
NCR DOS
Programmer’s Guide

i-.

Personal
Computer

L

TRADEMARKS.

MS is a registered trademark of Microsoft Corporation.

Microsoft Networks is a trademark of Microsoft Corporation.

registered trademark of Digital Research, Inc.

INTEL is a registered trademark of Intel Corporation

DISCLAIMER OF WARRANTY.

r ■
without

COPYRIGHT NOTICE.

Microsoft is a registered trademark of Microsoft Corpora
tion.

Copyright © 1985 by NCR Corporation
Dayton, Ohio

All Rights Reserved Printed in U.S.A.

CP/M is a

The NCR-DOS Programmer's Guide is sold AS IS, and
warranty as to performance. While NCR Corporation and
Microsoft firmly believe this to be a high quality product,
the user must assume all risks of using the program.

Copyright (c) 1981 ,1984 by Microsoft. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written
permission of Microsoft, 10700 Northup Way, Bellevue WA
98004.

NCR Corporation and Microsoft make no representations or
warranties with respect to the contents hereof and specifi
cally disclaim any implied warranties of merchantability or
fitness for any particular purpose. Further, NCR Corporation
and Microsoft reserve the right to revise this publication
and to make changes from time to time in the content hereof
without obligation to notify any person or organization of
such revisions or changes.

General Introduction

reference

An index concludes this manual.

The NCR-DOS Programmer's Guide is a technical
manual for system programmers.

Chapter 6 presents the object record formats that define the
relocatable object language for the 8086 microprocessor. The
8086 object module formats permit you to specify relocatable
memory images that may be linked together.

contains information on
on MS-DOS.Two

(one serial and one

Chapter 1 of this manual contains
of all MS-DOS 3.1 system calls and interrupts.

Chapters 3 through 5 contain technical information about MS-
DOS, including MS-DOS disk allocation (Chapter 3), MS-DOS
control blocks and work areas (Chapter 4), and .EXE file
structure and loading (Chapter 5).

a description and examples

Chapter 2 "
how to install
examp les
block) are

MS-DOS Device Drivers"
your own device drivers

of device driver programs
included in Chapter 2.

Chapter 7 describes recommended MS-DOS programming proce
dures. By using these programming hints, you can ensure
compatibility with future versions of MS-DOS.

Contents

Chapter 1 System Calls

1-2

1-6
1-9

1-24
1-24

1-27

1-44
1-45

C-l

1-38
1-40

1-14
1-14

1-15

1-10
1-12

1-13

1.10.1
1.10.2
1.11

1.1
1.1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.6
1.7
1.8
1.8.1
1.9
1.9.1
1.9.2
1.9.3
1.9.4
1.9.5
1.9.6
1.10 1-37

Program Terminate
Function Request
Terminate Process Exit Address
Ctrl-Break Handler Address

1-58
1-60

1-61
1-62
1-63

1-41
1-42

Critical Error Handler Address
1-45

an Interrupt 24H Handler
1-57

Terminate Program
Read Keyboard and Echo
Display Character
Auxiliary Input
Auxiliary Output

1-19
1-23
1-23

Function Request 1-23
Using the Calls from a High-Level Language
Treatment of Registers
Handling Errors 1-25
System Call Descriptions

Interrupts
20H
21H
22H
23H
24H

Conditions upon Entry
Requirements for

Function Requests
OOH
01H
02H
03H
04H

Introduction 1-1
System Calls that have been Superseded

Standard Character Device I/O 1-2
Memory Management 1-4
Process Management 1-6

Loading and Executing a Program
Loading an Overlay 1-8

File and Directory Management
Handles 1-9
File-related Function Requests
Device-related Function Requests
Directory-related Function Requests
Directory Entry
File Attributes

Microsoft Networks
Miscellaneous System Management
Old System Calls 1-18

File Control Block (FCB)
Using the System Calls

Issuing an Interrupt
Calling a

Contents

1-74

C-2

05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH
1OH
UH
12H
13H
14H
15H
16H
17H
19H
1AH
1BH
1CH
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
3 OH
31H
33H
35H

1-140
1-142

1-144

1-69
1-70

1-64
1-66

1-68

1-84
1-87

1-100
1-102

1-137
1-138

1-127
1-129
1-131
1-133

1-76
1-77

1-79
1-82

1-73

1-135
Get Disk Transfer Address
Get MS-DOS Version Number
Keep Process
Ctrl-Break Check
Get Interrupt Vector

Print Character
Direct Console I/O
Direct Console Input
Read Keyboard
Display String
Buffered Keyboard Input
Check Keyboard Status
Flush Buffer, Read Keyboard
Reset Disk
Select Disk
Open File
Close File
Search for First Entry
Search for Next Entry
Delete File
Sequential Read
Sequential Write
Create File
Rename File
Get Current Disk
Set Disk Transfer Address
Get Default Drive Data
Get Drive Data
Random Read
Random Write
Get File Size
Set Relative Record
Set Interrupt Vector
Create New PSP
Random Block Read
Random Block Write
Parse File Name
Get Date
Set Date
Get Time
Set Time
Set/Reset Verify Flag

1-104
1-106
1-108

1-111
1-113
1-115

1-116
1-117

1-120
1-123

1-89
1-91
1-93

1-95
1-97

1-99

Contents

1-158

1-203

1-217
1-222

1-227

C-3

36H
38H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H

1-160
1-162

1-167
1-169

1-171

1-229
1-232

1-234

1-198
1-200

1-235
1-238

1-241

1-146
1-148
1-152
1-154
1-156

IOCTL Data
IOCTL Character
IOCTL Block
IOCTL Status

45H
46H
47H
48H
49H
4AH
4BH, Code OOH
4BH, Code 03H
4CH
4DH
4EH
4FH
54H
56H
57H
58H
59H
5AH
5BH
5CH, Code OOH

1-206
1-208

1-211

1-244
1-248

1-251
1-254

Get Disk Free Space
Get Country Data
Set Country Data
Create Directory
Remove Directory
Change Current Directory
Create Handle
Open Handle
Close Handle
Read Handle
Write Handle
Delete Directory Entry , 1-174
Move File Pointer
Get/Set File Attributes

44H, Codes 0 and 1
44H, Codes 2 and 3
44H, Codes 4 and 5
44H, Codes 6 and 7

IOCTL Is Changeable
IOCTL Is Redirected Block
IOCTL Is Redirected Handle
IOCTL Retry

44H, Code 08H
44H, Code 09H
44H, Code 0AH
44H, Code 0BH

Duplicate File Handle
Force Duplicate File Handle
Get Current Directory
Allocate Memory
Free Allocated Memory
Set Block 1-214

Load and Execute Program
Load Overlay

End Process 1-225
Get Return Code of Child Process
Find First File
Find Next File
Get Verify State
Change’Directory Entry
Get/Set Date/Time of File
Get/Set Allocation Strategy
Get Extended Error
Create Temporary File
Create New File

Lock

1-176
1-179

1-182
1-185

1-187
1-189

1-192
1-194
1-196

Contents

1-275

MS-DOS Device DriversChapter 2

2-7

2-9

2-15

2-27

2-32

C-4

2-27
2-28

1-265
1-268

1-272

2.1
2.2
2.3
2.3.1
2.3.2
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7 .6
2.7.7
2.7.8
2.7.9
2.8
2.9
2.10

2-11
2-11

2-12
2-13

2-13

2-19
2-22

2-24

2-3
2-4

2-6
2-6

Introduction 2-1
Format of a Device Driver
How to Create a Device Driver

Device Strategy Routine
Device Interrupt Routine

Installation of Device Drivers
Device Headers 2-7

Pointer to Next Device Field
Attribute Field 2-9
Strategy and Interrupt Routines
Name Field

Request Header
Length of Record
Unit Code Field
Command Code Field
Status Field 2-14

Device Driver Functions
INIT 2-16
MEDIA CHECK
BUILD BPB
READ or WRITE
NON DESTRUCTIVE READ NO WAIT
OPEN or CLOSE
REMOVABLE MEDIA
STATUS 2-29
FLUSH 2-30

Media Descriptor Byte 2-31
Format of a Media Descriptor Table
The Clock Device 2-34

5CH, Code 01H
5EH, Code OOH
5EH, Code 02H
5FH, Code 02H
5FH, Code 03H
5F3, Code 04H
62H Get PSP

Macro Definitions for MS-DOS System Call Examples
General 1-294

Unlock 1-258
Get Machine Name 1-261
Printer Setup 1-263
Get Assign List Entry
Make Assign List Entry
Cancel Assign List Entry
1-274

SYSTEM CALLS

CHAPTER 1

SYSTEM CALLS

1.1 INTRODUCTION

MS-DOS.

Standard character device I/O

Memory management

Process management

File and directory management

Microsoft Network calls

Miscellaneous system functions

software

1-1

can
system

uses
return

invoked by an application by
The current range of interrupts used for MS-DOS

Interrupt 21H is the
provides access to a wide

Interrupt

MS-DOS services are
interrupts.
is 20H-27H, with 28H-40H reserved. Interrupt 21H

request service, and provides access
The selection of the
function number placed in the AH

In some cases, the full AX
to specify the requested function. Each

request uses values in various
or return function-specific

The routines that MS-DOS uses to manage system operation and
resources can be called by any application program. Using
these system calls makes it easier to write
machine-independent programs and increases the likelihood
that a program will be compatible with future versions of

MS-DOS system calls fall into several categories:

funct ion request service,
variety of MS-DOS services.
21H function is through a
register by the application,
register is used
interrupt or function
registers to receive
information.

SYSTEM CALLS

the linker
based

.COM andFor a more detailed description of how MS-DOS loads

Executing a Program From Within Another Program

1.4.2 Loading An Overlay

1-8

Before passing control to the .EXE file, MS-DOS
calculates the correct relocation addresses, based on the
relocation information in the file header.

If the calling
the overlay will
block, causing an

When a program loads
pass to
to be loaded,
the overlay returns
calling program is in complete
write a

an overlay with Function 4B03H, it must
MS-DOS the segment address at which the overlay is

The program then must call the overlay,
directly to the calling program,

control: MS-DOS does

and
The
not

PSP for the overlay or intervene in any other way.

MS-DOS does not check to see if the calling program owns the
memory where the overlay is to be loaded,
program does not own the memory, loading
most likely destroy a memory control
eventual memory allocation error.

A program that loads an overlay must, therefore, either
allow room for the overlay when it calls Function 4AH to
shrink its initial memory allocation block, or should shrink
its initial memory allocation block to the minimum and then
use Function 48H to allocate memory for the overlay.

Because COMMAND.COM takes care of details such as building
complete pathnames, searching the directory path for
executable files, and relocating .EXE files, the simplest
way to load and execute a program is to load and execute an
additional copy of COMMAND.COM, passing it a command line
that includes the /C switch to invoke the .COM or .EXE file.
The description of Function 4B00H (Load and Execute Program)
describes how to do this.

COMMAND.COM
COMMAND.COM

SYSTEM CALLS

Sample Programs

code

begin:

end_process 0

start

Sample Program With Common SkeletonFigure 1.2

1-29

ends
end

; Open the file
; Routine not shown
; Save handle

; Routine not shown
; End of file?
; Yes, go home
; No, AX bytes read
; To terminate string
; See Function 09H
; Get next 128 bytes

segment
assume
org
j®P

db
db
dw

start:*
filename
buffer
handle

return:
last_inst:

code

cs :code ,ds .-code ,es:nothing,ss:nothing
100H

begin

jc
cmp
je
mov
mov
display buffer
jmp read_line

; Return to MS-DOS
; To mark next byte

"b:\textfile.asc",0
129 dup (?)
7

open_handle filename,0
jc error_open
mov handle,ax

read_line: read_handle handle,buffer,128 ; Read 128 bytes
error_read
ax ,0
return
bx , ax
buffer[bx]

The sample programs show only data declarations and the code
required to use the system calls. Unless stated otherwise,
each example assumes a common skeleton that defines the
segments and returns control to MS-DOS. Each sample program
is intended to be executed as a .COM file. Figure 1.2 shows
a complete sample program. The unshaded portion shows what
appears in this chapter; the shaded portions are the common
skeleton.

SYSTEM CALLS

1-36

43 H
4404H.4405H
4402H.4403H
4400H.4401H
440 8H
4409H
440AH
440BH
4406H,4407H
31H
4B00H
4B03H
5C00H
5F03H
42H
OFH
3DH
29H
05H
5E02H
27H
28H
21H
22H
3FH
08H
01H
3 AH
17H
18H

1BH-20H
32H
34H
37H

50H-53H
55H

60H-61H
63H-7FH

ODH
11H
12H
OEH

Get/Set File Attributes
IOCTL Block
IOCTL Character
IOCTL Data
IOCTL Is Changeable
IOCTL Is Redirected Block
IOCTL Is Redirected Handle
IOCTL Retry
IOCTL Status
Keep Process
Load and Execute Program
Load Overlay
Lock
Make Assign List Entry
Move File Pointer
Open File
Open Handle
Parse File Name
Print Character
Printer Setup
Random Block Read
Random Block Write
Random Read
Random Write
Read Handle
Read Keyboard
Read Keyboard And Echo
Remove Directory
Rename File
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
Reset Disk
Search For First Entry
Search For Next Entry
Select Disk

Contents

Chapter 3 MS-DOS Technical Information

3-7

3-10

Chapter 4 MS-DOS Control Blocks and Work Areas

Chapter 5 -EXE File Structure and Loading

Chapter 6 INTEL Relocatable Object Module Formats

6-6

6-9

C-5.

3.1
3.2
3.3
3.4
3.5
3.5.1
3.5.2
3.6

4.1
4.2

Typical MS-DOS Memory Map
MS-DOS Program Segment

3-9
3-10

6-6
6-7

6-8

3-1
3-2

3-3

2.11
2.12
2.12.1
2.12.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

4-1
4-2

2-35
2-37

2-37
2-56

MS-DOS Initialization
The Command Processor
MS-DOS Disk Allocation
MS-DOS Disk Directory
File Allocation Table (FAT)

How to Use the FAT (12-bit FAT Entries)
How to Use the FAT (16-bit FAT Entries)

MS-DOS Standard Disk Formats

Anatomy of a Device Call
Example of Device Drivers

Block Device Driver
Character Device Driver

Introduction 6-1
Definitions of Terms 6-2
Module Identification and Attributes
Segment Definition
Segment Addressing
Symbol Definition
Indices 6-8
Conceptual Framework for Fixups
Self-Relative Fixups 6-16
Segment-Relative Fixups 6-17
Record Order 6-18

Contents

6.12

Programming HintsChapter 7

7-1

Index

C-6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.7.1
7.8

7-4
7-5
7-6

6-33
6-36

6.13
6.14

6-40
6-41

6-19
6-20

6-23
6-23

6-24
6-29

6-30

Introduction to the Record Formats
Sample Record Format (SAMREC)
T-Module Header Record (THEADR)
List of Names Record (LNAMES)
Segment Definition Record (SEGDEF)
Group Definition Record (GRPDEF)
Type Definition Record (TYPDEF)
Eight Leaf Descriptor 6-31
Public Names Definition Record (PUBDEF)
External Names Definition Record (EXTDEF)
Line Numbers Record (LINNUM) 6-38
Logical Enumerated Data Record (LEDATA)
Logical Iterated Data Record (LIDATA)
Fixup Record (FIXUP) 6-43
Module End Record (MODEND) 6-50
Comment Record (COMENT) 6-52

Numeric List of Record Types 6-54
Microsoft Type Representations for Communal
Variables 6-55

Introduction
Interrupts
System Calls 7-3
Device Management
Memory Management
Process Management
File and Directory Management

Locking Files 7-8
Miscellaneous 7-8

CHAPTER 1

SYSTEM CALLS

SYSTEM CALLS

System Calls That Have Been Superseded1.1.1

that

STANDARD CHARACTER DEVICE I/O1.2

1-2

description of the
of the old calls)

Many system calls introduced in versions of
than
simpler to use and make
Although

A table of the pre-2.0 system calls and a
File Control Block (required by some
appears in Section 1.8, "Old System Calls."

MS-DOS earlier
2.0 have been superseded by function requests that are

better use of system resources.
MS-DOS still includes these old system calls, they

should not be used unless it is imperative that a program
maintain backward-compatibility with the pre-2.0 versions of
MS-DOS.

Chapter 2 of this book describes how to write an MS-DOS
device driver. Chapters 3, 4, and 5 contain more detailed
information about MS-DOS, including how it manages disk
space, the control blocks it uses, and how it loads and
executes relocatable programs (files with an extension of
format. Chapter 7 gives some programming hints.

The first part of this chapter explains how DOS manages its
resources — such as memory, files, and processes — and
briefly describes the purpose of most of the system calls.
The remainder of the chapter describes each interrupt and
function request in detail. The system call descriptions
are in numeric order, interrupts followed by function
requests. These descriptions include further detail on how
MS-DOS manages its resources.

The standard character function requests handle all input
and output to and from character devices such as the
console, printer, and serial ports. If a program uses these
function requests, its input and output can be redirected.

SYSTEM CALLS

managingfor

Table 1.1 Standard Character I/O Function Requests

01H

character to standard02H Display Character

Auxiliary Input03H

04H Auxiliary Output

05H Print Character

06H

07H

08H Read Keyboard

Sends a string to standard output.Display String09H

Gets a string from standard input.OAH

OBH

OCH

1-3

Read Keyboard
and Echo

Direct Console
Input

Check Keyboard
Status

Flush Buffer,
Read Keyboard

Gets a character from standard input
and echoes it to standard output.

Gets a character from standard
auxiliary.

Sends a character to standard
auxiliary.

Gets a character from standard
input.

Gets a character from standard
input.

Reports on the status of the
standard input buffer.

Empties the standard input buffer
and calls one of the other standard
character I/O function requests.

Sends a
output.

Buffered Keyboard
Input

Sends a character to the standard
printer.

Table 1.1 lists the MS-DOS function requests
standard character input and output.

Direct Console I/O Gets a character from standard input
or sends a character to standard
output.

SYSTEM CALLS

MEMORY MANAGEMENT1.3

managingforrequests

Table 1.2 Memory Management Function Requests

48H RequestsAllocate Memory

49H

4AH Set Block

a

1-4

of memory,
memory area;
memory area;

Table 1.2 lists the MS-DOS function
memory.

Free Allocated
Memory

Changes the size of an allocated
memory block.

Frees a block of memory previously
allocated with 48H.

Although several of these standard
requests seem
by whether they
standard

When a process requests additional memory with Function 48H,
MS-DOS searches for a block of available memory large enough
to satisfy the request. If it finds such a block of memory,
it changes the memory control block to show the owning
process. If the block of memory is larger than the
requested amount, MS-DOS changes the size

If it finds such
the memory control block

If the block of memory is larger than
amount, MS-DOS changes the size field of the

memory control block to the requested amount, writes a new
memory control block at the beginning of the unneeded
portion that shows it is available, and updates the pointers

a block of memory.

standard input
characters.

point out

characters
check for

character I/O function
to do the same thing, they are distinguished
echo characters from standard input to

output or check for control characters. The
detailed descriptions later in this chapter point out the
differences.

MS-DOS keeps track of which areas of memory are allocated by
writing a memory control block at the beginning of each area

This control block specifies the size of the
the name of the process, if any, that owns the
and a pointer to the next area of memory. If

the memory area is not owned, it is available.

SYSTEM CALLS

of

1-5

If MS-DOS can't find
enough to satisfy

time
the

When a process shrinks an allocated block of memory with
Function 4AH, DOS builds a memory control block for the
memory being released and adds it to the chain of memory
control blocks. When a process tries to expand an allocated
block of memory with Function 4AH, MS-DOS treats it as a
request for additional memory; rather than returning the
segment address of the additional memory to the requesting
process, however, MS-DOS simply chains the additional memory
to the existing memory block.

a block of available memory large
to satisfy a request for additional memory — made

with either Function 48H or Function 4AH — MS-DOS returns
an error code to the requesting process.
When a program receives control, it should call Function 4AH
to shrink its initial memory allocation block (the block
that begins with its Program Segment Prefix) to the minimum
it requires. This frees unneeded memory and makes the best
application design for portability to future multitasking
environments.

When a program exits, MS-DOS automatically frees its initial
memory allocation block before returning control to the
calling program (COMMAND.COM is usually the calling program
for application programs). The DOS frees any memory owned
by the process exiting.

Any program that changes memory not allocated to it will
most likely destroy at least one memory management control
block. This causes a memory allocation error the next
MS-DOS tries to use the chain of memory control blocks;
only cure is to restart the system.

When a process releases an allocated block of memory with
Function 49H, DOS changes the memory control block to show
that it is available (not owned by any process).

to add this memory to the chain of memory control blocks.
MS-DOS then returns the segment address of the first byte of
the allocated memory to the requesting process.

COMMAND.COM

SYSTEM CALLS

1.4 PROCESS MANAGEMENT

for managingrequests

Table 1.3 Process Management Function Requests

31H Keep Process

4B00H Loads and executes a program.

4B03H Load Overlay

4CH End Process

4DH

62H Get PSP

1.4.1 Loading And Executing A Program

1-6

MS-DOS uses several function requests to load, execute,
terminate programs. Application programs can use these
function requests to manage other programs.

Table 1.3 lists the MS-DOS function
processes.

Get Return Code
of Child Process

Load and Execute
Program

Returns the segment address of the
Program Segment Prefix of the
current process.

Terminates a process and returns
control to the invoking process,
but keeps the terminated process
in memory.

Returns control to the invoking
process.

Returns
process

Loads a program overlay without
executing it.

and
same

a code passed by a child
when it exits.

When a program loads and executes another program with
Function 4B00H, MS-DOS allocates memory, writes a Program,
Segment Prefix (PSP) for the new program at offset 0 of the

SYSTEM CALLS

command

some

Loading a .COM Program

available
A

as

Loading an .EXE Program

If the program changes
transient portion of

If a program exits (via

newly loaded program is allocated all of memory — as a
Function 48H, MS-DOS allocated to it the memory occupied by
the transient part of COMMAND.COM.
this memory,’ MS-DOS must reload the
COMMAND.COM before it can continue.
call 31H, Keep Process) without releasing enough memory, the
system halts and must be reset. To minimize this
possibility, a .COM program should shrink its initial
allocation block with Function 4AH before doing anything
else, and all programs must release all memory they allocate
with Function 48H before exiting.

COMMAND.COM uses Function 4B00H to load and execute
files. Application programs have the same degree of control
over process management as COMMAND.COM.

If a

When COMMAND.COM loads and executes an .EXE program, it
allocates the size of the program's memory image plus either
the value in the MAXALLOC field (offset OCH) of the file
header, if that much memory is available, or the value in
the MINALLOC field (offset OAH). These fields are set by

allocated memory, loads the new program, and passes control
to it. When the invoked program exits, control returns to
the calling program.

In addition to these common features, there are
differences in the way MS-DOS loads .COM and .EXE files.

When COMMAND.COM loads and executes a .COM program, it
allocates all of available memory to the application and
sets the stack pointer 100H bytes from the end of
memory. A .COM program should set up its own stack before
shrinking its initial memory allocation block with Function
4AH, because the default stack is in the memory to be
released.

COMMAND.COM
COMMAND.COM
COMMAND.COM
COMMAND.COM
COMMAND.COM
COMMAND.COM

SYSTEM CALLS

1.5 FILE AND DIRECTORY MANAGEMENT

1.5.1 Handles

a

file

Table 1.4open;

Table 1.4 Predefined Device Handles

Standard deviceHandle Comment

1-9

The MS-DOS hierarchical (multilevel) file system is
to that of the XENIX operating system.
the multilevel directory system and how to use it}
NCR-DOS Manual.

Input
Output
Error
Auxiliary
Printer

A program
predefined

15 extra files.

Can be redirected from command line
Can be redirected from command line

0
1
2
3
4

a file, it assigns the first
can have 20 open handles; this
handles, so a program can

Any of the five predefined

A handle can refer to either a
five standard handles.

similar
For a description of

see the

file, a program
attribute to be

16-bit number called a
MS-DOS

To create or open a
pathname and the
MS-DOS returns a
subsequent actions,
identify the file.

When MS-DOS creates or opens
available handle,
includes the five
typically open

assigns the
have 20 open handles;

so a program

or a device. MS-DOS
predefines five standard handles. These handles are always

you needn't open them before you use them.
lists these predefined handles.

passes to MS-DOS a
assigned to the file.
handle. For most

requires only this handle to

SYSTEM CALLS

alternatean

File-Related Function Requests1.5.2

the

for managingrequests

Table 1.5 File-Related Function Requests

3CH CreatesCreate Handle

Opens a file.3DH Open Handle

Closes a file.3 EH Close Handle

Reads from a file.3FH Read Handle

40H f ile.Write Handle

42H

45H

46H

1-10

Table 1.5 lists the MS-DOS function
files.

Move File
Pointer

Duplicate File
Handle

Force Duplicate
File Handle

new handle that refers to
as an existing handle.

MS-DOS treats a file as
record structure or

Makes an existing handle refer to
the same file as another existing
handle.

Creates a
the same file

it assumes no
An application

on this

Writes to a

Sets the read/write pointer in a
f ile.

handles can be temporarily forced to refer to
file or device using function request 46H.

a file.

a string of bytes;
structure or access technique.

program imposes whatever record structure it needs
string of bytes. Reading from or writing to a file requires
only pointing to the data buffer and specifying the number
of bytes to read or write.

SYSTEM CALLS

5AH Creates

5BH Create New File

File Sharing

Table 1.6 File-Sharing Function Requests

3DH Open Handle

440 BH IOCTL Retry

Locks a region of a file.5C00H Lock

Unlocks a region of5C01H Unlock

1-11

Create
Temporary File

Opens a file with one of the
file-sharing modes.

which lets
File sharing
executed to

1.6 lists the MS-DOS
if file sharing is not

Function
modes.

Version 3.1 of MS-DOS introduces file sharing,
more than one process share access to a file,
operates only after the Share command has been
load file-sharing support. Table 1.6 lists
function requests for sharing files;
in effect, these function requests cannot be used.
3DH, Open Handle, can operate in several
Compatibility mode is usable without file sharing in effect.
Here it is referred to in the file-sharing modes, which
require file sharing to be in effect.

unique name.

a file.

an I/O

a file with a

Specifies how many times
operation that fails due to a
file-sharing violation should be
retried before Interrupt 24 is
issued.

Attempts to create a file, but fails
if a file with the same name exists.

SYSTEM CALLS

Device-Related Function Requests1.5.3

Table 1.7 Device-Related Function Requests

4400H,01H IOCTL Data

4402H.03H IOCTL Character

4404H.05H IOCTL Block

4406H.07H IOCTL Status

4408H IOCTL Is Changeable

1-12

implemented
action

Some

Checks device input or
output status.

Checks whether block device
contains removable medium.

Gets or sets character
device control data.

Gets or sets device
description.

Gets or sets block device
control data.

I/O Control for Devices is implemented with Function 44H
(IOCTL); it includes several action codes to perform
different device-related tasks. Some forms of the IOCTL
function request require that the device driver be written
to support the IOCTL interface. Table 1.7 lists the MS-DOS
function requests for managing devices.

Some forms of the IOCTL function request can only be used
with Microsoft Networks; they are listed in Section 1.6,
"Microsoft Networks."

SYSTEM CALLS

1.5.4 Directory-Related Function Requests

managingforrequests

Table 1.8 Directory-Related Function Requests

39H Create Directory Creates a subdirectory.

3AH Remove Directory Deletes a subdirectory.

3BH Changes the current directory.

41H Deletes a file.

43H

47 H

4EH Find First File Searches

1-13

Table 1.8 lists the MS-DOS function
directories.

Change Current
Directory

Delete
Directory Entry
(Unlink)

Get Current
Directory

Get/Set File
Attributes
(Chmod)

Retrieves or changes the attributes
of a file.

a directory for the first

Returns current directory for a
given drive.

The root directory on
entries: 64 on a
standard double-sided disk,
directories is dependent
subdirectory is simply a

can be as many
The depth of a i
only by the

The root directory is identical to the pre-2.0 directory.
Pre-2.0 disks appear to have only a root directory that
contains files but no subdirectories.

a disk has room for a fixed number of
standard single-sided disk, 112 on a

For hard disks, the number of
on the DOS partition size. A

file with a unique attribute;
there can be as many subdirectories on a disk as space
allows. The depth of a directory structure, therefore, is
limited only by 'the amount of storage on a disk and the
maximum pathname length of 64 characters.

SYSTEM CALLS

entry that matches a filename.

Find Next File4FH

Renames a file.56H

57H

1.5.5 Directory Entry

1 .5.6 File Attributes

1-14

Change
Directory Entry

Get/Set Date/Time
of File

Searches a directory for the next
entry that matches a filename.

A directory entry is a 32-byte
file's name, extension,
size. An entry in a
in the root directory,
detail in Chapter 3.

record that includes the
date and time of last change, and

subdirectory is identical to an entry
The directory entry is described in

Table 1.9 describes the file attributes and how they are
represented in the attribute byte of the directory entry
(offset OBH) . The attributes can be inspected or changed
with Function 43H (Get/Set File Attributes).

Changes the time and date of
last change in a directory entry.

SYSTEM CALLS

Table 1.9 File Attributes

Code Description

written without restriction.OOH

01H

Hidden. Not found by directory search.02H

04H System. Not found by directory search.

08H

10H Subdirectory.

20H

1.6 MICROSOFT NETWORKS

and

1-15

Read-only. Cannot be opened for write;
same name cannot be created.

Archive. Set whenever the file is changed, cleared
by the Backup command.

The Volume-ID (08H) and Directory (10H) attributes cannot be
changed with Function 43H (Get/Set File Attributes).

Volume-ID. Only one file can have this attribute; it
must be in the root directory.

Normal. Can be read or

a file with the

A Microsoft Network consists of a server and one or more
workstations. MS-DOS maintains an assign list that keeps
track of which workstation drives and devices have been
redirected to the server. For a description of operation
and use of the network, see the Microsoft Networks Manager's
Guide, and User's Guide■

SYSTEM CALLS

Microsoft Network Function RequestsTable 1.10

440 9H

440AH

Get Machine Name5E00H

5E02H Printer Setup

5F02H

5F03H

5F04H

1-16

Table 1.10 lists the MS-DOS function requests for managing a
Microsoft Networks workstation.

Make Assign List
Entry

Get Assign List
Entry

Cancel Assign List
Entry

IOCTL Is Redirected
Handle

IOCTL Is Redirected
Block

Redirects a workstation drive or
device to a server directory or
device.

Checks whether a drive letter
refers to a local or redirected
drive.

Gets the network name of the
workstation.

Cancels the redirection of a
workstation drive or device to a
server directory or device.

Checks whether a device name
refers to a local or redirected
device.

Gets an entry from the assign
list that shows the workstation
drive letter or device name and.
the net name of the directory or
device on the server to which
it is reassigned.

Defines a string of control
characters to be added at the
beginning of each file sent to a
network printer.

SYSTEM CALLS

MISCELLANEOUS SYSTEM MANAGEMENT1 .7

Table 1.11 Miscellaneous System-Management Function Requests

Returns disk format data.1BH

3 OH

54H Get Verify State

1-17

ODH
OEH
19H
1AH

1CH
25H
29H
2AH
2BH
2CH
2DH
2EH
2FH

33H
35H

36H
38H

Get Disk Transfer
Address
Get MS-DOS Version
Number
Ctrl-Break Check
Get Interrupt Vector

Get Disk Free Space
Get/Set Country Data

Empties all file buffers.
Sets the default drive.
Returns the default drive.
Establishes the disk I/O buffer.

Reset Disk
Select Disk
Get Current Disk
Set Disk Transfer
Address
Get Default Drive
Data
Get Drive Data
Set Interrupt Vector
Parse File Name
Get Date
Set Date
Get Time
Set Time
Set/Reset Verify Flag Turns disk verify on or off.

Returns system disk I/O buffer
address.
Returns MS-DOS version number.

Returns Ctrl-Break check status.
Returns address of interrupt
handler.
Returns disk space data.
Sets current country or retrieves
country information.
Returns status of disk verify.

Returns disk format data.
Sets interrupt handler address.
Checks string for valid filename.
Returns system date.
Sets system date.
Returns system time.
Sets system time.

on

The remaining system calls manage other system functions and
resources such as drives, the clock, and addresses. Table
1.11 lists the MS-DOS function requests for managing
miscellaneous system resources and operation.

SYSTEM CALLS

1.8 OLD SYSTEM CALLS

Old System Calls and Their ReplacementsTable 1.12

Has Been Superseded ByOld System Call

Function RequestsFunction Requests

1-18

17H
21H
22H
23H
24H
26H
27H
28H

OOH
OFH
10H
11H
12H
13H
14H
15H
16H

Rename File
Random Read
Random Write
Get File Size
Set Relative Record
Create New PSP
Random Block Read
Random Block Write

Terminate Program
Open File
Close File
Search for First Entry
Search for Next Entry
Delete File
Sequential Read
Sequential Write
Create File

4CH
3DH i
3EH
4EH I
4FH I
41H I
3FH
3DH I
3CH
5AH I
5BH I
56H i
3FH '
40H 1
42H 1
42H 1
4B00H
3FH :
40H 1

End Process
Open Handle
Close Handle
Find First File
Find Next File
Delete Directory Entry
Read Hardie
Open Handle
Create Handle
Create Temporary File
Create New File
Change Directory Entry
Read Handle
Write Handle
Move File Pointer
Move File Pointer
I Load and Execute Program
Read Handle
Write Handle

Most of the system calls that have been superseded deal with
files. Table 1.12 lists these old calls and the function
requests that have superseded them.

Although MS-DOS still includes these old system calls, they
should not be used unless it is imperative that a program
maintain backward-compatibility with the pre-2.0 versions of
MS-DOS.

SYSTEM CALLS

Function RequestsInterrupts

File Control Block (FCB)1.8.1

1-19

20H
2? H

Program Terminate
Terminate But Stay
Resident

4CH
31H

End Process
Keep Process

The old
program

Some descriptions of the old function requests refer to
unopened and opened FCBs. An unopened FCB contains only a
drive specifier and filename. An opened FCB contains all
fields filled by Function OFH (Open File).

file-related function requests require that a
maintain a File Control Block (FCB) for each file;

this control block contains such information as the file's
name, size, record length, and pointer to current record.
MS-DOS does most of this housekeeping for the newer,
handle-oriented function requests.

The Program Segment Prefix (PSP) includes room for two FCBs
at offsets 5CH and 6CH. See Chapter if for a description of
the PSP and how these FCBs are used. Table 1.13 describes
the fields of the FCB.

SYSTEM CALLS

Format of the File Control Block (FCB)Table 1.13

NameBytesDec

Fields of the FCB

a

is

1-20

OOH
01H
09H
OCH
OEH
10H
14H
16H
18H
20H
21H

Offset
Hex i

Points to the block
that contains the current record.

and
a

at

0
1
9
12
14
16
20
22
24
32
33

1
8
3
2
2
4
2
2
8
1
4

Three characters, left-aligned
with blanks.

Drive number
Filename
Extension
Current block
Record size
File size
Date of last write
Time of last write
RESERVED
Current record
Relative record

Extension (offset OOH):
padded (if necessary)
blanks (no extension).

and
This field can be all

Filename (offset Q1H): Eight characters, left-aligned
padded (if necessary) with blanks. If you specify
reserved device name (such as PRN), do not put a colon
the end.

Drive Number (offset OOH) Specifies the disk drive; 1
means drive A and 2 means drive B. If the FCB is used to
create or open a file, this field can be set to 0 to specify
the default drive; the Open File system call sets the field
to the number of the default drive.

Current Block (offset OCH): Points to the block (group of
128 records) that contains the current record. This field
and the Current Record field (offset 20H) make up the record
pointer. This field is set to 0 by the Open File system
call.

SYSTEM CALLS

The

These fields are reserved for use by

1-21

The
follows:

The
year,

Offset 17H |h|hIh|h|h|m|m|m|
15 11 10

Offset 16H|m |m Im Is I s Is Is I s I
5 4 o

in
If the
after

Reserved (offset 18H):
MS-DOS.

Offset 14H|m Im |m Id Id Id Id Id I
8 5 4 o

Offset 15H
|Y IY IY |Y |Y | Y IY |M I
15 9

pointer.
is not initialized by the Open File system call,

a sequential read or write to

date the file was
month, and day are

Time of Last Write (offset 16H): The time the file was
created or last updated. The hour, minutes, and seconds are
mapped into two bytes as follows:

Current Record (offset 20E): Points to one of the 128
records in the current block. This field and the Current
Block field (offset OCR) make up the record pointer. This
field is not initialized by the Open File system call. You
must set it before doing a sequential read or write to the
f ile.

Date of Last Write (offset 14H):
created or last updated,
mapped into two bytes as

File Size (offset 10H): The size of the file, in bytes.
The first word of this 4-byte field is the low-order part of
the size.

Record Size (offset OEH): The size of a logical record,
bytes. Set to 128 by the Open File system call,
record size is not 128 bytes, you must set this field
opening the file.

SYSTEM CALLS

(offset

If

the

Note

Extended FCB

for

) OffsetName

this inin chapter
II

1-22

I
I

I
I

I
I
I

I
I
I
I
I
I

1
5
1

-07H
-06H
-01H

Flag byte (FFH)
Reserved
Attribute byte

search
It

. Size
(bytes

The Extended File Control Block is used to create or
directory entries of files with special attributes.

adds the following 7-byte prefix to the FCB:

If you use the FCB at offset 5CH of the Program Segment
Prefix, the last byte of the Relative Record field is
the first byte of the unformatted parameter area that
starts at offset 80H. This is the default Disk Transfer
Area.

initialized by the
set it before doing a
the record size is

if
three

21H):
counting from
This field is
call. You i

File attributes are described earlier
Section 1.5.6, "File Attributes.

Points to the currently
i the beginning of the file

not initialized by
must

Relative Record
selected record,
(starting with 0).
Open File system
random read or write to the file,
less than 64 bytes, both words of this field are used;
the record size is 64 bytes or more, only the first
bytes are used.

SYSTEM CALLS

1 .9 USING THE SYSTEM CALLS

1.9.1 Issuing An Interrupt

intodata the

1.9.2 Calling A Function Request

1. Move any required data into the registers.

Move the function number into AH.2.

Move the action code, if required, into AL.3.

4. Issue Interrupt 21H.

1-23

system
function

The remainder of this chapter describes how to use the
system calls in application programs, lists all the calls in
both numeric and alphabetic order, and describes each call
in detail.

MS-DOS reserves Interrupts 20H through 3FH for its own use.
The table of interrupt handler addresses (vector table) is
maintained in locations 80H-FCH. Most of the interrupts
have been superseded by function requests. Descriptions of
three MS-DOS interrupt handlers (Program Terminate,
Ctrl-Break, and Critical Error) are included in case you must
write your own routines to handle these interrupts.

To issue an interrupt, move any required
registers and issue the interrupt.

The function requests call MS-DOS routines to manage
resources. Follow this procedure to call a
request:

SYSTEM CALLS

21H

any

Using The Calls From A High-Level Language1.9.3

Pascal-86of too

o

1.9.4 Treatment Of Registers

1-24

Whenever possible, it is recommended that the Interrupt
method be used.

The
language
modules.

earlier
into the

and execute an

Use the CALL statement or USER function to execute
the required assembly-language code from the BASIC
interpreter.

system calls can be executed from any high-level
whose modules can be linked with assembly language
In addition to this general technique:

If your program has a standard Program Segment Prefix, an
alternative to issuing Interrupt 21H is to execute a long
call to location 50H in the PSP.

You can use the DOSXQQ function
call a function request directly.

When MS-DOS takes control after a function request, it
switches to an internal stack. Registers not used to return
information (except AX) are preserved. The calling
program's stack must be large enough to accommodate the
interrupt system — at least 128 bytes in addition to other
needs.

One other technique supports earlier calling conventions:
move any required data into the registers; move the
function number into CL; and execute an intrasegment call
to location 05H in the current code segment (this location
contains a long call to the MS-DOS function dispatcher).
This method can only be used with functions OOH through 24H,
and always destroys the contents of AX.

SYSTEM CALLS

1.9.5 Handling Errors

Table 1.14 Error Codes Returned in AX

MeaningCode

the current directory

1-25

1
2
3
4
5
6
7
8
9

10
11
12
13
15
16
17
18
19
20
21
22
23
24
25
26

Most of the newer function requests — those introduced with
version 2.0 or later — set the Carry flag if there is an
error, and identify the specific error by returning a number
in AX. Table 1.14 lists these error codes and their
meanings.

Invalid function code
File not found
Path not found
Too many open files (no open handles left)
Access denied
Invalid handle
Memory control blocks destroyed
Insufficient memory
Invalid memory block address
Invalid environment
Invalid format
Invalid access code
Invalid data
Invalid drive
Attempt to remove
Not same device
No more files
Disk is write-protected
Bad disk unit
Drive not ready
Invalid disk command
CRC error
Invalid length (disk operation)
Seek error
Not an MS-DOS disk

SYSTEM CALLS

1-26

27
28
29
30
31
32
33
34
35
36-49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73-79
80
82
83
84
85
86
87
88

Sector not found
Out of paper
Write fault
Read fault
General failure
Sharing violation
Lock violation
Wrong disk
FCB unavailable
RESERVED
Network request not supported
Remote computer not listening
Duplicate name on network
Network name not found
Network busy
Network device no longer exists
Net BIOS command limit exceeded
Network adapter hardware error
Incorrect response from network
Unexpected network error
Incompatible remote adapt
Print queue full
Queue not full
Not enough space for print file
Network name was deleted
Access denied
Network device type incorrect
Network name not found
Network name limit exceeded
Net BIOS session limit exceeded
Temporarily paused
Network request not accepted
Print or disk redirection is paused
RESERVED
File exists
Cannot make
Interrupt 24 failure
Out of structures
Already assigned
Invalid password
Invalid parameter
Net write fault

SYSTEM CALLS

JC <error>

Extended Error Codes

the

1.9.6 System Call Descriptions

1-27

register
To
the

(Get Extended
much detail as

1 by MS-DOS.
more detailed

codes and shows how to use this function request.

To handle error conditions, put the following statement
immediately after each call similar to XENIX calls:

where <error> represents the label of an error-handling
routine that gets the specific error condition by checking
the value in AX and takes appropriate action.

Most system calls require that information be moved into one
or more registers before the call is issued and return
information in the registers. The description of each
system call in this chapter includes the following:

Newer versions of MS-DOS
messages
system calls,
new error codes to
matches the new one.

To make use of these new calls, Function 59H
Error) has been added. It provides as
possible on the most recent error code returned
The description of Function 59H lists the new, i
error

Some of the older system calls return a value in a
that specifies whether the operation was successful,
handle such errors, check the error code and take
appropriate action.

have added more detailed error
that cannot be used by programs that use the older

To avoid incompatibility, MS-DOS maps these
codes to the old error code that most closely

SYSTEM CALLS

o

o

A description of the processing performed.o
o

An example of the system call's use.o

8088the

Call

a

Return

Oi

.Figure 1.1 Example of System Call Description

1-28

A more complete description of the register
contents after the system call.

A more complete description of the register
contents required before the system call.

A drawing of the 8088 registers that shows their
contents before and after the system call.

BX
ex
DX

88
es

CM

Figure 1.1 is an example of the drawing of
registers and how the information is presented.

FLAGS- |

a

SYSTEM CALLS

Error Handling in Sample Programs

Functionand

1-30

The sample
macros:

All

Tables 1.15 through 1.18 list the Interrupts
Requests in numeric and alphabetic order.

To
do not protect registers and

i code. This keeps the
You may find such macros a
calls in your assembly

To allow the examples to be more complete programs rather
than isolated uses of the system calls, a macro is defined
for each system call; these macros, plus some general
purpose ones, are used in the sample programs,
program in the preceding figure includes four such
open_handle, read_handle, display, and end_process.
macro definitions are listed at the end of this chapter.
The macros assume the environment for a .COM program as
described in Chapter 4; in particular, they assume that all
the segment registers contain the same value. To conserve
space, the macros generally
leave error checking to the main
macros fairly short, yet useful,
convenient way to include system
language programs.

Whenever a system call returns an error code,
program shows a test for the error condition and
an error routine. To conserve space, the
themselves aren't shown,
display a
cases, the
program (performing
closing files).

the sample
shows a test for the error condition and a jump to

error routine. To conserve space, the error routines
i aren't shown. Some error routines might simply
message and continue processing; in more serious

routine might display a message and end the
any required housekeeping, such as

SYSTEM CALLS

Table 1 .15 MS-DOS Interrupts, Numeric Order

Interrupt Description

Table 1.16 MS-DOS Interrupts, Alphabetic Order

Description Interrupt

1-31

20H
21H
22H
23H
2 AH
25H
26H
27H

28H-3FH

25H
26H
23H
24H
21H
20H
28H-3FH
22H
27H

Absolute Disk Read
Absolute Disk Write
Ctrl-Break Handler Address
Critical Error Handler Address
Function Request
Program Terminate
RESERVED
Terminate Process Exit Address
Terminate But Stay Resident

Program Terminate
Function Request
Terminate Process Exit Address
Control-C Handler Address
Critical Error Handler Address
Absolute Disk Read
Absolute Disk Write
Terminate But Stay Resident
RESERVED

SYSTEM CALLS

MS-DOS Function Requests, Numeric OrderTable 1.17

DescriptionFunction

1-32

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH-20H
21H
22H
23H
24H
25H
26H

Terminate Program
Read Keyboard And Echo
Display Character
Auxiliary Input
Auxiliary Output
Print Character
Direct Console I/O
Direct Console Input
Read Keyboard
Display String
Buffered Keyboard Input
Check Keyboard Status
Flush Buffer, Read Keyboard
Reset Disk
Select Disk
Open File
Close File
Search For First Entry
Search For Next Entry
Delete File
Sequential Read
Sequential Write
Create File
Rename File
RESERVED
Get Current Disk
Set Disk Transfer Address
Get Default Drive Data
Get Drive Data
RESERVED
Random Read
Random Write
Get File Size
Set Relative Record
Set Interrupt Vector
Create New PSP

SYSTEM CALLS

1-33

27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3 AH
3BH
3CH
3DH
3 EH
3FH
40H
41H
42H
43H
4400H.4401H
4402H.4403H
4404H.4405H
4406H.4407H
4408H
4409H
440AH
440 BH
45H
46 H
47 H
48H
49H

Random Block Read
Random Block Write
Parse File Name
Get Date
Set Date
Get Time
Set Time
Set/Reset Verify Flag
Get Disk Transfer Address
Get MS-DOS Version Number
Keep Process
RESERVED
Ctrl-Break Check
RESERVED
Get Interrupt Vector
Get Disk Free Space
RESERVED
Get/Set Country Data
Create Directory
Remove Directory
Change Current Directory
Create Handle
Open Handle
Close Handle
Read Handle
Write Handle
Delete Directory Entry
Move File Pointer
Get/Set File Attributes
IOCTL Data
I0CTL Character
IOCTL Block
IOCTL Status
IOCTL Is Changeable
IOCTL Is Redirected Block
IOCTL Is Redirected Handle
IOCTL Retry
Duplicate File Handle
Force Duplicate File Handle
Get Current Directory
Allocate Memory
Free Allocated Memory

SYSTEM CALLS

MS-DOS Function Requests, Alphabetic OrderTable 1.18

DescriptionFunction

1-34

4AH
4B00H
4B03H
4CH
4DH
4EH
4FH

50H-53H
54H
55H
56 H
57 H
58H
59H
5 AH
5BH
5COOH
5C01H
5E00B
5E02H
5F02H
5F03H
5F04H
60H-61H
62H
63H-7FH

48H
03H
04E
OAH
5F04E
3BH
56H
OBE

Allocate Memory
Auxiliary Input
Auxiliary Output
Buffered Keyboard Input
Cancel Assign List Entry
Change Current Directory
Change Directory Entry
Check Keyboard Status

Set Block
Load and Execute Program
Load Overlay
End Process
Get Return Code Child Process
Find First File
Find Next File
RESERVED
Get Verify State
RESERVED
Change Directory Entry
Get/Set Date/Time of File
Get/Set Allocation Strategy
Get Extended Error
Create Temporary File
Create New File
Lock
Unlock
Get Machine Name
Printer Setup
Get Assign List Entry
Make Assign List Entry
Cancel Assign List Entry
RESERVED
Get PSP
RESERVED

SYSTEM CALLS

1-35

10H
3 EH
33H
39H
16H
3CH
5BH
26H
5AH
41H
13H
O6H
07H
02H
O9H
45H
4CH
4EH
4FH
OCH
46H
49H
5F02H
47 H
19H
2AH
1BH
36H
2FH
1CH
59H
23H
35H
5EO1H
3OH
62H
4DH
2 CH
54H
58H
38H
57H

Close File
Close Handle
Ctrl-Break Check
Create Directory
Create File
Create Handle
Create New File
Create New PSP
Create Temporary File
Delete Directory Entry
Delete File
Direct Console I/O
Direct Console Input
Display Character
Display String
Duplicate File Handle
End Process
Find First File
Find Next File
Flush Buffer, Read Keyboard
Force Duplicate File Handle
Free Allocated Memory
Get Assign List Entry
Get Current Directory
Get Current Disk
Get Date
Get Default Drive Data
Get Disk Free Space
Get Disk Transfer Address
Get Drive Data
Get Extended Error
Get File Size
Get Interrupt Vector
Get Machine Name
Get MS-DOS Version Number
Get PSP
Get Return Code Of Child Process
Get Time
Get Verify State
Get/Set Allocation Strategy
Get/Set Country Data
Get/Set Date/Time Of File

SYSTEM CALLS

1.10 INTERRUPTS

The following pages describe Interrupts 20H-27H.

1-37

14H
15H
4AH
2BH
1AH
25H
24H
2DH
2EH
OOH
5C01H
40H

Sequential Read
Sequential Write
Set Block
Set Date
Set Disk Transfer Address
Set Interrupt Vector
Set Relative Record
Set Time
Set/Reset Verify Flag
Terminate Program
Unlock
Write Handle

Note: Unless otherwise stated, all numbers in the system
call descriptions—both text and code—are in hexadecimal.

A detailed description of each system call follows. They
are listed in numeric order; the interrupts are described
first, then the function requests.

SYSTEM CALLS

(Interrupt 20H)Program Terminate

if

©

CS must
the Program

for

the Program

Exit AddressOffset

All file buffers are flushed to disk.

1-38

ta

The following exit addresses are restored from
Segment Prefix:

OAH
OEH
12H

provided only
prior to 2.0.

Return
None

01

Call
CS

Segment address of Program Segment
Prefix

91

Ci

CS

ts

ES

Program terminate
Ctrl-Break
Critical error

Interrupt
versions of

HAGS- | fUO.

20H is
MS-DOS

segment address of
interrupt is issued.

compatibility with
New programs should use

Function Request 4CH, End Process, which permits returning
completion code
CS to contain the segment address
Prefix.

Interrupt 20H terminates the current process and returns
control to its parent process. All open file handles are
closed and the disk cache is cleaned. CS must contain the

Segment Prefix when this

a
to the parent process and does not require

of the Program Segment

SYSTEM CALLS

Note

Example

message db "displayed by INT20H example". ODH, OAH,

begin:

code
start

1-39

II
I
I

I
I

I

I

display message
terminate
ends
end

;see Function 09H
;THIS INTERRUPT

Macro Definition: terminate macro
int 20H
endm

Close all files that have changed in length before
issuing this interrupt. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Functions 10H and 3EH for a description
of the Close File system calls.

The following program displays a message and returns to
MS-DOS. It uses only the opening portion of the sample
program skeleton shown in Figure 1.2:

SYSTEM CALLS

Function Request (Interrupt 21H)

cs

Example

To call the Get Time function:

1-40

Cl
as

si
a

Return
As specified in individual function

Other registers
As specified in individual function

;Get Time is Function 2CH
;MS-DOS function request

mov
int

ah,2CH
21H

Call
AH

Function number
CM

' PH. ■

to carry out the
See Section 1.11,

IlMl- i

Interrupt 21H causes MS-DOS to carry out the function
request whose number is in AH. See Section 1.11, "Function
Requests," for a description of the MS-DOS functions.

SYSTEM CALLS

Terminate Process Exit Address (Interrupt 22H)

it

1-41

never
■ MS-DOS.

user program;
must write your own

35H (Get
address of the standard

use Function Request 25H
Interrupt Vector) to change the Interrupt 22H entry in

This interrupt must never be issued by a
is issued only by MS-DOS. If you
terminate interrupt handler, use Function Request
Interrupt Vector) to get the
routine, save the address, then
(Set
the vector table to point to your routine.

When a program terminates, MS-DOS transfers control
routine that starts at the
entry in the vector table.
Ferment, it copies this
offset OAH.

to the
address in the Interrupt 22H

When MS-DOS creates a program
address into the PSP starting at

SYSTEM CALLS

Ctrl-Break Handler Address (Interrupt 23H)

or

1-42

(on
as

in ' the

When the interrupt occurs, all registers are set to the
value they had when the original call to MS-DOS was made.
There are no restrictions on what a Ctrl-Break handler can do
— including MS-DOS function calls — as long as the
registers are unchanged if IRET is used.

When a user types Control-C or Control-Break
LBM-compatibles), MS-DOS transfers control as soon
possible to the routine that starts at the address
Interrupt 23H entry in the vector table. When MS-DOS
creates a program segment, it copies the address currently
in the interrupt table into the PSP starting at offset OEH.

If the Ctrl-Break routine preserves all registers, it can end
with an IRET instruction (return from interrupt) to continue
program execution. If the user-written interrupt program
returns with a long return, the carry flag is used to
determine whether or not the program will abort. If the
carry flag is set, it will be aborted; otherwise, execution
will continue as with a return by IRET. If the user-written
Control-Break interrupt uses function calls 09H or OAH, then
Ctrl-Break, Return, and linefeed are output. If execution
continues with an IRET instruction, I/O continues from the
start of the line.

If Function 09H or OAH (Display String or Buffered Keyboard
Input) is interrupted by Ctrl-Break, the three-byte sequence
03H-ODH-OAH (usually displayed as C followed by a carriage
return) is sent to the display and the function resumes at
the beginning of the next line.

This interrupt must never be issued by a user program; it
is issued only by MS-DOS. If you must write your own
Ctrl-Break interrupt handler, use Function Request 35H (Get
Interrupt Vector) to get the address of the standard
routine, save the address, then use Function Request 25H
(Set Interrupt Vector) to change the Interrupt 23H entry in
the vector table to point to your routine.

SYSTEM CALLS

1-43

If a program creates a second PSP and executes a second
program — using Function 4B00H (Load and Execute Program),
for example — and the second program changes the Ctrl-Break
address in the vector table, MS-DOS restores the Ctrl-Break
vector to its original value before returning control to the
calling program.

SYSTEM CALLS

Critical Error Handler Address (Interrupt 24H)

1-44

it
own
35H

If a critical error occurs during execution
function request —■ this usually means a
MS-DOS transfers control to the routine that starts
address in the Interrupt 24H
When MS-DOS creates a program segment, it
address into the PSP starting at offset 12H.

This interrupt must never be issued by a user program;
is issued only by MS-DOS. If you must write your
critical error interrupt handler, use Function Request
(Get Interrupt Vector) to get the address of the standard
routine, save the address, then use Function Request 25H
(Set Interrupt Vector) to change the Interrupt 24H entry in
the vector table to point to your routine.

The following topics
Interrupt 24H routine,
stack.

Interrupt 24H is not issued if a failure occurs during
execution of Interrupt 25H (Absolute Disk Read) or Interrupt
26H (Absolute Disk Write). These errors are handled by the
error routine in COMMAND.COM that retries the disk
operation, then gives the user the choice of aborting,
retrying the operation, or ignoring the error.

requirements of an
codes, registers, and

describe the
the error

of an I/O
fatal disk error —

at the
entry in the vector table,

copies this

COMMAND.COM

SYSTEM CALLS

CcndLtions Upon Entry1.10.1

Requirements For An Interrupt 24H Handler1.10.2

prompt,

1-45

NOTE:
with this

issue
the

BP
segment address in SI) of a
describes the device on

There are source applications which will have trouble
as it changes the stack frame.

error handler
prompt and
user-written

After retrying an
Interrupt 24H.
interrupts disabled,
contains the offset
Device Header control block that
which the error occurred.

The error handler can do its processing now, but before it
does anything else it must preserve BX, CX, DX, DS, ES, SS,
and SP. Only function calls 01-0CH inclusive and 59H may be
used (if it uses any others, the MS-DOS stack is destroyed
and MS-DOS is left in an unpredictable state), nor should it
change the contents of the Device Header.

To use the MS-DOS critical error handler to issue the
"Abort, Retry, or Ignore" prompt and get the user's
response, the first thing a user-written critical error
handler should do is push the flags and execute a far call
to the address of the standard Interrupt 24H handler (the
user program tnat changed the Interrupt 24H vector should
have saved this address). A.fter the user responds to the

MS-DOS returns control to the user-written routine.

I/O error three times, MS-DOS issues
The interrupt handler receives control with

AX and DI contain error codes, and
(to the

SYSTEM CALLS

User Stack

followingtheeffect„

MS-DOS registers from issuing Interrupt 24H

ActionAL

1-46

0
1
2
3

IP
CS
FLAGS

IP
CS
FLAGS

Ignore the error.
Retry the operation.
Abort the program by issuing Interrupt 23H.
Fail the system call that is in progress.

From the original INT 21H
from the user to MS-DOS

AX
BX
CX
DX
SI
DI
BP
DS
ES

User registers at time of original
INT 21H

from the stack — and issue an IRET.
statement immediately following
that resulted in
unstable state until

the user-written error
MS-DOS responds according to the

If an Interrupt 24H routine returns to the user program
(rather than returning to MS-DOS), it must restore the user
program's registers — removing all but the last three words

Control returns to the
the I/O function request

the error. This leaves MS-DOS in an
a function request above OCH is called.

The user stack is in effect, and contains
(starting with the top of the stack):

The registers are set such that if
handler issues an IRET,
value in AL:

SYSTEM CALLS

(Interrupt 26H)Absolute Disk Write

AX

Warning

1-53

IIII

II

I

CI:
OX

Call
AL

Drive number
DS: BX

Disk Transfer Address
CX
Number of sectors

DX
Beginning relative sector

Return
AL

Error code if CF ■= 1
FLAGSL

CF = 0 if successful
1 if not successful

Bl

CM

CS

W

BS

EB

Bl

Cl .

< ’AH’

BH

CH

DH

It is strongly recommended that the use of this
function be avoided unless absolutely necessary.
Access to files should be done through the normal
MS-DOS function requests. There is no guarantee of
upward compatibility for the Absolute Disk I/O in
future releases of MS-DOS.

ip
FLAGS h

SYSTEM CALLS

Read Keyboard and Echo (Function 01H)

DX

Macro Definition: read_kbd_and_echo

Example

typed.
display

begin:

1-60

Call
AH = 01H

al
al.ODH
begin
OAH

Return
AL

Character typed

sr

SH

CM

OM

SL

Cl

character to be read from
character

fLun. j ax>*.~

cs

M

Ik

read_kbd_and_echo
print_char
cmp
jne
print_char
display_char OAB
jmp begin

;THIS FUNCTION
;see Function 05H
;is it a CR?
;no, print it
;see Function 05H
;see Function 02H
;get another character

The following program displays and prints characters as they
are typed. If Return is pressed, the program sends a Line
Feed-Carriage Return sequence to both the display and the
printer.

Function 01E waits for a character to be read from standard
input, then echoes the character to standard output and
returns it in AL. If the character is Ctrl-Break, Interrupt
23H is executed.

macro
mov ah, 01H
int 21H
endm

SYSTEM CALLS

Open File (Function OFH)

DX must contain the offset (from

(FCB) .

Current Block (offset OCH) is set to 0.

defaultsystem

1-79

Record Size (offset OEH) is set to the
of 128.

changed
This lets

(offset
set from

Cl
ox

Call
AH = OFH
DS:DX

Pointer to unopened FCB

IP

fuel- |

ir

Bl

>1

DJ

C3

O*

>1

H

BH

CH

OH

was 0 (current drive), it is
actual drive used (1=A, 2=B, etc.).

interfering with

If a directory entry for the file is found, AL returns 0 and
the FCB is filled as follows:

If the drive code
to the
you change the current drive without
subsequent operations on this file.

Return
AL

0 = Directory entry found
FFH - No directory entry found

File Size (offset 10H), Date of Last Write
14H), and Time of Last Write (offset 16H) are
the directory entry.

Function OFH opens a file.
the segment address in DS) of an unopened File Control Block

The disk directory is searched for the named file.

SYSTEM CALLS

Example

files theon

buffer

begin:

search_dir:

search_dirjmp

1-88

message
files
fcb

done:
all_done:

db
db
db
db
db

buffer
fcb

al.OFFH
a1l_done
files

The following program displays the number of
disk in drive B.

search_next
cmp
je
inc

set_dta
search_f irst
cmp
je
inc

"No f iles,'s0DH,0AH,"§"
0
2,"???????????"
26 dup (?)
128 dup (?)

fcb
al.OFFH
done
files

;see Function 1AH
;see Function 11H
;directory entry found?
;no, no files on disk
;yes, increment file
; counter
;THIS FUNCTION
;directory entry found?
;no
;yes, increment file
;counter
;check again

convert files,10,message ;see end of chapter
display message ;see Function 09H

SYSTEM CALLS

Disk Error Code in AX

AL

Location of error

Bits 3-5 of AH specify valid responses to the error prompt:

Bit Value Response

3

4

5

butis

1-47

00
01
10
11

0
1

0
1

Fail not allowed
Fail allowed

Ignore not allowed
Ignore allowed

Bits
2-1

0
1

MS-DOS area
File Allocation Table
Directory
Data area

Retry not allowed
Retry allowed

to
allowed, MS-DOS

not allowed,
The Abort response is always

If bit 7 of AH is 0, the error occurred on a disk drive.
contains the failing drive (0=A, 1=B, etc.). Bit 0 of AH
specifies whether the error occurred during a read or write
operation (O^read, l=write), and bits 1 and 2 of AH identify
the area of the disk where the error occurred:

specified but not
If Fail is specified but
to Abort.

If Retry is specified but not allowed, MS-DOS changes it
Fail. If Ignore
changes it to Fail.
MS-DOS changes it
allowed.

Note that the ignore option may cause unexpected results as
it causes MS-DOS to believe that an operation completed
successfully when it didn't.

SYSTEM CALLS

Other Device Error Code in AX

a ' bad memory

Meaning If SetBit

Devicedescription of thecompletea

1-48

If bit 15 is 0 (block device), the error was
image of the FAT.

See Chapter 2 for
Header control block.

0
1
2
3

Current standard input
Current standard output
Current null device
Current clock device

If bit 15 is 1 (character device), the error was on a
character device. DI contains the error code, the contents
of AL are undefined, and bits 0-3 of the attribute word have
the following meaning:

If bit 7 of AH is 1, either the memory image of the File
Allocation Table (FAT) is bad or an error occurred on a
character device. The device header pointed to by BP:SI
contains a word of attribute bits that identify the type of
device and, therefore, the type of error.

The word of attribute bits is at offset 04H of the Device
Header. Bit 15 specifies the type of device (0“block,
1“character) .

SYSTEM CALLS

Error Code in DI

The low byte contains the

Description

use

1-49

Error
Code

Attempt to write on write-protected disk
Unknown unit
Drive not ready
Unknown command
CRC error in data
Bad drive request structure length
Seek error
Unknown media type
Sector not found
Printer out of paper
Write fault
Read fault
General failure

0
1
2
3
4
5
6
7
8
9
A
B
C

The high byte of DI is undefined,
following error codes:

A user-written Interrupt 24H handler can use Function 59H
(Get Extended Error) to get detailed information about the
error that caused the interrupt to be issued.

SYSTEM CALLS

Absolute Disk Read (Interrupt 25H)

BI

01

The registers must contain the following:

1-50

CX
DX

AL
BX

Call
AL

Drive number
DS:BX

Disk Transfer Address
CX
Number of sectors

DX
Beginning relative sector

Br

SI

Di

BL

CL

DC

AM

BH

CH

OH

cs

p*
ss
ES

Drive number (0>=A, 1=B, etc.).
Offset of Disk Transfer Address
(from segment address in DS).
Number of sectors to read.
Beginning relative sector.

Return
AL

Error code if CF=1
FlagsL

CF “ 0 if successful
= 1 if not successful

SYSTEM CALLS

Warning

I

I
The

Note

1-51

I
I

I
I

I
I
I
I

I
I

I
I
I
I
I

I
I
I
I
I
I

If the disk operation was successful, the Carry Flag (CF) is •
0. If the disk operation was not successful, CF is 1 and AL
contains the MS-DOS error code (see Interrupt 24H earlier in
this section for the codes and their meanings).

It is strongly recommended that the use of this
function be avoided unless absolutely necessary.
Access to files should be done through the normal
MS-DOS function requests. There is no guarantee of
upward compatibility for the Absolute Disk I/O in
future releases of MS-DOS.

All registers except the segment registers are
destroyed by this call. Be sure to save any registers
your program uses before issuing the interrupt.

The system pushes the flags at the time of the call; they
are still there upon return. Be sure to pop the stack upon
return to prevent uncontrolled growth.

This interrupt transfers control to the device driver,
number of sectors specified in CX is read from the disk to
the Disk Transfer Address. Its requirements and processing
are identical to Interrupt 26H, except data is read rather
than written. Very little checking is done on the user's
input parameters; therefore, care must be used to make sure
they are reasonable. Failure to do this may cause strange
results or a system crash.

SYSTEM CALLS

Example

single-sided

prompt

;60 sectors

copy:

1-52

macro
mov
mov
mov
mov
int
popf
endm

db
db
dw
db

disk.buffer,num_sectors,first_sector
al .disk
bx.offset buffer
cx,num_sectors
dx,first_sector
25H

first
buffer

begin:

;THIS INTERRUPT
;see INT 26H

;do the next 60 sectors
;restore the loop counter

Macro Definition:
abs_disk_read

The following program copies the contents of a
disk in drive A to the disk in drive B.

display prompt
read_kbd
mov ex, 6

;see Function 09H
;see Function 08H
;copy 6 groups of

;60 sectors
;save the loop counter

0,buffer,60.first

"Source in A, target in B",0DH,0AH
"Any key to start. $"
0
60 dup (512 dup (?))

push ex
abs_disk_read
abs_disk_write 1.buffer ,60.first
add first,60
pop ex
loop copy

SYSTEM CALLS

The registers must contain the following:

<s

Note

1-54

IIIIII

AL
BX

CX
DX

Drive number (0=A, 1=B, etc.).
Offset of Disk Transfer Address
(from segment address in DS).
Number of sectors to write.
Beginning relative sector.

IIIi
II

call; they
Be sure to pop the stack upon

All registers except the segment registers are
destroyed by this call. Be sure to save any registers
your program uses before issuing the interrupt.

The system pushes the flags at the time of the
are still there upon return,
return to prevent uncontrolled growth.

This interrupt transfers control to MS-DOS. The number of
sectors specified in CX is written from the Disk Transfer
Address to the disk. Its requirements and processing are
identical to Interrupt 25H, except data is written to the
disk rather than read from it. Very little checking is done
on the user's input parameters; therefore, care must be
used to make sure they are reasonable. Failure to do this
may cause strange results or a system crash.

If the disk operation was successful, the Carry Flag (CF) is
0. If the disk operation was not successful, CF is 1 and AL
contains the MS-DOS error code (see Interrupt 24H for the
codes and their meanings).

SYSTEM CALLS

Example

;60 sectors

begin:

copy:

;see Function 2EH

1-55

disk
write.

equ
equ

0
1

on
ex ,6
ex

first
buffer

disk,buffer,num_sectors,first_sector
al,disk
bx,offset buffer
ex,num_sectors
dx,first_sector
26H

db
db
dw
db

off
on

prompt

;see INT 25H
;THIS INTERRUPT

a single-sided
disk in drive B, verifying each

;see Function 09H
;see Function 08H
;see Function 2EH
;copy 6 groups of 60 sectors
;save the loop counter

0.buffer,60.first

"Source in A, target in B",0DH,0AH
"Any key to start. $"
0
60 dup (512 dup (?))

display prompt
read_kbd
verify
mov
push
abs_disk_read
abs_disk_write 1 .buffer,60,first

;do the next 60 sectors
;restore the loop counter

Macro Definition:
abs_disk_write macro

mov
mov
mov
mov
int
popf
endm

The following program copies the contents of
in drive A to the

It uses a buffer of 32K bytes.

add first,60
pop ex
loop copy
verify off

SYSTEM CALLS

Terminate But Stay Resident (Interrupt 27H)

OK:

after

CS)

1-56

Return
None

program
program

Call
CS:DX

Pointer to first byte following
last byte of code.

w
Dt

CL
«■

BH

CH

PM

CS

w
IS

ss

FUCS. | fMOfc

up to 64K in size remain
It is often used to install

Interrupt 27H makes a program
resident after it terminates,
device-specific interrupt handlers.

for compatibility with
You should use Function

lets programs larger than 64K
resident and allows return information to be passed,

a resident program unless it is absolutely
that your program be compatible with pre-2.0

This interrupt is provided only
versions of MS-DQS prior to 2.0.
31H (Keep Process), which lets programs
remain
to install a resident
imperative that your
versions of MS-DOS.

DX must contain the offset (from the segment address in
of the first byte following the last byte of code in the
program. When Interrupt 27H is executed, the program
terminates and control returns to DOS, but the program is
not overlaid by other programs. Files left open are not
closed. When the interrupt is called, CS must contain the
segment address of the Program Segment Prefix (the value of
DS and ES when execution started).

SYSTEM CALLS

Example

1.11 FUNCTION REQUESTS

The following pages describe function calls 00H-62H.

1-57

is
is

a
The

mov
inc
int
endm

Macro Definition: stay_resident macro last_instruc
dx,offset last_instruc
dx
27H

to install
not shown.

Because the most common use of this call
machine-specific routine, an example
macro definition shows the calling syntax.

This interrupt must not be used by .EXE programs that are
loaded into high memory. It restores the Interrupt 22H,
23H, and 24H vectors, so it cannot be used to install new
Ctrl-Break or critical error handlers.

SYSTEM CALLS

Terminate Program (Function OOH)

SP

theit performs

the

Exit AddressOffset

All file buffers are flushed to disk.

1-58

31
Di

OAH
OEH
12H

Program terminate
Control-C
Critical error

Return
None

Call
AH = OOH
CS

Segment address of
Program Segment Prefix

Function OOH is called by Interrupt 20H;
same processing.

CS

M

33

£3

: AM

ISH

CK Ct

O.

IP

FLAGS"

The CS register must contain the segment address of
Program Segment Prefix before you call this interrupt.

The following exit addresses are restored from the specified
offsets in the Program Segment Prefix:

SYSTEM CALLS

I
Warning

Macro Definition: terminate_program

Example

and returns to

message db "Displayed by FUNCOOH example", 0DH,0AH,"$ JI

begin:

code
start

1-59

II
I
I

I
I

I
I
I
I

display message
terminate—program
ends
end

macro
xor
int
endm

ah, ah
21H

;see Function 09H
;THIS FUNCTION

Close all files that have changed in length before
calling this function. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Function 10H for a description of the
Close File system call.

The following program displays a message
MS-DOS. It uses only the opening portion of the sample
program skeleton shown in Figure 1.2.

SYSTEM CALLS

(Function 02H)Display Character
Al

OX

Function 02H sends standard output.

Macro Definition:

Example

characterslowercase to

;see Function 08Hbegin:

;don't convert

1-61

Return
None

display_char macro
mov
mov
int
endm

;don't convert
;convert to ASCII code
;for uppercase
;THIS FUNCTION
;get another character

character
dl.character
ah,02H
21H

read_kbd
cmp
jl
cmp
jg
sub

Call
AH = 02H
DL

Character to be displayed
BP

Si

Di

CL

W | J

cs
D»

ss
ES

BH

CH

the character in DL to
If Ctrl-Break is typed, Interrupt 23H is issued.

uppercase: display_char al
jmp begin:

FLAP.

The following program converts
uppercase before displaying them.

al,"a"
uppercase
al,"z"
uppercase
al,20H

SYSTEM CALLS

Auxiliary Input (Function 03H)

Macro Definition: aux_input

Example

end~of~file character (ASCII 26,

begin:

1-62

ex
IM

If a Ctrl-Break has been typed at console input, Interrupt
23H is issued.

Call
AH - 03H

;THIS FUNCTION
;end of file?
;yes, all done
;see Function OSH
;get another character

Return
AL

Character from auxiliary device

C8

88
IS

CM
• w

Function 03H waits
then returns the character in AL.
return a status or error code.

al.lAH
return

al

for a character from standard auxiliary,
This system call does not

aux_input
emp
je
print_char
jmp begin

macro
mov ah,03H
int 21H
endm

The following program prints characters as they are received
from the auxiliary device. It stops printing when an

or Control-Z) is received.

SYSTEM CALLS

(Function 04H)Auxiliary Output

a

the

Interrupt

Macro Definition: aux_output

Examp1e

to

Function OAHstring db

begin:

1-63

Funct ion
auxiliary,
error code.

bytes
device.

sends
system

Return
None

standard
or

character
call

macro
mov i
mov
int
endm

04H
This

CM
PH

If a Ctrl-Break has been typed at console input,
23H is issued.

get_s tring
cmp
je
mov
mov

i character
dl, character
ah,04H
21H

;see Function OAH
;null string?
;yes, all done
;get string length
;set index to 0
;THIS FUNCTION
;bump index
;send another character
;get another string

Call
AH = 04H
DL

Character for auxiliary device

The following program gets a
from the keyboard,

It stops when a

CS

80 , string
stringl1],0
return
ex, word ptr string[l]
bx,0

send_it: aux_output string[bx+2]
inc bx
loop send_it
jmp begin

81 dup(?) ;see

in DL to
does not return a status

series of strings of up to 80
sending each to the auxiliary

null string (CR only) is typed.

SYSTEM CALLS

Print Character (Function 05H)

u

I

If

Macro Definition:

Example

theon

0db

print_it:

1-64

ax
RH
CX
DI

mov
mov

add
push
mov

bl
bl,126

Return
None

character
has
This

ex,60
bl,33

dl,character
ah,05H
21H

Call
AH - 05H
DL

Character for printer

ex
,, DB ■ ■ ■■

5S
ss

BH
CM

The following program prints
printer.

line_num

begin:
start_line:

b1,1ine_num
ex
ex ,80

print_char bl
inc
emp

;print 60 lines
;first printable ASCII
;character (!)
;to offset one character
;save number-of-lines counter
;loop counter for line
;THIS FUNCTION
;move to next ASCII character
;last printable ASCII

print_char macro character
mov
mov
int
endm

Function 05H sends the
printer. If Ctrl-Break
Interrupt 23H is issued,
return a status or error code.

a walking test pattern
It stops if Ctrl-Break is pressed.

in DL to the standard
been typed at console input,
function request does not

SYSTEM CALLS

print_itno_reset:

1-65

1ine_num
ex
start_line

jcharacter (~)
;not there yet
•.start over with (!)

;print another character
jearriage return
;line feed
;to offset 1st char, of line
jrestore L-of-lines counter
•.print another line

jl
mov

no_reset
bl,33

loop
print_char ODH
print_char OAH
inc
POP
loop

SYSTEM CALLS

Direct Console I/O (Function 06H)

xuc». | <V<Mk

the value in DL whenon

ActionValue in DL

FFH

Not FFH

This function does not check for Ctrl-Break.

Macro Definition: dir_console_io

1-66

The character in DL is sent to standard
output.

macro
mov i
mov
int
endm

CS
OX:

i switch
dl,switch
ah,06H
21H

Call
AH - 06H
DL

See text

SI
CH

AM
9M
CM
PH

C*
P«
ss
ES

The action of Function 06H depends
the function is called:

If a character has been read from standard
input, it is returned in AL and the zero flag
is cleared (0); if a character has not been
read, the zero flag is set (1).

Return
AL

If DL = FFH before call,
then zero flag not set means AL
has character from standard input.
Zero flag set means there was not
a character to get, and AL “ 0

SYSTEM CALLS

Example

,'00:00:00.00",0DH,0AH,"$db

0,0,0,0
; see

FFH

stop:
begin

1-67

begin:
read_clock:

sets
the

the
time.
when

time

read_kbd
jmp

cmp
jne
j”p

ch,time
cl,time[3]
dh,time[6]
dl,time[9]

time

set_time
get_time
byte_to_dec
byte_to_dec
byte_to_dec
byte_to_dec
display
dir_console_io

al,0
stop
read_clock

;see Function 2DH
Function 2CH

;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;THIS FUNCTION
; character typed?
;yes, stop timer
;no, keep timer
;running
;see Function 08H
;start over

” ;see Function 09H
;for explanation of $

The following program sets the system clock to 0 and
continuously displays the time. When any character is
typed, the display freezes; when any character is typed
again, the clock is reset to 0 and the display starts again.

SYSTEM CALLS

(Function 07H)Direct Console Input

c«

Macro Definition: dir_console_input

Example

begin:

1-68

password
prompt

BZ
M
0X

db
db

Call
AH = 07H

standard
This function does not echo

Return
AL

Character from keyboard

as
a*

cmp
je
mov
inc
loop get_pass

a password (8 characters
characters into a string without

8 dup(?)
"Password: $"

maximum) and
echoing them.

;see Function 09H for
jexplanation of $
;see Function 09H
;maximum length of password
;so BL can be used as index
;THIS FUNCTION
;was it a CR?
;yes, all done
;no, put character in string
;bump index
;get another character

display prompt
mov ex,8
xor bx,bx

get_pass: dir_console_input
al.ODH
return
password[bx],al
bx

The following program prompts for
places the

Function 07H waits for a character to be read from
input, then returns it in AL.
the character or check for Ctrl-Break. (For a keyboard input
function that echoes or checks for Ctrtl-Break, see Function
01H or 08H.)

macro
mov ah„07H
int 21H
endm

SYSTEM CALLS

Read Keyboard (Function 08H)

Cm

Macro Definition: read_kbd

Example

theplaces

II

begin:

1-69

password
prompt

db
db

Call
AH = 08H

macro
mov
int
endm

ah,08H
21H

Return
AL

Character from keyboardca

al.ODH
return
password[bx],al
bx

loop get_pass

;see Function 09H
;for explanation of $
;see Function 09H
;maximum length of password
;BL can be an index
;THIS FUNCTION
;was it a CR?
;yess all done
;no, put char, in string
;bump index
;get another character

8 dup(?)
"Password: $

a password

Function 08H waits
input, then returns it
Interrupt 23H is executed.

(For

for a character to be read from standard
in AL. If Ctrl-Break is pressed,

This function does not echo the
character. (For a keyboard input function that echoes the
character or checks for Ctrl-Break, see Function 01B.)

maximum) and
echoing them.

display prompt
mov ex,8
xor bx,bx

get__pass: read_kbd
emp
je
mov
inc

The following program prompts for a password (8 characters
characters into a string without

SYSTEM CALLS

Display String (Function 09H)
42

84

(8

Macro Definition: display

Example

theof

begin:

1-70

Cl
on

The following program displays the hexadecimal code
key that is typed.

table
result

db
db

Return
None

macro
mov
mov
int
endm

string
dx,offset string
ah,09H
21H

Call
AH - 09H
DS:DX

Pointer to string to be displayed
O;

String that ends
DX must contain the

ca

"0123456789ABCDEF"
" - OOH",0DH,0AH, ;see text for

;explanation of $
read_kbd_and_echo ;see Function 01H
xor ah,ah ;clear upper byte
convert ax,16,result[3] ;see end of chapter
display result ;THIS FUNCTION
jmp begin ;do it again

Function 09H sends to standard output a
with (the $ is not displayed),
offset (from the segment address in DS) of the string.

SYSTEM CALLS

Byte Contents

1

2

3-n

of

1-71

II
CM

Return
None

must
an

CB
DI

Buffer; must be at least as long as the number
in byte 1.

Cl •

©L

FLAGS- | HAOt*

Ck

few ■
IS

SB

Actual number of characters typed, not counting
the carriage return (the function sets this
value).

Call
AH = OAH
DS:DX

Pointer to input buffer

MS-DOS sets the second byte of the buffer to the number
characters read (not counting the carriage return).

placed in the
Return (ODH) is

the

Function OAH gets a
contain the offset

Characters are read from standard input and
buffer beginning at the third byte until a
read. If the buffer fills to one less than the maximum,
additional characters read are ignored and 07H (Bel) is sent
to standard output until a Return is read. If the string is
typed at the console, it can be edited as it is being
entered. If Ctrl-Break is typed, Interrupt 23H is issued.

Maximum number of characters in buffer, including
the carriage return (you must set this value).

Buffered Keyboard Input (Function OAH)
; AH

• H
CH

. OH

string from standard input. DX
the offset (from the segment address in DS) of

input buffer of the following form:

SYSTEM CALLS

Macro Definition: get_s tring

Example

string from

db ODH.OAHcrlf

begin:

chars_entered

display_screen:

display_line:

buffer[bx+2]
al,50H

;see Function 09H
;get line counter
jdisplay 1 more line

;maximum length
;number of chars.
;16 chars + CR
;how many strings
;fit on line

;times string fits
;on line
;clear remainder

counter

1
?
17 dup (?)
0

macro
mov
mov
mov
int
endm

;THIS FUNCTION
;so byte can be
;used as index
;get string length
;see Function 09H
;columns per line

limit,string
dx,offset string
String,limit
ah,0AH
21H

mov bl,chars_entered
mov
mov
cbw
div

xor
mov
mov
push ex
mov
display string
loop display_line
display crlf
pop ex
loop display_screen

ah,ah
strings_per_line,ax ;save col.
ex,24 ;row counter

;save it
ex,strings_per_line ;get col. counter

;see Function 09H

label byte
db
db
db

buffer
max_length
chars_entered
string
strings_per_line dw

The following program gets a 16-byte (maximum)
the keyboard and fills a 24-line by 80-character screen with
it.

get_string 17,buffer
xor bx,bx

SYSTEM CALLS

Check Keyboard Status (Function OBH)

characters in type-ahead

are
input

If

Macro Definition: check_kbd_status

Example

time until

00:00:00.00",ODH,OAH, ittime db

begin:

1-73

Si

Cl
OB

al,OFFH
return
begin

Call
AH = OBH

macro
mov
int
endm

ah,OBH
21H

AM

OH

CH

AM

Bl

Cl

tx.

The following program continuously displays the
any key is pressed.

FLAGS- | FLAGS*

Cl

SS

ft

Return
AL

FFH = characters in type-ahead
buffer
0 = no

buffer

returns FFH;
buffer, Interrupt 23H is executed.

get_time
byte_to_dec ch,time
byte_to_dec cl,time(3]
byte_to_dec dh,time[6]
byte_to_dec dl,time[9]
display time
check_kbd_status
cmp
je
jmp

;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;THIS FUNCTION
;has a key been typed?
;yes, go home
;no, keep displaying
;time

Function OBH checks whether characters are available from
standard input (if standard input has not been redirected,
the type-ahead buffer). If characters are available, AL

if not, AL returns 0. If Ctrl-Break is in the

SYSTEM CALLS

Flush Buffer, Read Keyboard (Function OCH)

OCH

1. 6, 7, 8,

Any other value — No further processing; AL returns 0.

Macro Definition: f lush_and_read_kbd

Example

1-74

AX
■X:
ex.
OX:

al,switch
ah,OCH
21B

Return
AL

0 “ Type-ahead buffer was
flushed; no other
processing performed.

SI
D«

• -
BL
Ct
u.

AH- ■
BH
CH
PH

macro switch
mov
mov
int
endm

IF

fIMl- | FMOfa

cs
p* '
t«

»

standard
i redirected, Function OCH empties the
Further processing depends on the value

in AL when the function is called.

Call
AH -
AL

1, 6, 7, 8, or OAH » the
corresponding function
is called.
Any other value = no
further processing.

Function OCH empties the standard input buffer (if
input has not been
type-ahead buffer). 1

The following program both displays and prints characters as
they are typed. If Return is pressed, the program sends
Carriage Return-Line Feed to both the display and the
printer.

or OAH — The corresponding MS-DOS function
is executed.

SYSTEM CALLS

begin:

1-75

f lush_and_read_kbd 1
al
al.ODH
begin
OAH

print_char
ctnp
jne
print_char
display_char OAH
jmp begin

;THIS FUNCTION
;see Function 05H
;is it a CR?
;no, print it
;aee Function 05H
;eee Function 02H
;get another character

SYSTEM CALLS

Reset Disk (Function ODH)

to

Macro Definition:

Example

and selects

begin:

1-76

The following program flushes all file buffers
disk A.

reset_disk
select_disk "A"

Call
AH - ODH

Return
None

reset_disk macro
mov
int
endm

ah,ODH
21H

This function request does not update directory entries;
you must close files that have changed to update their
directory entries (see Function 10H, Close File).

Function ODH flushes all file buffers to ensure that
internal buffer cache matches the disks in the drives,
writes out buffers that have been modified, and marks
buffers in the internal cache as free,
request is normally used to force a known
system; Ctrl-Break interrupt handlers should
function.

the
It

and marks all
This function
state of the

call this

SYSTEM CALLS

Select Disk (Function OEH)

DI

Note

Macro Definition:

1-77

I
I
I
I
I
I

I

I
I
I
I
I

dl,disk[-64]
ah,OEH
21H

BP

SI

DI

C$

Of

ss
ES

BL

Ct

BH

CH

OK

select_disk macro disk
mov
mov
int
endm

Call
AR = OEH
DL

Drive number
(0 = A, 1 «= B, etc.)

Return
AL

Number of logical drives

For future compatibility, treat the value returned in
AL with care. For example, if AL returns 5, it is not
safe to assume drives A, B, C, D, and E are all valid
drive designators.

ip
Fl>CI. | HXFt.

the drive specified in
drive. AL

Function OEH selects
etc.) as the current
drives.

DL (0=A, 1=B,
returns the number of

SYSTEM CALLS

Example

drivethe currentlynot

begin:

;THIS FUNCTIONselect_b:

1-78

"B"

;see Function 19B
jdrive A: selected?
;yes, select B
;THIS FUNCTION

The following program selects
selected in a 2-drive system.

current_disk
cmp al, OOH
je select_b
select_disk "A"
jmp return
select_disk

SYSTEM CALLS

it

theor

Example

or
SIfcb

buffer

begin:
read_line:

print_it:

1-80

db
db
db

2,"TEXTFILEASC
26 dup (1)
128 dup (?)

file,
Before

ex,80H
si , si

mov
mov
int
endm

21H).
correct,

set_dta
open
read_seq
emp
je
emp
jg

prints the
it encounters an

Macro Definition: open macro fcb
dx,offset fcb
ah.OFH
21H

;see Function 1AB
;THIS FUNCTION
;see Function 14H
;end of file?
;yes, go home
;more to come?
;no, check for partial
; record
•.yes, print the buffer
;set index to 0
;see Function 05H
;bump index
;print next character

buffer
fcb

fcb
al,02H
all_done
al.OOH
check_more

If a directory entry for the file is not found, or if
file has the hidden or system attribute, AL returns FFH.

file named TEXTFILE.ASC
If a partial record is in

routine that
until

Control-Z).

the
the Current Record field (offset 20H).

random disk operation on the file, you must set
(offset 21H). If the default

not correct, set it to the

The following program prints the
that is on the disk in drive B.
the buffer at end-of-file, the
partial record prints characters
end-of-file mark (ASCII 26,

Before performing a sequential disk operation on
you must set
performing a
the Relative Record field
record size (128 bytes) is
correct length.

mov
xor
print_char buffer[si]
inc si
loop print_.it

print_.it

SYSTEM CALLS

check_more:

find_eof:

loop
;see Function 10Hall_done:

1-81

;read another record
;part. record to print?
;no
;yes, print it
;set index to 0
;end-of-file nark?
;yes
;aee Function 05H
;bump index to next
{character

jmp
cmp
jne
mov
xor
cmp
j®

find_eof
close fcb

read_line
al ,03H
all_done
ex,80H
si, si
buffer[si],26
all_done

print_char buffer[si]
inc si

SYSTEM CALLS

Close File (Function 10H)

sr

FCB.

changed

AL returns

1-82

This function must be called after
update the directory entry.

CI:
01.

mov
mov
int
endm

Call
AH = 10H
DS:DX

Pointer to opened FCB

IF
mat. | RXK.

si
CH

cs
-PC
IE
El

a-
W. ’:

Macro Definition: close macro fcb
dx,offset fcb
ah,10H
21H

The
FCB, and AL returns 0.

If a directory entry for the file is not found,
FFH.

Return
AL

0 = Directory entry found
FFH = No directory entry found

3H
CH

a file is changed to
It is strongly advised that any

FCB (even one for a file that hasn't been changed) be closed
when access to the file is no longer needed.

Function 10H closes a file,
the segment address in
directory is searched for the file named in the FCB.
directory entry

DX must contain the offset (to
DS) of an opened FCB. The disk

If a
for the file is found, the location of the

file is compared with the corresponding entries in the
directory entry is updated, if necessary, to match the

SYSTEM CALLS

Example

see

n

buffer

begin:

all_done:

1-83

message
f cb

db
db
db
db

•I'

2,"MODI
26 dup (?)
128 dup (?)

;see Function 1AH
;see Function OFH
;see Function 14H
;is first byte FFH?
;no
;see Function 09B
;THIS FUNCTION

named
message if it

'Not saved in ASCII format",0DH,OAH,"$
BAS"

first byte of the file
if it is FFH, and prints a

The following program checks the
MODI.BAS in drive B to

is.

set_dta buffer
open fcb
read_seq fcb
cmp buffer,OFFH
jne all_done
display message
close fcb

SYSTEM CALLS

Search for First Entry (Function UH)

at

w

Directory entry found

in isthe FCB not

is

1-84

a

ex
OS

the
DX i

found a
or
as

nAtu. j nxMh.
ex

- P* -V
as
■a

If a directory entry for the filename
found, AL returns FFH.

Return
AL
0 “ 1
FFH “ No directory entry found

Function 11H searches
matching filename.

the Disk
the next 5 bytes are set to

to the value of the
The remaining 33 bytes

(drive number

If the search FCB was extended, the first byte at
Transfer Address is set to FFH,
OOH, and the following byte is set
attribute byte in the search FCB.
are the same as the result of the normal FCB
and 32 bytes of directory entry).

Call
AH = UH
DS:DX

Pointer to unopened FCB

If the search FCB was normal, the first byte at the Disk
Transfer Address is set to the drive number used (1“A, 2=B,
etc.) and the next 32 bytes contain the directory entry.

t disk directory for the first
must contain the offset (from the

segment address in DS) of an unopened FCB. The filename in
the FCB can include wildcard characters. To search for
hidden or system files, DX must point to the first byte of
an extended FCB prefix.

If a directory entry for the filename in the FCB
AL returns 0 and an unopened FCB of the same type (normal
extended) is created at the Disk Transfer Address
follows:

SYSTEM CALLS

To

(08H), thelabel only

Macro Definition:

Example

;see Function 1AHbufferset_dta

1-85

The following program verifies the existence of
REPORT.ASM on the disk in drive B.

db
db
db
db
db
db

yes
no
crlf
f cb

mov
mov
int
endm

buffer

begin:

is
04H,

file,
10H), or

search_first macro fcb
dx,offset fcb
ah.HH
21H

ASM"

search all
the attribute byte to 16H (hidden file and system
directory entry).

"FILE EXISTS.$"
"FILE DOES NOT EXIST.$"
0DH,0AH,"$"
2,"REPORT .
26 dup (?)
128 dup (?)

If the attribute field is volume
volume label entry is searched.

a file named

If Function 12H (Search for Next Entry) is used to continue
searching for matching filenames, the original FCB at DS:DX
must not be altered or opened.

The attribute field is the last byte of the extended FCB
fields that precede the FCB (see "Extended FCB" earlier in
this chapter). If the attribute field is zero, only normal
file entries are searched. Directory entries for hidden
files, system files, volume label, and subdirectories are
not searched.

If the attribute field is hidden file, system file, or
directory entry (02H, 04H, or 10H), or any combination of
those values, all normal file entries are also searched.

directory entries except the volume label, set
file and

SYSTEM CALLS

1-86

al.OFFH
not_there
yes
continue
no
crlf

;see Function 09H
;see Function 09H

search_first fcb
cmp
je
display
jmp

not_there: display
continue: display

;THIS FUNCTION
jdirectory entry found?
;no
;see Function 09H

SYSTEM CALLS

Search for Next Entry (Function 12H)

a

tx

FFH

in isthe FCB not

is

1-87

■a
ca
DI

dx,offset fcb
ah,12H
21H

CH
DM

cs
M '
It
II

Macro Definition: search_next macro fcb
mov
mov
int
endm

If a directory entry for the filename
found, AL returns FFH.

Call
AH = 12H
DS:DX

Pointer to unopened FCB

Return
AL

0 = Directory entry found
■= No directory entry found

(Search for First
directory entries that match a

It searches the
DX must contain

address in DS) of an FCB
call to Function 11H.

Function 12H is used after Function 11H
Entry) to find additional
filename that contains wildcard characters,
disk directory for the next matching name,
the offset (from the segment address in DSJ of an
previously specified in a call to Function 11H. To search
for hidden or system files, DX must point to the first byte
of an extended FCB prefix that includes the appropriate
attribute value.

If a directory entry for the filename in the FCB is found,
AL returns 0 and an unopened FCB of the same type (normal or
extended) is created at the Disk Transfer Address (see
Function 11H for a description of how the unopened FCB is
formed).

SYSTEM CALLS

Delete File (Function 13H)

If no matching directory entry is found, AL returns FFH.

Do not delete open files.

Macro Definition: delete

1-89

>1

e»

cs.
Oa

Call
AH = 13H
DS:DX

Pointer to unopened FCB

macro
mov
mov
int
endm

Return
AL
0 ■= Directory entry found
FFH = No directory entry found

f cb
dx,offset fcb
ah,13H
21H

CS
— ■ '

st
■s

Cl
• «. ■

• H

CK

piAot. |

If a matching directory entry is found, AL returns 0 and the
entry is deleted from the directory. If a wildcard
character is used in the filename, all files which match
will be deleted.

Function 13H deletes
(from the segment
directory is searched for

a file. DX must contain the offset
address in DS) of an unopened FCB. The

a matching filename. The filename
in the FCB can contain wildcard characters.

SYSTEM CALLS

Example

B that was

compare:

next:

all_done:

1-90

The following program deletes each file on the disk in drive
last written before December 31, 1982.

al,OOH
compare
files,0
all_done

ex,year
next
dl.month
next
dh,day
next

buffer
files

year
month
day
files
message
f cb

dw
db
db
db
db
db
db
db

emp
jne
j“P

buffer

begin:

search_next feb
emp
je
emp
je

",ODH,OAH,

1982
12
31
0
"NO FILES DELETED.
2,"???????????"
26 dup (?)
128 dup (?)

;see Function 1AH
;see Function 11H
jdirectory entry found?
;yes
;no, no files on disk
;see end of chapter
;next several lines
;check date in directory
;entry against date
jabove & check next file
; if date in directory
;entry isn't earlier.
;THIS FUNCTION
;bump deleted-files
;counter
; see Function 12H
jdirectory entry found?
;yes, check date
;any files deleted?
;no, display NO FILES
;message.

convert files,10.message ;see end of chapter
display message ;see Function 09H

set_dta buffer
search_first feb

al.OFFH
compare
all_done

convert_date buffer
emp
jg
emp
jg
emp
jge
delete
inc

SYSTEM CALLS

Sequential Read (Function 14H)

cs CM

the

AL returns a code that describes the processing:

MeaningCode

0 Read completed successfully.

data in the record.1

2

3

1-91

Q.

Not enough room at the Disk Transfer Address
to read one record; read canceled.

The length of the record is taken from the Record Size field
(offset OEH) of the FCB.

Return
AL

OOH = Read completed successfully
01H = EOF
02H <= DTA too small
03H = EOF, partial record

>uqs- | fUM»

CS

P* •

as

is

End-of-file; no

must
an opened FCB. The record pointed to by the Current Block
field (offset OCH) and Current Record (offset 20H) field is
loaded at the Disk Transfer Address, then the Current Block
and Current Record fields are incremented.

End-of-file; a partial record was read and
padded to the record length with zeros.

Call
AH = 14B
DS:DX

Pointer to opened FCB

Function 14H reads a record from the specified file. DX
contain the offset (from the segment address in DS) of

The record pointed to by the

SYSTEM CALLS

Example

fcb

read_line:

check_more:

find_eof:

all_done:

1-92

db
db
db

jmp
cmp
jne
xor
cmp
je

dx,offset fcb
ah,14H
21H

buffer

begin:

characters
or

no more to display
;see Function 02H

;bump index
;check next character
;see Function 10H

si
find_eof

close fcb

Macro Definition: read_seq macro fcb
mov
mov
int
endm

set_dta
open
read_seq
cmp
je
cmp
jg

2,"TEXTFILEASC"
26 dup (?)
128 dup (?),"$"

buffer
fcb

fcb
al,02H
all_done
al,OOH
check_more

display buffer
read_line
al,03H
all_done
si, si

;see Function 1AH
;see Function OFH
;THIS FUNCTION
;DTA too small?
>yes
;end-of-file?
;yes
;see Function 09H
;get another record
;partial record in buffer?
;no, go home
;set index to 0

buffer(si],26 ;is character EOF?
all_done ;yes,

display_char buffer[si]
inc
jmp

until it
Control-Z).

The following program displays the file named TEXTFILE.ASC
that is on the disk in drive B; its function is similar to
the MS-DOS Type command. If a partial record is in the
buffer at end of file, the routine that displays the partial
record displays characters until it encounters an
end-of-file mark (ASCII 1AH,

SYSTEM CALLS

Sequential Write (Function 15H)

Cl

cs

Address

or

AL returns a code that describes the processing:

MeaningCode

Write completed successfully.0

Disk full; write canceled.1

2

1-93

BS

Cl
DI

Not enough room at the Disk Transfer Address
to write one record; write canceled.

Write completed successfully
01H ■= Disk full
02H = DTA too small

Return
AL

OOH

a
offset

FLAGB- I

Function 15H writes
contain the
opened FCB. The record pointed to by Current
(offset OCH) and Current Record field (offset
written from the Disk Transfer Address, then the
Block and Current Record fields are incremented.

record to the specified file. DX must
(from the segment address in DS) of an

The record pointed to by Current Block field
Current Record field (offset 20H) is

Current

Call
AH = 15H
DS:DX

Pointer to opened FCB

written to an
disk when it contains
closed, or a Reset
issued.

Record Size
If the Record Size is less

Disk Transfer Address is
MS-DOS writes the buffer to

is

The record size is taken from the value of the
field (offset OEH) of the FCB.
than a sector, the data at the

to an MS-DOS buffer;
a full sector of data, or the file
Disk system call (Function ODH) is

SYSTEM CALLS

Example

OEHequ

«8fcb2

buffer

write_it:

all_done:

1-94

db
db
db
db
db

write_seq
cmp
jne
search_next
cmp
je
jmp
close

al.OFFH
all_done
fcbl

dx,offset fcb
ah,15H
21H

buffer

begin:

record_size

fcbl

fcbl
al,0
all_done
fcb2
al.FFH
all_done
write_it
fcbl

Macro Definition: write_seq macro fcb
mov
mov
int
endm

set_dta
search_first fcb2
cmp
je
create
mov

joffset of Record Size
field in FCB

TMP"

;see Function 1AH
;see Function 11H
jdirectory entry found?
;no, no files on disk
;see Function 16H

fcbl[record_size],12
;set record size to 12
;THIS FUNCTION
;write successful?
;no, go home
;see Function 12H
jdirectory entry found?
;no, go home
;yes, write the record
;see Function 10B

2,"DIR
26 dup (?)
2,"???????????
26 dup (?)
128 dup (?)

The following program creates a file named DIR.TMP on the
disk in drive B that contains the disk number (0-A, 1”B,
etc.) and filename from each directory entry on the disk.

SYSTEM CALLS

Create File (Function 16H)

CH a

nxcu. I njkotk.

file.

extended

1-95

w
tx

Di

for
if

mov
mov
int
endm

Call
AH = 16H
DS:DX

Pointer to unopened FCB

You can assign
FCB with the
(see

Macro Definition: create macro fcb
dx,offset fcb
ah,16H
21H

offset
MS-DOS

an entry that matches the
there is no matching entry, an

Return
AL

OOH - Empty directory found
FFH " No empty directory

available

If MS-DOS finds a matching entry, it opens the file and sets
the length to zero (in other words, if you try to create a
file that already exists, MS-DOS erases it and creates a
new, empty file). If MS-DOS doesn't find a matching entry
but does find an empty directory entry, it opens the file
and sets its length to zero. In either case, the file is
created and AL returns 0. If MS-DOS doesn't find a matching
entry and there is no empty entry, the file is not created
and AL returns FFH.

Function 16H creates a file. DX must contain the
(from the segment address in DS) of an unopened FCB.
searches the directory for an entry that
specified filename or,
empty entry.

an attribute to the file by using an
attribute byte set to the appropriate value

"Extended FCB" in Section 1.8.1).

SYSTEM CALLS

Example

OEHrecord_size equ

f cbl

fcb2

write_.it:

all_done:

1-96

db
db
db
db
dbbuffer

begin: set_dta
search_first
cmp
je
create
mov

write_seq fcbl
cmp a1,0
jne all_done

fcb2
al,FFH
all_done
write_it
fcbl

search_next
cmp
je
jmp
close

buffer
fcb2

al.OFFH
all_done
fcbl
fcbl[record_size],12

;set record size to 12
;see Function 15H
;write successful
;no, go home
;see Function 12H
jdirectory entry found?
;no, go home
;yes, write the record
;see Function 10H

;offset of Record Size
field of FCB

2,"DIR TUP"
26 dup (?)
2 "???????????"
26 dup (?)
128 dup (?)

a file named

;see Function 1AH
;see Function 11H
;directory entry found?
;no, no files on disk
;THIS FUNCTION

The following program creates a file named DIR.TMP on
disk in drive B that contains the disk number (0 » Aa 1
etc.) and filename from each directory entry on the disk.

DIR.TMP
» A 0

the
- 8,

write_.it

SYSTEM CALLS

Rename File (Function 17H)

DX

is

1-97

•«:
CX:
01

Call
AH = 17H
DS:DX

Pointer to modified FCB

Bl

CM

CL

DC

Am

•H

CH

DM

cs
Of

ss
ES

Return
AL

OOH = Directory entry found
FFH = No directory entry
found or destination already
exists

r
bum. |

Function 17H changes
contain the offset

rename a hidden
If MS-DOS does not

finds an entry for the

This function request cannot be used to
file, a system file, or a subdirectory,
find a matching directory entry or
second filename, AL returns FFH.

must
an

in, followed
DOS searches the disk
the first filename,

the name of an existing file.
(from the segment address in DS) of

FCB with the drive number and filename filled
by a second filename at offset 11H.
directory for an entry that matches
which can contain wildcard characters.

If MS-DOS finds a matching directory entry and there is no
directory entry that matches the second filename, it changes
the filename in the directory entry to match the second
filename in the modified FCB and AL returns zero. If a
wildcard character is used in the second filename, the
corresponding characters in the filename of the directory
entry are not changed.

SYSTEM CALLS

Example

of a file andname a

fcbrename

1-98

db
db
db
db
db

15,reply
cr If
re

fcb
prompt1
prompt2
reply
crlf

begin:

dx,offset fcb
ah,17H
21H

37 dup (?)
"Filename: $"
"New name: $"
15 dup(?)
ODH.OAH,"?"

Macro Definition: rename macro fcb,newname
mov
mov
int
endm

The following program prompts for the
the file.

;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 09H
;see Function OAH
;see Function 09H

:ply[2],fcb[16]
;see Function 29H
;THIS FUNCTION

new name, then renames

display promptl
get_string 15,reply
display crlf
parse reply[2],fcb
display prompt2
get_s tring
display
parse

SYSTEM CALLS

Get Current Disk (Function 19H)

DS

It

(0=A,in 1=B,the current drive AL

Macro Definition: current_disk

Example

The selectedcurrently

begin:

; see

1-99

•l
Cl .

as
»&

disk_b:
all_done:

db
db

Call
AH = 19H

message
crlf

macro
mov
int
endm

ah,19H
21E

Function 19H returns
etc.) .

w
DI

"Current disk is
ODH,OAH,"$"

the
2-drive system.

;see Function 02H
Function 09H

;see Function 09H
;THIS FUNCTION
;is it disk A?
;no, it's disk B:
;see Function 02H

Return
AL

Currently selected drive
(0 = A, 1 = B, etc.)

CS

following program displays
(default) drive in a

display message
current_disk
cmp a1,0OH
jne disk_b
display_char "A"
jmp all_done
display_char "B"
display crlf

SYSTEM CALLS

Get Default Drive Data (Function 1BH)

sr

Sectors per cluster
CX

Bytes per sector
DX

in
drive.

Type of DriveValue

1-102

AL
CX
DX

FF
FE
FD
FC
F9
F8

BX
CX
DX

Call
AH = 1BH

8 sectors per track.
8 sectors per track.
9 sectors per track.
9 sectors per track.
15 sectors per track.

the
which

SI

04

AM

BH

CH

CH

BL

Cl

IF

ex
■ p»

ss
cs

The number of sectors in a cluster (allocation unit).
The number of bytes in a sector.
The number of clusters on the disk.

Double-sided diskette,
Single-sided diskette,
Double-sided diskette,
Single-sided diskette,
Double-sided diskette,
Fixed disk.

Clusters per drive
DS: BX

Pointer to FAT ID byte

Return
AL

Function 1BH retrieves data about the disk in the default
The data is returned in the following registers:

BX returns the offset (to the segment address in DS) of
first byte of the File Allocation Table (FAT),
identifies the type of disk in the drive:

SYSTEM CALLS

the

Macro Definition: drive_data

Example

whether

1stdout equ
It

begin:

1-105

diskette:
all_done:

db
db
db
db

msg
remov
fixed
cr If

jc
drive_data
cmp
jne

macro
push
mov
mov
int
mov
pop
endm

write_handle stdout,msg,11
write_error
2
byte ptr [bx] ,0F8H
diskette

write_handle stdout.fixed,6
jc write_error
jmp all_done
write_handle stdout,remov,9
write_handle stdout,crlf,2
jc write_error

drive
ds
dl .drive
ah.lBH
21H
al, byte ptr[bx]
ds

jdisplay message
;routine not shown
;THIS FUNCTION
; check FAT ID byte
;it's a diskette
;see Function 40H-
;routine not shown
jclean up & go home
;see Function 40H
;see Function 40H
;routine not shown

"Drive B is
"diskette."
"fixed."
ODH.OAH

the default drive.
data on a disk, including a
Allocation Table, see Chapter 3.

The following program displays a message that tells
drive B is a diskette or fixed disk drive.

This call is similar to Function 36H (Get Disk Free Space),
except that it returns the address of the FAT ID byte in BX
instead of the number of available clusters, and to Function
1BH (Get Default Drive Data), except that it returns data on
the disk in the drive specified in DL instead of the disk in

For a description of how MS-DOS stores
description of the File

SYSTEM CALLS

bits 0-3 haveBits 4-7 must be 0;

MeaningBit Value

0 0

Ignore leading separators.1

1 0

1

02

MeaningBit Value

1

13

0

filename

Filename separators:

[1 \ < > I space tab- + / u

1-124

Stop parsing if
encountered.

Set the drive number in the FCB to 0
(current drive) if the string does not
contain a drive number.

Set the filename in the FCB to 8 blanks
if the string does not contain a filename.

Leave the extension in the FCB unchanged
if the string does not contain an extension.

Set the extension in the FCB to 3 blanks
if the string does not contain an extension.

a file separator is

AL controls the parsing,
the following meaning:

Leave the drive number in the FCB unchanged
if the string does not contain a drive
number.

or extension that includes
asterisk (*), all remaining characters in the name or

extension are set to question mark (?).

Leave the filename in the FCB unchanged if
the string does not contain a filename.

If the string contains a
an asterisk (*), all

SYSTEM CALLS

Set Date (Function 2BH)

Function 2BH sets

If

Macro Definition: set_date

1-129

CX
DH
DL

8Z
CX
DS

macro
mov
mov
mov
mov
int
endm

year,month,day
ex,year
dh,month
dl,day
ah,2BH
21H

II

CS
<x
st

IS

u.
Bl
Cl .

Call
AH = 2BH
CX

Year (1980-2099)
DH

Month (1-12)
DL

Day (1-31)

Year (1980-2099)
Month (1=January, 2=February, etc.)
Day (1-31)

Slics- j T-Xll,
Return
AL

OOH = Date was valid
FFH = Date was invalid

IM
BH
CH

If the date is valid, the date is set and AL returns 0.
the date is not valid, the function is canceled and AL
returns FFH.

the operating system,
valid date in binary:

the date in
Registers CX and DX must contain a

SYSTEM CALLS

Get Country Data (Function 38H)

OX

see

DS)

MeaningValue in AL

the country0

1 to OFEH the country

Retrieve information aboutOFFH

1-148

Retrieve information about
identified by this code.

Retrieve information about
currently set.

the country
identified by the code in BX.

Cl
-^.bh | «~

SI
01

BH
CH

of a
returned.

Call
AH = 38H
AL

0 = Current country
1 to OFEH = Country code

OFFH - BX contains Country code
BX (if AL=OFFH)

Country code 255
DS:DX

Pointer to 32-byte memory areafLAGl- | KXC

Return
Carry set:
AX

2 = Invalid country code
Carry not set:
BX

Country code

or higher

Function 38H gets the country-dependent information that MS-
DOS uses to control the keyboard and display or sets the
currently defined country (to set the country code, see the
next function request description). To get the information,
DX must contain the offset (from the segment address in

32-byte memory area in which the country data is to be
AL specifies the country code:

SYSTEM CALLS

code

information is inreturned the

Field Name Length in bytes

Date Format:

Bit 1

All other bits are undefined.

1-149

Offset
Hex Decimal

00
02
07
09
0B
0D
OF
10
11
12
16
18

0
1
2

No space between symbol and amount
One space between symbol and amount

(m/d/y)
(d/m/y)
(y/m/d)

0
2
7
9

11
13
15
16
17
18
22
24

USA
Europe
Japan

Time format: 0 = 12-hour clock
1 = 24-hour clock

Date format
Currency symbol
Thousands separator
Decimal separator
Date separator
Time separator
Bit field
Currency places
Time format
Case-map call address
Data-list separator
RESERVED

Currency Places: Specifies the number of places that appear
after the decimal point on currency amounts.

- 0
1

The country-dependent
following form:

BX must contain the country code if the code is 255 or
greater. The country code is usually the international
telephone prefix code.

Currency symbol precedes amount
Currency symbol follows amount

Bit Field: Bit 0 = 0
1

2 (word)
5 (ASCIZ string)
2 (ASCIZ string)
2 (ASCIZ string)
2 (ASCIZ string)
2 (ASCIZ string)
1
1
1
4 (dword)
2 (ASCIZ string)
10

SYSTEM CALLS

Set Disk Transfer Address (Function 1AH)

Address. DXDisk Transferthe must

to
with 2FH

Macro Definition: set_dta

Example

converts

1-100

Return
None

wrap
nor

macro
mov
mov
int
endm

Call
AH - 1AH
DS:DX
Disk Transfer Address

■VMM. j

If you do not set the Disk Transfer Address, MS-DOS defaults
offset 80H in the Program Segment Prefix.

the current Disk Transfer Address
Data Transfer Address).

You can check
Function 2FH (Get

buffer
dx,offset buffer
ah.lAH
21H

The following program prompts for
letter to its alphabetic
reads and displays the
named ALPHABET.DAT
contains 26 records;

letter, converts the
(A=l, B“2, etc.), then

from a file
B.

a
sequence

corresponding record from a
on the disk in drive B. The file
each record is 28 bytes long.

Function 1AH
contain the

sets
offset (from the segment address in DS) of the

Disk Transfer Address. Disk transfers cannot wrap around
from the end of the segment to the beginning, nor can they
overflow into another segment.

SYSTEM CALLS

record_size OEHequ

21H

begin:

get_char: prompt

mov

crlf

all_done:

1-101

db
db
db
db
db

al,0DH
all_done
al,41H

buffer
prompt
crlf

buffer
crlf
get_char
f cb

display
read_ran fcb
display
display
jmp
close

set_dta
open
mov
display
r e ad_kb d_a nd_e c ho
cmp
je
sub

relative_record equ

fcb

buffer ;THIS FUNCTION
fcb ;see Function OFH
fcb[record_sizej,28 ;set record size

;see Function 09H
;see Function 01H
;just a CR?
;yes, go home
;convert ASCII
;code to record £

fcb[relative_record],al
;set relative record
;see Function 09H
;see Function 21H
;see Function 09H
;see Function 09H
J get another character
;see Function 10H

joffset of Record Size
jfield of FCB
Joffset of Relative Record
field of FCB

2,"ALPHABETDAT"
26 dup (?)
28 dup(?),’’$"

"Enter letter: $
0DH,0AH,"$"

SYSTEM CALLS

Macro Definition: def_drive_data

Example

whether

1equ
91

1-103

diskette:
all_done:

The following program displays a message that tells
the default drive is a diskette or fixed disk drive.

db
db
db
db

macro
push
mov
int
mov
POP
endm

ds
ah.lBH
21H
al,byte ptrlbx]
ds

stdout

msg
remov
fixed
crlf

begin:

specified
on a

Table,
drive. For a
disk, including
see Chapter 3.

;display message
jroutine not shown
;THIS FUNCTION
;check FAT ID byte
;it's a diskette
;see Function 40H.
;see Function 40H
;clean up & go home
;see Function 40H
;see Function 40H
;routine not shown

"Default drive is
"diskette."
"fixed."
ODH.OAH

This call is similar to Function 36B (Get Disk Free Space),
except that it returns the address of the FAT ID byte in BX
instead of the number of available clusters, and to Function
1CH (Get Drive Data), except that it returns data on the
disk in the default drive instead of the disk in a

For a description of how MS-DOS stores data
a description of the File Allocation

write_handle stdout,msg,17
jc write_error
def_drive_data
cmp byte ptr [bx],0F8H
jne diskette
write_handle stdout.fixed,6
jc write_error
jmp short all_done
write_handle stdout,remov,9
write_handle stdout,crlf,2
jc write_error

SYSTEM CALLS

Get Drive Data (Function 1CH)

u.

ba

exmax. l .iWOfcg
Bytes per sector

DX

Type of DriveValue

If the drive number in DL is invalid, AL returns OFFH.

1-104

AL
CX
DX

FF
FE
FD
FC
F9
F8

OFFH if drive number is invalid,
otherwise sectors per cluster

8 sectors per track.
8 sectors per track.
9 sectors per track.
9 sectors per track.
15 sectors per track.

the
which

XX

DX

ex
tw
sc
cc

tt

JU1

BH

CH

OH

Cl

Double-sided diskette,
Single-sided diskette,
Double-sided diskette,
Single-sided diskette,
Double-sided diskette,
Fixed disk.

The number of sectors in a cluster (allocation unit).
The number of bytes in a sector.
The number of clusters on the disk.

Return
AL

Clusters per drive
DS: BX

Pointer to FAT ID byte

Call
AH = 1CH
DL

Drive (0=default, 1=A, etc.)

specified
DL must contain the drive number (0=default, 1=A,

The data is returned in the following registers:

Function 1CH retrieves data about the disk in the
drive.
etc.).

BX returns the offset (to the segment address in DS) of
first byte of the File Allocation Table (FAT),
identifies the type of disk in the drive:

SYSTEM CALLS

Random Read (Function 21H)

cs

AL returns a code that describes the processing:

MeaningCode

0 Read completed successfully.

1 End-of-file; no data in the record.

2

3

1-106

Al
ai

»4
Ol

Not enough room at the Disk Transfer Address
to read one record; read canceled.

Read completed successfully
1 = End of file, record empty
2 = DTA too small
3 = End of file, partial record

Call
AH = 21H
DS:DX

Pointer to opened FCB

88

ss

Return
AL

0 = 1

CM

■ - W *

Function 21H reads the record pointed
(offset

contain
of an opened FCB.

End-of-file; a partial record was read and
padded to the record length with zeros.

to by the Relative
Record field (offset 21H) of the FCB to the Disk Transfer
Address. DX must contain the offset (from the segment
address in DS) of an opened FCB. The Current Block field
(offset OCH) and Current Record field (offset 20H) are set
to agree with the Relative Record field (offset 21H), then
the record is loaded at the Disk Transfer Address. The
record length is taken from the Record Size field (offset
OEH) of the FCB.

SYSTEM CALLS

Macro Definition: read_ran

Example

a

record_s ize OEHequ

relative_record equ 21H
nfcb

get_char:

mov

crlf

all_done:

1-107

db
db
db
db
db

cmp
je
sub

macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,21H
21H

buffer
crlf
get_char
fcb

buffer
prompt
crlf

begin:

from
B.

letter,
s=

prompt
read_kbd_and_echo

al.ODH
all_done
al,41H

set_dta
open
mov
display

display
read_ran fcb
display
display
jmp
close

a
The filenamed ALPHABET.DAT

contains 26 records;

,;offset of Record Size
;field of FCB
;offset of Relative Record
field of FCB

2,"ALPHABETDAT
26 dup (?)
28 dup(?),"$"
"Enter letter: $"
0DH,0AH,"$"

buffer ;see Function 1AH
fcb ;see Function OFH
fcb[record_size],28 ;set record size

;see Function 09H
;see Function 01H
;iust a CR?
;yes, go home
;convert ASCII code
;to record £

fcb[relative_record],al ;set relative
;record
;see Function 09E
;THIS FUNCTION
;see Function 09H
;see Function 09H
;get another char.
;see Function 10H

The following program prompts for
letter to its alphabetic sequence (A

corresponding
the disk in

converts the
1, B ■■ 2, etc .), then

reads and displays the corresponding record from a file
on the disk in drive L.
each record is 28 bytes long.

SYSTEM CALLS

Random Write (Function 22H)

CM

cs

by

is

AL returns a code that describes the processing:

MeaningCode

0 Write completed successfully.

Disk is full.1

2

1-108

(offset
sector,
a

Cl
tn

Not enough room at the Disk Transfer Address
to write one record; write canceled.

Call
AH = 22H
DS:DX

Pointer to opened FCB

ss
t*

The record length
OEH) of the FCB.

the data at the Disk Transfer Address is written
buffer;

full sector of data, or the file is closed, or a Reset
system call (Function ODH) is issued.

taken from the Record Size field
If the record size is less than a

to
the buffer is written to disk when it contains a

Disk

Return
AL

OOH = Write completed successfully
01H = Disk full
02H = DTA too small

Function 22H writes the record pointed to by the Relative
Record field (offset 21H) of the FCB from the Disk Transfer
Address. DX must contain the offset from the segment
address in DS of an opened FCB. The Current Block (offset
OCH) and Current Record (offset 20H) fields are set to agree
with the Relative Record field (offset 21H), then the record
addressed by these fields is written from the Disk Transfer
Address.

SYSTEM CALLS

Example

a

each record is 28 bytes long.

record_size OEHequ

21Hrelative_record equ

f cb

change): ? nno

begin:

promptlget_char:

mov

1-109

db
db
db
db
db
db
db
db

al,ODH
al 1—done
al,41H

macro
mov
mov
int
endm

buffer
promptl
prompt2
cr If
reply
blanks

set_dta
open
mov
display
read_kbd_and_echo
cmp
je
sub

f cb
dx,offset fcb
ah,22H
21H

The following program prompts for
letter to its alphabetic sequence (A •= 1, B
reads and displays the corresponding
named ALPHABET.DAT on the disk in drive B.
the record, it prompts the user to enter a
If the user types a

Macro Definition: write_ran

letter,

record
After displaying
changed record.

new record, it is written to the file;
if the user just presses Return, the record is not replaced.
The file contains 26 records;

converts the
2, etc.), then
from a file

buffer ;see Function 1AH
fcb ;see Function OFH
fcb[record_size],28 ;set record size

;see Function 09H
;see Function 01H
;just a CR?
;yes, go home
;convert ASCII
;code to record £.

fcb[relative_record],al
;set relative record

;offset of Record Size
;field of FCB
•.offset of Relative Record
field of FCB

2,"ALPHABETDAT"
26 dup (?)
28 dup(?),ODH,0AH,

“Enter letter: $"
"New record (RETURN for
0DH,0AH,"$"
28 dup (32)
26 dup (32)

SYSTEM CALLS

crlf

je get_char

all_done:

1-110

xor
mov

bx.bx
bl.reply[1]

crlf
reply!1],0

>P
close

;THIS FUNCTION
;get another character
;see Function 10H

;see Function 09H
;THIS FUNCTION
;see Function 09H
;see Function 09H
;see Function 09H
;see Function OAH
;see Function 09H
;was anything typed
jbesides CR?
;no
;get another char.
;to load a byte
;use reply length as
;counter

move_string blanks.buffer,26 ;see chapter end
move_string reply[2].buffer,bx ;see chapter end
write_ran fcb

get_char
fcb

display crlf
read_ran fcb
display buffer
display
display prompt!
get_string 27,reply
display
cmp

SYSTEM CALLS

Get File Size (Function 23H)
>AK

the

If no matching directory is found, AL returns FFH.

Macro Definition: file_size

1-111

91

DI

Function 23H returns
must
an unopened FCB.

as
Su
cn
tn

Call
AH = 23H
DS:DX

Pointer to unopened FCB

macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,23H
21H

It
Ct

CX

M
81
et .

Return
AL

OOH = Directory entry found
FFH = No directory entry foundCl

If the Record Size
Size field, the

value set in the Relative Record field is rounded up,
yielding a value larger than the actual number of records.

If there is a directory entry that matches the specified
filej MS-DOS divides the File Size field (offset 1CH) of the
directory entry by the Record Size field (offset OEH) of the
FCB, puts the result in the Relative Record field (offset
21H) of the FCB, and returns .00 in AL.

the size of the specified file. DX
contain the offset (from the segment address in DS) of

You must set the Record Size field of the FCB to the correct
value before calling this function,
field is not an even divisor of the File

set in the Relative Record

SYSTEM CALLS

Example

opens

anda

II

begin:

get_length:

all_done:

1-112

db
db
db
db
db
db

reply[2],fcb
fcb

;see end of chapter
;see Function 09H
;see- Function 09H
;see Function 10H

fcb
prompt
msgl
msg2
crlf
reply

cmp
jne
jmp

",0DH,0AH,"$"
,0DH,0AH,"$"

The following program prompts for the name of a file,
the file to fill in the Record Size field of the FCB, issues
File Size system call, and displays the record length

number of records.

;see Function 09H
;see Function OAH
;just a CR?
;no, keep going
;yes, go home
;see Function 09H
;see Function 29H
;see Function OFH
;THIS FUNCTION

display prompt
get_string 17,reply

reply[11,0
get_length
all_done

display crlf
parse
open
file_size fcb
mov ax,word ptr fcb[33] ;get record length
convert ax,10,msg2[9] ;see end of chapter
mov ax,word ptr fcb[14] ; get record number
convert ax,10,msgl[15]
display msgl
display msg2
close fcb

37 dup (?)
"File name: $"
"Record length:
"Records:
0DH,0AH,"$"
17 dup(?)

SYSTEM CALLS

Set Relative Record (Function 24H)

CM Ct

(■

a

Macro Definition: set_relative_record

Example

file using the

1-113

Return
None

cb

DI

Call
AH = 24H
DS:DX

Pointer to opened FCB

macro
mov
mov
int
endm

f cb
dx,offset fcb
ah,24H
21H

ca

to
the Current Block field

field (offset 20H). DX must
segment address in DS) of an
to set the file pointer
(Functions 21H, 22H, 27H, or

Function 24H sets the Relative Record field (offset 21H)
the file address specified by
(offset OCH) and Current Record
contain the offset (from the
opened FCB. You use this call
before a random read or write
28H).

The following program copies a file using the Random Block
Read and Random Block Write system calls. It speeds the
copy by setting the record length equal to the file size and
the record count to 1, and using a buffer of 32K bytes. It
positions the file pointer by setting the Current Record
field (offset 20H) to 1 and using Set Relative Record to
make the Relative Record field (offset 21H) point to the
same record as the combination of the Current Block field
(offset OCH) and Current Record field (offset 20H) .

SYSTEM CALLS

20Hcurrent_r ecord equ

fil_size 10Hequ

$"

dw
db

file_length,ax

fcb,1,ax

1-114

mov
mov

db
db
db
db
db

15,filename
crlf
filename[2],fcb
fcb

15,filename
crlf
filename[2],fcb
fcb

;offset of Current Record
;field of FCB
;offset of File Size
field of FCB

;see Function 09H for
jexplanation of $

fcb
filename
prompt1
prompt2
crlf
file_length
buffer

begin:

ran_block_write
close fcb

37 dup (?)
17 dup(?)

"File to copy:
"Name of copy: $"
0DH,0AH,"$"
?
32767 dup(?)

;see Function 1AH
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function OFH

fcb[current_record],0 ;set Current Record
;field

set_relative_record fcb ;THIS FUNCTION
ax,word ptr fcb[fil_size] ;get file size

;save it for
;ran_block_write
;see Function 27H
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H

fcb[current_record],0 ;set Current Record
; field
;THIS FUNCTION
;get original file
;. length
;see Function 28H
;see Function 10H

ran_block_read fcb,l,ax
display prompt2
get_s tring
display
parse
create
mov

set_relative_record fcb
mov ax,file_length

set_dta buffer
display promptl
get_s tring
display
parse
open
mov

SYSTEM CALLS

Set Interrupt Vector (Function 25H)

AM

CH

9P

88

table

Macro Definition:

set_vector

Example

exampleno

1-115

Function 25H sets the address in the interrupt vector
for the specified interrupt.

macro
mov
mov
mov
endm

interrupt,handler_s tart
al,interrupt
dx,offset handler_start
ah,25H

Return
None

read
an

as
ex
os

Call
AH = 25H
AL

Interrupt number
DS:DX

Pointer to interrupt-handling
routine

has*. |.fuo<u
C3

Bl

91

Because interrupts tend to be machine-specific,
is shown.

AL must contain the number of the interrupt. DX must
contain the offset (to the segment address in DS) of the
interrupt-handling routine.

To avoid compatibility problems, programs should never
an interrupt vector directly from memory, nor set
interrupt vector by writing it into memory. Use Function
35H (Get Interrupt Vector) to get a vector and this function
request to set a vector, unless it is absolutely imperative
that your program be compatible with pre-2.0 versions of
MS-DOS.

SYSTEM CALLS

Create New PSP (Function 26H)

Cm
01

been
0

Macro Definition: create_psp

Example

and

1-116

Return
None

macro
mov
mov
endm

segaddr
dx,seg_addr
ah,26H

| nxa.
CT

Because Function 4BH, Code 0 (Load and Execute Program)
Code 3 (Load Overlay) have superseded this function request,
no example is shown.

Call
AH = 26H
DX

Segment address of new PSP

Function
i a child

program be

DX must
new PSP is to be

This function request has been superseded. Use
4BH, Code 0 (Load and Execute Program) to execute
process unless it is imperative that your
compatible with pre-2.0 versions of MS-DOS.

Function 26H creates a new Program Segment Prefix,
contain the segment address where the
created.

SYSTEM CALLS

Random Block Read (Function 27H)

If you call this function with CX=OS no records are read.

1-117

Call
AH = 27H
DS:DX

Pointer to opened FCB
CX

Number of blocks to read

cb
t>«
IS

sb

Bl

W

: *H

BH

CH

W

Bl

Cl

01

Return
AL

0 = Read completed successfully
1 = End of file, empty record
2 = DTA too small
3 = End of file, partial record

CX
Number of blocks read

DOS calculates the number of bytes to read by multiplying
the value in CX by the Record Size field (offset OEH) of the
FCB.

from the specified
DX must contain the
an opened FCB. CX

contain the number of records to read. Reading starts
at the record specified by the Relative Record field (offset
21H); you must set this field with Function 24H (Set
Relative Record) before calling this function.

Function 27H reads one or more records
file to the Disk Transfer Address,
offset (to the segment address in DS) of
must

CX returns the number of records read. The Current Block
field (offset OCH), Current Record field (offset 20H), and
Relative Record field (offset 21H) are set to address the
next record.

SYSTEM CALLS

AL returns a code that describes the processing:

MeaningCode

Read completed successfully.0

End-of-file; no data in the record.1
2

3

Macro Definition:

ran_block_read

Example

1-118

db
db
db
db
db

Not enough room at the Disk Transfer-Address
to read one record; read canceled.

equ
equ

20H
10H

joffset of Current Record field
;offset of File Size field

;see Function 09H for
;explanation of §

fcb
filename
prompt 1
prompt?
crlf

macro
mov
mov
mov
mov
int
endm

fcb, count,rec_size
dx,offset fcb
ex,count
word ptr fcb[14],rec_size
ah,27H
21H

End-of-file; a partial record was read
and padded to the record length with zeros.

current_r ecord
fil_size

37 dup (?)
17 dup(?)

"File to copy: $"
"Name of copy: $"
0DH,0AH,"$"

Read system call,
count of 1 and a
using a buffer of 32K bytes;
record (compare to the sample program for Function 28H
specifies a record length of 1 and
the file size).

The following program copies a file using the Random Block
It speeds the copy by specifying a record

record length equal to the file size, and
the file is read as a single

that
a record count equal to

SYSTEM CALLS

1-119

set_dta
display

crlf
filename[2],fcb
f cb

crlf
filename[2],fcb
f cb
fcb[current_record],0

file_length
buffer
•>
begin: buffer

promptl
get_string 15 .filename
display
parse
open
mov

?
32767 dup(?)

dw
db

;see Function 1AH
;see Function 09H
; see Function OAH
;see Function 09H
;see Function 29H
;see Function OFH

;set Current
;Record field

set_relative_record fcb ;see Function 24H
mov ax, word ptr fcb[fil_size]

;get file size
;save it
;THIS FUNCTION
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H

fcb[current_record],0;set current
;Record field
;see Function 24H
;see Function 28H
;see Function 10H

mov file_length,ax
ran_block_read fcb,l,ax
display prompt2
get_s tring 15 .filename
display
parse
create
mov

set_relative_record fcb
ran_block_write fcb,1,ax
close fcb

SYSTEM CALLS

(Function 28H)Random Block Write

U.'

SP

records

is

value

1-120

ex. CL .

o.

BH

CH

S4

04

«
09

ss
ES

Record field (offset 21H) of
records are written, but
(offset 1CH) of the directory entry
Relative Record field of the FCB (offset 21H);
allocation units are allocated or released, as required,
satisfy this new file size.

Return
AL

OOH = Write completed successfully
01H = Disk full'
02H = End of segment

CX
Number of blocks written

MS-DOS calculates the number of bytes to write by
multiplying the value in CX by the Record Size field (offset
OEH) of the FCB. CX returns the number of records written;
the Current Block field (offset OCH), Current Record field
(offset 20H), and Relative Record (offset 21H) field are set
to address the next record.

FLAGS. |

Function 28H writes one or more
file from the Disk Transfer Address,
offset (to the segment address in DS) of an opened FCB;
must contain either the number of records to write or 0.

to the specified
DX must contain the
an opened FCB; CX

the
(offset

If CX is not 0, the specified number of records is written
to the file starting at the record specified in the Relative

If CX is 0, nothe FCB.
MS-DOS sets the File Size field

to in the
disk

to

Call
AH = 28H
DS:DX

Pointer to opened FCB
CX

Number of blocks to write
(0 - set File Size field)

SYSTEM CALLS

AL returns a code that describes the processing:

MeaningCode

0 Write completed successfully.

1 Disk full. No records written.

2

Macro Definition:

ran_block_write

Example

equal

1-121

Not enough room at the Disk Transfer Address
to write one record; write canceled.

equ
equ

20H
10H

;offset of Current Record field
;offset of File Size field

;see Function 09H for
explanation of $

macro
mov
mov
mov
mov
int
endm

fcb,count,rec_size
dx,offset fcb
ex,count
word ptr fcb[14],rec_size
ah,28H
21H

db
db
db
db
db
dw

a file using the
Write system calls.

current_record
fil_size

fcb
filename
prompt1
prompt2
crlf
num recs

Read and Random
copy by specifying a
a record length of 1, and'using
file is copied quickly with one
write
specifies a
file size).

The following program copies a file using the Random Block
and Random Block Write system calls. It speeds the

record count equal to the file size and
a. buffer of 32K bytes; the

disk access each to read and
(compare to the sample program of Function 27HS that

record count of 1 and a record length equal to

37 dup (?)
17 dup(?)

"File to copy: ?"
"Name of copy: ?"
0DH,0AH,"$"
7

SYSTEM CALLS

32767 dup(?)db

1-122

buffer
promptl

buffer

begin: set_dta
display
get_string 15.filename
display
parse
open
mov

crlf
filename[2],fcb
f cb
fcb[current_record],0

crlf
filename[2],fcb
fcb

mov num_recs,ax
ran_block_read
display prompt2
get_s tring 15,filename
display
parse
create
mov

;see Function 1AH
;see Function 09H
;see Function OAH
;see Function 09H

;see Function 29H
;see Function OFH

fcb[current_record],0;set Current
Record field

set_relative_record fcb ;see Function 24H
mov ax, word ptr fcb[fil_size]

;get file size
;save it

fcb,num_recs,1 ;THIS FUNCTION
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H

;set Current
;Record field

set_relative_record fcb ;see Function 24H
ran_block_write fcb,num_recs,1 ;see Function 28H
close fcb ;see Function 10H

SYSTEM CALLS

Parse File Name (Function 29H)

AX

OX:

1-123

Return
AL

OOH •
Ct

<X

st

EX

SI

CM

Cl

5

BH

CH

OH

No wildcard characters
01H = Wildcard characters used
FFH = Drive letter invalid

DS: SI
Pointer to first byte past
string that was parsed

ES:DI
Pointer to unopened FCB

DI
contain the offset (to the segment address in ES) of an
of memory large enough to hold an unopened FCB. If
string contains a valid filename, a
FCB is created at ES:DI.

string for a
SI must

Call
AH <= 29H
AL

Controls parsing (see text)
DS: SI

Pointer to string to parse
ES.-DI

Pointer to buffer for unopened FCB

Function 29H parses a string for a filename of the form
drive:filename.extension. SI must contain the offset (to
the segment address in DS) of the string to parse; DI must

area
FCB. If the

corresponding unopened

SYSTEM CALLS

If the string contains a valid filename:

1.

following the2.

ES:DI points to the first byte of the unopened FCB.

;bits 0-3 on

Example

fileexistence theof

1-125

(*
nor

The following program verifies the
named in reply to the prompt.

fcb
prompt

DS:SI points to the first character
string that was parsed.

db
db

mov
mov
push
push
POP
mov
mov
int
Pop
endm

Macro Definition: parse macro string,fcb
si,offset string
di,offset fcb
es
ds
es
al.OFH
ah,29H
2 IB
es

Filename terminators include
plus any control
filename terminator;

If the drive letter is invalid,
string does not contain a
a blank (20H).

AL returns FFH. If the
valid filename, ES:DI+1 points to

all the filename separators
character. A filename cannot contain a

if one is encountered, parsing stops.

37 dup (?)
"Filename: ?"

AL returns 1 if the filename or extension contains
a wildcard character (* or 1); AL returns 0 if
neither the filename nor extension contains a
wildcard character.

SYSTEM CALLS

begin:

• 1

not_there:

1-126
I

reply
yes
no

reply[2],fcb
. crlf

fcb
al.OFFH
not_ther e
yes
return
no

;see Function 09H
;see Function OAH
;THIS FUNCTION
;see Function 09H
;see Function 11H
;dir. entry found?
;no
;see Function 09H

db .
db
db
crlf

17 dup(?)
"FILE EXISTS",0DH,OAH,
"FILE DOES NOT EXIST",ODH,OAH,"$"
db ODH,OAH,"$"

display prompt
get_string 15,reply
parse
display
search_f irst
cmp
je
display
jmp
display

SYSTEM CALLS

Get Date (Function 2AH)
5#

a

the current date set in operatingthe

Macro Definition: get_date

Example

1-127

ai

tx

ex
DH
DL
AL

•t

•1

Cl

01

macro
mov
int
endm

Year (1980-2099)
Month (l=January, 2=February, etc.)
Day (1-31)
Day of week (0=Sunday, l=Monday, etc.)

ah,2AH
21H

Call
AH ■= 2AH

Return
CX

Year (1980-2099)
DH
Month (1-12)

DL
Day (1-31)

AL
Day of week (0=Sun., 6=Sat.)

•H
O<

Function 2AH returns
system as binary numbers in CX and DX:

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new
date.

?L*ai- |

cs
■ <• v ,

88
B8

SYSTEM CALLS

31,28,31,30,31,30,31,31,30,31,30,31dbmonth

begin:

month_ok:

1-128

dl
bx,bx
bl.dh
bx
dl,month[bx]
month ok
dl,l
dh
dh,12
month_ok
dh,l
ex

set_date cx,dh,dl

get_date
inc
xor
mov
dec
emp
jle
mov
inc
emp
jle
mov
inc

;THIS FUNCTION
;increment day
;so BL can be used as index
;move month to index register
;month table starts with 0
;past end of month?
;no, set the new date
;yes, set day to 1
;and increment month
;past end of year?
;no, set the new date
;yes, set the month to 1
;increment year
;see Function 2AH

SYSTEM CALLS

Example

31,28,31,30,31,30,31,31,30,31,30,31dbmonth

begin:

month_ok:

1-130

;see Function 2AH
;increment day
;so BL cah be used as index
;move month to index register
;month table starts with 0
;past end of month?
;no, set the new date
;yes, set day to 1
;and increment month
;past end of year?
;no, set the new date
;yes, set the month to 1
;increment year
;THIS FUNCTION

dl
bx,bx
bl.dh
bx
dl,month[bx]
month_ok
dl,l
dh
dh,12
month_ok
dh,l
ex

set_date cx,dh,dl

get_date
inc
xor
mov
dec
emp
jle
mov
inc
emp
jle
mov
inc

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new
date.

SYSTEM CALLS

Get Time (Function 2CH)

2CH

the current time set in the operating

second (0-99)

time,

the

Macro Definition: get_time

1-131

Bl
tM

CH
CL
DH
DL

macro
mov
int
endm

ah,2CH
21H

Return
CH

Hour (0-23)
CL
Minutes (0-59)

DH
Seconds (0 - 59)

DL
Hundredths (0-99)

M X U. ;
BH
CH a .

Ct
X*
M
St

Call
AH =

Hour (0-23)
Minutes (0-59)
Seconds (0-59)
Hundredths of a

fields may be irrelevant,
chips do not resolve more than seconds,
value in DL will probably always be 0.

Function 2CH returns
system as binary numbers in CX and DX:

Depending on how your hardware keeps time, some of these
As an example, many CMOS clock

In such a case

SYSTEM CALLS

Example

untiltime

"00:00:00.00",ODH,"$"db

1-132

time

begin:

al.OFFH
return
begin

The following program continuously displays the
any key is pressed.

get_time
byte_to_dec ch,time
byte_to_dec cl.time[3]
byte_to_dec dh,time[6]
byte_to_dec dl,time[9]
display time
che ck_kbd_s tatu s
cmp
je
jmp

;THIS FUNCTION
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter.
;see Function 09H
;see Function 0BH
;has a key been pressed?
;yes, terminate
;no, display time

SYSTEM CALLS

Set Time (Function 2DH)

DE

8P

-59)

t imethe

If

1-133

CH
CL
DH
DL

in
a

AE

BU:

vs
Di

££

«S

££

AH

BK

CH

DH

M

81

Ci

Hour (0-23)
Minutes (0-59)
Seconds (0-59)
Hundredths of a second (0-99)

Call
AH = 2DH
CH

Hour (0-23)
CL
Minutes

DH
Seconds (0-59)

DL
Hundredths (0-99)

Return
AL

OOH = Time was valid
FFH = Time was invalid

If the time is valid, the time is set and AL returns 0.
the time is not valid, the function is canceled and AL
returns FFH.

the operating system,
valid time in binary:

Depending on how your hardware keeps time, some of these
fields may be irrelevant. As an example, many CMOS clock
chips do not resolve more than seconds. In such a case the
value in DL will not be relevant.

Function 2DH sets
Registers CX and DX must contain

SYSTEM CALLS

Macro Definition:

set_time

Example

"00:00:00.00",0DH,0AH,"$"t ime db

0,0,0,0

stop;
begin

1-134

macro
mov
mov
mov
mov
mov
int
endm

cmp
jne
jmp
read_kbd
jmp

hour.minutes,seconds.hundredths
ch,hour
cl.minutes
dh,seconds
dl.hundredths
ah.ZDH
21H

begin:
read_clock:

system clock to 0 and
When a character is typed,

typed, the

ch,t ime
c1,t ime[3]
dh,t ime[6]
dl,time[9]

time

set_time
get_time
byte_to_dec
byte_to_dec
byte_to_dec
byte_to_dec
display
dir_console_io OFFH

al,OOH
stop
read_clock

;THIS FUNCTION
;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;see Function 06H
;was a char, typed?
;yes, stop the timer
;no keep timer on
;see Function 08H
;keep displaying time

The following program sets the
continuously displays the time,
the display freezes; when another character is
clock is reset to 0 and the display starts again.

SYSTEM CALLS

Set/Reset Verify Flag (Function 2EH)

Macro Definition: verify

1-135

M
OU
es
»c

Return
None

macro
mov
mov
int
endm

switch
al,switch
ah,2EH
21H

Call
AH = 2EH
AL

0 = Do not verify
1 = Verify

Bl

nxu. i AAMt

a

BM

CK

ex

If AL is
turned off.
a disk.

The flag is normally off;
writing critical data to disk,
and verification slows writing, you will
leave it off at other times.
Function 54H (Get Verify State).

you may wish to turn it on when
Because disk errors are rare

probably want to
You can check the setting with

Function 2EH tells MS-DOS whether to verify each disk write.
1, verify is turned on; if AL is 0, verify is
MS-DOS checks this flag each time it writes to

SYSTEM CALLS

Example

;60 sectors

begin:

copy:

1-136

equ
equ

first
buffer

1
0

db
db
dw
db

;see Function 09H
;see Function 08H
;THIS FUNCTION
;copy 60 sectors
;6 times
;save counter

O.buffer,60,first ;see Int 25H
1.buffer,64,first ;see Int 26H

;do next 60 sectors
jrestore counter
;do it again
;THIS FUNCTION

on
off

prompt "Source in A, target in B",0DH,0AH
"Any key to start. $"
0
60 dup (512 dup(?))

drive
It uses

add
POP
loop
verify off

s the contents of a single-sided
A to the disk in drive B, verifying each

a buffer of 32K bytes.

The following program copie
disk in
write.

push ex
abs_disk_read
abs_disk_write

first,60
ex
copy

display prompt
read_kbd
verify on
mov ex,6

SYSTEM CALLS

Get Disk Transfer Address (Function 2FH)

the segment address of the current Disk

Macro Definition: get_dta

Example

Disk Transferthe current

1-137

aa
•a
ca

db
db
db

Call
AH = 2FH

macro
mov
int
endm

Return
ES:BX

Pointer to Disk Transfer Address

ah,2fH
21H

message
sixteen
temp

begin:

cum- |~ytaaa<

Bl

a

"DTA —
10H
2 dup (?)

The following program displays
Address in the form segment:offset.

;THIS FUNCTION
;To access each byte

;See end of
;chapter for
;description
;of CONVERT

",ODH,OAH,

Function 2FH returns
Transfer Address in ES and the offset in BX.

get_dta
mov word ptr temp,ex
convert temp[I].sixteen,message[07H]
convert temp,sixteen.message[0 9H]
convert bh,sixteen,message[OCH]
convert bl,sixteen.message[OEH]
display message ;See Function 09E

SYSTEM CALLS

Get MS-DOS Version Number (Function 30H)

SP

AL

If AL returns 0, the version of MS-DOS is earlier than 2.0.

Macro Definition: get_version

1-138

Call
AH = 30H

macro
tnov
int
endm

c.

ah,30H
21H

SI

CM

cs
M

ss
ES

81

CL .

AM

■H
CH
>»< | » ■'

FOCt- | fLAOfc

Return
AL

Major version number
AH
Minor version number

BH
OEM serial number

BL: CX
24-bit user (serial) number

Function 30H returns the MS-DOS version number. AL returns
the major version number; AH returns the minor version
number. (For example, MS-DOS 3.0 returns 3 in AL and 0 in
AH.)

SYSTEM CALLS

Example

if it

begin:

1-139

message
ten

The following program displays the version of MS-DOS
is 1.28 or greater.

db
db

get_version
cmp al,0
jng return
convert al,ten,message[OFH]
convert ah,ten,message[IZH]
display message

",ODH, OAH,"$"
;For CONVERT

"MS-DOS Version
OAH

;THIS FUNCTION
;1.28 or later?
;No, go home
;See end of chapter
;for description
;See Function 9

SYSTEM CALLS

Keep Process (Function 31H)

Cm

1-140

tt
«■

ax
ci
ox

Return
None

required
AL contains an

makes
It

the
No

are

Call
AH = 31H
AL

Return code
DX

Memory size, in paragraphsM
D<

Function 31H
terminates. It is
interrupt handlers.
Stay Resident),

ex

a program remain resident after it
often used to install device-specific

Unlike Interrupt 27H (Terminate But
this function request allows more than 64K

bytes to remain resident and does not require CS to contain
the segment address of the Program Segment Prefix. You
should use Function 31H to install a resident program unless
it is absolutely imperative that your program be compatible
with pre-2.0 versions of MS-DOS.

DX must contain the number of paragraphs of memory
by the program (one paragraph = 16 bytes),
exit code.

Use of this in .EXE programs requires care. The value in DX
must be the total size to remain resident, not just the size
of the code segment which is to remain resident. A typical
error is to forget about the 100H byte program header prefix
and give a value which is 10H in DX which is 10H too small.

MS-DOS terminates the current process and tries to set
memory allocation to the number of paragraphs in DX.
other allocation blocks belonging to the process
released.

SYSTEM CALLS

Macro Definition: keep_process return_code,last_bytemacro

I

Example

1-141

is
is

a
The

mov
mov
mov
shr
inc
mov
int
endm

al ,return_code
dx,offset last_byte
cl,4
dx,cl
dx
ah,31H
21H

to install
not shown.

Because the most common use of this call
machine-specific routine, an example
macro definition shows the calling syntax.

The exit code in AL can be retrieved by the parent process
with Function 4DH (Get Return Code of Child Process) and can
be tested with the IF command using ERRORLEVEL.

SYSTEM CALLS

Ctrl-Break Check (Function 33H)

SP

AL
error

Return current state of Ctrl-Brea checking in DL.0

Set state of Ctrl-Break checking to the value in DL.1

If

1-142

CL

gets
for

CX

ox

(or
AL

SI

Di

AH

BH

CH

cs

Ml
ss

ES

function
is off,

if Ctrl-Break checking is on,
issued at the function request that initiates

the disk operation.

Return
DL (if AL=0)

0 = Off
1 = On

0 = Get state
1 = Set state

DL (if AL=1)
0 = Off
1 = On

fLLCS. |

MS-DOS normally checks for Ctrl-Break only when carrying out
certain function requests in the 01H through OCH group (see
the description of specific calls for details). When
Ctrl-Break checking is on, MS-DOS checks for Ctrl-Break when
carrying out any function request. For example, if
Ctrl-Break checking is off, all disk I/O proceeds without
interruption; if Ctrl-Break checking is on, the Ctrl-Break
interrupt is

If AL is 0, DL returns the current state (O=off, l=on).
AL is 1, the value in DL specifies the state to be set
(O=off, l=on). If AL is neither 0 nor 1, AL returns FFH and
the state of Ctrl-Break checking is not affected.

Call
AH = 33H
AL

Function 33H gets or sets the state of Control-C
Control-Break for IBM compatibles) checking in MS-DOS.
must contain a code that specifies the requested action:

FFH = error (AL was neither 0 nor 1
when call was made)

SYSTEM CALLS

Note

07H to read

Macro Definition: ctrl_c_ck

Example

whether
Ctrl-Break checking is

message

ck__on:

1-143

5
begin:

message
on
off

db
db
db

I
II
II

macro
mov
mov
mov
int
endm

dl,0
ck_on
off
return
on

action,state
al .action
dl,state
ah,33H
21H

The following program displays a message that tells
on or off:

Programs that use Function Request 06H or
Ctrl-Break as data must ensure that the Ctrl-Break
checking is off.

display
ctrl_c_ck 0
cmp
jg
display
>P
display

;See Function 09H
;THIS FUNCTION
;Is checking off?
;No
;See Function 09H
;Go home
;See Function 09H

"Ctrl-Break checking
"on" . ,0DH,0AH,
"offODH.OAH,

li tl$H

SYSTEM CALLS

Get Interrupt Vector (Function 35H)

BX

Macro Definition: get_vector

1-144

o
01

macro
mov
mov
int
endm

Return
ES: BX

Pointer to interrupt routine

interrupt
al,interrupt
ah,35H
21H

macs- |

c>

AH

CH

read
memory, nor set an

i memory. Use this
and Function 25H (Set

is absolutely
compatible with pre-2.0

ES returns the segment address of the interrupt handler;
returns the offset.

»t

Function 35H gets the
table for the specified
number of an interrupt.

■ interrupt vector
AL must contain the

Call
AH = 35H
AL

Interrupt number

address from the
interrupt.

To avoid compatibility problems, programs should never
an interrupt vector directly from memory, nor set
interrupt vector by writing it into memory. Use
function request to get a vector
Interrupt Vector) to set a vector, unless it
imperative that your program be
versions of MS-DOS.

SYSTEM CALLS

Example

message

begin: es

1-145

vec_seg
vec_off

db
db
db
db

The
(CS:IP)
Read) .

;save ES
;THIS FUNCTION
;INT25H segment in AX
;save ES
;see end of chapter
;see end of chapter
;See Function 9

following
for

push
get_vector 25H
bov ax,es
pop es
convert ax,16,message[20]
convert bx,16.message[28]
display message

"Interrupt 25H — CS.-0000 IP:0000"
0DH,0AH,"$"
2 dup (?)
2 dup (?)

program displays the segment and offset
the handler for Interrupt 25H (Absolute Disk

SYSTEM CALLS

(Function 36H)Get Disk Free Space
Al

SF

BX
Available clusters

CX
Bytes per sector

DX
Clusters per drive

If the drive number is invalid, AX returns OFFFFH.

1BH 1CH inFunct ions earlierand

1-146

AX
BX
CX
DX

Cl.

DX

Sectors per cluster
Available clusters
Bytes per sector
Total clusters

OFFFFH if drive number is invalid;
otherwise sectors per cluster

macro
mov
mov
int
endm

drive
dl .drive
ah,36H
21H

BH
CH

SI
Dl

Function 36H returns
disk in

Return
AX

Call
AH = 36H
DL

Drive (0=default, 1=A, etc.)

This call supersedes
versions of MS-DOS.

Macro Definition: get_disk_space

FLUU- |

CS

ts
ES

the number of clusters available on the
the specified drive, and sufficient information to

calculate the number of bytes available on the disk. DL
must contain a drive number (0=default, 1=A, etc.). If the
drive number is valid, MD-DOS returns the information in the
following registers:

SYSTEM CALLS

Example

message

begin:

1-147

The following program displays the space information for the
disk in drive B.

;THIS FUNCTION
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;See Function 09E

;DX
;BX
;AX
;CX

ax ,10.message[55]
bx,10.message(28]
ex,10.message[83]
dx,10.message

clusters on drive B.”,0DH,0AB
clusters available,0DH,0AH
sectors per cluster.",0DH,0AH
bytes per sector,".ODE.OAH,

db "
db "
db ”
db "

get_disk_space 2
convert
convert
convert
convert
display message

SYSTEM CALLS

Oil Deny read

100 Deny none

Access Code

be
used.

DescriptionBits 0-3

0000 Read

Write0002

0010 Both

is and theset

MeaningCode

sharing1 a

doesn't exist.2

doesn't exist.3

4

1-164

Access
Allowed

Fails if the file has been opened
in compatibility mode or for read
access by any other process.

Fails if the file has been opened
in compatibility mode by any other
process.

The access code (bits 0-3) specifies how the file is to
It can have the following values:

File sharing must be loaded to specify
mode (bits 4-6 of AL).

Fails if the file has been opened in
deny both sharing mode.

Fails if the file has been opened in
deny both sharing mode.

No handles are available in the current process
or the internal system tables are full.

The path specified is invalid or

deny write or

The file specified is invalid or

deny read or

Fails if the file has been opened in
deny read, deny write, or deny both
sharing mode.

If there is an error, the carry flag (CF)
error code is returned in AX.

SYSTEM CALLS

Read Handle (Function 3FH)

Handle
CX

J

read standardfromto

and theset

1-169

»
W

a.
or.

cs
io»
IS
El

a

AH
EH
CH

w

Call
AH = 3FH
BX

Bytes to read
DS:DX

Pointer to buffer
Him.

If there is an error, the carry flag (CF) is
error code is returned in AX:

If you use this function request
input, the input can be redirected.

Function 3FH reads from the file or device
the specified handle. BX must contain the handle,
contain the number of bytes to be read. DX must contain the
offset (to the segment address in DS) of the buffer.

Return
Carry set:
AX

5 = Access denied
6 *= Invalid handle

Carry not set:
AX

Bytes read

associated with
CX must

If there is no error, AX returns the number of bytes read;
if you attempt to read starting at end of file, AX returns
0. The number of bytes specified in CX is not necessarily
transferred to the buffer; if you use this call to read
from the keyboard, for example, it reads only up to the
first CR.

SYSTEM CALLS

MeaningCode

the device cannot perform the1

The handle in BX isn't open or doesn't exist.6

Macro Definition: ioctl_char

Example

theBecause processing of IOCTL on

1-186

macro
mov
mov
mov
mov
int
endm

code.handle,buffer
bx,handle
dx,offset buffer
al, code
ah,44fl
21H

AL is not 2 or 3, or
specified function.

control data depends
device and device driver, no example is included.

SYSTEM CALLS

Macro Definition: ioctl_change

Example

1equ

(further processing here)

1-193

db
db
db

checks
disk.

user

macro
mov
mov
mov
int
endm

stdout

message
drives
crlf •.

begin:

continue:

drive
bl, drive
al, 08H
ah, 44H
21H

whether the current drive
If not, processing continues;

to replace the disk in the

"Please replace disk in drive "
"ABCD"
ODH,OAB

jc
current_disk
xor bx,bx
mov b1,a1
display_char drives[bx]
write_handle stdout,crlf,2 ;see Function 40H
jc write_error ;routine not shown

ioctl_change 0 ;THIS FUNCTION
jc ioctl_error jroutine not shown
cmp ax,0 ;current drive changeable?
jne continue ;no, continue processing
write_handle stdout.message,29 ;see Function 40H

write_error ;routine not shown
;see Function 19H
;clear index
;get current drive
;see Function 02H

The following program
contains a removable
if so, it prompts the
current drive.

SYSTEM CALLS

Example

of COMMAND.COM

1-216

db
db
dh
db

"command.com",0
9,"/c dir /w",0DH
14 dup (?)
10 dup (?)

last_inst ;THIS FUNCTION
pgm_file,cmd_line,parm_blk,0 ;See Function

;4BH

The following program invokes a second copy
and executes a Dir (directory) command.

pgm_file
cmd_l ine
parm_blk
reg save

begin: set_block
exec

COMMAND.COM

SYSTEM CALLS

The parameter block is four bytes long:

Description

2 (word)00

2 (word)02

the carry flag (CF) is and theset

MeaningCode

1 AL is not OOH or 03H.

Program file not found2

8 Not enough memory to load the program.

Macro Definition: exec_ovl

1-223

If there
error

Offset
(Hex)

Length
(Bytes)

Segment address where program is to
be loaded.

macro
mov
mov
mov
mov
mov
mov
int
endm

path.parms.see addr
dx.offset path
bx,offset parms
parms.see addr
parms[02H],seg addr
al,3
ah,4BH
21H

Relocation factor. This is usually
the same as first word of the
parameter block; for a description
of an .EXE file and relocation, see
Chapter 5).

or path is invalid.

is an error,
code is returned in AX.

SYSTEM CALLS

AL and the

is and theset

MeaningCode

Invalid country code (no table for it).2

country.buffer

g c_01:

1-150

gc_01
dx,offset buffer
ax,country
ax.OFFH
gc_01
al.OFFh
bx,country
ah,38h
21H

If there is an error, the carry flag (CF)
error code is returned in AX:

Macro Definition: get_country macro
local
mov
mov
cmp
jl
mov
mov
mov
int
endm

Case-Mapping Call Address: The segment and offset of a FAR
procedure that performs country-specific lowercase-to-
uppercase mapping on character values from 80H to OFFH. You
call it with the character to be mapped in AL. If there is
an uppercase code for the character, it is returned in AL;
if there is not, or if you call it with a value less than
80H in AL, AL is returned unchanged. AL and the FLAGS are
the only registers altered.

SYSTEM CALLS

Example

I

0,data_areabegin:

not_usa:

1-151

db
db
db
db

data_area [0211]
number

the
the
the

ch.time
cl.time[03H]
dh .time[O6H]

time
date
number
data_area

byte_to_dec
byte_to_dec

all_done: mov
mov
mov
mov
display
display

;THIS FUNCTION
;See Function 2CH
;See end of chapter
;for description of
;CONVERT macro
;See Function 2AB
;Want last 2 digits
;See end of chapter
;Check country code
;It's not USA
;See end of chapter
;See end of chapter
;Display data
;See end of chapter
;See end of chapter
;Thousand separator
;Put in NUMBER
;Decimal separator
;Put in AMOUNT
;See Function 09B
; See Function 09H
;See Function 02H
;See Function 09B

" : : ",5 dup (20B),"$"
" / / ",5 dup (20H),"$"
"999? 999? 99", ODE, OAH,’'?"
32 dup (?)

The following program displays the time and date in
format appropriate to the current country code, and
number 999,999 and 99/100 as a currency amount with
proper currency symbol and separators.

get_country
get_time
byte_to_dec
byte_to_dec
byte_to_dec
get_date
sub ex,1900
byte_to_dec cl,date[06H]
emp word ptr data_area,0
jne not_usa
byte_to_dec dh,date
byte_to_dec dl,date[03B]
jmp all_done

dl,date
dh,date[03B]

al,data_area[07B]
number[03H],al
al,data_area[09H]
number[07H],al
time
date

display_char
display

SYSTEM CALLS

Set Country Data (Function 38H)

ex

If AL BX

is and theset

MeaningCode

Invalid country code (no table for it).2

1-152

If theie is
error code

see
set

the
the
the

$1

Of

•/•■Id.::-?

CL

•M
Ch

The country code
prefix code.
(Get Country Data) for
how it is used.

Call
AH = 38H
DX = -1 (OFFFFH)
AL

2 = Invalid country code
Carry not set:

No error

Return
Carry set:
AX

rexes, j HXMk

an error, the carry flag (CF)
is returned in AX:

code
or

the country
description).

AL must
or

contains

is usually the international telephone
See the preceding function request description

a description of the country data and

Country code less than 255, or
OFFH if the country code is in BX

BX (if AL=0FFH)
Country code 255 or higher

that MS-DOS uses to
retrieves the country

data,
To
contain

255 to indicate that
OFFH, BX must

Function 38H sets the country
control the keyboard and display,
dependent information (to get
previous function request
information, DX must contain OFFFFH.
country code if it is less than 255,
the country code is in BX.
contain the country code.

SYSTEM CALLS

Macro Definition:

s c_01:

Example

Unitedthethe country code to

44equ

1-153

The following program sets
Kingdom (44).

set_country uk
jc error

;THIS FUNCTION
;routine not shown

country
sc_01
dx.OFFFFH
ax,country
ax.OFFH
sc_01
bx,country
al.Offh
ah,38H
21H

uk

begin:

set_country macro
local
mov
mov
cmp
jl
mov
mov
mov
int
endm

SYSTEM CALLS

Create Directory (Function 39H)
AX

CX.

is and theset
is returned in AX:

MeaningCode

3 Path not found.

5

Macro Definition: make_dir

1-154

Call
AH = 39H
DS:DX

Pointer to pathname

dx.offset path
ah,39H
21H

SI

01

CL

a.

BH

CH

OH

CS

DS

ss
£S

If there is an error, the carry flag (CF)
error code

Function 39H creates
the offset (from

macro path
mov
mov
int
endm

fLACt- | HMXb.

Return
Carry set:
AX

3 = Path not found
5 = Access denied

Carry not set:
No error

a new subdirectory. DX must contain
offset (from the segment address in DS) of an ASCIZ

string that specifies the pathname of the new subdirectory.

No room in the parent directory, a file with the
same name exists in the current directory, or
the path specifies a device.

SYSTEM CALLS

Example

begin:

1-155

old_path
new_path
buffer

db
db
db

;See Function 47H
;Routine not shown
;See end of chapter
;THIS FUNCTION
;Routine not shown
;See Function 3BH
;Routine not shown
;See Function 47H
;Routine not shown
;See end of chapter
;See Function 3BH
;Routine not shown
;See Function 3AH
;Routine not shown
;See Function 47K
;Routine not shown

;See end of chapter

error_change
new_path
error_rem
2 .buffer[03H]
error get

buffer

2,old_path[03H]
error get

old_path
new_path
error_make

'change_dir new_path
error_change
2,buffer[03H]
error get

buffer

get_dir
jc
display_asciz
make_dir
jc
jc
get_dir
ic
display_asciz
change_dir old_path
jc
rem_dir
jc
get_dir
jc
display_asciz

"b:\",0,63 dup (?)
”b:\new_dir",0
"b:\",0,63 dup (?)

The following program adds a subdirectory named NEWDIR to
the root directory on the disk in drive B, changes the
current directory to NEWDIR, changes the current directory
back to the original directory, then deletes NEWDIR. It
displays the current directory after each step to confirm
the changes.

SYSTEM CALLS

Remove Directory (Function 3AH)

DX

MeaningCode

Path not found.3

5

the current directory.16

Macro Definition: rem_dir

1-156

macro
mov
mov
int
endm

u
Dx

Call
AH = 3AH
DS:DX

Pointer to pathname

path
dx,offset path
ah,3AH
21H

CL

CS

ss
ES

SP

SI

DI

The path specifies

*h :
■ H
CH
OH :

any
If

error

Return
Carry set:
AX

fUCC. I ycXICi

offset (from
that specifies
deleted.

The subdirectory must not contain,
erase the current directory,
carry flag (CF) is set and the

3 = Path not found
5 = Access denied

16 = Current directory
Carry not set:

No error

files. You cannot
there is an error, the

code is returned in AX:

The directory isn't empty; or the path doesn't
specify a directory, specifies the root
directory, or is invalid.

Function 3AH deletes a subdirectory. DX must contain the
the segment address in DS) of an ASCIZ string
the pathname of the subdirectory to be

SYSTEM CALLS

Example

1-157

db
db
db

;See Function 47H
;Routine not shown

;See end of chapter
;See Function 39H
;Rout ine not shown
;See Function 3BH
;Routine not shown
;See Function 47H
;Routine not shown

;See end of chapter
;See Function 3BH
;Routine not shown
;THIS FUNCTION
;Routine not shown
;See Function 47H
jRoutine not shown

;See end of chapter

old_path
new_path
buffer

begin: 2,old_path[03H]
error get

old_path
new_path
error_make

change_dir new_path
error_change
2.buffer[03H]
error get

buffer

get_dir
jc
display_asciz
make dir
jc

jc
rem_dir
jc
get_dir
jc
display_asciz

jc
get_dir
jc
display_asciz
change_dir old_path

error__change
new_path
error_rem
2.buffer[03H]
error get

buffer

"b:\",0,63 dup (?)
"b:\new_dir",0
"b:\".0,63 dup (?)

The following program adds a subdirectory named NEWDIR to
the root directory on the disk in drive B. changes the
current directory to NEWDIR, changes the current directory
back to the original directory, then deletes NEWDIR. It
displays the current directory after each step to confirm
the changes.

SYSTEM CALLS

Change Current Directory (Function 3BH)

Cl .

limited to 64 characters.The directory string is

the
If

MeaningCode

3 a

Macro Definition: change_dir

1-158

Cl
M

macro
mov
mov
int
endm

path
dx,offset path
ah,3BH
21H

Call
AH = 3BH
DS:DX

Pointer to pathname

Return
Carry set:
AX

BH
CM
o* ■ >

cs

88
fl

The pathname either doesn't exist or specifies
file, not a directory.

Function 3BH changes
the offset
string that
directory.

(from the
specifies

3 = Path not found
Carry not set:

No error

If any member of the path doesn't exist, the path is not
changed. If there is an error, the carry flag (CF) is set
and the error code is returned in AX:

the current directory. DX must contain
segment address in DS) of an ASCIZ

the pathname of the new current

SYSTEM CALLS

Example

step

begin:

1-159

old_path
new_path
buffer

db
db
db

;See Function 47H
;Routine not shown

;See end of chapter
;See Function 39H
;Routine not shown
;THIS FUNCTION
;Routine not shown
;See Function 47H
;Routine not shown

;See end of chapter
;See Function 3BH
;Routine not shown
;See Function 3AH
;Routine not shown
;See Function 47H
;Routine not shown

;See end of chapter

2,old_path[03H]
error get

old_path
new_path
error_make

change_dir pew_path
error_change
2,buffer[03H]
error get

buffer

get_dir
jc
display_asciz
taake_dir
jc

jc
get_dir
jc
display_asciz
change_dir old_path

error_change
new_path»
error_rem
2,buffer[03H]
error get

buffer

jc
rem_dir
jc
get_dir
Jc
display_asciz

"b:\",0,63 dup (?)
"b:\new_dir",0
"b:\",0,63 dup (?)

The following program adds a subdirectory named NEW_DIR to
the root directory on the disk in drive B, changes the
current directory to NEW_DIR, changes the current directory
back to the original directory, then deletes NEW_DIR. It
displays the current directory after each step to confirm
the changes.

SYSTEM CALLS

Create Handle (Function 3CH)

OL

Handle

is and theset

1-160

The
is

Bl

CX

AM

BM

CM

"ph PC

cs
db \
SB

CS

If there is an error, the carry flag (CF)
error code is returned in AX:

Return
Carry set:
AX

Call
AH ■= 3CH
DS;DX

Pointer to pathname
CX

File attribute

3 = Path not found
4 = Too many open files
5 “ Access denied

Carry not set:
AX

Function 3CH creates a file and assigns it the first
available handle. DX must contain the offset (from the
segment address in DS) of an ASCIZ string that specifies the
pathname of the file to be created. CX must contain the
attribute to be assigned to the file, as .described under
"File Attributes" earlier in this chapter.

If the specified file does not exist, it is created. If the
file does exist, it is truncated to a length of 0.
attribute in CX is assigned to the file and the file
opened for read/write. AX returns the file handle.

SYSTEM CALLS

MeaningCode

The path is invalid.3

Too many open files (no handle available).4

5

Macro Definition: create_handle

Example

begin:

1-161

ax,12H
all_done
write_.it

handle

macro
mov
mov
mov
int
endm

;See Function 4FH
;Another entry?
;No, go home
;Yes, write record
;See Function 3EH

db
db
dw

path,attrib
dx,offset path
ex,attrib
ah,3CH
21H

srch_file db
tmp_file
buffer
handle

"b:*.*" ,0
"b:dir.tmp",0
43 dup (?)
7

;See Function 1AB
srch_f ile,16H ;See Function 4EH

;Directory empty?
;Yes, go home
;THIS FUNCTION
;Routine not shown
;Save handle

Directory full, a directory with the same name
exists, or a file with the same name exists
with more restrictive attributes.

The following program creates a file named DIR.TMP on the
disk in drive B that contains the name and extension of each
file in the current directory.

set_dta buffer
find_f irst_f ile
emp ax,12H
je all_done
create_handle tmp_file,0
jc error
mov handle,ax

write_it: write_handle handle.buffer[1EH],12 ;Function 40H
f ind_next_file
emp
je
jmp

all_done: close_handle

write_.it

SYSTEM CALLS

Open Handle (Function 3DH)

text)DI

IP

Controlling Access to the File

thatup

the

1-162

SI
CM

a
a.

AH
■H
CH

cs
OS
ss
CS

Return
Carry set:
AXSLACS- |

Call
AH = 3DH
AL

Access code (see
DS:DX

Pointer to pathname

including hidden and system
DX contains the offset (from

an ASCIZ string that specifies
AL contains a code

whether the file
(access code);
(sharing mode); and whether
child process (inherit bit).

Function 3DH opens any file,
files, for input or output,
the segment address in DS) of
the pathname of the file to be opened,
that specifies how the file is to be opened, described later
under "Controlling Access to the File."

1 = Invalid function code
2 = File not found
3 = Path not found
4 = Too many open files
5 = Access denied

12 = Invalid access
Carry not set:

No error

The value in AL is made up of three parts that specify
is to be opened for read, write, or both

what access other processes have to the file
and whether the file is inherited by a

If there is no error, AX returns the file handle. MS-DOS
sets the read/write pointer to the first byte of the file.

SYSTEM CALLS

Bit

J \ J
Access code >

> Sharing mode

I > Inherit bit

Inherit Bit

the

Sharing Mode

DescriptionBits 4-6 Sharing Mode

000 Compatability

Deny both001

Deny write010

1-163

Fails if the file has been opened
in compatibility mode or for write
access by any other process.

I — I- I 7 I 6 I —I-
\J \.III

if any,
It can have the

5I —

Any process can open the file any
number of times with this mode.
Fails if the file has been opened
with any of the other sharing
modes.

--- |
0 II- 1

If the bit is 0, the file
if the bit is 1, the file is not inherited.

2

The high-order bit (bit 7) specifies whether the file is
inherited by a child process created with Function 4BH (Load
and Execute Program). If the bit is 0, the file is
inherited;

1I —
-- 1__

4 I 3
I —I-

The sharing mode (bits 4-6) specifies what access,
other processes have to the open file,
following values:

Fails if the file has been opened
in compatibility mode or for read
or write access, even if by the
current process.

SYSTEM CALLS

5

12

Macro Definition: open_handle

1-165

Error)
sharing

macro
mov
mov
mov
int
endm

The program attempted to open a directory or
VOLUME-ID, or open a read-only file for writing.

If this system call fails because of
MS-DOS issues Interrupt 24H
Ready). A subsequent
returns the
violation.

path,access
dx, offset path
al, access
ah, 3DH
21H

Similarly, it is important to specify what
process will perform
("Read/write") will

process has
’’Deny" mode.
will

operations your
("Access" mode). The default mode

cause the open request to fail if
another process has the file opened with any sharing mode
other than "Deny" mode. If you only want to read the file,
your open will succeed unless all other processes have
specified "Deny" mode or "Deny write".

The access code (bits 0-3 of AL) is not 0, 1, or
2.

a file-sharing error,
Interrupt 24H with error code 2 (Drive Not

Function 59H (Get Extended
extended error code that specifies a

When opening a file, it is important to inform MS-DOS of any
operations other processes may perform on this file (sharing
mode). The default (compatibility mode) denies all other
processes access to the file. It may be OK for other
processes to continue to read the file while your process is
operating on it. In this case, you should specify "Deny
Write," which inhibits writing by other processes but allows
reading them.

SYSTEM CALLS

Example

on

1-166

file
buffer
handle

begin:

db
db
dw

jc
cmp
je

;THIS FUNCTION
;Save handle
;Read 1 character
;Routine not shown
;End of file?
;Yes, go hotne
;See Function 05H
;Read another

"b:textfile.asc",0
?
?

The following program prints the file named TEXTFILE.ASC
the disk in drive B.

open_handle file.O
mov handle,ax

read__char: read_handle handle,buffer,!
error_read
ax,0
return

print_char buffer
jmp read_char

SYSTEM CALLS

Close Handle (Function 3EH)

c»

..

a

Code Meaning

6

Macro Definition: close_handle

Example

DIR.TMP

the

1-167

macro
mov
mov
int
endm

handle
bx,handle
ah,3EH
21H

as
•a

• ca.
0S

«

•H

CH

L
r
| HJXU. | HXMU

Call
AH = 3EH
BX

Handle

Return
Carry set:
AX

6 = Invalid handle
Carry not set:

No error

Function 3EE closes
Handle) or 3CH (Create Handle).

The following program creates a
current directory on
filename and extension
directory.

file opened with Function 3DH (Open
or 3CH (.Create Handle). BX must contain the handle

of the open file that is to be closed.

Handle is not open or is invalid.

If there is no error, MS-DOS closes the file and flushes all
internal buffers. If there is an error, the carry flag (CF)
is set and the error code is returned in AX:

file named DIR.TMP in the
the disk in drive 8 that contains the

of each file in the current

SYSTEM CALLS

write_it:

all_done:

1-168

db
db
db
dw

ax,12H
all_done
write_it

handle
error_close

srch_f ile
tmp_f ile
buffer
handle

begin;

"b:*.*",0
"b;dir.tmp",0
43 dup (?)
?

set_dta buffer
find_f irst_f ile
cmp ax,12H
je all_done
create_handle tmp_file,0
jc error_create
mov handle,ax
wr ite_handle
jc error_write
find_next_file
cmp
je
jmp
close handle
jc

;See Function 1AH
srch_file,16H ;See Function 4EH

;Directory empty?
;Yes, go home
;See Function 3CH
;Routine not shown
;Save handle

handle,buffer[1EH],12 ;See Function
;40H

;See Function 4FH
;Another entry?
;No, go home
;Yes, write record
;See Function 3EH
;Routine not shown

SYSTEM CALLS

MeaningCode

Handle is not open for reading.5

Handle is not open or is invalid.6

Macro Definition: read-handle

Example

TEXTFILE.ASCnamed

begin:

1-170

filename
buffer
handle

The following program displays the file
on the disk in drive B.

;See Function 3DH
;Routine not shown
;Save handle

jRoutine not shown
;End of file?
;Yes, go home
;£ of bytes read
;Make a string
;See Function 09H
;Read more

macro
mov
mov
mov
mov
int
endm

db
db
dw

"b:\textfile.asc",0
129 dup (?)
7

open_handle
jc
mov

read file: read handle
jc
cmp
je
mov
mov
display
jmp

handle,buffer,bytes
bx,handle
dx,offset buffer
ex,bytes
ah,3FH
21H

filename,0
error_open
handle, ax
buffer,file_handle,128
error_open
ax, 0
return
bx, ax
bufferlbx]
buffer
read_file

SYSTEM CALLS

Write HaiiSit iluncnon 40H)

AX

Cl

Handle
CX1sr

L

to

1-171

Function 40H writes
the

the
written.

a

&

BK
CH

Call
AH = 40H
BX

size is set
Allocation

required, to satisfy the

Bytes to write
DS:DX

Pointer to buffer

If there is
written,
if it contains 0,
than the
an error even

If you use this function request to write
output, the output can be redirected,
function request with CX=0, the file
value of the read/write pointer,
allocated or released, as
size.

device
BX must contain the handle.

DX must

standard
If you call this
is set to the

units are
new file

Return
Carry set:
AX

5 = Access denied
6 = Invalid handle

Carry not set:
AX

Bytes written

to the file or device associated with
specified handle. BX must contain the handle. CX must

contain the number of bytes to be written. DX must contain
offset (to the segment address in DS) of the data to be

ruw.. j nxni

no error, AX returns the number of bytes
Be sure to check AX after writing.to a disk file:

the disk is full; if its value is less
number in CX when the call was made, it indicates

though the carry flag isn't set.

SYSTEM CALLS

is and theset

MeaningCode

Handle is not open for writing.5

Handle is not open or is invalid.6

Macro Definition: write_handle

Example

DIR.TMP

begin:

1-172

macro
mov
mov
mov
mov
int
endm

handle,data.bytes
bx,handle
dx.offset data
cx.bytes
ah,40H
21H

"b:*.*",0
"b:dir.tmp",0
43 dup (?)
?

db
db
dw

srch_file db
tmp_file
buffer
handle

;See Function 1AH
srch_file,16H ;Check directory

;Directory empty?
;Yes, go home
;See Function 3CH
;Routine not shown
;Save handle

the
the

current
current
filename and
directory.

The following program creates a file named DIR.TMP in
directory on the disk in drive B that contains

extension of each file in the

set_dta buffer
find_first_file
cmp ax,12H
je return
create_handle tmp_file,0
jc error_create
mov handle,ax

If there is an error, the carry flag (CF)
error code is returned in AX:

SYSTEM CALLS

1-173

ax,12H
all_done
wr ite_it

handle
error_close

write_it: write_handle handle.buffer[1EH],12 ;THIS FUNCTION
;Routine not shown
;Check directory
•.Another entry?
;No, go home
;Yes, write record
;See Function 3EH
;Routine not shown

jc error_write
find_next_file
cmp
je
jmp

all done: close handle
jc

SYSTEM CALLS

Delete Directory Entry (Function 41H)

tu

entry.
must

MeaningCode

Path is invalid2

Path specifies5

Macro Definition: delete_entry

1-174

Al
CX

Call
AH = 41H
DS:DX

Pointer to pathname

macro
mov
mov
int
endm

change
File

If
error

path
dx,offset path
ah,41H
21H

Return
Carry set:
AX

2 = File not found
5 = Access denied

Carry not set:
No error

CM

• £31

- " AM ' M .

•L

a .

the
Wildcard characters cannot be used.

FLAGS* |

a directory or read-only file.

or file doesn't exist.

If the file exists and is not read-only, it is deleted,
there is an error, the carry flag (CF) is set and the
code is returned in AX:

Function 41H erases a file by deleting its directory
DX must contain the offset (from the segment address in DS)
of an ASCIZ string that specifies the pathname of the file
to be deleted.

To delete a file with the read-only attribute, first
its attribute to 0 with Function 43H (Get/Set
Attribute).

SYSTEM CALLS

Example

begin:

path,0

compare:

next:

how—many:

all_done:

1-175

year
month
day
files
message
path
buffer

db
db
db
db
db
db
db

buffer
"B"

The following program deletes all files on the disk in drive
B whose date is earlier than December 31, 1981.

convert_date
cmp
jg
cmp
jg
cmp
jge

compare
files,0
all_done
files,10,message ;See end of chapter
message ;See Function 09H

"A" ;See Function OEH

set_dta
select_disk
find_first_f ile
jnc compare
jmp all_done

buffer[-1]
ex,year
next
dl., month
next
dh ,day
next

delete_entry
jc error_delete
inc files
f ind_next_f ile
jnc
cmp
je
convert
display
select_disk

1981
12
31
?

"NO FILES DELETED.
"b:*.*", 0
43 dup (?)

",ODH,OAH,

;See Function 1AH
;See Function OEH
;See Function 4EH
;got one
;no match, go home
;See end of chapter
•.After 1981?
;Yes, don't delete
;After December?
;Yes, don't delete
;31st or after?
;Yes, don't delete

buffer 11EH] ;THIS FUNCTION
;Routine not shown
;Bump file counter
;Check directory
;Go home if done
;Was directory empty?
;Yes, go home

SYSTEM CALLS

Move File Pointer (Function 42H)

AX
42H

01

cs

Cursor Is Moved ToCode

Beginning of file plus the offset.0

Current pointer location plus the offset.1

End of file plus the offset.2

1-176

l moves
with

Return
Carry set:
AX

»s
£S

■H
CM

BP
£1
Di

CL

1 = Invalid function
6 = Invalid handle

Carry not set:
DX:AX

New read/write pointer location

Function 42H
associated i
handle,
the most
specifies how to move the pointer:

FLAGS..

the read/write pointer of the file
the specified handle. BX must contain the

CX and DX must contain a 32-bit offset (CX contains
significant byte). AL must contain a code that

DX and AX return the new location of the read/write pointer
(a 32-bit integer; DX contains the most significant byte).
You can determine the length of a file by setting CX:DX to

Call
AH =
AL

Method of moving
BX

Handle
CX:DX

Distance in bytes (offset)

SYSTEM CALLS

is and theset

MeaningCode

1 2.

6

Macro Definition: move_ptr

Example

a

each record

dw

1-177

db db
db
db
db

;See Function 3DH
;Routine not shown
;Save handle

macro
mov
mov
mov
mov
mov
int
endm

handle,high,low,method
bx,handle
ex,high
dx.low
al,method
ah,42H
21H

open_handle file.O
jc error_open
mov handle,ax

file
buffer
prompt
crlf
handle
record_length

begin:

"b: alphabet.dat" ,0
28 dup (?),"$"

"Enter letter: $"
0DH,0AH,"$"
?
28

0, AL to 2, and calling this function request; DX:AX return
the offset of the byte after the last byte in the file (size
of the file in bytes).

Handle isn't open.

AL isn't 0, 1, or

The following program prompts for
letter to its alphabetic sequence
reads and displays the corresponding record
named

letter, converts the
(A=l, B=2, etc.), then

from the file
ALPHABET.DAT in the current directory on the disk in

drive B. The file contains 26 records; each record is 28
bytes long.

If there is an error, the carry flag (CF)
error code is returned in AX:

SYSTEM CALLS

- t

1-178

;See Function 09H
;See Function 01H
;Convert to sequence

;Calculate offset

jc
cmp
je
display
display
display
jmp

;Routine not shown
;End of file?
;Yes, go home
;See Function 09H
;See Function 09H
;See Function 09H
;Get another character

get_char: display prompt
r e a d_kb d_and_e c ho
sub al041h
mul byte ptr record-length
move_ptr handle,0,ax,0 ;THIS FUNCTION
jc error_move ;Routine not shown
read_handle handle,buffer,record-length

error_read
ax,0
return
cr If
buffer
crlf
get—char

SYSTEM CALLS

Get/Set File Attributes (Function 43H)

43H

the

or

is and theset

1-179

ca
©a-

SI

tH

Bl

Cl

AH

BH

CH

Ci

w
Si

«

Call
AH =
AL

If there is an error, the carry flag (CF)
error code is returned in AX:

0 «= Get attributes
1 = Set attributes

CX (if AL=1)
Attributes to be set

DS:DX
Pointer to pathname

Return
Carry set:
AX

1 = Invalid function
3 = Path not found
5 = Access denied

Carry not set:
CX

Attribute byte (if AL=0)

You cannot change the volume-ID bit (08H) or the directory
bit (10H) of the attribute byte with this function request.

Function 43H gets or
contain the offset
ASCIZ string that specifies the pathname of a file,
specify whether to get or

attribute), the attribute byte is
AL is 1 (set the attribute), CX must
to be set. The attributes are

'File Attributes" earlier in this chapter.

sets the attributes of a file. DX must
(from the segment address in DS) of an

AL must
set the attribute (0=get, l=set).

If AL is 0 (get the
returned in CX. If
contain the attributes
described under

SYSTEM CALLS

MeaningCode

1.1

Path is invalid or file doesn't exist.3

5 or

Macro Definition: change_attr

Example

attributes

header

If

db

begin:

1-180

macro
mov
mov
mov
mov
int
endm

;See Function 09H
;See Function 09H
;Check 6 bits (0-5)
;Start with bit 0

Hidden
Sub-Dir

II

Archive"

path,action,attrib
dx,offset path
al,action
ex,attrib
ah,43H
21H

Attribute in CX cannot be changed (directory
VOLUME-ID).

db
db
db
db

path db
attribute dw
blanks

AL isn't 0 or

15 dup (20h),"Read-",ODH,OAH
"Filename Only
"System Volume
ODH,0AH,ODH,0AH,
"b:report.asm",3 dup (0),"$
?
9 dup (20h),"$"

change_attr path,0,0 ;THIS FUNCTION
jc error_mode ;Routine not shown
mov attribute,ex ;Save attribute byte
display header
display path
mov ex,6
mov bx,l

file named
disk in drive B.

The following program displays the attributes assigned to
the file named REPORT.ASM in the current directory on the

SYSTEM CALLS

chk_bit:

1-181

no_attr:
next_bit:

bx,l
chk_bit

attiibute,bx
no_attr

"X"
next_bit

20h

;Is the bit set?
;No
;See Function 02H
;Done with this bit
;See Function 02H
;See Function 09H
;Move to next bit
;Check it

test
jz
display_char
jmp short
displsy_char
display blanks
shl
loop

SYSTEM CALLS

IOCTL Data (Function 44H, Codes 0 and 1)

M.

BX
Handle

DX
Device data (see text)

or

If AL

If bit
the

Bit Value Meaning

1

13-8

1-182

the data or 1 to set it.
is 1, DH must contain 0.

15
14

Return
Carry set:
AX

cs
M

ss
es

si

CM

a
«.

AH

•H

CM

0 = Get device data
1 = Set device data

1 ■= Invalid function
6 = Invalid handle

Carry not set:
DX

Device data

Call
AH = 44H
AL

RESERVED.
Device can process control strings sent
with Function 44H, Codes 2 and 3 (IOCTL
Control). This bit can only be read; it
cannot be set.
RESERVED

IF

flagsm j nxsfc.

The device data word is specified or returned in DX.
7 of the data is 1, the handle refers to a device and the
other bits have the following meanings:

Function 44H, Codes 0 and 1 either gets or sets the data
MS-DOS uses to control the device. AL must contain 0 to get

BX must contain the handle.

SYSTEM CALLS

file and thea

MeaningBit Value

0

is and theset

MeaningCode

AL is 1 but DH is not 0.1
The handle in BX is not open or invalid.6

Example
1-183

4
3
2
1
0

6
5

0
1
0
1
1
1
1
1

End of file on input.
Don't check for control characters.
Check for control characters.
RESERVED.
Clock device.
Null device.
Console output device.
Console input device.

code.handle
bx,handle
al, code
ah,44H
21H

15-8
6
0-5

If bit 7 of DX is 0, the handle refers to
other bits have the following meanings:

RESERVED
The file has been written.
Drive number (0=A, 1=B, etc.).

AL is not 0 or

Macro Definition: ioctl_data macro
mov
mov
mov
int
endm

1 , or

If there is an error, the carry flag (CF)
error code is returned in AX:

The control characters referred to in the description of bit
5 are Ctrl-Break, Control-P, Control-S, and Control-Z. To
read these characters as data, rather than having them
interpreted as control characters, bit 5 must be set and
Ctrl-Break checking must be turned off, either with Function
33H (Ctrl-Break Check) or the MS-DOS Break command.

SYSTEM CALLS

begin:

<control characters now treated as data,

or

1-184

get
set
stdout

equ
equ
equ

0
1
1

ioctl data
jc
mov
or
ioctl data
jc

ioctl data
jc
mov
and
ioctl_data

get .stdout
error
dh,0
dl.ODFH
set .stdout

get.stdout
error
dh,0
dl,20H
set, stdout
error

;THIS FUNCTION
;routine not shown
;clear DH
jclear bit 5
;THIS FUNCTION

;THIS FUNCTION
;routine not shown
;clear DH
;set bit 5
;THIS FUNCTION
jroutine not shown

; <control characters now interpreted,

or "raw mode">

"cooked mode">

The following program gets
Output and sets the bit

the device data for Standard
and sets the bit that specifies not to check for

control characters (bit 5). then clears the bit.

SYSTEM CALLS

IOCTL Character (Function 44H, Codes 2 and 3)

BX
Handle

CX

deviceof

is and theset

1-185

2 - Send control data
3 = Receive control data

21

CS
D*
IS
»

•H
CH

■

Call
AH «= 44H
AL

Bytes to read or write
DS:DX

Pointer to buffer

character
CX must contain

DX must contain
DS) of the data

to
or from a character device. AL must contain 2 to send data
or 3 to receive. BX must contain the handle of a
device, such as a printer or serial port,
the number of bytes to be read or written,
the offset (to the segment address in
buffer.

Return
Carry set:
AX

1 = Invalid function
6 = Invalid handle

Carry not set:
AX

Bytes transferred

Function 44H, Codes 2 and 3 send or receive control data
from a character device.

3 to receive.
such as

AX returns the number of bytes transferred. The
driver must be written to support the IOCTL interface.

If there is an error, the carry flag (CF)
error code is returned in AX:

SYSTEM CALLS

IOCTL Block (Function 44H, Codes 4 and 5)

AZ

8P
BL

Drive number (0=default, 1=A, etc.)
CX

is and theset

1-187

4 = Send control data
5 ■= Receive control data

Ci

Dt

CS
t*
SB
SS

■H
CH

device
To

the device
if it is s>t, the driver supports

Bytes to read or write
DS.-DX

Pointer to buffer

If there is an error, the carry flag (CF)
error code is returned in AX:

Return
Carry set:
AX

1 ~ Invalid function
5 = Invalid drive

Carry not set:
AX

Bytes transferred

Function 44H, Codes 4 and 5 send
or from a block device,
to receive.
1=A, etc.) .
or written. DX must contain the
address in DS) of the data buffer.

Call
AE = 44E
AL

or receive control data to
AL must contain 4 to send data or 5

BL must contain the drive number (0=default,
CX must contain the number of bytes to be read

DX must contain the offset (to the segment

AX returns the number of bytes transferred-. The
driver must be written to support the IOCTL interface,
determine this, use Function 44H, Code 0 to get
data and test bit 14;
IOCTL.

SYSTEM CALLS

MeaningCode

the device cannot perform the1

valid drive number.5

Macro Definition: ioctl_block

Example

data depends theon

1-188

macro
mov
mov
mov
mov
int
endm

code,drive,buffer
bl .drive
dx,offset buffer
al, code
ah,44H
21H

AL is not 4 or 5, or
specified function.

The number in BL is not a

Because processing of IOCTL control
device and device driver, no example is included.

SYSTEM CALLS

IOCTL Status (Function 44H, Codes 6 and 7)

AE

44H

08

BX
Hand 1e

Flics.

AL returns the status:

Value

1-189

OOH
OFFH

Meaning fur
Device

Nor. ready
Ready

6 •= Check input status
7 = Check output status

Meaning for
Output File

Ready
Ready

Pointer is at EOF
Ready

w

cs

Cl

cs

BH

CH

Call
AH ■=
AL

Not ready
OFFH = Ready

Meaning for
Input File

Return
Carry set:
AX

1 = Invalid function
5 = Access denied
6 = Invalid handle

13 = Invalid data
Carry not set:
AL

OOH

Function 44H, Codes 6 and 7 check whether the file or device
associated with a handle is ready. AL must contain 6 to

7 to check
BX must contain the

with a handle is ready.
check whether the handle is ready for input or
whether the handle is ready for output.
handle.

SYSTEM CALLS

isif diskthe

is and theset

MeaningCode

AL is not 6 or 7.1

Access denied.5

valid, open handle.6

Invalid data.13

Macro Definition: ioctl_status

Example

file

1equ
II

begin:

1-190

db
db
db
db

jc
cmp
jne

macro
mov
mov
mov
int
endm

code,handle
bx,handle
al ,code
ah,44H
21H

;display message
;routine not shown
;THIS FUNCTION
jroutine not shown
;check status code
;file is ready

stdout

message
ready
at_eof
cr If

"File is
"ready."
"at EOF."
ODH.OAH

write_handle stdout.message,8
jc write_error
ioctl_status 6

ioctl_error
al,0
not_eof

If there is an error, the carry flag (CF)
error code is returned in AX:

The number in BX isn't a

An output file always returns ready, even
full.

The following program displays a message that tells whether
the file associated with handle 6 is ready for input or at
end of file.

SYSTEM CALLS

1-191

not_eof:
all_done:

;see Function 40H
;routine not shown
;clean up & go home
;see Function 40H
;see Function 40H
Jroutine not shown

write_handle stdout, at_eof,7
jc write_error
jmp a Undone
write_handle stdout.ready,6
write_handle stdout,crlf,2
jc write_error

SYSTEM CALLS

IOCTL Is Changeable (Function 44H, Code 08H)

DI

Drive number (0=default, 1=A, etc.)

a

disk

determi ne issuewhether to a

is and theset

MeaningCode

The device does not support this call.1

The number in BL is not valid drive number.15 a

1-192

SI
(X

removable disk.
AX returns 0 if

FLAGS r j

cs
M
ss
ES

a
SM
CM
oh

Call
AH = 44H
AL = 08H
BL

Return
Carry set:
AX

1 = Invalid function
15 = Invalid drive

Carry not set:
AX

0 = Changeable
1 = Not changeable

This call lets a program
message to change disks.

If there is an error, the carry flag (CF)
error code is returned in AX.

Function 44H, Code 08H checks whether a drive contains a
fixed or removable disk. BL must contain the drive number
(0=default, 1=A, etc.). AX returns 0 if the disk can be
changed, 1 if it cannot.

In the case where this call returns error 1 because the
device doesn't support the call, the caller should make the
assumption that the driver cannot be changed.

SYSTEM CALLS

IOCTL Is Redirected Block (Function 44H, Code 09H)

MAM

PC

1=A, etc.)

mo- | mate

BL must contain the

is and theset

1-194

If the block device is local, DX returns the attribute
from the device header,
bit 12 (lOOOh) is set;

Cl
01

<3_______
, ■ <W ■ •

»
»

CM

refers
or is
drive

If there is an error, the carry flag (CF)
error code is returned in AX:

word
If the block device is remote, only

the other bits are 0 (reserved).

Return
Carry set:
AX

1 = Invalid function code
15 = Invalid drive number

Carry not set: •
DX

Device attribute bits

An application program should not test bit 12. Applications
should make no distinction between local and remote files or
devices.

Call
AH » 44H
AL » 09H
BL

Drive number (O=default,

Function 44H, Code 09H checks whether a drive letter
to a drive on a Microsoft Networks workstation (local)
redirected to a server (remote).
number (O«=default, 1=A, etc.).

SYSTEM CALLS

MeaningCode

1

valid drive number.15

Example

isB local or

1equ

not_loc:

done:

1-195

db
db
db
db

File sharing must be loaded to use this system
call.

;see Function 40H
;routine not shown
;see Function 40E
;routine not shown

•.display message
jroutine not shown
;THIS FUNCTION
;routine not shown
;bit 12 set?
;yes, it's remote
;see Function 40E
;routine not shown

stdout

message
loc
rem
crlf

begin:

Macro Definition: ioctl_rblock macro
mov
mov
mov
int
endm

drive
bl, drive
al, 09H
ah, 44H
21H

"Drive B: is "
"local."
"remote."
ODH.OAH

The number in BL is not a

The following program checks whether drive
remote, and displays the appropriate message.

write_handle stdout.message,12
jc write_error
ioctl_rblock 2
jc ioctl_error
test dx,1000h
jnz not_loc
write_handle stdout,loc,6
jc write_error
jmp done
write_handle stdout,rem,7
jc write_error
write_handle stdout,crlf,2
jc write_error

SYSTEM CALLS

IOCTL Is Redirected Handle (Function 44H, Code OAH)

AX

ox
Handle

is and theset

MeaningCode

Network must be loaded to use this system call.1
valid, open handle.6

1-196

Return
Carry set:
AX

cs
PT

ss
ES

■F

Si

Di

: AH •

BH

CH

OH

Call
AH = 44H
AL = OAH
BX

FLAGS..

If there is an error, the carry flag (CF)
error code is returned in AX:

An application program should not test bit 15. Applications
should make no distinction among local and remote files and
devices .

1 = Invalid function code
6 = Invalid handle

Carry not set:
DX

IOCTL bit field

The handle in BX is not a

Function 44H, Code OAH checks whether a handle refers to a
file or device on a Microsoft Networks workstation (local)
or is redirected to a server (remote). BX must contain the
file handle. DX returns the IOCTL bit field; Bit 15 is set
if the handle refers to a remote file or device.

SYSTEM CALLS

Example

1equ
ti

not__loc:

done:

1-197

db
db
db
db

refers
then displays

Macro Definition: ioctl_rhandle macro
mov
mov
mov
int
endm

stdout

message
loc
rem
crlf
5
begin:

;see Function 40H
;routine not shown
;see Function 40H
;routine not shown

jc write_error
ioctl_rhandle 5
jc ioctl—error
test dx,1000h
jnz not_loc
write_handle stdout, loc,6
jc write_error
jmp done
write_handle stdout,rem,7
jc write_error
write_handle stdout,crlf,2
jc write_error

handle
bx, handle
al, OAH
ah, 44H
21H

"Handle 5 is
"local."
"remote."
ODH,OAH

to a
the

write_handle stdout,message,12;display message
;routine not shown
;THIS FUNCTION
jroutine not shown
;bit 12 set?
;yes, it's remote
;see Function 40H
;routine not shown

The following program checks whether handle 5
local or remote file or device,
appropriate message.

SYSTEM CALLS

IOCTL Retry (Function 44H, Code OBH)

Number of retries
CX

Wait time

OBH

MS-DOS

is theandset

1-198

many
fails

contain

Cl:

how
that

SI

CM

OS

os
ss
ES

Cl

ot

M

BH

CM

OH

FLAGS-

If there is an error, the carry flag (CF)
error code is returned in AX.

Function 44H, Code
should retry a i
file-sharing violation,
retries.

Call
AH = 44H
AL » OBH
BX

MS-DOS retries a disk operation
file-sharing violation
is used to specify a different number,
number of retries, MS-DOS issues
requesting process.

times MS-DOS
because of a

the number of

Return
Carry set:
AX

1 Invalid function code
Carry not set:

No error

that fails because of a
three times unless this system call

After the specified
Interrupt 24 for the

specifies
disk operation

BX must
CX controls the pause between retries.

The effect of the delay parameter in CX is machine-dependent
because it specifies how many times MS-DOS should execute an
empty loop. The actual time varies, depending on the
processor and clock speed. You can determine the effect on
your machine by using Debug to set the retries to 1 and time
several values of CX.

SYSTEM CALLS

MeaningCode

1

Example

to

begin:

1-199

File sharing must be loaded to use this system
call.

Macro Definition: ioctl_retry macro
mov
mov
mov
mov
int
endm

The following program sets the number of sharing retries
10 and specifies a delay of 1000 between retries.

ioctl_retry
jc

;THIS FUNCTION
•.routine not shown

10,1000
error

retries, wait
bx, retries
ex, wait
al, OBH
ah, 44H
21H

SYSTEM CALLS

Duplicate File Handle (Function 45H)

SP

file. BXa

is and theset

1-200

Function 45H creates an additional handle for
must contain the handle of an open file.

FLAGS- |FL*Gt<

CS
/ : P* ’ ■

ss
ES

CH

If there is an error, the carry flag (CF)
error code is returned in AX:

read/write pointer
for the other
to

Return
Carry set:
AX

4
6

Call
AH = 45H
BX

Handle

After this function request, moving the
of either handle also moves the pointer
handle. This function request is usually used to redirect
standard input (handle 0) and standard output (handle 1).
For a description of standard input, standard output, and
the advantages and techniques of manipulating them, see
Software Tools by Brian W. Kernighan and P.J. Plauger
(Addison-Wesley Publishing Co., 1976).

= Too many open files
= Invalid handle

Carry not set:
AX

New handle

MS-DOS returns the new handle in AX. The new handle refers
to the same file as the handle in BX, with the file pointer
at the same position.

SYSTEM CALLS

MeaningCode

Too many open files (no handle available).4

Handle is not open or is invalid.6

Macro Definition: xdup

Example

begin: last_inst

; Routine not shownjc error_exec

1-201

db
db
db

"dirfile",0
? ; For handle

; For handle

macro
mov
mov
int
endm

handle
bx,handle
ah,45H
21H

path.O
error_create
dir_file,ax
1
error_xdup
sav_stdout, ax
dir_f ile,1
error_xdup2

file :
I to
to

1)
of

the
input to

pgm_file
cmd_line
parm_blk
path
dir_file
sav_stdout dw

a
COMMAND.COM
directory I
handle 1.

"command.com",0
9,"/c dir /w",0dH
14 dup (0)
db
dw
7

set_block
jc error_setblk
create handle
jc
mov
xdup
jc
mov
xdup2
jc
exec

; See Function 4AH
; Routine not shown
; See Function 3CH
; Routine not shown
; Save handle
; THIS FUNCTION
; Routine not shown
; Save handle
; See Function 46H
; Routine not shown

pgm_file,cmd_line,parm_blk ; See Function
ABH

The following program redefines standard output (handle
to a file named DIRFILE, invokes a second copy

i list the directory (which writes
DIRFILE), then restores standard

COMMAND.COM

SYSTEM CALLS

1-202

sav_stdout,1
error_xdup2

xdup2 sav_stdout,l ; See Function 46H
jc error_xdup2 ; Routine not shown
close_handle sav_stdout ; See Function 3EH
jc error_close ; Routine not shown
close_handle dir_file ; See Function 3EH
jc error_close ; Routine not shown

SYSTEM CALLS

Force Duplicate File Handle (Function 46H)

AS

Handle
CX8P

Second handle

to

it

1-203

CM

OX

D*

88

KS

SI

CM

BH

CM

©Bi.- '

Bl

Ct

Call
AH = 46H
BX

Tuua- |

Return
Carry set:
AX

4 ■= Too many open files
6 = Invalid handle

Carry not set:
No error

After this call, moving the read/write pointer of either
handle also moves the pointer for the other handle. This
function request is normally used to redirect standard input
(handle 0) and standard output (handle 1). For a
description of standard input, standard output, and the
advantages and techniques of manipulating them, see Software
Tools by Brian W. Kernighan and P.J. Plauger
(Addison-Wesley Publishing Co., 1976).

On return, the handle in CX now refers to the same file at
the same position as the handle in BX. If the file referred
to by the handle in CX was open at the time of the call,
is closed.

Function 46H forces a specified handle to refer the same
file as another handle already associated with an open file.
BX must contain the handle of the open file; CX must
contain the second handle.

SYSTEM CALLS

is and theset

MeaningCode

Too many open files (no handle available).4

Handle is not open6

Macro Definition: xdup2

Example

last_instbegin:

; Routine not shown

1-204

db
db
db

; For handle
; For handle

macro
mov
mov
mov
int
endm

jc
mov
xdup
jc
mov
xdup2
jc

handlei,handle2
bx,handlei
cx,handle2
ah,46H
21H

"dirfile",0
?

"command.com",0
9,"/c dir /w",0dH
14 dup (0)
db
dw
1

1)
of
the

input to

pgm_f ile
cmd_l ine
parm_blk
path
dir_file
sav_stdout dw

; See Function 4AH
; Routine not shown

path.O ; See Function 3CH
; Routine not shown
; Save handle
; See Function 45H
; Routine not shown

sav_stdout,ax ; Save handle
dir_f ile, 1
error_xdup2

named
i list
DIRFILE),

file
i to
to

or is invalid.

The following program redefines standard output
to a file named DIRFILE, invokes
COMMAND.COM to list the directory
directory
handle 1.

set_block
jc error_setblk
create_handle

error_create
dir_f ile,ax
1
error_xdup

(handle
a second copy

(which writes
restores standard

If there is an error, the carry flag (CF)
error code is returned in AX:

DIRFILE,
the

then

COMMAND.COM

SYSTEM CALLS

exec

error_close

1-205

jc
xdup2
jc

error_exec
sav_stdout,1
error_xdup2

pgm_file,cind_line,parm_blk ; See Function
ABH

; Routine not shown
; THIS FUNCTION
; Routine not shown

close_handle sav_stdout ; See Function 3EH
jc error_close ; Routine not shown
close_handle dir_file ; See Function 3EH
jc , error_close ; Routine not shown

SYSTEM CALLS

Get Current Directory (Function 47H)

AX

met. |

is and theset
error

MeaningCode

The number in DL is not15

1-206

S4
D4

CX
DX

the pathname of the
specified drive.

(0=default, 1=A, etc.).
the segment address in DS) of

If there is an error, the carry flag (CF)
code is returned in AX:

Function 47H returns
on a

cs
M
ss
ll

■ An v ■ "

an
CH

OH

CL-

•■■ma

current
DL must contain

SI must contain the
a 64-byte memory area.

directory
a drive number
offset (from

Call
AH = 47H
DS: SI

Pointer to 64-byte memory area
DL

Drive number

MS-DOS places an ASCIZ string in the memory area that
consists of the pathname, starting from the root directory,
of the current directory for the drive specified in DL. The
string does not begin with a backslash and does not include
the drive letter.

Return
Carry set:
AX

15

a valid drive number.

Invalid drive number
Carry not set:

No error

SYSTEM CALLS

Macro Definition: get_dir

Example

the

buffer

1-207

db
db

2.buffer
error_dir
disk

macro
mov
mov
mov
int
endm

;THIS FUNCTION
;Routine not shown
;See Function 09H

;See end of chapter

disk
buffer

begin:

drive,buffer
dl .drive
si,offset buffer
ah,47H
21B

get_dir
jc
display
display__asciz

"b:\$"
64 dup (1)

The following program displays the current directory on
disk in drive B.

SYSTEM CALLS

Allocate Memory (Function 48H)

48H

to

is and theset
is returned in AX:

MeaningCode

7

Not enough free memory to satisfy the request.8

1-208

SI
Di

BX
CI
DI:

Memory control blocks damaged (a user program
changed memory that doesn't belong to it).

Call
AH =
BX

Paragraphs of memory requested

as
ss
ES

4H
■H
CH
DH

If there is an error, the carry flag (CF)
error code

FLAGS-

the specified amount of
BX must contain the number

segment address of the allocated memory (the
If sufficient memory is not available, BX

of paragraphs of memory in the largest

Return
Carry set:
AX

7 = Memory control blocks damaged
8 = Insufficient memory

BX
Paragraphs of memory available

Carry not set:
AX

Segment address of allocated memory

If sufficient memory is available to satisfy the request, AX
returns the segment address
offset is 0).
returns the number
available block.

Function 48H tries to allocate
memory to the current process,
of paragraphs of memory (1 paragraph is 16 bytes).

SYSTEM CALLS

Macro Definition: allocate_memory

Example

msg2 db

1-209

path
msgl

db
db

dw
dw
dw

errorjnove
ds
ax,mem_seg

;Routine not shown
;Save address of new memory
;See Function 42B
;Routine not shown
;Save DS
;Get segment of new memory

the
the

macro
mov
mov
shr
inc
mov
int
endm

handl.e
mem_seg
file_len

begin:

bytes
bx,bytes
cl ,4
bx,cl
bx
ah,48H
21H

;Routine not shown
;Save handle
;See Function 42E
;Routine not shown
;Save file length
;See Function 4AB
;Routine not shown

The following program opens
calculates its

",0
File loaded into allocated memory block.",

open_handle path,0
jc error_open
mov handle,ax
move_ptr handle,0,0,2
jc error_move
mov file_len,ax
set_block last_inst
jc error_setblk
allocate_memory file_len ;THIS FUNCTION
jc error_alloc
mov mem_seg,ax
move_ptr handle,0,0,0
jc
push
mov

the file named TEXTFILE.ASC,
size with Function 42H (Move File Pointer),

allocates a block of memory the size of the file, reads
file into the allocated memory block, then frees
allocated memory.

"textfile.asc
«»■

ODE,0AH
’’Allocated memory now being freed
(deallocated)ODE,0AE
7
7
7

SYSTEM CALLS

;Routine not shown

1-210

;Restore DS
;Routine not shown

ds,ax ;Point DS at new memory
cs:handle,0,cs:file_len ;Read file into

new memory

mov
read_handle

jc write_error
free_memory mem_seg
jc error_freemem {Routine not shown
write_handle stdout,msg2,49 ;See Function 40H
jc write_error

pop ds
jc error_read
(CODE TO PROCESS FILE GOES HERE)
write_handle stdout,msgl,42 ;See Function 40H

{Routine not shown
;See Function 49H

SYSTEM CALLS

Free Allocated Memory (Function 49H)

OS

cs

is and theset

MeaningCode

7

9

Macro Definition: free_memory

1-211

IP

FLAGS-

AK

sx

If there is an error, the carry flag (CF)
error code is returned in AX:

Segment address of memory to be
freed

macro
ffiOV
mov
mov
int
endm

seg_addr
ax.see addr
es ,ax
ah,49H
21H

SI

£H

SS

ES

C4.

BH

CH

Call
AH = 49H
ES

Return
Carry set:
AX

7 ~ Memory control blocks damaged
9 = Incorrect segment

Carry not set:
No error

was not allocated

Memory control blocks damaged (a user program
changed memory that doesn't belong to it).

The memory pointed to by ES
with Function 48H.

Function 49H releases (makes available) a block of memory
previously allocated with Function 48H (Allocate Memory).
ES must contain the segment address of the memory block to
be released.

SYSTEM CALLS

Example

dbmsg2

1-212

path
msgl

dw
dw
dw

db
db

ds
error_read

;Routine not shown
;Save address of new memory
;See Function 42H
;Routine not shown
;Save DS
;Get segment of new memory
;Point DS at new memory

handle
mem_seg
file_len

begin: ,

jc write_error
free_memory mem_seg
jc error_freemem

"textfile.asc",0
"File loaded into allocated memory, block.",
ODH.OAH
"Allocated memory now being freed
(deallocated).",ODH.OAH
7
7
7

;Routine not shown
;Save handle
;See Function 42H
;Routine not shown
;Save file length
;See Function 4AH
;Routine not shown

file_len ;See Function 48H
error_alloc
mem_seg,ax
handle,0,0,0
error_move
ds
ax,mem_seg
ds , ax

handle,code,file_len ;Read file into
new memory

pop ds ;Restore DS
jc error_read ’.Routine not shown
(CODE TO PROCESS FILE GOES HERE)
write_handle stdout,msgl,42 ;See Function 40H

;Routine not shown
;THIS FUNCTION
;Routine not shown

open_handle path,0
jc error_open
mov handle,ax
move_ptr handle,0,0,2
jc error_move
mov file_len,ax
set_block last_inst
jc error_setblk
allocate_memory
jc
mov
mov_ptr
jc
push
mov
mov
read_handle

The following program opens the file named TEXTFILE.ASC,
calculates its size with Move File Pointer (42H), allocates
a block of memory the size of the file, reads the file into
the allocated memory .block, then frees the allocated memory.

SYSTEM CALLS

1-213

write_handle stdout,msg2,49 ;See Function 40H
jc write_error ;Routine not shown

SYSTEM CALLS

Set Block (Function 4AH)

Paragraphs of memory
ES

Segment address of memory area

memory allocation

If
can

is and theset

1-214

*1
CM

Bl
a
01

block.
BX

cs
M
IS
«

• H
CM
PH

If there is an error, the carry flag (CF)
error code is returned in AX:

Function 4AH changes
ES must contain the segment address of the memory block,
must contain the new size of the memory block, in paragraphs
(1 paragraph is 16 bytes).

Because MS-DOS allocates all of available memory to
program,
a program's

Call
AH •= 4AH
BX

Return
Carry set:
AX

7

the size of a

a .COM
this call is most often used to reduce the size of

initial memory allocation block.

Memory control blocks damaged
8 = Insufficient memory
9 = Incorrect segment

BX
Paragraphs of memory available

Carry not set:
No error

MS-DOS attempts to change the size of the memory block,
the call fails on a request to increase memory, BX returns
the maximum size (in paragraphs) to which the block can be
increased.

SYSTEM CALLS

MeaningCode

7

Not enough free memory to satisfy the request.8

9

Macro Definition:

set_block macro

1-215

Memory control blocks destroyed (a user program
changed memory that doesn't belong to it).

bx,offset last_byte
cl ,4
bx,cl
bx,17
ah,4AB
21H
ax ,bx
ax, cl
ax
ax
sp, ax

Wrong address in ES (the memory block it points
to cannot be modified with Set Block).

last_byte
mov
mov
shr
add
mov
int
mov
shl
dec
dec
mov
endm

This macro is set up to shrink the initial memory allocation
block of a .COM program. It takes as a parameter the offset
of the first byte following the last instruction of a
program (LASTINST in the sample programs), uses it to
calculate the number of paragraphs in the program, then adds
17 to the result — 1 to round up and 16 to set aside 256
bytes for a stack. It then sets up SP and BP to point to
this stack.

SYSTEM CALLS

Load and Execute Program (Function 4BH, Code OOH)

AL

1-217

AX
■1!
CS;
Ox

10
11

4BH
OOH

Call
AH = ■
AL = I
DS:DX

Pointer to pathname
ES:BX

Pointer to parameter block

FLAGS* | ;

cs
w
ss
ES

Si

D4

—
01

CL-CH

Function ABE
must
an ASCIZ string that specifies the drive and pathname of
executable program file,
the segment address in ES) of a parameter
contain 0.

Return
Carry set:
AX

1 = Invalid function
2 ~ File not found
8 = Insufficient memory

Bad environment
Bad format

Carry not set:
No error

, Code OOH loads and executes a program. DX
contain the offset (from the segment address in DS) of

an
BX must contain the offset (from

block. AL must

There must be enough free memory for MS-DOS to load the
program file. All available memory is allocated to a
program when it is loaded, so you must free some memory with
Function 4AH (Set Block) before using this function request'
to load, and execute another program. Unless memory is
needed for some other purpose, shrink to the minimum amount
of memory required by the current process before issuing
this function request.

SYSTEM CALLS

The parameter block consists of four addresses:

(Bytes) Description

2 (word)00

4 (dword)02

4 (dword)06

4 (dword)0A

1-218

Offset Length
(Hex)

Segment address of environment to be
passed; OOH means copy the parent's
environment.

Segment:Offset of FCB to be placed
at offset 5CH of the new Program
Segment Prefix (the Program Segment
Prefix is described in Chapter 4).

Segment:Offset of FCB to be placed
at offset 6CH of the new Program
Segment Prefix.

All open files of
loaded program,

Segment:Offset of command line to be
placed at offset 80H of the new
Program Segment Prefix. This must
be a correctly formed command line
no longer than 128 bytes.

a program are available to the newly
giving the parent program control over the

definition of standard input, output, auxiliary, and printer
devices. For example, a program could write a series of
records to a file, open the file as standard input, open a
second file as standard output, then use Load and Execute
Program to load and execute a program that takes its input
from standard input, sorts records, and writes to standard
output.

MS-DOS creates a Program Segment Prefix for the program
being loaded, and sets the terminate and Ctrl-Break addresses
to the instruction that immediately follows the call to
Function 4BH in the invoking program.

SYSTEM CALLS

the

is theandset

MeaningCode

1 3.

path is invalid.2

8 Not enough memory to load the program.

11

1-219

If there is an error, the carry flag (CF)
error code is returned in AX:

AL is not 0 or

Program file not found or

offset 2CH
To build an environment

and
address of the environment in the first

To pass a copy of the parent's
environment to the loaded program, put OOH in the first word
of the parameter block.

Place the segment address of the environment at
of the new- Program Segment Prefix.
for the loaded program, put it on a paragraph boundary
place the segment
word of the parameter block.

Program file is an .EXE file that contains
internally inconsistent information.

area
If the
either
receives

The loaded program also receives an environment, a series of
ASCIZ strings of the form parameter=value (for example,
VERIFY=ON). The environment must begin on a paragraph
boundary, be less than 32K bytes long, and end with a byte
of OOH (that is, the final entry consists of an ASCII string
followed by two bytes of OOH). After the last byte of zeros
is a set of initial arguments passed to a program that
contains a word count followed by an ASCIZ string. If the
file is found in the current directory, the ASCIZ string
contains the drive and pathname of the executable program as
passed to Function 4BH. If the file is found in the path,

filename is concatenated with the path information. (A
program may use this area to determine where the program was
loaded from.) If the word environment address is 0, the
loaded program either inherits a copy of the parent's
environment or receives a new environment built for it by
the parent.

SYSTEM CALLS

Executing Another Copy of COMMAND.COM

<length>/C <command><0DH>

<Command> is any valid MS-DOS command.

carriage return character.

1-220

Because COMMAND.COM takes care of such details as building
pathnames, searching the command path for program files, and
relocating .EXE files, the simplest way to load and execute
another program is to load and execute an additional copy of
COMMAND.COM, passing it a command line that includes the /C
switch — which tells COMMAND.COM to treat the remainder of
the command line as an executable command — that invokes
the .COM or .EXE file.

<ODH> is a

<Length> is the length of the
length byte but not
(ODH).

If a program executes another program directly — naming it
as the program file to Function 4BH instead of COMMAND.COM
— it must perform all the processing normally done by
COMMAND.COM.

command line, counting the
counting the ending carriage return

This requires 17K bytes of available memory, so a program
that does this should be sure to shrink its initial memory
allocation block with Function 4AH (Set Block). The format
of a command line that contains the /C switch:

COMMAND.COM
COMMAND.COM
COMMAND.COM
COMMAND.COM
COMMAND.COM
COMMAND.COM

SYSTEM CALLS

Macro Definition;

exec

Example&

a

1-221

pgm_f ile
cmd_line
parm_blk
reg save

db
db
db
db

last_inst ;See Function 4AB
pgm_file,cmd_line,parm_blk,0 ;THIS FUNCTION

macro
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
int
endm

a second copy of COMMAND.COM
Dir (directory) command with the /W (wide)

begin:
set_block
exec

"command.com",0
9,"/c dir /w",0DH
14 dup (?)
10 dup (?)

pa th,command,parms
dx.offset path
bx,offset parms
word ptr parms[02H].offset command
word ptr parms[04H],cs
word ptr parms[06H],5CH
word ptr parms[08H],es
word ptr parms[OAH],6CH
word ptr parms[OCH],es
al ,0
ah,4BH
21H

The following program invokes
and executes
switch:

COMMAND.COM

SYSTEM CALLS

Load Overlay(Function 4BH, Code 03H)

O..

FU&I. [ftXX.

program

1-222

8
10

Call
AH - 4BH
AL •= 03H
DS:DX

Pointer to pathname
ES:BX

Pointer to parameter block

ex

ss

EX

•H

CM

must
of a

MS-DOS assumes that the invoking program is loading into its
own address space, so no free memory is required. A Program
Segment Prefix is not created.

Function 4BH, Code 03H loads a program segment (overlay).
DX must contain the-offset (from the segment address in DS)
of an ASCIZ string that specifies the drive and pathname of
the program file. BX must contain the offset (from the
segment address in ES) of a parameter block. AL must
contain 3.

1 = Invalid function
2 = File not found

= Insufficient memory
■= Bad environment

Carry not set:
No error

Return
Carry set:
AX

SYSTEM CALLS

Example

BIT.COM, which reads

0equ

1-224

Jc
mov
sub
mov
call
push
POP

db
db
dw
dw
dw

stdin

file
cmd_file
pann_blk
handle
new_mem
begin: ;see Function 4AH

;routine not shown
;see Function 48H
;routine not shown
;save seg of memory
;see Function 3DH
;routine not shown
;save handle
;see Function 45H
;routine not shown
;see Function 3EH
;routine not shown
;addr of new memory

;THIS FUNCTION
;routine not shown
;point to overlay
;no PSP for overlay
;DS for overlay
;call the overlay
;restore DS to
;original segment
;see Function 49H
;routine not shown

The following
redirects
overlay, and calls an overlay
TEXTFILE.ASC

last_inst
setblocR_error

2000
jc allocate_error
mov new_mem, ax
operj_handle file, 0

operi_error
handle,ax
handle, stdin
dup2_error

set_block
Jc
allocate_memory

"TEXTFILE.ASCn,0
"\more.com",0

4 dup (?)
?
?

Jc
mov
xdup2
Jc
close_handle handle
jc close_error
mov ax, new_mem
exec_ovl cmd_file, parq_blk, ax

exec_error
ax, new_mem
ax,10h
ds, ax
cs:overlay
cs
ds

free_memory new_mem
jc free_error

program opens a file named TEXTFILE.ASC,
standard input to that file, loads MORE.COM as an

named
as standard input.

BIT.COM
MORE.COM

SYSTEM CALLS

End Process (Function 4CH)

CL

Function 4CH terminates

process,

CS

Macro Definition: end_process

1-225

•I
DI

Cl
O1

Return
None

macro
mov
mov
int
endm

return_code
al ,return_code
ah,4CH
21H

Call
AH = 4CH
AL

Return code

This function request doesn't require that CS contain the
segment address of the Program Segment Prefix. You should
use it to end a program (rather than Interrupt 20H or a jump
to location 0) unless it is absolutely imperative that your
program be compatible with pre-2.0 version? of MS-DOS.

a process and returns to MS-DOS. AL
contains a return code that can be retrieved by the parent
process with Function 4DH (Get Return Code of Child Process)
or the If command using ERRORLEVEL.

MS-DOS closes all open handles, ends the current
and returns control to the invoking process.

SYSTEM CALLS

Example

"Displayed by FUNC_4CH example",ODH,OAH,"$ 96db

code
code

1-226

a
the

message
8

;See Function 09H
;THIS FUNCTION

message

begin: display
end_process
ends
end

message and returns to
It uses only the opening

skeleton shown at the

The following program displays a
MS-DOS with a return code of 8.
portion of the sample program
beginning of this chapter.

SYSTEM CALLS

Example

last fit

1-243

db
db
db

equ
equ
equ
equ

jc
mov
shl
mov
add
mov
mov
mov
int
jc

0
1
1
2

;THIS FUNCTION
;routine not shown
;multiply code by 16
;to calculate offset
;point to first msg
;add to base address
jhandle for write
;write 16 bytes
;write handle
;system call
;routine not shown
;THIS FUNCTION
;routine not shown

alloc_strat get
alloc_error
cl ,4
ax, cl
dx,offset first
dx,ax
bx,stdout
cs ,16
ah,40h .
21H
write_error

alloc_strat set,last_fit
jc alloc_error

get
set
stdout
last_fit

first
best
last

begin:

",0DH,0AH
",0DH,0AH
",0DH,0AH

memory allocation
subsequent memory

to

"First fit
"Best fit
"Last fit

the
effect, then forces

top of memory by setting the strategy

The
strategy
allocations to the

(code 2).

following program displays
in effect, then

SYSTEM CALLS

Create Temporary File (Function 5AH)

M:

OB:

ar

cs

unique

1-248

and
must

as

St

ES

CM

memory Ito hold
attribute to be
Section 1.5.6 ,

Call
AH «= 5AH
CX

Attribute
DS:DX

Pointer to pathname followed by a
byte of 0 and 13 bytes of memory

Return
Carry set:
AX

3 « Path not found
5 “ Access denied

Carry not set:
AX

Handle

MS-DOS does not automatically delete a file
Function 5AH when the creating process exits,
is no longer needed, it should be deleted.

Function 5AH creates
offset

must
an

a pathname and Id bytes of
filename). CX must contain the

to the file, as described in
'File Attributes," earlier in this chapter.

in
should use this

created with
When the file

MS-DOS creates a unique filename and appends it to .the
pathname pointed to by DS:DX, creates the file and opens it
in compatibility mode, then returns the file handle in AX.
A program that needs a temporary file
function request to avoid name conflicts.

a file with a unique name. DX
contain the offset (from the segment address in DS) of
ASCIZ string that specifies a pathname and 13 bytes

(to hold the filename). CX must contain
assigned to the file,

SYSTEM CALLS

al, 10

INCLUDE suffix.asm

1-267 a

mov
mov
xor
repne
dec
mov
stosb
mov
stosb
mov
sub
mov

;bump index
;get next entry
;see Function 40 H

di,offset remote_nm
ex, remote_nm_len
ax, ax
scasb
di
al, 13

si,offset local_nm
di, si
str_len, di

write_handle stdout, local_nm, str_len
jc write_error
inc index
jmp ck_list

last_one: write_handle stdout,crlf,4
jc write_error
jmp return

write_error:

SYSTEM CALLS

Get PSP (Function 62H)
as

CM

IS

Example

itsofaddress

db

1-274

C3:
98'

get_psp
convert
display

bx,16,msg[21]
msg

Call
AH = 62H

Macro Definition: get_psp macro
mov
int
endm

ah, 62H
21H

;THIS FUNCTION
;see end of chapter
;see Function 09H

msg

begin:

a. ,

The following program displays the segment
Program Segment Prefix (PSP) in hexadecimal.

ma. |
cs

■■

H" ,0DH,0AH,

Return
BX

Segment address of the Program
Segment

Prefix of the current process

"PSP segment address:

Function 62H retrieves
active process (the

the segment address of the currently
start of the Program Segment Prefix).

The address is returned in BX.

SYSTEM CALLS

FUNCTION REQUEST 4AH

FUNCTION REQUEST 4B00H

macro

1-289

EXEC macro
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
int
endm

*
EXEC_OVL

mov
mov
mov
mov
mov
mov
int
endm

SET_BLOCK
mov
mov
shr
add
mov
int
mov
ahi
mov
mov
endm

FUNCTION REQUEST 4B03H
path,panns,seg addr

dx,offset path
bx,offset panns
panns , seg_addr
parms(02H].seg addr
al,3
ah,4BH
21H

macro last_byte
bx,offset last_byte
cl ,4
bx,cl
bx,17
ah,4AH
21H
ax,bx
ax, cl
sp,ax
bp > sp

path,command,parms
dx,offset path
bx,offset panns
word ptr parms[02h],offset command
word ptr parms[04h],cs
word ptr parms[06h],5ch
word ptr panns[08b],es
word ptr parms[Oah],6ch
word ptr parms[Och],es
al,0
ah,4BH
21H

SYSTEM CALLS

FUNCTION REQUEST 4CH

FUNCTION REQUEST 4DH

FUNCTION REQUEST 4FH

FUNCTION REQUEST 54H

1-290

macro
mov
int
endm

macro
mov
mov
int
endm

GET_VERIFY
mov
int
endm

WAIT

END_PROCESS

RENAME_FILE
mov
push
POP
mov
mov
int
endm

macro
ah,54H
21H

macro
ah,4FH
21H

ah,4DH
21H

return_code
al,return_code
ah,4CH
21H

FIND_NEXT_FILE
mov
int
endm

FIND_FIRST_FILE
mov
mov
mov
int
endm

FUNCTION REQUEST 4EH
macro path,attrib

dx,offset path
ex,attrib
ah,4EH
21H

FUNCTION REQUEST 56H
macro old__path,new_path
dx,offset old—path
ds
es
di,offset new_path
ah,56H
21H

SYSTEM CALLS

Get Return Code of Child Process (Function 4DH)

MeaningCode

Normal termination.0

Terminated by Control-C.1

Critical device error.2

Function 31H (Keep Process).3

The exit code can be retrieved only once.

1-227

Call
AH = 4DH

Function 4DH retrieves the
child process terminated
Process) or Function
returned in AL.

Return
AX

Return code

return code specified when a
with either Function 31H (Keep

4CH (End Process). The code is
AH returns a code that specifies the reason

the program ended:

SYSTEM CALLS

Macro Definition: ret_code

Example

isexample

e
1-228

macro
mov
int
endm

ah,4DH
21H

Because the meaning of a return code varies, no
included for this function request.

SYSTEM CALLS

Find First File (Function 4EH)

DI

file

andname

1-229

BP

DI

To
set
and

DX
of

is
04H,

cs

DB

ss

ES

the
earlier in this chapter.

file ,-
or

FLACF. I nXit.

Call
AH = 4EH
DS:DX

Pointer to pathname
CX

Attributes to match

Return
Carry set:
AX

2 = File not found
18 = No more files

Carry not set:
No error

If a directory entry is found that matches the
attribute, the current DTA is filled as follows:

If the attribute field is hidden file,- system file, or
directory entry (02H, 04H, or 10H), or any combination of
those values, all normal file entries are also searched,
search all directory entries except the volume label,
the attribute byte to 16H (hidden file and system
directory entry).

Function 4EH searches the specified or current directory for
the first entry that matches the specified pathname,
must contain the offset (from the segment address in DS)
an ASCIZ string that specifies the pathname that can include
wildcard characters. CX must contain the attribute to be
used in searching for the file, as described in Section
1.5.6, "File Attributes,"

SYSTEM CALLS

DescriptionOffset Length

21OOH

Attribute found.15H 1

Time file was last written.216H

Date file218H

Low word of file size.21AH

High word of file size.21CH

131EH

the carry flag (CF) is and theset
error

MeaningCode

The specified path is invalid or doesn't exist.2

No matching directory entry18

Macro Definition: find_first_file

1-230

macro
tnov
mov
mav
int
endm

path,attrib
dx,offset path
cx.attrib
ah,4EH
21H

If there is an error,
code is returned in AX:

Reserved for subsequent Find Next
File (Function Request 4FH).

» it
period (it appears

was found.

was last written.

Name and extension of the file,
followed by OOH. All blanks are
removed; if there is an extension
is preceded by a
just as you would enter it in a
command).

SYSTEM CALLS

Example

II

begin:

1-231

yes
no
path
buffer

path,0
error_findfirst
al,12H
not_there
yes
return
no

message
exists

specifies
the current

that
in

a
REPORT.ASM

db
db
db
db

;See Function 1AH
;THIS FUNCTION
;Routine not shown
;File found?
;No
;See Function 09H
;A11 done
;See Function 09H

"FILE EXISTS.",ODH,0AH,
"FILE DOES NOT EXIST.",0DH,0AH,"$
"b:report.asm",0
43 dup (?)

The following program
whether a file
directory on the disk in drive B.

set_dta buffer
find_first_f ile
jc
cmp
je
display
jmp

not_there: display

displays
named

SYSTEM CALLS

Find Next File (Function 4FH)

CL .O>

84

it

is and theset

Meaning .Code

The specified path is invalid2

No matching directory entry was found.18

Macro Definition: find_next_file

1-232

name
(Find
information

Call
AH = 4FH

macro
mov
int
endm

ah,4FH
21H

that
a previous
DTA must

by Function 4EH (Find

Return
Carry set:
AX

18 “ No more files
Carry not set:

No error

or doesn't exist.

cs

Function 4FH searches for
matches the
Function 4EH
contain the
First File).

If a matching entry is found, the current DTA is filled just
as it was for Find First File (see the previous function
request description).

the next
and attributes
First File),

filled

If there is an error, the carry flag (CF)
error code is returned in AX:

directory entry
specified in
The current

in

SYSTEM CALLS

Example

files in the

search_dir:

1-233

The following program displays the number of
current directory on the disk in drive B.

done:
all_done:

path,0
error_findfirst
al,12H
all_done
files

db
dw
db
db

error_findnext
al,12H
done
files
search_dir

message
files
path
buffer
begin:

"No files",ODH,OAH,
?
"b:».*",0
43 dup (?)

;See Function 1AH
;See Function 4EH
;Routine not shown
;Directory empty?
;Yes, go home
;No, bump file counter
;THIS FUNCTION
;Routine not shown
;Any more entries?
;No, go home
;Yes, bump file counter
;And check again

files, 10, message ;See end of chapter
message ;See Function 09H

set_dta buffer
find—first._file
Jc
cmp
je
inc
f ind_next_f il e
jc
cmp
Je
inc
Jmp
convert
display

SYSTEM CALLS

Get Verify State (Function 54H)

CM

0 if verify

(Set/Reset2EH

Macro Definition; get_verify

Example

The following program displays the verify status:

begin:

ver_on:

1-234

message
on
off

db
db
db

macro
mov
int
endm

Call
AH = 54H

ah,54H
21H

;See Function 09H
;THIS FUNCTION
;Is flag off?
;No, it's on
;See Function 09H
;Go home
;See Function 09H

ca
33

You can set the verify status with Function
Verify Flag).

display message
get_verify
cmp a1,0
jg ver_on
display off
jmp return
display on

Return
AL

0 = No verify after write
1 = Verify after write

"Verify
"on.",0DH,0AH,
"off.",ODH,0AH,

Function 54H checks whether MS-DOS verifies write operations
to disk files. The status is returned in AL:
is off, 1 if verify is on.

SYSTEM CALLS

Change Directory Entry (Function 56H)

IP

a

the

isit

in

or

1-235

If a directory entry for the first pathname exists,
changed to the second pathname.

entry
segment
second

you
You

CI
DI

Function 56H renames
DX

Return
Carry set:
AX

II

DI

•H

CH

Cl

O*

S3

El

Call
AH = 56H
DS:DX

Pointer to pathname
ES:DI

Pointer to second pathname

2 = File not found
5 = Access denied

17 = Not same device
Carry not set:

No error

ruua- I

This function request cannot be used
file, system file, or subdirectory,
the carry flag (CF) is set and the
AX.

to rename a hidden
If there is an error,

error code is returned in

The directory paths need not be the same; in effect,
can move the file to another directory by renaming it.
cannot use this function request to copy a file to another
drive, however:
the first pathname must
drive.

to
if the second pathname specifies a drive,

specify or default to the same

file by changing its directory entry.
must contain the offset (from the segment address in DS)

of an ASCIZ string that contains the pathname of
to be changed. DI must contain the offset (from the
address in ES) of an ASCIZ string that contains a
pathname to which the first is to be changed.

SYSTEM CALLS

MeaningCode

One of the paths is invalid or not open.2

5

Both files are not on the17

Macro Definition: rename_file

Example

and a

1-236

db
db
db
db
db

promptl
prompt2
old_path
new_path
cr If

macro
mov
push
POP
mov
mov
int
endm

old_path,new_path
dxsoffset old_pat
ds
es
disoffset new_path
ah,56H
21E

The first pathname specifies
second pathname specifies an
the second directory entry could not be opened.

a directory, the
existing file, or

"Filename: $"
"New name: $"
15,?,15 dup (?)
15,?,15 dup (?)
0DH,0AH,"$"

same drive.

The following program prompts for the name of a file
new name, then renames the file.

SYSTEM CALLS

begin:

1-237

15,new_path
bx,bx
bl,new_pa th[1]
new_path[bx+2],0

15,old_path
bx, bx
bl,old_path[l]
old__path[bx+2] ,0

;See Function 0911
;See Function OAH
;To use BL as index
;Get string length
;Make an ASCIZ string
;See Function 09H
;See Function 09H
;See Function OAH
;To use BL as index
;Get string length
;Make an ASCIZ string
;See Function 09H

display promptl
get_s tring
xor
mov
mov
display crlf
display prompt2
get_string
xor
mov
mov
display crlf
rename_file old_path[2] ,new_path[2];THIS FUNCTION
jc error_rename ;Routine not shown

SYSTEM CALLS

Get/Set Date/Time of File(Function 572)

5F
BX

written.
To

is and theset

1-238

Cl:
Dt.

last
the

time

cs
M
1$
ES

SI
CM

CL-
U.

BH
CH

Handle
CX (if AL=1)

Time to be set
DX (if AL=1)

Date to be set

If there is an error, the carry flag (CF)
error code is returned in AX:

and date, AL
time and date.
and date are in the form described in
Section 1.8.1.

Return
Carry set:
AX

1 = Invalid function
6 = Invalid handle

Carry not set:
CX (if AL=0)

Time file last written
DX (if AL=0)

Date file last written

a file was

Call
AH = 57H
AL = Function code

0 “ Get date and time
1 = Set date and time

Function 57H gets or sets the time and date
To get the time and date, AL must contain 0;

time and date are returned in CX and DX. To set the
must contain 1; CX and DX must contain the
BX must contain the file handle. The time

"Fields of the FCB'" in

SYSTEM CALLS

MeaningCode

1.1

6 The handle in BX is invalid or not open.

Macro Definition:

Example

1-239

get_set_date_time macro
mov
mov
mov
mov
mov
int
endm

db
db
dw
db
db

month
path
handle
time
date

31,28 ,31,30,31,30,31 ,31,30,31,30,31
"b:report.asm",0

2 dup (?)
2 dup (?)

gets the date
in the current directory on
the day, increments the

AL is not 0 or

of the file named
the disk in drive B,
month or year if

The following program
REPORT.ASM
increments the day, increments
necessary, and sets the new date of the file.

handle.action,time,date
bx,handle
al .action
ex,word ptr time
dx.word ptr date
ah,57H
21H

SYSTEM CALLS

begin:

1-240

;Routine not shown
; Save t ime
;Save date
;See end of chapter
;Increment day
;To use BL as index
;Get month
;Past last day?
;No, go home
;Yes, set day to 1
;Increment month
;Is it past December?
;No, go home
;Yes, set month to 1
; Increment year
;See end of chapter

jc error_time
close_handle handle
jc error_close

dh
bx,bx
bl.dl
dh,month[bx-l]
month_ok
dh,l
dl
dl,12
month_ok
dl.l
ex

date

open_handle path.O ;See Function 3DH
mov handle,ax ;Save handle
get_^set_date_time handle,0,time,date;THISFUNCTIOU

error_time
word ptr time,ex
word ptr date.dx

date[-24]

jc
mov
mov
convert_date
inc
xor
mov
emp
jle
mov
inc
emp
jle
mov
inc

month_ok: pack_date
get_set_date_time handle,1,time,date;THISFUNCTIOH

;Routine not shown
;See Function 3EH
;Routine not shown

SYSTEM CALLS

Get/Set Allocation Strategy (Function 58H)

58H

sets the strategy

contain

DescriptionValue Name

0 First fit

1-241

Return
Carry set:
AX

CX

C»
w
»
tl

Cl-
tx.

. ■Jm ,
■ H
CH
CH

1 = Invalid function code
Carry not set:
AX (AL=0)

0 = First fit
1 *= Best fit
2 = Last fit

Call
AH =
AL

0 = Get strategy
1 = Set strategy

BX (AL=1)
0 = First fit
1 = Best fit
2 = Last fit

FLAGS-

by MS-DOS to
If AL contains

If AL contains 1, BX
The three possible strategies

MS-DOS starts searching at the lowest
available block and allocates the first
block it finds (the allocated memory is
the lowest available block). This is the
default strategy.

Function 58H gets or sets the strategy used
allocate memory when requested by a process.
0, the strategy is returned in AX. If AL
must contain the strategy,
are:

SYSTEM CALLS

Best fit1

Last fit2

uses

is and theset

MeaningCode

1. or BX doesn't contain1

Macro Definition: alloc_strat

1-242

MS-DOS searches each available block and
allocates the smallest available block
that satisfies the request.

macro
mov
mov
mov
int
endm

code.strategy
bx,strategy
al,code
ah,58H
21H

You can use this function request to control how MS-DOS
its memory resources.

If there is an error, the carry flag (CF)
error code is returned in AX.

MS-DOS starts searching at the highest
available block and allocates the first
block it finds (the allocated memory is
the highest available block).

AL doesn't contain 0 or
0 , 1, or 2.

SYSTEM CALLS

Get Extended Error (Function 59H)

w.

Extended error code
BE

Error class (see text)
BL

Suggested action (see text)
CH

text)

CL, DX, SI, DI, BP, DS, ES destroyed

1-244

version indicator which says what level of
The current

OK:

C2
M
M
ts

AM .;
©H
CM

■

Locus (see

Return
AX

codes in
much detail as possible

program should

f ma*. ;

Call
AH = 59H
BX = 0

The extended error code consists of four separate
AX, BH, BL, and CH that give as
about the error and suggest how the issuing
respond.

error code for the
Each release of MS-DOS
capabilities.

The input BX is a
error handling the application was written for.
level is 0.

retrieves an <
system

A user-written Interrupt 24H handler can use Function 59H
(Get Extended Error) to get detailed information about the
error that caused the interrupt to be issued.

Function 59H retrieves an extended
immediately previous system call,
extends the error codes to cover new capabilities. These
new codes are mapped to a simpler set of error codes based
on Version 2.0 of,- DOS, so that existing programs can
continue to operate correctly. Note that all registers
except CS:IP and SS:SP are destroyed by this tall.

1

SYSTEM CALLS

BE — Error Class

ofclass thaterror

DescriptionClass

1 Out of a resource, such as storage or channels.

2

Authorization problem.3

An internal4 in system software.error

Hardware failure.5

6

7

File or item not found.8

9

File or item interlocked.10

11

12 Other error.

BL — Suggested Action
can

1-245

BL returns a code that suggests how the issuing program
respond to the error:

File or item of invalid format, type,
invalid or unsuitable.

BH returns a.code that describes the
occurred:

Wrong disk in drive, bad spot on disk, or other
problem with storage medium.

as a
file) that can be expected to end.

or otherwise

Not an error, but a temporary situation (such
locked region in a

Application program error.

A system software failure not the fault of the active
process (could be caused by missing or incorrect
configuration files, for example).

SYSTEM CALLS

Action Description

1 Retry, then prompt user.

2 Retry after a pause.

3

Terminate with cleanup.4

5

Error is informational.6

7

CH — Locus

additional
help

DescriptionLocus

1 Unknown.

2

3 Related to Network.

1-246

If the user entered data such as a drive letter or
file name, prompt for it again.

Prompt the user to perform some action, such as
changing disks, then retry the operation.

CH returns a code that provides
locate the area involved in the failure,

particularly useful for hardware failures (BH=5).

Related to random access block devices, such as a
disk drive.

information to
This code is

Terminate immediately. The system is so unhealthy
that the program should exit as soon as possible
without taking the time to close files and update
indexes.

SYSTEM CALLS

4

Related to random access memory.5

and may

Example

1-247

This system call is available during Interrupt 24H
be used to return network-related errors.

Related to serial access character devices, such
as a printer.

Macro Definition: get_error macro
mov
int
endm

ah, 59H
21H

by noting the error
call, then issuing this

If the program
code, it should

Because so much detail is provided by this function request,
an example is not shown. User programs can interpret the
various codes to determine what sort of messages or prompts
should be displayed, what action to take, and whether to
terminate the program if recovery from the errors isn't
possible.

Your programs should handle errors
return from the original system
system call to get the extended error code,
does not recognize the extended error
respond to the original error code.

SYSTEM CALLS

is and theset
is returned in AX:

MeaningCode

3 or

Access denied.5

Macro Definition: create_temp

Example

in
f ile,

1equ

1-249

db
db
db

macro
mov
mov
mov
int
endm

db
db
db
db
db
dw
dw
db

pathname.attrib
ex,attrib
dx,offset pathname
ah,5AH
21H

The following
directory named

stdout

file
path
temp
open_msg db
crl_msg
rd_msg
wr_ms g
cl_msg
crlf
handlei
handle2
buffer

temporary
a file

"TEXTFILE.ASC",0
"\WP\DOCS",0
13 dup (0)

" opened.".0DH.0AH
" created.",0DH,OAH
" read into buffer.",0DH,0AH
"Buffer written to "
"Files closed.",ODE,OAH
ODE.OAH
7
•>
512 dup (?)

If there is an error, the carry flag (CF)
error code

The directory pointed to by DS:DX is invalid
doesn't exist.

file in the
in the current

directory named TEXTFILE.ASC into the temporary file, then
closes both files.

program creates a
\WP\DOCS, copies

SYSTEM CALLS

begin:

1-250

jc write_error
write_handle stdout,wr_msg,18
jc write_error
write_handle stdout,temp,12
jc write_^error
write_handle stdout,crlf,2
jc write_error
close_handle handlei
jc close_error
close_handle handle2
jc close_error
write_handle stdout,cl_msg,15
jc write_error

open_handle file.O
jc open_error
mov handlei,ax
write_handle stdout,file,12
jc write_error

jc write_error
create_temp path,0
jc create_error
mov handle2,ax
write_handle stdout,path,8
jc write_error
display_char "\"
write_handle stdout,temp,12
jc write_error

;see Function 3DH
jroutine not shown
;save handle
;see Function 40H
;routine not shown

write_handle stdout,open_msg,10 ;see Function 40H
;routine not shown
;TH1S FUNCTION
jroutine not shown
;save handle
;see Function 40H
jroutine not shown
;see Function 02H
;see Function 40H
;routine not shown

write_handle stdout,crl_msg,ll ;See Function 40H
jc write_error jroutine not shown
read_handle handlei,buffer,512 ;see Function 3FH
jc read_error jroutine not shown
write_handle stdout.file,12 ;see Function 40H
jc write_error jroutine not shown
write_handle stdout,rd_msg,20 ;see Function 40H
jc write_error ;routine not shown
write_handle handle2,buffer,512 ;see Function 40H

;routine not shown
;see Function 40H
jroutine not shown
;see Function 40H
jroutihe not shown
;see Function 40H
;routine not shown
;see Function 3EH
;routine not shown
;see Function 3EH
;routine not shown
;see Function 40H
jroutine not shown

SYSTEM CALLS

Create New File (Function 5BH)

5BH

OK

8F

the file,

in

1-251

3
4

81

CM

cs
©•
88

AX

•M

CM

DM

01

CL-

Function 5BH creates a new file,
addres s

CX
as

Call
AH =
CX

Attribute
DS:DX

Pointer to pathname

(from the segment
specifies a pathname.
assigned to
Attributes."

If there is no
creates the

DX must contain the offset
in DS) of an

contains the
described in Section 1.5.6,

Return
Carry set:
AX

existing file with the same filename, MS-DOS
file, opens it in compatibility mode, and

returns the file handle in AX.

= Path not found
*= Too many open files

5 = Access denied
80 - File already exists

Carry not set:
AX

Handle

ASCIZ string that
attribute to be

"File

Unlike Function 3CH (Create Handle), this function request
fails if the specified file exists, rather than truncating
it to a length of 0. The existence of a file is used as a
semaphore in a multitasking system; you can use this system
call as a test-and-set semaphore.

SYSTEM CALLS

is and theset
error code

MeaningCode

3 or

4

Access denied.5

80

Example

1-252

err_msg
path
handle

db
db
dw

If
the

Macro Definition: create_new macro
mov
mov
mov
int
endm

If there is an error, the carry flag (CF)
is returned in AX:

current
exists,
MS-DOS.
errors,
processing.

A file with the same specification pointed to by
DS:DX already exists.

"FILE ALREADY EXISTS",0DH,0AH,
"REPORT.ASM",0
?

a new file in the
If the file already

pathname,at tr ib
ex, attrib
dx, offset pathname
ah, 5BH
213

No free handles are available in the current
process, or the internal system tables are full.

The directory pointed to by DS:DX is invalid
doesn't exist.

The following program attempts to create
directory named REPORT.ASM.

the program displays an error message and returns to
the file doesn't exist and there are no other
program saves the handle and continues

SYSTEM CALLS

begin:

(further processing here)

1-253

;THIS FUNCTION
;further processing
;file already exist?
jroutine not shown
;see Function 09H
;return to MS-DOS
;save handle

jnc
cmp
jne
display
j“P

continue: mov

create_new path,0
continue
ax, 80
error
err_msg
return
handle,ax

SYSTEM CALLS

Lock (Function 5CH, Code OOH)

SP

1-254

u
u

or write)
process to the specified region of the file.

a
w
»
It

BH
CM
OH

BL

W

Call
AH = 5CH
AL - OOH
BX

Handle
CX:DX

Offset of region to be locked.
SI-.DI

Length of region to be locked

Function 5CH, Code OOH denies all access (read or write) by
any other process to the specified region of the file. BX
must contain the handle of the file that contains the region
to be locked. CX:DX (a 4-byte integer) must contain the
offset in the file of the beginning of the region. SI:DI (a
4-byte integer) must contain the length of the region.

Return
Carry set:
AX

1 = Invalid function code
6 = Invalid handle

22 = Lock violation
Carry not set:

No error

in the
error.

be

anywhere in the file. Locking
an error. A region should

it should be considered an
more than 10 seconds.

The locked region can be
beyond the end of the file is not
be locked for a brief period;
error if a region is locked for

If another process attempts to use (read or write) a locked
region, MS-DOS retries three times; if the retries fail,
MS-DOS issues Interrupt 24H for the requesting process. You
can change the number of retries with Function 44H, Code OBH
(I0CTL Retry).

SYSTEM CALLS

lockeda

the

is theandset

MeaningCode

1

The handle in BX is not a valid, open handle.6

33

Macro Definition: lock

1-255

macro
mov
mov
mov
mov
mov
mov
mov
int
endm

File sharing must be loaded to use this function
request.

or
locked region,

terminated
a fatal
locked

If there is an error, the carry flag (CF)
error code is returned in AX:

Function 45H (Duplicate File Handle) and Function 46H (Force
Duplicate File Handle) duplicate access to any locked
region. Passing an open file to a child process with
Function 4BH, Code OOH (Load and Execute Program) does not
duplicate access to locked regions.

handle.start.bytes
bx, handle
ex, word ptr start
dx, word ptr start+2
si, word ptr bytes
di, word ptr bytes+2
al, 0
ah, 5CH
21H

All or part of the specified region is already
locked.

If a program closes a file that contains a locked region
terminates with an open file that contains a
the result is undefined. Programs that might be
by Interrupt 23H (Control-C) or Interrupt 24H (
error) should trap these interrupts and unlock any
regions before exiting.

Programs should not rely on being denied access to
region; a program can determine the status of a region
(locked or unlocked) by attempting to lock the region and
examining the error code.

SYSTEM CALLS

Example

1stdout equ

begin:

1-256

through
unlocks

After
same

jc
mov
lock
jc

startl
Igthl
startZ
lgth2
file
op_msg
ll_msg
12_msg
ul_msg
u2_msg
cl_msg
handle

dd
dd
dd
dd
db
db
db
db
db
db
db
dw

5119.
the

;see Function 3DH
;routine not shown
;see Function 40H
;routine not shown
;see Function 40H
jroutine not shown
;save handle
;THIS FUNCTION
jroutine not shown
;see Function 40H
jroutine not shown
;THIS FUNCTION
;routine not shown
;see Function 40H
;routine not shown

ii

?

; (Further processing here)
9

open_handle file,01000010b
jc open_error
write_handle stdout.file,8
jc write_error
write_handle stdout,op_msg,10

write_error
handle,ax
handle,startl,Igthl
lock—error

write_handle stdout,11_msg,25
jc write_error
lock handle,start2,lgth2
jc lock—error
write_handle stdout,12_msg,25
jc write_error

0
128
1023
4096
"FINALRPT",0
" opened.",0DH,0AH
"First 128 bytes locked.
"Bytes 1024-5119 locked.
"First 128 bytes unlocked.
"Bytes 1024-5119 unlocked,0DH,0AH
closed.:,0DH,0AH

FINALRPT in Deny
the first 128 bytes
some (unspecified)

portions and closes the

", 0DH.0AH
",0DH,0AH
",0DH,0AH

The following program opens a file named
None mode and locks two portions of it:
and bytes 1024
processing, it
file.

SYSTEM CALLS

1-257

;See Function 5C01H
jroutine not shown
jsee Function 40B
jroutine not shown
;See Function 5CO1H
jroutine not shown
jSee Function 40H
jroutine not shown
;See Function 3EB
jroutine not shown
jsee Function 40H
jroutine not shown
jsee Function 40H
jroutine not shown

write_error
handle,start2,lgth2
unlock_error

write_handle stdout,u2_msg,27
jc write_error
close_handle handle
jc close_error
write_handle stdout.file,8
jc write_error
write_handle stdout,cl_msg,10
jc write_error

unlock handle,startl,lgthl
jc unlock_error
write_handle stdout,ul_msg,27
jc
unlock
jc

SYSTEM CALLS

Unlock (Function 5CH, Code 01H)

: M

]f

M

(Lock) describes

is and theset

1-258

the
must

Return
Carry set:
AX

CH
PH

cs7*

The description of Function 5CH, Code OOH
how to use locked regions.

If there is an error, the carry flag (CF)
error code is returned in AX:

Call
AH = 5CH

» 01HAL
BX

Handle
CX:DX

Offset of area to be unlocked
SI:DI

Length of area to be unlocked

1 ■= Invalid function code
6 = Invalid handle

22 = Lock violation
Carry not set:

No error

the offset
SI:DI (a

the region,
as

a region previously locked byFunction 5CH, Code 01H unlocks
the same process. BX must contain the handle of the file

CX:DX (a 4-byte
in the file of
4-byte integer)
The offset and length

the offset and length specified
in the previous Function 5CH, Code OOH (Lock).

same process.
that contains the region to be unlocked,
integer) must contain
beginning of the region.
contain the length of
must be exactly the same

SYSTEM CALLS

MeaningCode

1

The handle in BX is not a valid, open handle.6

33

Macro Definition: unlock

Example

file named

1equ

1-259

dd
dd
dd
dd
db
db
db
db
db

File sharing must be loaded to use this function
request.

The region specified is not identical to one
that was previously locked by the same process.

through
unlocks

After
same

macro
mov
mov
mov
mov
mov
mov
mov
int
endm

5119.
the

stdout

startl
Igthl
start2
lgth2
file
op_msg
ll_msg
12_msg
ul_msg

0
128
1023
4096
"FINALRPT",0
" opened.",ODE,0AE
"First 128 bytes locked.",0DE,0AE
"Bytes 1024-5119 locked.",0DH,0AH
"First 128 bytes unlocked.",ODE,OAH

FINALRPT in Deny
the first 128 bytes
some (unspecified)

portions and closes the

handle,start,bytes
bx, handle
ex, word ptr start
dx, word ptr start+2
si, word ptr bytes
di, word ptr bytes+2
al, 1
ah8 5CE
21E

The following program opens a
None mode and locks two portions of it:
and bytes 1024
processing, it
file.

SYSTEM CALLS

©

1-260

jroutine not shown
;see Function 40H
;routine not shown
;See Function 3EH
;routine not shown
;see Function 40H
^routine not shown
;see Function 40H
^routine not shown

;routine not shown
;see Function 40H
;routine not shown

;routine not shown
;see Function 40H
;routine not shown

jc
unlock
jc

jc
lock
jc

u2_msg
cl_msg
handle

begin;

db
db
dw

;see Function 3DH
;routine not shown
;see Function 40H
;routine not shown
;see Function 40H
;routine not shown
;save handle

handle,startl,lgthl ;See Function 5C00H
lock_error ^routine not shown

;see Function 40H
;routine not shown

unlock handle,startl,lgthl ;THIS FUNCTION
jc unlock_error
write_handle stdout,ul_msg,27

write_error
handle,start2,lgth2 ;THIS FUNCTION
unlock_error

write_handle stdout,u2_msg,27
jc write_error
close_handle handle
jc close_error
write_handle stdout,file,8
jc write_error
write_handle stdout,cl_msg,10
jc write_error

open_handle file,01000010b
jc open_error
write_handle stdout,file,8
jc write_error
write_handle stdout,op_msg,10

write_error
handle,ax

jc
mov
lock
jc
write_handle stdout,11_msg,25

write_error
handle,start2,lgth2 ;See Function 5C00H
lock_error

write_handle 6tdout,12_msg,25
jc write_error

"Bytes 1024-5119 unlocked.",0M,0AH
'* closed0DH.0AH

1

; (Further processing here)

SYSTEM CALLS

)

Get Machine Name (Function 5EH, Code OOH)

DS

8P

a

MeaningCode

1

Macro Definition: get_machine_name

1-261

Microsoft Networks must be running to use this
function request.

computer
blanks)string,

DS:DX.
computer.

macro
mov
mov
BOV
int
endm

Call
AH = 5EH
AL - 0
DS:DX

Pointer to 16-byte buffer

buffer
dx,offset buffer
al,0
ah,5EH
21H

81

W

AM

•H

CH

CS

. 08

*S

£8

Cl •

FUOt.

contain the
16-byte buffer.

name (a 16-byte ASCIZ
the buffer pointed to by

of the local

Return
Carry set:
AX

1 •= Invalid function code
Carry not set:
CX

Identification number of local
computer

MS-DOS returns the local
padded with blanks) in
CX returns the identification number

Function 5EH, Code 0 retrieves the net
computer. DX must
address in DS) of
be running.

name of the local
offset (to the segment
Microsoft Networks must

SYSTEM CALLS

Example

Microsoftofthe aname

stdout equ 1

begin:

1-262

db
db

;THIS FUNCTION
;routine not shown
;see Function 40H
;routine not shown

mac_name
name_error
stdout,msg,27
write_error

The following program displays
Networks workstation.

get_machine_name
jc
write handle
jc

"Netname: "
16 dup (?),0DH,0AH

msg
ma c name

SYSTEM CALLS

Printer Setup (Function 5EH, Code 02H)

Assign list index
CX

Length of setup string

Pointer to setup string

stringdefines of controla

SI
the

the

1-263

Return
Carry set:
AX

IP

plaom

cs

ss
E8

81

DI

CX.

AM

BH

CH

02H
MS-DOS

BX must contain the index into
assign list that identifies the printer (entry 0 is the

CX must contain the length of the string.
offset (to the segment address in DS) of
Microsoft Networks must be running.

Call
AH «= 5EH
AL = 02H
BX

DS:SI
Pointer to string

1 “ Invalid function code
Carry not set:

No error

Function 5EH, Code
characters that MS-DOS adds to the beginning of each file
sent to the network printer,
the
first entry),
must contain
the string itself.

The setup string is added to the beginning each file sent to
printer specified by the assign list index in BX. This

function request lets each program that shares a printer
have its own printer configuration. You can determine which
entry in the assign list refers to the printer with Function
5F02H (Get Assign List Entry).

SYSTEM CALLS

is and theset

MeaningCode

1

Macro Definition: printer_setup

Example

OEHdbsetup

begin:

1-264

macro
mov
mov
mov
mov
mov
int
endm

that
on

setup
the printer

3 (the fourth entry) in the assign list.
to determine

printer_setup 3,l,setup
jc error

index,Igth,string
bx, index
ex, Igth
dx, offset string
al, 2
ah, 5EH
21H

;THIS FUNCTION
jroutine not shown

If there is an error, the carry flag (CF)
error code is returned in AX:

Microsoft Networks must be running to use this
function request.

The following program defines a printer setup string
consists of the control character to print expanded type
Epson-compatible printers. The printer cancels this mode at
the first carriage return, so the effect is to print the
first line of each file sent to the network printer as a
title in expanded characters. The setup string is one
character. This exampel assumes that the printer is the
entry number 3 (the fourth entry) in the assign list. Use
Function 5F02H (Get Assign List Entry) to determine this
value.

SYSTEM CALLS

Get Assign List Entry (Function 5FH, Code 02H)

DX:

Stored user value

1-265

Return
Carry set:
AX

cs
©«
ss

ES

SI

(N

CH

1ST
CL.

Call
AB = 5FH
AL = 02H
BX

ip
FLAGS- [fUOfe

1 = Invalid function code
18 = No more files

Carry not set:
BL

3 = Printer
4 *= Drive

CX

Function 5FH, Code 02H retrieves the
the network list of assignments,
list index (entry 0 is the first entry),
the offset (to the segment
buffer for the local name,
the segment address in
remote name.

Assign list index
bS:SI

Pointer to buffer for local name
ES:DI

Pointer to buffer for remote name

MS-DOS puts the local name in the buffer pointed to by DS:SI
and the remote name in the buffer pointed to by ES:DI. The
local name can be a null ASCIZ string. BL returns 3 if the
local device is a printer or 4 if the local device is a
drive. CX returns the stored user value set with Function
5FH, Code 03H (Make Assign List Entry). The contents of the
assign list can change between calls.

specified entry from
BX must contain the assign

SI must contain
address in DS) of a 16-byte

DI must contain the offset (to
address in ES) of a 128-byte buffer for the
Microsoft Networks must be running.

SYSTEM CALLS

is set and the

MeaningCode
1

18

Macro Definition: get_list macro

Example

nheader

1-266

equ
equ

stdout
printer

If there is an error, the carry flag (CF)
error code is returned in AX:

db
db
db
db

Microsoft Networks must be running to use this
function request.

1
3

;Code returned from
;GetAssignListEntry for
;a printer

13,10,13,10,"Device Type
"Local name", 9 dup (20h)
"Remote name"
13,10,13,10
$ - header

crlf
header_len equ

The index passed in BX is greater than the
number of entries in the assign list.

index, local, remote
mov
mov
mov
mov
mov
int
endm

bx, index
si, offset local
di, offset remote
al,2
ah, 5FH
21H

You can use this function request to retrieve any entry, or
make a copy of the complete list by stepping through the
table. To detect the end of the assign list, check for
error code 18 (no more files), just as when you step through
a directory with Functions MEH and MFH (Find First File and
Find Next File).

list on a
local name,

for each
The following program displays
Microsoft Networks workstation,
remote name, and device type (drive
entry.

the assign
showing the

or printer)

SYSTEM CALLS

begin:

cK_list:

got_one:

prntr:

1-267

dw
dw

remote_nm db
remote_nm_len equ

str_len
index

set_index
write_error

"Drive”,8 dup (20h)
"Printer",6 dup (20h)
$ - print—msg
?
?

;got an entry
{last entry?
;yes
jsome other error

cmp
jc

19 dup (?)
$ - local—iun

128 dup (?)
$ - remote—mn

drive—msg db
print_msg db
device_msg_len equ

bl,printer
prntr

write_handle
Jc
jmp

index,0 ;assign list index
index, local_nm,remote_nm;THIS FUNCTION
got—one
ax, 18
last—one
return

Jc
display—nms:

mov
mov
xor
repne
dec
inc
mov
rep

local—nm db
remote—nm_lcn equ

;is it a printer?
;yes . .

stdout, drive_msg,device_msg_len
write_error ;routine not shown
short display—nms

write_handle stdout,print—msg,device msg len
write_error {routine not shown

jnc
jmp

set—index:
mov
get—list
inc
cmp
je
jmp

di, offset local—nm
ex,local— nm_len
ax, ax
scasb
di
ex
al, 20h
stosb

write_handle stdout,header, header_len
;see Function 40H

SYSTEM CALLS

Make Assign List Entry (Function 5FH, Code 03H)

CX

CX

1-268

3 = Printer
4 = Drive

OOH).
ES) of

5FH
03H

SI:
u
01:

CO
w
M
CO

•l
a
w

OH
CH
SM

Call
AH
AL
BL

Return
Carry set:
AX

User value
DS:SI

Pointer to name of source device
ES:DI

Pointer to name of destination
device

1 = Invalid function code
5 = Access denied
3 “ Path not found
8 «= Insufficient memory
(Other errors particular to the
network may occur.)

Carry not set:
No error

Function 5FH, Code 03H redirects a printer or disk drive
(source device) to a network directory (destination device).
BL must contain 3 if the source device is a printer or 4 if
the source device is a disk drive. SI must contain the
offset (to the segment address in DS) of an ASCIZ string
that specifies either the name of the printer, a drive
letter followed by a colon, or a null string (one byte of

DI must contain the offset (to the segment address in
an ASCIZ string that specifies the name of a network

directory. CX contains a user-specified 16-bit value that
MS-DOS maintains. Microsoft Networks must be running.

SYSTEM CALLS

be ASCIZ string of themust an

<machine-name><pathname><OOHXpassword><OOH>

containsthat

<00H> is a null byte.

is and theset

1-269

The destination string
following form:

the
no

the
be

for access to the network
is specified, both null bytes

If there is an error, the carry flag (CF)
error code is returned in AX:

(not
is to

<pathname> is the alias of the network directory
directory path) to which the source device
redirected.

<machine-name> is the net name of the server
the network directory.

<password> is the password
directory. If no password
must immediately follow the pathname.

If BL=3, the source string must be PRN, LPT1, LPT2, or LPT3.
All output for the named printer is buffered and sent to the
remote printer spooler named in the destination string.

If BL=4, the source string can be either a drive letter
followed by a colon or a null string. If the source string
contains a valid drive letter and colon, all subsequent
references to the drive letter are redirected to the network
directory named in the destination string. If the source
string is a null string, MS-DOS attempts to grant access to
the network directory with the specified password.

The maximum length of the destination string is 128 bytes.
The value in CX can be retrieved with Function 5FH, Code 02H
(Get Assign List Entry).

SYSTEM CALLS

MeaningCode

1

3

5

8

1-270

The network directory/password combination is
not valid. This does not mean that the password
itself was invalid; the directory might not
exist on the server.

The network directory path is invalid or doesn't
exist.

Macro Definition:
redir macro

mov
mov
mov
mov
mov
mov
mov
int
endm

There is not enough memory for string
substitutions.

Microsoft Networks must be running to use this
function request, the value in BX is not 1 to 4,
the source string is in the wrong format, the
destination string is in the wrong format, or
the source device is already redirected.

device,value,source,destination
bl, device
ex, value
si, offset source
es, seg destination
di, offset destination
al, 03H
ah, 5FH
21H

SYSTEM CALLS

Example

Password

;THIS FUNCTION

1-271

db
db
db
db
db
db

equ
equ

3
4

WORD
COMM
PRINTER

Netname
on server

drives
server named HAROLD.

none
fred
quick

printer
drive

local_l
local_2
local_3
remote_l
remote_2
remote_3

begin:

E:
F:
PRN:

Local drive
or printer

redir

redir
jc
redir
jc

"e:",0
"f:",0
"prn",0
"\harold\word",0,0
"\harold\comm",0,"fred",0
"\haroId\printer",0,"quick",0

The following program redirects two drives and a printer
from a workstation to a server named HAROLD. It assumes the
machine name, directory names, and driver letters shown:

local_l ,remote_l,drive,0
error ;routine not shown
local_2,remote_2,drive,0 ;THIS FUNCTION
error ;routine not shown
local_3 ,remote_3 .printer,0 ;THIS FUNCTION
error ;routine not shown

SYSTEM CALLS

Cancel Assign List Entry (Function 5FH, Code 04H)

contain ofDS:SI can one

1. followed

2. LPT2,

1-272

The ASCIZ string pointed to by
three values:

8P
BP
SI
u

AM
•h
CM
Prt

(Make
contain the offset (to the

i ASCIZ string that specifies the
the printer or drive whose redirection is to be
Microsoft Networks must be running.

The name of
or LPT3).
printer name

Call
AH = 5FH
AL = 04H
DS: SI

Pointer to name of source device

The letter of
colon. The
is restored to its physical meaning.

cs
••

a redirected printer (PRN, LPT1,
The redirection is canceled and the
is restored to its physical meaning.

Return
Carry set:
AX

1 “ Invalid function code
15 = Redirection paused on server
(Other errors particular to the network
may occur.)

Carry not set:
No error

KP
FLU1A-

cs
os '"
ss
»

Function 5FH, Code 04H cancels the redirection of a printer
or disk drive (source device) to a network directory
(destination device) made with Function 5FH, Code 03H
Assign List Entry). SI must
segment address in DS) of an
name of the printer or <
canceled.

a redirected drive, followed by a
redirection is canceled and the drive

Ct
I ’ »

SYSTEM CALLS

3.

is and theset

MeaningCode

1

15

Macro Definition: cancel_redir

Example

begin:

1-273

local_l
local_2
local_3

db
db
db

local_l
error
local_2
error
local_3
error

The
the

macro
mov
mov
mov
int
endm

;THIS FUNCTION
;routine not shown
;THIS FUNCTION
;routine not shown
;THIS FUNCTION
;routine not shown

w
the

terminated.

local
si, offset local
al, 4
ah, 5FH
21H

cancel redir
Jc
cancel_redir

cancel redir
jc

of a
these

A string starting with
connection between
network directory is

(2 backslashes).
local machine and

If there is an error, the carry flag (CF)
error code is returned in AX:

Microsoft Networks must be running to use this
function request, or the ASCIZ string doesn't
name an existing source device.
Disk or printer redirection on the network
server is paused.

"e:",0
"f:",0
"prn",0

The following program cancels the redirection
and F and the printer (PRN)
workstation. It assumes that
previously redirected.

of drives E
Microsoft Networks
local devices were

SYSTEM CALLS

MACRO DEFINITIONS FOR MS-DOS SYSTEM CALL EXAMPLES

FUNCTION REQUEST OOH
macro

1-275

. *******************
; Function Requests
.*******************

.*******************
; Interrupts
.*******************

macro
al,disk
bx,offset buffer
ex,num_sectors
dx,first_sector
25H

macro
al ,disk
bx,offset buffer
cx,num_sectors
dx,first_sector
26H

ah,ah
21H

INTERRUPT 25H
disk,buffer,num_sectors,first_sector

INTERRUPT 26H
disk.buffer,num_sectors,first_sector

ABS_DISK_READ
mov
mov
mov
mov
int
popf
endm

ABS_DISK_WRITE
mov
mov
mov
mov
int
popf
endm

STAY_RESIDENT
mov
inc
int
endm

TERMINATE_PROGRAM
xor
int
endm

INTERRUPT 27H
macro last_instruc

dx,offset last_instruc
dx
27H

SYSTEM CALLS

FUNCTION REQUEST 01H

FUNCTION REQUEST 02H

FUNCTION REQUEST 03H

FUNCTION REQUEST 04H

FUNCTION REQUEST O5H

FUNCTION REQUEST 06H
switch

1-276

AUX_INPUT
mov
int
endm

AUX_OUTPUT
mov
int
endm

PRINT_CHAR
mov
mov
int
endm

macro
ah,04H
21H

macro
dl,switch
ah,06H
21H

macro
ah,03H
21H

READ_KBD_AND_ECHO
mov
int
endm

DIR_CONSOLE_IO
mov
mov
int
endm

DISPLAY_CHAR
mov <
mov i
int
endm

macro
ah,01H
21H

macro character
dl,character
ah,02H
21H

macro character
dl,character
ah,05H
21H

SYSTEM CALLS

FUNCTION REQUEST 07H

FUNCTION REQUEST 08H

FUNCTION REQUEST 09H

FUNCTION REQUEST OAH

FUNCTION REQUEST OBH

FUNCTION REQUEST ODH

1-277

READ_KBD
mov
int
endm

GET_STRING
mov
mov
mov
int
endm

DISPLAY
mov
mov
int
endm

RESET_D1SK
mov
int
endm

macro
ah,08H
21H

macro
ah,OBH
21H

macro
ah,ODH
21H

macro
al, switch
ah.OCH
21H

CHECK_KBD_STATU S
mov
int
endm

DIR_CONSOLE_INPUT
mov
int
endm

FLU SH_AND_READ_KBD
mov
mov
int
endm

FUNCTION REQUEST OCH
switch

macro
ah,07H
21H

macro limit,string
dx,offset string
string,limit
ah,OAH
21H

macro string
dx,offset string
ah,09H
21H

SYSTEM CALLS

FUNCTION REQUEST OEH

FUNCTION REQUEST OFH

FUNCTION REQUEST 1OH

FUNCTION REQUEST UH

FUNCTION REQUEST 12H

FUNCTION REQUEST 13H

FUNCTION REQUEST 14H

1-278

DELETE i
mov
mov
int
endm

READ_SEQ
mov
mov
int
endm

SEARCH_FIRST
mov i
mov i
int
endm

SEARCH_NEXT
mov
mov
int
endm

SELECT_DISK
mov
mov
int
endm

i f cb
dx,offset fcb
ah.lOH
21H

fcb
dx,offset fcb
ah,OFH
21H

' macro fcb
dx,offset fcb
ah,UH
21H

macro disk
dl,disk[-65]
ah,OEH
21H

macro fcb
dx,offset fcb
ah,14H
21H

macro fcb
dx,offset fcb
ah,12H
21H

CLOSE macro
mov i
mov
int
endm

macro fcb
■ dx,offset fcb

ah,13H
21H

OPEN macro
mov
mov
int
endm

SYSTEM CALLS

FUNCTION REQUEST 15H

FUNCTION REQUEST 1.6H

FUNCTION REQUEST 17H

FUNCTION REQUEST 19H

FUNCTION REQUEST 1AH

FUNCTION REQUEST 1BH

FUNCTION REQUEST 1CH

1-27 9

SET_DTA
mov
mov
endm

DRIVE_DATA
mov
mov
int
endm

WRITE_SEQ
mov
mov
int
endm

CREATE 1
mov
mov
int
endm

RENAME 1
mov
mov
int
endm

macro
ah,19H
21H

macro
ah.lBH
21H

CURRENT_DISK
mov ;
int
endm

DEF_DRIVE_DATA
mov
int
endm

macro fcb
dx,offset fcb
ah,15H
21H

macro drive
dl .drive
ah.lCH
21H

macro fcb
' dx.offset fcb
r ah,16H

21H

macro buffer
dx.offset buffer
ah.lAH

macro fcb.newname
' dx.offset fcb
r ah,17H

21H

SYSTEM CALLS

FUNCTION REQUEST 21H

FUNCTION REQUEST 22H

FUNCTION REQUEST 23H

FUNCTION REQUEST 24H
fcb

FUNCTION REQUEST 26H

1-28Q

CREATE_PSP
mov
mov
int
endm

SET_VECTOR
mov
mov
mov
int
endm

WRITE_RAN
mov
mov
int
endm

FILE_SIZE
mov
mov
int
endm

macro
dx.offset fcb
ah,24H
21H

READ_RAN
mov
mov
int
endm

SET_RELATIVE_RECORD
mov
mov
int
endm

macro see addr
dx,offset seg addr
ah,26H
21H

macro fcb
dx,offset fcb
ah,23H
21B

macro fcb
dx,offset fcb
ah,21H
21H

macro fcb
dx,offset fcb
ah,22H
21H

FUNCTION REQUEST 25H
macro interrupt,handler_start
al,interrupt
dx,offset handler_start
ah,25H
21H

SYSTEM CALLS

FUNCTION REQUEST 29H

FUNCTION REQUEST 2AH

FUNCTION REQUEST 2BH

1-281

GET_DATE
mov
int
endm

SET_DATE
mov
mov
mov
mov
int
endm

macro
ah,2AH
21H

■ string,fcb
si,offset string
di,offset fcb
es
ds
es
al.OFH
ah,29H
21H
es

RAN_BLOCK_READ
mov
mov
mov
mov
int
endm

RAN_,BLOCK_WRITE
mov
mov
mov
mov
int
endm

FUNCTION REQUEST 27H
macro fcb, count,rec_size

dx,offset fcb
ex,count
word ptr fcb[14],rec_size
ah,27B
21H

FUNCTION REQUEST 28H
macro fcb,count,rec_size

dx,offset fcb
ex,count
word ptr fcb[14],rec_size
ah,28H
21H

macro year,month,day
ex,year
dh.month
dl ,day
ah,2BH
21H

PARSE macro
mov
mov i
push i
push i
pop
mov
mov
int
pop
endm

SYSTEM CALLS

FUNCTION REQUEST 2CH

FUNCTION REQUEST 2EH

FUNCTION REQUEST 2FH

FUNCTION REQUEST 30H

1-282

SET_TIME
mov
mov
mov
mov
mov
int
endm

GET_TIME
mov
int
endm

GET_DTA i
mov
int
endm

GET-VERS ION
mov
int
endm

macro
ah,2CH
21H

macro
ah,30H
21H

KEEP_PROCESS
mov
mov i
mov
shr i
inc i
mov
int
endm

VERIFY i
mov
mov
int
endm

macro
ah,2FH
21H

FUNCTION REQUEST 31H
I macro return_code,last_byte
al,return_code
dx,offset last-byte
cl ,4
dx, cl
dx
ah,31H
21H

macro switch
' al,switch
' ah,2EH

21H

FUNCTION REQUEST 2DH
macro hour,minutes,seconds,hundredths

ch,hour
cl,minutes
dh,seconds
dl.hundredths
ah,2DH
21H

SYSTEM CALLS

FUNCTION REQUEST 33H

FUNCTION REQUEST 35H

FUNCTION REQUEST 36H
drive

GET_COUNTRY

g c_01:

1-283

GET_VECTOR
mov
mov
int
endm

CTRL_C_CK
mov
mov
mov
int
endm

macro
dl .drive
ah,36H
21H

macro
local
mov
mov
cmp
jl
mov
mov
mov
int
endm

GET_DISK_SPACE
mov
mov
int
endm

FUNCTION REQUEST 38H
country,buffer
gc_Ol
dx,offset buffer
ax,country
ax,OFFH
gc_01
al.Offh
bx, country
ah,38H
21H

macro interrupt
al,interrupt
ah,35H
21H

macro action.state
al ,action
dl ,state
ah,33H
21H

SYSTEM CALLS

FUNCTION REQUEST 38H

s c__01:

FUNCTION REQUEST 39H

FUNCTION REQUEST 3AH

FUNCTION REQUEST 3BH

FUNCTION REQUEST 3CH
macro

1-284

CHANGE_DIR
mov
mov
int
endm

mov
mov
mov
int
endm

macro
local
mov
mov
cmp
jl
mov
mov
mov
int
endm

country
sc_01
dx,OFFFFH
ax,country
ax.OFFH
sc_01
al.Offh
bx,country
ah,38H
21H

MAKE_DIR
mov
mov
int
endm

REM_DIR
mov
mov
int
endm

SET_COUNTRY

CREATE_HANDLE macro path,attrib
dx,offset path
ex,attrib
ah,3CH
21H

macro path
dx,offset path
ah,39H
21H

macro path
dx,offset path
ah,3BH
21H

macro path
dx,offset path
ah,3AH
21H

SYSTEM CALLS

FUNCTION REQUEST 3DH

FUNCTION REQUEST 3EH

FUNCTION REQUEST 41H

1-285

OPEN_HANDLE
mov
mov
mov
int
endm

CLOSEJIANDLE
mov
mov :
int
endm

READ_HANDLE
mov
mov
mov
mov
int
endm

WRITEJHANDLE
mov
mov
mov
mov
int
endm

DELETE_ENTRY
mov i
mov i
int
endm

' macro path
dx,offset path
ah,41H
21H

macro path,access
dx,offset path
al .access
ah,3DH
21H

; macro handle
bx,handle
ah,3EH
21H

FUNCTION REQUEST 40H
macro handle,buffer,bytes

bx,handle
dx,offset buffer
ex,bytes
ah,40H
21H

FUNCTION REQUEST 3FH
macro handle,buffer,bytes
bx,handle
dx,offset buffer
ex.bytes
ah,3FH
21H

SYSTEM CALLS

FUNCTION REQUEST 4400H,01H

1-286

IOCTL_STATUS
mov
mov i
mov
mov ;
int
endm

MOVE_PTR
mov
mov
mov
mov
mov
int
endm

IOCTL_DATA
mov
mov
mov
int
endm

IOCTL_CHAR
mov
mov
mov
mov
int
endm

CHANGE_MODE
mov
mov
mov
mov
int
endm

macro code,handle
bx,handle
al,code
ah,44B
21H

FUNCTION REQUEST 42H
macro handle,high,low,method

bx,handle
ex,high
dx,low
al.method
ah,42B
21B

FUNCTION REQUEST 43H
macro path.action,attrib
dx,offset path
al,action
ex,attrib
ah,43H
21H

FUNCTION REQUEST 4402H.03H
macro code,handle,buffer
bx,handle
dx,offset buffer
al,code
ah,44H
21H

FUNCTION REQUEST 4404H.05H
i macro code.drive.buffer
bl .drive
dx,offset buffer
al,code
ah,44H
21H

SYSTEM CALLS

FUNCTION REQUEST 4406H.07H

FUNCTION REQUEST 4408H
drive

FUNCTION REQUEST 4409H
drive

FUNCTION REQUEST 440AH
handlemacro

FUNCTION REQUEST 440BH

1-287

IOCTL_BLOCK
mov
mov
mov
int
endm

IOCTL_RBLOCK
mov
mov
mov
int
endm

IOCTL_RETRY
mov
mov
mov
mov
int
endm

mov
mov
mov
int
endm

IOCTL_CHANGE
mov
mov
mov
int
endm

, macro
bl .drive
al,08H
ah,44H
21H

. macro
bl,drive
al,09H
ah,44H
21H

IOCTL_RHANDLE
bx,handle
al.OAB
ah,44H
21H

macro retries,wait
bx,retries
ex,wait
al.OBH
ah,44H
21H

macro code,handle
bx,handle
al,code
ah,44H
21H

SYSTEM CALLS

FUNCTION REQUEST 45H

FUNCTION REQUEST 46H

FUNCTION REQUEST 47 H
macro

FUNCTION REQUEST 48H
bytes

bx,cl

FUNCTION REQUEST 49H

1-288

macro
mov
mov
int
endm

XDUP

bx
ah,48H
21H

macro
bx,bytea
cl ,4

FREE_MEMORY
mov
mov
mov
int
endm

GET_DIR
mov
mov
mov
int
endm

drive,buffer
dl,drive
si,offset buffer
ah,47H
21H

i handlei,handle2
bx,handlei
ex,handle!
ah,46H
21H

handle
bx,handle
ah,45H
21H

ALLOCATE_MEMORY
mov
mov
shr
inc
mov
int
endm

macro seg addr
ax.seg addr
es,ri
ah,49H
21H

XDUP2 macro
mov
mov
mov
int
endm

SYSTEM CALLS

macro

FUNCTION REQUEST 58H

FUNCTION REQUEST 59E

1-291

GET_ERROR
mov
int
endm

CREATE_NEW

mov
mov
mov
mov
mov
int
endm

macro
mov
mov
mov
int
endm

macro
mov
mov
mov
int
endm

macro
ah, 59
21B

CREATE_TEMP
FUNCTION REQUEST 5AH

pathname,attrib
ex,attrib
dx,offset pathname
ah,5AH
21H

FUNCTION REQUEST 57H
handle.action,time.date

ALLOC_STRAT
mov
mov
mov
int
endm

GET_SET_DATE_TIME
bx.handle

al .action
ex,word ptr time

■ dx.word ptr date
ah,57H
21H

FUNCTION REQUEST 5 BE
pathname.attrib
ex,attrib
dx,offset pathname
ah,5BH
21H

macro code,strategy
bx,strategy
al, code
ah,58H
21H

SYSTEM CALLS

byte ptr [bx],"$"

source,destination,count

1-294

si,offset source
di,offset destination
ex,count
es:destination,source
es:nothing
es

search:
emp
je
inc

*ifc****ir*ir*:fc**Tfr**irfcir
General

*^*A****Sr*i!k***i;****

MOVE_STRING
push
push
POP

byte ptr [bx],0
found it
bx

jmp short search

DISPLAY_ASCIIZ
local
mov

macro
es
ds
es

assume es:code
mov
mov
mov

rep movs
as sume
POP
endtn

macro asciiz_string
search,found_it
bx,offset asciiz_string

found_it:
mov
display asciiz_string
mov byte ptr [bx],0
display_char ODH
display_char OAH
endm

MS-DOS DEVICE DRIVERS

device=\dev\vt52.sys /I

I BPB address points here

assigned
the

This is also read-only.

Block devices must return the following information:

1.

the driver.
This

allows
parameters

MS-DOS uses
If the

at the

Also, for block devices only, the drive number assigned to
first unit defined by this driver (A=0) as contained in

the block device number field.

The number of units, end address, and BPB pointer are to be
set by the driver. However, on entry for installable device
drivers, the DWORD that is to be set by the driver to the
BPB array (on block devices) points to the character after
the on the line in CONFIG.SYS that caused this device
driver to be loaded. This allows drivers to scan the
CONFIG.SYS invocation line for parameters which might be
passed to the driver. This line is terminated by a RETURN
or a line feed. This data is read-only and allows the
device to scan the config.sys line for arguments.

The number of units must be returned,
this to determine logical device names,
current maximum logical device letter is F
time of the install call, and the-INIT routine
returns 4 as the number of units, then they will
have logical names G, H, I and J. This mapping is
determined by the position of the driver in the
device list, and by the number of units on the
device (stored in the first byte of the device name
field).

For installable character devices, the end address parameter
must be returned. This is a pointer to the first available
byte of memory above the driver and may be used to throw
away initialization code.

MS-DOS DEVICE DRIVERS

2.7.4 READ or WRITE

Command codes « 3,4,8,9, 12, and 16

or

I 13-BYTE Request header

I BYTE Media descriptor from BPB

I DWORD Transfer address ' I
I WORD Byte/sector count

character devices)

COMMAND CODE REQUEST

2-24

READ OR WRITE (Including IOCTL)
OUTPUT UNTIL BUSY - ES;BX ->

3
4
8
9

12
16

character)
character)

I WORD Starting sector number j
I (Ignored on character devices)

I Returned DWORD pointer to requested!
I Volume ID if error OFH j

perform the READ
code is set.

IOCTL READ
READ (block or
WRITE (block or
WRITE WITH VERIFY
IOCTL WRITE
OUTPUT TIL BUSY (char devs only)

The driver must
which command
sectors; character devices read

or WRITE call depending on
Block devices read or write
or write bytes.

SYSTEM CALLS

LOCK

FUNCTION REQUEST 5E00H

macro

1-292

*

macro
mov
mov
mov
mov
mov
mov
mov
int
endm

macro
mov
mov
mov
mov
mov
mov
mov
int
endm

UNLOCK

PRINTER_SETUP i
mov
mov
mov
mov
mov
int
endm

GET_MACHINE_NAME
mov
mov
mov
int
endm

macro buffer
dx,offset buffer
al ,0
ah,5EH
21H

FUNCTION REQUEST 5C00H
handle,start.bytes
bx,handle
ex,word ptr start
dx.word ptr start+2
si,word ptr bytes
diaword ptr bytes+2
al,0
ah,5CH
21H

FUNCTION REQUEST 5C01H
handle,start.bytes
bx,handle
ex,word ptr start
dx.word ptr start+2
si,word ptr bytes
di,word ptr bytes+2
al,l
ah,5CH
21H

FUNCTION REQUEST 5E02H
index,Igth,string

bx,index
ex,Igth
dx,offset string
al.2
ah,5EH
21H

SYSTEM CALLS

GET_LIST

REDIR

FUNCTION REQUEST 5F04H

FUNCTION REQUEST 62H
GET—PSP

1-293

macro
mov
mov
mov
mov
mov
int
endm

macro
mov
mov
mov
mov
mov
mov
int
endm

macro
mov
int
endm

ah,62H
21H

FUNCTION REQUEST 5F02H
index,local,remote
bx,index
si,offset local
di,offset remote
al,2
ah,5FH
21H

FUNCTION REQUEST 5F03H
local,remote,device,value
bl,device
ex .value
si,offset local
di,offset remote
al,3
ah,5FH
21H

local
si,offset local
al ,4
ah,5FH
21H

CANCEL—REDIR macro
mov
mov
mov
int
endm

SYSTEM CALLS

macro

ten

1-295

start:
mov
xor
mov
xor

ax
bx
dx
al, value
ah,ah
bx,bx
base
bl,al
al, cs:table[bx]
destination,al
bl,ah
al,cs:table[bx]
destination!!],al
dx
bx
ax

value,base destination
table,start
start
"0123456789ABCDEF"

value,0
ex, ex
cl.number
si, si

start:
push
push
push
mov
xor
xor
div
mov
mov
mov
mov
mov
mov
POP
pop
pop
endm

CONVERT_TO_BINARY
local
jmp
db

macro string,number,value
ten,start,calc,mult,no_mult
start
10

CONVERT
local
jmp

table db

SYSTEM CALLS

1-296

nc__wj.lt;
add
inc
loop
endm

ax, ax
al,string[si]
a 1,48
ex,2
no_mult
ex
ex

cs:ten
mult
ex

value,ax
si
calc

CONVERT_DATE
mov i
mov i
shr i
mov i
and <
xor i
mov i
shr i
add i
endm

mult:
mul
loop
POP

calc:
xor
mov
sub
emp
jl
push
dec

1 macro dir_entry
dx.word ptr dir_entry[24]
cl,5
dl.cl
dh,dir_entry[24]
dh.lFH
ex, ex
cl ,dir_entry(25]
cl,l
ex,1980

nc__wj.lt

SYSTEM CALLS

; On entry: DH-=day, DL=month, CX=(yi

1-297

set_bit:
or
rol
mov
endm

ex,1980
ex
date,dh
cl,5
dl,cl
ex
set_bit
cl,80h

date,dl
cl,l
date[l] ,cl

sub
push
mpv
mov
shl
pop
jnc
or ’

ear-1980)

PACK_DATE macro date
local set_bit

■

CHAPTER 2

MS-DOS DEVICE DRIVERS

MS-DOS DEVICE DRIVERS

CHAPTER 2

MS-DOS DEVICE DRIVERS

INTRODUCTION2.1

of the device

requests

routine,

multitaskingfacilitate

2-1

two
immediately

it
the

the strategy
MS-DOS does not

calls the
interrupt

Each driver in the chain has two entry points:
entry
take advantage of
strategy
routine.

At boot time, a minimum of five resident device drivers must
be present. These drivers are in a linked list: the
"header" of each one contains a DWORD pointer to the next.
The last driver in the chain has an end-of-list marker of
-1, -1 (all bits on).

The dual
versions
be asynchronous;
will be called

entry points
of MS-DOS.

The 10.SYS
drivers.

"configurable;"
can

may be easily added by
entry in the

section, these non-resident drivers are termed
to distinguish them from drivers in the 10.SYS
are considered the resident drivers.

future
In multitasking environments, I/O must

to accomplish this, the
to (internally) queue

point and the interrupt entry point,
the two entry points:
then immediately calls

One of the most powerful features of MS-DOS is the ability
to add new devices such as printers, plotters, or mouse
input devices without rewriting the BIOS. The MS-DOS BIOS
is "configurable;" that is, new drivers can be added and
existing drivers can be pre-empted. Non-resident device
drivers may be easily added by an end user at boot time via
the "DEVICE =" entry in the CONFIG.SYS file. In this

"installable"
file, which

strategy routine
a request and return

I file is composed of the "resident"
This forms the MS-DOS BIOS, and these drivers are

called upon by MS-DOS to handle I/O requests initiated by
application programs.

MS-DOS DEVICE DRIVERS

completion ofthe

and

which has the1.

information specific2. theto

In

The 1 ink

their

2-2

A section which has
type of request.

The static request header section,
same format for all requests.

MS-DOS does not implement a global or local queue. Only one
request is pending at any one time. The strategy routine
must store the address of the packet at a fixed location,
and the interrupt routine, which is called immediately after
the strategy routine, should process the packet by
completing the request and returning. It is assumed that
the request is completed when the interrupt routine returns.

When requests are queued in this manner, it is no longer
sufficient to pass I/O information in registers, since many
requests may be pending at any time. Therefore, the MS-DOS
device interface uses "packets" to pass request information.
These request packets are of variable size and format,
are composed of two parts:

When
done” by the

the list of

quickly. It is then the responsibility of the interrupt
routine to perform the I/O at interrupt time by getting
requests from the internal queue and processing them,
a request is completed, it is flagged as ”
interrupt routine. MS-DOS periodically scans
requests looking for those that are flagged as done, and
"wakes up" the process waiting for the completion of the
request.

a pointer to a packet.
packet will be linked into a
I/O requests maintained by

A driver is called with
multitasking versions, this
global chain of all pending
MS-DOS.

To make a device driver that SYSINIT can install, a .BIN
(core image) or .EXE format file must be created with the
device driver header at the beginning of the file.
field should be initialized to -1 (SYSINIT fills it in).
Device drivers which are part of the BIOS should have

MS-DOS DEVICE DRIVERS

the

2.2 FORMAT OF A DEVICE DRIVER

Note

There are two kinds of device drivers:

1. Character device drivers

Block device drivers2.

2-3

I

I
I
I

II
II

headers point to the next device in the list and the last
header should be initialized to -1,-1. The BIOS must be a
.BIN (core image) format file.

Character devices perform serial
are the console, communications
devices are named (i.e., CON,
programs may open channels (handles
them.

.EXE format installable device drivers may be used in
non-IBM versions of MS-DOS. On the IBM PC, the .EXE loader
is located in COMMAND.COM which is not present at the time
that installable devices are being loaded.

A device driver is a program segment
communication between DOS and the system hardware,
special header at the beginning identifying it as a
driver, defining entry points, and describing
attributes of the device.

For device drivers, the file must not use the ORG 100H
(like .COM files). Because it does not use the Program
Segment Prefix, the device driver is simply loaded;
therefore, the file must have an origin of zero (ORG 0
or no ORG statement).

console,
are named
may open

character I/O. Examples
port and printer. These

AUX, CLOCK, etc.), and
or FCBs) to do I/O to

responsible for
It has a

device
various

COMMAND.COM

MS-DOS DEVICE DRIVERS

and

Note

2.3 HOW TO CREATE A DEVICE DRIVER

the

2-4

I

must
.EXE format) with a device

Note that for device

a link field (pointer to next
more than

They can
perform random I/O in structured pieces called blocks
(usually the physical sector size). These devices are not
named as the character devices are, and therefore cannot be
opened directly. Instead they have unit numbers and are
identified by driver letters such as A, B, and C.

Block devices are the "disk drives" on the system.
pieces called

These devices

A single block device driver may be responsible for one or
more logically contiguous disk drives. For example, block
device driver ALPHA may be responsible for drives A, B, C,
and D. This means that it has four units defined (0-3), and
therefore, takes up four drive letters. The position of the
driver in the list of all drivers determines' which units
correspond to which driver letters. If driver ALPHA is the
first block driver in the device list, and it defines 4
units (0-3), then they will be A, B, C, and D. If BETA is
the second block driver and defines three units (0-2), then
they will be E, F, and G, and so on. The theoretical limit
is 63, but it should be noted that the device installation
code will not allow the installation of a device if it would
result in a drive letter >'Z' (5AH). All block device
drivers present in the standard resident BIOS will be placed
ahead of installable block-device drivers in the list.

To create a device driver that MS-DOS can install, you
create a binary file (.COM or
header at the beginning of the file.
drivers, the code should not be originated at 100H, but at
0. The device header contains
device header) which should be -1, unless there is

II
I

Character devices cannot define multiple units
because they have only one name.

MS-DOS DEVICE DRIVERS

attribute field and

ii

Note

2-5

I
I
I
I
I

I

I

I
I
I
I
I

Because MS-DOS can install the driver anywhere in
memory, care must be taken when making far memory
references. You should not expect that your driver
will always be loaded in the same place every time.

device drivers
to install
Remember to

It is not possible to replace the "resident" disk block
device driver with an installable device driver the same way
you can replace the other device drivers in the BIOS. Block
drivers can be used only for devices not directly supported
by the default disk drivers in 10.SYS.

If it is a character device, the name field should be filled
in with the name of that character device,
any legal 8-character filename,
eight characters, it should
characters with spaces (20H).
include colons (:). The
"CON:" is a property of
interpreter (COMMAND.COM)
MS-DOS interface,
this way.

MS-DOS always processes installable device drivers before
handling the default devices, so to install a new CON
device, simply name the device "CON". Remember to set the
standard input device and standard output device bits in the
attribute word on a new CON device. The scan of the device
list stops on the first match, so the installable device
driver takes precedence.

one device driver in the file. The
entry points must be set correctly.

The name can be
If the name is less than
be padded out to eight

Note that device names do not
fact that "CON" is the same as
the default MS-DOS command

and not the device driver or the
All character device names are handled in

COMMAND.COM

MS-DOS DEVICE DRIVERS

2.3.1 Device Strategy Routine

single pointer area.

2.3.2 Device Interrupt Routine

2-6

This routine contains all of the code to process the service
request. It may actually interface to the hardware, or it
may use ROM BIOS calls. It usually consists of a series of
procedures which handle the specific command codes to be
supported as well as some exit and error-handling routines.
See the coding examples in Section 2.12.

This routine, which is called by MS-DOS for each device
driver service request, is primarily responsible for queuing
these requests in the order in which they are to be
processed by the Device Interrupt Routine. Such queuing can
be a very important performance feature in a multitasking
environment, or where asynchronous I/O is supported. As
MS-DOS does not currently support these facilities, only one
request can be serviced at a time, and this routine is
usually very short. In the coding examples in Section 2.12,
each request is simply stored in a

MS-DOS DEVICE DRIVERS

INSTALLATION OF DEVICE DRIVERS2.4

theirperformto

1. far call to strategy entry.

driver in2. a

far call to the interrupt entry.3.

support

2.5 DEVICE HEADERS

deviceof a

This structure is designed to be easily upgraded to
any future multitasking environment.

MS-DOS allows new device drivers to be installed dynamically
at boot time. This is accomplished by initialization code
in 10.SYS which reads and processes the CONFIG.SYS file.

MS-DOS makes a

MS-DOS calls upon the device drivers
function in the.following manner:

MS-DOS makes a

A device header is required at the beginning
driver. A device header looks like this:

MS-DOS passes device driver information
request header to the strategy routine.

MS-DOS DEVICE DRIVERS

Bit 3 = 1

Bit 2 = 1

Bit 1 - 1
Bit 0 = 1

Figure 2.1. Sample Device Header

2-8

II

IIIII

I II
I II

I
■+

I WORD Pointer to device interrupt
I entry point

I DWORD Pointer to next device
I (Usually set to -1 if this driver
I is the last or only driver in the
I file)

I WORD Pointer to device strategy
I entry point

I WORD Attributes
Bit 15 1 if character device

= 0 if block device
Bit 14 = 1 if IOCTL supported
Bit 13 » 1 if output till busy

(character devices)
- 1 if NON FAT ID

(block devices)
Bit 12 “ reserved (must be 0)
Bit 11 “ 1 if support OPEN/CLOSE/RM
Bit 10-5 reserved (must be 0)

if intended current CLOCK
device

if intended current NUL
device

if intended current sto
device

if intended current sti
device

I 8-BYTE Character device name field I
I Character devices set a device name. I
I For block devices the first byte is j
I the number of units.

MS-DOS DEVICE DRIVERS

«>

described in followingtheare

Pointer to Next Device Field2.5.1

INote

I I

Attribute Field2.5.2

2-9

II

II
If there is more than one device driver in the
file, the last driver in the file must have the pointer I
to the next device header field set to -1.

The device header fields
section.

The attribute field is used to identify the type of device
this driver is responsible for. In addition to
distinguishing between block and character devices, these
bits are used to give selected character devices special
treatment. (Note that if a bit in the attribute word is
defined only for one type of device, a driver for the other
type of device must set that bit to 0.)

Note that the device entry points are words,
offsets
table.
table,
points.

The pointer to the next device header field is a double word
field (offset followed by segment) that is set by MS-DOS to
point at the next driver in the system list at the time the
device driver is loaded. It is important that this field be
set to -1 prior to load (when it is on the disk as a file)
unless there is more than one device driver in the file. If
there is more than one driver in the file, the first word of
the double word pointer should be the offset of the next
driver's device header.

They must be
from the same segment number used to point to this

For example, if XXX:YYY points to the start of this
then XXXrstrategy and XXX:interrupt are the entry

MS-DOS DEVICE DRIVERS

block devices.andThe IOCTL bit has meaning on character

strings,

to

2-10

device driver that
In

that

that
88

the operation
BPB (BIOS Parameter Block) device call.

If a driver cannot process
initially set this bit to 0.
error if an
receive control strings to this device,
process control strings should initialize the IOCTL
1.

This
desired

1 (note

For example, assume that a user has a new
he wants to use as the standard input and output,
addition to installing the driver, he must tell MS-DOS
he wants his new driver to override the current standard
input and standard output (the CON device). This is
accomplished by setting the attributes to
characteristics, so he would set bits 0 and 1
that they are separate!),
could be installed by setting
Section 2.10, "The CLOCK Device,
information.) Although there is a
NUL device cannot be reassigned.

The IOCTL functions allow data to be sent and received by
the device for its own use (to set baud rate, stop bits,
form length, etc.) instead of passing data over the device
channel as a normal read or write does. The interpretation
of the passed information is up to the device but it must
not be treated as normal I/O. This bit tells MS-DOS whether
the device can handle control strings via the IOCTL system,
call, Function 44H.

the
to

Similarly, a new CLOCK device
attribute. (Refer to
in this chapter for more

NUL device attribute, the
This attribute exists so

that MS-DOS can determine if the NUL device is being used.

control strings, it should
This tells MS-DOS to return an

attempt is made (via Function 44H) to send or
A device which can

bit to
For drivers of this type, MS-DOS will make calls to the

IOCTL INPUT and OUTPUT device functions to send and -receive
IOCTL strings.

The NON FAT ID bit for block devices affects
of the BUILD BPB (BIOS Parameter Block) device call. The
NON FAT ID bit has a different meaning on character devices.
It indicates that the device implements the OUTPUT UNTIL
BUSY device call.

MS-DOS DEVICE DRIVERS

Strategy And Interrupt Routines2.5.3

Name Field2.5.4

2.6 REQUEST HEADER
function,

2-11

i 8-byte
device

versions
functionality,
necessary to
2.x, and is 0.

and

The IOCTL functions allow data to be sent
the device for its own use
stop bits, and form length), instead of passing data
the device channel as does a normal read or write,
interpretation of the passed information is up to
device, but it must not be treated as a

When MS-DOS calls a device driver to perform a function, it
passes a request header in ES:BX to the strategy entry
point. This is a fixed length header, followed by data

These two fields are the pointers to the entry points of the
strategy and interrupt routines. They are word values, so
they must be in the same segment as the device header.

The OPEN/CLOSE/RM bit signals to MS-DOS 3.x and later
whether this driver supports additional MS-DOS 3.0

To support these old drivers, it is
detect them. This bit was reserved in MS-DOS
All new devices should support the OPEN,

CLOSE, and REMOVABLE MEDIA calls and set this bit to 1.
Since MS-DOS 2.x never makes these calls, the driver will be
backward compatible.

This is an 8-byte field that contains the name of a
character device or the number of units of a block device.
If it is a block device, the number of units can be put in
the first byte. This is optional, because MS-DOS will fill
in this location with the value returned by the driver's
INIT code. Refer to Section 2.4, "Installation of Device
Drivers," for more information.

and received by
(for example, to set baud rate,

passing data over
The
the

normal I/O request.

MS-DOS DEVICE DRIVERS

The following figure illustrates

REQUEST HEADER ->

I
I BYTE Command code

I WORD Status

I

Figure 2.2. Request Header

The request header fields are described below.

2.6.1 Length of Record

of the request

2-12

This field contains the length (in bytes)
header.

I I I
+

I

I 8 BYTES ReservedI|----------------

+I

I BYTE Unit code
! The subunit the operation
I is for (minor device)
I (no meaning on character
I devices)

the stack
20 pushes,
up

a request header.

pertinent to the operation being performed. Wote that it is
the device driver's responsibility to preserve the machine
state (for example, save all registers including flags on
entry and restore them on exit). There is enough room on

when strategy or interrupt is called to do about
If more stack is needed, the driver should set

its own stack.

I BYTE Length of record
I Length in bytes of this
i request header

MS-DOS DEVICE DRIVERS

Unit Code Field2.6.2

the

Command Code Field2.6.3

have thecan

Function

16

2-13

It

ft

The command code field in the request header
following values:

Command
Code

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

n
n

n
n

verify

only)
fl
fl

If
II

1OCTL OUTPUT (Only called if device has IOCTL)
DEVICE OPEN (Only called if OPEN/CLOSE/RM bit set)
DEVICE CLOSE (Only called if OPEN/CLOSE/RM bit set)
REMOVABLE MEDIA (Only called if OPEN/CLOSE/RM bit

set and device is block)
OUTPUT UNTIL BUSY (Only called if bit 13 is set on

character devices)

INIT
MEDIA CHECK (Block devices only)
BUILD BPB " " "
IOCTL INPUT (Only called if device has IOCTL)
INPUT (read)
NON-DESTRUCTIVE INPUT NO WAIT (Char devs
INPUT STATUS "
INPUT FLUSH "
OUTPUT (write)
OUTPUT (Write) with
OUTPUT STATUS
OUTPUT FLUSH

The unit code field identifies which unit in your device
driver the request is for. For example, if your device
driver has 3 units defined, then the possible values of
unit code field would be 0, 1, and 2.

MS-DOS DEVICE DRIVERS

2.6.4 Status Field

infield thestatus

4 1 06 58 79

RESERVED

driverby the

then the low 8 hits

2-14

14 13 12 11 10
-- 4-- +-- +-- +--

Bit 9 is the busy bit, which is set only by status calls and
the removable media call.

The following figure illustrates the
request header.

The status word is zero on entry and is set
interrupt routine on return.

0 Write protect violation
1 Unknown unit
2 Drive not ready
3 Unknown command
4 CRC error
5 Bad drive request structure length
6 Seek error
7 Unknown media
8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure
D Reserved
E Reserved
F Invalid disk change

I B I D
I U | 0
I S | N
I Y I E

I
I ERROR CODE (bit 15I

3
—+

on) !

2
—+15

i--- +I E I I R I I R I

If it is set,Bit 15 is the error bit.
indicate the error. The errors are:

Bit 8 is the done bit. When set, it means the operation has
completed. The driver sets it to 1 when it exits.

MS-DOS DEVICE DRIVERS

DEVICE DRIVER FUNCTIONS2.7

1. INIT

MEDIA CHECK2.

3. BUILD BPB

Write with4. or

NON DESTRUCTIVE READ NO WAIT5.

OPEN or CLOSE (3.x)6.

REMOVABLE MEDIA (3.x)7.

8. STATUS

9. FLUSH

the
Header

2-15

READ or WRITE or WRITE TIL BUSY
Verify or Read IOCTL or Write IOCTL

All strategy routines are called with ES:BX pointing to
Request Header. The interrupt routines get the pointers to
the Request Header from the queue that the strategy routines
store them in. The command code in the request header tells
the driver which function to perform and what data follows
the request header.

Device drivers may perform all or some of these nine general
functions. In some cases, these functions break down into
several command codes, for specific cases. Each is
described in this section.

MS-DOS DEVICE DRIVERS

Note

2.7.1 INIT

Command code w 0

INIT - ES:BX ->

I DWORD End Address

I BYTE Block device number
■+

2-16

All DWORD pointers are stored offset first, then
segment.

I DWORD Pointer to BPB array
I (Not set by character devices)

I 13-BYTE Request header

I BYTE Number of units

—+
I

—•+

One of the functions defined for each device driver is INIT.
This routine is called only once when the device is
installed. The INIT routine must return the END ADDRESS,
which is a DWORD pointer to the end of the portion of the
device driver to remain resident. This pointer method can
be used to delete initialization code that is only needed
once, saving space.

MS-DOS DEVICE DRIVERS

2.

3.

2-18

built
pointer,
or
resident
initialization,
fail.

this •
(below

must
by

will

device
BPB
space

this approach, media descriptor bytes do not
A smart i
case, the
sufficient
supported.
to pass information about what media is currently in a unit.

device must
This byte

to devices
what parameters MS-DOS is

particular drive unit.

A DWORD pointer to an array of word offsets
(pointers) to BPBs (BIOS Parameter Blocks) must be
returned. The BPBs passed by the device driver are
used by MS-DOS to create an internal structure.
There must be one entry in this array for each unit
defined by the device driver. In this way, if all
units are the same, all of the pointers can point
to the same BPB, saving space. If the device
driver defines two units, then the DWORD pointer
points to the first of two one-word offsets which
in turn point to BPBs. The format of the BPB is
described later in this chapter in Section 2.7.3,
"BUILD BPB."

The last thing that INIT of a block
pass back is the media descriptor byte,
means nothing to MS-DOS, but is passed
so that they know what parameters
currently using for a

Note that this array of word offsets must be
protected (below the free pointer set by the
return) since an internal DOS structure will be

starting at the byte pointed to by the free
The defined sector size must be less than

equal to the maximum sector size defined by the
device drivers (BIOS) during

If it isn't, the installation will

Block devices may be either dumb or smart. A dumb device
defines a unit (and therefore an internal DOS structure) for
each possible media-drive combination. For example, unit 0
“ drive 0 single sided, unit 1 = drive 0 double sided. For

mean anything,
allows multiple media per unit. In this

table returned upon INIT must define
to accommodate the largest possible media

Smart drivers will use the media descriptor byte

MS-DOS DEVICE DRIVERS

see

I
Note

I

I

I
I

I

MEDIA CHECK2.7.2

Command Code = 1

MEDIA CHECK - ES:BX ->

II 13-BYTE Request header

I BYTE Media descriptor from BPB

I BYTE Returned I

2-19

I
+

I
I

I
I

I Returned DWORD pointer to previous I
I Volume ID if bit 11 set and
I Disk Changed is returned

For more information on the media descriptor byte,
Section 2.8, "Media Descriptor Byte."

If there are multiple device drivers in a single
file, the ending address returned by the last INIT
called will be the one MS-DOS uses. It is recommended
that all of the device drivers in a single file
return the same ending address. The code to remain
resident for all the devices in a single file should
be grouped together low in memory with the initializa
tion code for all devices following it in memory.

MS-DOS DEVICE DRIVERS

1. into unita

2.

proceeds

2-20

If the media has not been changed, MS-DOS
with the disk access.

Media not changed..... (1)
Don't know if changed...(0)
Media changed......... (-1)
Error

The DOS converts the drive letter
number of a particular block device.

When such a disk access call to the DOS occurs
file
place:

If the value returned is "Don't know," then if
there are any disk sectors that have been modified
and not written back out to the disk yet for this
unit, MS-DOS assumes that the disk has not been
changed and proceeds. MS-DOS invalidates any other
buffers for the unit and does a BUILD BPB device
call (see step 3, below).

(other than a
read or write), the following sequence of events takes

The MEDIA CHECK function is used with block devices only.
It is called when there is a pending drive access call other
than a file read or write, such as open, close, delete and
rename. Its purpose is to determine whether the media in
the drive has been changed. If the driver can assure that
the media has not been changed (through a door-lock or other
interlock mechanism), MS-DOS performance is enhanced because
MS-DOS does not need to reread the FAT and invalidate
in-memory buffers for each directory access.

The device driver is then called to request a media
check on that subunit to see if the disk might have
been changed. MS-DOS passes the old media
descriptor byte. The driver returns:

MS-DOS DEVICE DRIVERS

3.

should

A creative solution to the problem of no door-locks follows:

2-21

MS-DOS invalidates
this unit including

to be

If the media has been changed,
all buffers associated with
buffers with modified data that are waiting
written, and requests a new BIOS Parameter Block
via the BUILD BPB call (see step 3, below).

It has been determined that it is impossible for a- user to
change a disk in less than 2 seconds; therefore, when MEDIA
CHECK occurs within 2 seconds of a disk access, the driver
reports "I," "Media not changed." This makes a tremendous
improvement in performance.

Note that the previous media ID byte is passed to the device
driver. If the old media ID byte is the same as the new
one, the disk might have been changed and a new disk may be
in the drive; therefore, all FAT, directory, and data
sectors that are buffered in memory for the unit are
considered to be invalid.

Once the BPB has been returned, MS-DOS corrects its
internal structure for the drive from the new BPB
and proceeds with the access after reading the
directory and the FAT.

If the driver has bit 11 of the device attribute word set to
1, and the driver returns -1, Media Changed, the driver must
set the DWORD pointer to the previous Volume ID field. If
the DOS determines that Media Changed is an error based on
the state of the DOS buffer cache, the DOS will generate a
OFH error on behalf of the device. If the driver does not
implement Volume ID support, but has bit 11 set, (it
set a static pointer to the string "NO NAME",0.)

MS-DOS DEVICE DRIVERS

Note

BUILD BPB (BIOS Parameter Block)2.7.3

Command code

BUILD BPB - ES:BX ->

I 13-BYTE Request header

I BYTE Media descriptor from BPB

I DWORD Pointer to BPB I

©
2-22

. I

IIIII

I DWORD Transfer address
I (Points to one sector worth of

scratch space or first sector
of FAT depending on the value
of Bit 13 in the device attribute
word.)

» 2

The Build BPB function is used with block devices only. As
described in the MEDIA CHECK function, the BUILD BPB
function will be called any time that a preceding MEDIA
CHECK call indicates that the disk has been or might have
been changed. The device driver must return a pointer to a
BPB. This is different from the INIT call where a pointer
to an array of word offsets to BPBs is returned.

If the media ID byte in the returned BPB is the same as I
the previous media ID byte, MS-DOS will assume that the fi
format of the disk is the same (even though the disk
may have been changed) and will skip the step of up
dating its internal structure. Therefore, all BPBs mustl
have unique media bytes regardless of FAT ID bytes. ii

_________________________________ i

MS-DOS DEVICE DRIVERS

a
The

same

function-

",0DB
2-23

;y thing).
and Section 2.9,

first
must

ID
an

"NO NAME

to a one-sector
determined by the

If the bit

MS-DOS 3.x includes additional support for devices that have
door-locks or some other means of telling when a disk has
been changed. There is a new error that can be returned
from the device driver (error 15). The error means "the
disk has been changed when it shouldn't have been," and the
user is prompted for the correct disk using a Volume ID.
The driver may generate this error on read or write. The
DOS may generate the error on MEDIA CHECK if the driver
reports media changed, and there are buffers in the DOS
buffer cache that need to be flushed to the previous disk.

then
The FAT ID byte is the first byte of this

In this case, the driver must not alter this
Note that the location of the FAT must be the

for all possible media because this first FAT sector must be
read before the actual BPB is returned. If the NON FAT ID
bit is set, then the pointer points to one sector of scratch
space (which may be used for anything). Refer to Section
2.8, "Media Descriptor Byte,"" and Section 2.9, "Format of a
Media Descriptor Table," for information on how to construct
the BPB.

For drivers that support this error, the BUILD BPB
is a trigger that causes a new Volume ID to be read off the
disk. This action indicates that the disk has been legally
changed. A Volume ID is placed on a disk by the FORMAT
utility, and is simply an entry in the root directory of the
disk that has the Volume ID attribute. It is stored by the
driver as an ASCIZ string.

The requirement that the driver return a Volume ID does not
exclude some other Volume identifier scheme as long as the
scheme uses ASCIZ strings. A NUL (nonexistent or
unsupported) Volume ID is by convention the string:

The BUILD BPB call gets a DWORD pointer
buffer. The contents of this buffer are
NON FAT ID bit (bit 13) in the attribute field,
is zero, then the buffer contains the first sector of the
first FAT. The FAT ID byte is the first byte of
buffer. In this case, the driver
buffer.

MS-DOS DEVICE DRIVERS

2-25

ASCIZ string (which is
triggers

The
of

reference count of open files on
OPEN and CLOSE functions.

If the driver returns error code OFH (Invalid disk change),
it must return a DWORD pointer to an
the correct Volume ID). Returning this error code
the DOS to prompt .the user to re-insert the disk,
device driver should have read the Volume ID as a result
the BUILD BPB function.

When I/O completes, the device driver must set the status
word and report the number of sectors or bytes successfully
transferred. This should be done even if an error prevented
the transfer from being completed. Setting the error bit
and error code alone is not sufficient.

If the verify switch is on, the device driver will be called
with command code 9 (WRITE WITH VERIFY). Your device driver
will be responsible for verifying the write.

speed optimization on
spoolers. The device

characters possible
no circumstances
function.

In addition to setting the status word, the driver must set
the sector count to the actual number of sectors (or bytes)
transferred. No error check is performed on an IOCTL I/O
call. The device driver must always set the return
byte/sector count to the actual number of bytes/sectors
successfully transferred.

The OUTPUT UNTIL BUSY call is a
character devices only for print
driver is expected to output all the
until the device returns busy. Under
should the device driver block during this function. Note
that it is not an error for the device driver to return the
number of bytes output being less than the number of bytes
requested (or •= 0).

Drivers may maintain a reference count of open files on the
disk by monitoring the OPEN and CLOSE functions. This
allows the driver to determine when to return error OFH. If
there are no open files (reference count “ 0), and the disk
has been changed, the I/O is okay. If there are open files,
however, an OFH error may exist.

MS-DOS DEVICE DRIVERS

THE FOLLOWING APPLIES TO BLOCK DEVICE DRIVERS:

be

2-26

reading
before

all

MS-DOS maintains two FATs•
the first,
reporting the
retries.

Although the COMMAND.COM handler does no automatic retries,
there are applications that have their own Interrupt 24H
handlers that do automatic retries on certain types of
Interrupt 24H errors before reporting them.

then the printer is busy for a long time while the
This new device call allows
to use this burst behavior
the overhead of a device
or risk getting stuck in the

characters, this call

may be asked
which seems to be
in the BIOS

Under certain circumstances, the BIOS may be asked to
perform a write operation of 64K bytes, which seems to be a
"wrap around" of the transfer address in the BIOS I/O
packet. This request arises due to an optimization added to
the write code in MS-DOS. It will only manifest on user
writes that are within a sector size of 64K bytes on files
"growing'1 past the current EOF. It is al lowable for the
BIOS to ignore the balance of the write that "wraps around"
if it so chooses. For example, a write of 10000H bytes
worth of sectors with a transfer address of XXX:1 could
ignore the last two bytes. A user program can never request
an I/O of more than FFFFH bytes and cannot wrap around (even
to 0) in the transfer segment. . Therefore, in this case, the
last two bytes can be ignored.

The OUTPUT UNTIL BUSY call allows spooler programs to take
advantage of the burst behavior of most printers. Many
printers have on-board RAM buffers which typically hold a
line or a fixed amount of characters. These buffers fill up
without the printer going busy, or going busy for a very
short period (less than 10 instructions) between characters.
A line of characters can be very quickly output to the
printer,
characters are being printed,
background spooling programs
efficiently. Rather than take
driver call for each character,
device driver outputting a block of characters, this
allows a burst of characters to be output without the device
driver having to wait for the device to be ready.

If the DOS has problems
it automatically tries the second
error. The BIOS is responsible for

COMMAND.COM

MS-DOS DEVICE DRIVERS

2.7.5 NON DESTRUCTIVE READ NO WAIT

Command code = 5

NON DESTRUCTIVE READ NO WAIT - ES:BX ->

I 13-BYTE Request header

I BYTE read from device

character.

2.7.6 OPEN or CLOSE

Command codes » 13 and 14

OPEN or CLOSE - ES:BX ->

I 13-BYTE Static request header

device

2-27

+
I

+
I
+

These functions are
driver sets the
header. They are

This call allows MS-DOS to look ahead one input
The device sets the done bit in the status word.

only called by MS-DOS 3.x if the
sets the OPEN/CLOSE/RM attribute bit in the device
They are designed to inform the device about

current file activity on the device. On block devices, they
can be used to manage local buffering. The device can keep
a reference count. Every OPEN causes the device to
increment the count, every CLOSE to decrement. When the
count goes to zero; it means there are no open files on the

If the character device returns busy bit = 0 (there are
characters in the buffer), then the next character that
would be read is returned. This character is not removed
from the input buffer (hence the term "Non Destructive
Read"). If the character device returns busy bit “ 1, there
are no characters in the buffer.

MS-DOS DEVICE DRIVERS

BPS

2.7.7 REMOVABLE MEDIA

Command code “ 15

REMOVABLE MEDIA - ES:BX ->

I 13-BYTE Static request header

2-28

* i

OPEN
On

and

count
"has

is

Using IOCTL to set
a flexible mechanism of serial I/O device stream

The reference count mechanism can also be used to
access error. It may be desirable to

than one OPEN on a device at any given time,
error.

a
page
it would always be in a known state at the start of an I/O
stream. Using IOCTL to set these pre- and post-strings
provides a flexible mechanism of serial I/O device
control.
detect a simultaneous
disallow more
In this case, a second OPEN would result in an

These calls are of more use on character devices. The
call can be used to send a device initialization string.

printer, this could cause a string for setting font
size characteristics to be sent to the printer so that

an

device, and the device should flush any buffers that have
been written to that may have been used inside the device
because it is now "legal" for the user to change the media
on a removable media drive.

Note that since all processes have access to stdin, stdout,
stderr, stdaux, and stdprn (handles 0,1,2,3,4), the CON,
AUX, and PRN devices are always open.

There are problems with this mechanism on block devices
because programs that use FCB calls can open files without
closing them. It is therefore advisable to reset the
to zero without flushing the buffers when the answer to
the media been changed?" i§ yes and the BUILD BPB call
made to the device.

MS-DOS DEVICE DRIVERS

3.x

2.7.8 STATUS

Command codes = 6 and 10

STATUS Calls ESrBX ->

I 13-BYTE request header

2-29

s t a tu s
media
media

is
is
is

For output on character devices: If the driver
sets bit 9 to 1 on return, it informs the DOS that
a write request (if made) would wait for completion
of a current request. If it is 0, there is no
current request and a write request (if made) would
start immediately.

(such as
a floppy).

This call returns information to the DOS as to whether data
is waiting for input or output. All the driver must do is
set the status word and the busy bit as follows:

of the
the busy bit is 1, then the

If the busy bit is 0, then the
Note that no checking of the error bit
It is assumed that this call always succeeds.

The information is returned in the busy bit
word. If the busy bit is 1, then
non-removable. If the busy bit is 0, then
removable. Note that no checking of
performed.

This function is only called by MS-DOS 3.x if the device
driver sets the OPEN/CLOSE/RM attribute bit in the device
header. This call is given only to block devices by a
subfunction of the 1OCTL system call. It is sometimes
desirable for a utility to know whether it is dealing with a
non-removable media drive (such as a hard disk), or a
removable media drive (like a floppy). An example is the
FORMAT, utility which prints different versions of some of
the prompts.

MS-DOS DEVICE DRIVERS

2.7.9 FLUSH

Command codes •= 7 and 11

FLUSH Calls - ES:BX ->

I 13-BYTE request header I

function,the flush thesets

2-30

' 1

The device driver performs
status word, and returns.

to
is

The FLUSH call tells the driver
pending requests. This call
queue on character devices.

character
Devices that
should always

flush (terminate) all
used to flush the input

For input on character devices with a buffer: A
return of 1 implies that no characters are buffered
and that a read request (if made) would go to the
physical device. If it is 0 on return, then there
are characters in the device buffer and a read
would not be blocked. A return of 0 implies that
the user has typed something. MS-DOS assumes that
all character devices have an input type-ahead
buffer. Devices that do not have a type-ahead
buffer should always return busy “ 0 so that the
DOS will not hang waiting for something to get into
a non-existent buffer.

MS-DOS DEVICE DRIVERS

used by the

byte 4byte 1 byte 3

Figure 2.4. CLOCK Device Format

2.11 ANATOMY OF A DEVICE CALL

reserved1. area

2.

and3.

MS-DOS calls the interrupt entry point.4.

2-35

Figure 2.4 illustrates the binary time format
CLOCK device:

MS-DOS writes
of memory.

I I 1
hours I sec/lOOl seconds I

I I I

MS-DOS calls the block device driver strategy entry
point.

The following steps illustrate what happens when MS-DOS
calls on a block device driver to perform a WRITE request:

byte 2
+-------

byte 0

I I I I
Idays since 1-1-801 minutes I
|low bytelhi byte I I
+--------+-------- +--------- +

a request packet in a

a FAR

byte 5
+-------

The device driver saves the ES and BX registers
(ES:BX points to the request packet) and does
return.

The CLOCK device is unique in that MS-DOS will read or write
a 6-byte sequence which encodes the date and time. A write
to this device will set the date and time, and a read will
get the date and time.

MS-DOS DEVICE DRIVERS

2.12.2 Character Device Driver

driver

• *****************■&*★ CHARACTFR DEVICE *******************

(IBM)VT52 CONSOLE FOR 2.0TITLE

IBM ADDRESSES FOR I/O

CODE SEGMENT BYTE

ASSUME CS:CODE,DS:N0THING,ES:NOTHING

CON- CONSOLE DEVICE DRIVER

;CON IN AND CON OUT

2-56

The following program illustrates a character device
program.

CR=13
BACKSP=8
ESC=1BH
BRKADR=6CH
ASNMAX=200

1000000000010011B
STRATEGY
ENTRY
'CON

;CARRIAGE RETURN
;BACKSPACE

;HEADER FOR DEVICE "CON"

;006C BREAK VECTOR ADDRESS
;SIZE OF KEY ASSIGNMENT BUFFER

CONDEV:
DW
DW
DW
DW
DB

MS-DOS DEVICE DRIVERS

KEYBOARD FLUSH ROUTINE

[ALTAH],0 ;Clear out holding buffer

CONSOLE WRITE ROUTINE

;SET CURRENT CURSOR POSITION

;GET CHAR

COUT:

2-65

;Select segment 0
;Reset KB queue head
jpointer
;Reset tail pointer

C0N$WRIT:
JCXZ
PUSH
MOV
XOR
INT
MOV
POP

CON$LP: MOV
INC
CALL
LOOP
JMP

»

PUSH
XOR
MOV
MOV
MOV
POP
JMP

STI
PUSH
PUSH
POP
CALL
POP
IRET

DS:BYTE PTR 41CH.1EH
DS
EXVEC

AL,ES:[DI]
DI
OUTC
CON$LP
EXVEC

DS
CS
DS
OUTC
DS

;OUTPUT CHAR
;REPEAT UNTIL ALL THROUGH

CON$FLSH:
MOV

EXVEC ex
AH,3
BX.BX
16
WORD PTR [COL],DX
CX

DS
BP, BP
DS, BP
DS:BYTE PTR 41AH,1EH

MS-DOS DEVICE DRIVERS

MEDIA DESCRIPTOR BYTE2.8

bit

the FAT ID byte

OEM

Important

2-31

II

I

I

inform the
The media

It does
The FAT ID

In MS-DOS, the media descriptor byte is used to
DOS that a different type of media is present,
descriptor byte can be any value between 0 and FFH.
not have to be the same as the FAT ID byte,
byte, which is the first byte of the FAT, was used in MS-DOS
1.00 to distinguish between different types of disk media
and may be used as well under 2.x and 3.x disk device
drivers. However,

When the BPB call is made, if the media byte returned
in the new BPB is the same as the old media byte, the
DOS does not rebuild its internal structure for the
device. MS-DOS will treat the disk as though the
format has not changed, even though the physical disk
might have changed. Therefore, each BPB must have a
unique media descriptor byte.

FAT ID bytes only have significance for
block device drivers where the NON FAT ID bit is not set
(0).

Values of the media descriptor byte or the FAT ID byte have
no significance to MS-DOS. They are passed to the device
driver to facilitate media determination in any way the
chooses to implement.

MS-DOS DEVICE DRIVERS

2.9 FORMAT OF A MEDIA DESCRIPTOR TABLE

end

complete media

also

2-32

recommended that
particular piece
Figure 2.3 shows the

uses a linked list of pointers
allocation unit) called the
Unused clusters are represented

zero and end
FAT entries),
entry, but
pointed to by a zero
chain.
([F]FF8-[F]FFF), and these
different types of media.

To allow more flexibility for supporting many different disk
formats in the future, it is recommended that the
information relating to the BPB for a particular piece of
media be kept in the boot sector,
format of such a boot sector.

A preferrable technique
descriptor table in the
identification. To ensure backward compatibility
systems whose drivers do not set the NON FAT ID bit
(including the IBM PC implementation), it is necessary
to write the FAT ID bytes during the FORMAT process.

The MS-DOS file system uses a linked list of pointers (one
for each cluster or allocation unit) called the File
Allocation Table (FAT). Unused clusters are represented by

and end of file by FFF (or FFFF on units with 16-bit
No valid entry should ever point to a zero

if it does, the first FAT entry (which would be
entry) was reserved and set to end of

Eventually, several end of chain values were defined
were used to distinguish

is to write a
boot sector and use it for media
backward compatibility for

set

MS-DOS DEVICE DRIVERS

■+

I 3 BYTE Near JUMP to boot code

! WORD Bytes per sector

I

I WORD Reserved sectors I

II BYTE Number of FATs

I WORD Number of root dir entries

I

II WORD Number of FAT sectors

II WORD Sectors per track

Figure 2.3. Format of Boot Sector

2-33

B
P
B

I
B
P
B

I
I

I WORD Number of heads

I WORD Number of hidden sectors

V

I WORD Number of sectors in logical
I image

I BYTE Media descriptor

I 8 BYTES OEM name and version

I BYTE Sectors per allocation unit

The three words at the end ("Sectors per track," "Number of
heads," and "Number of hidden sectors") are not used by the
DOS but may be used by device drivers. They are intended to
help the device driver understand the media. "Sectors per
track" and "Number of heads" are useful for supporting
different media which may have the same logical layout but a
different physical layout (e.g., 40 track, double-sided
versus 80 track, single-sided). "Sectors per track" tells
the device driver how the logical disk format is laid out on
the physical disk. "Number of hidden sectors" may be used
to support drive-partitioning schemes.

MS-DOS DEVICE DRIVERS

mediaforprocedure

1.

2.

3. BPB

system.

2.10 THE CLOCK DEVICE

2-34

sector
3-byte NEAR

of

the
or an

the

MS-DOS assumes that some sort of clock is available in
system. This may either be a CMOS real-time clock i
interval timer which is initialized at boot time by
user. The CLOCK device defines and performs functions like
any other character device except that it is identified by a
bit in the attribute word. The DOS uses this bit to
identify it and consequently this device may take any name.
The NCR implementation uses "$CL0CK" so as not to conflict
with existing files named "CLOCK."

Read the boot sector of the drive into the 1-sector
scratch space pointed to by the DWORD Transfer
address.

Determine if the first byte of the boot sector is
an E9H or EBIT (the first byte of a 3-byte NEAR or
2-byte short jump) or an EBH (the first byte of a
2-byte jump followed by a NOP). If so, a BPB is
located beginning at offset 3. Return a pointer to
it.

If the boot sector does not have a BPB table, it
probably is a disk formatted under a version 1.x
implementation of MS-DOS and probably uses a FAT ID
byte for media determination.

The driver may optionally attempt to read the first
sector of the FAT into the l-sector scratch area
and read the first byte to determine media type
based upon whatever FAT ID bytes may have been used
on disks that are expected to be read by this

Return a pointer to a hard-coded BPB.

The following procedure is recommended
determination by NON FAT ID format drivers:

MS-DOS DEVICE DRIVERS

5.

6.
disk

7 .

8.

9.

10. device
must

the

area

2-36

logical
sector

Since the command
driver must
the sector count (offset 18), and the start
(offset 20) in the request packet.

(offset 3
It reports the number of

the sector count

After the transfer is complete, the device driver
report the status of the request to MS-DOS by

setting the done bit in the status word
in the request packet),
sectors actually transferred in

of the request packet.

The device driver writes the specified number of
sectors, starting at the beginning sector on the
drive defined by the unit code (the subunit defined
by this device driver) , and transfers data from the
transfer address indicated in the request packet.
Note that this may involve multiple write commands
to the disk controller.

The device driver retrieves the pointer to the
request packet and reads the command code (offset
2) to determine that this is a write request. The
device driver converts the command code to an index
into a dispatch table and control passes to the
disk write routine.

the first
head, and

is a disk write, the device
get the transfer address (offset 14),

sector

The device driver reads the unit code (offset 1) to
determine to which disk drive it is supposed to
write.

The device driver translates
sector number into a track,
number.

MS-DOS DEVICE DRIVERS

11. the

The device driver does a FAR return to MS-DOS.12.

2.12 EXAMPLE OF DEVICE DRIVERS

and

2.12.1 Block Device Driver

DISK DRIVER FOR SCP DISK-MASTERTITLE

2-37

on
a

5 1/4"

.********************* BLOCK DEVICE *******************

;This driver is intended to drive up to four 5 1/4" drives
jhooked to the Seattle Computer Products DISK MASTER disk
;controller. All standard IBM PC formats are supported.

The following examples illustrate a block device driver
a character device driver program.

If an error occurs, the driver sets the done bit
and the error bit in the status word and fills in
the error code in the lower half of the status
word. The number of sectors actually transferred
must be written in the request header. It is not
sufficient just to set the error bit of the status
word.

The device drivers should preserve the state of MS-DOS.
This means that all registers (including flags) should be
preserved. The direction flag and interrupt enable bits are
critical. When the interrupt entry point in the device
driver is called, MS-DOS has room for about 40 to 50 bytes

its internal stack. Tour device driver should switch to
local stack if it uses extensive stack operations.

MS-DOS DEVICE DRIVERS

OEOH

Command/ S t a tu s1793
DISK+1

1793 Track
DISK+2

1793 Sector
DISK+3

1793 Data
DISK+4

Aux Command/Status
DISK+5

Wait Sync

EQU

1771Step value 1793

STPSPD EQU 1

2-38

FALSE
TRUE

Use table below to select head step speed.
Step times for 5" drives
are double that shown in the table.

0
1
2
3

EQU
EQU

6ms
6ms
10ms
20ms

0
NOT FALSE

3ms
6ms
10ms
1 5ms

;Back side select bit
BACKBIT EQU 04H
;5 1/4" select bit
SMALBIT EQU 10H
;Double Density bit
DDBIT EQU 08H

;Done bit in status register
DONEBIT EQU 01H

;The I/O port address of the DISK MASTER
DISK EQU
;DISK+0

MS-DOS DEVICE DRIVERS

ERROUT-ERRINEQUNUMERR

DEVICE HEADER

DRVMAX
DRVTBL

STRATEGY
0DDPTRSAV

PROC FAR
WORD PTR [PTRSAV],BX

2-39

CODE
ASSUME

CR
LF

EQU
EQU

LABEL
DW
DW
DW
DW
DB
LABEL
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW

WORD
DRV$INIT
MEDIA?CHK
GET?BPB
CMDERR
DRVSREAD
EXIT
EXIT
EXIT
DRV$WRIT
DRV$WRIT
EXIT
EXIT
EXIT

ODH
OAH

s>DRVDEV

SEGMENT
CS:CODE,DS:NOTHING,ESrNOTHING,SS:NOTHING

STRATP
STRATEGY:

MOV

WORD
-1 ,-l
0000 ;IBM format-compatible, Block
STRATEGY
DRV?IN
4

MS-DOS DEVICE DRIVERS

WORD PTR [PTRSAV+2],ES

STRATP

MAIN ENTRY

DRV?IN:

BX,[PTRSAV] ;GET POINTER TO I/O PACKETLDS

[BX].CMDC ;Command code

;Bad command

AX,1

MOV SI,OFFSET DRVTBL

2-40

;2 times command =
;word table index

CMDLEN
UNIT
CMDC
STATUS
MEDIA
TRANS
COUNT
START

MOV
MOV
MOV
MOV
PUSH
MOV
CMP
JA
CBW
SHL

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

MOV
RET
ENDP

SI
AX
CX
DX
DI
BP
DS
ES
BX

0
1
2
3
13
14
18
20

;LENGTH OF THIS COMMAND
;SUB UNIT SPECIFIER
;COMMAND CODE
; STATUS
;MEDIA DESCRIPTOR
;TRANSFER ADDRESS
;COUNT OF BLOCKS OR CHARACTERS
-.FIRST BLOCK TO TRANSFER

[BX].UNIT
[BX].MEDIA
[BX].COUNT
[BX].START

AL,BYTE PTR
AH.BYTE PTR
CX.WORD PTR
DX.WORD PTR
AX
AL,BYTE PTR
AL,15
CMDERRP

UNIT CODE
MEDIA DESCRIP

;CX = COUNT
;DX = START SECTOR

;AL =
;AH =

MS-DOS DEVICE DRIVERS

DI,DWORD PTR [BX].TRANS ;ES:DILES

DS:CODEASSUME
WORD PTR [SI]JMP ;GO DO COMMAND

EXIT - ALL ROUTINES RETURN THROUGH THIS PATH
DS;NOTHING

;Clean stackAX
;UNKNOWN COMMAND ERROR

;MARK ERROR RETURN

PROC FAREXI TP

2-41

;Index into table
;Get back media
;and unit

ERR$CNT:LDS
SUB

EXIT:
ERR1:

ADD
POP

MOV
LDS
MOV

PUSH
POP

POP
POP

SI ,AX
AX

AL,3
SHORT ERRSEXIT

AH.00000001B
BX,[PTRSAV]
WORD PTR [BX].STATUS,AX

;MARK OPERATION COMPLETE

CS
DS

BX
ES

code
AH,10000001B
SHORT ERR1

BX,[PTRSAV]
WORD PTR [BX].COUNT,CX ;L OF SUCCESS. I/Os

ERR$EXIT:
;AL has error

MOV
JMP

= TRANSFER
;ADDRESS

5
ASSUME
CMDERRP:

POP
CMDERR:

MOV
JMP

MS-DOS DEVICE DRIVERS

;RESTORE REGS AND RETURN
EXI TP

-1CURDRV DB

TRKTAB DB

0SECCNT DW

jWARNING - preserve order of drive and curhd!

indicates Don't knowjAlways
ASSUME

;TEST IF MEDIA REMOVABLE

I DON'T KNOW;SAY

SETBPB:

2-42

DRIVE
CURHD
CURSEC
CURTRK

DRVLIM
SECLIM
HDLIM

DS:CODE
MOV
CALL
LDS

DB
DB
DB
DW

POP
POP
POP
POP
POP
POP
POP
RET
ENDP

AH,BYTE PTR ES:[DI]
BUILDBP
BX,[PTRSAV]

0
0
0
0

DS
BP
DI
DX
CX
AX
SI

8
13
15

;GET FAT ID BYTE
;TRANSLATE

;Number of sectors on device
;MAXIMUM SECTOR
;MAXIMUM HEAD

;PHYSICAL DRIVE CODE
;CURRENT HEAD
;CURRENT SECTOR
;CURRENT TRACK

BUILD$BPB:
ASSUME

MEDIASCHK:
DS:CODE
TEST
JZ
XOR

MEDIA $EXT:
LDS
MOV
JMP

AH,00000100B
MEDIASEXT
DI,DI

BX,[PTRSAV]
WORD PTR [BX].TRANS,DI
EXIT

MS-DOS DEVICE DRIVERS

GOODID:

HAS8:

HAS!:

2-43

MOV
MOV
MOV
MOV
MOV
TEST
JNZ
INC
INC
ADD
TEST
JZ
ADD
MOV
INC
INC
MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
JMP

AX
CX
DX
BX
CL, AH
CL,OF8H
CL.0F8H
GOODID
AH.OFEH

iBX].MEDIA,AH
[BX].COUNT,DI
[BX].COUNT+2.CS
EXIT

;SAVE MEDIA
; NORMALIZE
;COMPARE WITH GOOD MEDIA BYTE

HAS 8
AL
BL
CX.40
AH,00000001B
HAS1 ex, ex
BH,112
DH
DL
BYTE PTR
BYTE PTR
WORD PTR
BYTE PTR
BYTE PTR
BYTE PTR

AL,1
BX,64*256+8
CX,40*8
DX,01*256+1

;DEFAULT TO 8-SECTOR,
;SINGLE-SIDED
;SET NUMBER OF FAT SECTORS
;SET DIR ENTRIES AND SECTOR MAX
;SET SIZE OF DRIVE
;SET HEAD LIMIT & SEC/ALL UNIT

DI,OFFSET DRVBPB
AH,00000010B ;TEST FOR 8 OR 9 SECTOR

;NZ = HAS 8 SECTORS
;INC NUMBER OF FAT SECTORS
;INC SECTOR MAX
;INCREASE SIZE

;TEST FOR 1 OR 2 HEADS
;Z = 1 HEAD
;DOUBLE SIZE OF DISK
;INCREASE £ OF DIREC. ENTRIES
;INC SEC/ALL UNIT
; INC HEAD LIMIT

[DI].2,DH
[DI].6,BH
[DI].8,CX
[DI].10,AH
[DI].11,AL
[DI].13,BL

BUILDBP:
ASSUME DS:NOTHING
;AH is media byte on entry
;DI points to correct BPB on return

PUSH
PUSH
PUSH
PUSH
MOV
AND
CMP
JZ
MOV

MS-DOS DEVICE DRIVERS

DISK I/O HANDLERS

EXIT:

ASSUME

DSKOK:
2-44

ASSUME
DSK$IO:

MOV
POP
POP
POP
POP
RET

IF SUCCESSFUL CARRY FLAG = 0
ELSE CF=1 AND AL CONTAINS (MS-DOS) ERROR CODE,
CX £ sectors NOT transferred

DSKOK
SETUP
DSK?IO
DISKRD

. SHORT DSK$IO

DSKOK
ERRSCNT
EXIT

DSKOK
SETUP
DSK$IO
DISKWRT

BYTE PTR [DI].15,DL
BX
DX
CX
AX

DRVSWRIT:
DS:CODE
JCXZ
CALL
JC
CALL
DS:NOTHING
JNC
JMP
JMP

ENTRY:
AL •= DRIVE NUMBER (0-3)
AH = MEDIA DESCRIPTOR
CX = SECTOR COUNT
DX » FIRST SECTOR
DS = CS
ES:DI = TRANSFER ADDRESS

DRV$READ:
ASSUME DS:CODE

JCXZ
CALL
JC
CALL
JMP

MS-DOS DEVICE DRIVERS

2-45

XOR
DIV
INC
MOV
MOV
XOR
DIV
MOV
MOV

XCHG
CALL
MOV
ADD
CMP

J BE
MOV
SIC
RET

[DRIVE],AL
[SECCNT],CX
AX.DX

DX.DX
CX
[CURHD],DL
[CURTRKj,AX

BX.DI
BUILDBP
SI.CX
SI.DX
SI.WORD PTR

;SAVE SECTOR COUNT
;SET UP LOGICAL SECTOR
;FOR DIVIDE

;SAVE CURRENT HEAD
;SAVE CURRENT TRACK

;ES:BX - TRANSFER ADDRESS
;DS:D1 •= PTR TO B.P.B

[DRIVE] *= Drive number (0-3)
[SECCNT] = Sectors to transfer
[CURSEC]
[CURHD]

INRANGE
AL,8

[DI] .DRVLIM
•.COMPARE AGAINST DRIVE MAX

• All

INRANGE:
MOV
MOV
XCHG

error code (MS-DOS))

DX.DX
WORD'PTR [Di] .SECLIM ;DIVIDE BY SEC PER TRACK
DL
[CURSEC],DL ;SAVE CURRENT SECTOR
CX.WORD PTR [DI].HDLIM ;GET NUMBER OF HEADS

;DIVIDE TRACKS BY HEADS PER CYLINDER

SETUP:
ASSUME DS:CODE
;Input same as above
;On output
; ES:DI = Trans addr
DS:BX Points to BPB

; Carry set if error (AL is
; else

= Sector number of start of I/O
= Head number of start of I/O ;Set

[CURTRK] ■= Track # of start of I/O ;Seek performed
other registers destroyed

MS-DOS DEVICE DRIVERS

SEEK:

TRYSK:

NOHOME:

;Accept not rdy, seek, & CRC errors

;No retries if not ready

2-46

;Desired track
;Seek

;Xaddr
;BPB pointer
;Unload head if change drives

CALL
MOV
POP
POP
RET

PUSH
PUSH
CALL
CALL
MOV
XOR
ADD
MOV
MOV
XCHG
OUT
CMP
JZ
MOV
CMP
JNZ

CALL
JC

AL,DL
DISK+3,AL
AL.1CH+STPSPD
DCOM
AL,98H
SEEKRET
SEEKERR
BH
TRYSK

GETERRCD
CX,[SECCNT]
BX
DI

HOME
SEEKERR

;Save desired track
;Make desired track current
;Tell Controller current track
;At correct track?
;Done if yes
;Seek retry count
;Position Known?
; If not home head

;BX drive index
;Get current track

‘.Nothing transferred
;BPB pointer
;Xaddr

BX
DI
CHKNEW
DRIVESEL
BL,[DRIVE]
BH.BH
BX,OFFSET TRKTAB
AX,[CURTRK]
DL.AL
AL,DS:[BX]
DISK+l.AL
AL.DL
SEEKRET
BH,2
AL,-1
NOHOME

MOV
OUT
MOV
CALL
AND
JZ
JS
DEC
JNZ

SEEKERR:
MOV
XOR
ADD
MOV

BL,[DRIVE]
BH.BH ;BX drive index
BX,OFFSET TRKTAB ;Get current track
BYTE PTR DS:[BX],-1 ;Make current track

;unknown

MS-DOS DEVICE DRIVERS

READ

CX,[SECCNT]
RDLP:

RDAGN:
AL,80H

RLOOP:

;Wait for DRQ or INTRQ

;Read data

;Ints OK now

;Record not found?

;NoGOT_CODEJNZ
2-47

;BPB pointer
;Xaddr

;Retry count
;Data port

DISKRD:
ASSUME

5

DS:CODE
MOV i

CALL
PUSH
MOV
MOV

MOV
CLI
OUT
MOV
JMP

GETSTAT
AL,9CH
RDPOP
DI, BP
BL
RDAGN
AL,10H

BX
DI

PRESET
BX
BL,10
DX.DISK+3

DISK,AL
BP, DI
SHORT RLOOPENTRY

AL.DISK+5
AL,1
AL,DX
RLOOP

SEEKRET:
POP
POP
CLC
RET

;Read command
;Disable for 1793
;Output read command
;Save address for retry

;Ok
;Get back transfer

STOSB
RLOOPENTRY:

IN
SHR
IN
JNC
STI
CALL
AND
JZ
MOV
DEC
JNZ
CMP

MS-DOS DEVICE DRIVERS

AL,1 ;Map it

RDPOP:

WRITE

WRAGN:
AL.OAOH

WRLOOP:

;Ints OK now

2-48

;Get data
;Write data

;Write command
;Disable for 1793
;Output write command
;Save address for retry

;Retry count
;Data port

DISKWRT:
ASSUME

ASSUME
WRLP:

MOV
GOT_CODE:

CALL
POP
RET

IN
SHR
LODSB
OUT
JNC
STI

MOV
CLI
OUT
MOV

CALL
PUSH
MOV
MOV

DS:CODE
MOV
MOV
PUSH
POP

POP
LOOP
CLC
RET

BX
RDLP

GETERRCD
BX

DX,AL
WRLOOP

AL.DISK+5
AL,1

PRESET
BX
BL,10
DX.DISK+3

DISK,AL
BP,SI

CX,[SECCNT]
SI,DI
ES
DS

DS:NOTHING

MS-DOS DEVICE DRIVERS

WRPOP:

2-49

;First sector
;Reset CURSEC

;Ok
;Get back transfer

;Select new head
;Go on to next track
;Select head zero

PRESET:
ASSUME

DEC
CALL
AND
JZ
MOV
DEC
JNZ
CALL
POP
RET

POP
LOOP
CLC
RET

SI
GETSTAT
AL,OFCH
WRPOP
SI, BP
BL
WRAGN
GETERRCD
BX

BX
WRLP

DISK+2.AL
[CURSEC]

[CURHD],DH
DRIVESEL
AL,1
(CURSEC],AL

;Tell controller which sector
;We go on to next sector

AL,(CURSEC]
AL,CS:[BX].SECLIM
GOTSEC
DHS[CURHD]
DH
DH,CS:[BX].HDLIM
SETHEAD
STEP
DH,DH

DS:NOTHING
MOV
CMP
J BE
MOV
INC
CMP
JB
CALL
XOR

SETHEAD:
MOV
CALL
MOV
MOV

GOTSEC:
OUT
INC
RET

MS-DOS DEVICE DRIVERS

;Step in w/ update, no verify

BL,3
TRYHOM:

;Restore with verify

verify

;Get back real error code

HOMERR:

RET3:

;Get disk drive number

same

2-50

CHKNEW:
ASSUME

MOV
CALL
AND
JZ
JS
PUSH
MOV
CALL
DEC
POP
JNZ

MOV
MOV
XCHG
CMP
JZ

STC
RET

AL.OCH+STPSPD
DCOM
AL.98H
RET3
HOMERR
AX
AL,58H+STPSPD
DCOM
BL
AX
TRYHOM

HOME:
ASSUME

STEP:
ASSUME

DS: NOTHING
AL,(DRIVE]
AH, AL
AL,[CURDRV]
AL, AH
RET1

DS:NOTHING
MOV
CALL
PUSH
MOV
XOR
ADD
INC
POP
RET

DS:NOTHING
MOV

;No retries if not ready
;Save real error code
;Step in w/ update no

;Make new drive current.
;Changing drives?
;No

; If changing drives, unload head so the head load delay
;one-shot will fire again. Do it by seeking to the
;track with the H bit reset.

AL.58H+STPSPD
DCOM
BX
BL,[DRIVE]
BH,BH ;BX drive index
BX,OFFSET TRKTAB ;Get current track
BYTE PTR CS:[BX] ;Next track
BX

MS-DOS DEVICE DRIVERS

s

;Delay 10 microseconds
AX

RET1:

IBM PC disks

;Select side 1

;Select drive and sideDISK+4.AL

2-51

;Get current track number
;Make it the track to seek
;Seek and unload head

;Make ES the local segment
;Terminate list w/ error code
;Number of error conditions
;Point to error conditions

IN
OUT
MOV

PUSH
PUSH
PUSH
PUSH
POP
MOV
MOV
MOV

AL.DISK+l
DISK+3.AL
AL.10H

DISK,AL
AX

AL.DISK+4
AL.DONEBIT
GETSTAT
AL,DISK

DCOM:
ASSUME

AL,(DRIVE]
AL.SMALBIT + DDBIT
[CURHD],0
GOTHEAD
AL,BACKBIT

; 5 1/4"

DRIVESEL:
ASSUME DS:NOTHING
;Select the drive based on current info
;Only AL altered

MOV
OR
CMP
JZ
OR

GOTHEAD: •
OUT
RET

DS:NOTHING
OUT
PUSH
AAM
POP

GETSTAT:
IN
TEST
JZ
IN
RET

GETERRCD:
ASSUME DS:NOTHING

CX
ES
DI
CS
ES
CS:[LSTERR],AL
CX.NUMERR
DI,OFFSET ERRIN

MS-DOS DEVICE DRIVERS

;and return

is nine sector single side BPBa
DRVBPB:

INITAB ;Up to four units

ERRIN:

LSTERR DB 0

2-52

DW
DW
DW
DW

DW
DB
DW
DB
DW
DW
DB
DW
DW
DW

REPNE
MOV
STC
POP
POP
POP
RET

DRVBPB
DRVBPB
DRVBPB
DRVBPB

80H
40H
20H
10H
8
1

DI
ES
CX

512
1
1
2
64
9*40
11111100B
2
9
1

SCASB
AL.NUMERR-l(DI] ;Get translation

;Flag error condition

;Physical sector size in bytes
;Sectors/allocation unit
jReserved sectors for DOS
;£ of allocation tables
;Number directory entries
;Number 512-byte sectors
;Media descriptor
-.Number of FAT sectors
-.Sector limit
;Head limit

;N0 RESPONSE
-.Write protect
;Write Fault
;SEEK error
;CRC error
;Mapped from 10H
;(record not found) on R
;ALL OTHER ERRORS

;DISK ERRORS RETURNED FROM THE 1793 CONTROLLER
DB
DB
DB
DB
DB
DB

j****************±*************:fcifc****************7fc****ir***
; BPB FOR AN IBM FLOPPY DISK, VARIOUS PARAMETERS ARE
; PATCHED BY BUILDBP TO REFLECT THE TYPE OF MEDIA
; INSERTED
; This

MS-DOS DEVICE DRIVERS

ERROUT:

DRV$INIT:
; Determine number of physical drives by reading CONFIG.SYS

ASSUME

ASSUME
LBS

DS

;No units

2-53

SCANJLOOP:
CALL
MOV
OR
JZ
CMP
JZ

DXsOFFSET ERRMSG2
AH,9
21H
AX, AX
AX
SHORT ABORT

DS
DX,OFFSET ERRMSG1
WERROR2

2
0

;N0 RESPONSE
;WRITE ATTEMPT
;ON WRITE-PROTECT DISK
;WRITE FAULT
;SEEK FAILURE
;BAD CRC
;SECTOR NOT FOUND
;GENERAL ERROR

OAH
6
4
8
12

DB
DB
DB
DB
DB

SCAN_SWITCH
AL, CL
AL, AL
SCAN4
AL,"s"
SCAN4

BADNDRV:
POP
MOV
JMP

DS:CODE
PUSH
LDS

DS
SI,[PTRSAV]

DS: NOTHING
SI,DWORD PTR [SI.COUNT] ;DS:SI points to

;CONFIG.SYS

WERROR: POP
ASSUME DS:CODE

MOV
WERROR2: MOV

INT
XOR
PUSH
JMP

;RETURNED ERROR CODES CORRESPONDING TO ABOVE
DB
DB

MS-DOS DEVICE DRIVERS

;User error

;User error

ASSUME
;Save unit count

;Unit count

; PUT SWITCH IN CL, VALUE IN BX

2-54

BX,BX
CX,BX

SCAN4:
ASSUME

ABORT:
ASSUME

SCAN_SWITCH:
XOR
MOV
LODSB
CMP
JZ
CMP
JZ
CMP
JNZ

GOT_SWITCH:
CMP
JNZ
LODSB
OR
MOV

MOV
MOV

MOV
JMP

AL,20H
CL,AL

BX.BX
BADNDRV
BX,4
BADNDRV
DS

[BX].TRANS+2.CS
WORD PTR [BX].COUNT,OFFSET INITAB

;SET POINTER TO BPB ARRAY
[BX].COUNT+2.CS
EXIT

BX
BX,[PTRSAV]

; CONVERT TO LOWERCASE
; GET SWITCH

AL, 10
NUMRET
AL,"-"
GOT_SWITCH
AL,"/"
SCAN_SWITCH

AX
BYTE PTR [BX].MEDIA,AL
[DRVMAX],AL
WORD PTR [BX].TRANS,OFFSET DRV$INIT ;SET

;BREAK ADDRESS

BYTE PTR [SI+1]
TERROR

DS: NOTHING
;BX is number of floppies

OR
JZ
CMP
JA
POP
DS:CODE
PUSH
LDS
DS:NOTHING
POP
MOV
MOV
MOV

MS-DOS DEVICE DRIVERS

LODSB
GET NUMBER POINTED TO BY [SI]
WIPES OUT AX,DX ONLY BX RETURNS NUMBER

TERROR:
; GET RID OF RETURN ADDRESS

2-55

DS
WERROR
SI

AX,BX
DX,10
DX
BX,AX
GETNUM1

AL,"0"
CHKRET
AL,9
CHKRET

ERRMSG1 DB
ERRHSG2 DB
CODE ENDS

END

POP
JMP

NUMRET: DEC
RET

CHKRET: ADD
CMP
J BE
CMP
JZ
CMP
JZ

; SKIP

GETNUM1:LODSB
SUB
JB
CMP
JA
CBW
XCHG
MOV
MUL
ADD
JMP

AL,"0"
AL," "
NUMRET
AL,’'-"
NUMRET
AL,"/"
NUMRET

"SMLDRV: Bad number of drives",13,10,"$
"SMLDRV: Invalid parameter",13,10,"$"

MS-DOS DEVICE DRIVERS

COMMAND JUMP TABLES

;cursor up
;cursor down
;cursor forward
jcursor back
;cursor position
;erase display
;erase line
;cursor position

;restore cursor position
;reset mode
;set mode

2-57

CMDTABL DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB

CONSINIT
EXIT
EXIT
CMDERR
CON$READ
CON$RDND
EXIT
CONSFLSH
CON$WRIT
CON$WRIT
EXIT
EXIT

SM
00

'A' cuu
'B'
CUD
'C'
CUF
'D'
CUB
'H'
CUH
'J'
ED
'K'
EL
'Y'
CUP
PSCP
'k'
PRCP
'y' RM

;save cursor position

CONTBL:
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW

MS-DOS DEVICE DRIVERS

PAGE

Device entry point

0PTRSAV DD
STRATP PROC FAR

STRATP ENDP
ENTRY:

BX.CS:[PTRSAV] ;GET POINTER TO I/O PACKETLDS
CX.WORD PTR DS:[BX].COUNTMOV ;CX COUNT
AL,BYTE PTR DS:[BX].CMDMOV

2-58

CMDLEN
UNIT
CMD
STATUS
MEDIA
TRANS
COUNT
START

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

SI
AX ex
DX
DI
BP
DS
ES
BX

WORD PTR CS:[PTRSAV],BX
WORD PTR CS:[PTRSAV+2],ES

;LENGTH OF THIS COMMAND
;SUB UNIT SPECIFIER
;COMMAND CODE
;STATUS
-.MEDIA DESCRIPTOR
;TRANSFER ADDRESS
;COUNT OF BLOCKS OR CHARACTERS
;FIRST BLOCK TO TRANSFER

0
1
2
3
13
14
18 .
20

STRATEGY:
MOV
MOV
RET

MS-DOS DEVICE DRIVERS

DIsDWORD PTR DS:[BX].TRANSLES

ASSUME DS:CODE

WORD PTR [SI]JMP ;GO DO COMMAND

xz

SUBROUTINES SHARED BY MULTIPLE DEVICES

EXIT - ALL ROUTINES RETURN THROUGH THIS PATH

;DEVICE BUSY EXIT

;UNKN0WN COMMAND ERRORAL,3

;MARK ERROR RETURN

EXIT? PROC FAR

2-59

CS
DS

ERR$EXIT:
MOV
JMP

BUS$EXIT:
MOV
JMP

CBW
MOV
ADD
ADD
CMP
JA

PUSH
POP

SI,OFFSET CONTBL
SI,AX
SI, AX
AL,11
CMDERR

AH,00000011B
SHORT ERR1

AHjlOOOOOOlB
SHORT ERR1

CMDERR:
MOV

MS-DOS DEVICE DRIVERS

;RESTORE REGS AND RETURN
EXITP

BREAK KEY HANDLING

BREAK:
CS:ALTAH,3 ;INDICATE BREAK KEY SET

INTRET:

PAGE

; 0 = WRAP, 1 = NO WRAP

;Special key handling

CHROUT - WRITE OUT CHAR IN AL USING CURRENT ATTRIBUTE

LABEL WORD

2-60

EXIT:
ERR1:

WRAP
STATE
MODE
MAXCOL
COL
ROW
SAVCR
ALTAH

MOV
IRET

DB
DW
DB
DB
DB
DB
DW
DB

POP
POP
POP
POP
POP
POP
POP
POP
POP
RET
ENDP

MOV
LDS
MOV

ATTRW

0
SI
3
79
0
0
0
0

BX
ES
DS
BP
DI
DX
CX
AX
SI

AH.00000001B
BX.CS:[PTRSAV]
WORD PTR [BX].STATUS,AX ;MARK

;OPERATION COMPLETE

WARNING - Variables are very order dependent,
so be careful when adding new ones!

MS-DOS DEVICE DRIVERS

trylf:

torom:

ret5:

2-61

00000111B
0
0b800h

al,13
trylf
[col],0
short setit

al,8
outchr
[col] ,0
ret5
[col]
short setit

;CHARACTER ATTRIBUTE
;BASE PAGE

ATTR
BPAGE
base

mov
and
mov
int
ret

cmp
jz
cmp
jnz

DB
DB
dw

al ,10
If
al,7
tryback

bx,[attrw]
cx,l
ah,9
10b
[col]
al, [col]
al,[maxcol]
setit
[wrap],0
outchrl
[col]

bx,[attrw]
bl,7
ah, 14
lOh

tryback:
cmp
jnz
cmp
jz
d,ec
jmp

chrout: cmp
jnz
mov
jmp

outchr:
mov
mov
mov
int
inc
mov
cmp
jbe
cmp
jz
dec
ret

MS-DOS DEVICE DRIVERS

If:

setit:

2-62

rep
mov
mov
rep

movsw
ax ,bx
ex ,bp
stosw

ax,0b800h
colorcard

getmod
al,2
myscroll
al,3
myscroll
al,10
torom

[col] ,0
[row]
[row],24
setit
[row],23
scroll

mov
mov
xor
mov
int
ret

dh, row
dl ,col
bh,bh
ah,2
10b

bh,[attr]
bl,' '
bp,80
ax,[base]
es ,ax
d s ,ax
di,di
si,160
ex,23*80

scroll: call
emp
jz
emp
jz
mov
jmp

myscroll:
mov
mov
mov
mov
mov
mov
xor
mov
mov
cld
emp
jz

outchrl:
mov
inc
emp
jb
mov
call

MS-DOS DEVICE DRIVERS

sret:

wait2:

;turn off video

;turn on video

;get column information

CONSOLE READ ROUTINE

CON$EXIT

;STORE CHAR AT ES:DI
CON$LOOP

2-63

GETMOD: MOV
INT
MOV
DEC
MOV
RET

AH,15
16
BPAGE,BH
AH
WORD PTR MODE,AX

CX
CHRIN
CX

cs
ds

;SAVE COUNT
;GET CHAR IN AL

CON$READ:
JCXZ

CON$LOOP:
PUSH
CALL
POP
STOSB
LOOP

colorcard:
mov
in
test
jz
mov
mov
out
rep
mov
mov
rep
mov
mov
out
jmp

push
pop
ret

dx,3dah
al ,dx
al,8
wait2
al,25h
dx,3d8h
dx,al
movsw
ax,bx
ex,bp
stosw
al,29h
dx,3d8h
dx,al
sret

MS-DOS DEVICE DRIVERS

EXIT

INTO ALSINGLE CHARINPUT

CHRIN:
;GET CHARACTER & ZERO ALTAH

INAGN:

ALT10:
;Check for non-key after BREAK

;SPECIAL CASE?

;STORE SPECIAL KEY
KEYRET:

KEYBOARD NON DESTRUCTIVE READ, NO WAIT

RD1:

RDEXIT:

2-64

CON$EXIT:
IMP

OR
JZ
OR
JNZ
MOV
RET

MOV
INT
JZ
OR
JNZ
MOV
INT
JMP

XOR
XCHG
OR
JNZ

XOR
INT

LDS
MOV
JMP
JMP

AL,[ALTAH]
AL, AL
RDEXIT

BX,[PTRSAV]
[BX].MEDIA,AL
EXIT
BUS$EXIT

EXVEC:
CONBUS:

AH,AH
22

AX,AX
AL,ALTAH
AL, AL
KEYRET

AH,1
22
CONBUS
AX,AX
RDEXIT
AH,0
22
CON$RDND

AX,AX
INAGN
AL, AL
KEYRET
ALTAH,AH

CON$RDND:
MOV
OR
JNZ

MS-DOS DEVICE DRIVERS

OUTC:

OUTPUT SINGLE CHAR IN AL TO VIDEO DEVICE

; ESCAPE SEQUENCE?SI:

S2:

S7A:

2-66

SIB:
S1A:

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
POP
POP
POP
POP
POP
POP
POP
RET

MOV
JMP

CALL
MOV
RET
PUSH
CALL
POP
MOV
ADD
CMP
JZ
CMP

CMP
JNZ
MOV
RET

AL,ESC
SIB
WORD PTR [SI],OFFSET S2

AX
GETMOD
AX
BX,OFFSET CMDTABL-3
BX,3
BYTE PTR [BX] ,0
S1A
BYTE PTR [BX],AL

CHROUT
WORD PTR [STATE].OFFSET SI

SI,OFFSET STATE
[SI]

AXex
DX
SI
DI
ES
BP
VIDEO
BP
ES
DI
SI
DX
CX
AX

•>
VIDEO:

MS-DOS DEVICE DRIVERS

[BX+1]

[BX],AH
[BX],AL

WORD PTR [SI].OFFSET CUP1CUP:
CUP1:

CUP2:

WORD PTR [SI],OFFSET S1ASM:

CTO:

CDF:
CUF1:

CUB:

2-67

MOV
MOV
JMP

MOV
JMP

MOV
MOV
MOV
JMP

MOV
RET
MOV
JMP

MOV
RET
SUB
MOV
MOV
RET
SUB
MOV
JMP

JUZ
JMP

AX.OOFFH
BX,OFFSET ROW
MOVCUR

AH.MAXCOL
AL.l
BX,OFFSET COL
MOVCUR
AX.OOFFH
CUF1

S7A
WORD PTR

CUU:
CUU1:

WORD PTR COL.O
SETCUR

BYTE PTR
SETCUR
BYTE PTR
DX.WORD PTR COL
BX.BX
AH,2
16
S1A

MOVCUR: CMP
JZ
ADD

SETCUR: MOV
XOR
MOV
INT
JMP

AL,32
BYTE PTR [ROW],AL
WORD PTR [SI],OFFSET CUP2
AL,32
BYTE PTR [COL],AL
SETCUR

MS-DOS DEVICE DRIVERS

CUD:

PSCP:

PRCP:

ED:

ED3:
WORD PTR [SI],OFFSET RM1RM:

RM1:

;look for bw card
jlook for 40 col mode

2-68

ELI:
EL:
EL2:
ERASE:

MOV
JMP

MOV
MOV
MOV
MOV
MOV
MOV
INT
JMP
MOV
RET
XOR
MOV
JMP

CMP
JAE

AX,23*256+1
CUU1
AX,WORD PTR COL
SAVCR,AX
SETCUR
AX,SAVCR
WORD PTR COL,AX
SETCUR

BYTE PTR (COL1,0
CX,WORD PTR [COL]
DH.CH
DL.MAXCOL
BH,ATTR
AX.0600H
16
SETCUR

CX,CX
CH,24
EL2

BYTE PTR [ROW],24
ELI
CX.WORD PTR COL
DH.24
ERASE

MOV
MOV
JMP

MOV
MOV
JMP

al,00010000b
setbrk

lib
al,00110000b
al.OOUOOOOb
iscolor
[base].ObOOOh

MOV
MOV
JMP

CON$INIT:
int
and
emp
jnz
mov

iscolor:
emp
ja

MS-DOS DEVICE DRIVERS

CODE

2-69

tnov
mov

[mode],0
[maxcol] ,39

MOV
JMP
ENDS
END

LDS
MOV

MOV
MOV
MOV

BX.BX
DS.BX
BX.BRKADR
WORD PTR
WORD PTR
BX,29H*4
WORD PTR
WORD PTR

[BX].OFFSET COUT
[BX+2],CS

[BX],OFFSET BREAK
[BX+2],CS

BX,CS:[PTRSAV]
WORD PTR [BX].TRANS,OFFSET CON$INIT

;SET BREAK ADDRESS
[BX].TRANS+2.CS
EXIT

setbrk:
XOR
MOV
MOV
MOV
MOV

MS-DOS TECHNICAL INFORMATION

Table 3.1 MS-DOS Standard Disk Formats

5-1/4 8
40 40 40 40 80 77 77 7780 80 80 80Number of tracks

WORD # sectors

WORD sectors/track
WORD i heads
WORD hidden sectors

BYTE media
WORD sectors/FAT

BYTE cluster size
WORD reserved sectors

3 byte JUMP
8 byte name
WORD bytes/sector

BYTE # FATs
WORD i Dir entries

00 00 00 00
02 02 02 02
02 02 02 02
01 01 01 01
00 00 00 00
02 02 02 02
70 70 70 70
00 00 00 00
DO A0 80 00
02 05 02 05
F8 F9 FA FB
02 03 01 02
00 00 00 00
09 09 08 08
00 00 00 00
01 02 01 02
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00 00
02 02 02 02 02
01 02 01 02 01
01 01 01 01 01
00 00 00 00 00
02 02 02 02 02
40 70 40 70 E0
00 00 00 00 00
68 DO 40 80 60
01 02 01 02 09
FC FD FE FF F9
02 02 01 01 07
00 00 00 00 00
09 09 08 08 OF
00 00 00 00 00
01 02 01 02 02
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

80 80 00
00 00 04
04 04 01
01 04 01
00 00 00
02 02 02
44 44 CO
00 00 00
D2 D2 68
07 07 02
FE FD FE
06 06 02
00 00 00
1A 1A 08
00 00 00
01 01 02
00 00 00
00 00 00
00 00 00

Disk Size (in inches) 3-1/2 or 5-1/4

CHAPTER 3

MS-DOS TECHNICAL INFORMATION

a

<s

MS-DOS TECHNICAL INFORMATION

CHAPTER 3

MS-DOS TECHNICAL INFORMATION

3.1 MS-DOS INITIALIZATION

Once these files are read, the boot process begins.

3.2 THE COMMAND PROCESSOR

(filewith MS-DOS

1.

IO.SYS
MSDOS.SYS

MS-DOS initialization consists of several steps. Typically,
a ROM (Read Only Memory) bootstrap obtains control, and then
reads the boot sector off the disk. The boot sector then
reads the following files:

A resident part resides in memory immediately
following MSDOS.SYS and- its data area. This part
contains routines to process Interrupts 23H
(Ctrl-Break Exit Address) and 24H (Critical Error
Handler Address), as well as a routine to reload
the transient part, if needed. All standard MS-DOS
error handling is done within this part of
COMMAND.COM. This includes displaying error
messages and processing the Abort, Retry, or Ignore
messages.

The command processor supplied
COMMAND.COM.) consists of three parts:

COMMAND.COM
COMMAND.COM

MS-DOS TECHNICAL INFORMATION

2.

3.

3.3 MS-DOS DISK ALLOCATION

The MS-DOS area is formatted as follows:

Reserved area - variable size

Root directory - variable size

File data area

3-2

Additional copies of file
allocation table - variable
size (optional)

First copy of file allocation
table - variable size

loaded at
contains

A transient part is loaded at the high end of
memory. This part contains all of the internal
command processors and the batch file processor.

The transient part of the command processor
produces the system prompt (such as A>), reads the
command from keyboard (or batch file), and causes
it to be executed. For external commands, this
part builds a command line and issues the EXEC
system call (Function Request 4B00H) to load and
transfer control to the program.

An initialization part follows the resident part.
During startup, the initialization part is given
control; it contains the AUTOEXEC file processor
setup routine. The initialization part determines
the segment address at which programs can be
loaded. It is overlaid by the first program
COMMAND.COM loads because it is no longer needed.

COMMAND.COM

MS-DOS TECHNICAL INFORMATION

MS-DOS DISK DIRECTORY3.4

no

offsets

Filename.0-7
The first

OOH

3-3

are
(note

The
A cluster
number of

The cluster
for

All directory entries
following format
hexadecimal):

FORMAT builds the root
location on disk and
dependent on the media.

The directory entry has never been
used. This is used to limit the
length of directory searches, for
performance reasons.

Since directories other than the root directory are regarded
as files by MS-DOS, there is no limit to the number of files
they may contain.

Eight characters, left aligned and
padddd, if necessary,• with blanks’,
byte of this field indicates the file status
as follows:

is allocated one
consists of one or more
sectors in a cluster
size is determined at format time.

file are "chained"
(Refer to Section 3.5,

information on the FAT.)
for

reliable

for all disks. Its
number of entries are

directory
the maximum

Space for a file in the data area is not pre-allocated,
space is allocated one cluster at a time,

consecutive sectors (the
must be a power of 2);

All of the clusters
a file are "cnamed" together in the File Allocation Table
(FAT). (Refer to Section 3.5, "File Allocation Table," for
more information on the FAT.) A second copy of the FAT is
normally kept for consistency except in the case of
extremely reliable storage such as a virtual RAM disk.
Should the disk develop a bad sector in the middle of the
first FAT, the second can be used. This avoids loss of data
due to an unreadable FAT.

32 bytes in length, and are in the
that byte offsets are in

MS-DOS TECHNICAL INFORMATION

05H

If2EH

E5H

8-OA Filename extension.

OB

01

3-4

The file was used, but it has been
erased.

Indicates that the first character
of the filename actually has an E5H
character.

Any other character is the first character
of a filename.

File is marked read-only. An attempt
to open the file for writing using
the Open Handle system call (Function
Request 3DH) results in an error
code being returned. This value
can be used along with other
values below. Attempts to delete
the file with the Delete File
system call (13H) or Delete
Directory Entry (41H) will also
fail.

File attribute. The attribute byte is
mapped as follows (values are in hexa
decimal) :

The entry is for a directory,
the second byte is also 2EH,
then the cluster field contains
the cluster number of this
directory's parent directory
(OOOOH if the parent directory
is the root directory). Other
wise, bytes 01H through OAH
are all spaces, and the cluster
field contains the cluster
number of this directory.

MS-DOS TECHNICAL INFORMATION

02

04

08

10

1»20

3-5

The entry contains the volume label
in the first 11 bytes. The entry
contains no other usable information
(except date and time of creation),
and may exist only in the root
directory.

Hidden file. The file is excluded
from normal directory searches.

System file. The file is excluded
from normal directory searches.

The entry defines a subdirectory,
and is excluded from normal
directory searches.

Archive bit. The bit is set to "on
whenever the file has been written
to and closed.

Note: The system files (10.SYS and
MSDOS.SYS) are marked as read-only,
hidden, and system files. Files can
be marked hidden when they are created.
Also, the read-only, hidden, system,
and archive attributes may be changed
through the Get/Set File Attributes
system call (Function Request 43H).

MS-DOS TECHNICAL INFORMATION

OC-15 RESERVED.

16-17

as

where:

18-19

where:

3-6

H
M
S

into two bytes
0 on right):

Y
M
D

mapped into two bytes

Time the file was created or last updated.
The hour, minutes, and seconds are mapped

follows (bit 7 on left,

is 0-119 (1980-2099)
is 1-12
is 1-31

Date the file was created or last updated.
The year, month, and day are
as follows:

is the binary number of hours (0-23)
is the binary number of minutes (0-59)
is the binary number of two-second
increments

Offset 18H|m|m|m|d|d|d|d|d|

Offset 17H|h|h|h|b|h|m|m|m!

Offset 19H
|Y|Y|Y|Y|y|Y|y|m|

Offset 16H|M|M|M|s|s|s|s|s|

MS-DOS TECHNICAL INFORMATION

1A-1B

I
Note

I

1C-1F

FILE ALLOCATION TABLE (FAT)3.5

who

with

3-7

II II

II IRefer to Sections 3.5.1 and 3.5.2 for details about
converting cluster numbers to logical sector numbers.

The cluster number is stored with the
least significant byte first.

Starting cluster; the cluster number
of the first cluster in the file.

bytes) for
more than 4085
clusters, a

File size in bytes. The first word of this
four-byte field is the low-order part of
the size.

For disks containing
the correct number)

The following information is included for system programmers
wish to write installable device drivers.

explains how MS-DOS uses the File
convert
allocate disk space for
responsible for locating
Programs should use the
calls for accessing files;
not guaranteed to
releases of MS-DOS.

Note that the first cluster for data space
on all disks is cluster 002.

The File Allocation Table is an array of 12-bit entries (1.5
each cluster on the disk,

(note that 4085 is
16-bit FAT entry is used.

This section
MS-DOS uses the File Allocation Table to

the clusters of a file to logical sector numbers to
disk space for a file. The driver is then

for locating the logical sector on disk.
MS-DOS file management function

programs that access the FAT are
be upwardly-compatible with future

MS-DOS TECHNICAL INFORMATION

mapping of

(0)000 If the cluster is unused and available.

(F)FF7

(F)FF8-FFF Indicates the last cluster of a file.

(X)XXX

3-8

or
12-

ID
are

four hexadecimal characters
or 16-bit entry:

Each FAT entry contains three
depending on whether it is a

Any other characters that are the cluster
number of the next cluster in the file.
The cluster number of the first cluster
in the file is kept in the file's directory
entry.

The third FAT entry, which starts at byte offset
the mapping of the data area (cluster 002). !
data area are not always written sequentially on
The
over

4, begins
Files in the
i the disk.

data area is allocated one cluster at a time, skipping
clusters already allocated. The first free cluster

following the last cluster allocated for that file will be
the next cluster allocated, regardless of its physical
location on the disk. This permits the most efficient
utilization of disk space because clusters made available by
erasing files can be allocated for new files.

The cluster has a bad sector in it if this
cluster is not part of any cluster chain.
MS-DOS will not allocate such a cluster.
Chkdsk counts the number of bad clusters
for its report. These bad clusters are
not part of any allocation chain.

The first byte may be used by the device driver as a FAT
byte for media determination. The first two FAT entries
reserved.

The File Allocation Table always begins on the first sector
after the reserved sectors. If the FAT is larger than one
sector, the sectors are contiguous. Two copies of the FAT
are usually written for data integrity. The FAT is read
into one of the MS-DOS buffers whenever needed (open, read,
write, etc.). For performance reasons, this buffer is given
a high priority to keep it in memory as long as possible.

MS-DOS TECHNICAL INFORMATION

How To Use the FAT (12-bit FAT Entries)3.5.1

(each1.

2.
to

number

the3. atto

4.

5.

Subtract 2 from the cluster number.1.

of2. sectors per

3-9

Multiply the cluster number just used by 1.5
FAT entry is 1.5 bytes long).

(relative
that used by Interrupts 25H and 26H and bysector,

DEBUG):

If the resultant 12 bits are
contains no more clusters,
contain the cluster number of the next
the file.

Multiply the result by the number
cluster.

FF8H-FFFH, the file
Otherwise, the 12 bits

cluster in

Use the directory entry to find the starting cluster of the
file. Next, to locate each subsequent cluster of the file:

To convert the cluster to a logical sector number
such as

If the last cluster used was an even number, keep
the low-order 12 bits of the register by ANDing it
with FFF; otherwise, keep the high-order 12 bits
by shifting the register right 4 bits with a SHR
instruction.

Use a MOV instruction to move the word
calculated FAT offset into a register.

The whole part of the product is an offset into the
FAT, pointing to the entry that maps the cluster
just used. That entry contains the cluster
of the next cluster of the file.

4

MS-DOS TECHNICAL INFORMATION

3.

How To Use The FAT (16-bit FAT Entries)3.5.2

of the

(eachby 2 FAT1.

the2.

3.

s

3.6 MS-DOS STANDARD DISK FORMATS

’ 1

standard and

3-10 I I

Use a MOV WORD instruction to move the word at
calculated FAT offset into a register.

Multiply the cluster number used
entry is 2 bytes).

The formats in Table 3.1 are considered to be
should be readable if at all possible.

Add to this result the logical sector number of the
beginning of the data area.

Use the directory entry to get the starting cluster
file. To find the next file cluster:

If the resultant 16 bits are FFF8-FFFFH, then there
are no more clusters in the file. Otherwise, the
16 bits contain the cluster number of the next
cluster at the file.

On an MS-DOS disk, it is recommended that the clusters be
arranged on disk to minimize head movement for multi-sided
media. All of the space on a track (or cylinder) is
allocated before moving on to the next track. This is
accomplished by using the sequential sectors on the
lowest-numbered head, then all the sectors on the next head,
and so on, until all sectors on all heads of the track are
used. The next sector to be used will be sector 1 on head 0
of the next track.

