

Copyright (c) 1982 by EA C A Computer Ltd. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of EAC A Computer
Ltd., EA C A Industrial Building, 13 Chong Yip St., Kwun Tong,
Kowloon, Hong Kong.

EA C A Computer Ltd. makes no representations or warranties with

warranties of merchantability or fitness for any particular purpose.
Further, EA C A Computer Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of EACA Computer Ltd. to notify any
person of such revision or changes.

Disclaimer

respect to the contents hereof and specifically disclaims any implied

Copyright (c) 1982 E A C A Computer Ltd.

Copyright (c) 1982 by EAC A Computer Ltd. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of EAC A Computer
Ltd., EA C A Industrial Building, 13 Chong Yip St., Kwun Tong,
Kowloon, Hong Kong.

Disclaimer

EA C A Computer Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.
Further, EA C A Computer Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of EAC A Computer Ltd. to notify any
person of such revision or changes.

■yaWJ.

•hm

CONTENTS

INTRODUCTION

CHAPTER 1 :
CHAPTER 2 ;
CHAPTER 3 :
CHAPTER 4 :

APPENDIX A :

GENERAL INFORMATON ABOUT GENIE III BASIC.
GENIE III BASIC COMMANDS AND STATEMENTS.
GENIE III BASIC FUNCTIONS
BASIC EDITOR.

ERROR CODE AND MESSAGE.

PAGE i

INTRODUCTION

INTRODUCTION
This manual is a reference for GENIE III BASIC

language. The manual is directed to those who have
previously acquired some familiarity with computer
programming and who wish to use this as a guide for the
language BASIC.

This manual consists of four chapters plus an
appendix. The first is an introductory chapter provides
an understanding and information about GENIE III BASIC
language. Chapter two describes the commands and
statements that are available in this system. Chapter
three contains all the functions that can be used by
this system. Each function is discussed, providing
the relative merits of various techniques and usage.

PAGE ii

GENERAL INFORMATION

CHAPTER ONE

GENERAL INFORMATION ABOUT GENIE III

BASIC is chosen as the fundamental high level
porgramming language of our GENIE III system. Most of the
BASIC features come from the DISK BASIC of NEWDOS/80
version 2 which is our operating system. However, some
modifications to the BASIC are required to suit our display
format, 80 x 24 and 64 x 16 format.

If the GENIE Ill's system diskette loaded is 64-mode,
64 x 16 display format is assumed. Similarly, 80 x 24
display format is adopted of the system diskette loaded
is 80-mode.

There are two kinds of BASIC that can be used in this
system; Microsoft Extended Level II Basic and NEWDOS BASIC.

Procedure of entering BASIC:
(1) LEVEL II BASIC:- LEVEL II BASIC can be entered

by pressing the BREAK key first and switching
ON the power of the system, provided that the
system diskette has been placed in drive 0.
Another way is to press both BREAK and RESET
keys at the same time after the system has
entered the DOS level.

(2) NEWDOS BASIC:- NEWDOS BASIC can be entered
by the typing in the command "BASIC" to the
system in DOS level.

PAGE 1-1

GENERAL INFORMATION

Table 1-A (a)-(b) lists all the commands and state
ments that are available in GENIE III BASIC.

NOTE: All of them can be used by NEWDOS BASIC,
however, only those with are available in Level II
BASIC.

TABLE 1-A: BASIC COMMANDS AND STATEMENTS

Table 1-A (a): Active Commands
ACTIVE COMMANDS:

PAGE 1-2

GENERAL INFORMATION

Table 1-A (b): Programming commands

PROGRAMMING COMMANDS AND STATEMENTS:

and Statements.

PAGE 1-3

GENERAL INFORMATION

TABLE 1-B (a)-(d) lists all the functions that are
avail-able in GENIE III BASIC.
NOTE: All of them can be used by NEWDOS BASIC, however
only those with an are available in Level II BASIC.

Table 1-B (a) String Functions:

PAGE 1-4

GENERAL INFORMATION

Table 1—B (c): Graphic Functions

PAGE 1-5

COMMANDS AND STATEMENTS

CHAPTER TWO

GENIE III COMMANDS AND STATEMENTS

This chapter describes all the commmands and
functions available in GENIE III System.

In the syntax notation, all items in lower case
letters enclosed in angle brackets (<>) are to be provided
by the user. All punctuations (except angle brackets) and
capital letters must be input exactly as shown.

PAGE 2-1

COMMANDS AND STATEMENTS

2.1 AUTO

SYNTAX: (a) AUTO
(b) AUTO <line-number>
(c) AUTO <line-number>,<increment>

EXPLANATION: This command automatically sets the line-
numbers before each source lines is entered.
If the user only types in AUTO followed by
the NEW LINE key, the beginning line number
will be set at 10, with each increment of 10.
The option permits the user to specify the
beginning line number as well as the
increment desired between lines.
The user may enter his program statement
right after the line number.

REMARK: Everytime the user hits the NEW LINE key, the
computer will increase the line number. The
AUTO command will remain in operation until
the BREAK key is hit. Note that whenever
AUTO brings up a line that has been used
previously, there will be as asterisk appear
right next to the line number.
If the user does not want to alter that line,
hit the BREAK key to turn off the AUTO

function.
EXAMPLE: AUTO

Then the line numbers 10, 20, 30, will
be generated.
AUTO 2,2
It generates line numbers 2,4,6,.....

PAGE 2-2

COMMANDS AND STATEMENTS

2.2 CLEAR (active command)

SYNTAX: (a) CLEAR
(b) CLEAR <number-of-bytes>

EXPLANATION:

NOTE:

EXAMPLE:

will reset all
and all string

This active command clears a specific number
of bytes for string storage. If the option
(a) is used the computer
numeric varibles to zero,
variables to null. When the option (b) is
taken, it perfroms similarly as option (a),
in addition, a specified number of bytes is
cleared for string storage.

When the user turns on the computer, a CLEAR
50 command is performed automatically.
CLEAR 100
Reset all numeric varibles to zero, and
string variables to null. Then clear
bytes of memory for string storage.

all
100

2.3 CLEAR (programming command)

SYNTAX: CLEAR n
EXPLANATION:

REMARK:

EXAMPLE:

This statement sets all varibles to zero.
If number n is specified, the computer sets n
bytes of space for string storage.
The CLEAR statement becomes critical during

program execution, because an OUT-of-string-
Space error will occur, if
string storage cleared is
greater number of characters
variables.

the amount of
less than the
stored in string

10 CLEAR 1000
Clear 1000 bytes
storage.

of memory space for string

PAGE 2-3

COMMANDS AND STATEMENTS

2.4 CLOSE

SYNTAX; CLOSE <num>,<num>.........
EXPLANATION; This statement terminates the file assignment

to a particular file through the specified
buffer(s). <num> is the number, 1 to 15,
refers to the files' buffer number under which
the file was OPENED.
A close with no argument closes all open
files.

EXAMPLE; CLOSE 2,4,8
or
CLOSE

2.5 CMD"C"

SYNTAX; CMD"C"
EXPLANATION; This command with

compress out all spaces
except for those within
all remarks from the text

which are entirely remarks.
EXAMPLE; The statement

40 IF Y=X GO TO 60

After the active command CMD"C", the text will
become
40 IFY=XGOTO60

no argument is used to
from the program text,
strings, and deletes

, including those lines

PAGE 2-4

COMMANDS AND STATEMENTS

2.6 CMD"E"

SYNTAX: CMD"E"
EXPLANATION: This command displays the DOS error messages

associated the latest DOS error encountered
by BASIC.

2.7 CMD"F=POPS"

SYNTAX: CMD"F=POPS"
EXPLANATION: This statement purges all returns and FOR-

NEXT controls.
REMARK: The purpose of this statement is to allow

the program to "escape" of complex coding
and return to BASIC's first level.

2.8 CMD"F=POPR"

SYNTAX: CMD"F=POPR”
EXPLANATION: This statement purges the current GOSUB level

with any remaining FOR-NEXTS for that level.
The control will pass to the statement
following the CMD"FssPOPR" statement.

PAGE 2-5

COMMANDS AND STATEMENTS

2.9 CMD"F=POPN"

SYNTAX: CMD"F=POPN"
or
CMD"F=POPN"<va r i able-name>

EXPLANATION: The CMD"F=POPN" purges the most recently
located FOR=NEXT's control data. This is the
same as "NEXT" where the loop limit is passed.
If the <variable-name> option is used,
the FOR=NEXT loop joined with <variable-name>
is purged along with any other FOR-NEXT loops
established while <variable-name>'s loop was
outstanding.

REMARK: Execution continues with the statement
following the CMD"F=POPN" or CMD"F=POPN"
variable-name> ststement.

2.10 CMD"F=SASZ"

SYNTAX: CMD"F=SASZ", <expression>
EXPLANATION: This statement changes the string area size

without affecting or clearing the variables.
REMARK: <expression> must be a value

for the string.
An error occurs if <expression>
or too large.

large enough
is too small

EXAMPLE: CMD"F=SASZ",300

PAGE 2-6

COMMANDS AND STATEMENTS

2.11 CMD"F=ERASE"

SYNTAX: CMD"F=ERASE",<1ist-of-variables>
EXPLANATION: This statement clears the specified

variables.

REMARK: If a specified variable is within an array
the entire array is cleared. However the
size remain the same.

EXAMPLE: 50 CMD"F=ERASE",ABB,BBC

2.12 CMD"F=KEEP"

SYNTAX: CMD"F=KEEP",<1ist-of-variables>
EXPLANATION: This statement clears all variables except:

(1) those specified in the
<list-of-variablea>;

(2) specially defined variables, for example,
those defined by a DEFFN statement.

REMARK: The size of string area remains the same.
If <list-of-variables> is omitted, all
variables are cleared; except the special
one.
The entire array will not clear if a

specified variable name is within that array.
EXAMPLE: 200 CMD"F=KEEP",AB$,CCY,A#

PAGE 2-7

COMMANDS AND STATEMENTS

2.13 CMD"F",DELETE

SYNTAX: CMD"F",DELETE <1ine-l>-<line-2>
EXPLANATION: This statement deletes the text lines from

<line-l> to <line-2> during program execution.
REMARK: The DEFFN variables for DEFFN statement in

the delete range are cleared, however, all
other variables are kept as before.

NOTE: CMD''F" ,DELETE must not be
(a) a direct statement
(b) include in a DEFFN statement
(c) include in a subroutine or a FOR-NEXT

loop.
CMD"F",DELETE must be

(a) last statement on its text line
(b) followed by the text line where

execution will continue after the
delete.

EXAMPLE: 100 CMD"F",DELETE 1000-1500

PAGE 2-8

COMMANDS AND STATEMENTS

2.14 CMD”F=SWAP"

SYNTAX: CMD"F=SWAP",<variable-l>,<variable-2>
EXPLANATION: The CMD"F=SWAP" is used to exchange the value

of <variable-l> with that of <variable-2>.
REMARK: <variable-l> and <variable-2> must be the

same type.
EXAMPLE: 200 CMD"F=SWAP",A$,B$

2.15 CMD"F=SS"

SYNTAX: (a)
(b)
(c)

CMD"F=SS"
CMD"F=SS", <1ine-number>
CMD"F=SS",N

EXPLANATION: The CMD"F=SS" is used to perform single step
through program execution. The (a) and (b)
formats set BASIC into single step mode,
while (c) format turns off the single step

REMARK:
mode. (b) format specifies the line to start
single step.

When the program is executed in the single
step mode, a displays at the upper
right top corner of the screen. For @ is
the line number for the next line to be

executed. In order to get to next step, press
the NEW LINE key.The single stepping turns off as it comes to

a CMD"F=SS",N statement.

PAGE 2-9

COMMANDS AND STATEMENTS

2.16 CMD"J "

SYNTAX: CMD"J",<date-l>,<date-2>

EXPLANATION: The CMD"J" is a Calendar Date Conversion
statement. This is used to convert the ex
pression <date-l> to the appropriate format
and puts the result in the string variable
<date-2>.
Two conditions :
(a) If <date-l> is mm/dd/yy then <date-2> is

stored in ddd format;
(b) if <date-l> is yy/ddd then <date-2> is

stored in mm/dd/yy format.
where

mm is the month of the year from 01 to 12
dd is the day of the month from 01 to 31
ddd is the day-of-the-year from 01 to 366
yy is the year of the 20-century from 00

to 99.

PAGE 2-10

2.17 CMD"

SYNTAX: (a)
or
(b)

EXPLANATION:

EXAMPLE:

COMMANDS AND STATEMENTS

CMD"0",<n>,<av-l>,<av-2>........
CMD"0",<n>,*<i av-l>,<av—2>,<av—3>.....
The CMD"0" command is used to sort

array in the main memory. <n> specifies the
number of element in each of the array parti
cipating in the sort. A maximum of 9 arrays
may be specified.
Format (a): It is a direct sort meaning that
the elements of all 1 to 9 arrays are moved
around to adjust to the desired sort order.
<av-l>, the arrray-variable-1, must be speci
fied while <av-2>, the array-variable-2, and
up are optional.
For each array, the resulting order is the

same. For example, if the 4th element of
array 1 (<av-l>) is sorted into the 6th
element slot, then for each of the other
arrays, if any, the 4th element is also placed
into the 6th element slot.
Format (b): It is an indirect sort. <iav-l>

must be an integer array variable. <iav-l>
and <av-2> must be specified while <av-3> and
up are optional. Format (b) is different
from Format (a), is that, only the n element

sorted; the other arrays
before. In other words,
array <iav-l> is altered not altered.

fof array <iav-l> are
are in same order as
during sorting only

and up arebut <av-2>

10 DIM A$(20) , AMT(30) , BB
20 x=10
90 CMD"0",X<A$(0),AMT(0)
150 CMD"0",X ,*BB{2),AMT(3)

(30)

,A$(5)

PAGE 2-11

COMMANDS AND STATEMENTS

2.18 CMD"S"

SYNTAX: CMD"S"
EXPLANATION: This statement with no argument allows BASIC

to exist DISK BASIC
state.

and return to DOS READY

REMARK: If it is in the form of CMD"S=<doscmd>",where
<doscmd> is the DOS command, then the

following
1 .

2 .

command D u f f e r
steps occur:

It is moved into the DOS
and BASIC released.
The' <doscmd> placed into the DOS buffer
is executed immediately without "DOS
READY" displays on the screen.
After the completion of the command, the
control returns to DOS READY state.

2.19 CMD"doscmd"

SYNTAX: CMD"<DOS-command>"
EXPLANATION:

EXAMPLE:

The statement allows BASIC to carry out DOS's
command. BASIC moves the command to DOS's
command buffer. When the specified command
is completed, control returns to BASIC mode.
CMD"DIR 0"
will list a directory on disk drive 0
CMD"COPY ABC:0 :1"
will copy ABC in disk drive 0 onto disk drive
1.

PAGE 2-12

COMMANDS AND STATEMENTS

2.20 CONT

SYNTAX: CONT
EXPLANATION: This command continues the program execution,

at the point where the execution has been
stopped by the BREAK key or a STOP statement
within the program.

PAGE 2-13

COMMANDS AND STATEMENTS

2.21 DATA

SYNTAX: DATA <1ist-of-items>
EXPLANATION: This statement defines data items to be read

by READ statement.
The item list will be accessed by the
computer sequentially, starting with the
first item in the first DATA statement, and
ending with the last item in the last DATA
statement.
The items can be string or numeric value.
The order of values in a DATA statement must
match up with the variable types in the READ
statement.
30 READ A,B,C$
40 DATA 11,56,"SENTENCE"

REMARK:

EXAMPLE:

2.22 DEFDBL

SYNTAX: DEFDBL <letter-range>
EXPLANATION:

REMARK:

EXAMPLE:

A DEFDBL statement declares (treat and store)
that the variable names beginning with the
letter(s) specified will be double precision.
However,

over-ride
precision
while only

a type declaration character can
this type definition. Double

allows 17 digits of precision,
16 digits are displayed when a

double precision variable is print.
10 DEFDBL M-P,G
Causes variables beginning with one of the
letters M through P, or G to become double precision.

PAGE 2-14

COMMANDS AND STATEMENTS

2.23 DEF FN

SYNTAX: DEF FN name <argument>=<expression>
EXPLANATION: A user-created implicit function is defined

with the name FN name. The defined implicit
function will automatically be performed when
the name is called. The function must be
composed of the letters FN followed by a
valid level II variable name.

EXAMPLE: 20 DEF FNBB (Y) = Y/2
This statement defines a function FNBB(Y)
which divides Y by 2.
Thus the statement

40 X=FNBB(4)
would set X to the value 2.

PAGE 2-15

COMMANDS AND STATEMENTS

2.24 DEFINT

SYNTAX: DEFINT <letter-range>
EXPLANATION: Variable names that begin with letters

specified within the letter range, will be
treated and stored as integers.

REMARK: Defining a variable name as an integer not
only saves memory space, but also saves
computer time, because integer calculation is
faster than single or double precision
calculation.

NOTE: Integers can only take on values between
-32768 and +32767 inclusive.

EXAMPLE:
10 DEFINT X ,Y ,Z

After the computer has executed line 10, all
variables beginning with the letters X,Y, or
Z will be treated as integers. Therefore,
X2, X3, YA, YB, ZI, ZJ will become integer
variables. Except that XI#, X2#, will be
still double precision variables, because
type declarations always over-ride DEF
statements.

50 DEFINT A - D
This statement defines variables beginning
with letter A,B,C, or D to be integer
variables.

PAGE 2-16

COMMANDS AND STATEMENTS

2.25 DEFSNG

SYNTAX: DEFSNG <letter-range>
EXPLANATION: This statement declares that the

<letter-range> to be a single precision
variable.
Variable name that begin with those letters
specified within the letter range, will be
treated and stored as single precision
variables. However, a type declaration
character can over-ride this type definition.

REMARK: Single precision variables and constants are
stored with 7 digits of precision and printed
out with 6 digits of precision. All numeric
variables are assumed to be single precision
unless otherwise specified. The DEFSNG

ine
ned

r A
ion
e.

statement is primarily used to re-def
variables which have previously been defi
as double precision or integer.

EXAMPLE: 10 DEFSNG A—D ,Y
Defines variables beginning with the lette
through D, or Y to become single precision.
However, A# would still be
variable and Y% still be an

a double precis
integer variabl

PAGE 2-17

COMMANDS AND STATEMENTS

2.26 DEFSTR

SYNTAX: DEFSTR <letter-range>
EXPLANATION: This is a string declare statement.

Variables that begin with those letters
specified within the letter range, will be
treated and stored as string.
However, a type declaration character can

over-ride this type definition. Each string
can store up to 255 characters, if there is
enough string storage space cleared.

10 DEFSTR A-D
Causes variables beginning with any letter A
through D to be string variables.

2.27 DEFUSR

SYNTAX: DEFUSR <n> ■ <mexp>
EXPLANATION: This statement defines entry address for USR

routine. <n> can be of any one of the digits
0, 1, ,9. If <n> is excluded, 0 is
assumed. <mexp> is the entry address to a
machine-language routine.

EXAMPLE: 10 DEFUSR2 - &H7D00
This statement assigns the entry point 7D00
hex (32000 decimal), to the USR2 call. Hence
the control branches to subroutine beginning
at hex 7D00 when USR2 is called.

REMARK:

EXAMPLE:

PAGE 2-18

COMMANDS AND STATEMENTS

2.28 DELETE

SYNTAX: DELETE
or
DELETE

<1ine-number>
<1ine-number>-<line-number>

EXPLANATION: This command clears the memory location that
contains the specified line(s).

NOTE: D <line-number> is same as DELETE
<1ine-number>.

EXAMPLE: DELETE 5
Clear line 5

DELETE 30-60
Clear line 30 through 60.

2.29 DIM

SYNTAX: DIM <name> (<dim-l>,<dim-2>,........)
EXPLANATION: This statement defines the variable name to

be an array or list of arrays. The number of
elements in each dimension may be specified
through dim-1, dim-2,..,etc.

REMARK: If <dim> is not specified, 11 elements in
each dimension is assumed in each array. The
number of dimension(s) is/are limited only by
the memory size available.

EXAMPLE: 10 DIM A(5), B(3,4)
This statement defines the one dimensional
array, A(5), with 6 element (from 0 to 5) and
the two dimensional array, B(3,4), with 20
elements (4*5).

PAGE 2-19

COMMANDS AND STATEMENTS

2.30 EDIT

EXPLANATION: This command will cause the computer to shift
from the Active Command level to the Editing
Level.
THERE ARE TWO BASIC EDITORS IN GENIE III
SYSTEM; LEVEL II BASIC EDITOR AND SCREEN
EDITOR. REFER TO CHAPTER 4 IN THIS MANUAL
FOR DETAIL DESCRIPTION AND INFORMATION.

2.31 END

SYNTAX: END
EXPLANATION: This statement with no argument terminates

the execution of a program.
The END statement is primarily used to cause
execution to terminate at some point other
than the logical end of the program.

REMARK: The CONT command can be used to resume
execution at the statement following the END
statement.

EXAMPLE: 10 A=B+C

200 End

PAGE 2-20

COMMANDS AND STATEMENTS

2.32 ERROR

SYNTAX: ERROR <code>
EXPLANATION: This command displays the error message

corresponding to specified error code.
EXAMPLE: When type in

ERROR 4
the DISK BASIC respones and displays with the
message

OUT OF DATA

2.33 FIELD
SYNTAX: FIELD <num>, <len-l> AS <var-l>,<len-2> AS
EXPLANATION: This statement addresses field sizes and

names to a random file buffer. <num> is the
file number under which the file was OPENed
(random access mode). <len-l> is the length
of the first field to be arranged into
<var-l> (variable name for the first field).
<len-2> is the second field and <var-2> is
second variable name and so on.

EXAMPLE: 20 FIELD 2, 10 AS A$, 20 AS B$, 30 AS C$
This statement assigns the first 10 bytes of
bytes of buffer to the variable name (buffer
name) A$, the next 20 bytes to B$, and the
next 30 to C$.

PAGE 2-21

COMMANDS AND STATEMENTS

2.34 FOR....NEXT

SYNTAX: FOR <name>=<initial> TO <stop> STEP <increment>

NEXT <name>
EXPLANATION: These statement form an iterative loop so

that a sequence of program statements may be
executed over a specified number of times.
<name> must be a numeric variable.
<exp> is an expression.
In the FOR statement, initial value, final
value and increment can be constants,
variables or numeric expressions.
When the FOR statement is encountered during
execution, <name> is set to the value of
"start". Then the statements between the FOR
and NEXT statements are executed. When the
NEXT statement is encountered, the value of
<increment> is added to <name>. If
<increment> is positive and <name> is
greater than <stop>, or, if <increment> is
negative and <name> is less than <stop>,
execution continues with the statement
following the NEXT statement. Otherwise, the
statements between the FOR and NEXT statement
are repeated. The step <increment> part of
the statement can be omitted, in this case,
<increment> is assumed to be 1.

EXAMPLE
20 FOR K=0 to 20 STEP 2
: (statements)
130 NEXT K

PAGE 2-22

COMMANDS AND STATEMENTS

2.35 GET

SYNTAX: GET <file-number>,<record-number>
EXPLANATION: This statement causes a data record

<record-number> read from a random disk file
into a specified buffer <file-number>.
The disk file must have been opened with OPEN
statement before using GET. If
<record-number> is omitted, the current
record is read into the buffer.

EXAMPLE:
20 OPEN "A",1,"ABC/BAS"
•
•

100 GET 1,50
•
•

PAGE 2-23

COMMANDS AND STATEMENTS

2.36 GOSUB

SYNTAX: GOSUB <statement-number>
EXPLANATION: This command transfers program control to the

specified line number where a subroutine
starts. Only if the computer encounters a
RETURN statement, it will then jump back to
the statement that immediately follows the
GOSUB. Just like GOTO, GOSUB may be preceded
by a test statement, such as:

IF A=B THEN GOSUB 100
EXAMPLE:

10 PRINT "MAIN PROGRAM"
20 GOSUB 50
30 PRINT "END OF PROGRAM"
40 END
50 PRINT "SUBROUTINE"
60 RETURN

2.37 GOTO

SYNTAX: GOTO <1ine-number>
EXPLANATION: This statement transfers program control to

the specified line number. if used
independently, an unconditional branch will
result.
However, test statements may precede the GOTO
statement to create a conditional branch.

EXAMPLE:

30 GOTO 100

100 PRINT "AAAAA"

PAGE 2-24

COMMANDS AND STATEMENTS

2.38 IF

SYNTAX: IF <expression-action-clause>
EXPLANATION: This statement instructs the computer to test

a logical or relational expression. If the
expression is TRUE, control will proceed to
the "action" clause immediately following the
expression. If the expression is FALSE,
control will jump to the matching ELSE
statement (if there is one) or down to the
next program line.
In numerical term, if the expression, has a
non-zero value, it is always equivalent to a
logical true.

EXAMPLE:

60 IF A>20 GOTO 150

2.39 IF-THEN

SYNTAX: IF <condition> THEN <statement-or-line-number>
EXPLANATION: This statement is the action cause after the

IF test. If the "test
<statement-or-line-number>

" is true,
will perform.

the

EXAMPLE: •
•

50 IF A>B THEN PRINT " A>B "

PAGE 2-25

COMMANDS AND STATEMENTS

2.40 IF-THEN-ELSE

SYNTAX: IF <condition> THEN <state-line> ELSE <state-line>
EXPLANATION: This ELSE statement must be used after the IF

statement, and acts as an alternative action
in case the IF test fails.
<exp> is the expression-action-cause.
<state-line> is the statement or line number.

REMARK: IF-THEN-ELSE statements may be nested, but
the number of IFs and ELSEs must match with
each other.

EXAMPLE: :
20 IF A=1 THEN 60 ELSE 40

In this example, if A=1 then control branches
to line 40. If the ELSE clause is not used
and A is not equal to 1, the computer will go
to the next statement instead of branching to
line 40.
Another example:

20 IF A<B THEN GOTO 60 ELSE PRINT "A>B"

PAGE 2-26

COMMANDS AND STATEMENTS

2.41 INKEY$

SYNTAX: <variable-name>=INKEY$
EXPLANATION: This statement returns a one-character string

determined by an instantaneous input from the
keyboard. If no key is pressed during the
execution of this statement, a null string is
returned.
Characters typed to an INKEY$ are not
automatically displayed on the screen.

EXAMPLE
50 A$=INKEY$ IF A$="G" THEN 90 ELSE 120

2.42 INPUT

SYNTAX: INPUT <item-list>
or
INPUT "prompt-statement";<item-list>

EXPLANATION: This statement causes the computer to suspend
execution of a program and wait until the
user has input the specified number and type
of values through the keyboard. Input values
can be string or numeric according to the
variable type. The items (if more than one)
in the list must be separated by commas.

REMARK:

EXAMPLE:

When the computer executes this statement, it
dispalys a "?" and waits for the "user" to
type in the data.

60 INPUT A$,G$,C,J
this statement read two strings and 2 numbers

100 INPUT "ENTER ONE NUMBER";A
this example issues a prompt, reads a number.

PAGE 2-27

COMMANDS AND STATEMENTS

2.43 INPUT#

SYNTAX: INPUT#<file-number>, <variable-list>
EXPLANATION: This statement causes data to be transferred

EXAMPLE:

from the sequential disk file, converting the
data to number or string as specified by the
type of the "variables", <variable-list>.
<file-number> is the number used when the
file was OPENed for input. <variable-list>
is the list of variable names to contain the
data from the file.

> •» •

50 INPUT#1,A,B,C

PAGE 2-28

COMMANDS AND STATEMENTS

2.44 KILL

SYNTAX: KILL <file-name>
EXPLANATION: This active command deletes the specified

file.
EXAMPLE: KILL ABC/BAS

2.45 LET
SYNTAX: LET <variable>=expression
EXPLANATION: This statement is used to assign a value to a

variable. The word LET is not required in
assignment statements by the Video Genie
BASIC interpreter. However, the user may
use the word LET in order to make the program
compatible with other systems.

EXAMPLE: •
•

50 LET A=2*Y/(AMT+RATE)

PAGE 2-29

COMMANDS AND STATEMENTS

2.46 LINE INPUT

SYNTAX: LINE INPUT <"prompt-message">,<name>
EXPLANATION: This statement is used to input a line of

characters from keyboard. The <"prompt-
message"> is a string that is printed at the
terminal before input(<name>) is received.
<name> is the assigned name for the line to
be typed in.

NOTE:

EXAMPLE:

This statement inputs a line from the
keyboard without question mark indicated from
the screen. The only way to terminate the
string input is to press NEWLINE.

50 LINE INPUT "IDENTITY NUMBER, NAME", A$
This statement is used to display the prompt
message (IDENTITY NUMBER, NAME) and waits for
input data.

2.47 LINE INPUT#

SYNTAX: LINE INPUT#<file-number>,<string-variable>
EXPLANATION; This statement reads a line of string data

from a sequential disk data file into a
string variable (<string-variable>). <file-
number> is the number under which the file
was OPENed. <string-variable> is the
variable name to which the line will be
assigned.

EXAMPLE:
60 LINE INPUT#!, A$

PAGE 2-30

COMMANDS AND STATEMENTS

2.48 LIST

SYNTAX (a) LIST
(b) LIST <1ine-number>
(c) LIST <line-number>-<line-number>

EXPLANATION: This active command will inform the computer
to display any specified program lines stored
in the main memory. If the option is not
used, the computer will scroll the entire
program onto the display. In order to pause
and examine the text, the user should hit
the SHIFT and CONTROL keys simultaneously.
The scrolling will continue by hitting any
key.

EXAMPLE
LIST

This command displays
LIST 50

This command displays
LIST 20-60

This command displays

all lines in the momory

line 50

from line 20 to line 60

2.49 LLIST

SYNTAX: (a) LLIST
(b) LLIST
(C) LLIST

<1ine-number>
<1i ne-numbe r >-<1i ne-numbe r>

EXPLANATION: This command lists a program
printer.This command funtions
similar way as the LIST command,
are perform in the same way as LIST
is list onto the printer.

onto the
in a very
The options

except it

REMARK: if the Line printer is not properly connect
ed, the computer will enter a dead loop and
waits to pript the first character. This
situation can only be resolved by turning the
print on or hitting the RESET button.

PAGE 2-31

COMMANDS AND STATEMENTS

2.50 LOAD

SYNTAX: (a) LOAD <program-name>
(b) LOAD <program-name>,R

EXPLANATION: This command loads a program with the name
<program-name> from the disk into main
memory. The R option is to RUN the program
after it is loaded. The LOAD command erases
the resident program, deletes all variables,
and closes all open files. If the R option
is used with LOAD, all opened files are kept
open. Therefore, LOAD with R-option can be
used to chain several programs.

EXAMPLE:
LOAD "ARST/BAS",R

2.51 LPRINT

SYNTAX: LPRINT <item-1 ist>
EXPLANATION: This command (or statement) prints a file

onto the printer. LPRINT is function similar
to a PRINT except insteasd displays on the
screen, LPRINT prints onto the printer.

REMARK:

EXAMPLE

If the line printer is not properly
connected, the computer will enter a dead
loop and will wait to print the first
character. This situation can only be
resolved by turning on the printer or
hitting the RESET button.

•

60 LPRINT "THE VALUE OF AMT. IS";A

PAGE 2-32

COMMANDS AND STATEMENTS

2.52 LSET

SYNTAX: LSET
EXPLANATION:

EXAMPLE:

NOTE:

<string-variable>=<string-expression>
This statement moves character-string data
to a random buffer field and adds blanks on
the right to fill field. <string-variable>
is the field name. <string-expression> is
the character-string data to be placed into
<string-variable>.
Let ID$ be a field name for a random file

buffer with a length of 10 characters.
Then the statement:

50 LSET ID$="S-073"
will put the data in the buffer as follows:

S-073#####
where "#" is blank space.
If the string is too long for the field,

characters are dropped from the right.

DArr o__oo

COMMANDS AND STATEMENTS
PAGE 2-33

2.53 MERGE

SYNTAX: MERGE <filename>
EXPLANATION: This command is to merge a specified disk

file with the resident program (program
currently in memory.)

MODIFICATION: MERGE has been modified to used as a
programming statement. If it is used as a
programming statement, then:
(a) MERGE statement must not be

- part of a DEFFN statement;
- part of a sub-routine;
- part kof a FOR-NEXT loop.

(b) MERGE statement must be
- last statement of the text line.

(c) the merge file must not contain a line
whose number is the same as the number of
a text line existing at the start of the
execution of the merge.

(d) execution will continue after the MERGE
statement.

REMARK: MERGE protects all variables and closes all
' files. The user must make sure that there is

enough momery space for the "merge".
EXAMPLE:

(a) An active command
MERGE "SUB/TXT"

(b) A programming command
40 MERGE "SUB/TXT"

PAGE 2-34

COMMANDS AND STATEMENTS

2.54 MID$

SYNTAX: MID$(<name-$>,<n>,<m>)=<exp$>
EXPLANATION: This MID$ function replaces any part of a

string with a substring. <name-$> is the
name of string. <n> is the beginning
position for the substitution. <m> is the
number of characters to be replaced. <exp$>
is the replacement string. If <exp$> is too
long to fit in <name-$>, the extra characters
at the right of <exp$> are neglected.

EXAMPLE:
Let A$="CDEFGH", then the statement

40 MID$ (A$,2,3,)="5678"
will set A$ to the string of "C5678GH"

2.55 NEW

SYNTAX: NEW
EXPLANATION: This active command with no argument will

clear all program lines; reset numeric
variables to zero and string variables to
null. It does not change the memory size
previously set by the CLEAR command.

PAGE 2-35

COMMANDS AND STATEMENTS

2.56 ON ERROR GOTO

SYNTAX: ON ERROR GOTO <line-number>
EXPLANATION: This statement allows the user to set up an

error-trapping routine to recover a program
from an erorr and to continue, without any
break in execution. Without this statement,
the computer will stop execution and print
out an error message, once it encounters any
kind of error in the user's program.

EXAMPLE
60 ON ERROR GOTO 450

2.57 ON-GOTO

SYNTAX: ON <n> GOTO <1ist-of-line-number>
EXPLANATION: This statement allows multi branching to the

line numbers specified according to the value
of <n>. <n> is an expression. The value of
the expression must be between 0 to 255
inclusive.

REMARK: When ON-GOTO statement is executed, first,
the expression is evaluated and the integer
portion, that is INT (expression) is
obtained. Then the computer assigns this
integer to N, and counts over to the Mth
element in the line number list, and then
branches to the line number specified by that
element.
If N is greater than the available line
number M, the control fall through to the
next statement in the program. If the
expression or number is less than zero, an
error will occur.

EXAMPLE: :
60 INPUT "ENTER MODE"; C
70 ON C GOTO 200,300,400,500

PAGE 2-36

COMMANDS AND STATEMENTS

2.58 ON-GOSUB

SYNTAX: ON <expression> GOSUB <line-number-list>
EXPLANATION: This statement works like ON-GOTO, except

control branches to one of the subroutines
specified by the line numbers in the line
numbers list.

EXAMPLE:
••
60 INPUT "ENTER 1,2, OR 3";N
70 ON N GOSUB 250,400,600
«•

2.59 OPEN

SYNTAX: OPEN <m>,<f ile-name>,<f ile-speci fy>
EXPALNATION: This statement opens a file for access (allow

I/O to a disk file. <m> is string expresion
to specify the mode in which the file is to
be opened. <file-name> is the number from 1
to 15, the buffer to be assigned.
<file-specify> is the file specification.

REMARK: If the mode <m> is -
I then it is in sequential input mode
0 then it is in sequential output mode
R then it is in random Input/Output mode

EXAMPLE: •
•

200 OPEN "I",1,"ABC/BAS"#•
this example opens the file "ABC/BAS" for
sequential input.

PAGE 2-37

COMMANDS AND STATEMENTS

2.60 PRINT

SYNTAX: PRINT <item-list>
EXPLANATION: This statement displays an item or list of

items on the screen. The item can be any of
the following:
numeric constants, numeric variables, string
constants, string variables, or expressions.

REMARK:

EXAMPLE:

Items in the item list may be separated by
commas or semi-colons. If commas are used,
the corsor automatically advances to the next
printing zone before printing the next item.
If semi-colons are used, no space is inserted
between alphabetic items before printing on
the display, but one space is inserted before
each numeric item.

+

PRINT "THE AMOUNT IS"; A

2.61 PRINT TAB

SYNTAX: PRINT TAB<expression>
EXPLANATION: This statement allows the user to print at

any specified cursor position within a line.
More thab one TAB in a PRINT statement is
acceptable. However, the value in the
expression should be between 0 and 63
inclusive.

NOTE:

EXAMPLE

If it is 80-mode BASIC, then the value of the
<expression> must be between 0 to 255
inclusive.

50 PRINT TAB(5) "P0S=5"

PAGE 2-38

COMMANDS AND STATEMENTS

2.62 PRINT USING

SYNTAX: PRINT USING <format>,<item-1ist>
EXPLANATION This statement allows the user to print the

data with a pre-defined format. The data can
be numeric or string values.
<format> and <item-list> can be expressed as
variables or constants. The statemet prints
the item list according to the format
specified.

REMARK: The folllowing specifiers may be used in the
format field:
(I) Numeric:

(a) The sign # represents the proper
position of each digit in the item list.
If the format field is greater than the
numeric value (in the Citem list>), the
unused field positions to the left of the
number will be dispalyed as spaces and those
to the right of the decimal point will be
dispalyed as zeros.

(b) The decimal point, can be placed
anywhere in the format field established by
the #. Rounding off will take place if the
digits to the right of the decimal point are
suppressed.

(c) The comma, can be placed at any
position between the first digit and the
decimal point. The comma will be displayed
to the right of every three digits.

(d) The two asterisks, **, placed at the
beginning of the format field will cause all
unused positiosns to the left of the decimal
point to be filled with asterisks.

(e) Two dollar signs , $$, palced at the
beginning of the field will act as a floating
dollar sign.

(f) Combines the ** and $$ will fill empty
spaces with * and $ will occupy the first
position before the number.

(g) When a " + " sign is placed at the
beginning or at the end of the format field,
the computer will print a + sign for a
positive number or a sign for a negative
number at the specific position accordingly.

PAGE 2-39

COMMANDS AND STATEMENTS

NOTE:

EXAMPLE:

(h) When a sign is placed at the end
of the format field , it will causes a
negative sign to be printed after any
negative number, and will display as a blank
for positive numbers.
(II) String

(a) % space % : to define a string field
of more than one character. The length of
the format field will be 2 plus the number of
spaces between the percentage signs. An
exclamation mark (!) informs the computer to
use only the first character of the current
string value.

(b) By using the 1 ' sign, we can also
concatenate, or join strings together.
In the case of numeric string: the % sign
will be automatically printed out if the
field is not large enough to contain the
number of digits found in the numeric value.

The following tables show some of the format
and its correspondent display.
(a) Numeric:

Let the number be 12.34
format display
##.## 12.34
#.## %2.34

**##.## **12.34
$$#.## $12.34

$###.## *$12.34
$### *$12

+##.## +12.34

(b) String
Let the string be "ABCDE"

format display
% % AB
% % ABC

PAGE 2-40

COMMANDS AND STATEMENTS

2.63 PRINTS

SYNATX: PRINTS <location>,<item-list>
EXPALNATION: This statement prints out items in the items

list at the screen location specified. The
"S" sign must follow PRINT immediately, and
the location specified must be a number of
value from 0 to 1023.

NOTE:

REMARK:

EXAMPLE

If it is 80-mode BASIC, then the location
specified must be a number from 0 to 1919.
IF the user constructs a PRINTS statement to
print on the bottom line of the display,
there will be an automatic line-feed, causing
everything displayed to move up one line. To
suppress this action, add a semi-colon at the
end of the statement.

•

50 PRINT §100 "LOC 100"

PAGE 2-41

COMMANDS AND STATEMENTS

2.64 PRINT#

SYNTAX: PRINT# <file-number>r <list-of-expression>
EXPALNATION This statement prints data sequentially

the specified disk file. The file must
been opened with the OPEN statement. <f
number> is the number from 1 to 15# speci
a sequential output file buffer. <list
expression> is the list of expression to
transferred and written to the disk.

to
have
i le-
f ies
-of-

be

EXAMPLE: :
30 PRINT#1, A, B

This causes the string A and B to be written
to the file buffer 1.

2.65 PUT

SYNTAX: PUT <file-number>,<reocrd-number>
EXPLANATION: This statement writes a record from a random

buffer to a specified record-place in the
file. The file must have been opened with
the OPEN statement. <file-number> is the
file buffer number from 1 to 15. Crecord-
number> is the record number in the file, it
ranges from 1 to 335. If <record-number> is
excluded, the current record number will be
used.

PAGE 2-42

COMMANDS AND STATEMENTS

2.66 READ

SYNTAX: READ
EXPLANATION:

REMARK:

EXAMPLE:

<item-list>
This statement instructs the computer to read
in a value from a DATA statement and assign
that value to the specified variable.
The values in the DATA statement will be read
sequentially by the READ statement. After
all the items in the first DATA statement
have been read, the next READ statement
encountered will access the second DATA
statement for the next variable. If there is
no more value in the DATA statement available
for a READ statement an Out-of-Data error
will occur.

50 READ A$
60 IF A$ « "EOF" GOTO 100

PAGE 2-43

COMMANDS AND STATEMENTS

2.67 REF

SYNTAX: REF<format>
EXPLANATION This active statement displays where a line

number, a variable, a string, an intege r, a
function code, a packed sequence of
characte rs or an unpacked sequence of
characte rs is referenced.
If the <format> is:
(a) * ,then full reference list for all

line number, integers and variables will
be displayed.

(b) $, same as *
the printer.

except that it prints on
(c) <nn>, where <nn> is a variable name with

two characters only and without any
suffix. It displays all references to the
variable named <nn>.

(d) <num>, where <num> is the line number. It
displays all references to the line
number <num>.

REMARK: In order to terminate the REF command, press
UP ARROW key. Also press BREAK key to pause
and press NEW LINE to continue.

PAGE 2-44

COMMANDS AND STATEMENTS

2.68 REM

SYNTAX: REM <any comment or sentences>
EXPLANATION: REM represents remarks. This statement

informs the computer that the rest of the
line only consists of comments, and should be
ignored. If REM is used in a multi-statement
program line, it must be the last statement.

EXAMPLE: ••
30 REM * THIS IS A COMMENT *

2.69 RENEW

SYNTAX: RENEW
EXPLANATION: This active command replaces back a program

erased by the command NEW. The work space of
all program, variables, and data will be
reinstated.

REMARK: After the NEW command, if any text line is
loaded or created, then the previous text is
not reinstated.

PAGE 2-45

2.70 RENUM

SYNTAX:

EXPLANATION:

COMMANDS AND STATEMENTS

(a) RENUM,
(b) RENUM <start>,<increment>
(c) RENUM <start>, ,<from>,<end>
(d) RENUM <start>,<increment>,<from>,<end>
This active command renumber the BASIC

program.
(a) RENUM, : renumbers the whole program,
starts with line number 10 and increment of
10.
(b) RENUM <start>,<increment> : renumbers
the whole porgram, starts the first line with
the number <start> and increment of
<increment>.

Example: If the command is
RENUM 100,100

then the program line numbers will be
100, 200, 300 and so on.

(c) RENUM <start>, ,<from>,<end> :
Example:

RENUM 200, ,400,600
this example renumbers the program
line, from 400 to 600 inclusively, the
first line is set to be 200 and
increment by 10.

(d) RENUM <start>,<increment>,<from>,<end>:
Example:

RENUM 100,20,10,200
this example renumbers the line 10 to
line 200 inclusively, then start with
the line number 100 and increment by
20.

PAGE 2-46

COMMANDS AND STATEMENTS

2.71 RESUME

SYNTAX: RESUME <line-number>
EXPLANATION: This statement terminates an error handling

routine by specifying where normal execution
is to resume.

REMARK: RESUME 0 or RESUME without a line number
causes the computer to return to the
statement in which the error occured. IF
RESUME is followed by a line number, it
causes the computer to branch to the line
number provided.
RESUME NEXT causes the computer to branch to
the statement followed the point at which the
error occured.

EXAMPLE: :
150 RESUME 50

2.72 RESTORE

SYNTAX: RESTORE
EXPALNATION: This statement with no argument allows the

next READ statement to access the first item
in the first DATA statement, and the
subsequent items.

EXAMPLE: :
50 PRINT A$,A
60 RESTORE
70 READ B$,B

PAGE 2-47

COMMANDS AND STATEMENTS

2.73 RETURN

SYNTAX: RETURN
EXPLANATION: This statement ends a subroutine and returns

control to the statement that immediately
follows the GOSUB. An error will occur if
RETURN is encountered without execution of a
matching GOSUB.

EXAMPLE: :
♦

20 GOSUB 100
•
100 PRINT "SUBROUTINE"
110 RETURN

2.74 RSET

SYNTAX: RSET <string-variable>=<string-expression>
EXPLANATION: This statement moves character-string data to

a random buffer field and adds blanks on the
left to fill field. <string-variable> is the
field name. <string-expression> is the
character-string data to be placed into
<string-variable>.

EXAMPLE: Let ID$ be a field name for a random file
buffer with the length of 10 characters.
Then the statement:

RSET ID$="S-073"
will put the data in the buffer as follows:

#####S-073
where "#" is the blank.

NOTE: If the string is too long for the field,
characters are dropped from the right.

PAGE 2-48

COMMANDS AND STATEMENTS

2.75 RUN

SYNTAX: RUN
or
RUN <1ine-number>

EXPLANATION: This command will instruct the computer to
start executing(or RUN) the user's program
stored in main memory. If a line number is
not specified, the computer will start
executing from the lowest line number.
However, if a line number is provided, the
computer will execute from the given line
number to higher order lines.

NOTE: An error will occur if an invalid line number
is used.
Everytime a RUN is executed, a CLEAR command
also executed automaticlly before it.

EXAMPLE: RUN

2.76 RUN "program"

SYNTAX: RUN <program-name>
or
RUN <program-name>,R
or
RUN <program-name>,V

EXPLANATION: This command is to load a file from disk and
executes it. If R option is used, all open
files continue open.
RUN without the R option closes all open
files.
If V-option is used, all open files and
variables will be preserved; excepting the
DEFFN variable.

PAGE 2-49

COMMANDS AND STATEMENTS

2.77 SAVE

SYNTAX: SAVE <program-name>
or
SAVE <program-name>,A

EXPLANATION: This command is used to save a program file
on disk. If the file name (<program-name>)
already exits, its previous content will be
lost as the file is re-created. The A option
is used to save the program file in ASCII
format. Without A option, the program is
saved in compressed-format.

EXAMPLE: SAVE "ARTS/BAS"
SAVE "ARTS/BAS",A

2.78 STOP

SYNTAX: STOP
EXPLANATION: This statement is essentially a debugging

aid. It sets a break point in a program
during execution, and allows the user to
examine or modify variable values.
A message will be printed out as "BREAK IN
line number" once the computer executes the
STOP statement. The active Command CONT can
then be used to re-start execution at the
point where it breaks.

EXAMPLE: :
50 A=B+C
60 STOP

PAGE 2-50

COMMANDS AND STATEMENTS

2.79 TROFF

SYNTAX: TROFF
EXPLANATION: This active command will turn off the Trace

function. Usually follows the TRON command.

2.80 TRON

SYNTAX: TRON
EXPLANATION: This command will turn on a Trace function

that allows the user to keep track of the
program flow for debugging and execution
analysis. Everytime the computer executes a
new program line, the line number will be
displayed inside a pair of brackets.

REMARK: In order to pause execution before its
natural end, the SHIFT key and § key must be
pressed simultaneously. To continue, just
press any key.
To turn off the Trace function, enter TROFF,
TRON and TROFF are available for use within
user programs to check if a given line is
executed.

EXAMPLE: :
90 IF A=B THEN 160
100 TRON
110 A=B+C
120 TROFF

PAGE 2-51

BASIC FUNCTION

CHAPTER THREE

GENIE III BASIC FUNCTION

This chapter is a complete description of all the
functions available in the GENIE III System.

In the syntax and description of some functions we use
the term X to indicate a "numeric argument". A numeric
argument can be a numeric variable, constant, or
expression. The term <string> is a string argument. A
string argument can be a string variable, constant, or
expression.

When using these functions, all arguments must be
enclosed in parentheses.

PAGE 3-1

BASIC FUNCTION

3.1 &H

SYNTAX: &H<hexa>
DESCRIPTION: This hex (base 16) constant returns the

decimal equivalent of the hexadecimal value.
<hexa> is hexadecimal numerals 0 ,1 ,2 ,.....
9,A,....F. The following table shows the hex
constant and its decimal equivalent.
Hex Constant Decimal
&H1
&H2

&H7FFF
&H8000

&HFFFE
&HFFFF

EXAMPLE:
40 PRINT &H7FFF

this statement prints the decimal equivalent
of the hex constant which is equal to 32767.

1
2

32767
-32768

-2
- 1

PAGE 3-2

BASIC FUNCTION

3.2 &O

SYNTAX: &0<octal>
DESCRIPTION: This octal (base 8) constant returns the

octal equivalent of the octal value. <octal>
is octal numerals 0,1,....7. The following
table shows the octals constant and its
decimal equivalent.
NOTE that the 0 from the octal constant can
be excluded, so &O <octal> = &<octal>
Octal Constaht Decimal
&1
&2

&77777
&100000
&100001

&177777
EXAMPLE:

60 PRINT &51000
this statement prints the decimal equivalent
of octal constant which is equal to 20992.

1
2

32767
-32768
-32767

- 1

PAGE 3-3

BASIC FUNCTION

3.3 ABS

SYNTAX: ABS(X)
DESCRIPTION: This function returns the absolute value of

the argument X. (It returns a positive
number equal to the magnitude of X.)

EXAMPLE:
50 A=ABS(-3-4/700)

3.4 ASC

SYNTAX: ASC (<string>)
DESCRIPTION: This statement returns the ASCII code (in

decimal) for the first character of the
specified string. The string specified must
be enclosed in parentheses.

NOTE: A null-string will causes an error to occur.
EXAMPLE:

300 PRINT ASC("H")

PAGE 3-4

BASIC FUNCTION

3.5 ATN

SYNTAX: ATN (X)
DESCRIPTION: This function returns the arctangent function

of the argument, where X is expressed in
radians. To get the arctangent in degrees,
multiply ATN(X) by 57.29578.

EXAMPLE:
30 DDH=ATN(AMT)
•

3.6 CDBL

SYNTAX: CDBL (X)
DESCRIPTION: This function returns a double-precision

representation of the argument. The value
returned contains 17 digits, however, only
the digits contained in the argument will be
significant.

EXAMPLE: •
•

60 A=CDBL(34*AMT)

PAGE 3-5

BASIC FUNCTION

3.7 CHR$

SYNTAX: CHR$(<expression>)
DESCRIPTION: This Statement works as the inverse of the

EXAMPLE:

ASC function, that is to return the character
of the specified ASCII, control or graphics
code. The argument may be any number from 0
to 255, or any variable expression with a
value within that range. The argument must
be enclosed in parentheses.

•
•

50 PRINT CHR$(33)
•
•

PAGE 3-6

BASIC FUNCTION

3.8 CINT

SYNTAX: CINT(X)
DESCRIPTION: This function returns the largest integer

that is not greater than the argument. The
argument must be within the range of -32768
to +32768.

EXAMPLE:
50 A=CINT(3.666)

this statement sets A equal to 3
For the statement:

50 B=CINT(-3.666)
this statement sets B equal to -4.

3.9 CLS

SYNTAX: CLS
DESCRIPTION: This function clears the entire display by

turning off all the graphics blocks. It also
moves the cursor to the upper left corner.
This function allows the user to present an
outstanding display on the screen, without
any symbol previously displayed.

EXAMPLE :
40 CLS

PAGE 3-7

BASIC FUNCTION

3.10 COS

SYNTAX: COS(X)
DESCRIPTION: This function returns the cosine function of

the argument (in radians). In order to
obtain the cosine of X when X is in degrees,
use COS(X*0.0174533).

EXAMPLE:
50 A*30+COS(BBC)

3.11 CSNG

SYNTAX: CSNG(X)
DESCRIPTION: This function returns a single-precision

representation of the argument. It returns a
6 significant digits number with 4/5 rounding
for a double precision argument.

EXAMPLE: :
60 A=CSNG(AMT)

PAGE 3-8

BASIC FUNCTION

3.12 CVD

SYNTAX: CVD (<8-byte-str ing>)
DESCRIPTION: This function replaces a 8-byte string with a

double precision number after it is read from
disk.

EXAMPLE: •
•

A*CVD(NB$)
•

3.13 CVI

SYNTAX: CVI (<2-byte-string>)
DESCRIPTION: This function replaces a 2-byte string with

an integer, after it is read from disk.
EXAMPLE: •

•

60 Y=CVI(AB$)
•
•

PAGE 3-9

BASIC FUNCTION

3.14 CVS

SYNTAX: CVS (<4-byte-string>)
DESCRIPTION: This function converts a 4 character string

to a single precision number after it is read
from disk.

EXAMPLE: ••
KY=CVS(BYE$)

3.15 EOF

SYNTAX: EOF (<file-number>)
DESCRIPTION: This function is used to test for end-of-file

during read. INPUT-PAST-END error during
sequential input can be avoided by using EOF
function.

REMARK: EOF (file-number) returns -l(true) if the end
of a sequential file has been reached. A
zero (false) is returned for "EOF record has
not yet been read".

EXAMPLE: •
•

40 IF EOF (4) THEN 200

PAGE 3-10

BASIC FUNCTION

3.16 EXP

SYNTAX: EXP(X)
DESCRIPTION: This function returns the "natural

exponential" of X. This is the inverse of
LOG function. In other words, it returns a
number equal to the constant "e"
(approximately 2.71828183) raised to the
power of N.

EXAMPLE: •
•

70 AMT-EXP(5.1)
•
•

then AMT equal to the value 164.002

3.17 FIX

SYNTAX: FIX (X)
DESCRIPTION: This function returns a truncated

representation of the argument with all
digits on the right of the decimal point
being truncated or chopped off.

EXAMPLE: •
•

40 PAYM=FIX(SYS)
If SYS is equal to 3.465 then PAYM will be
equal to 3.

PAGE 3-11

BASIC FUNCTION

3.18 INP

SYNTAX: INP (<port-number>)
DESCRIPTION: This statement inputs a 8-bit value from the

specified port. The Video Genie System is
capable of handling 256 ports, numbered from
0 to 255. Usually this function is used only
when the expression box is installed.

EXAMPLE:
60 A=INP (124)

3.19 INSTR

SYNTAX: INSTR (<n>,<expression-l>,<expression-2>)
DESCRIPTION: The INSTR function is used to search through

a string to see if it includes another
string. <n> is the position in
<expression-l> where the search is to start.
If <n> is not given then it is assumed to be
1. <expression-l> is the string to be
search. <expression-2> is the substring
required to search for. This function
returns the starting position of the
substring in the object string.
If zero is returned, it means that the string
does not contain another string.

EXAMPLE:
For a string XY$ » "DEFGH"
The statement

20 INSTR (XY$,"EFG")
returs 2
While the statement
50 INSTR (XY$,"12")

returns 0
Another example:
The statement

70 INSTR (2, "2345234","23")
RETRUNS 5.

PAGE 3-12

BASIC FUNCTION

3.20 INT

SYNTAX: INT(X)
DESCRIPTION: This function returns an integer

representation of the argument, using the
largest integer that is not greater than the
argument.
The argument is not limited to the range
-32768 to +32768.

EXAMPLE: If Y=34.6 then the statement
50 A=INT(Y)

will set A=35

3.21 LEFT$

SYNTAX: LEFT$(<string>,<n>)
DESCRIPTION: This function returns the first n characters

of the specified string. The arguments must
be enclosed in parentheses. String may be a
constant or an expression, and n may be a
numeric expression.

EXAMPLE: For a string A$="ABCDEFG"
The statement

50 B$*LEFT$(A$,4)
will set B$="ABCD"

PAGE 3-13

BASIC FUNCTION

3.22 LEN

SYNTAX: LEN (<string>)
DESCRIPTION: This function returns the length of the

specified string. The string may be a
variable, expression or constant and must be
enclosed in parentheses.

EXAMPLE: For the string A$="ABCDEFG"
The statement

Y=LEN(A$)
will set Y=7

3.23 LOC
SYNTAX: (1)

(2)
(3)
(4)
(5)

LOC (<file-number>)
LOC (<file-number>)$
LOC (<file-number>)%
LOC (<file-number>)!
LOC (<file-number>)#

where <file-number> is the file's buffer number,
range from 1 to 15. The file must have been
opened with OPEN statement before using this
function.

DESCRIPTION:
Format (1): LOC (<file-number>)

This LOC function returns the number of the previous
record GET or PUT for that file area. The return number is
an integer, range from 1 to 32767.

Example:
•

30 PUT 2,46
40 X=L0C(2)
•

this example will set X equal to 46

PAGE 3-14

BASIC FUNCTION

Format (2): LOC (<file-number>)$
(I) For record segment files-

(a) return -1 (IF statement is true)
(i) if the start of the next record is
greater than or equal to EOF;

or (ii) the current file position is greater
than or equal to EOF.

(b) return 0 (IF statement false)
(i) if the start of the next record is
less than EOF;

or (ii) the current file position is less
than EOF.

(II) For non-record segement file and print/input
files-

fa) returns -1 (IF statement true)
if the current file positioning is
greater than or equal to EOF,

(b) return 0 (IF statement false)
if less than EOF.

Example:
40 IF LOC(1)$ THEN 340
•

the program will branch to line 340 if the
next record is located at or beyond the
file's EOF.

Format (3): LOC(<file-number>)%
When using Format (3), this function returns an

Relative Byte Address equal to the file's EOF.
Example:
let the file contains 4200 bytes
then

200 Y=L0C(1)%
will set Y equal to the value 4200

Format (4): LOC(<file-number>)1
(a) Record segment files-

(i) If Remembered Record Address is valid, this
funtion returns a Relative Byte Address value
equal to the location of the file's next
record.

(ii) If Remembered Record Address is invalid,
this function returns a Relative Byte Address
value equal to the current file position.

PAGE 3-15

BASIC FUNCTION

(b) Non-recprd segment files and print/input files-
this function returns an Relative Byte
Address equal to the current file position.
Example:
If the latest processed record for file's
buffer 4 at relative file position 1234 and
the next record starts at relative file
position 2000, then

40 AAY=LOC(4)i
will set AAY equal to 2000.

Format (5): LOC(<file-number>)#
If the Remembered Record Address is valid, then this

function returns an Relative Byte Address value equal to
Remembered Record Address. If Remembered Record Address is
invalid, an error will occur.
Example: If the latest processed record for files'

buffer 4 at relative file position 1234 and
the next record starts at relative file
posiition 2000, then

m

400 A=LOC(4)#
will set A equal to 1234.

PAGE 3-16

BASIC FUNCTION

3.24 LOG

SYNTAX: LOG (X)
DESCRIPTION: This function returns

of the argument.
the natural logarithm

NOTE: X must be greater than 0•
EXAMPLE: •

Y=LOG (4.5) ••
then Y is equal to the value 1.50408.

3.25 LOF

SYNTAX: LOF(<f ile-numbe r>)
DESCRIPTION: This function returns the number of the last

record in a file.
EXAMPLE:

30 IF NUM>LOF(1) THEN PRINT "INCOMPLETE"

PAGE 3-17

BASIC FUNCTION

3.26 MEM

SYNTAX: MEM <expression>
DESCRIPTION: This function returns the number of unused

and unprotected bytes in memory.
EXAMPLE

60 IF MEM<456 THEN 600

NOTE: When used as a command, it must be
accompanied with the PRINT command. That is
PRINT MEM, to find out the amount of memory
not being used to store program, variables,
strings, arrays, etc.

3.27 MID$

SYNTAX: MID$(<string>,<P>,<n>)
DESCRIPTION: This function returns a substring of string

starting at position <p>, with length <n>.
The string, position and length must be
enclosed in parentheses. String may be a
constant or an expression, <p> and <n> may be
numeric expressions or constants.

EXAMPLE: Let the string A$="ABCDEFG"
Then the statement

60 B$ « MID$(A$,3,4)
will set B$—"CDEF"

PAGE 3-18

BASIC FUNCTION

3.28 MKD$

SYNTAX: MKD$(<double-precision-expression>)
DESCRIPTION: This function replaces a double precision

value with an 8-byte string values.
EXAMPLE: •

20 LSET M$=MKD$(AMT)

3.29 MKI$

SYNTAX: MKI$(<integer-expression>)
DESCRIPTION: This function converts integer value to a 2

byte string. The integer ranges from -32768
to +32768.

EXAMPLE: •m
30 D$=MKI$(PER)
•

PAGE 3-19

BASIC FUNCTION

3.30 MKS$

SYNTAX: MKS$(<single-precision-expression>)
DESCRIPTION: This function replaces single precision value

with a ,4-byte string value.
EXAMPLE:

20 LSET ABC$=MKS$(BUY)

3.31 OUT

SYNTAX: OUT<port-number>,<value>
DESCRIPTION: This function outputs an 8-bit value to the

specified port. This function requires two
arguments: port-number and the value. The
Video Genie System is capable of handling 256
ports, numbered from 0 to 255.

EXAMPLE:
30 OUT 14, 240

PAGE 3-20

BASIC FUNCTION

3.32 PEEK

SYNTAX: PEEK <address>
DESCRIPTION: This function returns the 8-bit value stored

at the specified decimal address in the
computer's memory, and displays the value in
decimal form. The value will be between
0-255.

EXAMPLE
20 B-PEEK(3000)

3.33 POINT

SYNTAX: POINT(X,Y)
DESCRIPTION: This function examines the specified graphics

block to see whether it is ON or OFF. X and
Y are the two coordinates.
If the block is ON (has been SET), then POINT
returns a binary True (-1). If the block is
OFF, POINT returns a binary False (0).

NOTE: If the system diskette is 64 mode:
The display is divided up into a 128 (horizontal)
by 48 (vertical) grid. The X-coordinates are
ranged from 0 to 127, organized from left to
right. The Y-coordinates are ranged from 0 to
47, organized from top to bottom.

If the system diskette is 80-mode:
The X-coordinates ranging from 0 to 159 is
counted from left to right. The Y-coordinates
ranging from 0 to 70 is counted from top to
bottom.

EXAMPLE: :
40 A=POINT(6,7)

For this statement, if point (6,7) has been
set, then A has the value of -1. Otherwise
A has the value of 0.

PAGE 3-21

BASIC FUNCTION

3.34 POKE

SYNTAX: POKE <address>,<value>
DESCRIPTION: This statement sends a 8-bit value to the

specified (decimal) memory address location.
It requires two argument: address and value.
The value must be between 0-255.

EXAMPLE: :
40 POKE 400, A

this statement sends the value of A to the
address 400.

3.35 POS

SYNTAX: POS(<dummy-argument>)
DESCRIPTION: This function takes a dummy numeric argument

and returns a number from 0 to 63 indicating
the current cursor position on the display.
Usually, 0 is used for the dummy argument.

EXAMPLE: :
400 B*POS(0)

PAGE 3-22

BASIC FUNCTION

3.36 RANDOM

SYNTAX: RANDOM
DESCRIPTION: This function causes the computer to generate

a new set of random numbers every time when
the computer is turned on and runs a program
which has RND functions.
No argument is needed in this function.

3.37 RESET

SYNTAX: RESET (X,Y)
DESCRIPTION: This function turns off a graphics block on

the display at the location specified by the
coordinates X and Y. This function has the
same limits and parameters as SET(X,Y).

NOTE: If the system diskette is 64 mode:
The display is divided up into a 128 (horizontal)
by 48 (vertical) grid. The X-coordinates are
ranged from 0 to 127, organized from left to
right. The Y-coordinates are ranged from 0 to
47, organized from top to bottom.

If the system diskette is 80-mode:
The X-coordinates ranging from 0 to 159 is
counted from left to right. The Y-coordinates
ranging from 0 to 70 is counted from top to
bottom.

EXAMPLE:
50 RESET (30,60)

PAGE 3-23

BASIC FUNCTION

3.38 RIGHT$

SYNTAX: RIGHT$ (<string>,<n>)
DESCRIPTION: This function returns a string made-up of the

right most characters of the string <string>.
If <n> is not an integer, only the integer
part is used.

REMARK: If the length of the string is less than or
equal to <n>, the entire string is returned.

EXAMPLE: •
«

100 BBC$=RIGHT$("ABCDE",3)
•
•

This example sets BBC$ to the string "CDE".

3.39 RND

SYNTAX: RND(<number>)
DESCRIPTION: This function returns a pseudo-random using

the current pseudo-random number (generated
internally and has not access to the user).

REMARK: RND(0) returns a single-precision value
between 0 and 1.
RND (X) returns an integer between 1 and X
inclusive. X must be positive and less than
32768.

EXAMPLE: ••

50 B=RND(39)

PAGE 3-24

BASIC FUNCTION

3.40 SET

SYNTAX: SET(X,Y)
DESCRIPTION: This function turns on the graphics block on

the display at the location specified by the
coordinates X and Y. The argument X and Y
may be numeric constants, variables or
expressions. Since the SET (X,Y) function
uses only the integer portion of X and Y,
neither argument need be an integer.

NOTE: If the system diskette is 64 mode:
The display is divided up into a 128 (horizontal)
by 48 (vertical) grid. The X-coordinates are
ranged from 0 to 127, organized from left to
right. The Y-coordinates are ranged from 0 to
47, organized from top to bottom.

If the system diskette is 80-mode:
The X-coordinates ranging from 0 to 159 is
counted from left to right. The Y-coordinates
ranging from 0 to 70 is counted from top to
bottom.

EXAMPLE:
50 SET (23,45)

This statement will display a point at
(23,45).

3.41 SGN

SYNTAX: SGN(X)

DESCRIPTION: This is a "sign" function, that is to return
-1 if X is negative, 0 if X is zero, and +1
if X is positive.

EXAMPLE
200 A=SGN(—480)

then A is set to be -1

PAGE 3-25

BASIC FUNCTION

3.42 SIN

SYNTAX: SIN (X)
DESCRIPTION: This function returns a number equal to the

sine of X, where X is expressed in radians.
EXAMPLE: •

30 A=49
40 SA=SIN(A) •

then SA is set to be -0.953753

3.43 SQR

SYNTAX: SQR (X)
DESCRIPTION: This function returns the square root of the

argument X. X is number or expression.

REMARK: The argument X must not be a negative number.

EXAMPLE: •
•

ASQR=SQR(A)
•

PAGE 3-26

BASIC FUNCTION

3.44 STR$

SYNTAX: STR$(<expression>)
DESCRIPTION: This function converts a constant or numeric

expression into a string of characters.
EXAMPLE: Let A=1234

40 A$=STR$(A)
will set A$ to be the string "1234"

3.45 STRING$

SYNTAX: STRING$(<n>,<character-or-number>)
DESCRIPTION: This function returns a string which composed

of <n> number of the specified character(s).
REMARK If it is number from 0-255, then it will be

treated as as SACII, control or graphics
code.

EXAMPLE:
40 PRINT STRINGS(3,"$")

three "$" signs will display on the screen.

ten
100 PRINT STRINGS(10, 63)

"?" signs will display on the screen.

PAGE 3-27

BASIC FUNCTION

3.46 TAN

SYNTAX: TAN (X)
DESCRIPTION: This function returns the tangent function

of the argument (in radians).
EXAMPLE: ••

40 ATAN=TAN(A)

3.47 TIME$

SYNTAX: TIME$
DESCRIPTION: This function comes into no argument and is

used to provide the value of the date and
time currently stored in the Real-time clock
memory area.

REMARK: In order to display the value, a PRINT must
put before the TIME$.

EXAMPLE: •
•

40 PRINT TIME$
•
•

the date and time will display at the screen.

PAGE 3-28

BASIC FUNCTION

3.48 USR

SYNTAX: USR<n> (<argument>)
DESCRIPTION: This function calls a machine language

subroutine. <n> indicates for which USR
routine is being called, and corresponds with
the previous defined DEFUSR statement for
that routine. <n> ranges from 0 to 9. If
<n> is excluded, zero is assumed. <argument>
ranges from -32768 to +32768 and is passed as
an integer argument to the routine.

REMARK: The subroutine entry address should be POKEd
into location 16526 - 16527. The least
significant byte should be in location 16526.
To pass the argument to the subroutine, the
subroutine should immediately execute a CALL
0A7FH (call 2687 dec.). The argument will
then be placed in registers HL.
To return to your BASIC program without
passing any value back, a RET instruction
should be executed.
To return a value, load the value into the HL
register pair as a two-byte signed integer
and execute a JP 0A9AH instruction. (0A9HA »
2714 Decimal).
USR routine reserves 8 stack levels for the
users' subroutine.

NOTE: Users who are not familar with machine
language programming are not recommended to
use this function.

EXAMPLE: ••

A=USR(A%)

PAGE 3-29

BASIC FUNCTION

3.49 VAL

SYNTAX: VAL (<string>)
DESCRIPTION: This function performs the inverse of the

STR$ function; that is to return the numeric
value of the characters in a string argument.

EXAMPLE: Let A$="1234"
50 C=VAL (A$)

this example converts the string A$ to the
numeric value 1234, and assigns it to C.

3.50 VARPTR

SYNTAX: VARPTR (<variable-name>)
DESCRIPTION: This function returns an address of the

specified <variable-name>.
REMARK: If K is the returned address, the variables

will be stored in the following structure:
(i) 2-byte integer

K- LSB
K+l -MSB

(ii) single precision variable
K - LSB
K + l - Next MSB
K + 2 MSB
K + 3 - Exponent value

(iii) double precision value
K - LSB
K + l - Next MSB
•
•

K + 6 - MSB
K + 7 - Exponent value

(iv) string variable
K - length of string.
K + l - LSB of string starting address.
K + 3 - MSB of string starting address.

PAGE 3-3f

BASIC EDITOR

CHAPTER FOUR

BASIC EDITOR IN GENIE III SYSTEM

There are two BASIC editors in GENIE III system. One
comes from the Microsoft BASIC interpreter; the other is
the newly introduced SCREEN EDITOR, which has the 64-mode
and the 80-mode corresponding to the NEWDOS 64-mode and
NEWDOS 80-mode. 64-mode means 64 x 16 display format
(GENIE I/II compatible) while 80-mode means 80 x 24 display
format.

PAGE 4-1

BASIC EDITOR

4.1 LEVEL II BASIC EDITOR
This line editor can be used as the System stays in

the level II BASIC. Recall that we may enter the Level II
BASIC by depressing the keys, RESET - BREAK simultaneously.
The system is able to perform all the editing fun ctions
presented below:

4.1.1 GETTING INTO EDITING MODE
EDIT <line-number>

The EDIT command shifts the Active Command Level to
the Editing command level. The <line-number>
specifies the line number to edit.
Example:

>EDIT 100
then the display will be

>100 -
and it is in editing mode.

4.1.2 CURSOR MOVEMENT
Move right:

One space to right: Press the SPACE BAR key.
n spaces to right: Type in a number n and press the

SPACE BAR key
Move left:

One space to left: Press the left arrow key (<-).
n spaces to left: Type in a number n and press the

left arrow key (<-).

PAGE 4-2

•BASIC EDITOR

4.1.3 SEARCH .
n S c

Type a number (n) , press the letter "S" key , and
type a character (c).
The command searches for the n-th occurrance of the
character c on that line and moves the cursor to that
position.
If n is omitted, it searches the first occurance of
the character specified and stop the cursor there.
If c is not found, the cursor will move to the end of
the line.
Example:
Consider the follwoing example:

100 IF A=B THEN 230 : A = A+l
Then after entering the Edit mode:

100 -
Type in 2S=, then the display should be

100 IF A=B THEN 230 : A -
Now, the user may enter one of the subcommands at the
current cursor position. For instance:
Type in H (hack and insert) followed by "= A + 2" (new
data).
Then the line will become:

100 IF A=B THEN 230 : A = A+2

PAGE 4-3

BASIC EDITOR

4.1.4 LIST A LINE
L

Press L letter key.
While the computer is in the Editing mode, and is not
currently executing one of the editing subscommands,
the L command will list the remaining part of the line
onto the display.
Example:

>EDIT 100
100 -

Hit the letter L (without hitting NEW LINE key), the
display should be:

100 If A = B THEN 150 : A = A + 1
100 -

The second line allows the user to do editing, while
referencing the first line.

PAGE 4-4

BASIC EDITOR

4.1.5 DELETE
n D

One character: Position the cursor over the character
and hit "D" key. Then press the NEW
LINE key.

n Characters: Position the cursor over the first
character. Type in the value, n, the
number of characters to be deleted.
Then press the NEW LINE key.

The deleted character(s) will be enclosed in
exclamation marks to show you which character(s)
are being affected.
Example:
If the statement is

100 IF A=B THEN 100 : A=A+1
and we want to delete A=A+1.
First enter the editing level and position the cursor
on the It displays:

100 IF A=B THEN 100
Now type in 7D then the display:

100 IF A=B THEN 100 !: A=A+1!
Press the NEW LINE key.
The statement will become:

100 IF A=B THEN 100

Delete all characters up to the n-th occurance of the
character C:

n K c
The command will delete all characters up to the n-th
occurance of character C, and move the cursor to that
position.
Example:
If the statement is:

100 IF A ** B THEN 100 : A=A+2
We want to delete "IF A = B THEN 100 :" . Enter into
the editing mode:

100 -

First type lk:. Then the display:
100 !IF A = B THEN 100 !

In order to delete also, type in D. Display :
100 !IF A - B THEN 100 :1!:1

Then press NEW LINE, the statement will set as
100 A-A+2

PAGE 4-5

BASIC EDITOR

4.1.6 INSERT
(i) Insert inside the statement:

I key
Position the cursor at the insert point, then
Press the I letter key. Type in the addition
characters.

(ii) Insert at the end of the line:
X key

After enter into the editing level, press the X
letter key. The whole line will display and the
user can type in the characters.

(iii) Hack and Insert:
H key

Position the cursor at the "Hack and Insert"
point and press the H letter key. The remainder
of the line will be deleted and the user can
start type in the insert character(s).

4.1.7 CHANGE
n C key

Position the cursor at the change position and type
the number (n) of character(s) want to exchange and
press the C letter key.
If the number n is not specified, the computer assumes
the user only wants to change a single character.

PAGE 4-6

BASIC EDITOR

4.1.8 ESCAPE FROM INSERT SUBCOMMAND:
SHIFT ESC key

By pressing the SHIFT and ESC keys simultaneously, the
computer will escape from any of the following Insert
subscommands: H,I,X.
After escaping from an Insert subscommand, the user
remains in the editing level, while the current cursor
position is unchanged.
Another way to escape from these Insert subcommands,
is by pressing the NEW LINE key, which will shift the
computer back to the Active Command Level.

4.1.9 CANCEL AND RESTART
A key

In the editing level, when the letter A is pressed,
the cursor will move back to the beginning of the line
and all the editing changes previously made on that
line will be cancelled. The former content of the
line will be restored.

PAGE 4-7

BASIC EDITOR

.1.10 BACK TO ACTIVE MODE

(i) Record all change and back:
NEW LINE

Once the user presses the NEW LINE key while in
the Edit mode, the computer will record all the
changes made in that line, and returns back to
the Active Command Level.

(ii) Saves all changes and back:
E key

This command shifts the computer from Editing
level, and saves all the changes previously
made. Make sure that the computer is not
executing any subcommand before entering E.

(iii) Cancel all changes and back:
Q key

This command shifts the computer from Editing
level back to the Active Command level, but
cancel all the changes made in the current edit
mode. Just type in Q to cancel the changes made
and return to the Active Command level.

PAGE 4-8

BASIC EDITOR

4.2 SCREEN EDITOR
This screen Editor allows us to edit at the same time
all BASIC program lines displayed on the screen. This
Editor is applicable in NEWDOS 64-mode BASIC and
NEWDOS 80-mode BASIC.

4.2.1 INTRODUCTION:
In NEWDOS 80-mode BASIC, this Screen Editor is

already resident in main momery. This means that we
can use the Screen Editor functions as the system has
entered the NEWDOS BASIC.

For NEWDOS 64-mode BASIC (Genie I/II
compatible), initially we are supposed to use the
Level II BASIC line editor. If we want to use the
Screen Editor for 64-mode, we have to load the Editor
from the disk to replaced the line editor in main
memory.
There are two cases to load the Screen Editor
(64-mode):-

(1) As the System is in DOS level, type in
EDIT64/CMD.

Then, we may type in the command BASIC followed
by NEW LINE key to enter the NEWDOS 64-mode
BASIC.
(2) As the system is already in NEWDOS BASIC,
type in

CMD"EDIT64/CMD"
Then, we can use the editing functions and
subcommands of the Screen Editor as illustrated
in the following section.

PAGE 4-9

BASIC EDITOR

4.2.2 EDITING FUNCTION AND SUBCOMMANDS OF SCREEN EDITOR
This Screen Editor allows us to delete, change

and insert characters to our BASIC programs displayed
on the screen.

4.2.3 ENTER THE EDIT MODE
While the system stays in NEWDOS BASIC, type in the

EDIT command followed by NEW LINE. There are 4 version of
EDIT command.

(a) EDIT X-Y
Where X is the first line number of our BASIC
program to be displayed and edited.
Y is the last line number of our BASIC program to
be displayed and edited.

(b) EDIT X-
Which edits program lines from X to the last line
of a program.

(c) EDIT -Y
which edits program lines from the first line to
the line Y of a program.

(d) EDIT or (comma)
which edits all program lines provided that they
are displayed on the screen.

As the EDIT command is entered, the program lines
specified from X to Y will be displayed on the screen.
If the number of lines specified is beyond the screen
can display, the last 24 lines (in 80 x 24 format) or
16 lines (in 64 x 16 format), and the first line on
the screen must have a line header. Every line to be
edited has a line header, indicating the mode had been
entered.

PAGE 4-10

BASIC EDITOR

4.2.4 CURSOR MOVEMENT
The cursor position determines where editing is to be

performed. The cursor can be moved anywhere on the screen
by four position keys.

1 UP ARROW KEY '
' DOWN ARROW KEY '
• LEFT ARROW KEY '
' RIGHT ARROW KEY'

- Upward
- Downward
- Left
- Right

Everytime a position key is hit, the cursor will move
one space in the direction of the position key.

4.2.5 EXECUTE THE EDITOR COMMAND AND UPDATE THE PROGRAM
MEMORY

This is accomplished by hitting the NEW LINE
key. As all the displayed lines have been edited on
the screen, NEW LINE will bring the updated
information shown on the screen into the Program
Statement memory. This will also cause exit from the
Edit Mode, and 'READY' will appear.
NOTE : The editor will edit only those program lines
displayed on the screen just before hitting NEW LINE
key.
PRECAUTION : DO NOT press NEW LINE unless you are sure

the desired characters/ program lines are
to be deleted, cleared or changed.

PAGE 4-11

BASIC EDITOR

4*2.6 TERMINATED THE EDIT MODE WITHOUT CHANGING THE OLD
PROGRAM

Hit the BREAK key to terminate the Edit Mode. 'READY'
will appear. The old program in this case will remain
in the porgram memory without any changes although the
program has been edited on the screen.

4.2.7 CHANGE A CHARACTER ON THE SCREEN
This is done by positioning the cursor at the
character to be changed, and type in the new character
to replace the old character. Even the line number of
a program can be changed on the screen. See also
section 4.2.11.
* NOTE that the program is not yet changed in the
program memory before the NEW LINE key in pressed.

PAGE 4-12

BASIC EDITOR

4.2.8 DELETE A CHARACTER ON THE SCREEN
Th% cursor is positioned at where delete

operation is to be performed. Then, press 'SHIFT' and
LEFT ARROW key simultaneously to delete the character
or even a blank on the screen. The characters on the
right of the cursor will shift left by one character
position. This is illustrated in the following
example.
Example 1 : Delete a character

■ 10 REM THE ITEMMS ARE SORTED AS BELOW
(1) Move the cursor-

• 10 REM THE ITEMMS ARE SORTED AS BELOW
t
move the cursor to here,

under the character to be deleted.
(2) Press 'SHIFT' key and LEFT ARROW key simult

aneously
■ 10 REM THE ITEMS ARE SORTED AS BELOW

cursor will under "S" and
"M" is deleted.

(3) Move the cursor to other position for edit
ing.

The delete operation is inhibited under three
conditions:

(1) When the cursor is positioned at the line
header, or

(2) When the cursor is positioned after the last
character of a line, or

(3) When the cursor is positioned at the bottom
right most corner of the screen.

PAGE 4-13

BASIC EDITOR

4.2.9 INSERT OPERATION
The insert operation includes:

(1) inserting a blank
(2) inserting a character
(3) inserting a blank line

(1) Insert a Blank
The cursor is positioned at where a blank is to

be inserted. Then press 'SHIFT' and RIGHT ARROW key
simultaneously. A blank will be obtained at the
cursor position, and the characters on the right of
the cursor will shift right by one character position.
Example:

■ 10 PRINT "ENTERTHE REQUIRED PARAMETERS"
(a) move the cursor

■ 10 PRINT "ENTERTHE REQUIRED PARAMETERS"
move the cursor under "T"

(b) press 'SHIFT* key and 'RIGHT ARROW' key
simultaneously
■ 10 PRINT "ENTER THE REQUIRED PARAMETERS"

(2) Insert a Character
Inserting a character is similar to inserting a

blank. The cursor is positioned at where the
character is to be inserted. Then press 'SHIFT' and
'RIGHT ARROW' key simultaneously. The characters on
the right of the cursor will shift right by one
character position. Type in the character to be
inserted.
Example: Insert a character

m 60 REM RANDOM NMBER*GEN
(a) Move the cursor under the "M" in the word

"NMBER"
■ 60 REM RANDOM NMBER GEN

cursor under "M"

PAGE 4-14

BASIC EDITOR

(b) Press 'SHIFT' key and 'RIGHT ARROW' key
simultaneously.

a 60 REM RANDOM N MBER GEN
(c) Type in the character to be inserted

a 60 REM RANDOM NUMBER GEN
(3) Insert a Blank Line

Move the cursor or the last character of a line
to the 80th character position of a line (in 80 x 24
format) or the 64th character position of a line (in
64 x 16 format). Then press 'SHIFT' key and 'RIGHT
ARROW' key simultaneously. We shall obtain a blank
line following the line that the cursor is positioned.

New character can be typed in the blank line
just obtained to extend the above program line.
Example: Insert a blank line

20 A=A+1 : B=B+A
30 REM INCREMENT THE COUNTER

(a) Move the cursor to the 80th character
position.

a 20 A=A+1 : B=B+A
cursor

■ 30 REM INCREMENT THE COUNTER
(b) Press 'SHIFT' key and 'RIGHT ARROW'

simultaneously
a 20 A=A+1 :B=B+A

(a blank line)
■ 30 REM INCREMENT THE COUNTER

(c) Move the cursor to where characters are to
be inserted.

Type in new characters in the blank line.
■ 20 A=A+1 :B=B+A
:C=C+A : REM CREATE ANOTHER NO. -

■ 30 REM INCREMENT THE COUNTER
REMARK: Limitations in Insert Operation

Insert operation is inhibited under the
following conditions:
(a) When the cursor is positioned at a line
header, or
(b) When the cursor is positioned at the bottom
right most corner of the screen, or
(c) When the cursor is positioned after the
240th character position of a program line.
NOTE : a program line can have a maximum of 240

characters.
PAGE 4-15

BASIC EDITOR

4.2.10 CLEAR
(1) We may press the CLEAR key to clear all characters

on the right of the cursor in'a line.
(2) Also, we can clear a whole program line by placing

the cursor just after the line number and pressing
the CLEAR key.

Example:
■ 10 REM INITIALIZATION
■15 OUT 253,0 : OUT 254,78
■ 20 A=0 ; B=170 : C =255

(a) Move the cursor to just after the line
number.

■ 10 REM INITIALIZATION
■15-OUT 253,0 : OUT 254,78
■ 20 A=0 : B=170 : C=255

(b) Press CLEAR key
10 REM INITIALIZATION
15-
20 A=0 : B=170 : C =255

(c) Hit NEW LINE key and type in LIST followed
by NEW LINE key.
10 REM INITIALIZATION
20 A=0 : B=170 : C=255

REMARK: It is invalid to clear a porgram line with
the cursor in front of the line number. That
porgram line will not be cleared if we try to
do so.

(3) By using the CLEAR key, we can add a new program
line on the screen during editing. Position the
cursor just after the line header of a line and
hit the CLEAR key.
The old program line following that line header
will disappear on the screen but it remains
unaltered in the program memory.
Then, type in the new line number and statements
in the blank line obtained above.

PAGE 4-16

BASIC EDITOR

Example:
(a) Position the cursor just after header (line
60).

■ 50 REM INPUT A NEW LINE
■60 PRINT "PLEASE INPUT A NEW LINE"

f

cursor position before "60"
■ 70 INPUT A$ t B$, C$

(b) Hit CLEAR key
■ 50 REM INPUT A NEW LINE
■
■ 70 INPUT A$, B$, C$

(c) Type in the new line number and statement
■ 50 REM INPUT A NEW LINE
■45 PRINT "EDITING HAS COMPLETED"
■ 70 INPUT A$, B$, C$

(d) press NEW LINE and type in LIST followed by
NEW LINE key.

45 PRINT "EDITING HAS COMPLETED"
50 REM INPUT A NEW LINE
60 PRINT "PLEASE INPUT A NEW LINE"
70 INPUT A$, B$, C$

PAGE 4-17

BASIC EDITOR

4..2.11 DUPLICATE A PROGRAM LINE
It is easy to duplicate a. program line by

changing the line number of the program line displayed
on screen to the desired line number. It is
illustrated in the example below.
Example:

(i) Original program
■ 10 REM DISPLAY THE RESULT
a 20 PRINT "THE PARTIAL SUM WILL BE"

a 50 REM END OF SECTION X
(ii) Position the cursor at the line number of

which the program line will be duplicated.
Type in the new line number.
(line 20 to line 90)

a 10 REM DISPLAY THE RESULT
B 90 PRINT "THE PARTIAL SUM WILL BE"
cursor position

a 50 REM END OF SECTION X
(iii) Press the NEW LINE key to execute the

editing. LIST the program for inspection.
10 REM DISPLAY THE RESULT
20 PRINT "THE PARTIAL SUM WILL BE"
•
•

50 REM END OF SECTION X
90 PRINT "THE PARTIAL SUM WILL BE"

NOTE:
(1) The original program line whose line number
is edited on the screen will remain in main
memory without any changes.
(2) Under two conditions we really want to
change the line number of a program:

(a) duplication the program line as in the
above example to the desired line number.
(b) re-enter edit mode to clear the program
line with old line number as mentioned in
section 4.2.10 item (2).

PAGE 4-18

APPENDIX A

APPENDIX A: ERROR MESSAGES

CODE ERROR MESSAGE
1 NEXT without FOR
2 syntax error
3 return without GOSUB
4 out of data
5 illegal funciton call
6 overflow
7 out of memory
8 undefined line
9 subscript out of range
10 redimensioned array
11 division by zero
12 illegal direct
13 type mismatch
14 out of string space
15 string too long
16 string formula too complex
17 can't continue
18 NO RESUME
19 RESUME without error
20 unprintable error
21 missing operand
22 bad file data
51 field overflow
52 internal error
53 bad file #
54 file not found
55 bad file mode
56 file already open
58 DOS ERROR
59 file already exists
62 disk full
63 input past end
64 bad record #
65 bad file name
66 mode mismatch
67 direct statement in file
68 too many file
69 disk write protected

PAGE A-l

70
71
72
73
75
76
77
78
79
80
82
83
84

APPENDIX A

file access denied
seq. # overflow
record overflow
illegal to extend file
previously displayed error
can't process line 0
bad file type
IGEL SYNTAX ERROR
IGEL item syntax error
bad/illegal/missing IGEL item prefix
bad record length
stmt, uses 2 file names
bad file positioning PARAM

PAGE A-2

APPENDIX A

CODE

1

MESSAGE

NEXT WITHOUT FOR
A variable in NEXT statement does not match with
the variable in the previously executed FOR
statement or a NEXT statement with no FOR
statement.
Example :

>
READY
>LIST
10 A=20
20 AMT=A-1
30 NEXT
40 END
READY
>RUN
NEXT WITHOUT FOR IN 30
READY
>

SYNTAX ERROR
incorrect sequence of characters in the program;
such as misspelled command, unmatched
parenthesis, and etc..
Example:

>
>LLLLIST
SYNTAX ERROR

PAGE A-3

APPENDIX A

3 RETURN WITHOUT GOSUB
A RETURN statement is found in a program without
any GOSUB statement.
Example:

>LIST
10 FOR B=192 TO 0 STEP -16
20 WT=5*B
30 NEXT B
40 RETURN
50 END
READY
>RUN
RETURN WITHOUT GOSUB IN 40
READY

4 OUT OF DATA
A READ statement with no DATA statement.
Example:

>LIST
10 READ A , B , C
20 IF A>B GO TO 10
30 C=A
40 PRINT C
50 END
READY
>RUN
OUT OF DATA IN 10
READY
>

5 ILLEGAL FUNCTION CALL
Occurs when:
(a) an out-of-range parameter is passed to a

math or string function.
(b) a negative or unreasonably large subscript.
(c) a negative or zero argument with LOG.
(d) a negative argument with SQR.
(e) a USR function call without starting address
(f) an improper argument to LEFTS, RIGHTS, MID$,

and etc..

PAGE A-4

APPENDIX A

Example:
>LIST
10 A=INP(330)
20 PRINT A
30 END
READY
>RUN
ILLEGAL FUNCTION CALL
READY

6 OVERFLOW
Too large for number format or array.
Example:
>LIST
10 DIM A(7777777),R(111111111)
20 FOR 1=1 TO 60000000
30 A=DIM (I)
40 PRINT A
50 NEXT I
60 END
READY
>RUN
OVERFLOW IN 10
READY
>

7 OUT OF MEMORY
A program is too large for the memory to store,
or has too many FOR loops or too many GOSUB.

PAGE A-5

APPENDIX A

8 UNDEFINED LINE
A non-existent line is specified by a GOTO,
GOSUB, IF-THEN-ELSE, or DELETE command.
Example:
>LIST
10 READ A,B
20 IF A=B GOTO 100
30 40 DATA 1,3
40 END
READY
>RUN
UNDEFINED LINE # IN 20
READY
>

9 SUBSCRIPT OUT OF RANGE
An array element is specified either with a
subscript that is outside the dimensions of the
array, or with the wrong number of subscripts.
Example:
>LIST
10 DIM A (10)
20 FOR 1=1 TO 40
30 K=I
40 READ A(K)
50 NEXT I
60 END
70 DATA 1,2,3,4,5,6,7,8,9,1,1,1,1,2,4,5,6,6
READY
>RUN
SUBSCRIPT OUT OF RANGE IN 40
READY
>

PAGE A-6

APPENDIX A

10 REDIMENSIONED ARRAY
Two or more DIM statements are given for the
same array (same name for two array).
Example:
>LIST
10 DIM W (40) W(10)
20 FOR 1=1 TO 40
30 INPUT W(I)
40 NEXT I
50 END
READY
>RUN
REDIMENSIONED ARRAY IN 10
READY
>

11 DIVISION BY ZERO
An attempt was made to use a value of zero in
the denominator.
Example:
>A=45/0
DIVISION BY ZERO
READY
>

12 ILLEGAL DIRECT
The use of INPUT as a direct command or any
illegal direct mode statement is encountered in
direct mode.
Example:
>
>INPUT "AMOUNT";AMT
ILLEGAL DIRECT
READY
>

PAGE A-7

APPENDIX A

13 TYPE MISMATCH
(a) An attempt was made to assign a non-string
variable to a string or vice-versa.
(b) An attempt was made to assign a numeric
argument to a non—numeric function or vice
versa.
Example:
>LIST
10 CLEAR 500
20 A=20
30 C=STRING$(10,k)
40 PRINT C
50 END
READY
>RUN
TYPE MISMATCH IN 30
READY
>

14 OUT OF STRING SPACE
The amount of string space allocated was
exceeded.
Example:
>LIST
10 B$=STRING$(500,"A")
20 C$=STRING$(500,"A")
30 END
READY
>RUN
OUT OF STRING SPACE IN 10
READY
>

PAGE A-8

APPENDIX A

15 STRING TOO LONG
A string variable was assigned a string value
which exceeded 255 characters in length.
Example:
>LIST
10 CLEAR 5000
20 A $ = " A AAA AA AAAA AAA AAA A AAA AA AA AA A A AA AA AA AAAAA AA
AA
AA
AAAAA"
30 B$="BBB
BB
BB"
40 C$="CCC
cccccccccccccceccccccccccccccccccccccccccccccccc
CC"
50 D$=A$+B$+C$
60 PRINT D$
70 END
READY
>RUN
STRING TOO LONG IN 50
READY
>

16 STRING FORMULA TOO COMPLEX
A string operation was too complex to handle.
Break up the operation into shorter steps.

17 CAN'T CONTINUE
A CONT was issued at a point where no
continuable program exists.

PAGE A-9

APPENDIX A

Example:
>LIST
10 A=23

70 END
READY
>RUN
AMOUNT IS 12222
READY
>CONT
CAN'T CONTINUE
READY

18 NO RESUME
End of program reached in error-trapping mode.
Example:
>LIST
10 ON ERROR GOTO 60
20 READ A
30 PRINT A
40 GOTO 20
50 END
60 DATA 4,2,2
READY
>RUN
4
2
2

NO RESUME IN 60
READY
>

PAGE A-l0

APPENDIX A

19 RESUME WITHOUT ERROR
A RESUME was encountered before ON ERROR GOTO
was executed.
READY
>LIST
10 PRINT "A"
20 RESUME
30 IF 1=4 THEN GO TO 10
40 END
READY
>RUN
A
RESUME WITHOUT ERROR IN 20
READY
>

20 UNPRINTABLE ERROR
AN attempt was made to generate an error using
an ERROR statement with an invalid code.

21 MISSING OPERAND
An operation was attempted without providing one
of the required operands.
Example:
READY
>LIST
10 A=10
20 B=A+
30 END
REDY
>RUN
MISSING OPERAND IN 20
READY
>

PAGE A-l1

APPENDIX A

22 BAD FILE DATA
Data input from source was not correct or was in
improper sequence, etc.

50 FIELD OVERFLOW
An attempt is made to allocate more than 255
bytes to a random-access buffer.

51 INTERNAL ERROR
Error in the DISK BASIC operating system.

52 BAD FILE #
(a) an improper file number.
(b) a number has not been assigned to a file
with an OPEN statement.
Example:
>LIST
10 0PEN"0",57,"METER/TXT:1"
20 FOR I%=1 TO 5

100 END
READY
>RUN
BAD FILE # IN 10
READY
>

PAGE A-12

APPENDIX A

54 FILE NOT FOUND
An attempt is made to read a non-existing file
from the disk.
Example:
READY
>LOAD"KKK/BAS:0"
FILE NOT IN DIRECTORY
FILE NOT FOUND
READY
>

55 BAD FILE MODE
An attempt is made to carry out disk file input
or output which conflicts with the mode in
which the file was opened.
Example:
READY
>LIST
10 CLEAR 500
20 DIM FACT(5)
30 OPEN"A",1,"METER/TXT:1"

120 END
READY
>RUN
BAD FILE MODE IN 30
READY
>

PAGE A - l 3

APPENDIX A

56 FILE ALREADY OPEN
A sequential output mode OPEN is issued for a
file that is already open.

58 DOS ERROR
An error occurred during I/O operation between
the Computer and a disk file.

59 FILE ALREADY EXISTS
The filename specified in statement is the same
as the filename that is using.

62 DISK FULL
All available disk storage space on the diskette
has been used.

63 INPUT PAST END
During sequential input to a variable, the end
of file was reached before any data characters
were read.

64 BAD RECORD #
In a PUT or GET statement, the record number
is exceeded the range .

PAGE A-14

APPENDIX A

65 BAD FILE NAME
An illegal form of file specification was pro
vided.
READY
>LOAD"KKK.
BAD FILE NAME
READY
>

66 MODE MISMATCH
An OPEN file mode is not match with the PUT, or
GET or vice versa.

67 DIRECT STATEMENT IN FILE
An attempt is made to LOAD, RUN, or MERGE a disk
file which is not a BASIC program.

68 TOO MANY FILE
An attempt is made to create a new file when
all directory entries are full.

69 DISK WRITE PROTECTED
An attempt is made to write to a disk with
write-protect notch covered.

PAGE A-15

APPENDIX A

70 FILE ACCESS DENIED
An attempt is made to access existing file with
incorrect password.

71 SEQ. # OVERFLOW

72 RECORD OVERFLOW

73 ILLEGAL TO EXTEND FILE

75 PREVIOUSLY DISPLAYED ERROR

76 CAN'T PROCESS LINE 0

77 BAD FILE TYPE

78 IGEL SYNTAX ERROR
Note: IGEL is Item Group Expression List. i.e.
a list of expressions corresponding to a group
of file items.

PAGE A-16

APPENDIX A

79 IGEL ITEM SYNTAX ERROR

80 BAD/ILLEGAL MISSING IGEL ITEM PREFIX

82 BAD RECORD LENGTH

83 STMT. USES 2 FILE NAMES

84 BAD FILE POSITIONING PARAM

PAGE A-17

	EG3200 Genie III Computer System BASIC MANUAL
	CONTENTS
	INTRODUCTION
	CHAPTER ONE
	GENERAL INFORMATION ABOUT GENIE III

	CHAPTER TWO - COMMANDS AND STATEMENTS
	2.1 AUTO
	C
	2.2 CLEAR (active command)
	2.3 CLEAR (programming command)
	2.4 CLOSE
	2.5 CMD"C"
	2.6 CMD"E"
	2.7 CMD"F=POPS"
	2.8 CMD"F=POPR"
	2.9 CMD"F=POPN"
	2.10 CMD"F=SASZ"
	2.11 CMD"F=ERASE"
	2.12 CMD"F=KEEP"
	2.13 CMD"F",DELETE
	2.14 CMD”F=SWAP"
	2.16 CMD"J "
	2.17 CMD"O"
	2.18 CMD"S "
	2.19 CMD"doscmd"
	2.20 CONT

	D
	2.21 DATA
	2.22 DEFDBL
	2.23 DEF FN
	2.24 DEFINT
	2.25 DEFSNG
	2.26 DEFSTR
	2.27 DEFUSR
	2.28 DELETE
	2.29 DIM

	2.30 EDIT
	2.31 END
	2.32 ERROR
	2.33 FIELD
	2.34 FOR....NEXT
	2.35 GET
	2.36 GOSUB
	2.37 GOTO
	2.39 IF-THEN
	2.40 IF-THEN-ELSE
	2.41 INKEY$
	2.42 INPUT
	2.43 INPUT#
	2.44 KILL
	2.45 LET
	2.46 LINE INPUT
	2.47 LINE INPUT#
	2.48 LIST
	2.49 LLIST
	2.50 LOAD
	2.51 LPRINT
	2.52 LSET
	2.53 MERGE
	2.54 MID$
	2.55 NEW
	2.56 ON ERROR GOTO
	2.57 ON-GOTO
	2.58 ON-GOSUB
	2.59 OPEN
	2.60 PRINT
	2.61 PRINT TAB
	2.62 PRINT USING
	2.63 PRINTS
	2.64 PRINT#
	2.65 PUT
	2.66 READ
	2.67 REF
	2.68 REM
	2.69 RENEW
	2.70 RENUM
	2.71 RESUME
	2.72 RESTORE
	2.73 RETURN
	2.74 RSET
	2.75 RUN
	2.76 RUN "program"
	2.77 SAVE
	2.78 STOP
	2.79 TROFF
	2.80 TRON

	CHAPTER THREE GENIE III BASIC FUNCTION
	&
	3.1 &H
	3.2 &O

	A
	3.3 ABS
	3.4 ASC
	3.5 ATN

	C
	3.6 CDBL
	3.7 CHR$
	3.8 CINT
	3.9 CLS
	3.10 COS
	3.11 CSNG
	3.12 CVD
	3.13 CVI
	3.14 CVS

	E
	3.15 EOF
	3.16 EXP

	3.17 FIX
	I
	3.18 INP
	3.19 INSTR
	3.20 INT

	L
	3.21 LEFT$
	3.22 LEN
	3.23 LOC
	3.24 LOG
	3.25 LOF

	M
	3.26 MEM
	3.27 MID$
	3.28 MKD$
	3.29 MKI$
	3.30 MKS$

	P
	3.32 PEEK
	3.33 POINT
	3.34 POKE
	3.35 POS

	R
	3.36 RANDOM
	3.37 RESET
	3.38 RIGHT$
	3.39 RND

	S
	3.40 SET
	3.41 SGN
	3.42 SIN
	3.43 SQR
	3.44 STR$
	3.45 STRING$

	T
	3.46 TAN
	3.47 TIME$

	3.48 USR
	V
	3.49 VAL
	3.50 VARPTR

	CHAPTER FOUR BASIC EDITOR IN GENIE III SYSTEM
	APPENDIX A: ERROR MESSAGES

