

The TV that you use to display the Colour Genie's signals need not
be a colour receiver - not to start with, at least. The skills of
programming a Colour Genie do not require you to see the results in
colour until you come to the colour instructions of the Genie in
Chapter 7. Many colour computers produce a recognisable set of
grey shades on a black/white TV, but I found that my Colour Genie
did not show any noticeable differences on a portable B/ W receiver,

Setting Up the Colour Genie 3

though the colours were most impressive on a standard colour
television receiver.

The big switch-on

Now before you plug in everything in sight and switch on, it's a good
idea to see how many mains sockets you have around. When you are
in full control of your Colour Genie you will need three mains
sockets. Two of these will be for the Colour Genie and the TV
receiver, but you will need one more for a cassette recorder. Most
houses have desperately few sockets fitted, so you will find it
worthwhile to buy or make up an extension lead that consists of a
three- or four-way socket strip with a cable and a plug (Fig. 1.3).
This avoids a lot of what the famous advert calls ‘spaghetti hanging
out the back’. Don't rely on the old-fashioned type of three-way
adaptor - they never produce really reliable contacts. The Colour
Genie has its own mains switch, so you can keep it plugged in if you
like.

Fig 1.3. A four-way socket strip. You'll find this essential unless you have a
lot of sockets available.

The next step, then, is to switch on the TV receiver and the Genie.
The sounds are played through the loudspeaker of the TV so that
you have full control over the volume. You can also send these
signals out to a hi-fi system so that youcan hear them at full volume,
or record them, as you please. Your Colour Genie dealer will be able
to supply suitable connecting leads for this purpose.

An ordinary domestic TV is not ideal for viewing the Colour
Genie signals, or those of any other computer. This is because the
signals cannot be sent directly to the TV in the form that would give
a clear picture. Instead, they have to be transmitted, using a

4 Mastering the Colour Genie

miniature transmitter that is called a modulator. This is because
most TV receivers cannot be safely connected to anything except by
the aerial lead. Very much clearer pictures can be obtained by using
what is called a monitor. This is a form of stripped-down TV which
can’t receive broadcast signals (no licence needed!), but which can be
safely connected to the Colour Genie to show high-quality pictures.
If you are lucky enough to see a demonstration of Genie signals
displayed on a colour monitor you will get some idea of how muchiis
lost when a modulator and an ordinary colour TV has to be used.

The second point is thata TV receiver has to be tuned to the signal
from the Colour Genie. Unless you have been using a video cassette
recorder, and the TV has a tuning button that is marked ‘VCR’it’s
unlikely that you will be able to get the Colour Genie tuning signal to
appear on the screen of the TV simply by pressing tuning buttons.
The next step, then, is to tune the TV to the Colour Genie’s signals.

Figure 1.4 shows the three main methods that are used for tuning
TV receivers in this country. The simplest type is the dial tuning
system that is illustrated in Fig. 1.4(a). This is the type of tuning
system that you find on black / white portables, and you only have to
turn the dial to get the Colour Genie’s signal on the screen. If the dial
is marked with numbers, then you should look for the signal
somewhere between numbers 30 and 40. If the dial isn’t marked,
which is unusual, then start with the dial turned fully anticlockwise
as far as it will go, and slowly turn it clockwise until you see the
Colour Genie signal appear. If you turn the volume control up
slightly so that you can hear the rushing noise of the untuned
receiver, you will hear things go quiet as the Colour Genie signal
appears. You may find that there is some reduction in the sound
level as you tune to a local TV transmission, but you'll notice the
difference. The Colour - Genie doesn't give you the sound of
Coronation Street!

What you are looking for, if the Colour Genie hasn’t been touched
since you switched it on, is the phrase MEM SIZE? on the screen.
When you can see these words, turn the dial carefully, turning
slightly in each direction until you find a setting in which the words
are really clear. On a TV receiver, particularly a colour TV, the
words may never be particularly clear (Fig. 1.5), but get them steady
at least and as clear as possible.

The older types of colour and B/ W TV receivers used mechanical
push-buttons (Fig. 1.4(b)) which engage witha loud clonk when you
push them. There are usually four of these buttons, and you'll need
to use a spare one which for most of us means the fourth one. Push

Setting Up the Colour Genie 5§

|- Tuning dial-

o
Lum o lune.

Selecior Swilch-press

ﬂ Adjusting
Wil
{urn 1o tune)

1

Tuning Panel Cover

Fig. 1.4. The main methods for tuning TV receivers. (a) Single dial, as used
on B/W portables, (b) four-button, (c) latest 12-switch type with tuning panel.

6 Mastering the Colour Genie

MEM SIZE
MMEM SIZE -....

While biobs belween lellers

MEM SIZE &
(lurn brightness down also)

Fig. 1.5. Faults that can be caused by incorrect tuning

this one fully in. Tuning is now carried out by rotating this button
Try rotating anticlockwise first of all, and don't be surprised by how
many times you can turn the button before it comes toastop. If you
tune to the Colour Genie's signal during this time, you'll see and hear
the same signs - the message an the screen and the reduction in the
noise from the loudspeaker. If you’ve turned the button all the way
anticlockwise and not seen the tuning signal, then you'll have to turn
it in the opposite direction, clockwise, until you do. If you can’t find
the Colour Genie signal at any setting, check the TV using an aerial
in case there is something wrong with the tuning of the TV.
Modern TV receivers are equipped with touch pads or very small
push-buttons for selecting transmissions. These are used for
selection only, not for tuning. The tuning is carried out by a set of
miniature knobs or wheels that are located behind a panel which
may be at the side or at the front of the receiver (Fig. 1.4(c)). The
buttons or touch pads are usually numbered, and corresponding
numbers are marked on the tuning wheels or knobs. Use the highest
number available (usually 6 or 12), press the pad or button for this
number, and then find the knob or wheel which also carries this
number. Tuning is carried out by turning this knob or wheel. Once
again, you are looking for a clear picture on the screen and silence
from the loudspeaker. On this type of receiver, the picture is usually

Setting Up the Colour Genie 7

‘fine-tuned' automatically when you put the cover back on the
tuning panel, so don’t leave it off. If you do, the receiver's circuits
that keep it in tune can’t operate, and you will find that the tuning
alters, so that you have to keep re-tuning.

The mystery starts

Once you have achieved a tuned signal from your Colour Genie, the
business of mastering the Genie magic begins. To start with, you have
the message MEM SIZE? shining at you from the top left-hand
corner of the screen. This doesn’t mean that it has forgotten how
much memory it has, simply that it wants to be told if you wish to
reserve any of the memory for special purposes. Throughout this
book, we shall not need to make any special use of the memory, so
we don't need to answer this question. If you answer with a number,
then the machine will partition off its memory, keeping a section in
reserve. You could find, if too much has been reserved in this way,
that you couldn't use the machine for normal purposes! The best
reply, until you know a lot more about the machine, is simply to
press the key that is marked RETURN, on the right-hand side of the
keyboard. Do not press any letter keys before you press RETURN,
as this can cause the machine to have a minor fit and refuse to obey
you. If this happens, switch off and then on again after a few
seconds. It's important to note that nothing that you can do by
pressing keys on the keyboard can possibly damage the Colour
Genie - the worst you can do is to lose a program that was stored in
the memory. You can, however, damage the Colour Genie by
spilling coffee all over it, dropping it, or connecting it up to other
circuits while the power is switched on.

It’s time now to look at the keyboard, because the keyboard is the
way that you pass instructions to the Colour Genie. If we ignore the
keys at the left- and the right-hand sides, most of the Colour Genie
keys look like typewriter keys. The arrangement of letters and
numbers is the same as that of a typewriter and if you've ever used a
typewriter, particularly an electric typewriter, then you should be
able to find your way round the keyboard of the Colour Genie
pretty quickly.

There's one very noticeable difference, though. When you use a
typewriter, pressinga letter key gives you a small letter (called lower-
case), and pressing a letter key along with the SHIFT key produces a
capital letter (called upper-case). On the Colour Genie, you will get

8 Mastering the Colour Genie

upper-case (capitals) when you press letter keys by themselves, and
lower-case (small letters) when you press letter keys with the SHIFT
key also pressed. This is the opposite of the typewriter arrangement,
and it's deliberately designed that way because instruction words for
the Colour Genie should be typed in upper-case letters. There is a
SHIFT LOCK key on the left-hand side of the keyboard, but I
suggest that you leave it alone for now — we'll see why later.

As well as the ordinary typewriter keys, there are a number of
special keys which are not found on any typewriter. Thereis a key at
the left front of the keyboard which is marked MODSEL (Mode
Selector), which is used to place graphics symbols (parts of pictures)
on the screen in place of letters and numbers. There is also a pair of
keys that are marked RST, one on each side of the back row of keys.
These are ‘panic buttons' which when pressed together will return
the control of the Genie to you if it appears to have ‘locked up’ and
refuses to obey instructions. Pressing just one of the RST keys has
no effect, so you really have to intend to use these keys. Another key,
marked BREAK (at the right-hand rear) will stop the Genie from
carrying out program actions, and return it to awaiting your next
command. The most important of these special keys, however, as far
as we are concerned at the moment, is the key that is marked
RETURN. This is in the position of the ‘carriage return’ key of an
electric typewriter, but its action is not the same in all respects.
Pressing the RETURN key is a signal to the computer that you have
completed typing an instruction and that you now want the
computer to obey it. Perhaps OBEY might have been a good name
for a computer!

If you are accustomed to using an electric typewriter, you will
have to change some of your habits as far as this key is concerned.
During the use of a typewriter, you would press the ‘carriage return’
key each time you wanted to select a new line, with typing starting at
the left-hand side of the new line. The RETURN key of the
computer does rather more than this. If the material that you are
typing into the Colour Genie takes more than one line on the screen,
the machine will automatically select the next screen line for you.
The RETURN key must not be used for this purpose. The
RETURN key is used only when you want the machine to carry out
a command or store an instruction, not simply when you want to use
a new line. It will always provide a new line for you, however, and
select a position at the left-hand side. The position where a letter, or
other character, will appear when you press a key is indicated by a
flashing block on the screen. This flashing block is called the

Setting Up the Colour Genie 9

‘cursor’, and it acts as a sort of signpost for you, as we'll see later.

Cassette try-out

You can obtain a lot of enjoyment from a computer system that
consists only of the machine and a TV receiver. Each time that you
switch the machine off, however, all the program and other
information that has been stored in the memory of the computer will
be lost. Since it might take several hours to enter a program into the
machine by typing instructions on the keyboard, this waste just has
to be avoided. We avoid the loss of programs by recording them on
tape.

The computer has circuits which will convert the instructions of a
program into musical tones, which can then be recorded on an
ordinary cassette recorder. When these notes are replayed, another
set of circuits will convert the signals back into the form of a
program. In this way, the use of a cassette recorder allows you to
record your program on tape and to replay them again. Before you
tackle the rest of this book, then, it's important to check now that
you can record and replay programs

Almost any cassette recorder is suitable, but if you are buying a
recorder specially for computer use, get one which is mains and
battery operated, has a tape counter and automatic recording level
control. Most small portable cassette recorders have these features,
but hi-fi and other stereo recorders are usually unsuitable. I have
used a Trophy CRI100 recorder for years with very satisfactory
results. Recorders by Sanyo, Hitachi and Sharp have also proved
satisfactory. Lowe Computers have developed a specific computer
cassette recorder, called the EG2016 available from your local Genie
dealer.

Start work by switching everything off. Now find the cassette lead
(Fig. 1.6) of the Colour Genie. This has a five-pin plug at one end,
and two small plugs at the other end. These small plugs have colour-
coded leads. The plug which is fitted at the end of the white lead
engages into the socket on the cassette recorder thatis marked EAR
or has a drawing of an ear. This is where the signals come out of the
recorder to be sent to the computer. The plug on the black lead fits
into the socket that is marked MIC; this is the mircophone input of
the cassette recorder. The Colour Genie uses only these two plugs.

The five-pin plug at the other end of the cable fits into a socket
which is at the back of the Colour Genie, on the right-hand side as

10 Mastering the Colour Genie

(>

S-pin piug fits TaMic ToEAR

Ino cassette port 8acke socket
Casselle recorder phugs

Fig. 1.6. The cassette lead of the Colour Genie. The small plugs are called
Jjack plugs, and they plug into the cassette recorder.

you face the keyboard. Be careful how you push this plug in. It
should fit only one way round, so don’t force it. Look for the small
notch in the plug and the corresponding part of the socket - these
should engage together.

Once you have made this connection, the cassette recorder is ready
for use. It’s preferable to run the recorder from the mains because
battery life can be unpredictable. If your batteries decide to fail while
you are recording, you will probably lose the program. The next
thing that you have to sort out is a supply of blank cassettes. There’s
nothing wrong with using reputable brands of C90 length cassettes
(ordinary ‘ferric’ tape, not the hi-fi Cr0, type), but you'll find that the
short lengths of tape that are sold as CS, C10 or CIS5 in computer
shops and in most branches of W. H. Smith's, Boots and Currys are
much more useful. Lowe Computers produce specific blank
computer cassettes for data recording (see your local Genie dealer).

Put a fresh cassette into the machine, with the | or A side
uppermost. The first part of the cassette consists of a ‘leader’ whichis
plain, not recording, tape. This has to be wound on before you can
record. If your recorder has a tape counter, reset the counter to zero,
and then fast-wind the cassette to a count of 5. If there is no tape
counter, take the cassette out and insert the body of a BiC pen into
the centre of the empty reel. Turn the pen so that the tape winds onto

Setting Up the Colour Genie 11

the reel, and keep turning until you see the brown recording tape
replace the clear or brightly-coloured leader.

Now before you can make a recording to test the system, you need
a program to record, and this involves some typing. This is easy if
you have just switched the Colour Genie on, but if you have been
pressing keys at random, then it’s a good idea to switch off again,
then on. Press the RETURN key when you see the MEM SIZE?
question appear, and your Colour Genie is ready for testing.

Type the number 10 (1 and then @), and then the word REM.
Check that this looks correct, and then press the RETURN key. The
effect of this is to place the instruction line 1) REM into the memory
of the Colour Genie. Now type the rest of the lines, as illustrated in
Fig. 1.7, remembering the press the RETURN key after you have
completed typing each line. The numbers are called /ine numbers,
and they are there for two reasons. One is to remind the computer
that this is a program, the other is to guide it, because the computer
will normally carry out instructions in the same order as the line
numbers.

1@ REM
20 REM
3@ REM
4@ REM

Fig. 1.7. A test program for recording and replaying.

Check that your program looks on the screen like the printed
version in Fig. 1.7, and make sure that the cassette recorder is ready.
Now type CSAVE“A". The C stands for cassette,and CSAVE is the
instruction to the computer meaning that you want to save (record)
a program on a cassette. The “A” is a filename which the computer
will use to recognise the program if itis asked to. You must put in the
quotes (inverted commas, obtained by pressing SHIFT and 2 at the
same time), otherwise the computer cannot carry out the
instruction. Don't press RETURN yet! Now start the recorder by
pressing its PLAY and RECORD keys. Press them firmly so that
they lock in place, and you will see the reels of the cassette turning, A
few machines, notably some Sharp models, require you only to press
the RECORD key of the recorder, but this is unusual. When the
recorder is working, press the RETURN key on the Colour Genie.
After a very short time, the cursor of the Colour Genie will reappear
on the screen with a READY message. This lets you know that the
program has been recorded, and you can switch the recorder off.
That’s all. Now set the volume control of the recorder to half-way

12 Mastering the Colour Genie

along its range, and the tone control, if any, to maximum treble.

Now comes the crunch. You have to be sure that the recording was
0.K. The Colour Genie has a particularly useful command just for
this purpose. Wind back the tape, using the rewind key of the
recorder, and type:

VERIFY

then press RETURN. This command will cause the Colour Genie to
compare what is stored in its memory with the program that you
recorded. It can't do so, however, until you play the program back.
Press the PLAY key of the recorder, and wait. After a time, you
should see two stars appearing at the right-hand top part of the
screen. One star will remain steady, the other willflash briefly. When
the screen shows the message READY you can stop the recorder.
Your cassette recording is O K. and correct recordings are being
made. Just to show that the program has indeed been recorded, wind
back the tape again. Type NEW and press RETURN. This should
have wiped your program from the memory. Now type LIST and
press RETURN. Nothing should appear - LIST means put a list of
the program instructions on the screen, and there shouldn’t be any!

You can now load the instructions in from the tape. Type
CLOAD and press RETURN. Now press the PLAY key of the
recorder (did you rewind the tape?). The stars should appear again,
with the READY message to show when the loading operation is
complete. When this appears, the program is in place, and the
recorder can be stopped. Type LIST now, then press the RETURN
key. You should see your program appear on the screen.

Once you can reliably save programs on tape, verify them and re-
load them, you can confidently start computing. When you have
spent an hour or more typing a program on to the keyboard, it's
good to know that a few minutes’ more work will save your effort on
tape so that you won't have to type it again

What can go wrong? Bad connections, mainly, and the Table in
Fig. 1.8 should help you to trace the source of problems. There is one
other problem, however, which you may find puzzling. Even though
you can record and replay your own programs, you may find that
when you buy a program on a cassette it refuses to load at any setting
of the recorder’s volume control. This is nearly always because you
need the head of the cassette recorder looked at. There’s advice on
this problem in Appendix A.

Setting Up the Colour Genie 13

Error check list

w

IS

. Are you sure that you have a program on the tape? Remove the EAR

plug, and play the tape back. You should hear a musical tone which
signals the start of the program, then a short burst of noise which is the
program

. Have you tried several settings of the volume control? Some of the

programs which I recorded would play back only at maximum volume
control setting.

. Check that you have the plugs the correct way round. They should be

colour-coded, but the colour coding might possibly be wrong.

Check that your recorder is working properly by using the microphone
to record a message, and then listening to the replay

. Always check by making a fresh recording and then verifying it. Be

careful to separate your recordings from each other, because they take
up only a small length of tape each.

Fig 1.8 Aable for fault-finding in record/replay problems.

Chapter Two
Getting Your Name
in Lights

Chapter 1 will have broken you in to the idea that the Colour Genie,
like practically all computers, takes its orders from you when you
type them on the keyboard. You will also have found that an order is
obeyed when the RETURN key is pressed. You will by now have
used the command NEW which clears out a program from the
memory; and LIST which prints your program instructions on to
the screen. You will also have found that the CLEAR key at the top
right-hand side of the keyboard has the effect of wiping the screen
clear.

Now there are two ways in which you can use a computer. One
way is called direct mode. Direct mode means that you type a
command, press RETURN, and the command is carried out at once.
This can be useful, but the more important way of usinga computer
is in what is called program mode. In program mode the computer is
issued with a set of instructions, with a guide to the order in which
they are to be carried out. A set of instructions like this is called a
program.

The difference is important, because the instructions of a program
can be repeated as many times as you like with very little effort on
your part. A direct command, by contrast, will be repeated only if
you type the whole command again, and then press RETURN.

Let’s take a look at the difference. If you want the computer to
carry out the direct command to add two numbers, 1.6and 3.2, then
you have to type:

PRINT 1.6 + 3.2 (and then press RETURN)

You have to start with PRINT because a computer is a dumb
machine, and it obeys only a few set instructions. Unless you use the
word PRINT, the computer has no way of telling that what you
want to see is the answer on the screen. It doesn't recognise
instructions like ‘GIVE ME’ or ‘WHAT IS’, only a few words that

Getting Your Name in Lights 15

we call its reserved words or instruction words. PRINT is one of
these words.

When you press RETURN after typing PRINT 1.6 + 3.2, the
screen shows the answer, 4.8, under the command, and the word
READY appears under this answer. The READY is a ‘prompt’, a
reminder that the computer is ready for another command. Once
this command has been carried out, however, it's finished.

A program does not work in the same way. A programis typed in,
but the instructions of the program are not carried out when you
press RETURN. Instead, the instructions are stored in the memory,
ready to be carried out as and when you want. The computer needs
some way of recognising the difference between your commands and
your program instructions. On computers that use the ‘language’
called BASIC (Beginners All-purpose Symbolic Instruction Code),
this is done by starting each program instruction with a number
which is called a line number. This must be a positive whole number,
the type of number that is called a positive integer. This is why you
can't expect the computer to understand an instruction like 5.6 + 3
= it takes the 5 as being a line number, and the rest doesn't make
sense.

Let's start programming, then, with the arithmetic actions of add,
subtract, multiply and divide. Computers aren’t used all that much
for calculation, but it's useful to be able to carry out calculations
now and again. Figure 2.1 shows a four-line program which will
print some arithmetic resuits.

18 PRINT 2.4+3.7
20 PRINT 3.5-1.6
3@ PRINT 2.844.4
4@ PRINT 7.3/1.8

Fig 2.1. A four line arithmetic program. The word PRINT is essential

Take a close look at this, because there's a lot to get used to in
these four lines. To start with, the line numbers are 1¢,20,30,4¢
rather than 1,2,3,4. This is to allow space for second thoughts. If you
decide that you want to have another instruction between line 19
and line 2§, then you can type the line number 15, or 11 or 12 orany
other whole number between 1§ and 2§, and follow it with your new
instruction. Even though you have entered this line out of order, the
computer will automatically place it in order between lines 1§ and
2¢. If you number your lines 1,2,3 then there’s no room for these
second thoughts. The Colour Genie can, in fact, renumber your lines
for you, but more about this later.

16 Mastering the Colour Genie

The next thing to notice is how the number zero is slashed across.
This is to distinguish it from the letter O. The computer simply won't
accept the @ in place of O, nor the O in place of §, and the slashing
makes this difference maore obvious to you so that you are less likely
to make mistakes. Some magazines, unfortunately, reprint computer
programs with the slashmarks removed, so that it’s very easy to
make mistakes.

Now to more important points. The star or asterisk symbol in line
30 is the symbol that the Colour Genie uses as a multiply sign. Once
again, we can't use the X that you might normally use for writing
multiplication because this is a letter. There's no divide sign on the
keyboard, so the Colour Genie, like all other small computers, uses
the slash (/) sign in its place.

So far, so good. The program is entered by typing it, just as you
see it. You don’t need to leave any space between the line number
and the P of PRINT, because the Colour Genie will put one in for
you when it displays the program on the screen. The space that
shows on the screen does not get stored in the memory, so by missing
this space out, we save memory. You will have to press the
RETURN key when you have completed each instruction line,
before you type the next line number. You should end up with the
program looking as it does in the illustration.

When you have entered the program by typingit, it'sstored in the
memory of the computer in the form of a set of code numbers. There
are two things that you need to know now. Once is how to check
that the program is actually in the memory, the other is how to make
the machine carry out the instructions of the program.

The first part is dealt with using the command LIST that you
know already. You canuse the CLEAR key to wipe the screen first if
you like, then type LIST and press the RETURN key. When you
press the RETURN key, and not until, your program will be listed
on the screen. You will then see how the computer has printed the
items of the program on the screen, with spaces between the line
numbers and the instructions. To make the program operate, you
need another command, RUN. Type RUN, then press the
RETURN key, and you will see the instructions carried out. To be
more precise, you will see:

6.1

1.9

12.32
4.0555555
READY

Getting Your Name in Lights 17

When you follow the instruction word PRINT with a piece of
arithmetic like 2.8*4.4, then what is printed is the result of working
out that piece of arithmetic. The program doesn’t print 2.8%4.4, just
the result of the action 2.8*4.4.

Now this is useful, but it’s not always handy to get a set of answers
on the screen, especially if you have forgotten what the questions
were. The Colour Genie allows you a way of printing anything that
you like on the screen, exactly as you type it, by the use of what is
called a string.

10 PRINT"2¢2= °;2+2
20 PRINT"2.583.5=

30 PRINT"9.4-2.2=
40 PRINT“27.6/2.2=

Fig. 2.2. Using quotes. Anything placed between quotes is printed just as it
is; anything outside the quotes is worked out!

Figure 2.2 illustrates this principle. In each line, some of the
typing is enclosed between quotes (inverted commas) and some is
not. Enter this short program and run it. Can you see how very
differently the computer has treated the instructions? Whatever was
enclosed between quotes has been printed exactly as you typed it.
Whatever was not between quotes is worked out, so that the first
line, for example, gives the unsurprising result:

2+2=4
Now there's nothing automatic about this. If you type a new line:
15 PRINT “2+2=*;5*1.5
then you'll get the daft reply, when you RUN this, of:
2+2=15

The computer does as it’stold and that’s what you told it todo. What
loony thought that computers would take over the world?

This is a good point also to take notice of somethingelse. The line
15 that you added has been fitted into place between lines 19 and 20
- LIST if you don’t believe it. No matter in what order you type the
lines of your program, the computer will sort them into order of
ascending line number for you. Note also that the spaces in the
program of Fig. 2.2 between the = and the " are useful - just see what
happens if you miss them out!

With all of this accumulated wisdom behind us, we can now start
to look at some other printing actions. PRINT, as far as the Colour

18 Mastering the Colour Genie

1@ PRINT"“THIS IS *
15 PRINT"THE MAGICAL "
2@ PRINT®CDLOUR GENIE"

Fig. 2.3. Printing words - the words must be placed between quotes.

Genie is concerned, always means print on to the TV screen. For
activating a paper printer (hard copy, it’s called), there’s a separate
instruction LPRINT (and LLIST for program listings). The L once
meant ‘line’ in the days when printers for computers were huge
pieces of machinery that printed a whole line at a time. You must not
use these instructions unless you have a printer connected and
switched on.

Now try the program in Fig. 2.3. You can try typing the lines in
any order that you like, to establish the point that they will be in line
number order when you list the program. When you RUN the
program, the words appears in twos, with two words on each line.
This is because the instruction PRINT doesn’t just mean ‘print-on-
the-screen’. It also means ‘take a new line’, and start at the left-hand
side!

10 PRINT"THIS IS “;
20 PRINT"THE MAGICAL "j
3@ PRINT“COLOUR GENIE®

Fig 2.4. The effect of a semicolon. Thiskeeps printing on one line, and it will
also remove spaces that you have typed (outside quotes)

Now this isn’t always convenient, and we can change the action by
using punctuation marks that we call print modifiers. Start this time
by acquiring a new habit. Type NEW and then press the RETURN
key. This clears the old program out. If you don’t do this, there's a
chance that you will find lines of old programs getting in the way of
new ones. Each time you type a line, you delete any line that had the
same line number in an older program, but if there is a line number
that you don't use in the new program it will remain stored. In Fig.
2.3, for example, the line 15 would be left in store even when you
typed a new line | and a new line 20

Now try the program in Fig. 2.4. There's a very important
difference between Fig. 2.4and Fig. 2.3, as you'll see when you RUN
it. The effect of a semicolon following the last quote in a line is to
prevent the next piece of printing starting on a new line at the left-
hand side. When you RUN this program, all of the words appear in

Getting Your Name in Lights 19

one line. It would have been a lot easier just to have one line of
program that read:

16 PRINT “THIS IS THE MAGICAL COLOUR GENIE”

to do this, but there are times when you have to use the semicolon to
force two different print items on to the same line. We'll look at
examples of that sort of thing later.

Now, as a piece of light relief, take a look at the table in Fig. 2.5.
The four keys that are arranged in a line down the right-hand side of
the keyboard are called programmable keys. This means that you
can decide what you want each key to print on the screen when you
press it. We'll look at programming these keys briefly in Appendix
E, but when the Colour Genie is switched on, these keys are

Key action Function
1 LIST

2 RUN

3 AUTO

4 EDIT
SHIFT 1 RENUM
SHIFT 2 DELETE
SHIFT 3 CLOAD
SHIFT 4 CSAVE

Fig. 25. The ‘programmable’ keys. These can be used to allow ‘one-key’
entry of selected commands. You still have to press RETURN to make the
command work. Re-programming is dealt with in Appendix E
programmed for you, giving the words on the screen thatare shown
in Fig. 2.5. You still need to press RETURN to carry out the action,
but it's useful to have the keys there to save the effort of typing some
words over and over again. Make a copy of this table and keep it by
the side of the computer.

Rows and columns

Neat printing is a matter of arranging your words and numbers into
rows and columns, so we'll take a closer look at this particular art
now. To start with, we know already that the instruction PRINT will
cause a new line to be sclected, so the action of Fig. 2.6 should not
come as too much of a surprise. Line 1§ contains a novelty, though,

20 Mastering the Colour Genie

in the form of two instructions in one line. The instructions are
separated by a colon (:) and you can, if you like, have several
instructions following one line number in this way and taking
several screen lines. So long as the number of characters in the ‘line’
does not exceed 255 (and at 40 characters per screen line that’s more
than 6 screen lines), you can put instructions together in this way. In
a ‘multistatement’ line of this type, the Genie will deal with the
different instructions in a left-to-right order.

1@ CLS:PRINT“THIS 1S THE BENIE"
2@ PRINT:PRINT
3@ PRINT"READY TO OBEY YOu*®

Fig. 2.6. Spacing down by two lines. Note the etfect of the colon in line 20,

The other point about Fig. 2.6 is that line 2f) causes the lines to be
spaced apart. The two PRINT instructions, with nothing to be
printed, each cause a blank line to be taken. There are other ways of
doing this, as we'll see, but as a simple way of creating a space, it's
very handy.

1@ PRINT1,2,3,4

2@ PRINT1,2,3,4,5

3@ PRINT“ONE", "TWO", "THREE", "FOUR"

4@ PRINT"THIS IS TOQ LONG!'", ~TwO®, “THREE

Fig 2.7. Printing in columns, making use of the comma

Figure 2.7 deals with columns. Line 1 is a PRINT instruction
that acts on the numbers 1,2,3, and 4. When these appear on the
screen, though, they appear spaced out just as if the screen had been
divided into four columns. The mark which causes this effect is the
comma, and the action is completely automatic. As line 2 shows,
you can't get five columns. Anything that you try to get into a fifth
column will actually appear on the first column of the next line
down. The action works for words as well as for numbers, as line 3¢
illustrates. When words are being printed in this way, though, you
have to remember that the commas must be placed outside the
quotes. Any commas that are placed inside the quotes will be printed
just as they are and won’t cause any spacing effect. You will also find
that if you attempt to put into columns something that is too large to
fit, the long phrases will spill over to the next column, and the next
item to be printed will be at the start of the next column along. Line
44 illustrates this - the first phrase spills over from column 1 into

Getting Your Name in Lights 21

column 2, and the word TWO is printed starting at column 3.
Commas are useful when we want a simple way of creating four

columns. A much more flexible method of placing words along a
line exists, however. It uses the instruction word TAB, which has to
be followed by a number placed within brackets. The line is
imagined as divided into 49 portions, equally spaced, and numbered
from @ to 39. Thus TAB(f) means the position at the left-hand side
of the line, and TAB(39) means the position at the right-hand side of
the line. Figure 2.8 illustrates the appearance of words that are typed
at different TAB positions. Note that we must use TAB only
following a PRINT instruction, but we can type PRINT TAB or
PRINTTARB as we please. Saving one space between these words
means saving one place in the memory, so the use of PRINTTAB is
convenient on this count.

1@ PRINT“START"

26 PRINT TAB(S)"FIVE ACROSS®

30 PRINT TAB(1@)"TEN ACROSS"
4@ PRINTTAB (15) “FIFTEEN"

Fig. 2.8 The TAB instruction and how it is used

The use of tabulation, as this is called, can make the appearance of
printing on the screen much smarter, as Fig. 2.9 illustrates. In this
example, the word TITLE has been centred on its line by using
TAB(17). The number is found by using a formula that has been
known to typists for generations - it’s illustrated in Fig. 2.10. Later
on, we'll look at ways of carrying out this calculation automatically,
so that you can print any phrase centred in a line without having to
count the letters and spaces for yourself.

10 CLS:PRINTTAB(17)"TITLE"

2@ PRINT:PRINT

30 PRINTTAB(2) "LOOKS A LOT SMARTER!'"
4@ PRINT:1PRINT

Fig. 2.9. Centring a title to improve its appearance.

(a) Count number of characters in the title, including spaces

(b) Divide this number by two. Ignore the remainder, if any, and subtract
this number from 20

(¢) Use the result as the TAB number.

Fig. 2.10. The formula that is used to centre a title

22 Mastering the Colour Genie

Providing that the instruction word PRINT has been used, you
can make use of TAB more than oncein a line. Figure 2.11 illustrates
TAB being used to print letters in five columns, something that you
can't do with commas. The sections are separated from each other
by semicolons, but youdon’tin fact have to use a semicolon between
the closing bracket of the TAB number and the item that is to be
printed. One point that we haven’t illustrated yet is that the quantity
that is enclosed within the brackets of a TAR need not be a number -
it can be a letter that represents a number. We'll come back to that
point in the next chapter.

16 PRINT“A"; TAB(8) "B";TAB(16) "C"; TAB(24)
"D"i1TAB(32) "E*

Fig. 2.11. Using TAB more than once in a line.

Meantime, there’s another very important print modifier to look
at. The @ (pronounced ar) sign on the keyboard is used to allow text
(numbers, letters, words) to be placed anywhere on the screen. One
minor problem you have to be aware of is that there isno SHIFT @.
If you press the @ and the SHIFT keys together, you will see the @
symbol appear on the screen, but the machine will not recognise that
the code is in use. Keep your fingers well away from the SHIFT key
when you use @!

@0 33 4 8 8 T B BT M IS I8 1Y NN 1B 30 0 DT IR 0 3 3
. TTT T ! 0 17 T
v T T 1T 1
: TTTITT | I T
1 P i ! Il T T
‘ - i T T
' 1T 1 i i
] i T

T T

janan

' T
- It I]
n [1]
= [!
- 1
" T 1
" 117 T
" Il
" I
wlT !
" pEEEN
i am EEEN T
n | T :
z 17 1 It 1 | T Il Il
n 11 CThTT [HEEEREN

Fig. 2.12. The PRINT@ positions on the screen

For the purpose of using @, we imagine the screen divided into a
grid of 40 divisions across and 24 down, a total of 960 positions (Fig.

Getting Your Name in Lights 23

2.12). These are numbered, counting 0 as the top left-hand corner of
the screen and 959 as the bottom right hand corner. An easy way to
find the @ reference number for any position on the screen is to
think of the lines as being numbered from 0to 23 down the screen. If
you multiply the line number by 40 and then add the TAB number
for the position along the line that you want, you have the @
number. For example, if you want the 10th space on the number 5
line (which is the 6th one down, because we start counting at 0), then
the @ number is 5*4¢+19 = 219

1@ PRINT@10, “START™
20 PRINT@139, “SECOND”

Fig 2.13. Using the PRINT@ instruction

Figure 2.13 shows how PRINT@is used. Keep the PRINT, the @
sign, and the number close together, and always follow the number
with a comma. You can't use more than one @ following a PRINT
in a line. The effect of PRINT@ is to allow you to print items
wherever you want, as Fig. 2.14shows. Youdon't have to printin the
order of left-to-right or top-to-bottom either, because PRINT@
allows you complete freedom to print wherever you want. If your
choice of PRINT@ position places a new word overan old one, then
the new letters will simply replace the old ones.

S5 CLs

10 PRINT@420, “FIRST I1TEM®
20 PRINT@189, "SECOND"

3@ PRINT@1706, "THIRD"

Fig. 2.14. Using PRINT@ toplace items atdifferent parts of the screen. Items
do not have 1o be printed in left-to-right or top-to-bottom order

10 CLS1PRINT@97,"TITLE"

2@ PRINT@162,"This is an example of GENI
gn

3@ PRINT"UPPER and lower case letters*®

Fig. 2.15. Upper-case (capitals) and lower-case letters.

Finally, try the program of Fig. 2.15as an illustration of the use of
lower-case letters. As we saw earlier, the Genie will print lower-case
letters if you type a letter while you are holding down the SHIFT
key. You can reverse this action by pressing the SHIFT LOCK key,
which works just like the SHIFT LOCK of a typewriter, staying
down when it has been pressed down once and springing up again
next time it is pressed. When the SHIFT LOCK is down, letters will
appear in lower-case unless you also press the SHIF T key. One thing

24 Mastering the Colour Genie

that you have to be very careful about, however, is the left-arrow
key. Normally when you are typing in upper-case (capital) letters,
the left-arrow key acts to delete one character. It will delete more
than one character only if you press the RPT (repeat) key
immediately afterwards. When you have the SHIFT LOCK pressed
down, though, pressing the left-arrow key will cause the whole line
to be deleted. That's tough if it took you a lot of time to type it and,
because the use of the left-arrow key becomes automatic after a
while, you can lose a lot of text in this way. I personally never use the
SHIFT LOCK on my Colour Genie in normal programming. When
I want lower-case letters, I just press the SHIFT key temporarily,
and try to remember to release it when I want to use the left-arrow
key to delete a character.

Chapter Three
A Bit of Variation

So far, our computing has been confined to printing numbers and
words on the screen. That's one of the main aims of computing, but
we have to look now at some of the actions that go on before
anything is printed. One of these is called assignment.

S CLS

10 x=23

2@ PRINT *2 TIMES "3X;* IS "j2sx

3@ x=5

40 PRINT"X IS NOW "3

S@ PRINT“AND 2 TIMES ";X;" IS ";2#X

Fig. 3.1. Introducing a number variable which can take different values.

Take a look at the program in Fig. 3.1. Type it in, run it, and
contrast what you see on the screen with what appears in the
program. The first line thatis printed is line 20. What appears on the
screen is:

2 TIMES 23 IS 46

but the numbers 23 and 46 don't appear in line 2! This is because of
the way we have used the letter X as a kind of code for the number
23. The official name for this type of code is a variable name.
Line 1§ assigns the variable name X, giving it the value of 23.
‘Assigns’ means that wherever we use X, not enclosed by quotes, the
computer will operate with the number 23. Since X is a single
character and 23 has two digits, that’s a saving of space. It would
have been an even greater saving if we had assigned X differently,
perhaps as X=2174.3256, for example. Line 20 then proves that X is
taken to be 23, because wherever X appears, not between quotes, 23
is printed, and the ‘expression’ 2*X is printed as 46. We're not stuck
with X as representing 23 for ever, though. Line 3@ assigns X as
being 5, and lines 4f) and 5@ prove that this change has been made
That's why we call X a variable - we can vary whatever it is we

26 Mastering the Colour Genie

want it to represent. Until we do change it, though, X stays assigned.
Even after you have run the program of Fig. 3.1, providing you
haven't added new lines or deleted any part of it, you can type
PRINT X (or PRINTX), and pressing RETURN will show the
value of X on the screen.

This very useful way to handle numbers in code form can use a
‘name’ which must start with a letter. You can add to that a second
letter or a number, so that N, NA, NS5 are all names that you can use
for number variables, and each can be assigned to a different
number. Just to make it even more useful, you can use similar
‘names’ to represent words and phrases also. The difference is that
you have to add a dollar sign ($) to the variable name If N is a
variable name for a ber, then N§ (pr d en-string or en-
dollar) is a variable name for a word or phrase. The computer treats
these two, N and N§, as being entirely separate and different.

10 CLS:NS="NAME"“

20 SNs$="SINDBAD"

30 PRINT Ns;* "3SNS; " FAMILY"®

40 PRINT SN$i " THE SAILOR®

S@ PRINT“- ANOTHER SATISFIED GENIE OWNER

Fig. 3.2. String variables. The name needs quotes around it when it is
assigned, and the variable name must end with the dollar sign

Figure 3.2illustrates ‘string variables', meaning the use of variable
names for words and phrases. Lines 19 and 20 carry out the
assignment operations, and lines 39 to 59 show how these variable
names can be used. Notice that you can mix a variable name, which
doesn’t need quotes around it, with ordinary text, which must be
surrounded by quotes.

1 am here to serve you®
What is your wish, Oh Master?"

S@ PRINT“1 AM THE ®3;6$:PRINT
6@ PRINTL1$:PRINT
7@ PRINT L2%:PRINT

Fig. 3.3 Longer string variables - you can use up to 255 characters|

Figure 3.3 shows another example, this time using the variable
names L1$ and L2$ for longer phrases. There wouldn't be much
point in printing messages in this v-ay if you wanted the message
once only, but when you continually use a phrase in a program, this
is one method of programming it so that you don’t have to keep
typing it!

A Bit of Variation 27

1@ NURSES="Lindsay"
20 NUT$="Peanuts”
3@ NUMB$="Goaofy"
40 NUDEs$="Starkers*"
50 PRINT NURSES

60 PRINT NUTS

7@ PRINT NUMBS

8@ PRINT NUDES

Fig. 3.4 You can use names of more than two characters, but the Colour
Genie reads only the first two.

Now before you go wild on this use of variable names, a word of
warning. There's nothing to stop you from using variable names of
more than two characters. Nothing, except the fact that it uses up
precious memory, and it can cause confusion. Take a look at Fig.
3.4. When you run this one, lines 50 to 8¢ all produce the same word
— the last one that was assigned. The reason is that the computer
takes notice of only the first two characters of a name. As far as the
computer is concerned, all the variable names that were assigned in
lines 19 to 4f are the same, NUS. Since the last assignation of NU$
was to ‘STARKERS', that’s what is printed - four times. Simple
enough when you know about it, but it can cause a lot of bother if
you don’t.

Strings and things

Because the name of a string variable is marked by the use of the §
sign, a variable like A$ is not confused with a number variable like
A. We can, in fact, use both on the same program knowing that the
computer at least will not be confused. Figure 3.5 illustrates that the
difference is a bit more than skin deep, though. Lines 1§ and 2§
assign number variables A and B, and string variables A$ and BS.
When these variables are printed, you can't tell the difference
between A and AS or between B and BS. The difference appears,
however, when the computer attempts to complete line 6. It can
multiply two number variables, because numbers can be multiplied,
but it can’t multiply string variables. The reason is simple. A string
variable can be anything. We have assigned A3 as ‘2', but we could
just as easily have assigned it as ‘2 LABURNUM WAY". You can
multiply 2 by 3, but you can't multiply 2 LABURNUM WAY by 3
ACACIA AVENUE. The computer therefore refuses to carry out
multiplication, division, addition, subtraction or any other

28 Mastering the Colour Genie

10 A=21B=3

2@ As="2":pe="3"

3@ CLS

4@ PRINTA;* TIMES "iB;i" 1S ";A®B

5@ PRINT

60 PRINT AS;* TIMES ";Bs$;i" IS “;AssBs
7@ REM IMPOSSIBLE - SO YOU GET TM ERROR.

Fig 3.5. When a number is assigned as a string, it prints normally but you
can’t carry out arithmetic on it!

arithmetic operation on strings. Attempting to do a forbidden
operation in line 6 causes an error message. TM means ‘type
mismatch’ - the operation that we called for can be done on
numbers, but we have strings here. Later on, we’ll see that there are
operations that we can carry out on strings that we can’t carry out on
numbers, and attempts to do these operations on numbers will also
cause a TM error message. The difference is an important one. The
computer stores numbers in a way that is quite different from the
way it stores strings. The different methods are intended to make the
use of arithmetic simple for number variables (for the computer,
that is), and to make other operations simple for strings. Let’s face it,
it's only a machine!

3@ CLS
40 PRINT"JUST CALL ME “3A$+~-"+B$;", HE
SAID. "

Fig. 3.6. Concatenation, or joining of strings, which uses the + sign

10 AS="aen":PS="0440"
20 Gs="GENIE"

30 CLS

40 PRINTAS+BS$+Gs+B8+As
S@ PRINT

Fig. 3.7 Using concatenation to frame a title.

There is one operation, that looks rather like arithmetic being
carried out on strings. It uses the + sign, but it isn’t addition in the
sense of adding numbers. Figure 3.6 illustrates this action of joining
strings, which is often called concatenation. This is nothing like the
action of arithmetic, and you'll see if you use numbers in place of the
names. Concatenation is a very useful way of obtaining strings
which otherwise would need rather a lot of typing. Take a look at
Fig. 3.7. This defines strings A$ and BS$ as characters which can be
used as ‘frames’ around a title. The title is defined in line 2¢ as

A Bit of Variation 29

GENIE. Line 49 then prints a concatenated string. This has needed
less typing than if you had to type all the characters between the
quotes. It also allows you to rearrange the frames as you please. You
can, for example, use:

Bf + AS + GS + AS + BS

next time you print the title.

Getting some in

So far, everything that has been printed on the screen by a program
has had to be placed in the program before itis run. Wedon’t have to
be stuck with restrictions like this, however, because the computer
allows us another way of putting information, number or name, into
a program while it is running. A step of thistypeiscalled an INPUT
and the BASIC instruction word that is used to cause this to happen
is also INPUT.

1@ CLS

2@ PRINT“WHAT 16 YOUR NAME®

30 INPUT NS

40 CLS1PRINT1PRINT

Se PRINTNMS; - -THIE IS YOUR LIFE!!"

Fig. 3.8. Putting information into a running program. No quotes are needed
when you type your name this time

Figure 3.8 illustrates this with a program that prints your name.
Now I don't know your name, so I can’t put it into the program
beforehand. What happens when you run this is that the words:

WHAT IS YOUR NAME

are printed on the screen. On the line below this you will see a
question mark. The computer is now waiting for you to type
something, and then press RETURN. Until the RETURN key is
pressed, the program will hang up at line 3¢, waiting for you. If
you're honest, you will type your own name and then press
RETURN. You don't have to put quotes around your name, simply
type it in the form that you want to see printed. When you press
RETURN, your name is assigned to the variable NM$. The
program can then continue, so that like 4@ clears the screen and
spaces down by two lines. Line 50 then prints the famous phrase
with your name at the start.

You could, of course, have answered MICKEY MOUSE or

30 Mastering the Colour Genie

DONALD DUCK or anything else that you pleased. The computer
has no way of knowing that neither of these is your true name.
Ingenious it may be but real magic is too much to hope for!
We aren’t confined to using string variables along with INPUT.
10 PRINT"ENTER A NUMBER"
2@ INPUT N

3@ PRINT
40 PRINT“TWICE "3N;" 1S "32aN

Fig. 39. Using INPUT along with a number variable

Figure 3.9 illustrates an INPUT step which uses a number variable
N. The same procedure is used. When the program hangs up with the
question mark appearing, you can type a number and then press the
RETURN key. The action of pressing RETURN will assign your
number to N, and allow the program to continue. Line 4@ then
proves that the program is dealing with the number that you
entered. When you use a number variable in an INPUT step, then
what you have typed when you press RETURN must be a number. If
you attempt to enter a string, the computer will refuse to accept it.
Some computers stop running at this point, but the Colour Genie
simply prints REDO, and this gives you another chance by typing a
number and pressing RETURN again. If your INPUT step uses a
string variable then anything that you type will be accepted when
you press RETURN.

1@ CLS

20 INPUT"TYPE YOUR NAME,PLEASE";NMS

38 PRINT

40 PRINT"VERY PLEASED TO MEET YOU, “;NM$
S@ PRINT

Fig 3.10. Youcan print a phrase along with an input, provided the phrase is
quotes and is by a \

The way in which INPUT can be placed in programs can be used
to make it look as if the computer is paying some attention to what
you type. Figure 3.10 shows an example - but with INPUT used ina
different way. This time, there is a phrase following the INPUT
instruction. The phrase is placed between quotes, and is followed by
a semicolon and then the variable name NM$. This line 20 has the
same effect as the two lines:

15 PRINT “TYPE YOUR NAME, PLEASE”;
2¢ INPUT NM$

The use of INPUT isn’t confined to a single name or number. We

A Bit of Variation 31

can use INPUT with two or more variables, and we can mix variable
types in one INPUT line. Figure 3.11, for example, shows two
variables being used after one INPUT. One of the variables is a
string variable NMS, the other is the number variable N. Now when
the computer comes to line 2, it will print the message and then wait
for you to enter both of these quantities, a name and then a number.
There are two ways of entering these quantities. One way is to type
the name, then a comma, and then the number. Pressing the
RETURN key will then assign the two variables, and the computer
will continue on its way.

16 CLS

20 INPUT"NAME AND NUMBER,PLEAGE";N1¢,N

30 PRINT:PRINT

4@ PRINT"NAME 1S °;
50 PRINT*NUMBER 1S "iN

Fig. 3.11. More than one variable can be entered by one INPUT

The other methad consists of entering each quantity separately. If
you type the name and then press RETURN, the computer will print
two question marks on the next line. This is a symbol meaning ‘more
needed’, and that's a signal for you to type the number and then press
RETURN again. Whichever way you use, the name and number will
be printed again in lines 4¢) and 5.

1@ CLS

20 INPUT"FODUR NUMBERS, PLE *3A,B,C,D
30 PRINT

40 PRINT"THE SUM OF THESE IS ®;R+B+C+D
5@ PRINT

Fig. 3.12. Using four variables in a single INPUT.

We can extend this principle further. Figure 3.12 calls for four
numbers to be entered. These can be entered one by one, pressing
RETURN each time, or by typing each number, thena comma, then
the next number and pressing RETURN only after typing the last
number. Once again, whichever way you choose to enter the
numbers (no strings allowed here), the program will print the sum in
line 4.

Reading the data

There’s yet another way of getting data into a program while it is

32 Mastering the Colour Genie

running. This one involves reading items from a list, and it uses two
instruction words READ and DATA. The word READ causes the
program to select an item from the list. The list is marked by starting
each line of the list with the word DATA. The items of the list can be
separated by commas. Each time an item is read from such a list, a
‘pointer’ is altered so that the next time an item is needed, it will be
the next item of the list.

10 CLS

20 READ NNs

3@ PRINT N#s;

40 PRINT" 1S VALUED AT "j
5@ READ N

60 PRINT N;

7@ PRINT® POUNDS"

100 DATA BOLD RINS, 768

Fig. 3.13. Using READ and DATA to put information into the program

We'll look at this in more detail in Chapter 5, but for the moment
we can introduce ourselves to the READ...DATA instructions.
Figure 3.13 uses the instructions in a very simple way. Line 20 reads
the first item on the list and assigns it to the variable NMS$. This is
printed in line 3¢, with the semicolon keeping printing in the same
line so that the phrase in line 4f) follows it. The semicolon at the end
of line 4¢ once more keeps the printing in the same line, and line 5¢
reads the number which is the second item in the list. This is assigned
to the variable name N (we could just as easily have used NM$) and
printed in line 6¢. Once again, a semicolon prevents a fresh line from
being taken, so that the final word of line 79 is printed following the
number

The READ.. DATA instructions really come into their own
when you have a long list of items that are read by repeating a
READ step. We're not quite ready for that yet, so having introduced
the idea, we'll leave it for now. As before, though, we have to match
the data items with the variable names that we use for them. We can
read a number item and assign it to a string variable name, but we
can’t read a string item and assign it to a number variable name.

Number antics

The amount of computing that we have done so far should have
persuaded you that computers aren’t just about numbers. For some
applications, though, the ability to handle numbers is very
important. If you want to use your computer to solve scientific or

A Bit of Variation 33

engineering problems, for example, then its ability to handle
numbers will be very much more important than if you bought it for
games, for accounts or for word processing. It’s time, then, to take a
very brief look at the number abilities of the Colour Genie. It is a
brief look because we simply don't have space to explain what all the
mathematical operations do. In general, if you understand what a
mathematical term like sin or tan or exp means, then you will have
no problems about using these mathematical functions in your
programs. If you don’t know what these terms mean, then you can
simply ignore the parts of this section that mention them.

The simplest and most fundamental number action is counting.
Counting involves the ideas of incrementing if you are counting up
and decrementing if you are countingdown. Incrementing a number
means adding | to it, decrementing means subtracting 1 from it.
These actions are programmed in a rather confusing-looking way in
BASIC, as Fig. 3.14 shows. Line 20 sets the value of variable X as 5.
This is printed in line 3@, but then line 49 ‘increments X'. Thisis done
using the odd-looking instruction:

X=X+1

This means that the new value that is assigned to X is 1 more than its
previous value. The rest of the program proves that this action of
incrementing the value of X has been carried out.

10 CLS

206 x=5

3@ PRINT"VALUE OF X IS ";X

40 X=X+1:PRINT

5@ PRINT"NOW WE’VE USED X=X+1%:PRINT
6@ PRINT"VALUE 1S NOW ®3X

Fig 3.14. Incrementing a number variable (increasing by one).

The use of the = sign to mean ‘becomes’ is something that you have
to get accustomed to. When the same variable name is used on each
side of the equality sign, this is the use that we are making of it. We
could equally well have a line:

X=X-1
and this would have the effect of making the new value of X ane less
than the old value. X has been decremented this time. We could also
use X = 2*X to produce a new value of X equal to double the old
value, or X = X/3 to produce a new value of X equal to the old value
divided by three. Figure 3.15 shows another assignment of this type,

34 Mastering the Colour Genie

10 CL8

20 X=Sa1PRINT®X 1S "3 X
30 PRINT

40 Xx=28x+4

5@ PRINT"IT’8 CHANGED -"
60 PRINT“X IS NOM ®3X

Fig 3.15. Another change of variable value. Nate the way that the equals
sign is used.

in which both a multiplication and an addition are used to change
the value of X.

Number functions

Figure 3.16 illustrates some number functions. A number function
in this sense is an instruction which operates on a number to produce
another number. Line 19 picks the value of 2.5 for X. Line 20 then
prints the value of X squared, meaning X multiplied by X. This is
programmed by typing X/ 2. To get the square root of the number
that has been assigned to X, we use the instruction word SQR. An
alternative is XA.5, but SQR(X) is easier to type and remember. For
other roots, like the cube root you can use expressions like XA(1/3)
and so on. LOG(X) produces the natural logarithm of X.

16 CLS31X=2.5

2@ PRINT“X SQUARED IS °"3XA2

3@ PRINT

4@ PRINT" SGUARE ROOT IS "3SGR(X)
5@ PRINT

6@ PRINT® LOE OF X IS ";LOG(X)
7@ PRINT

Fig 3.16. Three of the number functions, demonstrating their actions

Figure 3.17 illustrates the various number functions that can be
used, with a brief explanation of what each one does. Some of these
actions will be of interest only if you are interested in programming
for scientific, technical or statistical purposes. Others, however, are
useful in unexpected places, such as in graphics programs.

How precise?
One of the problems of small computers is precision of numbers.

You probably know that the fraction 1/3 cannot be expressed
exactly as a decimal. How near we can get to its true value depends

A Bit of Variation 35

ABS(X): Gives the absolute value(meaning that the - sign will be removed)
of the number or number variable X.

ATN(X): Gives the angle, in units of radians, whose tangent is the number
or number variable X.

CDBL(X): Transforms the number or number variable into double-
precision form, with 17 digits. The accuracy will only be as good as the
original value of X, however.

CINT(X): Gives the whole number just less than X. Fora positive number,
this is the same action as INT

COS(X): Gives the cosine of angle X. The value of X must be in units of
radians.

CSNG(X): Converts variable X to single-precision form, with 6 significant
digits, rounded.

EXP(X): Gives the exponential of X, e*.

FIX(X): Removes all figures beyond the decimal point from X

INT(X): Rounds a positive number down to the nearest integer. A negative
number is also rounded to the next lower integer

LOG(X): Finds the natural (base ¢€) logarithm of X. Divide the result by
2.303 to get the ordinary (base 10) logarithm.

RANDOM: Ensures that a new set of random numbers will be generated
by RND.

RND(X): Gives a random number between 1 and X if X is positiveand less
than 32768. Using RND({) gives a fraction, between @ and 1.

SGN(X): Gives § if X is zero, —1 if X is negative, +1 if X is positive
SIN(X): Gives the sine of angle X. X must be in units of radians
SQR(X): Gives the square root of value of X. X must not be negative.
TAN(X): Gives the tangent of the angle X. X must be in units of radians

Fig. 3.17. Table of number functions. Some, like CINT, are very rarely used
If you don’t understand them, you probably don’t need them|
on the number of decimal places we are prepared to print, so that
9.33 is closer than @.3, and ¢.333 is closer still. The computer
converts most of the numbers it works with into the form of a
fraction and a multiplier. The fraction is not a decimal fraction but a
special form called a binary fraction, and this conversion is seldom
exact. The conversion is particularly awkward for numbers like 1,
101¢¢ and also .1, .1, .991; all the powers of ten, in fact. To avoid
embarrassments like printing 3—2 = 9999999, the computer will
round numbers of this type up or down, as need be, before
displaying them. Not all computers do this well - you can be glad
that you bought a Colour Genie!

Very few computers allow numbers to be stored in a much more
precise way. The Colour Genie is one of this select group, because it

36 Mastering the Colour Genie

allows numbers to be stored with three different degrees of
precision. These are distinguished from each other by using marks
following the variable names, and the marks that you have to learn
are the integer mark % and the double-precision mark #.

An integer, as far as the Colour Genie is concerned, is a whole
number whose value lies between the limits of —32768 and +32767.
An integer variable name consists of the variable name followed by
the % sign. If you assign a number to an integer variable, then only
numbers in the correct range can be used, and any fractions will be
discarded. Lines 1§ to 49 of Fig. 3.18 illustrate this, because when
the variable X, whose value is 3.7, is assigned to X% in line 3@, then
printing X% in line 4¢ gives 3 only. The fraction .7 has simply been
ignored.

10 CLS:X=3.7

2@ PRINT"XZ IS AN INTEGER"

30 X%=X

4@ PRINT:PRINT"ITS VALUE IS "jX%

5@ PRINT:PRINT® X@ 1S A DOUBLE-PRECISION
NUMBER*™

6@ PRINT: X8=SGR (X)

7@ PRINT“VALUE OF X8 IS ";X&

8@ PRINT"THIS IS THE RNOT OF X"

90 PRINT®IT’S SHOWN TC 1S5 DECIMAL PLAGES

iOO PRINT"THAT’S DOUBLE PRECISION - CAN
YOUR"
118 PRINT"SUPER XYZ COMPUTER DO THIS?*®

Fig. 3.18. Integer and double-precision variables illustrated

The advantage of using integer variables is twofold. One
advantage is that any arithmetic, apart from division, that we carry
out on integers is exact, with no rounding up or down needed
Division is the exception because fractions are ignored. If, for
example, we have A% =5 and B%=2 then A%/ B% gives 2, not 2.5.
The other advantage of integers is that they need less memory to
store. A program that uses integers will also run much faster than
one which uses any other type of variables

The ordinary number variables, such as X, are called ‘single-
precision’ variables. The precision is good enough for most
purposes, but not all. If you are writing an accounts program which
handles several hundred thousand pounds in items, then the use of
single-precision numbers will cause small errors. The Colour Genie
allows you to use what are called ‘double-precision numbers’. These
give the accuracy that you would normally associate with business
computers costing more than ten times as much as the Genie. Such

A Bit of Variation 37

1@ DEFSTRA

2@ DEFINTB

3@ DEFDBLC

40 INPUT"YOUR NAME,PLEASE";

56 INPUT"A NUMMBER,PLEASE"§D

60 PRINT:PRINT“USING INTEGERS, 17% OF YO
UR NUMBER 1S"

7@ B=17&D/109

80 PRINT B

9@ PRINT

180 PRINT“IN DOUBLE-PRECISION, THAT’S-*
11@ C=17+D/100

120 PRINT C

130 PRINT:PRINT"0D.K. "jA3" 2"

Fig. 3.19. Defining variables by DEFSTR DEFDBL and DEFINT. These
instructions allow you to define certain letters as being particular types of
variables. When DEFSTRA is used. for example, any variable that starts with
A. like A1, AB, AZ, etc., will be a string variable, and no dollar sign is needed to
mark this.

numbers take more memory space to store, and can't be processed as
quickly as single precision numbers. For some uses, though, they are
indispensable. Figure 3.19 illustrates the use of double-precision
numbers in lines 6 to 11¢. Notice, incidentally, that the same ‘name’
can be used for several quite different variables. A program can use
X, X$, X%, and X# for different quantities with no confusion.
Programmers, being merely human, usually prefer to make a note of
how each variable is being used.

Chapter Four
Repetitions and Decisions

Loops

One of the activities for which a computer is particularly well suited
is repeating a set of instructions. Every computer is therefore well
equipped with instructions that will cause repetition, and the Colour
Genie is no exception. We'll start with the simplest of these ‘repeater’
actions, GOTO.

GOTO means exactly what you would expect it to mean - go to
another line number. Normally a program is carried out by
executing the instructions in ascending order of line number. In
plain language that means starting at the lowest numbered line,
working through the lines in order and ending at the highest
numbered line. Using GOTO can break this arrangement, so that a
line or a set of lines will be carried out in the ‘wrong’ order, or carried
out over and over again.

10 PRINT"GENIE GENIE BENIE GENIE G
ENIE"

2@ GOoTvo1e
30 REM PRESS BREAK TO STOP

Fig.4.1. Repeating an action in aloop. You'll have to press the BREAK key to
stop this one.

Figure 4.1 shows an example of a very simple repetition or loop,
as we call it. Line 1§ contains a simple PRINT instruction. When
line 19 has been carried out, the program moves on to line 2§, which
instructs it to go back to line 10 again. This is a never-ending loop,
and it will cause the screen to fill with the word GENIE until you
press the BREAK key to ‘break the loop’. Any loop that appears to
be running forever can normally be stopped by pressing the BREAK
key, though if this does not work, you will have to press the two RST
keys together.

Now try a loop in which there is slightly more noticeable activity.

Repetitions and Decisions 39

Figure 4.2 shows a loop in which a different number is printed out
each time the computer goes through the actions of the loop. We call
this ‘each pass through the loop'. Line 1§ sets the value of the
variable N at 1§. This is printed in line 20, and then line 3¢
decrements the value of N. Line 4@ forms the loop, so that the
program will cause a very rapid countdown to appear on the screen.
Once again, you’ll have to use the BREAK key to stop it.

10 CLS:N=10

26 PRINTN

30 N=N-1

4e GOTO20

5@ REM BREAK NEEDED AGAIN!!

Fig. 4.2, A countdown loop - the BREAK key will be needed again.

Now an uncontrolled loop like this is not exactly good to have,
and GOTO is a method of creating loops that we prefer not to use!
We don’t always have an alternative, but there is one - the
FOR...NEXT loop. As the name suggests, this makes use of two
new instruction words, FOR and NEXT. The instruction that are
repeated are the instructions that are placed between FOR and
NEXT. Figure 4.3 illustrates a very simple example of the
FOR...NEXT loop in action. The line which contains FOR must
also include a number variable which is used for counting, and
numbers which control the start of the count and its end. In the
example, N is the counter variable, and its limit numbers are | and
1. The NEXT is in line 49, and so anything between lines 2f) and 4¢)
will be repeated.

18 CLS
20 FOR N=1 TO 1@

30 PRINT"GENIE MAGIC*"
4@ NEXT

Fig. 4.3 Controlling a loop with a count, using FOR and TO with NEXT.

As it happens, what lies between these lines is simply the PRINT
instruction, and the effect of the program will be to print GENIE
MAGIC ten times. At the first pass through the loop, the value of N
is set to 1, and the phrase is printed. When the NEXT instruction is
encountered, the computer increments the value of N, from 1to2in
this case. It then checks to see if this value exceeds the limit of 19 that
has been set. If it doesn’t, then line 30 is repeated, and this will
continue until the value of N exceeds 1§ - we'll look at that point
later. The effect in this example is to cause ten repetitions.

You don't have to confine this action to single loops either. Figure

40 Mastering the Colour Genie

1@ CLS

20 FOR N=1 TO 10

30 PRINT“COUNT IS ®;N
4@ FORJ=1 TO S5001NEXT
50 CLS:NEXT

Fig. 4.4. Nested loops. The loop that used J is completely enclosed (nested)
inside the loop that uses N

4.4 shows an example of what we call nested loops, meaning that one
loop is contained completely inside another one. When loops are
nested in this way, we can describe the loops as inner and outer. The
outer loop starts in line 20, using variable N which goes from 1 to 19
in value. Line 3@ is part of this outer loop, printing the value that the
counter variable N has reached. Line 49, however, is another loop.
This must make use of a different variable name, and it must start
and finish again before the end of the outer loop. We have used
variable J, and we have put nothing between the FOR part and the
NEXT partto becarried out. All that this loop does, then, is to waste
time, making sure that there is some measurable time between the
actions in the main loop. The last action of the main loop is clearing
the screen in line 50. The overall effect, then, is to show a count-up
on the screen, slowly enough for you to see the changes, and wiping
the screen clear each time. In this example we have used NEXT to
indicate the end of each loop. We could use NEXT J in line 4¢ and
NEXT N in line 5@ if we liked, but this is not essential. It also has the
effect of slowing the computer down, though the effect is not
important in this program. Whenyoudo use NEXT Jand NEXTN,
you must be absolutely sure that you have put the correct variable
names following each NEXT. If you don't, the computer will stop
with a NF error - meaning NEXT without FOR.

Even at this stage it's possible to see how useful this FOR...NEXT
loop can be, but there’s more to come. To start with, the loops that
we have looked at so far count upwards, incrementing the number
variable. We don’t always want this, and we can add the instruction
word STEP to the end of the FOR line to alter this change of
variable value. We could, for example, use a line like:

FOR N=1TO 9 STEP 2

which would cause the values of N to change in the sequence
1,3,5,7,9. When we don't type STEP, the loop will always use
increments of 1.

Figure 4.5 illustrates an outer loop which has a step of —1, so that
the count is downwards. N starts with a value of 1§, and is

Repetitions and Decisions 41

1@ CLS

20 FOR N=1@ TO @ STEP -1

3@ PRINT N3° SECONDS AND COUNTING™
4@ FOR J=1TOS@O:NEXT

5@ CLS:NEXT

6@ PRINT"BLASTOFF!'!"

Fig. 4.5. A countdown program, using two loops.

decremented on each pass through the loop. Line 4f once again
forms a time delay so that the countdown takes place at a civilised
speed. This is a particularly useful way of slowing the countdown. If
we want to speed the rate up, the easiest way is to use an integer
variable such as N% in place of N. If we do this, however, we can't
use steps that contain fractions, like .1

1@ CLS

2@ FOR N=1T03

30 PRINT N

40 NEXT

sS@ PRINT "N IS NOW "N
&0 FOR N=5 TQ 1 STEP -1
70 PRINT N

80 NEXT

9@ PRINT*“N IS NOW 3N

Fig.4.6. Thevalue of the counter variable at the end of a loop will have gone
one step beyond the limit

Every now and again, when we are using loops, we find that we
need to use the value of N after the loop has finished. It's important
to know what this will be, however, and Fig. 4.6 brings it home. This
contains two loops, one counting up, the other counting down. At
the end of each loop, the value of the counter variable is printed.
This reveals that the value of N is 6 in line 5@, after completing the
FOR N=[TO Sloop, and is § in line 99 after completing the FOR
N=5TO 1 STEP—1loop. If you want to make use of the value of N,
or whatever variable name you have selected to use, you will have to
remember that it will have changed by one more step at the end of
the loop.

One of the most valuable features of the FOR...NEXT loop,
however, is the way in which it can be used with number variables

1@ CLS

20 A=2:B=5:C=10@

3@ FOR N=A TO B STEP B/C
4@ PRINT N

50 NEXT

Fig. 4.7. Using a FOR...NEXT loop with variables and an expression

42 Mastering the Colour Genie

instead of just numbers. Figure 4.7 illustrates this in a simple way.
The letters A, B and C are assigned as numbers in the usual way in
line 29, but they are then used ina FOR...NEXT loop in line 3. The
limits are set by A and B, and the step is obtained from an
expression, B/C. The rule is that if you have anything that
represents a number or can be worked out to give a number, then
you can use it in a loop like this.

Loops and decisions

It's time to see loops being used rather than just demonstrated. A
simple application is in totalling numbers. The action that we want is
that we enter numbers and the computer keeps a running total,
adding each number to the total of the numbers so far. From what
we have done so far, it's easy to see how this could be done if we
wanted to use numbers in fixed quantities, like ten numbers in a set.
The program of Fig. 4.8 does just this,

1@ TT=0:1CLS

2@ PRINT“TOTALLING NUMBERS PROGRAM"

3@ PRINT“ENTER EACH NUMBER AS REQUESTED"
4@ PRINT“THE PROGRAM WILL GIVE THE TOTAL

5@ FOR N=1 TO 1@

60 PRINT°NUMBER "jN3" PLEASE “j
7@ INPUT J:TT=TT+J

8@ NEXT

9@ PRINT:PRINT"TOTAL IS “577T

Fig. 4.8. A totalling program for ten entries only.

The program starts by setting a number variable TT to zero. This
is the number variable that will be used to hold the total, and it has to
start at zero. As it happens, the Colour Genie arranges this
automatically at the start of a program, but it's a good habit to
ensure that everything that has to start with some value actually
does. We can't, incidentally, use TO for this variable, because TO is
a reserved word, part of the FOR...NEXT set of words.

Lines 2¢) to 4¢ issue instructions, and the action starts in line 5¢.
This is the start of a FOR...NEXT loop which will repeat the actions
of lines 69 and 79 ten times. Line 69 reminds you of how many
numbers you have entered by printing the value of N each time, and
line 79 allows you to INPUT a number which is then assigned to
variable name J. This is then added to the total in the second half of
line 79, and the loop then repeats. At the end of the program, the

Repetitions and Decisions 43

variable TT contains the value of the total, the sum of all the number
that have been entered.
1t's all good stuff, but how many times would you want to have just

ten numbers? It would be a lot more convenient if we could just stop
the action by signalling to the computer in some way, perhaps by
entering a value like @ or 999. A value like this is called a
‘terminator’, something that is obviously not one of the normal
entries that we would use, but just a signal. For a number-totalling
program, a terminator of @ is very convenient, because if it gets
added to the total it won’t make any difference.

10 CLS:PRINT"ANOTHER TOTAL FINDER®

2@ PRINT“THE PROGRAM WILL TOTAL NUMBERS

FOR vOu*

30 PRINT"ENTER A ZERO TO STOP*

4@ TT=0

S@ INPUT*NUMBER, PLERSE" 3N

60 TT=TT+N

7@ PRINT"TOTAL SO FAR IS °3TT

80 IF N<>OTHEN S50

Fig 4.9. Atotalling programthattests in line 89 for the entry of azero in line
50

Figure 4.9, therefore, shows an example of this type of program in
action. We can’t use a FOR.. .NEXT loop, because we don't know in
advance how many times we might want to go through the loop, so
we have to go back to using GOTO. This time, however, we'll keep
GOTO under closer control - the word won't even appear in the
program! This time the instructions appear first, but we still have to
make the total variable TT equal to zero in line 4¢. Each time you
type a number, then, in response to the request in line 50, the
number that you type is added to the total in line 6@, and line 79
prints the value of the total so far. Line 8 is the loop controller, and
the key to the control is the instructions word IF. IF is used to make
a test, and the test in line 8 is to see if the value of N is not equal to
zero. The odd-looking sign that is made by combining the ‘less-than’
and the ‘greater than’ signs, <>, is used to mean ‘not equal’, so the
line reads: ‘if N is not equal to zero, then (GOTO) line 5¢°. We can
put the GOTO in, or leave it out. Since it’s just a few more letters to
type, I've left it out.

The effect, then, is that if the number which you have typed in line
5@ was not a zero, line 8¢ will send the program back to repeat line
5@. This will continue until you do enter a zero. When this happens,
the test in line 89 fails (N is zero), and the program looks for a line

44 Mastering the Colour Genie

9¢. Since it can’t find one, it stops. This kind of action is called a
‘repeat...until' loop.

Now this allows you much more freedom than a FOR...NEXT
loop, because you are not confined to a fixed number of repetitions.
The key to it is the use of IF to make a decision - and that's what we
need to look at more closely now.

Dacisions, decisions

We can make a number of types of comparisons between number
variables or numbers, and these are listed in Fig. 4.10. The
mathematical signs are used for convenience, and you have to
remember which way round the ‘greater than' and ‘less than’ signs
have to be. It's important to note that the equals sign means

@
[
S

Meaning

Quantities are identical
Quantity on left is greater than quantity on right
Quantity on left is less than quantity on right.
Quantity on left is greater than or equal to quantity on right.
Quantity on left is less than or equal to quantity on right.
> Quantities are not equal.

ANV AV I

Fig. 4.10. The tests that we can make on variables.

‘identical to’ when it is used in a test like this. If A is 39999999 and B
is 4.000PPPP then a test such as IF A= B will fail - A is not identical
to B, even though it is close enough to be equal to our eyes. The
important point here is that the numbers we see on the screen have
been rounded, sothat PRINT A in the example above might give the
result 4. The test, however, is made on the numbers which have not
been rounded

S
2@ PRINT"PRESS Y OR N KEY®
3@ PRINT" -THEN RETURN"
4@ INPUT AS
S50 IF AS="Y"THEN PRINT “THAT’S YES"
&0 IF AS="N“THEN PRINT “THAT’S NO*

Fig 4.11. Testing a string for a Y or N reply.

Repetitions and Decisions 45

Figure 4.11 shows another test - this time on string variables. The
instructions are in lines 2 to 39 - you are asked to type the Y or N
key. Line 4¢ gets your answer; you have to type Y or N and then
press RETURN. The key that you have pressed has its value
assigned to AS, so that A$ should be Y or N. Lines 59 and 6@ then
analyse this result. If the key that you pressed was neither Y nor N,
nothing is printed by line 5 or line 6¢

The test in this example is for identity. Only if AS is absolutely
identical to Y will the phrase ‘THAT'S YES’ be printed. If you typed
a space ahead of Y, or a space following, or typed y in place of Y,
then AS will not be identical, and the test fails. Failing means that A$
is not identical to Y and everything that follows THEN in that line
will be ignored. It's up to you to form these tests so that they behave
in the way that you want!

1@ CLS

20 PRINT"TYPE V OR N°

3@ INPUT As

40 IF AS="Y"THEN 1@0ELSE IF A$="N" THEN
200

5@ PRINT"YOUR ANSWER “iA$" IS NOT Y OR N
-PLEASE TRY AGAIN":E0TO30

&0 END

160 PRINT"THAT WAS VES!

110 END

200 PRINT"THAT WAS NO'*"

210 END

Fig. 4.12. Using ELSE with IF and THEN to extend a test

The Colour Genie, fortunately for you, joins that exclusive band
of computers that allows you to extend this IF... THEN test. The
extension consists of the instruction word ELSE, and it offers an
alternative to the test that is carried out by IF. Figure 4. 12illustrates
this in action, with another Y/N program. The key line here is line
4, where we have a pair of tests that are carried out in one line. Line
4¢ starts with IF A$ = “Y”, and normally if A$ is not identical to Y
the rest of the line would be ignored. The presence of the word
ELSE, however, forces the computer to carry out whatever follows
ELSE if the first test fails. Let’s see how this works.

If AS is Y, then the first test in line 40 succeeds, and the program
moves to line 19@. This prints a message, and the program ends. If
AS$ is N, then the first test in line 4 fails, but the presence of ELSE
forces the computer to carry out the piece of program that follows
ELSE. This is another test, so that if A§ is N, the program jumps to
line 2¢¢, prints a different message, and ends

46 Mastering the Colour Genie

If both tests fail, though, the program will move from line 4@ to
line 5f. Your answer was not exactly Y or N, so that you are asked to
try again, and the GOTO3f at the end of line 5 causes the program
to repeat from line 30. This line constitutes a mugtrap, a way of
trapping mistakes. Very often when you have a choice of answers,
you want to be sure that only certain replies are permitted. A
mugtrap is a section of program that is intended to deal with an
incorrect entry. A good mugtrap should show the user the error of
his/her ways, and indicate what answer or answers might be more
acceptable. This is very often important, because an incorrect entry
in some types of program could cause the program to stop with an
error message showing. For the skilled programmer (this will be
you, later!) this is just a minor annoyance, but for the inexperienced
user it can cause a minor panic. A good program doesn't allow any
entries that would cause the program to stop. Mugtraps are our
method of ensuring this.

10 CLS: X=RND(1@)

20 PRINT"BUESS THE NUMBER'"

3@ PRINT:PRINT"IF YOU GET NEAR, I’LL TEL
L vou-

4@ INPUT N

S0 IF N=X THEN PRINT"SPOT ON!“:END

6@ IF ABS(N-X)<3 THEN PRINT"CLOSE - IT W

AS "§X:END
7@ GOTO1e

Fig 4.13. A number-guessing game which uses a test

Just to emphasise the sort of power that these simple instructions
give you, Fig. 4.13 illustrates a very elementary number-guessing
game. Line 1§ clears the screen, and the X = RND(1§) step causes
variable X to take a value that lies between 1 and 1. We can't
predict what this value will be, because RND means ‘select at
random’ - a whole number is picked, somewhere in the range of 1 to
19. If we had programmed RND(19), the range would have been
from | to 1#9 and so on. RND picks numbers randomly enough for
games purposes, but not quite randomly enough for serious
statistical users. In lines 2) and 30, the instructions ask you to guess
the size of the number, with the difference that you don't have to find
it exactly. You enter your number at line 49, and the tests are made
in lines 50 and 60. If the number that you picked is identical to the
random number, then you get the SPOT ON message in line 5@, and
the program ends. The less obvious test is in line 69. The expression
N—X is the difference between your guess, N, and the number X. If
your guess is larger than the number, then N—X s a positive number.

Repetitions and Decisions 47

If your guess is less than X, then N-X is a negative number. The
effect of ABS, however, is to make any number positive, so thatif X
were S and you guessed 6 or 4, then ABS(N—X) would come to 1. If
you get a difference of 1 or 2 (less than 3), the message in line 60 is
printed. If you don't get anywhere near, the program repeats
because of its GOTOIQ in line 79. It's very simple, but quite
effective. How about devising a scoring system?

Single key reply

So far, we have been puttingin Y or N replies with the use of INPUT,
which means pressing the key and then pressing RETURN, This has
the advantage of giving you time for second thoughts, because you
can delete what you have typed and type a new letter before you
press RETURN. For snappier replies, however, there is an
alternative in the form of INKEYS. INKEYS is an instruction that
carries out a check of the keyboard to find if a key is pressed. This
checking action is very fast, and normally the only way that we can
make use of it is by placing the INKEYS$ instruction in a loop which

1@ CLS

20" PRINT"PRESS ANY KEY..."

3@ K$=INKEYS$: IF K$=""THEN3@

4@ PRINT"IT WAS “;Ks$
S@ REM SOME KEYS DO NOT GIVE A CHARACTER

Fig 4.14. The INKEYS loop. You can use this for one-key answers.

will repeat until a key is pressed. Figure 4.14 shows sucha loop. The
INKEYS instruction will produce a string quantity when any key is
pressed, so we assign INKEYS to a string variable, K$. In this way,
when any key is pressed, the quantity that it represents will be
assigned to K$, and if K$ is a ‘blank string’, meaning that no key was
pressed, the line loops back to its start again. Note how we indicate a
blank string by using two quotes with no space between them. By
using the program of Fig. 4.14 you can see the effect of pressing
different keys. By changing line 59 to GOTO29, you can make this
program repeat until you press the BREAK key. Inthis way, you can
find which keys will have the effect. Some keys will produce no
visible character on the screen in line 4¢), but will nevertheless allow
the program to jump out of its loop in line 3. Note, by the way, that
one key certainly won’t work in this way - the BREAK key!

48 Mastering the Colour Genie
Menus and subroutinas

A choice of two items, such as in Fig. 4.11, isn't exactly a consumer's
dream, not in the West anyway. We can extend the choice by a
program routine that is called a menu. A menu is a list of choices,
usually of program actions. By picking one of these choices, we can
cause a section of the program to be run. One way of making the
choice is by numbering the menu items, and typing the number of
the one that you want to use. We could use a set of lines such as:

IF K = 1 THEN 1¢¢¢
IF K = 2 THEN 2¢¢¢

and so on. There is a much simpler method, however, which uses a
new instruction ON N GOTO, where N is a number variable. You
can use any number variable, of course, not just N.

1@ CLS

2@ PRINTTAB(18) "MENU"

3@ PRINT:PRINT

4@ PRINT"1. ENTER NAMES"

S@ PRINT"2. ENTER PHONE NUMBERS"
6@ PRINT*3. LIST ALL NAMES"

7@ PRINT"4. LIST LOCAL NUMBERS"
8@ PRINT"S. END PROGRAM. "

9@ PRINT

1060 PRINT"PLEASE SELECT BY NUMBER"
11@ KS=INKEY$: IF K$=""THEN 11@

120 K=VAL (K$)1IF K<10R K>S THEN PRINT"IN
CORRECT CHOICE - 1 TO S ONLY":PRINT"PLEA
SE TRY AGAIN":GOTO11@

13@ ON kK GOTO1Se, 160,170,180, 198
14@ END

15@ PRINT"“NAMES SECTION":END

160 PRINT"NUMBERS SECTION": END

170 PRINTLIST OF NAMES":END

18@ PRINT“LOCAL NUMBERS":END

19@ END

Fig. 4.15. A typical menu choice using ON K GOTO.

Figure 4.15 shows a typical menu that uses this instruction. Lines
19 to 99 present the menu items on the screen, and line 189 then
invites you to pick one item by typing its number. The INKEY$ loop
in line 119 keeps the program looking for a key until you make your
choice, and then line 120 tests your choice with a mugtrap. There’sa
new instruction, VAL, in line 12¢. VAL means ‘number value’, and
it's used to convert a number that is in string form back into number
form. This has to be done because INKEY$ produces a string
variable, and you can't compare a string with a number (nor a rose

Repetitions and Decisions 49

with a carrot). By using K=VAL(KS) you get a number variable K
which will hold a number that is in the correct form to be compared.
If you had pressed a letter key then K will be zero.

The choice is then made in line 13@, with the ON K GOTO
instruction. Now what happens here? If K equals 1, then the first line
number that follows GOTO is used. If K equals 2, then the second
line number following GOTO is used, and so on. All that you have to
do is to arrange the line numbers in the same order as your choices.
You needn’t have a list that looks neat. A line such as
ONKGOTO50,216,484,714,109@ would be just as satisfactory so
long as these numbers contained the start of routines that dealt with
the menu choices. In this example, the line numbers simply lead to
PRINT instructions so as to keep the example reasonably short.

This type of menu selection is useful, but an even more useful
method makes use of subroutines. A subroutine is a section of
program which can be inserted anywhere that you like in a longer
program. A subroutine is inserted by typing the instruction word
GOSUB, followed by the line number in which the subroutine starts.
When your program comes to this instruction, it will jump to the line
number that follows GOSUB, just as if you had used GOTO. Unlike

1@ CLS

2@ PRINT“THIS 1S A °}

3@ GasuBieee

4@ PRINT"SUBROUTINE":PRINT: PRINT

56 PRINT"RED LIGHT AND GREEN LIGHT MAKE
n$:60SUB100Q: PRINT1PRINT L IGHT"

60 PRINT:PRINT:END

100@ PRINT"YELLOW “;

1010 RETURN

Fig 4.16. lllustrating the use of a subroutine.

GOTO, however, GOSUB offers an automatic return. The word
RETURN is used at the end of the subroutine lines, and it will cause
the program to return to the point immediately following the
GOSUB. Figure 4.16 illustrates this. When the program runs, line
29 prints a phrase, with the semicolon used to prevent a new line
from being selected. The GOSUBI@@@ in line 39 then causes the
word YELLOW to be printed, but the RETURN in line 1919 will
send the program back to line 49, the instruction that immediately
follows the GOSUBI@@@. This action will also occur even when the
GOSUB is part of a multistatement line, as line 5§ demonstrates.
The GOSUBI9@9 will cause the word YELLOW to be printed, but
the return is to the PRINT instructions that follow GOSUB 140§ in

§0 Mastering the Colour Genie

1@ CLS:PRINT

2@ PRINTTAB(10) "CHOOSE YOUR MONSTER™

3@ PRINT

40 PRINTTAB(2)"1.VAMPIRE. *

5@ PRINTTAB (2)"2.WEREWAOLF."

4@ PRINTTAB(2)"3.20MBIE. "

7@ PRINTTAB(2) “4.SGT. MAJOR."

80 PRINTTAB(2)"5.SHOP STEWARD."

9@ PRINT:PRINT"SELECT NUMBER,PLEASE"

100 K$=INKEY$:IF K$=""THEN 100

110 K=VAL (K$): IF K>SORK<1THEN PRINT“FAUL
TY SELECTION — 1 TO S ONLY. PLEASE TRY A
BAIN. ":60OTO100

120 ON K GOSUB 1009, 2000, 3000, 4000, 5000
138 PRINT"THAT'S THE END"

14@ END

10@@ PRINT"BL 00D, BLOOD": RETURN

2000 PRINT“HOWL, SNARL" : RETURN

3200 PRINT"STILL ASLEEP"31RETURN

4000 PRINT"YOU ORRIBLE LITTLE MAN":RETUR

N
5008 PRINT"EVERYBODY OUT":RETURN

Fig 4.17. Using subroutines in a menu chaice

line 5@; it doesn’t jump to line 6@. This example is, of couse, a yellow
subroutine.

Now for something more serious. Figure 4.17 shows subroutines
in use as part of an (imaginary) games program. Lines 1§ to 8¢ offer
a choice, and line 99 invites you to choose. The familiar INKEY$
and mugtrap actions follow, and then line 120 causes the choice to
be carried out. This time, however, the program will return to
whatever follows the choice. For example, if you pressed key 1, then
the subroutine that starts at line 1§@@ is carried out, and the
program returns to line 12§ to check if you might also want
subroutines 20¢@, 3099 4999, or SBPP. Since the value of K isstill 1,
the program then goes to line 13¢ and ends. If line 1#¢@ had altered
the value of K, however, you could find that a second subroutine was
selected following the first one. The use of a subroutine is extremely
useful in menu choices, but it’s even more useful for pieces of
program that will be used several times in a program. Take a look at
Fig. 4.18 by way of an example. The subroutine is simply the
INKEYS ‘press-any-key’ routine, and it's one that you are likely to
use many times in the course of any program. Putting the INKEY$
into a subroutine means that you need to type these program lines
once only. Wherever you need the action, you simply type
GOSUBI@@@ (or whatever line number you have used), and the
routine will be inserted when the program runs.

Repetitions and Decisions 51

1@ CLS

20 PRINT"CHOOSE 1 OR 2, PLEARSE"
3@ GOSuB1009®

40 A=VAL (KS$)

S@ PRINT"CHOOSE Y OR N,PLEASE®
6@ GOSUB1@e

76 Bs$=KSs

8@ PRINT"YODU CHOSE “jA3" AND ";iB$
9@ END

1000 K$=INKEY$: IF K¢$=""THEN1@0O
1010 RETURN

Fig. 4.18. A subroutine used by several parts of a program.

Figure 4.19 shows an elaboration on this one. The trouble with
INKEYS is that it doesn't remind you that it's in use, there's no
question mark printed as there is when you use INPUT. The
subroutine in lines 160 to 194¢ remedies that by causing an asterisk
to flash while you are thinking about which key to press. The
asterisk is flashed by alternately printing the asterisk and the delete
step. Yes, CHRS(8) is what causes the delete action, and we'll look at
this instruction method later. Meantime, make friends with
subroutines. They are not just a useful way of obtaining anaction at
several points in a program, they are an indispensable aid to
program planning, of which there's much more in Chapter 6.

10 CLS

2@ PRINT"CHOOSE 1 OR 2, PLEASE"
30 GOSUB100Q

40 A=VAL (K$)

S@ PRINT"CHOOSE Y OR N,PLEASE"
60 GOSUB1090

7@ Bs=Ks$

B@ PRINT"YDU CHOSE
90 END

1000 KS$=INKEY$
1010 IF K$<>""THEN RETURN
1020 PRINT"s°}

1030 PRINTCHRS (8);

104@ GOTO1000

Fig. 4.19. Using a flashing asterisk subroutine to improve INKEYS

Chapter Five
Programs with Strings
Attached

String functions

In Chapter 3, we took a fairly brief look at number functions. If
numbers turn you on, that's fine, but string functions are in many
ways more interesting. What makes them that way is that the really
eye-catching and fascinating actions that the computer can carry out
are so often done using string functions. What's a string function,
then? As far as we are concerned, a string function is any action that
we can carry out with strings. That definition doesn't exactly help
you, I know, so let’s look atan example. Figure 5.1 shows a program
that prints GENIE as a title. What makes it more eye-catching is the
fact that the word is printed with twelve hashmarks (#) on each side.

1@ CLEAR100

2e CLS

3@ AS=STRINGS (12,"8") +~"GENIE"+STRINGS (12
gy

[
40 PRINTTAB(S)AS

Fig. 5.1. STRINGS used to create lines of characters.

The hash marks are produced by a string function whose instruction
word is STRINGS. STRINGS means ‘make a string out of’, and it
has to be followed by two items placed within brackets and
separated by a comma. The first of these items is the number of
identical characters that you want in this string. The second item is
the character itself. In this example, we've used the # character, and
it has had to be placed between quotes.

STRINGS is a useful way of creating strings of one character, and
it's particularly useful when we come to look at graphics characters.
There are, however, strings attached, as it were. One is string space.
When your Colour Genie is switched on, it reserves a small amount
of memory for storing strings. The amount is fairly small, only

Programs with Strings Attached 53

enough for 50 characters, because a surprising number of programs
use less than this. When you make a lot of use of the STRINGS
instructions, however, you can bite deeply into this small allocation,
and this will cause your program to stop with an OS message when
the allocation is used up. OS means ‘out of string space’, and it
requires you to reserve more space and try again. You can reserve
more string space by the CLEAR instruction which is illustrated in
line 1§ of Fig. S.1. By using CLEAR I§§, we reserve enough
memory for 100 string characters. We don't need as much as this for
the program, but it's as well to be on the safe side.

32 33 ! 34 ¢ 35 # 3 s
37 % 38 & 39 4 (41)
42 = 43 + 44 45 - 44

a7 7/ 48 o 49 1 S5 231 3

52 & 53 S S4 & 55 756 8
57 9 58 59 3 b0 < 41 =
&2 > &3 2 44 @ 65 A b6 B
67 C 68 D &9 E 7 F 71 G
72 H 73 1 74 J 75 K76 L
7 n 78 N 79 0 Be P B1 @
82 R 83 s 84 T B85S uBs v

-

a7 w 88 X 89 Y 96 Z 91
92 \ 93 1 94 -~ 95 9%

97 a 98 th 99 ¢ 108 d 101 e
162 § 163 q 164 h 105 i 1@6 j

167 k 108 1 169 m 110 n 111 o

117 u 118 v 119 w 120 x 121 y
122 z 123 (124 ! 125) 126 ~

127 ®

Fig. 5.2. The ASCII codes, as produced by a printer.

§4 Mastering the Colour Genie

The other point about STRINGS is that the second item in the
brackets can be a number, with no quotes. Each character that is
used by the Genie is represented by a code number, using what we
call ASCII code. The letters stand for American Standard Code for
Information Interchange, and the ASCII (pronounced Askey) code
is one that is used by most computers. Figure 5.2 shows a printout of
the ASCII code numbers and the characters that they produce. In
place of the hashmark that we have used between quotes in Fig. 5.1,
then, we could have used the number 35, making the instruction into
STRING$(12,35), which is shorter.

10 CLS1CHARI
2@ AS~STRINGS (40, 141)

30 PRINTTAB(14) “6ENIE MAEIC"
40 PRINTAS

Fig. 53 Using ASCII codes of more than 127 to get graphics characters.

The number characters of ASCII code extend only from 32 to 127.
The code numbers above 127 are used by the Colour Genie for other
purposes, and we can select how we make use of them. Figure 5.3
gives a flavour of this, something that we’ll investigate in more detail
in Chapter 7. By using CHAR3 in line 19, we select which group of
characters will appear on the screen for code numbers 128 to 255.
The program then uses a string of the character whose code is 141 to
make an underline for the title that is printed in line 3¢

The logic of LEN

String variables allow us to carry out a lot of operations that can’t be
done with number variables. One of these operations is finding out
how many characters are contained in a string. Since a string can
contain up to 255 characters, a method of counting them is rather
useful, and LEN is that method. LEN has to be followed by the name
of the string variable, within brackets, and the result of using LEN is
always a number so that we can print it or assign it to a number
variable.

Figure 5.4 shows a simple example of LEN in use. Line 2 assigns

10 CLS
20 A®="GENIE"

30 PRINT“THERE ARE “;LEN(A$);- LETTERS
IN "iAs

Fig 5.4. Using LEN 1o measure the length of a string

Programs with Strings Attached 55

a variable and line 30 tells you how many letters are in this variable.
This is hardly earth-shattering, but we can turn it to very good use,
as Fig. 5.5illustrates. This program uses LEN as part of a subroutine
which will print a string called T$ centred on a line. This is an
extremely useful subroutine to use in your own programs, because
its use can save you a lot of tedious counting when you write your
programs. The principle is to use LEN to find out how many
characters are present in the string TS. This number is then divided
by two, and subtracted from 20, using the formula that we saw first
in Chapter 2. If the number of characters in the string is an odd
number, then 2¢-LEN(T$)/2 will contain a .5, but this is completely
ignored by TAB when the string is printed.

10 CLS

20 T$="GENIE MAGIC"

30 GOSUB10e0

4@ PRINT

50 TS$=STRINGS (20,"&")

60 GOSUB1000

7@ PRINT1PRINT

10@ END

1000 PRINTTAB(20—LEN(TS)/2);Ts
1010 RETURN

Fig. 55 A subroutine for centring titles, using LEN

The whole process can be done in one line, in this case line 199§ of
the subroutine. Once in place, we can call this subroutine to centre
anything that has thename T$. In line 20, TS is assigned to the words
GENIE MAGIC, and this phrase is printed centred. Inline 5@, TS is
assigned to a string of twenty asterisks, using STRINGS (some
computer owners would have to type twenty asterisks here!). This is
also printed centred by the subroutine.

Notice, by the way, that if we want anything printed centred by
this subroutine, we have to give it the variable name of T$. This
action is called ‘passing a variable’ to the subroutine, and it's
something that we have to keep a careful eye on when we use
subroutines. You can’t expect a subroutine that is written to print TS
centred to have any effect on a string called AS.

By the left, slice
The next group of string operations that we're going to look at are

called slicing operations. The result of slicing a string is another
string, a piece copied from the longer string. Stringslicing is a way of

56 Mastering the Colour Genie

finding what letters or other characters are present at different
places in a string.

All of that might not sound terribly interesting, so take a look at
Fig. 5.6. The string AS$ is assigned in line 29, and sliced in line 3§.
What’s printed in line 4¢ is the word IMAGE. Now how did this

1@ CLS

20 As="IMAGINATION"
30 BS=LEFTS(AS,4)+"E"
4@ PRINT Bs$

S@ PRINT:PRINT

Fig 5.6 Slicing the left side of a string

happen? The instruction LEFTS means ‘copy part of a string
starting at the left-hand side’. LEFTS has to be followed by two
quantities, within brackets and separated by a comma. The first of
these is the variable name for the quantity that we want to slice, A$
in this example. The second is the number of characters that you
want to slice (copy , in fact) from the left-hand side. The effect of
LEFT$(AS$,4) is therefore to copy the first four letters from
IMAGINATION, giving IMAG. The last part of line 3¢ adds an E
to the four-sliced letter, so giving us the word IMAGE printed on the
screen in line 49
For a more serious use of this instruction, take a look at Fig. 5.7.

1@ CLS:PRINT@BQ,""

20 INPUT"YOUR SURNAME,PLEASE";SN$

3@ INPUT"YOUR FIRST NAME,PLEASE":FM$

40 PRINT

S@ PRINT"YOU’LL BE KNOWN AS "jLEFTS(FMS,
1)+, "+LEFTS(SNS, 1} +*."; " AROUND HERE"

Fig 5.7. . Extracting initials from a name

This has the effect of extracting your initials from your name, and
it's done by using LEFTS along with a bit of concatenation. The
INPUT steps in lines 2¢ and 3¢ find your surname and forename,
and assign them to variable names SN§ and FM$. We can’t use the
more obvious FN$ for forename, because FN is a reserved word in
BASIC, though not actually in the BASIC of the Colour Genie! Line
5@ then prints your initials by using LEFTS to extract the first letter
of each string. The letters are then assembled along with full stops,
using concatenation in line 59. If you have two playersina game, it's
often useful to show the initials and score rather than printing the
full name, but the full names can be held stored for use at various
stages in the game.

Programs with Strings Attached 57
All right, Jack?

String slicing isn’t confined to copying a selected piece of the left-
hand side of a string. We can also take a copy of characters from the
right-hand side of a string. This particular facility isn't used quite so
much as the LEFTS one, but it's useful, none the less. Figure 5.8
illustrates the use of the instructions to avoid having to type a word
10 CLS
20 As="GENIE MAGIC"

3@ PRINT:PRINT
4@ PRINT"IT’S ALL ";RIGHTS (AS,5)

Fig. 5.8. Slicing the right side of a string

over again. There are more serious uses than this. You can, for
example, extract the last four figures from a string of numbers like
¢19-242-7916. 1 said a string of numbers deliberately, because
something like this has to be stored as a string variable rather than as
a number. If you try to assign this to a number variable, you'll get a
silly answer. Why? Because when you type N = (10-242-7¢16 then
the computer assumes that you want to subtract 242 from 1§ and
716 from that result. The value for N is then —7248, which is not
exactly what you had in mind! If you use N$="@) 1p—242-70 16" then
all is well.

Now we can get quite a lot of interesting effects from LEFTS and
RIGHTS. Take a look at Fig. 5.9, for example, which does odd
things with the letters of your name. The program prompts you to

1@ CLS

2@ INPUT"YDUR NAME,PLEASE";AS$

30 L=LEN(AS)

4@ FOR N=1TOL

S@ PRINTLEFT$(AS$,N); TAB (20) RIGHTS (AS,N)
6@ NEXT

Fig. 5.9, Using string slicing for an unusual print effect. Try also the effect of
a delay loop between lines 4@ and 5@|

enter your name in line 20, and the name is assigned to A$. In line
3@, we use LEN so that the number variable L contains the total
number of characters in your name. This will include spaces and
hyphens - nobody's likely to use asterisks and hashmarks! Line 4¢
starts a loop which used the total number of characters as its end
limit. Line 5@ is the action line. When N is |, line 5@ prints the first
letter on the left of your name on to the left-hand side of the screen,
and the first letter on the right of your name on the right-hand side.

68 Mastering the Colour Genie

On the next pass through the loop, a new line is selected, and two
letters are printed. This continues until the entire name is printed. If
you use a LEFTS or RIGHTS with a number that is more than the
number of letters in the strong, then you simply get the whole string.

Pig in the MIDdle?

There's another string slicing instruction which is capable of much
more than either LEFT$ or RIGHTS. The instruction word is
MIDS$, and it has to be followed by three items, within brackets and
using commas to separate the items. Item 1 is the name of the string
that you want to slice, as you might expect by now. The second item
is 2 number which specifies where you start slicing. This number is
the number of the character counted from the left-hand side, and
counting the first character as 1. The third item is another number,
the number of characters that you want to slice, going from left to
right and starting at the position that was specified by the first
number.

It’s a lot easier to see in action than to describe, so try the program
in Fig. 5.10. Line 2 assigns A$ to COLOUR GENIE, and line 3¢

1@ CLS

20 AS="COLOUR GENIE"

3@ L=LEN(AS)

4@ FOR N=1TOL

S@ PRINTMIDS (AS,N,1)5" "ji1NEXT
60 PRINTi1PRINT

7@ FOR N=1TOL

8@ PRINTMIDS(AS,N, 1) +"+"3:NEXT

Fig. 5.10. Using MIDS 1o slice from any part of a string.

finds L, the number of characters in COLOUR GENIE. The loop
that starts in line 49 then prints letters taken from the words
COLOUR GENIE. With the value of N equal to 1, the letter that is
sliced is C, because its position in the word is 1, and we're copying
one letter from this position. If we used MID$(AS,1,2), we would get
CO, and if we used MIDS(AS$,3,2) we would get LO. As it is, we
select one letter at a time, and print a space. The semicolon in line 50
then ensures that the next sliced letter is printed on the same line.
The net effect is that the letters are printed spaced out. The second
loop in lines 7¢) and 8¢ performs the same kind of effect, but placesa
+ sign between the letters rather than a space.

One of the features of all of these string slicing instructions is that

Programs with Strings Attached 59

we can use variable names or expressions in place of numbers.
Figure 5.11 shows a more elaborate piece of slicing which uses
expressions. It all starts i ly enough in line 29 with a request

10 CLS

2@ INPUT“YOUR NAME,PLEASE"iNMS$

30 L=LEN(NMS$):C=INT (L/2)+1

40 FOR N=1T0C

S50 PRINTTAB(20-N)MIDS (NMS,C—N+1,N#2-1)
&0 NEXT

Fig. 5.11. A letter pyramid program that makes use of MID$ with number
variables and expressions.

for your name. Whatever you type is assigned to variable NM$§, and
in line 39 a bit of mathematical juggling is carried out. How does it
work? Suppose you type DONALD as your name. This has six
letters so, in line 3@, L is assigned to 6, and C is the whole number
part of L/2 (equal to 3), plus |, making 4. Line 40 then starts a loop
of 4 passes. In the first pass you print at TAB(19) (because N=1), the
MIDS of the name using C-N+ 1, which is 4—1+1=4, and N*2-1,
which is also 1. What you print is therefore MID$(NM$,4,1), which
is A in this example. On the next run through the loop, N is 2,
C-N+11is 3,and N*2-1 isalso 3. What is printed is MID$(NMS,3,3),
which is NAL. The loop goes on in this way, and the result is that you
see on the screen a pyramid of letters formed from your name. It's
quite impressive if you have a long name!

Some odd {and even) characters

It's time now to look at some other types of string functions. We've
met VAL previously - it’s used to convert a number that is in string
form back into number form so that we can carry out arithmetic.
There's an instruction that does the opposite conversion, STRS.
When we follow STRS by a number, number variable, or expression
within brackets, we carry out a conversion to a string variable. We
can then print this as a string, or assign it to a string variable name,
or use string functions like LEN, MIDS$ and all the others. Figure
5.12 illustrates these processes - with a warning! Lines 10 to 39 show
that we can do arithmetic on N$ if we use VAL with it. Line 5¢
converts the number variable V into string form. Now V has been
assigned to the number 2 in line 1§, and we would expect just one
character to be present in the string. Line 69 reveals that there are
two! The reason is that when we use STRS to converta number into

60 Mastering the Colour Genie

1@ N$="22,5"1V=2

2@ CLS:PRINT

30 PRINTNS;" TIMES “3Vi" IS “]VSVAL (NS)
4@ PRINT

506 VS=STR$ (V)

&0 PRINT" THERE ARE “iLEN(VS);" CHARACTE
RS IN "3v; "'~

7@ FRINT

80 PRINTNS;" ADDED TO “;V83" GIVES “iNs$+

Fig. 5.12. Using VAL 1o convert a string into number form, and STRS to
convert a number into string form - along with a space!

string form, a space is left at the left-hand side of the stringin case we
want to put in a sign, + or —. This space is, of course, an extra
character, which explains why 2 appears to consist of two
characters, and 42 of three characters. Line 8¢ shows the strings
being concatenated, just to emphasise the difference between string
variables and number variables.

If you hark back to Fig. 5.2, now, you'll remember that we
introduced the idea of ASCII code. This is the number code that is
used to represent each of the characters that we can print on the
screen. We can find out the code for any letter by the function ASC,
which is followed, within brackets, by a string character. The result
of ASC is a number, the ASCII code number for that character. If
you use ASC(*GENIE"), then you'll get the code for the G only
because the action of ASC includes rejecting more than one
character. Figure 5.13 shows this in action. String variable AS$ is
assigned in line 19 and inline 39 a loop starts which will run through

10 A$="GENIE*
2@ CLS:PRINT
30 FORN=1TO LEN(AS)

4@ PRINTASC (MIDS (AS,N, 1))~ "3
5@ NEXT

Fig. 513 Printing the ASCII codes of a name with the letters spaced out

all the letters in AS. The letters are picked out one by one, using
MIDS, and the ASCII code for each letter is found with ASC. The
space between quotes, along with the semicolons in line 4f, make
sure that the codes are all printed on one line with a space between
the numbers. Simple, really!

ASC has an opposite function, CHRS. What follows CHRS,
within brackets, has to be a code number, and the result is the
character whose code number is given. The instruction PRINT
CHRE(65), for example, will cause the letter A to appear on the

Programs with Strings Attached 61

screen, because 65 is the ASCII code for the letter A. We can use this
for coding messages. Every now and again, it’s useful to be able to
hide a message in a program so that it's not obvious to anyone who
reads the listing. Using ASCII codes is not a particularly good way
of hiding a message from a skilled programmer, but for non-skilled
users it's good enough. Figure 5.14 illustrates this use. Line 50
contains an INKEYS$ loop to make the program wait for you. When

10 CLS:PRINT

2@ PRINT"WHAT'S THE MOST MAGICAL BIRL IN

SONG?"

3@ PRINT

4@ PRINT"PRESS ANY KEY FOR THE ANSWER"

S@ K$=INKEY$:IF K$=""THENS@®

40 PRINT

7@ FOR J=1T031:READN

80 PRINTCHRS (N) 3

9@ NEXT

10@ END

11@ DATA71,49,78,73,49,32,87,73,604,72,32

,84,72,69,32,76,73,71,72,84,32,64,62,79,

a7,78,32,72,45,73,82
Fig 5.14. Using CHRS to find the letter that corresponds to an ASCII code
number

you press a key, the loop that startsin line 7§ prints 31 characters on
the screen. Each of these is read asan ASClI code from a list, using a
READ...DATA instruction in the loop. The PRINTCHRS§(N) in
line 8¢ then converts the ASCII codes into characters and prints the
characters, using a semicolon to keep the printing in a line. Try it! If
you wanted to conceal the letters more thoroughly, you could use
quantities like one quarter of each code number, or 5 times each
code less 20, or anythingelse you like. These changed codes could be
stored in the list, and the conversion back to ASCII codes made in
the program. This will deter all but really persistent de-coders!

The law about arder

We saw earlier, in Fig. 4.10, how numbers can be compared. We can
also compare strings, using the ASCIl codes as the basis for
comparison. Two letters are identical if they have identical ASCII
codes, so it's not difficult to see what the identity sign, =, means
when we apply it to strings. If two long strings are identical, then
they must contain the same letters in the same order. It's not so easy
to see how we use the > and < signs until we think of ASCII codes.

62 Mastering the Colour Genie

The ASCII code for A is 65, and the code for Bis 66. In this sense, A
is ‘less than' B, because it has a smaller ASCII code. If we want to
place letters into alphabetical order, then, we simply arrange them in
order of ascending ASCII codes.

This process can be taken one stage further, though, to comparing
complete words, character by character. Figure 5.15 illustrates this
use of comparison using the = and > symbols. Line 2§ assigns a

10 CLS

20 As="OWERTY"

30 PRINT: INPUT"TYPE A WORD";Be

40 IF Be=-A® THEN PRINT “SAME AS MINE"1EN
D

Se IF A$>Bs THEN Cs$=As:1AS=BS:Bs$=CS

&0 PRINT"ORDER 19 “3A$;" THEN ";Bs

76 END

Fig 5.15 Comparing words by using the ASCII cades of their letters. Words
can be put into alphabetical order in this way

nonsense word - it's just the first six letters on the top row of letter
keys. Line 3¢ than asks you to type a word. The comparisons are
then carried out in lines 49 and 50. If the word that you have typed,
which is assigned to BS is identicalto QWERTY, then the message in
line 49 is printed, and the program ends. If QWERTY comes earlier
in an index than your word, then line 5@ is carried out. If, for
example, you typed TAPE, then since T comes after Q in the
alphabet and has an ASCII code that is greater than the code for Q,
your word AS$ scores higher than BS, and line 5 swaps them round.
This is done by assigning a new string, C$ to A$ (so that C$ =
“QWERTY"), then assigning A$ to BS (so A$ = “TAPE"), then B§
to CS$ (so that B&=“TAPE"). Line 69 will then print the words in the
order A$ and then BS, which will be the correct alphabetical order. If
the word that you typed comes earlier than QWERTY, forexample,
PERIPHERAL, then AS$ is not ‘greater than’ BS, and the testin line
5 fails. No swap is made, and the order A$, then BS, is still correct.
Note the important point, though, that words like QWERTZ and
QWERTX will be put correctly into order - it's not just the first
letter that counts.

Put it on the list

The variable names that we have used so far are useful, but there'sa
limit to their usefulness. Figure 5.16 illustrates this. Lines 19 ta 49

Programs with Strings Attached 63

10 CLS

2@ FORN=1TO1@

3@ A(N)=RND(100)

4@ NEXT

S50 PRINT

&8 PRINTTAB(15) “MARKS LIST"

7@ PRINT:FOR N=1T010

86 PRINT"ITEM “3;N;" RECEIVED "jA(N)" MAR

Fig. 5.16. A list that uses subscripted variables, otherwise known as an
array. This way. you don't need to type a different variable name for each
number on the list!

generate an (imaginary) set of examination marks. This is done
simply to avoid the hard work of entering the real thing! The
variable in line 3p is something new, though. It's called a subscripted
variable, and the ‘subscript’ is the number that is represented by N.
The name that we use has nothing to do with computing, it’sa name
that was used long before computers were around. How often do
you make a list with the items numbered 1,2,3...and so on? These
numbers, 1,23 are a form of subscript number, put there simply so
that you can identify different items. Similarly, by using variable
names A(l), A(2), A(3) and so on, we can identify different items
that have the common variable name of A. A member of this group
like A(2) has its name pronounced as ‘A-of-two’.

The usefulness of this method is that it allows us to use one single
variable name for the complete list, picking out items simply by their
identity numbers. Since the number can be a number variable or an
expression, this allows us to work with any item of the list. Figure
5.16 shows the list being constructed from the FOR...NEXT loop in
lines 29 to 4¢. Each item is obtained by finding a random number
between | and 14§, and is then assigned to A(N). Ten of these
*marks’ are assigned in this way, and then lines 6¢) to 99 print the list.
It makes for much neater programming than you would have to use
if you needed a separate variable name for each number.

Figure 5.17 extends this another step further. This time you are
invited to type a name and a mark for each of ten items. After you
have pressed RETURN following the mark entry, the part of the
screen where you entered the name and mark is cleared by lines 6¢
and 7¢. When the list is complete, the screen is cleared and a total
variable is set tozeroin line 9¢. The list is then printed neatly, and on
each pass through the loop the total is counted up (in line 139) so
that the average value can be printed at the end. The important point

64 Mastering the Colour Genie

here is that it’s not just numbers that we can keep in this list form.
The correct name for the list is an array, and Fig. 5.17 uses both a
string array (names) and a number array (marks).

1@ CLS:PRINT:CLEARS00

20 PRINT"PLEASE ENTER NAMES AND MARKS®"
3@ FOR N=1 TO 1@

40 PRINT@120, “NAME"; 1 INPUT N$(N)
5@ PRINT"MARK";: INPUTA (N)

6@ PRINT@120,STRINGS (39,32)

76 PRINTSTRINGS (39,32)

80 NEXT

90 CLS:T=0

100 PRINTTAB(B) "MARKS LIST":PRINT
11@ FORN=1TO10

120 PRINTTAB(2)N$ (N); TAB(2@)A(N)
130 T=T+A(N)

140 NEXT

150 PRINT

160 PRINT"AVERAGE IS ";T/1@

Fig. 5.17. Using both a string and a number array in the same program

The programs in Figs. 5.16and 5.17 show you how to set up arrays
and use them, but one point has been omitted so far. We were careful
to use only ten items in each array. That's because the Colour Genie
normally provides memory space for numbers up to ten only. This
allows you up to eleven items in an array, in fact, because we can use
A(P) or N$(P) if we like, but it’s still a limitation if you want to use
lists of fifty or more items. All that you have to do, though, if you
need longer lists, is to instruct the computer to prepare space. This is
done by using the instruction word DIM

DIM means ‘dimension’, and the instruction consists of naming
each variable that you will use for arrays, and following the name
with the maximum number, within brackets, that you expect to use.
You aren’t forced to use this number, but you must not exceed it. If
you attempt to use a number that is higher than the one you have put
into the DIM instruction, then the computer will stop with an error
message - BS, meaning ‘bad subscript’. You will have to change the
DIM instruction and start again - which will be tough luck if you
were typing in a list of 1§ names! Note that you can dimension
more than one variable in a DIM line, as Fig. 5.18 shows.

19 DIM AS(50),B(189),C(50),DS(59)

Fig. 5.18. Dimensioning several array variables in one line

Programs with Strings Attached 65
Raws and columns

You can imagine an array as a list of items, one after the other, but
there is a variety of array which allows a different kind of list, called
a matrix. A matrix is a list of groups or items, with all theitems ina
group related. We could think of a matrix as a set of rows and
columns, with each group taking up a row, and the items of a group
in separate columns. Take a look at Fig. 5.19 to see how this works.

10 CLS

2@ FORN=1T03

3@ FORJ=1T02

40 READ N$(N,J)

56 NEXTJ,N

40 FORN=1T03

76 PRINTTAB (S);N$ (N, 1); TAB(25) i N$ (N, 2)
80 NEXT

10@ DATAHORSE,FOAL , COM, CALF, DOG, PUP

Fig. 5.19. A simple matrix of string values.
We use here a variable N$ which has two subscript numbers. The
first number is the row number, the second is the column number,
and we need two FOR...NEXT loops to read data into this matrix.
This is carried out in lines 2 to 5@. Notice the shortened NEXT J,N
in line 59, which is a way of writing NEXT J:NEXTN. Theitemsare
then printed in columns by the loop in lines 6 to 89. In this loop, the
variable N is used as the row number and we use the column
numbers | and 2. The rows contain animal names, and the columns
separate the different names that we use for adult and for young
animals respectively.

Figure 5.20 shows a much more ambitious matrix program. This

10 CLS:DIM As(5e,2)

26 FOR N=1T0S0

30 PRINT@140, “NAME* NPUT AS(N, 1)
40 PRINT“TEL. NUMBER"3:INPUT AS(N,2)
5@ PRINT@160,STRINGS (39,32)

4@ PRINTSTRINGS (39, 32)

70 NEXT

B0 CLSi1PRINT"LIST COMPLETE"

9@ PRINT“PICK AN INITIAL"

100 INPUT Js

11@ FORN=1 TO S@

120 1IF JS=LEFTS(AS(N,1),1) THEN GOSUB 560
130 NEXT

140 END

S@0 PRINT'NAME— “jAS(N,1)

S1@ PRINT"NUMBER- “;AS(N,2)

528 RETURN

Fig. 5.20. A name-and-number matrix.

66 Mastering the Colour Genie

one uses a row number greater than 1§, and so has to be
dimensioned in line 1. The idea is to store sets of names and
telephone numbers which are fed in by you in the course of the loop
in lines 20 to 70. Once the matrix has been filled, you can pick an
initial letter for a name, and ask the computer to print out the name
and number that it has located. I've left out mugtraps just to keep
this example reasonably short, but you would certainly need some
sort of mugtrap, even if only in the form of a message like:

135 PRINT* SORRY, CAN'T FIND ".J§;* ENTRIES”

The next thing you need is to be able to record array and matrix
items so that you can get all the data on tape, and play it back into
the computer when you want it, without more typing. Next chapter,
please!

Chapter Six
Filing and Designing

Data filing

1 left you at the end of Chapter 5 with a program that will create a
matrix of names and telephone numbers. Each time you switch off
the Colour Genie, or type NEW and press RETURN, you will lose
all the information that you painstakingly typed in That's
completely unsatisfactory and so the Colour Genie provides, as all
‘serious’ computers must, for storing this type of data on tape (or on
disk). The big advantage of storing the data separate from the
program is that it allows you to write other programs that use the
same data. If you have a tape that consists of name and address data
for your friends, for example, you can write several programs that
use that data. One might be an envelope printer, another could print
party invitations, a third put messages on Christmas cards. You
need a printer for each of these actions, certainly, but the point that
I’m making is that one set of data will serve for a lot of uses. The next
step is to know how to record and replay such data.

To start with, let's consider how we record and replay simple
variables. The important instruction here is PRINT#-1, and you
have to be fussy about how you type it. The hashmark is used in the
USA in the same way that we use the abbreviation No. to mean
‘number’. This instruction can therefore be read as ‘print number
dash one', and it’s a way of causing a variable to be ‘printed’ not to
the screen or the paper printer but to the cassette recorder. The ‘1" in
this instruction is used because of the possibility of expanding the
system so as to use a second recorder which would be controlled by a
PRINT#-2, instruction.

The PRINT#-1, must be followed by a list of the variables whose
values are to be recorded, with the variable names separated by
commas, It’s the values, not the names that are recorded,

68 Mastering the Colour Genie

incidentally, so we don't have to use the same names when we play
the data back.

Now whenever the Colour Genie comes to the PRINT#-1,
instruction, it willimmediately send the data out, whether you have
a cassette recorder connected or not. This is undesirable, because
you need some time to gather your wits about you and get a cassette
ready and have the recorder switched on and the RECORD and
PLAY keys pressed before the data goes out. Each PRINT#-1,
instruction, therefore, needs some previous step in which you are
warned to get a cassette ready, told to prepare the machine, and
given time to do all this.

Figure 6.1 illustrates this with a simple example. Lines 19 to 39
simply assign three variables, consisting of two strings and a

1@ AS="COLOUR BENIE"
20 CLS: INPUT"YOUR NAME,PLEASE"; B

3@ c=32

4@ PRINT"PLEASE PREPARE A DATA CASSETTE
FOR™

S50 PRINT"RECORDING.PRESS THE PLAY AND RE
CORD*

60 PRINT'"KEYS OF THE RECORDER, THEN ANY
KEY OF*"

7@ PRINT" THE GENIE."

80 K$=INKEY$: IF K$=""THENE@

9@ PRINT"..RECORDING NOW..."

100 PRINT#-1,A$,B$,C

11@ PRINT“RECORDING COMPLETE — PRESS STOP

KEY OF"
120 PRINT“RECORDER NOW, AND REWIND CASSE
TTE"

Fig 6.1. Recording simple variable values.

number, which can be recorded. Lines 4@ to 7@ then print the
message about getting a cassette ready and pressing the keys on the
recorder. You should not use the same cassette for data as you use
for programs. Remember that you will have to wind the cassette on
past the ‘leader’ section.

Once you have chosen a cassette, wound it on, put it into the
recorder, and pressed the PLAY and RECORD keys, youcanlet the
Colour Genie go ahead with recording the data. Line 8¢ has
provided a ‘hang-up’ step while you have been doing all this, and
when you press a key on the Colour Genie's keyboard, the data will
be recorded. Line 99 is important. You need to know what is going
on, because some types of data (long lists, for example) can take a
long time to record on cassette, and you'll ruin the recording if you
turn off the recorder too soon. The ‘recording now' message is a

Filing and Designing 69

useful reminder that this important action is going on. The actual
recording step is in line 1¢@, and when it is complete, the computer
will move on to lines 11¢) and 129, printing another message. This
one lets you know that recording is finished, and that you can now
stop the recorder

The messages and the INKEYS$ action are as important a part of
the routine as the recording itself! There's nothing worse than a
program that does things without warning, doesn’t let you know
what is going on and doesn't tell you whenit has finished. This set of
program lines is one that you will probably use many times, so that it
should be written as a subroutine. After reading Chapter 9, you
might also want to include some other reminders in the form of
sounds.

Having recorded our data, we need to be able to replay it,
otherwise all the effort is wasted. The replay routine follows pretty
much the same pattern as the record routine except that the
instruction that is used is INPUT#—1, in place of PRINT#-1,. You
don't have to use the same variable names following INPUT#-1, as
you used after the PRINT#H-1, that recorded the data, but you
should use the correct variable types. If, for example, you recorded
two strings and a number in that order, then when you replay you
will need two string variables and a number variable of the same type
in that order also

1@ CLS:PRINT

2@ PRINT"PLEASE PREPARE DATA CASSETTE TO
REPLAY. "

3@ PRINT"PRESS ANY KEY WHEN READY"

40 K$=INKEY$:IF K$="*THEN 4@

56 PRINT*PLAYING NOW..."

60 INPUT#-1,A$,BS,C

70 K$=INKEY$: IF K$=""THEN7@

€e CLS

9@ PRINT@16@"THIS IS "iB$+"’s"5;" “Ni"K";
o ung

Fig. 6.2 Replaying simple variable values

Figure 6.2 illustrates this point. Once more, we need a message to
remind us to get the data cassette into the recorder and rewind it to
the correct position for replaying. Line 49 is the familiar INKEY$
loop which keeps the computer waiting until you press a key. When
you press any key on the Colour Genie keyboard, the message in line
50 appears, but no data is actually replayed until you press the
PLAY key on the cassette recorder and the tape startsto replay. The
order of pressing keys in this case is just the opposite of the order

70 Mastering the Colour Genie

that we use for recording. If you press the PLAY key of the recorder
first, some of the signals might be replayed before you press the
Colour Genie key to start the reading. The INPUT#—1, in line 6§
causes the data to be read from the tape and assigned to the variable
names A$, B$ and C. We don't have to use the same variable names,
but we do, remember, have to keep to the same order. Finally, line
79 tells you that the data has been replayed, so that you can now
proceed. Another ‘press-any-key’ step then gives you time to attend
to the recorder before you start making use of the replayed data in
lines 9¢ and 190.

Tape-an-array time

As it happens, the ability to record or replay the odd variable or two
isn’t particularly important. The things that we particularly want to
record are long arrays, because they represent such a large typing
effort that we don’t want to repeat them. On the Colour Genie,

1@ CLS

20 PRINT

30 FORN=1TO1@

4@ A(N)=RND(90@)+10

S50 NEXT

6@ PRINT"PLEASE PREPARE CASSETTE FOR REC
ORDING*

7@ PRINT"PRESS ANY KEY TO START

8@ GOSUB26@

9@ PRINT"RECORDING NOW"

100 FOR N=1T01@

110 PRINT#-1,A(N)

120 NEXT

136 PRINT"RECORDINE FINISHED.."™

140 PRINT"PRESS ANY KEY TO TRY PLAYBACK"
150 GOSUB26Q

160 PRINT"PLEASE PREPARE CASSETTE"

170 PRINT"PRESS ANY KEY...."

18@¢ GOSUB249

196 FOR J=1T01e

200 INPUTS#-1,B(J)

210 NEXT

22@ PRINT"REPLAY COMPLETE-PLEASE PRESS €
TOP KEY*"

23@ FOR N=1TO10

240 PRINT B(N):NEXT

25@ END

260 K$=INKEY$: IF K$=""THEN240 ELSE RETUR

Fig. 6.3 Recording and replaying an array. The same method is used for a
matrix, but two loops are needed.

Filing and Designing 71

recording and replaying an array uses the same type of instructions
as recording and replaying simple variables. The difference is that
the PRINT#-1, and the INPUT#H-1, instructions are held within a
FOR...NEXT loop.

Figure 6.3 shows an example which is arranged to illustrate these
actions without requiring you to do an excessive amount of typing.
Lines 3¢ to 5S¢ construct an array that consists of randomly selected
numbers. We've kept to 1§ numbers so that we don’t need a DIM
instruction. The messages in lines 6§ and 7@ instruct you to get a
data cassette ready, and the INKEYS$ routine has been written in the
form of a subroutine in line 26§ and called in line 8¢. The recording
step which starts at line 99 uses a loop, with the PRINTH-1,
instruction contained within the loop. Lines 13 and 149 then
inform you when recording is complete. This takes rather longer
than you might expect, because the rate of putting array data on to
the tape is quite slow.

The replay routine starts with the ‘press-any-key’ step in line 15¢.
As usual, we need a message that will remind us to get the cassette
ready, and another ‘press-any-key’ in line 189 is used. The replay
instructions are in lines 199 to 219, and whenever the replay is
complete, the set of numbers will be printed. Once again, the steps in
lines 199 to 21§ take quite a lot of time to complete.

The time that is needed for recording and replaying arrays is due
to the fact that the PRINTH=1, and INPUT#-1, instructions deal
with only one item at a time. Most computers contain instructions
which will group the data into sets and then record a set at a time.
When this grouped data is replayed, another instruction ‘ungroups’
the data again. This greatly reduces the time that is needed for
recording and replaying arrays. There are ways of doing this
grouping and ungrouping for yourself so that the Colour Genic
array recording procedures can be almost as fast as that of other
computers. These steps are rather beyond the scope of a beginner's
book, but I have included them in my book Some Useful BASIC
Subroutines (Newnes).

Do it your way

A computer, running other peoples’ programs, can give you a lot of
pleasure and profitable activity. Nothing, however, quite matches
the challenge and enjoyment of writing your own programs and
making the computer do what you want. Next to rubbing a brass

72 Mastering the Colour Genie

lamp, it's the most magical experience there is. I could devote a
whole book just to this subject, but in this section, I'll just throw out
some hints and examples. As your experience grows, you can then
profit from this, and for further reading, I suggest you may find
helpful the advice of Mike James in The Complete Programmer
(also published by Granada).

The main problem in writing your own program is knowing where
to start. The usual answer is ‘somewhere else’! The place not to start
is at the keyboard. It is possible to write a program by sitting down at
the keyboard and typing, but the program that is produced in this
way is not very satisfactory. To be blunt, Dr Frankenstein's attempts
would make yours look rather badly sewn together. If you want a
program that will actually work before you lose interest in it, you
have to start by planning it on paper

The first step of the planning stage consists of writing down what
you want the programto do. You think that’s unnecessary? It’s quite
astonishing how easily you forget what you want a program to do
when you are trying to find out what it actually does. Making a note
of your intentions at the start means that your goal is in front of you,
rather than a dim memory from a few days ago. Write it down!
Figure 6.4 shows an example from an imaginary ‘how far away do
my friends live' program.

The program must:

(a) let me enter names, addresses and distances;
(b) make selection by name, address or distance;
(c) print lists in order of distance;

(d) allow deletions, additions, changes.

Fig. 6.4. A program specification for an imaginary program.

Now at this point, advice becomes a bit more tricky. I don’t know
what type of programs you may want to write. Some of you may
want to write data processing programs, creating files of
information about your interests (stamps, railways, team records,
butterflies ...). Some of you may want the Genie to work for you
keeping accounts, printing receipts, advice notes, balance sheets and
other business purposes. Some may want to write long adventure-
style games in which situations are described on the screen and you
are given a choice of responses. Some may be interested in action
games, arcade style, guessing games, educational games ... the list is
endless.

Filing and Designing 73

There are, however, some common features. I'll start by
considering types of programs that feature menu choices, because a
lot of programs, games or otherwise, are of this type, and they are
similar enough to be treated together. Action games are different,
and really fast action games are just not suitable for programming in
BASIC at all.

Once you have written down what the programis supposed to do,
what's next? A good next step is to make a list of inputs and outputs.
At various stages in the program, you will want to be able to type
information on the keyboard. This might simply be Y or N replies,
or it could be names, addresses and other information. At other
places in the program, you will expect to see information on the
screen. This might, for example, be a list of all the stamps with one
particular watermark, all butterflies with blue wings, all steam
locomotives with six coupled wheels, all indoor plants which need
feeding once a week. Sorting out these inputs and outputs is the next
step for your program design. Figure 6.5 shows what we might
expect for the program whose aims were listed in Fig. 6.4. This listof
inputs and outputs puts a bit more flesh on to the bones of the
original scheme.

INPUTS:

Type names, addresses, distances
Type selection of choices

Type alterations, deletions, additions.

OUTPUTS:

Indicate what is being entered, query mistakes.
Show selections

List in order of distance.

Prompt for next choice.

Fig. 6.5. Inputs and outputs for the program

Now this type of designing follows a system that is called ‘top-
down’ design. The general aim is to get the outlines correct and then
to fill in the detail later, as an artist does. The programming method
that helps us to the greatest extent in this is the subroutine. Wherever
in the program we are uncertain of how we are going to program
anything, we can put GOSUB, followed by a line number, and thena
REM line to remind us what we want the subroutine to do. The
golden rule is to avoid details until the last stages of planning.

What's next? If the program is ‘menu-driven’, meaning that it

74 Mastering the Colour Genie

Menu

. Enter new list.

Add to existing list.

Select by name.

. Select by town.

. Print list up to given distance.
. Alter list item.

. End program

NowmewN -

Fig. 6.6, How the program menu might appear.

contained a list of choices early on, the next step is to design the
menu. For our example, the menu that we want to see on the screen
might look as in Fig. 6.6. Notice that the last menu choice is END
PROGRAM. This is put in for two reasons. One is because it’s a
good idea to return to the menu after any one of the menu choices
has been carried out. It's only by including a ‘quit’ option like this

10 GOSUBS@e
11 REM DIMENSIONING

20 GOSUB&@a

21 REM TITLE

30 GOSUB70@

31 REM INSTRUCTIONS

40 T$="MENU":GOSUBEGS

41 REM 800 IS CENTRE ROUTINE

56 PRINT:PRINT

60 PRINT*1. Enter new list."

70 PRINT"2. Add ta existing list."

80 PRINT"3., Select hy name.”

9@ PRINT"4. Select hy town.®

100 PRINT*S. Print list up ta given dist
ance. "

110 PRINT"6. Alter list item.”

126 PRINT“7. END PROGRAM. "

130 PRINT:PRINT“PLEASE SELECT BY NUMBER,"
140 GOSUB 9000

141 REM INKEY$ ROUTINE

150 ON K 60SUB1000,2000,3000, 4000, 5000, &
o0, 7600

160 CLS: PRINT

17e¢ s0TOsSe

Fig. 6.7. A suggested ‘core’ program. The actions are carried out by the use
of subroutines

that you can stop the program gracefully (yes, of course you can
press BREAK or even the RST keys, but that’s an admission of

Filing and Designing 75

defeat!). The other point is that if you change your mind about
starting the program. an option like this allows you to stop before
you go any further. The menu stage, then, is the end of the beginning
for planning.

You can now think about writing the program! Not all of it,
because all of the detail has been kept for later, but you can write the
‘core’ section. Figure 6.7 shows a suggested core program for our
example. It’s very short, because all of the detail has been left out.
Items like printing a title centred, instructions, and the effects of
menu choice are all delegated to subroutines. This might seem
slightly unnecessary at first glance. The instructions, for example,
would normally be looked at when the program begins and not
again. By putting them into a subroutine, however, you accomplish
two things. One is that it makes it easy for you to call on the
instructions again at any place in the program if you decide todo so.
You may find that you need this facility later, when you have been
using the program for a time. The other point is that by having the
instructions in a subroutine, you can change the instructions easily
without having to disturb the rest of the program too much. It also
makes the program easier to read. Have you ever tried todeciphera
program that made you wade through twenty lines of instructions
before you come to the real program?

It’s much more obvious why some of the other subroutines exist.
Items like the Y/ N choice, ‘press-any-key', and so on, are stock items
in any menu-driven program. We expect to use each of them more
than once in the program, so there’s no doubt about the need to write
them as subroutines.

Now at this stage you have a choice of action. You can continue
planning on paper, or you can take a break to sit at the keyboard and
enter your core program. The really professional way isto planit all
on paper down to the last detail, enter it in one marathon typing
session, and then try to make it work. Every second blue moon, it
does. For my money, entering the core program at this stage is a
better course of action. Why? Because you can test it, and get the
feeling that it is coming along. You need all the encouragement you
can get at this stage! When you attempt to run the core program, of
course, you find that it doesn’t. There are no subroutines yet, so
wherever the program comes across a GOSUB it will hang up with
the error message UL. This means ‘unlisted line’ - you have asked
the computer to run a line that hasn't been written.

This doesn't stop you from testing your core program, though. If
you place some PRINT instruction at each of the GOSUB lines, and

76 Mastering the Colour Genie

1@ GOSUBS00

11 REM DIMENSIONING

26 GOSUB&LOS

21 REM TITLE

30 GOSUB709

31 REM INSTRUCTIONS

40 Ts$="MENU":GOSUBBOGO

41 REM 800 1S CENTRE ROUTINE

56 PRINT:PRINT

60 PRINT"1. Enter new list."

706 PRINT"2. Add to existing list."

8@ PRINT“3. Select by name."

9@ PRINT"4. Select by town."

100 PRINT“S. Print list up to given dist
ance. "

118 PRINT"4. Alter list item."

12@ PRINT7. END PROGRAM.“

130 PRINT:PRINT“PLEASE SELECT BY NUMBER.
140 GOSUB 9@eée

141 REM INKEYS ROUTINE

150 ON K 60SUB10@0, 2020, 3009, 40049, 5000, &
0o, 7000

160 PRINT"PRESE ANY KEY...":160SUB 9000:C
LS

170 GOTOSe

500 PRINT"THIS DIMENSIONS":RETURN

400 PRINT*THIS TITLES"i1RETURN

700 PRINT”INSTRUCTIONS":RETURN

800 PRINTTS;“ (CENTRE THIS) "1 RETURN
1000 PRINT"ENTRY":RETURN

2000 PRINT"ADD":1RETURN

3000 PRINT"SELECT NAME":RETURN

4e0@ PRINT*SELECT TOWN":RETURN

5000 PRINT*“DISTANCE SELECTION"3:RETURN
46000 PRINT"ALTERATION®1 RETURN

7000 END

9002 PRINT"PLEASE PRESS THE APPROPRIATE
KEY"

9010 K$=INKEY®:IF K$="“THEN 9010

9020 K=VAL (K$)

9030 REM NEED MUGTRAPS LATER

904@ RETURN

Fig. 6.8 Placing a PRINT instruction in each subroutine line so that the core
program can be tested.

follow it with a RETURN instruction in the next line number, you
can then run the core section right through. All that you will get as
an output will be a set of messages, but at least you will know that the
core section works. This is a good time to try out the mugtrapping,
for example, on the menu section, and find out what happens when
you put inasilly answer. It's always much easier tosort out errors on
a short piece of program than on a long program. If you have a
printer, then sorting out a long program is relatively easy because

Filing and Designing 77

you can print outall of it, and simply read through the lines. If you're
working on the screen display, however, without a printer, then
testing one stage at a time makes a lot more sense.

Once you have your core program running perfectly, with
‘dummy’ GOSUB lines, record it. I always make two recordings,
both at the start of fresh C90 cassettes. This way, if anything
happens as you add to the program, you can always get the program
back in this form. Even a short program still represents a fair
amount of typing, and a short program which has been tested and is
known to work is a valuable piece of property, worth more than its
weight in recording tape.

From now on, you have to write subroutines. Each subroutine is
designed in just the same way as you designed the main core
program - you can write down what you expect it to do, what you
expect to type or see, then make a stabat the processing. Once again,
you can leave the fine detail to other subroutines, and when you have
completed each routine, you can testit. If you load the machine from
a tape that contains everything that you have typed and tested
previously, your program will grow one subroutine at a time. Only
the new additions will have to be tested. It's good for your
confidence, and it keeps the whole program in a manageable state.
By the time that you type the last subroutine, you will have a
program that should be just about what you intended.

As you develop the program, putin a few REMS to remind you of
what cach section is supposed to do. Put a REM in after each
subroutine call, and another one after each subroutine start. I prefer
to use the ‘1" lines (like 191, 16@1, 499 1) for this purpose, as Fig. 6.9

1¢1 REM END OF MAIN SECTION
1091 REM FLASH ASTERISK ROUTINE
4¢¢1 REM RECORDING ROUTINE

Fig. 6.9. Using REM lines.

illustrates. Never have a REM line as the start of a subroutine
because this can cause you problems later. It's useful, when you have
designed a long program to keep two versions. One version should
be complete with all its REMs, and detailed instructions. This will be
your reference copy, the one that you will use when you want to
improve the program. There should be another copy, stripped of all
REMs, and with only brief instructions. This one will take up less
memory and will run faster, and it will be your working copy, the

78 Mastering the Colour Genie

one that you use. The point here is that if you have lines like:

199 GOSUB 19¢¢
109¢ REM SUBROUTINE FOR RECORDING

then when you remove REM lines you will remove line 1§¢@, and
the program will crash when it reaches line 1¢$}! In addition, you can
buy programs that remove REMs and spaces, and the use of such a
program will cause you problems if it strips out all the lines to which
a GOSUB refers.

Off the menu

Though a lot of programs depend on the use of a menu, there are
many others that don’t. Among these are several types of games
programs. How do we design a game which incorporates no menu
steps?

The first part of design is the same - you have to write down what
the game is intended to do. You will also have to write the rules for
the game. This is by far the most difficult part of designing a games
program, and why there are several hundred versions of *haemor-
rhoids in space’. You then have to decide what the scoring system
shall be, because the essence of a game is competition of some sort,
so there has to be a scoring system or a win/lose decision at some
point.

10 GOSUBS@Q:REM DIMENS1ONS

20 GOSUB&@O:REM TITLE

30 GOSUB7@Q@:REM INSTRUCTIONS

40 GOSUBB@O:REM CREATE CHARACTERS
5@ GOSUB9@Q3REM DRAW BACKGROUND
40 GOSUB10@e:REM PLAY!

7@ GOSUP2@ee:REM CHECK SCORE

8@ GOSUB3@@a:REM KILLED?

9@ IF KL=1 THEN GOSUB900@:REM DEAD
1@ GOTO&@:REM PLAY AGAIN

Fig. 6.10. A core program for 3 game.

Once you have decided these difficult and important points, the
rest is comparatively plain sailing! A game is usually a more ‘visual’
type of program, so what we are about to cover in Chapters 7 and 8
will be of considerable interest to you. The greatest amount of
program effort will probably go on these graphics effects - but these
can be put into subroutines. The core program for your game is

Filing and Designing 79

probably going to be as simple and straightforward as the core for a
menu-driven program. Figure 6.10 shows an example. The real
heart of the game will be the subroutines that carry our the PLAY
action and the SCORE action - and you'll write these later!

Chapter Seven
Graphics, Plain and Fancy

The characters that we have printed on the screen up to now have
been mainly ‘alphanumeric’. That means that they are number
digits, letters, or punctuation marks, the sort of characters that a
typewriter can produce. All modern computers will also permit you
to display shapes as well, shapes that can be built up into pictures.
These are the characters that we call ‘graphics characters’.

These graphics shapes that are provided as standard are the same
overall size as the ordinary alphanumeric characters. This means
that the number of these graphics characters that we can place on the
screen is the same as the number of alphanumeric characters - 24
lines of 40 characters per line for the Colour Genie, which makes 960
characters. This style of graphics is called low resolution, meaning
that only a comparatively small number of positions on the screen
(960) are being controlled. The high resolution graphics of the
Colour Genie allows you to control a total of 15360 points on the
screen, as we shall see in Chapter 8.

In this Chapter, we're going to deal with the low resolution
graphics characters. There are three points that we have to deal with.
These are how to obtain the characters, how to print graphics and
text in colour, and how to create our own character shapes to our
own design.

Keyboard graphics

The graphics shapes that are illustrated in Appendix B can all be
entered from the keyboard directly. While your Colour Genie
is on, pressing the MODSEL (mode-select) key which is on the
left of the space-bar, will select graphics. After this key has been
pressed once, pressing any letter key will give the graphics character
that is shown on the left-front of the key. Pressing any letter key

Grapbhics. Plain and Fancy 81

AN EO NN AR N WY

B4 EE TN RMNEIIEIEE

|
|

Fig 7.1. A 40 X 24 grid for planning low resolution graphics shapes.

along with the SHIFT key will give the graphics character that is
shown on the right-front of that key. By pressing the MODSEL key
again, you return to normal key use.

This method of entering graphics shapes directly from the
keyboard is very convenient, but it still requires some planning if
you want to use the shapes to make a pattern rather than just for
underlining text. The easiest scheme to follow is to draw the shape
that you want on tracing paper over a 40 X 24 grid (Fig. 7.1). If the
shape can’t be drawn exactly with the graphics patterns that are
shown on the keys, then modify the traced outline until each square
of the pattern (as seen when the patternis held over the 40 X 24 grid)
corresponds to a graphics shape. Use the shapes shown in Appendix
B to guide you. If you simply want to see how your pattern looks on
the screen, then type the first row of shapes (remember to use
MODSEL), then use the down-cursor key (and right-cursor if you
need it) to get to the required place on the next line. You can then
type another line of shapes and continue in this way until the whole
pattern has been placed on the screen.

This is something that you have to try for yourself, because my
printer won't reproduce these shapes on paper. If you want to put
your pattern into program lines, start in ordinary text mode. Typea
line number, then PRINT”, and then press MODSEL. You can then
type in a row of shapes, and use the cursor-down key to go to
another row. You can type several lines in this way, depending on
how many characters you put into each line, because the maximum
number of characters that is permitted in a BASIC line is 255! You

82 Mastering the Colour Genie

can then return to text mode by pressing MODSEL again, add the
closing quotes, and press RETURN. This gives you a collection of
shapes following a PRINT instruction, and these shapes will be
printed each time the program is run.

An even more useful alternative is to assign the shapes toastring.
Start in text mode with a line number, then an assignment, such as:

20 GR$ ="

You can then press MODSEL, type the graphics shapes, press
MODSEL again, and type the closing quotes. This string can then
be printed at any part of the screen by using the TAB or PRINT@
instructions. The line can be saved on cassette like any other BASIC
line. Yet another possibility is to type the start of a DATA line, then
put the graphics shapes into this.

Meet the characters

We can use characters that are obtained directly from the keyboard
for our own graphics programs, but this isn’t the easiest method, and
it's not so easy to write down what you want, or to print the
program. Several of the programs in this chapter could have had
their graphics characters put into place directly from the keyboard,
but we've used the ASCII code numbersinstead. The programs, this
way, can be tested and the listing printed immediately afterwards,
ensuring accuracy.

To start with, remember how the alphanumeric characters are
coded. Each alphanumeric character, including space and punctua-
tion marks, is allocated an ASCII code number. We can print the
characters that correspond to the codes by using a PRINT
CHRS$(N) instruction, where N is the number. Figure 7.2 is a
reminder of what these characters look like for each number code
from 32 to 127. Code numbers lower than 32 are used for special
effects, and the codes that are available are noted in Appendix C.
The codes from 128 to 255 are used for graphics characters, so we
need to take a look at these now.

We can't simply use the program of Fig. 7.2 with changed
numbers in the loop, however. The reason is that the Colour Genie
can be switched to any one of four different ‘character sets’. These
are detailed in Fig. 7.3 and also in the manual. The numbers that lie
between 32 and 127 are the ordinary alphanumeric characters, and
they remain unchanged no matter which character set we happen to

Graphics, Plain and Fancy 83
1@ FOR N=32 TO 127
2@ PRINT N3° “CHR$(N)3" "3 1NEXT

Fig 7.2. Aprogram for printing the ASCll characters on the screen. RUN this
and look at the Colour Genie’s stock of “alpha’ characters

ASCII codes CHARI CHAR2 CHAR3 CHAR4
128 to 191 prog prog graph graph
192 to 255 prog spec prog spec
Note:

Codes 32 to 127 are always the alphabetical-numerical ch
prog means programmable characters

spec means special characters.

Fig. 7.3. The character sets of the Colour Genie. Only the character sets for
numbers 128 to 255 are shown, because numbers 32 to 127 are always the
‘alpha’ set

be using. The remaining numbers, however, are split into two
groups, 128 to 191 and 192 to 255. These groups of numbers can be
allocated to three different types of characters. The ordinary
‘graphics’ characters are the ones that are printed on the fronts of the
keys. These characters can be allocated to codes 128 to 191. There
are also ‘special’ characters which are not available from the
keyboard so simply, and which can be allocated to codes 192 to 255.
The third group consists of programmable characters, which means
that the shape of each one of these characters can be controlled by
numbers which you have to enter into the memory of the computer.

When you switch the Colour Genie on, it will normally use the
first of its four character arrangements, in which all the code
numbers 128 to 255 are allocated to the use of programmable
characters. If, for example, you type PRINT CHR$(129) to see one
of these characters, the result is a blank! There is no character with
the code number of 129 until we enter the code numbers that create
it! Of the character sets that the Colour Genie can use, four in all, the
only one that will produce a character for each and every code
number (128 to 255) is set 4. By typing CHAR4 (then press
RETURN), or by using CHARA4 at the start of a program, we can
select the graphics characters for codes 128 to 191, and the special
characters for codes 192 to 255. This is illustrated in Fig. 7.4. The
program prints all the characters, using sets | to 4, with the number

84 Mastering the Colour Genie

S FORC=1T04:CHAR C

7 CLS

1@ FOR N=128TO2SSSTEP4

20 PRINTN3“ “JCHR$ (N) ,N+15" “CHRS (N+1),
N+2;" "3CHR$(N+2) ,N+3;" "“iCHRS (N+3)
25 PRINT

3@ GOSuB100e

40 NEXT

45 GOSUB100e: NEXT

5@ END

100@ K$=INKEYS$:1F K$<>"“THEN RETURN
1018 PRINTTAB(1)C}

1028 FORQ=1TO100:NEXT

103@ PRINTCHRS (8) s CHRS (8) ;CHRS (8) ;
1035 FORE=1T0100:NEXT

1040 GOTO1000

Fig. 7.4. Looking atthe graphics characters. When you find an empty set, it's
because these are ‘prog’ codes; they produce nothing until you program them
for a character you want (see later).

of the character set printed on the screen as a reminder. Try it - it
shows the size and shape of each character on the screen rather
better than you can get from drawings of them on paper. Whatever
character set was last used in a program will stay selected until it is
changed, or until the computer is switched off.

Rainbow Genie

One of the many reasons that you probably had for buyinga Colour
Genie was thatit’sa colour computer, so it's time that we took a look
at its colour capabilities. The names of the colours are printed on the
top row of keys, the number keys, and you can print all of your
text, including program lines in colour simply by pressing the CTRL
key, releasing it, and then pressing a key which has a colour marked
on it. After you have done this, anything that you type will be in
colour. This effect lasts until you choose another colour, or until the
words or shapes scroll off the screen. You can type a listing in yellow,
and then select blue, type LIST, then press RETURN, and see your
listing appear in blue. The colour that you select in this way remains
in use as the ‘foreground colour’ until you cancel it by selecting
another, or by switching off and on again. You will not, of course,
see these colours unless you are using a colour TV, because they
don’t show up as noticeably different shades of grey on a
black/white receiver. You can type each letter of a word in a
different colour if you like, or type graphics shapes in a variety of
colours. When you list again, however, the colour that you see for

Graphics, Plain and Fancy B85S

everything will be the colour that you most recently selected.
Generally, we want to use colour to produce special effects on the
screen, eye-catching titles, and interesting graphics patterns. We
need, therefore, to be able to use colour within programs. We can’t
produce coloured letters in programs just by having used the colour
keys when we type the letter, though. For example, if you type:

19 PRINT “LETTERS™

and you make each letter of LETTERS have a different colour, you
will see these different colours as you type the line, but when you
clear the screen and RUN the program line, the word LETTERS will
appear in the last colour that was selected, not with a different
colour for each letter. If we want to use different colours within
programs, then, we have to make use of the COLOUR instruction.

Code

our
number Colou

White
Green
Red
Yellow
Orange
Blue
Cyan
Magenta

[IR VA N

Fig. 75. The set of colours for low resolution graphics and text

1@ CHARA4

2@ CLS

30 FOR C=1 1O 8

40 COLOUR C

5@ PRINT "THIS 1S COLOUR “;C
&0 NEXT

Fig 7.6. A program which illustrates the colours on the screen. You need
that colour TV now!

COLOUR is followed by a number which takes values between |
and 8. You can actually use numbers up to 16, but the colours that
correspond to numbers between 9 and 16 are, viewed on a TV
receiver, not very different from the colours in the 1 to 8 set. Figure
7.5 shows this standard colour set. The colour cyan is a mixture of
blue and green lights, and magenta is a mixture of red and blue
lights. To see the colours on the screen, try the program of Fig. 7.6.

86 Mastering the Colour Genie

The COLOUR instruction cannot, unfortunately, be used following
PRINT. If you want each letter of a word to appear in a different
colour, you have to use the method that is illustrated in the Colour
Genie manual, reading each letter from a DATA line with a different
COLOUR number selected in the loop.

10 CHAR4

20 CLS

30 FOR C=1 TO B

40 COLOUR C

Se GOSUB109d

&0 PRINT

&5 PRINT"PRESS ANY KEY,."

70 K$=INKEYS: IF K$="°"THEN7@

80 NEXT

100 END

1000 FOR J=1T04

1010 FOR N=1TOS

1626 READ A:PRINT CHR$ (A)3

103@ NEXT:PRINT:NEXT

1040 RESTORE:RETURN

2000 DATA128, 32,202, 32,144, 196,196,196, 1

96,196, 196,196, 196, 196, 196, 230, 32, 230, 32

.230

Fig. 7.7. Printing a pattern in different colours. The pattern has been
produced by printing graphics shapes whose codes are in line 200

Back to the salt mines, then. Figure 7.7 shows how a pattern can
be printed in different colours. The printing of the pattern is done by
the subroutine which starts in line 1§¢/@. The method is to read code
numbers from a DATA list, and print them by using PRINT
CHRS(A). Four lines of five characters each are printed by this
routine, and in all eight colours. Notice the use of RESTORE in line
184¢. This ensures that the next time the subroutine is called, the
data will be read again from the start, avoiding the ‘out of data’ error
message (OD) that you would get if all the data had been read and
this instruction had been omitted.

How is the shape designed? In just the way that you would expect
from our earlier efforts on the keyboard. You slip a piece of tracing
paper over the 40 X 24 low resolution planning grid, and trace the
outline that you want over the grid. You then look at each block in
the grid, and select the character number that most nearly fits what
you want. These numbers are this time gathered intoa DATA line,
and you then have to organise the loops that print them. In lines
1909 to 1939 of Fig. 7.7, the inner loop that uses variable N printsa
row of five characters, because the semicolon at the end of line 1929
keeps the printing on the same line. When this loop ends in line

Graphics, Plain and Fancy 87

1930, the extra PRINT will cause a new line to be selected, so that
the next value of J will cause characters to appear on the next line.
We could, of course, use PRINTTAB or PRINT@ to place the
shapes at other positions on the screen.

Tying it up

A better way of printing a complicated shape is usually to place the
codes into a string. This will give you the same type of string as you
could obtain by typing the characters directly. The advantage of
using the character numbers is that it’s easier to edit and list.
Another advantage that we’ll come to later is that we can use the
same methods for programming our own characters. Yet another
advantage is that placing graphics characters into a string makes it
much easier to print them wherever we want on the screen.

1@ CHAR4:COLOUR4

2@ CLEARS00

20 G$=""

4@ B$=STRINGS (5,32)+CHRS (24) +STRINGS (5,8
) +STRINES (5, 32) 4CHRS (26) +STRINGS (5, 8) +ST
RINGS (5,32) +CHRS (26) +STRINGS (5, 8) +STRING
$(5,32)

5@ FORJ=1T038

40 READ A:G$=G$+CHRS$ (A)

7@ NEXT

80 DATA128,32,202,32,144,26,8,8,8,8,8
90 DATA194,196, 196,196, 196,26,8,8,8,8,8
160 DATA194, 194,196, 196,196,26,6,8,8,8,8

116 DATA23e, 32,230, 32,230
12 CLS

130 FORK=140T0190

140 PRINTEK,GS

150 PRINT@K+1,E$

160 PRINTEK, BS

170 NEXT

180 PRINT@195, B

Fig 7.8. Placing codes into a string which can then be printed at any position
on the screen

Figure 7.8 shows an example of this type of programming. Lines
1§ and 2§ prepare the way by selecting the character set and the
colour, and clearing enough memory space to allow for long lengths
of string. Line 3¢ assigns G$ to a blank (no space between the
quotes), and then line 49 builds up B$, which is a set of blanks and
cursor-moving character codes. The purpose of BS is to act as a
‘wipe-out string’. If we print BS at the same position as our graphics

88 Mastering the Colour Genie

string, it will erase the graphics string without erasing the whole screen.

Lines 5§ to 7§ then build up the graphics string itself. The data is
contained in lines 8¢ to 119 and, so as to keep on familiar ground,
I've used the same data as before. The part of the program that really
packs the characters into the string is: G§ = G$ + CHR$(A) in line
6@. Each time this isexecuted in the loop, it places another character
at the end of the string until the whole string is 38 characters long

With all of this preparation out of the way, we can now start to
make some use of this graphics string. Lines 13@) to 189 show how
easily the string can be printed at different places on the screen. This
is made particularly easy by the use of PRINT@. The effect of
animation that is achieved here is done by printing the graphics
string in one position, then printing it again at the next position, and
then wiping out the first pattern. The wiping action is achieved by
making use of the blank string BS which is printed at the original
position of the graphics string G$

The animation of low resolution graphics patterns like this is
never completely satisfactory, however, as the motion looks so
jerky. This is because there are only 49 character positions per line,
and that makes the amount of movement from one position to the
next rather large. In addition, BASIC is a comparatively slow
language for writing animated programs. You canspeed things up to
some extent by using integer variables in loops (not delay loops,
though!), so that if you make line 139:

139 FOR K% = 16§ TO 19¢
there will be a noticeable increase in speed at which the patterns

move across the screen. Putting all the instructions that lie within the
loop into one line also helps, such as:

149 PRINT@K%,GS:PRINT@K%+1,G$:PRINT@K%,BS

If you overdo the speed, you may find that you have to add delay
loops to slow things down again! Near the end of this chapter, we’ll
look at an interesting method for improving the appearance of
animation.

Choose for yourself!
A very useful feature of practically all modern computers is the

ability to create your own characters. You might, for example,
create alien figures, print Greek letters, giant letters, or even

Graphics, Plain and Fancy 89
simulate handwriting. All of these effects are possible by making use
of the ‘user-programmable’ characters of the Colour Genie. Before
we can attempt this, though, we need to know what is involved in
placing a pattern on the screen.

To start with, the shape of a single character on the screen is
created by a moving dot, the ‘beam’ of the cathode ray tube.
Normally, the beam is turned off, but the signals that the computer
sends to the TV receiver will turn the beam on as it moves across the
screen and down, lighting up parts of the screen. Each character that
we place on the screen, is the result of lighting up or leaving dark
several dots. There are a possible 64 dots per character. With 40
characters per line and 24 lines on the screen, this allows us to work
with the equivalent of 61440 resolution. These are arranged as an
8 X 8 grid pattern, as shown in Fig. 7.9. If we leave a row of dots unused
all round the grid, we will ensure that the shape which is drawn by the
other dots does not touch the next character in line with it the screen.

128

Fig 7.9. The 8 X 8 grid for planning your own characters.

The first step to creating our own pattern, then, is to shade in dots
on this grid. Asusual, it’s best to put a piece of tracing paper over the
grid and to shade with soft pencil on the tracing paper. Remember
that, when you are working with black and white, the parts that you
shade will appear as white, and the unshaded parts will be black. If
you are working with a blue pattern, then the parts that you are
shading will eventually appear in blue and so on. Figure 7.10 shows a
possible pattern - an alien face - which is obtained by shading some
of the squares in the 8 X 8 block.

The next step is to convert your shaded blocks into a set of
number codes. This has to be done because the computer works with
number codes. The key to the conversion liesinthe numbers that are
printed at the top of each column in Fig. 7.9. Each number is the

90 Moastering the Colour Genie

Fig. 7.10. An ‘alien-face’ pattern, and the codes which will produce it

code for a shaded block, so that if you have one block shaded in a
row, then that one code number is the code for the complete row. If
you have two or more squares shaded in a row, then just add the
codes for the shaded squares. The resulting number is the code
number for the entire row. A total of eight code numbers will be
enough to instruct the computer to draw a character.

Figure 7.10 shows the numbers for the rows of the example. The
next thing to do is to feed these numbers into the memory of the
computer, so that it can use them. To make this easier, computers
always number their memory units, and the placing of a number into
a position in memory is done by using an instruction POKE. POKE
has to be followed by two numbers. The first of these is the memory
reference number, which we call the ‘address’ number. The second
number is the code or ‘data’ for one line of the character. For one
character, then, we need eight POKE operations. This would be very
tedious to program if we had to type out each one, but we can use a
FOR...NEXT loop to read the numbers from a DATA line, and
POKE each one into the correct address in the memory.

Where is the correct address in memory? As it happens, the
memory of the Colour Genie appears to be rather curiously
numbered (to our eyes), with some addresses being positive numbers
up to 32767, and some negative numbers down to —32768. The
portion of memory that we have to use bears address numbers of
—3072 to—2049, no matter which size of Colour Genie we use. Thisis
a total of 1024 memory units (1K incomputer lingo), and it allows us
space for up to 128 different characters of our own devising. It's a
pretty large number of characters to be able to choose! As it
happens, we can print all of these characters only when we have
selected CHAR. Selecting CHAR4, for example, doesn't allow us

Graphics, Plain and Fancy 91

to print any of the programmable characters, though we can place
the codes into memory ready to use after selecting CHARI (or other
numbers).

The next step is to look at how this memory space us used. The
number —3072 is a starting number, and that's where we have to
place the first code number for the character whose ASCII code is
128. This character will use the memory locations from —3072 to
—3065, a total of eight numbers (we count them inclusively). The
next character, ASCII code 129, will need to have its first code
number placed into the next memory address, —3064, and the next
character, ASCII 130 starts at —3056 and so on. We're adding +8to
a negative number each time we do this.

S CHAR1

16 ST=-3072

2@ FOR AD=ST TO ST+7

3@ READ D:POKE AD,D:NEXT

40 CLS:PRINT@17@, CHR$ (128)
1800 DATALS, 126,90, 126,36,60,24,36

Fig 7.11. The "alien-face’ program.

Enough of this theory. Let's take a look at a program which will
place the codes for our ‘alien face' into the memory and make this
gruesome sight correspond to ASCII code 128. Figure 7.11 shows
the steps that are needed. We select CHAR1 in line 5 so as to give
plenty of space for programmable characters, just in case you want
another 127 different faces. Line 1§ then assigns ST (start of
memory store) to —3072 so that we don’t have to keep typing this
number. The loop in lines 2¢ and 3@) then reads data numbers for the
character and packs them into the correct memory addresses. All
that remains now is to print the character, which is done in line 44.

Once you have done it, it looks quite simple. The point is that once
the codes have been put into the memory, they are held there until
you switch off or until new codes are put there. Evenif you delete the
program that put the codes into memory (having run it), you don’t
wipe the memory, so that PRINT CHR$(128) will continue to give
the alien face. If youchange to CHARA, of course, the character that
appears for CHR$(128) is different, but it is stored at a different part
of the memory, and the alien face will reappear when you select
CHAR! or CHAR?2 and PRINT CHR§(128) again.

Now this new character can be printed in the same way as any
other characters whose ASCII code you know, and we can also
move the character around the screen as we would move any other

92 Mastering the Colour Genie

S CHAR1
10 ST=-3072

2@ FOR AD=ST TO ST+7

3@ READ D:POKE AD,DiNEXT

4e cLs

50 FORN=94@T020STEP-40

40 PRINT@N, CHRS (128)

&5 FORJ=1TO101 NEXT

7@ IF NC>98@THENPRINTEN+40,"
75 FORJ=1T010: NEXT

80 NEXT

168 DATALS, 126,90, 126, 36,40,248,34

Fig. 7.12. Moving a programmed character around the screen.

character. Figure 7.12 shows an illustration of this in action. The
character is formed in the same way as before, and then lines 5¢ to 89
move the character round the screen.

Fig. 7.13. A planning grid for combining several user-defined characters
into one pattern.

Graphics. Plain and Fancy 93

Corpulent characters

A single ‘user-defined character’ looks fairly small on the screen, and
you sometimes want to use much larger characters. Thiscan be done
by defining several characters and joining them up intoa string, just
as we did with the preset characters. As usual, the best way is to
illustrate this. We start with a planning grid, such as the one in Fig.
7.13. This allows you to plan out objects whose size cantake upto 16
characters. If you need larger objects, thenit's easy todraw out your
own planning grids, using graph paper. The old type of graph paper,
with inch and ;" lines is perfect for this type of work, but not so easy
to find nowadays.

I.
Iz
I

Fig 7.14. A helicopter shape made up tfrom eleven programmed characters.

The shape that we're going to produce is shown in Fig. 7.14 - a
helicopter. It makes use of eleven different characters, from 128 to
138, so we shall have to work out the code numbers that we need for
each of these characters. This will be a total of 88 numbers for the 11
characters. There's no simple lazy way to graphics! Finally, we

94 Mastering the Colour Genie

have to combine these characters into a string that we can print.

Figure 7.15 shows the results of all this planning in the form of a
program. Lines 30 to 4§ carry out the character definition, using the
data lines 20@ to 3¢@. I have used one data line for each character, so
as to make it easier to trace which one produces which character in
case any alterations are needed. Once the characters have been
defined, they are read into a string usinglines 5§ and 6. This makes
use of data lines 499 to 420 so as to pack the character’s ASCII
codes, plus the cursor down-and-left codes into the string. The last
piece of preparation is in line 70, which defines a blank string which
is exactly the right shape and size to wipe out the image of the
helicopter.

After that, it’s all go! Lines 8¢ to 14f animate this shape, causing it
to rise up, up and away. All we need to add are some sound effects,
and that’s a topic we'll look at in Chapter 9.

10 CLEARS@®

20 CHAR1:ST=-3072

3@ FOR AD=ST TO ST+87

4@ READ D:POKE AD,D:NEXT

5@ H$="":FOR N=1T021

60 READX3: H$=H$+CHRS (X) : NEXT

70 CH$=STRINGS (4,32)+CHRS (26) +STRINGS (4,
8) +STRINGS (4, 32) +CHRS (26) ¢STRINGS (4,8) 45
TRINGS (3,32)

80 CLS:FORN=820T040 STEP -40

9@ PRINTEN, HS

1@0@ FOR J=1T7020:NEXT

116 PRINT@N-40,Hs$

120 FORJ=1T7020:NEXT

130 PRINTEN, CHs

180 NEXT

200 DATA?,0,0,0,0,0,43,0
21@ DATA0,0,0,0,0,@,255,1
220 DATAR,0,0,0,0,0,255,128
23e DATAG,@,0,0,0,0,255,0

240 DATA9,0,1,3,3,1,0,0
25e DATA1,2SS, 255, 230, 230, 255, 249,121
260 DATA128,224,248, 120, 127,252, 252, 248
276 DATAA,2,2,2,254,2,2,2

280 DATAQ,0,1,1,0,0,0,0

29@ DATA&3,8,255,255,0,9,0,0

300 DATAZ40,64,55,255,0,0,0,0

400 DATA128,129,130,131,24,6,8,8,8

410 DATA132,133,134,135,26,8,8,8,8

420 DATA134,137,138

Fig. 7.15. The helicopter program.

One final point about animation. When we are dealing with the
low resolution graphics displays, animation is never very convincing

Graphics, Plain and Fancy 98

because of the comparatively large steps of movement from one line
to another one, or from one character position in a line to the next.
The use of user-defined characters can be harnessed to make
animation look better! Take a look at Fig. 7.16, which shows three

28 28 0

Fig. 7.16. Using "half-shapes’ to improve animation.

user-defined shapes. One of the shapes fills a block, the other two fill
only half a block each, and the small units are designed so that when
put together they are the same shape as the complete block, but
displaced by half a block vertically. Let's imagine, stretching the
imagination a bit, that the complete shape is a rocket. If we want to
animate this, rising vertically (it’s not the European rocket!), then
the conventional method would be to print the rocket shape on the
bottom line of the screen, wipe it, then print on the next line, wipe,

1@ CLEAR200

20 CHAR1:ST=-3072

3@ FOR AD=ST TO ST+23

4@ READD: POKEAD, D: NEXT

Se CLS:FORN=900T040STEP-40
6@ PRINTEN, CHRS (128)

7@ FORJ=1T020:NEXT

80 PRINTEN-40,CHRS (129)

9@ PRINTEN,CHRS (13@)

100 FORJ=1T020:NEXT

11@ PRINTEN, " ~

120 NEXT

200 DATA16,16,16, 16,56,54,40, 40
210 DATAG,0,0,0,16,16,16,16
22@ DATAS4,S4,40,40,0,0,0,0

Fig. 7.17. A 'rocket’ program which uses the "half-characters’ for better
animation

and so on. By using our ‘half rockets’, we can make the rocket appear
to move by half a line each time. We print the whole rocket shape on
the bottom line. We then print the top half of the rocket on the next

96 Mastering the Colour Genie

line, remembering that this takes up the botrom half of the character
only. We wipe the lower line, and then print the lower half of the
rocket on this line. This now looks as if the rocket had moved by half
a line. We then wipe both of these characters, and print the complete
rocket shape on the second line. By repeating this series of actions,
we can get a much smoother motion which will be speeded up if we
use an integer variable N% in place of N.

Figure 7.17 shows the complete program. As usual, we start by
defining the three characters that we need to use, then lines 5¢ to 12¢
carry out the more complicated animation steps. A delay loop in
lines 70 and 19§ is needed to slow down the action. We could have
used a subroutine for this.

The effect is decidedly better, and we could make it better still by
splitting the rocket into three parts or even four. The method
becomes more awkward to use when the shapes are larger, however,
because there is so much work involved in planning and shifting the
sections. It can look very rewarding, however.

Chapter Eight
Smaller Pieces Make
Prettier Pictures

High resolution graphics is about creating pictures and other shapes
with smaller units. We refer to these units as pixels (picture elements).
The low resolution graphics of the Colour Genie allows us the use of
40 X 24 pixels per screen, a total of 960 pixels, or 61440 pixels using
programmable graphics characters which give an effective resolution
of 320 X 192. The high resolution graphics allows us to use 160X 96
pixels, a total of 15360. The difference is very noticeable.

The Colour Genie keeps the high resolution graphics separated
from the low resolution. You can’t, in other words, mix the two. You
can't print letters in the ordinary way along with the high resolution
graphics shapes, and you can’t draw in high resolution graphics
along with text. Changing from one to the other will always clear the
screen on the way.

The reason for this is the way that the computer uses its memory.
A display of high resolution graphics requires a lot more of the
memory than a screen of low resolution or text. Different addresses in
the memory are used for storing the codes that produce the two
different types of displays, and we have to switch from one part of
memory to the other rather than taking pieces from each. The
switching can be done by using keys or by instructions that are
placed in a program.

The use of the MODSEL and CTRL keys at the same time will
switch the Genie to the high resolution graphics display. The
instruction which does this in a BASIC program is FGR (full-
graphics resolution). Using these keys causes the full-graphics
display to remain on until you press the BREAK key (or switch off).
The FGR instruction, however, will be reversed whenever the
program runs out of lines and so ends. If you want to return to low
resolution graphics earlier (to display a score, for example), you can
use the LGR instruction. To keep a display on screen after a
program has ended, you will have to make the last line of the
program into an endless loop - so that it doesn’t end as such!

88 Mastering the Colour Genie

The use of the full-graphics resolution involves quite a number of
new instructions, so this Chapter will be a voyage of discovery (eat
your heart out, Sindbad!). It's always difficult to predict the
appearance of what you'll see on the screen from looking at the
program, so considerable practice is needed, and there is no
substitute for trying out all of the programs here and in the Manual.
Watch out for mistakes in the Manual, however. All the programs in
this chapter have been printed directly by the Colour Genie.

10 FCLS:FGBR

26 FORN=1T0O2@

3@ BGRD

35 FORJ=1TO1001NEXT
4@ NBGRD

45 FORJ=1T0100:NEXT
50 NEXT

Fig. 8.1. Introducing some ‘full graphics’ instructions

Let’s start simply, with Fig. 8.1. Line 1) uses FCLS, which is the
full-graphics equivalent of CLS, the clear-screen instruction. CLS
clears the low resolution screen, FCLS clear the full-graphics screen,
and two different instructions are needed because two different parts
of the memory, have to be cleared. Most of the full-graphics
instructions, incidentally, work even when the full-graphics screen is
not being displayed. It's possible to have a shape drawn and ready to
display on the full-graphics screen while you are reading text on the
low resolution screen. By switching over, you can then make it look
as if the shape on the full-graphics screen has appeared instantly.

Figure 8.1 uses FCLS to clear the full-graphics screen, then FGR
to switch to this graphics screen. We then introduce the BGRD
instruction. This doesn't mean that the computer feels tired, simply
that it can change the ‘standard’ background colour. the use of
BGRD causes the whole screen to turn pink. The delay in line 35
holds this for a short time, and then NBGR D causes the screen to go
blank (or black) again. This can be alternately fast or slow without
affecting anything that has been placed on the screen by any of the
graphics instructions. BGRD and NBGR D are instructions that offer
one form of control over the screen background colour, using BASIC.

The next step is to look at some foreground colours. There isn't
such a wide range of colours available on the full-graphics screen as
there is on the low resolution screen. There are, in fact, only four
colours, which are listed along with their number codes in Fig. 8.2. If
you use numbers that exceed four, you will get the FC error message
and the program will halt

Smaller Pieces Make Prettier Pictures 98

Code
number Colour
1 Black
2 Blue
3 Red
4 Green

Fig. 8.2 The colour set far the full-graphics screen

These numbers can be demonstrated along with the instruction
FILL. FILL is another colour background instruction which will
make the background (whole screen) colour equal to the colour
whose code number follows the FILL instruction. Figure 8.3 shows

1@ CLS:FCLS:FGR

2@ FORJ=1TO4

3@ FILL J

40 K$=INKEY$: IF K$=""THEN4O®
5@ NEXT

60 PRINT"ALL DONE"

Fig. 83 Changing background colour with the FILL instruction.

this in action. The screen is filled with each colour, and an INKEY$
loop holds the screen in background colour intil a key is pressed. At
the end of the loop, the automatic return to the ordinary text screen
allows the message ‘ALL DONE' to appear.

The Genie plot

Now that we've achieved some control over background colours, we
can start to look at ways of drawing something on these
backgrounds. Before we can set out, however, we need a map of the
territory. This is shown in Fig. 8.4 — it’s a 160 X 96 grid. The left to
right direction is referred to as the X axis, and positions in this
direction are indicated by reference numbers @ to 159. Position @ is
at the left-hand side of the screen, and position 159 is at the right-
hand side. The up-down direction is called the Y axis, and positions
in this direction are indicated by numbers in the range § to 95.
Position @ is at the top of the screen, and position 95 is at the bottom.
We can refer to any position on the screen, therefore by using two of
these position numbers. The X number will give the position across
the screen, measured from the left-hand side. The Y number will give

100 Mastering the Colour Genie

‘susaiied saydei6-|iny 10j pubB Buiuued 96 X 091 YL »'8§ B4

S6

a8

&l

&t

&l

6EL

BZL

BLL

604

@

[

N

Smaller Pieces Make Prettier Pictures 101

the distance down the screen, measured from the top. The middle of
the screen corresponds to the position 8(,48. Note that we always
write a pair of position numbers in the X,Y order; X first, then Y.

The Colour Genie uses an instruction PLOT as a way of placinga
‘graphics cursor’, a small dot, at any place on the screen. PLOT has
to be followed by at least one pair of numbers, which are the X,Y
position numbers for the point that is being plotted. PLOT 80,48
will, for example, place a dot at the centre of the screen. If we want to
draw a line from this point to another point at the right-hand top
corner of the screen (where X=159, Y=@), then we use:

PLOT 89,48 TO 1598

The word TO, whenitis used following PLOT, carries out the action
of drawing a straight line between the points. Note that we need a
comma between the X and the Y numbers.

1320 —‘e.s.z-\'o
30 10,39
il 1040
7050 8050
ARG TOED SRER e

Fig 85 Using the PLOT instruction.

PLOT doesn’t stop there, however. We can specify more than one
line in a single PLOT instruction. Figure 8.5 shows a simple shape
which has been traced over the 160 X 96 planning grid. The corners
are marked with the X and Y position numbers - the proper name
for these is co-ordinate numbers. 1f we pick a place to start, we can
follow a PLOT instruction with a whole set of position numbers,

10 CLS:FCLS:FGR
20 FILLA:FCOLOUR (1)

30 PLOT40,20T040, 407070, 66TO76,50T08E, 5
7080, 6@TO110, 6070110, 30TO4S, 30TDAS, 20704
0,20

ae PLOT40,40TC110,40

se GoTaSe

Fig. 8.6. A pattern-drawing program which uses PLOT

102 Mastering the Colour Genie

using TO to indicate where a line is to be drawn. Figure 8.6 shows the
resulting program. FILL4 in line 20 causes the background to be in
colour 4, which is green, and the new instruction FCOLOUR(1) sets
the foreground colour. The foreground colour is the colour of the
lines that will be drawn, and the same number codes as we used
along with FILL are also used with FCOLOUR. The difference here
is that the number has to be enclosed in brackets - according to the
manual. It seems to work just as well if the brackets are omitted,
however! FCOLOUR(!) will cause the lines to be drawn in black.

The main PLOT occurs in line 3¢, and it traces its way around the
house shape. The gutter-line of the roof is then drawn separately in
line 4@, and line 59 keeps the program in an endless loop so that you
have time to see what has been drawn. To restore control to the
keyboard, you will need to press the BREAK key. An alternative is
to have an INKEYS loop in line 50 in place of the GOTOS5§.

Total encirclement

The ability to draw straight lines is useful, but we need rather more
unless we are stuck with the Cubist approach to art. The Genie also
has a circle plotting instruction which logically enough uses the
word CIRCLE. This instruction word has to be followed by three
numbers. The first two numbers pinpoint the centre of the circle,
using the X and Y position numbers. The third number is the radius
of the circle, which is the distance from the centre to the rim. The
total width of a circle, its diameter, is twice its radius.

10 CLS:FCLS:FGR

20 FILL2:FCOLDUR(4)

30 FOR N=1T0B@ STEP3

4@ CIRCLEBe,48,N

56 FORJ=1TD100:NEXT

60 NEXT

7e e0T070

Fig. 8.7. A circle-drawing program. Variations on this can produce
interesting effects.

Figure 8.7 demonstrates this with a set of circles that are drawn
using green lines on a blue background. The loop that starts in line
39 will cause a set of circles of different radius values to be drawn by
the instruction in line 49. The STEP size has been chosen so as to
allow the circles to be reasonably spaced, but rather striking effects
can be obtained if smaller step sizes are used. Another interesting
pattern is obtained if each circle is drawn, with the same radius, but

Smaller Pieces Make Prettier Pictures 103

the X value of the centre is altered on each pass through the loop.

On two TV receivers that I tried, the ‘circles’ were not truly
circular but elliptical, with the height greater than the width. If your
TV receiver has a picture height control, it is fairly easy to alter this
so that the circles look truly circular. The circles in this program
continue to be drawn even when the radius value is too large to allow
all of the circle to be placed on the screen! This is a refreshing change
from the CIRCLE instructions of some other computers which will
hang up with an error message if any attempt is made to draw
beyond the screen limits. Now you can put wheels on to your car
shapes!

The puzzling PAINT

Working with outlines is all very well, but at times you want to be
able to fill a shape with colour. Genie has an instruction for this as
well, in the form of the PAINT instruction. Unlike most of the
instructions that we have used so far, though, PAINT needs a lot of
patience and some experience before you can use it to its best
advantage. Filling a shape with colour isn’t an easy problem for a
computer. Where do you start, where do you stop, what happensata
boundary? These are the problems that face the computer designer,
and any solution just has to he some sort of compromise.

The PAINT instruction of the Colour Genie has to be followed by
four numbers, separated by commas. Like all the numbers that are
used in instructions, these can be number variables or expressions.
The first two numbers are the now-familiar X and Y co-ordinates.
These specify where the painting has to start. The best starting
position is near the bottom edge of the shape that you want to fill
with colour, but not actually at the edge. The third number in the
PAINT instruction is the code for the colour that you want to paint
with, using the same set of numbers (1 to 4) as we have used with
FILL and FCOLOUR. The fourth number in the PAINT
instruction is the colour of the boundary line where you want
painting to stop. You can, if you like, make the boundary the same
colour as the colour you use to paint. What you can't do with any
hope of success is to make this boundary colour the same as the
background colour!

The PAINT action operates comparatively slowly, and in some
rather curious ways. It will do particularly curious things, for
example, if the shape that you are painting is not completely closed,

104 Mastering the Colour Genie

and it will also do odd things if the direction of painting has to be
reversed. Take a look at the effect of the program in Fig. 8.8. This
draws a set of circles and paints the spaces between them - or so it
seems. See what it actually does! Now try Fig. 8.9, which uses two
PAINT instructions for each doughnut shape. This fills in much
more of each shape, but it still leaves a gap at the S past 1 o’clock
position. This final gap could probably be filled in by another
PAINT instruction which started at a point in the gap - try it!
ks

1@ CLS:FCLS:F6R

20 FILL2:FCOLOUR (4)

30 FOR N=1TDH® STEP&

4@ CIRCLEB®,48,N

5@ FORJ=1T01001NEXT

4@ CIRCLEBQ, 48, N+3

7@ PAINTEQ, 48+N+2,3,4

8e NEXT

9@ GOTO9e
Fig. 8.8 Using PAINT for spaces between circles - the effects are odd,
because of the limitations of the PAINT instruction

1@ CLS:FCLS1FBR

2@ FILL2:FCOLOUR (4)

30 FOR N=0TO78 STEP&

40 CIRCLEBQ,48,N

5@ FORJ=170100:NEXT

60 CIRCLEBO, 48, N+3

70 PAINTBO+N+2,48,3,4

80 PAINTBO-N-2,48,3,4

90 NEXT

100 GOTO100
Fig 8.9 Using two PAINT instructions to improve the filling action

Let's move away from circles, and try to create a chequer-board
pattern. This might seem straightforward, but in fact it involves
painting and repainting in rather aninvolved way. There’s no simple
rule that will help you to decide what to do for your own paintings,
but the examples in this chapter should be a pretty good guide.

Figure 8.10 shows the chequer-board program. The most obvious
way of creating a chequer-board would be to draw the pattern, and
then paint alternate squares. It's not as simple as that, because the
PAINT instruction does some perverse things. Its most awkward
trick is to paint one line at the bottom of a square that you don’t
want to be painted, just after it has reached the top of a square at a
different part of the design. It then goes on to fill in the rest of the
square on which it has put one line! The program in Fig. 8.10
therefore uses an odd sequence of program instructions to get
around this and other problems. We start the shape in line 49 by

Smaller Pieces Make Prettier Pictures 105

1@ CLS:FCLS:FER
20 FILLA

3@ FCOLOUR2

40 PLOT@,0T0159,@T0159,95T00, 95T0a, @
Se PLOTe,32T0159,32

6@ PLOT40,0T040,95

7@ PLOTHO,QTD8O, 95

80 PLOT120,07012@,95

9@ PAINT10®,20,3,2

100 PLOTO, 6470159, 464

11@ PAINTSe,50,3,2

120 PAINT140,50,3,2

130 PAINTZ20,9@,3,2

14@ PAINT10@,90,3,2

150 PAINTZ9,Se,4,2

160 PAINT20,20,3,2

176 GOTO17@

Fig. 8.10. The chequer-board program. This demonstrates the curious way
in which PAINT can operate!
plotting four lines right round the chequer-board. This ensures that
the board is surrounded by colour 2, with no gaps. The PAINT
instruction does odd things at gaps, even more odd than it does
where there are no gaps. The next lines 50 to 8) then start the
plotting of the pattern, and line 99 fills in the first of the red squares.
This is straightforward enough, but the fun starts in line 1§§. We
now draw in the last line of the chequer-board, and lines 11¢ 119 to
169 complete the painting. As we paint, however, we find that some
of the red ‘spills’ on to the green squares! This makes it necessary to
repaint one green square in line 15§

Plot and counterplat

Patterns that have been filled by the PAINT instruction take quite a
long time to draw, and if you want to present them quickly, it's a
good idea to have the drawing and painting instructions completed
before the FGR instruction is carried out. You can, for example,
print a set of instructions or other text on the screen, and follow this
with the PLOT and PAINT instructions. The PLOT and PAINT
will work, affecting the full-graphics memory, but out of sight and
with no effect on the text screen. A ‘press-any-key’ step then allows
you to move on, and the next instruction should be FGR. This
instantly produces the picture. On the other hand, you may prefer
the fascination of watching the pattern being drawn!

If we want to move patterns around on the full graphics screen,
then the NPLOT instruction is one that we can use to good effect.

106 Mastering the Colour Genie

NPLOT, as its name suggests, means ‘unplot’, or wipe out. Any
pattern that we have created using PLOT can be wiped clear by
using NPLOT - but only if the background is black, and NPLOT is
followed by the same set of numbers and TO instructions as the
PLOT. Plotting and unplotting a complicated pattern is rather hard
work, unfortunately.

1@ CLS1FCLS:FGR

2@ FCOLOUR (2)

3@ GOSUBBe

40 FORN=1T010001NEXT

S0 FILLI

&@ GOSUB8@

7e sataze

6@ FLOT2@,20T0S0,Se

90 FORN=1T01000:NEXT

108 NPLOT20,20T050,50

118 RETURN

Fig. 8.11. Using PLOT and NPLOT on a diagonal line.

As usual, it's best to start in a simple way. Figure 8.1 shows a
PLOT-NPLOT routine that operates on a diagonal line. The
GOSUBS in line 39 will plot the line, wait, and then unplot it, using
COLOUR?2, which is blue. At the end of the subroutine there is
another delay, in line 49, and the screen is filled with colour red. The
PLOT and NPLOT is then repeated with a red background. This
time, the NPLOT has quite a different effect, because you can see
that NPLOT produces the shape in black lines, and black lines are
invisible on a black background but visible on a red background!

An alternative, then, is to put the PLOT instructions into a
subroutine, and to use FCOLOUR to specify the line colour. If this
is the foreground colour, the line will appear; if this is the
background colour, the line will disappear. Since all the PLOT
instructions can be put into a subroutine, you don’t have to type
them all over again.

1@ CLS:FCLS1FGR

2@ Y=401FCOLOUR (2)

30 FORX=10T0O150

40 PLOTX,YTOX+10,YTOX+10,Y+18TOX, Y410TOX
's; NPLOTX, YTOX+10, YTOX+10, Y+1@TOX, Y+18TO
;'OVDEXT

Fig. 8.12. PLOT and NPLOT used to animate a square.

NPLOT is useful, however, when you are working with black
backgrounds, and Fig. 8.12 illustrates it in use to shift a square

Smaller Pieces Make Prettier Pictures 107

across the screen. X and Y are position co-ordinate values, of which
X is varied in the loop that starts in line 3¢. This allows us to plot, then
unplot, the square in lines 49 and 6@, and move it by changing the
value of X. The amount of movement can be changed by choosing a
different step size in the loop.

1@ CLS:FCLS:FGR

2@ Y=40: FCOLOUR (2)

3@ CIRCLE98, 48,47

40 X=98:K=1

50 X=X+K

40 PLOTX,YTOX+1@, YTOX+1@, Y+18TOX, Y+18TOX

Y

.

7@ NPLOTX, YTOX+10,YTOX+18,Y+1870X, Y+18T0

X, Y

680 IF CPOINT(X—1,Y)=1THENK=—14K

9@ IF CPOINT(X+11,Y)=1THEN K=-18K

100 GaTose

Fig- 8.13. Using CPOINT to detect a boundary in a different colour.

We can take this a stage further, as the program of Fig. 8.13
shows. The new instruction in this example is CPOINT, which
‘reports’ on the colour of a point. CPOINT has to be followed by the
X and Y co-ordinate numbers, placed within brackets, and the result
of CPOINT is a number. This number is, for some odd reason, one
less than the colour numbers that we use for FILL and FCOLOUR,
so that the number § means black, and number 3 means green. We
use CPOINT to test what colour we have at any position specified by
values of X and Y, so that we can decide, for example, when we have
reached a boundary, even before we touch it! Figure 8.13 illustrates
this by drawing a circle in line 3. We then pick the point X=98,
Y=49 which is at the centre of the circle, and a step size of K which is
initially set to 1. Line 59 makes X become X+K, so increasing X by
I. Line 69 then plots a square, using the same instructions as we tried
in Fig. 8.12 (too much novelty can damage your health!), and
unplots again in line 70. Lines 8¢ and 99 then test for what is just on
the right and on the left of the square. If the left-hand corner of the
square is close to the left-hand edge of the circle, then
CPOINT(X—1,Y) will give the circle boundary colour of 1 (one less
than the 2 we used to draw it). If, on the other extreme, the right-
hand corner of the square is near the right-hand edge of the circle,
then CPOINT(X+11,Y) will give the value of I. In either case, K is
converted to K times —1. The effect of this is that if K was 1, it
becomes—1. and if K was —1, it becomes +1 (because —1 times —1 is
+1). The effect is to reverse the direction of the motion, so that the
square appears to bounce to and fro across the circle.

108 Mastering the Colour Genie
Shapes and scales

The Colour Genie has a very unusual form of drawing instruction
which allows us to make shapes like user-defined characters and to
alter the size of these shapes. This uses a rather different approach to
drawing, however, in which a set of ‘relative movement’ instructions
are used. Relative movement means movement measured from one
point, so that the traditional ‘Treasure Island’ directions of ‘three
paces forward and two to the right’ are relative movements. Where
you get to as a result of relative movements depends entirely on
where you started from. Absolute movement, in contrast, is always
measured from the same spot. The X,Y position numbers that we
use, for example, are absolute because their starting point, X=0,
Y= is a fixed place - the top left-hand corner of the screen.

The SHAPE instruction of the Colour Genie specifies a starting
point in the usual form of a couple of co-ordinates, separated by a
comma. Thus SHAPE 80,48 will specify a starting point at the
centre of the screen. Unusually, though, the left, right, up, down
instructions that are needed to specify the movement from this point
are stored in the memory as code numbers, and you have to plot
these numbers in place. A set of POKE instructions will be needed to
do this before the SHAPE instruction can be used.

This type of POKE takes a form that we haven't seen before. The
starting address has to be 32512 for the 16K Colour Genie, and
—16649 for the Genie that has been expanded to 32K. The number
that is placed at this starting address must be the number of
movement code numbers that will follow. This ensures that the
computer will read the correct number of codes.

Figure 8.14 shows the numbers that have to be used for creating
shapes - the table provided in the Manual has several errors. For
each of the four colours that we can use, there is one code number for
each of the four possible directions. We can move invisibly from one
spot to another by moving in the background colour, or we candraw
a line by moveing in any other colour. It's possible, of course, to
make movements in three different foreground colours. We can
make the SHAPE pattern of any size that will fit on the screen, and
expand it or shrink it by using SCALE!

Yes, anexample would help. Figure 8.15 shows a simple pattern, a
letter I. The starting point is taken as being the top left-hand corner
of the letter, and the shape is planned on paper by writing down the
directions of movement - RRLDDLRR - which make up the
shape. I've used R,L.D.U to mean right, left, down and up, as you

Smaller Pieces Make Prettier Pictures 109

Colour Direction Code number

Black
17
32
51
68
85
192
119
136
153
17¢
187
204
221
238
255

©
®
o
crogX’Ccrrog®crogxRcro®

Fig. 8.14. The numbers 10 use along with SHAPE

Start

From slart
RRALDDLRR
for complele shape

Fig. 8.15. A simple T pattern, and the directions that are used.

probably guessed. Using the code numbers in Fig. 8.14, the data line
2¢¢ in Fig. 8.16 can then be written - and then the rest of the
program.

Lines 1§ to 39 clear the screen, switch to full graphics, and then
place the numbers into the memory. They will stay there until you
replace them or switch off, and they can be placed there at any time
before you want to use SHAPE. Lines 4¢ onward then show off the
usefulness of the SHAPE and SCALE instructions. Scale numbers
from | to If are used and, for each scale size, the shape is drawn
starting at 6¢,20. This means that the top left-hand corner of the
letter 1 will be placed at this point. The final SHAPE in line 145

110 Mastering the Colour Genie

10 CLS:FCLS: FBR
15 AD=32512

20 FORN=ADTOAD+8

3@ READD: POKEN, D1 NEXT

40 FORs-1T010

5@ SCALES

60 SHAPE&@, 20

7@ FORJ=1701000: NEXT

80 NSHAPESR, 20

9@ FDRJ=17020@1NEXT

100 NEXT

105 SHAPESE, 30

11e GaTO11@

20 DATAB, 204,204,238, 221,221,238, 204, 20
r's

Fig 8.16. The program to create and print the shape in different sizes.

moves the I to 50,39, just to show that we’re not stuck with 6§,20!
Line 89 uses NSHAPE, which blanks out the picture that was
created by SHAPE on a black background. The effect of NSHAPE
is very similar to the effect of NPLOT.

10 CLS1FCLS: FBR
20 N=32512

30 FORAD=NTON+11

4@ READD: POKEAD, D1 NEXT

56 FOR S=1T0S

40 SCALE §

7@ SHAPE&®, 20

80 FORI=1T010001 NEXT

9@ ASHAPE&O, 20

95 FORJ=1T01000: NEXT

108 NEXT

19 6OTO190

20@ DATA11,170, 170,153, 153, 153, 134,134, 1
87,170, 134,134

Fig. 8 17. Building up a multiple image with SHAPE and XSHAPE

Effect of SHAPE Effect of XSHAPE
PINK or BLANK GREEN

BLUE RED

RED BLUE

GREEN PINK/BLANK

Fig 818 The XSHAPE colours

The SHAPE instruction is an interesting one, and one which
needs quite a lot of experimenting with. You can, for example,

Smaller Pieces Make Prettier Pictures 111

create letters and figures as well as more exotic shapes, and the
SCALE instruction allows you to expand or contract a pattern. Just
as a final fling to this chapter, take a look at Fig. 8.17, which builds
up a multiple image by using SHAPE along with XSHAPE.
XSHAPE changes the colour of the picture to its opposite, as
illustrated by the table in Fig. 8.18. The overall effect here is an
interesting one, leaving you with lots to think about and to work into
your own programs.

Chapter Nine
Sound Decisions

Most modern computers have the ability to generate signals that a
loudspeaker can convert into sound. Few, however, have the range
of capabilities for generating sound that you will find on the Colour
Genie. The sound comes from the loudspeaker of the TV receiver! In
addition, a socket on the back of the Genie allows you to connect the
sound signals to a hi-fi system so that you can hear the sound at
greater volume and with better bass (low notes). You canalso record
the sound signals that are taken out to a hi-fi system.

Before we start work on sounding out the Genie’s capabilities,
however, it's a good idea to make sure that the TV is correctly tuned.
Turn up the volume control of the TV receiver that you are using
with your Colour Genie. If you don’t do this, you won’t hear the
Genie's sound! If what you hear when you turn up the volume
control is a loud rasping buzz, then alter the tuning slightly until you
find the quietest spot. You must, of course, still be able to see a
picture on the screen. Very often, only a very minor adjustment is
needed, perhaps none at all.

The next items concern sound itself. You can produce some
interesting sound effects from the Colour Genie simply by
experimenting with the programs that are contained in this Chapter.
You will be very much more successful in this work, however, if you
know something about sound and what it is.

Sound is the effect of a pressure wave in air (or in other materials).
A pressure wave means that the pressure of the air on your eardrums
rises and falls several times each second. The number of these rises
and falls of pressure per second is called the frequency of the sound,
and is measured in units that are called hertz, shortened to Hz. One
Hz would mean one rise, fall and return to normal pressure in each
second (Fig. 9.1).

You can’t hear all of the possible frequencies of sound. The range
of sound frequencies that we can hear, called the audible range,

PANNN
I VV VYV

Prassun

me

low

\
N

I 1 Second 1

Number ol waves in 1 second
= Irequency

Fig. 9.1. Sound waveforms. showing how the air pressure changes with
time. The number of rises and falls per second is the frequency.

extends from about 30 Hz to around 15000 Hz (called 15 kilohertz).
Most of the notes that are produced by musical instruments are
within the range of 100 Hz to 5 kHz (5000 Hz). We hear these
differences of frequency as sounds of different pitch. A low
frequency gives a note of low pitch, a bass note. A high frequency
gives a note of high pitch, a treble note.

The loudness of a note is decided by how much the pressure of the
air changes from normal. The quantity that measures this change is
called the amplitude, illustrated by the graph in Fig. 9.2. The
connection between amplitude and loudness is not straightforward,
but the greater the amplitude is, the louder we hear a note

Amplitude

Fig. 9.2, The amplitude of a wave. This determines how loud the sound is

For the purposes of music, we have to specify for each note how
loud it will be, how long it is to be played, and what pitch it is. In
written music, loudness is indicated by letters such as f (loud) and p
(soft), and using more than one letter if necessary. For example, fff
means very loud, and ppp means very soft. The duration of a note is
indicated in two ways. One of these ways is a metronome reading.
This indicates how many unit notes are sounded per minute. The
unit note is called a crochet. The metronome reading decides for

114 Mastering the Colour Genie

how long a crochet is sounded, and the lengths of other types of
notes are measured in comparison to this. A minim sounds for twice
as long as a crochet, a semibreve for four times as long as a crochet.
The quaver sounds for only half the time of a crochet, the
semiquaver for only one quarter the time of a crochet. The crochets
and the other timed notes are indicated by the shape of the symbols
that are used for the notes (Fig.9.3). Inaddition, symbols are used to

Symbal Time Name
J 8 Demisemiquaver
i a Semiquaver
d Y Quaver
J ! Croichel
J 2 Minim
o h Semibreve

Adding a dot afler a note lengthens it by 50%

Fig 9.3. Howthe time of a note is indicated by the shape of notes in written
music

represent silences in the music (Fig. 9.4). Some music scores do not
show a metronome reading, but rely on the use of Italian words to
indicate the time of a crochet less precisely.

The pitch of a note is indicated in written music by placing it ona
type of musical ‘map’ that is called the stave. Piano music shows two
of these staves, each consisting of five lines and four spaces. The set
of lines, or stave, which is printed on top is the treble stave, used for
the higher notes, and the lower one is the bass stave. Instruments
other than the piano (non-keyboard instruments, that is) will use only

Rest .
Symbol Time
14 Ve
y %
; 1
—_— 1
—e— 4

Fig. 9.4. Symbols that indicate the relative times of silences (rests)

Sound Decisions 115

one stave. The note that appears on a line of its own in the piano pair
of staves is called Middle C. On a piano, this note is played by a key
which is approximately in the centre of the keyboard. Figure 9.5
shows the staves, with the notes marked.

The notes that are shown in Fig. 9.5 are arranged in groups of
eight (counting inclusively), called an octave. Music from the

TREBLE
o
ce
BAss ——% =0
AR o o3
e -5__

Fig. 9.5. The staves, with Middle C marked

Western hemisphere traditionally uses a total of twelve different
notes in an octave, however, and the full range of one octave is
shown in Fig. 9.6, along with the corresponding positions on the
piano keyboard. The half-pitch notes, or semitones are marked on

8 9 10 1112

Fig. 9.6. One octave of piano keys, showing Colour Genie code numbers

the piano by black keys, though one semitone (between D and E) is
not marked in this way. On written music semitones are indicated by
using the signs # (sharp) or b (flar). A sharp indicates that the pitch
has to be raised one semitone above the marked pitch. A flat
indicates that the pitch is to be lowered one semitone below the
marked pitch. When we use piano music, the semitone above one
note is the same as the semitone below the next higher note, so that
CH is the same as D|

116 Mastering the Colour Genie
Some genaral sounds

To work, then. The first Colour Genie instruction that we have to
look at is one which we use for musical notes. The instruction word
that we need is PLAY, and it has to be followed by four numbers
that are separated by commas and all enclosed in brackets. These
four numbers, which can also be number variables or expressions,
are referred to as channel, octave, note and amplitude (or loudness)
numbers.

Channel is used because the Colour Genie isn't stuck with
providing just one note at a time. It can play up to three notes at
once, so we have to be able to control up to three notes
independently. 1f we allocate one code number to each note, this is
possible, and the channel numbers allow this to be done. The
channel numbers can take values of I to 3. The octave number alows
you to select musical notes in any of eight octaves, numbered 1 to 8.
This is a very wide choice - Middle C is the first note in octave
number 4. This variety allows the Colour Genie to produce any pitch
of sound that a musical instrument can produce, and a few more
besides!

The note number controls which of the notes in an octave will be
sounded and the relationship between the note and the number is
shown in Fig. 9.7. A @ used in this position will give silence, a

Number Note

0 silence

1 C

2 D

3 E

4 F

5 G

6 A

7 B

8 c#

9 D#
10 F4
11 G#
12 Ad

Fig. 9.7. The Colour Genie codes for the notes in an octave.

Sound Decisions 117

musical ‘rest’. The semitones C#, D#, F#, G# and A# are allocated
numbers 8 to 12 inclusive, rather than being placed between the
notes where they occur (see also, Fig. 9.6). You have to remember,
for example, that C is I, but C# is 8! You will have to consult the
table quite a lot to remind yourself of these numbers when you start
to write music programs, but after some experience you can write
Colour Genie music without the table
The last figure, the amplitude number, decides the loudness of the
note. The amplitude numbers can be between § and 15, with 15
producing the loudest notes. Remember that these loudness figures
are relative. The actual loudness can be set with the volume control
of the TV (or hi-fi) that you use to hear the sound. The loudness
figure in the PLAY instruction, however, allows you to write music
in which some notes are loud, some soft. If the amplitude number is
zero, the result is silence.
With no more ado, then, lend an ear to our first sound program in
Fig. 9.8. This sounds Middle C for a time that is decided by the delay
10 CLs
20 PLAY(1,4,1,10)

36 FORJ=1T05€0:NEXT
40 PLAY(1,4,1,0)

Fig 9.8. A Middle C program. Note that the sound has to be stopped!

loop in line 39. Line 49 is a silence instruction. This is needed,
because if we omit lines 39 and 40, the note keeps playing! Pressing
the BREAK or RST keys will have no effect, the note lingers on until
there is a silence instruction, an error, or until you switch off. You
have to be rather careful about this point later when you start
writing music in harmony, because a note will sound until there is
another note requested in the same channel

How about a musical scale, the scale of C? The program of Fig. 9.9
accomplishes this. It's straightforward, with the PLAY instruction

10 CLS
20 T=4

3@ FORN=1TO7

46 GOSUB90Q

S50 NEXT

60 T=51N=1

70 GOsuB9e

80 END

90 PLAY(1,T,N,10)
100 FORJ=1T0500: NEXT
116 PLAY(1,7,1,0)
126 RETURN

Fig 9.9. A scale-of-C program.

118 Moastering the Colour Genie

put into a subroutine, but with the octave number written as T. [
always try to avoid using O in a program - it's too easily confused
with @ even when the zeros are slashed. The variable T is needed
because the last note in the scale of C is on the next octave above.
You will find that scales that start on other notes will need the use of
two different octave numbers, along with some of the sharps that use
codes 8 to 12. The result is that the note numbers will not be in a
simple sequence, so that you can’t use a loop variable. The numbers
are most easily dealt with by placing them into a DATA line, and
reading in a loop.

Genie in harmony

Harmony means sounding notes together so that the result is
pleasant. It went out of fashion with ‘serious’ composers early in this
century, which is why concert halls are difficult to fill when modern
music is being played! It's never been out of fashion for the rest of us,
though, which is why such a huge gap has opened between ‘serious’
and ‘pop’ music. Having got that off my chest, let’s look at how the
Colour Genie can deal with harmony.

Figure 9.10 shows a program that produces a harmony. Lines 2

10 CLS
20 PLAY(1,4,1,1@)

30 PLAY(2,4,3,10)

4@ GOSUBSG0

5@ PLAY(1,4,1,0)

60 PLAY(2,4,3,0)

100 END

50@ FORJ=1T0S@@: NEXT: RETURN

Fig. 9.10. Producing harmony with two notes on different channels.

and 39 produce a different note on each of channels 1 and 2, so that
you hear the notes sounded together. The delay subroutine keeps
this sounding until lines 59 and 6@ restore silence. Two ‘silence’ lines

1@ CLS
20 PLAY(1,4,1,10)

3@ PLAY(2,4,3,10)

40 PLAY(3,2,1,15)

50 GOSUB10o

60 PLAY(1,4,1,0)

70 PLAY(2,4,3,0)

80 PLAY(3,2,5,@)

90 END

100 FORI-1TOS0Q: NEXT1RETURN

Fig 9.11. Three channel harmony.

Sound Decisions 119

are needed because two channels are in use. So far, so good. Now try
Fig. 9.11 which produces three channel harmony. Two of the notes
are taken from octave 4, and one from octave 2 to give a good bass
effect. A very small loudspeaker will not do justice to this bass note.
Once more, three ‘silence’ lines are needed to turn the three channels
off.
Just to indicate what can be achieved with a bit of blood, sweat

and cursing, Fig. 9.12 plays a bit of music in three-part harmony.

1e CL§

20 PRINT"RED,RED ROSE"

3@ FORX=1TO 23

4@ READ C,T,N,V,D

S@ PLAY(C,T,N,V)

60 FORJ=1T0OD: NEXT

70 NEXT

75 PLAY(1,3,0,0):PLAY(2,3,0,0) :PLAY (3,3,

e,0)

80 END

20@ DATA1,4,4,5,500,1,4,2,5,500

210 DATA1,3,12,10,0,2,3,2,10,0,3,2,12,10

700
22e DATA1,3,12,10,0,2,3,4,10,0,3,2,12,10

. 200
230 DATA1,4,1,10,0,2,3,3,10,0,3,2,12,180,
a00

240 DATA1,4,2,10,0,2,3,4,10,0,3,2,0,0,40
o

25@ DATA1,4,12,10,90,2,3,2,10,200,3,2,12,
10, 400
268 DATA1,4,6,10,0,2,3,2,10,0,3,2,0,0,40

@
27@ DATA1,4,5,10,0,2,3,9,10,0,3,2,12,10,
400

Fig. 9.12. A short excerpt of music in three-part harmony.

Each note requires four PLAY data numbers plus a duration
number. The PLAY numbers decide channel, octave, note and
volume as usual, and the duration number is used in the delay loop
of line 6f. The effect is a real credit to the Colour Genie sound
system.

Sounding-off

PLAY is the instruction that we use for musical notes, where each
note is one that we can read from a music score. The Colour Genie
also possesses the SOUND instruction, though, which allows you a
range of effects that go well beyond the boundaries of written music

120 Mastering the Colour Genie

and musical instruments. The instructions in the Manual are rather
too brief to allow you to get the best out of this instruction, so I've
dealt with it in a lot more detail here.

The instruction word SOUND has to he followed by two
numbers, separated by a comma, but with no brackets. The first
number is called a ‘register’ number. A register is a type of memory
store for numbers in the range § to 255, and the number that we use
in the first part of the SOUND instruction will specify one of a total
of sixteen registers. Each register is used for some aspect of
controlling the sound system (though 14 and 15 do not affect the
sound generator directly), and the second number in the SOUND
instruction is the number that is placed into the chosen register. In
many ways, SOUND is used rather like POKE, but with the
difference that the ‘address’ numbers are only in the range § to 15.

The effects of putting different numbers into these registers are
listed in Fig.9.13. Two registers are needed to store the numbers that

Register No. Effect

Channel | frequency, fine adjustment, range §§ to 255

Channel | coarse adjustment, range § to |5

Channel 2 frequency. fine adjustment, range § to 255.
Channel 2 coarse adjustment, range § to 15

Channel 3 frequency, fine adjustment, range § to 255.
Channel 3 coarse adjustment, range @ to 15

Noise predominant frequency, range § to 31.

Enable channels, see Fig. 9.20

Channel | amplitude, range @ to 15 (16 for envelopes).

PN UMAWN ~a

9 Channel 2 amplitude, range ¢ to 15 (16 for envelopes).
19 Channel 3 amplitude, range ¢ to 15 (16 for envelopes).
" Envelope repetition time, fine adjustment (§ to 255).

12 Envelope repetition time, coarse adjustment, (§ to 255).
13 Envelope shape pattern (§.1,2,4,8 only).

14 Input/output control A Do not use!

15 Input/output control B

Fig 9.13. How the sound registers are used.

decide the pitch of a note, so that registers R@ to RS (six in all) are
needed for the three channels, 1 to 3. Register 6 deals with noise, and
register 7 is a selecting register. The number that is stored in register
7 is used to control how many different channels of notes and noise
can be used to pass signals to the loudspeaker.

Sound Decisions 121

Registers 8, 9 and |9 control the amplitude of each channel, and
Registers 11 to 13 deal with what is called envelope. ‘Envelope’
means the pattern of a note. A musical note, or a sound effect, does
not consist of just one wave of sound but many. These waves usually
change amplitude while the note sounds. For example, when you
strike a piano key, the note that you get starts loud and then fades
away. Its envelope is therefore something like the shape in Fig. 9.14,

g sofle:
Atiack Suslain
{getting louder) (same volume)
g P Relsase

I
—+

1

T

ﬂ ¥ ﬂ} (dies away)
el

Waves making kA 8
up he note ~ i

5

Fig. 9.14. The ‘envelope’ of a musical note, containing many waves.

rising very rapidly and then falling more slowly. We'll deal with the
use of envelopes later.
One to some examples. Figure 9.15 produces a note whose pitch
descends. Line 3¢ puts the number 254 into register 7. This (see the
10 CLS
206 FORN=1T0255
30 SOUND7,254
4@ SOUNDE, 15
Se SOuUNDe,N
68 NEXT
7@ SOUNDE, e

Fig. 9.15. A note of descending pitch.

Manual, page 108) has the effect of turning channel 1 on, and
channels 2 and 3 off. Line 49 puts the number 15 into register 8. This
turns up the volume of the sound on channel 1 to maximum. The
control of the note is then carried out in line 5¢. Register § deals with
the frequency of the note in channel I, and by using N as the number
that is put into this register, we can change the frequency of the note
as the number value of N changes in the loop. After the loop has
finished, line 79 is needed to stop the sound by specifying zero
volume.

122 Mastering the Colour Genie

Now for a bit of amusement. The program in Fig. 9.16 uses two
channels. This is achieved by line 3@, by placing the ‘full volume’
code number of 15 into registers 8 and 9, channels 1 and 2. The pitch

10 CLS

2e SOUND7,252

3@ SOUNDS, 15: SOUNDY, 15
4@ FORN=1T0253

Se SOUNDe, N

60 SOUND2,256-N

70 NEXT

80 SOUND7, 253

Fig. 9.16. One rising note. one falling note, on two channels.

numbers are placed in lines 50 and 6@, using number N for register
and number 256N for register 2. Register § controls channel I, and
register 2 controls channel 2. The number N will create a note whose
pitch decreases as N increases, and 256 —N will produce a note whose
pitch increases as N increases.
Watch, by the way, how the pitch numbers are put into registers @,
2 and 4 for the three channels. These produce the major part of the
pitch control, with the numbers in registers 1, 3, and 5 used for
‘coarse tuning’. You need only use registers 1, 3, and 5 if you want
results that are over a very large range. The numbers are such that a
high number produces a low-pitch note and a low number produces
a high-pitch note.
Figure 9.17 takes us a few stages further. Line 2f) enables all three

10 CLS

20 SOUND7,248

30 BOUNDA, 151 S0UNDY, 151 SOLND1@, 18

40 FORN=1T0255

5@ SOUNDe,N

60 SOUND2, 256-N

7@ FORJ=1TO20

80 SOUNDA,JINEXT

9@ NEXT

100 SOUND7, 255

11@ PRINT "BLASTOFF!!"

Fig. 9.17. Notes on all channels to create an interesting effect.

of the channels, and line 3¢ sets maximum volume on each channel.
The main loop that starts in line 4@ then gives the same combination
as is used in Fig. 9.16, but this time we have added a different sound
in the third channel. This is achieved by using another loop whose
SOUND command is in line 8. Since the other two notes keep
playing while this one is altering, you hear the effect of all three

Sound Decisions 123

notes, two steady and one changing for each value of N. Line 19§
then shuts the sound off - mercifully!

Notable notes

Before we start to look at the creation of sound effects for games
programs and other purposes, it's worth noting that sound can play
a useful part even in business programs. Warning notes are a useful
way of drawing a keyboard operator's attention to something that is
happening. This can be even more effective than messages on the
screen. A warning note that sounds when a cassette has to be
inserted or when a file is about to be erased, or when data has been
replayed, for example, can be very useful. Let’s look at some
warning notes.
Figure 9.18 produces a succession of notes in which the amplitude

changes. Line 20 enables channel 1, and line 3f) sets a note value of

10 cLs

26 SOUND?,254

3@ Sounpe, 150

4@ FORJ=1T020

S@ FORN=@TO1SSTEP.1

60 SOUNDE,N

7@ NEXT

80 NEXT

9@ SOuNDS, @

Fig. 9.18. Changing the amplitude of a note

150 into the channel | register, register §. The outer loop that starts
in line 49 then causes the action to be repeated 20 times. The action
occurs in the loop that starts in line 5, in which the volume of the
channel 1 note is increased by changing the number N in the
SOUND instruction. The step that is shown is .1, but this, in fact,
does not cause the note to have its amplitude changed in steps of this
size. The amplitude number has to be a whole number (only whole
numbers can be put into registers), so the fraction is ignored. The
small step is, in fact, only a way of making the loop last longer
without having to include another delay loop

The program in Fig. 9.19 generates a warbling note. This isa very
effective way of getting attention, because it's somehow more
difficult to ignore a note like this. The set-up conditions are the same
as before, but the loop that extends from line 40 to line 79 sounds
two different notes. The note numbers that I have used are 159 and
155 - selected by trial and error! The delays in lines 55 and 65 ensure

124 Mastering the Colour Genie

18 CLS
20 SOUND?,254
30 SOUNDS, 15
40 FORN=1T0S50
Se SOUNDe, 156
SS FORJ=1T020:1NEXT
6@ SOUNDO, 155
45 FORJ=17020: NEXT
78 NEXT
80 SOUNDE, @
Fig 9.19. A warbling note which is an excellent attention-getter.
that the warble is not too fast. A very fast warble sounds like a single
note with what musicians call ‘tremolo’. It’s another effect to note

for future use, however.

A bit of noise

Some of the most impressive sound effects that the Genie can
produce require the use of the noise generator, a subject which isn't
covered in detail in the Manual. Noise is a mixture of frequencies,
unlike a musical note in which there is one ‘fundamental’ note. The
noise generation of the Genie depends on the use of registers 6 and 7.

We'll start with register 7, because it’s the use of this register that
allows noise signals to be sent to the three channels. Your choices in
this matter are made by the numbers that are put in following
SOUND 7, and Fig. 9.20 shows these numbers and how the values

Channels activated Tone code Noise code
1,2and 3 [} [}
2 and 3 only | 8
1 and 3 only 2 16
3 only 3 24
I and 2 only 4 32
2 only 5 4¢
1 only 6 48
None 7 63

Add 192 to the sum of the number(s) used

Example: Tone on channels | and 2, noise on channels 2 and 3 codesare 4 and 8,
which add to 12, then add 192 to get 204. This, then, is the number that is placed in
register 7

Fig. 9.20. Using the register 7 to enable tones and noise

Sound Decisions 1286

have to be added to accomplish an effect. The number that is put
into register 7, in fact, is the sum of three numbers, one of which
remains constant unless you are doing some very fancy programming
indeed.

Register 6, by contrast, uses numbers that range from | to31. This
causes the noise to have a predominant frequency, the sort of thing
that makes you think you hear the sea when you hold a sea-shell to
your ear. As an illustration of this sort of thing, try the program in
Fig. 9.21, which produces a rather impressive ‘surf on the shore' type
of noise. The figure of 247 that is put into register 7 enables noise

10 CLS

2@ SOUND?,2647

3@ SOUNDS, 15

4e FORX=1T020

5@ FORN=0Ta31

4@ SOUND&,N

7@ FORJ=1TO50:NEXT
80 NEXT

90 NEXT

10@ SOUNDS, @

Fig. 9.21. A ‘surf-on-the-shore’ noise program

only on channel 1, disabling any musical notes. The loudness of
channel 1 is put to full amplitude by line 39. We select 20 waves in
line 4¢, and then the loop in lines 5 to 6 carry out the ‘wave’ sound.
The noise ‘pitch’ in register 6 is varied all the way fromf to 31 ineach
pass through the main loop. The higher values give lower pitched
noise, the low values give higher pitched noise. We can now use these
noises as a basis for more useful sound effects

Sealed in an envelope?

We've mentioned the idea of a sound envelope earlier. It's time now
to look at what the Colour Genie can provide in the way of such
envelopes. Figure 9.22 shows the envelope shapes from which you
can choose - but that doesn’t tell you much until you hear their
effect. You also have to know how to allow the envelope shape to
take control of the amplitude of the sound.

Figure 9.23 demonstrates the effects of envelopes. The important
line is 79 - SOUND 8,16. When 16 (or any number between 16 and
255) is used in register 8, its effect is to allow the envelope generating
part of the sound generator to take control of amplitude. The sound
will no longer have fixed amplitude, but values that depend on

126 WMoastering the Colour Genie

Number(s) Envelope shape

2.1.23]\

\ note contnues
9

ﬂ S
15

Fig. 9.22. The Colour Genie's envelope shapes, and the code numbers to
select them.

whatever envelope has been chosen. The other lines are more
conventional. Line 2f enables music on to channel I, and line 3¢
puts a note number into the channel I register. Register 13 is then
used to select envelopes. As Fig. 9.22 shows, several numbers can
produce the same envelope shapes. You can then listen to the effects
of each envelope, and compare the sounds that you hear with the

Sound Decisions 127

10 CLS

2@ SOUND7, 254

3@ SOUND9, 158

4@ FORN=1TO1S

56 SOUND1I3,N

60 PRINT"ENVELOPE NUMBER "IN
7@ SOUNDS, 16

86 FORJ=1T015001 NEXT

90 NEXT

Fig. 9.23. Demonstrating the effects of envelopes

shapes in Fig. 9.22. The delay loop in line 89 gives plenty of time for
one sound to be completed before the next one starts.
We can produce rather useful tinkling notes with envelope 1, as
Fig. 9.24 illustrates. In this envelope, line 20 sets the envelope period
10 CL8
20 SOUND12, 1@
30 SOUND7, 254
4@ SOUNDS, 16
50 FORN=25STO1STEP-10
60 SOUND13, 1
7@ SOUNDe,N
80 FORJ=1T0200:NEXT
90 NEXT

Fig. 9.24. An envelope for ‘pianc’ type notes

- short for low number, long for high numbers. This is a quantity
that can be experimented with to considerable effect, because it can
change the sounds considerably. Line 39 enables channel |, and line
49 allows the envelope generator to control amplitude. The loop
then selects envelope | - and this has to be done on each pass
through the loop. Line 7§ puts different note numbers into the music
register for channel 1, and the result is - well, listen for yourself!
By way of contrast, Fig. 9.25 demonstrates what happens when we

use noise along with an envelope control. The noise is selected by

18 CLS

26 SOUND7,247

30 SOUNDS, 16

40 SOUND&, 8

50 SOUND13,8

60 FORN=1T05000: NEXT

7@ SOUNDS, @

Fig 9.25. A drumming noise program.

line 20, and the rest of the instructions should be reasonably familiar
by now - note the use of SOUND 8,0 to turn the sound off at the end
of the program. The drumming continues for the duration of the
delay loop - you don't have to have the SOUND instructions inside

128 Moastering the Colour Genie

a loop. Finally, try Fig. 9.26, and hear what happens when we siow
things down a bit. You should be able to analyse this one for
yourself!

10 CLS
20 SOUND7,247

30 SOUNDS, 16

40 SOUND6, 13

S8 SOUND13, B

S5 SOUND12, 30

60 FORN=1T0S50001 NEXT
70 SOUNDE, @

Fig. 9.26. Maditying the program to produce hammering sounds.

Chapter Ten
Miscellany Corner

The Genie has such a large selection of BASIC instructions that one
volume can hardly do justice to them all. What I have concentrated
on in this book has been the essential instructions that allow you to
write useful programs for yourself. By the time you have reached this
stage you will be considerably more familiar with the capabilities of
your Colour Genie, and better able to dig more advanced
information from the BASIC Manual and the User’s Manual.
There are, however, a few topics that deserve a mention before 1
leave you to your own devices. The first of them is an addition to the
PRINT instruction in the form of USING. PRINTUSING forces
the Colour Genie to print something in a fixed format. You might,
for example, want all numbers to be printed with no more than three
figures before the decimal point and no more than two following the
point. This ‘format’ can be fixed by a string “###.##" in which each
hashmark indicates the position of a figure. If we assign a string like
this to astring variable, we can have, for example, USINGAS placed
anywhere after PRINT and just before the number that we want to
print in this format. Figure 10.] illustrates this in action, showing
1@ CLS
PRINTTAB (14) "PRINT USING"
PRINT@160, ="
N=140.2716
PRINT"N IS ";N
AS="084. 80"
PRINT*WITH PRINT USING, IT'S “;USINGA

S84l

$iN
B0 PRINT"THE V.A.T. ON N IS “j15eN/100
9@ PRINT"IT LOOKS NEATER AS “jUSINGAS;Ne
15/100
Fig. 10.1. PRINTUSING being used to fix the ‘format’ of a number.
how a number can be printed in this fixed format. See what happens
if you want to print 1234.567 using such a format. This formatting
instruction is by far the most widely used application for

130 Mastering the Colour Genie

PRINTUSING, but you will find several other formatting strings
listed in the Manual. Some of these are rather specialised (unless you
deal in sums of money expressed in dollars, for example) and seldom
likely to be used in your programs
Another feature of the BASIC of the Colour Genie is what is
called ‘error trapping’. Normally when your computer comes across
a fault which makes it impossible to proceed, it will stop and display
an error message. This is useful while you are testing a program,
because by this way you can get rid of any remaining syntax errors.
Every now and again, though, a program will halt with an error that
is not due to faulty typing or planning, but simply because a
situation has arisen that the computer cannot cope with. This is the
sort of problem that ‘error trapping' is designed to catch. The idea is
that we have, very early in the lines of a program, an instruction:
ONERRORGOTO, which has to be followed by a line number. This
means what it says — if an error occurs, go to the line whose number
is given. This will force the computer to go to that line which will
contain instructions for finding out what the problem isand dealing
with it, but without stopping the program or issuing an error
message (unless you want one). Error trapping is particularly
valuable if the machine is to be used by relatively unskilled operators
who might not make much sense of the error messages.
Figure 10.2 shows an example. Line 20, ONERRORGOTO19¢¢

10 CL§

20 ONERRDREOTO1000

30 FORN=1TOS

40 READX:1Y$=GTRS (SOR (X))

5@ PRINT*NUMBER “jXs* "§"SQUARE ROOT ";Y

:o NEXT

70 DATAS,4,3,-2,2

80 END
1000 Y$=STRS (SOR(ABE (X)))+=J*
1010 RESULMES®

Fig. 10.2. Error trapping with ONERRORGOTO

ensures that if any type of error occurs, then line 1@ will be carried
out. The program then reads a set of numbers and forms a string
version of the square root of each number. The catch is that one
number is negative. Now the computer can't deal with the square
root of a negative number, because this is an ‘imaginary’ number.
Squaring a positive number or a negative number gives a positive
number, so no real number has a square root that is negative. When
—2is read, then, the effect of line 2§ is to make the program jump to

Miscellany Corner 131

line 10#9 whenever the computer attempts to find the square root.
Inline 1899, the absolute value of—2 is found, and the square root of
this quantity taken. The letter Jis then added. Line 1§ 19 then causes
normal service to be resumed in line 5@ so that the message, along
with the value of Y$, is printed. The J is a convention used in
engineering to indicate an imaginary square root of —1. If, for
example, we think of —4 as being 4%(—1), then its root is »*/~1, or
2J. Mathematicians use i in place of J for this function.

You can do considerably more than this with ONERRORGOTO.
The example I have used could have been tackled byan IF... THEN
test just after the quantity was read. Not all errors are so easily
trapped, however, and this is what makes ONERRORGOTO so
useful. You can, for example, detect different errors in different
lines. The instruction ERL means ‘error line’, so that you can include
in your error handling routine lines such as:

IF ERL = 5§ THEN GOSUB 5¢¢¢
IF ERL = I§¢ THEN GOSUB 6¢¢¢
RESUME

This allows the computer to distinguish between errors that have
happened in different lines, one in line 59 and one in line 19 in this
example, and to tackle them by different methods. The RESUME,
with no line number, at the end of the error routine will cause the
error line to be resumed, so that the subroutine must repair the fault.
If it does not, there is a good chance that a closed loop will be
formed. A variation on RESUME is RESUME NEXT, in which the
program will resume action at the line following the line in which the
error ocurred.

We can also separate different types of errors by using ERR. Each
type of error has a code number (see page 37 of the BASIC Manual),
and we can detect different types of errors by using these codes. For
example:

IF ERR/2 + 1 = 4 THENGOSUB 4¢¢¢

will detect error 4, which is ‘out of data’, and subroutine 4§99 could,
for example, containa RESTORE. Another code we might want to
use is 11, division by zero:

IF ERR/2+ | = 11 THEN RESUME NEXT

will cause the program to skip the problem line if a division by zero
occurs.
The error trapping routines can trap errors which you can’t get rid

132 Mastering the Colour Genie

of just by using IF... THEN tests, because you can't test for items
like ‘out of data’ by using such tests. You must be very careful,
however, how you use error trapping. If you include error trapping
in a program before you have eliminated all the syntax errors, for
example, you will get the most peculiar and unexpected things
happening when a syntax error occurs and the error trapping takes
over.

Have trouble, will shoot

The trouble-shooting commands of the Colour Genie are used to
track down faults in a program, and knowing how to use them can
save you a considerable amount of time when a program refuses to
do what is expected of it. Inevitably, as you type in a long program,
there will be syntax errors due to typingerrors. These, however, will
be reported by the computer when you run the program, and you
can deal with each one as it appears. It should not take long before
you have a program that is free of syntax faults. The errors which
may still remain are the ones that will cause you more trouble, and
some of them may also be reported as syntax errors. Chief among
these are confusions between O and § in printed programs where the
@ is not slashed. For example, a line like:

IFM=100RJ=40RD=2

(don’t laugh, one magazine often prints lines like this!) can cause
considerable trouble, until you realise that it means:

IF M = 1§ OR J=4 OR D=2

The other type of problem arises if you have typed @ with the
SHIFT key depressed - the Manual points out this one also.

Even when all these types of errors have been dealt with, though,
you can find that a program will still refuse todo as it should. It may
provide incorrect answers to all or some of the items that you test it
with, it may refuse to deal with more than one item of a list, it may
appear to do nothing or, worst of all, go into an endless loop so that
you have to press BREAK or in extreme cases the RST keys to
regain control. The best weapons for investigating these problems
are TRON and STOP.

TRON (where did you think the film gets its name from?) means
‘trace-on’. When you type TRON, press RETURN, and thenrun a
program, each line number will be printed on the screen as it is

Miscellany Corner 133

executed. This lets you see if the machine has stuck in a loop
anywhere, because you can find that lines are being repeated. You
can also find if any IF decision steps are doing strange things,
because the TRON action will reveal which line is executed
following the IF test line. Once you have found what is going on
(make a note of it!), you can cancel the effect of TRON by typing
TROFF (trace-off) and pressing RETURN.

Once you have some idea of where the program makes the
program stop, as you might expect, but when this happens, all the
variables in the program retain their values, and the machine keeps
track of where it stopped. If, for example, you have a line 19 that
you want to investigate:

199 1F J=6 THEN 8¢¢ ELSE IF J=7 GOTO 9¢¢

then you can put a STOP in a new line 189. The computer will then
stop when it comes to this new line, and you can type, using a direct
command:

PRINT J

and then press RETURN to find what the value of J is at the point
just before line 19¢. This value should give you a pretty good clue as
to why line 199 is causing problems.

Another even moare valuable feature is that you can change the
values of variables, and then continue the program! If, in the
example, you type J = 6 (press RETURN) and then type CONT
(then press RETURN), the program will continue, but the value of J
will be 6 and you should see the effect of the test in line 199. You
might think that this ability was so essential for fault-finding that all
computers would feature it. They don’t!

Having found an error, you can deal with it by using the excellent
editing commands of the Colour Genie. Get to know these - in
particular the use of 1 for Insert, and how the effect of I can be
cancelled by typing the up-arrow along with SHIFT. The editing
commands are well explained in the Colour Genie BASIC Manual,
so I won’t take up space with them here.

That's the end of the road for me, but just a beginning for you. The
Genie is a box of fascinating tricks, all of which you can learn to
control for yourself. This book should have unlocked some of the
Colour Genie's secrets for you, and the rest is up to you. The best
way to learn to make effective use of your Colour Genie is to write,
correct and use your own programs, and this is something that you

134 Mastering the Colour Genie

should have every confidence in doing now. Happy programming!
You'll soon discover that your Colour Genie is certainly a more
ABLE computer!

Appendix A
Cassette Head
Adjustment

Cassette recorders, like open-reel tape recorders, work on the
principle of pulling plastic tape, which has been coated with
magnetic material, past a ‘tapehead’, which is a miniature
electromagnet. The important part of any tapehead is the‘gap’,atiny
slit in the metal, too fine to see except under a microscope. This slit
should be placed so that it is at 90° to the direction of movement of
the tape, but this angle, which can be adjusted by tilting the whole
tapehead. is seldom precisely set, even when the recorder has been
quite expensive. A poorly set-up head will make it difficult to load
programs that have been recorded on correctly set-up equipment

CASSETTE RECORDER HEAD ALIGNMENT METHOD

()
(2)
(3)

@)

(5)

(6]

7

Insert a casselte, with a long program, into the recorder.
Remove cable connections between the computer and the recorder
Start playing the cassette. Set the volume control to a comfortable
level, and listen. Any tone control should be set to give maximum
treble

Insert a thin-bladed screwdriver into the head-alignment screw-
head. On some recorders this is reached with the cassette flap shut,
through a hole in the casing. On other models, it will be necessary to
open the flap. This may have to be done before playing the tape.
Adjust the azimuth screw slightly in each direction, listening to
increase in the treble (a sharper sound). If adjustment causes the
note to sound more mutfled, reverse the direction of turning. Adjust
until the note is at its sharpest

Rewind the cassette, and make the connections between the
computer and the recorder

Try to load a program. If good loading cannotbe achieved, repeat the
procedure, but look for another setting which produces maximum
treble

NOTE that this procedure is needed only if a tape from a reputable
source cannot be loaded. Tapes made on a recorder will be loaded
by that recorder unless there is a serious fault. Once the adjustment
described above has been carried out, tapes recorded before the
adjustment may not load correctly after the adjustment

136 Mastering the Colour Genie

=] 1

I (View Irom back of head)

Agjusting Rear of head
screw ——— (1acing keys ot
recorder)
r nn

A b S
teih acfusting O

- Neys

Fig. A1. Tape-head azimuth. The narrow slitinthe tape-head(a) is normally at
90° to the edge of the tape. This is the correct azimuth angle, but a surprising
number of recorders have this maladjusted. Any deviation from this angle (b)
causes muffled sound and poor loading. The angle can be altered by turning
an adjusting screw (c) which is on the head mounting. This is often reached
through a hole in the casing of the recorder (d). (Courtesy of Keith Dickson

Publishing }

Appendix A 137

(bought software, for example), though you will always be able to
load tapes which have been saved on the same equipment with the
same head adjustment. NEVER touch the recording head with
anything metal - but you can set the alignment fairly easily,
following the scheme outlines here, in Fig. Al.

After a lot of use, it's important to clean the head. Use a cleaning
kit, such as the BIB, and follow the instructions carefully.
Alternately, Lowe Computers market a cassette head cleaning tape
which should be used at least once a month. A few authorities say
that the head should be demagnetised at intervals, but in five years of
using the same recorder for computer loading and saving, I have
never found this to be necessary.

Appendix B
Graphics Codes for the
Colour Genie

(A:(Sjglgl GRAPHICS éfxglé GRAPHICS éggé GRAPHICS égclé GRAPHICS
e [T |1 [l e MM |ve |
2o ™ |15 = ‘ o [l |77 |
wo v [Nlee | M
o (v ™ e [M
w2 W] |e 3] [es [|e0 o
w3 (P e [d e e [
s il | 150 Bl HE (e []
us g s [|e7 HE [es [@
6 [| 152 m] [ee [] (e [
w7 [] s [f] [es A |es [
we []we |0 g (e (I
we [(ws Rl |7 [0]e [
wo [|wse [l |2 e [
wo [[@& | I 1 180 [
uz (] |se) e P |0 @]
wa (=] {so (gl |75 M |w [

Appendix 8 139

Cope CTAPMES MEY) BRE CTATMES din
192 ® i | en M |
193 = < | 212 | J
194 H = | e L K
195 B > | 214 ") L
196 > | 25 = M
197 X + 216 1] N
198 v 2n o o
199 =) — | 218 o p
200 (o 219 R aQ
201 [/| 220 R
202 [| @ | 22 11 s
203 1] A | 222 B T
204 m B | 223 7 u
205 | c | 224 h v
206 — D | 225 1l w
207 [E | 226 | x
208 = Fo| o227 N v
209 - G | 228 | z
210 - H | 220] \

140 Mastering the Colour Genie

Cope ShATMes KEY) ESRe SRATMCT g
230 [] a | 243 == n
231 m b 244 E o
232 m c | 25 1) P
233 (0| d | 248 [+] a
234 f«) e | 247 =3 '
s O 1l ae [s
236 [d g | 2a9 [&] t
237 m h 250 ﬂ u
238 I | i 251 H v
239 E I 252 IE W
240] k| 253 [x
241 E | 254 EI| ¥
242 @ m 255 E z

Appendix C
Non-printing Codes

The ASCII codes of numbers § to 31 do not produce characters on
the screen, but they do produce effects many of which you will want
to use. The list below shows the codes and the effect that each code
produces in a running program when PRINT CHR$(N) is used.
Where numbers are omitted, no action is obtained.

Code Action
8 Backspace cursor, erasing any character at that place
19 Take a new line, left-hand side
13 As 1§
14 Cursor on (in a program)) Neither of these codes has any effect
2 on the cursor that appears al the end of
15 Cursor off (in a program).) a program, after the READY prompt.
24 Backspace cursor, no erase
25 Cursor forward one space (no erase).
26 Cursor down one line.
27 Cursor up one line
28 Cursor ‘home’ to top left-hand corner of screen.
29 Cursor to start of present line
30 Erase to end of present line.

3

Erase to the bottom of the screen.

Appendix D
Machine Code

There are several instructions, like CALL, SYSTEM and VARPTR
that have not been explained in this book, nor at length in the
Manual. This is because these instructions are used to control
machine code programs. A machine code program uses a set of
number codes to control the action of the computer directly rather
than through the BASIC instruction words. Machine code runs
much faster than BASIC, and is capable of a much wider range of
actions, but to learn and understand machine code you need to
know very much more about how the computer works. This subject
needs at least one book, preferably two, by itself. Rather than
produce a short and insufficient chapter on machine code methods,
I've omitted it altogether. When you are ready for machine code,
there are books that deal with the machine code of the Z-80
microprocessor which operates the Colour Genie. There is also a
superb program called ZEN which allows you to write machine code
in ‘assembly language’, that is in a form which places less emphasis
on number codes and more on what they do.

Appendix E
Miscellany

1. If you press the MODSEL key before you switch on the Colour
Genie, and keep this key depressed as you switch on, you can get
another 4K of memory for program use, but at the expense of the
full-graphics use.

2. The commands:

POKEI641§,8 will stop the cursor blinking
POKEI6419,32 will delete the cursor
POKEI6410,64 will cause the cursor to blink fast
POKE16419,96 will cause the cursor to blink slowly

3. You can renumber the lines of your program. All of the lines are
correctly renumbered, including the numbers in GOTO and
GOSUB statements. The command word is RENUM. RENUM
used by itself will renumber starting with line 19, in steps of 1. You
can renumber with any starting line number (within reason!) and
step (also!) by usingtwo numbers following RENUM. For example,
RENUM 149,5 will renumber your program so that the first line is
199, and the lines are numbered in fives.

4. AUTO (press BREAK) will cause line numbers to appear
automatically when you are typing a program. The numbers start
with 19 and step in tens. A command such as AUTO10,5 will start
your numbering at 19§ and step in fives.

5. LIST 19-199 will produce a list of the lines within these limits.
It's very useful if you want to edit

6. Programming the user keys. The four user keys on the right-hand
side of the keyboard can be re-programmed by typing:

FKEYn="action” (press RETURN)

where nisthe number of the key, ! to 8. The keys are numbered F1 to

144 Mastering the Colour Genie

F4, and the numbers FS to F8 are obtained by using F1 to F4 along
with the SHIFT key (so that F5 means F1 and SHIFT). The ‘action’
can be any item that you would normally have to type, but limited to
seven letters maximum. This has to be placed between quotes. As
examples, try:

FKEY1 = “PRINT”
FKEY2 = “TAB("
FKEY3 = “PRINT@"

Note how Key 2 will give TAB(so that you can then type the number
and the closing bracket. Pressing Key 1 and the Key 2 gives you
PRINTTAB(, which is a useful combination while you are writing
programs. No closed quotes will produce a command and an
automatic return.

7. Playing music with SOUND. When SOUND commands are
used to obtain envelope effects, music cannot be played in the usual
way. Instead, the ‘channel period’ registers § to 5 must be used. The
User’s Manual (the larger booklet) for the Genie shows on page 47
what numbers must be placed in each register for each note. Use
these numbers, which can be read from DATA lines, to create
‘piano’ music effects.

@ sign, 22

actions on strings, 27
address number, 90
aerial adaptor, 2

alien face, 89

alien-face program, 91
ahen figures, 89
alphanumeric characters, 80
amplitude, 113
amplitude number, 117
animating a square, 106
animation, 88, 94
arithmetic program, 15
array, 63

array recording, 70
ASC, 60

ASCII codes, 53
assembly language, 142
assignment, 25

audible range, 112

auto line numbers, 143
azimuth, tape head, 136

background colour, 98
BASIC, 15

bass note, 113

BGRD, 98

blank string, 47

bouncing square program, 107
BREAK key, 38

BS error, 64

carnage return, 8

cassette head adjustment, 135
cassette lead, 9

cassette recorder, 9

centring a title, 21

centring subroutine, 55
channel, 116

CHAR, 83

character planning grid, 89
character sets, 82
chequer-board pattern, 104
CHRS, 60

CIRCLE, 102
CLEAR, 14
CLOAD, 12

coarse tuning, 122

codes for notes, 116
codes for pattern, 90
codes 1in a string, 87
coding characters, 82
colon effect, 20

colour code numbers, 85
colour pattern, 86
colour program, 85
colour selection, 84
colour set, full graphics, 99
commas, 20

comparing strings, 61
comparing words, 62
concatenation, 28
concealing messages, 61
co-ordinate numbers, 101
core program, 74
countdown program, 41
counter variable, 41
counting, 33

CPOINT, 107

creating characters, 88
creating shapes, 108
crochet, 113

CSAVE, 11

cursor, 9

cursor controls, 143
cyan, 85

DATA, 32
data filing, 67
data number, 90

146 Index

decisions, 44
decrementing, 33
defining variables, 37
delete action, 51
descending pitch note, 121
designing shape, 86
DIM, 64
dimensioning, 64

direct mode, 14
displaying graphics, 84
dollar sign, 26
double-precision, 36
drumming sound, 127
dummy subroutines, 77

editing commands, 133
ELSE, 45

entering several items, 31
envelope of sound, 121
envelope shapes, 126
ERL, 131

ERR, 131

error trapping, 130
expression, 25

FC error, 98
FCOLOUR, 102
FGR, 97
filename, 11
FILL, 102
finding ininals, 56

flashing asterisk subroutine, 51

flat note, 115

FN error, 40

FOR, 39

foreground colour, 84
format, 129

framing title, 28
frequency, 112

fuse, 1

game core program, 78
GOSUB, 49

GOTO, 38

graphics characters, 80
graphics codes, 138
graphics planning, 81
Greek letters, 89
grouped data, 71

half-shapes, 95
hammering sound, 128
hang-up step, 68

hard copy, 18

harmony, 118

hashmarks, 52

helicopter program, 94
helicopter shape, 93

hertz, 112

high res planning grid, 99
high resolution graphics, 97
hints and tips, 143

identity test, 45

1F, 4

imaginary number, 130
incrementing, 33
INKEYS, 47

INPUT, 29
INPUTH-1, 69

inputs and outputs, 73
instruction words, 15
integer, 36

jack plugs, 10

keyboard, 7
keyboard graphics, 80

LEFTS, 56

LEN, 54

length of string, 54
letter pyramid, 59
line numbers, 11
LIST, 14

histing, 143

loops, 38

low resolution grid, 81
lower—ase, 7
lower-case letters, 23
LPRINT, 18

machine code, 142
magenta, 85

mains plug, |

mains sockets, 3
matrix, 65

MEM SIZE message, 4
memory numbering, 90
menu, 48

menu subroutines, 50
menu-driven program, 73
MIDS, 58

Middle C, 115
MODSEL key, 8, 80
modulator, 4

monitor, 4

Index

ding variable values, 68

moving pr
mugtrap, 46, 76

multiple characters, 93

multiple image, 110

multiple planning grid, 92

multiply sign, 16

multistatement line, 20

music with SOUND instruction, 144

name and number matrix, 65
NBGRD, 98

nested loops, 40

NEXT. 39

noise, 124

non-printing codes, 141

not equal sign, 43

note number, 116

notes on several channels, 122
NPLOT, 105

number functions, 34
number variable. 25
number-guessing game, 46

octave. 115

octave number, 116
ON K GOTO, 48
ONERRORGOTO, 130
OS error, 53

PAINT. 103

pass through the loop. 39
passing a variable, 55

piano type notes, 127
pixels. 97

planning on graph paper, 93
PLAY. 116

PLOT, 101

precision of numbers, 34
press-any-key, SO

print modifiers, 18
PRINTH-1, 67

PRINT@ positions, 22
PRINTUSING, 129
program design, 71
program mode, 14

program specification, 72
programmable keys, 19
programming user keys, 143

Quit option, 74
READ, 32

recording check list, 13
recording messages, 68

REDO, 30

register, 7, 120, 124
REM lines, 77
renumbering, 143
repeat.. .until action, 44
replaying variable values, 69
reserved words, 15
resolution, 80

rests, 114

RESUME, 131
RETURN, 7, 49
RIGHTS, §7

rocket program, 95
rows and columns, 9
RPT key, 24

RST keys, 8

SCALE, 110

scale of C program, 117
semicolon, 18
semitones, 115
SHAPE, 108

SHAPE program, 110
shape table, 108

sharp note, 115

SHIFT key, 8

SHIFT LOCK, 8
single-key reply, 47
single-precision, 36
sorting into order, 62
sound, 112

sound envelope, 121
SOUND instruction, 119
sound registers, 120
spacing out letters, 58
speed of BASIC, 88
stave, 114

STEP. 40

STOP, 132

STRS. 59

string, 17

string functions, 52
string of numbers, 57
string slicing, 5§

string space, 52

string variables, 26
STRINGS. 52
subroutine, 49, 75
subscript, 63
subscripted variables, 63
surf on shore sound, 125

TAB, 21

147

148 /Index

tabulation, 21

lape, 10

tape leader, 10

tape lest program, |1
terminator, 43

testing core program, 75
three-part harmony, 119
time of a note, 114

TM error, 28

TO, 101

top-down design, 73
totalling program, 43
tolalling program, simple, 42
treble note, 113
tremolo, 124

TROFF, 132

TRON, 132
troubleshooting, 132
tuning faults, 6

TV cable, 2

TV tuning methods, 4

UL error, 75
upper-case, 7

using envelopes, 125
using PAINT, 104
using quotes, 17

VAL, 48
variable, 25
variable name, 25
VERIFY, 12

warbling note, 123
warning notes, 123
waveforms, 113
wipe-out string, 87
writing core, 75

XSHAPE colours, 110

ZEN, 142

RELEASE THE POWER OF THE COLOUR GENIE!

The Colour Genie takes you from your very first steps in
computing right up o serious program applications. If's a
micro that everyone can use and the Full Microsoft BASIC
Extended included enables you fo write your own
programs quickly and easily. Its full size typewriter
keyboard and optional joysticks with numeric pads give
you powerful design foals for high resolution graphics.
The sound synthesis used is the same as that in electror:ic
music organs and gives you great sound and music
facilities.

This book has been specifically written for you, the
beginner, and assumes no previous knowledge of
computing. It covers the BASIC (the programming
language used) of the Colour Genie, including the use of
the excellent colour graphics and superb sound
instructions, as well as the very comprehensive set of data
filing/handling instructions. A whole host of programs are
illustrated for you fo enjoy as you become more proficient
and able! You are shown how to write your own
programs so that you are soon in full command of this
powerful machine.

The Author

lan Sinclair is a well known contributor to journals such as
Personal Computing World, Computing Today, Electronics
and Computing Monthly, Hobby Electronics and Electronics
Today International. He has written over forty books on
electronics and computing aimed mainly at the beginner.

PGmea nGeaA!é[?ae FUB G £5.95 net

	Cover
	Contents
	Preface
	1 - Setting Up the Colour Genie
	2 - Getting Your Name in Lights
	3 - A Bit of Variation
	4 - Repetitions and Decisions
	5 - Programs with Strings Attached
	6 - Filing and Designing
	7 - Graphics, Plain and Fancy
	8 - Smaller Pieces Make Prettier Pictures
	9 - Sound Decisions
	10 - Miscellany Corner
	Appendix A Cassette Head Adjustment
	Appendix B Graphics Codes for the Colour Genie
	Appendix C Non-printing Codes
	Appendix D Machine Code
	Appendix E Miscellany
	Index

