Video Genie System

BASIC MANUAL

PREFACE

As the Computer Age gathers momentum, more and more people are becoming aware
of the latest dramatic development: the microcomputer. To take full advantage of these
incredibly powerful new tools, you need to be able to write programs. The easiest and most
effective way to learn programming is by actually using the computer yourself, to get
“hands-on” experience.

This manual is designed to help you learn computer programming on the Video Genie
System Computer, using the “hands-on™ approach. It provides a comprehensive software
course, based on the Active Commands. Text Editing and program statements available
in the Video Genie System’s powerful Level II BASIC language.

To get the most from the manual, we suggest very strongly that you read it from the
first page to the last, without skipping any portion of the text or any of the numerous
examples given. Not only that, but we suggest that you try each example for yourself on
the Video Genie System computer as you go along. That way, you should really have a
good grasp of programming by the time you reach the last page.

Happy and effective computing with your Video Genie System!

TABLE OF CONTENTS

® N v R e

PREFACE
INTRODUCTION

ACTIVE COMMANDS

TEXT EDITING

BASIC PROGRAMMING STATEMENTS
PROCESSING ARRAYS

STRING HANDLING

BUILT-IN ARITHMETIC FUNCTIONS
GRAPHICS FEATURES

SPECIAL FEATURES

APPENDIX RESERVED WORDS

ERROR CODES

CONTROL, GRAPHICS, AND ASCII CODES
PROGRAM LIMITS
VIDEO DISPLAY MAP

m o O % >

79
80

83
85

86

NTRODUCTION

In the Video Genie System, there are four operating levels:

(1

(2)

3)

4

The Active Command Level: In this level, the computer responds to commands as
soon as they are entered followed by hitting the NEW LINE key. Whenever the >_
signs are on the display, the user is in the Active Command level. (For more details
see Chapter 1).

The Program Execution level: This level is entered by typing RUN, and the BASIC
program in the memory is executed. All numeric variables are set to zero and all string
variables are set to null before execution starts, that is right after the RUN command
is entered. (For more detail see the RUN command in Chapter 1).

The Text Editing level: This level allows the user to modify, delete and add the
content of the program in the memory. The user can change any part of the program
text as desired, instead of retyping the entire program line.

(see Chapter 2).

The Monitor level: This level permits the user to load machine language ‘“‘object files™
into memory. These object files (either program or data) can be accessed by other
BASIC programs, or executed independently.

(see the SYSTEM command in Chapter 1).

Before going into program coding, we should be familiar with some basic concepts of
programming.
1. Keywords: There is a set of keywords (reserved words which form the skeleton of a
program in Extended Basic. Some of the keywords are:
PRINT
INPUT
IF
THEN
GOTO
END

For the entire list of keywords, please refer to Appendix A. The keywords act as the guide-
line of a program.

For example
- L 1

— 1@ — PRINT "ADD TWO NUMBERS PROGRAM : "
29,{ INFUT "ENTER THE FIRST NUMBER ;R
36 | L INPUT "ENTER THE SECOND NUMBER ":B

| 4@ C = H + B L

S@ | ~ PRINT "THE RESULT IS :"sC

| co[Lew -]

R R

LINE NOS. KEYWORDS SECONDARY PART OF STATEMENTS

All this program does is to accept two numbers, add them together, and print out the result.
RERDY
>RUN

RCD TWO NUMBERS FPROGRAM :
ENTER THE FIRST NUMBER ? 42
ENTER THE SECOND HUMBER ? 435
THE RESULT IS . &7

2. Variables: Do you remember your mail box number?

Of course, right! The mail box number serves as a label which identifies itself from the
others, so the postman can put the right letter to the right box.

The variable names (or identifiers) in a program function exactly like the mail box number.
However, the variables use figurative names instead of numbers.

Let us consider the following events:
A=170

oor voc &
(7o > o

A content o———y

varijable W

name {/

R/

——

(b)

In event (a), when the computer executes the assignment statement A = 170, it searches the
location of variable A, and put the value of 170 into A’s content. Just like in event (b), once

the postman sees the address on the letter,he will bring the letter to the mail box 456, in
ELM street. Simple, right!

With the same process, consider the following program.

1a 1 cREM FILL THE CONTENT OF A WITH 1

el A+ 16 :REM ARD 46 TO A, STORE THE RESULT IN A
@B =AR=%2 REM A A 2, STORE THE RESULT IN E

48 FRINT "THE RESULTS ARE :";A.E

T I
o

S8 END REM END OF PROGRAM,
line 10
line 20
line 30 A 11
) B 22
READY
REUN

THE RESULTS ARE @ 11

(]
]

So far we only deal with variables that contain numbers; actually, variables may contain
strings (one or more characters).

However, these variables are a little bit different from numeric variables.

18 A% = "MR. JOHM RDAMS, "
28 B$ = "P. 0. BOX 456, "
G C% = "ELM STREET. "

48 PRINT A#$
38 FRINT B$: C#
ol EMD

FEADY

RLUN

MR, JOHN ADAMS.

P. 0. BOX 456.ELM STREET.

This program assigns “MR. JOHN ADAMS,”, “P.0. BOX 456,”, “ELM STREET.” to AS,
B$, C$ respectively. Then print out the contents of A$, B$ and C$ onto the screen.

Note that there is a § sign following A, B and C. The “$” tells the computer that vari-
ables AS, BS$, and C$ are string variables (variables that contain letters, symbols, as well as
non - computational numbers). The value must be enclosed in double quotation marks. For
example: D§ = “ABCDE 12345 * = /+”

Note that if you assign the wrong thing to the wrong variable, the computer will not under-
stand and will give you an error message.

For example:
A = “WRONG DATA” (assign a string value to a numeric variable)
B$ = 100 (assign a numeric value to a string variable)

Besides, variable names must be unique. Just like two mail boxes cannot bear the same
number.

The Video Genie System accepts variable names which are longer than two characters;
however, only the first two characters are used by the computer to distinguish between
other variables. Variable names must begin with a letter (from A to Z) and followed by
another letter or a digit (from 0 to 9). The following are valid and distinct variables:

A, AA, AB, AC, A0, A1,BN,BZ,B7,ZZ, Z1.

Note: The user should not use any variable name which contains words with special meaning
(or reserved words) in the BASIC language. For example, “CIF> cannot be used as a variable
name, since it contains the BASIC keyword “IF”,

A list of reserved words is in Appendix A.

Variable Types

There are four types of variables in the Video Genie System: integer,‘ single precision, double
precision, and string variables. The first three types are used to store numeric values,
whereas the last type is used only for character storage.

1. %: integer (whole numbers within the range -32769 to +32769)

Example

A% =-30
BB% = 8000

2. ! : single precision (6 significant digits)
Example

A!=-503
D4! =.123456

3. # : double precision (16 significant digits)
Example

A7# = 3.141592653589.
A27#= -4567.8901234

4. § : string (maximum length : 255 characters)

Example

A% = “VIDEO GENIE SYSTEM”
M2§ = “THE RESULT OF (A*B+15)/2.51S:”

Though A%, Al, A#-, A$ all have the same variable name “A”, their types are different,
that is %, !, 7 , §; they are considered to be distinct variables by the computer.

Artithmetic Operators

Whenever any computation is needed in a program the arithmetic operators are used.

Example:
3 R=686
18 A = R #® 3, 1446 # 2 :REM COMPUTE THE CIRCUMFERENCE.
28 PRINT "THE CIRCUMFERENCE IS :"iR
30 B=2141€ + R[2 REM COMPUTE THE RREAR OF THE CIRCLE
486 PRINT "THE ARER IS :"“iB
50 END
READY
>RUN

THE CIRCUMFERENCE IS : 237. 6992
THE AREA IS : 113 @98

The Video Genie System uses the general arithmetic symbols:
+ for addition, — for subtraction, * for multiplication, / for division, and [(the ESC key) for
exponentiation.

For example, the result of 5 x 124/3? js equivalent to the result of 5*12[(1/3) in Video
Genie System (Note: you will find no [key on the keyboard, it is represented by the ESC
key). (et 4)

Relational Operators
Whenever a decision has to be made within a program, a relational operator is needed.
The acceptable operators are:
< (less than) <
> (greater than) >
<> (not equal)

(less than or equal to)
(greater than or equal to)
(equal to)

Example:

12@ IF A < E THEN PRINT "B IS GREATER THAN R. "

When the computer executes this statement, if the content of B is greater than the content
of A (i.e. A < B is true), the sentence “B IS GREATER THAN A” will be printed on the
screen. Otherwise the computer will just go to the next statement.

Logical Operators
AND, OR, and NOT are the only logical operators accepted by the Video Genie System.
Example

16 IF A = 1 AND B = 5 GOTO 5@

The computer branches to line 50 if A =1 and B = 5, otherwise the computer goes to the
next statement following line 10.

10

28 A = (B =2 AND (C > 182

A has the value of -1, if both B =2 and C > 10 are true.
Otherwise A has the value of 0.

48 A = (D < 2 OR (E < 2@

A has the value of -1 if either D < 2 or E < 20 is true. When both D > =2 and E > =20 are
true, then A has the value of 0.

T R = NQT <F > o)

A has the value of -1 if F < = 5.
Otherwise A has the value of 0.

String Operators.

In string operations, the relational operators are used to compare the precedence of two
strings.
Note that the following operations are all true.

"B" < "C" ¢ THE CODE FOR B IS LESS THRMW THE CODE FOR C >
"JOHN" > “JACK" (SAME REARSON AIS REBOVE. >
"STRING" = "STRING"
"LETTERS" <> "LETTERS " ¢ SPACE ALSO COUNTS. o
AF = "BO" + "AT" { A% WILL HAYE THE YBLUE : BOAT >
Order of Operations

Operations in the innermost level of parentheses are performed first, then evaluation
proceeds to the next level, etc. Operations on the same level are performed according to the
following precedence rules.

1. Exponentiation A[B

2. Negation -C

3. Multiplication and Division A*B, C/D

4, Addition and Subtraction C+D,E-F

5. Relational Operators A<B,“C’=“C",15<> 16
6. Logical Operators NOT, AND, OR

For example, we have a formula.

leANS =AR+B*xC*D/72+EL 2

The computer will evaluate in the following sequence.

If A =

moaw
non
AN bW

Then apply to the formula above
2+3*%4x*x5/2+6[2

Therefore the answer should be 68.

11

12

CHAPTER 1

ACTIVE COMMANDS

Once the system is set up, with power on, the user should be in the Active Command level.
The normal indication is the word “READY” followed by a *“ > * sign which appears on
the next line at the upper left corner on the display (monitor or TV screen). For convenience
we will call this indication the “ready message”.

At this point, the user should hit the] NEW LINE |key before entering one of the following
commands through the keyboard.

1. AUTO 8. EDIT 15. LLIST
2. CLEAR 9. LIST

3. CLOAD 10. NEW

4. CLOAD? 11. RUN

5. CONT 12. SYSTEM

6. CSAVE 13. TROFF

7. DELETE 14. TRON

We are going to discuss these commands separately. Please note that everything inside the
brackets is optional. For example: AUTO (line number, increment) All the user has to do is
type in the underlined portion:

AUTO 18, 3

or any numeric value to replace “line number” and ““increment”. In case the option is not
taken, just type in

LIST

The computer will perform certain specified actions automatically. Notice: Every command
should be followed by pressing the;NEW LINE|key.

1.1

AUTO (line number, increment)

This command automatically sets the line numbers before each source line is entered.
The option permits the user to specify the beginning line number as well as the in-
crement desired hetween lines. If the user only types in AUTO followed by the[NEW)]
key, the beginning line number will be set at 10, with each increment of 10.
The user may enter his program statement right after the line number.

Example
@ PRINT "THIS IS LINE z8. "

Everytime the user hits the|NEW LINE|key, the computer will increment the line
number. Until the|BREAK key is hit, the AUTO command will remain in operation.
(Note that whenever AUTO brings up a line that has been used previously, there will
be an asterisk appear right next to the line number. If the user does not want to alter
that line, hit the[BREAK]key to turn off the AUTO function). '

Example
READY
»AUTO 1,2
tpel [Ew e |
S LINE 5
7 LINE 7
9 [BREAK]
READY
ZAUTO 2,2
2 SECOND LINE
4 FORTH LINE
6 SIKTH LINE
8[BREAK

RERDY

SAUTO

18 LINE 18
26 LINE 2@

36 LINE 30

40[BREAK]
READY
FAUTO 1,1
1

2%

3k

4ok

Sk

13

14

1.2 CLEAR (number of bytes)

The command will clear a specific number of bytes for string storage. If the option is
not used i.e. type in CLEAR followed by the [NEW LINE| key, the computer will
reset all numeric variables to zero, and all string variables to null. When the option is
taken, the command will perform, in addition to the first function, a second function:
that is to clear a specified number of bytes for string storage. Note that when the user
turns on the computer, a CLEAR 50 command is performed automatically.

Example
CLEAR 100

Reset all numeric variables to zero, and all string variables to null. Then clears 100
bytes of memory for string storage.

1.3

1.4

1.5

CLOAD (# — cassette number, *‘file name’’)

The command will load a specified program according to the “file name™ to the
computer from the appropriate cassette. Before using this command, the user should
re-wind the cassette tape, check the cables and connectors (consult the user’s manual),
press the PLAY button on the cassette. If everything is ready, type in, for example
CLOAD # —1, “A” then hit the[NEW LINE |key. The cassette will be turned on and
starts searching until the file named “A” is found. If the file is found, a
stable and a blinking asterisks will appear at the top right corner of the display to
indicate loading is carrying out. Once the entire program has been loaded in the
computer, the READY message will appear on the display.

Example

CLOAD #-1, "Z"

Load from cassette No. 1 the file named 3.
Note that only the first character of the file name is used for CLOAD, CLOAD?, and
CSAVE commands.

CLOAD? (file name)

This command will compare a specific program stored on cassette tape with the one
in the computer’s main memory. Usually, this command is used right after the
CSAVE command which stores a program from the computer’s main memory to a
cassette. The CLOAD? command allows the user to examine whether the copying
(CSAVE) operation is successful.

It is a good practice to include the file name in this command, since the computer will
search for that file, or program, before comparison, starts. Otherwise the first file
encountered on the cassette will be compared. During the operation, the program on
tape and the program in memory are compared byte by byte. If any part does not
match, the message “BAD’’ will be display. In this case, the user should repeat the
CSAVE command again. Same as CLOAD Command, the cassette must be re-wound,
cables and connectors checked, with the[PLAY] button on; prior hitting the [NEW
LINE|key. (consult User’s Manual for more details).

CONT

This command continues the program execution, at the point where the execution
has been stopped by thelBREAK |key or a STOP statement within the program.

15

16

1.6

1.7

1.8

CSAVE #-cassette number, “file name”

This command stores the program in the computer’s main memory onto cassette tape.

Both the cassette number and the file name must be accompanied with this command.
Any alphanumeric character other than double quotes (*’) will be acceptable as a file
name. Again, before using the command, the cassette tape must be in a proper start-
ing location (not overlapped with any useful program location). Check the cables

~ and connectors, press the PLAY and REC buttons of the cassette at the same time,

then start typing the command accordingly.

Example
CSRVE #-2, "C"

Saves a program with label “C” on cassette drive 2, from the main memory.

Warning: keep account of the locations of the saved programs on tape. Find an empty
space for the new program to be loaded, unless you want to erase the old programs.
Erased program are not recoverable. (Consult user’s manual for more details).

DELETE line number (-line number)

This command will clear the memory location that contains the specified line(s).

Example

DELETE 35 Clear line 5

DELETE 7 - 1@ Clear line 7 line, 10 and any line in between.

DELETE -1z Clear from the first line of the program, up to and including line 12.
DELETE Clear the line currently entered, or edited.

EDIT line number

This command will cause the computer to shift from the Active Command level to the
Editing level. In the Editing level, the user is allowed to examine and modify the pro-
gram statements in the main memory, by using a set of sub-commands. There must be
a valid line number following the EDIT command, otherwise the command may not
be accepted. Also see Chapter 2.

Example

EDIT 28

Turns the computer from Active Command level to Editing level — then examines
line 20.

1.9

1.10

LIST (line number — line number)

This command will inform the computer to display any specified program lines stored
in the main memory. If the option is not used, the computer will scroll the entire
program onto the display. In order to pause and examine the text, the user should hit
the[SHIFT] and @ keys simultaneously. The scrolling will continue by hitting any key.

Example
LIST 3 display line 3.
LIST 18 - 28 display line 10, line 20 and any line in between.
LIST -5@ display from the first line up to and include line 50.
LIST 28 - display line 20 and all following lines.
LIST, display the current line just entered or edited.
LIST display all lines in the memory.

NEW

This command will clear all program lines; reset numeric variables to zero and string
variables to null. It does not change the memory size previously set by the CLEAR

command.

RUN (line number)

This command will instruct the computer to start executing (or RUN) the user’s pro-
gram stored in main memory. If a line number is not specified, the computer will
start executing from the lowest line number. However, if a line number is provided,
the computer will execute from the given line number to higher order lines. Note
that an error will occur if an invalid line number is used.

Everytime a RUN is executed, a CLEAR command also executed automatically
before it.

Example
RUN 58 start executing at line 50.
RUN start executing at the lowest number line.

17

18

1.12 SYSTEM

1.13

1.14

This command tums the computer into the Monitor Mode. Within this mode, the
user may load his own program or data file in machine code format,

To load an object file from tape, type in SYSTEM and [NEW LINE]: the “*?*’symbol
will be displayed. Then type in the file name. The tape will begin loading. When
loading is completed, another “*?”” will appear. Type in a slash *“/”” symbol followed
by the entry point address (in decimal) where the user wants the execution to start.

If the user does not type in the entry address, execution will begin at the address
specified by the object file. ’

TROFF

This command will tumn off the Trace function. Usually follows the TRON
command.

TRON

This command will turn on a Trace function that allows the user to keep track of the
program flow for debugging and execution analysis. Everytime the computer executes
a new program line, the line number will be displayed inside a pair of brackets.

Example

Consider the foilowing program:
16 PRINT " #k PROGRAM 1 #%"
206 A =1
38 IF A = 3 THEN 7@
46 PRINT A
S8 H=A0+1
&8 GOTO 3@
78 PRINT " EMD PROGRAM 1.
3@ END

Type in

>TRON [NEW LINE
SRUN [NEW _LINE

{18 ok PROGRAM 1 ok
{20384 1

{505<el><3a>(de> 2
{5@>(68><30<70> END PROGRAM 1.
{8e>

In order to pause execution before its natural end, the[SHIFT]and @ keys must be
pressed simultaneously. To continue, just press any key.

To turn off the Trace function, enter TROFF. TRON and TROFF are available for
use within user programs to check if a given line is executed.

Example

98 IF A = B THEN 160
166 TRON

118 AR =B + C

120 TROFF

In this portion of a program, if A happens to be not equal to B, then line 110 should
be executed. By using TRON and TROFF inside the program, the user can see
precisely whether line 110 has been executed or not. The computer will display <1 10>
<120>if these lines were executed. TRON and TROFF can be removed after a pro-
gram is debugged.

1.15 LLIST

Lists a program onto the printer. This command functions in a very similar way as
the LIST command. If the Line printer is not properly connected, the computer will
enter a dead loop and waits to print the first character. This situation can only be
resolved by turning the printer on or hitting the RESET button.

19

20

21

CHAPTER 2

TEXT EDITING

The purpose of editing in the Video Genie System is to facilitate the user in modifying his
programs. With the Editor, the user need not to type in the entire program every time he
makes a programming mistake or typing error. The need for an editor becomes more
critical when programs are long and complex.

Inside this chapter we discuss every editing function, including subcommands, that avail-
able for the Video Genie System. A substantial amount of descriptive examples are present-
ed with each command. Users are advised to try out each editing command before entering
their first program into the system.

EDIT line number

This command shifts the computer from the Active Command level to the Editing
level. The user must specify which line he wants to edit. If the line number is not pro-
vided, an FC error will occur (see Appendix B).

Example

EDIT ie@ (allow to edit line 100)
EDIT. (allow to edit the current line just entered.)

2.2 |NEW LINE|Key

23

Once the user presses the[NEW LINE| key while in the Edit mode, the computer will
record all the changes made in that line, and return back to the Active Command level.

In the Edit mode, pressing the space-bar will move the cursor one space to the right
and display any character stored in the preceding position. The user may type in the
value of n before hitting the Space-bar, then the cursor will move n spaces to the right
side.

Suppose we have entered a line into the computer by the command:

>AUTO 106
16@ IF A = B THEN 158 : A = A + 1 : GOTO 18@

24

If the user wants to edit this line, he should type in EDIT 100 followed by the[NEW]
LINE]key, like the following:

>EDIT 160

then the display will become:

e
By pressing the Space-bar 12 times, the cursor will move to the right side by 12
spaces. The display should look like:

100 IF A = B THE =

The user may also use the option to display more characters at once. That is, enter
the number of cursorspacesdesired, before hitting the|Space-bar]

Example

Type in 8 followed by the key:
168 IF A = B THE -
The display will become
168 IF A = B THEN 158 : _
If the user wants to display the next 20 positions, he may type 20 then the*
again. The outcome should be:

160 IF A = B THEN 158 : A = A + 1 : GOTO 16@ _

This action will move the cursor back to the left by n spaces. If number n is not
specified, the cursor only moves back one space at a time. Everything behind the
cursor will disappear from the display; however, it is not erased from the memory.

Example
106 IF A = B THEN 158 : A = A + 1 : GOTO 168

Hit the key 5 times, the display will look like:

100 IF A = B THEN 158 : R = A + 1 : GOT_—

21

22

25

Then type in 10 followed by Backspace key, the display will look like:
1686 IF A = B THEN 156 . A = A

After this sequence of operations, if the user hits the[NEW LINEI key, the display
will look like:

>
That means the computer has returned back to the Active Command level. If any
further change is desired in line 100, the user must enter the Edit mode again.

Key

By pressing the [SHIFT] and [ESC]keys simultaneously, the computer will escape from
any of the following Insert subcommands: H, I, X. After escaping from an Insert sub-
command, the user remains in the Editing level, while the current cursor position is
unchanged. Another way to escape from these Insert subcommands, is by pressing the
[NEW LINE]key, which will shift the computer back to the Active Command level.

2.6 @ Key

“H” represents Hack and Insert; that is to delete remainder of the line and to let the
user insert material at the current cursor position.

Example
Consider this line:

i@ IF A = B THEN 158 : A = A + 1 . GOTO 108

If the user wants to replace A=A + 1 by A= A + B, and to delete GOTO 100, he
should first enter the Editing level, type in 25 followed by pressing the[Space-bar]
(move 25 spaces from the beginning of the line). The display should look like:

lee IF A = B THEN 138 : A = A -

Now hit the H key, type in + B, then hit NEW LINE] (back to the Active Command
level). Or hit [SHIFT] and [ESC]simultaneously to return to Editing level, then hit{L)] to

display the entire line, as below:
166 IF A =B THEN 158 : A = A + B
i66 _

with anything not displayed being deleted.

2.7 [II Key.

“I” represents Insert, that is to allow insertion of characters starting at the current
cursor position, without altering any other part of the line.

Example
We want to insert the statement “PRINT A’ between “A = A + 1” and “GOTO 100”
in line 100. Line 100 looks like:

168 IF A =B THEN 438 : A = A + 1 : GOTO 106

By using the EDIT mode and the Move the cursor to:

160 IF A =B THEN 1568 : A =R + 1 . _

Now hit the I key, type in “PRINT A :”, then press the[SHIF Lland [ESClkeys to escape
from the subcommand level. At this point we can type in[L]to list the current line.
And the display should look like:

186 IF A = B THEN 158 : A = A + 1 : PRINT A : GOTO 160
188 —
or we can hit the NEW LINE|key to return to the Active Command level.

28 Key

“X” represents Insert at End of Line. The command moves the cursor position to the
end of the line, and shifts the computer into the Insert subcommand. The user can
insert new materials at the end of the line, or delete part of the existing line by using

the key.

Example
Get into the Edit mode

>EDIT 164
186 -

24

Type in X without hitting NEW LINE|key. The line displayed should be

i6@ IF A = B THEN 15@ : R = A + 1 : PRINT A : GOTO 1e6
1889

At this point, the user may add some new material, or delete part of the existing line,

before hitting SHIFT] and

29 Key

“L” represents List line. While the computer is in the Editing level, and is not
currently executing one of the subcommands H, I, X ,the L command will list the
remaining part of the line onto the display.

Example
>eDIT 1aa
168 _

Hit[[J(without hitting NEW LINE), the display should be:

1o IF A = B THEN 158 : A = R + 1 PRINT A : GOTO 169
180 -

The second line allows the user to do editing, while referencing the first line.

2.10 [A]Key

“A” represents Cancel and Restart. In the Editing level this command moves the
cursor back to the beginning of the line, cancels all editing changes previously made
on that line, and restores the former content of the line.

2.11 [E]Key

This command shifts the computer from Editing level back to the Active Command
level, and saves all the changes previously made. Make sure the computer is not
executing any subcommand before entering E.

2.12 [Q]Key

2.13

2.14

This command shifts the computer from Editing level back to the Active Command
level, but cancel all the changes made in the current edit mode. Just type in Q to
cancel the changes made and return to the Active Command level.

n@ Key

“D” represents delete; the command will delete n numbers of characters right after
the current cursor position. The deleted characters will be enclosed in exclamation
marks “!” to show you which characters are being affected.

Example
Consider the following line:

lew IF A = B THEM 158 : A = A + 1 . PRINT R : GOTO 1ea@
We first enter into the Editing level, move the cursor to the following position:
166 IF A = B THEN 15@¢ . A=A + 1
Now type in 15D (to delete 15 characters); the display should look like:
led IF A =B THEN 158 : A = A + 1! : PRINT A : GO!

Then use L to list the entire line, the display should become:

la8 IF A = B THEN 150 : A = A + 1! : PRINT A : GO'TO i@9

e o
List Again:

188 IF 74 = B THEN 15@ : A = A + 1TO 166

1688 -
Now use the X key and the Backspace key to delete “TO 100”’; the final outcome
should be:

i@ IF A =B THEN 15 : A = A + 1

n [C] Key

“C” represents change; the command allows the user to change n number of characters
right after the current cursor position. If the number n is not specified, the computer
assumes the user only wants to change a single character.

25

26

2.15

Example
Consider the line

166 IF R =B THEN 158 : A=A + 1

If the user wants to change 150 to 230, he should enter the Edit mode and move
the cursor to the following position:

168 IF A = B THEN
Now type in 2C (change the next 2 characters), followed by 23 (new data), then hit
the|SHIFT]and keys. List the line by hitting[T]:

186 IF AR = B THEN 238 : R =H + 1

166 _

nfSlc

The command searches for the n th occurrance of the character ¢ on that line and
moves the cursor to that position. If the n value is not provided, the computer will
search for the first occurrance of the character specified and stop the cursor there. In
case the specified character is not found, the cursor will move to the end of the line. As

usual, the computer will start searching from the current cursor position toward the
right end of the line.

Consider the following example:

168 IF A = B THEN 230 : R=A + 1
After entering the Edit mode, the display should look like:

@@ —
Now type in 2S =, to inform the computer to search for the second occurrance of the
equal sign “="", and the final display should be

188 IF R = B THEN 230 : R _

Now, the user may enter one of the subcommands at the current cursor position. For
example:

Type in H (hack and insert) followed by “= A + 2”° (new data).

Then the line will become:

106 IF A =B THEN 238 : A=A + 2.

216 n K] c

The command will delete all characters up to the n th occurrance of character C, and
move the cursor to that position. Consider the following example:

100 IF R =B THEN 2390 : A =R + 2
Enter into the Edit mode:
100 _

Now type in 1K:, to inform the computer to search for the first occurrance of the

colon *:» symbol, then delete everything in front of it on that line.
The display should become

180 'IF A = B THEN 238 !
The ““:” should also be deleted so type in D, the display will become:
166 'IF A = B THEN 236 !!;!

Then hit the L key to list the line on the display. The tine should look like

168 R = A + 2
lea.

27

28

CHAPTER 3

BASIC PROGRAMMING STATEMENTS

In this chapter, we are going to discuss the program statements in our BASIC language. The
first part of this chapter covers all the Input-Output statements available for the computer
to communicate with the outside world; essentially through the keyboard and video display,
as well as storing to and retrieving from cassette tapes.

The second part of this chapter concerns various functions of all the programming
statements in BASIC which are acceptable to the Video Genie System. Since it is a
very large set of statements, and each statement has its ownunique and characteristics in
programming, the users are advised to study each statement with the help of the
examples provided.

INPUT - OUTPUT STATEMENTS:

3.1

PRINT item list

Prints an item or a list of items on the display. Item may be any of the following:

a) Numeric constants (numbers such as 0, 36872, 0.2, - 34)

b) Numeric variables (names respresenting numeric values, such as X, Y, Z, etc.)

¢) String constants (characters enclosed in quotes, such as “HOME COMPUTER”,
“3003”, etc.)

d) String variables (names representing string or character values, such as A$, B$, etc.)

e) Expressions (a sequence of any combination of the above, such as (X + 10)/Y,
“BALL” + “PEN, etc.)

Items in the item list may be separated by commas or semi-colons. If commas are used,

the cursor automatically advances to the next printing zone before printing the next

item. If semi-colons are used, no space is inserted between alphabetic items before

printing on the display, but one space is inserted before each numeric item.

Example
1B N=25+7
26 PRINT "25 + ¥ 1S EQUAL TO ";N
368 END

Example
18 H¥ "HOME
28 C3 "COMFUTER"
8 PRINT "TRY OUR “;H$;C#$
48 ENL:

RERDY
>RUN

TRY OUR HOME COMPUTER

When commas are used to separate items, 4 columns are acceptable per line. Each

column consists of a maximum of 16 characters. Any string beyond this bound will
be printed on the next line.

Example
18 PRINT "COLUMN 4*, "COLUMN 2", "COLUMN 3", “COLUMN 4", “COLUMN 5"
28 END
RERDY
>RUN
COLUMN 1 COLUMN 2 COLUMN = COLUMN 4
COLUMN S

If two or more commas are applied together, each comma will still occupy 16
characters. (Blank spaces).

Example

18 PRINT "COLUMN 1", , "COLUMN 2*
=g END

RERDY
>RUN

COLUMM 1 COLUMN 2

29

30

3.2

Note the following examples:

18 FPRINT “"LINE ONE"
20 PRINT “"LINE TWO"
38 END

RERDY
>RUN

LINE ONE
LINE TWO

16 PRINT "LINE ONE".
28 PRINT "LINE TWO"
38 END

READY
>RUN

LINE ONE LINE TWO

PRINT@ location, item list

This statement prints out items in the item list at the screen location specified. The
“@” sign must follow PRINT immediately, and the location specified must be a
number of value from 0 to 1023. For more details on the display map, please refer
to Appendix E.

Example
28 PRINT @100, "LOC 106"
If the user constructs a PRINT@ statement to print on the bottom line of the diplay,

there will be an automatic line-feed, causing everything displayed to move up one
line. To suppress this action, add a semi-colon at the end of the statement.

Example

18 PRINT @ 9399 , "BOTTOM LINE";

33

34

PRINT TAB(expression)

Allows the user to print at any specified cursor position within a line. More than
one TAB in a PRINT statement is acceptable. However, the value in the expression
should be between 0 and 63 inclusive.

Example

1@ PRINT TAB(1@8> "POSITION 18" TAB(3@> "POSITION Ze“
28 END

READY
>RUN

POSITION 1@ POSITION 38

18 N =4
28 PRINT TAB(NY "P0OS. “; N TAB(N+18> "POS. ";N+18 TRB(N+2@)> "POS. “; N+20
38 END

RERDY
>RUN

FOS. 4 POS. 14 FPOS. 24

PRINT USING format; item list

This statement allows the user to print the data with a pre-defined format. The data
can be numeric or string values.

The format and item list in PRINT USING statement can be expressed as variables or
constants. The statement prints the item list according to the format specified.

The following specifiers may be used in the format field.

This sign represents the proper position of each digit in the item list (for numeric
value). The number of # signs used forms the format desired. If the format field is
greater than the numeric value (in the item list), the unused field positions to the left
of the number will be displayed as spaces and those to the right of the decimal point
will be displayed as zeros.

The decimal point can be placed anywhere in the format field established by the #
signs. Rounding off will take place if the digits to the right of the decimal point are
suppressed.

The comma — When it is placed at any position between the first digit and the
decimal point, a comma will be displayed to the right of every three digits.

31

32

Let us consider the following examples:

186 INPUT "ENTER FORMAT ";F$

.28 IF F$ = "STOP" END

30 INPUT “"ENTER A NUMBER “;N

40 PRINT USING F$iN

56 GOTO 1@
This program requests inputs for the format field and item list (in this case with
numeric value). The program will stop only if the user inputs the word “STOP” as the
value for F$.

Now try to run this program.

READY
>RUN

ENTER FORMAT 7##. #4

ENTER A NUMBER ? 12. 34
12. 34

ENTER FORMAT ?##%. ##
ENTER A NUMBER ? 12 34
12, 34

ENTER FORMAT 2##. ##
ENTER A NUMBER ? 123. 45
%123, 45

ENTER FORMAT ?STOP

The % sign will be automatically printed out if the field is not large enough to contain
the number of digits found in the numeric value. The entlre number to the left of the
decimal point will be displayed after the % sign.

Let us run tne program again.

READY

>RUN

ENTER FORMAT 7##. ##
ENTER A NUMBER ? 12. 345
12. 35

ENTER FORMAT ?STOP

Since only two decimal places were specified, the numeric value will be rounded-off
before displaying to the screen.

(i) ** Two asterisks placed at the beginning of the format field will cause all
unused positions to the left of the decimal point to be filled with asterisks.
The two asterisks will establish two more positions in the field.

(ii) $$ Two dollar signs placed at the beginning of the field will act as a floating
dollar sign. That is: A dollar sign will occupy the first position preceding the

number.

(iii) **$ Combines the effects of ** and $$. Any empty position to the left of the
number will be filled by the * sign and the $ sign will also occupy the first

position preceding the number.
Let us use the same example as before:

READY

>RUN

ENTER FORMAT 2k ##

ENTER R NUMBER 7 12. 2

*412. 30

ENTER FORMAT 7¢$i#. ##

ENTER A NUMBER ? 12. 34
#1234

ENTER FORMAT 4okt ##

ENTER A NUMBER ? 12. 24
Aokl 34

ENTER FORMAT ?STOP

(iv) + When a “+” sign is placed at the beginning or at the end of the format field,
the computer will print a + sign for a positive number or a — sign for a

negative number at the specific position accordingly.

(v) — When a “—” sign is placed at the end of the format field, it will cause a
negative sign to be printed after any negative number, and will display as a

blank for positive numbers.

Examples (using the same program as above)

RERDY

>RUN

ENTER FORMAT 7H###, #
ENTER A NUMBER 7 12345.6
12, 246

33

34

(vi)

ENTER FORMAT 7+##. ##
ENTER A NUMBER 7 12 x4
+12. 24

ENTER FORMAT 7+##. ##
ENTER A NUMBER 7-12. 34
-12. 34

ENTER FORMAT 7##. ##+
ENTER A NUMBER ?-12. 34
1z 34~

ENTER FORMAT 44 ##-
ENTER A NUMBER 7 12. 34
12034

ENTER FUORMAT “7##. #i##
ENTER A NUMBER 7 123436
#123456. 680

ENTER FORMAT *STOP

% space %

To define a string field of more than one character. The length of the format field
will be 2 plus the number of spaces between the percentage signs. An exclamation
mark (!)informs the computer to use only the first character of the current string value.

Consider the following program example:

1@ INPUT “ENTER FORMAT ";F$
2@ IF F$ = "STOP" END

38 INPUT "ENTER R STRING "iC$
40 PRINT USING F$;C#

5@ GOTO 1@

This program performs similarily to the one we just used. The only difference is that,
the user has to input a string value instead of a numeric value for the second data
entry. This is, the variable C§.

(vii)

Now let us run the program and test its function.

READY
>RUN

ENTER FORMAT ?!

ENTER A STRING 7RBCDE
A

ENTER FORMAT 7?74 %
ENTER A STRING ?ABCDE
ABC

ENTER FORMAT 7% Z«
ENTER A STRING ?RBCDEF
ABCDE

ENTER FORMAT ?STOP

By using the ! sign, we can also concatenate, or join strings together.

Example

18 INPUT "ENTER THREE STRINGS ";A$.B$.C$
28 PRINT "THE RESULT IS :"; :PRINT USING "!";R$;B$;C$

38 END

Now, run the program.

READY
>RUN

ENTER THREE STRINGS ?ABC. X¥Z, IJK
THE RESULT IS :AXI

ENTER THREE STRINGS 78, COMPUTER, PROGRAM

THE RESULT IS :ACP

By using more than one “!” signs, the first letter of each string will be printed with
spaces inserted corresponding to the spaces inserted between the ““!”* signs.

35

36

35

Try to follow this example:

18 INFUT "ENTER THREE STRINGS "; fi$.B$.C$
2@ PRINT "THE RESULT IS :"; :PRINT USING "! ! !";A$:;B%:C$
38 END

RERDY
FRUN

ENTER THREE STRINGS ?xYZ, FGH. ABC
THE RESULT IS :X F A

ENTER THREE STRINGS 7A, COMPUTER, PROGRAM
THE RESULT IS :RCP

INPUT item list

This statement causes the computer to suspend execution of a program and wait until
the user has input the specified number and type of values through the keyboard.
Input values can be string or numeric according to the variable type. The items (if
more than one) in the list must be separated by commas.

Example
1@ INPUT R$.B$.A. B
This statement permits the user to input two string vaiues, followed by two numeric

values. The input sequence must be consistent. When the computer executes this
statement, it sends a signal onto the display:

?

And waits for the inputs. The user may enter all four values at once (separated by
commas). In this case, the inputs could be as follow:

orange, apple, 59,47 [NEW LINE

The computer then assigns the values accordingly -

= “ORANGE"
$ = "APFLE"

The other way to input those values would be by entering the items on separate
lines. In this way, the computer will remind the user to input the next data for the
remaining variables by displaying:

??

Until all variables are set, the computer then advances to the next statement. Input
must be compatible to the variable type specified. In other words, the user should not
input a string value to a numeric variable. If such an invalid entry occurs, the com-
puter will send the message:

? REDO

?

Indicating the input does not match with the current variable type. However, the
computer gives the user a second chance to input the correct data starting with the
first value expected by the INPUT statement.

Example

.18 INPUT A%, H
28 PRINT f$.A
38 END

READY
>RUN

? STRING, 1@
STRING 1e

37

38

RERDY
“RUN
T THIS 1

S A STRING, 13 3
THIS IS H 5TRI

NG 1.5

RERDY
ZRUN

2 RECD, 1JK

If an input string consists of blanks, the entire string must be enclosed by quotes.

In order to provide a clearer indication to the operator, the user may include a
“prompting message” in the INPUT statement. This helps to input correct data type

to each variable. The prompting message must immediately follow INPUT, enclosed
in quotes, and followed by a semi-colon.

Example

18@ INPUT "INPUT ITEM NAME AND QUANTITY "iN$ Q

READY
FRUN

INPUT ITEM NAME AND QUANTITY 2

3.6 DATA item list

3.7

This statement allows the user to store data inside the program and to access them
through READ statements. The item list will be accessed by the computer sequent-
ially, starting with the first item in the first DATA statement, and ending with thc last
item in the last DATA statement. Each item in the item list may be a string or a
simple numeric value. Just like entering data from the keyboard, any string value
consists of blanks, colons, commas, must be enclosed in a pair of quotes.

The order of values in a DATA statement must match up with the variable types in
the READ statements. DATA statements may appear anywhere in a program.

Example

18 RERD A$.B%.C,.D
28 PRINT A+$.B$.C.D
30 DATA "CHARACTERS", "A LONG SENTENCE"

48 DATA 26, 137. 54
5@ END

READY
ZRUN
CHARACTERS A LONG SENTENCE 2@ 137. 54

READ item list

This statement instructs the computer to read in a value from a DATA statement and
assign that value to the specified variable. The values in the DATA statement will be
read sequentially by the READ statement. After all the items in the first DATA
statement have been read, the next READ statement encountered will access the
second DATA statement for the next variable. If there is no more value in the DATA
statement available for a READ statement an Out-of-Data error will occur.

39

40

3.8

Consider the following example:

1@ RERD C$

2@ IF C$ = "EOF" GOTO 68

38 READ @

4@ PRINT C$.Q

50 GOTO 16

€@ PRINT:FRINT "END OF LIST. ":END
78 DRTA BOOKS, 4, PENCILS, 12

&8 DATA BALL PENS, S, COMPASSES, 2
9@ DATA GLASSES, 5. EOF

READY
#RUN

BOOKS
PENCILS
BALL PENS
COMPASSES
GLASSES

AN R &

END OF LI=T.

RESTORE

This statement allows the next READ statement to access the first item in the first
DATA statement, and the subsequent items.

Example

16 RERD- A%, A

28 PRINT R$. A

30 RESTURE

48 READ B%. B

58 FRINT R$,A.B$. B

€0 DATA "JOHN WHITE®, 25, "JOE HUDSON", 32, "BILL ADAMS", 38
78 END

3.9

READY

ZRUN
JOHN WHITE 25
JOHN WHITE Z0 JOHH WHITE 23

This program shows that the RESTORE statement not only allows the READ state-
ment to access the first item in the first DATA statement, but also it has no effect on
the previous assignments.

PRINT # — cassette number, item list

This statement prints the values of the specified variables onto cassette tape. The
recorder must be properly set in record mode before executing this statement. For
more detail, please consult the User’s Manual. As the Video Genie System can
control up to two cassette drives, the user should specify which drive is intended.

Example

186 A$ = "BEGIN TRFE"

28 B = 3. 1446

38 C = 56

44 D$ = "DRTA"

90 PRINT #-1,R$.E.C.D$. "END OF FILE"
68 END

This program assigns various data to variables A$, B, C, and D$ respectively, then
PRINT these data on tape through cassette drive No. 1. Note that the string constant
“END OF FILE”, can be printed on tape as well as variables. Once the data are stored
on tape, the user may input these data into the computer again, just like playing
music tapes with a cassette. Please note that the INPUT statement must be identical
to the PRINT statement in terms of number and types of variables. However, the
variable names may be different in any case.

Important:

The total number of characters respresented in all the variables mentioned in the ““item
list” must not exceed 255; otherwise anything after the 255th character with be
truncated or lost.

41

42

3.10

Example

18 PRINT #-1,R$. B$.C$,D$,ES$

If the total number of characters in A$, BS, C$, D§, are 250 and E$ has a length of
35 characters, then E$ will not be saved on tape. And if the user tries to INPUT the
value of E, an Out-of-Data error will occur.

INPUT # — cassette number, item list

This statement tells the computer to input the specified number of values stored on
the cassette tape and to assign them to the variables. The user must specify the cassette
drive number from which data is expected.

Example

18 INPUT #-1,R$,B.C.D#

This statement inputs data from cassette drive number 1. The first value is assigned to
AS, the second value to B, etc. The cassette deck must be in PLAY mode. Once the
computer executes this statement, the cassette drive will be turned on, and when the
input has finished, the cassette drive will be turned off before the computer goes to
the next statement.

I a string is encounted when a numeric value is expected by the INPUT statement, a
bad file data erron will occur. An Out-of-Data error will also occur if there is not
enough data items on the tape for all the variables in an INPUT statement.

PROGRAM STATEMENTS

3.11 DEFINT letter range

Variable names that begin with letters specified within the letter range, will be treated
and stored as integers. However, a type declaration character (refer to the Introduc-
tion) can over-ride this type definition. Defining a variable name as an integer not
only saves memory space, but also saves computer time, because integer calculation is
faster than single or double precision calculation. Note that integers can only take on
values between — 32768 + 32767 inclusive.

Example

10 DEFINT X. V.2

After the computer has executed line 10, all variables beginning with the letters X, Y,
or Z will be treated as integers. Therefore, X2, X3, YA, YB, ZI, ZJ will become
integer variables. Except that X1 # , X2 # , YB #+, will be still double precision
variables, because type declaration characters always over-ride DEF statements.

Example

18 DEFINT A - D

Causes variables beginning with letter A, B, C, or D to be integer variables.

Note that DEFINT can be placed anywhere in a program, but it may change the
meaning of variable references without type declaration characters. Therefore, it is
normally placed at the beginning of a program.

43

44

3.12 DEFSNG letter range

3.13

Variable names that begin with those letters specified within the letter range, will be
treated and stored as single precision variables. However, a type declaration character
can over-ride this type definition.

Single precision variables and constants are stored with 7 digits of precision and
printed out with 6 digits of precision. All numeric variables are assumed to be
single precision unless otherwise specified. The DEFSNG statement is primarily used
to re-define variables which have previously been defined as double precision or
integer.

Example

18 DEFSNG fi~D. Y

Causes variables beginning with the letter A through D, or Y to become single preci-
sion. However, A # would still be a double precision variable and Y% still be an mteger
variable.

DEFDBL letter range

Variable names that begin with those letters specified within the letter range, will be
treated and stored as double precision. However, a type declaration character can
over-ride this type definition. Double precision allows 17 digits of precision, while
only 16 digits are displayed when a double precision variable is printed.

Example

18 DEFDBL M-P.G

Causes variables beginning with one of the letters M through P, or G to become
double precision.

3.14 DEFSTR Iletter range

Variables that begin with those letters specified within the letter range, will be treated
and stored as string.

However, a type declaration character can over-ride this type definition. Each string
can store up to 255 characters, if there is enough string storage space cleared.

Example
18 DEFSTR A-D
Causes variables beginning with any letter A through D to be string variables, unless a

type declaration character is added. Therefore, after the execution of line 10, the
assignment B3 = “A STRING” is valid.

3.15 CLEARnN
This statement sets all variables to zero. If number n is specified, the computer sets n
bytes of space for string storage. Everytime when the Video Genie is turned on, 50
bytes of space are automatically cleared and reserved for strings.
The CLEAR statement becomes critical during program execution, because an Qut of
String Space error will occur, if the amount of string storage cleared is less than the
greatest number of characters stored in string variables.
Example

16 CLEARR 1666

Clear 1000 bytes of memory space for string storage.

316 DIMname(dim1,dim2.......... dim n)

The statement defines the variable name to be an array or list of arrays. The number
of elements in each dimension may be specified through dim 1, dim 2, etc. If dim n
is not specified, 11 elements in each dimension is assumed in each array. The number
of dimensions is limited only by the memory size available.

45

46

Example

16 OIM ACS), B(3.4), C(2,3:.3)

This statement defines the one dimensional array with 6 elements (from O to 5); the
two dimensional array B with 20 elements (4 x 5); the three dimensional array C with
48 elements (3 x 4 x 4).

DIM statements may be placed anywhere in a program, and the number of subscripts
may be an integer or an expression.

Example

1@ INPUT "NUMBER OF TIMES ";N
28 DIM R(N+2, 4>

The number of elements in array A may vary according to N.
To re-dimension an array, the user must use a CLEAR statement either with or
without the argument n. Otherwise an error will occur.

Example

18 X(2) = 13. 6

20 PRINT "THE SECOND ELEMENT IS :"; X(2)
38 DIM X(15)

48 PRINT X(2

98 END

READY
ZRUN

? DD ERROR IN z@

3.17 LET variable = expression

This statement is used to assign a value to a variable. The word LET is not required in
assignment statements by the Video Genie BASIC interpreter. However, the user may
use the word LET in order to make the program compatible with other systems.

Example
18 LET A = 3. 67
20 BX = 20
2@ S$ = "CHARACTERS"

40 LET D% = D% + 1
58 PRINT R, BZ, S$. D%
60 END

READY
SRUN

2. 67 28 CHARACTERS i

In all the assignments above, the variable on the left of the equal sign is assigned with
the value of the constant or expression on the right side. All these statements are
acceptable.

3.18 END

This statement causes a normal termination of program execution. The END state-
ment is primarily used to cause execution to terminate at some point other than the
logical end of the program.

Example
5S B=3C=14
18 A=C+B
28 GOSUB 7@
3D=X+¥Y

48 PRINT “"THE RESULTS RRE :“;
58 PRINT R, D
68 END

48

3.19

78 X = 5@
88 Y =R * X
98 RETURN

THE RESULTS ARE : 17 S84

The END statement in line 60 prevents the computer from executing into line 70.
Therefore the subroutine that starts at line 70 can be accessed only by line 20.

STOP

This statement is essentially a debugging aid. It sets a break point in a program during
execution, and allows the user to examine or modify variable values. A message will
be printed out as “BREAK IN line number” once the computer executes the STOP
statement. The Active Command CONT can then be used to re-start execution at the
point where it breaks.

Example

S INPUT B, C
18A=B+C

26 STOP

28 X = (A + D). 74
40 IF X < 8 GOTO v@
58 PRINT A,B.C

€0 PRINT X

7@ END

RERADY
FRUN
72, 4
BREARK IN 2@
RERDY
*PRINT A
&,
REALY
ZCONT

& 2 4
8 1eg811

The STOP statement allows the user to examine the value of A before line 30.

3.20 GOTO line number

This statement transfers program control to the specified line number. If used in-
dependently, an unconditional branch will result. However, test statements may
precede the GO'T'O statement to create a conditional branch.

Example

10 A
20 B
3I8C=H+B

BC=Cx*3d

S8 GOTO 16@

60 .

70 .

80 .

9 .

16@ FRINT "A ="; A, "B="; B, "C=";

118 END

RERDY

“RUN

R =18 B= 45 C= 167

B>
e

When line 50 is executed, control will unconditionally jump to line 100.

Example

18 IF A = 2 GOTO 120

When line 10 is under execution, if A equals to 2 then control will jump to line 120,
otherwise it will just go to the next statement.

The user may use GOTO in the Active Command level as an alternative to RUN
command. GOTO line number causes execution to begin at the specified line number,
but without the automatic CLEAR.

49

50

3.21

3.22

3.23

GOSUB line number

Transfers program control to the specified line number where a subroutine starts.
Only if the computer encounters a RETURN statement, it will then jump back to the
statement that immediately follows the GOSUB. Just like GOTO, GOSUB may be

preceded by a test statement, such as:
IF A= B THEN GOSUB 100

Example

18 PRINT "MAIN PROGRAM. “
286 GOSuB So

30 PRINT "END OF PROGRAM. "
48 END

38 PRINT "SUBROUTINE. “

6680 RETURN

READY

“RUN

MAIN PROGRAM.
SUBROLITINE.
END OF PROGRAM.

RETURN
This statement ends a subroutine and returns control to the statement that immedi-

ately follows the GOSUB. An error will occur if RETURN is encountered without
execution of a matching GOSUB.

ON n GOTO line number list

This statement allows multi branching to the line numbers specified according to the
value of n. The general format for ON n GOTO is:

ON expression GOTO 1st line number, 2nd line number, . . . , mth line number.

The value of the expression must be between 0 and 255 inclusive.

When ON-GOTO statement is executed, first, the expression is evaluated and the
integer portion, that is INT (expression) is obtained. Then the computer assigns this
integer to N, and counts over to the Mth element in the line number list, and then
branches to the line number specified by that element. If N is greater than the avail-
able line number M, the control fall through to the next statement in the program.

If the expression or number is less than zero, an error will occur.

The line number list may contain any number of items.

Example
18 INFUT "ENTER COMMAND ";C
28 ON C GOTO 108, 126,138, 158, 130
3@ PRINT "END OF PROGRAM. ":END
1680 PRINT "THIS IS LINE 16@":GOTO 16
128 PRINT "THIS IS LINE 126" :G0TC 418
126 PRINT "THIS IS LINE 13@":GOTC 1@
156 PRINT “THIS IS LINE 158" :GOTO i@
RERDY
»RUN
ENTER COMMAND ? S
THIS I5 LINE 1360
ENTER COMMAND ? 4
THIS 1S LINE 15@
ENTER COMMAND 7 4
THIS IS LINE 108
ENTER COMMAND 7 2
THIS 15 LINE 126
ENTER COMMAND ? 3
THIS IS LINE 136
ENTER COMMAND ? @
END OF PROGRAM.
RERDY
ARUN
ENTER COMMAND ? 4
THIS 1S LINE 158
ENTER COMMAND ? &
END OF PROGRAM.
The ON-GOTO statement is a more elegant way of achieving the some result
than the equivalent IF-GOTO statements:

18 IF C = 1 GOTO 168
28 IF C = 2 GOTO 126
38 IF C = 2 GOTO 138
40 IF C = 4 GOTO 156
58 IF C = 5 GOTO 1z@
6@ IF C <1 0RC >S5 GOTO 7@ :REM GO TO THE NEXT STATEMENT.

3.24 ON n GOSUB line number list
Works like ON n GOTO, except control branches to one of the subroutines specified
by the line numbers in the line number list.

Example
16 PRINT " % FUNCTION SUBROUTINES %"
20 PRINT " 1. FUNCTION R"
36 PRINT 2. FUNCTION B"
48 PRINT " 2. FUNCTION C"

58 INFUT "ENTER 1, 2, OR 3 ";N
6@ ON N GOSUB 156, 186, 256
78 END
1688 PRINT "THIS IS FUNCTICH B" : RETURN
158 PRINT "THIS IS FUNCTIOM A" : RETURN
258 PRINT "THIS IS FUNCTICH C" : RETURN
RERDY
FRUM
4k FUNCTION SUBROUTINES ok

1. FUNCTION A

2. FUNCTION B

3. FUNCTION C
ENTER 1, 2, OR 3 ? 2
THIS IS FUNCTION B
RERLY
ZRUN

4% FUNCTION SUBROUTINES #%

1. FUNCTION A

2. FUNCTION B

3. FUNCTION C
ENTER 1, 2, OR 3 ? 1
THIS IS FUNCTION A

3.25 FOR name = expression TO expression STEP expression
NEXT name

These statements form an iterative loop so that a sequence of program statements
may be executed over a specified number of times.

The general form is:

FOR counter = initial value TO final value STEP increment.

*

*
*
Statements
*
*
]

NEXT counter

In the FOR statement, initial value,final value and increment can be constants, vari-
ables or expressions. The first time the FOR statement is executed, these three are
evaluated and the values are saved; if these values are changed inside the loop, they
will have no effect on the loop’s operation. However, the counter value must not be
changed or the loop will not operate normally.

The FOR-NEXT loop works as follows: the first time the FOR statement is executed,
the counter is set to the “initial value”. Execution proceeds until a NEXT statement
is encountered. At this point, the counter is incremented by the amount specified in
the STEP increment. If STEP increment is not used, an increment of 1 is assumed.
However, if the increment has a negative value, then the counter is actually
decremented.

The counter is then compared with the final value specified in the FOR statement. If
the counter is greater than the final value, the loop is completed and execution
continues with the statement following the next statement.(if increment was a negative
number, loop ends when counter is less than the final value.)

If the counter has not yet exceeded the final value, control passes back to the first
statement after the FOR statement.

Example

18 FOR K = 8 TO 1 STEP 6.3

28 PRINT "THE VALUE OF K :';K
38 NEXT K

48 END

READY

>RUN

THE VALUE OF K : @
THE VALUE OF K : .3
THE VYALUE OF K : .6
THE VALUE OF K : .9

When K = 1.2, it is greater than the final value 1, therefore the loop ends without
ever printing 1.2.

53

Example

18 FOR N =5T0 @
26 PRINT "THE YALUE OF N :";N
2@ NEXT N

46 END

READY
>RUN

THE YALUE OF N : 9

18 FOR N =5 TO B STEP -1

20 PRINT “"THE VALUE OF N :“; N
38 NEXT N

48 END

RERDY

ZRUN

THE VALUE OF H :
THE VALUE OF N :
THE YALUE OF N :
THE YHRLUE OF N :
THE “HALUE OF N :
THE VALUE OF N :

Since no STEP was specified, so STEP 1 is assumed. N is incremented the first time,
and its value becomes 6. Because 6 is greater than the final value 0, the loop ends.
This is remedied by adding STEP-1, as you can see.

Example

Ll S LA PR SN]

18 FOR R =8BT0 3

26 PRINT "THE YALUE OF A :";A

38 NEXT

48 END

rRERDY

~RUN

THE VALUE OF

THE YHLUE QF

THE VYALUE OF
F

H

A

R :
THE YALUE OF A

Wk ®

Note here that instead of using NEXT A in line 30, you may simply write NEXT.
However, this can lead to trouble if you have nested FOR-NEXT, loops.

54

Here is an example of nested loops, showing how it is advisable to identify the
counter variable in each NEXT statement:

1@
28
38
48 =1 +1T0J+1
5@ PRINT “FIRST LOCP"
60 FORM =1 TO K
70 PRINT " SECOND LOOP"
80 NEXT M
98 NEXT N
160 END
RERD
+RUN
FIRST LOOP

SECOND LOOP

SECOND LODP

SECOND LOOP

FIRST LOCOP
SECOND LOOP

SECOND LOOP
SECOND LOOP

TR
o

Al BN
Z WMk

3.26 ERROR Code
This statement is used for testing an ON ERROR GOTO routine. When the ERROR
code statement is encountered, the computer will proceed exactly as if that kind of
error has occurred.

Example

38 ERROR 1

INF ERROR IN Z@

For the definition of each error code, please refer to Appendix B.

55

56

3.27

ON ERROR GOTO line number

This statement allows the user to set up an error-trapping routine to recover a pro-
gram from an error and to continue, without any break in execution. Without this
statement, the computer will stop execution and print out an error message, once it
encounters any kind of error in the user’s program. Normally, the user has a particular
type of error in mind when an ON ERROR GOTO statement is used.

For example, suppose that a program performs some division operations and the user
has not ruled out the possibility of division by zero. The user could write a routine to
handle a division-by-zero error, and then use ON ERROR GOTO to branch to that
routine when such an error occurs.

Example

BE=15 : C =@

@ ON ERROR GOTO 1zd

£8 A = BAC

28 PRINT A,B.C

4@ END

128 FRINT "DIVIDED BY ZERO !!"
138 END

READY

“RUK

DIVIDED BY ZERO !!

2

In this example, C has a value of zero, so a divide-by-zero error will occur when the
computer attempts to execute line 20. But because of line 10, the computer will
simply ignore line 20 and branch to the error-handling routine beginning at line 120.
Please note that the ON ERROR GOTO statement must be executed before the
error occurs, otherwise it has no effect. Note also that the error handling routine
must be terminated by a RESUME statement.

3.28 RESUME line number

This statement terminates an error handling routine by specifying where normal
execution is to resume.

RESUME 0 or RESUME without a line number causes the computer to return to the
statement in which the error occurred. If RESUME is followed by a line number, it
causes the computer to branch to the line number provided.

RESUME NEXT causes the computer to branch to the statement following the point
at which the error occurred.

Example

18 ON ERROR GOTO @

<8 FRINT "SIMFLE DIVISION.

=8 INPUT "ENTER TWO NUMEERS “; A, B

48 IF A = @ END

78 C = A/B

6 FRINT "THE QUOTIENT IS “:C

¥a GOTO 2@

8@ FRINT “ATTEMPT TO DIVIDE BY ZERO !*
98 PRINT "TRY AGAIN..."

188 RESUME z@

rRERDY
+RUN

SZIMPLE DIVISION

ENTER TWO NUMBERS 7 6 » 2
THE QUOTIENT IS =

SIMPLE DIVISION

ENTER TWO NUMEERS 7 7 , 2
THE QUOTIENT IS 2 33333
SIMPLE DIVISION

ENTEE TWO NUMEERS 7 S, @
ATTEMPT TO DIVIDE BY ZERO !
TRY AGAIN. . .

SIMPLE DIVISION.

ENTER TWO NUMBERS 7 9 , 4
THE QUOTIENT IS 2. 25
SIMFLE DIVISION

ENTER TWO NUMEERS 7 & . @

RERDY
57

58

3.29

3.30

REM

REM represents remarks. This statement informs the computer that the rest of the
line only consists of comments, and should be ignored. The statement also allows
the user to have more comments in his program for better documentation. If REM is
used in a multi-statement program line, it must be the last statement.

Example
10 REM * VARIABLE REPRESENTATIONS *
286 REM * £ = AMOUNT *
3@ REM # B = NUMBER OF ITEMS *
48 REM * C = UNIT COST *
S0 REM * *

60 A =B * C : REM #*% HAMOUNT = NO. OF ITEMS X UNIT COST

IF expression action-clause

This statement instructs the computer to test a logical or relational expression. If
the expression is TRUE, control will proceed to the “action” clause immediately
following the expression. If the expression is False, control will jump to the matching
ELSE statement (if there is one) or down to the next program line.

In numerical terms, if the expression, has a non-zero value, it is always equivalent to a
logical true.

Example

1@ INPUT "ENTER A VALUE <MAX. 28> ";A

28 IF A > 28 GOTO 60

30 A=A * 3 1416 * 2

48 PRINT "THE CIRCUMFERENCE IS :";A

58 END

68 PRINT "NUMBER TOO BIG ! <MAX. 2@>": GOTO 1@

RERDY
ZRUN

ENTER A VALUE (MAX. 28> ? 24
NUMBER TOO BIG ! (MAX. 2@)
ENTER A VALUE (MRX. 28> ? 18
THE CIRCUMFERENCE IS : 113. 898

3.31

3.32

In this example, if A is greater than 20 then a warning is printed and another input is
expected. However, if A is equal to or less than 20, the computer will go to the next
line and compute the value of A, without passing through the warning message and
the GOTO statement.

Example

128 INPUT A: IF A = 16 AND A > B THEN 168

1@ AND A > B GOTO 1@

120 INPUT A: IF R

The two statements above have the same effect.

THEN statement or line number

Initiates the “action clause” of an IF — THEN type statement. THEN is optional
except when it is used to specify a branch to another line number, as in IF A > D
THEN 100. THEN should also be used in IF — THEN — ELSE statements.

ELSE statement or line number

This statement must be used after the IF statement, and acts as an alternative action
in case the IF test fails.

Example

16 IF A = 1 THEN 68 ELSE 40

In this example, if A = 1 then control branches to line 60, otherwise it branches to
line 40. If the ELSE clause is not used and A is not equal to 1, the computer will go
to the next statement instead of branching to line 40.

IF-THEN-ELSE statements may be nested, but the number of IFs and ELSEs must
match with each other. .

59

60

3.33

Example

16 INPUT “ENTER THREE NUMBERS "; XY, Z

2@ PRINT "THE LARGEST NUMBER IS :";

M IF X ¢ Y OR % € 2 THEN IF ¥ < 2 THEN PRINT Z ELSE PRINT ¥ ELSE PRINT X
48 END

REFDY

RUN

ENTER THREE NUMBERS ? 3@ , 75 , 7%

THE LARGEST NUMBER IS : 75

This program accepts three numbers and prints out the one that has the highest value.

LPRINT

Prints a file onto the printer. This command (and statement) functions similar to a
PRINT statement (print on the display). If the line printer is not properly
connected, the computer will enter a dead loop and will wait to print the first
character. This situation can only be resolved by turning the printer on or hitting the
RESET button.

16 FOR X = 1 TO @ STEP -@. 25
20 LPRINT "THE VALUE OF X :"; ¥

38 NEXT X

4@ END

READY

SR

THE VYALUE OF ¥ : 1
THE YALUE OF ¥ :.. 75
THE VALUE OF ¥ : .S
THE VALUE OF ¥ : .25
THE VALUE OF X : @

CHAPTER 4 -~
PROCESSING ARRAY

An array is simply an ordered list of data. Both alphabetic and numeric arrays are acceptable
by the Video Genie Systems. However, the data type of an array must be consistent. The
concept of arrays is very important in computer programming, therefore the user should
try to understand the examples in this Chapter.

Suppose John Washington is studying in a college. There is a three story building which has
four classrooms on each floor and each room has 45 seats.

John is taking a history course. There are only 36 students in his class. Now, let us look
through the name list of John’s class.

NAME LIST

1. Mary Adams
2. Jimmy Brown
3. Henry Cox

36. John Washington

In order to find a specific person in the list, we just read the list from top to bottom or from
bottom to top; however, the method of searching by name is not very important here.

The most important issue is how we can find a person in the list by referring his number
only. In the list mentioned above, the 1st person is Mary Adams, the 2nd person is Jimmy
Brown, etc. The numbers give us a systematic way to find a person.

61

62

If we use a computer to record this list, we may assign each name in the list to a unique
variable, as the following.

18 hes
28 Nig
38 Nz2$
48 .
38 .
6a .
e .
go .
S8 .
108 NS$=
118 .
1ze .
1z@

It un

"MARY ADAMS™
"JIMMY BROWN"
"HENRY COX"

"TOM HUDSON"

140 NZ#% = "JOHN WASHINGTON"

This is a time consuming and inefficient method; besides, what happens if there are 37
students in the class?
Obviously, we need to use a variable name starting with another letter, such as M18§, etc.
Another way, also the better way to handle this list is by using an array. We first define an
array AR$ of 45 elements (for there are 45 seats), then assign those names to each element.

Example
S CLEAR 16aa@ : REM
18 DIM AR$C(44) REM

28 FOR N = 6 TO 44 : REM
2@ INPUT "ENTER THE NAME OF THE STUDENT ";RAR$(N
ASSIGN THE NAMES TO EACH ELEMENT IN THE ARRAY.

4@ REM

58 NEXT N

6@ END

CLEAR 1866 BYTES FOR STRING STORAGE.
ARRAY AR$ HAS 45 ELEMENTS.

LOOPS 45 TIMES

This program accepts 45 names and stores them in the array AR$. After executing the
program, the following should be true.

Element AR$ (0) has the value of “Mary Adams”
Element ARS (1) has the value of “Jimmy Brown”
Element ARS$ (2) has the value of “Henry Cox™

Element ARS (36) has the value of “John Washington”

Provided the inputs are correct, of course!
Now, if we want to print out the entire list, we may use this program.

5

ie
15
28
38
48
56
99
ée
e
88
S8

CLERR 1808 : REM CLERR 1680 BYTES FOR STRING STORAGE.
DIM AR$C44) . REM ARRAY AR$¥ HAS 45 ELEMENTS.

REM % INPUT ARRAY SECTION ek

FOR N =8 TO 44 : REM LOOPS 45 TIMES

INPUT "ENTER THE NRME OF THE STUDENT “; AR$(N)

REM ASSIGN THE NAMES TO ERCH ELEMENT IN THE ARRAY

NEXT N

REM *& PRINT RRRAY SECTION %

FOR N =0 TO 44 : REM LOOPS 45 TIMES.

PRINT AR$C(N> : REM PRINTS THE N TH ELEMENT OF THE. ARRAY.
NEXT N

END

Instead of the following statements.

10 PRINT Nes$
28 PRINT Nis
38 PRINT Nz2$

40
56
60

e

88 PRINT NS$

98

100 .
118 PRINT NZ$
120 .
18 .
By now, the user should have some feeling of how powerful arrays could be.

63

Suppose the teacher in John’s class wants to set up a seat plan by rows and colums. Since
there are 6 columns, then only 6 rows of seats are needed.

5
4
3
ROW
2 HENRY JIMMY
cOox BROWN
; JOHN
WASHINGTON
MARY
0 ADAMS
0 1 2 3 4 5
COLUMN

The four students we always mentioned are seated as in the plan above. Since they are
not seated according to the name list, we need another method to access the seat plan. For
example, if the professor tries to see if John Washington is absent or not, he has to look
through the room and find out whether the seat at row 1, column 3 is empty or not. The
professor has to search for row 2 column O for Henry Cox as well. Actually, the computer just
works the same as the teacher does. We may map this seat plan into a two dimensional array
named SP$ (5, 5), the first 5 is for row, and the second 5 is for column. In case we want to
call Jimmy Brown, we must reference SP$ (2, 3), that is row 2 column 3.

Now suppose we want to print the seat plan in a table form, we may use the program below:

16 CLEAR 1068: DIM SP#$¢5.5> : REM SP$ IS A 6 X 6 ARRAY.
28 FOR R = 5 TO @ STEP -1

8 REM SET R LOOP TO PRINT FROM ROW 5 TO ROW 6.
48 FORC=8T05

o8 REM SET A LOOP TO PRINT THE NAMES IN EACH COLUMN

&0 PRINT SP$CR.C)>, : REM PRINT THE NAME AT ROW “R“ COLUMN “C-.
70 NEXT C

80 PRINT : REM CARRIAGE RETURN

98 NEXT R

166 END

This program prints a seat plan in a table form. It starts with the last row in the class, and
ends with the first row. The program first initializes. R = 5, C = O then prints the value of
the elements.

SP$(3, @); SP$(S, 1); SP$(5, 2); SP$(5, 2); SP$(5, 4); SP$(5, 5

At this point, the value of C becomes 5, the computer jumps out of the loop “C” and prints
a blank line as on line 80 and slips to the next line. The computer passes line 70 and loops
back to line 20 and then R = 4; the computer resets C = 0 on line 40 and prints the value of.

SP$(4, 8; SP$(4, 1); SP$(4, 2); SP$(4, 2); SP$(4, 4); SP$(4, 5)

The process repeated until R = -1, and the program stops. The final output will have values
of the elements in the following order.

SP$(5, 8); SP$(3, 1); SP$(5, 2); SP$(5, 33; SP$(5, 4); SP$(5, D)
SP$<(4, 8); SP$(4, 1); SP$(4, 2); SP$(4, 3); SP$(4, 4); SP$(4, 5O

SP$(3, 8); SP$(2,1); SP$(3, 2); SP$(3, 2); SP$(3, 4); SP$(3, 3
SP$(2,8); SP$(2, 1); SP$(2, 2); SP$(2, 3); SP$(2, 4, SP$(2, 3)

SP$(1, 8); SP$(1, 1); SP$(1, 2); SP$(1, 3); SP$(1, 4); SP$(1, 3
SP$(0, 8); SP$(B, 1); SP$(0, 2); SP$(8, 33; SP$(8, 4); SP$(8, 3>

66

By using this two dimensional array, we can locate the exact position of any student in a
class. But how can we locate another student who sits at the identical position as John
Washnighton, but in the next class? Of course, we need to mention which class or which
room number that the student is in. In this case, we need another dimension to describe a
specific student’s location. Remember, there are a total of twelve class rooms in the

building. We have different ways to solve this problem. The first method is to assign a

number ranged from 1 to 12 to each room. Or we may distinguish them by floor number.

That is room 1 on the st floor, room 2 on the st floor, ,room 1 on the 3rd floor,

....... etc. The first method requires only one additional dimension, whereas the second

method requires two additional dimensions.

Say John’s classroom is the 3rd room on the second floor. By using the first method, we
may locate John by referring SPS (N, R, C) where N represents the number of theroom. R
represents row number and C represents column number. To be more specific, John sits at
SP$ (7, 1, 3) that is room number 7, row number 1, column number 3. However, by using
the second method, we need to mention SP$ (F, N, R, C) where F represents floor number,
N represents the room number, R represents row number, C represents column number. To
locate John, we need to refer to SP$ (2, 3, 1, 3), that is the 2nd floor. room number 3, row
number 1, column number 3.

The number of dimensions may increase if we try to accept and classify more students into
this set. If we try to identify some other students in another building, we need another
dimension to define which building. If we consider other colleges, yet we need another
dimension to describe which college.

In every Video Genie System, the number of dimensions in an array is only limited by the
memory space available in the computer.

_CHAPTER 5

R i

STRING HANDLING

String operations are the essence in data processing.

It is obvious that if a computer cannot handle string operations, it is only a super powerful
calculator. Based on this fact, the Video Genie System allows many useful string operations
in addition to arithmetic operations.

In this chapter, we will discuss various string functions that are acceptable in our Extended
Basic language.

5.1 String Comparison
By using a relational operator, two strings may be compared for equality or alphabetic
precedence. If they are checked for equality, every character, including any leading or
trailing blanks, must be identical otherwise the test fails.

Example

i@ IF A$ = "YES" THEN 250

Strings are compared character by character from left to right. Actually, the ASCII
code representations for the characters are compared. A character with the lower
code number is considered to precede the other character. In other words, “AB”
precedes “AC”. When strings of different lengths are compared, the shorter string is
precedent even if its characters are identical as those in the longer string. Therefore,
“B” precedes “B . The following relational operators may be used to compare
strings.

L =, =, 2. =, &

67

5.2

53

String Operation

Basically, there 1s only one string operation, that is concatenation which is represent-
ed by the plus sign “+”.

Example

18 51 = "THE SUN IS®

28 S2% = " SHINING"

I8 53 = M0

48 C$ = Si% + S2F + S3% + S2¥
58 PRINT C#

c& END

RERDY

2RLIN

THE SUN IS SHINING, SHINING

ASC (string)

This statement returns the ASCII code (in decimal) for the first character of the
specified string. The string specified must be enclosed in parentheses. A null-string

will cause an error to occur.

188 PRINT “THE ASCII CODE FOR “H’ 1S:“; ASC("H"?

1685 5% = "HOME":PRINT "THE STRING IS5:":5$

118 PRINT "THE ASCII CODE FOR THE FIRST LETTER IS:";RSC(S#)
128 END

RERDY

DRUN

THE D=CI1 CODE FOR “HY IS: 7&

THE STRING I5:HOME

THE ASCII CODE FOR THE FIRST LETTER IS: ¥2

Both lines will print the same number.

A complete set of control, graphics, and ASCII codes is listed in appendix C.

54

55

56

CHRS (expression)

This statement works as the inverse of the ASC function, that is to return the
character of the specified ASCII, control or graphics code. The argument may be any
number from 0 to 255, or any variable expression with a value within that range. The
argument must be enclosed in parentheses.

188 PRINT CHR$(33> : REM PRINT R “'‘ SIGN

LEFTS (string, n)

This statement returns the first n characters of the specified string. The arguments
must be enclosed in parentheses. String may be a constant or an expression, and n
may be a numeric expression.

Example

ie A% = "HABCDEFG"
28 B$ = LEFT#(A$, 47
38 FRINT B$

48 END

RERDY

SRUN

ABCD

RIGHTS (string, n)

Returns the last n characters of a string. Both string and n must be enclosed in paren-
theses. String may be a string constant or variable, and n may be a numerical constant
or variable. If the length of the string is less than or equal to n, the entire string is
returned.

Example

168 A$ = "ABCDEFG"
28 B$ = RIGHT$(A$ 3D
38 PRINT B$

48 END

READY

>RUN

EFG

69

70

5.7

58

LEN (string)

Returns the length value of the specified string. The string may be a variable,
expression or constant and must be enclosed in parentheses.

Example

18 A$ = "ABCDEFG"
20 PRINT "LENGTH OF THE STRING: "; LEN(A$

36 END
RERDY
>RUN

LENGTH OF THE STRING: 7

MIDS (string, p, n)

Returns a substring of string starting at position p, with length n. The string, position
and length must be enclosed in parentheses. String may be a constant or an expres-
sion, p and n may be numeric expressions or constants.

Example

16 A% = "ABCDEFG"

20 B¥ = MIDCR. 3, 4)

3@ PRINT "THE NEW STRING IS : ";E¥#
48 END

READY
ZRUN

THE NEW STRING IS : CDEF

5.9 STRS (expression)

Converts a constant or numeric expression into a string of characters. The expression
or constant must be enclosed in parentheses.

Example

16 A = 34. 56

286 B$ = STR$(FD

30 B¢ = B¢ + 4"

4@ PRINT "THE RESULT IS ";B$
58 END

REARDY
>RUN

THE RESULT IS 34. 367

5.10 STRINGS (n, character or number)

Returns a string which composed of n number of the specified character.
Example

1@ PRINT STRING#$(18, "*"
28 END

RERLY
“RUN

dckodeokkskokolok
Character may be a number from 0-255; in this case, it will be treated as an ASCII,

control or graphics code.

18 PRINT STRING$ <16, 230
26 END

RERDY
FRUN

71

5.11 VAL (string)

Performs the inverse of the STR$ function; that is to return the numeric value of the
characters in a string argument.

Example

[56 n

—
By

A$ =
BF = 23"

C o= YAL (A$ + " " + B§)

FRINT "THE RESULTS ARE :";C;","; C+160
END

Nofe Lt
Do N oUN

=
[

REACY
>RUN
THE REZLLTS HRE . 26 2% . 156 22

‘CHAPTER 6

BUILT-IN
ARITHMETIC FUNCTIONS

In this chapter, we will discuss the built-in functions available in the Video Genie System. In
most cases, it is necessary to pass an argument (initial value) to the function, before a
desired value (resuit) would be returned. The argument may be a constant, a numeric vari-
able, or an expression. The general format could be:

result = function (argument)

Example
18 A = RHD <30
28 B = INT <C» # D
S8 E = SBR (F+0G - 42

Functions discussed in this chapter:

1. ABSCXD
2. HTHH:
= CDBLCK?
4. CINTC#D
5. COSC%
&, CSNGL{XK»
V. EXPK:
2. FIXCRS
2 INTCKS

16 LAGCKD
11, FRNDOM
120 EHDORD
1% SGOMCED

73

74

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

ABS (X)

Returns the absolute value of the argument X.

ATN (X)

Returns the arctangent function (in radians) of the argument. To get the arctangent
in degrees, multiply ATN (X) by 57.29578.

CDBL (X)

Returns a double-precision representation of the argument. The value returned
contains 17 digits, however, only the digits contained in the argument will be
significant.
CINT (X)

Returns the largest integer that is not greater than the argument. The argument must
be within the range of — 32768 to + 32768.
For example, CINT (2.6) returns 2; CINT (-2.6) returns -3.

COS (X)

Returns the cosine function of the argument (in radians). In order to obtain the
cosine of X when X is in degrees, use COS (X* .0174533)

CSNG (X)

Returns a single-precision representation of the argument. It returns a 6 significant
digit number with 4/5 rounding for a double precision argument.

EXP (X)

Returns the “natural exponential” of X, that is eX .
This is the inverse of the LOG function.

FIX (X)
Returns a truncated representation of the argument with all digits on the right of the

decimal point being truncated or chopped off. For example, FIX (1.5) returns 1, FIX
(-1.5) returns -1.

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

INT (X)

Returns an integer representation of the argument, using the largest integer that is
not greater than the argument. The argument is not limited to the range -32768 to
+32768. For example , INT (3.5) returns 3, INT (-3.5) returns -4.

LOG (X)
Returns the natural logarithm of the argument, that is loge (X). To find the logarithm
of a number of another base b, use the formula logb (X) = lo,ge (X)/loge (b).

RANDOM

This function causes the computer to generate a new set of random numbers &very
time when the computer is tumed on and runs a program which has RND functions.
No argument is needed in this function.

RND (X)

Returns a pseudo-random using the current pseudo-random number (generated
internally and has not access to the user).

RND (0) returns a single-precision value between 0 and 1,

RND (X) returns an integer between 1 and X inclusive.

However, X must be positive and less than 32768.

SGN (X)

The “sign” function, that is to return -1 if X is negative, 0 is X is zero, and + 1 if X is
positive.

SIN (X)
Returns the sine function of the argument (in radians).
To obtain the sine of X when X is in degrees use SIN (X* .0174533).

SQR (X)
Returns the square root of the argument.

TAN (X)
Returns the tangent function of the argument (in radians).
To obtain the tangent of X and X is in degree, use TAN (X* .0174533).

75

76

CHAPTER 7

o

GRAPHICS FEATURES

There are only four graphics functions available in the Video Genie System. However, they

are powerful enough to allow the user to create any graphic patterns on the display with or
without the help of our Extended BASIC language.

7.1

7.2

7.3

7.4

For the display map, please refer to appendix E.

SET (x, y)

This function turns on the graphics block on the display at the location specified by
the coordinates x and y. The display is divided up into a 128 (horizontal) by 48
(vertical) grid. The x — coordinates are ranged from O to 127, organized from left to
right. The y — coordinates are ranged from O to 47, organized from top to bottom.
Therefore, point (0, 0) is located at the extreme top left corner of the display;
whereas point (127, 47) is located at the extreme bottom right corner of the display.
The arguments x and y may be numeric constants, variables or expressions. Since the
SET (x, y) function uses only the integer portion of x and y, neither argument need
be an integer.

RESET (x,y)

This function turns off a graphics block on the display at the location specified by the
coordinates x and y. This function has the same limits and parameters as SET (x, y).
CLS

This function clears the entire display by turning off all the graphics blocks. It also
moves the cursor to the upper left corner. This function allows the user to present an
outstanding display on the screen, without any symbol previously displayed.

POINT (x, y)

This function examines the specified graphics block to see whether it is ON or OFF.
If the block is ON (has been SET), then POINT retums a binary True (-1). If the
block is OFF, POINT returns a binary False (0).

Example
A =POINT (3, 40)

If point (3, 40) has been set, then A has the value of -1. Otherwise A has the value of
0.

CHAPTER 8

SPECIAL FEATURES

8.1

8.2

83

INP (port-number)

Input a 8-bit value from the specified port. The Video Genie System is capable of
handling 256 ports, numbered from 0 to 255. Usually this function is used only
when the expansion box is installed.

Example

18 A = INP (1243
This will input an 8-bit value from port 124 and assign it to variable A.

OUT port-number, value

Output an 8-bit value to the specified port. This statement requires two arguments:
port-number and the value. The Video Genie System is capable of handling 256
ports, numbered from 0 to 255.

Example

@ 0UT 14, 246

Output the value 240 to port 14. Both arguments are limited to single byte values
that is 0-255.

b

PEEK (address)

This function returns the 8-bit value stored at the specified decimal address in the
computer’s memory, and displays the value in decimal form. The value will be
between 0-255.

Example

28 B = PEEK (ZGaaa;

Returns the value stored at location 30000 and assign that value to the variable B.

77

78

8.4

8.5

POKE address value

This statement sends a 8-bit value to the specified (decimal) memory address
location. It requires two arguments: address and value. The value must be between

0-255.
Example
16 A = 256
268 POKE 19680, A : REM SEND VALUE OF A TO ARDRESS 19600

MEM

3@ B = PEEK ¢19@@&> : REM RETURNS YALUE AT RODDRESS 150we TO E.
46 PRINT "THE RESULT IS:";E

58 END

mERDY

FRUN
THE RESULT IS: 259

Returns the number of unused and unprotected bytes in memory.

Example

2e@ IF MEM < 188 THEN 794

When used as a command, it must be accompanied with the PRINT command. That is
PRINT MEM, to find out the amount of memory not being used to store program,
variables, strings, arrays, etc.

APPENDIX A

Video Genie System Reserved Words*

- ABS

‘7% CLEAR
/66 CLOSE
/52 CLS
/#? CONT
27< COS
34 DATA

" DEFDBL
1767 |90 DEFFN

153 DEFINT
/5¢ DEFSNG
/76 DEFUSR
/52 DEFSTR
/82 DELETE
1%¢ DIM
/¢ ELSE
7 END
/2% ERL
7?S ERR
/S8 ERROR
77YEXP
247 FIX
79 FOR
2|8 FRE
/% GET

%5 GOSUB
/%4 GOTO
/43 IF
7c1 INKEY$
217 INP
133 INPUT
172 INSTR
216 INT
I7e KILL
748 LEFTS$
190 LET
171 LSET
743 LEN

156 LINE
[2oLIST
/47 LOAD
o0 MEM
Z50MID$
157 NAME
182 NEW
| 3 NEXT

“o5NOT
%7 oN

/60 OUT

219 PEEK
/92 POINT
77 POKE
27 oPOS

/z2¢ PRINT =

/65 PUT

*None of these words can be used inside a variable name.

3y RANDOM
137 READ
/77 REM

/30 RESET
/7y RESTORE
/57 RESUME
/74 RETURN
/v7»RIGHT$
277 RND

1%/ SET

(i SGN

7. SIN

©71 SQR

704 STEP

/92 STOP

/76 STRING$
74 STRS

7¢2 TABC
2¢7TAN

72 THEN

/51 TROFF

/55 TRON
171 USING
[73USR
245VAL

177 VARPTR

s WA

80

APPENDIX B

ERROR CODES

CODE ABBREVIATION
1 NF
2 SN
3 RG
4 oD
5 FC
6 oV
7 OM
8 UL
9 BS

10 DD

11 /0

12 ID

13 ™

14 oS

15 LS

16 ST

17 CN

18 NR

19 RW

20 UE

21 MO

22 FD

ERROR

NEXT without FOR ERR /7 1
Syntax error

Return without GOSUB
Out of data

Illegal function call
Overflow

Out of memory
Undefined line
Subscript out of range
Redimensioned array
Division by zero

Illegal direct

Type mismatch

Out of string space
String too long

String formula too complex
Can’t continue

NO RESUME

RESUME without error
Unprintable error
Missing operand

Bad file data

Explanation of Error Messages

NF

SN

RG

oD

FC

ov
OM

UL
BS

DD

/O
ID

NEXT without FOR: NEXT is used without a matching FOR statement. This error
may also occur if NEXT variable statements are reversed in a nested loop.

Syntax Error: This is usually the result of incorrect punctuation, open parenthesis,
an illegal character or a mis-spelled command.

RETURN without GOSUB: A RETURN statement was encountered before a
matching GOSUB was executed.

Out of Data. A READ or INPUT # statement was executed with insufficient data
available. DATA statement may have been left out or all data may have been read
from tape of DATA.

Iltegal Function Call: An attempt was made to execute an operation using an illegal
parameter. Examples: square root of a negative argument, negative matrix dimension,
negative or zero LOG arguments, etc. Or USR call without first POKEing the entry
point.

Overflow: A value input or derived is too large or small for the computer to handle.
Out of Memory: All available memory has been used or reserved. This may occur with
very large matrix dimensions, nested branches such as GOTO, GOSUB, and FOR-
NEXT Loops.

Undefined Line: An attempt was made to refer or branch to a non-existent line.

Subscript out of Range: An attempt was made to assign a matrix element with a sub-
script beyond the DIMensioned range.

Redimensioned Array: An attempt was made to DIMension a matrix which had
previously been dimensioned by DIM or by default statements. It is a good idea to
put all dimension statements at the beginning of a program.

Division by Zero: An attempt was made to use a value of zero in the denominator.

Illegal Direct: The use of INPUT as a direct command.

81

82

™

0S8

LS

ST

CN

NR

RW

UE

MO

FD

Type Mismatch: An attempt was made to assign a non-string variable to a string or
vice-versa. ‘

oul of String Space: The amount of string space allocated was exceeded.

String Too Long: A string variable was assigned a string value which exceeded 255
characters in length.

String Formula Too Complex: A string operation was too complex to handle. Break
up the operation into shorter steps.

Can’t Continue: A CONT was issued at a point where no continuable program exists.
e.g. after program was ENDed or EDITed.

NO RESUME: End of program reached in error-trapping mode.

RESUME without ERROR: A RESUME was encountered before ON ERROR GOTO
was executed.

Unprintable Error: An attempt was made to generate an error using an ERROR
statement with an invalid code.

Missing Operand: An operation was attempted without providing one of the required
operands.

Bad File Date: Data input from an external source (i.e. tape) was not correct or was
in improper sequence, etc.

A
i
Control Codes:1-31 /
Code Function
I SN
(g
8 3 ’\ -&wJ Backspaces and erases
— current character
cy 9 7 l;] None
¥_’__/
. : a—
P03 efy] Commerems [y |
14 Tumns on cursor
cr 15 Turns off cursor
o- 5 16-22 None
23 Converts to 32 character
mode
7o
024 S [) Backspace < Cursor
bo2s M | = Advance — Cursor
T B LJI Downward | linefeed
i3 27 oo Ei_, Upward 4 linefeed
21@') 28 Home, return cursor to
display position (0,0)
3;@' 29 Move cursor to beginning
of line
1& 30 Erases to the end of the line
7531 3 /;i,)(, //Qu. 1573y Clear to the end of the frame

i
{

Wjed
A e)

' yy]
A2z

) . -

| '

5 ; .

B e

9@Hg4_[,§

ﬁl,\/g/kﬂf Vo, v
N m
1%,

Xy

.//V).

= — i

= ——N

N
= OL&

I oungpe CAUWSSC nt/ﬁ {7 A

' TR
ety 1 Cancils

)

<

e LAt w

L

B

e e [,w\,g n \AJ'(j/'/l Conrpandt [y

[

P

LD

Gy
((Pcay e

IS RN

Lo oD

3%
3C
D

S

hios

4o

[

ASCII Character Codes 32-128

Code Character
32 space
33 !

34 2
35
36
37
38 4
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

\:go N2 *

+ BN~

-

b

VOO IAAUNPAWN~mO™"

®-~ VI /\:“. &

[V ‘ ’-’Cf e
Cs 3tpe G2 95 o ie(e
S APy e
-

- 75

79

- 86
- 87

Code

65
66
67
68
69
70
71
72
73
74

76
77
78

80
81
82
83
84
85

88
89
90
91
92
93
94
95

96-127
128

Character

DU mONYECOHNROTOZZN R IOTONT AW >

. 5
- 9‘-«‘(7,1;’;’ [RERVr N

- Lower case for

-7 codes 64-95
Space

[e
Fiazg
]! 150
!i' [2)

\g;
¥y
ﬁ 135
[t 126
R,
qu %
Mz
—J e
B

il 0
gﬁrﬂ

%0
&

7

25
£y

(38

L)
89
o

W

g
N

g

oy,

RS B
~ Q ~&

[QX]

TR s R Rl

g

§
R

@ ol A
Fﬁ' %A

@7 A

kg

H

B 4
F:;,‘ PN N
Fhoos n

APPENDIX D

Program Limits and Memory Overhead
Ranges
Integers +32768 + 32767 inclusive

Single Precision @ —1.701411E + 38 to + 1.701411E + 38 inclusive
Double Precision —1.701411834544556E + 38 to + 1.701411834544556E + 38 inclusive

String Range: Up to 255 characters
Line Numbers Allowed: 0 to 65529 inclusive
Program Line Length: Up to 255 characters

Memory Overhead

Program lines require 5 bytes minimum, as follows:
Line Number — 2 bytes
Line Pointer — 2 bytes
Carriage Return — 1 byte

In addition, each reserved word, operator, variable name, special character and constant
character requires one byte.

Dynamic (RUN-time) Memory Allocation

Integer variables: 5 bytes each
(2 for value, 3 for variable name)

Single-precision variables: 7 bytes each
(4 for value, 3 for variable name)

Double-precision variable: /! [)-9 tes Cacly
(8 for value, 3 for variable name)

String variables: 6 bytes minimum
(3 for variable name, 3 for stack and variable pointers, 1 for each character)

Array variables: 12 bytes minimum
(3 for variable name, 2 for size, 1 for number of dimensions,
2 for each dimension, and 2,3,4, or 8 [depending on array type]
for each element in the array)

Each active FOR-NEXT loop requires 16 bytes.

Each active (non-returned) GOSUB requires 6 bytes.

Each level of parentheses requires 4 bytes plus 12 bytes for each temporary value.

-
19
.

191
31702

63

4127
10 | 255
13 (319
14

16|38

17

19447

20
25/575

26
28|63¢
34| 767

35
a7|831

a8
40/895

4
43|95¢

7
12
15
18
21
22
24
27
30
32
33
a9
42
44
45
48{102
47

-~ NN

l63

61

-]

==

7]a8]a9]50]51]52]53|54]55[56|57]|58]59

4

slagla

)

23[24]25]26]27]28][29]30]31]32]33]|34]|35[36[37]|38{39]40]|41]42|43]44]4

VIDEO DISPLAY MAP

o h1t2T3Talsle 171819 holilzliahalisiish7ialisl2021[22l2324[25]26l27]28[29]30[31[32[33[34]3

0(1}2[3j4[5)6(7]8|9|

7
n
12
14
17
18
21

ne-[O01[2]3]a]5]6 7] 8]0 [10[1[12[13[1a[15[16]17[18]19]20]21

20
23
24
26
27
30
32
33
35
38
39
41
42
45
47

¢

64

APPENDIX E

128

192|110
25613
320(16
384|119
448|22
512|2s
576 (28
640|31
704 |24
76837
832|40
960 46

86

|45{46]47]48149{50151|5

36{37[38{39{40{a 1}a2}43

Four more BASIC commands should be included in the instruction set. They
are (1) INKEY$, (2) POS, (3) USR and (4) VARPTR.

ADDENDUM

(1) INKEYS

Returns a one-character string determined by an instantaneous input from the

keyboard. If no key is_pressed during the execution of this statement, a null string
is returned.

Characters typed to an INKEY$ are not automatically displayed on the screen.

Example:

19 FEM # EMTER A PASSWORD WITHOUT
26 REM # DISPLAYING IT ON THE SCREEN
=8 LLs

48 FRINT "INPUT A PRSSHORD

28 R$F=INFEY$:

5]

IF A#="0" THEM &8 ELSE 3
&

IF B$="K" THEN VB ELSE

el BF=INKEYS:

"8 FRINT

"WELCOHME Y10

(2) POS (dummy argument)

The computer returns a number from 0 to 63 indicating the current cursor
position on the display. Usually, 0 is used for the dummy argument.

Example:

(3) USR (argument)

Calls a machine language subroutine and passes the argument to the subroutine.
Such a subroutine could be loaded from tape or created by POKEing Z80 machine
code into the memory. Users who are not familiar with machine language programming
are not recommended to use this command.

~The subroutine entry address should be POKEd into 'location 16526 — 16527.
The least significant byte should'be in location 16526.

To pass the argument to the subroutine, the subroutine should immediately
execute a CALL OA7FH (call 2687 dec.). The argument will then be placed in

registers HL. ch) 3E, ofz/\'

To return to your BASIC program without passing any value back, a RET
instruction should be executed.

To return a value, load the value into the HL register pair as a two-byte signed
integer and execute a JP OA9AH instruction. (OA9m = 2714 Decimal)

{c, IACH) RN

USR routine reserves 8 staék levels for the users’ subroutine.

Example:

5 INFUT I3 : REM # [NPUT ARGUMENT #

15 REM % FREFARE ENTRY RCORESS +

2B FOKE 16526, 8 POKE 16527, 126

A A=USROIN: REM + RETURH ARGUMENT A #

=

SP=324zs T I AT
1N = A = SENEE
By =9 = FFFr
IToe Mo o o &=,
B ~old
o R 4 20 ¥
YA =OC

The subroutine should place on top of the memory map. To protect that region

of memory, the user should input the highest memory locationavailablefor his BASIC
program storage when the machine asks READY? at power up.

(4) VARPTR (variable name)
An address — value of the variable name will be returned.

If K is the returned address, the variables will be stored in the following
structures :-

(i) 2 — byte integer

S ST36y —= &+ 3134¢
K+ 1 - MSB
(i) single precision variable
K — LSB
K + 1 — Next MSB 1. 30144 0 EFs9 — p 9.0
K+ 2 — MSB
K + 3 — Exponent value “lohe e £LT == T

(iii) double precision value
K — LSB
K + 1 — Next MSB
o
®
®
K + 6 — MSB
K + 7 — Exponent value

(iv) string variable
K — length of string
K + 1 — LSB of string starting address. 708 cHA®
K + 2 — MSB of string starting address.

BASIC COMMAND INDEX

ACTIVE COMMANDS

AUTO 13
CLEAR 14
CLOAD 15
CLOAD? 15
CONT 15
CSAVE 16
DELETE 16
EDIT 16
LIST 17
LLIST 19
NEW 17
RUN 17
SYSTEM 18
TROFF 18
TRON 18

PROGRAMMING COMMANDS Page | EDITING COMMANDS

CLEAR 45 LET 47 NEWLINE — record all changes

DATA 39 LPRINT 60 SPACEBAR — move cursor one space to the right
DEFDBL 44 ON n GOSUB 52 BACKSPACE — move cursor back to the left
DEFINT 43 ON n GOTO 50 SHIFT-ESC — escape from Insert command
DEFSNG 44 ON ERROR GOTO 50 H hack and insert

DEFSTR 45 PRINT 28 | I insert

DIM 45 PRINT @ - 30 | X insert at end of line

ERROR . 55 PRINT TAB 31 L list line

END 47 PRINT USING 31 A cancel all editing changes

FOR NEXT 52 PRINT# 41 { E save all editing changes

GOSUB 50 READ 39 | Q back to Active Command level with no change
GOTO 49 RESTORE 40 | D — delete

IF THEN ELSE 59 RETURN 50 | C ~ change

INKEYS$. RESUME 57| S — search

INPUT 36 REM 58 | K — delete specified characters

INPUT# 47 STOP 48

STRING FUNCTIONS

ARITHEMETIC FUNCTIONS

GRAPHIC FUNCTIONS

SPECIAL FUNCTIONS

Page
ASC 68
CHRS$ 69
LEFTS$ 69
LEN 70
MID$ 70
RIGHTS 69
STR$ 71
STRINGS$ 71
VAL 72

ABS
ATN
CDBL
CINT
COS
CSNG
EXP
FIX

Page 73

INT

LOG
RANDOM
RND

SGN

SIN

SQR

TAN

Page 76

CLS
POINT
RESET
SET

Page 77

INP

OouT
PEEK
POKE
POS*
MEM
USR*
VARPTR*

*explained in ADDENDUM

EACA INTERNATIONAL LTD.
13 Chong Yip Street, 11th Floor,
Eaca Industrial Building,
Kwun Tong, Kowloon, Hong Kong.
Telex: 84035 ECHK HX
Cable: "ECHUNG” H.K.
Tels: 3-896323 (8 Lines)

COPYRIGHT (C) BY EACA ,1980,
ALL RIGHTS RESERVED .

