
INFORMIX-OnLine
Dynamic Server V6.0
(UNIX)
Administrator's Guide
Volume 1

Uns interessiert Ihre Meinung
zu dieser Druckschrift.

We would like to know
your opinion on this publication.

Schicken Sie uns bitte eine Kopie dieser Seite,
wenn Sie uns Hinweise geben wollen:
- zum Inhalt
- zur Form
- zum Produkt.

Please send us a copy of this page if you have any criticism on:
- the contents
- the layout
- the product.

Dafür bedanken wir uns im voraus.
Mit freundlichen Grüßen,
Ihre

We would like to thank you in advance
for your comments.
With kind regards,

Siemens Nixdorf Informationssysteme AG
Unternehmenskommunikation
81730 München
Fax: (0 89) 6 36-4 97 68

Siemens Nixdorf Informationssysteme AG
Corporate Communication
D-81730 München
Fax: (00 49) 89 6 36-4 97 68

Ihre Meinung/Your opinion:

Bestellnummer dieser Druckschrift: Order number of this manual:
U9636-J-Z265-2-7600

INFORMIX-OnLine
Dynamic Server V6.0
(UNIX)

Administrator’s Guide
Volume 1

Edition April 1994

THE INFORMIX SOFTWARE AND USER MANUAL ARE PROVIDED “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE INFORMIX SOFTWARE AND
USER MANUAL IS WITH YOU SHOULD THE INFORMIX SOFTWARE AND USER MANUAL PROVE
DEFECTIVE, YOU (AND NOT INFORMIX OR ANY AUTHORIZED REPRESENTATIVE OF INFORMIX)
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION. IN NO
EVENT WILL INFORMIX BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST
PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF OR INABILITY TO USE SUCH INFORMIX SOFTWARE OR USER MANUAL,
EVEN IF INFORMIX OR AN AUTHORIZED REPRESENTATIVE OF INFORMIX HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. IN
ADDITION, INFORMIX SHALL NOT BE LIABLE FOR ANY CLAIM ARISING OUT OF THE USE OF OR
INABILITY TO USE SUCH INFORMIX SOFTWARE OR USER MANUAL BASED UPON STRICT
LIABILITY OR INFORMIX’S NEGLIGENCE. SOME STATES DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY
GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS,
WHICH VARY FROM STATE TO STATE.

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in
any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping,
or information storage and retrieval systems - without permission of the publisher.

Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

INFORMIX® and C-ISAM® are registered trademarks of Informix Software, Inc.

UNIX® is a registered trademark, licensed exclusively by the X/Open Company Ltd. in the United
Kingdom and other countries.
X/Open® is a registered trademark of X/Open Company Ltd. in the United Kingdom and other countries.
MS® is a trademark of Microsoft Corporation.
PostScript is a registered trademark of Adobe Systems Incorporated.

Some of the products or services mentioned in this document are provided by companies other than
Informix. These products or services are identified by the trademark or servicemark of the appropriate
company. If you have a question about one of those products or services, please call the company in question
directly.

Documentation Team: Bob Berry, Sally Cox, Tom DeMott, Jenny Robertson, Judith Sherwood, Rob Wein
berg, Chris Willis, Eileen Wollam.

RESTRICTED RIGHTS LEGEND

The Informix software and accompanying materials are provided with Restricted Rights. Use, duplication,
or disclosure by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights
in Technical Data and Computer Software Clause at DFARS 252.227-7013 or subparagraphs (c) (1) and (2)
of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-19, as applicable (and any other
applicable license provisions set forth in the Government contract).

Copyright © 1981-1994 by Informix Software, Inc.

Preface
The INFORMIX-OnLine Dynamic Server Administrator's Guide is a complete
guide to the features that make up the INFORMIX-OnLine Dynamic Server
relational database server.

You should have some familiarity with relational database concepts to use
this manual. However, a knowledge of Structured Query Language (SQL)
would be useful. Informix SQL is described in detail in a separate set of man
uals called the Informix Guide to SQL: Tutorial and the Informix Guide to SQL:
Reference.

The INFORMIX-OnLine Dynamic Server Administrator's Guide is both a user
guide and a reference manual. The first nine sections cover important basic
information about the product. The last section contains reference material
for using INFORMIX-OnLine Dynamic Server.

Summary of Chapters
The INFORMIX-OnLine Dynamic Server Administrator's Guide is in two vol
umes and contains the following sections and chapters:

• This Preface provides general information about the manual and lists
additional reference materials that will help you understand
INFORMIX-OnLine Dynamic Server concepts.

• The Introduction tells how INFORMIX-OnLine Dynamic Server fits into
the Informix family of products and manuals, explains how to use the
manual, introduces the demonstration database from which the product
examples are drawn, describes the Informix Messages and Corrections
product, and lists the new features for Version 6.0 of Informix database
server products.

• The section "What is INFORMIX-OnLine?" is made up of Chapters 1
and 2.

Preface iii

Informix Welcomes Your Comments

• The section "Configuration" is made up of Chapters 3 through 6.
• The section "Modes and Initialization" is made up of Chapters 7

through 9.
• The section "Disk, Memory, and Process Management" is made up of

Chapters 10 through 15.
• The section "Logging and Log Administration" is made up of Chapters

16 through 22.
• The section "Fault Tolerance" is made up of Chapters 23 through 28.
• The section "Monitoring and Performance" is made up of Chapters 29

and 30.
• The section "Data Migration" is made up of Chapter 31.
• The section "Distributed Data" is made up of Chapters 32 and 33.
• The section "Reference" is made up of Chapters 34 through 42.
• The Index includes references throughout the INFORMIX-OnLine

Dynamic Server Administrator's Guide.

iv Preface

Informix Welcomes Your Comments

Related Reading
If you want additional technical information on database management, con
sult the following texts by C. J. Date:

• An Introduction to Database Systems, Volume I (Addison-Wesley Publishing,
1990)

• An Introduction to Database Systems, Volume II (Addison-Wesley Publish
ing, 1983)

This guide assumes that you are familiar with your computer operating sys
tem. If you have limited UNIX system experience, you might want to look at
your operating system manual or a good introductory text before you read
this manual.

Some suggested texts about UNIX systems follow:

• A Practical Guide to the UNIX System, Second Edition, by M. Sobell (Ben-
jamin/Cummings Publishing, 1989)

• A Practical Guide to UNIX System V by M. Sobell (Benjamin/Cummings
Publishing, 1985)

• Introducing the UNIX System by H. McGilton and R. Morgan (McGraw-Hill
Book Company, 1983)

• UNIX for People by P. Bims, P. Brown, and J. Muster (Prentice-Hall, 1985)

Preface v

List of
Chapters

List of Chapters
What Is INFORMIX-OnLine Dynamic Server?
Chapter 1 What Is INFORMIX-OnLine Dynamic Server?

Chapter 2 Overview of OnLine Administration

Configuration
Chapter 3 Installing and Configuring OnLine

Chapter 4 Configuring Connectivity

Chapter 5 What Is Multiple Residency?

Chapter 6 Using Multiple Residency

Modes and Initialization
Chapter 7 What Are OnLine Operating Modes?

Chapter 8 Managing Modes

Chapter 9 What Is Initialization?

Disk, Memory, and Process Management
Chapter 10 Where Is Data Stored?

Chapter 11 Managing Disk Space

Chapter 12 What Is the Dynamic Scalable Architecture?

Chapter 13 Managing Virtual Processors

Chapter 14 OnLine Shared Memory

Chapter 15 Managing OnLine Shared Memory

Logging and Log Administration
Chapter 16 What Is Logging?

Chapter 17 Managing Database Logging Status

Chapter 18 What Is the Logical Log?

Chapter 19 Managing Logical-Log Files

Chapter 20 What Is Physical Logging?

Chapter 21 Managing the Physical Log

Chapter 22 What Is Fast Recovery?

Fault Tolerance
Chapter 23 What Is Mirroring?

Chapter 24 Using Mirroring

Chapter 25 What Is Data Replication?

Chapter 26 Using Data Replication

Chapter 27 What Is Consistency Checking?

Chapter 28 Situations to Avoid

Monitoring and Performance
Chapter 29 Monitoring OnLine

Chapter 30 Improving Performance

viii List of Chapters

Data Migration
Chapter 31 Data Migration

Distributed Data
Chapter 32 What Is Two-Phase Commit?

Chapter 33

Reference
How to Manually Recover from Failed Two-Phase Commit Protocol

Chapter 34 ON-Monitor

Chapter 35 OnLine Configuration Parameters

Chapter 36 The sysmaster Database

Chapter 37 OnLine Utilities

Chapter 38 OnLine Message Log Messages

Chapter 39 Interpreting Logical-Log Records

Chapter 40 OnLine Disk Structure and Storage

Chapter 41 OnLine Environment Variables

Chapter 42 Files Used by OnLine

List of Chapters ix

Table of Contents
Introduction
INFORMIX-OnLine Dynamic Server and Other Informix

Products 3
Other Useful Documentation 4
How to Use This Manual 5

Typographical Conventions 5
Command-Line Conventions 5
Example Code Conventions 8

Useful On-Line Files 8
ASCII and PostScript Error Message Files 9
The Demonstration Database 9

Creating the Demonstration Database on
INFORMIX-OnLine Dynamic Server 10

New Features in INFORMIX-OnLine Dynamic Server
Version 6.0 11

What Is INFORMIX-OnLine Dynamic Server?
Chapter 1 What Is INFORMIX-OnLine Dynamic Server?

Chapter Overview 1-3
What Is OnLine? 1-3

Client/Server Architecture 1-4
High Performance 1-5
Fault Tolerance and High Availability 1-6
Multimedia Support 1-8
Distributed Data Queries 1-8
Database Server Security 1-8

Who Uses OnLine? 1-9
End Users 1-9
Application Developers 1-9
Database Administrators 1-10

Table of
Contents

Online Administrators 1-10
Online Operators 1-10

Features Beyond the Scope of Online 1-10
No Bad-Sector Mapping 1-10
No Blob Scanning or Compression 1-11

Chapter 2 Overview of Online Administration
Chapter Overview 2-3
Initial Tasks 2-3
Routine Tasks 2-3

Changing Modes 2-4
Archiving Data and Backing Up Logical-Log Files 2-4
Monitoring OnLine Activity 2-4
Checking for Consistency 2-4

Configuration Tasks 2-4
Managing OnLine Instances 2-5
Managing Database Logging Status 2-5
Logical-Log Administration 2-5
Physical-Log Administration 2-5
Using Auditing 2-6
Using Mirroring 2-6
Using Data Replication 2-6
Managing Shared Memory 2-6
Managing Virtual Processors 2-7

Configuration
Chapter 3 Installing and Configuring OnLine

Chapter Overview 3-3
Planning for INFORMIX-OnLine Dynamic Server 3-4

Consider Your Priorities 3-4
Consider Your Resources 3-4
Administering OnLine 3-5

Installing INFORMIX-OnLine Dynamic Server 3-6
Installing OnLine When No Other Informix Products Are Present 3-6
Installing OnLine When Other Informix Products Are Present 3-6
Installing OnLine When SE Is Already Present 3-6
Upgrading an Earlier Version of OnLine 3-7

Configuration Overview 3-8
Configuration Files 3-8
Environment Variables Used by OnLine 3-9
Multiple OnLine Database Servers 3-10

xii Table of Contents

Chapter 4

Configuring a Learning Environment 3-10
Log in as User informix 3-11
Choose Names 3-11
Set Environment Variables 3-11
Allocate Disk Space for Data Storage 3-12
Prepare the ONCONFIG Configuration File 3-13
Prepare the Connectivity File 3-15
Start OnLine Running 3-16
Practice Using OnLine 3-17

Configuring a Production Environment 3-17
Set Environment Variables 3-18
Prepare the ONCONFIG Configuration File 3-18
Overview of Configuration Parameters 3-19
Allocate Disk Space 3-26
Prepare the Connectivity File 3-26
Prepare the ON-Archive Configuration File 3-26
Prepare for Native Language Support 3-27
Evaluate UNIX Kernel Parameters 3-27
Start OnLine and Initialize Disk Space 3-27
Create Blobspaces and Dbspaces 3-28
Do Administrative Tasks 3-28

Configuring Connectivity
Chapter Overview 4-3
Types of Client/Server Connections 4-3

Shared-Memory Connections 4-4
Network Connections 4-5

Connectivity Files 4-7
Network Configuration Files 4-7
Network Security Files 4-9
The $INFORMIXDIR/etc/sqlhosts File 4-10

ONCONFIG Parameters for Connectivity 4-17
The DBSERVERNAME Configuration Parameter 4-17
The DBSERVERALIASES Configuration Parameter 4-18

Environment Variables for Network Connections 4-19
Examples of Client/Server Configurations 4-19

Using a Shared-Memory Connection 4-20
Using a Local Loopback Connection 4-21
Using a Network Connection 4-21
Using Multiple Connection Types 4-23
Accessing Multiple 6.0 OnLine Database Servers 4-25

Table of Contents xiii

Using the 6.0 Relay Module 4-26
Using 5.0 INFORMIX-STAR or 5.0 INFORMIX-NET 4-29
Using a 6.0 Client Application with a 5.0 Database Server 4-30

Chapter 5 What Is Multiple Residency?
Chapter Overview 5-3
Benefits of Multiple Residency 5-3
How Multiple Residency Works 5-4

The Role of the ONCONFIG Environment Variable 5-4
The Role of the SERVERNUM Configuration Parameter 5-4

Chapter 6 Using Multiple Residency
Chapter Overview 6-3
Planning for Multiple Residency 6-3
Preparing for Multiple Residency 6-4

Prepare a Configuration File 6-4
Set Your ONCONFIG Environment Variable 6-4
Edit the New Configuration File 6-5
Add Connection Information 6-6
Update the $INFORMIXDIR/etc/sqlhosts File 6-6
Initialize Disk Space 6-6
Prepare Archive and Backup Environment 6-7
Update the Operating System Boot File 6-8
Check Users' INFORMIXSERVER Environment Variables 6-8

Modes and Initialization
Chapter 7 What Are OnLine Operating Modes?

Chapter Overview 7-3
Off-Line Mode 7-3
Quiescent Mode 7-3
On-Line Mode 7-4
Read-Only Mode 7-4
Recovery Mode 7-4
Shutdown Mode 7-4

Chapter 8 Managing Modes
Chapter Overview 8-3
Users Permitted to Change Modes 8-3
From Off-Line to Quiescent 8-3

How to Perform This Change Using ON-Monitor 8-3
How to Perform This Change Using oninit 8-4

xiv Table of Contents

Chapter 9

From Off-Line to On-Line 8-4
How to Perform This Change Using oninit 8-4

From Quiescent to On-Line 8-4
How to Perform This Change Using ON-Monitor 8-4
How to Perform This Change Using onmode 8-4

Gracefully from On-Line to Quiescent 8-5
How to Perform This Change Using ON-Monitor 8-5
How to Perform This Change Using onmode 8-5

Immediately from On-Line to Quiescent 8-5
How to Perform This Change Using ON-Monitor 8-6
How to Perform This Change Using onmode 8-6

From Any Mode Immediately to Off-Line 8-6
How to Perform This Change Using ON-Monitor 8-7
How to Perform This Change Using onmode 8-7

What Is Initialization?
Chapter Overview 9-3
Types of Initialization 9-3
Initialization Commands 9-3
Initialization Steps 9-4

Process Configuration File 9-5
Create Shared-Memory Segments 9-6
Initialize Shared-Memory Structures 9-7
Initialize Disk Space 9-7
Start All Required Virtual Processors 9-7
Make Necessary Conversions 9-7
Initiate Fast Recovery 9-8
Initiate a Checkpoint 9-8
Document Configuration Changes 9-8
Create the oncfg_servername.servemum File 9-8
Drop Temporary Tblspaces 9-8
Set Forced Residency, If Specified 9-9
Return Control to User 9-9
Prepare SMI Tables 9-9

After Initialization 9-9

Disk, Memory, and Process Management
Chapter 10 Where Is Data Stored?

Chapter Overview 10-3
Overview of Data Storage 10-3
What Are the Physical Units of Storage? 10-4

What Is a Chunk? 10-4

Table of Contents xv

Chapter 11

What Is a Page? 10-9
What Is A Blobpage? 10-10
What Is an Extent? 10-11

What Are the Logical Units of Storage? 10-14
What Is a Dbspace? 10-15
What Is a Blobspace? 10-19
What Is a Database? 10-20
What Is a Table? 10-21
What Is a Tblspace? 10-25

How Much Disk Space Do You Need to Store Your Data? 10-27
Calculate the Size of the Root Dbspace 10-27
Estimate Space Required by Databases Including Overhead and

Growth 10-30
Disk-Layout Guidelines 10-30

Strive to Associate Partitions with Chunks 10-31
Consider Mirroring 10-31
Isolate High-Use Tables 10-31
Group Your Tables with Archive and Restore in Mind 10-32
Spread a Single Table Across Multiple Disk Devices to Reduce

Contention 10-33
Place High-Use Tables on Middle Partition of Disk 10-33
Spread Your Temporary Storage Space Across Multiple Disks 10-34
Optimize Table Extent Sizes 10-34
Move the Logical and Physical Logs from the Root Dbspace 10-35
Take into Account Archive and Restore Performance 10-36
Sample Disk Layouts 10-37

What Is a Logical Volume Manager? 10-44

M anaging D isk Space
Chapter Overview 11-3
Allocating Disk Space 11-3

Allocating Cooked File Space 11-4
Allocating Raw Disk Space 11-5

Initializing Disk Space 11-7
Initializing Disk Space with ON-Monitor 11-7
Initializing Disk Space with oninit 11-7

Creating a Dbspace 11-8
Creating a Dbspace Using ON-Monitor 11-9
Creating a Dbspace Using onspaces 11-9

Adding a Chunk to a Dbspace 11-10
Adding a Chunk 11-10

Creating a Blobspace 11-12
Determining OnLine Page Size 11-13

xvi Table of Contents

Chapter 12

Chapter 13

Creating a Blobspace Using ON-Monitor 11-13
Creating a Blobspace Using onspaces 11-14

Adding a Chunk to a Blobspace 11-14
Dropping a Chunk from a Dbspace Using onspaces 11-14
Dropping a Chunk from a Blobspace 11-15
Dropping a Dbspace or Blobspace 11-15

Dropping a Dbspace or Blobspace Using ON-Monitor 11-16
Dropping a Dbspace or Blobspaces Using onspaces 11-16

Optimizing Blobspace Blobpage Size 11-16
Determining Blobspace Storage Efficiency 11-17
Blobspace Storage Statistics 11-17
Determining Blobpage Fullness with oncheck -pB 11-17

Managing Extents 11-19
Managing Tables 11-21

Reclaiming Space in an Empty Extent Using Alter Index 11-21
Reclaiming Space in an Empty Extent Using the UNLOAD and LOAD

Statements 11-21

What Is the Dynamic Scalable Architecture?
Chapter Overview 12-3
What Is a Virtual Processor? 12-4

What Is a Thread? 12-5
Types of Virtual Processors 12-5
Advantages of Virtual Processors 12-6

How Virtual Processors Service Threads 12-9
Control Structures 12-10
Context Switching 12-10
Stacks 12-12
Queues 12-14
Mutexes 12-16

Virtual Processor Classes 12-16
CPU Virtual Processors 12-16
Disk I/O Virtual Processors 12-20
Network Virtual Processors 12-24
Administration Virtual Processors 12-30
Optical Virtual Processor 12-30
Audit Virtual Processor 12-31

Managing Virtual Processors
Chapter Overview 13-3
Setting Virtual Processor Configuration Parameters 13-3

Setting Virtual Processor Configuration Parameters Using
ON-Monitor 13-3

Table of Contents xvii

Chapter 14

Setting Virtual Processor Configuration Parameters Using a Text
Editor 13-5

Starting and Stopping Virtual Processors 13-6
Adding Virtual Processors in On-Line Mode 13-7
Dropping CPU Virtual Processors in On-Line Mode 13-9

OnLine Shared Memory
Chapter Overview 14-5
What Is Shared Memory? 14-5
How OnLine Uses Shared Memory 14-6

How OnLine Allocates Shared Memory 14-8
How Much Shared Memory Does OnLine Use? 14-10

What Processes Attach to OnLine Shared Memory? 14-10
How a Client Attaches to the Communications Portion 14-10
How Utilities Attach to Shared Memory 14-11
How Virtual Processors Attach to Shared Memory 14-11

The Resident Portion of OnLine Shared Memory 14-15
Shared-Memory Header 14-17
Shared-Memory Internal Tables 14-18
Shared-Memory Buffer Pool 14-23

The Virtual Portion of OnLine Shared Memory 14-25
How OnLine Manages the Virtual Portion of Shared Memory 14-26
What Is in the Virtual Portion of Shared Memory 14-26

The Communications Portion of OnLine Shared Memory 14-29
Concurrency Control 14-30

Shared-Memory Mutexes 14-30
Shared-Memory Buffer Locks 14-31

How OnLine Threads Access Shared Buffers 14-32
OnLine LRU Queues 14-32
Read Ahead 14-35
How an OnLine Thread Accesses a Buffer Page 14-36

How OnLine Flushes Data to Disk 14-39
Flushing the Physical-Log Buffer 14-39
How OnLine Synchronizes Buffer Flushing 14-41
Types of Writes that Prompt Flushing Activity 14-42
Flushing the Logical-Log Buffer 14-44

How OnLine Achieves Data Consistency 14-46
Critical Sections 14-46
OnLine Checkpoints 14-47
OnLine Timestamps 14-50

Writing Data to a Blobspace 14-52

xviii Table of Contents

Chapter 15 Managing OnLine Shared Memory
Chapter Overview 15-3
Setting Shared-Memory Configuration Parameters 15-3

UNIX Kernel Configuration Parameters 15-3
OnLine Shared-Memory Configuration Parameters 15-6

Reinitializing Shared Memory 15-14
Turning on or Turning off Residency for Resident Shared Memory 15-15

Turning on or Turning off Residency While OnLine is in On-Line
Mode 15-15

Turning on or Turning off Residency for the Future 15-15
Adding a Segment to the Virtual Portion of Shared Memory 15-16
Forcing a Checkpoint 15-16

Logging and Log Administration
Chapter 16 What Is Logging?

Chapter Overview 16-3
Which OnLine Processes Require Logging? 16-3
What OnLine Activity Is Logged? 16-5

Activity That Is Always Logged 16-6
Activity Logged for Databases with Transaction Logging 16-6
Are Blobs Logged? 16-7

What Is Transaction Logging? 16-7
The Database Logging Status 16-8
When to Use or not Use Transaction Logging 16-9
When to Buffer or not Buffer Transaction Logging 16-10
Who Can Set or Change Logging Status 16-10

Chapter 17 Managing Database Logging Status
Chapter Overview 17-3
About Changing Logging Status 17-3
Modifying Database Logging Status Using ON-Archive 17-5

Turning on Transaction Logging Using ON-Archive 17-5
Ending Logging Using ON-Archive 17-6
Changing Buffering Status Using ON-Archive 17-6
Making a Database ANSI-Compliant Using ON-Archive 17-6

Modifying Database Logging Status Using ontape 17-6
Turning on Transaction Logging Using ontape 17-7
Ending Logging Using ontape 17-7
Changing Buffering Status Using ontape 17-7
Making a Database ANSI-Compliant Using ontape 17-8

Modifying Database Logging Status Using ON-Monitor 17-8

Table of Contents

Chapter 18

Chapter 19

What Is the Logical Log?
Chapter Overview 18-3
What Is the Logical Log? 18-3
What Is a Logical-Log File? 18-4
How Big Should the Logical Log Be? 18-5

Performance Considerations 18-5
Long-Transaction Consideration 18-6
Logical-Log Size Guidelines 18-6
Determining the Size of the Logical Log 18-7

What Should Be the Size and Number of Logical-Log Files? 18-7
Where Should Logical-Log Files Be Located? 18-8
How Are Logical-Log Files Identified? 18-8
What Are the Status Flags of Logical-Log Files? 18-9
Why Do Logical-Log Files Need to Be Backed Up? 18-10
When Are Logical-Log Files Freed? 18-11

When Does OnLine Attempt to Free a Log File? 18-11
What Happens If the Next Logical-Log File Is Not Free? 18-11
Avoiding Long Transactions 18-12

What Are the Logical-Log Administration Tasks Required for Blobspaces?
18-15

Switching Logical-Log Files to Activate Blobspaces 18-15
Switching Logical-Log Files to Activate New Blobspace Chunks 18-16
Backing Up Logical-Log Files to Free Blobpages 18-16

What Is the Logging Process? 18-18
Dbspace Logging 18-18
Blobspace Logging 18-20

Managing Logical-Log Files
Chapter Overview 19-3
Adding a Logical-Log File 19-3

Adding a Log File Using ON-Monitor 19-4
Adding a Log File Using onparams 19-4
Adding a Log File with a New Size 19-5

Dropping a Logical-Log File 19-5
Dropping a Logical-Log File Using ON-Monitor 19-6
Dropping a Logical-Log File Using onparams 19-6

Moving a Logical-Log File to Another Dbspace 19-6
An Example of Moving Logical-Log Files 19-7

Changing the Size of Logical-Log Files 19-7
Changing Logical-Log Configuration Parameters 19-8

Changing LOGSIZE or LOGFILES 19-8
Changing LOGSMAX, LTXHWM, or LTXEHWM 19-9

Freeing a Logical-Log File 19-10

xx Table of Contents

Chapter 20

Chapter 21

Chapter 22

Freeing a Log File with Status A 19-10
Freeing a Log File with Status U 19-11
Freeing a Log File with Status U-B 19-11
Freeing a Log File with Status U-C or U-C-L 19-11
Freeing a Log File with Status U-B-L 19-12

Switching to the Next Logical-Log File 19-12

What Is Physical Logging?
Chapter Overview 20-3
What Is Physical Logging? 20-3

What Is the Purpose of the Physical Logging? 20-3
What OnLine Activity Is Physically Logged? 20-4

What Is the Physical Log? 20-5
How Big Should the Physical Log Be? 20-5
Where Is the Physical Log Located? 20-7

Details of Physical Logging 20-8
Page Is Read into the Shared-Memory Buffer Pool 20-8
A Copy of the Page Buffer Is Stored in the Physical-Log Buffer 20-8
Change Is Reflected in the Data Buffer 20-9
Physical-Log Buffer Is Flushed to the Physical Log 20-9
Page Buffer Is Flushed 20-9
When Checkpoint Occurs, Physical-Log Buffer Is Flushed and Physical

Log Is Emptied 20-9
How the Physical Log Is Emptied 20-9

Managing the Physical Log
Chapter Overview 21-3
Changing the Physical-Log Location and Size 21-3

Why Change Physical-Log Location and Size? 21-3
Before You Make the Changes 21-4
Using ON-Monitor to Changing Physical-Log Location or Size 21-4
Using an Editor to change Physical-Log Location and Size 21-5

Using onparams to Change Physical-Log Location or Size 21-5

What Is Fast Recovery?
Chapter Overview 22-3
What Is Fast Recovery? 22-3

When Is Fast Recovery Needed? 22-3
When Does OnLine Initiate Fast Recovery? 22-4
Fast Recovery and Buffered Logging 22-4
Fast Recovery and No Logging 22-4

Details of Fast Recovery 22-5
Return to the Last-Checkpoint State 22-5

Table of Contents xxi

Find the Checkpoint Record in the Logical Log 22-6
Roll Forward Logical Log Records 22-7
Roll Back Incomplete Transactions 22-8

Fault Tolerance
Chapter 23 What Is Mirroring?

Chapter Overview 23-3
What Is Mirroring? 23-3

What Are the Benefits of Mirroring? 23-4
What Are the Costs of Mirroring? 23-4
What Happens If You Do Not Mirror? 23-5
What Should You Mirror? 23-5
What Mirroring Alternatives Exist? 23-5

The Mirroring Process 23-6
What Happens When You Create a Mirror Chunk? 23-6
What Are Mirror Status Flags? 23-7
What Is Recovery? 23-7
What Happens During Processing? 23-8
What Happens If You Stop Mirroring? 23-10
What Is the Structure of a Mirror Chunk? 23-10

Chapter 24 Using Mirroring
Chapter Overview 24-3
Steps Required for Mirroring Data 24-3
Enabling Mirroring 24-4
Allocating Disk Space for Mirrored Data 24-5
Starting Mirroring 24-5

Mirroring the Root Dbspace During Initialization 24-6
Starting Mirroring for Unmirrored Dbspaces 24-6
Starting Mirroring for New Dbspaces 24-7

Adding Mirror Chunks 24-8
Changing the Mirror Status 24-8

Taking Down a Mirror Chunk 24-8
Recovering a Mirrored Chunk 24-9

Relinking a Chunk to a Device After a Disk Failure 24-10
Ending Mirroring 24-10

Chapter 25 What Is Data Replication?
Chapter Overview 25-3
What Is Data Replication? 25-3

What Is OnLine High Availability Data Replication? 25-4

xxii Table of Contents

Chapter 26

How Does Data Replication Work? 25-8
How Is the Data Initially Replicated? 25-8
How Are Updates to the Primary Reproduced on the Secondary? 25-9
When Are Log Records Sent? 25-10
What Threads Handle Data Replication? 25-13
Checkpoints Between Database Servers 25-13
How Is Data Synchronization Tracked? 25-14

Data-Replication Failures 25-14
What Are Data-Replication Failures? 25-14
How Are Data-Replication Failures Detected? 25-15
What Happens When a Data-Replication Failure is Detected? 25-15
Administrative Considerations After Data-Replication Failure 25-16

Redirection and Connectivity for Data-Replication Clients 25-19
Designing Clients for Redirection 25-20
Automatic Redirection: Using DBPATH 25-20
Administrator-Controlled Redirection: Changing the sqlhosts

File 25-22
User-Controlled Redirection: INFORMIXSERVER 25-25
Handling Redirection Within an Application 25-26

Comparison of Different Redirection Mechanisms 25-28
Designing Clients to Use the Secondary Database Server 25-29

No Data Modification Statements 25-29
Locking and Isolation Level 25-30
Using Temporary Dbspaces for Sorting and Temporary Tables 25-31

Using Data Replication
Chapter Overview 26-3
Planning for Data Replication 26-3
Configuring Data Replication 26-4

Meeting Hardware and Operating-System Requirements 26-4
Meeting Database and Data Requirements 26-5
Meeting Database Server Configuration Requirements 26-5
Configuring Data-Replication Connectivity 26-8

Starting Data Replication for the First Time 26-9
Performing Basic OnLine Administration Tasks 26-12

Changing Database Server Configuration Parameters 26-12
Archiving and Logical-Log File Backups 26-12
Changing the Logging Status of Databases 26-13
Adding and Dropping Chunks, Dbspaces, and Blobspaces 26-13
Using and Changing Mirroring of Chunks 26-13
Managing the Physical Log 26-14
Managing the Logical Log 26-14
Managing Virtual Processors 26-15

Table of Contents xxiii

Chapter 27

Managing Shared Memory 26-15
Changing the Database Server Mode 26-15
Changing the Database Server Type 26-16
Restoring Data If Media Failure Occurs 26-18
Restarting Data Replication After a Failure 26-20

Restarting After Critical Data Is Damaged 26-20
Restarting If Critical Data Is Not Damaged 26-23

What Is Consistency Checking?
Chapter Overview 27-3
Performing Periodic Consistency Checking 27-3

Verify Consistency 27-4
Monitor for Data Inconsistency 27-6
Retain Consistent Level-0 Archive 27-7

Dealing with Corruption 27-7
Symptoms of Corruption 27-8
Run oncheck First 27-8
I/O Errors on a Chunk 27-8

Collecting Diagnostic Information 27-9

Chapter 28 Situations to Avoid
Chapter Overview 28-3
Situations to Avoid in Administering OnLine 28-3

Monitoring and Performance
Chapter 29 Monitoring OnLine

Chapter Overview 29-5
Sources of Information for Monitoring OnLine 29-6

What Is the Message Log? 29-6
What Is the Console? 29-7
Monitoring Using ON-Monitor 29-8
Monitoring Using SMI Tables 29-8
Monitoring Using onstat and oncheck Utilities 29-8

Monitoring Configuration Information 29-9
Monitoring Checkpoint Information 29-11
Monitoring Shared Memory 29-12

Monitoring Shared-Memory Segments 29-13
Monitoring Shared-Memory Profile 29-13
Monitoring Buffers 29-15
Monitoring Buffer-Pool Activity 29-19
Monitoring Latches 29-22

xxiv Table of Contents

Chapter 30

Monitoring Locks 29-23
Monitoring Active Tblspaces 29-26
Monitoring Virtual Processors 29-27
Monitoring Sessions and Threads 29-29
Monitoring Transactions 29-33
Monitoring Databases 29-36
Monitoring Logging Activity 29-37

Monitoring Logical-Log Files 29-37
Monitoring the Physical-Log File 29-40
Monitoring the Physical- and Logical-Log Buffers 29-41

Monitoring Chunk Status 29-43
Monitoring Disk Usage 29-46

Monitor Chunks 29-46
Monitoring Tblspaces and Extents 29-50
Monitoring Blobs in a Blobspace 29-53
Monitoring Blobs in a Dbspace 29-56

Monitoring Data-Replication Status 29-58

Improving Performance
Chapter Overview 30-3
Areas of OnLine Operation That Affect Performance 30-3

Guidelines Depend on Your Application 30-3
When Is Tuning Needed? 30-4
Configuring Disk Space 30-6

Recommendations 30-6
Specifying Where Sorting Occurs 30-7
Psort (Parallel-Sort) Package 30-8

Configuring and Using Shared Memory 30-10
Avoiding Resource Bottlenecks 30-10
Allocating Shared-Memory Buffers 30-11
Log Buffer Size 30-12
Page-Cleaner Parameters 30-13
Checkpoint Frequency 30-16
Shared-Memory Resources 30-17

Configuring Virtual Processors 30-18
Configuring CPU Virtual Processors 30-18
Configuring AIO Virtual Processors 30-19
Configuring Network Virtual Processors 30-20

Setting USEOSTIME 30-20

Table of Contents xxv

Data Migration
Chapter 31 Data Migration

Chapter Overview 31-3
Moving Databases and Tables 31-4

Summary of Methods for Moving Data 31-4
Using the onunload and onload Utilities 31-5

Steps for Using onunload and onload 31-7
Choosing Between dbload, dbimport, and LOAD 31-8
Creating a New Database Object 31-9
Modifying the Database Schema 31-10
Using the UNLOAD and LOAD Statements 31-10

Steps for Using UNLOAD and LOAD 31-11
Using the dbload Utility 31-11

Steps for Using dbload 31-12
Using the dbexport and dbimport Utilities 31-13

Steps for Using dbexport/dbimport 31-13
Migrating Data from OnLine to INFORMIX-SE 31-14

Remove OnLine Specifics from the Schema File 31-14
Alert Users to OnLine and SE Differences 31-14

Moving Data from SE to OnLine 31-16
Add OnLine Specifics to the Schema File 31-16
Alert Users to OnLine and SE Differences 31-16

Moving Data from One Locale to Another 31-17
Character Types with NLS Databases 31-17
The Locale of an NLS Database 31-17
Steps for Moving Data to an NLS Database 31-17
Steps for Moving Data from an NLS Database 31-18

Distributed Data
Chapter 32 What Is Two-Phase Commit?

Chapter Overview 32-3
Two-Phase Commit Protocol 32-3

When Is the Two-Phase Commit Protocol Used? 32-3
What Goals Does the Two-Phase Commit Protocol Achieve? 32-5
Two-Phase Commit Concepts 32-5
Phases of the Two-Phase Commit Protocol 32-6
Examples of Two-Phase Commit Transactions 32-7
How the Two-Phase Commit Protocol Handles Failures 32-9
Presumed-Abort Optimization 32-17

Independent Actions 32-18

XXVI Table of Contents

Chapter 33

What Initiates Independent Action 32-18
Possible Results of Independent Action 32-19
The Heuristic Rollback Scenario 32-21
The Heuristic End-Transaction Scenario 32-25
Tracking a Global Transaction 32-27

Two-Phase Commit Protocol Errors 32-27
Two-Phase Commit and Logical Log Records 32-28

Logical-Log Records When the Transaction Commits 32-28
Logical-Log Records Written During a Heuristic Rollback 32-30
Logical-Log Records Written After a Heuristic End Transaction 32-32

Configuration Parameters Used in Two-Phase Commits 32-34
Function of the DEADLOCK_TIMEOUT Parameter 32-34
Function of the TXTIMEOUT Parameter 32-34

How to Manually Recover from Failed Two-Phase Commit Protocol
Chapter Overview 33-3
Procedure to Determine If Manual Recovery Is Required 33-3

Determine Whether a Transaction Was Implemented Inconsistently 33-4
Determine If the Networked Database Contains Inconsistent Data 33-5
Decide If Action Is Needed to Correct the Situation 33-8

Example of Manual Recovery 33-9

Reference
Chapter 34 ON-Monitor

Chapter Overview 34-3
Using ON-Monitor 34-3

Help and Navigation Within ON-Monitor 34-4
Executing Shell Commands from Within ON-Monitor 34-4

ON-Monitor Screen Options 34-4

Chapter 35 OnLine Configuration Parameters
Chapter Overview 35-5
ONCONFIG Parameters 35-5
ONCONFIG File Conventions 35-6
ADTERR 35-6
ADTMODE 35-7
ADTPATH 35-7
ADTSIZE 35-7
AFF_NPROCS 35-8
AFF_SPROC 35-8
BUFFERS 35-8
CHUNKS 35-9

Table of Contents xxvii

CKPTINTVL 35-10
CLEANERS 35-11
CONSOLE 35-11
DBSERVERALIASES 35-11
DBSERVERNAME 35-12
DBSPACES 35-13
DBSPACETEMP 35-13
DEADLOCK_TIMEOUT 35-14
DRAUTO 35-14
DRINTERVAL 35-15
DRLOSTFOUND 35-15
DRTIMEOUT 35-16
DUMPCNT 35-16
DUMPCORE 35-17
DUMPDIR 35-17
DUMPGCORE 35-18
DUMPSHMEM 35-18
FILLFACTOR 35-19
LOCKS 35-19
LOGBUFF 35-20
LOGFILES 35-20
LOGSIZE 35-21
LOGSMAX 35-21
LRUS 35-22
LRU_MAX_DIRTY 35-22
LRU_MIN_DIRTY 35-23
LTAPEBLK 35-23
LTAPEDEV 35-24
LTAPESIZE 35-24
LTXEHWM 35-25
LTXHWM 35-25
MIRROR 35-26
MIRROROFFSET 35-26
MIRRORPATH 35-26
MSGPATH 35-27
MULTIPROCESSOR 35-27
NETTYPE 35-28
NOAGE 35-30
NUMAIOVPS 35-30
NUMCPUVPS 35-30
OFF_RECVRY_THREADS 35-31
ON_RECVRY_THREADS 35-31
PHYSBUFF 35-32

xxviii Table of Contents

Chapter 36

PHYSDBS 35-33
PHYSFILE 35-33
RA_PAGES 35-34
RA_THRESHOLD 35-34
RESIDENT 35-35
ROOTNAME 35-35
ROOTOFFSET 35-35
ROOTPATH 35-36
ROOTSIZE 35-36
SERVERNUM 35-37
SHMADD 35-37
SHMBASE 35-38
SHMTOTAL 35-38
SHMVIRTSIZE 35-39
SINGLE_CPU_VP 35-40
STACKSIZE 35-40
STAGEBLOB 35-41
TAPEBLK 35-41
TAPEDEV 35-42
TAPESIZE 35-44
TBLSPACES 35-44
TRANSACTIONS 35-45
TXTIMEOUT 35-45
USEOSTIME 35-46
USERTHREADS 35-46

The sysmaster Database
Chapter Overview 36-3
What Is the sysmaster Database? 36-3
Using the System-Monitoring Interface 36-4

What are the SMI Tables? 36-4
Accessing SMI Tables 36-5

The System-Monitoring Interface Tables 36-7
sysadtinfo 36-8
sysaudit 36-9
syschkio 36-9
syschunks 36-10
sysdatabases 36-11
sysdbspaces 36-12
sysdri 36-13
sysextents 36-13
syslocks 36-13
syslogs 36-14

Table of Contents xxix

Chapter 37

sysprofile 36-15
sysptprof 36-16
syssesprof 36-17
syssessions 36-18
sysseswts 36-20
systabnames 36-20
sysvpprof 36-21

The SMI Tables Map 36-21
Using SMI Tables to Obtain onstat Information 36-24

Online Utilities
Chapter Overview 37-5
oncheck: Check, Repair, or Display 37-6

Syntax 37-8
Option Descriptions 37-9

oninit: Initialize OnLine 37-16
Syntax 37-16
Initialize Shared Memory Only 37-16
Initialize Disk Space and Shared Memory 37-17

onload: Create a Database or Table 37-18
Syntax 37-18
Specify Source Parameters 37-19
Create Options 37-20
Constraints That Affect onload and onunload 37-20
Logging While Using onload 37-21
Blobspace Blobs Relocation 37-22

onlog: Display Logical-Log Contents 37-23
Syntax 37-23
Log-Record Read Filters 37-24
Log-Record Display Filters 37-25

onmode: Mode and Shared-Memory Changes 37-27
Syntax 37-28
Change OnLine Modes 37-29
Force a Checkpoint 37-30
Change Shared-Memory Residency 37-30
Switch the Logical-Log File 37-31
Kill an OnLine Session 37-31
Kill an OnLine Transaction 37-32
Set Data-Replication Types 37-32
Add a Shared-Memory Segment 37-34
Add or Remove Virtual Processors 37-34
Change Database Format 37-35
Regenerate .infos File 37-36

xxx Table of Contents

Chapter 38

onparams: Modify Log-Configuration Parameters 37-37
Syntax 37-37
Add a Logical-Log File 37-38
Drop a Logical-Log File 37-38
Change Physical-Log Parameters 37-39

onspaces: Modify Blobspaces or Dbspaces 37-40
Syntax 37-40
Create a Blobspace or Dbspace 37-41
Drop a Blobspace or Dbspace 37-42
Add a Chunk 37-42
Drop a Chunk 37-43
Start Mirroring 37-44
End Mirroring 37-45
Change Chunk Status 37-45

onstat: Monitor OnLine Operation 37-46
Syntax 37-47
Output Header 37-48
Option Descriptions 37-49

ontape: Logging, Archives, and Restore 37-70
Syntax 37-71
Archive Data Managed by an OnLine Database Server 37-72
Change Database Logging Status 37-73
Back up Logical-Log Files 37-74
Start Continuous Backup of Logical-Log Files 37-74
Restore Data from an Archive 37-75
Preparing for Data Replication 37-76

onunload: Transfer Binary Data in Page Units 37-77
Syntax 37-77
Constraints That Affect onunload 37-78
Unloading a Database or Table 37-78
Logging Mode 37-79
Locking During Unload Operation 37-79

OnLine Message Log Messages
Chapter Overview 38-3

How the Messages Are Ordered in This Chapter 38-3
Message Categories 38-4
Messages: A-B 38-4
Messages: C 38-6
Messages: D-E-F 38-11
Messages: G-H-I 38-13
Messages: J-K-L-M 38-15
Messages: N-O-P 38-17

Table of Contents xxxi

Chapter 39

Chapter 40

Chapter 41

Messages: Q-R-S 38-20
Messages: T-U-V 38-23
Messages: W-X-Y-Z 38-26
Messages: Symbols 38-27

Interpreting Logical-Log Records
Chapter Overview 39-3
Reading Logical-Log Records 39-3

Transactions That Drop a Table or Index 39-4
Transactions That Are Rolled Back 39-4
Checkpoints with Active Transactions 39-4
Distributed Transactions 39-5

Logical-Log Record Structure 39-5
Logical-Log Record Header 39-6
Logical-Log Record Types and Additional Columns 39-7

OnLine Disk Structure and Storage
Chapter Overview 40-3
Dbspace Structure and Storage 40-4

Structure of the Root Dbspace 40-4
Structure of a Regular Dbspace 40-13
Structure of a Mirror Chunk 40-15
Structure of the Chunk Free-List Page 40-16
Structure of the Tblspace Tblspace 40-17
Structure of the Database Tblspace 40-20
Structure of a Dbspace Bit-Map Page 40-22
Structure and Allocation of an Extent 40-24
Structure and Storage of a Dbspace Page 40-30
Structure of Index Pages 40-43

Blobspace Structure and Storage 40-54
Structure of a Blobspace 40-54
Blob Storage and the Blob Descriptor 40-56
Structure of a Dbspace Blob Page 40-57
Blobspace Page Types 40-59
Structure of a Blobspace Blobpage 40-60

Database and Table Creation: What Happens on Disk 40-63
Creating a Database 40-63
Creating a Table 40-64

OnLine Environment Variables
Chapter Overview 41-3
Environment Variable Used During Initialization 41-3
Environment Variables Sent by the Client 41-3

xxxii Table of Contents

Chapter 42 Files Used by OnLine
Chapter Overview 42-3
Descriptions of Files 42-4

af.xxx 42-4
ARCreqid.NOT 42-4
buildsmi.xxx 42-5
config.arc 42-5
core 42-5
gcore.xxx 42-5
informix.rc 42-5
~/.informix 42-5
.inf.servicename 42-6
.infos.dbservemame 42-6
The Message Log 42-6
oncatlgr.out.pidnum 42-6
onconfig.std 42-7
onconfig 42-7
The ONCONFIG File 42-7
oncfg_servemame.servemum 42-8
oper_deflt.arc 42-8
shmem.xxx 42-8
sqlhosts 42-8
status_vset_volnum.itgr 42-9
sysfail.pidnum 42-9
tctermcap 42-9
VP.servemame.xxC 42-9

A Sample onconfig.std File 42-10

Index

Table of Contents xxxiii

Introduction

Introduction
INFORMIX-OnLine Dynamic Server and Other Informix

Products 3

Other Useful Documentation 4

How to Use This Manual 5
Typographical Conventions 5
Command-Line Conventions 5
Example Code Conventions 8

Useful On-Line Files 8

ASCII and PostScript Error Message Files 9

The Demonstration Database 9
Creating the Demonstration Database on

INFORMIX-OnLine Dynamic Server 10

New Features in INFORMIX-OnLine Dynamic Server
Version 6.0 11

INFORMIX-OnLine Dynamic Server is a database server that combines high-
availability, on-line transaction-processing (OLTP) performance with multi-
media capabilities. By managing its own shared-memory resources and disk
I/O, INFORMIX-OnLine Dynamic Server delivers process concurrency while
maintaining transaction isolation. Table data can span multiple disks, freeing
administrators from constraints imposed by data-storage limitations.

The functionality that provides for client/server communications and for
distributed database access is an integral part of INFORMIX-OnLine
Dynamic Server.

The additional support provided by INFORMIX-OnLine/Optical enables data
storage on an optical subsystem. The INFORMIX-TP/XA product allows you
to use the OnLine database server as a Resource Manager within an X/Open
environment.

INFORMIX-OnLine Dynamic Server and Other
Informix Products

Informix Software produces a variety of application development tools,
CASE tools, database servers, and utilities. DB-Access is a utility that allows
you to access, modify, and retrieve information from OnLine relational data
bases. INFORMIX-OnLine Dynamic Server supports all application develop
ment tools currently available, including products like INFORMIX-SQL,
INFORMIX-4GL and the Interactive Debugger, and the Informix SQL API
products, such as INFORMIX-ESQL/C. If you are using an optical-storage
subsystem for multimedia data, you access the data with the
INFORMIX-OnLine/Optical product.

Introduction 3

Other Useful Documentation

Other Useful Documentation
You might want to refer to a number of related Informix product documents
that complement the INFORMIX-OnLine Dynamic Server Administrator's
Guide.

• The INFORMIX-OnLine Dynamic Server Archive and Backup Guide
describes the archiving process and the tools and commands available for
making archives of your INFORMIX-OnLine Dynamic Server databases
and backups of logical logs.

• The INFORMIX-OnLine Dynamic Server Trusted Facility Manual describes
the secure auditing capabilities of INFORMIX-OnLine Dynamic Server,
including the creation and maintenance of audit logs.

• You might find it convenient to use the INFORMIX-OnLine Dynamic
Server Quick Reference Guide for a summary of the ON-Monitor menu
options and their command-line equivalents.

• If you have never used Structured Query Language (SQL) or an Informix
application development tool, read the Informix Guide to SQL: Tutorial.
The manual describes the fundamental ideas and terminology that are
used when planning, using, and implementing a relational database.

• A companion volume to the Tutorial, the Informix Guide to SQL: Reference,
provides reference information on the types of databases you can create,
the data types supported by Informix products, the system catalog tables
associated with a database, environment variables, and the SQL utilities.
This guide also provides a detailed description of the storesö demonstra
tion database and contains a glossary.

• An additional companion volume to the Reference, the Informix Guide to
SQL: Syntax, provides a detailed description of all the SQL statements
supported by Informix products. This guide also provides a detailed
description of Stored Procedure Language (SPL) statements.

• You, or whoever installs OnLine, should refer to the UNIX Products Instal
lation Guide for your particular release to ensure that OnLine is properly
set up before you begin to work with it. A matrix depicting possible cli
ent/ server configurations is included in the Installation Guide.

• The DB-Access User Manual describes how to invoke the utility to access,
modify, and retrieve information from OnLine relational databases.

• When errors occur, you can look them up, by number, and find their cause
and solution in the Informix Error Messages manual. If you prefer, you can

4 Introduction

How to Use This Manual

look up the error messages in the on-line message file described in the sec
tion "ASCII and PostScript Error Message Files" later in this Introduction.

How to Use This Manual
This section describes the typographical, command-line, and example code
conventions used in the INFORMIX-OnLine Dynamic Server Administrator's
Guide and other Informix product documentation. For readability within this
manual, INFORMIX-OnLine Dynamic Server is often referred to as OnLine.

Typographical Conventions
The INFORMIX-OnLine Dynamic Server Administrator's Guide uses a standard
set of conventions to introduce new terms, illustrate screen displays, describe
command syntax, and so forth. The following typographical conventions are
used throughout the manual:

italics

boldface

computer

KEYWORD

New terms, emphasized words, and variables are printed in
italics.
Database names, table names, column names, filenames,
utilities, and other similar terms are printed in boldface.
Information that OnLine displays and information that you
enter are printed in a computer typeface.
All keywords appear in uppercase letters.
This symbol indicates a unique identifier (primary key) for
each table.
This symbol indicates a warning. Warnings provide critical
information that, if ignored, could cause harm to your data
base.

Additionally, when you are instructed to "enter" or "execute" text,
immediately press RETURN after the entry. When you are instructed to "type"
the text, no RETURN is required.

Command-Line Conventions
OnLine supports a variety of command-line options. These are commands
that you enter at the operating-system prompt to perform certain functions
as part of OnLine administration.

Introduction 5

How to Use This Manual

This section defines and illustrates the format of the commands. These com
mands have their own conventions, which may include alternative forms of
a command, required and optional parts of the command, and so forth.

Each diagram displays the sequences of required and optional elements that
are valid in a command. A diagram begins at the upper left with a command.
It ends at the upper right with a vertical line. Between these points, you can
trace any path that does not stop or back up. Each path describes a valid form
of the command. You must supply a value for words that are in italics.

Along a command-line path, you might encounter the following elements:

command

variable

-flag

.ext

' ' and

This required element is usually the product name or other
short word used to invoke the product or call the compiler
or preprocessor script for a compiled Informix product. It
might appear alone or precede one or more options. You
must spell a command exactly as shown and must use low
ercase letters.
A word in italics represents a value that you must supply,
such as a database, file, or program name. The nature of the
value is explained immediately following the diagram.
A flag is usually an abbreviation for a function, menu, or
option name or for a compiler or preprocessor argument.
You must enter a flag exactly as shown, including the pre
ceding hyphen.
A filename extension, such as .sql or .cob, might follow a
variable representing a filename. Type this extension exactly
as shown, immediately after the name of the file and a
period. The extension might be optional in certain products.

Punctuation and mathematical notations are literal symbols
that you must enter exactly as shown.

Single and double quotes are literal symbols that you must
enter as shown.

Privileges A reference in a box represents a subdiagram on the same
P- xxx Page or another page. Imagine that the subdiagram is

spliced into the main diagram at this point.
— ALL — A shaded option is the default. Even if you do not explicitly

type the option, it will be in effect unless you choose another
option.

A branch below the main line indicates an optional path.

6 Introduction

How to Use This Manual

The vertical line is a terminator and indicates that the
statement is complete.

£ -̂----- T

Uv.t_

J
Commands enclosed in a pair of arrows indicate that this is
a subdiagram.
A gate) in an option indicates that you can only use that
option once, even though it is within a larger loop.

The following diagram shows the flow of the onunload utility command. To
learn more about using the onunload utility, see "onunload: Transfer Binary
Data in Page Units" on page 37-77.

onunload database

table name

Figure 1 Elements of a command-line diagram

To construct a correct command, start at the top left with the command
onunload. Then follow the diagram to the right, including the elements that
you want. This diagram conveys the following information:

1. You must type the word onunload.
2. You can change the parameters of the tape device that is to receive the

data. If you wish to do this, turn to "Specify Destination Parameters" on
page 37-77 for further syntax information.

3. You must specify either a database name or a table name.
4. After you choose the database name or table name, you come to the ter

minator. Your onunload command is complete. Press RETURN to execute
the command.

Introduction 7

Useful On-Line Files

Example Code Conventions
Some examples of SQL code occur in this manual. Except where noted, the
code is not specific to any single Informix application development tool. If
only SQL statements are listed in the example, they are not delineated by
semicolons. To use this SQL code for a specific product, you must apply the
syntax rules for that product. For example, if you are using the Query Lan
guage option of DB-Access or INFORMIX-SQL, you must delineate the state
ments with semicolons. If you are using an embedded language, you must
use EXEC SQL and a semicolon (or other appropriate delimiters) at the start
and end of each statement, respectively.

For example, you might see the following example code:

CONNECT TO stores6

DELETE FROM customer
WHERE customer num = 121

COMMIT WORK
DISCONNECT CURRENT

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Also note that dots in the example indicate that more code would be added
in a full application, but it is not necessary to show it to describe the concept
being discussed.

Useful On-Line Files
In addition to the Informix set of manuals, the following on-line files, located
in the $INFORMIXDIR/release directory, might supplement the information
in the INFORMIX-OnLine Dynamic Server Administrator's Guide:

Documentation describe features not covered in the manual or that
Notes have been modified since publication. The file containing the

Documentation Notes for this product is called
ONLINEDOC_6.0.

8 Introduction

ASCII and PostScript Error Message Files

Release Notes describe feature differences from earlier versions of Informix
products and how these differences might affect current
products. The file containing the Release Notes for this prod
uct is called SERVERS_6.0.

Machine Notes describe any special actions required to configure and use
Informix products on your machine. The file containing the
Machine Notes for this product is called ONLINE_6.0.

Please examine these files because they contain vital information about
application and performance issues.

ASCII and PostScript Error Message Files
Informix software products provide ASCII files that contain all the Informix
error messages and their corrective actions. To access the error messages in
the ASCII file, Informix provides scripts that let you display error messages
on the screen (finderr) or print formatted error messages (rofferr). See the
Introduction to the Informix Error Messages manual for a detailed description
of these scripts.

The optional Informix Messages and Corrections product provides Post
Script files that contain the error messages and their corrective actions. If you
have installed this product, you can print the PostScript files on a PostScript
printer. The PostScript error messages are distributed in a number of files of
the format errmsgl.ps, errmsg2.ps, and so on. These files are located in the
$INFORMIXDIR/msg directory.

The Demonstration Database
The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores6 that contains
information about a fictitious wholesale sporting-goods distributor. The sam
ple command files that make up a demonstration application are also
included.

Most of the examples in this manual are based on the storesö demonstration
database. The storesö database is described in detail and its contents are
listed in Appendix A of the Informix Guide to SQL: Reference.

Introduction 9

The Demonstration Database

The script that you use to install the demonstration database is called
dbaccessdemoö and is located in the $INFORMIXDIR/bin directory. The data
base name that you supply is the name given to the demonstration database.
If you do not supply a database name, the name defaults to storesö. Follow
these rules for naming your database:

• Names for databases can be up to 18 characters long for
INFORMIX-OnLine Dynamic Server databases.

• The first character of a name must be a letter or an underscore (_).
• You can use letters, characters, and underscores (_) for the rest of the

name.
• DB-Access makes no distinction between uppercase and lowercase

letters.
• The database name should be unique.

When you run dbaccessdemoö, you are, as the creator of the database, the
owner and Database Administrator (DBA) of that database.

If you installed your Informix database server product according to the
installation instructions, the files that make up the demonstration database
are protected so you cannot make any changes to the original database.

You can run the dbaccessdemoö script again whenever you want to work
with a fresh demonstration database. The script prompts you when the cre
ation of the database is complete, and asks if you would like to copy the sam
ple command files to the current directory. Enter "N" if you have made
changes to the sample files and do not want them replaced with the original
versions. Enter "Y " if you want to copy over the sample command files.

Creating the Demonstration Database on
INFORMIX-OnLine Dynamic Server

Use the following steps to create and populate the demonstration database:

1. Set the INFORMIXDIR environment variable so that it contains the name
of the directory in which your Informix products are installed. Set INFOR-
MIXSERVER to the name of the default database server. The name of the
default database server must exist in the $INFORMIXDIR/etc/sqlhosts
file. (For a full description of environment variables, see Chapter 4 of the

10 Introduction

New Features in INFORMIX-OnLine Dynamic Server Version 6.0

Informix Guide to SQL: Reference. For more information about the sqlhosts
file, see Chapter 4, "Configuring Connectivity."

2. Create a new directory for the SQL command files. Create the directory by
entering the following command:

mkdir dirname
3. Make the new directory the current directory by entering the following

command:

cd dirname
4. Create the demonstration database and copy over the sample command

files entering the command dbaccessdemoö.
To create the demonstration database without logging enter the following
command:

dbaccessdemoö dbname
To create the demonstration database with logging enter the following
command:

dbaccessdemoö -log dbname
The data for the database is put into the root dbspace.

To give someone else the permissions to access the command files in your
directory, use the UNIX chmod command.

To give someone else access to the database that you have created, grant them
the appropriate privileges using the GRANT statement in DB-Access. To
remove privileges, use the REVOKE statement. The GRANT and REVOKE
statements are described in Chapter 1 of the Informix Guide to SQL: Syntax.

New Features in INFORMIX-OnLine Dynamic Server
Version 6.0

The Introduction to each Version 6.0 product manual contains a list of new
features for that product. The Introduction to each manual in the Version 6.0
Informix Guide to SQL series contains a list of new SQL features.

A comprehensive listing of all the new features for Version 6.0 Informix prod
ucts is found in the Release Notes file called SERVERS_6.0.

Introduction 11

New Features in INFORMIX-OnLine Dynamic Server Version 6.0

This section highlights the major new features implemented in Version 6.0 of
INFORMIX-OnLine Dynamic Server.

• Client/Server Communications
The functionality that provides remote client/server communications is
now an integral part of all Version 6.0 Informix products. Any Version 6.0
product can make network connections as well as local connections with
any other Version 6.0 product. In addition, the Version 6.0 communication
facilities allow network connections to Informix Version 4.1 and Version
5.x products. The Version 6.0 product release does not include
INFORMIX-NET, INFORMIX-STAR, or INFORMIX-NET/Relay Module
because their functionality is now provided with each Informix product.

• Parallel, on-line Archive, Backup, Restore, and Tape-Management
Facilities
A new utility, called ON-Archive, provides functionality similar to that
provided by ontape for archiving and restoring OnLine databases and for
backing up logical-log files.
In addition to providing functionality similar to ontape, ON-Archive can
do the following:
o Archive portions of a database (one or more dbspaces).
o Use multiple tape drives simultaneously (parallel archives and

restores).
o Provide sophisticated tape-management facilities,
o Provide capabilities for unattended operation,
o Allow you to track and schedule archives and backups,
o Provide facilities for data compression and encryption.
Both ON-Archive and the ontape utility now allow administrators to
restore single or multiple dbspaces and both utilities are able to process
multiple logical log records in parallel, so recovery occurs more quickly.

• On-line operation with down dbspaces
When an error is detected in one dbspace managed by OnLine and that
dbspace does not contain the root, physical, or logical logs, only that
dbspace is inaccessible. OnLine remains in on-line mode, and other
dbspaces that are not affected remain available for use.

• System-Monitoring Interface
The system-monitoring interface (SMI) provides tables of information
based on structures in shared memory that users and OnLine administra
tors can query using SQL. SMI contains information on users and user

12 Introduction

New Features in INFORMIX-OnLine Dynamic Server Version 6.0

actions such as writes and deletes, locks and wait times, extents, chunks,
dbspaces, tables, databases, and the use of logical-log files.

• Data Replication
OnLine offers a nearly transparent way of replicating data across a net
work, allowing organizations to maintain a backup copy of an entire
OnLine database server at another site. This feature allows administra
tors to automatically or manually direct users to the secondary database
server after a failure of the primary database server, dramatically reduc
ing the amount of time spent in recovery. The secondary database server
also allows read-only access, providing the opportunity for load balanc
ing (that is, OLTP applications on the primary database server, reports and
queries on the secondary database server).

• Dynamic, Scalable Architecture
The dynamic scalable architecture provides a flexible threading architec
ture for both on-line transaction processing (OLTP) and decision-support
environments. For OLTP environments, a small number of database
server processes efficiently service a much larger number of user sessions.
For decision support and batch jobs, a single user session can efficiently
spawn multiple threads that run in parallel, thereby using computer
resources more effectively.

• Enhanced Mirroring
Mirroring pairs a chunk of one defined dbspace or blobspace with a mir
ror chunk. Every write to the primary chunk is accompanied by an iden
tical write to the mirror chunk. If a failure occurs on the primary chunk,
mirroring enables users to read from and write to the mirror chunk and
therefore, stay on-line while you recover from the primary chunk.

• C2-level secure auditing.
C2-level auditing creates a record of selected user activities. Auditing can
detect users attempting unauthorized accesses of the database, assess
potential security damage if unusual activity occurs, provide evidence, if
necessary, and provide a deterrent against unwanted activities.
The OnLine auditing facility is designed to meet the C2 class of trust as
specified in the Trusted Computer System Evaluation Criteria (CSC-STD-001-
83) and the Trusted Database Interpretation (NCSC-TG-021), both published
by the U.S. Department of Defense.

• Nonroot Temporary Dbspace
OnLine administrators and users can now specify that temporary tables
be built in a temporary dbspace. These temporary dbspaces are ignored
during a full-system archive.

Introduction 13

New Features in INFORMIX-OnLine Dynamic Server Version 6.0

• Removal of Limits
The maximum number of users, logical-log files, chunks, dbspaces, data
bases, and buffers in OnLine are substantially higher.

• OnLine Utility Renaming
The OnLine utilities (tbstat, tbinit, tbmode, tblog, tbcheck, tbparams,
tbspaces, tbmonitor, tbload, and tbunload) have been renamed to
replace "tb" with "on" (onstat, oninit, onmode, onlog, oncheck,
onparams, onspaces, onmonitor, onload, and onunload). DB-Monitor is
now called ON-Monitor.

• OnLine Utility Enhancements
The OnLine utilities have been enhanced so you can perform the follow
ing actions:
o Drop an empty chunk
o Start or end mirroring for an existing space from the command line
o Change the logging status of a database to unbuffered logging and to

ANSI-compliant
o Interactively display statistics derived from shared memory
o Display information about users or transactions
o Resize logical-log files

14 Introduction

What Is INFORMIX-OnLine
Dynamic Server?

Chapter

1
What Is
INFORMIX-
OnLine Dynamic
Server?
Chapter Overview 3

What Is OnLine? 3
Client/Server Architecture 4

The Client/Server Connection 4
High Performance 5

Dynamic Tuning 5
Raw Disk Management 5
Dynamic Shared-Memory Management 6
Dynamic Thread Allocation 6

Fault Tolerance and High Availability 6
Archives and Backups of Transaction Records 6
Fast Recovery 7
Mirroring 7
Data Replication 7

Multimedia Support 8
Distributed Data Queries 8
Database Server Security 8

Who Uses OnLine? 9
End Users 9
Application Developers 9
Database Administrators 10
OnLine Administrators 10
OnLine Operators 10

Features Beyond the Scope of Online 10
No Bad-Sector Mapping 10
No Blob Scanning or Compression 11

1-2 What Is INFORMIX-OnLine Dynamic Server?

Chapter Overview
This chapter introduces the INFORMIX-OnLine Dynamic Server, and
includes the following sections:

• What is Online?
• Who uses Online?
• Features beyond the scope of Online

These sections briefly describe Online and point out where you can find
more detailed information elsewhere in this document, or in other docu
ments.

What Is Online?
Online is a database server. A database server is a software package that man
ages access to one or more databases for one or more client applications. It is
the principal component of a database management system. Specifically,
Online is a database server in a relational database management system
(RDBMS). A relational database is one in which the data is organized in tables
that consist of rows and columns.

The Online database server offers the following features:

• Client/server architecture
• High performance
• Fault tolerance and high availability
• Multimedia support
• Distributed data queries
• Database server security

Each of these features is explained in the following sections.

What Is INFORMIX-OnLine Dynamic Server? 1-3

What Is Online?

Client/Server Architecture
Online is a server for client applications. More specifically, Online is a data
base server that processes requests for data from client applications. It accesses
the requested information from its databases, if possible, and sends back the
results. Accessing the database includes activities such as coordinating con
current requests from multiple clients, performing read and write operations
to the databases, and enforcing physical and logical consistency on the data.

The client is an application program that a user runs to request information
from a database. Client applications use Structured Query Language (SQL) to
send requests for data to OnLine. Client programs include the DB-Access
utility, embedded language programs such as an INFORMIX-ESQL/C pro
gram, and INFORMIX-4GL programs.

Client processes are independent of OnLine processes. Database users run
client applications as they need to access information. OnLine processes are
started by the OnLine administrator and they are presumed to execute con
tinuously during the period that users access the databases. See Chapter 12,
"What Is the Dynamic Scalable Architecture?," for a description of the
OnLine processes and the methods by which they serve client applications.

The Client/Server Connection
A client application communicates with OnLine through the connection facil
ities that OnLine provides. These facilities are fully described in Chapter 4,
"Configuring Connectivity."

At the source-code level, a client connects to OnLine through an SQL state
ment. Beyond that, the client's use of OnLine connection facilities is transpar
ent to the application. Library functions that are automatically included
when a client program is compiled enable the client to connect to OnLine.

You, as the OnLine administrator, specify the types of connections that
OnLine supports in a connectivity information file, called sqlhosts. The
sqlhosts file contains the names of each of the database servers (called the
dbservernames), and any aliases, to which the clients on a host computer can
connect. For each dbservername and each alias, you specify the protocol that
a client must use to connect to that database server. When the client connects
to OnLine through an SQL statement, the client transparently accesses this
information and makes the connection using the specified protocol.

1-4 What Is INFORMIX-OnLine Dynamic Server?

What Is Online?

High Performance
Online achieves high performance through the following mechanisms:

• Dynamic tuning

• Raw disk management
• Dynamic shared-memory management
• Dynamic thread allocation

Each of these mechanisms is explained in the following paragraphs.

Dynamic Tuning
Online's Dynamic Scalable Architecture (DSA) enables you to add both pro
cesses and shared-memory while Online is in on-line mode. Online's
dynamic scalable architecture is described in Chapter 12, "What Is the
Dynamic Scalable Architecture?." Online's use of shared memory is
described in Chapter 14, "OnLine Shared Memory." Chapter 30, "Improving
Performance," offers recommendations for tuning Online's performance.

Raw Disk Management
OnLine can use both UNIX file system disk space and raw disk space. When
using raw disk space, however, OnLine performs its own disk management
using raw devices. By storing tables on one or more raw devices instead of in
a standard operating system file system, OnLine can manage the physical
organization of data and minimize disk I/O. Doing so results in three perfor
mance advantages:

• OnLine is not restricted by operating-system limits on the number of
tables that can be accessed concurrently.

• OnLine optimizes table access by guaranteeing that rows are stored
contiguously.

• OnLine eliminates operating-system I/O overhead by performing direct
data transfer between disk and shared memory.

If these things are not a primary concern, you can also configure OnLine to
use regular operating system files to store data. In this case, OnLine manages
the file contents but the operating system manages the I/O. See Chapter 10,
"Where Is Data Stored?," for more information about OnLine's use of disk
space.

What Is INFORMIX-OnLine Dynamic Server? 1-5

What Is OnLine?

Dynamic Shared-Memory Management
All applications that use a single instance of an OnLine database server share
data in the server's memory space. After one application reads data from a
table, other applications can access whatever data is already in memory Disk
access might not be necessary.

OnLine shared memory contains both data from the database and control
information. Because the data needed by various applications is located in a
single, shared portion of memory, all control information needed to manage
access to that data can be located in the same place. OnLine adds memory
dynamically as it needs it and you, as the administrator, can also add seg
ments to shared memory, if necessary. See Chapter 15, "Managing OnLine
Shared Memory," for information on how to add a segment to OnLine shared
memory.

Dynamic Thread Allocation
OnLine supports multiple client applications using a relatively few number
of processes called virtual processors. A virtual processor is a multithreaded
process that serves multiple clients and, in some cases, runs multiple threads
to work in parallel for a single client. In this way, OnLine provides a flexible
architecture that is well-suited for both on-line transaction processing (OLTP)
and for decision-support applications. See Chapter 12, "What Is the Dynamic
Scalable Architecture?," for a description of OnLine Dynamic Scalable
Architecture.

Fault Tolerance and High Availability
OnLine uses the following logging and recovery mechanisms to protect data
integrity and consistency in the event of an operating-system or media
failure:

• Archives and backups of transaction records
• Fast recovery
• Mirroring
• Data replication

Archives and Backups of Transaction Records

OnLine provides you with the ability to archive the data it manages and also
store (back up) changes to the database server and data since the archive was
performed. The changes are stored in logical-log files.

1-6 What Is INFORMIX-OnLine Dynamic Server?

What Is Online?

As explained in the book devoted to the topic, INFORMIX-OnLine Dynamic
Server Archive and Backup Guide, Online allows you to create the archive tapes
and the logical-log backup tapes while users are accessing Online. You can
also use on-line archiving to create incremental archives. Incremental
archiving enables you to only back up data that has changed since the last
archive, which reduces the amount of time required for archiving.

After a media failure, if critical data was not damaged (and Online remains
in on-line mode), you can restore only the data that was on the failed media,
leaving other data available during the restore.

Fast Recovery
When Online starts up, it checks to see if the physical log is empty because
that implies that Online shut down in a controlled fashion. If the physical log
is not empty, Online automatically performs an operation called fast recovery.
Fast recovery automatically restores Online databases to a state of physical
and logical consistency after a system failure that might leave one or more
transactions uncommitted. During fast recovery, Online uses its logical log
and physical log to perform the following operations:

• Restore the databases to their state at the last checkpoint
• Roll forward all committed transactions since the last checkpoint
• Roll back any uncommitted transactions

Online spawns multiple threads to work in parallel during fast recovery.
Fast recovery is explained in detail in Chapter 22, "What Is Fast Recovery?"

Mirroring
When you use the Online enhancement that performs disk mirroring,
Online writes each piece of data in two places. When data is mirrored in this
way, it can eliminate data loss as a result of media (hardware) crashes. If mir
rored data becomes unavailable for any reason, the mirror of the data is
accessed immediately and transparently to users. Mirroring is explained in
Chapter 23, "What Is Mirroring?"

Data Replication
If your organization requires a very high degree of availability, you can rep
licate Online and its databases, running simultaneously, on a second com
puter. Replicating Online and its databases protects the two database servers

What Is INFORMIX-OnLine Dynamic Server? 1-7

What Is OnLine?

from catastrophic failure; if one site experiences a disaster, applications can
be directed immediately to use the second database server in the pair. See
Chapter 25, "What Is Data Replication?"

Multimedia Support
OnLine supports two blob (binary large object) data types - TEXT and BYTE -
which place no practical limit on the size of the stored data item. OnLine
stores this blob data either with other database data or in specially desig
nated portions of the disk called blobspaces.

For more information about storing blob data on write-once-read-many
(WORM) optical devices, refer to the INFORMIX-OnLine/Optical User Manual.

Distributed Data Queries
OnLine allows users to query and update more than one database across
multiple OnLine database servers within a single transaction. The OnLine
database servers can reside within a single host computer or on the same net
work. OnLine supports both TCP/IP and IPX/SPX networks. A two-phase
commit protocol ensures that transactions are uniformly committed or rolled
back across the multiple database servers. The protocol is described in detail
in Chapter 32, "What Is Two-Phase Commit?"

You can use INFORMIX-Gateway with DRDA to make distributed queries
that involve both Informix and DRDA-compliant databases. For more infor
mation, refer to the INFORMIX-Gateway with DRDA User Manual.

You can also use OnLine in a heterogenous environment that conforms to
X/Open. For more information about using OnLine within an X/Open envi
ronment, refer to the INFORMIX-TP/XA User Manual.

Database Server Security
The databases and tables managed by OnLine enforce access based on a set
of database and table privileges, which are managed through the use of
GRANT and REVOKE SQL statements. They are explained in the Informix
Guide to SQL: Tutorial and Informix Guide to SQL: Syntax.

In addition to this type of security, OnLine offers the ability to audit database
events on a database-server wide basis. Auditing, described in the
INFORMIX-OnLine Dynamic Server Trusted Facility Manual, enables you to

1-8 What Is INFORMIX-OnLine Dynamic Server?

Who Uses OnLine?

track which users performed which actions to which objects at what time.
This information can be used to monitor database activity for suspicious use,
deter unscrupulous users, or even act as evidence of database server abuse.

Who Uses OnLine?
OnLine administrators understand that OnLine combines fault-tolerant,
OLTP performance with multimedia capabilities and a dynamic architecture
to take advantage of available hardware resources, but not all users of
OnLine understand it in that way. The question "What is OnLine?" means
different things to different users. The following types of individuals who
interact with OnLine all understand it differently:

• End users
• Application developers
• Database administrators
• OnLine administrators
• OnLine operators

End Users
End users access, insert, update, and manage information in databases using
a structured query language (SQL), often embedded in a client application.
These end-users of OnLine might be completely unaware that they are using
OnLine. To them, OnLine is a nameless aspect of the system being used.

Application Developers
For the developers of client applications, OnLine is a database server that
offers a number of possibilities for data management, multimedia, isolation
levels, and so on. OnLine can integrate information objects such as scanned
and digitized images, voice, graphs, facsimiles, and word-processing docu
ments into an SQL-based relational database.

The concepts of relational databases managed by Informix database servers
are explained in the Informix Guide to SQL: Tutorial. Other volumes, the
Informix Guide to SQL: Reference and Informix Guide to SQL: Syntax provide
invaluable information useful to application developers.

What Is INFORMIX-OnLine Dynamic Server? 1-9

Features Beyond the Scope of OnLine

Database Administrators
The database administrator (DBA) of a database is primarily responsible for
managing access control for a database as described in "Database Server
Security" on page 1-8. The DBA uses SQL statements to grant and revoke priv
ileges to ensure that the correct individuals are able to perform the actions
they need to, and that untrained or unscrupulous users are kept from per
forming potentially damaging or inappropriate resource-intensive activities.
The Informix Guide to SQL: Tutorial and Informix Guide to SQL: Syntax are also
of interest to the DBA.

OnLine Administrators
Unlike the DBA, an OnLine administrator is responsible for maintenance,
administration, and operation of the entire OnLine database server, which
might be managing many individual databases. The tasks involved in
OnLine administration are described in Chapter 2, "Overview of OnLine
Administration."

OnLine Operators
OnLine operators are responsible for carrying out routine tasks associated
with OnLine administration such as backing up and restoring databases. The
same person might fill the roles of the administrator and the operator.

Features Beyond the Scope of OnLine
As an OnLine administrator, you need to know the boundaries of OnLine
capabilities. This section describes the tasks that lie outside the scope of the
OnLine database server, but are provided by your host computer, operating
system, or some other product.

No Bad-Sector Mapping
OnLine relies on the operating system of your host computer for bad-sector
mapping. OnLine learns of a bad sector or a bad track when it receives a fail
ure return code from a system call. When this happens, OnLine retries the
access several times to ensure that the condition is not spurious. If the condi
tion is confirmed, OnLine marks as down the chunk where the read or write
was attempted.

1-10 What Is INFORMIX-OnLine Dynamic Server?

Features Beyond the Scope of OnLine

Online cannot take any action to identify the bad cylinder, track, or sector
location because the only information available is the byte displacement
within the chunk where the I/O was attempted.

If OnLine detects an I/O error on a chunk that is not mirrored, OnLine marks
the chunk as down. If the down chunk contains logical-log files, the physical
log, or the root dbspace, OnLine immediately initiates an abort. Otherwise,
OnLine can continue to operate, but applications cannot access the down
chunk until its dbspace is restored.

No Blob Scanning or Compression
OnLine receives blob data into an existing table in the following ways:

• From the DB-Access LOAD statement
• From the dbload utility
• From INFORMIX-ESQL/C locator variables
• From INFORMIX-ESQL/COBOL or INFORMIX-ESQL/FORTRAN FILE host

data types

OnLine does not contain any mechanisms for scanning blobs and inserting
the data into a file, or for blob compression, after the blob has been scanned.

What Is INFORMIX-OnLine Dynamic Server? 1-11

iiiSI

Overview of
OnLine
Administration
Chapter Overview 3

Initial Tasks 3

Routine Tasks 3
Changing Modes 4
Archiving Data and Backing Up Logical-Log Files 4
Monitoring OnLine Activity 4
Checking for Consistency 4

Configuration Tasks 4
Managing OnLine Instances 5
Managing Database Logging Status 5
Logical-Log Administration 5
Physical-Log Administration 5
Using Auditing 6
Using Mirroring 6
Using Data Replication 6
Managing Shared Memory 6
Managing Virtual Processors 7

Chapter Overview
As an INFORMIX-OnLine Dynamic Server administrator, you need to be
aware of the tasks and responsibilities that fall into your domain. At first
glance, the tasks might appear overwhelming. But, as you become familiar
with your database server, the areas will not seem as daunting.

This chapter describes the three types of tasks that the administration of
OnLine entails:

• Initial installation and configuration
• Routine tasks that are performed on a regular basis
• Configuration tasks that are performed less frequently

Initial Tasks
When you first acquire OnLine, you need to perform some initial installation
and configuration tasks.These tasks are described in Chapter 3, "Installing
and Configuring OnLine."

If you are moving from one release level of OnLine to another release level,
refer to the INFORMIX-OnLine Dynamic Server Migration Guide.

You must also configure connectivity for your database server and client
applications, as explained in Chapter 4, "Configuring Connectivity."

These tasks can seem complicated and time-consuming. Fortunately, they are
not common tasks, and not representative of most of the administrative work
OnLine needs.

Routine Tasks
Depending on the needs of your organization, you might be responsible for
performing the periodic tasks described in the following paragraphs. Not all
of these tasks are appropriate for every installation. For example, if your

Overview of OnLine Administration 2-3

Configuration Tasks

Online database server is available 24 hours a day, 7 days a week, you might
not bring Online to off-line mode, so mode changes would not be a routine
task.

Changing Modes
The Online administrator is responsible for starting up and shutting down
Online by changing the mode.

Chapter 7, "What Are Online Operating Modes?," describes each Online
mode and Chapter 8, "Managing Modes," explains how to move Online
from one mode to another.

Archiving Data and Backing Up Logical-Log Files
Frequent archiving of data and backing-up of logical-log files ensures that
OnLine can be recovered in case of a failure. The INFORMIX-OnLine Archive
and Backup Guide provides you with advice and guidelines for scheduling
and coordinating archive activity with other tasks.

Monitoring OnLine Activity
OnLine design enables you to monitor every aspect of operation. Chapter 29,
"Monitoring OnLine," provides you with descriptions of the available infor
mation, instructions for how to obtain it, and suggestions for its use. As a
result of monitoring, you might need to change your configuration in one of
the ways described in "Configuration Tasks" on page 2-4.

Checking for Consistency
Informix recommends that you perform occasional checks for data consis
tency. Chapter 27, "What Is Consistency Checking?," describes these checks.

Configuration Tasks
Configuration tasks are generally either set-up tasks, which involve initiating
and maintaining functionality, or performance adjustments that might
become necessary as the usage pattern of your OnLine database server
varies.

2-4 Overview of OnLine Administration

Configuration Tasks

Managing OnLine Instances
If you plan to use more than one OnLine instance on the same computer, be
aware of the issues explained in Chapter 11, "Managing Disk Space."

You are responsible for planning and implementing the layout of information
managed by OnLine on disks. The way you distribute the data can greatly
impact the performance of OnLine.

Chapter 10, "Where Is Data Stored?," explains the advantages and draw
backs of different disk configurations. Chapter 11, "Managing Disk Space,"
describes the actual disk-management tasks.

Managing Database Logging Status
As an OnLine administrator, you can control whether a database managed
by your OnLine database server uses transaction logging or not, and if the
logging is to be buffered or unbuffered. You can also specify that a database
is to be ANSI-compliant.

Information about what these different logging options mean is in
Chapter 16, "What Is Logging?" Information on how to change logging
options is in Chapter 17, "Managing Database Logging Status."

Logical-Log Administration
Although backing up logical-log files is a routine task, logical-log
administration (the placement and sizing of log files, specifying high-water
marks) is required, even when none of your databases use transaction
logging. Logical-log administration is explained in Chapter 18, "What Is the
Logical Log?"

Instructions for creating and modifying the logical-log configuration are in
Chapter 19, "Managing Logical-Log Files."

Information on backing up logical logs is in the INFORMIX-OnLine Archive
and Backup Guide.

Physical-Log Administration
You can change the size and location of the physical log as part of effective
disk management. See Chapter 21, "Managing the Physical Log."

Overview of OnLine Administration 2-5

Configuration Tasks

Using Auditing
If you use OnLine C2 level secure auditing, you might need to adjust a num
ber of aspects of the auditing configuration (where audit records are stored,
how to handle error conditions, and so on). You also might want to change
how users are audited when you suspect they are abusing their access. These
tasks, and others related to auditing, are explained in the INFORMIX-OnLine
Dynamic Server Trusted Facility Manual.

Using Mirroring
Mirroring is described in Chapter 23, "What Is Mirroring?" If you plan to use
mirroring (Informix recommends you mirror at least your root dbspace),
instructions for using it are in Chapter 24, "Using Mirroring".

Using Data Replication
Data replication uses additional hardware to provide a very high degree of
availability. Data replication is described in Chapter 25, "What Is Data Repli
cation?" If you plan to use data replication, also see Chapter 26, "Using Data
Replication."

Managing Shared Memory
Managing the use of shared memory is a broad task that falls under the
responsibility of the OnLine administrator. Use of shared memory is
described in Chapter 14, "OnLine Shared Memory."

When managing memory you might do any or all of the following tasks:

• Change the size or number of buffers (by changing the size of the logical-
log or physical-log buffer, or by changing the number of buffers in the
shared-memory buffer pool)

• Change shared-memory parameters (changing the values)
• Change forced residency (on or off, temporarily or for this session)
• Tune checkpoint intervals
• Add segments to virtual shared memory

Chapter 15, "Managing OnLine Shared Memory," describes the procedures
to manage shared memory.

2-6 Overview of OnLine Administration

Configuration Tasks

Managing Virtual Processors
The number and type of virtual processors that allows your Online database
server to perform optimally depends on your hardware and on the type of
database activity your database server supports.

Chapter 12, "What Is the Dynamic Scalable Architecture?," explains what
virtual processors are, and Chapter 13, "Managing Virtual Processors,"
explains how to change the virtual-processor configuration.

Overview of Online Administration 2-7

Configuration

Installing and
Configuring OnLine
Chapter Overview 3

Planning for INFORMIX-OnLine Dynamic Server 4
Consider Your Priorities 4
Consider Your Resources 4
Administering OnLine 5

Installing INFORMIX-OnLine Dynamic Server 6
Installing OnLine When No Other Informix Products

Are Present 6
Installing OnLine When Other Informix Products Are

Present 6
Installing OnLine When SE Is Already Present 6
Upgrading an Earlier Version of OnLine 7

Configuration Overview 8
Configuration Files 8

The onconfig.std File 8
The sqlhosts File 8

Environment Variables Used by OnLine 9
Multiple OnLine Database Servers 10

Configuring a Learning Environment 10
Log in as User informix 11
Choose Names 11
Set Environment Variables 11
Allocate Disk Space for Data Storage 12

Prepare the Cooked File Space 13
Prepare the ONCONFIG Configuration File 13

Preparing the ONCONFIG File for a Learning
Environment 14

Prepare the Connectivity File 15
Preparing the sqlhosts File for the Learning Environment 15

Start OnLine Running 16
Practice Using OnLine 17

Configuring a Production Environment 17
Set Environment Variables 18
Prepare the ONCONFIG Configuration File 18
Overview of Configuration Parameters 19

Root Dbspace 20
Identification Parameters 20
Mirroring 21
Logical Logging 21
Physical Logging 22
Archiving and Logical-Log Backups 23
Message Files 23
Shared-Memory Parameters 24
Time Intervals in a Networked Environment 25
Data Migration 26

Allocate Disk Space 26
Prepare the Connectivity File 26
Prepare the ON-Archive Configuration File 26
Prepare for Native Language Support 27
Evaluate UNIX Kernel Parameters 27
Start OnLine and Initialize Disk Space 27
Create Blobspaces and Dbspaces 28
Do Administrative Tasks 28

Prepare UNIX Startup and Shutdown Scripts 28
Warn UNIX System Administrator About cron Jobs 29
Make Arrangements for Tape Management 30
Make Sure Users Have the Correct Environment Variables 30

3-2 Installing and Configuring OnLine

Chapter Overview
Implementing an INFORMIX-OnLine Dynamic Server database manage
ment system requires many decisions, such as where to store the data, how
to access the data, and how to protect the data. How you implement Online
can greatly affect the performance of database operations. You can customize
Online so that it functions optimally in your particular data processing envi
ronment. For example, an Online instance serving 1,000 users who execute
frequent, short transactions is quite different from the OnLine instance where
a few users make long and complicated searches.

This chapter has two purposes: to let you quickly start an OnLine database
server using a simple configuration, and to provide a point of orientation for
a more studied configuration process. It also discusses some of the issues you
must consider before installing OnLine, and introduces terminology. The fol
lowing topics are in this chapter:

• Planning for OnLine

• Installing OnLine
• Configuration overview
• Configuring OnLine for a learning environment
• Configuring OnLine for a production environment

The sections on installation include special instructions for installing Version
6.0 OnLine when other Informix products are already installed on your
computer.

The sections on the configuration files will help you decide which topics are
most crucial for your particular environment and which topics can be
deferred until you are tuning the performance of your OnLine database
server. This chapter gives pointers to more detailed discussions in the rest of
the book.

Installing and Configuring OnLine 3-3

Planning for INFORMIX-OnLine Dynamic Server

Planning for INFORMIX-OnLine Dynamic Server
When planning for OnLine, you need to consider both your priorities and
your resources.

Consider Your Priorities
As you prepare the initial configuration and plan your backup and archiving
strategies, you need to keep in mind the characteristics of your database
server, such as:

• What is your highest priority, transaction speed or safety of the data?
• Will the database server usually handle short transactions or fewer long

transactions?
• Will this OnLine instance be used by applications on other computers?
• What is the maximum number of users you can expect?
• How much help or supervision will the users require? To what extent do

you want to control the environment of the users?
• Are you limited by resources for space? CPU? Availability of operators?
• How much does the OnLine instance have to do without supervision?

Consider Your Resources
Before you start the initial configuration, you should collect as much of the
required information as possible. You need the following information:

• How many disk drives are available? What are their device names? Are
some of the disk drives faster than others? How many disk controllers are
available? What is the disk controller configuration?
During the initialization of OnLine, everything—tables, log files, indexes,
data—goes into the root dbspace on one disk drive. After OnLine is run
ning, you can move different objects to different drives. For example, you
should put the most frequently used tables on the fastest drives. The man
agement of disk space is discussed in Chapter 11, "Managing Disk
Space."

• How many tape drives are available? What are their device names? When
is an operator available to change tapes?
You need to select the number and size of the logical-log files so that they
do not fill up before a tape backup can be made. OnLine keeps statistics
that help you adjust these parameters after your OnLine database server

3-4 Installing and Configuring OnLine

Planning for INFORMIX-OnLine Dynamic Server

has been nrnning for a while. Your archiving strategy also needs to take
into account availability of tape drives. Archiving is discussed in the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide.

• What are the UNIX kernel parameters? How much shared memory is
available? How much of it can you use for OnLine?

You might need the assistance of the UNIX system administrator to eval
uate and modify the UNIX kernel parameters.

• What are the network names and addresses of the other computers on
your network? Does your system run NIS?

You might need the assistance of the network administrator to update the
operating system network files.

Administering OnLine
OnLine provides a variety of administrative tools to create configuration
files, to change modes, to change various aspects of your configuration, and
to monitor statistics about the database server. The tools include:

• ON-Monitor

• ON-Archive

• ON-Audit

• OnLine utilities

These tools are discussed in Chapter 34, "ON-Monitor," and Chapter 37,
"OnLine Utilities."

Other tools used for monitoring the behavior of the OnLine database server
include:

• OnLine message log
• The sysmaster database
• Console

These tools are discussed in Chapter 38, "OnLine Message Log Messages,"
and Chapter 36, "The sysmaster Database."

Installing and Configuring OnLine 3-5

Installing INFORMIX-OnLine Dynamic Server

Installing INFORMIX-OnLine Dynamic Server
Installation refers to the process of loading the product files onto your UNIX
system and running the installation script to correctly set up the product files.
Some of the specific steps that you should follow as part of your installation
of OnLine depend on your environment. The next several sections cover
installation of OnLine for the following environments:

• Installing OnLine when no other Informix products are present
• Upgrading a previous version of OnLine
• Installing OnLine when INFORMIX-SE is already present
• Running multiple OnLine database servers on one host computer

Installing OnLine When No Other Informix Products Are
Present

The UNIX Products Installation Guide gives complete instructions for install
ing OnLine when no other Informix products are already installed on your
computer. Please refer to the UNIX Products Installation Guide for instructions.

Installing OnLine When Other Informix Products Are
Present

If you are installing several Informix products, you should install them in this
order:

1. Client application products, such as INFORMIX-ESQL/C or
INFORMIX-4GL

2. Database server products, such as OnLine and INFORMIX-SE

3. Networking products, such as INFORMIX-STAR or INFORMIX-NET

4. Gateway products, such as INFORMIX-Gateway with DRDA

The UNIX Products Installation Guide gives instructions for installing each
product. The individual product guides give any additional information that
might be required. Please refer to those guides.

Installing OnLine When SE Is Already Present
If you are installing OnLine on a computer that already has an INFORMIX-SE
database server, you do not need to create a new $INFORMIXDIR directory.
OnLine can be installed in the same directory as INFORMIX-SE. Follow the

3-6 Installing and Configuring OnLine

Installing INFORMIX-OnLine Dynamic Server

installation instructions in the UNIX Products Installation Guide but skip the
steps that create group informix, user informix, and the informix directory
because they should already exist.

After OnLine is installed, configured, and working properly, you might want
to move databases from INFORMIX-SE to OnLine. OnLine databases and SE
databases have different internal formats. To move databases from SE to
OnLine, refer to "Moving Data from SE to OnLine" on page 31-16.

Upgrading an Earlier Version of OnLine
When you install INFORMIX-OnLine Dynamic Server, Version 6.0, on a com
puter that already has an earlier version of OnLine, you must do the follow
ing tasks before installation:

1. Decide where to store the Version 6.0 files.
When you install OnLine it overwrites any files associated with OnLine
that may exist in the $INFORMIXDIR directory. If you want to preserve
your files of previous versions files, you should create a new directory for
the Version 6.0 product.

2. Make sure you have enough space for the new OnLine.
Refer to the INFORMIX-OnLine Dynamic Server Migration Guide for infor
mation about space requirements.

3. Protect your current (pre-6.0) data.
To protect your current data, you should run checks for consistency and
make a level-0 archive. Refer to the archiving instructions in the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide for your
current version of OnLine.

4. Save a copy of the current (pre-6.0) configuration file. Print it out to use as
you make your new configuration file.

5. Take OnLine off-line.
6. Verify that you are logged in as user root. Make sure that your INFOR-

MIXDIR environment variable is set to the directory where the new
software will be installed. Environment variables are discussed in Chap
ter 4 of the Informix Guide to SQL: Reference.

7. Follow the instructions in the UNIX Products Installation Guide but do not
re-create the informix user and directory. The script installs OnLine, Ver
sion 6.0, into the $INFORMIXDIR directory specified for user root. Note
that the installation script does not bring OnLine on-line.

8. Refer to the INFORMIX-OnLine Dynamic Server Migration Guide for
upgrade instructions.

Installing and Configuring OnLine 3-7

Configuration Overview

Warning: Do not initialize disk space when you upgrade your Online. If you ini-
/ ! \ tialize disk space, you will destroy all of your existing data.

Configuration Overview
After Online is installed, it must be configured before it can be brought on
line. Configuration refers to setting specific parameters that customize the
Online database server for your data processing environment: quantity of
data, number of tables, types of data, hardware, number of users, and secu
rity needs. Choosing appropriate configuration parameters is one of the
major topics of this book.

This section introduces the files, environment variables, and utilities used by
Online. It provides a foundation for more detailed information about config
uration that is discussed throughout this book.

Configuration Files
A complete summary of the files used by Online is in Chapter 42, "Tiles
Used by Online." The two files that are used in configuring all Online data
base servers are onconfig.std and sqlhosts.

The onconfig.std File
The $INFORMIXDIR/etc/onconfig.std file is the configuration file template. It is
loaded into the $INFORMIXDIR/etc directory during the Online installation
procedure. The onconfig.std file contains default values for the configuration
parameters and serves as the template for all other configuration files that
you create. A sample onconfig.std file is shown on page 42-10.

The sqlhosts File
The $INFORMIXDIR/etc/sqlhosts file is the connectivity file. It contains infor
mation that enables an Informix client application to connect to any Informix
database server on the network. It specifies the database server name, the
type of connection, the name of the host computer, and the service name.

You must prepare the sqlhosts file even if both the client application and the
Online database server are on the same computer. The sqlhosts file is cov
ered in detail in "The $INFORMIXDIR/etc/sqlhosts File" on page 4-10.

3-8 Installing and Configuring Online

Configuration Overview

Environment Variables Used by OnLine
Environment variables are discussed in detail in Chapter 4 of the Informix
Guide to SQL: Reference. They are also discussed in appropriate spots through
out this book.

You need to be particularly of the following environment variables, which
must be correctly set before you can initialize OnLine:

• INFORMIXDIR

• PATH

• ONCONFIG
• INFORMIXSERVER

The INFORMIXDIR environment variable contains the full pathname of the
directory where the Informix products are installed. The PATH environment
variable must include the directory where the OnLine executable files are
stored. You set these values during installation. The ONCONFIG environment
variable specifies the name of the active ONCONFIG configuration file. If the
ONCONFIG environment variable is not present, OnLine uses configuration
values from the file $INFORMIXDIR/etc/onconfig. For information about the
onconfig file, see "onconfig" on page 42-7.

The INFORMIXSERVER environment variable specifies the name of the
default database server. You set it after you prepare the ONCONFIG configu
ration file. Strictly speaking, INFORMIXSERVER is not required for initializa
tion. However, if INFORMIXSERVER is not set, OnLine does not build the
sysmaster tables. (Refer to "What Is the sysmaster Database?" on page 36-3.)
Also, INFORMIXSERVER is required for the ON-Monitor and DB-Access
utilities.

The following environment variables are not required for initialization, but
they must be set before you can use OnLine with an application:

• TERM

• TERMCAP or TERMINFO (optional)

• INFORMIXTERM (optional)

The TERM, TERMCAP, TERMINFO, and INFORMIXTERM environment vari
ables specify the type of terminal interface. You might need assistance from
the UNIX system administrator to set these variables because they are highly
system dependent.

Installing and Configuring OnLine 3-9

Configuring a Learning Environment

Multiple OnLine Database Servers
When more than one independent OnLine 6.0 database server runs on the
same host computer, it is called multiple residency. To prepare to use multiple
OnLine database servers, first install and configure one OnLine database
server following the instructions in this chapter. Then refer to Chapter 6,
"Using Multiple Residency."

Warning: You prepare multiple residency by initializing multiple OnLine database
servers. Do not try to install the same version o f OnLine more than once from the
install media.

Configuring a Learning Environment
If this is your first experience with OnLine, you might want to start by con
figuring a learning environment. The learning environment allows you to
prepare a working OnLine database server with a minimum of time and
effort. It is also a quick way to check that the new OnLine is working cor
rectly, that is, that the installation was successful.

The instructions in this section allow you to build an OnLine database server
that is suitable for a few users and moderate-sized databases. This environ
ment is not expected to serve as a final configuration; it just allows you to see
a working OnLine database server. After you have some practice using
OnLine, you can reconfigure the database server for a production environ
ment. (See "Configuring a Production Environment" on page 3-17.)

The following list outlines the steps for creating a learning environment. Each
step is described in detail in the following sections.

1. Log in as user informix
2. Choose names for your configuration file and your database server
3. Set environment variables
4. Allocate disk space for data storage
5. Prepare an ONCONFIG configuration file
6. Prepare the connectivity file (sqlhosts)

7. Start OnLine

8. Practice using OnLine

3-10 Installing and Configuring OnLine

Configuring a Learning Environment

Log in as User Inform ix
Most administrative tasks require that you log in as user informix or user
root. For this example, you should log in as user informix.

Choose Names
Choose a name for your ONCONFIG configuration file that indicates how the
file is used. The examples in this section use the name onconfig.leam for the
ONCONFIG file.

Choose a name for your OnLine database server. This name is called the
dbservername. You will use the dbservername when you set environment vari
ables, in the ONCONFIG configuration file, and in the sqlhosts file. The exam
ples in this section use the name leam_online.

The dbservername must be 18 or fewer characters and can include lowercase
characters, numbers, and underscores. It should begin with a letter. The data
base server name must be unique within your network, so Informix recom
mends choosing a descriptive name such as online jio s tn a m e or
accounting_onlinel.

Set Environment Variables
Before you start the configuration process, set the following environment
variables:

• Set the INFORMIXDIR environment variable to the full pathname of the
directory in which OnLine is installed.

• Set the PATH environment variable to include the $INFORMIXDIR/bin
directory.

• Set the ONCONFIG environment variable to the configuration file that you
just chose: onconfig.leam.

• Set the INFORMIXSERVER environment variable to the database server
name that you just chose: leam_online.

For information about setting environment variables, refer to your UNIX doc
umentation. The following example illustrates setting the ONCONFIG envi
ronment variable in the C shell and the Bourne (or Kom) shell:

C shell: se te n v ONCONFIG o n c o n f ig .le a m
Bourne shell: ONCONFIG=onconf i g . le a rn

e x p o rt ONCONFIG

Installing and Configuring OnLine 3-11

Configuring a Learning Environment

Allocate Disk Space for Data Storage
The UNIX operating system allow s you to use tw o different types of disk
space: raw and cooked. Cooked disk space or cooked file space refers to ordinary
UNIX files. It is space that has already been organized and that UNIX adm in
isters for you. Raw disk space is unform atted space that OnLine adm inisters.
OnLine allow s you to use either type of disk space (or a m ixture of both
types).

To gain the full benefits of OnLine capabilities, you must use raw space.
However, cooked space is easier to use and is acceptable for many environ
ments. The instructions for the learning environment assume that you will
use cooked space. To learn more about cooked space and raw space, refer to
" Where Is Data Stored?" in Chapter 10 for a general discussion and to "Man
aging Disk Space" in Chapter 11 for instructions about allocating disk space.

Informix refers to its biggest unit of physical disk storage as a chunk. For your
learning environment, the file you create becomes one chunk. Later, in a pro
duction environment, you will allocate more chunks. For more information
about chunks, refer to Chapter 11, "Managing Disk Space."

The cooked file for your learning environment should be in a directory that
you control and that has sufficient space allocated. The default values given
in the configuration file require 20 megabytes of disk space. Do not put your
cooked file space in the home directory of user inf ormix, nor in the directory
where the executable code for the OnLine database server is installed (the
$INFORMIXDIR). Space requirement issues are discussed in "How Much Disk
Space Do You Need to Store Your Data?" on page 10-27.

Note: The default values in the configuration file assume that you are starting an
active, medium-sized production system. If your learning environment is short of
space, you can reduce the default value of ROOT SIZE from 20 megabytes to 7 mega
bytes, without changing other parameters in your ONCONFIG file.

3-12 Installing and Configuring OnLine

Configuring a Learning Environment

Prepare the Cooked File Space
The details for setting up a cooked file space vary slightly from one UNIX
installation to another. Figure 3-1 shows a typical example of the commands
you need to prepare the cooked disk space. This example assumes that you
plan to store the cooked space in the file: /usr/data/root_chunk.

Step Command Comments

1 . % cd / u sr/ d ata Change directories to the directory where the
cooked space will reside.

2. % c a t /d ev/null > ro o t_ch u n k Create your root chunk by concatenating null to a
file. Informix recommends that you name this file
something descriptive, such as root_chunk, to
simplify keeping track of your space.

3. % chmod 660 ro o t_ch u n k Set the permissions of the file to 660 (rw-rw—).

4. % I s - l g ro o t_ch u n k
-rw -rw ------- 1 in fo r m ix in fo rm ix

0 O ct 12 1 3 :4 3

Verify that both group and owner of the file are
informix. You should see something similar to this
line (which is wrapped around in this example).

Figure 3-1 Preparing cooked file space for OnLine

Prepare the ONCONFIG Configuration File
The ONCONFIG configuration file contains values for parameters that describe
the OnLine environment. You can have several different ONCONFIG config
uration files to describe different environments, such as learning, develop
ment, and production.

An overview of the ONCONFIG configuration parameters is in "Overview of
Configuration Parameters" on page 3-19. Chapter 35, "OnLine Configuration
Parameters," gives a complete list of the ONCONFIG configuration parame
ters, including a summary of their functions and default values.

All OnLine configuration files reside in the $INFORMIXDIR/etc directory.
One of the files loaded during the installation of OnLine is onconfig.std
("OnLine configuration standard"). It contains default values for the
ONCONFIG parameters and serves as the template for all other ONCONFIG
configuration files that you create. Do not modify onconfig.stdl

To prepare a configuration file for the learning environment, copy onconfig.
std into your own configuration file and then modify the parameters. Infor
mix provides a menu-based utility, ON-Monitor, for modifying the
configuration file. You can use ON-Monitor to modify your configuration file,

Installing and Configuring OnLine 3-13

Configuring a Learning Environment

but because only a few values need to be set for the learning environment, it
is probably more convenient to use a text editor, such as vi or emacs. The
ON-Monitor utility is described in Chapter 34, "ON-Monitor."

Preparing the ONCONFIG File for a Learning Environment
To prepare the ONCONFIG file for a learning environment, you should follow
these steps:

1. Change directories to the $INFORMIXDIR/etc directory and copy the
onconfig.std file into a new file in that directory, using the name that you
chose for your ONCONFIG file. For example:

Cd $INFORMIXDIR/etc
cp onconfig.std onconfig.learn

You can use $INFORMIXDIR as a variable so that you do not need to keep
typing a (possibly) long pathname.

2. Edit onconfig.learn to modify these parameters:
• ROOTPATH /usr/data/root_chunk

ROOTPATH is the full directory pathname of the cooked file space that
you created in the previous section. In this example, the pathname of
the cooked space is /usr/data/root_chunk.

• TAPEDEV /dev/null
LTAPEDEV /dev/null

Setting these parameters to /dev/null allows OnLine to behave as if
tape drives were present and log files were being backed up, but in
fact the output to tape is discarded. With these settings, you cannot
restore data. Also, ON-Archive does not work if LTAPEDEV is set to
/dev/null.
For a production environment, or to gain experience working with
archive and backup tools, you should set TAPEDEV and LTAPEDEV to
actual devices. For more information about logging, refer to
Chapter 16, "What Is Logging?" Refer to the INFORMIX-OnLine

3-14 Installing and Configuring OnLine

Configuring a Learning Environment

Dynamic Server Archive and Backup Guide for discussions of the effects
/dev/null.

• DBSERVERNAME leam_online
Change the DBSERVERNAME parameter to the dbservername you
chose for your database server. For this example, we have used lear-
n_online.
You already used the dbservername when you set the INFORMIX-
SERVER environment variable. You will use the dbservername in the
next section when you prepare the sqlhosts file. INFORMIXSERVER
tells an application which database server to use, and sqlhosts tells
the application how to connect to the database server.

• SERVERNUM some_number
Change the SERVERNUM parameter to some integer between 0 and
255. Each different OnLine instance must have a distinct value. You
could leave SERVERNUM set to its default value 0 for your first
OnLine, but that can cause problems in ON-Monitor when you start to
initialize a second OnLine. It is safer to set SERVERNUM to a unique,
nonzero value each time you make a new ONCONFIG file.

• MSGPATH a_pathname
If you installed the OnLine executables in the /usr/inf ormix directory,
as suggested in the UNIX Products Installation Guide, you do not need
to change this parameter. Otherwise set it to the directory where you
want the message log to be stored.

Prepare the Connectivity File
The sqlhosts file contains information that allows a client application to con
nect to a database server. For the learning environment, you can use the sim
plest possible connection, using shared memory.

For more information about shared-memory connections, refer to "The Com
munications Portion of OnLine Shared Memory" on page 14-29. For informa
tion about sqlhosts beyond what is needed for a simple configuration, refer
to "The $INFORMIXDIR/etc/sqlhosts File" on page 4-10.

Preparing the sqlhosts File for the Learning Environment
Make sure you are in the $INFORMIXDIR/etc directory and edit the sqlhosts
file. (The sqlhosts file should already be present. If it is not, create it.)

Installing and Configuring OnLine 3-15

Configuring a Learning Environment

You need to add one line (one entry) to the sqlhosts file. The entry has the fol
lowing four fields:

1. The dbservername. You have already used the dbservername to set the
INFORMIXSERVER environment variable and as the value of the DBSERV
ERNAME parameter. This example uses leam_online.

2. The type of connection. For a shared-memory connection, the value
needed is onipcshm.

3. The name of your host computer.
4. The servicename. For a shared-memory connection, the following state

ments are true:
• The servicename can be any short group of letters and numbers. This

example uses the value xyz.

• The servicename does not need to appear in any of the network con
nectivity files. (We will discuss these files later, when we discuss
network connections.)

You can separate the fields in the sqlhosts file with spaces or tabs. If the host
name of your computer is myhost, the sqlhosts entry looks like this:

le a r n _ o n l in e onipcshm m yhost xyz

Start Online Running
To start OnLine running for the first time, you must initialize both the disk
space and the shared memory that is used by the OnLine database server. To
do this, execute the following command:

Warning: When you execute this command, all existing data in the OnLine disk
space is destroyed. The - L flag is used ONLY when you are starting a brand-new
OnLine.

% o n i n i t - i

If you want to stop OnLine, execute the following command:

% onmode -k

3-16 Installing and Configuring OnLine

Configuring a Production Environment

This command asks if you really want to take OnLine off-line. It then tells you
how many users are currently using OnLine and asks if you want to proceed.
If you answer "y" to both questions, OnLine comes to off-line mode.

If you stop OnLine and want to restart it without destroying the information
on disk, use this command:

% o n i n i t

You can also start or stop OnLine using the ON-Monitor Mode menu. Refer to
"ON-Monitor Screen Options" on page 34-4.

For more information on initialization, see Chapter 9, "What Is Initializa
tion?" The various ways you can start the OnLine database server are dis
cussed in "oninit: Initialize OnLine" on page 37-16.

Practice Using OnLine
Your OnLine product includes DB-Access, an application that allows you to
create and query databases and tables. It is installed as part of the installation
process for OnLine. DB-Access includes scripts to create a practice database
that you can use to try out various OnLine features. Refer to the DB-Access
User Manual for information about creating the practice database.

You might want to practice using an archive and backup tool at this point. See
the INFORMIX-OnLine Dynamic Server Archive and Backup Guide for
guidance.

Configuring a Production Environment
The previous section, "Configuring a Learning Environment," covered the
minimum steps required to start a very basic OnLine database server. This
section covers the steps that you take to prepare an OnLine database server
for an actual production environment. It also gives pointers into other chap
ters that include detailed discussions of specific topics.

The following initial configuration tasks are discussed in this chapter:

1. Set environment variables
2. Prepare the ONCONFIG configuration file
3. Allocate disk space
4. Prepare the connectivity configuration file

Installing and Configuring OnLine 3-17

Configuring a Production Environment

5. Prepare the ON-Archive configuration file
6. Prepare for native language support
7. Evaluate UNIX kernel parameters
8. Start OnLine and initialize disk space
9. Create blobspaces and dbspaces (if desired)
10. Do administrative tasks

Set Environment Variables
Verify that you have set the INFORMIXDIR and PATH environment variables
correctly. INFORMIXDIR is set to the full pathname of the directory in which
you installed the OnLine product. The PATH environment variable should
include $INFORMIXDIR/bin.

After you prepare the ONCONFIG configuration file, which is discussed in the
next section, set the ONCONFIG environment variable to the name of the con
figuration file. Set INFORMIXSERVER to the default database server name
(dbservername).

The Native Language Support (NLS) feature of OnLine lets you use non-
English characters, monetary conventions and/or collating sequences. NLS is
discussed in Chapter 1 of the Informix Guide to SQL: Reference. If you are using
the NLS features of OnLine, you need to set following the NLS environment
variables:

• DBNLS
• LANG
• LC_xxx

Prepare the ONCONFIG Configuration File
You can create and modify the ONCONFIG configuration file using a standard
editor or by using the ON-Monitor utility. Directions for using ON-Monitor
are in Chapter 34, "ON-Monitor."

To prepare the ONCONFIG configuration file using a standard editor, follow
these steps:

1. Make a copy of the $INFORMIXDIR/etc/onconfig.std file.
Store the new file in the $INFORMIXDIR/etc directory. Do not modify
onconfig.std. Informix suggests that you choose a filename that reflects
the intended use of the configuration file (accounting, personnel, testing)

3-18 Installing and Configuring OnLine

Configuring a Production Environment

and the associated server number (for example, one on f i g . acctg4). Set
your ONCONFIG environment variable to the name of your new file.

2. Edit your new ONCONFIG file to modify the configuration parameters
that you have decided to change. For the initial configuration of Online,
you can leave most of the parameters set to their default values.
The following parameters must be reviewed and changed if necessary:
• ROOTPATH page 35-36
• SERVERNUM page 35-37
• DBSERVERNAME page 35-12
If you are using multiple communication protocols, you must set the fol
lowing parameter:
• DBSERVERALIASES page 35-11
You need to check the following parameters if you are using the ontape
archiving tool, or the onunload and onload utilities. (If you are using
ON-Archive, LTAPEDEV cannot be set to /dev/null.)
• TAPEDEV page 35-42
• LTAPEDEV page 35-24
You should verify that the following parameters have valid pathnames:
• MSGPATH page 35-27
• CONSOLE page 35-11

After your OnLine database server is configured and running, you should
review the configuration parameters. "Monitoring Configuration Informa
tion" on page 29-9 discusses different ways that you can examine your con
figuration.

Overview of Configuration Parameters
This section discusses the parameters of the ONCONFIG configuration file
grouped by function. It gives short descriptions of the parameters and point
ers to more detailed discussions.

Installing and Configuring OnLine 3-19

Configuring a Production Environment

Root Dbspace
The first piece of storage that you allocate is known as the root database space,
or root dbspace. It stores all the basic information that describes your OnLine
database server. The parameters that describe the root dbspace are as follows:
• ROOTNAME
• ROOTPATH
• ROOTOFFSET
• ROOTSIZE

page 35-35
page 35-36
page 35-35
page 35-36

You can choose any descriptive name for the ROOTNAME, but it is usually
called rootdbs, which is its default value. The ROOTPATH is the pathname of
the storage allocated to the root dbspace. Choosing and allocating of the stor
age are discussed in Chapter 11, "Managing Disk Space." ROOTSIZE is the
amount of space allocated to the root dbspace. Choosing an appropriate size
for the root dbspace is discussed in "Calculate the Size of the Root Dbspace"
on page 10-27. "Do You Need to Specify an Offset?" on page 11-5, discusses
the circumstances when you need to set ROOTOFFSET.

Identification Parameters
The identification parameters provide the unique identification of an OnLine
database server. The parameters are as follows:
• DBSERVERNAME page 35-12
• DBSERVERALIASES page 35-11
• SERVERNUM page 35-37

DBSERVERNAME specifies the name of the OnLine database server. The name
specified in DBSERVERNAME is called the database server name or dbserver-
name. You use the dbservername in the $INFORMIXDIR/etc/sqlhosts file and
with the INFORMIXSERVER environment variable. Client applications use the
dbservername in CONNECT, DATABASE and distributed database statements
and with the DBPATH environment variable. DBSERVERNAME is described in
"The DBSERVERNAME Configuration Parameter" on page 4-17.

DBSERVERALIASES specifies a list of alternative dbservernames when multi
ple communication protocols are used. (See "The DBSERVERALIASES Con
figuration Parameter" on page 4-18.)

3-20 Installing and Configuring OnLine

Configuring a Production Environment

The value given by SERVERNUM specifies a unique ID corresponding to the
Online instance. It must be unique for each Online database server on your
local host but does not need to be unique across your network. SERVERNUM
is described in "The Role of the SERVERNUM Configuration Parameter" on
page 5-4.

Mirroring
Mirroring allows very fast recovery from a disk crash while Online remains
in on-line mode. When mirroring is active, the same data is stored on two
disks simultaneously. If one disk fails, the data is still available on the other
disk. These parameters describe mirroring of the root dbspace:
• MIRROR page 35-26
• MIRRORPATH page 35-26
• MIRROROFFSET page 35-26

Mirroring has both positive and negative effects on performance: disk
updates are slower; disk reads are faster. Mirroring is discussed in
Chapter 23, "What Is Mirroring?"

Logical Logging
The logical log contains a record of changes made to an Online instance. The
logical-log records in the logical log are used to roll back transactions, recover
from system failures, and so on. These parameters describe logical logging:

LOGBUFF page 35-20
LOGFILES page 35-20
LOGSIZE page 35-21
LOGSMAX page 35-21
LTXHWM page 35-25
LTXEHWM page 35-25

The LOGBUFF parameter determines the amount of shared memory reserved
for the buffers that hold the logical-log records until they are flushed to disk.
You can use the default value for LOGBUFF unless your database server has
an unusually large number of transactions. After your OnLine database
server is operative, you use the system statistics to tune the buffer size.
LOGBUFF is discussed in "Logical-Log Buffer" on page 14-24 and is described
in "LOGBUFF" on page 35-20.

Installing and Configuring OnLine 3-21

Configuring a Production Environment

The logical-log records are stored on disk in logical-log files until they are
backed up to tape. LOGFILES specifies the number of logical-log files.
LOGSIZE is the size of each logical-log file. LOGSMAX is the maximum (not
the actual) number of log files that you expect to have. The number and size
of the logical-log files needed depends on the activity of your database server
and the frequency of log file backups. See "What Should Be the Size and
Number of Logical-Log Files?" on page 18-7.

A logical-log file cannot be reused by OnLine unless all of the transactions
recorded in the log have been completed. Because of this, a transaction that
takes a long time, a long transaction, can cause performance problems. The
long -transaction high-water mark parameter, LTXHWM, specifies the percent
age of the available logical log that can be used before OnLine takes moderate
action to avoid the undesirable effects of reaching the point of LTEXHWM. A
companion parameter, the long-transaction exclusive-access high-water mark,
LTEXHWM, is the point at which OnLine takes drastic action. These parame
ters are described in"Avoiding Long Transactions" on page 18-12.

Physical Logging
The physical log contains images of all pages (units of storage) changed since
the last checkpoint. The physical log is combined with the logical log to allow
fast recovery from a system failure. These parameters describe the physical
log:
• PHYSFILE page 35-33
• PHYSDBS page 35-33
• PHYSBUFF page 35-32

PHYSFILE specifies the size of the physical log. PHYSDBS specifies the name
of the dbspace where the physical log resides. When OnLine disk space is
first initialized, the physical log must reside in the root dbspace. Later, you
can move the physical log out of the root dbspace to improve performance.
When you change PHYSFILE or PHYSDBS, you must make a level-0 archive.
These parameters are discussed in Chapter 20, "What Is Physical Logging?"

The PHYSBUFF parameter determines the amount of shared memory
reserved for the buffers that serve as temporary storage space for pages about
to be modified. PHYSBUFF is discussed in "Physical-Log Buffer" on
page 14-25, and is described in "PHYSBUFF" on page 35-32.

3-22 Installing and Configuring OnLine

Configuring a Production Environment

Archiving and Logical-Log Backups
You can create archives and make logical-log backups for data managed by
OnLine using one of the following tools:

• ON-Archive
• ontape

You must choose one tool or the other. ON-Archive is the more powerful and
flexible method. It does not use parameters from the ONCONFIG file. Instead
it uses configuration parameters in the config.arc configuration file,
described in the INFORMIX-OnLine Dynamic Server Archive and Backup Guide.

The other method for archiving and logical-log backups uses the ontape util
ity. It is easier to configure but does not give as much flexibility or power. The
archiving parameters in the ONCONFIG configuration file are used only if
you decide to use the ontape utility (although TAPEDEV and LTAPEDEV
should not be set to /dev/null, even if you are using ON-Archive). These
parameters are as follows:

TAPEDEV page 35-42
TAPEBLK page 35-41
TAPESIZE page 35-44
LTAPEDEV page 35-24
LTAPEBLK page 35-23
LTAPESIZE page 35-24

TAPEDEV and LTAPEDEV specify tape devices. TAPEBLK and LTAPEBLK
specify the block size of the tape device. TAPESIZE and LTAPESIZE specify the
maximum amount of data that should be written to each tape. These param
eters are discussed in the INFORMIX-OnLine Dynamic Server Archive and
Backup Guide.

Message Files
The message files provide information about how OnLine is functioning.
These parameters give the pathnames of the message files:
• CONSOLE page 35-11
• MSGPATH page 35-27

CONSOLE specifies the pathname for console messages. Messages that
OnLine directs to the console require immediate action. The default value,
/dev/console, sends messages to the system console screen. MSGPATH is the
pathname of the OnLine message file. OnLine writes status messages and

Installing and Configuring OnLine 3-23

Configuring a Production Environment

diagnostic messages to this file. You should monitor this file regularly. The
message log is described in "What Is the Message Log?" on page 29-6. The
messages themselves are discussed in Chapter 38, "OnLine Message Log
Messages."

Shared-Memory Parameters
The following shared-memory parameters are very important to the perfor
mance of OnLine. They describe how space is allocated in shared memory.

USERTHREADS page 35-46
BUFFERS page 35-8
LOCKS page 35-19
TRANSACTIONS page 35-45
SHMBASE page 35-38
CHUNKS page 35-9
DBSPACES page 35-13
TBLSPACES page 35-44
RESIDENT page 35-35
LRUS page 35-22
LRU_MAX_DIRTY page 35-22
LRU_MIN_DIRTY page 35-23
CKPTINTVL page 35-10

USERTHREADS is the maximum number of user processes that can concur
rently attach to shared memory. You need to set USERTHREADS carefully
because the value you choose determines minimum values for three other
parameters: BUFFERS, LOCKS, and TRANSACTIONS.

BUFFERS is the number of shared-memory buffers available to the OnLine
database server. See "Shared-Memory Buffer Pool" on page 14-23 for a dis
cussion of shared-memory buffers.

LOCKS specifies the maximum number of locks available to OnLine user pro
cesses during transaction processing. You can use the default value (page
35-19) for LOCKS.

TRANSACTIONS is the maximum number of concurrent transactions sup
ported by OnLine. It is automatically set to the value of USERTHREADS. You
should not change the value unless you plan to use an X/Open environment.
(Refer to the INFORMIX-TP/XA User Manual)

3-24 Installing and Configuring OnLine

Configuring a Production Environment

SHMBASE is the shared-memory base address and is machine-dependent. Its
value is usually not changed.

CHUNKS specifies the maximum number of chunks supported by OnLine.
The value should be as close as possible to the maximum number of chunks
permitted, which is system dependent.

DBSPACES specifies the maximum number of dbspaces and is equal to or less
than the value of CHUNKS because each dbspace requires at least one chunk.

TBLSPACES is the maximum number of active tblspaces. The total of all disk
space allocated to a table is that table's tblspace, including data, indexes, blob
data, and the bit-map pages that track page usage.

Some systems allow you to specify that the resident portion of shared mem
ory must stay (be resident) in memory at all times. The RESIDENT parameter
specifies whether shared-memory residency is enforced. If forced residency
is not an option on your computer, this parameter is ignored. Residency is
discussed in "Setting Shared-Memory Configuration Parameters" on
page 15-3.

The LRUS (Least Recently Used) queues manage the shared-memory pool of
pages (memory spaces) where all activity of the database takes place. The
LRU parameters are used for performance tuning. You should use the default
values for the initial configuration. These parameters are discussed in
"OnLine LRU Queues" on page 14-32.

CKPTINTVL, the checkpoint interval, is the maximum time allowed to elapse
before a checkpoint. You should use the default values for the initial config
uration. Modifying CKPTINTVL to improve performance is discussed in "Set
ting Configuration Parameters for the Shared-Memory Performance Options
Using ON-Monitor" on page 15-12.

DEADLOCK_TIMEOUT specifies the amount of time that OnLine waits for a
shared-memory resource during a distributed transaction. TXTIMEOUT is the
amount of time a participant OnLine waits to receive a commit instruction
during a two-phase commit. These two parameters apply only to transac
tions that are taking place over a network. They are discussed in "Configura
tion Parameters Used in Two-Phase Commits" on page 32-34.

Time Intervals in a Networked Environment
• DEADLOCKJTIMEOUT
• TXTIMEOUT

page 35-14
page 35-45

Installing and Configuring OnLine 3-25

Configuring a Production Environment

Data M igration

Chapter 31, "Data Migration," explains the different options available for
moving data to or from OnLine. If, after looking at that information, you
decide to use onload and onunload to migrate data, you might want to set
one of the following parameters:

See "onunload: Transfer Binary Data in Page Units" on page 37-77 and
"onload: Create a Database or Table" on page 37-18.

Before you allocate the disk space, you should study the information about
disk space in Chapter 10, "Where Is Data Stored?" Directions for allocating
raw disk space are given in that chapter. If you want to use cooked disk space,
you can follow the instructions from "Prepare the Cooked File Space" on
page 3-13.

The connectivity file, $INFORMIXDIR/etc/sqlhosts, contains information
that is required to allow an Informix client application to connect to an Infor
mix database server, in this case OnLine. The content of the sqlhosts file is
covered in "The $INFORMIXDIR/etc/sqlhosts File" on page 4-10.

You do not need to specify all possible network connections in sqlhosts
before you initialize OnLine, but to make a new connection available you
must take OnLine off-line and bring it to on-line mode again.

If you are using a shared-memory interface on a single computer, you can use
the very simple sqlhosts entry illustrated in "Prepare the ONCONFIG Con
figuration File" on page 3-13.

Prepare the ON-Archive Configuration File
ON-Archive uses several configuration files, as described in "Chapter Over
view" on page 42-3. The most important file when configuring ON-Archive is
the config.arc file. It describes, among other things, the devices used for dif
ferent archiving and backup tasks. The INFORMIX-OnLine Dynamic Server
Archive and Backup Guide describes the parameters for the config.arc file.

• TAPEDEV
• LTAPEDEV

page 35-42
page 35-24

Allocate Disk Space

Prepare the Connectivity File

3-26 Installing and Configuring OnLine

Configuring a Production Environment

Prepare for Native Language Support
The NLS feature of all Version 6.0 products allows you to create databases
using the diacritics, collating sequence, and monetary and time conventions
of the selected language. There are no ONCONFIG configuration parameters
for NLS, but you must set the appropriate environment variables. NLS is dis
cussed in Chapter 1 of the Informix Guide to SQL: Reference.

Evaluate UNIX Kernel Parameters
Your OnLine product arrives with a machine-specific file called
$INFORMIXDIR/release/ONLINE_6.0, which contains recommended values
for UNIX kernel parameters. Compare the values in this file with your current
UNIX configurations.

The amount of memory available influences the values you can choose for the
shared-memory parameters. In general, increasing the space available for
shared memory enhances performance. You might also need to increase the
number of locks and semaphores.

If the recommended values for OnLine differ significantly from your current
environment, consider modifying your UNIX kernel settings. Background
information that describes the role of the UNIX kernel parameters in OnLine
is in "UNIX Kernel Configuration Parameters" on page 15-3.

Start OnLine and Initialize Disk Space
To bring OnLine to on-line mode, you can type the following command at the
system prompt:

oninit

If you are starting a brand-new OnLine database server, use the following
command to initialize the disk space as well as to bring OnLine into on-line
mode:

Warning: When you execute this command, all existing data in the OnLine disk
space is destroyed. The - i flag is used ONLY when you are starting a brand-new
OnLine.

% oninit -i

Installing and Configuring OnLine 3-27

Configuring a Production Environment

You can also initialize disk space using ON-Monitor. (See Chapter 34, "ON-
Monitor.")

Create Blobspaces and Dbspaces
Now that Online is initialized, you can create blobspaces and dbspaces as
desired. Blobspaces and dbspaces are described in Chapter 10, "Where Is
Data Stored?" The allocation and management of blobspaces and dbspaces
are discussed in Chapter 11, "Managing Disk Space."

Do Administrative Tasks
After you initialize Online, you need to do the following administrative
tasks:

• Prepare UNIX startup and shutdown scripts
• Warn the UNIX system administrator about cron jobs
• Make arrangements for tape management
• Make sure users have the correct environment variables

Prepare UNIX Startup and Shutdown Scripts
You can modify your UNIX startup script to initialize Online automatically
when your computer enters multiuser mode. You can also modify your UNIX
shutdown script to shut down Online in a controlled manner whenever
UNIX shuts down.

Prepare the Startup Script
To prepare the UNIX startup script, add UNIX and Online utility commands
to the UNIX startup script, so that the script performs the following steps:

• Set the INFORMIXDIR environment variable to the full pathname of the
directory in which Online is installed.

• Set the PATH environment variable to include the $INFORMIXDIR/bin
directory.

• Set the ONCONFIG environment variable to the desired configuration file.
• Set the INFORMIXSERVER environment variable so the sysmaster data

base can be updated (or created, if needed).

3-28 Installing and Configuring Online

Configuring a Production Environment

• Execute oninit, which starts OnLine and leaves it in on-line mode.
If you plan to initialize multiple versions of OnLine (multiple residency),
you must reset ONCONFIG and INFORMIXSERVER and re-execute oninit
for each instance of OnLine.

• If you are using ON-Archive, you might want start oncatlgr. Refer to the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide for more
information.

If different versions of OnLine, such as 5.0 OnLine and 6.0 OnLine, are
installed in different directories, you must reset INFORMIXDIR and repeat the
preceding steps for each different version.

Prepare the Shutdown Script
To shut down OnLine in a controlled manner whenever UNIX shuts down,
add UNIX and OnLine utility commands to the UNIX shutdown script, so that
the script performs the following steps:

• Set the INFORMIXDIR environment variable to the full pathname of the
directory in which OnLine is installed.

• Set the PATH environment variable to include the $INFORMIXDIR/bin
directory.

• Set the ONCONFIG environment variable to the desired configuration file.
• Execute onmode -ky, which initiates Immediate-Shutdown and takes

OnLine off-line.
If you are running multiple versions of OnLine (multiple residency), you
must reset ONCONFIG and re-execute onmode -ky for each instance of
OnLine.

If different versions of OnLine, such as 5.0 OnLine and 6.0 OnLine, are
installed in different directories, you must reset INFORMIXDIR and repeat the
preceding steps for each different version.

In the UNIX shutdown script, the OnLine shutdown commands should exe
cute after all client applications have completed their transactions and exited.

Warn UNIX System Administrator About cron Jobs
OnLine creates the .inf.servicename and/or VP.servemameC files in the /tmp
directory. Some UNIX systems run cron jobs that routinely delete all files
from the /tmp directory. For information about these files, see Chapter 42,
"Files Used by OnLine."

Installing and Configuring OnLine 3-29

Configuring a Production Environment

Make Arrangements for Tape Management
When you plan your data archive and logical-log backup schedule, as dis
cussed in the INFORMIX-OnLine Dynamic Server Archive and Backup Guide,
you need to take into account the availability of tape devices to manage the
data, and the availability of operators to perform the archives and backups.
If you use ON-Archive, you can take advantage of its ability to perform unat
tended operations.

Make Sure Users Have the Correct Environment Variables
You need to make sure that every user of an Informix product has the correct
environment variables. Environment variables are discussed in Chapter 4 of
Informix Guide to SQL: Reference.

Each user must set the following environment variables before acessing
Online:

• INFORMIXSERVER

• INFORMIXDIR

• PATH

In addition, all users who use Online utilities such as onstat must set the
ONCONFIG environment variable to the name of the ONCONFIG configura
tion file.

There are three techniques for setting INFORMIXSERVER, INFORMIXDIR,
PATH, and ONCONFIG:

• Ask the UNIX administrator to set these environment variables for every
user during the login procedure.

• Modify the login procedures for each Online user so that these environ
ment variables are set during login.

• Educate your users to set the environment variables by hand every time
they want to work with Online.

The user might need other environment variables, such as TERMCAP and
LC_COLLATE to fully describe his/her environment. You can prepare an
environment configuration file, $INFORMIXDIR/etc/informix.rc, which sets
additional environment variable for each user of Online. The individual user
can override environment variables set at login time or set by inf ormix.rc by
using a private environment variable file, ~/.informix, or by setting the vari
able at the system prompt. The environment variable files are discussed in
Chapter 4 of the Informix Guide to SQL: Reference.

3-30 Installing and Configuring OnLine

Configuring a Production Environment

If you use ON-Archive, users might want to set the ARC_DEFAULT environ
ment variable to the filename of an alternate qualifier defaults file. See the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide for more infor
mation about ON-Archive.

Installing and Configuring Online 3-31

Configuring
Connectivity
Chapter Overview 3

Types of Client/Server Connections 3
Shared-Memory Connections 4
Network Connections 5

Connection Between Two Computers 5
Local Loopback Connections 6

Connectivity Files 7
Network Configuration Files 7

Using the TCP/IP Communication Protocol 8
Using IPX/SPX Connections 9

Network Security Files 9
The /etc/hosts.equiv and ~/.rhosts Files 9
The ~/.netrc File 10

The $INFORMIXDIR/etc/sqlhosts File 10
Editing the sqlhosts File 12
The dbservemame Field 12
The nettype Field 12
The hostname Field 14
The servicename Field 15

ONCONFIG Parameters for Connectivity 17
The DBSERVERNAME Configuration Parameter 17
The DBSERVERALIASES Configuration

Parameter 18

Environment Variables for Network Connections 19

Examples of Client/Server Configurations 19
Using a Shared-Memory Connection 20
Using a Local Loopback Connection 21

Using a Network Connection 21
Using Multiple Connection Types 23
Accessing Multiple 6.0 Online Database Servers 25
Using the 6.0 Relay Module 26

A Relay Module Configuration with Three Database Servers 28
Using 5.0 INFORMIX-STAR or 5.0 INFORMIX-NET 29
Using a 6.0 Client Application with a 5.0 Database Server 30

4-2 Configuring Connectivity

Chapter Overview
This chapter describes how to configure database server and client environ
ments so that client applications can connect to INFORMIX-OnLine Dynamic
Server database servers. The $INFORMIXDIR/etc/sqlhosts file contains the
necessary information about the location and connection type(s) of each data
base server. The parameters in the ONCONFIG configuration file let you
adjust the Online database server for different environments.

The chapter is divided into the following parts:

• Definition of types of client/server connections
• Description of connectivity files
• Description of ONCONFIG connectivity parameters
• Examples of client/server configurations

Note: For the remainder of this chapter*, the $INFORMIXDIR/etc/sqlhosts file will
be referred to as the sqlhosts file.

Types of Client/Server Connections
The connection between a client application and a database server is handled
by functionality that is integrated into all Informix Version 6.0 database
server products. This functionality handles all connections between the client
application and the database server. To connect to a database server (using,
for example, the CONNECT statement), the client application specifies only
the name of the database server. Online uses the database server name to
look up information about the computer on which the database server is run
ning and about the type of connection that should be made.

Version 6.0 of Online introduces several changes to the way connections
between client applications and database servers are handled. These changes
are summarized in Changes from Version 5.0 in the release notes and in the
INFORMIX-OnLine Dynamic Server Migration Guide.

Configuring Connectivity 4-3

Types of Client/Server Connections

Online uses the following types of connections to communicate between cli
ent applications and database servers:

• Shared-memory connections

• Network connections

You can connect many different client applications to the same Online data
base server, using both shared memory and network connections. The fol
lowing sections explain each of these connections.

Shared-Memory Connections
You can use shared-memory connections only when the client application and
the database server are on the same computer. The shared memory used for
communications is not the same as the resident shared memory used by
Online. See "The Communications Portion of Online Shared Memory" on
page 14-29 for a discussion of shared-memory communications. Figure 4-1
shows a shared-memory connection.

computer

Figure 4-1 A shared-memory connection

Shared memory provides very fast access to a database server, but it poses
some security risks. Shared-memory communication is vulnerable to pro
gramming errors if the client application does explicit memory addressing or
over-indexes data arrays. Such errors do not affect the application if you use

4-4 Configuring Connectivity

Types of Client/Server Connections

IPC unnamed pipes or network communication. For more information about
shared-memory communication, refer to "Where the Client Attaches to the
Communications Portion" on page 14-11

Network Connections
You must use a network connection when the client resides on one computer
and the database server resides on another computer. You can also use a net
work connection when both the client application and the database server are
on the same computer. Both of these configurations are explained in the fol
lowing sections.

Online supports the following types of network connections:

• TCP/IP using sockets
• TCP/IP using TLI
• IPX/SPX using TLI

The machine notes file that is part of your installation package tells which
connection types are supported for your platform. (See "Useful On-Line
Files" on page 9 of the Introduction.)

Connection Between Two Computers
Figure 4-2 shows a network connection where the client application resides
on one computer and the database server resides on another computer.

Figure 4-2 A network connection

Configuring Connectivity 4-5

Types of Client/Server Connections

Local Loopback Connections
A network connection between a client application and a database server on
the same computer is called a local loopback connection. The networking facil
ities used are the same as if the client and the database server were on differ
ent computers. You cannot make a local loopback connection unless your
computer is equipped to process network transactions. Local loopback con
nections are not as fast as shared-memory connections, but they do not pose
the security risks of shared memory.

Figure 4-3 shows how a local loopback connection appears to the client appli
cation and to the database server. It is as if the information passes from the
network connection of the client, out of the computer, and then back in again
through the network connection of the database server.

Figure 4-3 Conceptual illustration of local loopback connection

You can think of a local loopback connection as shown in Figure 4-3, but the
diagram in Figure 4-4 is a more accurate representation of local loopback. Fig
ure 4-4, which illustrates a local loopback connection, differs from the shared-
memory diagram in Figure 4-1 on page 4-4 only in the type of connection
between the client application and the database server.

4-6 Configuring Connectivity

Connectivity Files

Figure 4-4 A local loopback connection

Connectivity Files
The connectivity files contain the information that enables a client application
to communicate with a database server. These files also enable a database
server to communicate with another database server, as in data replication or
distributed joins. The connectivity configuration files can be divided into
three groups:

• Network configuration files
• Network security files
• $INFORMIXDIR/etc/sqlhosts

The following sections describe each of these files. Of these files, the Online
administrator manages only the sqlhosts file. You must have an sqlhosts file
on each computer that has either a client application or a database server. The
other files are managed by the UNIX system (or network) administrator or by
the end user.

Network Configuration Files
Online supports both TCP/IP and IPX/SPX communications protocols. You
need different network configuration files for the different communication
protocols.

Configuring Connectivity 4-7

Connectivity Files

Using the TCP/IP Communication Protocol
When you use the TCP/IP communication protocol, you use information
from the network configuration files /etc/hosts and /etc/services to prepare
the sqlhosts file. The network administrator maintains these files, so you
need to work closely with the network administrator to make sure the infor
mation is accurate.

The /etc/hosts and /etc/services files must be present on each computer that
runs an Informix client/server product, or on the NIS server if your network
uses Network Information Service (NIS).

The /etc/hosts File
The /etc/hosts file needs a single entry for each computer on the network that
uses an Informix client/server product. Each line in the file contains the fol
lowing information:

• Internet_address
• hostname
• host aliases (optional)

While the length of the hostname is not limited in the /etc/hosts file, it is lim
ited to 64 characters in the sqlhosts file. Figure 4-8 on page 4-15 includes a
sample /etc/hosts file.

The /etc/services File
The /etc/services file contains an entry for each service available through
TCP/IP. Each entry is a single line containing the following information:

• service-name
• port-number protocol
• aliases (optional)

The service-name and port-number are arbitrary. However, they must be
unique within the file and must be identical on all computers running Infor
mix client/server products. The aliases field is optional. For example, an
/etc/services file might include the following entry for an OnLine database
server:

o n lin e 2 1526/ tcp

4-8 Configuring Connectivity

Connectivity Files

This entry makes an Online database server known across the network as
one of the services available for authorized users. Figure 4-8 on page 4-15
includes a sample /etc/services file.

Warning: On systems that use NIS, the letc/hosts and I etc! services files are main
tained on the NIS server. The letclhosts and I etc! services files that reside on your
local computer are not used and may not be up to date. You can view the contents of
the NIS files by entering these commands at the system prompt: y p ca t h o s t s and
y p c a t s e r v i c e s .

For information about the /etc/hosts and /etc/services files, you can refer to
the documentation for your installation and to the UNIX manual pages for
hosts and services.

Using IPX/SPX Connections
When you use the IPX/SPX connections, the network configuration files vary
from one vendor to another. Talk with the network administrator of your
operating system to find out what files are required.

Network Security Files
Informix products follow standard UNIX security procedures, governed by
information contained in the network security files. For a client application
to connect to a database server on a remote computer, the user of the client
application must have a valid user ID on the remote computer (that is, entries
in /etc/password and, if appropriate, /etc/shadow).

Users can explicitly specify the user ID and password that is used for connec
tion to the remote computer by putting entries in the .netrc file in their home
directory. The client application can specify a user ID and password in the
USER clause of the CONNECT statement. If a user has specified an ID in the
~/.netrc file and the client application has also specified an ID, the user ID and
password specified by the client application takes precedence. For more
information about the CONNECT statement, refer to the Informix Guide to
SQL: Syntax.

The letclhosts.equiv and ~/.rhosts Files
The /etc/hosts.equiv and ~/.rhosts files are optional files on the computer
running the database server. They specify which remote hosts and user are
trusted by that host. Trusted users are allowed to access the system without
supplying a password. The database server uses these files to determine
whether a remote client should be allowed access to the server without

Configuring Connectivity 4-9

Connectivity Files

specifying a password explicitly. The /etc/hosts.equiv file applies to the
entire system. Individual users can maintain their own .rhosts file in their
home directories.

For information about the UNIX security procedures and trusted computers,
refer to the documentation for your installation and to the UNIX manual
pages for hosts.equiv.

The ~l.netrc File
If the client does not provide a user ID and password with the USER clause of
the CONNECT statement, the database server looks up a user ID and pass
word in the .netrc file, if one is available.

The .netrc file is an optional file in the home directory of the user that speci
fies user identity data. A user can use this file if he or she is not a trusted user
or not on a computer that is trusted by the remote database server. The user
can also use the .netrc file if he or she has a different user ID and password on
the remote computer.

For information about this file, refer to the documentation for your installa
tion and to the UNIX manual pages for .netrc.

The $INFORMIXDIR/etc/sqlhostsFile
The sqlhosts file contains information that lets a client application find and
connect to an Informix database server anywhere on the network. The sql
hosts file contains an entry (one line) for each type of connection to each data
base server on the network. Each entry in the sqlhosts file has the following
four fields, which are covered in detail in the next sections:

• The dbservername field
• The nettype field
• The hostname field
• The servicename field

4-10 Configuring Connectivity

Connectivity Files

Figure 4-5 shows a sample sqlhosts file.

dbservemame nettype hostname servicename
field field field field

menlo onipcshm valley shm_file
menlo2 ontlitcp valley menlo_on
newyork ontlitcp hill online2
Pittsburgh onsoctcp canyon online3

Figure 4-5 Sample sqlhosts file

A client application uses the sqlhosts file when it issues a connection state
ment, such as:

CONNECT TO 'Qdbservername'

The dbservemame corresponds to an entry in the dbservemame field of the
sqlhosts file. For example, using the sqlhosts file in Figure 4-5, the client
application could issue the following statement:

CONNECT TO '@menlo2'

The entry for menlo2 provides the information required for the client appli
cation to complete a connection to the menlo2 database server. To connect to
the menlo2 database server and open database localinfo, the client applica
tion would issue the following statement:

CONNECT TO 'localinfo@menlo2'

The CONNECT statement is fully documented in the Informix Guide to SQL:
Syntax.

If you install INFORMIX-SE or INFORMIX-Gateway with DRDA in the same
directory as Online, your sqlhosts file will also contain entries for the SE,
Gateway, and non-Informix database servers. However, this manual covers
only the entries for Online. For information about other entries in the sql
hosts file, please refer to the INFORMIX-SE Administrator's Guide and the
INFORMIX-Gateway with DRDA User Manual.

Configuring Connectivity 4-11

Connectivity Files

Editing the sqlhosts File
You can edit the sqlhosts file using any convenient text editor. For entries that
refer to Online database servers, you must observe the following syntax
rules:

• The dbservername field can include any printable character other than an
uppercase character, a field delimiter, a new-line character, or a comment
character. It is limited to 18 characters.

• The nettype field can include the values summarized in Figure 4-7 on
page 4-14.

• The hostname and servicename fields can include any printable charac
ter other than a field delimiter, a new-line character, or a comment
character. The hostname field is limited to 64 characters, and the service-
name field is limited to 128 characters.

The fields can be delimited by spaces or by tabs. You cannot include any
spaces or tabs within a field. You can put comments into the sqlhosts file by
starting a line with the comment character (#)

The dbservernam e Field
The dbservername (database server name) field contains the name of a data
base server (dbservername), as specified by the DBSERVERNAME and
DBSERVERALIASES configuration parameters in the ONCONFIG configura
tion file. These configuration parameters are discussed in "ONCONFIG
Parameters for Connectivity" on page 4-17. Each database server across all of
your associated networks must have a unique dbservername. If the sqlhosts
file has multiple entries with the same dbservername, only the first one is
used.

Online uses the dbservername as the index to obtain the connectivity infor
mation in the remaining fields when you initialize Online and when client
applications connect to database servers.

The nettype Field
The nettype (network protocol type) field describes the type of connection
that should be made between the client application and the database server.

The nettype field is a series of eight letters composed of three subgroups, as
illustrated in Figure 4-6.

4-12 Configuring Connectivity

Connectivity Files

d d P

database interface type network protocol
server product

Figure 4-6 Format of the nettype field

The subfields of nettype are as follows:

The First Two Letters of nettype

The first two letters of nettype represent the database server product, as
follows:

on O n lin e (this is the more common form)
ol O n line

se INFORM IX-SE

dr INFORM IX-Gateway with DRDA

The Middle Three Letters of nettype

The middle three letters of nettype represent the interface that enables com
munications, as follows:

ipc IPC (interprocess communication)
soc sockets
tli TLI (transport level interface)

Interprocess communications (IPC) are UNIX-based connections used only for
communications between two processes running on the same computer. (For
information about IPC connections, refer to "The Communications Portion of
OnLine Shared Memory" on page 14-29.) The software that provides the
interface between a program and the network protocol driver is the network
interface. Informix supports two network interfaces: TLI and sockets.

Configuring Connectivity 4-13

Connectivity Files

The Final Three Letters of nettype

The final three letters of nettype represent the specific IPC mechanism or the
network protocol, as follows:

shm shared-memory communication
tcp TCP/IP network protocol
spx IPX/SPX network protocol

IPC connections for the Online database server use shared memory. The
rules or conventions for the behavior of networks are called network protocols.
Informix supports two network protocols: TCP/IP and IPX/SPX. The IPX/SPX
protocol is usually supported only on the TLI interface.

Figure 4-7 summarizes the nettype values for Online:

nettype Description Connection Type

onipcshm OnLine using shared-memory communication (IPC)
ontlitcp OnLine using TLI with TCP/IP protocol (network)
onsoctcp OnLine using sockets with TCP/IP protocol (network)
ontlispx OnLine using TLI with IPX/SPX protocol (network)

Figure 4-7 Summary of nettype values for OnLine

The hostnam e Field
The third field of the sqlhosts file is the hostname field because in many con
figurations it contains the name of the computer where the database server
resides. The following sections explain how you derive the values you use in
the hostname field.

Shared-Memory Communication
When you use shared-memory communication, you can choose an arbitrary
value for the hostname field. However, using the actual hostname makes your
sqlhosts file easier to maintain.

4-14 Configuring Connectivity

Connectivity Files

Network Communication Using TCP/IP
When you use the TCP/IP connection protocol, the hostname field serves as
a key into the /etc/hosts file, which gives the computer's network address.
The hostname that you use in the sqlhosts file must correspond to the host-
name in the /etc/hosts file. Figure 4-8 shows the relationship between the sql
hosts file and the /etc/hosts file for TCP/IP connections.

$INFORMIXDIR/etc/sqlhosts file

dbservemame nettype / hostname \ servicename

menlo2 ontlitcp / valley \ menlo_on
newyork ontlitcp j * hill \ online2
Pittsburgh onsoctcp / canyon \ online3

/etc/hosts file

net address i hostname i host alias(es)

29.9.925.6 \ 11111 / sales
66.9.30.62 \ canyon / acctg
35.14.30.43 \ valley /

Figure 4-8 Relationship of sqlhosts file with the I etc/hosts file when using TCP/IP

Network Communication Using IPX/SPX
When you use the IPX/SPX connection protocol, the hostname field of the
sqlhosts file contains the name of the NetWare file server. The name of the
NetWare file server is usually the UNIX hostname of the computer. However,
this is not required. You might need to ask the NetWare administrator for the
correct NetWare file server names.

Note: The display screens associated with NetWare installation utilities display the
NetWare file server name in capital letters, for example: valley. However, in the sq l
h o sts file, you can enter the name in either upper or lower case letters.

The servicenam e Field
The interpretation of the servicename field depends on the type of connec
tion specified in the nettype field.

Configuring Connectivity 4-15

Connectivity Files

Shared-Memory Communication
When you use shared-memory communication, OnLine uses the service-
name entry internally to look up the name of a file that contains shared-mem
ory information. The servicename field for a shared-memory connection can
be any value that is unique on the server computer.

Network Communication Using TCP/IP
When you use the TCP/IP connection protocol, the servicename must corre
spond to a servicename entry in the /etc/services file, as illustrated in Figure
4-9. The port number in the /etc/services file tells the network software how
to find the database server on the specified host. It does not matter what ser
vicename you choose, as long as you agree on a name with the network
administrator.

Network Communication Using IPX/SPX
A service on the IPX/SPX network is simply a program that is prepared to do
work for you, such as an OnLine database server. For an IPX/SPX connection,
the value in the servicename field can be an arbitrary string, but it must be
unique among the names of services available on the IPX/SPX network. It is
convenient to use the dbservername in the servicename field. When you use
INFORMIX-OnLine fo r NetWare 4.1, the servicename must be the same as the
dbservername.

4-16 Configuring Connectivity

ONCONFIG Parameters for Connectivity

ONCONFIG Parameters for Connectivity
When you initialize an OnLine database server, the initialization procedure
uses parameter values from the ONCONFIG configuration file. (For a general
discussion of OnLine initialization, refer to Chapter 9, "What Is Initializa
tion?") The following ONCONFIG parameters are related to connectivity:

• DBSERVERNAME

• DBSERVERALIASES

• NETTYPE

The next sections explain the DBSERVERNAME and DBSERVERALIASES con
figuration parameters.

The NETTYPE parameter is not a required parameter. It lets you adjust the
number and type of virtual processors used by the database server for com
munication. After your OnLine database server has been running for some
time, you might want to use the NETTYPE configuration parameter to tune
the database server for better performance.

For more information about DBSERVERNAME, DBSERVERALIASES, and
NETTYPE, refer to "Network Virtual Processors" on page 12-24.

The DBSERVERNAME Configuration Parameter
The DBSERVERNAME configuration parameter specifies a name, called the
dbservemame, for the database server. For example, to assign the value
nyc_research to dbservemame, use the following line in the ONCONFIG con
figuration file:

DBSERVERNAME nyc_research

When a client application connects to a database server, it must specify a
dbservemame. The entry in the sqlhosts file associated with the specified
dbservemame describes the type of connection that should be made.

Configuring Connectivity 4-17

ONCONFIG Parameters for Connectivity

Client applications specify the dbservername in the following places:

• In the INFORMIXSERVER environment variable
• In SQL statements such as CONNECT, DATABASE, CREATE TABLE, and

ALTER TABLE. For example:

CONNECT TO '@nyc_research'

• In the DBPATH environment variable

The DBSERVERALIASES Configuration Parameter
The DBSERVERALIASES parameter lets you assign multiple dbservernames to
the same OnLine database server. Figure 4-10 shows entries in an ONCONFIG
configuration file that assign three dbservernames to the same OnLine data
base server.

DBSERVERNAME sockets_online
DBSERVERALIASES ipx_online,shm_online

Figure 4-10 Example of DBSERVERNAME and DBSERVERALIASES parameters

The sqlhosts file associated with the dbservernames from Figure 4-10 could
include the entries shown in Figure 4-11. Since each dbservername has a cor
responding entry in the sqlhosts file, you can associate multiple connection
types with one database server.

shm_online onipcshm my_host my_shm
sockets_online onsoctcp my_host portl
ipx_online ontlispx nw_file_server ipx_online

Figure 4-11 Three entries in the sqlhosts file for one OnLine database server

Using the sqlhosts file shown in Figure 4-11, a client application uses the fol
lowing statement to connect to the database server using shared-memory
communication:

CONNECT TO '@shm online'

4-18 Configuring Connectivity

Environment Variables for Network Connections

A dient application can initiate a TCP/IP sockets connection to the same data
base server using the following statement:

CONNECT TO '@sockets online'

Environment Variables for Network Connections
The INFORMIXCONTIME (connect time) and INFORMIXCONRETRY (connect
retry) environment variables are client environment variables that affect the
behavior of the client when it is trying to connect to a database server. These
variables are used to minimize connection errors caused by busy network
traffic. Environment variables are documented in Chapter 4 of the Informix
Guide to SQL: Reference.

You do not need to set INFORMIXCONTIME or INFORMIXCONRETRY when
you configure and initialize Online. Users of client applications that connect
to Online using network connections might need to set these variables.

If the client application explicitly attaches to shared-memory segments, you
may need to set INFORMIXSHMBASE (shared-memory base). Refer to " Where
the Client Attaches to the Communications Portion" on page 14-11.

Examples of Client/Server Configurations
The next several sections show the correct entries in the sqlhosts file for sev
eral client/server connections. The following examples are included:

• Using a shared-memory connection

• Using a local loopback connection

• Using a network connection

• Using multiple connection types

• Accessing multiple 6.0 database servers

• Using the 6.0 relay module

• Using 5.0 INFORMIX-STAR or 5.0 INFORMIX-NET

• Using a 6.0 client with a 5.0 server

For more information about client/server connections, refer to "How a Client
Attaches to the Communications Portion" on page 14-10.

Configuring Connectivity 4-19

Examples of Client/Server Configurations

Note: In the following examples you can assume that the network-configuration files
/etclhosts and I etc! services have been correctly prepared, even if they are not
explicitly mentioned.

Using a Shared-Memory Connection
Figure 4-12 shows a shared-memory connection on the computer named
river.

Figure 4-12 A shared-memory connection

The ONCONFIG configuration file for this installation includes the following
line:

DBSERVERNAME river shm

The following table shows a correct entry for the sqlhosts file:

dbservemame nettype hostname servicename
river_shm onipcshm river rivershm

The client application connects to this database server using the statement:

CONNECT TO '@river shm'

Because this is a shared-memory connection, no entries in network configu
ration files are required. For a shared-memory connection, you can choose
arbitrary values for the hostname and servicename fields of the sqlhosts file.

4-20 Configuring Connectivity

Examples of Client/Server Configurations

Using a Local Loopback Connection
Figure 4-13 shows a local loopback connection. The name of the host com
puter is river.

TCP/IP
network
interface

Figure 4-13 A local loopback configuration

The network connection in Figure 4-13 uses sockets and TCP/IP, so the correct
entry for the sqlhosts file is as follows:

dbservemame nettype hostname servicename

river_soc onsoctcp river riverol

If the network connection uses a TLI interface instead of a sockets interface,
only the nettype entry in this example changes. In that case, the nettype entry
is o n t l i t c p instead of onsoctcp.

The ONCONFIG file includes the following line:

DBSERVERNAME river soc

This example assumes that an entry for river is in the /etc/hosts file and an
entry for riverol is in the /etc/services file.

Using a Network Connection
Figure 4-14 shows a configuration where the client application resides on
host river and the OnLine database server resides on host valley.

Configuring Connectivity 4-21

Examples of Client/Server Configurations

river

Figure 4-14 A network configuration

Note that an entry for the v a lle y _ o n lin e database server is in the sqlhosts
files on both computers. Each entry in the sqlhosts file on the computer
where the database server resides has a corresponding entry in the sqlhosts
file of the computer on which the client application resides.

Both computers are on the same TCP/IP network, but the host river uses sock
ets for its network interface, while the host valley uses TLI for its network
interface. The nettype field must reflect the type of network interface used by
the computer on which the sqlhosts file resides. In this example, the nettype
field for the valley_online database server on host river is onsoctcp , while
the nettype field for the valley_online database server on host valley is
o n t l i t c p .

4-22 Configuring Connectivity

Examples of Client/Server Configurations

The sqlhosts File Entry for an IPX/SPX Network
IPX/SPX usually uses a TLI interface. If the configuration in Figure 4-14 on
page 4-22 uses an IPX/SPX network instead of a TCP/IP network, the entry in
the sqlhosts file on both computers is as follows:

dbservemame nettype hostname servicename

valley_on ontlispx valley_nw valley_on

In this case, the hostname field contains the name of the NetWare file server.
The servicename field contains a name that is unique on the IPX/SPX net
work and is the same as the dbservemame.

Using Multiple Connection Types
An Online database server can provide more than one type of connection.
Figure 4-15 on page 4-24 illustrates such a configuration. Client A connects to
the database server using a shared-memory connection because shared mem
ory is fast. Client B must use a network connection because the client and
server are on different computers.

When an Online database server supports more than one type of connection,
you must take the following actions:

• Put DBSERVERNAME and DBSERVERALIASES entries in the ONCONFIG
configuration file

• Put an entry in the sqlhosts file for each database server/connection type
pair

For the configuration in Figure 4-15, the database server has two dbserver-
names: river_net and river_shm. The ONCONFIG configuration file includes
the following entries:

DBSERVERNAME river_net
DBSERVERALIASES river shm

Configuring Connectivity 4-23

Examples of Client/Server Configurations

river

sqlhosts on river

river_shm
river_net

onipcshm
onsoctcp

river
river

servicename
riverA
riveron

sqlhosts on valley
dbservemame nettype hostname servicename

I river_net ontlitcp river riveron

Figure 4-15 A configuration using multiple connection types

The dbservemame used by a client application determines the type of con
nection that is used. Client A connects to the database server using the fol
lowing statement:

CONNECT TO '@river shm'

In the sqlhosts file, the nettype associated with the name river_shm specifies
a shared-memory connection, so this connection is a shared-memory
connection.

4-24 Configuring Connectivity

Examples of Client/Server Configurations

Client B connects to the database server using the following statement:

CONNECT TO '@river net'

In the sqlhosts file, the nettype value associated with river_net specifies a
network (TCP/IP) connection, so client B uses a network connection.

Accessing Multiple 6.0 Online Database Servers
Figure 4-16 shows a configuration with two Online database servers on host
river. When more than one Online database server is active on one computer,
it is known as multiple residency. (See Chapter 5, "What Is Multiple Resi
dency?" for information about multiple residency.)

Figure 4-16 Multiple OnLine database servers

For the configuration in Figure 4-16, you must prepare two ONCONFIG con
figuration files, one for OnLine A and the other for OnLine B. The sqlhosts
file includes the connectivity information for both OnLine database servers.

The ONCONFIG configuration file for OnLine A includes the following line:

DBSERVERNAME riverA shm

Configuring Connectivity 4-25

Examples of Client/Server Configurations

The ONCONFIG configuration file for Online B includes the following line:

DBSERVERNAME riverB soc

Using the 6.0 Relay Module
Every Version 6.0 Informix database server includes a relay module that lets
Version 5.0 or Version 4.1 client applications connect to a local 6.0 database
server. The 6.0 relay module is used when a pre-6.0 client application con
nects to a local 6.0 database server using a shared-memory connection. For
network connections, pre-6.0 client applications can use either pre-6.0 con
nectivity products such as INFORMIX-NET or the 6.0 relay module. The relay
module serves a very important function—allowing connections between
Informix products from different release levels—but it is designed to be as
invisible as possible.

Figure 4-17 shows an example of a 5.0 client application connected to a 6.0
Online database server using the 6.0 relay module.

river

sqlhosts
dbservername nettype hostname servicename

river_shm onipcshm river rivershm

Figure 4-17 A configuration with a 5.0 client application and a 6.0 database server

To prepare this configuration, follow this process:

1. Verify that the Online database server works correctly with a 6.0 client
application that uses a shared-memory connection. (In other words, pre-

4-26 Configuring Connectivity

Examples of Client/Server Configurations

pare your configuration as you would for the configuration shown in
Figure 4-12 on page 4-20.)
Note that the sqlhosts file does not contain an entry for the connection
between the client and the relay module. The relay module does not affect
the sqlhosts file.

2. If 5.0 Informix products are installed in the same directory as 6.0 prod
ucts, set the SQLEXEC environment variable to the pathname of the 6.0
relay module. (The relay module is stored as $INFORMIXDIR/lib/sqlrm
as part of the installation process.) For example:

setenv SQLEXEC $INFORMIXDIR/lib/sqlrm

3. If the 5.0 Informix products are in a different directory from the 6.0 prod
ucts, take the following actions:
o Change the INFORMIXDIR environment variable to point to the direc

tory where the 5.0 products are installed.
o Modify the PATH environment variable to include

$INFORMIXDIR/bin.

o Set the SQLEXEC environment variable to the complete pathname of
the relay module. You cannot use the variable $INFORMIXDIR to set
the SQLEXEC environment variable, because the INFORMIXDIR envi
ronment variable now points to the directory of the 5.0 products,
instead of to the directory where the 6.0 products are stored. You must
use the exact pathname, such as:

setenv SQLEXEC /usr/version6/informix/lib/sqlrm

4. Remove extra environment variables
If Version 5.0 Informix products are in use, the user's environment might
include two environment variables that were required for Version 5.0
database servers: SQLRM and SQLRMDIR. The user must unset these vari
ables before the client application can use the 6.0 OnLine database server.
For example:

unsetenv SQLRM
unsetenv SQLRMDIR

Configuring Connectivity 4-27

Examples of Client/Server Configurations

The DBNETTYPE environment variable, used by the 5.0 database servers, is
not needed for the 6.0 OnLinedatabase server. You can unset the DBNETTYPE
environment variable if you wish, but it does not affect Version 6.0 products
in any way.

A Relay Module Configuration with Three Database Servers
Figure 4-18 shows an expanded version of the configuration in Figure 4-19.
This configuration has three possible connections (called A, B, and C)
between a 5.0 client application and 6.0 Online database servers. The client
application can use any of the connections, but only one connection can be
active at a time.

dbservername
A river_shm
B river_soc
C valley_tli

sqlhosts on river
nettype hostname

onipcshm river
onsoctcp river
onsoctcp valley

servicename
rivershm
riverol
valleyol

dbservername
valley_tli

sqlhosts on valley
nettype hostname

ontlitcp valley
servicename

valleyol

Figure 4-18 A configuration with a 6.0 relay module and three O n lin e database servers

4-28 Configuring Connectivity

Examples of Client/Server Configurations

As with Figure 4-19, you should verify that all three connections work cor
rectly with a 6.0 client application and then modify the environment vari
ables.

Using 5.0 INFORMIX-STAR or 5.0 INFORMIX-NET
Figure 4-19 illustrates a 5.0 client application connecting to 6.0 Online using
5.0 Online with the INFORMIX-STAR client/server product.

canyon

sqlhosts on canyon
hostnan fll servicename

valleyol

Figure 4-19 Example of a Version 5.0 client application with a Version 6.0 OnLine database server

To prepare to use the configuration in Figure 4-19, follow these steps:

1. On the server host (valley), start the 6.0 OnLine database server and ver
ify that a 6.0 client application can connect to it using a local loopback

Configuring Connectivity 4-29

Examples of Client/Server Configurations

connection. (Refer to "Using a Local Loopback Connection" on
page 4-21.)

2. Write down (for use in Step 4) the entry that is in the sqlhosts file.
3. On the client host (canyon), initialize the 5.0 OnLine with

INFORMIX-STAR and verify that it is running correctly. If you are using
INFORMIX-NET, no initialization is needed.
For details about starting OnLine with INFORMIX-STAR, refer to the
INFORMIX-NET/INFORMIX-STAR Installation and Configuration Guide.

4. On the client host, update the $INFORMIXDIR/etc/sqlhosts file associated
with the INFORMIX-STAR or 5.0 INFORMIX-NET to contain an entry for
the 6.0 OnLine database server.
Notice that the sqlhosts files for the configuration in Figure 4-19 are the
same as they would be if the client were a 6.0 client. (Refer to "Using a
Network Connection" on page 4-21.)

If you use DB-Access to test the configuration, you can verify that you are
running the 5.0 DB-Access because the first display has only four choices,
while the first display of the 6.0 DB-Access has six choices. When DB-Access
asks for the database, enter the database name and the server name, such as:

my_database_name$va l l e y _ t l i

Using a 6.0 Client Application with a 5.0 Database Server
You can connect a 6.0 client application to 5.0 OnLine with INFORMIX-STAR
using a network connection, but you cannot connect a 6.0 client application
to a 5.0 OnLine database server using shared memory. You must use a net
work connection. The 6.0 client application cannot use any syntax that is spe
cific to 6.0 Informix products because the 5.0 database server does not
recognize 6.0 syntax. For example, the 6.0 client application cannot use the
CONNECT statement with a 5.0 database server because the CONNECT state
ment is specific to Version 6.0.

4-30 Configuring Connectivity

Examples of Client/Server Configurations

river

valley

valleyjstar

sqlhosts on river
nettype hostneme servicename
onsoctcp valley J sqlexecd

sqlhosts on valley
dbservemame nettype hostname servicename

valley_istar ontiltcp valley sqlexecd

Figure 4-20 Example connecting a 6.0 client to a 5.0 database server

To prepare to use the configuration in Figure 4-20, follow these steps:

1. On the server host (valley), start 5.0 Online with INFORMIX-STAR and
confirm that it is active by connecting a 5.0 client application to the data
base server.
For details about starting Online with INFORMIX-STAR, refer to the
INFORMIX-NET/INFORMIX-STAR Installation and Configuration Guide.

2. Write down (for use in Step 5) the entry that is in the sqlhosts file for the
5.0 Online with INFORMIX-STAR.

3. On the client host (river), set the INFORMIXDIR environment variable to
the directory where the 6.0 Informix products are installed.

4. Modify the PATH environment variable to include $INFORMIXDIR/bin.

5. Update the sqlhosts file to contain an entry for 5.0 Online with
INFORMIX-STAR.

6. Set the INFORMIXSERVER environment variable to the dbservemame of
the 5.0 Online with I-STAR.

Configuring Connectivity 4-31

What Is Multiple
Residency?
Chapter Overview 3

Benefits of Multiple Residency 3

How Multiple Residency Works 4
The Role of the ONCONFIG Environment Variable 4
The Role of the SERVERNUM Configuration

Parameter 4

Chapter Overview
You can use more than one INFORMIX-OnLine Dynamic Server database
server in the following two ways:

• By running multiple instances of OnLine on a single host computer
• By accessing several OnLine database servers over a network

When multiple OnLine database servers and their associated shared memory
and disk structures coexist on a single computer, it is called multiple residency.
This chapter covers the concepts of multiple residency.

Benefits of Multiple Residency
Creating independent OnLine database server environments on the same
computer allows you to:

• Separate production and development environments
• Isolate sensitive databases
• Test distributed data transactions on a single computer

When you use multiple residency, each OnLine database server has its own
configuration file. Thus, you can create a configuration file for each database
server that meets its special requirements for archiving, shared-memory use,
and tuning priorities.

You can separate production and development environments to protect the
production system from the unpredictable nature of the development envi
ronment. You might also find it useful to isolate applications or databases
that are critically important, either for reasons of security or to accommodate
more frequent archiving than is required for the majority of the databases.

What Is Multiple Residency? 5-3

How Multiple Residency Works

If you are developing an application for use on a network, you can use local
loopback (see "Using a Local Loopback Connection" on page 4-21) to per
form your distributed data simulation and testing on a single computer.
Later, when a network is ready, you can use the application without changes
to application source code.

How Multiple Residency Works
Multiple residency is possible because the UNIX operating system can main
tain separate areas in UNIX shared memory for each instance of OnLine. Each
instance of OnLine passes a value to the operating system. This value, which
is a function of the SERVERNUM parameter, specifies the shared-memory
address to which the database server process should attach. You must also
specify a unique database server name and unique storage locations for each
instance of OnLine.

The Role of the ONCONFIG Environment Variable
Each instance of OnLine is described by the parameters in an ONCONFIG
configuration file. The ONCONFIG environment variable specifies the name
of the current ONCONFIG configuration file. The following configuration
parameters should have unique values for each OnLine database server:

• SERVERNUM
• ROOTPATH and/or ROOTOFFSET
• DBSERVERNAME and DBSERVERALIASES
• MSGPATH
• MIRRORPATH and/or MIRROROFFSET

How to set these parameters is discussed in Chapter 6, "Using Multiple
Residency."

The Role of the SERVERNUM Configuration Parameter
You maintain separation between the instances of OnLine database servers
by maintaining multiple configuration files, each with a unique SERVERNUM
value. When an OnLine database server is initialized, OnLine reads the
ONCONFIG environment variable for the name of its configuration file. Next,
OnLine reads its configuration file to obtain the value of its SERVERNUM
parameter. OnLine then uses the SERVERNUM value to calculate the required
shared-memory address.

5-4 What Is Multiple Residency?

How Multiple Residency Works

For example, the ONCONFIG files for two database servers might include
these parameters:

ONCONFIG file: onconfig.one ONCONFIG file: onconfig.two

DBSERVERNAME online_one DBSERVERNAME online_two
SERVERNUM 1 SERVERNUM 2
ROOTPATH /dev/areal ROOTPÄTH /dev/area2

Figure 5-1 illustrates an example of multiple residency using the configura
tion files shown in the preceding table. Each database server has its own
name, its own section of shared memory, and its own storage area on disk.

Figure 5-1 Illustration of separate memory and storage in multiple residency

What Is Multiple Residency? 5-5

Using Multiple
Residency
Chapter Overview 3

Planning for Multiple Residency 3

Preparing for Multiple Residency 4
Prepare a Configuration File 4
Set Your ONCONFIG Environment Variable 4
Edit the New Configuration File 5
Add Connection Information 6
Update the $INFORMIXDIR/etc/sqlhosts File 6
Initialize Disk Space 6
Prepare Archive and Backup Environment 7
Update the Operating System Boot File 8
Check Users' INFORMIXSERVER Environment

Variables 8

Chapter Overview
This chapter describes how to use multiple INFORMIX-OnLine Dynamic
Server database servers on the same computer. It describes the following
topics:

• Questions you should ask in planning for multiple residency
• Steps you should follow for multiple residency

Before you perform this procedure, you should already have installed one
Online database server as described in Chapter 3, "Installing and Configur
ing OnLine."

Planning for Multiple Residency
Each OnLine database server must have its own unique storage space. You
cannot use the same disk space for more than one instance of OnLine. When
you prepare an additional OnLine database server, you need to repeat some
of the planning you did for installing the first OnLine database server. For
example, you need to consider these questions:

• Will you use cooked or raw space? Will the raw space share a disk parti
tion with another application?

• Will you use mirroring? Where will the mirrors reside?
• Where will the message log be?
• Can you dedicate a tape drive to this database server for its logical logs?
• What kind of archiving will you do?

Using Multiple Residency 6-3

Preparing for Multiple Residency

Preparing for Multiple Residency
Note: Do not try to install another copy of the OnLine binaries. All instances of the
same version of OnLine on one host computer share the same executables.

Here is a summary of the steps for creating another OnLine database server
on a computer that already has one OnLine installed:

1. Prepare a new ONCONFIG configuration file.
2. Set your ONCONFIG environment variable to the new filename.
3. Edit the new ONCONFIG configuration file.
4. If needed, add a servicename to /etc/services or connection information

to the NetWare server.
5. Update the $INFORMIXDIR/etc/sqlhosts file to include the dbserver-

name(s) of the new database server.
6. Initialize disk space for the new database server.
7. Prepare archive and backup schedules.
8. Modify the operating system boot file.
9. Check users' INFORMIXSERVER environment variable.

The sections that follow describe each of these steps.

Prepare a Configuration File
Each instance of OnLine must have its own ONCONFIG configuration file.
You prepare an ONCONFIG file for the new instance of OnLine by copying a
configuration file that already exists and modifying it appropriately. You can
copy a configuration that you have already prepared or the onconfig.std file.
Do not modify onconfig.std. All configuration files must reside in the
$INFORMIXDIR/etc directory.

Give the new ONCONFIG file a name that you can easily associate with its
function and its SERVERNUM value. For example, you might select the file
name onconfig.dev37 to indicate the configuration file for a development
environment with the SERVERNUM value of 37.

Set Your ONCONFIG Environment Variable
Set your ONCONFIG environment variable to the filename of the new
ONCONFIG file. Specify only the filename, not the complete path.

6-4 Using M ultiple Residency

Preparing for Multiple Residency

Edit the New Configuration File
You can edit the new ONCONFIG file using a text editor or using ON-Monitor.

Warning: I f you use ON-Monitor, you must set the ONCONFIG environment vari
able to the name o f the new configuration file and you must change the SERVERNUM
in the file (using a text editor) before entering ON-Monitor. I f you do not, you will
edit the values o f the wrong configuration file.

In the new configuration file, you must change the following configuration
parameters:

• ROOTPATH and/or ROOTOFFSET
The ROOTPATH and ROOTOFFSET parameters together specify the loca
tion of the root dbspace for this OnLine database server. The root dbspace
location must be unique for every OnLine configuration.
If you put several root dbspaces in the same partition, you can use the
same value for ROOTPATH. However, in that case, you must set ROOT-
OFFSET so that the combined values of ROOTSIZE and the ROOTOFFSET
define a unique portion of the partition. Refer to "ROOTPATH" on
page 35-36 and "ROOTOFFSET" on page 35-35 for more information.
Note: You do not need to change ROOTNAME. Even if both database servers
have the name rootdbs for their root dbspace, the dbspaces are unique because
ROOTPATH and ROOTOFFSET specify a unique location.

• SERVERNUM
The SERVERNUM parameter specifies an integer (between 0 and 255)
associated with this OnLine configuration. Each instance of OnLine on
the same host computer must have a unique SERVERNUM. Refer to "The
Role of the SERVERNUM Configuration Parameter" on page 5-4 for more
information.

• DBSERVERNAME
The DBSERVERNAME parameter specifies the dbservemame of this
OnLine database server. Informix suggests that you choose a name
that gives information about the database server, such as ondev37 or
hostnamedev37. Refer to "The DBSERVERNAME Configuration Param
eter" on page 4-17 for more information.

• MSGPATH
The MSGPATH parameter specifies the UNIX pathname of the message file
for this OnLine database server. You should specify a unique pathname
for the message file because OnLine messages do not include the dbserv
emame. I f multiple OnLine database servers use the same MSGPATH you
will not be able to identify the messages from separate OnLine instances.

Using Multiple Residency 6-5

Preparing for Multiple Residency

For example, if you name your database server ondev37, you might spec
ify /usr/informix/dev37.1og as the message log for this instance of
Online.

You might need to set these parameters:

• MIRRORPATH and/or MIRROROFFSET
If the root dbspace is mirrored, the location of the root dbspace mirror
must be unique. Refer to "Steps Required for Mirroring Data" on
page 24-3 for information about setting MIRRORPATH.

Add Connection Information
If you use the TCP/IP communication protocol, you might need to add an
entry to the /etc/services file for the new Online. If you use the IPX/SPX
communication protocol, you might need to modify the connection informa
tion for the NetWare server.

Update the $IN FO RM IX D IR I etc! sqlhosts File
The sqlhosts file must have an entry for each database server. If Informix
products on other computers access this instance of Online, the administra
tors on those computers must update their sqlhosts files. Chapter 4, "Config
uring Connectivity," discusses the preparation of the sqlhosts file.

If you plan to use TCP/IP network connections with this instance of Online,
the system network administrator must update the /etc/hosts and /etc/ser
vices files. If you use an IPX/SPX network, the NetWare administrator must
update the NetWare file server information. For information about these files,
refer to "Using the TCP/IP Communication Protocol" on page 4-8 and
"Using IPX/SPX Connections" on page 4-9.

Initialize Disk Space
Before you initialize disk space, check the setting of your ONCONFIG envi
ronment variable. If it is not correctly set, you might wipe out data from
another database server. When you initialize disk space for an Online data
base server, Online initializes the disk space specified in the current ONCON
FIG configuration file.

As you create new blobspaces and/or dbspaces for this Online database
server, be sure you assign each chunk to a unique location on the device.
Online does not allow you to assign more than one chunk to the same loca-

6-6 Using M ultiple Residency

Preparing for Multiple Residency

tion within a single OnLine environment, but it remains your responsibility
as administrator to make sure that chunks belonging to different OnLine data
base servers do not overwrite each other.

Prepare Archive and Backup Environment
This section gives a very brief discussion of the effects of multiple residency
on archiving and backups. For more information, refer to the INFORMIX-
OnLine Dynamic Server Archive and Backup Guide.

When you use multiple residency, you must maintain separate archives and
logical-log file backups for each OnLine instance. When performing archives
and backups with multiple residency, you need to be especially aware of the
following points:

• Device use
• Cataloger processes, if you use ON-Archive
• The config.arc file, if you use ON-Archive
• The oper_deflt.arc file, if you use ON-Archive

If you can dedicate a tape drive to each OnLine database server, you can back
up your logical-log files using the continuous logging option. Otherwise, you
must plan your logical-log backup and archive schedules carefully, so that
use of a device for one OnLine does not cause the other OnLine to wait. Do
not forget that you must reset the ONCONFIG parameter each time you
switch your backup operations from one OnLine to the other.

Each OnLine instance is served by its own oncatlgr process. When you start
and stop oncatlgr processes using the startup and shutdown scripts
(start_oncatlgr and stop_oncatlgr), the script prompts you to kill existing
oncatlgr processes. You need to know which oncatlgr process is serving the
different OnLine instances before you kill them. The INFORMIX-OnLine
Dynamic Server Archive and Backup Guide explains how to associate the pro
cess id of an oncatlgr process with an OnLine instance.

Every OnLine instance running out of the same $INFORMIXDIR uses the
same config.arc file. This is different from ONCONFIG files, where an environ
ment variable points to a different file for each instance. The parameters in
config.arc are of such a general nature that sharing them between instances
is usually not a problem. If you want to use different archiving defaults for
different OnLine instances, the users might need to set their ARC_DEFAULT
environment variables to point to a different defaults file.

Using Multiple Residency 6-7

Preparing for Multiple Residency

Update the Operating System Boot File
You can ask your system administrator to modify the system startup script
("Prepare UNIX Startup and Shutdown Scripts" on page 3-28) so that each of
your O n lin e instances starts whenever the computer is rebooted (for exam
ple, after a power failure).

The startup script for a single O n lin e instance should set the INFORMIXDIR,
PATH, ONCONFIG, and INFORMIXSERVER environment variables and then
execute on in it. To start a second instance of O n lin e , change the ONCONFIG
and INFORMIXSERVER environment variables to point to the configuration
file for the second O n lin e and then execute o n in it again. Do not change
INFORMIXDIR or PATH.

Similarly, you can ask the system administrator to modify the shutdown
script so that all instances of O n lin e shut down in a graceful manner.

Check Users' INFORMIXSERVER Environment Variables
If this new instance of Online should be the default database server, your
users need to reset the INFORMIXSERVER environment variable. Your users
might need to update their informix files.

If you use the informix.rc file to set environment variables for the users, you
might need to update that file. Chapter 4 of the Informix Guide to SQL: Refer
ence describes the informix.rc and informix files.

6-8 Using Multiple Residency

Modes and Initialization

What Are Online
Operating Modes?
Chapter Overview 3

Off-Line Mode 3

Quiescent Mode 3

On-Line Mode 4

Read-Only Mode 4

Recovery Mode 4

Shutdown Mode 4

Chapter Overview
This chapter explains the operating modes of INFORMIX-OnLine Dynamic
Server.

You can determine the current OnLine mode by executing onstat. The mode
is displayed in the header. The mode also appears in the status line displayed
in ON-Monitor. OnLine has six modes of operation, as follows:

• Off-line mode
• Quiescent mode
• On-line mode
• Read-only mode
• Recovery mode
• Shutdown mode

For instructions on how to change OnLine modes, see Chapter 8, "Managing
Modes."

Off-Line Mode
When OnLine is in off-line mode, it is not running.

Quiescent Mode
Administrative procedures that require a pause in database activity are per
formed when OnLine is in quiescent mode. Only user informix or user root
can access the administrative options of ON-Monitor or perform command
line administrative actions.

In quiescent mode, users cannot connect to a database, but any user can use
ON-Monitor or onstat to see status information.

What Are OnLine Operating Modes ? 7-3

On-Line Mode

On-Line Mode
When OnLine is in on-line mode, users can connect with the database server
and perform all database activities. The OnLine administrator (user informix
or user root) can use the command-line utilities to change many OnLine
ONCONFIG parameter values while OnLine is on-line.

Read-Only Mode
Read-only mode is used by the secondary database server in a data-
replication pair. An application can query a database server that is in read
only mode, but the application cannot write to a read-only database.

Recovery Mode
Recovery mode is transitory. It occurs when OnLine is moving from off-line
to quiescent mode. Fast recovery is performed when OnLine is in recovery
mode.

(It is possible for a mirrored chunk to be in recovery state, but this is not the
same as OnLine recovery mode.)

Shutdown Mode
Shutdown mode is transitory. It occurs when OnLine is moving from on-line
to quiescent mode or from on-line (or quiescent) to off-line mode. Once shut
down mode is initiated, it cannot be cancelled.

7-4 What Are OnLine Operating Modes?

Chapter

Managing Modes
Chapter Overview 3

Users Permitted to Change Modes 3

From Off-Line to Quiescent 3
How to Perform This Change Using ON-Monitor 3
How to Perform This Change Using oninit 4

From Off-Line to On-Line 4
How to Perform This Change Using oninit 4

From Quiescent to On-Line 4
How to Perform This Change Using ON-Monitor 4
How to Perform This Change Using onmode 4

Gracefully from On-Line to Quiescent 5
How to Perform This Change Using ON-Monitor 5
How to Perform This Change Using onmode 5

Immediately from On-Line to Quiescent 5
How to Perform This Change Using ON-Monitor 6
How to Perform This Change Using onmode 6

From Any Mode Immediately to Off-Line 6
How to Perform This Change Using ON-Monitor 7
How to Perform This Change Using onmode 7

Chapter Overview
This chapter contains instructions on changing INFORMIX-OnLine Dynamic
Server modes. It describes the following mode changes:

• Off-line to quiescent
• Off-line to on-line
• Quiescent to on-line
• On-line to quiescent (gracefully)
• On-line to quiescent (immediately)
• Any mode to off-line (immediately)

For a description of the modes, see Chapter 7, "What Are OnLine Operating
Modes?"

Users Permitted to Change Modes
Only those users who are logged in as either root or informix can perform
OnLine mode changes.

From Off-Line to Quiescent
When OnLine changes from off-line mode to quiescent mode, OnLine initial
izes shared memory.

When OnLine is in quiescent mode, no sessions can gain access to OnLine. In
quiescent mode, any user can see status information and user informix or
user root can access administrative options.

How to Perform This Change Using ON-Monitor
To take OnLine to quiescent mode using ON-Monitor, select the Mode menu,
Startup option.

Managing Modes 8-3

From Off-Line to On-Line

How to Perform This Change Using oninit
Execute oninit -s from the command line to take OnLine from off-line mode
to quiescent mode.

To verify that OnLine is running, execute onstat from the command line. The
header on the onstat output gives the current operating mode.

From Off-Line to On-Line
When you take OnLine from off-line mode to on-line mode, OnLine initial
izes shared memory. You cannot go directly from off-line mode to on-line
mode using ON-Monitor.

When OnLine is in on-line mode, it is accessible to all OnLine sessions.

How to Perform This Change Using oninit
Execute oninit from the command line to take OnLine from off-line mode to
on-line mode.

To verify that OnLine is running, execute onstat from the command line. The
header on the onstat output gives the current operating mode.

From Quiescent to On-Line
When you take OnLine from quiescent mode to on-line mode, all sessions
gain access.

If you have already taken OnLine from on-line mode to quiescent mode and
you are now returning OnLine to on-line mode, any users who were inter
rupted in earlier processing must reselect their database and redeclare their
cursors.

How to Perform This Change Using ON-Monitor
To take OnLine from quiescent mode to on-line mode using ON-Monitor,
select the Mode menu, On-Line option.

How to Perform This Change Using onm ode
Execute onmode -m to take OnLine from quiescent mode to on-line mode.

8-4 Managing Modes

Gracefully from On-Line to Quiescent

To verify that OnLine is running in on-line mode, execute onstat from the
command line. The header on the onstat output gives the current operating
mode.

Gracefully from On-Line to Quiescent
Take OnLine gracefully from on-line mode to quiescent mode to restrict
access to OnLine without interrupting current processing.

After you perform this task, OnLine sets a flag that prevents new sessions
from gaining access to OnLine. Current sessions are allowed to finish
processing.

Once you initiate the mode change, it cannot be cancelled. During the mode
change from on-line to quiescent, OnLine is considered to be in Shutdown
mode.

How to Perform This Change Using ON-Monitor
To take OnLine from on-line mode to quiescent mode gracefully using ON-
Monitor, select the Mode menu, Graceful-Shutdown option.

ON-Monitor displays a list of all active user threads and updates it every five
seconds until the last user thread completes work or until you leave the
screen.

How to Perform This Change Using onm ode
Execute the onmode -s or onmode -sy options from the command line to take
OnLine gracefully from on-line mode to quiescent mode.

To verify that OnLine is running in quiescent mode, execute onstat from the
command line. The header on the onstat output gives the current operating
mode.

Immediately from On-Line to Quiescent
Take OnLine immediately from on-line mode to quiescent mode to restrict
access to OnLine as soon as possible. Work in progress can be lost.

Managing Modes 8-5

From Any Mode Immediately to Off-Line

A prompt asks for confirmation of the immediate shutdown. If you confirm,
OnLine sends a disconnect signal to all sessions that are attached to shared
memory. If a session does not receive the disconnect signal or is not able to
automatically comply within 10 seconds, OnLine terminates this session.

OnLine users receive either error message -459 indicating that OnLine was
shut down or error message -457 indicating that their session was unexpect
edly terminated.

OnLine performs proper cleanup on behalf of all sessions that were termi
nated by OnLine. Active transactions are rolled back.

How to Perform This Change Using ON-Monitor
To take OnLine immediately from on-line mode to quiescent mode using
ON-Monitor, select the Mode menu, Immediate-Shutdown option.

How to Perform This Change Using onm ode
Execute onmode -u or onmode -uy from the command line to take OnLine
immediately from on-line mode to quiescent mode.

To verify that OnLine is running in quiescent mode, execute onstat from the
command line. The header on the onstat output gives the current operating
mode.

From Any Mode Immediately to Off-Line
Take OnLine immediately from any mode to off-line mode if the OnLine
database server is no longer running. After you take OnLine to off-line mode,
reinitialize shared memory by taking OnLine to quiescent or on-line mode.
When you reinitialize shared memory OnLine performs a fast recovery to
ensure that the data is logically consistent.

A prompt asks for confirmation to go off-line. If you confirm, OnLine initiates
a checkpoint request and sends a disconnect signal to all sessions that are
attached to shared memory. If a session does not receive the disconnect signal
or is not able to automatically comply within 10 seconds, OnLine terminates
this session.

OnLine users receive either error message -459 indicating that OnLine was
shut down or error message -457 indicating that their session was unexpect
edly terminated.

8-6 Managing Modes

From Any Mode Immediately to Off-Line

OnLine performs proper cleanup on behalf of all sessions that were termi
nated by OnLine. Active transactions are rolled back.

How to Perform This Change Using ON-Monitor
To take OnLine immediately from any mode to off-line mode select the mode
menu, Take-Offline option.

How to Perform This Change Using onntode
Execute the onmode -k or onmode -ky options from the command line to
take OnLine off-line immediately.

A prompt asks for confirmation of the immediate shutdown. The -y option to
onmode eliminates this prompt.

Managing Modes 8-7

What Is
Initialization?
Chapter Overview 3

Types of Initialization 3

Initialization Commands 3

Initialization Steps 4
Process Configuration File 5
Create Shared-Memory Segments 6
Initialize Shared-Memory Structures 7
Initialize Disk Space 7
Start All Required Virtual Processors 7
Make Necessary Conversions 7
Initiate Fast Recovery 8
Initiate a Checkpoint 8
Document Configuration Changes 8
Create the oncfg_servername.servernum File 8
Drop Temporary Tblspaces 8
Set Forced Residency, If Specified 9
Return Control to User 9
Prepare SMI Tables 9

After Initialization 9

Chapter

Chapter Overview
INFORMIX-OnLine Dynamic Server initialization refers to two related activ
ities: disk-space initialization and shared-memory initialization. This chapter
defines the two types of initialization and describes the activities that happen
during initialization.

Types of Initialization
Shared-memory initialization establishes the contents of shared memory, as fol
lows: Online internal tables, buffers, and the shared-memory communica
tion area.

Disk-space initialization uses the values stored in the configuration file to cre
ate the initial chunk of the root dbspace on disk. When you initialize disk
space, Online automatically initializes shared memory as part of the process.

When you initialize Online disk space, you overwrite whatever is on that
disk space. If you reinitialize disk space for an existing Online database
server, all of the data in the earlier Online database server becomes inacces
sible and, in effect, is destroyed.

Two key differences distinguish shared-memory initialization from disk-
space initialization:

• Shared-memory initialization has no effect on disk space allocation or lay
out; no data is destroyed.

• Shared-memory initialization performs fast recovery.

Initialization Commands
You must be user informix or root to initialize Online. Online must be in
off-line mode when you begin initialization. (See Chapter 7, "What Are
Online Operating Modes?")

What Is Initialization? 9-3

Initialization Steps

You can initialize shared memory and disk space using either of the follow
ing utilities:

• The oninit utility (See "oninit: Initialize OnLine" on page 37-16.)
• The ON-Monitor utility (See "Using ON-Monitor" on page 34-3.)

The options you include in the oninit command or the options you select
from ON-Monitor determine the specific initialization procedure.

Initialization Steps
Disk-space initialization always includes the initialization of shared memory.
However, some activities that normally happen during shared-memory ini
tialization, such as recording configuration changes, are not required during
disk initialization because with a newly initialized disk those activities are
not relevant.

9-4 What Is Initialization?

Initialization Steps

The two lists in Figure 9-1 show the main tasks completed during the two
types of initialization. Each step is discussed in the following sections.

Shared-M emory Initialization Disk Initialization

Process configuration file. Process configuration file.

Create shared-memory segments. Create shared-memory segments.

Initialize shared-memory structures. Initialize shared-memory structures.

Initialize disk space.

Start all required virtual processors.

Make necessary conversions.

Initiate fast recovery.

Start all required virtual processors.

Initiate a checkpoint.

Document configuration changes.

Initiate a checkpoint.

Update oncfg_servername.servernum file Update oncfg_servername.servernum file

Change to quiescent mode.

Drop temporary tablespaces (optional).

Change to quiescent mode.

Set forced residency, if requested. Set forced residency, if specified.

Return control to user. Return control to user.

If the SMI tables are not current, update
the tables.

Create SMI tables.

Figure 9-1 Initialization steps

Process Configuration File
Online uses configuration parameters to allocate shared-memory segments
during initialization. If you change the size of shared memory by modifying
a configuration-file parameter, you must take Online to off-line mode and
then reinitialize.

During initialization, Online looks for configuration values in the following
three files, in order:

1. If the ONCONFIG environment variable is set, Online reads values from
the file specified by $INFORMIXDIR/etc/$ONCONFIG. If the ONCONFIG

What Is Initialization? 9-5

Initialization Steps

environment variable is set, but Online cannot access the specified file,
Online returns an error message.

2. If the ONCONFIG (or TBCONFIG) environment variable is not set, Online
reads the configuration values from the file $INFORMIXDIR/etc/onconfig.

3. If Online cannot find the onconfig file, it reads the configuration values
from $INFORMIXDIR/etc/onconfig.std.

Informix recommends that you always set the ONCONFIG environment vari
able before initializing Online. The default configuration files are intended
as templates and not as functional configurations. (See "Prepare the
ONCONFIG Configuration File" on page 3-13.)

The initialization process compares the values in the current configuration
file with the previous values, if any, that are stored in the root dbspace
reserved page, PAGE_CONFIG. (See "PAGE_CONFIG" on page 40-8.) Where
differences exist, Online uses the values from the current ONCONFIG config
uration file for initialization.

Create Shared-Memory Segments
Next, Online uses the configuration values to calculate the required size of
Online resident shared memory. In addition, Online computes additional
configuration requirements from internal values. Space requirements for
overhead are calculated and stored.

Online creates shared memory by acquiring the shared-memory space from
the operating system for three different types of memory segments:

• The resident segment, used for data buffers, tablespaces, and so on
• Message segments, used for communication
• Virtual segments, used to track specific tasks for individual users

Next, Online attaches the shared-memory segments to its virtual address
space and initializes shared-memory structures. (See "The Virtual Portion of
OnLine Shared Memory" on page 14-25.)

After initialization is complete and OnLine is running, it can create addi
tional shared-memory segments as needed. OnLine creates segments in
increments of the page size.

9-6 What Is Initialization?

Initialization Steps

Initialize Shared-Memory Structures
After attaching to shared memory, OnLine clears the shared-memory space
of uninitialized data. Next OnLine lays out the shared-memory header infor
mation and initializes data in the shared-memory structures. For example,
OnLine lays out the space needed for the logical-log buffer, initializes the
structures, and links together the three individual buffers that form the
logical-log buffer. (See "onstat: Monitor OnLine Operation" on page 37-46.)

After OnLine remaps the shared-memory space, it registers the new starting
addresses and sizes of each structure in the new shared-memory header.

During shared-memory initialization, disk structures and disk layout are not
affected. OnLine reads essential address information, such as the locations of
the logical and physical logs, from disk and uses this information to update
pointers in shared memory.

Initialize Disk Space
Note: This procedure is done only during disk-space initialization.

After shared-memory structures are initialized, OnLine begins initializing
the disk. OnLine initializes all the reserved pages that it maintains in the root
dbspace on disk and writes PAGE_PZERO control information to the disk.
(See "Reserved Pages" on page 40-6.)

Start All Required Virtual Processors
OnLine starts all the virtual processors that it needs. The parameters in the
ONCONFIG file influence what processors are started. For example, the NET-
TYPE parameter can influence the number and type of processors started for
making connections. (See "What Is a Virtual Processor?" on page 12-4.)

Make Necessary Conversions
OnLine checks its internal files. If the files are from an earlier version of
OnLine, it updates these files to 6.0 format. For information about database
conversion, refer to the INFORMIX-OnLine Dynamic Server Migration Guide.

What Is Initialization? 9-7

Initialization Steps

Initiate Fast Recovery
Note: This task is not done during disk-space initialization because there is not yet
anything to recover.

OnLine checks if fast recovery is needed. If fast recovery is required, Online
initiates fast recovery (See "What Is Fast Recovery?" on page 22-3.)

Initiate a Checkpoint
After fast recovery executes, OnLine initiates a checkpoint. As part of the
checkpoint procedure OnLine writes a checkpoint complete message in the
OnLine message log. (See "OnLine Checkpoints" on page 14-47.)

OnLine now moves to quiescent mode or on-line mode, depending on how
you started the initialization process.

Document Configuration Changes
Note: This task is not done during disk-space initialization.

OnLine compares the current values stored in the configuration file with the
values previously stored in the root dbspace reserved page PAGE_CONFIG.
Where differences exist, OnLine notes both values (old and new) in a mes
sage to the OnLine message log.

Create the owc/g-Servemame.servernum File
OnLine creates the oncfgjservemame.servemum file and updates it every
time you add or delete a dbspace, a blobspace, a logical-log file, or a chunk.
You do not need to manipulate this file in any way, but you can see it listed in
your $INFORMIXDIR/etc directory. OnLine uses this file during a full-system
restore. (See "oncfg_servername.servernum" on page 42-8.)

Drop Temporary Tblspaces
Note: This task is not done during disk-space initialization.

OnLine searches through all dbspaces searching for temporary tblspaces. (If
you initialize OnLine using oninit -p, OnLine skips this step.) These tempo
rary tblspaces (if any) are tblspaces left by user processes that died prema
turely and were unable to perform proper cleanup. OnLine deletes any
temporary tblspaces and reclaims the disk space. (See "What Is a Temporary
Table?" on page 10-23.)

9-8 What Is Initialization?

After Initialization

Set Forced Residency, If Specified
If the value of the RESIDENT configuration parameter is one, OnLine tries to
enforce residency of shared memory. If the host UNIX system does not sup
port forced residency, the initialization procedure continues. Residency is not
enforced and OnLine sends an error message to the message log. (See "RES
IDENT" on page 35-35.)

Return Control to User
After the previous steps are complete, OnLine writes an "initialization com
plete" message in the OnLine message log. (See "MSGPATH" on page 35-27.)

At this point, control returns to the user. Any error messages generated by the
initialization procedure are displayed, either at the UNIX command line,
within ON-Monitor, or in the OnLine message log.

Prepare SMI Tables
Even though OnLine has returned control to the user, it has not finished its
work. OnLine now checks the system monitoring interface (SMI) tables. (See
Chapter 36, "The sysmaster Database.") If the SMI tables are not current,
OnLine updates the tables. If the SMI tables are not present, as is the case
when disk is initialized, OnLine creates the tables. After OnLine builds the
SMI tables, it puts the message sysm aster d atabase b u i l t su c c e ss
fu l ly into the OnLine message log file.

If you shut down OnLine before OnLine finishes building the SMI tables, the
process of building the tables aborts. This does not damage OnLine. OnLine
simply builds the SMI tables the next time you bring OnLine on-line. How
ever, if you do not allow the SMI tables to finish building, you cannot run any
queries against those tables and you cannot use ON-Archive for backups or
archives.

After Initialization
After the SMI tables have been created, OnLine is ready for use. OnLine runs
until you stop it using onmode or ON-Monitor or the system crashes. Infor
mix recommends that you do not try to stop OnLine by killing a virtual pro
cessor or an oninit process. (See "Starting and Stopping Virtual Processors"
on page 13-6.)

What Is Initialization? 9-9

Disk, Memory, and Process
Management

Chapter

Where Is Data
Stored?
Chapter Overview 3

Overview of Data Storage 3

What Are the Physical Units of Storage? 4
What Is a Chunk? 4

Should You Allocate Chunks as Cooked Files or
Raw Disk Space? 5

What Is an Offset? 8
What Is a Page? 9
What Is A Blobpage? 10

How Big Should a Blobpage Be? 11
What Is an Extent? 11

What Are the Logical Units of Storage? 14
What Is a Dbspace? 15

How Can You Control Where Data Is Stored? 15
What Is the Root Dbspace? 17
What Is a Temporary Dbspace? 18
What Are the Advantages of Using Temporary

Dbspaces? 18
What Is a Blobspace? 19
What Is a Database? 20
What Is a Table? 21
What Is a Tblspace? 25

What Is Extent Interleaving? 26

How Much Disk Space Do You Need to Store Your Data? 27
Calculate the Size of the Root Dbspace 27

Physical and Logical Logs 28
Temporary Tables 28
Data 28
ON-Archive Catalog Data 29
Control Information (Reserved Pages) 29
Complete the Root Dbspace Calculation 29

Estimate Space Required by Databases Including Overhead and
Growth 30

Disk-Layout Guidelines 30
Strive to Associate Partitions with Chunks 31
Consider Mirroring 31
Isolate High-Use Tables 31
Group Your Tables with Archive and Restore in Mind 32
Spread a Single Table Across Multiple Disk Devices to Reduce

Contention 33
Place High-Use Tables on Middle Partition of Disk 33
Spread Your Temporary Storage Space Across Multiple Disks 34
Optimize Table Extent Sizes 34
Move the Logical and Physical Logs from the Root Dbspace 35
Take into Account Archive and Restore Performance 36

Cluster Catalogs with the Data They Track 36
Reconsider Separating the Physical and Logical Logs 36

Sample Disk Layouts 37
Sample Layout When Performance Is Highest Priority 37
Sample Layout When Availability Is Highest Priority 40
Sample Layout When Archive and Restore Are Highest

Priorities 41

What Is a Logical Volume Manager? 44

10-2 Where Is Data Stored?

Chapter Overview
This chapter defines the terms and explains the concepts you need to under
stand to effectively perform the tasks described in Chapter 11, "Managing
Disk Space." In doing so, this chapter covers the following topics:

• Definitions of the physical and logical units INFORMIX-OnLine Dynamic
Server uses to store data on disk

• Instructions on how to calculate the amount of disk space you need to
store your data

• Guidelines on how to lay out your disk space and where to place your
databases and tables

The first part of this chapter contains definitions for nine different units of
disk storage: chunk, page, blobpage, extent, blobspace, dbspace, database,
table, and tblspace. In addition to the strict definition of a given unit, the
chapter also describes the role of each unit in storing and retrieving data.
Noting the role or the purpose of a unit in addition to its strict definition
facilitates your understanding of the units OnLine uses to store data.

Overview of Data Storage
OnLine can use two distinct types of disk space to manage physical disk I/O:

• Cooked file space, in which UNIX manages physical disk I/O
• Raw disk space, in which OnLine manages physical disk I/O

OnLine manages disk space using the following physical units:

• Chunk
• Page
• Blobpage
• Extent

Where Is Data Stored? 10-3

What Are the Physical Units of Storage?

Overlying the physical units of storage space, Online supports the following
logical units associated with database management:

• Dbspace
• Blobspace
• Database
• Table
• Tblspace

Online maintains the following additional disk-space storage structures to
ensure physical and logical consistency of data:

• Logical log
• Physical log
• Reserved pages

Because these additional disk-space structures are not permanent storage
units, they are not described in this chapter. For information about the logical
log, see Chapter 18, "What Is the Logical Log?" For information about the
physical log, see Chapter 20, "What Is Physical Logging?" For information
about reserved pages, see "Reserved Pages" on page 40-6.

The following sections describe the various data storage units OnLine
supports, and the relationships between those units.

What Are the Physical Units of Storage?
OnLine uses the physical units of storage to allocate disk space. Unlike the
logical units of storage whose size fluctuates, each of the physical units—
chunks, extents, pages and blobpages—has a fixed or assigned size.

What Is a Chunk?
The chunk is the largest unit of physical disk dedicated to OnLine data stor
age. It represents an allocation of cooked disk space or raw disk space and is
the only unit of physical storage allocated by the OnLine administrator. The
OnLine administrator typically adds a chunk to a dbspace when that dbspace
approaches full capacity. Figure 10-1 on page 10-5 illustrates how a chunk
might appear if you choose to allocate space on a raw device. (See section
"What Is a Raw Device?" on page 10-6.)

10-4 Where Is Data Stored?

What Are the Physical Units of Storage?

Figure 10-1 A typical chunk allocated as raw disk space, represented by the darkened concentric
circles on the platters of a disk drive

In addition to providing administrators with a conveniently large unit for
allocating disk space, Online also uses chunks for mirroring. A primary chunk
is a chunk from which data is copied onto a mirrored chunk. If the primary
chunk fails, the mirrored chunk is brought on-line automatically. For more
information on mirroring, see Chapter 23, "What Is Mirroring?"

The maximum number of chunks that you can allocate for a given Online
system is 2048. The maximum size of a chunk is 2 gigabytes.

Should You Allocate Chunks as Cooked Files or Raw Disk Space?
This section describes the advantages and disadvantages of the two methods
of allocating disk space: cooked files and raw disk space. As a general guide
line, you experience better performance and increased reliability if you use
raw disk space, but this can vary depending on your operating system.

Where Is Data Stored? 10-5

What Are the Physical Units of Storage?

What Is a Raw Device?
The UNIX operating system uses the concept of a device to describe peripher
als such as magnetic disks and tapes, terminals, and communication lines.
One type of UNIX device is a block device, such as a hard disk or a tape. A block
device can be configured with an interface that provides buffering, or with a
character-special interface that leaves the buffering to the application. When a
block device is configured with a character-special interface, the device is
called a raw device and the storage space provided by that device is called raw
disk space.

The name of the chunk is the name of the character-special file in the /dev
directory. In many operating systems, the character-special file can be distin
guished from the block-special file by the first letter in the filename (typically
"r"). For example, /dev/rsdOf is the character-special device corresponding to
the /dev/sdOf block special device.

Space in a chunk of raw disk space is physically contiguous.

What Is a Cooked File?
A cooked file is a UNIX file. Although Online manages the contents of
cooked files, the UNIX operating system manages all I/O to cooked files.
Unlike raw disk space, the logically contiguous blocks of a cooked file might
not be physically contiguous.

Even though a cooked file is a UNIX file, Online manages the internal
arrangement of data within the file. Never edit the contents of a cooked file
managed by Online directly; to do so puts the integrity of your data at risk.

How Does Online Manage Data Differently When It Is Stored in a
Cooked File Instead of a Raw Disk Device?
When the UNIX kernel reads from a cooked file or a cooked device, the data
is read from disk into the kernel buffer pool. Later, a second copy operation
copies it from the kernel buffer to the location requested by the application.
This means that if two users both read the password file, for instance, the data
is only read from disk once but copied from the kernel buffer twice.

By contrast, when the kernel reads data from a raw-disk device, it bypasses
the kernel buffer pool and copies the data directly to the location requested
by the application. OnLine requests that the data be placed in shared mem
ory, which immediately makes it available to all OnLine virtual processors
and running threads, with no further copying.

10-6 Where Is Data Stored?

What Are the Physical Units of Storage?

Why Use a Raw Device?
The character-special file can directly transfer data between shared memory
and the disk using direct memory access (DMA), which results in orders of
magnitude better performance.

When you use a raw device to store your data, OnLine guarantees that
committed data is stored on disk. (The next section explains why no such
guarantee can be made when you use cooked files to store your data.)

If you decide to allocate raw disk space to store your data, you must take the
following steps:

1. Create and install a raw device
2. Change the ownership and permissions of the the device

These steps are described in detail in "Allocating Raw Disk Space" on
page 11-5.

Why Use a Cooked File?
Cooked files are easier to allocate than raw disk space. To allocate raw space,
you must have a disk partition available that is dedicated to raw space. To
allocate a cooked file, you need only create the file on any existing partition.
However, you might sacrifice reliability and experience diminished perfor
mance if you store OnLine data in cooked files.

The buffering mechanism provided by most operating systems can produce
a performance bottleneck. If you must use cooked UNIX files, store the least
frequently accessed data in those files. Store the files in a file system located
near the center cylinders of the disk device, or in a file system with minimal
activity.

In a learning environment, where reliability and performance are not critical,
cooked files can be very convenient.

When performance is not a consideration, you could also consider using
cooked files for static data (that seldom if ever changes). Such data is less vul
nerable to the problems associated with UNIX buffering in the event of a sys
tem failure.

When a chunk consists of cooked disk space, the name of the chunk is the
complete pathname of the UNIX file. Because the chunk of cooked disk space
is created as an operating-system file, space in the chunk might not be
physically contiguous.

Where Is Data Stored? 10-7

What Are the Physical Units of Storage?

Cooked files are less reliable than raw devices because I/O on a cooked file is
managed by the UNIX operating system. A write to a cooked file can result in
data being written to a memory buffer in the UNIX file manager instead of
being written immediately to disk. As a consequence, Online cannot
guarantee that the committed data has actually reached the disk. Online
recovery depends on the guarantee that data written to disk is actually on
disk. If, in the event of system failure, the data is not present on disk, the
Online automatic recovery mechanism might not be able to properly recover
the data. (The data in the UNIX buffer might be lost completely.) The end
result would be inconsistent data.

When you decide to allocate cooked space to store your data, you must take
the following steps:

1. Create a cooked file
2. Change the ownership and permissions

These steps are described in detail in "Allocating Cooked File Space" on
page 11-4.

What Is an Offset?
Although Informix recommends that you use an entire UNIX partition when
you allocate a chunk (see "Strive to Associate Partitions with Chunks" on
page 10-31 for more information), you can subdivide partitions or cooked
files into smaller chunks by using offsets.

From the perspective of the UNIX operating system, a chunk is a stream of
bytes. An offset allows you to indicate the number of kilobytes into a raw
device or cooked file needed to reach a given chunk. For example, suppose
that you create a 1,000 kilobyte chunk which you wish to divide into two
chunks of 500 kilobytes each. You can use an offset of zero kilobytes to mark
the beginning of the first chunk and an offset of 500 kilobytes to mark the
beginning of the second chunk.

You can specify an offset whenever you create a dbspace or blobspace, add a
chunk to a dbspace or blobspace, or drop a chunk from a dbspace or blob-
space.

You might also need to specify an offset to prevent Online from overwriting
partition information. "Do You Need to Specify an Offset?" on page 11-5
explains when and how (using ON-Monitor or onspaces) to specify an offset.

10-8 Where Is Data Stored?

What Are the Physical Units of Storage?

What Is a Page?
A page is the physical unit of disk storage that Online uses to read from and
write to Informix databases. The size of a page varies from computer to com
puter. A page typically holds either 2 or 4 kilobytes. (See "Determining
Online Page Size" on page 11-13.) Because the size of your page is
determined by your hardware, you cannot change page size. Figure 10-2
illustrates the concept of a page.

Figure 10-2 A page, represented by a darkened sector of a disk platter

A chunk is said to contain a certain number of pages, as illustrated in Figure
10-3. Note that a page is always entirely contained within a chunk; that is, a
page cannot cross chunk boundaries.

Chunk

Page

Figure 10-3 A chunk, logically separated into a series of pages

For information on how data within a page is structured, see Chapter 40,
"OnLine Disk Structure and Storage."

Where Is Data Stored? 10-9

What Are the Physical Units of Storage?

What Is A Blobpage?
A blobpage is the unit of disk-space allocation used by Online to store BYTE
and TEXT data within a blobspace (See "What Is a Blobspace?" on
page 10-19.) Blobpage size is specified as a multiple of the Online page size
(See "Determining Online Page Size" on page 11-13). The Online adminis
trator establishes the size of a blobpage when creating the blobspace in which
it resides; the size of a blobpage can vary from blobspace to blobspace. Figure
10-4 illustrates the concept of a blobpage.

Figure 10-4 A blobpage, represented here as being a multiple (three) of a data page

Just as with pages in a chunk, a certain number of blobpages are said to
compose a chunk in a blobspace, as illustrated in Figure 10-5. Note that a
blobpage is always entirely contained in a chunk and cannot cross chunk
boundaries.

Figure 10-5 A chunk in a blobspace, logically separated into a series of blobpages

10-10 Where Is Data Stored?

What Are the Physical Units of Storage?

In addition to storing your blob data in a blobspace, you can also choose to
store your blob data in a dbspace. However, for blobs larger than two pages,
you will find that performance improves when you store the blobs in a blob-
space. Blobs stored in a dbspace can share a page; blobs stored in a blobspace
do not share pages. For information about how data is structured when
stored in a blobpage, see "Structure of a Blobspace Blobpage" on page 40-60.

How Big Should a Blobpage Be?
When creating a blobspace, you should aim to create a blobpage size that
approximates the size of the most frequently occurring blob to be stored
within that blobspace. For example, if you are storing 160 blobs and you
expect 120 blobs to be 12 kilobytes and 40 blobs to be 16 kilobytes, a 12-kilo
byte blobpage size stores the blobs most efficiently. This configuration allows
the majority (120) of the blobs to be stored using a single blobpage, while the
other 40 blobs require two blobpages each (with 8 kilobytes wasted in the sec
ond blobpage).

However, there are circumstances in which you might want to use the larger,
16-kilobyte blobpage size. If speed and reducing the number of locks are pri
mary concerns, use a 16-kilobyte blobpage so that every blob can be stored
on a single blobpage.

To continue the example, assume that your Online page size is 2 kilobytes. If
you decide on a 12-kilobyte blobpage size, specify the blobpage size param
eter as 6 (pages). If your Online page size is 4 kilobytes, specify the blobpage
size parameter as 3 (pages). In general, you divide the size of the blob
(rounded up to the nearest kilobyte) by the page size to determine the
blobpage size parameter.

If a table has more than one blob column and the blobs are not close in size,
store the blobs in different blobspaces, each with an appropriately sized
blobpage.

What Is an Extent?
When you create a table, Online allocates a fixed amount of space to contain
the data to be stored in the table. When the table fills, Online must allocate
more space for additional storage. The physical unit of storage that Online
uses to allocate both the initial and subsequent storage space is called an
extent. Figure 10-6 on page 10-12 illustrates the concept of an extent.

Where Is Data Stored? 10-11

What Are the Physical Units of Storage?

Page

Figure 10-6 An extent consisting of size contiguous pages on a raw disk device

An extent consists of a collection of contiguous pages that store data for a
given table. Every permanent database table has two extent sizes associated
with it. The initial extent size is the number of kilobytes allocated to the table
when first created. The next extent size is the number of kilobytes allocated to
the table when the initial extent, and every extent thereafter, becomes full.
You specify the initial extent size and next extent size using the CREATE
TABLE and ALTER TABLE statements. See the Informix Guide to SQL: Syntax for
more information.

10-12 Where Is Data Stored?

What Are the Physical Units of Storage?

Figure 10-7 illustrates the following key concepts concerning extent
allocation:

• An extent is always entirely contained in a chunk; an extent cannot cross
chunk boundaries.

• If Online cannot find available contiguous space in the first chunk equal
to the size specified for the next extent (six pages in this case), it searches
the next chunk in the dbspace for contiguous space.

OnLine cannot find
6 contiguous
free pages.

OnLine extends
search to next

. chunk.

Free
Page'
Used
Page'

Chunk 1 Chunk 2

Extent

Figure 10-7 Process of extent allocation

Chapter 10 of the Informix Guide to SQL: Tutorial contains instructions on how
to avoid the interleaving shown in chunk 1 of Figure 10-11.

Where Is Data Stored? 10-13

What Are the Logical Units of Storage?

What Are the Logical Units of Storage?
The logical units of OnLine storage fall into the following categories:
• Units of logical storage that function as accounting entities, including:

o Dbspaces
o Blobspace
o Tblspaces

• Units of logical storage that are dictated by relational database design,
including:
o Databases
o Tables

A tblspace, for example, does not correspond to any particular part of a
chunk or even to any particular chunk. Instead, the indexes and data that
make up a tblspace can be scattered throughout your chunks. The tblspace,
however, represents a convenient accounting entity for space across chunks
devoted to a particular table.

The following sections describe these logical storage units.

10-14 Where Is Data Stored?

What Are the Logical Units of Storage?

What Is a Dbspace?
A key responsibility of the OnLine administrator is to control where data is
stored. By storing high-access tables or critical media (root dbspace, physical
log and logical log) on your fastest disk drive, you can improve performance.
By storing critical media and data on separate physical devices, you ensure
that when one of the disks holding noncritical media fails, the failure only
affects the availability of data on that disk.

These strategies require the ability to control the location of data. The logical
storage unit that provides this ability is the dbspace. The dbspace provides the
critical link between the logical and physical units of storage. It allows you to
control in which physical units the data contained in logical storage units
(such as database and table) resides.

How Can You Control Where Data Is Stored?
As Figure 10-8 shows, you control the placement of databases or tables using
the IN dbspace option of the CREATE DATABASE or CREATE TABLE statements.

Figure 10-8 Controlling table placement using the CREATE TABLE... IN statement (Note that
chronologically; you must issue the onspaces command before you create the table
storesß.)

Figure 10-8 also illustrates that before creating a database or table in a
dbspace, you must first create the dbspace using onspaces or ON-Monitor.
This is explained in "Creating a Dbspace Using onspaces" on page 11-9 and
"Creating a Dbspace Using ON-Monitor" on page 11-9.

Where Is Data Stored? 10-15

What Are the Logical Units of Storage?

A dbspace is composed of one or more chunks, as shown in Figure 10-9. You
can add more chunks at any time. As with blobspace chunks, it is a high-pri
ority task of an OnLine administrator to monitor dbspace chunks for fullness
and to anticipate the need to allocate more chunks to a dbspace. If a dbspace
contains more than one chunk, you cannot control the chunk in which the
data resides.

Figure 10-9 Dbspace provides a link between logical and physical units of storage

OnLine uses the dbspace to store databases and tables. You can store BYTE
and TEXT data within a dbspace, but if the blobs are larger than two pages,
performance can be poorer than if you stored the same data in a blobspace.

You must mirror every chunk in a mirrored dbspace. As soon as a mirror
chunk is allocated, all space in the mirror chunk appears as full in the status
displays output from onstat -d or the Dbspaces menu, Info option of
ON-Monitor.

10-16 Where Is Data Stored?

What Are the Logical Units of Storage?

You can use ON-Monitor or onspaces to perform any of the following tasks
related to dbspace management:

You can use onspaces (but not ON-Monitor) to drop a chunk from a dbspace.
See "Dropping a Chunk from a Dbspace Using onspaces" on page 11-14 for
more information.

The root dbspace is the initial dbspace created by OnLine. The root dbspace
is special because it contains reserved pages and internal tables that describe
and track all other dbspaces, blobspaces, chunks, databases, and tblspaces.
(For more information on these topics see Chapter 40, "OnLine Disk Struc
ture and Storage.") The initial chunk of the root dbspace and its mirror are the
only chunks created during disk-space initialization. You can add other
chunks to the root dbspace after OnLine is initialized.

The following disk-configuration parameters in the ONCONFIG configura
tion file refer to the first (initial) chunk of the root dbspace:

• ROOTPATH
• ROOTOFFSET
• ROOTNAME
• MIRRORPATH
• MIRROROFFSET

The root dbspace is the default location for all temporary tables created
implicitly by OnLine to perform requested data management. The root
dbspace is also the default dbspace location for any database created with the
CREATE DATABASE statement.

"Calculate the Size of the Root Dbspace" on page 10-27 explains how much
space you should allocate for the root dbspace. You can also add extra chunks
to the root dbspace after you initialize OnLine disk space.

• Creating a Dbspace
• Adding a Chunk to a Dbspace
• Dropping a Dbspace or Blobspace

page 11-8
page 11-10
page 11-15

What Is the Root Dbspace?

Where Is Data Stored? 10-17

What Are the Logical Units of Storage?

What Is a Temporary Dbspace?
A temporary dbspace is a dbspace reserved for the exclusive use of tempo
rary tables. OnLine requires a temporary dbspace to store internal temporary
tables generated by read-only queries on the secondary server when data
replication is activated.

In addition, if temporary dbspaces exist and you list them in the
DBSPACETEMP configuration parameter, OnLine uses them to store both
implicit and explicit temporary tables. (See "What Is a Temporary Table?" on
page 10-23.) Implicit temporary tables include tables OnLine creates when
sorting, archiving, and performing warm restores. OnLine also uses tempo
rary dbspaces to store explicit temporary tables created using the WITH NO
LOG option, or when a nonlogging database is the current database.

Unlike a temporary table, OnLine never drops a temporary dbspace unless
explicitly directed to do so. A temporary dbspace is only temporary in the
sense that none of its contents are preserved should OnLine shut down
abnormally. Temporary dbspaces are designed for the exclusive storage of
temporary tables.

All temporary dbspaces are reinitialized whenever you initialize OnLine.
This means that OnLine clears any tables that might have been left over from
the last time that OnLine shut down.

Both logical and physical logging are suppressed for temporary dbspaces.
Temporary dbspaces are never archived as part of a full-system archive. You
cannot mirror a temporary dbspace.

You can also use temporary disk space to improve disk-load balancing, as
explained in "Spread Your Temporary Storage Space Across Multiple Disks"
on page 10-34.

For detailed instructions on how to create a temporary dbspace with
ON-Monitor or onspaces, see "Creating a Dbspace" on page 11-8.

What Are the Advantages of Using Temporary Dbspaces?
OnLine suppresses logical logging for implicit temporary tables and explicit
temporary tables created with the WITH NO LOG options that reside in a tem
porary dbspace. For a temporary table in a standard dbspace, inserts and
updates are not logged. However, OnLine does log table creation, the alloca
tion of extents, and the dropping of the table. Some correlated subqueries that
create and drop a temporary table for each row in a master table can generate
a large amount of log data if these temporary tables do not have a temporary

10-18 Where Is Data Stored?

What Are the Logical Units of Storage?

dbspace in which to reside in. Logical-log suppression in temporary
dbspaces reduces the number of log records to roll forward during logical
recovery as well, thus improving the performance during critical down time.

All physical logging is suppressed in temporary dbspaces. This helps perfor
mance in two ways. First, physical logging itself generates I/O. Reducing I/O
always improves performance. Second, whenever the physical log becomes
75 percent full, a checkpoint occurs. Checkpoints require a brief period of
inactivity to complete that can have a negative impact on performance. When
temporary tables reside in temporary dbspaces, operations on the temporary
tables are not physically logged, thus necessitating fewer checkpoints.

Using temporary dbspaces also reduces the size of your archive. Because
OnLine does not archive temporary dbspaces, the time required for archiving
and restoring is reduced when you use temporary dbspaces to store tempo
rary tables.

What Is a Blobspace?
A blobspace is a logical storage unit composed of one or more chunks that
store only BYTE and TEXT data. A blobspace stores BYTE and TEXT data in the
most efficient way possible. Blobs associated with distinct tables can be
stored within the same blobspace. Blob data stored in a blobspace is written
directly to disk and does not pass through resident shared memory. If it did,
the volume of data could occupy so many of the buffer-pool pages that other
data and index pages would be forced out.

For the same reason, blobs stored in a blobspace are not written to either the
logical or physical log. The blobspace blobs are logged by writing the blobs
directly from disk to the logical-log backup tapes when logical logs are
archived. Blobspace blobs never pass through the logical-log files.

When you create a blobspace, you assign to it one or more chunks. You can
add more chunks at any time. One of the tasks of an OnLine administrator is
to monitor the chunks for fullness and anticipate the need to allocate more
chunks to a blobspace. See "Monitoring Blobs in a Blobspace" on page 29-53
for instructions on how to monitor chunks for fullness. See "Creating a Blob
space" on page 11-12 for instructions on how to create a blobspace.

You can designate one or more mirrored blobspaces; blobspaces that are
mirrored require one mirror chunk for each primary chunk.

For information about the structure of a blobspace, see "Structure of a Blob
space" on page 40-54.

Where Is Data Stored? 10-19

What Are the Logical Units of Storage?

The following list contains tasks you can perform related to blobspace
management. You can use ON-Monitor or onspaces to perform any of the
tasks listed.

You can use onspaces (but not ON-Monitor) to drop a chunk from a dbspace.
See "Dropping a Chunk from a Blobspace" on page 11-15 for more
information.

A database is a logical storage unit that contains tables and indexes. Each
database also contains a system catalog that tracks information about many
of the elements in the database, including tables, indexes, stored procedures,
and integrity constraints. Figure 10-10 on page 10-21 shows the stores6
database.

A database resides in the dbspace named in the SQL statement CREATE
DATABASE. If no dbspace is specified, the database resides in the root
dbspace. The implications of stating that a database is located in a dbspace
are as follows:

• The database system catalog tables are stored in that dbspace.
• That dbspace is the default location of tables not explicitly created in

other dbspaces.

You can spread the tables of a database across multiple dbspaces and,
consequently, multiple devices. Doing so can have a significant impact on
performance, as explained in "How Much Disk Space Do You Need to Store
Your Data?" on page 10-27.

• Creating a Blobspace
• Adding a Chunk to a Blobspace
• Dropping a Dbspace or Blobspace

page 11-12
page 11-14
page 11-15

What Is a Database?

10-20 Where Is Data Stored?

What Are the Logical Units of Storage?

stores6 Database

customer1
table i

orders
table

items
table

stock
table

cust_calls
table

call_type
table

man uf act
table

state
table

system catalog z ip jx
index

systables
table

sysviews
table

catalog
table

Figure 10-10 The storesß database

See "How Much Disk Space Do You Need to Store Your Data?" on page 10-27
for advice on where to put your databases.

The size limits that apply to databases are related to their location in a
dbspace. To be certain that all tables in a database are created on a specific
physical device, assign only one chunk to the device and create a dbspace
that contains only that chunk. Place your database in that dbspace. This also
limits the size of the database to the size of the chunk.

See "OnLine Disk Structure and Storage" on page 40-3 for instructions on
how to list the databases that you create.

What Is a Table?
In relational database systems, a table is a row of column headings together
with zero or more rows of data values. The row of column headings identifies
one or more columns and a data type for each column.

When users create a table, OnLine allocates disk space for the table in a block
of pages called an extent. (See "What Is an Extent?" on page 10-11.) You can
specify the size of both the first and any subsequent extents. (See Chapter 10
of the Informix Guide to SQL: Tutorial for instructions.)

Where Is Data Stored? 10-21

What Are the Logical Units of Storage?

Users can place the table in a specific dbspace by naming the dbspace when
they create the table (usually with the IN dbspace option of CREATE TABLE). If
the user does not specify the dbspace, the table is placed in the dbspace where
the database resides.

A table resides completely in the dbspace in which it was created. The
OnLine administrator can use this fact to limit the growth of a table by plac
ing a table in a dbspace and then refusing to add a chunk to the dbspace when
it becomes full. "How Can You Control Where Data Is Stored?" on page 10-15
explains how to place a table in a given dbspace using the IN dbspace option
of the CREATE TABLE statement.

A table, composed of extents, can span multiple chunks, as shown in
Figure 10-11.

Two extents, both allo
cated to the same table.

Figure 10-11 Table spanning more than one chunk

Blob data associated with a table can reside either in the dbspace with the rest
of the table data or in a separate blobspace. If you are using
INFORMIX-OnLine/Optical, you can also store blobs in an optical storage
subsystem.

For advice on where to store your tables, see "Isolate High-Use Tables" on
page 10-31 and also Chapter 10 of the Informix Guide to SQL: Tutorial.

10-22 Where Is Data Stored?

What Are the Logical Units of Storage?

What Is a Temporary Table?
There are two types of temporary tables: e x p lic it temporary tables and im p licit

temporary tables.

An ex p lic it temporary table is a temporary table that you create using the
TEMP TABLE option of the CREATE TABLE statement or the INTO TEMP clause
of the SELECT statement. For instance, the following SQL statement explictly
creates a temporary table:

SELECT * FROM customer INTO TEMP temp_table

When an application creates an explicit temporary table, it exists until the
application takes one of the following actions:

• The application terminates
• The application closes the database in which the table was created and

opens a database in a different database server.
• The application closes the database in which the table was created. (In this

case, the table is dropped only if the database does transaction logging
and the temporary table was not created with the NO LOG option).

When either of these three events occurs, the temporary table is deleted.

An implicit temporary table is a temporary table created by OnLine as part of
processing.

The following statements might require temporary disk space:

• Statements that include a GROUP BY or ORDER BY clause
• Statements that use aggregate functions with the UNIQUE or DISTINCT

keywords
• Statements that use auto-index joins
• Complex CREATE VIEW statements
• DECLARE statements that create a scroll cursor
• Statements that contain correlated subqueries
• Statements that contain subqueries that occur within an IN or ANY clause
• Statements that initiate a sort-merge join
• CREATE INDEX statements
• DECLARE statements that use the SCROLL CURSOR option

An implicit temporary table is deleted when the processing that initiated the
creation of the table is complete.

W here Is Data Stored? 10-23

What Are the Logical Units of Storage?

If OnLine shuts down without adequate time to clean up temporary tables, it
performs temporary table cleanup as part of the next initialization. (To
request shared-memory initialization without temporary table cleanup,
execute oninit with the -p option.)

Where Are Temporary Tables Stored?
The dbspace in which OnLine stores temporary tables depends on whether
the table is an explicit or implicit table. Both cases are examined in detail in
following two sections.

Explicit Temporary Tables
If you create an explicit temporary table using the IN dbspace option of
CREATE TEMP TABLE, the temporary table is stored in that dbspace.

If you do not use the IN dbspace option of CREATE TEMP TABLE or if you create
the explicit table with SELECT INTO TEMP, OnLine checks the DBSPACETEMP
environment variable and the DBSPACETEMP configuration parameter. (The
environment variable supersedes the configuration parameter.) If
DBSPACETEMP is set, OnLine stores the explicit temporary table in one of the
dbspaces specified in the list.

OnLine keeps track of which was the last dbspace in the list that it used to
store a temporary table. When OnLine receives another request for tempo
rary storage space, it uses the next dbspace in the list. In this way, OnLine
spreads I/O evenly across temporary storage space you specify in DBSPACE
TEMP. If OnLine finds that you do not specify any temporary dbspaces in
DBSPACETEMP, or the temporary dbspaces that you specify have insufficient
space, it creates the table in a standard (nontemporary) dbspace.

By default (you did not specify a dbspace using the IN dbspace option of
CREATE TEMP TABLE and the DBSPACETEMP is not set), OnLine takes the
following actions:

• If you created the temporary table with CREATE TEMP TABLE, it is stored
in the same dbspace in which the database that contains the temporary
table resides.

• If you created the temporary table with the INTO TEMP option of the
SELECT statement, it is stored in the root dbspace.

10-24 W here Is Data Stored?

What Are the Logical Units of Storage?

Implicit Temporary Tables
OnLine stores implicit temporary tables in one of the dbspaces you specify in
the DBSPACETEMP environment variable or the DBSPACETEMP configuration
parameter. (The environment variable supersedes the configuration parame
ter.) If DBSPACETEMP is not set, OnLine stores the temporary table in the root
dbspace.

When OnLine creates temporary implicit tables in the process of sorting, it
checks the PSORT_DBTEMP environment variable in addition to checking the
DBSPACETEMP environment variable and the DBSPACETEMP configuration
parameter. For further information see "Specifying Where Sorting Occurs"
on page 30-7.

What Is a Tblspace?
OnLine administrators sometimes need to track disk usage by a particular
table. A logical unit of storage called tblspace that contains all the disk space
allocated to a given table facilitates this tracking.

The tblspace contains the following types of pages:

• Pages allocated to data
• Pages allocated to indexes
• Pages used to store blob data in the dbspace (but not pages used to store

blob data in a blobspace)
• Bit-map pages that track page usage within the table extents

Figure 10-12 on page 10-26 illustrates the tblspaces for three tables that form
part of the stores6 database. There is one and only one table per tblespace.

Where Is Data Stored? 10-25

What Are the Logical Units of Storage?

stores6 Database

cata log
tblspace

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Blob
Page

Blob
Page

Blob
page

Blob
Page

Blob
Page

Bitmap
Page

Index
Page

Index
Page

Index
age

Index
Page

Index
Page

o rd ers
tblspace

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Index
Page

Index
Page

Bitmap
Page

Index
Page

cu sto m er
tblspace

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Index
Page

Index
Page

Bitmap
Page

Figure 10-12 Three of the sample tblspaces in storesß database. Blob pages represent blob data
stored in a dbspace.

What Is Extent Interleaving?
The pages that belong to a tblspace are allocated as extents. Although the
pages within an extent are contiguous, extents might be scattered throughout
the dbspace where the table resides (even on different chunks). Figure 10-13
on page 10-27 depicts this situation with two noncontiguous extents belong
ing to the tblspace for table_l and a third extent belonging to the tblspace for
table_2. A table_2 extent is positioned between the first table_l extent and
the second table_l extent, causing the table_l extents to be noncontiguous.
When this situation occurs the extents are said to be interleaved. Because
sequential access searches across table_l require the disk head to seek across
the table_2 extent, performance is poorer than if the table_l extents were
contiguous. See Chapter 10 of the Informix Guide to SQL: Tutorial for instruc
tions on how to avoid and eliminate interleaving of extents.

10-26 Where Is Data Stored?

How Much Disk Space Do You Need to Store Your Data?

Figure 10-13 Three extents belonging to two different tblspaces in a single dbspace

How Much Disk Space Do You Need to Store Your Data?
Answering the question "How much space?" is a two-step process. You must
follow these steps:

• Calculate the size requirements of the root dbspace
• Estimate the total amount of disk space to allocate to all OnLine

databases, including space for overhead and growth

These steps are explained in the following sections.

Calculate the Size of the Root Dbspace
To calculate the size of the root dbspace, you must take the following storage
structures into account:

• The physical and logical-log files
• Temporary tables
• Data
• ON-Archive catalog data

• Control information

Each of these factors is considered separately in the sections that follow.

W here Is Data Stored? 10-27

How Much Disk Space Do You Need to Store Your Data?

Physical and Logical Logs
The size of your physical log is defined by the value stored in the ONCONFIG
parameter PHYSFILE. Advice on sizing your physical log is contained in
"How Big Should the Physical Log Be?" on page 20-5.

To calculate the size of the logical-log files, multiply the value of the
ONCONFIG parameter LOGSIZE by the number of logical-log files. Advice on
sizing your logical log is contained in "Logical-Log Size Guidelines" on
page 18-6.

Temporary Tables
Analyze end-user applications to estimate the amount of disk space that
Online might require for implicit temporary tables. "What Is a Temporary
Table?" on page 10-23 contains a list of statements that require temporary
space. Try to estimate how many of these statements are to run concurrently.
The space occupied by the rows and columns returned provides a good basis
for estimating the amount of space required.

OnLine creates implicit temporary files when you use ON-Archive to perform
a warm restore. The largest implicit temporary file that OnLine creates dur
ing a warm restore is equal to the size of your logical log. You calculate the
size of your logical log by multiplying the value of LOGSIZE by LOGFILES. For
more information on these configuration parameters, see "What Should Be
the Size and Number of Logical-Log Files?" on page 18-7.

You must also analyze end-user applications to estimate the amount of disk
space that OnLine might require for explicit temporary tables. (See "What Is
a Temporary Table?" on page 10-23.)

By default, both implicit and explicit temporary tables are stored in the root
dbspace. However, if you decide not to store your temporary tables in the
root dbspace, you can use the DBSPACETEMP environment variable and con
figuration parameter to specify a list of dbspaces that OnLine uses to store
temporary files and tables. See "Where Are Temporary Tables Stored?" on
page 10-24.

Data
Next, decide if users are to store databases or tables in the root dbspace. If the
root dbspace is the only dbspace you intend to mirror, place all critical data
there for protection. Otherwise, store databases and tables in another
dbspace.

10-28 W here Is Data Stored?

How Much Disk Space Do You Need to Store Your Data?

Estimate the amount of disk space, if any, that you need to allocate for tables
stored in the root dbspace.

ON-Archive Catalog Data
If you use ON-Archive to archive your data and perform logical-log backups,
you should include space estimates for ON-Archive catalog data. See the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide for a description
of the tables that compose the ON-Archive catalog. See the Informix Guide to
SQL: Tutorial for instructions on how to calculate the size of each table.

Control Information (Reserved Pages)
The total amount of disk space required for OnLine control information is 3%
of the size of the root dbspace (sum of physical and logical log, temporary
space, and data) plus 14 pages, expressed as kilobytes (or 14 x OnLine page
size).

Complete the Root Dbspace Calculation
Now calculate the size of the root dbspace, adding the following values for a
root dbspace size:

1. Physical log
2. Logical log
3. Disk space for temporary tables
4. Disk space for data stored in the root dbspace
5. Disk space for the reserved pages
6. Disk space to accommodate ON-Archive catalog data, if you use ON-

Archive for performing archives and logical-log file backups

You need not store the physical log, the logical log, nor temporary tables in
the root dbspace. Only include calculations for these if you plan to continue
to store them in the root dbspace.

If you plan to move the physical and logical logs, the initial configuration for
the rootdbs might differ markedly from the final configuration; you can
resize the rootdbs after you remove the physical and logical logs. However,
the rootdbs must be large enough for the minimum size configuration during
disk initialization.

W here Is Data Stored? 10-29

Disk-Layout Guidelines

Estimate Space Required by Databases Including
Overhead and Growth

The amount of additional disk space needed for OnLine data storage
depends on the needs of your end-users. Every application that your end-
users run has different storage requirements. The following list suggests
some of the steps you might take to help you calculate the amount of disk
space to allocate (beyond the root dbspace):

1. Decide how many databases and tables you need to store. Calculate the
amount of space required for each one.

2. Calculate a growth rate for each table and assign some amount of disk
space to each table to accommodate growth.

3. Decide which databases and tables you want to mirror.

Refer to Chapter 10 of the Informix Guide to SQL: Tutorial for instructions
about calculating the size of your tables.

Disk-Layout Guidelines
The following goals for efficient disk layout are typical in a production
environment:

• Limiting disk head movement
• Reducing disk contention
• Balancing the load
• Maximizing availability

The following sections describe strategies that you can use to achieve these
goals and present some sample disk layouts. Each sample disk layout illus
trates a disk-organization scheme suited to a certain set of requirements,
resources, and priorities for data storage.

10-30 W here Is Data Stored?

Disk-Layout Guidelines

Strive to Associate Partitions with Chunks
When you allocate disk space (raw disk or cooked files), you allocate it in
chunks. A dbspace or a blobspace is associated with one or more chunks. You
must allocate at least one chunk for the root dbspace.

Informix recommends that you format your disks so that each chunk is
associated with its own UNIX disk partition. Wfhen every chunk is defined as
a separate partition (or device), it is easy to track disk-space usage; you can
avoid errors caused by miscalculated offsets.

A disk that is already partitioned might require the use of offsets. See "Do
You Need to Specify an Offset?" on page 11-5 for details.

Consider Mirroring
You can mirror critical tables and databases to maximize availability. You
should mirror the root dbspace, the dbspace that contains the physical log,
and the dbspace that contains the logical-log files. You specify mirroring on
a chunk by chunk basis. Locate the primary and the mirrored chunk on dif
ferent disks. Ideally, different controllers should handle the different disks.
Figure 10-14 shows a primary chunk and its mirror.

controller controller
Locate a primary chunk
and its mirror chunk on
different disks, ideally on
different controllers.

Figure 10-14 A primary chunk and its mirror

Isolate High-Use Tables
You can place a table with high I/O activity on a disk device dedicated to its
use and thus reduce contention for the data stored in the table. Wdten disk
drives have different performance levels, you can put the tables with the
highest frequency of use on the fastest drives. Placing two high-access tables

Where Is Data Stored? 10-31

Disk-Layout Guidelines

on separate disk devices reduces competition for disk access when joins are
formed between the two tables or when the two tables experience frequent,
simultaneous access from multiple applications.

To isolate a high-access table on its own disk device, assign the device to a
chunk and assign the same chunk to a dbspace. Finally, place the table with
the high frequency of use in the dbspace just created using the IN dbspace
option of CREATE TABLE. Figure 10-15 illustrates this strategy by showing
optimal placement of three tables with high frequency of use.

Figure 10-15 Example of isolation of high-use tables. Each table is located in a different dbspace.

If you have doubts whether spreading your tables across multiple disks can
improve performance for your particular configuration, run the -g iof option
of onstat. For details, see "-g Monitoring Options" on page 37-55.

Group Your Tables with Archive and Restore in Mind
When deciding where to place your tables, keep in mind that if a device
containing a dbspace fails, all tables in that dbspace are inaccessible. How
ever, tables in other dbspaces remain accessible. This might influence which
tables you group together in a particular dbspace.

Although you must perform a cold restore if a dbspace containing critical
media fails, you need only perform a warm restore if a non-critical dbspace
fails. This might influence the dbspace you use to store critical media. See the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide for more
information.

10-32 Where Is Data Stored?

Disk-Layout Guidelines

Spread a Single Table Across Multiple Disk Devices to
Reduce Contention

To reduce contention between different programs using the same table, you
can also spread the table across multiple devices. To do this, put the table in
a dbspace that includes multiple chunks, each of which is located on a differ
ent disk. Although you have no control over how the table data is spread
across the chunks, this layout might result in multiple disk access arms for
one table. Figure 10-16 shows a table spread across multiple tables.

Table Dbspace Disk

disk 1
chunk 1 of
dbspace_1

chunk 2 of
dbspace_1

chunk 3 of
dbspace_1

Figure 10-16 Table spread across multiple disk devices. Dotted lines indicate that actual storage
location of a given row cannot be predetermined.

Place High-Use Tables on Middle Partition of Disk
To minimize disk-head movement, place the most frequently accessed data
in partitions as close to the middle of the disk as possible (see Figure 10-17).
(When a disk device is partitioned, the middlemost partitions generally expe
rience the fastest access time.) Place the least frequently used data on the out
ermost or innermost partitions. This overall strategy minimizes disk-head
movement.

W here Is Data Stored? 10-33

Disk-Layout Guidelines

Single chunk in Create high-
use table in
dbspace

Locate high-use tables
at the middle partitions
of the disk.

Figure 10-17 Illustration of disk platter with high-use table located on middle partitions of a disk

To place high-use tables on the middle partition of the disk, create a raw
device (see your UNIX manual for instructions on how to create a raw device)
composed of cylinders that reside midway between the spindle and the outer
edge of the disk. Allocate a chunk, associating it to this raw device. Then cre
ate a dbspace with this same chunk as the initial and only chunk. When you
create your high-use tables, use the IN option of CREATE TABLE to place them
in the newly created dbspace.

Spread Your Temporary Storage Space Across Multiple
Disks

You can use the DBSPACETEMP environment variable and configuration
parameter to store a list of dbspaces used for temporary storage. The list can
include both temporary and nontemporary dbspaces. By designing the list in
such a way that your temporary disk space is spread across multiple disks,
you achieve load balancing. For instructions on how to set the DBSPACETEMP
configuration parameter see "DBSPACETEMP" on page 35-13.

Optimize Table Extent Sizes
As explained in "What Is a Tblspace?" on page 10-25, when two or more
large, growing tables share a dbspace, their new extents might be interleaved.
This interleaving creates gaps between the extents of any one table. (See Fig
ure 10-18 on page 10-35.) Performance might suffer if disk seeks must span
more than one extent. Work with the table owners to optimize the table extent
sizes and thus limit head movement. See Chapter 10 in the Informix Guide to
SQL: Tutorial for advice on how to alleviate this problem. You can also con
sider placing the tables in separate dbspaces.

10-34 Where Is Data Stored?

Disk-Layout Guidelines

table 1 extents
table 2 extents
table 3 extents

Avoid extent
interleaving.

Figure 10-18 Illustration of interleaved extents

Move the Logical and Physical Logs from the Root
Dbspace

Whether or not databases use transaction logging, the logical log and
physical log both contain files that OnLine accesses frequently. Likewise,
reserved pages are also accessed frequently; they contain internal tables that
describe and track all dbspaces, blobspaces, chunks, databases, and
tblspaces.

By default, the logical and physical log are stored together with the reserved
pages in the root dbspace. Although this is convenient if you have a small,
low-volume transaction-processing system, maintaining these files together
in the root dbspace can become a source of contention as your database sys
tem grows.

You can reduce this contention and provide a form of load balancing by
moving the logical and physical logs to separate partitions or, even better,
separate disk drives. For optimum performance, consider creating two addi
tional dbspaces: one for the physical log and one for the logical log. When
you move the logs, avoid storing them in a dbspace that contains high-access
tables, or preferably, consider storing them in a dbspace dedicated to storing
only the physical or logical log. See "Where Is the Physical Log Located?" on
page 20-7 and "Where Should Logical-Log Files Be Located?" on page 18-8
for more advice on where to store your logs.

For instructions on how to change the location of the logical and physical log,
see "Changing the Physical-Log Location and Size" on page 21-3 and "Mov
ing a Logical-Log File to Another Dbspace" on page 19-6.

Where Is Data Stored? 10-35

Disk-Layout Guidelines

Separate the logs from
the root dbspace by
locating them on
separate disks.

Figure 10-19 Separation of root dbspace, physical log and logical log onto different disk drives

Take into Account Archive and Restore Performance
When planning your disk layout, consider how the configuration you choose
affects your archive and restore procedure. This section describes two config
urations that can have a significant impact on your archive and restore
procedure.

Cluster Catalogs with the Data They Track
When a disk that contains the system catalog for a particular database fails,
the entire database remains inaccessible until the catalog is restored. Because
of this, Informix recommends that you do not cluster the system catalog
tables for all databases in a single dbspace but instead place the catalogs with
the data they track.

Reconsider Separating the Physical and Logical Logs
Although it makes sense from a performance perspective to separate the root
dbspace from the physical and logical logs, and the two from one another,
this configuration is also the least desirable in terms of recovery.

Whenever a disk that contains critical media (the root dbspace, physical log,
and logical log) fails, OnLine comes off-line. In addition, the OnLine admin
istrator must restore all OnLine data, starting in off-line mode, from a level-0
archive before processing can continue.

By separating the root dbspace from the physical and logical-log files, you
increase the probability that if a disk fails, it is one that contains critical media
(either the root dbspace, physical log, or logical log). "Sample Layout When
Archive and Restore Are Highest Priorities" on page 10-41 explains this con
cept in detail.

10-36 W here Is Data Stored?

Disk-Layout Guidelines

Sample Disk Layouts
This section describes three sample disk layouts. It presents concrete
examples of approaches an OnLine administrator might use to apportion
disk space given a certain set of needs, priorities, and resources.

The setting for the sample disk layouts is a fictitious sporting-goods distrib
utor that uses the structure (but not the volume) of the stores6 database. In
this example, the OnLine database server is configured to handle approxi
mately 350 users and 6 gigabytes of data.

Storage for the system requires two large, high-access tables: cust_calls and
items. Assume that both of these tables contain more than 1 million rows and
are subject to constant access from users around the country.

The cust_calls table represents a record of all customer calls made to the dis
tributor. The items table is a table containing a line item of every order ever
shipped by the distributor. The remaining tables are low- or moderate-
volume tables used by OnLine to look up data such as zip-code or manufac
turer.

When setting out to organize disk space, an OnLine administrator usually
has one or more of the following objectives in mind:

• High performance
• High availability
• Ease of archive and restore

There are trade-offs involved in meeting any one of the three objectives. For
example, configuring your system for high performance usually results in
taking risks regarding the availability of data and ease of archive and restore.
The sections that follow describe these trade-offs in detail and explains strat
egies you can use to achieve each of these three objectives.

The resources available limited the distributor to the purchase of four disk
drives, two with a storage capacity of two gigabytes and two with a storage
capacity of one-and-a-half gigabytes. In addition to the extra half-gigabyte
storage capacity, the two-gigabyte drives also delivered better performance
than the one-and-a-half gigabyte drives.

Only in the case when availability is highest priority is it assumed that the
OnLine administrator can acquire another disk drive for mirroring.

Sample Layout When Performance Is Highest Priority
This section describes the strategies used by the OnLine administrator when
performance is the first priority.

Where Is Data Stored? 10-37

Disk-Layout Guidelines

Strategies Used to Achieve High Performance
Three strategies are used to ensure high performance.

First, the administrator isolates the highest-use tables, cust_calls and items,
in separate dbspaces reserved solely for these tables, as shown in Figure
10- 20.
Second, the administrator places those two tables on the fastest drives (disk
drives 2 and 3 in Figure 10-20).

Figure 10-20 Disk layout when performance is highest priority

10-38 W here Is Data Stored?

Disk-Layout Guidelines

Third, the physical and logical logs are separated from each other by placing
them in separate dbspaces.

Implementing the Strategies
To implement the first two strategies, the administrator creates the
cust_calls_space and items_space dbspaces on the fastest drives using the -c
option of onspaces.

The administrator then uses the IN dbspace option of CREATE TABLE to create
and place the cust_calls and items tables as shown in the following example:

CREATE TABLE cust_calls IN cust_calls_space
CREATE TABLE items IN items_space

To implement the third step, the administrator uses the onparams utility to
drop the logical-log files from the root dbspace. The administrator then adds
the logical-log files to the logical_logs dbspace, using onparams. (See"Mov-
ing a Logical-Log File to Another Dbspace" on page 19-6.)

To move the physical log from the root dbspace to the physical_log dbspace,
the administrator again uses the onparams utility as described in "Using
onparams to Change Physical-Log Location or Size" on page 21-5.

W here Is Data Stored ? 10-39

Disk-Layout Guidelines

Sample Layout When Availability Is Highest Priority
This scenario is identical to the high-performance scenario except that here
the OnLine administrator acquires an additional disk drive and places a high
priority on keeping the database server on-line.

Strategies Used to Ensure Maximum Availability
The surest way to maximize the availability of data is to mirror all dbspaces
managed by OnLine. Because just one disk drive is available for mirroring,
the OnLine administrator uses it to mirror critical media (root dbspace, phys
ical log, and logical log). Although this strategy does not guarantee the con
stant availability of all data, it does ensure that OnLine remains in on-line
mode even if critical media fails.

Implementing the Strategies
As you can see in Figure 10-21, the OnLine administrator allocates three new
mirror chunks on disk 5, one for each primary chunk in the rootdbs,
physical_log, and logicaljogs dbspaces.

The administrator then adds one of the chunks to each dbspace and starts
mirroring using the -m option of onspaces. (See "Starting Mirroring" on
page 24-5 for detailed instructions on how to initiated mirroring.)

10-40 Where Is Data Stored?

Disk-Layout Guidelines

Sample Layout When Archive and Restore Are Highest Priorities
The following section describes a sample disk layout when ease of archive
and restore is highest on an OnLine administrator's list of priorities. The con
figuration described assumes the same data and resources that were avail
able in the first sample layout when the administrator's highest priority was
performance.

Strategies Used to Achieve Ease of Archive and Restore
In "Sample Layout When Performance Is Highest Priority" on page 10-37 the
root dbspace, the physical-log, and the logical-log files are spread across three
disks, thus maximizing performance of the database server in terms of stor-

W here Is Data Stored? 10-41

Disk-Layout Guidelines

age and retrieval. (See Figure 10-22 on page 10-43.) However, if a disk fails,
chances are three in four that it might be one of the disks that contains critical
media (the root dbspace, physical log, or logical log). The failure of any of
these disks would bring OnLine down and necessitate a time-consuming
cold restore from a level-0 archive.

The configuration shown in Figure 10-22 on page 10-43 depicts the disk lay
out implemented by an OnLine administrator for whom availability and ease
of archive and restore are of the highest priority. Here, the root dbspace, phys
ical log, and logical-log files are clustered together on the same disk.
Although this increases disk contention for access to these logs and the root
dbspace, in the event of a disk failure chances are only one in four that the
disk containing critical media (the root dbspace, physical log, and logical log)
would be the disk that fails. If one of the other disks should fail, the OnLine
administrator can perform a warm restore of the affected dbspace while the
database server remains on-line.

Implementing the Strategies
By default, the physical and logical log are located in the root dbspace, so no
action is required on the part of the system administrator to implement the
ease of archive and restore strategy.

10-42 Where Is Data Stored?

Disk-Layout Guidelines

Figure 10-22 Disk layout when ease of archive and restore is highest priority

W here Is Data Stored? 10-43

What Is a Logical Volume Manager?

What Is a Logical Volume Manager?
A logical volume manager (LVM) is a utility that allows you to manage your
disk space through user-defined logical volumes.

Many computer manufacturers ship their computers with a proprietary LVM.
You can use OnLine to store and retrieve data on disks that are managed by
most proprietary LVMs. Logical volume managers provide some advantages
and some disadvantages, as discussed in the remainder of this section.

Most LVMs can manage multiple gigabytes of disk space. OnLine chunks are
limited to a size of two gigabytes and this size can only be attained when the
chunk being allocated has an offset of zero. Consequently, you should limit
the size of any volumes to be allocated as chunks to a size of two gigabytes.

Because LVMs allow you to partition a disk drive into multiple volumes, you
can control where data is placed on a given disk. You can improve perfor
mance by defining a volume consisting of the middle-most cylinders of a disk
drive and placing high-use tables in that volume. See "Place High-Use Tables
on Middle Partition of Disk" on page 10-33 for more information. (Techni
cally, you do not place a table directly in a volume, but must first allocate a
chunk as a volume, then assign the chunk to a dbspace, and finally place the
table in the dbspace. See "How Can You Control Where Data Is Stored?" on
page 10-15 for more information.)

You can also improve performance by using a logical volume manager to
define a volume that spreads across multiple disks, and then place a table in
that volume. This helps reduce contention between programs that access the
same table, as explained in "Spread a Single Table Across Multiple Disk
Devices to Reduce Contention" on page 10-33.

Many logical volume managers also allow a degree of flexibility that stan
dard operating-system format utilities do not. One such feature is the ability
to reposition logical volumes after you define them. This means that getting
the layout of your disk space right the first time is not so critical as with
operating system format utilities.

LVMs often provide operating-system-level mirroring facilities. See "What
Mirroring Alternatives Exist?" on page 23-5 for more information.

10-44 W here Is Data Stored?

Managing Disk
Space
Chapter Overview 3

Allocating Disk Space 3
Allocating Cooked File Space 4
Allocating Raw Disk Space 5

Do You Need to Specify an Offset? 5
Creating Links to Each Raw Device 6

Initializing Disk Space 7
Initializing Disk Space with ON-Monitor 7
Initializing Disk Space with oninit 7

Creating a Dbspace 8
Creating a Dbspace Using ON-Monitor 9
Creating a Dbspace Using onspaces 9

Adding a Chunk to a Dbspace 10
Adding a Chunk 10

Adding a Chunk Using ON-Monitor 11
Adding a Chunk Using onspaces 11

Creating a Blobspace 12
Determining OnLine Page Size 13
Creating a Blobspace Using ON-Monitor 13
Creating a Blobspace Using onspaces 14

Adding a Chunk to a Blobspace 14

Dropping a Chunk from a Dbspace Using onspaces 14

Dropping a Chunk from a Blobspace 15

Dropping a Dbspace or Blobspace 15
Dropping a Dbspace or Blobspace Using ON-Monitor 16
Dropping a Dbspace or Blobspaces Using onspaces 16

Optimizing Blobspace Blobpage Size 16
Determining Blobspace Storage Efficiency 17
Blobspace Storage Statistics 17
Determining Blobpage Fullness with oncheck -pB 17

Interpreting Blobpage Average Fullness 19
Apply Efficiency Criteria to Output 19

Managing Extents 19
If You Find That Extents Are Interleaved 20

Managing Tables 21
Reclaiming Space in an Empty Extent Using Alter Index 21
Reclaiming Space in an Empty Extent Using the UNLOAD and

LOAD Statements 21

11-2 Managing Disk Space

Chapter Overview
This chapter provides the instructions you need to effectively manage disk
space and data controlled by INFORMIX-OnLine Dynamic Server. It assumes
you are familiar with the terms and concepts contained in Chapter 10,
" Where Is Data Stored?"

This chapter covers the following topics:

• How to allocate raw or cooked file space

• How to initialize disk space

• How to set configuration variables related to disk management

• How to manage blobspaces, chunks and dbspaces
o Allocating, adding and dropping chunks from dbspaces and

blobspaces
o Creating and dropping dbspaces and blobspaces

• How to optimize blobpage size
• How to reclaim space in an empty extent

Allocating Disk Space
This section explains how to allocate disk space for Online. Before you allo
cate disk space you should read the following sections:
• "Should You Allocate Chunks as Cooked Files or Raw Disk Space?" on

page 10-5
• "How Much Disk Space Do You Need to Store Your Data?" on page 10-27
• "Disk-Layout Guidelines" on page 10-30

Once you allocate the necessary space you might still need to take additional
steps before OnLine can begin to use the space to store data. The sections that
follow contain those additional steps as well.

Managing Disk Space 11-3

Allocating Disk Space

You need to allocate disk space before performing these tasks:

• Initializing disk space

• Creating a dbspace or blobspace

• Adding a chunk to an existing dbspace or blobspace

• Mirroring an existing dbspace or blobspace

You can allocate disk space as raw disk space or as a cooked file. Informix rec
ommends that if you allocate raw disk space, you use the UNIX link com
mand to create a link between the character-special device name and another
filename. See "Creating Links to Each Raw Device" on page 11-6 for more
information on this topic.

Allocating Cooked File Space
To allocate cooked file space, you should log in as user informix, and concat
enate null to a pathname that represents one chunk of cooked file space. The
cooked disk-space file should have permissions set to 660 (rw-rw—). Group
and owner must be set to informix. Figure 11-1 illustrates these steps and
assumes that you will store the cooked space in the file /usr/data/my_chunk.

Step Command Comments

1. % su informix Log in as user informix.
(Enter the password.)

2. % cd /usr/data Change directories to the directory where the
cooked space will reside.

3. % cat /dev/null > my_chunk Create your chunk by concatenating null to a file (in
this example, a file named my_chunk).

4. % chmod 660 my_chunk Set the permissions of the file to 660 (rw-rw—).

5. % Is -lg my_chunk
-rw-rw--- 1 informix informix

0 Oct 12 13:43 my_chunk
Use I s - 1 if you are using System V UNIX. Verify
that both group and owner of the file are informix.
You should see something like this line (which has
wrapped around).

Figure 11-1 Preparing cooked file space for OnLine

11-4 Managing Disk Space

Allocating Disk Space

Allocating Raw Disk Space
To allocate raw disk space, consult your UNIX system documentation for
instructions on how to create and install a raw device.

In general to create a raw device (see "What Is a Raw Device?" on page 10-6),
you can either repartition your disks or unmount an existing file system. In
either case, take proper precautions to back up any files before you unmount
the device.

Change the group and owner of the character-special devices to informix.
The filename of the character-special device usually begins with the letter r
(for example, /dev/rsdOf).

Verify that the UNIX permissions on the character-special devices are 660.
Usually, the character-special designation and device permissions appear as
crw-rw------ if you execute the UNIX Is -1 command on the filename. (Some
UNIX systems might vary.)

Do You Need to Specify an Offset?
You can use offsets for two purposes:

• To prevent Online from overwriting the UNIX partition information
• To define multiple chunks on a partition, disk device, or cooked file

Both uses are described in this section.

Many UNIX systems and some disk-drive manufacturers keep information
for a physical disk drive on the drive itself. This information is sometimes
referred to as a volume table of contents (VTOC) or disk label. (For the sake of
convenience, it will be referred to here as the VTOC.) The VTOC is commonly
stored on the first track of the drive. A table of alternate sectors and bad-
sector mappings (also called revectoring table) might also be stored on the
first track.

If you plan to allocate partitions at the start of a disk, you might need to use
offsets to prevent Online from overwriting critical information required by
UNIX. Refer to your disk-drive manuals for the exact offset required.

You can also use offsets to define multiple chunks on a partition, disk device,
or cooked file. You define the chunks by specifying a beginning offset when
you add a chunk to a dbspace or blobspace using onspaces or ON-Monitor.
The offset parameter specifies the beginning byte of the chunk. Online deter
mines the last byte of the chunk by adding the chunk size in bytes to the
beginning offset.

Managing Disk Space 11-5

Allocating Disk Space

For the initial chunk of root dbspace or its mirror, you specify an offset w ith
the ROOTOFFSET and MIRROROFFSET param eters, respectively For the initial
chunk of nonroot dbspaces, you supply the offset as a param eter w hen you
create the dbspace w ith onspaces or ON-Monitor. (See "C reating a D bspace"
on page 11-8.)

If you are running two or more instances of O n lin e , you must be extremely
careful not to define chunks that overlap. Overlapping chunks can cause
O n lin e to overwrite data in one chunk with unrelated data from an overlap
ping chunk. This effectively destroys overlapping data.

Creating Links to Each Raw Device
Create a link betw een the character-special device nam e and another file
nam e w ith the UNIX link com m and, usually In.

The link enables you to quickly replace the disk where the chunk is located.
The convenience becomes important if you need to restore your O n lin e data.
The restore process requires that all chunks that were accessible at the time of
the last archive are accessible when you perform the restore. The link means
that you can replace a failed device with another device and link the new
device pathname to the same filename you previously created for the failed
device. You do not need to wait for the original device to be repaired.

Do not create file systems on the character-special devices. Do not use the raw
device as swap space.

Execute the UNIX com m and Is -lg (Is -1 on System V UNIX) on your device
directory to verify that both the devices and the links exist.

% Is -lg
crw-rw--
crw-rw--
lrwxrwxrwx
lrwxrwxrwx

/dev/rxyOh
/dev/rxyOa
/dev/my_root@->/dev/rxyOh
/dev/raw_dev2 @->/dev/rxy 0 a

Figure 11-2 Listing of I dev directory showing links to raw devices

Figure 11-2 illustrates how a listing appears when a symbolic link is used to
link a device to a filename. If your operating system does not support sym
bolic links, hard links will work as well.

11-6 Managing Disk Space

Initializing Disk Space

Initializing Disk Space
Disk-space initialization uses the values stored in the configuration file to cre
ate the initial chunk of the root dbspace on disk and to initialize shared mem
ory. When you initialize disk space, shared memory is automatically
initialized for you as part of the process.

Typically, you initialize disk space just once in the life of an Online database
server. This occurs when you bring Online on-line for the first time.

Warning: When you initialize Online disk space, you overwrite whatever is on that
disk space. I f you reinitialize disk space for an existing Online database server, all
data in the earlier Online becomes inaccessible and, in effect, is destroyed.

You execute the oninit process by entering the command oninit (with or
without command-line options) at the UNIX prompt or by requesting initial
ization through ON-Monitor.

Only user informix or root can execute oninit and initialize Online. Online
must be in off-line mode when you begin initialization. As oninit executes, it
reads the configuration file named by the environment variable ONCONFIG.

Initializing Disk Space with ON-Monitor
To initialize OnLine with ON-Monitor, select the Parameters menu, Initializa
tion option. OnLine displays a series of five screens, each containing a num
ber of fields that correspond to parameters in the ONCONFIG configuration
file.

Initializing Disk Space with oninit
After you configure OnLine (see Chapter 3, "Installing and Configuring
OnLine"), you can initialize disk space by executing one of the following
commands:

% oninit -i
or

% oninit -i -s
The oninit -i option leaves OnLine in on-line mode after initiation. If you use
both the -i and -s options, OnLine is left in quiescent mode. Reference infor
mation on executing oninit is in "Initialize Disk Space and Shared Memory"
on page 37-17.

Managing Disk Space 11-7

Creating a Dbspace

Creating a Dbspace
This section explains how to create a standard dbspace (see "What Is a
Dbspace?" on page 10-15) and a temporary dbspace ("What Is a Temporary
Dbspace?" on page 10-18). You can use ON-Monitor or onspaces for either
task.

You can create a dbspace within ON-Monitor or from the command line.
Before you do, however, you must first allocate disk space as is described in
"Allocating Disk Space" on page 11-3.

You can mirror the dbspace when you create it if mirroring is enabled for
Online. Mirroring takes effect immediately.

Verify that you will not exceed the maximum number of blobspaces and
dbspaces allowed in your configuration, specified as DBSPACES. See
"DBSPACES" on page 35-13 if you find it necessary to increase the maximum
number of dbspaces for your database server.

Specify an explicit pathname for the initial chunk of the dbspace. Informix
recommends that you use a linked pathname. (See "Creating Links to Each
Raw Device" on page 11-6.) If you are allocating a raw disk device, you might
need to specify an offset to preserve track 0 information used by your UNIX
operating system. (See "Do You Need to Specify an Offset?" on page 11-5.) If
you are allocating cooked disk space, the pathname is a file in a UNIX file
system.

When the initial chunk of the dbspace you are creating is cooked file space,
OnLine verifies that the disk space is sufficient for the initial chunk. If the size
of the chunk is greater than the available space on the disk, a message is dis
played and no dbspace is created. However, the cooked file that OnLine cre
ated for the initial chunk is not removed. Its size represents the space left on
your file system before you created the dbspace. Remove this file to reclaim
the space.

If you are creating a temporary dbspace, you must make OnLine aware of the
existence of the newly created temporary dbspace by setting the DBSPACET-
EMP configuration variable or the DBSPACETEMP environment variable or
both.

You must be logged in as user inf ormix or root to create a dbspace within
ON-Monitor or from the command line.

You can create a dbspace while OnLine is in on-line mode. The newly added
dbspace (and its associated mirror, if there is one) is available immediately.

11-8 Managing Disk Space

Creating a Dbspace

Creating a Dbspace Using ON-Monitor
To create a dbspace using ON-Monitor, follow these instructions:

1. Select the Dbspaces menu, Create option to create a dbspace.
2. Enter the name of the new dbspace in the field Dbspace Name.
3. If you want to create a mirror for the initial dbspace chunk, enter a Y in

the M irro r field. Otherwise, enter N.
4. If the dbspace you are creating is a temporary dbspace, enter a Y in the

Temp field. Otherwise, enter N.
5. Enter the full pathname for the initial primary chunk of the dbspace in the

F u ll Pathname field of the primary chunk section.
6. Specify an offset in the O ffs e t field.
7. Enter the size of the chunk, in kilobytes, in the S iz e field.
8. If you are mirroring this dbspace, enter the mirror chunk full pathname,

size, and optional offset in the mirror chunk section of the screen.

Creating a Dbspace Using onspaces
To create a dbspace using onspaces, use the -c option of onspaces as shown
in the example that follows.

This example creates a 10 megabyte mirrored dbspace, dbspcel. An offset of
5,000 kilobytes is specified for both the primary and mirror chunks.

% onspaces -c -d dbspcel -p /dev/raw_devl -o 5000 -s 10000 \
-m /dev/raw_dev2 5000

Reference information on creating a temporary dbspace using onspaces is in
"Create a Blobspace or Dbspace" on page 37-41.

The following example creates a five megabyte temporary dbspace named
temp_space.

% onspaces -c -t -d temp_space -p /dev/raw_devl -o 5000 -s 5000

Reference information on creating a dbspace using onspaces is in "Create a
Blobspace or Dbspace" on page 37-41.

Managing Disk Space 11-9

Adding a Chunk to a Dbspace

Adding a Chunk to a Dbspace
If one of your dbspaces is becoming full, you might want to add a new chunk.
You can add a chunk to a dbspace within ON-Monitor or from the command
line. Before you do, however, you must first allocate disk space as described
in "Allocating Disk Space" on page 11-3.

Adding a Chunk
You add a chunk when you need to increase the amount of disk space allo
cated to a blobspace or dbspace.

Verify that you will not exceed the maximum number of chunks allowed in
your configuration, specified as CHUNKS.

If you are adding a chunk to a mirrored blobspace or dbspace, you must also
add a mirror chunk.

You must specify an explicit pathname for the chunk. Informix recommends
that you use a linked pathname. See "Creating Links to Each Raw Device" on
page 11-6 for instructions.

When you add a chunk that is cooked file space, OnLine verifies that the disk
space is sufficient for the new chunk. If the size of the chunk is greater than
the available space on the disk, a message is displayed and no chunk is
added. However, the cooked file that OnLine created for the new chunk is not
removed. Its size represents the space left on your file system before OnLine
added the chunk. Remove this file to reclaim the space.

When you add a chunk allocated as cooked file space, OnLine verifies that
the disk space is sufficient for the new chunk by creating and then removing
a file of the size requested. If the size of the chunk is greater than the available
space on the disk, OnLine might inadvertently fill your file system in the pro
cess of verifying available disk space.

You must be logged in as user informix or root to add a chunk within
ON-Monitor or from the command line.

You can make this change while OnLine is in on-line mode. The newly added
chunk (and its associated mirror, if there is one) is available immediately.

11-10 Managing Disk Space

Adding a Chunk to a Dbspace

Adding a Chunk Using ON-Monitor
To add a chunk to a dbspace, follow these instructions:

1. Select the Dbspaces menu, Add_chunk option.
2. Use the RETURN key or the Arrow keys to select the blobspace or dbspace

that will receive the new chunk and press CTRL-B or F3.
3. The next screen (see Figure 11-3) that displays indicates whether the blob-

space or dbspace is mirrored. If it is, enter a Y in the M irro r field.
4. If the dbspace to w hich you are adding the chunk is a tem porary dbspace,

enter a Y in the Temp field.

5. If you indicated that the dbspace or blobspace is mirrored, you must spec
ify both a primary chunk and mirror chunk. Enter the complete pathname
for the new primary chunk in the F u ll Pathname field of the primary
chunk section.

Press ESC to add new chunk(s).
Press Interrupt to cancel the option and return to the Dbspaces menu.
Press F2 or CTRL-F for field level help.

ADD CHUNK TO DBSPACE
Dbspace Name [onchkdbs]

PRIMARY CHUNK INFORMATION:
Full Pathname [

Offset [0] Kbytes
MIRROR CHUNK INFORMATION

Full Pathname [
Offset []

Mirror [N]

Figure 11-3 Addjchunk option of ON-Monitor

Temp [N]

Size [0] Kbytes

6. Specify an offset in the O ffs e t field.
7. Enter the size of the chunk, in kilobytes, in the S iz e field.
8. If you are mirroring this chunk, enter the mirror chunk complete path

name, size, and optional offset in the mirror chunk section of the screen.

Adding a Chunk Using onspaces

To add a chunk to a dbspace, use the -a option of onspaces as illustrated in
the following example. This example adds a 10-megabyte mirrored chunk to
blobsp3. An offset of 200 kilobytes for both the primary and mirrored chunk
is specified. If you are not adding a mirrored chunk, you can omit the -m
option.

% onspaces -a blobsp3 -p /dev/raw_devl -o 200 -s 10000 -m /dev/raw_dev2 200

Reference information on adding a chunk to a dbspace using onspaces is in
"Add a Chunk" on page 37-42.

Managing Disk Space 11-11

Creating a Blobspace

Creating a Blobspace
You can create a blobspace (see "What Is a Blobspace?" on page 10-19) using
ON-Monitor or the onspaces utility. Before you do, however, you must first
allocate disk space as is described in "Allocating Disk Space" on page 11-3.

Verify that the num ber of dbspaces/blobspaces does not exceed the current
value of the DBSPACES configuration param eter. DBSPACES refers to the total
num ber of blobspaces plus dbspaces.

You specify an explicit pathname for the blobspace. Informix recommends
that you use a linked pathname. See "Creating Links to Each Raw Device" on
page 11-6 for instructions on how to use a linked pathname.

You can mirror the blobspace when you create it if mirroring is enabled for
OnLine. Mirroring takes effect immediately.

A newly created blobspace is not immediately available for blob storage.
Blobspace logging and recovery require that the statement that creates a blob
space and the statements that insert blobs into that blobspace appear in sep
arate logical-log files. This requirement is true for all blobspaces, regardless
of the logging status of the database.To accommodate this requirement
switch to the next logical-log file after you create a blobspace. (See "Backing
Up Logical-Log Files to Free Blobpages" on page 18-16 for instructions.)

When the initial chunk of the blobspace you are creating is cooked file space,
OnLine verifies that disk space is sufficient for the initial chunk. If the size of
the chunk is greater than the available space on the disk, a message is dis
played and no blobspace is created. However, the cooked file that OnLine
created for the initial chunk is not removed. Its size represents the space left
on your file system before you attempted to create the blobspace. Remove
this file to reclaim the space.

You must be logged in as user root or user informix to create a blobspace
using ON-Monitor or the onspaces utility.

You can create a blobspace while OnLine is in on-line mode.

Before you create a blobspace, take time to determine what blobpage size is
optimal for your environment. See "Optimizing Blobspace Blobpage Size" on
page 11-16 for instructions on how to do this.

11-12 Managing Disk Space

Creating a Blobspace

Determining Online Page Size
When you specify blobpage size, you specify it in terms of OnLine pages. To
determine OnLine page size for your system, select the Shared-Memory
option of the Parameters menu in ON-Monitor. ON-Monitor displays a list of
shared-memory parameters of which OnLine page size is the last entry on the
page. OnLine page size is also recorded in the PAGE_PZERO reserved page.
You can view the contents of this reserved page by running oncheck -pr.

You can also find OnLine page size by selecting the Initialize option of the
parameters menu. The first entry displayed on the screen after you select the
Initialize option is OnLine page size.

Creating a Blobspace Using ON-Monitor
To create a blobspace using ON-Monitor, follow these instructions:

1. Select the Dbspaces menu, BLOBSpace option.
2. Enter the name of the new blobspace in the BLOBSpace Name field.
3. If you want to create a mirror for the initial blobspace chunk, enter a Y in

the M irro r field. Otherwise, enter N.
4. Specify the blobpage size in terms of the number of disk pages (see

"Determining OnLine Page Size" on page 11-13) per blobpage in the
BLOBPage S ize field. For example, if your OnLine has a disk-page size
of 2 kilobytes, and you want your blobpages to have a size of 10 kilobytes,
enter a 5 in this field.

5. Enter the complete pathname for the initial primary chunk of the blob
space in the F u ll Pathname field of the primary chunk section.

6. Specify an offset in the O ffs e t field.
7. Enter the size of the chunk, in kilobytes, in the S ize field.
8. If you are mirroring this blobspace, enter the mirror chunk full pathname,

size, and optional offset in the mirror chunk section of the screen.

Managing Disk Space 11-13

Adding a Chunk to a Blobspace

Creating a Blobspace Using onspaces
To create a blobspace using onspaces, use the -c option as illustrated in the
following example. This example creates a ten megabyte mirrored blobspace,
blobsp3, with a blobpage size of 10 kilobytes, where Online page size is 2
kilobytes. An offset of 200 kilobytes for the primary and mirror chunks is
specified.

% onspaces -c -b blobsp3 -g 5 -p /dev/raw_devl -o 200 -s 10000 \
-m /dev/raw_dev2 200

Reference information on creating a blobspace using onspaces is in "Create a
Blobspace or Dbspace" on page 37-41.

Adding a Chunk to a Blobspace
Adding a chunk to a blobspace is identical to adding a chunk to a dbspace.
Both are explained in "Adding a Chunk" on page 11-10.

Dropping a Chunk from a Dbspace Using onspaces
To successfully drop a chunk from a dbspace using onspaces, all pages other
than overhead pages must be freed. If any pages remain allocated to non
overhead entities, onspaces returns the following error:

Chunk is not empty.

If this occurs, execute oncheck -pe to determine which OnLine entity still
occupies space in the chunk, remove it, and reenter the onspaces command.

You cannot drop the initial chunk of a dbspace. (Use the f chunk column of
onstat -d to determine which chunk is the initial chunk of a dbspace.
(See "-d Option" on page 37-52 for more information.)

The following example drops a chunk from dbsp3. An offset of 300 kilobytes
is specified.

% onspaces -d dbsp3 -p /dev/raw_devl -o 300

Reference information on dropping a chunk from a dbspace using onspaces
is in "Drop a Chunk" on page 37-43.

11-14 Managing Disk Space

Dropping a Chunk from a Blobspace

Dropping

Dropping

Chunk from a Blobspace
The procedure for dropping a chunk from a blobspace is identical to the pro
cedure for dropping a chunk from a dbspace described in "Dropping a
Chunk from a Dbspace Using onspaces" on page 11-14 except that Online
must be in quiescent mode. Other than this, you need only substitute the
name of your blobspace wherever there is a reference to a dbspace.

Dbspace or Blobspace
Before you drop a dbspace, you must first drop all databases and tables that
you previously created in the dbspace. Before you drop a blobspace, you
must drop all tables that have a TEXT or BYTE column referencing the
blobspace.

Execute oncheck -pe to verify that no tables or log files are residing in the
dbspace or blobspace.

You cannot drop the root dbspace.

After you drop a dbspace or blobspace, the newly freed chunks are available
for reassignment to other dbspaces or blobspaces. However, before you reas
sign the newly freed chunks, you should perform a level-0 archive. If you are
using ON-Archive, the level-0 archive, should include at least the root
dbspace and the dbspace set (if any) that contained the dropped dbspace or
blobspace.

If you drop a dbspace or blobspace that is mirrored, the dbspace or blobspace
mirrors are also dropped.

If you want to drop only the dbspace or blobspace mirrors, turn off mirroring.
(See "Ending Mirroring" on page 24-10.) This drops the dbspace or blobspace
mirrors and frees the chunks for other uses.

You must be logged in as root or informix to drop a dbspace from either
ON-Monitor or onspaces.

You can drop a dbspace while Online is in on-line mode.

Managing Disk Space 11-15

Optimizing Blobspace Blobpage Size

Dropping a Dbspace or Blobspace Using ON-Monitor
To drop a dbspace or blobspace using ON-Monitor, follow these instructions:

1. Select the Dbspaces menu, Drop option.
2. U se the RETURN key or A rrow keys to scroll to the dbspace or blobspace

you w ant to drop.

3. Press CTRL-B or F3.

You are asked to confirm that you want to drop the dbspace or blobspace.

Dropping a Dbspace or Blobspaces Using
To drop a dbspace or blobspace using onspaces, use the -d option as illus
trated in the following examples.

This example drops a dbspace called dbspce5 and its mirrors.

% onspaces -d dbspce5
This example drops a dbspace called blobsp3 and its mirrors.

% onspaces -d blobsp3
Reference information on dropping a dbspace or blobspace using onspaces
is in "Drop a Blobspace or Dbspace" on page 37-42.

Optimizing Blobspace Blobpage Size
It is helpful to familiarize yourself with the Online approach to blobspace
blob storage before you begin this section. "Structure of a Blobspace" on
page 40-54 and "Blobspace Page Types" on page 40-59 provide background
information for this section. This section is not applicable if you store blobs
in tables.

11-16 Managing Disk Space

Optimizing Blobspace Blobpage Size

Determining Blobspace Storage Efficiency
When you are evaluating blobspace storage strategy, you can measure effi
ciency by two criteria:

• Blobpage fullness

• Blobpages required per blob

Blobpage fullness refers to the amount of data within each blobpage. Blobs
stored in a blobspace cannot share blobpages. Therefore, if a single blob
requires only 20 percent of a blobpage, the remaining 80 percent of the page
is unavailable for use. However, you want to avoid making the blobpages too
small. When several blobpages are needed to store each blob, you can
increase the overhead cost of storage. For example, more locks are required
for updates since a lock must be acquired for each blobpage.

Blobspace Storage Statistics
To help you determine the optimal blobpage size for each blobspace, use the
following two Online utility commands: oncheck -pB and oncheck -pe.

The oncheck -pB command lists the following statistics for each table (or
database):

• The number of blobpages used by the table (or database) in each
blobspace

• The average fullness of the blobpages used by each blob stored as part of
the table (or database)

The oncheck -pe command can provide background information about the
blobs stored in a blobspace:

• Complete ownership information (displayed as database -.owner, table) for
each table that has data stored in the blobspace chunk.

• The number of Online pages used by each table to store its associated
blob data.

Determining Blobpage Fullness with oncheck -pB
The oncheck -pB command displays statistics that describe the average full
ness of blobpages. These statistics provide a measure of storage efficiency for
individual blobs in a database or table. If you find that the statistics for a sig
nificant number of blobs show a low percentage of fullness, Online might
benefit from resizing the blobpage in the blobspace.

Managing Disk Space 11-17

Optimizing Blobspace Blobpage Size

The following example retrieves storage information for all blobs stored in the
table sriram.catalog in the stores6 database.

% oncheck -pB stores6:sriram.catalog
Figure 11-4 shows the output of this command.

BLOBSpace Report for stores6:sriram.catalog
Total pages used by table 7
BLOBSpace usage:

Space Page Percent Full
Name Number Pages 0-25% 26-50% 51-75% 76-100%
blobPIC 0x300080 1 X
blobPIC 0x300082 2 X

Page Size is 6144 3
bspcl 0x2000b2 2 X
bspcl 0x2000b6 2 X

Page Size.. is 2048 4 :

Figure 11-4 Output of oncheck -pB

Space Name is the name of the blobspace that contains one or more blobs
stored as part of the table (or database).

Page Number is the starting address in the blobspace of a specific blob.

Pages is the number of OnLine pages required to store this blob.

P e r c e n t F u l l is a m easure of the average fullness of all the b lobpages that
hold this blob.

Page S ize is the size in bytes of the blobpage for this blobspace. Blobpage
size is always a multiple of the OnLine page size. (See "Determining OnLine
Page Size" on page 11-13 for instructions on how to obtain the page size for
your database server.)

The example output indicates that four blobs are stored as part of the table
sriram.catalog. Two blobs are stored in the blobspace blobPIC in 6144-byte
blobpages. Two more blobs are stored in the blobspace bspcl in 2048-byte
blobpages.

The summary information that appears at the top of the display, T o ta l
pages used by ta b le , is a simple total of the blobpages needed to store
blobs. The total says nothing about the size of the blobpages used, the num
ber of blobs stored, or the total number of bytes stored.

The efficiency information displayed under the P e rc e n t F u ll heading is
imprecise, but it can alert an administrator to trends in blob storage. To
understand how the fullness statistics can improve your blob storage strat
egy, it is helpful to use the example output in Figure 11-4 on page 11-18 to
explain the idea of average fullness.

11-18 Managing Disk Space

Managing Extents

Interpreting Blobpage Average Fullness
The first blob listed in Figure 11-4 is stored in the blobspace blobPIC and
requires one 6144-byte blobpage. The blobpage is 51 to 75 percent full, mean
ing that the minimum blob size is between 0.51 * 6104 = 3072 bytes and 0.75
* 6144 = 4508. The maximum size of this blob must be less than or equal to 75
percent of 6144 bytes, or 4508 bytes.

The second blob listed under blobspace blobPIC requires two 6144-byte
blobpages for storage, or a total of 12,288 bytes. The average fullness of all
allocated blobpages is 51 to 75 percent. Therefore, the minimum size of the
blob must be greater than 50 percent of 12,288 bytes, or 6144 bytes. The max
imum size of the blob must be less than or equal to 75 percent of 12,288 bytes,
or 9216 bytes. The average fullness does not mean that each page is 51 to 75
percent full. A calculation would yield 51 to 75 percent average fullness for
two blobpages where the first blobpage is 100 percent full and the second
blobpage is 2 to 50 percent full.

Now consider the two blobs in blobspace bspcl. These two blobs appear to
be nearly the same size. Both blobs require two 2048-byte blobpages and the
average fullness for each is 76 to 100 percent. The minimum size for these
blobs must be greater than 75 percent of the allocated blobpages, or 3072
bytes. The maximum size for each blob is slightly less than 4096 bytes (allow
ing for overhead).

Apply Efficiency Criteria to Output
Looking at the efficiency information for blobspace bspcl, an OnLine admin
istrator might decide that a better blob-storage strategy would be to double
the blobpage size from 2048 bytes to 4096 bytes. (Recall that blobpage size is
always a multiple of the OnLine page size.) If the OnLine administrator made
this change, the measure of page fullness would remain the same but the
number of locks needed during a blob update or modification would be
reduced by half.

The efficiency information for blobspace blobPIC reveals no obvious suggestion
for improvement. The two blobs in blobPIC differ considerably in size and
there is no optimal storage strategy. In general, blobs of similar size can be
stored more efficiently than blobs of different sizes.

Managing Extents
You should periodically monitor OnLine chunks to check for extent inter
leaving. (See "What Is Extent Interleaving?" on page 10-26.)

Managing Disk Space 11-19

Managing Extents

Execute oncheck -pe to obtain the physical layout of information in the
chunk. The chunk layout is sequential, and the number of pages dedicated to
each table is shown. The following information displays:

• Dbspace name, owner, and number
• Number of chunks in the dbspace

This output is useful for determining the amount of extent interleaving. If
Online is unable to allocate an extent in a chunk despite an adequate number
of free pages, the chunk might be badly fragmented.

If You Find That Extents Are Interleaved
D epending on the specific circum stances, you m ight be able to elim inate
interleaving by using the TO CLUSTER option of ALTER INDEX statem ent to
rebuild the tables. The TO CLUSTER option causes the reordering of rows in
the physical table to the indexed order.

For this tactic to work, the chunk must contain adequate contiguous space in
which to rebuild each table. In addition, the contiguous space in the chunk
must be the space that OnLine normally allocates to rebuild the table. (That
is, OnLine allocates space for the ALTER INDEX processing from the begin
ning of the chunk, looking for blocks of free space that are greater than or
equal to the size specified for the NEXT EXTENT. If the contiguous space is
located near the end of the chunk, OnLine could rebuild the table using
blocks of space that are scattered throughout the chunk.)

Use the TO CLUSTER option of the ALTER INDEX statement on every table in
the chunk. Follow these steps:

1. For each table, drop all the indexes except one.
2. Cluster the remaining index using the TO CLUSTER option of the ALTER

INDEX statement.
3. Re-create all the other indexes.

You eliminate the interleaving in the second step, when you rebuild the table
by rearranging the rows. In the third step, you compact the indexes as well
because the index values are sorted before they are added to the B+ tree. You
do not need to drop an index before you cluster it. However, if you do, the
ALTER INDEX processing is faster and you gain the benefit of more compact
indexes.

A second solution to extent interleaving is to unload and reload the tables in
the chunk.

11-20 Managing Disk Space

Managing Tables

To prevent the problem from recurring, consider increasing the size of the tbl-
space extents. See Chapter 10 of the Informix Guide to SQL: Tutorial for more
information.

Managing Tables
Once disk space has been allocated to a tblspace as part of an extent, that
space remains dedicated to the tblspace. Even if all extent pages become
empty as a result of deleting data, the disk space remains unavailable for use
by other tables.

As Online administrator, you can reclaim the disk space in empty extents
and make it available to other users by rebuilding the table. You can accom
plish this in the following ways:

• U se ALTER INDEX

• U se LOAD and UNLOAD

Each of these methods is described in the following sections.

Reclaiming Space in an Empty Extent Using Alter Index
If the table with the empty extents includes an index, you can execute the
ALTER INDEX statement with the TO CLUSTER keywords. Clustering an index
rebuilds the table in a different location within the dbspace. All the extents
associated with the previous version of the table are released. Also, the newly
built version of the table has no empty extents.

Reclaiming Space in an Empty Extent Using the UNLOAD
and LOAD Statements

If the table does not include an index, you can unload the table, re-create the
table (either in the same dbspace or in another), and reload the data using
OnLine utilities or the UNLOAD and LOAD statements. For further informa
tion about selecting the correct utility or statement to use, refer to "Summary
of Methods for Moving Data" on page 31-4.

Managing Disk Space 11-21

What Is the
Dynamic Scalable
Architecture?
Chapter Overview 3

What Is a Virtual Processor? 4
What Is a Thread? 5

What Is a User Thread? 5
Types of Virtual Processors 5
Advantages of Virtual Processors 6

Virtual Processors Can Share Processing 7
Virtual Processors Save Memory and Resources 7
Virtual Processors Can Do Parallel Processing 8
You Can Add and Drop Virtual Processors While

Online Is in On-Line Mode 9
You Can Bind Virtual Processors to CPUs 9

How Virtual Processors Service Threads 9
Control Structures 10
Context Switching 10
Stacks 12
Queues 14

Ready Queues 14
Sleep Queues 14
Wait Queues 15

Mutexes 16

Virtual Processor Classes 16
CPU Virtual Processors 16

How Many CPU Virtual Processors Do You Need? 16
Running on a Multiprocessor Computer 17
Running on a Single-Processor Computer 17
Adding and Dropping CPU Virtual Processors While Online Is

On-Line 18
Preventing Priority Aging 18
Using Processor Affinity 18

Disk I/O Virtual Processors 20
I/O Priorities 21
Logical-Log I/O 21
Physical-Log I/O 22
Asynchronous I/O 22

Network Virtual Processors 24
Specifying Network Protocols 25
Should Poll Threads Run on CPU or Network Virtual

Processors? 25
How Many Networking Virtual Processors Do You Need? 25
Listen and Poll Threads—How the Client/Server Connection

Works 26
Starting Multiple Listen Threads 29

Administration Virtual Processors 30
Optical Virtual Processor 30
Audit Virtual Processor 31

12-2 What Is the Dynamic Scalable Architecture?

Chapter Overview
The INFORMIX-OnLine Dynamic Server implements an advanced RDBMS
architecture that Informix calls the Dynamic Scalable Architecture (DSA). DSA
provides distinct performance advantages over previous versions of
INFORMIX-OnLine for both single-processor and multiprocessor platforms.
These advantages, which this chapter describes further, are as follows:

• A small number of OnLine database server processes can service a large
number of client application processes, producing the following benefits:
o Reduced operating system overhead (fewer processes to run)
o Reduced overall memory requirements
o Reduced contention for resources within the DBMS

• DSA provides more control over setting priorities and scheduling data
base tasks than the operating system

The INFORMIX-OnLine Dynamic Server particularly exploits symmetric mul
tiprocessing computer systems (SMPs). A symmetric multiprocessing com
puter system is one in which multiple CPUs (central processing units, or
processors) all run a single copy of the operating system, sharing memory
and communicating with each other as necessary. This chapter describes the
following additional advantages that OnLine provides on these systems:

• Multiple OnLine processes can work in parallel for one client.
• On some multiprocessor computers you can bind OnLine processes to

specific CPUs.

The central component of the dynamic scalable architecture is the virtual pro
cessor, which is described in the following section. See Chapter 13, "Manag
ing Virtual Processors," for information on how to configure OnLine virtual
processors.

What Is the Dynamic Scalable Architecture? 12-3

What Is a Virtual Processor?

What Is a Virtual Processor?
The INFORMIX-OnLine database server processes are called virtual processors.
They are called virtual processors because they function similarly to the way
that a CPU functions in a computer. Just as a CPU runs multiple operating sys
tem processes to service multiple users, an Online virtual processor runs
multiple threads to service multiple SQL client applications.

Figure 12-1 illustrates the relationship of client applications to virtual proces
sors in the dynamic server.

Client Applications

Figure 12-1 In the dynamic scalable architecture, a small number of virtual processors serves a
much larger number of client applications.

12-4 What Is the Dynamic Scalable Architecture?

What Is a Virtual Processor?

What Is a Thread?
A thread is a piece of work for a virtual processor in the same way that the
virtual processor, is a piece of work for the CPU. As a process, the virtual pro
cessor is a task that the operating system schedules for execution on the CPU;
a thread is a task that the virtual processor schedules internally for process
ing. Threads are sometimes called lightweight processes because they are like
processes but they make fewer demands on the operating system.

Online virtual processors are multithreaded processes because they run multi
ple concurrent threads (MCT).

An Online virtual processor runs threads on behalf of SQL client applications
(session threads) and to satisfy internal requirements (internal threads). In
most cases, for each connection by a client application, OnLine runs one ses
sion thread. OnLine runs internal threads to accomplish, among other things,
database I/O, logging I/O, page cleaning, and administrative tasks. See "Vir
tual Processors Can Do Parallel Processing" on page 12-8 for cases in which
OnLine runs multiple session threads for a single client.

What Is a User Thread?
A user thread is an OnLine thread that services requests from client applica
tions. User threads include session threads, called sqlexec threads, which are
the primary threads that OnLine runs to service client applications. User
threads also include a thread to service ON-Monitor requests, a thread to ser
vice requests from the onmode utility, threads for recovery, and page-cleaner
threads.

Types of Virtual Processors
Virtual processors are divided into classes based on the type of processing that
they do. Each class of virtual processor is dedicated to processing certain
types of threads. Figure 12-2 shows the classes of virtual processors and the
types of processing that they do:

What Is the Dynamic Scalable Architecture? 12-5

What Is a Virtual Processor?

Virtual Processor
Class Purpose
CPU Runs all session threads and some system threads. Runs

thread for kernel asynchronous I/O where available.
Disk I/O

PIO Writes to the physical-log file (internal class) if it is in cooked
disk space.

LIO Writes to the logical-log files (internal class) if they are in
cooked disk space.

AIO Performs nonlogging disk I/O. If kernel asynchronous I/O
is used, AIO virtual processors perform I/O to cooked disk
spaces.
Network

SHM Performs shared memory communication.
TLI Performs network communication using TLI.
SOC Performs network communication using sockets.

Optical
OPT Performs I/O to optical disk.

Administrative
ADM Performs administrative functions.

Auditing
ADT Performs auditing functions.

Figure 12-2 Virtual processor classes

Advantages of Virtual Processors
When compared to a database server process that services a single client
application, the dynamic, multithreaded nature of an Online virtual proces
sor provides the following advantages:

• Virtual processors can share processing.
• Virtual processors save memory and resources.
• Virtual processors can do parallel processing.
• You can start additional virtual processors and terminate active CPU vir

tual processors while Online is running.
• You can bind virtual processors to CPUs.

This section describes these advantages.

12-6 What Is the Dynamic Scalable Architecture?

What Is a Virtual Processor?

Virtual Processors Can Share Processing
Virtual processors in the same class have identical code and share access to
both data and processing queues in memory. This means that any virtual pro
cessor in a class can run any thread that belongs to that class.

Generally, Online tries to keep a thread running on the same virtual proces
sor because moving it to a different virtual processor can require some data
from the processor's memory to be transferred on the bus. When a thread is
waiting to run, however, Online migrates the thread to another virtual
processor because the benefit of balancing the processing load outweighs the
amount of overhead incurred in transferring the data.

Shared processing within a class of virtual processors occurs automatically
and is transparent to the database user.

Virtual Processors Save Memory and Resources
Online is able to service a large number of clients with a small number of
server processes when compared to a one-client-process-to-one-server-
process architecture. It does so by running a thread, rather than a process, for
each client.

Multithreading permits more efficient use of the operating system resources
because threads share the resources allocated to the virtual processor. All
threads that a virtual processor runs have the same access to the virtual pro
cessor memory, communication ports, and files. The virtual processor coor
dinates access to resources by the threads. Individual processes, on the other
hand, each have a distinct set of resources and when multiple processes
require access to the same resources, the operating system must coordinate it.

Generally, a virtual processor can switch from one thread to another faster
than the operating system can switch from one process to another. When the
operating system switches between processes, it must stop one process from
running on the processor, save its current processing state (or context), and
start another one. This means that both processes must enter and exit the
operating system kernel and that the contents of portions of physical mem
ory might need to be replaced. Threads, on the other hand, share the same
virtual memory and file descriptors. When a virtual processor switches from
one thread to another, the switch is simply from one path of execution to
another. The virtual processor, which is a process, continues to run on the
CPU without interruption. See "Context Switching" on page 12-10 for a
description of how a virtual processor switches from one thread to another.

What Is the Dynamic Scalable Architecture? 12-7

What Is a Virtual Processor?

Virtual Processors Can Do Parallel Processing
In the following cases, virtual processors of the CPU class can run multiple
session threads, working in parallel, for a single client:

• Index building
• Sorting
• Recovery

Figure 12-3 illustrates parallel processing. When a client initiates index build
ing, sorting, or recovery, Online spawns multiple threads to work on the task
in parallel, using as much of the computer's resources as possible. While one
thread is waiting on I/O, another can be working.

Client Application

Figure 12-3 When building indexes, sorting, or performing recovery OnLine spawns multiple
threads to work in parallel for a single client, using as much o f the computer's
resources as possible.

12-8 What Is the Dynamic Scalable Architecture?

How Virtual Processors Service Threads

You Can Add and Drop Virtual Processors While OnLine Is in On-Line Mode
You can add virtual processors to meet increasing demands for service while
OnLine is running. For example, if the virtual processors of a class become
compute or I/O bound (meaning that CPU work or I/O requests are accumu
lating faster than the current number of virtual processors can process them),
you can start additional virtual processors for that class to further distribute
the processing load.

While OnLine is running, you can add virtual processors for any of the
classes but you can only drop virtual processors for the CPU class. See "Add
ing Virtual Processors in On-Line Mode" on page 13-7 and "Dropping CPU
Virtual Processors in On-Line Mode" on page 13-9 for information on how to
add or drop virtual processors while OnLine is in on-line mode.

You Can Bind Virtual Processors to CPUs
Some multiprocessor systems allow you to bind a process to a particular CPU.
This feature is called processor affinity.

On multiprocessor machines for which OnLine supports processor affinity,
you can bind CPU virtual processors to specific CPUs in the computer. When
you bind a CPU virtual processor to a CPU, the virtual processor runs exclu
sively on that CPU. This improves the performance of the CPU virtual proces
sor because it reduces the amount of switching between processes that the
operating system must do. Binding CPU virtual processors to specific CPUs
also enables you to isolate database work to specific processors on the com
puter, leaving the remaining processors free for other work.

See "Using Processor Affinity" on page 12-18 for information on how to
assign CPU virtual processors to hardware processors.

How Virtual Processors Service Threads
At a given moment in time, a virtual processor can run only one thread. A vir
tual processor services multiple threads concurrently by switching between
them—that is, by running a thread until it yields and then switching to
another one, and, likewise, to another one, eventually returning to the origi
nal thread when it is ready to continue. All the while, some threads complete
their work and the virtual processor starts new threads to complete new
work. By continually switching between threads, the virtual processor is able
to keep the CPU processing continually. The speed at which processing occurs
produces the appearance that the virtual processor processes multiple tasks
simultaneously and, in effect, it does.

What Is the Dynamic Scalable Architecture? 12-9

How Virtual Processors Service Threads

Running multiple concurrent threads requires scheduling and synchroniza
tion to prevent one thread from interfering with the work of another. Online
virtual processors use the following structures and methods to coordinate
concurrent processing by multiple threads:

• Control structures
• Context switching
• Stacks
• Queues
• Mutexes

This section describes how virtual processors use these structures and
methods.

Control Structures
When a client connects to Online, Online creates a session structure, called a
session control block, to hold information about the connection and the user. A
session begins when a client connects to the database server and it ends when
the connection terminates.

Next, Online creates a thread structure, called a thread-control block (tcb) for
the session and initiates a primary thread (sqlexec) to process the client
request. When a thread yields—that is, when it pauses and allows another
thread to run—the virtual processor saves information about the state of the
thread in the thread control block. This information includes the content of
the process system registers, the program counter (address of the next
instruction to execute), and the stack pointer. This information constitutes the
context of the thread.

In most cases, Online runs one primary thread per session. In cases where it
does parallel processing, however, it creates multiple session threads for a
single client and, likewise, multiple corresponding thread control blocks.

Context Switching
A virtual processor switches from running one thread to running another one
by context switching. Online does not preempt a running thread, as the oper
ating system does to a process, when a fixed amount of time (time-slice)
expires. Rather, a thread yields at one of the following points:

• A predetermined point in the code
• When the thread can no longer execute until some condition is met

12-10 What Is the Dynamic Scalable Architecture?

How Virtual Processors Service Threads

A thread yields at a predetermined point when the amount of processing
required to complete a task would cause other threads to wait for an undue
length of time. To alleviate this problem, the code for such tasks is written to
include calls to the yield function at strategic points in the processing. Thus,
when a thread performs one of these long-running tasks, it will yield when it
encounters one of these function calls. When a thread yields, other ready
threads get a chance to run. When the original thread next gets a turn, it
resumes executing code at the point immediately after the call to the yield
function. Predetermined calls to the yield function allow Online to interrupt
threads at points that are most advantageous from a performance standpoint.

A thread also yields when it can no longer continue its task until some con
dition occurs. For example, a thread yields when it is waiting for a disk I/O
to complete, when it is waiting for data from the client, or when it is waiting
for a lock or other resource.

When a thread yields, the virtual processor saves its context in the thread
control block. Then the virtual processor selects a new thread to run from a
queue of ready threads, loads the context of the new thread from its thread
control block, and begins executing at the new address in the program
counter. Figure 12-4 illustrates how a virtual processor accomplishes a con
text switch.

What Is the Dynamic Scalable Architecture? 12-11

How Virtual Processors Service Threads

Thread Control Blocks

/ Virtual \
I Processor 1

to prgm ctr t1 prgm ctr

registers registers

stack ptr stack ptr

etc. etc.

Restore

Thread tO Thread t1

Context Switch

Time

Figure 12-4 Context switch: how a virtual processor switches from one thread to another

Stacks
The dynamic server allocates an area in the virtual portion of shared memory
to store nonshared data for the functions that a thread executes. This area is
called the thread's stack. See "Stacks" on page 14-28 for information on how
to set the size of the stack.

The stack enables a virtual processor to protect the nonshared data of a thread
from being overwritten by other threads that concurrently execute the same
code. For example, if several client applications concurrently perform
SELECT statements, the session threads for each client execute many of the
same functions in the code. If a thread did not have a private stack, one thread
could overwrite local data belonging to another thread within a function.

12-12 What Is the Dynamic Scalable Architecture?

How Virtual Processors Service Threads

When a virtual processor switches to a new thread, it loads a stack pointer for
that thread from a field in the thread control block. The stack pointer stores
the beginning address of the stack. The virtual processor can then specify off
sets to the beginning address to access data within the stack. Figure 12-5 illus
trates how a virtual processor uses the stack to segregate nonshared data for
session threads.

Stack

Dynamic Server

Figure 12-5 Virtual processors segregate nonshared data for each user

What Is the Dynamic Scalable Architecture? 12-13

How Virtual Processors Service Threads

Queues
The dynamic server uses three types of queues to schedule the processing of
multiple, concurrently running threads:

• Ready queues

• Wait queues

• Sleep queues

Virtual processors of the same class share queues. This fact, in part, enables a
thread to migrate, when necessary, from one virtual processor in a class to
another.

Ready Queues
Ready queues hold threads that are ready to run when the current (running)
thread yields. When a thread yields, the virtual processor picks the next
thread with the appropriate priority from the ready queue. Within the queue,
the virtual processor processes threads having the same priority on a first-in-
first-out (FIFO) basis.

On a multiprocessor computer, if you notice that threads are accumulating in
the ready queue for a class of virtual processors (indicating that work is accu
mulating faster than the virtual processor can process it) you can start addi
tional virtual processors of that class to distribute the processing load. See
"Monitoring Virtual Processors" on page 29-27 for information on how to
monitor the ready queues. See "Adding Virtual Processors in On-Line Mode"
on page 13-7 for information on how to add virtual processors while OnLine
is in on-line mode.

Sleep Queues
Sleep queues hold the contexts of threads that have no work to do at a partic
ular time. A thread is put to sleep either for a specified period of time or for
forever.

The ADM virtual processor wakes up threads that have slept for the specified
time. A thread that runs in the ADM virtual processor checks on sleeping
threads at one-second intervals. If a sleeping thread has slept for its specified
time, the ADM virtual processor moves it into the appropriate ready queue.
A thread that is sleeping for a specified time can also be explicitly awakened
by another thread.

12-14 What Is the Dynamic Scalable Architecture?

How Virtual Processors Service Threads

A thread that is sleeping forever is awakened when it is needed again—that
is, when it has more work to do. For example, when a thread that is running
on a CPU virtual processor needs to access a disk, it issues an I/O request,
places itself in a sleep queue for the CPU virtual processor, and yields. When
the I/O thread notifies the CPU virtual processor that the I/O is complete, the
CPU virtual processor schedules the original thread to continue processing by
moving it from the sleep queue into a ready queue. Figure 12-6 illustrates
how Online threads are queued to perform database I/O.

Processing
I/O request
for thread t2

I/O requests
for threads
t4 and t6

Threads t5
and t3,
ready to
continue

processing
when

thread t1
yields

Partially
executed

threads—12,
t4, and t6—
waiting for

completion of
their disk I/O

requests

Figure 12-6 How OtiLine threads are queued to perform database I/O

Wait Queues
Wait queues hold threads that need to wait for a particular event before they
can continue to run. Wait queues, for example, coordinate access to shared
data by threads. When a user thread tries to acquire the logical-log latch and
finds that the latch is held by another user, the thread that was denied access
puts itself in the logical-log wait queue. When the thread that owns the lock
is ready to release the latch, it checks to see if there are threads waiting and,
if so, it wakes up the next thread in the wait queue.

What Is the Dynamic Scalable Architecture? 12-15

Virtual Processor Classes

Mutexes
A mutex (mutually exclusive) is a latching mechanism that Online uses to
synchronize access by multiple threads to shared resources. Mutexes are sim
ilar to semaphores, which the operating system uses to regulate access to
shared data by multiple processes. Mutexes permit a greater degree of paral
lelism, however, than semaphores.

A mutex is a variable that is associated with a shared resource such as a
buffer. A thread must acquire the mutex for a resource before it can access the
resource. Other threads are excluded from accessing the resource until the
owner releases it. A thread acquires a mutex, once it becomes available, by
setting it to an in-use state. The synchronization that mutexes provide
ensures that only one thread at a time writes to an area of shared memory.

See "Monitoring Latches" on page 29-22 for information on monitoring
mutexes (latches).

Virtual Processor Classes
A virtual processor of a given class can only run threads of that class. This
section describes the types of threads, or the types of processing, done by
each class of virtual processor. It also tells you how to determine the number
of virtual processors you need to run for each class.

CPU Virtual Processors
The CPU virtual processor runs all session threads (the threads that process
requests from SQL client applications) and some internal threads. Internal
threads perform services that are internal to OnLine. For example, a thread
that listens for connection requests from client applications is an internal
thread.

How Many CPU Virtual Processors Do You Need?
The right number of CPU virtual processors is the number at which they are
all kept busy but not so busy that they cannot keep pace with incoming
requests. You should not allocate more CPU virtual processors than the num
ber of hardware processors in the computer.

The NUMCPUVPS parameter in the ONCONFIG file specifies the number of
CPU virtual processors that OnLine brings up initially. See "Setting Virtual
Processor Configuration Parameters" on page 13-3 for information on setting

12-16 What Is the Dynamic Scalable Architecture?

Virtual Processor Classes

the NUMCPUVPS parameter. See "Should Poll Threads Run on CPU or Net
work Virtual Processors?" on page 12-25 for an additional consideration in
deciding how many CPU virtual processors you need.

On some two-processor computers, you should run only one CPU virtual pro
cessor because the overhead of synchronizing the two virtual processors off
sets the benefit of distributing the processing.

For OnLine platforms with more than two CPUs, if the computer will be pri
marily a database server, Informix recommends that you begin by setting the
number of virtual processors to one less than the number of CPUs in the com
puter. If the computer will not be used primarily as a database server, Infor
mix recommends that you start by specifying one CPU virtual processor.
Then increase or decrease the number of CPU virtual processors as indicated
by performance.

To evaluate the performance of the CPU virtual processors while OnLine is
running, repeat the following command at regular intervals over a set period
of time.

% o n s t a t -g g lo

If the accumulated usercpu and syscpu times, taken together, approach 100
percent of the actual elapsed time for the period of the test, add another CPU
virtual processor if you have a CPU available to run it.

Running on a Multiprocessor Computer
If you are running multiple CPU virtual processors on a multiprocessor com
puter, set the MULTIPROCESSOR parameter in the ONCONFIG file to 1. When
you set MULTIPROCESSOR to 1, OnLine performs locking in a manner that is
appropriate for a multiprocessor computer. See "MULTIPROCESSOR" on
page 35-27 for information on setting multiprocessor mode.

Running on a Single-Processor Computer
If you are running only one CPU virtual processor, set the SINGLE_CPU_VP
configuration parameter to 1 and the MULTIPROCESSOR configuration
parameter to 0. Setting the SINGLE_CPU_VP parameter to 1 allows OnLine to
bypass some of the mutex calls that OnLine normally makes when it runs
multiple CPU virtual processors. Setting MULTIPROCESSOR to 0 enables
OnLine to bypass the locking that is required for multiple processes on a mul
tiprocessor computer. See "SINGLE_CPU_VP" on page 35-40 for information
on setting the SINGLE_CPU_VP parameter.

What Is the Dynamic Scalable Architecture? 12-17

Virtual Processor Classes

Note: You do not reduce the number o f mutex calls by setting NUMCPUVPS to 1 and
SINGLE_CPU_VP to 0, even though you are specifying only one CPU virtual proces
sor. You must set SINGLE_CPU_VP to 1 to reduce the amount o f latching that will be
done when you run a single CPU virtual processor.

If you set the SINGLE_CPU_VP parameter to 1, the value of the NUMCPUVPS
parameter must also be 1; if the latter is greater than 1, Online fails to initial
ize and displays the message:

Cannot have 'SINGLE_CPU_VP' non-zero and 'NUMCPUVPS' greater than 1

If the SINGLE_CPU_VP parameter is set to 1, you are not able to add CPU vir
tual processors while Online is in on-line mode. See " Adding Virtual Proces
sors in On-Line Mode" on page 13-7 for more information.

Adding and Dropping CPU Virtual Processors While OnLine Is On-Line
You can add or drop CPU class virtual processors while OnLine is on-line. For
instructions on how to do this, see "Adding Virtual Processors in On-Line
Mode" on page 13-7 and "Dropping CPU Virtual Processors in On-Line
Mode" on page 13-9.

Preventing Priority Aging
Some UNIX operating systems decrement the priority of long-running pro
cesses as they accumulate processing time. This feature of the operating sys
tem is called priority aging. In some cases, however, the operating system
allows you to disable this feature and keep long-running processes running
at a high priority.

If your operating system allows you to disable priority aging, you can disable
it for OnLine virtual processors by setting the NOAGE parameter in the
ONCONFIG file. See "Setting Virtual Processor Configuration Parameters" on
page 13-3 for information on how to set this parameter.

Using Processor Affinity
On some multiprocessor platforms that support processor affinity, you can
assign CPU virtual processors to specific CPUs. When you assign a CPU vir
tual processor to a specific CPU, the virtual processor runs exclusively on that
CPU. See the OnLine machine notes file, which is described under "Useful
On-Line Files" in the Introduction to see if processor affinity is supported on
your OnLine platform.

12-18 What Is the Dynamic Scalable Architecture?

Virtual Processor Classes

You must set the following two parameters in the ONCONFIG file to imple
ment processor affinity on multiprocessor computers that support it

• AFF_NPROCS
• AFF_SPROC

Set the AFF_NPROCS parameter to the number of CPUs to which you want to
assign CPU virtual processors. You should not set AFF_NPROCS to a number
that is less than the number of CPU virtual processors you have allocated—
that is, the number of CPUs should not be less than the number of CPU virtual
processors that you allocate.

Set the AFF_SPROC parameter to the number of the first CPU to which a CPU
virtual processor should be assigned. OnLine assigns CPU virtual processors
to CPUs in serial fashion, starting with this processor. The first processor is
number 0. For example, if you have four CPUs (AFF_NPROCS = 3), and you set
NUMCPUVPS to 3 and AFF_SPROC to 1, the three CPU virtual processors are
assigned to the second, third and fourth CPUs, respectively. If you set
AFF_SPROC to 2, OnLine would display an error message, indicating that the
computer does not have enough CPUs to use affinity. The value of AFF_N-
PROCS plus the value of AFF_SPROC must be less or equal to the number of
physical processors. In this case, 3 (AFF_NPROCS) plus 1 (AFF_SPROC)
equals four, the number of physical processors. Figure 12-7 illustrates how
OnLine uses the AFF_NPROCS and AFF_SPROC parameters to implement
processor affinity.

What Is the Dynamic Scalable Architecture? 12-19

Virtual Processor Classes

CPU Virtual Processors

AFFNPROCS = 3

Figure 12-7 When using processor affinity, AFFJSfPROCS and AFF_SPROC determine how CPU
virtual processors are assigned to CPUs.

Disk I/O Virtual Processors
The following classes of virtual processors perform disk I/O:

• CPU

• AIO (Asynchronous I/O)
• PIO (Physical-log I/O)
• LIO (Logical-log I/O)

OnLine uses either the CPU class or the AIO class of virtual processors to per
form all I/O that is not related to physical or logical logging. OnLine uses the
CPU class to perform kernel asynchronous I/O (KAIO) when it is available on a
platform. If OnLine implements kernel asynchronous I/O, a KAIO thread per
forms all I/O to raw disk space, including I/O to the physical and logical logs.

When kernel asynchronous I/O is not implemented, or when the I/O is to
cooked disk space, the AIO class of virtual processors performs all nonlog
ging I/O. See "Asynchronous I/O" on page 12-22 for more information about
nonlogging I/O.

12-20 What Is the Dynamic Scalable Architecture?

Virtual Processor Classes

The PIO class performs all I/O to the physical-log file and the LIO class per
forms all I/O to the logical-log files, unless they reside in raw disk space and
OnLine has implemented kernel asynchronous I/O.

I/O Priorities
In general, OnLine prioritizes disk I/O by assigning different types of I/O to
different classes of virtual processors and by assigning priorities to the non
logging I/O queues. This ensures that a high-priority log I/O, for example, is
never queued behind a write to a temporary file, which has a low priority.
OnLine prioritizes the different types of disk I/O that it performs as shown
in Figure 12-8.

Priority Type of I/O VP Class
Highest Logical-log I/O CPU or LIO

Physical-log I/O CPU or PIO
Database I/O CPU or AIO
Page-cleaning I/O CPU or AIO

Lowest Read-ahead I/O CPU or AIO

Figure 12-8 How OnLine prioritizes disk I/O

Logical-Log I/O
If kernel asynchronous I/O is implemented and the logical-log files are in raw
disk space, OnLine uses a KAIO thread in the CPU virtual processor to per
form I/O to the logical log. If kernel asynchronous I/O is not implemented, or
the logical-log files are in cooked disk space, the LIO class of virtual proces
sors performs I/O to the logical-log files.

The logical-log files store the data that enables OnLine to roll back transac
tions and recover from system failures. I/O to the logical-log files is the high
est priority disk I/O that OnLine performs.

If the logical-log files are in a dbspace that is not mirrored, OnLine runs only
one LIO virtual processor. If the logical-log files are in a dbspace that is mir
rored, OnLine runs two LIO virtual processors. This class of virtual proces
sors has no parameters associated with it.

What Is the Dynamic Scalable Architecture? 12-21

Virtual Processor Classes

Physical-Log I/O
If kernel asynchronous I/O is implemented and the physical-log file is in raw
disk space, Online uses a KAIO thread in the CPU virtual processor to per
form I/O to the physical log. If kernel asynchronous I/O is not implemented,
or the physical-log file is in cooked disk space, the PIO class of virtual proces
sors performs I/O to the physical-log file.

The physical-log file stores before images of dbspace pages that have changed
since the last checkpoint. (See "OnLine Checkpoints" on page 14-47 for more
information on checkpoints.) At the start of recovery, prior to processing
transactions from the logical log, OnLine uses the physical-log file to restore
before images to dbspace pages that have changed since the last checkpoint. 1/
O to the physical-log file is the second-highest priority I/O after I/O to the
logical-log files.

If the physical-log file is in a dbspace that is not mirrored, OnLine runs only
one PIO virtual processor. If the physical-log file is in a dbspace that is mir
rored, OnLine runs two PIO virtual processors. This class of virtual proces
sors has no parameters associated with it.

Asynchronous I/O
OnLine performs database I/O asynchronously, meaning that I/O is queued
and later performed independent of the process requesting the I/O. Perform
ing I/O asynchronously allows the process that makes the request to continue
working while the I/O is being done.

OnLine performs all database I/O asynchronously either by requesting ker
nel asynchronous I/O, where available, through the CPU class of virtual pro
cessors or by using the AIO class of virtual processors. Database I/O includes
I/O for SQL statements, read-ahead, page cleaning, and checkpoints, as well
as other I/O.

Kernel Asynchronous I/O
OnLine uses kernel asynchronous I/O when the following conditions exist:

• The computer and operating system support it.

• A performance gain is realized.

• The I/O is to raw disk space.

OnLine implements kernel asynchronous I/O by running a KAIO thread in
the CPU virtual processor. The KAIO thread performs an I/O by making sys
tem calls to the operating system, which performs the I/O independent of the

12-22 What Is the Dynamic Scalable Architecture?

Virtual Processor Classes

virtual processor. The KAIO thread can produce better performance for disk
I/O than the AIO virtual processor because it does not require a switch
between the CPU and AIO virtual processors.

Informix implements kernel asynchronous I/O when it ports Online to a *
platform that supports it; it is not implemented by the Online administrator.
See the Online machine notes file, which is described under "Useful On-Line
Files" in the Introduction, to see if kernel asynchronous I/O is supported on
your computer.

AIO Virtual Processors
If the platform does not support kernel asynchronous I/O, or if the I/O is to
cooked disk space, OnLine performs database I/O through the AIO class of
virtual processors.

As each AIO virtual processor comes up, OnLine assigns it to a home queue. If
all disks have requests, the AIO virtual processors should be spread evenly
across the queues to keep all of the disks busy. If only a subset of the disks
have requests, those AIO virtual processors that do not have requests begin
processing requests from those queues that do.

You use the NUMAIOVPS parameter in the ONCONFIG file to specify the num
ber of AIO virtual processors that OnLine brings up initially. See "Setting Vir
tual Processor Configuration Parameters" on page 13-3 for information on
how to set this parameter.

You can start additional AIO virtual processors while OnLine is in on-line
mode. See "Adding Virtual Processors in On-Line Mode" on page 13-7 for
information on how to do this.

You cannot drop AIO virtual processors while OnLine is in on-line mode.

How Many AIO Virtual Processors Do You Need?
The goal in allocating AIO virtual processors is to allocate enough of them so
that the lengths of the I/O request queues are kept short—that is, the queues
have as few I/O requests in them as possible. When the I/O request queues
are consistently short, it indicates that I/Os to the disk devices are being pro
cessed as fast as they occur. The onstat -g ioq command allows you to moni
tor the length of the I/O queues for the AIO virtual processors. See
"Monitoring Virtual Processors" on page 29-27 for more information.

If OnLine implements kernel asynchronous I/O on your platform and all of
your dbspaces are composed of raw file space, one AIO virtual processor
might be sufficient.

What Is the Dynamic Scalable Architecture? 12-23

Virtual Processor Classes

If O nline implements kernel asynchronous I/O, but you are using some
cooked file space, allocate two AIO virtual processors per active dbspace that
is composed of cooked file space. If kernel asynchronous I/O is not imple
mented on your platform, allocate two AIO virtual processors per each disk
that Online accesses frequently

You should allocate enough AIO virtual processors to accommodate the peak
number of I/O requests. Generally, it is not detrimental to allocate too many
AIO virtual processors.

Network Virtual Processors
As explained in Chapter 4, "Configuring Connectivity," a client can connect
to Online in two ways:

• Through shared memory
• Through a network connection

The network connection can be made by a client on a remote computer, or by
a client on the local computer mimicking a connection from a remote com
puter (called a local loopback connection). See "Using a Local Loopback Con
nection" on page 4-21.

A client can connect to OnLine through four types of connections (ipcshm,
soctcp, tlitcp, and tlispx). A network virtual processor supports each connec
tion type as shown in Figure 12-9:

Connection Type

Shared memory (local only)
TCP/IP using Sockets (local or remote)
TCP/IP using Transport Level Interface
(local or remote)
or
Sequenced Packet Exchange (SPX) using
Transport Level Interface (Portable NetWare)

Figure 12-9 OnLine network virtual processor

On a UNIX computer, OnLine supports either the sockets or the TLI mecha
nism to interface to networking facilities, depending on which mechanism
the platform supports. To determine which mechanism OnLine supports on
your platform, see the OnLine machine notes file, which is described under
"Useful On-Line Files" in the Introduction. The IPX/SPX protocol, which uses
TLI, enables you to connect to a Novell Netware machine.

Network VP

SHM
SOC
TLI

12-24 What Is the Dynamic Scalable Architecture?

Virtual Processor Classes

Specifying Network Protocols
The DBSERVERNAME, DBSERVERALIASES, and NETTYPE parameters in the
ONCONFIG file determine which protocols OnLine will use.

In general, the DBSERVERNAME and DBSERVERALIASES parameters define
dbservemames that have corresponding entries in the $INFORMIXDIR/etc/
sqlhosts file. Each dbservemame parameter in the sqlhosts file has a nettype
entry that specifies a network protocol. OnLine runs one or more poll threads
for each unique nettype entry defined by a dbservemame in the sqlhosts file.
See "The nettype Field" on page 4-12 for a description of the nettype field.

The NETTYPE configuration parameter provides optional configuration
information for a protocol. It allows you to allocate more than one poll thread
for a protocol and also designate the virtual processor class (CPU or NET) that
will run the poll threads. See "NETTYPE" on page 35-28 for a complete
description of this parameter.

Should Poll Threads Run on CPU or Network Virtual Processors?
Poll threads can run either inline on CPU virtual processors or they run on net
work virtual processors for the particular protocol (SHM, SOC, TLI). In gen
eral, and particularly on a single-processor computer, poll threads run more
efficiently on CPU virtual processors. This may not be true, however, on a
multiprocessor computer with a large number of remote clients.

The NETTYPE parameter has an optional entry, called vp c la s s , that allows
you to specify either CPU or NET, for CPU or network virtual processor
classes, respectively.

If you do not specify a vp c la s s for the protocol (poll threads) associated
with the DBSERVERNAME variable, the class defaults to CPU. OnLine
assumes that the protocol associated with DBSERVERNAME is the primary
protocol and that it should be the most efficient.

For other protocols, if no vp c la s s is specified, the default is NET.

While OnLine is in on-line mode, you cannot drop a CPU virtual processor
that is running a poll thread.

How Many Networking Virtual Processors Do You Need?
Each poll thread requires a separate virtual processor, so you indirectly spec
ify the number of networking virtual processors when you specify the num
ber of poll threads for a protocol and specify that they are to be mn by the
NET class. If you specify CPU for the vp c la s s , you must allocate a sufficient

What Is the Dynamic Scalable Architecture? 12-25

Virtual Processor Classes

number of CPU virtual processors to run the poll threads. If O nline does not
have a CPU virtual processor to run a CPU poll thread, it starts a network vir
tual processor of the specified class to run it.

For most systems, one poll thread and, consequently, one virtual processor
per network protocol is sufficient. For systems with 200 or more network
users, running additional network virtual processors might improve
throughput. In this case, you need to experiment to determine the optimal
number of virtual processors for each protocol.

Listen and Poll Threads—How the Client/Server Connection Works
When you start Online, the oninit process starts an internal thread, called a
listen thread, for each dbservername that you specify with the DBSERVER-
NAME and DBSERVERALIASES parameters in the ONCONFIG file. You specify
a listen port for each of these dbservername entries by assigning it a unique
combination of hostname and service name entries in the sqlhosts file. For
example, the sqlhosts file entry shown in Figure 12-15 would cause the
O nline database server soc_oll to start a listen thread for portl on the host,
or network address, myhost.

dbservername protocol hostname service name
soc_oll onsoctcp myhost portl

Figure 12-10 OttLine starts a listen thread for each listen port that you specify in the sqlhosts file

The listen thread opens the port and requests one of the poll threads for the
specified protocol to monitor the port for client requests. The poll thread runs
either in the CPU virtual processor or in the network virtual processor for the
protocol that is being used (SHM, SOC, or TLI). See "Specifying Network Pro
tocols" on page 12-25 for information on specifying how many poll threads
Online runs. See "Should Poll Threads Run on CPU or Network Virtual Pro
cessors?" on page 12-25, and "NETTYPE" on page 35-28, for information on
how to specify whether the poll threads for a protocol run in CPU or network
virtual processors.

When a poll thread receives a connection request from a client, it passes it to
the listen thread for the port. The listen thread authenticates the user, estab
lishes the connection to Online, and starts an sqlexec thread, the session
thread that does the primary processing for the client. Figure 12-11 illustrates
the roles of the listen and poll threads in establishing a connection with a cli
ent application.

12-26 What Is the Dynamic Scalable Architecture?

Virtual Processor Classes

Figure 12-11

request
connection

Client

The roles of the poll and the listen threads in connecting to a client

A poll thread waits for requests from the client and places them in shared
memory to be processed by the sqlexec thread. For a shared-memory connec
tion, the poll thread places the message in the communications portion of
shared memory. For network connections, the poll thread places the message
in a queue in the shared-memory global pool. The poll thread then wakes up
the sqlexec thread of the client to process the request. Whenever possible, the
sqlexec thread writes directly back to the client without the help of the poll
thread. In general, the poll thread reads data from the client and the sqlexec
thread sends data to the client.

Figure 12-12 illustrates the basic tasks that the poll thread and the sqlexec
thread perform in communicating with a client application.

What Is the Dynamic Scalable Architecture? 12-27

Virtual Processor Classes

OnLine

Figure 12-12 The roles of the poll and sqlexec threads in communicating with the client application

12-28 What Is the Dynamic Scalable Architecture?

Virtual Processor Classes

Starting Multiple Listen Threads
If Online is not able to satisfactorily service connection requests for a given
protocol with a single port and corresponding listen thread, you can improve
service for connection requests in the following two ways:

• Adding listen threads for additional ports
• Adding another network interface card

Adding Listen Threads for Additional Ports
As stated previously, OnLine starts a listen thread for each dbservemame
that you specify with the DBSERVERNAME and DBSERVERALIASES configu
ration parameters.

To add listen threads for additional ports you must first specify dbserver-
names for each of the ports using the DBSERVERALIASES parameter. For
example, the DBSERVERALIASES parameter in the following example defines
two additional dbservemames, soc_ol2 and soc_ol3, for the OnLine database
server identified as soc_oll.

DBSERVERNAME SOC_oll
DBSERVERALIASES SOC_ol2,soc_o!3

Figure 12-13 Define multiple dbservemames for multiple connections of the same type

Once you define additional dbservemames for the database server, you must
specify a protocol and port for each of them in the sqlhosts file. Each port is
identified by a unique combination of hostname and servicename entries.
For example, the sqlhosts file entries shown in Figure 12-15 cause OnLine to
start three listen threads for the onsoctcp protocol, one for each of the ports
defined.

dbservemame protocol hostname service name
soc_oll onsoctcp myhost portl
soc_ol2 onsoctcp myhost port2
soc_ol3 onsoctcp myhost port3

Figure 12-14 sqlhosts file entries to listen to multiple ports for a single protocol

If you include a NETTYPE parameter for a protocol, it applies to all of the con
nections for that protocol. In other words, if a NETTYPE parameter exists for
onsoctcp in the preceding example, it applies to all of the connections shown
in Figure 12-15. In this example, OnLine runs one poll thread for the onsoctcp

What Is the Dynamic Scalable Architecture? 12-29

Virtual Processor Classes

protocol, unless the NETTYPE parameter specifies more. See "The $INFOR-
MIXDIR/etc/sqlhosts File" on page 4-10 for more information about entries
in the sqlhosts file.

Adding a Network-Interface Card
If the network-interface card for the host computer is unable to satisfactorily
service connection requests, or if you want to connect O nline to more than
one network, you can add a network-interface card.

To support multiple network-interface cards, you must assign each card a
unique hostname (network address) in the sqlhosts file. For example, using
the same dbservemames shown in Figure 12-13, the sqlhosts file entries
shown in Figure 12-15 cause Online to start three listen threads for the same
protocol (as did the entries in Figure 12-15). In this case, however, two of the
threads are listening to ports on one interface card (myhostl), and the third
thread is listening to a port on the second interface card (myhost2).

dbservername protocol hostname service name
soc_oll onsoctcp myhostl portl
soc_ol2 onsoctcp myhostl port2
soc_ol3 onsoctcp myhost2 portl

Figure 12-15 Example of sqlhosts file entries to support two network-interface cards for the
onsoctcp protocol

Administration Virtual Processors
The administration class (ADM) of virtual processors runs the system timer
and special utility threads. Virtual processors in this class are created and run
automatically. No configuration parameters impact this class of virtual
processors.

Optical Virtual Processor
The optical class (OPT) of virtual processors is used only with
INFORMIX-OnLine/Optical. INFORMIX-OnLine/Optical starts one virtual
processor in the optical class if the STAGEBLOB configuration parameter is
present. For more information on INFORMIX-OnLine/Optical, see the
INFORMIX-OnLine/Optical User Manual

12-30 What Is the Dynamic Scalable Architecture?

Virtual Processor Classes

Audit Virtual Processor
OnLine starts one virtual processor in the audit class (ADT) when you turn
on audit mode by setting the ADTMODE parameter in the ONCONFIG file to
1. See the INFORMIX-OnLine Dynamic Server Trusted Facility Manual for more
information about OnLine auditing.

What Is the Dynamic Scalable Architecture? 12-31

Chapter

Managing Virtual
Processors
Chapter Overview 3

Setting Virtual Processor Configuration Parameters 3
Setting Virtual Processor Configuration Parameters

Using ON-Monitor 3
Setting Virtual Processor Configuration Parameters

Using a Text Editor 5

Starting and Stopping Virtual Processors 6
Adding Virtual Processors in On-Line Mode 7

Using onmode to Add Virtual Processors While
OnLine Is in On-Line Mode 7

Using ON-Monitor to Add Virtual Processors
While OnLine Is in On-Line Mode 7

Adding Network Virtual Processors 8
Dropping CPU Virtual Processors in On-Line Mode 9

Chapter Overview
This chapter describes how to set the configuration parameters that affect
INFORMIX-OnLine Dynamic Server virtual processors. This chapter also
tells you how to start and stop virtual processors.

See Chapter 12, "What Is the Dynamic Scalable Architecture?" for descrip
tions of the virtual-processor classes and for advice on determining how
many virtual processors you should specify for each class.

Setting Virtual Processor Configuration Parameters
You can set the configuration parameters for OnLine virtual processors in the
following ways:

• Using ON-Monitor
• Using a text editor

You must be root or user informix to use either method.

Regardless of which method you use, you must reinitialize shared memory
to put the changes into effect. See "Reinitializing Shared Memory" on
page 15-14 for information on how to reinitialize shared memory.

Setting Virtual Processor Configuration Parameters Using
ON-Monitor

To set the virtual processor configuration parameters using ON-Monitor,
select Parameters from the main menu, and then select the perFormance
option.

M anaging Virtual Processors 13-3

Setting Virtual Processor Configuration Parameters

Figure 13-1 shows the full perFormance screen; the shaded entries set config
uration parameters for O nline virtual processors.

PERFORMANCE: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

PERFORMANCE TUNING PARAMETERS
Multiprocessor Machine [N] LRU Max Dirty [60]

Num Procs to Affinity |[0] LRU Min Dirty [50]
Proc num to start with |[0] Checkpoint Interval [300]

Num of Read Ahead Pages [50]
CPU VPs |[5] Read Ahead Threshold [20]
AIO VPS |[1]
Single CPU VP [N] NETTYPE settings:
Use OS Time [N] Protocol Threads Users VP-cla
Disable Priority Aging [N] [ipcshm] [2] [5] [CPU]
Off-Line Recovery Threads |[10] [soctcp] [2] [5] []
On-Line Recovery Threads |[1]
Num of LRUS queues |[8]

Are you running on a multiprocessor machine?

Figure 13-1 ON-Monitor perFormance screen

13-4 Managing Virtual Processors

Setting Virtual Processor Configuration Parameters

Figure 13-2 shows only the perFormance screen entries for configuring vir
tual processors. For each entry, it shows within a pair of brackets ([]), the
name of the associated parameter in the ONCONFIG file.

PERFORMANCE: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

PERFORMANCE TUNING PARAMETERS
\

Multiprocessor Machine [MULTIPROCESSOR]
Num Procs to Affinity [AFF_NPROCS]
Proc num to start with [AFF_SPROC]

CPU VPs [NUMCPUVPS]
AIO VPs [NUMAIOVPS]
Single CPU VP [SINGLE_CPU_VP] NETTYPE settings:

Protocol Threads Users VP-class
Disable Priority Aging [NOAGE] [ipcshm] [NETTYPE]

[soctcp] [NETTYPE]

J
Figure 13-2 Partial view of ON-Monitor perFormance screen showing the ONCONFIG parame

ter for each of the virtual processor entries

Each row of entries under NETTYPE s e t t i n g s describes a separate NET-
TYPE parameter, one for each of the protocols available on the computer. The
four columns for these entries (P r o t o c o l , T h read s, U s e r s , and
V P -c la s s) correspond to the four fields of the NETTYPE parameter.

See Figure 13-3 on page 13-6 for more information on the ONCONFIG param
eters that are associated with Online virtual processors.

Setting Virtual Processor Configuration Parameters Using
a Text Editor

You can use a text editor program to set ONCONFIG parameters at any time.
To change one of the virtual processor configuration parameters, use the edi
tor to locate the parameter in the file, enter the new value(s), and rewrite the
file to disk.

M anaging Virtual Processors 13-5

Starting and Stopping Virtual Processors

Figure 13-3 lists the ONCONFIG parameters that are used to configure virtual
processors. The page references in the third column refer to descriptions of
the parameters in Chapter 35, "Online Configuration Parameters."

Parameter Purpose Page
NUMCPUVPS Specifies the number of CPU virtual processors page 35-30
NUMAIOVPS Specifies the number of AIO virtual processors page 35-30
NETTYPE Specifies parameters for network protocol threads (and

virtual processors)
page 35-28

SINGLE_CPU_VP Specifies that you are running a single CPU virtual
processor

page 35-40

MULTIPROCESSOR Specifies that you are running on a multiprocessor
machine

page 35-27

AFF_NPROCS Specifies the number of CPUs to which CPU virtual
processors will be assigned (multiprocessor computers
only)

page 35-8

AFF_SPROC Specifies the first CPU (of AFF_NPROCS) to which a CPU
virtual processor will be assigned

page 35-8

NOAGE Specifies no priority aging of processes by the operating
system

page 35-30

Figure 13-3 Table of ONCONFIG parameters for configuring virtual processors

Starting and Stopping Virtual Processors
When you start the oninit process to start Online, oninit starts the number
and types of virtual processors that you have specified, directly and indi
rectly. You configure Online virtual processors primarily through ONCON
FIG parameters and, for network virtual processors, through parameters in
the sqlhosts file. See "Virtual Processor Classes" on page 12-16 for descrip
tions of the virtual-processor classes.

O nline allows you to start a maximum of 1000 virtual processors.

Once Online is in on-line mode you can start additional virtual processors to
improve performance, if necessary. See "Adding Virtual Processors in On-
Line Mode" for information on how to do this.

While OnLine is in on-line mode, you can drop only virtual processors of the
CPU class. See "Dropping CPU Virtual Processors in On-Line Mode" on
page 13-9 for information on how to do this.

To terminate OnLine and thereby terminate all virtual processors, use the -k
option of the onmode utility. See "Change OnLine Modes" on page 37-29 for
more information on using the -k option of the onmode utility.

13-6 Managing Virtual Processors

Starting and Stopping Virtual Processors

Adding Virtual Processors in On-Line Mode
While OnLine is in on-line mode, you can start additional virtual processors
for the following classes: CPU, AIO, PIO, LIO, SHM, TLI, and SOC. You start
additional virtual processors for these classes in one of the following two
ways:

• Using the -p option of the onmode utility

• Using ON-Monitor

See "onmode: Mode and Shared-Memory Changes" on page 37-27 for the
format of the onmode command.

Using onmode to Add Virtual Processors While OnLine Is in On-Line Mode
Use the -p option of the onmode command to add virtual processors while
OnLine is in on-line mode. Specify the number of virtual processors that you
want to add with a positive number that is greater than the number of virtual
processors that is currently running. As an option, you can precede the num
ber of virtual processors with a plus sign (+). Following the number, specify
the virtual processor class in lower case letters, as follows: cpu, a io , pio,
l io , shm, t l i , or soc. For example, if OnLine is currently running two vir
tual processors in the AIO class, either of the following commands starts four
more.

% onmode -p 4 aio

or

% onmode -p +4 aio

The onmode utility starts the additional virtual processors immediately.

You can only add virtual processors to one class at a time. To add virtual pro
cessors for another class, you must run onmode again.

Using ON-Monitor to Add Virtual Processors While OnLine Is in On-Line Mode
To use ON-Monitor to add virtual processors while OnLine is in on-line
mode, select Modes from the main menu and then select Add-Proc.

Managing Virtual Processors 13-7

Starting and Stopping Virtual Processors

Figure 13-4

Figure 13-4 shows the ON-Monitor Add-Proc screen, which allows you to add
virtual processors in the following classes: CPU, AIO, LIO, PIO and network.

ADD VIRTUAL PROCESSORS: Press ESC to add virtual processors.
Press Interrupt to cancel and return to the modes menu.

ADDING VIRTUAL PROCESSORS
Number of CPU Virtual Processors to add [0]
Number of Asynchronous 10 Virtual Processors to add [0]

Number of Logical log 10 Virtual Processors to add
Number of Physical log 10 Virtual Processors to add
Number of Network Virtual Processors to add

[0]

t 0]

] [
] [
] [

Enter the number of asynchronous 10 processors to add

The ON-Monitor Add-Proc screen allows you to add virtual processors while
OnLine is in on-line mode.

The Logical log and Physical log entries on the Add-Proc screen allow you
to enter a number greater than 2 but OnLine will not start more than two vir
tual processors in either of these classes. OnLine automatically starts one vir
tual processor in each of these classes unless mirroring is used, in which case
it starts two.

You specify Network Virtual Processors by first entering the number of vir
tual processors and then entering the protocol: ipcshm, 1 1 i t c p ,
t l i s p x , or soctcp .

Adding Network Virtual Processors
When you add network virtual processors, you are adding poll threads, each
of which requires its own virtual processor to run. If you attempt to add poll
threads for a protocol while OnLine is in on-line mode, and you have speci
fied on the NETTYPE parameter that the poll threads run in the CPU class,
OnLine does not start the new poll threads if no CPU virtual processors are
available to run them.

13-8 Managing Virtual Processors

Starting and Stopping Virtual Processors

Dropping CPU Virtual Processors in On-Line Mode
While OnLine is in on-line mode, you can use the -p option of the onmode
utility to drop, or terminate, virtual processors of the CPU class. Following
the onmode command, specify a negative number that is the number of CPU
virtual processors you want to drop and then specify the CPU class in lower
case letters. For example, the following command drops two CPU virtual
processors.

% onmode -p -2 cpu
You can only drop virtual processors of the CPU class while OnLine is in on
line mode.

If you attempt to drop a CPU virtual processor that is running a poll thread
while OnLine is in on-line mode, you will receive the following message.

% onmode: failed when trying to change the number of cpu
virtual processor by -<number>.

See "Should Poll Threads Run on CPU or Network Virtual Processors?" on
page 12-25 for more information on CPU virtual processors and poll threads.

Managing Virtual Processors 13-9

Chapter

14
OnLine Shared
Memory
Chapter Overview 5

What Is Shared Memory? 5

How OnLine Uses Shared Memory 6
How OnLine Allocates Shared Memory 8
How Much Shared Memory Does OnLine Use? 10

What Processes Attach to OnLine Shared Memory? 10
How a Client Attaches to the Communications

Portion 10
Where the Client Attaches to the Communications

Portion 11
How Utilities Attach to Shared Memory 11
How Virtual Processors Attach to Shared Memory 11

SERVERNUM Defines a Unique Key Value 12
SHMBASE Specifies Where to Attach the First

Shared-Memory Segment 13
How Virtual Processors Attach Additional Shared-

Memory Segments 13
Beware of the Shared-Memory Lower-Boundary

Address 14

The Resident Portion of OnLine Shared Memory 15
Shared-Memory Header 17

Shared-Memory Internal Tables 18
Hash Tables 18
OnLine Buffer Table 18
OnLine Chunk Table 19
OnLine Dbspace Table 20
OnLine Lock Table 20
OnLine Page-Cleaner Table 21
OnLine Tblspace Table 21
OnLine Transaction Table 22
OnLine User Table 23

Shared-Memory Buffer Pool 23
Regular Buffers 23
Logical-Log Buffer 24
Physical-Log Buffer 25
Data-Replication Buffer 25

The Virtual Portion of OnLine Shared Memory 25
How OnLine Manages the Virtual Portion of Shared Memory 26

How to Specify the Size of the Virtual Portion of Shared Memory 26
What Is in the Virtual Portion of Shared Memory 26

Big Buffers 27
Session Data 27
Thread Data 27
Dictionary Cache 28
Sorting Memory 28
Stored Procedures Cache 29
Global Pool 29

The Communications Portion of OnLine Shared Memory 29

Concurrency Control 30
Shared-Memory Mutexes 30
Shared-Memory Buffer Locks 31

Types of Buffer Locks 31

How OnLine Threads Access Shared Buffers 32
OnLine LRU Queues 32

LRU Queue Components 32
LRU Queues and Buffer-Pool Management 33
Limiting the Number of Pages Added to the MLRU Queues 34
When MLRU Cleaning Ends 34

Read Ahead 35

14-2 OnLine Shared Memory

How an OnLine Thread Accesses a Buffer Page 36
Identify the Page 36
Determine the Level of Lock Access 36
Try to Locate the Page in Shared Memory 36
Or, Locate a Buffer and Read Page from Disk 37
Lock the Buffer If Necessary 37
Release the Buffer Lock and Wake a Waiting Thread 37

How OnLine Flushes Data to Disk 39
Three Events Prompt Flushing of the Regular Buffers 39
Rule: Before-Images Are Flushed First 39

Flushing the Physical-Log Buffer 39
Three Events Prompt Flushing of the Physical-Log Buffer 40
When the Physical-Log Buffer Becomes Full 40

How OnLine Synchronizes Buffer Flushing 41
How OnLine Makes Sure the Physical-Log Buffers Are Flushed

First 41
Types of Writes that Prompt Flushing Activity 42

Foreground Write 43
LRU Write 43
Chunk Write 43

Flushing the Logical-Log Buffer 44
Five Events Prompt Flushing of the Logical-Log Buffers 44
When the Logical-Log Buffer Becomes Full 44
After a Transaction Is Prepared or Terminated in a Database with

Unbuffered Logging 45
When a Session That Uses Nonlogging Databases or Unbuffered

Logging Terminates 46
When a Checkpoint Occurs 46
When a Page Is Modified That Does Not Require a Before-Image in

the Physical-Log File 46

How OnLine Achieves Data Consistency 46
Critical Sections 46
OnLine Checkpoints 47

Five Events Initiate a Checkpoint 47
Main Events During a Checkpoint 48
Checkpoint Is Critical to Fast Recovery 49

OnLine Timestamps 50
Timestamps on Disk Pages 50
Timestamps on Blob Pages 50
Blob Timestamps with Dirty Read and Committed Read Isolation

Levels 51

OnLine Shared Memory 14-3

Writing Data to a Blobspace 52
Blobpages Do Not Pass Through Shared Memory 52
Blobs Are Created Before the Data Row Is Inserted 53
Blobpage Buffers Are Created for the Duration of the Write 53

14-4 O nL ine Shared M em ory

Chapter Overview
This chapter describes the content of INFORMIX-OnLine Dynamic Server
shared memory, the factors that determine the sizes of shared-memory areas,
and how data moves into and out of shared memory. See Chapter 15, "Man
aging OnLine Shared Memory," for information on how to change the
Online configuration parameters that determine shared-memory
allocations.

What Is Shared Memory?
Shared memory is an operating-system feature that allows OnLine threads
and processes to share data by sharing access to pools of memory. OnLine
uses shared memory for the following purposes:

• To reduce memory usage and disk I/O
• To perform high-speed communication between processes.

Shared memory enables OnLine to reduce overall memory usage because the
participating processes—in this case, virtual processors—do not need to
maintain private copies of the data that is in shared memory.

Shared memory reduces disk I/O because buffers, which are managed as a
common pool, are flushed on a database-server-wide basis instead of a per-
process basis. Furthermore, a virtual processor is often able to avoid reading
data from disk because the data is already in shared memory as a result of an
earlier read operation. The reduction in disk I/O reduces execution time.

Shared memory provides the fastest method of interprocess communication
because processes read and write messages at the speed of memory transfers.

OnLine Shared Memory 14-5

How O nline Uses Shared Memory

How Online Uses Shared Memory
Online uses shared memory for the following purposes:

• To enable Online virtual processors and utilities to share data

• To provide a fast communications channel for local client applications

Figure 14-1 on page 14-7 illustrates how Online uses shared memory.

14-6 Online Shared Memory

How OnLine Uses Shared Memory

Virtual Processor A Virtual Processor B
Memory Space Memory Space

unallocated
space

private data

program text

unallocated
space

private data

program text

Data Client Applications

Figure 14-1 How OnLine uses shared memory

OnLine Shared Memory 14-7

How OnLine Uses Shared Memory

How OnLine Allocates Shared Memory
When OnLine initializes shared memory, it acquires shared-memory seg
ments for the following three portions:

• The resident portion
• The virtual portion
• The communications or message system portion

Figure 14-2 on page 14-9 shows the contents of each portion of OnLine shared
memory.

All OnLine virtual processors have access to the same shared-memory seg
ments. Each virtual processor manages its work by maintaining its own set
of pointers to shared-memory resources such as buffers, locks, and latches.
Virtual processors attach to shared memory when you take OnLine from off
line mode to quiescent mode, or from off-line mode directly to on-line mode.
See Chapter 7, "What Are OnLine Operating Modes?," for more information
about OnLine modes.

OnLine uses locks and latches to manage concurrent access to shared mem
ory resources by multiple threads.

14-8 OnLine Shared Memory

How OnLine Uses Shared Memory

Resident Portion

Virtual Portion

Communications Portion

Sh. Mem. Header Buffer-Header Table Chunk Table

Mirrored-Chunk Table Dbspace Table
Lock Table Page-Cleaner Table Tblspace Table

Transaction Table User Table LRU Queues

Buffer Pool

Session Structures Thread Structures Dictionary Cache

Stored-Procedures Cache Sorting Pool

Thread Stacks Thread Heaps

Big Buffers

Global Pool

Unallocated Memory

Client/Server IPC Messages

Figure 14-2 Contents of OnLine shared memory

O nL ine Shared M em o ry 14-9

What Processes Attach to O nline Shared Memory?

How Much Shared Memory Does Online Use?
Each portion of Online shared memory consists of one or more operating-
system segments of memory, each one divided into a series of blocks, eight
kilobytes (8k) in size and managed by a bit map.

The header-line output by the onstat utility contains the size of Online
shared memory, expressed in kilobytes. See "onstat: Monitor Online Opera
tion" on page 37-46 for information on how to use the onstat utility.

You can set the SHMTOTAL parameter in the ONCONFIG file to limit the
amount of memory overhead that Online can place on your system. The
SHMTOTAL parameter specifies the total amount of virtual memory that
OnLine can use for all memory allocations. Applications might fail, however,
if OnLine needs more memory than the amount set in SHMTOTAL. If this con
dition occurs, OnLine displays the following message in the message log:

size of resident + virtual segments x + y > z
total allowed by configuration parameter SHMTOTAL

What Processes Attach to OnLine Shared Memory?
The following processes attach to OnLine shared memory:

• Client application processes that communicate with OnLine through the
shared-memory communications portion (ipcshm protocol)

• OnLine virtual processors

• OnLine utilities

The following sections describe how each type of process attaches to OnLine
shared memory.

How a Client Attaches to the Communications Portion
Client application processes that communicate with OnLine through shared
memory (ipcshm protocol) attach transparently to the communications por
tion of OnLine shared memory. System library functions that are automati
cally compiled into the application enable it to attach to the communications
portion of OnLine shared memory. See Chapter 4, "Configuring Connectiv
ity," and "Network Virtual Processors" on page 12-24 for information on
specifying a shared-memory connection.

14-10 OnLine Shared Memory

What Processes Attach to OnLine Shared Memory?

Where the Client Attaches to the Communications Portion
If the INFORMIXSHMBASE environment variable is not set, the client applica
tion attaches to the communications portion at an address that is implemen
tation-specific. If the client application attaches to other shared-memory
segments (not OnLine shared memory), the user can set the INFORMIXSHM
BASE environment variable to specify the address at which to attach the
OnLine shared-memory communications segments. By specifying the
address at which to address the shared-memory communications segments,
you can prevent OnLine from colliding with the other shared-memory
segments that your application uses. See Chapter 4 of Informix Guide to SQL:
Reference for information on how to set the INFORMIXSHMBASE environment
variable.

How Utilities Attach to Shared Memory
OnLine utilities such as onstat, onmode, and ontape attach to OnLine shared
memory through the file $INFORMIXDIR/etc/.infos.sm>eraame where serv-
emame is the value of the DBSERVERNAME parameter in the ONCONFIG file.
The utilities obtain the servername portion of the filename from the INFOR-
MIXSERVER environment variable.

The oninit process reads the ONCONFIG file and creates the file
$INFORMIXDIR/etc/.infos.sm;m*amp when it starts OnLine. The file is
removed when OnLine terminates.

How Virtual Processors Attach to Shared Memory
OnLine virtual processors attach to shared memory during initialization.
During this process, OnLine must satisfy the following two requirements:

• Ensure that all virtual processors can locate and access the same shared-
memory segments.

• Ensure that the shared-memory segments reside in physical memory
locations that are different than the shared-memory segments assigned to
other instances of OnLine, if any, on the same computer.

OnLine uses two configuration parameters, SERVERNUM and SHMBASE, to
meet these requirements.

When a virtual processor attaches to shared memory, it performs the follow
ing major steps:

1. Accesses the SERVERNUM parameter from the ONCONFIG file.
2. Uses SERVERNUM to calculate a shared-memory key value.

OnLine Shared Memory 14-11

What Processes Attach to OnLine Shared Memory?

3. Requests a shared-memory segment using the shared-memory key value.
UNIX returns the shared-memory identifier for the first shared-memory
segment.

4. Directs UNIX to attach the first shared-memory segment to its process
space at SHMBASE.

5. Attach additional shared-memory segments, if required, to be contiguous
with the first segment.

The following sections describe how OnLine uses the values of the SERVER-
NUM and SHMBASE configuration parameters in the process of attaching
shared-memory segments.

SERVERNUM Defines a Unique Key Value
OnLine uses the ONCONFIG parameter SERVERNUM to calculate a unique
key value for its shared-memory segments. All virtual processors within a
single OnLine instance share the same key value. When each virtual proces
sor attaches to shared memory, it calculates the key value as follows:

(SERVERNUM * 65536) + shmkey
The value of shmkey is set internally and cannot be changed by the user. (The
shmkey value is 52564801 in hexadecimal representation or 1,381,386,241 in
decimal.). The value (SERVERNUM * 65536) is the same as multiplying SERV
ERNUM by hexadecimal 10000.

When more than one OnLine instance exists on a single computer, the differ
ence in the key values for any two instances is the difference between the two
SERVERNUM values, multiplied by 65536.

When a virtual processor requests the UNIX operating system to attach the
first shared-memory segment, it supplies the unique key value to identify the
segment. In return, the UNIX operating system passes back a shared-memory
segment identifier associated with the key value. Using this identifier, the vir
tual processor requests that the operating system attach the segment of
shared memory to the virtual processor address space.

SHMBASE Specifies Where to Attach the First Shared-Memory Segment
The SHMBASE parameter in the ONCONFIG file specifies the virtual address
where each OnLine virtual processor attaches the first, or base, shared-mem
ory segment. Each virtual processor attaches to the first shared-memory seg
ment at the same virtual address. This enables all virtual processors within

14-12 O nL ine Shared M em ory

What Processes Attach to OnLine Shared Memory?

the same OnLine instance to reference the same locations in shared memory
without needing to calculate shared-memory addresses. All shared-memory
addresses for an instance of OnLine are relative to SHMBASE.

Warning. Informix recommends that you do not attempt to change the value ofSHM
BASE for the following reasons:

• The specific value of SHMBASE is often machine-dependent. It is not an arbitrary
number. Informix selects a value for SHMBASE that will keep the shared-memory
segments safe when the virtual processor dynamically acquires additional mem
ory space.

• Different UNIX systems accommodate additional memory at different virtual
addresses. Some UNIX architectures extend the highest virtual address of the vir
tual processor data segment to accommodate the next segment. In this case, it is
possible the data segment could grow into the shared-memory segment.

• Some versions of UNIX require the user to specify a SHMBASE of virtual address
zero. The zero address informs the UNIX kernel that the kernel should pick the
best address at which to attach the shared-memory segments. However*, not all
UNIX architectures support this option. Moreover, on some systems the selection
that the kernel makes might not be the best selection.

How Virtual Processors Attach Additional Shared-Memory Segments
Each virtual processor must attach to the total amount of shared memory that
OnLine has acquired. After a virtual processor attaches each shared-memory
segment, it calculates how much shared memory it has attached and how
much is remaining. OnLine facilitates this process by writing a shared-
memory header into the first shared-memory segment. Sixteen bytes into the
header, a virtual processor can obtain the following data:

• The total size of shared memory for this OnLine database server
• The size of each shared-memory segment

To attach additional shared-memory segments, a virtual processor requests
them from the UNIX operating system in much the same way that it requested
the first segment. For the additional segments, however, the virtual processor
adds 1 to the previous value of shmkey. The virtual processor directs the oper
ating system to attach the segment at the address that results from the follow
ing calculation:

SHMBASE + (seg_size x number of attached segments)
The virtual processor repeats this process until it has acquired the total
amount of shared memory.

OnLine Shared Memory 14-13

What Processes Attach to Online Shared Memory?

Given the initial key-value of (SERVERNUM * 65536) + shmkey, Online can
request up to 65,536 shared-memory segments before it could request a
shared-memory key value used by another Online instance on the same
computer.

Beware of the Shared-Memory Lower-Boundary Address
If your operating system uses a parameter to define the lower boundary
address for shared memory, and the parameter is set incorrectly, it can pre
vent the shared-memory segments from being attached contiguously.

Figure 14-3 on page 14-15 illustrates the problem. If the lower-boundary
address is less than the ending address of the previous segment plus the size
of the current segment, the operating system attaches the current segment at
a point beyond the end of the previous segment. This creates a gap between
the two segments. Since shared memory must be attached to a virtual proces
sor so that it looks like contiguous memory, this gap creates problems.
Online receives errors when this situation occurs. To correct the problem,
check the UNIX kernel parameter that specifies the lowe-boundary address or
reconfigure the kernel to allow larger shared-memory segments. See "4 The
Role of the Shared-Memory Lower-Boundary Address" on page 15-5 for a
description of the UNIX kernel parameter.

14-14 Online Shared Memory

The Resident Portion of OnLine Shared Memory

Operating-System Memory

virtual
processor

shared-memory
segment

gap

shared-memory
segment

^ ---------- SHMBASE

Next segment
^ ---------- of shared

memory
should attach
here.

When lower
^ ---------- boundary is

too large, next
segment
attaches here.

Figure 14-3 If the shared-memory lower-boundary address is set incorrectly; a gap between
shared-memory segments can result

The Resident Portion of OnLine Shared Memory
The UNIX operating system, as it switches between the processes running on
the system, normally swaps the contents of portions of memory to disk.
When a portion of memory is designated as resident, however, it is not
swapped to disk. Keeping frequently accessed data resident in memory
improves performance because it reduces the number of disk I/Os that would
otherwise be required to access that data.

O nL ine Shared M em o ry 14-15

The Resident Portion of OnLine Shared Memory

The resident portion of OnLine shared memory stores the following data
structures that do not change in size:

• Shared-memory header
• Internal tables
• Buffer pool

OnLine requests that the operating system keep this resident portion resident
in physical memory when the following two conditions exist:

• The operating system supports shared-memory residency
• The RESIDENT parameter in the ONCONFIG file is set to one

Figure 14-4 on page 14-17 illustrates the contents of the resident portion of
shared memory.

14-16 OnLine Shared Memory

The Resident Portion of OnLine Shared Memory

User table

Lock table

Hash table

Dbspace table

Transaction table Chunk table

Page-cleaner table

Buffer pool

Tblspace table

Hash table

Buffer table

Hash table

Figure 14-4 The resident portion of shared memory

Shared-Memory Header
The shared-memory header contains a description of all other structures in
OnLine shared memory, including internal tables and the OnLine buffer
pool.

The shared-memory header also contains pointers to the locations of these
structures. When a virtual processor first attaches to shared memory, it reads
address information in the shared-memory header for directions to all other
structures.

The size of the shared-memory header is about one kilobyte, although the
size varies depending on the computer platform. The administrator cannot
time the size of the header.

OnLine Shared Memory 14-17

The Resident Portion of O nline Shared Memory

Shared-Memory Internal Tables
Online shared memory contains nine internal tables that track shared-
memory resources. Three of these nine tables are paired with hash tables. The
shared-memory internal tables are as follows:
• Buffer table and associated hash table
• Chunk table
• Dbspace table
• Lock table and associated hash table
• Page-cleaner table
• Tblspace table and associated hash table
• Transaction table
• User table

Hash Tables
Hashing is a technique that permits rapid lookup in tables where items are
added unpredictably. The following three OnLine shared-memory tables
have an associated hash table: the lock table, the active tblspace table, and the
buffer table. These three hash tables also reside in the resident portion of
shared memory.

OnLine Buffer Table
The buffer table tracks the address and status of the individual buffers in the
shared-memory pool. When a buffer is used, it contains an image of a data or
index page from disk. See "What Is a Page?" on page 10-9 and "Structure and
Storage of a Dbspace Page" on page 40-30 for more information on the pur
pose and content of a disk page.

Each buffer in the buffer table contains the following control information,
which is needed for buffer management:

• Buffer status
Buffer status is described as empty, unmodified, or modified. An unmod
ified buffer contains data, but this data can be overwritten. A modified, or

14-18 OnLine Shared Memory

The Resident Portion of OnLine Shared Memory

dirty buffer, contains data that must be written to disk before it can be
overwritten.

• Current lock-access level
Buffers receive lock-access levels depending on the type of operation the
user thread is executing. OnLine supports two buffer lock-access levels:
shared and exclusive.

• Threads waiting for the buffer
Each buffer header maintains a list of the threads that are waiting for the
buffer and the lock-access level that each waiting thread requires.

The minimum number of OnLine buffers is based on the number of OnLine
user threads, specified as USERTHREADS in the ONCONFIG file. You must
allocate at least four buffers per user thread up to 2000 buffers. For more than
500 users, the minimum requirement is 2000 buffers. The maximum number
of allocated buffers is 512 kilobytes. See "Monitoring Buffers" on page 29-15
for information on how to monitor OnLine buffers. See "BUFFERS" on
page 35-8 for information on how to specify the number of buffers available
to OnLine.

Each OnLine buffer has one entry in the buffer table.

Buffer-Table Hash Table
OnLine determines the number of entries in the buffer-table hash table based
on the number of allocated buffers. The maximum number of hash values is
the largest power of two that is less than the value of BUFFERS.

OnLine Chunk Table
The chunk table tracks all chunks in the OnLine database server. If mirroring
has been enabled, a corresponding mirror chunk table is also created when
shared memory is initialized. The mirror chunk table tracks all mirror
chunks.

The chunk table in shared memory contains information that enables OnLine
to locate chunks on disk. This information includes the chunk number and
the number of the next chunk in the dbspace. Flags also describe chunk sta
tus: mirror or primary; off-line, on-line, or recovery mode; and whether this
chunk is part of a blobspace. See "Monitor Chunks" on page 29-46 for infor
mation on monitoring chunks.

The maximum number of entries in the chunk table is equal to the value of
CHUNKS, as specified in the ONCONFIG file. The maximum number of
chunks may be limited by the maximum number of file descriptors that the

OnLine Shared Memory 14-19

The Resident Portion of OnLine Shared Memory

operating system allows per process. (This is often specified by a kernel con
figuration parameter.) See "CHUNKS" on page 35-9 for information on how
to specify the number of chunks available to OnLine.

OnLine Dbspace Table
The dbspace table tracks both dbspaces and blobspaces in the OnLine data
base server. The dbspace-table information includes the following informa
tion about each dbspace in the OnLine configuration:

• Dbspace number
• Dbspace name and owner
• Dbspace mirror status (mirrored or not)
• Date and time the dbspace was created

If the space is a blobspace, flags indicate the media where the blobspace is
located—magnetic, removable media, or optical. See "Monitoring Disk
Usage" on page 29-46 for information on monitoring dbspaces.

The maximum number of entries in the dbspace table is equal to the value of
the DBSPACES parameter in the ONCONFIG file, which specifies the maxi
mum number of dbspaces permitted in OnLine. See Chapter 15, "Managing
OnLine Shared Memory," for information on setting the DBSPACES parame
ter. See "DBSPACES" on page 35-13 for information on specifying the num
ber of dbspaces available to OnLine.

OnLine Lock Table
A lock is created when a user thread writes an entry in the lock table. The lock
table is the pool of available locks. Each entry is one lock. A single transaction
can own multiple locks. A single session is limited to 32 concurrent, explicit
table locks. Refer to the Informix Guide to SQL: Tutorial for an explanation of
locking and the SQL statements associated with locking.

The information stored in the table describes the lock. The lock description
includes the following four items:

• The address of the transaction that owns the lock
• The type of lock (exclusive, update, shared, byte, or intent)
• The page and/or rowid that is locked
• The tblspace where the lock is placed

14-20 OnLine Shared Memory

The Resident Portion of OnLine Shared Memory

The maximum number of entries in the lock table is specified by the LOCKS
parameter in the ONCONFIG file. See "LOCKS" on page 35-19 for informa
tion on specifying the number of locks available to OnLine sessions.

See "Monitoring Locks" on page 29-23 for information on monitoring locks.

When Is a Byte Lock Generated?
A byte lock is only generated if you are using VARCHAR data types. The byte
lock exists solely for rollforward and rollback execution, so a byte lock is cre
ated only if you are working in a database that uses logging. Byte locks
appear in onstat -k output only if you are using row-level locking; otherwise
they are merged with the page lock.

Hash-Table Entries
The lock table includes an associated hash table. The number of entries in the
lock hash table is based on the number of entries in the locks table. The max
imum number of hash values is the largest power of two that is less than the
value specified by the expression (LOCKS divided by 16).

OnLine Page-Cleaner Table
The page-cleaner table tracks the state and location of each of the page-
cleaner threads. The number of page-cleaner threads is specified by the
CLEANERS parameter in the ONCONFIG file. See "CLEANERS" on page 35-11
for advice on how many page-cleaner threads to specify.

The page-cleaner table always contains 32 entries, regardless of the number
of page cleaner threads specified by the CLEANERS parameter in the
ONCONFIG file.

See the -F option under "onstat: Monitor OnLine Operation" on page 37-46
for information on monitoring the activity of page-cleaner threads.

OnLine Tblspace Table
The tblspace table tracks all active tblspaces in the OnLine system. An active
tblspace is one that is currently in use by an OnLine session. Each active table
accounts for one entry in the tblspace table. Active tblspaces include database
tables, temporary tables, and internal control tables, such as system catalog
tables. Each tblspace table entry includes header information about the tbl
space, the tblspace name, and pointers to the tblspace tblspace in the root

OnLine Shared Memory 14-21

The Resident Portion of OnLine Shared Memory

dbspace on disk. (Do not confuse the shared-memory active tblspace table
with the tblspace tblspace.) See "Monitoring Tblspaces and Extents" on
page 29-50 for information on monitoring tblspaces.

The maximum number of entries in the tblspace table is specified by the
TBLSPACES parameter in the ONCONFIG file. If a session attempts to open an
additional table after all entries are used, an error is returned. See
"TBLSPACES" on page 35-44 for information on specifying the maximum
number of active tblspaces available to OnLine.

Entries in the tblspace table are tracked in an associated hash table.

Hash Table Entries
The number of entries in the tblspace hash table is based on the number of
allocated tblspaces (specified as TBLSPACES in the ONCONFIG file). The max
imum number of hash values is the largest power of two that is less than the
value specified by the expression (TBLSPACES divided by 4). For example, if
you set TBLSPACES to 500 then the value of (TBLSPACES divided by 4) is 125.
Therefore, the maximum number of hash values would be 5 because 2 5 is the
highest power of 2 that has a value (64) less than 125.

OnLine Transaction Table
The transaction table tracks all transactions in the OnLine database server.
The transaction table also specifically supports the X/Open environment.
Support for the X/Open environment requires INFORMIX-TP/XA. For a
description of a transaction in this environment, see the product documenta
tion for INFORMIX-TP/XA.

Some information that had been tracked in the user table in earlier releases is
now tracked in the transaction table. Tracking information derived from the
transaction table appears in the onstat -x display. See "Monitoring Transac
tions" on page 29-33 for an example of the output displayed by onstat -x.

The number of entries in the transaction table is based on the TRANSACTIONS
parameter in the ONCONFIG file.

See the Informix Guide to SQL: Tutorial and the Informix Guide to SQL: Reference-
for more information on transactions and the SQL statements that you use
with transactions.

14-22 OnLine Shared Memory

The Resident Portion of OnLine Shared Memory

OnLine User Table
The user table tracks all user threads. These threads include a thread to accept
requests from ON-Monitor, a thread to accept requests from the onmode util
ity, the threads that are used in recovery, and page-cleaner threads.

The maximum number of entries in the user table is equal to the number of
user threads permitted on this OnLine system, specified by the USER-
THREADS parameter in the ONCONFIG file. If OnLine needs more user
threads than you allocated on the USERTHREADS parameter, it returns an
error.

You can monitor user threads using the onstat -u command.

Shared-Memory Buffer Pool
The OnLine buffer pool in the resident portion of shared memory contains
regular buffers that store database data pages.

If data pages are modified, entries are usually made in the following two
other shared-memory buffers, also in the resident portion of shared memory,
that function solely to ensure the physical and logical consistency of OnLine
data:

• Logical-log buffer
• Physical-log buffer

If you have implemented data replication, the buffer pool in resident shared
memory also contains a data-replication buffer.

Regular Buffers
The regular buffers store dbspace pages read from disk. The pool of regular
buffers comprises the largest allocation of the resident portion of shared
memory.

The status of the regular buffers is tracked through the buffer table. Within
shared memory, regular buffers are organized into LRU buffer queues. Buffer
acquisition is managed through the use of latches, called mutexes, and lock-
access information. You can monitor buffers and buffer-pool activity using
four options of onstat:

• -b and -B options display general buffer information.
• -R displays LRU queue statistics.
• -X displays information about OnLine I/O threads that are waiting for

buffers.

OnLine Shared Memory 14-23

The Resident Portion of OnLine Shared Memory

See "OnLine LRU Queues" on page 14-32 for a description of how LRU
queues work. See "Mutexes" on page 12-16 for a description of mutexes.

You specify the number of regular buffers in the buffer pool on the BUFFERS
parameter in the ONCONFIG file. See "BUFFERS" on page 35-8 for informa
tion on specifying the number of BUFFERS available to OnLine.

How Big Is a Regular Buffer?
Each regular buffer is the size of one OnLine page. In general, OnLine per
forms I/O in full-page units, the size of a regular buffer. The two exceptions
are I/O performed from big buffers and I/O performed from blobspace buff
ers. To determine the OnLine page size for your system, select the shared-
memory option of the Parameters menu in ON-Monitor. ON-Monitor displays
a list of shared-memory parameters of which the OnLine page size is the last
entry on the page.

Logical-Log Buffer
OnLine uses the logical log to store a record of changes to OnLine data since
the last archive. The logical log stores records that represent logical units of
work for OnLine. It contains the following five types of log records:

• SQL data definition statements for all databases
• SQL data manipulation statements for databases that were created with

logging
• Record of a change to the logging status of a database
• Record of a checkpoint
• Record of a change to the configuration

There are three logical-log buffers. Triple-buffering permits the logical-log
(LIO) virtual processor to write to two active buffers while one buffer is
flushed to disk. OnLine uses three buffers for the logical log because it is
flushed more often than the physical log, especially when unbuffered logging
is used. Two active buffers provide adequate time to flush the third buffer to
disk. See "Flushing the Logical-Log Buffer" on page 14-44 for a description of
how OnLine flushes the logical-log buffer.

The LOGBUFF parameter in the ONCONFIG file specifies the size of the
logical-log buffers. Small buffers can create problems if you store records
larger than the size of the buffers (for example, blobs in dbspaces). See "LOG-
BUFF" on page 35-20 for the possible values that you can assign to this
parameter.

14-24 OnLine Shared Memory

The Virtual Portion of OnLine Shared Memory

Physical-Log Buffer
OnLine uses the shared-memory physical-log buffer to hold before-images of
dbspace pages that are going to be updated. The before images in the physi
cal log enable OnLine to restore consistency to its databases after a system
failure.

The physical-log buffer is actually two buffers. Double buffering permits
OnLine processes to write to the active physical-log buffer while the other
buffer is being flushed to the physical log on disk. See "Flushing the Physical-
Log Buffer" on page 14-39 for a description of how OnLine flushes the
physical-log buffer.

See "Monitoring the Physical-Log File" on page 29-40 for information on
monitoring the physical-log file.

The PHYSBUFF parameter in the ONCONFIG file specifies the size of the
physical-log buffers. A write to the physical-log buffer writes exactly one
page. If the specified size of the physical-log buffer is not evenly divisible by
the page size, OnLine rounds the size down to the nearest value that is evenly
divisible by the page size. When the buffer fills, OnLine flushes the buffer to
the physical-log file on disk. So the size of the buffer determines how fre
quently OnLine needs to flush it to disk. See "PHYSBUFF" on page 35-32 for
more information on this parameter.

Data-Replication Buffer
Data replication requires two instances of OnLine, a primary OnLine and a
secondary OnLine, running on two computers. If you implement data repli
cation for your OnLine database server, OnLine holds logical-log records in
the data-replication buffer before sending them to the secondary OnLine. The
data-replication buffer is always the same size as the logical-log buffer. See
the preceding section, "Logical-Log Buffer," for information on the size of the
logical-log buffer. See "How Does Data Replication Work?" on page 25-8 for
more information on how the data-replication buffer is used.

The Virtual Portion of OnLine Shared Memory
The virtual portion of shared memory is expandable by OnLine and can be
paged out to disk by the operating system. As OnLine executes, it automati
cally attaches additional operating system segments, as needed, to the virtual
portion.

OnLine Shared Memory 14-25

The Virtual Portion of O nline Shared Memory

How Online Manages the Virtual Portion of Shared
Memory

Online uses memory pools to track memory allocations that are of a similar
type and size. Keeping related memory allocations in a pool helps to reduce
memory fragmentation. It also enables Online to free a large allocation of
memory at one time, as opposed to freeing each piece that makes up the pool.
If there is insufficient memory available in a pool to satisfy a request, Online
adds memory from unused memory in the virtual segment. If Online cannot
find enough memory in the virtual segment, it dynamically adds another
segment to the virtual portion.

Online allocates virtual shared memory for each of its subsystems (session
pools, stacks, heaps, control blocks, the system catalog and stored procedure
caches, sort pools, and message buffers) from pools that track free space
through a linked list. When Online allocates a portion of memory, it first
searches the pool free-list for a fragment of sufficient size. If none is found,
new blocks are brought into the pool from the virtual portion. When memory
is freed, it goes back to the pool as a free fragment and remains there until the
pool is destroyed. When Online starts a session for a client application, for
example, it allocates memory from the session pool, the stack pool, and the
heap pool. When the session terminates, the allocated memory is returned to
these pools as free fragments.

How to Specify the Size of the Virtual Portion of Shared Memory
You specify the initial size of the virtual shared-memory portion by setting
the SHMVIRTSIZE parameter in the ONCONFIG file. You can specify the size
of segments that are later added to the virtual portion of shared memory by
setting the SHMADD parameter in the ONCONFIG file.

See "SHMVIRTSIZE" on page 35-39, "SHMADD" on page 35-37, and "Add
ing a Segment to the Virtual Portion of Shared Memory" on page 15-16 for
more information on determining the size of virtual shared memory.

What Is in the Virtual Portion of Shared Memory
The virtual portion of shared memory stores the following data:
• Big buffers

• Session data
• Thread data (stacks and heaps)
• Dictionary cache

14-26 Online Shared Memory

The Virtual Portion of OnLine Shared Memory

• Stored procedures cache
• Sorting pool
• Global pool

Big Buffers
A big buffer is a single buffer that is the size of 32 pages. OnLine allocates big
buffers to improve performance on large reads and writes.

OnLine uses a big buffer whenever it writes to disk multiple pages that are
physically contiguous. For example, OnLine tries to use a big buffer to per
form a series of sequential reads or to write a dbspace blob into shared mem
ory. After disk pages are read into the big buffer, they are immediately
allocated to regular buffers in the buffer pools. OnLine also uses big buffers
in sorted writes and in chunk writes during checkpoints. See "onstat: Moni
tor OnLine Operation" on page 37-46 for information on monitoring the
OnLine use of big buffers.

Session Data
When a client application requests a connection to OnLine, OnLine begins a
session with the client and creates a data structure for the session in shared
memory called the session control block (scb). The session control block stores
the session id, the user id, the process id of the client, the name of the host
computer, and various status flags.

OnLine allocates memory for session structures as needed.

Thread Data
When a client connects to OnLine, in addition to starting a session, OnLine
starts a primary session thread and creates a thread control block (tcb) for it in
shared memory.

OnLine also starts internal threads on its own behalf and creates thread con
trol blocks for these. When OnLine switches from running one thread to run
ning another one (a context switch), it saves information about the thread—
such as the register contents, program counter (address of the next instruc
tion), and global pointers—in the thread control block. See "Context Switch
ing" on page 12-10 for more information on the thread control block and how
it is used.

OnLine allocates memory for thread control blocks as needed.

OnLine Shared Memory 14-27

The Virtual Portion of OnLine Shared Memory

Stacks
Each thread in OnLine has its own stack area in the virtual portion of shared
memory. See "Stacks" on page 12-12 for a description of how OnLine threads
use stacks. See "Monitoring Sessions and Threads" on page 29-29 for infor
mation on how to monitor the size of the stack for a session.

The size of the stack space for user threads is specified by the STACKSIZE
parameter in the ONCONFIG file. The default size of the stack is 32 kilobytes.
You can change the size of the stack for all user threads, if necessary, by
changing the value of STACKSIZE. See "STACKSIZE" on page 35-40 for infor
mation and a warning on setting the size of the stack.

You can alter the size of the stack for the primary thread of a specific session
by setting the INFORMIXSTACKSIZE environment variable. The value of
INFORMIXSTACKSIZE overrides the value of STACKSIZE for a particular user.
See the description of the INFORMIXSTACKSIZE environment variable in the
Informix Guide to SQL: Reference for information on how to override the stack
size for a particular user.

It is safer to alter the size of stack space by using the INFORMIXSTACKSIZE
environment variable because it only affects the stack space for one user and
it is less likely to affect new client applications that initially were not
measured.

Heaps
Each thread also has a heap to hold data structures that it creates while run
ning. A heap is dynamically allocated when the thread is created. The size of
the thread heap is not configurable.

Dictionary Cache
When a session executes an SQL statement that requires accessing a system
catalog table, OnLine reads the system catalog tables and stores them in
structures that it can access more efficiently. These structures are created in
the virtual portion of shared memory for use by all sessions. These structures
comprise the dictionary cache.

The size of the dictionary cache is not configurable.

Sorting Memory
The amount of virtual shared memory that OnLine allocates for a sort
depends on the number of rows to be sorted and the size of the row. The max
imum amount of shared memory that OnLine allocates for a sort is 5 mega-

14-28 OnLine Shared Memory

The Communications Portion of OnLine Shared Memory

bytes. If the PSORT_NPROCS environment variable is set, requesting a
parallel sort, the amount of memory allocated is divided by the number of
threads that will do the sort. See "Psort (Parallel-Sort) Package" on page 30-8
for more information on parallel sorts and the PSORT_NPROCS environment
variable.

To account for the amount of virtual shared memory that OnLine might need
for sorting, estimate the maximum number of sorts that might occur concur
rently and multiply it by the average number of rows times the average row
size. For example, if you estimate that 30 sorts could occur concurrently, and
the average row size is 200 bytes, and the average number of rows in a table
is 400), you could estimate the amount of shared memory that OnLine needs
for sorting as follows:

30 sorts * 200 bytes * 400 rows = 2,400,000 (or approx. 2.4 meg)

Stored Procedures Cache
When a session needs to access a stored procedure for the first time, OnLine
reads the stored procedure from the system catalog tables. OnLine converts
the stored procedure into executable format and stores the procedure in a
cache, where it can be accessed by any session.

The size of the stored procedure cache is not configurable.

Global Pool
The global pool stores structures that are global to OnLine. For example, the
global pool contains the message queues where poll threads for network pro
tocols (soctcp, tlitcp, ipx/spx) deposit messages from clients. The sqlexec
threads pick up the messages from here and process them.

The Communications Portion of OnLine Shared
Memory

The communications, or message system, portion of shared memory is allo
cated when shared memory is initialized. The communications portion con
tains the message buffers for local client applications that use shared memory
to communicate with OnLine.

OnLine Shared Memory 14-29

Concurrency Control

The size of the communications portion of shared memory is based on the
number of threads specified for the ipcshm protocol. The size of the commu
nications portion is approximately 12 kilobytes multiplied by the number of
threads specified. The number of threads is the lesser of the following two
values:

• The value of the USERTHREADS configuration parameter

• The number specified in the u sers entry of the NETTYPE parameter for
the ipcshm protocol, if a parameter is present and the number is lower
than the value of USERTHREADS.

See "How a Client Attaches to the Communications Portion" on page 14-10
for information about how a client attaches to the communications portion of
shared memory.

Concurrency Control
Online threads that run on the same virtual processor, and on separate vir
tual processors, share access to resources in shared memory. When an Online
thread writes to shared memory, it uses mechanisms called latches and locks
to prevent other threads from simultaneously writing to the same area. A
latch (called a mutex in Online) gives a thread the right to access a shared-
memory resource. A lock prevents other threads from writing to a buffer until
the thread that placed the lock is finished with the buffer and releases the
lock.

Shared-Memory Mutexes
Online uses latches, called mutexes, to coordinate threads as they attempt to
modify data in shared memory. Every modifiable shared-memory resource is
associated with a mutex. Before an Online thread can modify a shared-mem
ory resource (such as a table), it must first acquire the mutex associated with
that resource. After the thread acquires the mutex, it can modify the resource.
When the modification is complete, the thread releases the mutex.

If a thread tries to obtain a mutex and finds it held by another thread, the
incoming thread must wait for the mutex to be released.

For example, two Online threads can attempt to access the same slot in the
chunk table, but only one can acquire the mutex associated with the table.
Only the thread holding the mutex can write its entry in the chunk table. The
second thread must wait for the mutex to be released and then acquire it.

14-30 Online Shared Memory

Concurrency Control

See "Monitoring Latches" on page 29-22 for information on monitoring
mutexes (which are also referred to as latches in the output from the monitor
ing tools).

Shared-Memory Buffer Locks
A primary benefit of shared memory is the ability of OnLine threads to share
access to disk pages stored in the shared-memory buffer pool. OnLine main
tains thread isolation while achieving this increased concurrency through a
strategy for locking the data buffers.

Types of Buffer Locks
OnLine uses two types of locks to manage access to shared-memory buffers:

• Share locks
• Exclusive locks

Each of these lock types enforces the required level of OnLine thread isolation
during execution.

See "Monitoring Locks" on page 29-23 for information on how to monitor the
use of locks.

Detailed information about locking and process isolation during SQL pro
cessing is provided in the Informix Guide to SQL: Tutorial. For further informa
tion about locking and shared memory, refer to "Shared-Memory Buffer
Locks" on page 14-31

The Share Lock
A buffer is in share mode, or has a share lock, if multiple OnLine threads have
access to the buffer to read the data and none intends to modify the data.

The Exclusive Lock
A buffer is in exclusive mode, or has an exclusive lock, if a thread demands
exclusive access to the buffer. All other threads requesting access to the buffer
are placed on the wait queue. When the executing thread is ready to release
the exclusive lock, it wakes the next thread in the wait queue.

For more information about locking, see "OnLine Lock Table" on page 14-20
and "Shared-Memory Buffer Locks" on page 14-31.

OnLine Shared Memory 14-31

How O nline Threads Access Shared Buffers

How Online Threads Access Shared Buffers
Online threads access shared buffers through a system of queues, using
latches and locks to synchronize access and protect data.

Online LRU Queues
Each regular buffer is tracked through several linked lists of pointers to the
buffer table. These linked lists are the Least-Recently Used (LRU) queues.

The LRUS parameter in the ONCONFIG file specifies the number of LRU
queues to create when OnLine shared memory is initialized. You can tune the
value of LRUS, combined with the LRU_MIN_DIRTY and LRU_MAX_DIRTY
parameters, to control how frequently the shared-memory buffers are
flushed to disk.

LRU Queue Components
The LRU queue is composed of two queues, the FLRU and the MLRU queues.

Each LRU queue is actually a pair of linked lists:

• One list tracks free or unmodified pages in the queue.
• One list tracks modified pages in the queue.

The free/unmodified pagedist is referred to as the FLRU queue of the queue
pair, and the modified page list is referred to as the MLRU queue. The two
separate lists eliminate the need to search a queue for a free or unmodified
page. Figure 14-5 on page 14-33 illustrates the structure of the LRU queues.

14-32 OnLine Shared Memory

How OnLine Threads Access Shared Buffers

LRU Queues

FLRU

MLRU

pointer to a modified
page

pointer to an empty
page

pointer to an unmodified
page

Figure 14-5 LRU queues

LRU Queues and Buffer-Pool Management
Before processing begins, all page buffers are empty and every buffer is rep
resented by an entry in one of the FLRU queues. The buffers are evenly dis
tributed among the FLRU queues. The number of buffers in each queue is
calculated by dividing the total number of buffers (BUFFERS) by the number
of LRU queues (LRUS).

When a user thread needs to acquire a buffer, OnLine randomly selects one
of the FLRU queues and uses the oldest or least-recently-used entry in the list.
If the least-recently used page can be latched, that page is removed from the
queue.

If the FLRU queue is locked and the end page cannot be latched, OnLine ran
domly selects another FLRU queue.

If a user thread is searching for a specific page in shared memory, it obtains
the LRU-queue location of the page from the control information stored in the
buffer table.

OnLine Shared Memory 14-33

How OnLine Threads Access Shared Buffers

After an executing thread finishes its work, it releases the buffer. If the page
has been modified, the buffer is placed at the most-recently-used end of an
MLRU queue. If the page was read but not modified, the buffer is returned to
the FLRU queue at its most-recently-used end. See "Monitoring Buffer-Pool
Activity" on page 29-19 for information on how to monitor LRU queues.

Limiting the Number of Pages Added to the MLRU Queues
Periodically, the modified buffers in an MLRU queue are written (flushed) to
disk by the page-cleaner threads. You can specify the point at which cleaning
begins using the LRU_MAX_DIRTY configuration parameter.

By specifying when page cleaning begins, the LRU_MAX_DIRTY configura
tion parameter limits the number of page buffers that can be appended to an
MLRU queue. The default value of LRU_MAX_DIRTY is 60, meaning that page
cleaning begins when 60 percent of the buffers managed by a queue are mod
ified.

In practice, page cleaning begins under several conditions, only one of which
is when an MLRU queue reaches the value of LRU_MAX_DIRTY. See "How
OnLine Flushes Data to Disk" on page 14-39 for more information on how
OnLine performs buffer-pool flushing.

Figure 14-6 shows how the value of LRU_MAX_DIRTY is applied to an LRU
queue to specify when page cleaning begins and thereby limit the number of
buffers in an MLRU queue:

BUFFERS specified as 8000
LRUS specified as 8
LRU_MAX_DIRTY specified as 60
Page cleaning begins when the number of buffers in the MLRU queue
is equal to LRU_MAX_DIRTY
Buffers per LRU queue = (8000/8) = 1000
Max buffers in MLRU queue and point at which page cleaning
begins: 1000 x 0.60 = 600

Figure 14-6 How LRU_MAX_DIRTY initiates page cleaning to limit the size of the MLRU queue

When MLRU Cleaning Ends
You can also specify the point at which MLRU cleaning can end. The LRU_-
MIN_DIRTY configuration parameter specifies the acceptable percentage of
buffers in an MLRU queue. The default value of LRU_MIN_DIRTY is 50, mean-

14-34 OnLine Shared Memory

How OnLine Threads Access Shared Buffers

ing that page cleaning is no longer required w hen 50 percent of the buffers in
an LRU queue are m odified (that is, in the MLRU queue). In practice, page
cleaning can continue beyond this point as directed by the page-cleaner
threads.

Figure 14-7 show s how the value of LRU_MIN_DIRTY is applied to the LRU
queue to specify the acceptable percentage of buffers in an MLRU queue and
the point at w hich page cleaning ends:

BUFFERS specified as 8000
LRUS specified as 8
LRU_MIN_DIRTY specified as 50
The acceptable number of buffers in the MLRU queue and the point
at which page cleaning can end is equal to LRU_MIN_DIRTY
Buffers per LRU queue = (8000/8) = 1000
Acceptable number of buffers in MLRU queue and the point at which
page cleaning can end: 1000 x .050 = 500

Figure 14-7 How LRU_MIN_DIRTY specifies the point at which page cleaning can end

See "How OnLine Flushes Data to Disk" on page 14-39 for more information
on how OnLine flushes the buffer pool.

Read Ahead
For sequential table or index scans, you can configure OnLine to read several
pages ahead while the current pages are being processed. A read-ahead
enables applications to run faster because they spend less time waiting for
disk I/O.

OnLine performs a read-ahead whenever it detects the need for it during
sequential data or index reads.

The RAJPAGES parameter in the ONCONFIG file specifies the number of
pages to read from disk when OnLine does a read-ahead.

The RA_THRESHOLD parameter specifies the number of unprocessed pages
in memory that cause OnLine to do another read-ahead. For example, if
RA_PAGES is 10 and RA_THRESHOLD is 4, OnLine reads ahead 10 pages
when 4 pages remain to be processed in the buffer. See "Monitoring Shared-
Memory Profile" on page 29-13 for an example of the output that the onstat

OnLine Shared Memory 14-35

How O nline Threads Access Shared Buffers

-p command produces to enable you to monitor O n lin e use of read-ahead.
See "-p Option" on page 37-61 under the heading "onstat: Monitor OnLine
Operation."

How an OnLine Thread Accesses a Buffer Page
O nLine uses shared-lock buffering to allow more than one O nLine thread to
concurrently access the same buffer in shared memory. O nLine uses two cat
egories of buffer locks to provide this concurrency without a loss in thread
isolation. The two categories of lock access are share and exclusive.

The process of accessing a data buffer consists of the following seven steps:

1. Identify the data requested by physical page number.
2. Determine the level of lock access needed by the thread for the requested

buffer.
3. Attempt to locate the page in shared memory.
4. If the page is not in shared memory, locate a buffer in an FLRU queue and

read the page in from disk. If the page is in shared memory, proceed with
step 5.

5. Proceed with processing, locking the buffer if necessary.
6. When finished with the buffer, release the lock.
7. Wake waiting threads with compatible lock access types, if any exist.

Identify the Page
O nLine threads request a specific data row and O nLine searches for the page
that contains the row.

Determine the Level of Lock Access
Next O nLine determines the requested level of lock access: share or
exclusive.

Try to Locate the Page in Shared Memory
The thread first attempts to locate the requested page in shared memory. To
do this, it acquires a mutex on the hash table associated with the buffer table.
Then, it searches the hash table to see if an entry matches the requested page.
If it finds an entry for the page, it releases the mutex on the hash table and
tries to acquire the mutex on the buffer entry in the buffer table.

14-36 OnLine Shared Memory

How OnLine Threads Access Shared Buffers

The thread tests the current lock-access level of the buffer. If the levels are
compatible, the requesting thread gains access to the buffer and sets its own
lock. If the current lock-access level is incompatible, the requesting thread
puts itself on the wait queue for the buffer.

The buffer state, unmodified or modified, is irrelevant to locking; even
unmodified buffers can be locked.

If you configure OnLine to use read-ahead, OnLine performs a read-ahead
request when the number of pages specified by the RA_THRESHOLD param
eter remain to be processed in memory.

Or, Locate a Buffer and Read Page from Disk
If the requested page must be read from disk, the thread first locates a usable
buffer in the FLRU queues. OnLine selects an FLRU queue at random and tries
to acquire the mutex associated with the queue. If the mutex can be acquired,
the buffer at the least-recently-used end of the queue is used. If another
thread holds the mutex, the first thread tries to acquire the mutex of another
FLRU queue.

If you configure OnLine to use read-ahead, OnLine reads the number of
pages specified by the RA_PAGES configuration parameter.

Lock the Buffer If Necessary
After a usable buffer is found, the buffer is temporarily removed from the
FLRU queue. The thread creates an entry in the shared-memory buffer table
as the page is read from disk into the buffer.

Release the Buffer Lock and Wake a Waiting Thread
When the thread is finished with the buffer, it releases the buffer lock and, if
any threads are waiting for the buffer, wakes one up. This procedure varies,
however, depending on whether the releasing thread modified the buffer.

When the Buffer Is N ot Modified
If the OnLine thread does not modify the data, it releases the buffer as
unmodified.

The release of the buffer occurs in steps. First, the releasing thread acquires
the mutex on the buffer table that enables it to modify the buffer entry.

OnLine Shared Memory 14-37

How OnLine Threads Access Shared Buffers

Next, it looks to see if other OnLine threads are sleeping, waiting for this
buffer. If so, the releasing thread wakes the first thread in the wait queue that
has a compatible lock-access type. The waiting threads are queued according
to priorities that encompass more than just first-come, first served hierarchies.
(Otherwise, for example, threads waiting for exclusive access could wait
forever.)

If no thread in the wait queue has a compatible lock-access type, any thread
waiting for that buffer can receive access.

If no thread is waiting for the buffer, the releasing thread tries to release the
buffer to the FLRU queue where it was found. If the latch for that FLRU queue
is unavailable, the thread tries to acquire a latch for a randomly selected FLRU
queue. When the FLRU queue latch is acquired, the unmodified buffer is
linked to the most-recently-used end of the queue.

After the buffer is returned to the FLRU queue or the next thread in the wait
queue is awakened, the releasing thread removes itself from the user list for
the buffer and decrements the shared-user count by one.

When the Buffer Is Modified
If the thread intends to modify the buffer—to update a row in a table, for
example—it acquires the mutex for the buffer and changes the buffer lock-
access type to exclusive.

In most cases, a copy of the before-image of the page is needed for data con
sistency. If necessary, the thread determines whether a before-image of this
page was written to either the physical-log buffer or the physical log since the
last checkpoint. If not, a copy of the page is written to the physical-log buffer.
Then the data in the page buffer is modified. If any transaction records are
required for logging, those records are written to the logical-log buffer.

After the mutex for the buffer is released, the thread is ready to release the
buffer. First, the releasing thread acquires the mutex on the buffer table that
enables it to modify the buffer entry. Next, the releasing thread updates the
timestamp in the buffer header so that the timestamp on the buffer page and
the timestamp in the header match. Statistics describing the number and
types of writes performed by this thread are updated.

The lock is released as described in the previous section, but the buffer is
appended to the MLRU queue associated with the original FLRU queue.

14-38 OnLine Shared Memory

How O nline Flushes Data to Disk

How Online Flushes Data to Disk
Writing a buffer to disk is called buffer flushing. When a user thread modifies
data in a buffer, it marks the buffer as dirty. When Online flushes the buffer
to disk, it subsequently marks the buffer as not dirty and allows the data in
the buffer to be overwritten.

Buffer flushing is managed by the page cleaner threads. Online always runs
at least one page-cleaner thread. If Online is configured for more than one
page-cleaner thread, the LRU queues are divided among the page cleaners for
more efficient flushing. See "CLEANERS" on page 35-11 for information on
specifying how many page-cleaner threads OnLine rims.

Flushing the physical-log buffer, the modified shared-memory page buffers,
and the logical-log buffer must be synchronized with page-cleaner activity
according to specific rules designed to maintain data consistency.

Three Events Prompt Flushing of the Regular Buffers
Flushing of the regular buffers is initiated by any one of the following three
conditions:

• The num ber of buffers in an MLRU queue reaches the num ber specified
by LRU_MAX_DIRTY.

• The page-cleaner threads cannot keep up. In other words, a user thread
needs to acquire a buffer and no unmodified buffers are available.

• OnLine needs to execute a checkpoint.

Rule: Before-Images Are Flushed First
The overriding rule of buffer flushing is this: the before-images of modified
pages are flushed to disk before the modified pages themselves.

In practice, the physical-log buffer is flushed first, then the regular buffers
containing modified pages. Therefore, even when a shared-memory buffer
page needs to be flushed because a user thread is trying to acquire a buffer
and none are available (a foreground write), the regular buffer pages cannot
be flushed until the "before-image" of the page has been written to disk.

Flushing the Physical-Log Buffer
OnLine temporarily stores before-images of disk pages in the physical-log
buffer. Before a disk page can be modified, a before-image of the disk page
must already be stored in the physical log. If the before-image has been writ-

OnLine Shared Memory 14-39

How OnLine Flushes Data to Disk

ten to the physical-log buffer but not to the physical log on disk, the physical-
log buffer must be flushed to disk before the modified page can be flushed to
disk. This is required for the fast-recovery feature.

Both the physical-log buffer and the physical log contribute toward maintain
ing the physical and logical consistency of O nLine data. See Chapter 20,
"What Is Physical Logging?," for a description of physical logging and
Chapter 22, "What Is Fast Recovery?," for a description of fast recovery.

Three Events Prompt Flushing of the Physical-Log Buffer
The following three events cause the current physical-log buffer to flush:

• The current physical-log buffer becomes full.
• A modified page in shared memory must be flushed but the before-image

is still in the current physical-log buffer.
• A checkpoint occurs.

The contents of the physical-log buffer must always be flushed to disk before
any data buffers. This rule is required for the fast-recovery feature.

O nLine uses only one of the two physical-log buffers at a time. This buffer is
the current physical-log buffer. Before O nLine flushes the current physical-
log buffer to disk, it makes the other buffer the current buffer so that it can
continue writing while the first buffer is being flushed.

When the Physical-Log Buffer Becomes Full
Buffer flushing that results from the physical-log buffer becoming full pro
ceeds as follows.

When a user thread needs to write a before-image to the physical-log buffer,
it acquires the mutex associated with the physical-log buffer and the mutex
associated with the physical log on disk. If another thread is writing to the
buffer, the incoming thread must wait for the mutexes to be released.

Once the incoming thread acquires the mutexes, but before the write, the
thread checks to see what percent of the physical log is full.

If the Log is More Than Seventy-Five Percent Full
If the log is more than 75 percent full, the thread sets a flag to request a check
point. Next, the thread claims the amount of space in the buffer that it needs
for its write and releases the buffer mutex so that other threads can access the
buffer. Finally, it copies the data into the space that it claimed in the buffer.

14-40 OnLine Shared Memory

How OnLine Flushes Data to Disk

The checkpoint does not begin until all user threads, including this one, are
out of critical sections. See "Critical Sections" on page 14-46 for a description
of a critical section.

If the Log Is Less Than Seventy-Five Percent Full
If the log is less than 75 percent full, the thread compares the page counter in
the physical-log buffer header to the buffer capacity. If this one-page write
does not fill the physical-log buffer, the thread reserves space in the log buffer
for the write and releases the mutex. Any thread waiting to write to the buffer
is awakened. After releasing the mutex, the thread writes the page to the
reserved space in the physical-log buffer. The sequence of this operation
increases concurrency and eliminates the need to hold the mutex during the
write.

If this one-page write fills the physical-log buffer, flushing is initiated. First
the page is written to the current physical-log buffer, filling it. Next, the
thread latches the other physical-log buffer. The thread switches the shared-
memory current-buffer pointer, making the newly latched buffer the current
buffer. The mutex on the physical log on disk and the mutex on this new, cur
rent buffer are released, which permits other user threads to begin writing to
the new current buffer. Last, the full buffer is flushed to disk and the mutex
on the buffer is released.

Each write to the physical-log buffer writes one page. If the before-image
spans multiple pages, multiple pages are written to the physical-log buffer,
one page at a time.

How OnLine Synchronizes Buffer Flushing
When O nLine shared memory is first initialized, all buffers are empty. As
processing occurs, data pages are read from disk into the buffers and user
threads begin to modify these pages.

How OnLine Makes Sure the Physical-Log Buffers Are Flushed First
When page cleaning is initiated on the shared-memory buffer pool, the page-
cleaner thread must coordinate the flushing so that the physical-log buffer is
flushed first.

How is this done? The answer is timestamp comparison.

OnLine Shared Memory 14-41

How O nline Flushes Data to Disk

Online stores a timestamp each time the physical-log buffer is flushed. If a
page-cleaner thread needs to flush a page in a shared-memory buffer, the
page cleaner compares the timestamp in the modified buffer with the
timestamp that indicates the point when the physical-log buffer was last
flushed.

If the timestamp on the page in the buffer pool is equal to or more recent than
the timestamp for the physical-log buffer flush, the before-image of this page
conceivably could be contained in the physical-log buffer. If this is the case,
the physical-log buffer must be flushed before the shared-memory buffer
pages are flushed.

After the physical-log buffer is flushed, the user thread updates the
timestamp in shared memory that describes the most-recent physical-log
buffer flush. The specific page in the shared-memory buffer pool that is
marked for flushing is now flushed. The number of modified buffers in the
queue is compared to the value of LRU_MIN_DIRTY. If the number of modi
fied buffers is greater than the value represented by LRU_MIN_DIRTY, another
page buffer is marked for flushing. The timestamp comparison is repeated. If
required, the physical-log buffer is flushed again.

When no more buffer flushing is required, the page-cleaner threads sleep for
ever, which means they sleep until buffer flushing is required again and they
are awakened to do the work. (See "Sleep Queues" on page 12-14.) You can
tune the page-cleaning parameters (LRU_MIN_DIRTY and LRU_MAX_DIRTY)
to influence the frequency of buffer flushing. See "LRU Queues and Buffer-
Pool Management" on page 14-33 for a description of how these parameters
determine when page cleaning begins and ends.

Types of Writes that Prompt Flushing Activity
OnLine provides you with information about the specific condition that
prompted buffer-flushing activity by defining three types of OnLine writes
and counting how often each write occurs:
• Foreground write
• LRU w rite

• Chunk write

If you implement mirroring for OnLine, data is always written to the primary
chunk first; then, the write is repeated on the mirror chunk. Writes to a mirror
chunk are included in the counts. See "Monitoring Buffer-Pool Activity" on
page 29-19 for more information on monitoring the types of writes that
OnLine performs.

14-42 OnLine Shared Memory

How OnLine Flushes Data to Disk

Foreground Write
If a user thread searches through the FLRU queues and cannot locate an
empty or unmodified buffer, pages must be flushed to make space. (See "LRU
Queues and Buffer-Pool Management" on page 14-33.) If the thread must
perform buffer flushing just to acquire a shared-memory buffer, performance
can suffer.

Page flushes that the user thread requests are called foreground writes. Fore
ground writes should be avoided. If you find that foreground writes are
occurring, tune the value of the page-cleaning parameters by either increas
ing the number of page cleaners or decreasing the value of LRU_MAX_DIRTY.

LRU Write
A foreground write signals that page cleaning is needed. Once alerted, the
CPU virtual processor wakes the page cleaner threads to begin page cleaning.
The page cleaner threads then clean the LRU queues, marking the writes as
LRU writes.

Chunk Write
Chunk writes are commonly performed by page-cleaner threads during a
checkpoint or, possibly, when every page in the shared-memory buffer pool
is modified. Chunk writes, which are done as sorted writes, are the most effi
cient writes available to OnLine.

During a chunk write, each page-cleaner thread is assigned to one or more
chunks. Each page-cleaner thread reads through the buffer headers and cre
ates an array of pointers to pages that are associated with its specific chunk.
(The page cleaners have access to this information because the chunk number
is contained within the physical page number address, which is part of the
page header.) This sorting minimizes head movement (disk seek time) on the
disk and enables the page-cleaner threads to use the big buffers during the
write, if possible.

In addition, since user threads must wait for the checkpoint to complete, the
page-cleaner threads are not competing with a large number of threads for
CPU time. As a result, the page-cleaner threads can finish their work with less
context switching.

OnLine Shared Memory 14-43

How OnLine Flushes Data to Disk

Flushing the Logical-Log Buffer
O nLine uses the shared-memory logical-log buffer as temporary storage for
records that describe modifications to O nLine pages. From the logical-log
buffer, these records of changes are written to the current logical-log file on
disk, and eventually to the logical-log backup tapes. See Chapter 18, "What
Is the Logical Log?," for a description of logical logging.

Five Events Prompt Flushing of the Logical-Log Buffers
Five events cause the current logical-log buffer to flush:

• The current logical-log buffer becomes full.
• A transaction is prepared or committed in a database with unbuffered

logging.
• When a nonlogging database session terminates.
• A checkpoint occurs.
• A page is modified that does not require a before-image in the physical

log.

O nLine uses only one of the three logical-log buffers at a time. This buffer is
the current logical-log buffer. Before O nLine flushes the current logical-log
buffer to disk, it makes the second logical-log buffer the current one so that it
can continue writing while the first buffer is flushed. If the second logical-log
buffer fills before the first one finishes flushing, then the third logical-log
buffer becomes the current one.

When the Logical-Log Buffer Becomes Full
When a user thread needs to write a page to the logical-log buffer, it acquires
the mutexes associated with the logical-log buffer and the current logical log
on disk. If another thread is writing to the buffer, the incoming thread must
wait for the mutexes to be released.

Once the incoming thread acquires the mutexes, but before the write, the
thread checks how much logical-log space is available on disk. When the log
ical-log space on disk is full and O nLine switches to a new logical log, it
checks to see if the percentage of used log space is greater than the long-trans
action high-water mark, specified by the LTXHWM parameter in the ONCON-
FIG file. See "LTXHWM" on page 35-25 for a description of the purpose of
this parameter and for information on specifying a value for it.

14-44 OnLine Shared Memory

How OnLine Flushes Data to Disk

If there is no long-transaction condition, the logical-log I/O thread compares
the available space in the logical-log buffer with the size of the record to be
written. If the write will not fill the logical-log buffer, the thread writes the
record, releases latches, and awakens any threads waiting to write to the
buffer.

If the write will fill the logical-log buffer, flushing is initiated as follows:

1. The thread latches the next logical-log buffer. The thread then switches
the shared-memory current-buffer pointer, making the newly latched
buffer the current buffer.

2. The thread writes the new record to the new current buffer. The thread
releases the latch on the logical log on disk and the latch on this new, cur
rent buffer, permitting other logical-log I/O threads to begin writing to
the new current buffer.

3. The full logical-log buffer is flushed to disk and the latch on the buffer is
released. This logical-log buffer is now available for reuse.

After a Transaction Is Prepared or Terminated in a Database with Unbuffered
Logging

If a transaction is prepared or terminated in a database with unbuffered log
ging, the logical-log buffer is immediately flushed. This might cause a waste
of some disk space. Typically, many logical-log records are stored on a single
page. But because the logical-log buffer is flushed in whole pages, even if
only one transaction record is stored on the page, the whole page is flushed.
In the worst case, a single COMMIT logical-log record (COMMIT WORK) could
occupy a page on disk, and all remaining space on the page would be unused.

Note, however, that the cost in disk space of using unbuffered logging is
minor compared to the benefits of insured data consistency.

The following log records cause flushing of the logical-log buffers in a data
base with unbuffered logging:

• COMMIT

• PREPARE

• XPREPARE

• ENDTRANS

See the SET LOG statement in the Informix Guide to SQL: Syntax for a compar
ison of buffered versus unbuffered logging.

OnLine Shared Memory 14-45

How O nline Achieves Data Consistency

When a Session That Uses Nonlogging Databases or Unbuffered Logging
Terminates

Even for nonlogging databases, Online does log certain activities that alter
the database schema, such as the creation of tables or extents. When Online
terminates sessions that use unbuffered logging or nonlogging databases, the
logical-log buffer is flushed to make sure that any logging activity is
recorded.

When a Checkpoint Occurs
See "OnLine Checkpoints" on page 14-47 for a detailed description of the
events that occur during a checkpoint.

When a Page Is Modified That Does Not Require a Before-Image in the Physical-
Log File

When a page is modified that does not require a before-image in the physical
log, the logical-log buffer must be flushed before that page is flushed to disk.

How OnLine Achieves Data Consistency
OnLine uses the following three procedures to ensure that the data that is
destined for disk is actually recorded intact on disk:

• Critical sections
• Checkpoints
• Timestamps

These procedures ensure that multiple, logically related writes are recorded
as a unit, that data in shared memory is periodically made consistent with
data on disk, and that a buffer page that is written to disk is actually written
in entirety.

Critical Sections
A critical section is a section of OnLine code that makes a set of disk modifica
tions that must be performed as a single unit; either all of the modifications
must occur or none can occur.

An OnLine thread that is in a critical section is holding shared-memory
resources. Within the space of the critical section, it is impossible for OnLine
to determine which shared-memory resources should be released and which

14-46 OnLine Shared Memory

How OnLine Achieves Data Consistency

changes should be undone to return all data to a consistent point. Therefore,
if a virtual processor is terminated while a thread is in a critical section,
OnLine takes the two following steps to ensure that all data is returned to the
last known point of consistency:

• OnLine aborts immediately.

• OnLine initiates fast recovery the next time it is initialized.

Fast recovery is the procedure OnLine uses to quickly restore the physical
and logical consistency of data, up to and including the last record in the log
ical log. See Chapter 22, "What Is Fast Recovery?," for a description of fast
recovery.

OnLine Checkpoints
The term checkpoint refers to the point in OnLine operation when the pages
on disk are synchronized with the pages in the shared-memory buffer pool.
When a checkpoint completes, all physical operations are complete, the
MLRU queue is empty, and OnLine is said to be physically consistent.

Five Events Initiate a Checkpoint
Any user thread can initiate a check to determine if a checkpoint is needed.
A checkpoint is initiated under any one of five conditions:

• The checkpoint interval, specified by the configuration parameter
CKPTINTVL, has elapsed and one or more modifications have occurred
since the last checkpoint.

• The physical log on disk becomes 75 percent full.
• OnLine detects that the next logical-log file to become current contains

the most-recent checkpoint record.
• The OnLine administrator initiates a checkpoint from the ON-Monitor,

Force-Ckpt menu or from the command line using onmode -c.

• Certain administrative tasks, such as adding a chunk or a dbspace, take
place.

One reason an administrator might initiate a checkpoint would be to force a
new checkpoint record in the logical log. Forcing a checkpoint would be a
step in freeing a logical-log file with status U -B -L .

The following section outlines the main events that occur once a user thread
raises the checkpoint-requested flag.

OnLine Shared Memory 14-47

How O nline Achieves Data Consistency

Main Events During a Checkpoint
1. Online prevents user threads from entering critical sections.
2. Page-cleaner thread flushes the physical-log buffer.
3. Page-cleaner threads flush modified pages in the buffer pool to disk.

Flushing is performed as a chunk write.
4. Page-cleaner thread writes checkpoint record to logical-log buffer.
5. Physical log on disk is logically emptied (current entries can be

overwritten).
6. Logical-log buffer is flushed to current logical-log file on disk.
7. The main_loop() thread updates configuration and archive information

to reserved pages.

User Threads Cannot Enter a Critical Section
Once the checkpoint requested flag is set, OnLine user threads are prevented
from entering portions of code that are considered critical sections. User
threads that are within critical sections of code are permitted to continue pro
cessing to the end of the critical sections.

Page-Cleaner Thread Flushes the Physical-Log Buffer
After all threads have exited from critical sections, the page-cleaner thread
resets the shared-memory pointer from the current physical-log buffer to the
other buffer and flushes the buffer. After the buffer is flushed, the page-
cleaner thread updates the timestamp that indicates the most-recent point at
which the physical-log buffer was flushed.

Page-Cleaner Threads Flush Modified Pages in the Buffer Pool
Next, the page cleaners flush all modified pages in the shared-memory buffer
pool. This flushing is performed as a chunk write.

Page-Cleaner Thread Writes Checkpoint Record
After the modified pages have been written to disk, the page-cleaner thread
writes a checkpoint-complete record in the logical-log buffer.

14-48 OnLine Shared Memory

How OnLine Achieves Data Consistency

Physical Log Is Logically Emptied
After the checkpoint-complete record is written to disk, the physical log is
logically emptied, meaning that current entries in the physical log can be
overwritten.

Logical-Log Buffer Is Flushed to the Logical-Log File on Disk
Next, the logical-log buffer is flushed to the logical-log file on disk.

The main_loop Thread Updates Reserved Pages
The main_loop() thread next begins writing all configuration and archive
information to the appropriate reserved pages, regardless of whether
changes have occurred since the last checkpoint.

When dbspaces, primary chunks, or mirror chunks are added or dropped
from OnLine, the changes are recorded in descriptor tables in shared mem
ory. If changes occurred since the last checkpoint, the main_loop() thread
writes the descriptor tables from shared memory to the appropriate reserved
page in the root dbspace. Otherwise, the main_loop() thread ignores the
reserved pages that describe the dbspaces, primary chunks, and mirror
chunks. The main_loop() thread writes all checkpoint statistics to the appro
priate reserved page in the root dbspace.

Next, the main_loop thread looks for logical-log files that can be freed (status
U-L) and frees them. Last, the checkpoint-complete record is written to the
OnLine message log.

Checkpoint Is Critical to Fast Recovery
OnLine generates at least one checkpoint for each span of the logical log to
guarantee that it has a checkpoint at which to begin fast recovery.

As fast recovery begins, OnLine data is brought to physical consistency as of
the last checkpoint by restoring the contents of the physical log.

During the next stage of fast recovery, OnLine reprocesses the transactions
contained in the logical logs, beginning at the point of the last checkpoint
record and continuing through all the records contained in the subsequent
logical logs.

A fter fast recovery com pletes, the OnLine data is consistent up through the
last com pleted transaction. That is, all com m itted transactions recorded in
the logical logs on disk are retained; all incom plete transactions (transactions
w ith no COMMIT WORK entry in the logical logs on disk) are rolled back.

OnLine Shared Memory 14-49

How O nline Achieves Data Consistency

Checkpoint Activity During an Archive
Checkpoints that occur during an on-line archive might require slightly more
time to complete. The reason is that the archiving procedure forces pages to
remain in the physical log until the onarchive process or the ontape process
(depending on which one performs the archive) has had a chance to write the
before-image pages to the archive tape. This must be done to ensure that the
archive has all timestamped pages needed to complete the archive. See the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide for information
on the sequence of events that occur during an archive.

OnLine Timestamps
O nLine uses a timestamp to identify a time when an event occurred relative
to other events of the same kind. The timestamp is not a literal time that refers
to a specific hour, minute, or second. It is a 4-byte integer that is assigned
sequentially. In general, when two timestamps are compared, the one with
the lower value is determined to be the older.

Timestamps on Disk Pages
Each disk page has one timestamp in the page header and a second times
tamp in the last 4 bytes on the page. The page-header and page-ending times
tamps are synchronized after each write, so they should be identical when the
page is read from disk. Each read compares the timestamps as a test for data
consistency. If the test fails, an error is returned to the O nLine user thread,
indicating either that the disk page was not fully written to disk, or that the
page has been partially overwritten on disk or in shared memory. See "Struc
ture and Storage of a Dbspace Page" on page 40-30 for a description of the
content of a dbspace page.

Timestamps on Blob Pages
In addition to the page-header and page-ending timestamp pair, each disk
page that contains a blob also contains one member of a second pair of times
tamps. This second pair of timestamps is referred to as the blob timestamp
pair. The blob timestamp that appears on the disk page where the blob is
stored is paired with a timestamp that is stored with the forward pointer to
this blob segment, either in the data row (with the blob descriptor) or with
the previous segment of blob data. See "Blobspace Structure and Storage" on
page 40-54 for more information on timestamps on blob pages.

14-50 OnLine Shared Memory

How OnLine Achieves Data Consistency

A blob timestamp pair is updated whenever a blob column is updated. When
a blob in a data row is updated, the new blob is stored on disk, and the for
ward pointer stored with the blob descriptor is revised to point to the new
location. The blob timestamp in the data row is updated and synchronized
with the blob timestamp on the disk page of the new blob.

Blob Timestamps with Dirty Read and Committed Read Isolation Levels
Because retrieving a blob can involve large amounts of data, it might be
impossible to retrieve the blob data simultaneously with the rest of the row
data. Coordination is needed for blob reads at the Dirty Read or Committed
Read level of isolation. Therefore, each read compares the two members of
the blob timestamp pair as a test for logical consistency of data. If the two
timestamps in the pair differ, this inconsistency is reported as a part of con
sistency checking. The error indicates either that the pages have been cor
rupted or that the blob forward pointer read by the O nLine user thread is no
longer valid.

To understand how a forward pointer stored with a blob descriptor, or with
the previous segment of blob data, might become invalid, consider the fol
lowing examples.

Dirty Read
A program using Dirty Read isolation is able to read rows that have been
deleted provided the deletion has not yet been committed. Assume that one
O nLine user thread is deleting a blob from a data row. During the delete pro
cess, another O nLine user thread operating with a Dirty Read isolation level
reads the same row, searching for the blob-descriptor information. In the
meantime, the first transaction completes, the blob is deleted, the space is
freed, and a third thread starts to write new blob data in the newly freed
space where the first blob was stored. Eventually, when the second O nLine
user thread starts to read the blob data at the location where the first blob was
stored, the thread compares the timestamp from the blob descriptor with the
timestamp that precedes the blob data. The timestamps do not match. The
blob timestamp on the blobpage is greater than the timestamp in the forward
pointer, indicating to the user thread that the forward pointer information is
obsolete.

Committed Read
If a program is using Committed Read isolation, the problem just described
cannot occur since the database server does not see a row that has been
marked for deletion. However, under Committed Read, no lock is placed on

OnLine Shared Memory 14-51

Writing Data to a Blobspace

an undeleted row when it is read. BYTE or TEXT data is read in a second step,
after the row has been fetched. During this lengthy step, it is possible for
another program to delete the row, commit the deletion, and for the space on
the disk page to be reused. If the space has been reused in the interim, the
blob timestamp is greater than the timestamp in the forward pointer. In this
case, the comparison indicates the obsolete pointer information and the
inconsistency is reported.

Writing Data to a Blobspace
Blob data that is stored in a dbspace is written to disk pages in the same way
as any other data type is written. Blob data that is in a blobspace (BYTE and
TEXT data types) is written to blobspace pages according to a procedure that
differs greatly from the I/O that is performed when data is written to a
shared-memory buffer and is then flushed to disk. See "Blobspace Structure
and Storage" on page 40-54 for a description of blobspaces.

An Online write operation to a blobspace differs from a write to a dbspace
in several ways.

Blobpages Do Not Pass Through Shared Memory
Blobspace blobpages store the large amounts of data that have BYTE and
TEXT data types. Online does not create or access blobpages by way of the
shared-memory buffer pool. Blobspace blobpages are not written to either
the logical or physical logs.

The reason why blobspace data is not written to shared memory or to the
Online logs is because the data is potentially very large. If blobspace data
passed through the shared-memory pool, it would dilute the effectiveness of
the pool by driving out index pages and data pages. In addition, the many
kilobytes of data per blobspace blob would overwhelm the space allocated
for the logical log and the physical log.

Instead, blobpage data is written directly to disk when it is created.
Blobpages stored on magnetic media are written to archive and logical-log
tapes, but not in the same method as dbspace pages. Blobpages stored on
optical media are not written to archive and logical-log tapes due to the reli
ability of optical media. See "Blobspace Logging" on page 18-20 for a descrip
tion of how blobspaces are logged.

14-52 Online Shared Memory

Writing Data to a Blobspace

Blobs Are Created Before the Data Row Is Inserted
At the time that the blob data is written to disk, the row itself might not exist
yet. During an insert, for example, the blob is transferred before the rest of the
row data. After the blob is stored, the data row is created with a 56-byte
descriptor that points to the location of the blob. See "Blob Storage and the
Blob Descriptor" on page 40-56 a description of how blobs are stored.

Blobpage Buffers Are Created for the Duration of the Write
To receive blob data from the application process, Online establishes an open
blob for the specific table and row. As part of establishing an open blob,
Online creates a set of blobspace buffers. The set is always composed of two
buffers, one buffer for reading and one buffer for writing, each the size of one
blobspace blobpage. Each user has only one set of blob buffers and, therefore,
can access only one blob at a time.

Blob data is transferred from the client application process to Online in
1-kilobyte segments. Online begins filling the buffers with the 1-kilobyte
pieces and attempts to buffer two blobpages at a time. Online buffers two
blobpages so it can determine when to add a forwarding pointer from one
page to the next. When it fills the first buffer and discovers that there is more
data to transfer, it adds a forward-pointer to the next page before writing the
page to disk. When there is no more data to transfer, Online writes the last
page to disk without a forward pointer.

When the Online thread begins writing the first blobspace blobpage buffer
to disk, it attempts to perform the I/O based on the user-defined blobpage
size. If, for example, the blobpage size is 32 kilobytes, Online attempts to
read or write blob data in 32,768-byte increments. If the underlying hardware
(such as the disk controller) cannot transfer this amount of data in a single
operation, the UNIX kernel loops internally (in kernel mode) until the transfer
is complete.

The blobspace buffers remain until the Online thread that opened the blob is
finished. When the blob has been written to disk, Online deallocates the
blobspace buffers. Figure 14-8 on page 14-54 illustrates the process of creat
ing a blobspace blob.

Online Shared Memory 14-53

Writing Data to a Blobspace

W riting Data to a B lo b sp a ce :

1. Blobspace data flows through the client-server connection to
temporary buffers in the OnLine shared-memory space, and is
written directly to disk. Blobspace blobpages are allocated and
tracked using the free-map page. Links connecting the
blobpages and pointers to the next blob segments are created
as needed.

2. A record of the operation (insert, update, or delete) is written
to the logical-log buffer if the database uses logging.

Figure 14-8 Blobspace blobs

Data is written to a blobspace without passing through regular shared-
memory buffers.

14-54 OnLine Shared Memory

Managing OnLine
Shared Memory
Chapter Overview 3

Setting Shared-Memory Configuration Parameters 3
UNIX Kernel Configuration Parameters 3
OnLine Shared-Memory Configuration Parameters 6

Setting Configuration Parameters for the Resident
Portion of Shared Memory Using
ON-Monitor 7

Setting Configuration Parameters for the Resident
Portion of Shared Memory Using a Text
Editor 8

Setting Configuration Parameters for the Virtual
Portion of Shared Memory Using
ON-Monitor 9

Setting Configuration Parameters for the Virtual
Portion of Shared Memory Using a Text
Editor 11

Setting Configuration Parameters for the Shared-
Memory Performance Options Using
ON-Monitor 12

Setting Configuration Parameters for the Shared-
Memory Performance Options Using a Text
Editor 13

Reinitializing Shared Memory 14

Turning on or Turning off Residency for Resident Shared
Memory 15

Turning on or Turning off Residency While OnLine is in
On-Line Mode 15

Turning on or Turning off Residency for the Future 15

Adding a Segment to the Virtual Portion of Shared Memory 16

Forcing a Checkpoint 16

15-2 Managing Online Shared Memory

Chapter Overview
This chapter tells you how to perform tasks related to managing the use of
shared memory with the INFORMIX-OnLine Dynamic Server. It assumes
you are familiar with the terms and concepts contained in Chapter 14,
"Online Shared Memory."

This chapter describes how to perform the following tasks:
• How to set the shared-memory configuration parameters

• How to reinitialize shared memory
• How to turn on or turn off residency for the resident portion of Online

shared memory
• How to add a segment to the virtual portion of shared memory
• How to force a checkpoint

Setting Shared-Memory Configuration Parameters
You must consider the following two sets of configuration parameters when
you configure Online shared memory:

• UNIX kernel parameters
• Online shared-memory configuration parameters

The following two sections describe the effects of these two sets of parame
ters in configuring Online shared memory.

UNIX Kernel Configuration Parameters
Nine UNIX configuration parameters can affect the use of shared memory by
Online. These parameters are described by function in Figure 15-1 on
page 15-4. Parameter names are not provided because names vary among
platforms and not all parameters exist on all platforms.

Managing Online Shared Memory 15-3

Setting Shared-Memory Configuration Parameters

For specific inform ation about your UNIX environm ent, refer to the m achine-
specific file, $INFORMIXDIR/release/ONLINE_6.0, that is provided w ith the
Online product.

1 The maximum shared-memory segment size, expressed in bytes or kilobytes

2 The minimum shared-memory segment size, expressed in bytes

3 The maximum number of shared-memory identifiers

4 The shared-memory lower-boundary address

5 The maximum number of attached shared-memory segments per process

6 The maximum amount of shared memory system-wide

7 The maximum number of semaphore identifiers

8 The maximum number of semaphores

9 The maximum number of semaphores per identifier

Figure 15-1 UNIX kernel parameters that can affect OnLine

1 Role of Maximum UNIX Shared-Memory Segment Size
When OnLine creates the required shared-memory segments, it attempts to
acquire as large an operating-system segment as possible. The first segment
size OnLine tries to acquire is the size of the portion that it is allocating (res
ident, virtual, or communications) rounded up to the nearest multiple of
eight kilobytes.

OnLine receives an error from the operating system if the requested segment
size is too large—that is, if the segment size is greater than the maximum size
allowed. If OnLine receives an error, it divides the requested size by two and
tries again. Attempts at acquisition continue until the largest segment size
that is a multiple of eight kilobytes can be created. Then OnLine creates as
many additional segments as it requires.

3 Role of Maximum Shared-Memory Identifiers
Shared-memory identifiers affect OnLine operation when a virtual processor
attempts to attach to shared memory. UNIX identifies each shared-memory
segment with a shared-memory identifier. For most UNIX operating systems,
virtual processors receive identifiers on a first come, first served basis, up to the
limit that is defined for the operating system as a whole. See "How Virtual
Processors Attach to Shared Memory" on page 14-11 for more information
about shared-memory identifiers.

15-4 Managing OnLine Shared Memory

Setting Shared-Memory Configuration Parameters

You might be able to calculate the maximum amount of shared memory that
the operating system can allocate by multiplying the number of shared-
memory identifiers by the maximum shared-memory segment size.

4 The Role of the Shared-Memory Lower-Boundary Address
When Online attaches shared-memory segments subsequent to the first seg
ment, it assumes that the segment can be attached contiguous with the previ
ous one—that is, that a segment can be attached at the address of the previous
segment plus the size of that segment. Your UNIX system might set a param
eter, however, that defines a lower-boundary address for attaching shared-
memory segments. If the size of a segment would cause it to cross the lower
boundary address, the segment is attached at a point beyond the end of the
previous segment, creating a gap between shared-memory segments. See
"How Virtual Processors Attach to Shared Memory" on page 14-11 for an
illustration of this problem.

5 Guideline for Total Addressable Size per Process
Check that the maximum amount of memory that can be allocated is equal to
the total addressable shared-memory size for a single operating-system pro
cess. The following equation expresses the concept another way:

Maximum amount of shared memory =
(Maximum number of attached shared-memory segments per process)
x (Maximum shared-memory segment size)

If this relationship does not hold, one of two undesirable situations could
develop:

• If the total amount of shared memory is less than the total addressable
shared-memory size, you are able to address more shared memory for the
operating system than that which is available.

• If the total amount of shared memory is greater than the total addressable
size of shared memory, you can never address some amount of shared
memory that is available. That is, space that could potentially be used as
shared memory cannot be allocated.

7 and 9 Semaphore Guidelines
Online operation requires one UNIX semaphore for each virtual processor, 1
for each user who connects to Online through shared memory (ipcshm pro
tocol), 6 for Online utilities, and 16 for other purposes.

Managing OnLine Shared Memory 15-5

Setting Shared-Memory Configuration Parameters

OnLine Shared-Memory Configuration Parameters
Shared-memory configuration parameters are divided into the following cat
egories based on their purposes:

• Parameters that affect the resident portion of shared memory

• Parameters that affect the virtual portion of shared memory

• Shared-memory parameters that affect performance

You can set shared-memory configuration parameters in the following ways:

• Using ON-Monitor
• Using a text editor

You must be root or user informix to use either method.

Regardless of which method you use, you must reinitialize shared memory
to put the changes into effect.

15-6 Managing OnLine Shared Memory

Setting Shared-Memory Configuration Parameters

Setting Configuration Parameters for the Resident Portion of Shared Memory
Using ON-Monitor

To set the configuration parameters for the resident portion of shared mem
ory using ON-Monitor, select Parameters from the main menu, and then
select the Shared-Memory option. Figure 15-2 shows the Shared-Memory
screen. The shaded entries set configuration parameters for the resident por
tion of shared memory.

Figure 15-2

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS
Server Number [0] Server Name [odyssey ol]
Server Aliases [oddsoc_oll,roddsoc_ol2,oddsoc_ ol3]
Dbspace Temp []
Deadlock Timeout [0] Secs Number of Page Cleaners [1]
Forced Residency [Y] Stack Size (Kbytes) [32]
Non Res. SegSize (Kbytes) [4000]
Physical Log Buffer Size |[32] Kbytes
Logical Log Buffer Size |[32] Kbytes
Max # of Logical Logs [14] Transaction Timeout [300]
Max # of Transactions |[20] Long TX HWM [80]
Max # of Userthreads |[20] Long TX HWM Exclusive [90]
Max # of Locks |[2000] Index Page Fill Factor [90]
Max # of Buffers |[80] Add SegSize (Kbytes) [8192]
Max # of Chunks t 10] Total Memory (Kbytes) [0]
Max # of Open Tblspaces [200]
Max # of Dbspaces [10]
Shared memory size |[546] Kbytes! Page Size [2] Kbytes

Enter a unique value to be associated with this version of INFORMIX-OnLine.

ON-Monitor Shared-Memory screen

Note: The configuration parameters SHMADD and SHMTOTAL are described with
the parameters that affect the resident portion o f shared memory but they affect both
the resident and virtual portions o f shared memory.

Figure 15-3 shows only the Shared-Memory screen entries that affect the con
figuration of the resident portion of shared memory. For each entry, it shows
within brackets ([]), the name of the associated parameter in the ONCONFIG
file.

Managing Online Shared Memory 15-7

Setting Shared-Memory Configuration Parameters

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS
Server Number [SERVER_NUM]

Number of Page Cleaners[CLEANERS]
Forced Residency [Y]

Physical Log Buffer Size [PHYSBUFF] Kbytes
Logical Log Buffer Size [LOGBUFF] Kbytes
Max # of Logical Logs [LOGFILES]
Max # of Transactions [TRANSACTIONS]
Max # of Userthreads [USERTHREADS]
Max # of Locks [LOCKS]
Max # of Buffers [BUFFERS] Add SegSize (Kbytes) [SHMADD]
Max # of Chunks [CHUNKS] Total Memory (Kbytes) [SHMTOTAL]
Max # of Open Tblspaces [TBLSPACES]
Max # of Dbspaces DBSPACES]
Shared memory size [546] Kbytes Page Size [2] Kbytes

Enter a unique value to be associated with this version of INFORMIX-OnLine.

Figure 15-3 Partial view of ON-Monitor Shared-Memory screen showing the ONCONFIG
parameter for each of the shared-memory entries

See Figure 15-4 on page 15-9 for more information on the ONCONFIG param
eters that are associated with the resident portion of shared memory.

Setting Configuration Parameters for the Resident Portion of Shared Memory
Using a Text Editor

You can use a text editor to set shared-memory configuration parameters at
any time. To set a shared-memory configuration parameter, use the editor to
locate the parameter in the ONCONFIG file, enter the new value or values, and
rewrite the file to disk.

15-8 Managing Online Shared Memory

Setting Shared-Memory Configuration Parameters

Figure 15-4 lists the parameters in the ONCONFIG file that specify the
configuration of the buffer pool and the internal tables in the resident portion
of shared memory. The page references in the third column refer to summary
descriptions of the parameters in Chapter 35, "OnLine Configuration
Parameters."

Parameter Purpose Page
BUFFERS Specifies the maximum number of shared-memory

buffers
page 35-8

CHUNKS Specifies the maximum number of chunks page 35-9
CLEANERS Specifies the number of page-cleaner threads that

OnLine is to run
page 35-11

DBSPACES Specifies the maximum number of dbspaces page 35-13
LOCKS Specifies the maximum number of locks for database

objects—for example, rows, key values, pages, and tables
page 35-19

LOGBUFF Specifies the size of the logical-log buffers page 35-20
LOGFILES Specifies the number of logical-log files OnLine is to

create during disk initialization
page 35-20

PHYSBUFF Specifies the size of the physical-log buffers page 35-32
RESIDENT Specifies residency for the resident portion of OnLine

shared memory
page 35-35

SERVERNUM Specifies a unique identification number for OnLine on
the local host computer

page 35-37

SHMADD Specifies the size of dynamically-added shared-memory
segments

page 35-37

SHMTOTAL Specifies the total amount of memory to be used by
OnLine

page 35-38

TBLSPACES Specifies the maximum number of active tblspaces page 35-44
TRANSACTIONS Specifies the maximum number of concurrent

transactions that OnLine can handle
page 35-45

USERTHREADS Specifies the maximum number of user threads that
OnLine can run

page 35-46

Figure 15-4 ONCONFIG parameters for configuring the resident portion of shared memory

Setting Configuration Parameters for the Virtual Portion of Shared Memory
Using ON-Monitor

To set the configuration parameters for the virtual portion of shared memory
using ON-Monitor, select Parameters from the main menu and then select the
Shared-Memory option. Figure 15-8 shows the Shared-Memory screen. The
shaded entries set configuration parameters for the virtual portion of shared
memory.

Managing OnLine Shared Memory 15-9

Setting Shared-Memory Configuration Parameters

Figure 15-5

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS
Server Number [2] Server Name [lashley_ol]
Server Aliases [cole,davison,, Stackhouse 1
Dbspace Temp []
Deadlock Timeout [60] Secs Number of Page Cleaners [1]
Forced Residency [N] Stack Size (Kbytes) [32]
Non Res. SegSize (Kbytes) [4000]
Physical Log Buffer Size [32] Kbytes
Logical Log Buffer Size [32] Kbytes
Max # of Logical Logs [14] Transaction Timeout [300]
Max # of Transactions [20] Long TX HWM [80]
Max # of Userthreads [20] Long TX HWM Exclusive [90]
Max # of Locks [2000] Index Page Fill Factor [90]
Max # of Buffers [80]
Max # of Chunks [10]
Max # of Open Tblspaces [200]
Max # of Dbspaces [10]
Shared memory size [528] Kbytes Page Size [2] Kbytes

Enter a unique value to be associated with this version of INFORMIX-OnLine.

__________________________________ J
The ON-Monitor Shared Memory screen; shaded entries set virtual shared-memory
configuration parameters

Figure 15-6 shows only the Shared Memory screen entries that affect the con
figuration of the virtual portion of shared memory. For each entry, it shows,
within brackets ([]), the name of the associated parameter in the ONCONFIG
file.

15-10 Managing Online Shared Memory

Setting Shared-Memory Configuration Parameters

Figure 15-6

SHARED MEMORY: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

SHARED MEMORY PARAMETERS

Stack Size (Kbytes) [STACKSIZE]
Non Res. SegSize (Kbytes) [SHMVIRTSIZE]

Partial view of the ON-Monitor Shared Memory screen showing the ONCONFIG
parameters for each of the virtual shared-memory entries

See Figure 15-7 on page 15-11 for more information on the ONCONFIG
parameters that affect the configuration of the virtual portion of shared
memory.

Setting Configuration Parameters for the Virtual Portion of Shared Memory
Using a Text Editor

You can use a text editor at any time to set the virtual shared memory config
uration parameters. To set the virtual shared memory configuration parame
ters using a text editor, use the editor to locate the parameter in the file, enter
the new value or values, and rewrite the file to disk.

Figure 15-7 lists the ONCONFIG parameters that you use to configure the vir
tual portion of shared memory

Parameter Purpose Page
SHMVIRTSIZE Specifies the initial size of the virtual portion of shared

memory
page 35-39

STACKSIZE Specifies the stack size for OnLine user threads page 35-40

Figure 15-7 ONCONFIG parameters for configuring the virtual portion of shared memory

Managing Online Shared Memory 15-11

Setting Shared-Memory Configuration Parameters

Setting Configuration Parameters for the Shared-Memory Performance Options
Using ON-Monitor

To set the configuration parameters for the shared-memory performance
options using ON-Monitor, select Parameters from the main menu and then
select the perFormance option. Figure 15-8 shows the perFormance screen.
The shaded entries set the configuration parameters for the shared-memory
performance options.

Figure 15-8

PERFORMANCE: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

PERFORMANCE TUNING PARAMETERS
CPU VPs [3] Single CPU VP [N]
AIO VPs [1] Mutex Wait Lists [N]

Use OS Time [N]
Protocol Threads Users VP-class Off-Line Recovery Threads t 10]

ipcshm [N] [] |[] [] On-Line Recovery Threads [1]
tlitcp [N] [] |[] [] Num of LRUS queues [8]
tlispx [N] [] [] [] LRU Max Dirty [60]
soctcp [N] [] [] [] LRU Min Dirty [50]

Checkpoint Interval [300]
Multiprocessor Machine [N] Num of Read Ahead Pages [50]

Disable Priority Aging [N] Read Ahead Threshold [20]
Num Procs to Affinity [0]
Proc num to start with [0]

Enter the number of CPU virtual processors.

ON-Monitor perFormance screen

15-12 Managing Online Shared Memory

Setting Shared-Memory Configuration Parameters

Figure 15-9 shows only the perFormance screen entries for setting the shared-
memory performance options. For each entry, it shows, within brackets ([]),
the name of the associated parameter in the ONCONFIG file.

Figure 15-9

PERFORMANCE: Make desired changes and press ESC to record changes.
Press Interrupt to abort changes. Press F2 or CTRL-F for field-level help.

PERFORMANCE TUNING PARAMETERS

Num of LRUS queues [LRUS]
LRU Max Dirty [LRU_MAX_DIRTY]
LRU Min Dirty [LRU_MIN_DIRTY]
Checkpoint Interval [CKPTINTVL]
Num of Read Ahead Pages [RA_PAGES]
Read Ahead Threshold [RA_THRESHOLD]

Partial view of ON-Monitor perFormance screen showing the ONCONFIG parame
ters for the shared-memory performance options

See Figure 15-10 on page 15-14 for more information on the ONCONFIG
parameters that set shared-memory performance options.

Setting Configuration Parameters for the Shared-Memory Performance Options
Using a Text Editor

You can use a text editor program to set ONCONFIG parameters at any time.
To change one of the configuration parameters that set shared-memory per
formance options, use the text editor to locate the parameter in the file, enter
the new value or values, and rewrite the file to disk.

Managing Online Shared Memory 15-13

Reinitializing Shared Memory

Figure 15-10 lists theONCONFIG parameters that set shared-memory perfor
mance options. The page references in the third column refer to descriptions
of the parameters in Chapter 35, "OnLine Configuration Parameters."

Parameter Purpose Page
CKPTINTVL Specifies the maximum number of seconds that can elapse

before OnLine checks to see if a checkpoint is needed
page 35-10

LRU_MAX_DIRTY Specifies the percentage of modified pages in the LRU
queues that flags page cleaning to start

page 35-22

LRU_MIN_DIRTY Specifies the percentage of modified pages in the LRU
queues that flags page cleaning to stop

page 35-23

LRUS Specifies the number of LRU queues for the shared-
memory buffer pool

page 35-22

RA_PAGES Specifies the number of disk pages that OnLine should
attempt to read ahead when doing sequential scans of
data or index records

page 35-34

RA_THRESHOLD Specifies the number of memory pages which, after they
are read, cause OnLine to read-ahead on disk

page 35-34

Figure 15-10 ONCONFIG parameters for setting shared-memory performance options

Reinitializing Shared Memory
OnLine re-initializes shared memory when you take OnLine from off-line
mode to quiescent mode or when you take it from off-line mode directly to
on-line mode. So, to reinitialize shared memory, OnLine must first be brought
off line. See Chapter 8, "Managing Modes," for information on how to take
OnLine from on-line mode to off-line.

After OnLine is off-line, you need to bring it to quiescent mode or on-line
mode to reinitialize shared memory. See "From Off-Line to Quiescent" on
page 8-3 and "From Off-Line to On-Line" on page 8-4.

15-14 Managing OnLine Shared Memory

Turning on or Turning off Residency for Resident Shared Memory

Turning on or Turning off Residency for Resident
Shared Memory

You can turn on or turn off residency for the resident portion of shared mem
ory in either of the following two ways.

• You can use the onmode utility to immediately reverse the state of
shared-memory residency while Online is in on-line mode.

• You can change the RESIDENT parameter in the ONCONFIG file to turn
shared-memory residency on or off for the next time you initialize
Online shared memory.

See "The Resident Portion of OnLine Shared Memory" on page 14-15 for a
description of the resident portion of shared memory.

Turning on or Turning off Residency While OnLine is in
On-Line Mode

You can turn on or turn off residency while OnLine is in on-line mode by
using the onmode utility. You must be root or user informix to do this.

To immediately turn on residency for the resident portion of shared memory,
execute the following command:

% onmode - r

To immediately turn off residency for the resident portion of shared memory,
execute the following command:

% onmode -n

This change does not change the value of the RESIDENT parameter in the
ONCONFIG file. That is, this change is not permanent and residency reverts
to the state specified by the RESIDENT parameter the next time that you ini
tialize shared memory.

Turning on or Turning off Residency for the Future
You can turn on or turn off residency for the next time OnLine shared mem
ory is initialized by changing the value of the RESIDENT parameter in the
ONCONFIG file. You can change the RESIDENT parameter by using either
ON-Monitor or a text editor. The following sections describe how to change
the RESIDENT parameter using both of these methods.

Managing OnLine Shared Memory 15-15

Adding a Segment to the Virtual Portion of Shared Memory

Adding a Segment to the Virtual Portion of Shared
Memory

The -a option of the onmode utility allows you to add a segment of specified
size to virtual shared memory.

You do not normally need to add segments to virtual shared memory because
Online automatically adds segments as needed.

The option to add a segment with the onmode utility is useful if the number
of operating-system segments is limited, and the initial segment size is so
low, relative to the amount that is required, that the operating system limit of
shared-memory segments is nearly exceeded.

Forcing a Checkpoint
Occasionally Online cannot free a logical-log file even though it is backed up
to tape and all transactions within it are closed. This situation arises when the
logical-log file contains the most-recent checkpoint in the logical logs. This
log file must maintain a backed-up status until a new checkpoint record is
written to the current logical-log file. Online processing stops until the new
checkpoint record is written to the current logical-log file. See "What Hap
pens If the Next Logical-Log File Is Not Free?" on page 18-11 for more infor
mation on this condition.

As user informix, you can force a checkpoint using ON-Monitor by selecting
the Force-Ckpt option from the main menu.

You can also force a checkpoint by executing the following command from
the command line:

% onmode - c

15-16 M a n a gin g O n lin e Shared M em ory

Logging and Log Administration

§MpP
Chapter

16
What Is Logging?
Chapter Overview 3

Which OnLine Processes Require Logging? 3

What OnLine Activity Is Logged? 5
Activity That Is Always Logged 6
Activity Logged for Databases with Transaction

Logging 6
Are Blobs Logged? 7

What Is Transaction Logging? 7
The Database Logging Status 8

Unbuffered Transaction Logging 8
Buffered Transaction Logging 9
ANSI-Compliant Transaction Logging 9
If Some Databases Use Buffered and Some Use

Unbuffered Logging 9
When to Use or not Use Transaction Logging 9
When to Buffer or not Buffer Transaction Logging 10
Who Can Set or Change Logging Status 10

Chapter Overview
This chapter describes the functionality of INFORMIX-OnLine Dynamic
Server logging. First logging is described with respect to OnLine functional
ity. The following questions are addressed:

• Which OnLine features require logging?
• What OnLine activity is logged?

Next, logging is described with respect to databases. You specify whether or
not a database uses transaction logging and, if it does, what log buffering
mechanism it uses. The following questions are addressed:

• What is the database logging status?
• When should transaction logging be used?
• When should buffered transaction logging be used?
• Who can set or change the database logging status?

Which OnLine Processes Require Logging?
As OnLine operates—as it processes transactions, keeps track of data storage,
ensures data consistency, and so on—it automatically generates logical-log
records for some of the actions it takes. Most of the time OnLine makes no fur
ther use of the log records. But when OnLine needs to roll back a transaction,
for example, or to execute a fast recovery after a system failure, the log
records are critical. The log records are at the heart of OnLine data-recovery
mechanisms.

OnLine stores the log records in a logical log. The logical log is made up of log
ical-log files that OnLine manages on disk until they have been safely trans
ferred off-line (backed up). The OnLine administrator keeps the off-line log
records (in the backed up logical-log files) until they are needed during a data
restore, or the administrator decides they are no longer needed for a restore.
Logical-log administration topics are explained in Chapter 18, "What Is the
Logical Log?"

What Is Logging? 16-3

Which OnLine Processes Require Logging?

The records written to the logical log are necessary for various functions that
OnLine performs to recover data and ensure data consistency. OnLine
requires logical-log records to perform the following processes:

• Fast recovery
If OnLine shuts down in an uncontrolled manner, OnLine uses the log
records to recover all transactions that occurred since the most-recent
checkpoint—when all the data in shared memory and all the data on disk
were the same (also known as physically consistent)—and to roll back any
uncommitted transactions. The log records are used in the second phase
of fast recovery when OnLine returns the entire database server to a state
of logical consistency up to the point of the most-recent logical-log record.
(See "Details of Fast Recovery" on page 22-5 for more information.)

• Transactions roll back
If a database has transaction logging turned on (see "What Is Transaction
Logging?" on page 16-7) and a transaction must be rolled back, OnLine
uses the log records to reverse the changes made on behalf of the
transaction.

• Data restoration
During a data restore, you combine the backup tapes of the logical-log
files with the most-recent OnLine archive tapes to re-create the OnLine
system up to the point of the most-recently backed up logical-log record.
After the archive tapes have been restored, OnLine essentially reimple
ments all the logged activity since the last archive using the log records.

• Deferred checking
If a transaction uses the SET CONSTRAINTS statement to set checking to
DEFERRED, constraints are not checked until the transaction is commit
ted. If a constraint error occurs while the transaction is being committed,
logical-log records from the transaction are used to roll back the
transaction.

• Cascading deletes
Cascading deletes on referential constraints use log records to ensure that
a transaction can be rolled back if a parent row is deleted and the system
crashes before the children rows are deleted.

• Distributed transactions
The logical-log records of a distributed transaction are kept on disk by
each of the OnLine database servers involved. This ensures data integrity
and consistency, even if a failure occurs on one of the OnLine database
servers performing the transaction. See "Two-Phase Commit and Logical
Log Records" on page 32-28 for more information.

16-4 W hat Is L oggin g?

What OnLine Activity Is Logged?

• High availability data replication (HDR)
High availability data replication uses logical-log records to maintain
consistent data on two different database servers so that one of the data
base servers can be used quickly as a backup database server if the other
fails. See "How Does Data Replication Work?" on page 25-8 for a more
detailed discussion of how OnLine data replication uses logical-log
records.

What OnLine Activity Is Logged?
OnLine does not generate log records for every operation because it does not
need a record of every action. OnLine only needs log records to perform the
functions listed under "Which OnLine Processes Require Logging?" on
page 16-3. Also, the space required to store a record of everything the data
base server did would quickly be overwhelming.

The logical-log records themselves are of variable length. This increases the
number of log records that can be written to a page in the logical-log buffer.
However, often the logical-log buffer is flushed before the page is full.

Two types of logged activity are possible in OnLine:

• Activity that is always logged
• Activity that is only logged for databases using transaction logging

These different types are explained in the following sections. For more infor
mation on the format of logical-log records, refer to Chapter 39, "Interpreting
Logical-Log Records."

What Is Logging? 16-5

What OnLine Activity Is Logged?

Activity That Is Always Logged
Some database operations always generate logical-log records, even if none
of the databases on the database server use transaction logging. (See "What
Is Transaction Logging?" on page 16-7.) These operations are as follows:

• SQL data definition statements for all databases:

ALTER INDEX
ALTER TABLE
CREATE DATABASE
CREATE INDEX
CREATE PROCEDURE
CREATE SCHEMA
CREATE SYNONYM
CREATE TABLE
CREATE TRIGGER
CREATE VIEW

DATABASE
DROP INDEX
DROP PROCEDURE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP VIEW
RENAME COLUMN
RENAME TABLE

• Archive events
• Checkpoint events
• Administrative changes to the OnLine configuration

This category includes changes to the number and location of chunks,
dbspaces, and blobspaces.

• Allocation of new extents to tables that are growing in size
• A change to the logging status of a database

Activity Logged for Databases with Transaction Logging
If a database uses transaction logging, all SQL data manipulation statements
(DML)—except SELECT—against that database generate one or more log
records. Those statements are as follows:

• DELETE

• INSERT

• LOAD

• SELECT INTO TEMP

• UNLOAD

• UPDATE

If these statements are rolled back, the rollback also generates log records.

16-6 What Is Logging?

What Is Transaction Logging?

Are Blobs Logged?
Blob data is potentially too voluminous to be part of a logical-log record. If
blob data were always included, the many kilobytes of data per blob could
overwhelm the space allocated for the logical log. However, not all blobs are
that large, and not every blob would overwhelm the logical log.

OnLine assumes that you have designed your databases so that smaller blobs
are stored in dbspaces, and larger blobs are stored in blobspaces. (See the
Informix Guide to SQL: Tutorial for a discussion of locating blob data). Based
on this assumption:

• OnLine includes blob data in log records for blobs stored in dbspaces.
• OnLine does not include blob data in log records for blobs stored in

blobspaces.

OnLine still needs access to the blob data for blobspace blobs to fulfill the
goals of logging, explained in "Which OnLine Processes Require Logging?"
on page 16-3. Consider the following question: How can a blobspace opera
tion be rolled back or used in fast recovery if the logical log does not contain
a copy of the data that was originally inserted? The answer is that the log
keeps a pointer to the location of the actual data. This mechanism is described
under "Blobspace Logging" on page 18-20.

What Is Transaction Logging?
A database is said to have or use transaction logging, or have transaction log
ging turned on, when SQL data manipulation statements in a database gener
ate logical-log records.

The database logging status indicates whether a database uses transaction
logging. You set the database logging status (turn on transaction logging, for
example) when you create the database. You can also change the database
status (turn off transaction logging, for example) once the database is created.
For information on changing the database logging status, refer to "Who Can
Set or Change Logging Status" on page 16-10, and to Chapter 17, "Managing
Database Logging Status."

Even if transaction logging is turned off for all databases in an OnLine data
base server, some OnLine events are always logged (those listed in "Activity
That Is Always Logged" on page 16-6).

What Is Logging? 16-7

What Is Transaction Logging?

The Database Logging Status
Every database managed by OnLine has a logging status. The logging status
indicates whether the database uses transaction logging and, if so, which log
buffering mechanism the database employs. You can find out the transaction
logging status of a database using OnLine utilities, as explained in "Monitor
ing Databases" on page 29-36. The database logging status indicates any of
the following types of logging:

• No logging
• Unbuffered transaction logging
• Buffered transaction logging
• ANSI-compliant transaction logging

The last three items in this list refer to different log buffering mechanisms. As
explained in "How OnLine Uses Shared Memory" on page 14-6, information
that OnLine manages passes through shared memory to disk. Logical-log
records are no exception. Before log records are written to the logical log,
which is on disk, they must pass through shared memory. They do this
through the logical-log buffers, explained in "Flushing the Logical-Log
Buffer" on page 14-44.

In one sense, all OnLine logging is buffered because all log records pass
through the logical-log buffer in shared memory before they are written to
the logical log on disk. However, the point at which the logical-log buffer is
flushed is different for buffered transaction logging and unbuffered transac
tion logging.

Unbuffered Transaction Logging
If transactions are made against a database that uses unbuffered logging, the
records in the logical-log buffer are guaranteed to be written to disk before
the COMMIT statement (and before the PREPARE statement for distributed
transactions) returns to the application. The records are flushed as soon as
any transaction in the buffer is committed (that is a commit record is written
to the logical-log buffer).

When the buffer is flushed only the used pages are written to disk. This
includes pages that are only partially full, however, so some space is wasted.
For this reason the logical-log files on disk fill up faster than if all the data
bases on the same OnLine database server used buffered logging.

16-8 What Is Logging?

What Is Transaction Logging?

Buffered Transaction Logging
If transactions are against a database that uses buffered logging, the records
are held (buffered) in the logical-log buffer for as long as possible; they are not
flushed from the logical-log buffer in shared memory to the logical log on
disk until one of the following situations occurs:

• The buffer is full.
• The buffer is flushed by a commit on a database with unbuffered logging.
• A checkpoint occurs.
• The connection is closed.

ANSI-Compliant Transaction Logging
The ANSI-compliant database logging status indicates that the database
owner created this database using the MODE ANSI keywords. ANSI-compli
ant databases all use unbuffered transaction logging, enforcing the ANSI
rules for transaction processing.

If Some Databases Use Buffered and Some Use Unbuffered Logging
Because all databases use the same logical log and the same three logical-log
buffers, it is possible (and probable) for transactions against databases with
different log-buffering status to be writing to the same logical-log buffer. In
that case—if there are transactions against databases with buffered logging
and transactions against databases with unbuffered logging—the buffer is
flushed either when it is full, or when transactions against the database(s)
with unbuffered logging complete.

When to Use or not Use Transaction Logging
You must use transaction logging with a database to take advantage of any
of the features listed in "Which OnLine Processes Require Logging?" on
page 16-3.

If you are satisfied with your recovery source, you can decide not to use
transaction logging for a database to reduce the amount of OnLine process
ing. For example, if you are loading many rows into a database from a recov
erable source such as tape or an ASCII file, you might not need transaction
logging, and the loading would proceed faster without it. However, if other
users are active in the database, you would not have log records of their
transactions until logging is reinitiated, which must wait for a level-0 archive.

What Is Logging? 16-9

What Is Transaction Logging?

If you are operating in a distributed environment, the logging status of the
databases must be the same (all buffered, all unbuffered, all ANSI-compliant,
or all without transaction logging). So, if one of the databases in a distributed
query uses transaction logging, the others must also.

When to Buffer or not Buffer Transaction Logging
If a database does not use logging, you do not need to consider whether buff
ered or unbuffered logging is more appropriate.

ANSI-compliant databases always use unbuffered logging and cannot have
their buffering status changed.

Unbuffered logging is the best choice for most databases because it guaran
tees that all committed transactions can be recovered. In the event of a failure,
only uncommitted transactions at the time of the failure are lost. The cost of
this is that the logical-log buffer is flushed to disk more frequently and con
tains many more partially full pages, so it fills the logical log faster than buff
ered logging.

If you use buffered logging and a failure occurs, you cannot expect OnLine
to recover the transactions that were in the logical-log buffer when the failure
occurred. Thus, you could lose some committed transactions. In return for
this risk, performance during alterations is slightly improved. Buffered log
ging is best for databases that are updated frequently (when the speed of
updating is important), as long as you can re-create the updates in the event
of failure. You can tune the size of the logical-log buffer in order to find an
acceptable balance for your system between performance and the risk of los
ing transactions to system failure.

Who Can Set or Change Logging Status
The user who creates a database establishes the logging status for that data
base when it is created with the CREATE DATABASE statement. If the creator
of a database does not specify a logging status with the CREATE DATABASE
statement, the database is created without logging. See the Informix Guide to
SQL: Syntax for more information on the CREATE DATABASE statement.

Only the OnLine administrator can change the logging status. This topic is
described in Chapter 17, "Managing Database Logging Status."Ordinary end
users cannot change the database logging status. End users can switch from
unbuffered transaction logging to buffered (but not ANSI-compliant) transac
tion logging, and from buffered to unbuffered transaction logging, for the

16-10 What Is Logging?

What Is Transaction Logging?

duration of a session. The SET LOG statement performs this change within an
application. See the Informix Guide to SQL: Syntax for more information on the
SET LOG statement.

What Is Logging? 16-11

Managing
Database Logging
Status
Chapter Overview 3

About Changing Logging Status 3

Modifying Database Logging Status Using ON-Archive 5
Turning on Transaction Logging Using ON-Archive 5

Canceling a Logging Operation Using
ON-Archive 5

Ending Logging Using ON-Archive 6
Changing Buffering Status Using ON-Archive 6
Making a Database ANSI-Compliant Using

ON-Archive 6

Modifying Database Logging Status Using ontape 6
Turning on Transaction Logging Using ontape 7
Ending Logging Using ontape 7
Changing Buffering Status Using ontape 7
Making a Database ANSI-Compliant Using ontape 8

Modifying Database Logging Status Using ON-Monitor 8

Chapter Overview
This chapter provides instructions on changing the database logging status
for databases managed by INFORMIX-OnLine Dynamic Server. As an
Online administrator, you can alter the logging status of a database as
follows:

• Add transaction logging (buffered or unbuffered) to a database
• End transaction logging for a database
• Change transaction logging from buffered to unbuffered
• Change transaction logging from unbuffered to buffered
• Make a database ANSI-compliant

For information about database logging status, and discussions of when to
use transaction logging and when to buffer transaction logging, refer to
Chapter 16, "What Is Logging?"

To find out the current logging status of a database, see "Monitoring Data
bases" on page 29-36.

About Changing Logging Status
Figure 17-1 on page 17-4 shows which database logging status transitions the
OnLine administrator can perform and whether they take place immediately
or require a level-0 archive.

When you add logging (in any form) to a database that formerly did not use
transaction logging, the change is not complete until a level-0 archive is per
formed on all the dbspaces and blobspaces that contain data in the database.
You should use the same archiving tool (ON-Archive or ontape) to add log
ging and create the archive.

Managing Database Logging Status 17-3

About Changing Logging Status

Figure 17-1

You cannot make any changes to the logging status of ANSI-compliant
databases.

Converting to:

Converting
from: No logging

Unbuffered
logging

Buffered
logging AN Si-compliant

No logging

Not
applicable

Level-0 archive
(of affected
dbspaces)

Level-0 archive
(of affected
dbspaces)

Level-0 archive
(of affected
dbspaces)

Unbuffered
logging

Immediate Not applicable Immediate Immediate

Buffered
logging

Immediate Immediate Not applicable Immediate

ANSI-compliant Illegal Illegal Illegal Not applicable

Logging status transitions

Here are some general points about changing the database logging status:

• To make any change in the logging status of a database, no users can
access the database. Once you start to make the change, you have an
exclusive lock on the database, preventing other users from accessing the
database.

• A database remains locked to users until the logging mode change is com
plete. For most changes this is immediate, but if you add logging to a
database that formerly did not have logging, the change is not complete
until the next level-0 archive of all the dbspaces containing data for the
database.

• If you are using ON-Archive, OnLine must be in on-line mode to make the
changes. For ontape or ON-Monitor, OnLine can be in either on-line or
quiescent mode.

• If a failure occurs while you are making a logging-mode change, you
should check the flags for the database (see "Monitoring Databases" on
page 29-36) once the database server (or dbspace) is restored.

• Once you choose either buffered or unbuffered logging, it is possible to
change from either logging status to the other, within an application using
the SQL statement SET LOG. This change lasts for the duration of the
session.

17-4 Managing Database Logging Status

Modifying Database Logging Status Using ON-Archive

Modifying Database Logging Status Using ON-Archive
The command you use to modify database logging status with ON-Archive is
MODIFY/DBLOGGING. Reference information appears in the INFORMIX-
OnLine Dynamic Server Archive and Backup Guide.

Turning on Transaction Logging Using ON-Archive
Before making this change, read "About Changing Logging Status" on
page 17-3.

To add buffered logging to a database called storesö using ON-Archive, use
the following command:

Onarchive> MODIFY/DBLOGGING=stores6/MODE=BUFFERED
You can also use the same type of request to add unbuffered logging by using
UNBUFFERED as a parameter to the MODE qualifier.

Canceling a Logging Operation Using ON-Archive
After you turn on logging for a database using ON-Archive, you can turn log
ging off again (and unlock the database) before the next level-0 archive of all
the dbspaces in the database.

To determine if a database is locked because logging has been turned on but
the database has not yet been archived, issue the following query to the sys-
master database:

SELECT name FROM sysdatabases WHERE flags > 255

To turn logging off for a database called storesö using ON-Archive (after it has
been turned on, but before the change is completed by a level-0 archive), use
the following command:

Onarchive> MODIFY/DBLOGGING=stores 6/MODE=CANCELCHANGE
The change takes place immediately; the database is unlocked. You can can
cel any number of commands to add transaction logging to a database with
the same command.

Managing Database Logging Status 17-5

Modifying Database Logging Status Using ontape

Ending Logging Using ON-Archive
Before making this change, read "About Changing Logging Status" on
page 17-3.

To end logging for a database called storesö using ON-Archive, use the fol
lowing command:

Onarchive> MODIFY/DBLOGGING=stores6/MODE=NOLOGGING

Changing Buffering Status Using ON-Archive
Before making this change, read "About Changing Logging Status" on
page 17-3.

To change the buffering status for a database called stores6 using transaction
logging using ON-Archive, use one of the following commands, depending
on whether you wish the database to have buffered logging or not:

Onarchive> M0DIFY/DBL0GGING=stores6/M0DE=BUFFERED
Onarchive> MODIFY/DBLOGGING=stores6/MODE=UNBUFFERED

Making a Database ANSI-Compliant Using ON-Archive
Before making this change, read "About Changing Logging Status" on
page 17-3. Remember that once you change the logging status to ANSI-
compliant, you cannot easily change it again. You have to unload and reload
the data.

To make a database called storesö ANSI-compliant using ON-Archive, use the
following command:

Onarchive> M0DIFY/DBL0GGING=stores6/M0DE=ANSI

Modifying Database Logging Status Using ontape
You can use ontape to change the logging status of a database, unless you are
adding logging to a database and generally use ON-Archive to create
archives. In that situation, you should use ON-Archive to turn on transaction
logging. See "Turning on Transaction Logging Using ON-Archive" on
page 17-5.

Reference information for ontape is in "Change Database Logging Status" on
page 37-73.

17-6 Managing Database Logging Status

Modifying Database Logging Status Using ontape

Turning on Transaction Logging Using ontape
Before making this change, read "About Changing Logging Status" on
page 17-3.

You add logging to a database using ontape at the same time you create a
level-0 archive.

For example, to add buffered logging to a database called stores6 using
ontape, execute the following command:

% ontape -s -B stores6
To add unbuffered logging to a database called stores6 using ontape, execute
the following command:

% ontape -s -U stores6
In addition to turning on transaction logging, these commands create full-
system archives. When ontape prompts you for an archive level, you should
specify a level-0 archive.

Note that with ontape you must perform a level-0 archive of all dbspaces.
The ON-Archive utility permits greater archiving granularity, so you can
restrict the archive to only those dbspaces which contain the database data.

Ending Logging Using ontape
Before making this change, read "About Changing Logging Status" on
page 17-3.

To end logging for a database called storesö using ontape, execute the follow
ing command:

% ontape -N stores6

Changing Buffering Status Using ontape
Before making this change, read "About Changing Logging Status" on
page 17-3.

To change the buffering status from buffered to unbuffered logging on a data
base called stores6 using ontape without creating an archive, execute the fol
lowing command:

% ontape -U storesö

Managing Database Logging Status 17-7

Modifying Database Logging Status Using ON-Monitor

To change the buffering status from unbuffered to buffered logging on a data
base called storesö using ontape without creating an archive, execute the fol
lowing command:

% ontape -B stores6

Making a Database ANSI-Compliant Using ontape
Before making this change, read "About Changing Logging Status" on
page 17-3. Remember that once you change the logging status to ANSI-
compliant, you cannot easily change it again. You have to unload and reload
the data.

To make databases ANSI-compliant, you use different commands for data
bases that already use transaction logging and for those that do not use trans
action logging.

To make a database called storesö, which already uses transaction logging
(either unbuffered or buffered), into an ANSI-compliant database using
ontape, execute the following command:

% ontape -A storesö
To make a database called storesö, which does not already use transaction
logging, into an ANSI-compliant database using ontape, execute the follow
ing command:

% ontape -s -A storesö
In addition to making a database ANSI-compliant, this command also creates
an archive at the same time. You should specify a level-0 archive when
prompted for a level.

Modifying Database Logging Status Using ON-Monitor
Before you make any changes, be sure to read "About Changing Logging Sta
tus" on page 17-3.

You can use ON-Monitor to make any logging status changes that can occur
immediately. If you want to add logging to (or make ANSI-compliant) a data
base that does not use logging, you cannot use ON-Monitor; you must use
ON-Archive or ontape to add logging.

To change the logging status for a database from within ON-Monitor, select
the Logical-Logs menu, Databases option.

17-8 Managing Database Logging Status

Modifying Database Logging Status Using ON-Monitor

Use the Arrow keys to select the database from which you want to remove
logging. Press CTRL-B or F3.

When the logging options screen appears, ON-Monitor displays the current
log status of the database. Use the Arrow keys to select the status you want.
Press CTRL-B or F3.

Managing Database Logging Status 17-9

What Is the Logical

Chapter Overview 3

What Is the Logical Log? 3

What Is a Logical-Log File? 4

How Big Should the Logical Log Be? 5
Performance Considerations 5
Long-Transaction Consideration 6
Logical-Log Size Guidelines 6
Determining the Size of the Logical Log 7

What Should Be the Size and Number of Logical-Log
Files? 7

Where Should Logical-Log Files Be Located? 8

How Are Logical-Log Files Identified? 8

What Are the Status Flags of Logical-Log Files? 9

Why Do Logical-Log Files Need to Be Backed Up? 10

When Are Logical-Log Files Freed? 11
When Does OnLine Attempt to Free a Log File? 11
What Happens If the Next Logical-Log File Is Not

Free? 11
Avoiding Long Transactions 12

Factors That Influence the Rate at Which Logical-
Log Files Fill 13

Factors That Prevent Closure of Transactions 14
Setting High-Water Marks 14

S J I I I I J

I i
BnipiMNMp IlllilK

mmmmmmmmi
Wllmilll
i »■■III—

f c

What Are the Logical-Log Administration Tasks Required for
Blobspaces? 15

Switching Logical-Log Files to Activate Blobspaces 15
Switching Logical-Log Files to Activate New Blobspace Chunks 16
Backing Up Logical-Log Files to Free Blobpages 16

Why Do You Have to Back-Up Logical-Log Files to Free
Blobpages? 16

What Is the Logging Process? 18
Dbspace Logging 18

Read Page into Shared-Memory Buffer Pool 19
Copy the Page Buffer into the Physical-Log Buffer 19
Read Data into Buffer; Create Logical-Log Record 19
Flush Physical Log Buffer to the Physical Log 19
Flush Page Buffer 20
Flush Logical-Log Buffer 20

Blobspace Logging 20

18-2 What Is the Logical Log?

Chapter Overview
As an INFORMIX-OnLine Dynamic Server administrator you have certain
responsibilities that deal with configuring and running the logical log. These
responsibilities include the following tasks:

• Allocating an appropriate amount of disk space for the logical log
• Choosing how many logical-log files are stored in that disk space
• Monitoring the logical-log file status
• Backing up the logical-log files to tape

The information in this chapter will help you perform these tasks. In addi
tion, background information on the Online logging process is given here.

For more information on backing up logical-log files—a critical part of man
aging logical-log files—refer to the INFORMIX-OnLine Dynamic Server
Archive and Backup Guide.

For information on how to perform other logical-log tasks refer to
Chapter 19, "Managing Logical-Log Files."

What Is the Logical Log?
OnLine keeps a history of database and database server changes since the
time of the last archive by generating and storing log records. The log records
are stored in the logical log, which is made up of logical-log files. The log is
called logical because the log records represent units of work related to the
logical operations of the database server, as opposed to physical operations.
At any time, the combination of OnLine archive tapes plus OnLine logical-
log files contain a complete copy of your OnLine data.

All the databases managed by a single OnLine database server store their log
records in the same logical log, regardless of whether they use transaction
logging or not, or whether their transaction logging is buffered or not. For
information on transaction logging, see Chapter 16, "What Is Logging?"

What Is the Logical Log? 18-3

What Is a Logical-Log File?

Most end users should not be concerned with the logical log and logical-log
files. They might be concerned with the buffering status of a database during
their transactions, or even occasionally with the transaction-logging status of
a database, as explained in"Who Can Set or Change Logging Status" on
page 16-10.

Most of the administration of the logical log concerns the management of
individual logical-log files, but there is one administrative task related to the
logical log as a whole: determining how much disk space to allocate to the
logical log.

What Is a Logical-Log File?
Logical-log files are not files in the operating-system sense of the word file.
Logical-log files are part of the disk space managed by OnLine; each logical-
log file is a separate allocation of disk space. Together, the logical-log files
make up the logical log. You must always have at least three logical-log files.

The OnLine administrator needs to be concerned with the logical-log files
that make up the logical log because if they are not managed properly
OnLine can suspend processing and, in the worst case, shut down.

It is the OnLine administrator's responsibility to choose an appropriate num
ber, size, and physical location for logical-log files. This topic is discussed in
the following sections:

• "What Should Be the Size and Number of Logical-Log Files?" on
page 18-7

• "Where Should Logical-Log Files Be Located?" on page 18-8

It is also the OnLine administrator's responsibility to ensure that the next log
ical-log file is always backed up and free. This topic is discussed in the fol
lowing sections:

• "Why Do Logical-Log Files Need to Be Backed Up?" on page 18-10
• "When Are Logical-Log Files Freed?" on page 18-11

18-4 What Is the Logical Log?

How Big Should the Logical Log Be?

There are also some logical-log file administration tasks related to effectively
managing blobspaces. These topics are discussed in the following section:

• "What Are the Logical-Log Administration Tasks Required for Blob-
spaces?" on page 18-15

How Big Should the Logical Log Be?
In determining how much disk space to allocate, you must balance disk space
and performance considerations. If you allocate more disk space than is nec
essary, space will be wasted. If you do not allocate enough disk space how
ever, performance might be adversely affected.

Performance Considerations
For a given level of system activity, the less logical-log disk space that you
allocate, the sooner that logical-log space fills up, and the greater the likeli
hood that user activity is blocked due to logical-log file backups and check
points.

• Logical-log file backups
When the logical-log files that make up the logical log fill up, you have to
back them up. (See "Why Do Logical-Log Files Need to Be Backed Up?"
on page 18-10.) The backup process can hinder transaction processing
involving data located on the same disk as the logical-log files. If there is
enough logical-log disk space, however, you can wait for periods of low
user activity before backing up the logical-log files.

• Checkpoints
At least one checkpoint record must always be written to the logical log.
If you need to free the logical-log file containing the last checkpoint,
OnLine must write a new checkpoint record to the current logical-log file.
(See "When Are Logical-Log Files Freed?" on page 18-11.) So if the fre
quency with which logical-log files are backed up and freed increases, the
frequency at which checkpoints occur increases. Because checkpoints
block user processing, this will have an adverse affect on performance.
Because other factors also determine the checkpoint frequency (such as
the physical log size), this effect might not be significant.

What Is the Logical Log? 18-5

How Big Should the Logical Log Be?

These performance considerations are related to how fast the logical log fills.
The rate at which the logical log fills, in turn, depends on other factors such
as the level of user activity on your system, and the logging status of the data
bases. You need to tune the logical-log size, therefore, to find the optimum
value for your system.

Long-Transaction Consideration
In addition to the performance considerations discussed in the previous sec
tion, you risk having a long-transaction situation if logical-log disk space is
insufficient. For more information on the long-transaction situation, refer to
"Avoiding Long Transactions" on page 18-12.

Logical-Log Size Guidelines
It is difficult to predict how much logical-log space is sufficient for your sys
tem until the system is actually in use. The minimum value you should con
figure initially is given by the following expression:

(3 Log Files) * (Number of Userthreads) * (2 Log Pages) * (Page Size)

Two log pages is the maximum that a userthread can log during a critical sec
tion. Three log files is the minimum number of log files allowed. So, for exam
ple, if the number of userthreads is 100 and the page size is 2 kilobytes, the
minimum value of the logical-log size that you should configure is 600
kilobytes.

The value yielded by this expression is the minimum logical-log disk space
required to ensure that a checkpoint record can be written in a logical-log
span. In other words, even if all threads are in critical sections of code when
the checkpoint occurs, there is enough logical-log space for all the threads to
complete their transactions before the checkpoint record is written.

You can increase the value yielded by the preceding expression as necessary.
You can increase the amount of space devoted to the logical log in several
ways. The easiest way is to add another logical-log file, as explained in "Add
ing a Logical-Log File" on page 19-3.

18-6 What Is the Logical Log?

What Should Be the Size and Number of Logical-Log Files?

Determining the Size of the Logical Log
The total space allocated to the logical-log files is equal to the number of log
ical-log files multiplied by the size of each log. The number of logical-log files
is given by the LOGFILES parameter. The size of the logical-log files is given
by the LOGSIZE parameter. The OnLine administrator sets both of these con
figuration parameters. Both LOGFILES and LOGSIZE are stored in the
ONCONFIG file.

If you have added logical-log files that are not of the size specified by
LOGSIZE, the (LOGFILES * LOGSIZE) expression does not tell you how large
your logical log is. Instead, you need to add the sizes for each individual log
file on disk. For information on how to access the size of logical-log files, refer
to "Monitoring Logical-Log Files" on page 29-37.

What Should Be the Size and Number of Logical-Log
Files?

After you know how much disk space to allocate for the entire logical log,
you can make decisions about how many log files you want, and of what size.

When you think about the size of the logical-log files, consider these points:

• The minimum size for a logical-log file is 200 kilobytes.
• The maximum size for a logical-log file is essentially unbounded.
• If your tape device is slow, you need to ensure that logical-log files are

small enough to be backed up in a timely fashion.
• Smaller log files means smaller granularity of recovery because you

potentially lose the last unbacked-up logical-log file if the disk containing
the logical-log files goes down.

When you think about the number of logical-log files, consider these points:

• You must always have at least three logical-log files.
• You should create enough logical-log files so that you can switch log files

if needed without running out of free logical-log files.
• The number of logical-log files affects the frequency of logical-log back

ups and, consequently, the rate at which blobspace blobpages can be
reclaimed. (See "Backing Up Logical-Log Files to Free Blobpages" on
page 18-16.)

• The number of logical-log files cannot exceed the value of the ONCONFIG
parameter LOGSMAX.

What Is the Logical Log? 18-7

Where Should Logical-Log Files Be Located?

Where Should Logical-Log Files Be Located?
When OnLine disk space is initialized, the logical-log files and the physical
log are placed in the root dbspace. You have no control over this. To improve
performance (specifically, to reduce the number of writes to the root dbspace
and minimize contention), move the logical-log files out of the root dbspace
to a dbspace on a disk that is not shared by active tables or the physical log.
(See "Moving a Logical-Log File to Another Dbspace" on page 19-6.)

You can improve performance further by separating the logical-log files into
two groups and storing them on two separate disks (neither of which contain
data). For example, if you have six logical-log files, you would locate files 1,
3, and 5 on disk 1, and files 2,4, and 6 on disk 2. Performance is improved
because the same disk drive never has to handle writes to the current logical-
log file and backups to tape at the same time.

The logical-log files contain critical information and should be mirrored for
maximum data protection. If the dbspace to which you are moving the log
files is not already mirrored, plan to start mirroring that dbspace.

How Are Logical-Log Files Identified?
Each logical-log file, whether backed up to tape or not, has a unique id num
ber. The sequence begins with 1 for the first logical-log file filled after OnLine
disk space is initialized. When the current logical-log file becomes full,
OnLine switches to the next logical-log file and increments the unique id
number for the new log file by one.

The actual disk space allocated for each logical-log file has an identification
number known as the logid. For example, if you have configured six logical-
log files, these files have logid numbers one through six. As logical-log files
are backed up and freed (see "Why Do Logical-Log Files Need to Be Backed
Up?" on page 18-10), OnLine reuses the disk space for the logical-log files;
however, OnLine continues to increment the unique id numbers by one.

18-8 What Is the Logical Log?

What Are the Status Flags of Logical-Log Files?

Figure 18-1 illustrates the relationship between the logid numbers and the
unique id numbers.

1st rotation 2nd rotation 3rd rotation 4th rotation

Logid number
unique id
number

unique id
number

unique id
number

unique id
number

1 1 7 13 19
2 2 8 14 20
3 3 9 15 21
4 4 10 16 22
5 5 11 17 23
6 6 12 18 24

Figure 18-1 Logical-log file numbering sequence

For information on how to display the unique id and logid numbers of a log
ical-log file, refer to "Monitoring Logical-Log Files" on page 29-37.

What Are the Status Flags of Logical-Log Files?
All logical-log files have one of the following three status flags in the first
position: Added (A), Free (F), or Used (U). Descriptions of all the individual
logical-log status flags follow:

Added (A)

Free (F)

Used (U)

A logical-log file has an added status when the logical-log file
is newly added. It does not become available for use until
you complete a level-0 archive of the root dbspace.
A logical-log file is free when it is available for use. A logical-
log file is freed after it is backed up, all transactions within
the log file are closed, and the latest record of a checkpoint is
in a subsequent log.
A logical-log file is used when it is still needed by OnLine for
recovery (rollback of a transaction or finding the last check
point record).

Backed-Up (B) A log file has a backed up status after the log file has been
backed up.

What Is the Logical Log? 18-9

Why Do Logical-Log Files Need to Be Backed Up?

Current (C) A log file has a current status if OnLine is currently filling the
log file.

Last (L) A log file has a status of last if the log file contains the most
recent checkpoint record in the logical log. This file and sub
sequent files cannot be freed until OnLine writes a new
checkpoint record to a different logical-log file.

Figure 18-2 shows the possible log status flag combinations.

Status Flag Status of Logical-Log File

A------ Log has been added since last level-0 archive.
Not available for use.

F------ Log is free. Available for use.

U Log has been used but not backed up.

U-B—- Log is backed up but still needed for recovery.

U-B—L Log is backed up but still needed for recovery.
Contains last checkpoint record.

U—C Log is the current log file.

U—C-L Log is the current log file.
Contains last checkpoint record.

Figure 18-2 Summary of possible logical-log status flags and their meanings

You can find out the status of a logical-log file using the methods explained
in "Monitoring Logical-Log Files" on page 29-37.

Why Do Logical-Log Files Need to Be Backed Up?
The process of copying a logical-log file to tape is referred to as backing up a
logical-log file. Backing up logical-log files achieves the following two
objectives:

• It stores the logical-log records on tape so they can be rolled forward if a
data restore is needed.

• It makes logical-log file space available for new logical-log records.

You perform a logical-log file backup using either ON-Archive or ontape,
depending on which of these utilities you are using to create and maintain
your archives and backups.

18-10 What Is the Logical Log?

When Are Logical-Log Files Freed?

Logical-log file backups can be initiated implicitly as part of continuous log
ging, or explicitly by the OnLine administrator or operator, either through
ON-Archive or by executing ontape. See the INFORMIX-OnLine Dynamic
Server Archive and Backup Guide for more information.

When Are Logical-Log Files Freed?
If you back up a logical-log file, is that file free to receive new log records? Not
necessarily. The following three criteria must be satisfied before OnLine frees
a logical-log file for reuse:

• The log file is backed up to tape.
• All records within the log file are associated with closed transactions.
• The log file does not contain the most-recent checkpoint record.

When Does OnLine Attempt to Free a Log File?
OnLine attempts to free logical log files under the following conditions:

• When OnLine first writes to a new logical-log file, it attempts to free the
previous log.

• Each time a logical-log file is backed up, OnLine attempts to free the
backed-up log file.

• Each time OnLine commits or rolls back a transaction, it attempts to free
the logical-log file in which the transaction began.

The attempt only succeeds if the criteria listed above (under "When Are Log
ical-Log Files Freed?") are met.

What Happens If the Next Logical-Log File Is Not Free?
If OnLine attempts to switch to the next logical-log file and finds that the next
log file in sequence is still in use, OnLine immediately suspends all process
ing. Even if other logical-log files are free, OnLine cannot skip a file in use and
write to a free file out of sequence. Processing is stopped to protect the data
within the log file.

The logical-log file might be in use for either of the following two reasons:

• The file is not backed up.
If the log file is not backed up, processing resumes when you perform the
backup. If you are using ontape to back up logical-log files, you can back

What Is the Logical Log? 18-11

When Are Logical-Log Files Freed?

up this log file as you would any other log file. If you are using
ON-Archive to back up logical-log files, however, you cannot use
onarchive to back up this log file. The onarchive command must be able
to access the sysmaster database, which it cannot do because processing
is suspended. Instead you must use the ondatartr utility to back up the
logical-log files in this situation. See the INFORMIX-OnLine Dynamic
Server Archive and Backup Guide for more information.

• The file contains an open transaction.
The open transaction is the long transaction discussed under "Avoiding
Long Transactions" on page 18-12. In this situation OnLine data has to be
recovered from archive tapes in a full-system restore.

A situation whereby OnLine must suspend processing because the next log
file contains the last checkpoint will never occur. OnLine always forces a
checkpoint when it enters the last available log, if the previous checkpoint
record is located in the log following the last available log. For example, if
four logical-log files have the status shown in the following list, OnLine
forces a checkpoint when it switches to logical-log file 3.

logid Logical-log file status
1 U-B—
2 U—C -
3 F
4 U-B—L

Avoiding Long Transactions
A long transaction is a transaction that starts in one logical-log file and is not
committed when OnLine needs to reuse that same logical-log file. In other
words, it is a transaction that spans more than the total space allocated to the
logical log.

Because OnLine cannot free a logical-log file until all records within the file
are associated with closed transactions, the long transaction prevents the first
logical-log file from becoming free and available for reuse.

18-12 What Is the Logical Log?

When Are Logical-Log Files Freed?

How can you prevent long transactions from developing? You can take the
following precautions:

• Ensure that the logical-log file does not fill too fast.
• Ensure that transactions do not remain open too long.
• Set high water marks to have OnLine automatically slow down process

ing when a long transaction is developing.

These steps are explained in the subsequent sections.

Factors That Influence the Rate at Which Logical-Log Files Fill
Several factors influence how fast the logical log fills. It is difficult to know
exactly which factor is the most important for a given instance of OnLine, so
you need to use your own judgment when estimating how quickly your log
ical log fills, and how to prevent long-transaction conditions.

• Size of the Logical Log
A smaller logical log fills faster than a larger logical log. If you need to
make the logical log larger, you can add another logical-log file, explained
in "Adding a Logical-Log File" on page 19-3.

• Number of Logical-Log Records
The more logical-log records written to the logical log, the faster it fills. If
databases managed by your OnLine database server use transaction log
ging, transactions against those databases fill the logical log faster than
transactions against databases without transaction logging.

• Type of Log Buffering
As explained in "Unbuffered Transaction Logging" on page 16-8, data
bases using unbuffered transaction logging fill the logical log faster than
databases using buffered transaction logging.

• Size of Individual Logical-Log Records
The sizes of the logical-log records vary, depending on both the process
ing operation and the OnLine environment. In general, the longer the
data rows, the larger the logical-log records. Also, updates can use up to
twice as much space as inserts or deletes because they might contain both
before and after images. Inserts store only the after image, and deletes
store only the before image.

• Frequency of Rollbacks
The frequency of rollbacks affects the rate at which the logical log fills.
More rollbacks fill the logical log faster. The rollbacks themselves require

What Is the Logical Log? 18-13

When Are Logical-Log Files Freed?

logical-log file space, although the rollback records are small. In addition,
rollbacks increase the activity in the logical log.

Factors That Prevent Closure of Transactions
Several factors influence when transactions close. You should be aware of
these factors so that you can prevent long-transaction problems.

• Transaction duration
The duration of a transaction might be beyond your control. For example,
a client that does not write many logical-log records might cause a long
transaction if the users permit transactions to remain open for long peri
ods of time. (For example, if a user running an interactive application
leaves a terminal to go to lunch part of the way through a transaction.)
The more logical-log space is available, the longer a transaction can
remain open without a long-transaction condition developing. However,
large logical log by itself does not ensure that long transactions do not
develop. Application designers should consider the transaction-duration
issue, and users should be aware that leaving transactions open can be
detrimental.

• High CPU and logical-log activity can delay the transaction
The amount of CPU activity can affect the ability of OnLine to complete
the transaction. Repeated writes to the logical-log file increase the amount
of CPU time OnLine needs to complete the transaction. Increased logical-
log activity can imply increased contention of logical-log locks and
latches as well.

Setting High-Water Marks
OnLine alters processing at two critical points to manage the long transaction
condition. Both of the points are tunable by setting values in the ONCONFIG
file.

The first critical point is called the long-transaction high-water mark and is
described in "LTXHWM" on page 35-25. When the logical log reaches the
long-transaction high-water mark, OnLine recognizes that a long transaction
exists and begins searching for an open transaction in the oldest, used (but
not freed) logical-log file. If a long transaction is found, OnLine directs the
thread to begin to roll back the transaction. More than one transaction can be
rolled back if more than one long transaction exists.

18-14 What Is the Logical Log?

What Are the Logical-Log Administration Tasks Required for Blobspaces?

The transaction rollback itself generates logical-log records, however, and as
other processes continue writing to the logical-log file, the logical log contin
ues to fill.

The second critical point is called the exclusive-access, long-transaction high-
water mark and is described in "LTXEHWM" on page 35-25. When the logical
log reaches the exclusive-access, long-transaction high-water mark, OnLine
dramatically reduces log-record generation. Most threads are denied access
to the logical log. Only threads currently rolling back transactions (including
the long transaction) and threads currently writing COMMIT records are
allowed access to the logical log. The intent is to preserve as much space as
possible for rollback records being written by the user threads that are rolling
back transactions.

If the long transaction(s) cannot be rolled back before the logical log fills,
OnLine shuts down. If this occurs you must perform a data restore. During
the data restore, you must not roll forward the last logical-log file. Doing so
re-creates the problem by filling the logical log again.

It is imperative that the LTXHWM and LTXEHWM are set so OnLine does not
come off-line due to a long transaction.

What Are the Logical-Log Administration Tasks
Required for Blobspaces?

The following logical-log administration tasks are necessary if you have
applications using blobspaces:

• Switching log files to activate blobspaces
• Switching log files to activate new blobspace chunks
• Backing up log files to free deleted blobspace pages

These tasks are explained in the following sections.

Switching Logical-Log Files to Activate Blobspaces
You must switch to the next logical-log file after you create a blobspace if you
intend to insert blobs in the blobspace right away. OnLine requires that the
statement that creates a blobspace and the statements that insert blobs into
that blobspace appear in separate logical-log files. This requirement is inde
pendent of the logging status of the database.

See "Switching to the Next Logical-Log File" on page 19-12 for instructions
on switching to the next log file.

What Is the Logical Log? 18-15

What Are the Logical-Log Administration Tasks Required for Blobspaces?

Switching Logical-Log Files to Activate New Blobspace
Chunks

You must switch to the next logical-log file after you add a new chunk to an
existing blobspace if you intend to insert blobs in the blobspace that will use
the new chunk. OnLine requires that the statement that creates a chunk in a
blobspace and the statements that insert blobs into that blobspace appear in
separate logical-log files. This requirement is independent of the logging sta
tus of the database.

See "Switching to the Next Logical-Log File" on page 19-12 for instructions
on switching to the next log file.

Backing Up Logical-Log Files to Free Blobpages
When you delete data stored in blobspace pages, those pages are not neces
sarily freed for reuse. The blobspace pages are only free when both of the fol
lowing actions have occurred:

• The blob has been deleted, either through an UPDATE to the blob column
on the row, or by deleting the row.

• The logical log with the INSERT of the row containing the blob is backed
up.

The reasons for this functionality are given in the following sections.

Why Do You Have to Back-Up Logical-Log Files to Free Blobpages?
Blobs that are stored in blobspaces generally require much greater amounts
of disk space than other data types. Because of this, if an application inserts a
row containing a blob, OnLine does not write the actual blob data to the log
ical-log file. OnLine only writes the blobspace overhead pages (which
include the free-map page and the bit-map page) to the logical log.

The free-map page contains an entry for each blobpage in the blobspace
chunk. Each entry contains the following information:

• A flag indicating whether the page is used or free
• The unique id of the logical-log file that was current when the page was

written to
• The associated tblspace number of the data stored on the page

For more information on the free-map page, see "Blobspace Page Types" on
page 40-59.

18-16 What Is the Logical Log?

What Are the Logical-Log Administration Tasks Required for Blobspaces?

When an application deletes a row containing a blob, OnLine marks each
blobpage that is part of the deleted blob as FREE in the free-map overhead
page. OnLine writes a log record to the logical log to record the changes to
the free-map page. If OnLine has not yet backed up the logical-log file con
taining the transaction that originally inserted the blob, OnLine does not
write over the deleted blobpages on subsequent blob inserts. Figure 18-3
illustrates this scenario.

Figure 18-3 Schematic showing that OnLine does not write to deleted blobpages if logical-log file
with original insert of blob is not backed up

The reason that OnLine does not write over the deleted blobpages in the sce
nario shown in Figure 18-3 is that OnLine might need to perform a fast recov
ery and roll forward the transaction containing the original insert. If the
original data were overwritten, OnLine would have no way of reproducing
the transaction.

When you back up the logical-log file containing the original insert, however,
OnLine copies the actual blob data to tape. Because the blob data is saved to
tape and, therefore, available for a recovery, OnLine is free to write over the
deleted blobpages. (See Figure 18-4.)

What Is the Logical Log? 18-17

What Is the Logging Process?

What Is the Logging Process?
This section describes the logging process in detail for both dbspace and
blobspace logging. This information is not required for performing normal
OnLine administration tasks.

Dbspace Logging
The logging process OnLine uses for operations involving data stored in
dbspaces is as follows:

1. Read the data page from disk to shared-memory page buffer.
2. Copy the unchanged page to the physical-log buffer.
3. Write the new data into the page buffer; create a logical-log record of the

transaction, if needed.
4. Flush physical log buffer to the physical log on disk.
5. Flush the page buffer and write it back to disk.
6. Flush logical-log buffer to a logical-log file on disk.

18-18 What Is the Logical Log?

What Is the Logging Process?

Read Page into Shared-Memory Buffer Pool
In general, an insert or an update begins when a thread requests a row.
OnLine identifies the page on which the row resides and attempts to locate
the page in the OnLine shared-memory buffer pool. If the page is not already
in shared memory, OnLine reads the page from disk. This process is
explained in more detail in "How an OnLine Thread Accesses a Buffer Page"
on page 14-36.

Copy the Page Buffer into the Physical-Log Buffer
Before OnLine modifies a dbspace data page, it stores a copy of the
unchanged page in the physical-log page buffer. OnLine eventually flushes
the physical-log page buffer containing this before-image to the physical log on
disk. The before image of the page plays a critical role in fast recovery. Until
OnLine performs a new checkpoint, subsequent modifications to the same
page do not require another before image to be stored in the physical log
buffer. For more information refer to "Flushing the Physical-Log Buffer" on
page 14-39.

How does OnLine know if a page is already in the physical log? If the
timestamp on the page is more recent than the timestamp for the last check
point, the page has been changed since the checkpoint and therefore is
already in the physical log.

Read Data into Buffer; Create Logical-Log Record
The thread performing the modifications receives data from the application.
After OnLine stores a copy of the unchanged data page in the physical-log
buffer, the thread writes the new data to the page buffer and writes records
necessary to roll back or re-create the operation to the logical-log buffer. For
more information, refer to "When the Logical-Log Buffer Becomes Full" on
page 14-44.

Flush Physical Log Buffer to the Physical Log
OnLine must flush the physical log buffer before flushing the data buffer.
Flushing the physical-log buffer ensures that a copy of the unchanged page
is available until the changed page is written to the physical log. For more
information, refer to "Flushing the Physical-Log Buffer" on page 14-39.

What Is the Logical Log? 18-19

What Is the Logging Process?

Flush Page Buffer

At some point after flushing the physical log buffer, OnLine flushes the data
buffer and writes the modified data page to disk. This action occurs at the
next checkpoint, or when a page cleaner determines that the page should be
written to disk. OnLine does not flush the data buffer as the transaction is
committed. See "How OnLine Flushes Data to Disk" on page 14-39 for more
information.

Flush Logical-Log Buffer

OnLine flushes the logical-log buffer, writing the logical-log records to the
current logical-log file on disk. See "Flushing the Logical-Log Buffer" on
page 14-44 for more information.

A logical-log file cannot become free (and available for reuse) until all trans
actions represented in the log file are completed and the log file is backed up
to tape. This ensures that all open transactions can be rolled back, if required.

Blobspace Logging
OnLine logs blobspace data but the data does not pass through either shared
memory or the logical-log files on disk. Data stored in a blobspace is copied
directly from disk to tape. Records of modifications to the blobspace over
head pages (the free-map and bit-map pages) are the only blobspace data that
reaches the logical log. By logging these overhead pages, the logical-log file
records track blobpage allocation and deallocation (when blobs are deleted
from blobpages), but not the actual blob data. Blobspace blob data is only
recorded in the logical log when a log file is backed up to tape.

Blobspace logging occurs in the following three steps:

1. Blobspace data flows from the network, through temporary buffers in the
database server process memory space, and is written directly to disk. If
the blob requires more than one blobpage, links and pointers are created
as needed.

2. A record of the operation (insert, update, or delete) is written to the
logical-log buffer, if the database uses logging. The blob data is not
included in the record (but the information about where the blob data is
placed is included by way of the overhead pages).

3. When a logical-log backup begins, OnLine uses the logical-log id number
stored in the blobspace free-map page to determine which blobpages to
copy to tape. See the INFORMIX-OnLine Dynamic Server Archive and
Backup Guide for more details on logical-log backups.

18-20 What Is the Logical Log?

Chapter

19
Managing Logical-
Log Files
Chapter Overview 3

Adding a Logical-Log File 3
Adding a Log File Using ON-Monitor 4
Adding a Log File Using onparams 4
Adding a Log File with a New Size 5

Dropping a Logical-Log File 5
Dropping a Logical-Log File Using ON-Monitor 6
Dropping a Logical-Log File Using onparams 6

Moving a Logical-Log File to Another Dbspace 6
An Example of Moving Logical-Log Files 7

Changing the Size of Logical-Log Files 7

Changing Logical-Log Configuration Parameters 8
Changing LOGSIZE or LOGFILES 8

Changing LOGSIZE or LOGFILES Using
ON-Monitor 9

Changing LOGSIZE or LOGFILES Using an
Editor 9

Changing LOGSMAX, LTXHWM, or LTXEHWM 9
Changing LOGSMAX, LTXHWM, or LTXEHWM

Using ON-Monitor 10
Changing LOGSMAX, LTXHWM, or LTXEHWM

by Editing the ONCONFIG File 10

Freeing a Logical-Log File 10
Freeing a Log File with Status A 10
Freeing a Log File with Status U 11
Freeing a Log File with Status U-B 11

Freeing a Log File with Status U-C or U-C-L 11
Freeing a Log File with Status U-B-L 12

Switching to the Next Logical-Log File 12

19-2 Managing Logical-Log Files

Chapter Overview
This chapter contains information on managing the INFORMIX-OnLine
Dynamic Server logical-log files. The following tasks are covered:

• Adding a logical-log file
• Dropping a logical-log file
• Moving a logical-log file
• Changing the size of a logical-log file
• Changing the logical-log configuration parameters
• Freeing a logical-log file
• Switching to the next logical-log file

You must manage logical-log files even if none of your databases use trans
action logging.

See Chapter 18, "What Is the Logical Log?/' for background information
regarding the logical log.

See the INFORMIX-OnLine Dynamic Server Archive and Backup Guide for
instructions on backing up logical-log files.

Adding a Logical-Log File
You might add a log file for the following reasons:

• To increase the disk space allocated to the logical log
• To change the size of your logical-log files
• As part of moving logical files to a different dbspace

You add log files one at a time. You cannot add a log file during an archive
(quiescent or on-line), and OnLine must be in quiescent mode to add a
logical-log file.

Managing Logical-Log Files 19-3

Adding a Logical-Log File

The newly added log file(s) do not become available until you create a level-
0 archive of the root dbspace. This requirement ensures that the archive copy
of the reserved pages contains information about the current number of
logical-log files. You should use the archiving tool you usually use to create
the level-0 archive.

You can use either ON-Monitor or onparams to add the log file. You can only
add a new log file with a different size than LOGSIZE using onparams. If you
use ON-Monitor, the size is always the value specified by LOGSIZE.

Verify that you will not exceed the maximum number of logical-log files
allowed in your configuration, specified as LOGSMAX. If you need to, you can
increase LOGSMAX (as described in "Changing LOGSMAX, LTXHWM, or
LTXEHWM" on page 19-9) and reinitialize shared memory for the change to
take effect.

You must be logged in as either informix or root to make this change.

Adding a Log File Using ON-Monitor
Bring OnLine to quiescent mode. Select the Parameters menu, Add-Log
option to add a logical-log file.

Enter the name of the dbspace where the new logical-log file will reside in the
field labelled D bspace Name. The size of the log file automatically appears
in the L o g i c a l Log S iz e field.

After you add the log file, the status of the new log file is A. The newly added
log file becomes available after you create a level-0 archive of the root
dbspace. See the INFORMIX-OnLine Dynamic Server Archive and Backup Guide
for information on creating a level-0 archive.

Adding a Log File Using onparam s
To add a logical-log file with a size specified by LOGSIZE to the dbspace called
logspace, execute the following command:

% onparams -a -d logspace
The status of the new log file is A. The newly added log file becomes available
after you create a level-0 archive of the root dbspace. See the INFORMIX-
OnLine Dynamic Server Archive and Backup Guide for information on creating
a level-0 archive.

See "Add a Logical-Log File" on page 37-38 for reference information on add
ing a logical-log file using onparams.

19-4 M anaging Logical-Log Files

Dropping a Logical-Log File

Adding a Log File with a New Size
To add a logical-log file with a size different from that specified by LOGSIZE
(in this case, 250 kilobytes) to a dbspace called logspace, execute the follow
ing command:

% onparams -a -d logspace -s 250
Adding a log file of a new size does not change the value of LOGSIZE.

The status of the new log file is A. The newly added log file becomes available
after you create a level-0 archive of the root dbspace. See the INFORMIX-
OnLine Dynamic Server Archive and Backup Guide for information on creating
a level-0 archive.

See "Add a Logical-Log File" on page 37-38 for reference information on add
ing a logical-log file using onparams.

Dropping a Logical-Log File
You can drop a log to increase the amount of the disk space available within
a dbspace.

OnLine requires a minimum of three logical-log files at all times. (Log files
that are newly added and have status A do not count towards this minimum
of three.) You cannot drop a log if your logical log is composed of only three
log files.

You drop log files one at a time. After your configuration reflects the desired
number of logical-log files, create a level-0 archive of the root dbspace. This
ensures that the archive copy of the reserved pages contains information
about the current number of logical-log files. This prevents OnLine from
attempting to use the dropped log files during a restore.

You can only drop a log file that has a status of Free (F) or newly Added (A).

You must know the logid number of each logical log that you intend to drop.
See "Monitoring Logical-Log Files" on page 29-37 for information on obtain
ing a display of the logical-log files and logid numbers.

You must be logged in as either inf ormix or root, and OnLine must be in qui
escent mode, in order to make this change.

Managing Logical-Log Files 19-5

Moving a Logical-Log File to Another Dbspace

Dropping a Logical-Log File Using ON-Monitor
Select the Parameters menu, Drop-Log option to drop a logical-log file. Use
the Arrow keys to select the log you want to drop and press CTRL-B or F3. You
are asked to confirm your choice.

Create a level-0 archive of the root dbspace after your configuration reflects
the desired number of logical-log files. See the INFORMIX-OnLine Dynamic
Server Archive and Backup Guide for information on creating a level-0 archive.

Dropping a Logical-Log File Using onparam s
Execute the following command to drop a logical-log file with id number 21:

% onparams -d -1 21

Create a level-0 archive of the root dbspace after your configuration reflects
the number of logical-log files you want. See the INFORMIX-OnLine Dynamic
Server Archive and Backup Guide for information on creating a level-0 archive.

See "Drop a Logical-Log File" on page 37-38 for reference information on
dropping a logical-log file using onparams.

Moving a Logical-Log File to Another Dbspace
You might want to move a logical-log file for performance reasons, explained
in "Where Should Logical-Log Files Be Located?" on page 18-8. See "Moni
toring Logical-Log Files" on page 29-37 to find out the location of logical-log
files.

Changing the location of the logical-log files is actually a combination of two
simpler actions:

• Dropping logical-log files from their current dbspace
• Adding the logical-log files to their new dbspace

Although moving the logical-log files is easy to do, it can be time-consuming
because you must create two separate level-0 archives of the root dbspace as
part of the procedure. An example of the procedure is presented in "An
Example of Moving Logical-Log Files" on page 19-7.

19-6 Managing Logical-Log Files

Changing the Size of Logical-Log Files

An Example of Moving Logical-Log Files
OnLine must be in quiescent mode to make these changes.

The procedure listed here provides an example of how to move six logical-
log files from the root dbspace to another dbspace: dbspacejl.

1. Free all log files except the current log file. See 'Treeing a Logical-Log
File" on page 19-10.

2. Verify that the value of LOGSMAX is greater than or equal to the number
of log files after the move plus three. In this example, the value of
LOGSMAX must be greater than or equal to nine. Change the value of
LOGSMAX, if necessary. See "Changing LOGSMAX, LTXF1WM, or
LTXEHWM" on page 19-9.

3. Drop all but three of the logical-log files. See "Dropping a Logical-Log
File" on page 19-5.
You cannot drop the current log file. If you only have three logical-log files
in the root dbspace, skip this step.

4. Add the new log files to the different dbspace. See "Adding a Logical-Log
File" on page 19-3.
In this example, add six new log files to dbspacejl.

5. Create a level-0 archive of the root dbspace to make the new log files
available to OnLine. See the INFORMIX-OnLine Dynamic Server Archive
and Backup Guide for information on creating a level-0 archive.

6. Switch the logical-log files to start a new current log file. See "Switching
to the Next Logical-Log File" on page 19-12.

7. Back up the former current log file to free it. See the INFORMIX-OnLine
Dynamic Server Archive and Backup Guide for information on backing up
logical-log files.

8. Drop the three log files that remain in the root dbspace. See "Dropping a
Logical-Log File" on page 19-5.

Changing the Size of Logical-Log Files
You can change the size of logical-log files in two ways:

• Add a new log file of a different size
This change has no effect on LOGSIZE. However, the log files you add are
available after the next level-0 archive of the root dbspace (instead of after
reinitializing disk space). See "Adding a Log File with a New Size" on
page 19-5.

Managing Logical-Log Files 19-7

Changing Logical-Log Configuration Parameters

• C hange the LOGSIZE configuration param eter

Changing LOGSIZE changes the default size for all subsequent logical-log
files added but is time consuming because it requires that you reinitialize
disk space to see the change. See "Changing LOGSIZE or LOGFILES" on
page 19-8.

Changing Logical-Log Configuration Parameters
The following configuration parameters affect the logical-log file and how
OnLine works with it:

• LOGSIZE (described on page 35-21)
• LOGFILES (described on page 35-20)
• LOGMAX (described on page 35-21)
• LTXHWM (described on page 35-25)
• LTXEHWM (described on page 35-25)

The procedure for changing each of these parameters is explained in the fol
lowing sections.

Changing LOGSIZE or LOGFILES
You can change LOGSIZE or LOGFILES in two ways:

• Using ON-Monitor
• Using an editor

In each case, the changes to LOGSIZE and LOGFILES do not take effect until you
reinitialize the dish To retain your existing data when you reinitialize the disk,
you must unload the data beforehand and reload it once the disk is initial
ized. This process makes changing these parameters a relatively difficult pro
cess. If you want to increase the number of log files, it is easier to add log files
one at a time as discussed under "Adding a Logical-Log File" on page 19-3.
Similarly, if you want to change the size of the log files, it might be easier to
add new log files of the desired size and then drop the old ones.

You can change LOGSIZE or LOGFILES from within ON-Monitor or by editing
the ONCONFIG file. You must be logged in as root or inf ormix to change these
configuration parameters.

19-8 M anaging Logical-Log Files

Changing Logical-Log Configuration Parameters

Changing LOGSIZE or LOGFILES Using ON-Monitor
You can change the value of LOGSIZE or LOGFILES using ON-Monitor.

Unload all OnLine data. See "onunload: Transfer Binary Data in Page Units"
on page 37-77.You cannot rely on archive tapes to unload and restore the
data, because a restore returns the parameters to their previous value.

Select the Parameters menu, Initialize option to reinitialize disk space.
Change the value of LOGSIZE in the field labelled Log. Log S iz e ., or
change the value of LOGFILES in the file labelled Number o f L o g ica l
L ogs. Proceed with OnLine disk-space initialization.

After OnLine disk space is reinitialized, re-create all databases and tables.
Then reload all OnLine data. See "onload: Create a Database or Table" on
page 37-18.

Changing LOGSIZE or LOGFILES Using an Editor
You can change the value of LOGSIZE or LOGFILES by using an editor to edit
the ONCONFIG file.

Change the value of LOGSIZE or LOGFILES.

Unload all OnLine data. See "onunload: Transfer Binary Data in Page Units"
on page 37-77. You cannot rely on archive tapes to unload and restore the
data, because a restore returns the parameters to their previous value.

Reinitialize disk space using oninit. After OnLine disk space is reinitialized,
re-create all databases and tables. Then reload all OnLine data. See "onload:
Create a Database or Table" on page 37-18.

Changing LOGSMAX, LTXHWM, or LTXEHWM
There are two ways to change the value of LOGSMAX, LTXHWM, or
LTXEHWM:

• Using ON-Monitor
• Editing the ONCONFIG file

Each of these methods is explained in the following sections:

Changes to these configuration parameters take effect when you reinitialize
shared-memory.

You must be logged in as root or informix to change these configuration
parameters.

Managing Logical-Log Files 19-9

Freeing a Logical-Log File

Changing LOGSMAX, LTXHWM, or LTXEHWM Using ON-Monitor
You can change LOGSMAX, LTXHWM, or LTXEHWM while OnLine is in on
line mode using ON-Monitor.

Select the Parameters menu, Shared-Memory option to change one or more
of the values. ON-Monitor displays the current values.

Enter the new value for LOGSMAX in the Max # o f L o g i c a l Logs field.
Or, enter the new value for LTXHWM in the Long TX HWM field, or the new
value for LTXEHWM in Long TX HWM E x c l u s i v e field.

Reinitialize shared memory for the change or changes to take effect. See
"Adding a Segment to the Virtual Portion of Shared Memory" on page 15-16.

Changing LOGSMAX, LTXHWM, or LTXEHWM by Editing the ONCONFIG
File

You can change the value of LOGSMAX, LTXHWM, or LTXEHWM by using an
editor to edit the ONCONFIG file.

Change the value of the parameter you wish to change.

Re-initialize shared memory for the change to take effect. See "Adding a Seg
ment to the Virtual Portion of Shared Memory" on page 15-16.

Freeing a Logical-Log File
For a description of what constitutes a free logical-log file, see "What Are the
Status Flags of Logical-Log Files?" on page 18-9.

You might want to free a logical-log file for the following reasons:

• So OnLine does not stop processing
• To free the space used by deleted blobpages

The procedures for freeing log files vary, depending upon the status of the log
file. Each procedure is described in the following sections. See "Monitoring
Logical-Log Files" on page 29-37 to find out the status of logical-log files.

Freeing a Log File with Status A
If a log file is newly added (status A), create a level-0 archive of the root
dbspace to activate the log file and make it available for use. See the INFOR-
MIX-OnLine Dynamic Server Archive and Backup Guide for information on cre
ating a level-0 archive.

19-10 Managing Logical-Log Files

Freeing a Logical-Log File

Freeing a Log File with Status U
If a log file contains records but is not yet backed up (status U), back up the
file using the archiving and backup tool you usually use. See the INFORMIX-
OnLine Dynamic Server Archive and Backup Guide for information on backing
up logical-log files.

If backing up the log file does not change the status to free (F), its status
changes to either U-B or U-B-L. See "Freeing a Log File with Status U-B" on
page 19-11 or "Freeing a Log File with Status U-B-L" on page 19-12.

Freeing a Log File with Status U-B
If a log file is backed up but still in use (status U-B), some transactions in the
log file are still under way. If you do not want to wait until the transactions
complete, take OnLine to quiescent mode. See "Immediately from On-Line to
Quiescent" on page 8-5. Any active transactions are rolled back.

Freeing a Log File with Status U-C or U-C-L
If you want to free the current log file (status C), follow these steps:

1. Execute the following command:

% onmode -1
(Be sure you type a lowercase L on the command line, not a number 1.)
This command switches the current log file to the next available log file.

2. Now back up the original log file using the archiving and backup tool you
usually use. See the INFORMIX-OnLine Dynamic Server Archive and
Backup Guide for information on backing up logical-log files.
After all full log files are backed up, you are prompted to switch to the
next available logical-log file and back up the new current log file. You do
not need to do this because you just switched to this log file.

If after following these steps the log file now has status U-B or U-B-L, refer to
"Freeing a Log File with Status U-B" or "Freeing a Log File with Status
U-B-L."

Managing Logical-Log Files 19-11

Switching to the Next Logical-Log File

Freeing a Log File with Status U-B-L
If a log file is backed up to tape and all transactions within it are closed but
the file is not free (status U-B-L), this logical-log file contains the most-recent
checkpoint record.

To free log files with a status U-B-L, OnLine must perform a new checkpoint.
To force a checkpoint either select the ON-Monitor Force-Ckpt option or exe
cute the following command:

% onmode -c

Switching to the Next Logical-Log File
You might want to switch to the next logical-log file before the current log file
becomes full for the following reasons:

• To switch log files to activate new blobspaces
• To switch log files to activate new blobspace chunks
• To switch log files to back up the current log

OnLine can be in on-line mode to make this change. Execute the following
command to switch to the next available log file:

% onmode -1

The change takes effect immediately. (Be sure that you type a lowercase L on
the command line, not a number 1.)

19-12 Managing Logical-Log Files

What Is Physical
Logging?
Chapter Overview 3

What Is Physical Logging? 3
What Is the Purpose of the Physical Logging? 3

Fast Recovery Uses Physically Logged Pages 4
On-Line Archiving Uses Physically Logged

Pages 4
What OnLine Activity Is Physically Logged? 4

Are Blobs Physically Logged? 4

What Is the Physical Log? 5
How Big Should the Physical Log Be? 5

Can the Physical Log Become Full? 6
Where Is the Physical Log Located? 7

Details of Physical Logging 8
Page Is Read into the Shared-Memory Buffer Pool 8
A Copy of the Page Buffer Is Stored in the Physical-Log

Buffer 8
Change Is Reflected in the Data Buffer 9
Physical-Log Buffer Is Flushed to the Physical Log 9
Page Buffer Is Flushed 9
When Checkpoint Occurs, Physical-Log Buffer Is

Flushed and Physical Log Is Emptied 9
How the Physical Log Is Emptied 9

Chapter Overview
This chapter defines the terms and explains the concepts you need to know
to effectively perform the tasks described in Chapter 21, "Managing the
Physical Log."

This chapter covers the following topics:

• What physical logging is and what purposes it serves

• What the physical log is, and some guidelines for it size and location

• Details of the physical-logging process

What Is Physical Logging?
Physical logging is the process of storing the pages that the
INFORMIX-OnLine Dynamic Server is going to change before the changed
pages are actually recorded. Before OnLine modifies a page in the shared
memory buffer pool, it stores an unmodified copy of the page (called a before
image) in the physical log buffer in shared memory. OnLine maintains the
before-image page in the physical-log buffer in shared memory for those
pages until they are flushed to disk by one of four occurrences. (See "OnLine
Checkpoints" on page 14-47.) Once a checkpoint occurs, OnLine empties the
physical log (except in the special circumstances explained in "Can the Phys
ical Log Become Full?" on page 20-6).

What Is the Purpose of the Physical Logging?
This seemingly odd activity of storing copies of pages before they are
changed ensures that the unmodified pages are available in case the database
server fails or the archiving procedure needs them to provide an accurate
snapshot of OnLine data. These snapshots are potentially used in two activi
ties: fast recovery and OnLine archiving.

What Is Physical Logging? 20-3

What Is Physical Logging?

Fast Recovery Uses Physically Logged Pages
After a failure, OnLine uses the before-images in the physical log to restore
all pages on the disk to their state at the last checkpoint. When the before
image pages are combined with the logical log records stored since the check
point, OnLine can return all data to physical and logical consistency, up to the
point of the most recently completed transaction. This procedure is explained
in more detail in "What Is Fast Recovery?" on page 22-3.

On-Line Archiving Uses Physically Logged Pages
When you perform an on-line archive, OnLine checks disk pages to see which
should be archived. As part of this process, OnLine periodically reads the
pages in the physical log. If any of the pages OnLine finds in the physical log
meet the archiving criterion, they are copied to the archive tape. For details,
see the INFORMIX-OnLine Dynamic Server Archive and Backup Guide.

What OnLine Activity Is Physically Logged?
All dbspace page modifications except the following ones are physically
logged:

• Pages that do not have a valid OnLine address. This situation usually
occurs when the page was used by some other OnLine database server or
a table that was dropped.

• Pages that OnLine has not allocated and that are located in a dbspace
where no table has been dropped since the last checkpoint.

in case of multiple modifications before the next checkpoint, only one before
image is logged in the physical log (the first before-image).

Storing all before-images of page modifications in the physical log might
seem excessive. You must remember, however, that OnLine stores the before
images in the physical log for a short period of time, that is, until the next
checkpoint. You can control the amount of data that OnLine logs by tuning
the checkpoint interval configuration parameter, CKPTINTVL.

Are Blobs Physically Logged?
The OnLine pages in the physical log can be any OnLine page except a blob-
space blobpage. Even overhead pages (such as chunk free-list pages, blob-
space free-map pages, and blobspace bit-map pages to the free-map pages)

20-4 What Is Physical Logging?

What Is the Physical Log?

are copied to the physical log before data on the page is modified and flushed
to disk, but blobspace blobpages are not. For further information about blob-
space logging, see "Are Blobs Logged?" on page 16-7.

What Is the Physical Log?
The physical log is a set of contiguous disk pages where OnLine stores
before-images.

How Big Should the Physical Log Be?
When considering how large to make your physical log, you can begin by
using the following formula to calculate an approximate size:

Physical Log Size = USERTHREADS * max_log_pages_per_critical_section * 4

This formula is based on how much physical logging space OnLine needs in
a worst case scenario. This scenario takes place when a checkpoint occurs
because of the log becoming 75 percent full. If all of the update threads are in
a critical section (see "Critical Sections" on page 14-46) and perform physical
logging of the maximum number of pages in their critical section, OnLine
must fit this logging into the final 25 percent of the physical log so as to pre
vent a physical-log overflow.

The maximum number of pages (max_log_pages_per_critical_section) that
OnLine can physically log in a critical section is five. The number four in the
formula is necessary because the following part of the formula represents
only 25 percent of the physical log.

USERTHREADS * maximum log pages per critical section

The exception to this rule occurs if you are using tblspace blobs in a database
without logging. Here, you should substitute the size of the most frequently
occurring blob in the dbspace for the maximum log pages per critical section.

In addition you need to think about the following issues:

• How much updating of data does OnLine perform?
Operations that do not perform updates do not generate before-images,
so if the applications using your database server do not do much updat
ing, you might not need a very big physical log. If the size of your data
base is fixed but you frequently update the data, a lot of physical logging

What Is Physical Logging? 20-5

What Is the Physical Log?

occurs. If the size of the database is growing but applications rarely
update the data, not much physical logging occurs.
You should also keep in mind that OnLine only writes the before-image
of the first update made to a page. Thus, if your application is repeatedly
updating the same pages, you need a smaller physical log than if your
application performs a lot of updating but seldom updates the same page.

• How frequently do checkpoints occur?
Since the physical log is emptied after each checkpoint, the physical log
only needs to be large enough to hold before-images from changes
between checkpoints. If your physical log frequently approaches full, you
might consider decreasing the check point interval, CKPTINTVL, so that
checkpoints occur more frequently. Be aware, however, that decreasing
the checkpoint interval beyond a certain point has an impact on
performance.
If you plan to increase the checkpoint interval, or anticipate increased
activity, you will probably want to increase the size of the physical log.

The size of the physical log is specified by the ONCONFIG parameter
PHYSFILE. (See "PHYSFILE" on page 35-33.)

Can the Physical Log Become Full?
Since a checkpoint is initiated that logically empties the physical log when it
becomes 75 percent full, it is unlikely that it would become 100 percent full.
You can further assure that the physical log does not become full during a
checkpoint by taking the following actions:

• Configuring OnLine according to the sizing guidelines for the physical
log and the logical log files

• Fine tuning the size of the physical log as a result of monitoring it during
production activity

However, it is still possible that the physical log could become full as
described in the following paragraphs.

Under normal processing, once a checkpoint is requested and the checkpoint
begins, all threads are prevented from entering critical sections of code. (See
"Critical Sections" on page 14-46.) However, threads currently in critical sec
tions can continue processing. It is possible for the physical log to become full
if many threads in critical sections are processing work and if the space
remaining in the physical log is very small. The many writes performed as
threads complete their critical section processing could conceivably cause the
physical log to become full.

20-6 What Is Physical Logging?

What Is the Physical Log?

Consider the following example. When OnLine processes tblspace blobs
stored in a database created with transaction logging, each portion of the blob
that OnLine stores on disk can be logged separately, allowing the thread to
exit the critical sections of code between each portion. However, if the data
base was created without logging, OnLine must carry out all operations on
the tblspace blob in one critical section. If the blob is large and the physical
log small, this scenario can cause the physical log to become full. If this
occurs, OnLine sends the message

Physical log file overflow

to the message log and then initiates a shutdown. See this message in your
message log for suggested corrective action.

This same unlikely scenario could occur during the rollback of a long trans
action after the second long-transaction high-water mark, LTXEHWM, is
reached. (See "Avoiding Long Transactions" on page 18-12.) After the
LTXEHWM is reached, and after all threads have exited critical sections, only
the thread that is performing the rollback has access to the physical and log
ical logs. However, it is conceivable that the writes performed as threads
complete their processing could fill the physical log during the rollback if the
following conditions occur simultaneously:

• Many threads were in critical sections.

• The space remaining in the physical log was very small at the time the
LTXEHWM was reached.

Where Is the Physical Log Located?
When OnLine disk space is initialized, the logical log files and the physical
log are placed in the root dbspace. You have no initial control over this place
ment. To improve performance (specifically, to reduce the number of writes
to the root dbspace and minimize disk contention), you can move the physi
cal log out of the root dbspace to another dbspace, preferably on a disk that
is not shared by active tables or the logical log files.

The dbspace in which the physical log is located is specified in the ONCON-
FIG parameter PHYSDBS. (See "PHYSDBS" on page 35-33). You should
change this parameter only if you decide to move the physical-log file from
the root dbspace. (See "Changing the Physical-Log Location and Size" on
page 21-3.)

Because of the critical nature of the physical log, Informix recommends that
you mirror the dbspace that contains the physical log.

What Is Physical Logging? 20-7

Details of Physical Logging

Details of Physical Logging
This section describes the details of physical logging. It is provided to satisfy
your curiosity; you do not need to understand the information here to man
age your physical log.

OnLine performs physical logging in the following six steps:

1. Reads the data page from disk to the shared-memory page buffer (if the
data page is not there already).

2. Copies the unchanged page to the physical-log buffer.
3. Reflects the change in the page buffer after an application modifies data.
4. Flushes the physical-log buffer to the physical log on disk.
5. Flushes the page buffer and writes it back to disk.
6. When a checkpoint occurs, flushes the physical-log buffer to the physical

log on disk and empties the physical log.

Each step is explained in detail in the paragraphs that follow.

Page Is Read into the Shared-Memory Buffer Pool
When a session requests a row, OnLine identifies the page on which the row
resides and attempts to locate the page in the OnLine shared-memory buffer
pool. If the page is not already in shared memory, it is read into the resident
portion of OnLine shared memory from disk.

A Copy of the Page Buffer Is Stored in the Physical-Log
Buffer

Before a dbspace data page is modified, a copy of the unchanged page is
stored in the physical-log buffer (if the unchanged page is not already stored
in the physical-log buffer since the last checkpoint). This copy of the before
image of the page is eventually flushed from the physical-log buffer to the
physical log on disk. The before-image of the page plays a critical role in
archiving and fast recovery. (Subsequent modifications of the same page
before the next checkpoint do not require another before-image to be stored
in the physical-log buffer.)

20-8 What Is Physical Logging?

Details of Physical Logging

Change Is Reflected in the Data Buffer
The application changes data. OnLine reflects these changes in the shared-
memory data buffer.

Data from the application is passed to OnLine. After a copy of the unchanged
data page is stored in the physical-log buffer, the new data is written to the
page buffer already acquired.

Physical-Log Buffer Is Flushed to the Physical Log
OnLine will most likely flush the physical-log buffer before it flushes the data
buffer to ensure that a copy of the unchanged page is available until the
changed page is copied to disk. The before-image of the page is no longer
needed after a checkpoint occurs. (During a checkpoint, all modified pages in
shared memory are flushed to disk providing a consistent point from which
to recover in case an uncontrolled shutdown occurs.)

Page Buffer Is Flushed
After the physical-log buffer is flushed, the shared-memory page buffer is
flushed to disk (but only as a result of a fixed set of conditions such as a
checkpoint) and the data page is written to disk. For conditions that lead to
the flushing of the page buffer, see "How OnLine Achieves Data Consis
tency" on page 14-46.

When Checkpoint Occurs, Physical-Log Buffer Is Flushed
and Physical Log Is Emptied

A checkpoint can occur at any point in the physical logging process. After a
checkpoint occurs, OnLine is physically consistent. The data on disk reflects
the actual changes that the application made since the data pages in shared
memory were flushed to disk. OnLine empties the physical log logically,
allowing current entries to be overwritten.

How the Physical Log Is Emptied
OnLine manages the physical log as a circular file, constantly overwriting
unneeded data.The checkpoint procedure empties the physical log by reset
ting a pointer in the physical log that marks the beginning of the next group
of required before-images.

What Is Physical Logging? 20-9

Managing the
Physical Log
Chapter Overview 3

Changing the Physical-Log Location and Size 3
Why Change Physical-Log Location and Size? 3
Before You Make the Changes 4
Using ON-Monitor to Changing Physical-Log Location

or Size 4
Using an Editor to change Physical-Log Location and

Size 5
Using onparams to Change Physical-Log Location or

Chapter

Chapter Overview
This chapter describes how to change the configuration parameters associ
ated with the physical log. For background information about the physical
log, see Chapter 20, "What Is Physical Logging?"

Changing the Physical-Log Location and Size
You can change your physical-log location or size in three ways:

• Using ON-Monitor

• Using a text editor to edit the ONCONFIG file

• Using the onparams utility from the command line

You must be logged in as user informix or root when you make the changes.
Each of these methods is described in the following sections.

For any of the three methods, you can activate the changes to the size or loca
tion of the physical log as soon as you make them by reinitializing shared
memory. If you use onparams, you can reinitialize shared memory in the
same step.

You should create a level-0 archive immediately after you reinitialize shared
memory. This archive is critical for INFORMIX-OnLine Dynamic Server
recovery. See the INFORMIX-OnLine Dynamic Server Archive and Backup
Guide.

Why Change Physical-Log Location and Size?
You can move the physical-log file to try to improve performance. When
OnLine disk space is initialized, the disk pages allocated for the logical log
and the physical log are always located in the root dbspace. You might be able
to improve performance by moving the physical log or the logical-log files or
both to other dbspaces.

Managing the Physical Log 21-3

Changing the Physical-Log Location and Size

See " Where Is the Physical Log Located?" on page 20-7 for advice on where
to place the physical log, and "How Big Should the Physical Log Be?" on
page 20-5 for advice on sizing the physical log.

Before You Make the Changes
The space allocated for the physical log must be contiguous. If you move the
log to a dbspace without adequate contiguous space, or if you increase the
log size beyond the available contiguous space, a fatal shared-memory error
occurs when you attempt to reinitialize shared memory with the new values.
If this error occurs, resize the log or choose another dbspace with adequate
contiguous space and then reinitialize OnLine.

You can check if there is adequate contiguous space with the -pe option of the
oncheck utility. See "-pe Option" on page 37-13 for more information.

You must be logged in as user root or informix to change the physical-log
location or size using either ON-Monitor or onparams.

Using ON-Monitor to Changing Physical-Log Location or
Size

Select the Parameters menu, Physical-Log option to change the size or
dbspace location, or both.

The P h y s i c a l - l o g S iz e field displays the current size of the log. Enter the
new size (in kilobytes) if you want to change the size of the log. The D bspace
Name field displays the current location of the physical log. Enter the name of
the new dbspace if you want to change the log location.

You are prompted, first, to confirm the changes and, second, if you want to
shut OnLine down. This last message refers to reinitializing shared memory.
If you respond Y, ON-Monitor reinitializes shared memory and any changes
are implemented immediately. If you respond N, the values are changed in
the configuration file, but the changes do not take effect until you reinitialize
shared memory.

After you reinitialize shared memory, create a level-0 archive immediately to
ensure that all recovery mechanisms are available.

21-4 M anaging the Physical Log

Changing the Physical-Log Location and Size

Using an Editor to change Physical-Log Location and Size
You can change the value of the following parameters (page numbers point
you to instructions) in the ONCONFIG file with your text editor while OnLine
is in on-line mode:

The changes do not take effect until you reinitialize shared memory.

After you reinitialize shared memory, create a level-0 archive immediately to
ensure that all recovery mechanisms are available.

Using onparam s to Change Physical-Log Location or Size
You can find reference information regarding the onparams utility in
"onparams: Modify Log-Configuration Parameters" on page 37-37.

To change the size and location of the physical log, execute the following
command after you bring OnLine to quiescent mode:

% onparams -p - s s i z e -d d bsp ace -y

where size is the new size of the physical log in kilobytes, and dbspace specifies
the new dbspace where the physical log is to reside.

The following example changes the size and location of the physical log. The
new physical-log size is 400 kilobytes, and the log will reside in the dbspace6
dbspace. The command also reinitializes shared memory with the -y option
so that the change takes effect immediately, as follows:

% onparams -p - s 400 -d d bsp ace6 -y

After you reinitialize shared memory, create a level-0 archive to ensure that
all recovery mechanisms are available. See the INFORMIX-OnLine Dynamic
Server Archive and Backup Guide.

• PHYSFILE
• PHYSDBS

page 35-33
page 35-33

Managing the Physical Log 21-5

What Is Fast
Recovery?
Chapter Overview 3

What Is Fast Recovery? 3
When Is Fast Recovery Needed? 3
When Does OnLine Initiate Fast Recovery? 4
Fast Recovery and Buffered Logging 4
Fast Recovery and No Logging 4

Details of Fast Recovery 5
Return to the Last-Checkpoint State 5
Find the Checkpoint Record in the Logical Log
Roll Forward Logical Log Records 7
Roll Back Incomplete Transactions 8

Chapter Overview
You do not need to take any administrative actions with respect to fast recov
ery; it is an automatic feature. You might want to read this chapter, however,
if you are interested in what fast recovery is and how it works.

This chapter covers the following topics:

• A definition of fast recovery, including the types of failures fast recovery
addresses and how INFORMIX-OnLine Dynamic Server detects these
failures

• The details of how fast recovery works

What Is Fast Recovery?
Fast recovery is an automatic, fault-tolerance feature that OnLine executes
every time OnLine moves from off-line to on-line mode or from quiescent to
on-line mode.

The fast-recovery process then checks to see if the last time OnLine went off
line, it did so in uncontrolled conditions. If so, fast recovery returns OnLine
to a state of physical and logical consistency as described in "Details of Fast
Recovery" on page 22-5.

If the fast-recovery process finds that OnLine came off-line in a controlled
manner, the fast-recovery process terminates and OnLine moves to on-line
mode.

When Is Fast Recovery Needed?
Fast recovery restores OnLine to physical and logical consistency after any
failure that results in the loss of the contents of memory for OnLine. Such fail
ures are usually termed system failures. System failures do not cause any
physical damage to the database but instead affect transactions that are in
progress at the time of the failure.

What Is Fast Recovery ? 22-3

What Is Fast Recovery?

Fast recovery addresses system failures like the following example: Online
is processing tasks for more than 40 users. Dozens of transactions are on
going. Without warning, the operating system fails.

How does Online bring itself to a consistent state again? What happens to
ongoing transactions? The answer to both questions is fast recovery.

When Does OnLine Initiate Fast Recovery?
Online checks if fast recovery is needed every time the administrator brings
OnLine to quiescent mode or on-line mode from off-line mode.

As part of shared-memory initialization, OnLine checks the contents of the
physical log. The physical log is empty when OnLine shuts down under con
trol. The move from on-line mode to quiescent mode includes a checkpoint,
which flushes the physical log. Therefore, if OnLine finds pages in the phys
ical log, it is clear OnLine went off-line under uncontrolled conditions, and
fast recovery begins.

Fast Recovery and Buffered Logging
If a database uses buffered logging (as described in "Buffered Transaction
Logging" on page 16-9), some logical log records associated with committed
transactions might not be written to the logical log at the time of the failure.
If this occurs, fast recovery is unable to restore those transactions. Fast recov
ery can only restore transactions with an associated COMMIT record stored in
the logical log on disk. (This is why buffered logging represents a trade-off
between performance and data vulnerability.)

Fast Recovery and No Logging
For databases that do not use logging, fast recovery restores the database to
its state at the time of the most-recent checkpoint. All changes made to the
database since the last checkpoint are lost.

22-4 What Is Fast Recovery?

Details of Fast Recovery

Details of Fast Recovery
The result of fast recovery is to return Online to a consistent state as part of
shared-memory initialization. The consistent state means that all committed
transactions are restored and all uncommitted transactions are rolled back.

Fast recovery is accomplished in the following two stages:

• The physical log is used to return Online to the most-recent point of
known physical consistency\ the most-recent checkpoint.

• The logical log files are used to return Online to logical consistency\ by roll
ing forward all committed transactions that have occurred since the
checkpoint and rolling back all transactions that were left incomplete.

The two stages can also be expressed as the following four steps. Each step is
described in detail in the paragraphs that follow.

1. Return all disk pages to their condition at the time of the most-recent
checkpoint using the data in the physical log.

2. Locate the most-recent checkpoint record in the logical log files.
3. Roll forward all logical log records written after the most-recent check

point record.
4. Roll back transactions that do not have an associated COMMIT record in

the logical log.

Return to the Last-Checkpoint State
The first step, returning all disk pages to their condition at the time of the
most-recent checkpoint is accomplished by writing the before-images stored
in the physical log to shared memory and then back to disk. Each before
image in the physical log contains the address of a page that was updated
after the checkpoint. By writing each before-image page in the physical log to
shared memory and then back to disk, changes to OnLine data since the time
of the most-recent checkpoint are undone. Figure 22-1 illustrates this step.

What Is Fast Recovery? 22-5

Details of Fast Recovery

Disk A D is k B

Figure 22-1 OnLine writes all before-images that remain in the physical log back to disk, return
ing the data to its state as of the most-recent checkpoint.

Find the Checkpoint Record in the Logical Log
The second step is to locate the address of the most-recent checkpoint record
in the logical log. The most-recent checkpoint record is guaranteed to be in
the logical log on disk.

All address information needed to locate the most-recent checkpoint record
in the logical log is contained in the active PAGE_CKPT page of the root
dbspace reserved pages. (See "PAGE_CKPT" on page 40-8.)

Once this information is read, it also identifies the location of all logical log
records written after the most-recent checkpoint. Figure 22-2 illustrates this
step.

22-6 What Is Fast Recovery?

Details of Fast Recovery

Checkpoint
record

Reserved page
P A G E _ C K P T

Checkpoint
record
address

Figure 22-2 OttLine locates the most-recent checkpoint record in the logical log.

Roll Forward Logical Log Records
The third step in fast recovery is to roll forward the logical log records that
were written after the most-recent checkpoint record. This action reproduces
all changes to the databases since the time of the last checkpoint, up to the
point where the uncontrolled shutdown occurred. Figure 22-3 illustrates this
step.

Figure 22-3 OnLine rolls forward the logical log records written since the most-recent checkpoint,
reproducing the changes to the database since the checkpoint.

What Is Fast Recovery? 22-7

Details of Fast Recovery

Roll Back Incomplete Transactions
The final step in fast recovery is to roll back all logical log records that are
associated with transactions that were not committed at the time the system
failed. (Transactions that have completed the first phase of a two-phase com
mit are exceptional cases.) This rollback procedure ensures that all databases
are left in a consistent state.

Because it is possible that one or more transactions spanned several check
points without being committed, this rollback procedure might read back
ward through the logical log past the most-recent checkpoint record. All
logical log files that contain records for open transactions are available to
Online because a log file is not freed until all transactions contained within
it are closed. Figure 22-4 illustrates the roll-back procedure. When fast recov
ery is complete, Online goes to quiescent or on-line mode.

Figure 22-4 OnLine rolls back all incomplete transactions, ensuring that all databases are left in
a consistent state. Records that appear in the logical log earlier than the checkpoint
might be rolled back if they are associated with an incomplete transaction.

22-8 What Is Fast Recovery?

Fault Tolerance

What Is Mirroring?
Chapter Overview 3

What Is Mirroring? 3
What Are the Benefits of Mirroring? 4
What Are the Costs of Mirroring? 4
What Happens If You Do Not Mirror? 5
What Should You Mirror? 5
What Mirroring Alternatives Exist? 5

The Mirroring Process 6
What Happens When You Create a Mirror Chunk? 6
What Are Mirror Status Flags? 7
What Is Recovery? 7
What Happens During Processing? 8

Disk Writes to Mirrored Chunks 8
Disk Reads from Mirrored Chunks 8
Detecting Media Failures 9
Recovering a Chunk 9

What Happens If You Stop Mirroring? 10
What Is the Structure of a Mirror Chunk? 10

Chapter

Chapter Overview
The first part of this chapter answers the following basic questions about the
INFORMIX-OnLine Dynamic Server mirroring feature:

• What are the benefits of mirroring?
• What are the costs of mirroring?
• What happens if you do not mirror?
• What should you mirror?
• What mirroring alternatives exist?

The second part of the chapter discusses the actual mirroring process. The
following aspects of the process are discussed:

• What happens when you create a mirror chunk?
• What are the mirror status flags?
• What is recovery?
• What happens during processing?
• What happens if you stop mirroring?
• What is the structure of a mirror chunk?

For instructions on how to perform mirroring tasks, refer to Chapter 24,
"Using Mirroring."

What Is Mirroring?
Mirroring is a strategy that pairs a primary chunk of one defined dbspace or
blobspace with an equal-sized mirror chunk. Every write to the primary
chunk is automatically accompanied by an identical write to the mirror
chunk. This concept is illustrated in Figure 23-1. If a failure occurs on the pri
mary chunk, mirroring enables you to read from and write to the mirror
chunk until you can recover the primary chunk, all without interrupting user
access to data.

What Is Mirroring? 23-3

What Is Mirroring?

Figure 23-1 Data is written to both the primary chunk and the mirror chunk.

Mirroring on disks managed over a network is not supported. The same
OnLine database server must manage all the chunks of a mirrored set.

What Are the Benefits of Mirroring?
Mirroring provides the OnLine administrator with a means of recovering
data, in the event of a media failure, without having to take OnLine off-line.
This feature results in greater reliability and less system downtime. Further
more, applications can continue to read from and write to a database whose
primary chunks are on the affected media, provided that the chunks that mir
ror this data are located on separate media.

Any database that has extreme requirements for reliability in the face of
media failure should be located in a mirrored dbspace. Above all, the root
dbspace, which contains the OnLine reserved pages, should be mirrored.

What Are the Costs of Mirroring?
Disk-space costs as well as performance costs are associated with mirroring.
The disk-space cost is due to the additional space required for storing the
mirror data. The performance cost results from having to perform writes to
both the primary and mirror chunks. The use of multiple virtual processors
for disk writes reduces this performance cost. The use of split reads, whereby
OnLine reads data from either the primary chunk or the mirror chunk
depending on the location of the data within the chunk, actually causes per
formance to improve for read-only data. See "What Happens During Pro
cessing?" on page 23-8 for more information on how OnLine performs reads
and writes for mirrored chunks.

23-4 What Is Mirroring?

What Is Mirroring?

What Happens If You Do Not Mirror?
If you do not mirror your dbspaces, the frequency with which you have to
restore from an archive in the event of a media failure increases.

When a mirrored chunk suffers a media failure, Online reads exclusively
from the chunk that is still on-line until you bring the down chunk back on
line. On the other hand, when an unmirrored chunk goes down, Online can
not access the data stored on that chunk. If the chunk contains logical-log
files, the physical log, or the root dbspace, Online goes off-line immediately.
If the chunk does not contain logical-log files, the physical log, or the root
dbspace, Online can continue to operate, but threads cannot read from or
write to the down chunk. Unmirrored chunks that go down must be restored
by recovering the dbspace from an archive.

What Should You Mirror?
Ideally you would be able to mirror all of your data. If disk space is an issue,
however, you might not be able to do this. In this case, you should select cer
tain critical chunks to mirror.

Critical chunks always include the chunks that are part of the root dbspace,
the chunk that stores the logical-log files, and the chunk that stores the phys
ical logs, because if these chunks go down Online goes off-line immediately.

If you have chunks that hold data that is critical to your business, you should
also give these chunks high priority for mirroring.

You should also give priority for mirroring to other chunks that store data
that is frequently used. This ensures that the activities of many users are not
halted if one widely used chunk goes down.

What Mirroring Alternatives Exist?
Mirroring, as discussed in this manual, is an Online feature. Alternative mir
roring solutions, provided by your operating system or hardware, might be
available.

If you are considering a mirroring feature provided by your operating system
instead of Online mirroring, compare the implementation of both features
before you decide which to use. Bear in mind that the slowest step in the mir
roring process is the actual writing of data to disk. The Online strategy of
performing writes to mirrored chunks in parallel (see "Disk Writes to Mir
rored Chunks" on page 23-8) helps to reduce the time required for this step.
In addition, Online mirroring uses split reads to improve read performance.

What Is Mirroring? 23-5

The Mirroring Process

(See "Disk Reads from Mirrored Chunks" on page 23-8.) Operating system
mirroring features which do not use parallel mirror writes and split reads
might give inferior performance.

Nothing prevents you from running Online mirroring and operating system
mirroring at the same time. They run independently of each other. In some
cases, you might decide to use both Online mirroring and the mirroring fea
ture provided by your operating system. For example, you might have both
Online data and non-OnLine data on a single disk drive. You could use the
operating system mirroring to mirror the non-OnLine data and OnLine mir
roring to mirror the OnLine data.

Logical volume managers are an alternative mirroring solution. Some oper
ating system vendors provide this type of utility to have multiple disks
appear as one file system. Saving data to more than two disks gives you
added protection from media failure, but the additional writes have a perfor
mance cost.

Another solution is to use hardware mirroring such as RAID (redundant
array of inexpensive disks). An advantage of this type of hardware mirroring
is that it requires less disk space than OnLine mirroring does to store the
same amount of data in a manner resilient to media failure. The disadvantage
is that it is slower than OnLine mirroring for write operations.

The Mirroring Process
This section describes the mirroring process in greater detail. For instructions
on how to perform mirroring operations such as creating mirror chunks,
starting mirroring, changing the status of mirror chunks, and so on, refer to
Chapter 24, "Using Mirroring."

What Happens When You Create a Mirror Chunk?
When you specify a mirror chunk, OnLine copies all the data from the pri
mary chunk to the mirror chunk. This copy process is known as recovery. Mir
roring begins as soon as recovery is complete.

The recovery procedure that marks the beginning of mirroring is delayed if
you start to mirror chunks within a dbspace that contains a logical-log file.
Mirroring for dbspaces that contain a logical-log file does not begin until you
create a level-0 archive of the root dbspace. The delay ensures that OnLine
can use the mirrored logical-log files if the primary chunk containing these
logical-log files becomes unavailable during an archive restore. The level-0
archive operation copies the updated OnLine configuration information,

23-6 What Is Mirroring?

The Mirroring Process

including information about the new mirror chunk, from the root dbspace
reserved pages to the archive. If you do a data restore, the updated configu
ration information at the beginning of the archive directs OnLine to look for
the mirrored copies of the logical-log files if the primary chunk becomes
unavailable. If this new archive information does not exist, OnLine is unable
to take advantage of the mirrored log files.

For similar reasons, you cannot mirror a dbspace that contains a logical-log
file while an archive is being created. The new information that must appear
in the first block of the archive tape cannot be copied there once the archive
has begun.

For more information on creating mirror chunks, refer to Chapter 24, "Using
Mirroring."

What Are Mirror Status Flags?
Dbspaces and blobspaces have status flags that indicate whether the dbspace
or blobspace is mirrored, unmirrored, or mirrored but requiring a level-0
archive of the root dbspace before mirroring starts.

Chunks have status flags that indicate the following information:

• Whether the chunk is a primary or mirror chunk
• Whether the chunk is currently on-line, down, a new mirror chunk

requiring a level-0 archive of the root dbspace, or being recovered.

For descriptions of these chunk status flags, refer to "-d Option" on
page 37-52. For information on how to display these status flags, refer to
"Monitoring Chunk Status" on page 29-43.

What Is Recovery?
When OnLine recovers a mirrored chunk, it performs the same recovery pro
cedure it uses when mirroring begins. The mirror-recovery process consists
of copying the data from the existing on-line chunk onto the new, repaired
chunk until the two are considered identical.

When you initiate recovery, OnLine puts the down chunk in recovery mode
and copies the information from the on-line chunk to the recovery chunk.
When the recovery is complete, the chunk automatically receives on-line sta
tus. You perform the same steps whether you are recovering the primary
chunk of a mirrored pair or recovering the mirror chunk.

What Is Mirroring? 23-7

The Mirroring Process

Note that you can still use the on-line chunk while the recovery process is
occurring. If data is written to a page that has already been copied to the
recovery chunk, Online updates the corresponding page on the recovery
chunk before continuing with the recovery process.

For information on how to recover a down chunk, refer to "Recovering a Mir
rored Chunk" on page 24-9.

What Happens During Processing?
This section discusses some of the details of disk I/O for mirrored chunks and
how Online handles media failure for these chunks.

Disk Writes to Mirrored Chunks
During Online processing, Online performs mirroring by executing two
writes for each modification: one to the primary chunk and one to the mirror
chunk. Virtual processors of the AIO class perform the actual disk I/O. For
more information, refer to "Asynchronous I/O" on page 12-22.

The requesting thread submits the two write requests (one for the primary
chunk and one for the mirror chunk) asynchronously. That is, if two AIO vir
tual processors are idle, they can perform the two disk writes in parallel. In
the meantime, the requesting thread can perform any additional processing
that does not depend on the result of the mirror I/O.

Disk Reads from Mirrored Chunks
OnLine makes use of mirroring to improve read performance because two
versions of the data reside on separate disks. A data page is read from either
the primary chunk or the mirror chunk, depending on which half of the
chunk includes the address of the data page. This is called a split read. Split
reads improve performance by reducing the disk-seek time. Disk-seek time
is reduced because the maximum distance over which the disk head must
travel is reduced by half. This is illustrated in Figure 23-2.

23-8 What Is Mirroring?

The Mirroring Process

Primary
chunk

Data on this
half of chunk
read from the
mirror chunk.

Data on this
half of the
chunk is read
from the pri
mary chunk.

Mirror
chunk

Figure 23-2 Schematic illustrating how split reads reduce the maximum distance over which the
disk head must travel

Detecting Media Failures
OnLine checks the return code when it first opens a chunk and after any read
or write. Whenever OnLine detects that a primary (or mirror) chunk device
has failed, it sets the chunk status flag to down (D). Refer to "What Are Mirror
Status Flags?" on page 23-7 for information on chunk status flags.

If OnLine detects that a primary (or mirror) chunk device has failed, reads
and writes continue for the one chunk that remains on-line. This statement is
true even if the administrator intentionally brings down one of the chunks.

Once the administrator recovers the down chunk and returns it to on-line sta
tus, reads are again split between the primary and mirror chunks and writes
are made to both chunks.

Recovering a Chunk
OnLine uses asynchronous I/O to minimize the time required for recovering
a chunk. The read from the chunk that is on-line can overlap with the write
to the down chunk, instead of the two processes occurring serially. That is,
the thread performing the read does not have to wait until the thread per
forming the write has finished before reading more data.

What Is Mirroring? 23-9

The Mirroring Process

What Happens If You Stop Mirroring?
When you end mirroring, Online immediately frees the mirror chunks and
makes the space available for reallocation. The action of ending mirroring
takes only a few seconds.

You should create a level-0 archive of the root dbspace after you end mirror
ing to ensure that the reserved pages with the updated mirror chunk infor
mation are copied to the archive. This prevents the restore procedure from
assuming that mirrored data is still available.

What Is the Structure of a Mirror Chunk?
The mirror chunk contains the same control structures as the primary chunk.
Mirrors of blobspace chunks contain blobspace control pages; mirrors of
dbspace chunks contain dbspace control pages. Refer to "Structure of a Mir
ror Chunk" on page 40-15 for information on these structures.

A display of disk-space use, given by one of the methods discussed under
"Monitor Chunks" on page 29-46, always indicates that the mirror chunk is
full, even if the primary chunk has free space. The full mirror chunk indicates
that none of the space in the chunk is available for use other than as a mirror
of the primary chunk. The status remains full for as long as both primary
chunk and mirror chunk are on-line.

If the primary chunk goes down and the mirror chunk becomes the primary
chunk, disk-space allocation reports then accurately describe the fullness of
the new primary chunk.

23-10 What Is Mirroring?

Chapter

24
Using Mirroring
Chapter Overview 3

Steps Required for Mirroring Data 3

Enabling Mirroring 4
Enabling Mirroring Using ON-Monitor 4
Enabling Mirroring by Editing the ONCONFIG

File 5

Allocating Disk Space for Mirrored Data 5

Starting Mirroring 5
Mirroring the Root Dbspace During Initialization 6

Setting MIRRORPATH and MIRROROFFSET
Using ON-Monitor 6

Setting MIRRORPATH and MIRROROFFSET
Using a Text Editor 6

Starting Mirroring for Unmirrored Dbspaces 6
Starting Mirroring for Unmirrored Dbspaces Using

ON-Monitor 7
Starting Mirroring for Unmirrored Dbspaces Using

the onspaces Utility 7
Starting Mirroring for New Dbspaces 7

Starting Mirroring for New Dbspaces Using
ON-Monitor 7

Starting Mirroring for New Dbspaces Using the
onspaces Utility 7

Adding Mirror Chunks 8
Adding Mirror Chunks Using ON-Monitor 8
Adding Mirror Chunks Using the onspaces

Utility 8

Changing the Mirror Status 8
Taking Down a Mirror Chunk 8

Taking Down a Mirror Chunk Using ON-Monitor 9
Taking Down a Mirror Chunk Using the onspaces Utility 9

Recovering a Mirrored Chunk 9
Recovering a Mirrored Chunk Using ON-Monitor 9
Recovering a Mirrored Chunk Using the onspaces Utility 9

Relinking a Chunk to a Device After a Disk Failure 10

Ending Mirroring 10
Ending Mirroring Using ON-Monitor 10
Ending Mirroring Using onspaces 11

24-2 Using Mirroring

Chapter Overview
This chapter describes the various mirroring tasks that are necessary to make
use of the INFORMIX-OnLine Dynamic Server mirroring feature. First an
overview is given of the steps required for mirroring data. Then the following
tasks are described:

• Enabling mirroring
• Allocating disk space for mirror chunks
• Starting mirroring (creating mirror chunks)
• Adding chunks to mirrored dbspaces
• Changing the mirror status of chunks
• Relinking mirrored chunks after a disk failure
• Ending mirroring

Steps Required for Mirroring Data
To start mirroring data on a database server that is not running with the mir
roring function enabled, you must perform the following steps:

1. Take Online off-line and enable mirroring. (See "Enabling Mirroring" on
page 24-4.)

2. Reinitialize shared memory.
3. Allocate disk space for the mirror chunks. You can allocate this disk space

at any time, as long as the disk space is available when you specify mirror
chunks in the next step. (See "Allocating Disk Space for Mirrored Data"
on page 24-5.)

4. Choose the dbspace that you want to mirror and create mirror chunks by
specifying a mirror-chunk pathname and offset for each primary chunk
in that dbspace. The mirroring process starts after you perform this step.
Repeat this step for all the dbspaces that you want to mirror. (See "Start
ing Mirroring" on page 24-5.)

Using Mirroring 24-3

Enabling Mirroring

Enabling Mirroring
When you enable mirroring, you invoke the OnLine functionality required
for mirroring tasks. However, when you enable mirroring, you do not initiate
the mirroring process. Mirroring does not actually start until you create mir
ror chunks for a dbspace or blobspace. (See "Starting Mirroring" on
page 24-5.)

To enable mirroring for OnLine, you must set the MIRROR parameter in
ONCONFIG to one. The default value of MIRROR is zero, indicating mirroring
is disabled.

Enable mirroring when you initialize OnLine if you plan to create a mirror
for the root dbspace as part of initialization; otherwise, leave mirroring dis
abled. If you later decide to mirror a dbspace, you can change the value of the
MIRROR parameter through ON-Monitor or by editing your configuration
file.

You can change the value of MIRROR while OnLine is in on-line mode, but it
does not take effect until you reinitialize shared memory (take OnLine off
line and then to quiescent or on-line mode).

If you are logged in as user informix or root you can change the value of MIR
ROR either by using ON-Monitor, or by editing the ONCONFIG file with a text
editor. INFORMIX recommends that you enable mirroring by editing the
ONCONFIG file, because you might accidentally reinitialize your disk if you
are not careful when enabling mirroring with ON-Monitor.

Enabling Mirroring Using ON-Monitor
Select the Parameters menu, Initialize option to enable mirroring. In the field
labelled Mirror, enter a Y. Press ESC to record changes.

A series of screens appears displaying other system parameters. Type ESC at
each screen to maintain the same values. After the last of these screens, a
prompt appears to confirm that you want to continue (to initialize OnLine
disk space and destroy all existing data). Respond N (no) to this prompt.

A Warning: If you respond Y (yes) at this prompt, you will lose all of your existing
data.

Reinitialize shared memory (take OnLine off-line and then to quiescent
mode) for the change to take effect.

24-4 Using Mirroring

Allocating Disk Space for Mirrored Data

Enabling Mirroring by Editing the ONCONFIG File
Edit the ONCONFIG file. Change the value of MIRROR to 1. Reinitialize shared
memory (take Online off-line and then to quiescent mode) for the change to
take effect.

Allocating Disk Space for Mirrored Data
Before you can create a mirror chunk, you must allocate disk space for this
purpose. You can allocate either raw disk space or cooked file space for mir
ror chunks. For a discussion of allocating disk space, refer to "Allocating Disk
Space" on page 11-3.

Always allocate disk space for a mirror chunk on a different disk than the cor
responding primary chunk with, ideally, a different controller. This setup
allows you to access the mirror chunk if the disk on which the primary chunk
is located goes down, or vice versa.

Use the UNIX link (in) command to link the actual files or raw devices of the
mirror chunks to mirror pathnames. In the event of disk failure, you can link
a new file or raw device to the pathname, eliminating the need to physically
replace the disk that failed before the chunk is brought back on-line. (See
"Relinking a Chunk to a Device After a Disk Failure" on page 24-10.)

Starting Mirroring
Mirroring starts when you create a mirror chunk for each primary chunk in
a dbspace or blobspace. This action consists of specifying disk space that you
have already allocated — either raw disk space or a cooked file — for each
mirror chunk. You can use either ON-Monitor or the onspaces utility to create
mirror chunks.

When you create a mirror chunk, OnLine performs the recovery process,
copying data from the primary chunk to the mirror chunk. When this process
is complete, OnLine begins mirroring data. If the primary chunk contains
logical-log files, OnLine does not perform the recovery process immediately
after you create the mirror chunk but instead waits until you perform a level-
0 archive. See "What Happens When You Create a Mirror Chunk?" on
page 23-6 for an explanation of this behavior.

You must always start mirroring for an entire dbspace or blobspace. OnLine
does not permit you to select particular chunks in a dbspace or blobspace to
mirror. When you select a space to mirror, you must create mirror chunks for
every chunk within the space.

Using Mirroring 24-5

Starting Mirroring

You start mirroring a dbspace when you perform the following operations:

• Create a mirrored root dbspace during system initialization
• Change the status of a dbspace from unmirrored to mirrored
• Create a mirrored dbspace or blobspace

Each of these operations requires you to create mirror chunks for the existing
chunks in the dbspace or blobspace. You can perform all three operations
using ON-Monitor, and you can perform the last two using onspaces as well.

Mirroring the Root Dbspace During Initialization
If you enable mirroring when you initialize Online, you can also specify a
mirror pathname and offset for the root chunk. Online creates the mirror
chunk when it is initialized. However, since the root chunk contains logical
log files, mirroring does not actually start until you perform a level 0 archive.
(See "What Happens When You Create a Mirror Chunk?" on page 23-6.)

You specify the root mirror pathname and offset by setting the configuration
parameters MIRRORPATH and MIRROROFFSET.

If you do not provide a mirror pathname and offset but you do wish to start
mirroring the root dbspace, you must change the mirroring status of the root
dbspace once Online is initialized. (See "Starting Mirroring for Unmirrored
Dbspaces" on page 24-6.)

Setting MIRRORPATH and MIRROROFFSET Using ON-Monitor
If you are using ON-Monitor to initialize Online, you can set the MIRROR
PATH and MIRROROFFSET parameters in the DISK PARAMETERS screen of the
Parameters menu, Initialize option.

Setting MIRRORPATH and MIRROROFFSET Using a Text Editor
If you are using oninit to initialize Online, you must use a text editor to set
the values of MIRRORPATH and MIRROROFFSET in ONCONFIG before you
bring up Online.

Starting Mirroring for Unmirrored Dbspaces
You can start mirroring for any dbspace or blobspace using either
ON-Monitor or the onspaces utility.

24-6 Using Mirroring

Starting Mirroring

Starting Mirroring for Unmirrored Dbspaces Using ON-Monitor
Use the Mirror option of the Dbspaces menu to start mirroring a dbspace. The
first screen displays a list of dbspaces. Select the dbspace you want to mirror
by moving the cursor down the list to the correct dbspace and typing CTRL-B.
The Mirror option then displays a screen for each chunk in the dbspace. You
can enter a mirror pathname and offset in this screen. After you enter infor
mation for each chunk, press ESC to exit the option. Online recovers the new
mirror chunks unless they contain logical log files, in which case recovery is
postponed until after you do a level-0 archive.

Starting Mirroring for Unmirrored Dbspaces Using the onspaces Utility
You can also use the onspaces utility to start mirroring a dbspace or blob-
space. For example, the following onspaces command starts mirroring for
the dbspace db_project, which contains two chunks datal and data2:

% onspaces -m db_project\
-p /dev/datal -o 0 -m /dev/mirror_datal 0\
-p /dev/data2 -o 5000 -m /dev/mirror_data2 5000

See "onspaces: Modify Blobspaces or Dbspaces" on page 37-40 for a full
description of the onspaces syntax.

Starting Mirroring for New Dbspaces
You can also start mirroring when you create a new dbspace or blobspace.
You can use eitherON-Monitor or the onspaces utility to do this.

Starting Mirroring for New Dbspaces Using ON-Monitor
To create a dbspace with mirroring, choose the Create option of the Dbspaces
menu. This option displays a screen in which you can specify the pathname,
offset, and size of a primary chunk and the pathname and offset of a mirror
chunk for the new dbspace.

Starting Mirroring for New Dbspaces Using the onspaces Utility
You can use the onspaces utility to create a mirrored dbspace. For example,
the following command creates the dbspace db_acct with an initial chunk
/dev/chunkl and a mirror chunk /dev/mirror_chkl:

% onspaces -c -d db_acct -p /dev/chunkl -o 0 -s 2500 -m /dev/mirror_chkl 0

See "onspaces: Modify Blobspaces or Dbspaces" on page 37-40 for a full
description of the onspaces syntax.

Using Mirroring 24-7

Adding Mirror Chunks

Adding Mirror Chunks
If you add a chunk to a dbspace that is mirrored, you must also add a corre
sponding mirror chunk.

Adding Mirror Chunks Using ON-Monitor
In ON-Monitor, the Add-chunk option of the Dbspaces menu displays fields
in which to enter the primary chunk pathname, offset, and size, and the mir
ror chunk pathname and offset.

Adding Mirror Chunks Using the onspaces Utility
You can also use the onspaces utility to add a primary chunk and its mirror
chunk to a dbspace.The following example adds a chunk, chunk2, to the
db_acct dbspace. Since the dbspace is mirrored, a mirror chunk,
mirror_chk2, is also added.

% onspaces -a db_acct -p /dev/chunk2 -o 5000 -s 2500 -m /dev/mirror_chk2 5000

See "onspaces: Modify Blobspaces or Dbspaces" on page 37-40 for a full
description of the onspaces syntax.

Changing the Mirror Status
You can make the following two changes to the status of a mirrored chunk:

• Change a mirrored chunk from on-line to down
• Change a mirrored chunk from down to recovery

You can take down or restore a chunk only if it is part of a mirrored pair. You
can take down either the primary chunk or the mirror chunk, as long as the
other chunk in the pair is on-line.

For information on how to determine the status of a chunk, refer to "Moni
toring Chunk Status" on page 29-43.

Taking Down a Mirror Chunk
When a mirror chunk is down, Online cannot write to it or read from it. You
might take down a mirror chunk to relinking the chunk to a different device
(see "Relinking a Chunk to a Device After a Disk Failure" on page 24-10.)

24-8 Using Mirroring

Changing the Mirror Status

Taking down a chunk is not the same as ending mirroring. You end mirroring
for a complete dbspace, which causes Online to drop all the mirror chunks
for that dbspace.

Taking Down a Mirror Chunk Using ON-Monitor
To use ON-Monitor to take down a mirror chunk, choose the Status option
from the Dbspaces menu. With the cursor on the dbspace that contains the
chunk that you want to take down, press F3 or CTRL-B. Online displays a
screen listing all of the chunks in the dbspace. Move the cursor to the chunk
you wish to take down and type F3 or CTRL-B to change the status (take it
down).

Taking Down a Mirror Chunk Using the onspaces Utility
You can use the onspaces utility to take down a chunk. The following exam
ple takes down a chunk that is part of the dbspace db_acct:

% onspaces -s db_acct -p /dev/mirror_chkl -o 0 -D

See "onspaces: Modify Blobspaces or Dbspaces" on page 37-40 for a full
description of the onspaces syntax.

Recovering a Mirrored Chunk
You recover a down chunk to begin mirroring the data on the chunk that is
on-line.

Recovering a Mirrored Chunk Using ON-Monitor
To use ON-Monitor to recover a down chunk, choose the Status option from
the Dbspaces menu. With the cursor on the dbspace that contains the down
chunk, press F3 or CTRL-B. The system displays a screen listing all the chunks
in the dbspace. Move the cursor to the chunk that is down and type F3 or
CTRL-B to recover it.

Recovering a Mirrored Chunk Using the onspaces Utility
You can also recover a down chunk using the onspaces utility. For example,
to recover the chunk that has the pathname /dev/mirror_chkl and an offset
of 0 kilobytes, you could issue the following command:

% onspaces -s db_acct -p /dev/mirror_chkl -o 0 -0

Using Mirroring 24-9

Relinking a Chunk to a Device After a Disk Failure

See "onspaces: Modify Blobspaces or Dbspaces" on page 37-40 for a full
description of the onspaces syntax.

Relinking a Chunk to a Device After a Disk Failure
If the disk on which the actual mirror file or raw device is located goes down,
you can relink the chunk to a file or raw device on a different disk. This action
allows you to recover the mirror chunk before the disk that failed is brought
back on-line. Typical UNIX commands to do this are shown in the following
examples.

The original setup consists of a primary root chunk and a mirror root chunk,
which are linked to the actual raw disk devices, as follows:

% In -lg
lrwxrwxrwx 1 informix 10 May 3 13:38 /dev/root@->/dev/rxyOh
lrwxrwxrwx 1 informix 10 May 3 13:40 /dev/mirror_root@->/dev/rsd2b

Assume that the disk on which the raw device /dev/rsd2b resides has gone
down. You can use the rm command to remove the corresponding symbolic
link, as follows:

% rm /dev/mirror_root

Now you can relink the mirror chunk pathname to a raw disk device, on a
disk that is running, and proceed to recover the chunk, as follows:

% In -s /dev/rabOa /dev/mirror_root

Ending Mirroring
When you end mirroring for a dbspace, Online immediately releases the
mirror chunks of that dbspace. These chunks are immediately available for
reassignment to other dbspaces or blobspaces. Only users informix and root
can initiate this action.

You cannot end mirroring if any of the primary chunks in the dbspace are
down. The system can be in on-line mode when you end mirroring.

Ending Mirroring Using ON-Monitor
To end mirroring for a dbspace or blobspace using ON-Monitor, select the
Mirror option of the Dbspaces menu. Select a dbspace or blobspace that is
mirrored and type CTRL-B or F3.

24-10 Using Mirroring

Ending Mirroring

Ending Mirroring Using onspaces

You can also end mirroring using the onspaces utility. For example, to end
mirroring for the root dbspace enter the following command:

% onspaces -r rootdbs
See "onspaces: Modify Blobspaces or Dbspaces" on page 37-40 for a full
description of the onspaces syntax.

Using Mirroring 24-11

What Is Data
Replication?
Chapter Overview 3

What Is Data Replication? 3
What Is OnLine High Availability Data Replication? 4

What Are Primary and Secondary Database
Servers? 4

How Is Data Replication Different from
Mirroring? 6

How Is Data Replication Different from Two-Phase
Commit? 7

How Does Data Replication Work? 8
How Is the Data Initially Replicated? 8
How Are Updates to the Primary Reproduced on the

Secondary? 9
How Are the Log Records Sent? 9
What Are the Data-Replication Buffers? 9

When Are Log Records Sent? 10
Synchronous Updating 10
Asynchronous Updating 11

What Threads Handle Data Replication? 13
Checkpoints Between Database Servers 13
How Is Data Synchronization Tracked? 14

Data-Replication Failures 14
What Are Data-Replication Failures? 14
How Are Data-Replication Failures Detected? 15
What Happens When a Data-Replication Failure is

Detected? 15

Administrative Considerations After Data-Replication Failure 16
Actions to Take If the Secondary Database Server Fails 16
Actions to Take if the Primary Database Server Fails 17

Redirection and Connectivity for Data-Replication Clients 19
Designing Clients for Redirection 20
Automatic Redirection: Using DBPATH 20

How Does the DBPATH Redirection Method Work? 20
What Does the Administrator Need to Do? 21
What Does the User Need to Do? 21

Administrator-Controlled Redirection: Changing the sqlhosts File 22
How Does the sqlhosts File Redirection Method Work? 22
What Does the Administrator Need to Do? 22
What Does the User Need to Do? 25

User-Controlled Redirection: INFORMIXSERVER 25
How Does the INFORMIXSERVER Redirection Method Work? 25
What Does the Administrator Need to Do? 26
What Does the User Need to Do? 26

Handling Redirection Within an Application 26
An Example of a Connection Loop and Database Server Type

Check 26
Comparison of Different Redirection Mechanisms 28

Designing Clients to Use the Secondary Database Server 29
No Data Modification Statements 29
Locking and Isolation Level 30
Using Temporary Dbspaces for Sorting and Temporary Tables 31

25-2 What Is Data Replication?

Chapter Overview
This chapter describes INFORMIX-OnLine Dynamic Server high availability
data replication. The following topics are covered:

• What data replication is, both in a broad sense and in the context of
Online

• How Online data replication works
• How Online data replication handles failures
• How the system administrator or user can redirect a client to connect to

the other database server in the data-replication pair
• What the design considerations are for applications that connect to the

secondary database server.

A companion chapter, Chapter 26, "Using Data Replication," contains
instructions on how to accomplish the administrative tasks involved in using
data replication.

What Is Data Replication?
Data replication, in the broadest sense of the term, refers to the process of rep
resenting database objects at more than one distinct site.

For example, one way of replicating data is to simply copy a database to a
database server installed on a different computer. This allows reports to
access the data without disturbing client applications using the original
database.

What Is Data Replication? 25-3

What Is Data Replication?

The advantages of data replication are as follows:

• Clients at the site to which the data is replicated experience improved per
formance because those clients can access data locally rather than
connecting to a remote database server over a network.

• Clients at all sites experience improved availability of replicated data
because if the local copy of the replicated data is unavailable, clients can
still access the remote copy of the data.

These advantages do not come without a cost. Data replication obviously
requires more storage for replicated data than for unreplicated data, and
updating replicated data can take more processing time than updating a sin
gle object.

You could implement data replication in the logic of client applications by
explicitly specifying where data must be updated. However, this way of
achieving data replication is costly, error-prone, and difficult to maintain.
Instead, the concept of data replication is often coupled with replication trans
parency. Replication transparency is functionality built into a database server
(instead of client applications) to automatically handle the details of locating
and maintaining data replicas.

What Is OnLine High Availability Data Replication?
Within the broad framework of data replication, OnLine implements nearly
transparent data replication of entire database servers. All of the data man
aged by one OnLine database server is replicated and dynamically updated
on another OnLine database server, often at a separate geographical location.
OnLine data replication is sometimes called high availability or hot site backup
because it provides a means of maintaining a backup copy of the entire data
base server that applications can access quickly in the event of a catastrophic
failure.

What Are Primary and Secondary Database Servers?
When you configure a pair of OnLine database servers to use data replica
tion, one OnLine database server is called the primary database server and the
other is called the secondary database server. (In the context of data replica
tion, a database server not using data replication is referred to as a standard
database server.)

25-4 What Is Data Replication?

What Is Data Replication?

During normal operation, clients can connect to the primary database server
and use it as they would an ordinary Online database server. Clients can also
use the secondary database server during normal operation, but only to read
data. The secondary database server does not permit updates from client
applications.

As illustrated schematically in Figure 25-1, the secondary Online is dynam
ically updated with changes made to the data managed by the primary data
base server.

Figure 25-1 A primary and secondary database server in a data replication pair

If one of the database servers fails, as shown in Figure 25-2, you can redirect
the clients that use that database server to the other database server in the
pair.

Figure 25-2 Database servers in a data replication pair and clients after a failure

What Is Data Replication? 25-5

What Is Data Replication?

If a primary database server fails, you can change the secondary database
server to a standard database server so that it can accept updates.

Online data replication is designed to:

• Provide for quick recovery if one database server experiences a failure
• Allow for load balancing across the two database servers

How Is Data Replication Different from Mirroring?
Online data replication and mirroring are both transparent ways of making
Online more fault-tolerant. However, as shown in Figure 25-3, they are quite
different.

Mirroring, described in "What Is Mirroring?" on page 23-3, is the mechanism
by which a single Online database server maintains a copy of a specific
dbspace on a separate disk. This mechanism protects the data in mirrored
dbspaces against disk failure because Online automatically updates data on
both disks and automatically uses the other disk if one of the dbspaces fails.

25-6 What Is Data Replication?

What Is Data Replication?

Figure 25-3 A comparison of mirroring and data replication

Online data replication, on the other hand, duplicates all the data managed
by a database server (not just specified dbspaces) on an entirely separate
database server. Because Online data replication involves two separate data
base servers, the data that these database servers manage is protected against
all types of Online failures—such as a computer crash or the catastrophic
failure of an entire site — and not just disk failures.

How Is Data Replication Different from Two-Phase Commit?
The two-phase commit protocol, described in detail in "What Is Two-Phase
Commit?" ensures that transactions are uniformly committed or rolled back
across multiple database servers.

What Is Data Replication? 25-7

How Does Data Replication Work?

In theory, you could take advantage of two-phase commit to replicate data by
configuring two Online database servers with identical data, and then defin
ing triggers on one of the database servers that replicate updates to the other
database server. However, this sort of implementation has numerous syn
chronization problems in different failure scenarios. Also, the performance of
distributed transactions is inferior to dynamic data replication.

How Does Data Replication Work?
This section describes the mechanisms that Online uses to perform data rep
lication. For instructions on how to set-up, start, and administer a data-
replication system, refer to Chapter 26, "Using Data Replication."

How Is the Data Initially Replicated?
Online uses archives and logical-log files (both those backed-up to tape and
those on disk) to do an initial replication of the data on one database server
to a second database server. The procedure is basically as follows:

1. To make the bulk of the data managed by the two database servers the
same, you create a level-0 archive of all the dbspaces on one database
server and restore all the dbspaces from that archive on the other database
server in the data-replication pair.

2. Next the database server that you restored from an archive in the first
step, reads all the logical-log records generated since that archive from the
database server on which the archive was created. The database server
first reads the logical-log records from any backed-up logical-log files that
are no longer on disk, and then from any logical-log files on disk.

For detailed instructions on performing the preceding steps, refer to "Start
ing Data Replication for the First Time" on page 26-9.

You must do the initial data replication using an archive. It is not sufficient to
use data-migration utilities like onload and onunload to replicate data
because the physical page layout of tables on each database server must be
identical for data replication to work.

In the preceding steps, it does not matter whether the database server from
which you create the archive is going to be the primary database server or the
secondary database server.

25-8 What Is Data Replication ?

How Does Data Replication Work?

When Online data replication is working, the primary database server is in
on-line mode and accepts updates and queries like a standard OnLine data
base server. The secondary database server is in logical-recovery mode, and
cannot accept SQL statements that result in writes to disk (except for sorting
and temporary tables).

How Are Updates to the Primary Reproduced on the
Secondary?

OnLine data replication reproduces updates to the primary database server
on the secondary database server by having the primary database server
send all its logical-log records to the secondary database server as they are
generated. (For general information on transaction logging, refer to "What Is
Transaction Logging?" on page 16-7.) The secondary database server receives
the logical-log records generated on the primary database server and applies
them to its dbspaces.

Note: OnLine cannot replicate updates to databases that do not use transaction log
ging. OnLine does not replicate data in blobspaces either.

How Are the Log Records Sent?
As shown in Figure 25-4 on page 25-10, when the primary database server
starts to flush the contents of the logical-log buffer in shared memory to the
logical log on disk, OnLine also copies the contents of the logical-log buffer
to a data-replication buffer on the primary database server. The primary data
base server then sends these logical-log records to the secondary database
server.

The secondary database server receives the logical-log records from the pri
mary database server into a shared-memory reception buffer (that OnLine
automatically adjusts to an appropriate size for the amount of data being
sent). The secondary database server then applies the logical-log records
using logical recovery.

What Are the Data-Replication Buffers?
The data-replication buffers are part of the virtual shared memory managed
by the primary database server. The data-replication buffers hold logical-log
records before the primary database server sends them to the secondary data
base server. The data-replication buffers are the same size as the logical-log
buffers.

What Is Data Replication? 25-9

How Does Data Replication Work?

Disk Disk

Figure 25-4 How logical-log records are sent from the primary database server to the secondary
database server

When Are Log Records Sent?
The primary database server sends the contents of the data-replication buffer
to the secondary database server either synchronously or asynchronously. The
value of the ONCONFIG configuration parameter DRINTERVAL, described on
page 35-15, determines whether OnLine uses synchronous or asynchronous
updating.

Synchronous Updating
If you set DRINTERVAL to -1, data replication occurs synchronously. As soon
as the primary database server writes the logical-log buffer contents to the
data-replication buffer, it sends those records from the data-replication buffer
to the secondary database server. The logical-log buffer flush on the primary
database server only completes after the primary database server receives
acknowledgment from the secondary database server that the records were
received.

25-10 What Is Data Replication?

How Does Data Replication Work?

With synchronous updating, no transactions committed on the primary data
base server are left uncommitted or partially committed on the secondary
database server if a failure occurs.

Asynchronous Updating
If you set DRINTERVAL to anything other than -1, data replication occurs
asynchronously; the primary database server flushes the logical-log buffer
after it copies the logical-log buffer contents to the data-replication buffer.
Independent of that action, the primary database server sends the contents of
the data-replication buffer across the network when one of the following con
ditions occurs:

• The data-replication buffer becomes full.
• An application commits a transaction on an unbuffered database.
• The time interval, specified by the ONCONFIG parameter DRINTERVAL

on the primary database server, has elapsed since the last time records
were sent to the secondary database server.

This method of updating might provide better performance than synchro
nous updating, however as explained in the following section, there is poten
tial for transactions to be lost.

Lost-and-Found Transactions
With asynchronous updating, it is possible that a transaction committed on
the primary database server is not replicated on the secondary database
server. This situation can occur if a failure happens after the primary data
base server copies a commit record to the data replication buffer, but before
the primary database server sends that commit record to the secondary data
base server.

If the secondary database server is changed to a standard database server
after a failure of the primary, it rolls back any open transactions. These trans
actions include any that were committed on the primary but for which the
secondary did not receive a commit record. As a result, there are transactions
committed on the primary database server, but not on the secondary data
base server. When you restart data replication after the failure, OnLine places
all the logical-log records from the lost transactions in a file (specified by the
ONCONFIG parameter DRLOSTFOUND) during logical recovery of the pri
mary database server. This is shown schematically in Figure 25-5.

What Is Data Replication? 25-11

How Does Data Replication Work?

Records in primary Records in secondary
logical log logical log

Records for
transaction
committed on
primary but
rolled back on
secondary

«4-------Secondary switched
to standard

Records in primary
logical log after
recovery

Records in
lost-and-found file
after recovery

Figure 25-5 Schematic illustrating use of lost-and-found file

If the lost-and-found file appears on the computer running the primary data
base server after restarting data replication, be aware that a transaction has
been lost. O n lin e cannot reapply the transaction records in the lost-and-
found file, because conflicting updates might have occurred while the sec
ondary database server was acting as a standard database server.

You can reduce the risk of a lost transaction without running data replication
in synchronous mode by using unbuffered logging for all the databases. This
method reduces the amount of time between the primary database server
writing the transaction records to disk and the primary database server send
ing these records to the secondary database server.

25-12 What Is Data Replication?

How Does Data Replication Work?

What Threads Handle Data Replication?
Online starts specialized threads to support data replication. As shown in
Figure 25-6, a thread called drprsend on the primary database server sends
the contents of the data-replication buffer across the network to a thread
called drsecrcv on the secondary database server.

user
Primary Secondary

Figure 25-6 Threads that manage data replication

A thread called drsecapply on the secondary Online copies the contents of
the reception buffer to the recovery buffer. The logrecvr thread (or threads)
performs logical recovery with the contents of the recovery buffer, applying
the logical-log records to the dbspaces managed by the secondary database
server. The ONCONFIG parameter ON_RECVRY_THREADS specifies the num
ber of logrecvr threads used.

The remaining threads that Online starts for data replication are the
drprping and drsecping threads, which are responsible for sending and
receiving the signals that indicate if the two database servers are connected.

Checkpoints Between Database Servers
Checkpoints between database servers in a data-replication pair are synchro
nous, regardless of the value of DRINTERVAL. (See "OnLine Checkpoints" on
page 14-47.) A checkpoint on the primary database server only completes
after it completes on the secondary database server. If the checkpoint does

What Is Data Replication? 25-13

Data-Replication Failures

not complete within the time specified by the ONCONFIG parameter DRTIM-
EOUT, the primary database server assumes that a failure has occurred. (See
the section "What Are Data-Replication Failures?" which follows.)

How Is Data Synchronization Tracked?
To keep track of synchronization, each database server in the pair keeps track
of the following information in its archive reserve page (described in
"PAGE_ARCH" on page 40-12):

• The id of the logical-log file containing the last completed checkpoint
• The position of the checkpoint record within the logical-log file
• The id of the last logical-log file sent (or received)
• The page number of the last logical-log record sent (or received)

The database servers use this information internally to synchronize data
replication.

Data-Replication Failures
This section discusses the causes and consequences of a data-replication fail
ure, as well as the administrator's options for managing failure and restarting
data replication.

What Are Data-Replication Failures?
A data-replication failure is a loss of connection between the database servers
in a data-replication pair. Any of the following situations could cause a data-
replication failure:

• A catastrophic failure (like a fire or large earthquake) at the site of one of
the database servers

• A disruption of the networking cables joining the two database servers
• An excessive delay in processing on one of the database servers
• An administrative action to turn data replication off on one of the data

base servers (that is, change the type of the database server to standard)
• A disk failure on the secondary database server that is not resolved by a

mirrored chunk

25-14 What Is Data Replication?

Data-Replication Failures

Note: A data-replication failure does not necessarily mean that one o f the database
servers has failed, only that the data-replication connection between the two database
servers is lost.

How Are Data-Replication Failures Detected?
The database server interprets either of the following conditions as a data-
replication failure:

• A specified time-out value was exceeded.
In the course of normal data-replication operation, a database server
expects confirmation of communication back from the other database
server in the pair. Each database server in the pair has an ONCONFIG
parameter, DRTIMEOUT, that specifies a number of seconds. If confirma
tion from the other database server in a pair does not return within the
number of seconds specified by DRTIMEOUT, the database server assumes
that a data-replication failure has occurred.

• The periodic signaling (pinging) of the other database server over the net
work does not yield response.
Both database servers send a signal to (or ping) the other database server
in the pair when the number of seconds specified by the DRTIMEOUT
parameter on that database server has passed. The database servers sig
nal each other regardless of whether or not the primary database server
sends any records to the secondary database server. If a database server
does not respond to two signal attempts in a row, the database server that
was signaling assumes that a data-replication failure has occurred.

What Happens When a Data-Replication Failure is
Detected?

After a database server detects a data-replication failure, it writes a message
to its message log (for example DR: re c e iv e e rro r) and turns data repli
cation off. This means that the data-replication connection between the two
database servers is dropped. Both database servers experience the data-
replication connection being dropped.

If the secondary database server remains on-line, and the configuration
parameter DRAUTO is set to 1, the type of that database server changes auto
matically to standard. This is explained further under "Actions to Take if the
Primary Database Server Fails" on page 25-17.

What Is Data Replication? 25-15

Data-Replication Failures

Administrative Considerations After Data-Replication
Failure

You should consider the following two issues when a data-replication failure
occurs:

• How the clients should react to the failure
If the failure is a real failure (and not due to transitory network slowness
or failure), you probably want clients using the failed database server to
redirect to the other database server in the pair. How to redirect clients is
explained in "Redirection and Connectivity for Data-Replication Clients"
on page 25-19.

• How the database servers should react to the failure
Which administrative actions to take after a data-replication failure
depend upon whether the primary database server or the secondary data
base server failed. This is discussed in the following sections: "Actions to
Take If the Secondary Database Server Fails" and "Actions to Take if the
Primary Database Server Fails".
If you redirect clients, you also need to consider what sort of load the
additional clients will place on the remaining database server. You might
need to increase the space devoted to the logical log, or back up the logi
cal-log files more frequently. You might also need to increase the USER-
THREADS and/or TRANSACTIONS parameters in the ONCONFIG file.

Actions to Take If the Secondary Database Server Fails
If the secondary database server fails, the primary database server remains in
on-line mode.

You can redirect clients that used the secondary database server to the pri
mary database server, using any of the methods explained in "Redirection
and Connectivity for Data-Replication Clients" on page 25-19. If you redirect
these clients, the primary database server might require an additional tempo
rary dbspace for temporary tables and sorting.

You do not need to change the type of the primary database server to stan
dard.

Restarting After the Secondary Database Server Fails
The steps in restarting data replication after a failure of the secondary data
base server are listed in "Restarting If the Secondary Database Server Fails"
on page 26-23.

25-16 What Is Data Replication?

Data-Replication Failures

Actions to Take if the Primary Database Server Fails
If the primary database server fails, the secondary database server can
behave in the following three ways:

• The secondary database server can remain in logical-recovery mode. In
other words, no action is taken. This would be the case if you expect the
data-replication connection to be restored very soon.

• The secondary database server can automatically become a standard
database server. This is called automatic switchover.

• The secondary database server can remain in logical-recovery mode,
awaiting manual switchover.

Automatic switchover and manual switchover are described in the following
sections.

What Is Automatic Switchover?
Automatic switchover means that the secondary database server automati
cally becomes a standard database server after it detects a data-replication
failure. It first rolls back any open transactions and then comes into on-line
mode as a standard database server. Automatic switchover occurs only if the
parameter DRAUTO in the ONCONFIG file of the secondary database server is
set to 1.

Because the secondary database server becomes a standard database server,
you must be sure that it has enough logical-log disk space to allow processing
to continue without backing up logical-log files, or that the logical-log files are
backed up.

The automatic switchover only changes the type of the database server. It
does not redirect client applications to the secondary database server. You
need to redirect clients using any of the mechanisms described in "Redirec
tion and Connectivity for Data-Replication Clients" on page 25-19.

Automatic switchover has the following advantages over manual
switchover:

• Clients that you redirect from the primary database server to the second
ary database server can continue to write and update data.

• The switchover does not depend on an operator monitoring the message
log to see when data-replication failures occur and manually switching
the secondary database server to a standard database server.

What Is Data Replication? 25-17

Data-Replication Failures

The main disadvantage of automatic switchover is that it requires a very sta
ble network to function appropriately. This issue is discussed below under
"Using Automatic Switchover Without a Reliable Network."

Restarting Data Replication After Automatic Switchover
The steps required to restart data replication after an automatic switchover
are listed in "Restarting If the Primary Database Server Fails and Secondary
Database Server Is Changed to a Standard Database Server Automatically"
on page 26-26.

When the administrator succeeds in bringing the primary database server
back up, the type of the secondary database server switches automatically
back to secondary, from standard. This switch facilitates the procedure for
recovering from failure. The secondary also goes through graceful shutdown
to ensure that all clients that might potentially write to the database server
are not connected. You need to redirect any clients that perform updates back
to the primary database server.

Using Automatic Switchover Without a Reliable Network
Although automatic switchover might sound like a good solution, it is not
appropriate for all environments. Consider what would happen if the pri
mary database server did not actually fail, but appeared to fail to the second
ary database server. For example, if the secondary database server did not
receive responses when it signalled (pinged) the primary database server
because of a slow or unstable network, it would assume that the primary
database server failed and switch automatically to type standard. If the pri
mary database server also did not receive responses when it signalled the sec
ondary database server, it would assume the secondary database server had
failed and turn off data replication, but remain in on-line mode. Now the pri
mary and the secondary (switched to type standard) database servers are
both in on-line mode.

If clients can update the data on both database servers independently, the
database servers in the pair reach a state where both database servers have
logical-log records needed by the other. In this situation, you must start from
scratch and perform initial data replication with a level-0 archive of one
entire database server, as described in "Starting Data Replication for the First
Time" on page 26-9.

If your network is not entirely stable therefore, you might not want to use
automatic switchover.

25-18 What Is Data Replication?

Redirection and Connectivity for Data-Replication Clients

What Is Manual Switchover?
Manual switchover means that the administrator of the secondary database
server changes the type of the secondary database server to standard. The
secondary database server rolls back any open transactions and then comes
into on-line mode as a standard database server, so it can accept updates from
client applications. How to perform the switchover is explained in "Chang
ing the Database Server Type of the Secondary Database Server" on
page 26-17.

Restarting After a Manual Switchover
The steps involved in restarting data replication after a manual switchover
are listed in "Restarting If the Primary Database Server Fails and Secondary
Database Server Is Changed to a Standard Database Server Manually" on
page 26-24.

Restarting If the Secondary Database Server Is Not Switched to
Standard OnLine
If the secondary is not changed to type standard either automatically or man
ually, follow the steps listed in "Restarting If the Primary Database Server
Fails and Secondary Database Server Was Not Changed to a Standard Data
base Server" on page 26-24.

Redirection and Connectivity for Data-Replication
Clients

Clients connect to the database servers in a data-replication pair using the
same methods with which they connect to standard database servers. These
methods are explained in the descriptions of the CONNECT and DATABASE
statements in the Informix Guide to SQL: Syntax.

After a failure of one of the database servers in a pair, you might want to redi
rect the clients that use the failed database server. (You also might not want
clients to be redirected. For example, if you anticipate that the database serv
ers will be functioning again in a short amount of time, redirecting clients
might not be appropriate.)

OnLine does not have a transparent mechanism for directing client requests
to different database servers in a data replication pair, although you can auto
mate this from within the application as described under "Handling Redirec
tion Within an Application" on page 25-26.

What Is Data Replication? 25-19

Redirection and Connectivity for Data-Replication Clients

Designing Clients for Redirection
In designing client applications you must make some decisions on redirec
tion strategies. Specifically, you must decide whether to handle redirection
within the application, and which redirection mechanism to use. There are
three different redirection mechanisms:

• Automatic redirection using DBPATH

• Administrator-controlled redirection using the sqlhosts file
• User-controlled redirection using INFORMIXSERVER

The mechanism you employ determines which connect syntax you can use in
your application. The following three sections each describe one of the redi
rection mechanisms.

Automatic Redirection: Using DBPATH
This section explains the steps you must follow to redirect clients using the
DBPATH mechanism, and the connectivity strategy that supports this
method.

How Does the DBPATH Redirection Method Work?
The DBPATH redirection method relies on the fact that when an application
does not explicitly specify a database server in the CONNECT statement, and
the database server specified by the INFORMIXSERVER environment variable
is unavailable, the client uses the DBPATH environment variable to locate the
database (and database server).

So, if one of the database servers in a data-replication pair is unusable, appli
cations using that database server need not reset their INFORMIXSERVER
environment variable, as long as they have their DBPATH environment vari
able set to the other database server in the pair. Their INFORMIXSERVER envi
ronment variable should always contain the name of the database server they
use regularly, and their DBPATH environment variable should always con
tain the name of the alternative database server in the pair.

25-20 What Is Data Replication?

Redirection and Connectivity for Data-Replication Clients

For example, if applications normally use a database server called cliff_ol,
and the database server paired with cliff_ol in a data replication pair is called
beach_ol, the environment variables for those applications would be as
follows:

INFORMIXSERVER cliff_ol
DBPATH //beach ol

Because the DBPATH environment variable is only read (if needed) when an
application issues a CONNECT statement, applications need to restart for
redirection to occur.

An application can contain code which tests to see if a connection has failed
and, if so, attempts to reconnect. You do not need to restart such applications
for redirection using DBPATH to occur.

You can use the following connectivity statement with this method of
redirection:

• CONNECT TO database

You cannot use any of the following statements for this method to work:

• CONNECT TO DEFAULT
• CONNECT TO database@dbserver
• CONNECT TO @dbserver

The reason for this is that an application does not use DBPATH if a CONNECT
statement specifies a database server, but only if it specifies a database.

For more information on DBPATH refer to the Informix Guide to SQL: Reference.

What Does the Administrator Need to Do?
Administrators take no action to redirect clients. Administrators might need
to attend to the type of the database server.

What Does the User Need to Do?
If your applications contain code which tests if a connection has failed and
issues a reconnect statement if necessary, redirection is handled automati
cally — the user has no responsibilities.

If your applications do not include such code, users running clients must quit
and restart all applications.

What Is Data Replication? 25-21

Redirection and Connectivity for Data-Replication Clients

Administrator-Controlled Redirection: Changing the
sqlhosts File

This section explains the steps in redirecting clients using the sqlhosts file
mechanism and the connectivity strategy that supports this method.

How Does the sqlhosts File Redirection Method Work?
The sqlhosts file redirection method relies on the fact that when an applica
tion makes a connection to a database server, it finds that database server
using information in the sqlhosts file.

So, if one of the database servers in a data-replication pair is unusable, an
administrator can change the definition of the unavailable database server in
the sqlhosts file. As described in "What Does the Administrator Need to
Do?" on page 25-22, the fields of the unavailable database server (except for
the dbservername field) are changed to point to a definition of the remaining
database server in the data-replication pair.

Because the sqlhosts file is read when a CONNECT statement is issued, appli
cations might need to restart for redirection to occur. Applications can con
tain code that tests if a connection has failed and issues a reconnect statement
if necessary. In this case redirection is handled automatically and you do not
need to restart applications for redirection to occur.

Applications can use the following connectivity statements to support this
method of redirection:

• CONNECT TO database@dbserver
• CONNECT TO @dbserver

Applications can also use the following connectivity statements, provided
that the INFORMIXSERVER environment variable always remains set to the
same database server name and the DBPATH environment variable is not set.

• CONNECT TO DEFAULT
• CONNECT TO database

What Does the Administrator Need to Do?
Administrators must perform the following two steps to redirect clients
using the sqlhosts file:

1. Change the sqlhosts file for the clients.
2. Change other connectivity files, if necessary.

25-22 What Is Data Replication?

Redirection and Connectivity for Data-Replication Clients

These steps are described in the following sections. For information on the
sqlhosts file, refer to Chapter 4, "Configuring Connectivity."

Change the sqlhosts File
On the client computer, edit the sqlhosts file and make the following
changes:

• Comment out the entry for the failed database server.
• Add an entry that specifies the dbservemame of the failed database

server in the servemame field, and specifies information for the database
server to which you are redirecting clients in the nettype, hostname, and
servicename fields.

Figure 25-7 on page 25-24 shows how sqlhosts file entries might be modified
to redirect clients.

You do not need to change entries in the sqlhosts file on either of the comput
ers running the database servers.

Change Other Connectivity Files
You also must ensure that the following statements are true on the client com
puter before that client can reconnect to the other database server:

• The /etc/hosts file has an entry for the hostname of the computer running
the database server to which you are redirecting clients.

• The /etc/services file has an entry for the servicename of the database
server to which you are redirecting clients.

What Is Data Replication? 25-23

Redirection and Connectivity for Data-Replication Clients

marsh delta river

cliff_ol onsoctcp cliff ol_cl cliff_ol onsoctcp cliff ol_cl
beach_ol onsoctcp beach ol_bc

beach_ol onsoctcp beach ol_bc

(A A x (a a x1 / 6.0 OnLineX I I /6 .0 OnLineX I
I (cliff_ol J 1--------------------1 1 beach_ol) I

cliff beach
Before failure of cliff_ol

After failure of cliff ol

marsh delta

#cliff_ol
cliff ol

onsoctcp cliff ol_cl
onsoctcp beach ol_bc

#cliff_ol onsoctcp cliff ol_cl
beach_ol onsoctcp beach ol_bc
cliff_ol onsoctcp beach ol_bc

river

beach

Figure 25-7 The sqlhosts file entries before and after a failure of the cliff_ol database server

25-24 What Is Data Replication?

Redirection and Connectivity for Data-Replication Clients

What Does the User Need to Do?
After the administrator makes these changes, clients connect to the database
server the administrator redirects them to when they issue their next CON
NECT statement.

If your applications contain code which tests if a connection has failed and
issues a reconnect statement if necessary, redirection is handled automati
cally — the user has no responsibilities. If your applications do not include
such code, users running clients must quit and restart all applications.

User-Controlled Redirection: INFORMIXSERVER
This section explains the steps in redirecting clients using the INFORMIX
SERVER environment variable and the connectivity strategy that supports
that method.

How Does the INFORMIXSERVER Redirection Method Work?
The INFORMIXSERVER redirection method relies on the fact that when an
application does not explicitly specify a database server in the CONNECT
statement, the database server connects to the client that the INFORMIX
SERVER environment variable specifies.

If one of the database servers in a data-replication pair is unusable, applica
tions using that database server can reset their INFORMIXSERVER environ
ment variable to the other database server in the pair to access the same data.

Applications only read the value of the INFORMIXSERVER environment vari
able when they start. Applications must be restarted, therefore, to recognize
a change in the environment variable.

You can use the following connectivity statements to support this method of
redirection:

• CONNECT TO DEFAULT
• CONNECT TO database

You cannot use the CONNECT TO database@dbserver or CONNECT TO
@dbserver statements for this method because, when a database server is
explicitly named, the CONNECT statement does not use the INFORMIX
SERVER environment variable to find a database server.

What Is Data Replication? 25-25

Redirection and Connectivity for Data-Replication Clients

What Does the Administrator Need to Do?
Administrators take no action to redirect the clients. Administrators might
need to attend to the type of the database server, however.

What Does the User Need to Do?
Users running client applications must perform the following three steps
when they decide to redirect clients using the INFORMIXSERVER environ
ment variable:

1. Quit their applications
2. Change their INFORMIXSERVER environment variable to hold the name

of the other database server in the data-replication pair
3. Restart their applications

Handling Redirection Within an Application
If you use the DBPATH or sqlhosts file redirection mechanism, you can
include in your clients a routine that handles errors when clients encounter a
data-replication failure. The routine can call another function that contains a
loop which tries repeatedly to connect with the other database server in the
pair. This routine redirects clients without the user having to exit the applica
tion and restart it.

An Example of a Connection Loop and Database Server Type Check
Figure 25-8 on page 25-27 shows an example of a function in a client using the
DBPATH redirection mechanism that loops as it attempts to reconnect. Once
it establishes a connection, it also tests the type of the database server to make

25-26 What Is Data Replication?

Redirection and Connectivity for Data-Replication Clients

sure it is not a secondary database server. If the server is still a secondary, it
calls another function to alert the user (or Online administrator) that the
database server cannot accept updates.

/* The routine assumes that the INFORMIXSERVER environment
/* variable is set to the database server the client normally
/* uses, and that the DBPATH environment variable is set to
/* the other database server in the pair.
/*

#define SLEEPTIME 15
#define MAXTRIES 10
main()
{ int connected = 0;

int tries;
for (tries = 0;tries < MAXTRIES && connected == 0;tries++)
{ EXEC SQL CONNECT TO "stores6";

if (strcmp(SQLSTATE,"00000"))
{ if (sqlca.sqlwarn.sqlwarnö != 'W')

{ notify_admin();
if (tries < MAXTRIES - 1)

sleep(15);
}else connected =1;

}
}return ((tries == MAXTRIES)? -1:0);

}

Figure 25-8 Example of a CONNECT loop for DBPATH redirection mechanism

This example assumes the DBPATH redirection mechanism and uses a form
of the CONNECT statement that supports the DBPATH redirection method. If
you were to use the sqlhosts file redirection method (explained in "Admin
istrator-Controlled Redirection: Changing the sqlhosts File" on page 25-22),
you might have a different connection statement, as follows:

EXEC SQL CONNECT TO "stores6@cliff_ol";

In this example, stores6@cliff_ol refers to a database on a database server
that is recognized by the client's computer. In order for redirection to occur,
the administrator must change the sqlhosts file to make that name refer to a

What Is Data Replication? 25-27

Redirection and Connectivity for Data-Replication Clients

different database server. You might need to adjust the amount of time the cli
ent waits before retrying to connect or the number of tries the function makes.
You should provide enough time for an administrative action on the database
server (to change the sqlhosts file, or change the type of the secondary data
base server to standard).

Comparison of Different Redirection Mechanisms
Figure 25-9 summarizes the differences between the three redirection
mechanisms.

DBPATH sqlhosts file INFORMIXSERVER

Automatic
Redirection

User
Redirection

Automatic
Redirection

User
Redirection User Redirection

When is a client
redirected?

When the client next tries to
connect with a specified
database.

After the administrator changes
the sqlhosts file, when the client
next tries to establish a connection
with a database server.

When the client
restarts and reads a
new value for the
INFORMIXSERVER
environment variable.

Do clients need
to be restarted to
be redirected?

No Yes No Yes Yes

What is the scope
of the
redirection?

Individual
clients are
redirected.

Individual
clients are
redirected.

All clients using
a given database
server are
redirected.

Individual
clients are
redirected.

Individual clients are
redirected.

Are changes to
environment
variables
required?

No No Yes

Figure 25-9 Comparison of redirection methods for different connectivity strategies

25-28 What Is Data Replication?

Designing Clients to Use the Secondary Database Server

Designing Clients to Use the Secondary Database Server
You can achieve a degree of load balancing when using data replication by
having some client applications use the secondary database server in a data-
replication pair. You must design all client applications that use the second
ary database server with the following points in mind:

• Any statements which attempt to modify data fail.
• Locking and isolation levels are not the same as on standard OnLine data

base servers.

• Temporary dbspaces must be used for sorting and temporary tables.

These considerations are discussed in more detail in the following sections.

No Data Modification Statements
SQL statements that update dbspaces which are in logical recovery (which
includes all dbspaces on the secondary database server) are not allowed. For
example, the following statements produce errors:

• ALTER INDEX

• ALTER TABLE

• CREATE DATABASE

• CREATE INDEX

• CREATE PROCEDURE

• CREATE PROCEDURE FROM

• CREATE SCHEMA

• CREATE SYNONYM

• CREATE TABLE

• CREATE VIEW

• DELETE

• DROP DATABASE

• DROP INDEX

• DROP PROCEDURE

• DROP SYNONYM

• DROP TABLE

• DROP VIEW

• GRANT

• INSERT

What Is Data Replication? 25-29

Designing Clients to Use the Secondary Database Server

• LOAD

• RENAME COLUMN

• RENAME TABLE

• REVOKE

• UNLOAD

• UPDATE

• UPDATE STATISTICS

To prevent clients using the secondary database server from issuing updating
statements, you can take either of the following actions:

• Write client applications that do not issue updating statements.
• Conditionalize all updating statements.

To conditionalize updating statements, you can use the fact that on the sec
ondary database server, OnLine sets the slqwamö of the sqlwam field in the
ESQL/C sqlca structure (and equivalent values for other SQL APIs) to W.

Locking and Isolation Level
Because all clients using the secondary database server only read data, lock
ing to ensure isolation between those clients is not required. However, a cli
ent using the secondary database server is not protected from the activity of
users on the primary database server, because the logrecvr threads perform
ing logical recovery do not use locking.

For example, if a client connected to the secondary database server reads a
row, nothing prevents a user on the primary database server from updating
that row, even if the client connected to the secondary has issued a SET ISO
LATION TO REPEATABLE READ statement. The update is reflected on the sec
ondary database server as the logical-log records for the committed
transaction are processed. Thus, all queries on the secondary database server
are essentially dirty with respect to changes occurring on the primary data
base server, even though a client using the secondary database server might
explicitly set the isolation level to something other than dirty read.

25-30 What Is Data Replication?

Designing Clients to Use the Secondary Database Server

Using Temporary Dbspaces for Sorting and Temporary
Tables

Even though the secondary database server is in read-only mode, it still does
writing when it needs to perform a sort or create a temporary table. "What Is
a Temporary Dbspace?" on page 10-18 explains where Online finds tempo
rary space to use during a sort or for a temporary table. To prevent the
secondary database server from writing to a dbspace which is in logical-
recovery mode, you must take one (or all) of the following actions:

• Ensure that a temporary dbspace exists. (See "Creating a Dbspace" on
page 11-8 for instructions on creating a temporary dbspace.)

• Set the DBSPACETEMP parameter in the ONCONFIG file of the secondary
database server to the temporary dbspace or spaces.

• Have clients that connect to the secondary database server and need to
take advantage of that temporary dbspace set their DBSPACETEMP envi
ronment variable to the name of that dbspace or spaces.

What Is Data Replication? 25-31

Using Data
Replication
Chapter Overview 3

Planning for Data Replication 3

Configuring Data Replication 4
Meeting Hardware and Operating-System

Requirements 4
Meeting Database and Data Requirements 5
Meeting Database Server Configuration

Requirements 5
Version 5
Dbspace and Chunk Configuration 6
Mirroring 6
Physical-Log Configuration 6
System Archive and Logical-Log Tape Devices 6
Logical-Log Configuration 7
Shared-Memory Configuration 7
Data-Replication Parameters 7

Configuring Data-Replication Connectivity 8

Starting Data Replication for the First Time 9

Performing Basic OnLine Administration Tasks 12
Changing Database Server Configuration

Parameters 12
Archiving and Logical-Log File Backups 12
Changing the Logging Status of Databases 13
Adding and Dropping Chunks, Dbspaces, and

Blobspaces 13
Using and Changing Mirroring of Chunks 13
Managing the Physical Log 14

Managing the Logical Log 14
Managing Virtual Processors 15
Managing Shared Memory 15

Changing the Database Server Mode 15

Changing the Database Server Type 16
Changing the Database Server Type of the Primary Database

Server 17
Changing the Database Server Type of the Secondary Database

Server 17

Restoring Data If Media Failure Occurs 18
Restoring After Media Failure on the Primary 18
Restoring After Media Failure on Secondary Database Server 19

Restarting Data Replication After a Failure 20
Restarting After Critical Data Is Damaged 20

Critical Media Failure on the Primary Database Server 21
Critical Media Failure on the Secondary Database Server 22
Critical Media Failure on Both Database Servers 22

Restarting If Critical Data Is Not Damaged 23
Restarting If the Secondary Database Server Fails 23
Restarting If the Primary Database Server Fails and Secondary

Database Server Was Not Changed to a Standard Database
Server 24

Restarting If the Primary Database Server Fails and Secondary
Database Server Is Changed to a Standard Database Server
Manually 24

Restarting If the Primary Database Server Fails and Secondary
Database Server Is Changed to a Standard Database Server
Automatically 26

26-2 Using Data Replication

Chapter Overview
This chapter describes how to use INFORMIX-OnLine Dynamic Server data
replication. If you plan to use data replication, read this entire chapter first.
The following topics are covered:
• Planning for data replication
• Configuring a system for data replication
• Starting data replication
• Operating Online database servers that use data replication
• Managing the mode of a database server in a data-replication pair
• Changing the type of a database server in a data-replication pair
• Restoring data after a media failure
• Managing data replication after a failure

A companion chapter, Chapter 25, "What Is Data Replication?" explains
what data replication is, how it works, and how to design client applications
for a data-replication environment.

Planning for Data Replication
Before you start setting up computers and database servers to use data repli
cation, you might want to do some initial planning. The following list con
tains planning tasks to perform:
• Choose and acquire appropriate hardware.

• If you are using more than one Online database server to store data that
you wish to replicate, migrate and redistribute this data so that it can be
managed by a single database server.

• Ensure that all databases that you want to replicate use transaction log
ging. To turn on transaction logging, see Chapter 17, "Managing
Database Logging Status."

Using Data Replication 26-3

Configuring Data Replication

• Develop client applications to make use of both database servers in the
data-replication pair. Read "Redirection and Connectivity for Data-Repli-
cation Clients" on page 25-19 and "Designing Clients to Use the
Secondary Database Server" on page 25-29 for a discussion of design
considerations.

• Create a schedule for starting data replication for the first time.
• Design an archive and logical-log backup schedule for the primary data

base server.
• Produce a plan for how to handle failures of either database server and

how to restart data replication after a failure. Read "Redirection and Con
nectivity for Data-Replication Clients" on page 25-19.

Configuring Data Replication
To configure your system for data replication you must

• Meet hardware and operating-system requirements
• Meet database and data requirements
• Meet database server configuration requirements
• Configure data-replication connectivity

Each of these topics is explained in this section.

Meeting Hardware and Operating-System Requirements
For an Online data-replication database server pair to function, it must meet
the following hardware requirements:

• The computers running the primary and secondary Online database
servers must be identical (same vendor and architecture).

• The operating systems on the computers running the primary and sec
ondary Online database servers must be identical.

• The hardware running the primary and secondary Online database serv
ers must support network capabilities.

• The amount of disk space allocated to nontemporary dbspaces for the pri
mary and secondary Online database servers must be equal. The type of
disk space is irrelevant; you can use any mixture of raw or cooked spaces
on the two database servers.

26-4 Using Data Replication

Configuring Data Replication

It is also important for the Online administrators of both the database serv
ers to be able to communicate when performing administrative tasks (for
example by telephone).

Meeting Database and Data Requirements
For an Online data-replication database server pair to function, you must
meet the following database and data requirements.

• All databases that you wish to replicate must have transaction logging
turned on.
This requirement is important because the secondary Online database
server uses logical-log records from the primary Online database server
to update the data it manages. If databases managed by the primary data
base server do not use logging, updates to those databases do not gener
ate log records, leaving the secondary database server with no means of
updating the replicated data. Logging can be buffered or unbuffered.
If you need to turn on transaction logging before you start data replica
tion, see either 'Turning on Transaction Logging Using ON-Archive" on
page 17-5 or "Turning on Transaction Logging Using ontape" on
page 17-7.

• If your primary database server has blobs stored in blobspaces, modifica
tions to the data within those blobspaces is not replicated as part of
normal data-replication processing. Blob data within dbspaces is repli
cated, however.

Meeting Database Server Configuration Requirements
For a data-replication database server pair to function, you must meet the fol
lowing OnLine database server configuration requirements.

Meeting these requirements requires that you fully configure each of the
OnLine database servers. Refer to "Configuring a Production Environment"
on page 3-17 for information on configuring a database server. You can then
use the relevant aspects of that configuration to configure the other database
server in the pair.

Version
The versions of OnLine on the primary and secondary database servers must
be version 6.0 or greater and identical.

Using Data Replication 26-5

Configuring Data Replication

Dbspace and Chunk Configuration
The number of dbspaces, the number of chunks, their sizes, their pathnames,
and their offsets must be identical on the primary and secondary Online
database servers.

The configuration must contain at least one temporary dbspace. See "Using
Temporary Dbspaces for Sorting and Temporary Tables" on page 25-31.

You can use symbolic links for the chunk pathnames, as explained in "Creat
ing Links to Each Raw Device" on page 11-6.

The following ONCONFIG parameters must have the same value on each
database server:

• ROOTNAME (see page 35-35)
• ROOTPATH (see page 35-36)
• ROOTOFFSET (see page 35-35)
• ROOTSIZE (see page 35-36)

Mirroring
You do not have to set the MIRROR parameter to the same value on the two
database servers; you can enable mirroring on one database server and dis
able mirroring on the other. If you specify a mirror chunk for the root chunk
of the primary database server, however, you must also specify a mirror
chunk for the root chunk on the secondary database server. Therefore, the fol
lowing ONCONFIG parameters must be set to the same value on both data
base servers:

• MIRRORPATH (see page 35-26)
• MIRROROFFSET (see page 35-26)

Physical-Log Configuration
The physical log should be identical on both servers. The following ONCON
FIG parameters must have the same value on each database server:

• PHYSDBS (see page 35-33)
• PHYSFILE (see page 35-33)

System Archive and Logical-Log Tape Devices
You can specify different tape devices for the primary and secondary data
base servers.

26-6 Using Data Replication

Configuring Data Replication

The tape size and tape block size for the archive and logical-log tape devices
should be identical. The following ONCONFIG parameters must have the
same value on each database server:

• TAPEBLK (see page 35-41)
• TAPESIZE (see page 35-44)
• LTAPEBLK (see page 35-23)
• LTAPESIZE (see page 35-24)

Logical-Log Configuration
You must configure the same number of logical-log files and the same logical-
log size for both database servers. The following ONCONFIG parameters
must have the same value on each database server:

• LOGFILES (see page 35-20)
• LOGSIZE (see page 35-21)

Shared-Memory Configuration
Set all the shared-memory configuration parameters to the same values on
the two database servers.

Data-Replication Parameters
The following parameters are specific to data replication and must be set to
the same value on both database servers in the data-replication pair:

• DRINTERVAL (see page 35-15)
• DRLOSTFOUND (see page 35-15)
• DRTIMEOUT (see page 35-16)
• DRAUTO (see page 35-14)

Using Data Replication 26-7

Configuring Data Replication

Configuring Data-Replication Connectivity
For an OnLine data-replication database server pair to function, the database
servers in the data-replication pair must be able to establish a connection
with one another. To satisfy this requirement, the sqlhosts file on each of the
computers running OnLine in a data-replication pair must have at least the
following entries:

• An entry identifying the OnLine database server running on that
computer

• An entry identifying the other OnLine database server in the data-
replication pair

Figure 26-1 shows a sample data-replication configuration and example
sqlhosts file entries necessary for data replication.

marsh delta river

cliff_ol onsoctcp cliff ol_cl cliff_ol onsoctcp cliff ol_cl
beach_ol onsoctcp beach ol_bc beach_ol onsoctcp beach ol_bc

Figure 26-1 Example sqlhosts file entries for database servers in a data replication pair

In addition to entries in the sqlhosts files, the computers running OnLine in
a data-replication pair must have entries for the other computer and service
in their /etc/hosts and /etc/services files.

26-8 U sing Data Replication

Starting Data Replication for the First lim e

Starting Data Replication for the First Time
After you complete data-replication configuration, you are ready to start data
replication. This section describes the necessary steps for starting data
replication.

Suppose you wish to start data replication on two database servers, Server A
and Server B. The procedure for starting data replication, using Server A as the
primary database server and ServerB as the secondary database server, is
described in the following steps. Figure 26-2 on page 26-10 lists the com
mands required to perform each step. You can perform some of the steps
using either the ON-Archive or the ontape utility. In such cases, the
ON-Archive command and the equivalent ontape command are both indi
cated. You must employ the same utility throughout the procedure, however.
Figure 26-2 also shows messages sent to the message log.

1. Create a level-0 archive of Server A.
2. Use the onmode -d command to set the type of Server A to primary, and

to indicate the name of the associated secondary database server (in this
case ServerB).
When you issue an onmode -d command, the database server attempts to
establish a data-replication connection with the other database server in
the data-replication pair and to start data-replication operation. The
attempt to establish a connection only succeeds if the other database
server in the pair is already set to the correct type.
At this point ServerB is not on-line and is not set to type secondary, so the
data-replication connection is not established.

3. Perform a physical restore of ServerB from the level-0 archive you created
in step 1. Do not perform a logical restore. If you are using the ontape util
ity for your archiving tasks, use the ontape -p option. You cannot use the
ontape -r option because it performs both a physical and a logical restore.

4. Use the onmode -d command to set the type of ServerB to secondary, and
indicate the associated primary database server. ServerB tries to establish
a data-replication connection with the primary database server (Server A)
and start operation. The connection should be successfully established.
Before data replication begins, the secondary database server performs a
logical recovery using the logical-log records written to the primary data
base server since step 1. If all of these logical-log records still reside on the
primary database server disk, the primary sends these records directly to

Using Data Replication 26-9

Starting Data Replication for the First Time

the secondary database server over the network and logical recovery
occurs automatically.
If you have backed-up and freed logical-log files on the primary database
server, the records in these files are no longer on disk. The secondary data
base server prompts you to recover these files from tape. In this case, you
must perform step 5.

5. If there are logical-log records written to the primary database server that
are no longer on the primary disk, the secondary database server prompts
you to recover these files from tape backups.
If the secondary database server must read the backed up logical-log files
over the network, set the tape device parameters on the secondary data
base server to a device on the computer running the primary database
server, or to a device at the same location as the primary database server.
After recovering all the logical-log files on tape, the logical restore com
pletes using the logical-log files on the primary database server disk.

Step On the Primary On the Secondary

1 ON-Archive command
Onarchive> ARCHIVE/DBSPACESET=*
ontape command
% ontape -s
Messages to message log
Level 0 archive Started on rootdbs
Archive on rootdbs Completed

2 onmode command
%onmode -d primary secondary
Messages to message log
DR: new type = primary, secondary
server name = secondary
DR: trying to connect to secondary
server
DR: Cannot connect to secondary
server

3 ON-Archive command
ONDATARTR>
RETRIEVE/DBSPACESET=*/REQUEST=rid/TAPE
=(primary:/dev/remotedrive)
ontape command
% ontape -p
Answer no when prompted to back up the logs.

Figure 26-2 Steps in starting data replication for the first time, with explanations

26-10 Using Data Replication

Starting Data Replication for the First Time

Step On the Primary On the Secondary

Messages to message log
INFORMIX-OnLine Initialized — Shared
Memory Initialized
Recovery Mode
Physical restore of rootdbs started.
Physical restore of rootdbs Completed.

4

Messages to message log
DR: Primary server connected
DR: Primary server operational

onmode command
% onmode -d secondary primary
Messages to message log
DR: new type = secondary, primary server
name = primary
If all the logical-log records written to the primary
database server since step 1 still reside on the primary
database server disk, the secondary database server
reads these records to perform logical recovery
(otherwise step 5 must be performed).
Messages to message log
DR: Trying to connect to primary server
DR: Secondary server connected
DR: Failure recovery from disk in
process.
Logical Recovery allocating n worker
threads ('OFF_RECVRY_THREADS').
Logical Recovery Started
Start Logical Recovery - Start Log n,
End Log?
Starting Log Position - n Oxnnnnn
DR: Secondary server operational

5

Messages to message log
DR: Primary server connected
DR: Primary server operational

ON-Archive command
ONDATARTR>
RETRIEVE/LOGFILE/TAPE=(primary:/dev/re
motedevice)
ontape command
% ontape -1
Messages to message log
DR: Secondary server connected
DR: Failure recovery from disk in
process.
Logical Recovery allocating n worker
threads ('OFF_RECVRY_THREADS').
Logical Recovery Started
Start Logical Recovery - Start Log n,
End Log?
Starting Log Position - n Oxnnnnn
DR: Secondary server operational

Figure 26-2 Steps in starting data replication for the first timer with explanations

Using Data Replication 26-11

Performing Basic O nline Administration Tasks

Performing Basic Online Administration Tasks
This section contains instructions on how to perform basic Online adminis
tration tasks once your system is running data replication.

Changing Database Server Configuration Parameters
Some of the Online configuration parameters must be set to the same value
on both database servers in the data-replication pair. Other Online configu
ration parameters can be set to different values.

If you need to change a configuration parameter that must have the same
value on both database servers, you must change the value of that parameter
in the ONCONFIG file of both database servers. To make changes to
ONCONFIG files, perform the following steps:

1. Bring each database server off-line using the onmode -k option. If
DRAUTO is set to 1, it is easiest if you bring the secondary database server
off-line first.

2. Change the parameters on each database server.
3. Bring each database server back on-line. Start with the last database

server that you brought off-line. For example, if you brought the second
ary database server off-line last, bring the secondary on-line first. Figure
26-3 on page 26-16 and Figure 26-4 on page 26-16 list the procedures for
bringing the primary and secondary database servers back on-line.

If the configuration parameter does not need to have the same value on each
database server in the data-replication pair, you can change the value on the
primary or secondary database server individually.

Archiving and Logical-Log File Backups
When using data replication, you must back up logical-log files and create
archives of your data, just as you would with a standard Online database
server. You only need to perform archives and logical-log file backups on the
primary database server. Be prepared, however, to perform archives and
logical-log backups on the secondary database server in case the type of the
database server is changed to standard.

You must use the same archiving and logical-log backup tool (either
ON-Archive or ontape) on both database servers. You can, however, change
tools at the point of a level-0 archive. So, for example, you might do the initial

26-12 Using Data Replication

Performing Basic OnLine Administration Tasks

set up described in "Starting Data Replication for the First Time" on
page 26-9 with ontape, but then use ON-Archive for performing regular
archives.

The block size and tape size used (for both archiving and logical-log backups)
must be identical on the primary and secondary OnLine database servers.

Changing the Logging Status of Databases
You cannot add transaction logging to databases on the primary database
server while using data replication. You can turn logging off for a database;
however, subsequent changes to that database are not duplicated on the sec
ondary database server.

If you must add logging to a database, you can turn data replication off, add
logging, and then perform an archive and restore as described in "Starting
Data Replication for the First Time" on page 26-9.

Adding and Dropping Chunks, Dbspaces, and Blobspaces
You can only perform disk-layout operations such as adding or dropping
chunks, dbspaces, and blobspaces, from the primary database server. The
operation is replicated on the secondary database server. This ensures that
the disk layout on both database servers in the data-replication pair remains
consistent.

Because the directory pathname or the actual file for chunks must exist before
you create them, make sure the pathnames (and offsets, if applicable) exist on
the secondary database server before you create a chunk on the primary data
base server.

Using and Changing Mirroring of Chunks
You do not have to set the MIRROR configuration parameter to the same value
on both database servers in the data-replication pair. In other words, you can
enable or disable mirroring on either the primary or the secondary database
server independently.

You can only perform disk-layout operations from the primary database
server, however. This means that you can only add or drop a mirror chunk
from the primary database server. A mirror chunk that you add or drop to the
primary database server is added or dropped to the secondary database

Using Data Replication 26-13

Performing Basic O nline Administration Tasks

server as well. Even if you only want to mirror a dbspace on one of the data
base servers in the data-replication pair, you must create mirror chunks for
that dbspace on both database servers.

Before you can add a mirror chunk, the disk space for that chunk must
already be allocated on both the primary and secondary database servers. See
"Allocating Disk Space" on page 11-3 for general information on allocating
disk space.

You can take a mirror chunk down or recover a mirror chunk on either the
primary or secondary database server. These processes are transparent to
data replication.

Managing the Physical Log
If you make changes to the physical log on one database server, you must
make the same changes at the same time to the physical log on the other data
base server. See "Changing Database Server Configuration Parameters" on
page 26-12 for the procedure to follow for making this change.

Managing the Logical Log
The size of the logical log must be the same on both database servers. If you
add or drop a logical-log file on one database server, you must make the same
change to the other database server in the pair.

You can add or drop a logical-log file using the onparams utility, as described
in Chapter 19, "Managing Logical-Log Files." OnLine replicates this change
on the secondary database server; however, the LOGFILES parameter on the
secondary database server is not updated. After issuing the onparams com
mand from the primary database server, therefore, you must manually
change the LOGFILES parameter to the desired value. Finally, for the change
to take effect you must perform a level-0 archive of the root dbspace on the
primary database server.

If you add a logical-log file to the primary database server, this file is available
for use and flagged "F" as soon as you perform the level-0 archive. The new
logical-log file on the secondary database server is still flagged "A". How
ever, this does not prevent the secondary database server from writing to the
file.

26-14 Using Data Replication

Changing the Database Server Mode

Managing Virtual Processors
The number of virtual processors has no effect on data replication. You can
configure and tune each database server in the pair individually.

Managing Shared Memory
If you make changes to the shared-memory ONCONFIG parameters on one
database server, you must make the same changes at the same time to the
shared-memory ONCONFIG parameters on the other database server. See
"Changing Database Server Configuration Parameters" on page 26-12 for the
procedure to follow for making this change.

Changing the Database Server Mode
The effects of changing the mode of a database server in a data-replication
pair differ depending on whether you are changing the mode of the primary
or the secondary database server.

Using Data Replication 26-15

Changing the Database Server Type

Figure 26-3 summarizes the effects of changing the mode of the primary data
base server.

On the Primary On the Secondary To Restart Data Replication

Any mode -► off-line
(onmode -k)

Secondary receives errors.
Data replication is turned off.
If DRAUTO is set to 0; mode
remains read-only. If DRAUTO is
set to 1, secondary switches to
standard type and can accept
updates.

Treat it like a failure of the primary. There
are three different scenarios, depending
on what you do with the secondary while
the primary is off-line:
• "Restarting If the Primary Database

Server Fails and Secondary Database
Server Was Not Changed to a Standard
Database Server" on page 26-24

• "Restarting If the Primary Database
Server Fails and Secondary Database
Server Is Changed to a Standard Data
base Server Manually" on page 26-24

• "Restarting If the Primary Database
Server Fails and Secondary Database
Server Is Changed to a Standard Data
base Server Automatically" on
page 26-26

On-line -► quiescent
(onmode -s/ onmode -u)

Secondary does not receive errors.
Data replication remains on.
Mode remains read-only.

Use onmode -m on the primary.

Figure 26-3 Mode changes on the primary database server

Figure 26-4 summarizes the effects of changing the mode of the secondary
database server.

On the Secondary On the Primary To Restart Data Replication

Read-only -> off-line
(onmode -k)

Primary receives errors.
Data replication is turned off.

Treat it like a failure of the secondary:
• "Restarting If the Secondary Database

Server Fails" on page 26-23

Figure 26-4 Mode changes on the secondary database server

Changing the Database Server Type
You might want to stop the data-replication process manually by changing
the type of the database server to standard. The effects of this change are dif
ferent from changing the mode of a database server (described in "Changing

26-16 Using Data Replication

Changing the Database Server Type

the Database Server Mode" on page 26-15). When you take the now standard
database server off-line and bring it back on-line, it does not attempt to con
nect to the other database server in the data-replication pair.

The utility you use to change the database server type is onmode. Reference
information for onmode is in "onmode: Mode and Shared-Memory
Changes" on page 37-27.

You can change the type of either the primary or the secondary database
server. When you change the database server type to standard, the type of the
other database server in the data-replication pair does not change, but data
replication is turned off.

Changing the Database Server Type of the Primary Database Server
The primary database server can be in on-line mode when you change its
type to standard.

Execute the following command from the operating-system prompt of the
computer running the primary database server:

% onmode -d standard
This command stops data replication and leaves the database server in on
line mode. If DRAUTO is set to 0, the secondary database server remains in
read-only mode and cannot accept updates from clients (because its type is
still secondary). If DRAUTO is set to 1, the secondary database server switches
to type standard. In either case, data replication is turned off on the second
ary database server.

To change the database server back to type primary and restart data
replication, execute the following command:

% onmode -d primary secondary

Changing the Database Server Type of the Secondary Database Server
Execute the following command from the operating-system prompt, of the
computer running the secondary database server:

% onmode -d standard
Once you change the secondary database server to a standard database
server, applications can update the data managed by that database server. If
you later decide to change the type of the database server back to type sec
ondary and restart data replication, you must follow the entire procedure in
"Starting Data Replication for the First Time" on page 26-9.

Using Data Replication 26-17

Restoring Data If Media Failure Occurs

Restoring Data If Media Failure Occurs
The result of disk failure depends on whether the disk failure occurs on the
primary or the secondary database server, whether the chunks on the disk
contain critical media (the root dbspace, a logical-log file, or the physical log),
and whether the chunks are mirrored.

Restoring After Media Failure on the Primary
Figure 26-5 on page 26-19 summarizes the various scenarios for restoring
data if the primary database server suffers media failure. Note the following
issues:

1. If chunks are mirrored, you can perform recovery just as you would for a
standard database server that used mirroring.

2. In cases where the chunks are not mirrored, the procedure for restoring
the primary database server depends on whether the disk that failed con
tains critical media. If the disk does contain critical media, the primary
database server fails. You have to do a full restore using the primary
archives (or the secondary archives if the secondary database server was
switched to standard mode and activity redirected). See "Restarting After
Critical Data Is Damaged" on page 26-20.
If the disk does not contain critical media, you can restore the affected
dbspaces individually with a warm restore. A warm restore consists of
two parts: first a restore of the failed dbspace from an archive and next a
logical restore of all logical-log records written since that archive. (See the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide for more

26-18 Using Data Replication

Restoring Data If Media Failure Occurs

information.) You must back up all logical-log files before you perform
the warm restore.

Data-Replication
Server

Critical
Media?

Chunks
Mirrored?

Effect of Failure and Procedure
for Restoring Media

Primary Yes No Primary database server fails.
Follow the procedure in
"Restarting After Critical Data Is
Damaged" on page 26-20.

Primary Yes Yes Primary database server remains
on-line. Follow the procedures in
"Recovering a Mirrored Chunk"
on page 24-9.

Primary No No Primary database server remains
on-line. Follow procedure in the
INFORMIX-OnLine Dynamic Server
Archive and Backup Guide for
performing a warm restore of a
dbspace from an archive. Back up
all logical-log files before
performing the warm restore.

Primary No Yes Primary database server remains
on-line. Follow the procedures in
"Recovering a Mirrored Chunk"
on page 24-9.

Figure 26-5 Different scenarios for media failure on the primary database server

Restoring After Media Failure on Secondary Database Server
Figure 26-6 on page 26-20 summarizes the various scenarios for restoring
data if the secondary database server suffers media failure. Note the follow
ing issues:

1. If chunks are mirrored, you can perform recovery just as you would for a
standard database server that used mirroring.

2. In cases where the chunks are not mirrored, the secondary database
server fails if the disk contains critical media but remains on-line if the
disk does not contain critical media. In both cases, you have to do a full
restore using the archives on the primary database server. (See "Restart
ing After Critical Data Is Damaged" on page 26-20.) In the second case,
you cannot restore selected dbspaces from the secondary archive because

Using Data Replication 26-19

Restarting Data Replication After a Failure

they might now deviate from the corresponding dbspaces on the primary
database server. You must do a full restore.

Data-Replication
Server

Critical
Media?

Chunks
Mirrored? Effect of Failure

Secondary Yes No Secondary database server fails.
Primary database server receives
errors. Data replication is turned
off. Follow the procedure in
"Restarting After Critical Data Is
Damaged" on page 26-20

Secondary Yes Yes Secondary database server
remains on-line in read-only mode.
Follow the procedures in
"Recovering a Mirrored Chunk"
on page 24-9.

Secondary No No Secondary database server
remains on-line in read-only mode.
Primary database server receives
errors. Data replication is turned
off. Follow the procedure in
"Restarting After Critical Data Is
Damaged" on page 26-20.

Secondary No Yes Secondary database server
remains on-line in read-only mode.
Follow the procedures in
"Recovering a Mirrored Chunk"
on page 24-9.

Figure 26-6 Different scenarios for media failure on the secondary database server

Restarting Data Replication After a Failure
"What Are Data-Replication Failures?" on page 25-14 discusses the various
types of data-replication failure. The procedure you must follow to restart
data replication depends on whether or not critical data was damaged on one
of the database servers. Both cases are discussed in this section.

Restarting After Critical Data Is Damaged
If one of the database servers experiences a failure that damages the root
dbspace, the dbspace containing logical-log files, or the dbspace containing
the physical log, you must treat the failed database server as if it has no data

26-20 Using Data Replication

Restarting Data Replication After a Failure

on the disks, and you are starting data replication for the first time. Use the
functioning database server with the intact disks as the database server with
the data.

Critical Media Failure on the Primary Database Server
To restart data replication after the primary database server suffers a critical
media failure, perform the following steps. Figure 26-7 lists the commands
required to perform this procedure:

1. If the secondary database server was changed to a standard database
server manually, bring this database server to quiescent mode and then
use the onmode -d command to change the type back to secondary.
If the secondary database server was changed to a standard database
server automatically (DRAUTO =1), this step does not apply. The type of
the database server is automatically changed back to secondary when
you bring the primary database server back on-line.

2. Restore the primary database server from the last archive.
3. Use the onmode -d command to set the type of the primary database

server and start data replication. The onmode -d command starts a logical
recovery of the primary database server from the logical-log files on the
secondary database server disk. If logical recovery of the primary data
base server cannot complete because you backed-up and freed logical-log
files on the secondary database server, data replication does not start until
you perform step 4.

4. Apply the logical-log files from the secondary database server, which
were backed up to tape, to the primary database server. If this step is
required, the primary database server sends a message prompting you to
recover the logical-log files from tape. This message appears in the mes
sage log. When all the required logical-log files have been recovered from
tape, any remaining logical-log files on the secondary disk are recovered.

Using Data Replication 26-21

Restarting Data Replication After a Failure

Step On the Primary On the Secondary

1 onmode command
% onmode -s
% onmode -d secondary primary

2 ontape command
% ontape -p
ON-Archive command
ONDATARTR>
RETRIEVE/DBSPACESET=*/REQUEST=rid
/TAPE=(primary:/dev/remotedrive)

3 onmode command
% onmode -d primary secondary

4 ontape command
% ontape -1
ON-Archive command
ONDATARTR>
RETRIEVE/LOGFILE/TAPE=(secondary:
/dev/remotedevice)
Figure 26-7 Steps for restarting data replication after a critical media failure on the primary

database server

Critical Media Failure on the Secondary Database Server
If the secondary database server suffers a critical media failure, you can fol
low the same steps listed under "Starting Data Replication for the First Time"
on page 26-9.

Critical Media Failure on Both Database Servers
In the unfortunate event that both of the machines running database servers
in a data replication pair experience a failure that damages the root dbspace,
the dbspace containing logical-log files, or the dbspace containing the physi
cal log, perform the following tasks to restart data replication:

1. Restore one database server—it does not matter which one—from archive
and logical-log backup tapes.

2. After restoring one database server, treat the other failed database server
as if it has no data on the disks, and you are starting data replication for
the first time. (See "Starting Data Replication for the First Time" on
page 26-9). Use the functioning database server with the intact disk(s) as
the database server with the data.

26-22 U sing Data Replication

Restarting Data Replication After a Failure

Restarting If Critical Data Is Not Damaged
When there has not been any damage to critical data on either database
server, the following four scenarios, each requiring different procedures for
restarting data replication, are possible:

• The secondary database server fails
• The primary database server fails and the secondary database server is

not changed to a standard database server.
• The primary database server fails and the secondary database server is

changed to a standard database server manually (DRAUTO = 0).
• The primary database server fails and the secondary database server is

changed to a standard database server automatically (DRAUTO = 1).

Restarting If the Secondary Database Server Fails
If you need to restart data replication after a failure of the secondary database
server, complete the steps in Figure 26-8. The steps assume that you have
been backing up logical-log files on the primary database server as necessary
since the failure of the secondary database server.

Step On the Primary On the Secondary

1 The primary database server should be in on
line mode.

% oninit
If you receive the following message in the message
log, continue with step 2.
DR: Start Failure recovery from tape

2 ON-Archive command
Onarchive>
CATALOG/VSET=remote_logs/VOLUME=volnum
/SID=sysid
Onarchive>RETRIEVE/LOGFILE/VSET=remote
_logs
ontape command
% ontape -1

Figure 26-8 Steps in restarting after a failure on the secondary database server

Using Data Replication 26-23

Restarting Data Replication After a Failure

Restarting If the Primary Database Server Fails and Secondary Database Server
Was Not Changed to a Standard Database Server

If you need to restart data replication after a failure of the primary database
server if the secondary database server is changed to a standard database
server, simply bring the primary database server back on-line using oninit.

Restarting If the Primary Database Server Fails and Secondary Database Server
Is Changed to a Standard Database Server Manually

If you need to restart data replication after a failure of the primary database
server, and you have manually changed the secondary database server to be
a standard database server, complete the steps in Figure 26-9 on page 26-25.

26-24 Using Data Replication

Restarting Data Replication After a Failure

Step On the Primary On the Secondary

1 % onmode -s
This step takes the secondary database server
(now a standard) to quiescent mode. All clients
that are connected to this server will have to
disconnect. Applications that perform updates
must be redirected to the primary. See
"Redirection and Connectivity for Data-
Replication Clients" on page 25-19.

2 % onmode -d secondary prim ary
3 % oninit

If all the logical-log records that were written to the
secondary database server are still on the
secondary database server disk, the primary
database server recovers these records from that
disk when you issue the oninit command.
If there are logical-log files on the secondary that
you have backed-up and freed, the records in these
files are no longer on disk. In this case, you are
prompted to recover these logical-log files from
tape (step 4).

For ontape users:
If you want to read the logical-log records over the
network, set the logical-log tape device to a device
on the computer running the secondary database
server.

For ON-Archive users:
In the next step, be sure to use a vset with the
device type defined to be a device on the
secondary database server.

4 If you are prompted to recover logical-log records
from tape perform this step.

ON-Archive command
Onarchive>
CATALOG/VSET=remote_logs/VOLUME=
volnum/SID=sysid
Onarchive>RETRIEVE/LOGFILE/VSET=
remote_logs
ontape command
% ontape -1
Figure 26-9 Steps for restarting after a failure on the primary database server and secondary

database server was changed to a standard database server manually

Using Data Replication 26-25

Restarting Data Replication After a Failure

Restarting If the Primary Database Server Fails and Secondary Database Server
Is Changed to a Standard Database Server Automatically

If you need to restart data replication after a failure of the primary database
server, and the secondary database server was automatically changed to a
standard database server (as described in "What Is Automatic Switchover?"
on page 25-17), complete the steps in Figure 26-10.

Step On the Primary On the Secondary

1 % oninit
If all the logical-log records that were written to the
secondary database server are still on the secondary
database server disk, the primary database server
recovers these records from that disk when you issue
the oninit command.
If there are logical-log files on the secondary that you
have backed-up and freed, the records in these files are
no longer on disk. In this case, you are prompted to
recover these logical-log files from tape (step 2).

For ontape users:
Set the logical-log tape device to a device on the
computer running the secondary database server.

For ON-Archive users:
In the next step, be sure to use a vset with the device
type defined to be a device on the secondary database
server.

The secondary database server
automatically goes through graceful
shutdown when you bring the primary back
up. This ensures that all clients are
disconnected. Any applications that
perform updates must be redirected back to
the primary database server. See
"Redirection and Connectivity for Data-
Replication Clients" on page 25-19.

2 If you are prompted to recover logical-log records from
tape, perform this step.

ON-Archive command
Onarchive>
CATALOG/VSET=remote_logs/VOLUME=volnum/S
ID=sysid
Onarchive>RETRIEVE/LOGFILE/VSET=remote_l
ogs

ontape command
% ontape -1
Figure 26-10 Steps in restarting after a failure on the primary server and secondary was changed

to a standard database server manually

26-26 Using Data Replication

What Is Consistency
Checking?
Chapter Overview 3

Performing Periodic Consistency Checking 3
Verify Consistency 4

oncheck -cr 4
oncheck -cc 4
oncheck -ce 5
oncheck -cl 5
oncheck -cD 5

Monitor for Data Inconsistency 6
Retain Consistent Level-0 Archive 7

Dealing with Corruption 7
Symptoms of Corruption 8
Run oncheck First 8
I/O Errors on a Chunk 8

Collecting Diagnostic Information 9

Chapter Overview
INFORMIX-OnLine Dynamic Server is designed in such a way that it detects
problems that might be caused by hardware or operating system errors or by
unknown problems within Online. It detects problems by performing asser
tions in many of its critical functions. An assertion is merely a consistency
check that verifies that the contents of a page, structure, or other entity match
what would otherwise be assumed.

When one of these checks finds that the contents are not what they should be,
Online reports an assertion failure. Some text describing the check that failed
is recorded in the Online message log. Online also collects further diagnos
tics information in a separate file that might be useful to Informix Technical
Support staff.

This chapter provides an overview of consistency-checking measures and
ways of handling inconsistencies. It has sections about the following topics:

• Performing periodic consistency checking
• Dealing with data corruption
• Collecting advanced diagnostic information

Performing Periodic Consistency Checking
To gain the maximum benefit from consistency checking and to ensure the
integrity of archives, Informix recommends that you periodically take the fol
lowing actions:

• Verify that all data and Online overhead information is consistent
• Check the message log for assertion failures while you verify consistency
• Create a level-0 archive after consistency is verified

Each of these actions is described in the following sections.

What Is Consistency Checking? 27-3

Performing Periodic Consistency Checking

Verify Consistency
Because of the time needed for this check and the possible contention that the
checks cause, schedule this check for times when activity is at its lowest.
Informix recommends that you perform this check just prior to creating a
level-0 archive.

Run the following commands as part of the check:

• oncheck -cr
• oncheck -cc
• oncheck -ce
• oncheck -cl dbname
• oncheck -cD dbname

The following sections describe these commands.

You can run each of these commands while OnLine is in on-line mode. See
"Locking and oncheck" on page 37-7 for information on how oncheck locks
objects as it checks them and which users can run oncheck.

In most cases, if one or more of these checks detects an error, the solution is
to restore the database from an archive. However, the source of the error
might also be your hardware or operating system.

oncheck -cr
Execute oncheck -cr to validate the OnLine reserved pages that reside at the
beginning of the initial chunk of the root dbspace. These pages contain the
primary OnLine overhead information. If this command detects errors per
form a data restore from archive. See the INFORMIX-OnLine Dynamic Server
Archive and Backup Guide for instructions on how to restore your data from an
archive.

This command might report warnings. In most cases, these warnings call
your attention to situations you are already aware of.

oncheck -cc
Execute oncheck -cc to validate the system catalog tables for each of the data
bases that OnLine manages. Each database contains its own system catalog,
which contains information on the database tables, columns, indexes, views,
constraints, stored procedures, and privileges.

27-4 What Is Consistency Checking?

Performing Periodic Consistency Checking

If a warning appears after you execute oncheck -cc, its only purpose is to alert
you that no records of a specific type were found. These warnings do not
indicate any problem with your data, your system catalog, or even with your
database design. For example, the following warning might appear if you
execute oncheck -cc on a database that has no synonyms defined for any
table:

WARNING: No syssyntable records found.

This message indicates only that no synonym exists for any table; that is, the
system catalog contains no records in the table, syssyntable.

However, if an error message is returned from oncheck -cc, the situation is
quite different. You should contact Informix Technical Support immediately.

oncheck -ce
Execute oncheck -ce to validate the extents in every Online database. It is
important that extents do not overlap. If this command detects errors, per
form a data restore from archive. See the INFORMIX-OnLine Dynamic Server
Archive and Backup Guide for instructions on how to restore your data from an
archive.

oncheck -cl
Execute oncheck -cl for each database to validate indexes on each of the
tables in the database. If this command detects errors, drop and re-create the
affected index. See the INFORMIX-OnLine Dynamic Server Archive and Backup
Guide for instructions on how to restore your data from an archive.

oncheck -cD
Execute oncheck -cD to validate the pages for each of the tables in the data
base. If this command detects errors, try to unload the data from the specified
table, drop the table, re-create the table, and reload the data. See Chapter 31,
"Data Migration." If this does not succeed, perform a data restore from
archive. See the INFORMIX-OnLine Dynamic Server Archive and Backup Guide
for instructions on how to restore your data from an archive.

What Is Consistency Checking? 27-5

Performing Periodic Consistency Checking

Monitor for Data Inconsistency
If the consistency-checking code detects an inconsistency during Online
operation, an assertion failure is reported to the Online message log. (See
"What Is the Message Log?" on page 29-6.)

Assertion failures take the following form in the message log:

Assert Failed: Short description of what failed
Who: Description of user/session/thread running at the time
Result: State of the affected OnLine entity
Action: What action the OnLine administrator should take
See Also: file(s) containing additional diagnostics

The "See Also:" line contains one or more of the following filenames:
• /pathname/af .xxx

• shmem.xxx
• gcore.xxx
• / pathname/core

In all cases, xxx will be a hexadecimal number common to all files associated
with the assertion failures of a single thread. The files, af.xxx, shmem.xxx,
and gcore.xxx are in the directory specified by the ONCONFIG parameter
DUMPDIR.

The file af .xxx contains a copy of the assertion-failure message that was sent
to the message log, as well as the contents of the current, relevant structures
and data buffers.

The file shmem.xxx contains a complete copy of OnLine shared memory at
the time of the assertion failure but only if the ONCONFIG parameter DUMP-
SHMEM is set to 1.

The file gcore.xxx contains a core dump of the OnLine virtual process on
which the thread was running at the time, but only if the ONCONFIG param
eter DUMPGCORE is set to 1 and your operating system supports the gcore
utility. The core file contains a core dump of the OnLine virtual process on
which the thread was running at the time, but only if the ONCONFIG param
eter DUMPCORE is set to 1. The pathname for the core file is the directory from
which OnLine was last invoked.

Most of the general assertion-failure messages are followed by additional
information that usually includes the tblspace where the error was detected.
If this information is available, run oncheck -cD on the database or table. If

27-6 What Is Consistency Checking?

Dealing with Corruption

this check verifies the inconsistency, unload the data from the table, drop the
table, re-create the table, and reload the data. Otherwise, no other action is
needed.

In many cases, Online stops immediately when an assertion fails. However,
when failures appear specific to a table or smaller entity, the Online contin
ues to run.

When an assertion fails because of inconsistencies on a data page that Online
accesses on behalf of a user, an error is also sent to the application process.
The SQL error depends on the operation in progress. However, the isam error
will almost always be either -105 or -172, as follows:

-1 0 5 ISAM e r r o r : bad isam f i l e fo rm a t
-1 7 2 ISAM e r r o r : U n exp ected i n t e r n a l e r r o r

Chapter 38, "OnLine Message Log Messages," which describes the messages
that can appear in the OnLine message log, provides additional details about
the objectives and contents of messages.

Retain Consistent Level-0 Archive
After you perform the checks described in "Verify Consistency" on page 27-4
without errors, create a level-0 archive. Retain this archive and all subsequent
logical-log backup tapes until you complete the next consistency check.
Informix recommends that you perform the consistency checks before every
level-0 archive. However if you do not, then at minimum, keep all the tapes
necessary to recover from the archive that was created immediately after
OnLine was verified to be consistent.

Dealing with Corruption
This section describes some of the symptoms of OnLine system corruption
and actions that OnLine or you, as administrator, can take to resolve the prob
lems. Corruption in an OnLine database can occur as a consequence of prob
lems caused by hardware or the operating system, or from some unknown
OnLine problems. Corruption can affect either data or OnLine overhead
information.

What Is Consistency Checking? 27-7

Dealing with Corruption

Symptoms of Corruption
OnLine alerts the user and administrator to possible corruption through the
following means:

• Error messages reported to the application state that pages, tables, or
databases cannot be found. One of the following errors is always returned
to the application if an operation has failed because of an inconsistency in
the underlying data or overhead information:

- 1 0 5 ISAM e r r o r : bad isam f i l e fo rm a t
- 1 7 2 ISAM e r r o r : U n exp ected i n t e r n a l e r r o r

• Assertion-failure reports are written to the OnLine message log. They
always indicate files that contain additional diagnostic information that
can help you determine the source of the problem. (See "Monitor for Data
Inconsistency" on page 27-6.)

• The oncheck utility returns errors.

Run oncheck First
At the first indication of corruption, run oncheck -cl to determine if corrup
tion exists in the index. If you run oncheck -cl while OnLine is in on-line
mode, oncheck detects the corruption but does not prompt you for repairs. If
corruption exists, you can drop and re-create the indexes using SQL state
ments while you are in on-line mode (OnLine locks the table and index). If
you run oncheck -cl in quiescent mode and corruption is detected, oncheck
prompts you to confirm whether the utility should attempt to repair the
corruption.

If oncheck reports bad key information in an index, drop the index and re
create it.

If oncheck is unable to find or access the table or database, perform the over
head checks described in, "Verify Consistency" on page 27-4.

I/O Errors on a Chunk
If an I/O error occurs during OnLine operation, the status of the chunk on
which the error occurred changes to down. If a chunk is down, the onstat -d
display shows the chunk status as PD- for a primary chunk and MD- for a

27-8 What Is Consistency Checking?

Collecting Diagnostic Information

mirror chunk. A message written to the OnLine message log contains the
name of the I/O performed and an operating-system error number that iden
tifies the cause of the I/O error.

If the down chunk is mirrored, OnLine continues to operate using the mirror
chunk. Use operating-system utilities to determine what is wrong with the
down chunk and then to correct the problem. You must then direct OnLine
to restore mirrored chunk data. See "Recovering a Mirrored Chunk" on
page 24-9 for instructions on how to recover a mirrored chunk.

If the down chunk is not mirrored and contains logical-log files, the physical
log, or the root dbspace, OnLine immediately initiates an abort. Otherwise,
OnLine can continue to operate, but cannot write to or read from the down
chunk or any other chunks in that chunks dbspace. You must take steps first
to determine why the I/O error occurred, then correct the problem and,
finally, restore the dbspace from an archive.

If you take OnLine to off-line mode when a chunk is marked as down ("D"),
you can reinitialize OnLine provided the chunk marked down does not con
tain critical media (logical-log files, the physical log, or the root dbspace).

Collecting Diagnostic Information
OnLine facilitates the collection of diagnostic information through the setting
of several ONCONFIG parameters. Since an assertion failure is generally an
indication of an unforeseen problem, whenever one occurs, you should
notify Informix Technical Support. The diagnostic information collected is
intended for the use of Informix technical staff. The contents and use of af .xxx
files and shared memory/gcore/core dumps is not further documented.

To determine the cause of the problem that triggered the assertion failure it is
critically important that you not destroy diagnostic information until Infor
mix technical support indicates that you can do so. You will probably want
to fax or email the af.xxx file to Informix technical support because it often
contains the information they need to resolve the problem.

What Is Consistency Checking? 27-9

Collecting Diagnostic Information

The following ONCONFIG parameters direct Online to preserve diagnostic
information whenever an assertion failure is detected or whenever Online
enters into an abort sequence:

• DUMPCORE page 35-17
• DUMPGCORE page 35-18
• DUMPSHMEM page 35-18
• DUMPDIR page 35-17
• DUMPCNT page 35-16

You decide whether to set these parameters. Diagnostic output can consume
a large amount of disk space. (The exact content depends on the environment
variables set and your operating system.) The elements of the output could
include a copy of shared memory and a core dump.

Note: A core dump is an image o f a process in memory at the time that the assertion
failed. On some systems core dumps include a copy o f shared memory. Core dumps
are only useful if this is the case.

Online administrators with disk-space constraints might prefer to write a
script that detects the presence of diagnostic output in a specified directory
and sends the output to tape. This approach preserves the diagnostic infor
mation and minimizes the amount of disk space used.

27-10 What Is Consistency Checking?

Situations to Avoid
Chapter Overview 3

Situations to Avoid in Administering OnLine 3

Chapter

Chapter Overview
Occasionally, INFORMIX-OnLine Dynamic Server administrators conceive of
a shortcut that seems like a good idea. Because of the complexity of OnLine,
an idea that appears to be an efficient time saver can create problems else
where during operation. This chapter attempts to safeguard you from bad
ideas that sound good.

The INFORMIX-OnLine Dynamic Server Archive and Backup Guide has advice
on situations to avoid for archiving.

Situations to Avoid in Administering OnLine
The following ideas might sound good in theory, but they have unexpected
consequences that could adversely affect your OnLine performance.

• Never make changes to the tables in the sysmaster database.
• Never kill an OnLine process (virtual processor) because it will cause

OnLine to terminate.
• Do not run more CPU virtual processors than you have CPUs in your

hardware configuration.
• Never bring on-line two different types of network services with the same

servicename. See "The $INFORMIXDIR/etc/sqlhosts File" on page 4-10
for information on the servicename.

• Avoid transactions that span a significant percentage of available logical-
log space. See the descriptions of the LTXHWM and LTXEHWM parame
ters in Chapter 35, "OnLine Configuration Parameters."

• Do not rely on dbexport (a utility that creates a copy of your database for
migrating) as an alternative to creating routine archives.

• Do not run utilities that send output to tape in background mode (using
the & operator).

• Do not move a chunk from one dbspace or blobspace to another without
doing a level-0 archive of both spaces (that is, the before space and the after

Situations to Avoid 28-3

Situations to Avoid in Administering OnLine

space). If you do not archive using level-0, a potential problem exists if the
two spaces involved are restored in parallel.

• Do not locate mirror chunks on the same device as the primary chunks.
Ideally, place the mirror chunks on devices that are managed by a differ
ent controller than the one that manages the primary chunks.

28-4 Situations to Avoid

Index

Index
Boldface page numbers indicate the main discussion of a topic.
Special symbols are listed in ASCII order at the end of the index.

A
Adding virtual processors 12-9,12-14
ADM (Administration virtual processor) 12-30
Administrative tasks

before installation 3-7
configuration tasks 2-4
consistency checking 27-3
controlling location of storage 10-15
cron jobs 3-29
for production environment 3-17
in quiescent mode 7-3
initial tasks 2-3
list of tasks 3-28
list of tools 3-5
managing the sqlhosts file 4-7
network configuration files 4-7
of database administrator 1-10
of O nline administrator 1-10
of O nline operator 1-10
planning 3-4
routine tasks 2-3
situations to avoid 28-3
startup and shutdown scripts 3-28
types of 2-3

Database administrator
See also Administrative tasks.

ADT (audit) virtual processor 12-31
ADTERR parameter, description of 35-6
ADTMODE parameter

description of 35-7
mentioned 12-31

ADTSIZE parameter, description of 35-7
AFF_NPROCS parameter

description of 35-8
purpose of 12-18
recommendation for 30-19
with MULTIPROCESSOR parameter

35-27
AFF_SPROC parameter

description of 35-8
purpose of 12-18
with MULTIPROCESSOR parameter

35-27
AIO virtual processors

how many 12-23
NUMAIOVPS parameter 12-23
performance of 30-19
when used 12-23

Allocating disk space
extent 10-13
for mirrored data 24-5
initial configuration 3-26
procedure 11-3
types of disk space 3-12

ALTER TABLE statement
mentioned 4-18
restriction of use 31-15

Alternate dbservername 35-11
ANSI-compliant transaction logging. See

Logging
Application

client. See Client application,
developer, role of 1-9

Architecture, dynamic scalable 12-3
Archive

and backups 1-6
checkpoint during 14-50
description of 1-7
reducing size of 10-19
reserved page information 40-12
tools for 3-23
using ontape 37-70
with multiple residency 6-7

Archive configuration file 42-5,42-8
Archive interface attributes file 42-9
Archiving

strategy 3-4
ARC_DEFAULT environment variable

mentioned 6-7
setting with informix.rc 3-31

ARCJKEYPAD environment variable
42-8, 42-9

Assertion failure
and data corruption 27-8
description of 27-3
determining cause of 27-9
DUMPCNT parameter 35-17
DUMPCORE parameter 35-17
DUMPSHMEM parameter 35-18
during consistency checking 27-6
during processing of user request 27-7
form in message log 27-6

Assertion failure file
af.xxx 27-6
gcore.xxx 27-6
list of 27-6
shmem.xxx 27-6,42-8

Asynchronous I/O
and NUMAIOVPS parameter 35-30
write requests for mirrored data 23-8

Attaching to shared memory
additional segments 14-13
client to communications portion

14-11
description of 14-10
first segment 14-12
OnLine utilities 14-11
virtual processors 14-11
virtual processors and key value 14-12

Audit file
directory 35-7
size 35-7

Audit mode 12-31
Audit records

and sysaudit table 36-9
error 35-6

Auditing 1-8, 35-7,36-8,36-9
Automatic recovery, by two-phase

commit protocol 32-9
Availability

and critical media 10-15
as goal in efficient disk layout 10-30
sample disk layout 10-37

B
Backup

displaying contents of 37-23
during practice sessions 3-17
freeing a log file 19-11

hot site 25-4
in a production environment 3-14
mentioned 10-29
of blobs 10-19
planning for 3-4
restoring with ontape 37-75
starting continuous 37-74

backup
strategy 3-4

Backups
changes to the database 1-6
of transaction records 1-6
with multiple residency 6-7

Bad-sector mapping, absence of 1-10
Before-image

contents 22-5
described 20-3
flushing of 14-39
in physical log buffer 14-39

Before-image journal
See Physical log. 17

Big buffers
and regular buffers 14-27
description of 14-27

Big-remainder page 40-36
Binding CPU virtual processors

and AFF_NPROCS parameter 35-8
benefit of 12-9
parameters 12-19

Bit-map page
2-bit values describing fullness 40-23
4-bit values describing fullness 40-23
component of a tblspace 10-25
component of an extent 40-25
component of the tblspace tblspace

40-19,40-20
description of 40-22
location in extent 40-22
of a blobspace 40-59
role of 2-bit pages 40-22
role of 4-bit page 40-23
structure of 40-22
types of entries 40-22

Blob
absence of scanning or compression

1-11
and physical logging 20-4
creating in a blobspace 14-53
data types 1-8

effect of Committed Read isolation
14-51

effect of Dirty Read isolation 14-51
entering 1-11
how stored 40-55
how updated 40-56
illustration of blobspace storage 14-54
in physical and logical log 10-19
modified by creating new blob 40-56
monitoring for fullness 10-19
monitoring in a blobspace 29-53
monitoring in a dbspace 29-56
page structure 40-57
role of blob descriptor in

modifications 40-56
role of blob descriptor in storage 40-56
role of blob timestamps 14-50
size limitations 40-57
storage efficiency of 40-55
storage on disk 40-56
when created 14-53,40-56
when modified 40-56
writing to a blobspace 14-52

Blob descriptor
associated with blob timestamp 14-50
created during blob storage 14-53
description of 40-33,40-56
pointer becoming obsolete 14-51
structure and function 40-56

Blobpage
average fullness statistics 37-12
blobpage size 40-54
blobpage size and storage efficiency

11-17
components of page header 40-61
description of 10-10
determining fullness 11-17
freeing deleted pages 18-16
fullness terminology explained 11-19
interpreting average fullness 11-19
oncheck -pB display explained 11-18
relationship to chunk 10-10
size of 10-10
sizing for performance 11-16
sizing recommendations 10-11
specifying size of 40-54
storage statistics 11-17
structure and storage 40-54,40-60
writes bypass shared memory 14-52

Blobspace
activating 18-15

Index 3

adding a chunk 11-10,11-14
bit-map page 40-59
blob buffers 14-53
blob storage 40-56
blob timestamps 14-50
blobpage structure 40-60
creating 3-28,11-12
creating using ON-Monitor 11-13
creating using onspaces 11-14
description of 10-19
dropping using ON-Monitor 11-16
dropping using onspaces 11-16
dropping, initial tasks 11-15
free-map page

description of 40-59
location in blobspace 40-55
role in blobpage logging 18-17,

40-59
role in tracking blobpages 14-54
tracked by bit-map 40-59

illustration of writing a blob 14-53
logical-log administration tasks for

18-15
management of 10-20
migrating to INFORMIX-SE 31-14
mirroring 10-19
moving, with onunload/onload 31-8
multiple residency 6-6
overhead pages 18-16
page types 40-59
purpose of 10-19
restriction concerning dropping 37-42
storage efficiency 11-17
storage statistics 11-17
structure 40-54
structure of blobspace mirror chunk

40-15
writing data to 14-52

blobspace 11-17
Block device 10-6
Boot file. See Startup script
Btree cleaner list 40-52
Btree indexing 40-43
Buffer

access-level flag bits 37-51
big buffers 14-27
blobpage buffer 14-53
concurrent access 14-36
current lock-access level for 14-19
data replication 14-25,25-9
dirty 14-39

exclusive mode 14-31
flushing 14-39
how a thread accesses a buffer page

14-36
how a user thread acquires 14-33
lock types 14-31
lock-access level of 14-37
logical-log buffer 14-24
minimum requirement 14-19
monitoring statistics and use of 29-15
not dirty 14-39
page-type codes 37-50
physical-log buffer 14-25
reading from disk 14-37
regular buffer 14-23
releasing if no thread waiting 14-38
releasing if thread waiting 14-38
releasing when modified 14-38
releasing when not modified 14-37
share lock 14-31
status 14-18
synchronizing flushing 14-39
threads waiting for 14-19
tuning for performance 30-11
write types during flushing 14-42

Buffer flushing
description of 14-39
how synchronized 14-41

Buffer pool
bypassed by blobspace data 14-52
cleaning efficiency affected by

checkpoints 30-14,30-16
contents of 14-23
data-replication buffer 14-23
description of 14-23
flushing 14-39
LRU queues management 14-33
monitoring activity 29-19
read-ahead 14-35
synchronizing buffer flushing 14-41

Buffer table
contents of 14-18
description of 14-18
LRU queues 14-32

Buffered transaction logging. See
Logging

BUFFERS parameter
description of 14-24, 35-9
mentioned 3-24
tuning for performance 30-12

4 Index

BUFFSIZE. See Page size
buildsmi

script 36-4
BYTE data type

Committed Read isolation 14-52
Dirty Read isolation 14-51
migrating from INFORMIX-SE 31-16
migrating to INFORMIX-SE 31-14
requires 4-bit bit map 40-23,40-25
storage on disk 10-16

Byte lock 14-21
B+ tree structure 40-43

c
Cache. See Shared-memory buffer pool
Caching percentages

description of 30-4
mentioned 30-12,30-14, 30-15

Cascading deletes 16-4
Cataloger, ON-Archive, mentioned 6-7
Cautions 28-3
CFIAR data type, changing locale 31-17
Character-special interface 10-6
Checkpoint

and chunk writes 14-43
and flushing of regular buffers 14-39
and logical-log file 14-47
and physical-log buffer 14-47, 20-9
description of 14-47
during an archive 14-50
events that initiate 14-47
force with onmode -c 37-30
forcing, to free logical-log file 15-16
frequency trade-offs 30-16
main events during 14-48
mentioned 9-8
monitoring activity 29-11
page-cleaning parameters affect

frequency 30-14,30-16
reserved page information 40-8
role in data replication 25-13
role in fast recovery 14-49, 22-5, 22-6
step in shared-memory initialization

9-8
updating the reserved pages 40-6

Chunk
activity during mirror recovery 23-7
adding to a blobspace 11-14

adding to a dbspace 11-10
adding to mirrored dbspace 24-8
adding using ON-Monitor 11-11
adding using onspaces 11-11
changing mirror chunk status 24-8
checking for overlap 37-11
chunk status as PD 27-8
cooked versus raw 10-5
creating a link to the pathname 11-6,

24-5
defining multiple in a partition 11-5
definition of 3-12
description of 10-4
disk layout guidelines 10-31
dropping from a blobspace 11-15
dropping from a dbspace 11-14
exceeding size limits with LVM 10-44
extent interleaving 11-20
free-list page 40-13,40-14,40-16,40-17
initial chunk of dbspace 40-4
initial mirror offset 35-26
I/O errors during processing 27-8
management of 11-19
maximum number of 10-5, 35-10
maximum size of 10-5
mirror chunk reserved page

information 40-11
monitoring 11-19, 29-43, 29-46,36-9,

36-10
multiple residency 6-6
name, when allocated as raw device

10-6
pathname stored 40-10
purpose of 10-5
recovering a down chunk 24-8
relation to extent 10-13
relinking after disk failure 24-10
reserved page information 40-10
structure

additional dbspace chunk 40-14
initial dbspace chunk 40-13
mirror chunk 40-15

using a symbolic link for the
pathname 35-36

Chunk table
and mirroring 14-19
description of 14-19
maximum entries 14-19

Chunk write
checkpoints 14-43
monitoring 29-20

Index 5

CHUNKS parameter
description of 35-10
mentioned 3-24
relationship to DBSPACES 35-13

CKPTINTVL parameter
description of 35-10
initiating checkpoints 14-47
mentioned 3-25
tuning for performance 30-16

Classes of virtual processor 12-5
CLEANERS parameter

description of 35-11
purpose of 14-21
tuning for performance 30-14

Client
description of 1-4
remote 4-9

Client application
connecting to OnLine 4-11
redirecting in data replication 25-19
testing 5-4

Client/server architecture
client/server connection 1-4
description of 1-4

Client/server configuration
connections 4-3
example

6.0 client with 5.0 server 4-30
6.0 relay module 4-26
INFORMIX-STAR,example 4-29
local loopback 4-21
multiple connection types 4-23
multiple OnLine servers 4-25
multiple residency 4-25
network connection 4-21
shared memory 4-20
using IPX/SPX 4-23

listen and poll threads 12-26
local loopback 4-6
remote host 4-5
shared memory 4-4
types of 4-3

Code examples, conventions Intro-8, 8
Cold restore

number of recovery threads 35-31
Committed Read isolation level

data-consistency checks 14-51
role of blob timestamps 14-51

Communication configuration file. See
ONCONFIG configuration file

Communications portion (shared
memory)

contents of 14-29
description of 14-29
how client attaches 14-10
size of 14-30

Communication, client to database
server. See Connectivity

Compactness, of index page 35-19
Concurrency control 14-30
Condition segment 31-15
Configuration

learning environment 3-10
monitoring 29-9
overview 3-8
parameter overview 3-19
planning for OnLine 3-4
production environment 3-17
template file 3-8
using 6.0 relay module 4-26

Configuration file
and multiple residency 5-3, 6-4
archive 42-5
connectivity 4-7
description of 3-13
onconfig.std 3-8
reserved page information 40-8
warning about multiple residency 6-4

Configuration parameter
ADTERR 35-6
ADTMODE 35-7
ADTPATH 35-7
ADTSIZE 35-7
AFF_NPROCS 35-8
AFF.SPROC 35-8
and initial chunk of root dbspace

10-17
BUFFERS 35-9
CHUNKS 35-10
CKPTINTVL 35-10
CLEANERS 35-11
CONSOLE 3-19,35-11
DBSERVERALIASES 4-18,35-11
DBSERVERNAME 3-15,3-19,4-12,

4-17, 35-12
DBSPACES 35-13
DBSPACETEMP 35-13
DEADLOCK_TIMEOUT 35-14

displayed
in data-replication screen 34-15
in diagnostics screen 34-16
in initialization screen 34-12
in shared-memory screen 34-13
in virtual processor screen 34-14

DRAUTO 35-15
DRINTERVAL 35-15
DRLOSTFOUND 35-16
DRTIMEOUT 35-16
DUMPCNT 35-17
DUMPCORE 35-17
DUMPDIR 35-17
DUMPGCORE 35-18
DUMPSHMEM 35-18
FILLFACTOR 35-19
for archiving 3-23
for diagnostic information 27-9
for multiple residency 5-4
for ontape utility 3-23
for physical logging 3-22
identification 3-20
LOCKS 35-19
LOGBUFF 35-20
LOGFILES 35-20
LOGSIZE 35-21
LOGSMAX 35-22
LRUS 35-22
LRU_MAX_DIRTY 35-22
LRU_MESJ_DIRTY 35-23
LTAPEDEV 3-14,3-19,35-24
LTAPESIZE 35-24
LTXEHWM 35-25
LTXHWM 35-25
MIRROR 35-26
MIRROROFFSET 35-26
MIRRORPATH 35-27
MSGPATH 3-15,3-19,35-27
MULTIPROCESSOR 35-27
NETTYPE 4-17,35-28
NOAGE 35-30
NUMAIOVPS 35-30
NUMCPUVPS 35-31
OFF_RECVRY_THREADS 35-31
ON_RECVRY_THREADS 35-32
PHYSBUFF 35-32
PHYSDBS 35-33
PHYSFILE 35-33
RA.PAGES 35-34
RA_THRESHOLD 35-34
RESIDENT 35-35
ROOTNAME 3-20

ROOTOFFSET 35-36
ROOTPATH 3-14,3-19,35-35,35-36
ROOTSIZE 3-20,35-36
SERVERNUM 3-15,3-19,14-11,35-37
shared memory 3-24,15-3
SHMBASE 14-11,35-38
SHMVIRTSIZE 35-39
SINGLE_CPU_VP 35-40
STACKSIZE 35-41
STAGEBLOB 35-41
TAPEBLK 35-41
TAPEDEV 3-14,3-19,35-42
TAPESIZE 35-44
TBLSPACES 35-44
TRANSACTIONS 35-45
TXTIMEOUT 35-45
USEOSTIME 30-20,35-46

config.arc file
description of 42-5
mentioned 3-23
with multiple residency 6-7

CONNECT statement
example 4-18
mentioned 4-11,4-18
USER clause 4-9

Connecting
description of 12-26
example with CONNECT 4-11
methods 12-24
to non-Informix databases 1-8
with sockets 12-24
with T L I12-24

Connection
5.0 relay module 4-29
6.0 client with 5.0 server, example 4-30
client/server, types of 4-3
from 5.0 server to 6.0 server 4-27
IPX/SPX 4-23
local loopback, definition of 4-6
local loopback, example 4-21
multiple connection types

example 4-23
multiple residency, example 4-25
network, description of 4-5
network, example 4-21
network, when to use 4-5
security restrictions 4-9
shared memory, description of 4-4
TCP/IP 4-8
to client application 4-3
to database server 4-3

Index 7

Connectivity
configuration file 4-7
configuration parameters 4-17
file, sqlhosts 3-8

Consistency checking
corruption of data 27-7
data and overhead 27-4
index corruption 27-8
monitoring for data inconsistency

27-6
overview 27-3
periodic tasks 27-3
validating extents 27-5
validating indexes 27-5
validating reserved pages 27-4
when to schedule 27-4

Console messages 29-7
CONSOLE parameter

changing 29-7
description of 35-11
in a production environment 3-19
mentioned 3-23

Constraint Name segment 31-15
Constraint, deferred checking 16-4
Contention. See Disk contention
Context switching, description of 12-10
Control structures

description of 12-10
queues 12-14
session control block 12-10
stacks 12-12
thread control block 12-10

Conventions
boldface font Intro-5, 5
command-line syntax Intro-5,5
computer font Intro-5,5
example code Intro-8,8
italics font Intro-5,5
keywords Intro-5, 5
railroad diagrams Intro-5, 5

Conversion
between locales 31-18
during initialization 9-7

Cooked file space
and buffering 10-7
compared with raw space 10-6
contiguity of space 10-7
description of 3-12,10-5,10-6
directory for 3-12
for static data 10-7

how to allocate 11-4
in data storage 10-3
OnLine management of 10-6
rationale for using 10-7
reliability 10-8
steps to prepare 3-13
warning 10-6

Coordinating database server
and automatic recovery 32-11
description of 32-5

Coordinator recovery mechanism 32-11
Core dump 27-10

and DUMPCORE configuration
parameter 35-17

contained in core file 42-5
contents of gcore.xxx 27-6
when useful 27-10
Sec fl/so,DUMPCNT, DUMPDIR,

DUMPGCORE,
DUMPSHMEM

core.pid.cnt file 35-18
Corruption

corrective actions 27-8
determining if exists 27-8
I/O errors from a chunk 27-8
symptoms of 27-8

CPU time tabulated 37-63
CPU virtual processor

adding and dropping in on-line mode
12-18

AFF_NPROCS parameter 12-18
AFF_SPROC parameter 12-18
and poll threads 12-25,12-26
and SINGLE_CPU_VP parameter

35-40
binding 35-8
description of 12-16
how many 12-16
more than two CPUs 12-17
on a multiprocessor machine 12-17
on a single processor machine 12-17
performance of 30-18
preventing priority aging 12-18
the NUMCPUVPS parameter 12-16
types of threads run by 12-16

CREATE DATABASE statement
effect of locale 31-17
mentioned 31-15

CREATE INDEX statement
mentioned 31-15

using FILLF ACTOR 35-19
CREATE SCHEMA statement 31-15
CREATE TABLE statement

mentioned 4-18
migrating to INFORMIX-SE 31-14
use with dbload 31-9

Critical media
and archiving 10-36
mirroring 10-40
storage of 10-15

Critical section of code
and checkpoints 14-48
description of 14-46
how to determine 37-31
related to size of logical log 18-6
related to size of physical log 20-5

cron jobs, warning about 3-29,42-9

D
Data block

See Page. 16
Data consistency

fast recovery 22-3
monitoring for 27-6
symptoms of corruption 27-8
timestamps 14-50
verifying consistency 27-4

Data definition statements, when logged
16-6

Data files. See Logging.
Data management 10-6
Data manipulation statements, when

logged 16-6
Data replication

actions to take if primary fails 25-17
actions to take if secondary fails 25-16
administration of 26-12
advantages of 25-4
and the PAGE_ARCH reserved page

40-12
automatic switchover 25-17
changing database server mode 26-15
changing database server type 26-16
client redirection

comparison of different methods
25-28

handling within an application
25-26

using DBPATH 25-20

using INFORMIXSERVER 25-25
using sqlhosts file 25-22

configuring connectivity for 26-8
database and data requirements for

26-5
database server configuration

requirements for 26-5
description of 1-7,25-3
designing clients to use secondary

database server 25-29
detecting failures of 25-15
DRAUTO parameter 25-17,35-15
DRINTERVAL parameter 25-10,25-11
DRLOSTFOUND parameter 25-11
DRTIMEOUT parameter 25-15
flush interval 35-15
hardware and operating system

requirements for 26-4
how it works 25-8
how updates are replicated 25-9
importance of reliable network 25-18
information in sysdri table 36-13
initial replication 25-8
lost and found file 35-16
lost and found transactions 25-11
manual switchover 25-19
mentioned 16-5
monitoring status 29-58
planning for 26-3
possible failures 25-14
read only mode 7-4
restarting after failure 25-18,25-19,

26-20
restoring system after media failure

26-18
role of checkpoint 25-13
role of log records 25-9
role of primary database server 25-4
role of secondary database server 25-4
role of temporary dbspaces 25-31
setting up 26-4
specialized threads 25-13
starting 26-9
synchronization 25-14
wait time for response 35-16
with asynchronous updating 25-11
with synchronous updating 25-10

Data row
and rowid 40-34
big-remainder page 40-36
blob descriptor component 40-56
forward pointer 40-34,40-36

Index 9

home page 40-33,40-36
how OnLine locates 40-34
storage strategies 40-33
storing data on a page 40-35

Data storage
control of 10-15
overview 10-3
types of 10-3
See also Disk space.

Data Type segment 31-15
See also Disk space.

Database
controlling storage location 10-22
creating, what happens on disk 40-63
description of 10-20
effects of creation 40-63
estimating size of 10-30
information in sysdatabases table

36-11
limits 10-21
location of 10-20
migration See Migration
monitoring 29-36
moving, using onunload/onload 31-7
owner, in sysmaster database 36-11
purpose of 10-20
recovery See Recovery
revert to 5.0 format 37-35
size limits 10-21
stores6 demonstration database

Intro-9,9
tuning. See Performance tuning

Database administrator
role of 1-10

Database format, change with onmode
37-35

Database logging status
ANSI-compliant, description 16-9
buffered, description 16-9
changes permitted 17-3
changes, general info 17-4
changing buffering status

using ON-Archive 17-6
using ontape 17-7,37-73

ending logging
using ON-Archive 17-6
using ontape 17-7

in a distributed environment 16-10
making ANSI-compliant

using ON-Archive 17-6
using ontape 17-8

modifying
using ON-Archive 17-5
using ON-Monitor 17-8
using ontape 17-6

set after moving data 31-14
setting 16-7
turning on logging

using ON-Archive 17-5
using ontape 17-7

unbuffered, description 16-8
who can change 16-10

Database Name segment 31-15
Database object, ways to create 31-9
Database schema.See Schema file
Database server

connection to 4-3
description of 1-3
remote 4-10, 36-19

Database server name. See
dbserveraname

DATABASE statement, mentioned 4-18
Database tblspace

entries 40-21
location in root dbspace 40-4,40-20
relation to systable 40-63
structure and function 40-20
tblspace number 40-21

Data-recovery mechanisms
fast recovery 22-3
mirroring 23-3

Data-replication buffer 14-23,14-25,25-9
DB-Access

create a database object 31-9
testing configuration 4-30
to test OnLine features 3-17

dbexport utility
mentioned 31-4
privileges required 31-13
schema file 31-13
steps for using 31-13

dbimport utility
mentioned 31-4
moving data 31-13
steps for using 31-13

dbload utility
bad-record treatment 31-12
external data 31-12
list of features 31-11
mentioned 31-4

10 Index

options 31-11
steps for using 31-12

DBNETTYPE environment variable 4-28
DBPATH environment variable

moving to SE 31-14
use in automatic redirection 25-20

dbschema utility
description 31-10
mentioned 31-4

DBSERVERALIASES parameter
description of 4-18,35-11
example 4-18
in sqlhosts file 4-12
mentioned 3-20
multiple connection types example

4-23
specifying network protocols 12-25

dbservername
choosing 3-11
conflict with INFORMIX-SE 35-12
description of 35-12
field in sqlhosts file 4-12
in CONNECT statement 4-11
mentioned 1-4
purpose of 4-12

DBSERVERNAME parameter
associated protocol 12-25
description of 4-17,35-12
in a learning environment 3-15
in a production environment 3-19
in sqlhosts file 4-12
mentioned 3-20
multiple residency 6-5
specifying network protocols 12-25
virtual processor for poll thread 12-25

Dbspace
adding a chunk to 11-10
adding a mirrored chunk 24-8
as link between logical and physical

units of storage 10-15
bit-map page 40-22
blob page structure 40-57
blob storage 40-56
blob timestamps 14-50
creating a temporary 11-8
creating during initial configuration

3-28
creating with ON-Monitor 11-9
creating with onspaces 11-9
creating, overview 11-8

description of 10-15
dropping a chunk from 11-14
dropping using ON-Monitor 11-16
dropping using onspaces 11-16
dropping, overview 11-15
identifying the dbspace for a table

40-19
initial dbspace 10-17
list of structures contained in 40-13
maximum number of 35-13
mirror chunk information 40-7
mirroring if logical log files included

23-6
monitoring blobs 29-56
monitoring with SMI 36-12
multiple residency 6-6
page header 40-30
primary chunk information 40-7
purpose of 10-15
reserved page information 40-9
root dbspace defined 10-17
root name 35-35
shared-memory table 14-20
starting to mirror 24-6
storage 40-4
structure 40-4,40-13,40-14
structure of additional dbspace chunk

40-14
structure of chunk free-list page 40-16
structure of mirror chunk 40-15
structure of nonroot dbspace 40-13
structure of tblspace tblspace 40-17
temporary 10-18
usage report 40-4

DBSPACES parameter
description of 35-13
mentioned 3-24

DBSPACETEMP environment variable
10-25

DBSPACETEMP parameter
and load balancing 10-34
description of 35-13
if not set 10-25
mentioned 10-18
relationship to DBSPACETEMP

environment variable 10-24
Deadlock. See DEADLOCK.TIMEOUT

parameter.
DEADLOCK_TIMEOUT parameter

description of 35-14
in two-phase commit 32-34

Index 11

mentioned 3-25
Default configuration file 3-9, 9-6,42-7
Deferred checking of constraints 16-4
DEFINE SPL statement 31-15
Delete flag

described 40-44
possible values 40-44

Demonstration database
copying Intro-10,10
installation script Intro-9, 9
overview Intro-9,9

Device 10-6
Diagnostic information

and disk space restraints 27-10
collecting 27-9
parameters to set 27-9

Diagnostic messages. See Message log
Dictionary cache 14-28
Dirty buffer

description of 14-39
Dirty Read isolation level

data-consistency checks 14-51
role of blob timestamps 14-51

Disk contention
and high-use tables 10-31
and multiple disk devices 10-33
of critical media 10-35
reducing 10-30

Disk failure 1-7
Disk I/O

kernel asynchronous I/O 12-20
logical log 12-20
managing 10-3
operating system 1/010-6
physical log 12-20
priorities 12-21
raw I/O 10-6
reads from mirrored chunks 23-8
virtual processor classes 12-20
writes to mirrored chunks 23-8

Disk layout
and archiving 10-32,10-36
and logical volume managers 10-44
and mirroring 10-31
and table isolation 10-31
for optimum performance 10-31,30-6
sample disk layouts 10-37
trade-offs 10-37

Disk page
before-images in physical log 14-39
function of timestamp pairs 14-50
logical page number 40-34
number to read ahead 35-34
page compression 40-32, 40-41
physical page number 40-34
read ahead 14-35
storing data on a page 40-35
structure

blobspace blobpage 40-25
dbspace page 40-30

types of pages in an extent 40-25
Disk space

allocating
cooked file space 11-4
raw disk space 10-7,11-5
when a database is created 40-63
when a table is created 40-64

allocation for system catalogs 40-63
chunk free-list page 40-16
creating a link to chunk pathname

11-6
described 11-3
efficient storage of blobs 11-17
estimating size of 10-27
extent interleaving 11-20
guidelines for layout 10-31
initialization 9-7

definition of 9-3,11-7
with new database server 3-27
with oninit 11-7,37-16
with ON-Monitor 11-7

layout guidelines 10-30
list of structures 40-3
multiple residency 6-6
offsets for chunk pathnames 11-5
optimal storage of tables 10-33
optimizing temporary space layout

10-34
page compression 40-32, 40-41
raw devices versus cooked files 10-5
reclaiming space 11-21
requirements

for production environment 10-30
for root dbspace 10-27

strategies for improving performance
10-30

tracking
available space in a blobspace

40-59
available space in a chunk 40-16

12 Index

free pages with bit-map page 40-22
usage by tblspace 10-25

Disk volume inconsistency information
42-9

Distributed databases 1-8
Distributed queries, descrition of 1-8
Distributed transaction

and two-phase commit protocol 32-3
determining if inconsistently

implemented 33-5
mentioned 16-4

Documentation
notes Intro-8,8
other useful Intro-4,4

DRAUTO parameter
description of 35-15
role in recovering from

data-replication failure 25-17
DRINTERVAL parameter

description of 35-15
setting for asynchronous updating

25-11
setting for synchronous updating

25-10
DRLOSTFOUND parameter

description of 35-16
use with data replication 25-11

Dropping CPU virtual processors 12-9
DRTIMEOUT parameter

description of 35-16
role in detecting data replication

failures 25-15
dr.lostfound file 35-15
DUMPCNT parameter 35-17
DUMPCORE parameter 35-17
DUMPDIR parameter

af.xxx assertion failure file 42-4
and consistency checking 27-6
and shmem file 42-8
description of 35-17
gcore file 42-5

DUMPGCORE parameter 27-6,35-18
DUMPSHMEM parameter 27-6,35-18
Dynamic scalable architecture

advantages 12-3
description of 12-3

E
Environment configuration file 42-5
Environment variable

ARC.DEFAULT 3-31
ARCJCEYPAD 42-8,42-9
DBNETTYPE 4-28
for NLS 3-18
for users of client applications 3-30
in a learning environment 3-11
in a production environment 3-18
INFORMIXDIR 3-9,3-28,4-27
INFORMIXSERVER 3-9
INFORMIXSHMBASE 14-11
INFORMIXTERM 3-9
ONCONFIG 3-9
overview 3-9
PATH 3-9,3-28
PSORT.DBTEMP 30-10
PSORTJSIPROCS 30-9
required by application 3-9
SQLEXEC 4-27
SQLRM 4-27
SQLRMDIR 4-27
TBCONFIG 42-7
TERM 3-9
TERMCAP 3-9

Error messages
documentation for Intro^l, 4
for two-phase commit protocol 32-27
I/O errors on a chunk 27-8

/etc/hosts file 4-8
/etc/services file 4-8
Example

6.0 relay module 4-26
connecting 6.0 client to 5.0 server 4-31
DBSERVERALIASES and sqlhosts file

4-18
DBSERVERALIASES parameter 4-18
how page cleaning begins 14-34
IPX/SPX connection 4-23
local loopback connection 4-21
multiple connection types 4-23
NETTYPE parameters for tuning

35-29
relay module with three servers 4-28
shared-memory connection 4-20
SQLEXEC environment variable 4-27
sqlhosts file 4-11
TCP/IP connection 4-22
/ etc/services file entry 4-8

Index 13

Exclusive lock (buffer), description of
14-31

exit codes
ontape utility 37-71

Explicit temporary table 10-24
Expression segment 31-15
Extent

automatic doubling of size 40-27
default size 40-24
description of 10-11
disk page types 40-25
how O nline allocates 10-13
information in sysextents table 36-13
initial size 10-12,40-24
interleaving 10-26,11-20
key concepts concerning 10-13
merging 40-28
monitoring 29-50
next extent allocation 40-27
next extent allocation strategies 40-29
next extent size 10-12,40-24,40-27
optimizing table 10-34
procedure for allocating 40-27
purpose of 10-11
reclaiming space 11-21
relationship to chunk 10-13
size limitations 40-24
size, migrating to INFORMIX-SE

31-14
structure 10-12,40-24
tracking free pages using bit-map

page 40-22
validating consistency 27-5

F
Fast recovery

description of 1-7, 22-3
details of process 22-5
effects of buffered logging 22-4
how O nline detects need for 22-4
mentioned 7-4,9-8,16-4
no logging 22-4
purpose of 22-3
role of checkpoint 14-49
role of PAGE_CHKT reserved page

22-6
when initiated 22-4
when needed 22-3
when occurs 22-3

Fault tolerance
archives and backups 1-6
data replication 1-7, 25-4, 25-6
fast recovery 1-7, 22-3
mirroring 1-7

File
archive configuration file 42-5
communication configuration 4-7
configuration 3-8
config.arc 6-7,42-5
connectivity configuration 4-7
core.pid.cnt 35-18
default configuration file 42-7
dr.lostfound 35-15
gcore 35-17
informix.rc environment file 42-5
network configuration 4-7
network security 4-9
oncatlgr.out.pidnum 42-6
oncfg_servemame.servemum 9-8,

42-8
onconfig, during initialization 9-5, 9-6
onconfig.std

description of 3-8,42-7
during initialization 9-6
sample file 42-10

oper_deflt.arc 6-7,42-8
private environment file 42-5
shmem.pid.cnt 35-19
shmem.xxx 42-8
sqlhosts 3-8,4-10
status_vset_volnum.itgr 42-9
summary of OnLine files 42-3
sysfail.pidnum 42-9
tctermcap archive attributes file 42-9
template for configuration file 42-7
VP.servername.xxC 42-9
.informix 42-5
.infos.dbservername 42-6
.inf.servicename 42-6
.netrc 4-9
.rhosts 4-9
/etc/hosts.equiv 4-9
/etc/ shadow 4-9

File I/O. See Disk 1/O
FILLFACTOR parameter

controlling how indexes filled 40-53
description of 35-19

14 Index

Fixed format data, moving with dbload
31-12

FLRU queues
and reading a page from disk 14-37
and releasing buffer 14-38
description of 14-32
See also LRU queues

Flushing
buffers 14-39
data-replication buffer, maximum

interval 35-15
of before-images 14-39

Forced residency
initialization 9-9
start/end with onmode 37-30

Forcing a checkpoint. See Checkpoint
Foreground write

description of 14-43
monitoring 29-20

Format of database, change with onmode
37-35

Forward pointer
description of 40-34
how it can become invalid 14-51
role in a blobspace blob storage 40-60
role in data storage 40-36
role in dbspace blob storage 40-56
unaffected by page compression 40-32

Free list. See Chunk free list
Free-map page

description of blobspace free-map
page 40-59

role in blobspace logging 18-17

G
gcore

file 27-6
utility 35-17, 35-18

Global pool, description of 14-29
Global transaction identification number

33-6,33-7

H
Hash table

to buffer table 14-19
to lock table 14-21
to tblspace table 14-22

Heaps 14-28
Heuristic decision

result from independent action 32-19
types of 32-20

Heuristic end-transaction
conditions for 32-25
description of 32-25
determining effects on transaction

33-4
illustration, including logical log

records 32-32
messages returned by 32-26
results of 32-26
when necessary 32-25

Heuristic rollback
conditions resulting in 32-21
description of 32-21
illustration, including logical log

records 32-30
indications that rollback occurred

33-4
results of 32-22

High availability data replication. See
Data replication

Home page 40-33,40-36
hostname field

multiple network interface cards
12-30

with IPX/SPX 4-15
with shared memory 4-14
with TCP/IP communication protocol

4-15
Hot site backup. See Data replication

i
Identification parameters 3-20
Inconsistency information

disk volume 42-9
how to detect 27-3

Index
branch node 40-43
btree cleaner list 40-52
controlling how filled 40-53
delete flag 40-44
duplicate key values 40-49
effects on structure of item insertion

40-52
how created and filled 40-45
how deleted items removed 40-52

Index 15

insertion of indexed data 40-52
item described 40-44
key value locking 40-52
leaf node 40-43
repairing structures with oncheck

utility 37-6
reuse of freed pages 40-52
root node 40-43
structure of B+ tree 40-43
validating consistency 27-5

Index item
calculating the length of 40-53
defined 40-44
example of 40-44
how removed 40-52
merging 40-53
shuffling 40-53
when purged 40-44

Index Name segment 31-15
Index page

compactness 35-19
creation of first 40-45
effects of creation 40-45
effects of inserting item 40-52
structure of 40-43

Infinity item
and creation of branch node 40-47
defined 40-46

Informix application development tools
Intro-3,3

Informix recommendations
on allocation of disk space 10-8
on consistency checking 27-3
on mirroring the physical log 20-7

INFORMIXDIR environment variable
and 5.0 products 4-27
in shutdown script 3-29
in startup script 3-28
mentioned 3-9
multiple residency startup script 6-8

INFORMIX-OnLine Dynamic Server
administering 3-5
administrator, description of 1-10
bad-sector mapping, absence of 1-10
blob compression, absence of 1-11
blob scanning, absence of 1-11
client/server architecture 1-4
connecting to 5.0 server from 6.0

server 4-27

connecting to multiple servers 4-25,
5-3

connection types supported by 4-3
description of 1-3
distributed queries 1-8
fault-tolerant features 1-6
features beyond the scope of 1-10
high performance of 1-5
management of data 10-6
message log file 35-27
multimedia support 1-8
multiple instances 5-3
profile statistics 29-13
raw-disk management 1-5
resident portion of shared memory

35-35
security 1-8
shut down with UNIX script 3-29
testing environment 5-3
users 1-9

INFORMIX-OnLine / Optical multimedia
support 1-8

INFORMIXSERVER environment
variable

during initialization 3-9
multipe versions of OnLine 3-29
multiple residency startup script 6-8
relation to DBSERVERNAME 35-12
use in client redirection 25-25
with multiple residency 6-8

INFORMIXSHMBASE environment
variable 14-11

INFORMIXSTACKSIZE environment
variable, purpose of 14-28

INFORMIXTERM environment variable
3-9

informix.rc environment file
description of 42-5
mentioned 42-5
multiple residency 6-8
use of 3-30

Initial configuration
creating blobspaces and dbspaces

3-28
disk layout for production

environment 10-30
guidelines for root dbspace 10-17
raw disk devices versus cooked files

10-5

16 Index

Initialization
checkpoint 9-8
commands 11-7
configuration changes 9-8
configuration files 9-5
control returned to user 9-9
conversion of internal files 9-7
disk space 3-27,9-3,9-7
disk space for multiple residency 6-6
disk structures initialized 40-4
environment variables to set 3-9
fast recovery 9-8
forced residency 9-9
message log 9-9
oncfg_servername.servernum file 9-8
onconfig file 9-6
onconfig.std file 9-6
reserved page information 40-7
shared-memory 9-3
shared-memory segments 9-6
SMI tables 9-9
steps in 9-4
temporary tablespaces 9-8
upon completion 9-9
utilities for 9-4
virtual processors 9-7

INSERT INTO statement 31-15
Installation

definition of 3-6
getting ready 3-7
upgrading from an earlier version 3-7
when no other Informix products are

present 3-6
when other Informix products are

present 3-6
when SE is present 3-6

Integrity, data. See Consistency checking
Interface attributes for ON-Archive 42-9
Interprocess communication

in nettype field 4-13
shared memory for 14-5

Interval, checkpoint 35-10
ipcshm protocol and communications

portion (shared memory) 14-30
IPC. See Interprocess communications
IPX/SPX

in hostname field 4-15,4-23
in nettype field 4-14
in servicename field 4-16
multiple residency 6-6

service, definition of 4-16
sqlhosts entry 4-23
support of 1-8
using 4-9

ISAM calls tabulated 37-62
Isolation level

Committed Read and blobs 14-51
Dirty Read and blobs 14-51

I/O errors during processing 27-8
I/O. See Disk I/O.

K
KAIO thread 12-22
Kernel asynchronous I/O

description of 12-22
non-logging disk I/O 12-20

Key value
and index items 40-44
checking ordering with oncheck 37-10
duplicates 40-49,40-50
for shared memory 14-12
locking 40-52

L
Latch

description of 14-30
determining if one is held using

onmode 37-31
displaying information with onstat

37-64
identifying the resource controlled

37-64
monitoring statistics and use 29-22
mutex 12-16,14-30

Learning environment, configuring 3-10
Level-0 archive

after moving data 31-7,31-8, 31-11,
31-14

after moving NLS data 31-18
use in consistency checking 27-7

Lightwweight processes 12-5
Linking, name of root dbspace 35-36
LIO virtual processors

description of 12-21
how many 12-21

List of
OnLine modes 7-3

Index 17

Listen threads
and multiple interface cards 12-30
description of 12-26

Load balancing
as performance goal 10-30
of critical media 10-35
through use of DBSPACETEMP 10-34

LOAD statement, steps for using 31-11
Local loopback

compared with shared-memory
connection 4-6

connection 4-6,12-24
example 4-21
restriction 4-6

Locale
description of 31-17
moving data between 31-17

Lock
buffer-access-level flag bits 37-51
description of 14-30
information in syslocks table 36-13
key value locking 40-52
maximum time to acquire 35-14
migrating to INFORMIX-SE 31-14
monitoring 29-23,37-58
type codes 37-58
types 14-31

Lock table
contents of 14-20
hash table 14-21
maximum number of entries 14-21

Lock-access level
of a buffer 14-37

Locking
for multi-processor 35-27
when occurs 14-37
when released 14-37

LOCKS parameter
description of 35-19
mentioned 3-24
tuning for performance 30-18

LOGBUFF parameter
and logical log buffers 14-24
description of 35-20
mentioned 3-21

LOGFILES parameter
changing 19-8
description of 35-20
mentioned 3-21

use in logical log size determination
18-7

Logging
activity that is always logged 16-6
definition of transaction logging 16-7
effect of buffering on logical log fill

rate 18-13
monitoring activity 29-37
OnLine processes requiring 16-4
physical logging

description of 20-3
process of 20-8
purpose of 20-3
sizing guidelines for 20-5
suppression in temporary

dbspaces 10-19
process for blobspace data 18-20
process for dbspace data 18-18
role in data replication 25-9
role of blobspace free-map page 18-20,

40-59
suppression for implicit tables 10-18
when to buffer transaction logging

16-10
when to use transaction logging 16-9
with blob data 16-7
See also Database logging status

Logical consistency, description of 22-5
Logical log

administration tasks for blobspaces
18-15

checking consistency 37-11
configuration parameters 3-21,19-8
description of 14-24,18-3
determining disk space allocated 18-7
in rootdbspace 40-4
maximum number of files 35-22
monitoring with SMI 36-14
optimal storage of 10-35,10-36
purpose of 1-6
setting high water marks 18-14
size, guidelines 18-6
size, performance considerations 18-5
See also Logical-log buffer, Logical-log

file
Logical page number 40-34
Logical recovery

number of threads 35-32
role in data replication 25-9

Logical units of storage
description of 10-14

18 Index

list of 10-4
Logical volume manager (LVM)

description of 10-44
mirroring alternative 23-6

Logical-log buffer
and data-replication buffer 14-25
and LOGBUFF parameter 35-20
and logical-log records 14-44
description of 14-24
monitoring 29-41
number of 14-24
role in logging process 16-8
synchronizing flushing 14-39
tuning size for performance 30-5,

30-12
when flushed to disk 14-44,18-20

Logical-log file
adding a log file

using ON-Monitor 19-4
using onparams 19-4,19-5

allocating disk space for 18-5
and reserved pages 40-8
backup

effect on performance 18-5
goals of 18-10
to free deleted blobpages 18-16

changing the size of 19-7
consequences of not freeing 18-11
created during initialization 35-20
description of 18-4
displaying contents 37-23
dropping a log file

using ON-Monitor 19-6
using onparams 19-6

file status 18-9
how to free 19-10
how to switch 19-12
I/O to 12-21
location 18-8
logid number 18-8
mirroring a dbspace containing a file

23-6
moving to another dbspace 19-6
number of files 18-7
rate at which files fill 18-13
reading the log file 37-23
relationship between unique id and

logid 18-9
reserved page information 40-8
role in fast recovery 22-5, 22-7 to 22-8
size 18-7, 35-21

status flags 18-9
switch using onmode 37-31
switching to activate blobspace

chunks 18-16
switching to activate blobspaces 18-15
unique id number 18-8
when freed for re-use 18-11
when OnLine tries to free files 18-11
See also Logical log

Logical-log I/O virtual processors 12-21
Logical-log record

additional columns of 39-7
displaying 37-23
flushing under two-phase commit

protocol 32-29
for a checkpoint 39-4
for a drop table operation 39-4
generated by a rollback 39-4
header columns 39-6
involved in distributed transactions

39-5
involved in two-phase commit

protocol 32-28,39-5
OnLine processes requiring 16-4
role in fast recovery 22-6, 22-7 to 22-8
role in two-phase commit protocol

32-6
SQL statements generating 16-6
types 39-7
when written to logical-log buffer

18-19
logid 18-8
LOGSIZE parameter

changing 19-8
description of 35-21
mentioned 3-21
use in logical log size determination

18-7
LOGSMAX parameter

changing 19-9
description of 35-22
mentioned 3-21,18-7

Long transaction
consequences of 18-12
description of 18-12
mentioned 3-22
mentioned within two-phase commit

discussion 32-18,32-22,32-25
preventing development of 18-13
starting percentage 35-25

Index 19

LRU queues
and buffer pool management 14-33
and buffer table 14-23
components 14-32
description of 14-32
displaying information with onstat

37-64
FLRU queues 14-32
MLRU queues 14-32
modified pages, percentage of 35-22,

35-23
tuning parameters for performance

30-13
LRU write

description of 14-43
monitoring 29-20

LRUS parameter
description of 14-32,35-22
mentioned 3-24
tuning for performance 30-14

LRU_MAX_DIRTY parameter
and LRU_MIN_DIRTY parameter

14-32
description of 35-22
example of use 14-34
how to calculate value 14-34
mentioned 3-24
purpose of 14-34
role in buffer pool management 14-34
tuning for performance 30-14

LRU_MIN_DIRTY parameter
and LRU_MAX_DIRTY parameter

14-32
default value 14-34
description of 35-23
example of use 14-35
how to calculate value 14-35
mentioned 3-25
role in buffer pool management 14-34
tuning for performance 30-14
when tested 14-42

LTAPEBLK parameter
description of 35-23
mentioned 3-23

LTAPEDEV parameter
description of 35-24
in a learning environment 3-14
in a production environment 3-19
mentioned 3-23, 3-26
with onunload/onload 31-7

LTAPESIZE parameter
changing tape size 35-24
description of 35-24
mentioned 3-23

LTXEHWM parameter
and physical log 20-7
changing 19-9
description of 35-25
mentioned 3-21
role in heuristic rollback 32-21
role in preventing long transactions

18-15
LTXHWM parameter

changing 19-9
description of 35-25
mentioned 3-21
role in heuristic rollback 32-21
role in preventing long transactions

18-14

M
Machine notes Intro-9, 9
Main_loop thread

role in checkpoint 14-49
role in two-phase commit recovery

32- 11
Managing physical disk I/O 10-3
Manual recovery

deciding if action needed 33-8
determining if data inconsistent 33-5
example of 33-9
obtaining information from logical

log files 33-6
procedure to determine if necessary

33- 3
use of GTRID 33-6

Mapping, bad sector 1-10
Media failure

detecting 23-9
recovering from 23-5
restoring data 1-7

Memory. See Shared memory
Message area, communications portion

(shared memory) 14-29
Message file for error messages Intro-9,9
Message log

alphabetical listing of messages 38-3
and data corruption 27-8
categories of messages 38-4

20 Index

description of 29-6
displaying with onstat utility 37-61
during initialization 9-9
file pathname 35-27
location of 35-27
mentioned 42-6
monitoring 29-7

Message segments of shared memory,
mentioned 9-6

Migration
of data using NLS 31-17
onload utility 37-18
onunload utility 37-77
See also Moving data

Mirror chunk
adding 24-8
changing status of 24-8
creating 24-5
disk reads from 23-8
disk writes to 23-8
pathnames 40-11
recovering 23-9,24-8
relinking after disk failure 24-10
structure 23-10,40-15

MIRROR parameter
changing 24-4
description of 24-4,35-26
initial configuration value 24-4
mentioned 3-21

Mirroring
activity during processing 23-8
alternatives 23-5
and chunk table 14-19
asynchronous write requests 23-8
benefits of 23-4
changing chunk status 24-8
costs of 23-4
creating mirror chunks 24-5
description of 1-7,23-3
detecting media failures 23-9
effects of 3-21
enable flag 35-26
enabling 24-4
ending 24-10
if the dbspace holds logical-log files

23-6
initial chunk 35-27
network restriction 23-4
recommended disk layout 10-31
recovering a chunk 24-8
recovery activity 23-7

reserved page information 40-11
sample disk layout 10-37
split reads 23-8
starting 24-3, 24-5
status flags 23-7
steps required 24-3
what happens during processing 23-8
when mirroring begins 23-6
when mirroring ends 23-10

MIRROROFFSET parameter 10-17
description of 35-26
mentioned 3-21
setting 24-6
when needed 11-6

MIRRORPATH parameter
description of 35-27
mentioned 3-21,10-17
multiple residency 6-6
setting 24-6
specifying a link pathname 35-27

MLRU queues
and flushing of regular buffers 14-39
and LRU_MIN_DIRTY parameter

14-34
description of 14-32
how buffer is placed 14-34
how to end page-cleaning 14-35
limiting number of pages 14-34
role in buffer modification 14-38
when cleaning ends 14-34
See also LRU queues.

Mode
current operating mode 8-4
description of 7-3
graceful shutdown 8-5
immediate shutdown 8-5
list of mode changes 8-3
list of OnLine modes 7-3
off-line from any mode 8-6
off-line to on-line 8-4
off-line to quiescent 8-3
on-line to quiescent, gracefully 8-5
on-line to quiescent, immediately 8-5
quiescent 7-3
quiescent to on-line 8-4
reinitializing shared memory 8-3
taking off-line 8-6
users permitted to change 8-3

Index 21

MODE ANSI keywords, and database
logging status 16-9

Monitoring O nline
active tblspaces 29-26
blobs in blobspaces 29-53
blobs in dbspaces 29-56
blobspace storage efficiency 11-17
buffer-pool activity 29-19
buffers 14-23, 29-15
caching percentages 30-4
checkpoints 29-11
chunk status 29-43
chunks 11-19,29-46
configuration parameter values 29-9
databases 29-36
data-replication status 29-58
disk I/O queues 12-23
extents 29-50
latches 29-12, 29-22
list of tools 3-5
list of topics 29-5
locks 29-23
logging status 29-36
logical-log buffers 29-41
logical-log files 29-37
message log 29-7
page-cleaning activity 30-14
pages written per I/O 30-5
physical-log buffer 14-25,29-41
physical-log file 29-40
profile of activity 29-13
sessions 29-29
shared memory 29-12,29-13
shared-memory segments 29-12
sources of information 29-6
stack size 29-30
threads 29-29
transactions 29-33
user threads 14-23
using ON-Monitor 29-8
using SMI tables 29-8
virtual processors 29-27

Moving data
between locales 31-17
blobspaces 31-8
CHAR data type with NLS 31-17
choosing between dbload, dbimport,

and LOAD 31-8
configuration parameters 3-26
constraints 31-5
conversion of locale 31-18

creating a database object 31-9
dbexport utility 31-13
dbimport utility 31-13
diagram of choosing a method 31-8
differences between OnLine and SE

31-16
fixed format 31-12
from external source 31-12
from OnLine to INFORMIX-SE 31-14

DBPATH variable 31-14
from SE to OnLine 31-16
from SE, schema file 31-16
ignoring records 31-11
level-0 archive required 31-11
modifying the schema 31-10
NCHAR data type 31-17
oncheck utility 31-8,31-11
overview 31-3
privileges required 31-13
rearrange input data 31-11
reasons for moving 31-4
skipping bad records 31-11
steps for moving NLS data 31-18
steps for using onunload/ onload 31-7
steps for using UNLOAD/LOAD

31-11
summary of methods 31-4
VARCHAR data type, with NLS 31-17

MSGPATH parameter
description of 35-27
in a learning environment 3-15
in a production environment 3-19
mentioned 3-23
multiple residency 6-5

Multimedia support 1-8
Multiple concurrent threads (MCT) 12-10
Multiple connection types

example 4-23
in sqlhosts file 4-18
See also Connection.

Multiple instances of OnLine on same
computer 5-3

Multiple network interface cards 12-30
Multiple residency

and blobspace 6-6
and chunk assignment 6-6
and dbspaces 6-6
and multiple binaries, warning 6-4
archiving 6-7
backups 6-7
benefits of 5-3

22 Index

configuration and setup 6-3
configuration file 5-3
configuration parameters 5-4
DBSERVERNAME parameter 6-5
definition of 3-10,5-3
editing the ONCONFIG file 6-5
example 4-25
how it functions 5-4
INFORMIXSERVER environment

variable 6-8
informix.rc & .informix files 6-8
initializing disk space 6-6
IPX/SPX 6-6
MIRRORPATH parameter 6-6
MSGPATH parameter 6-5
ONCONFIG environment variable

5-4
planning for 6-3
ROOTNAME parameter 6-5
ROOTPATH parameter 6-5
SERVERNUM parameter 6-4, 6-5
sqlhosts file 6-6
startup script 6-8
steps for preparing 6-4
to isolate applications 5-3
use for testing 5-4
/etc/hosts & /etc/services 6-6

Multiprocessor computer
advantages on 12-3
AFF_SPROC parameter 35-8
MULTIPROCESSOR parameter 12-17
processor affinity 12-9
two-processor machine 12-17

MULTIPROCESSOR parameter
description of 12-17,35-27
for single-processor computer 12-17

Multi-threaded database server. See
Dynamic scalable architecture

Multithreaded processes, description of
12-5

Mutex
description of 12-16,14-30
on buffer table hash table 14-36
when used 14-30

N
Native Language Support

environment variables 3-18
mentioned 3-27
steps for moving NLS database 31-17

NCHAR data type, changing locale 31-17
nettype field

description of 4-12
format of 4-12
summary of values 4-14
syntax of 4-12
use of interface type 4-22

NETTYPE parameter
and communications portion (shared

memory) 14-30
and multiple network addresses 12-29
description of 35-28
mentioned 4-17
ON-Monitor screen entries 13-5
poll threads 12-25
purpose of 4-17
role in specifying a protocol 12-25
tuning example 35-29
vp class entry 12-25

Netware file server 4-15
Network administration 4-7
Network communication

connection types 12-24
using IPX/SPX 4-15,4-16,4-23
using TCP/IP 4-15,4-16

Network configuration files 4-7
Network connection

how implemented 12-26
types of 12-24
when to use 4-5

Network Information Service 4-8
Network interface cards

and listen threads 12-30
sqlhosts file 12-30
using multiple 12-30

Network interface, definition 4-13
Network protocols

specifying 12-25
Network security

files 4-9
.rhosts file 4-9
/etc/hosts.equiv 4-9
/etc/passwd 4-9
/etc/shadow 4-9

Network virtual processors
and poll threads 12-25
description of 12-24
how many 12-25
performance of 30-20

Index 23

NIS server 4-9
NIS servers, effect on /etc/hosts and

/etc/ services 4-9
NOAGE parameter

description of 35-30
purpose of 12-18
recommendation 30-19

Node, index (disk)
branch node defined 40-45
checking horizontal and vertical

nodes 37-10
contents of leaf nodes 40-47
creation of branch nodes 40-47
defined 40-44
leaf node defined 40-45
pointer 40-47
root node 40-45
root node defined 40-45
types of 40-45
what branch nodes point to 40-49
when root node fills 40-46

Non-Informix databases 1-8
NUMAIOVPS parameter

description of 35-30
purpose of 12-23

Number of
dbspaces 35-13
page-cleaner threads 35-11

NUMCPUVPS parameter
and poll threads 12-26
and SINGLE_CPU_VP parameter

12-18
description of 35-31
purpose of 12-16

NVARCHAR data type, changing locale
31-17

o
Off-line mode 7-3
Offset

definition of 10-8
purpose of 11-5
use in prevention of overwriting

partition information 10-8
use in subdividing partitions 10-8
when needed 11-5

OFF_RECVRY_THREADS parameter
description of 35-31

ON-Archive
backing up logical-log files 18-11,

18-12
catalog tables 36-3
configuration file 3-26
config.arc file 3-26
mentioned 3-23
modifying database logging status

17-5
use in starting data replication 26-9

onaudit utility
and ADTERR parameter 35-6
and ADTMODE parameter 35-7
mentioned 35-7

oncatlgr utility
in UNIX startup script 3-29
message file 42-6
multiple residency 6-7

oncatlgr.out.pidnum file 42-6
oncfg_servemame.servernum file 9-8,

42-8
oncheck utility

before moving data 31-8,31-11
before moving NLS data 31-17,31-18
before using dbexport/dbimport

31-13
blob storage information 11-18
check-and-repair options 37-6
comparison with onstat 29-8
corrective actions 27-4
description of 37-6
list of functions 37-7
obtaining blobspace information

29-55
obtaining blob-storage statistics 29-54
obtaining chunk information 29-44,

29-48
obtaining configuration information

29-10
obtaining extent information 29-50
obtaining logical-log information

29-38
obtaining physical-log information

29-41
obtaining tblspace information 29-52,

29-56
options

-cc 37-9
-cd 37-9
-ce 37-10
-cl 37-11

24 Index

-ci 37-10
-er 37-11
-n 37-12
-pB 11-17, 37-12
-pc 37-12
-pD 37-12
-pd 37-12
-pe 37-13,40-4
-pK 37-13
-pk 37-13
-pL 37-13
-pl 37-13
-pP 37-14
-pp 37-13
-pr 37-14
-pT 37-14
-pt 37-14
-q 37-15
-y 37-15

overview of functionality 37-6
syntax 37-8
use in consistency checking 27-4

ONCONFIG configuration file
conventions used 35-5
description 35-6,42-7
during initialization 9-5,9-6
editing with multiple residency 6-5
for a learning environment 3-13
mentioned 4-17
multiple residency 4-25,6-4
parameters 4-17
relation to INFORMIXSERVER 3-9
whitespace 35-6

ONCONFIG environment variable
and ONCONFIG file 42-7
changes for multiple residency 6-4
interaction with TBCONFIG 42-7
mentioned 3-9
multiple residency startup script 6-8
multiple versions of OnLine 3-29
use with multiple residency 5-4

ONCONFIG parameter
conventions 35-6

onconfig.std file
and multiple residency 6-4
description 42-7
during initialization 9-6
in a learning environment 3-13
sample 42-10
when installed 3-8

oninit utility
bringing OnLine on-line 8-4,11-7
initializing OnLine 8-4
option descriptions 37-17
-p option 9-8
starting OnLine 37-16
temporary tables 37-17

On-line files
documentation notes Intro-8, 8
machine notes Intro-9,9
provided with the product Intro-8, 8
release notes Intro-9,9

On-line mode, description of 7-4
Online, see INFORMIX-OnLine

Dynamic Server
onload utility

constraints 37-21
create options 37-20
description of 37-18
mentioned 31-4
specifying tape parameters 37-19
syntax 37-18
using 31-5, 31-7
See also onunload utility

onlog utility
description of 37-23
filters for displaying logical-log

records 37-25
filters for reading logical-log records

37-24
reconstructing a global transaction

33-6
onmode utility

adding a shared-memory segment
37-34

bringing OnLine on-line 8-4
changing OnLine mode 37-29
changing shared-memory residency

15-15,37-30
description of 37-27
dropping CPU virtual processors 13-9
forcing a checkpoint 15-16, 37-30
freeing a logical-log file 19-11,19-12
graceful shutdown 8-5
immediate shutdown 8-6
killing a participant thread 32-18
killing a session 32-21,37-31
killing a transaction 32-18,32-26,33-4,

37-32
options

Index 25

-a add shared memory segment
37-34

-b change database format 37-35
-c force checkpoint 37-30
-d set data replication type 37-32
-k take off-line 37-29
-1 switch logical-log file 37-31
-m quiescent to on-line 37-29
-n end forced residency 37-30
-p add or remove virtual processor

37-34
-r begin forced residency 37-30
-R regenerate .infos file 37-36
-s take to quiescent 37-29
-u immediately to quiescent 37-29
-z kill client session 37-31
-Z kill transaction 37-32

setting database server type 26-9,
26-17,37-32

switching logical-log files 19-12,37-31
take O nline off-line 8-7
user thread services onmode utility

requests 12-5
ON-Monitor

access and use 34-3
adding a logical-log file 19-4
adding mirror chunks 24-8
archive menu and options 34-10
data-replication screen 34-15
dbspaces menu and options 34-7
diagnostics screen 34-16
dropping a logical-log file 19-6
enabling mirroring 24-4
ending mirroring 24-10
force-ckpt option 34-9
help 34-4
initialization screen 34-12
logical-logs menu and options 34-11
mode menu and options 34-8
modifying database logging status

17-8
parameters menu and options 34-6
recovering a chunk 24-9
setting performance options 15-12
setting shared memory parameters

15-7,15-9
setting virtual processor parameters

13-3
shared-memory screen 34-13
starting mirroring 24-7
status menu and options 34-5
taking a chunk down 24-9

virtual processor screen 34-14
onparams utility

adding a logical-log file 19-4, 37-38
change physical log size, location

37-39
changing physical-log location 21-5
changing physical-log size 21-5
description of 37-37
dropping a logical-log file 19-6, 37-38

onspaces utility
adding a chunk 37-42
adding a mirror chunk 24-8
changing chunk status 37-45
creating a blobspace or dbspace 37-41
description of 37-40
dropping a blobspace or dbspace

37-42
dropping a chunk 37-43
ending mirroring 24-11,37-45
recovering a down chunk 24-9, 37-45
starting mirroring 24-7,37-44
taking a chunk down 24-9

onstat utility
and CPU virtual processors 12-17
comparison with oncheck utility 29-8
description of 37-46
freeing blobpages and timing 37-53
header 37-48
monitoring blobspace 29-53
monitoring buffer use 14-23,29-15,

29-16,29-17,29-18
monitoring buffer-pool 29-20, 29-21
monitoring byte locks 14-21
monitoring checkpoints 29-11
monitoring chunk status 29-44
monitoring configuration 29-9
monitoring data replication 29-58
monitoring disk usage 29-47
monitoring latches 29-22,29-23
monitoring locks 29-24
monitoring log buffers 29-41
monitoring logical-log files 29-37
monitoring O nline profile 29-13,

29-14
monitoring physical log 29-40
monitoring sessions 29-29
monitoring shared memory 29-12,

29-13
monitoring tblspaces 29-26, 29-28
monitoring the message log 29-7
monitoring transactions 29-33

26 Index

monitoring virtual processors 29-27,
29-28

option descriptions 37-49
options

-a 37-49
-B 37-51
-b 37-50
-c 37-51
-D 37-54
-d 10-16,37-52,37-53
-F 37-54
-k 37-58
-137-59
-m 37-61
-o 37-61
-p 37-61
-R 37-64
-r 37-63
-s 37-64
-t 37-65
-u 37-66
-X 37-69
-z 37-69
- 37-49
(none) 37-49

repeated execution with -r 37-63
repeated execution with seconds

parameter 37-48
syntax 37-47
table of options and functions 37-46
terminating interactive mode 37-58
terminating repeating sequence 37-58
tracking a global transaction 32-27
using SMI tables for onstat

information 36-24
using with shared-memory source file

37-48
ontape utility

archiving an OnLine database server
37-72

backing up logical-log files 18-10,
18-11,37-74

changing database logging status
37-73

data replication functions 37-76
description of 37-70
device pathname 35-24
exit codes 37-71
LTAPEBLK, use of 35-23
mentioned 3-23
modifying database logging status

17-6

restoring data from an archive 37-75
starting continuous backup 37-74
tasks performed by 37-70
use in starting data replication 26-9

onunload utility
description of 37-77
locking 37-79
logging mode 37-79
LTAPEBLK, use of 35-23
mentioned 31-4
ownership and privileges 37-78
steps for using 31-7
syntax 37-77
use without tape parameters 37-78
using 31-5
what is included with a database

37-79
what is included with a table 37-79

onunload utility See also onload utility
On_Archive

fatal error record 42-9
ON_RECVRY_THREADS parameter

description of 35-32
role in data replication 25-13

Operating OnLine, things to avoid 28-3
Operating system files. See Cooked file

space
oper_deflt.arc file

and multiple residency 6-7
contents 42-8

Optical storage
and STAGEBLOB parameter 35-41
data types for 1-8

Optical (OPT) virtual processor 12-30
ovbuff field, performance tuning 30-5
ovlock field, performance tuning 30-5
ovtbls field, performance tuning 30-5
ovuser field, performance tuning 30-5

p
Page

bit-map page 40-59
blobspace blobpage 40-59
blobspace free-map page 40-59
components of dbspace page 40-30
compression 40-33,40-41
dbspace blob page 40-57
dbspace page types 40-25

Index 27

definition of full page 40-35
description of 10-9
determining O nline page size 11-13
free page, definition of 40-25
fullness bit values 40-23
fullness, 4-bit values 40-23
header components 40-31
locating in shared memory 14-36
logical page number 40-34
page types in extent 40-25
physical page number 40-34
relationship with chunk 10-9
size recorded in reserved pages 40-7
slot table 40-32
structure and storage of 40-30
validating consistency 27-5

Page compression 40-32,40-33,40-41
Page-cleaner table

description of 14-21
numer of entries 14-21

Page-cleaner threads
and LRU writes 14-43
codes for activity state 37-54
description of 14-39
efficiency trade-offs 30-14
flushing buffer pool 14-39
flushing of regular buffers 14-39
monitoring 14-21
monitoring activity 37-54
number of 35-11
role in chunk write 14-43
sleeping forever 14-42
tuning parameters for performance

30-13
PAGE_1CKPT reserved page 40-6
PAGE_1PCHUNK reserved page 40-10
PAGE_2CKPT reserved page 40-6
PAGE_ARCH reserved page 40-7,40-12
PAGE_CKPT reserved page 40-8
PAGE_CONFIG reserved page 37-11,

40-8
mentioned 9-6,9-8

PAGE_DBSP reserved page 40-9
PAGE_MCHUNK reserved page 40-11
PAGE_PCHUNK reserved page 40-10
PAGE_PZERO reserved page

contents of 40-7
mentioned 9-7
when written to 40-6

Parallel processing
mentioned 1-6
PSORT_NPROCS environment

variable 30-8
sorting 30-8
virtual processors 12-8

Participant database server
automatic recovery 32-14
description of 32-5

Partnum field in systables 40-19
PATH environment variable

in shutdown script 3-29
in startup script 3-28
mentioned 3-9
multiple residency startup script 6-8

Pathname for ontape, onunload &
onload 35-24

Pending transaction 37-68
Performance

advantages of raw-disk management
1-5

and shared memory 14-5
effect of read-ahead 14-35
how frequently buffers are flushed

14-32
of CPU virtual processors 12-17
shared-memory connection 4-4

Performance configuration parameters
setting, using a text editor 15-11
setting, using ON-Monitor 15-12

Performance tuning
and extent size 10-34
and logical volume managers 10-44
blobspace blobpage size 11-16
checkpoint frequency 30-16
disk layout guidelines 10-30
log buffer sizes 30-12
logical-log size 18-5
mechanisms 1-5
minimizing disk head movement

10-33
moving the physical log 21-3
page-cleaner parameters 30-13
reducing disk contention 10-33
shared-memory buffers 30-11
shared-memory resources 30-17
specifying sorting directory 30-7
spreading data across multiple disks

10-44
tuning amount of data logged 20-4

28 Index

user guidelines 30-10
when needed 30-4

Permissions, file 3-13,11-4
PHYSBUFF parameter

and physical-log buffers 14-25
description of 35-32
mentioned 3-22

PHYSDBS parameter
changing size and location 21-5
description of 35-33
mentioned 3-22
where located 20-7

PHYSFILE parameter
changing size and location 21-5
description of 35-33
initial configuration value 20-6
mentioned 3-22

Physical consistency, description of 22-5
Physical log

and virtual processors 12-21
becoming full 20-6
before-image contents 20-4
buffer 20-8
changing size and location

possible methods 21-3
rationale 21-3
restrictions 21-4
using an editor 21-5
using ON-Monitor 21-4
using onparams 21-5

checking consistency 37-11
configuration parameters for 3-22
description of 20-5
effects of checkpoints on sizing 20-6
effects of frequent updating 20-5
ensuring does not become full 20-6
flushing of buffer 20-9
how emptied 20-9
in root dbspace 40-4
I/O, virtual processors 12-22
monitoring 29-40
optimal storage of 10-35,10-36
role in fast recovery 22-4,22-5, 22-5
scenario for filling 20-7
size of 35-33
sizing guidelines 20-5
where located 20-7

Physical logging
and archiving 20-4
and blobs 20-4

and data buffer 20-9
and fast recovery 20-4
description of 20-3
details of logging process 20-8
purpose of 20-3
which activity logged 20-4

Physical page number 40-34
Physical units of storage

description of 10-4
list of 10-3

Physical-log buffer
amount written 14-41
and checkpoints 20-9
dbspace location 35-33
description of 14-25
events that prompt flushing 14-40
flushing of 14-39, 20-9
monitoring 29-41
number of 14-25
PFIYSBUFF parameter 14-25
role in dbspace logging 18-19,20-8
size of 35-32
tuning size for performance 30-5,

30-12
when it becomes full 14-40

PIO virtual processors
description of 12-22
how many 12-22

Planning for OnLine resources 3-4
Platforms with more than two CPUs

12-17
Poll threads

and message queues 14-29
DBSERVERNAME parameter 12-25
description of 12-26
how many 12-25
in NETTYPE parameter 35-28
multiple for a protocol 12-25
nettype entry 12-25
on CPU or network virtual processors

12-25
Post-decision phase 32-6,32-9
Practice database, preparing 3-17
Precommit phase 32-6
Preparation

of production environment 3-17
Preparation of

cooked disk space 3-13
ONCONFIG file 3-13
sqlhosts file 3-15

Index 29

Presumed-abort optimization 32-10,
32-17

Primary database server 25-4
Priorities for disk I/O 12-21
Priority aging

description of 12-18
of CPU virtual processors 35-30

Private environment file 42-5
Privileges

access privileges for tables 37-79
database schema 31-10
for the demonstration database

Intro-11
migrating with onunload 31-8
on databases and tables 1-8
required for dbexport 31-13
required for onload 37-22
required with onunload 37-78
with onunload 37-21

Procedure Name segment 31-15
Processes

compared to threads 12-4
that attach to shared-memory 14-10

Processor affinity
AFF_NPROCS parameter 35-8
and AFF_SPROC parameter 35-8
description of 12-9
using 12-18

Processor, locking for multiple or single
35-27

Production environment, configuration
3-17

Profile
displaying counts with onstat utility

37-61
monitoring with SMI 36-15
setting counts to zero 37-69

Program counter and thread data 14-27
Protocol

in NETTYPE parameter 35-28
specifying 12-25

PSORT_DBTEMP environment variable
creating temporary implicit tables

10-25
listing directories for intermediate

writes 30-10
relationship to DBSPACETEMP 35-14

PSORTJSTPROCS environment variable
allocating sort memory 14-29

to enable Psort package 30-9

Q
Queues

description of 12-14
ready 12-14
sleep 12-14
wait 12-15

Quiescent mode
description of 7-3
with oninit utility 37-17

R
RAID. See Redundant array of

inexpensive disks.
Railroad diagrams

conventions used in Intro-5,5
example of syntax conventions

Intro-7, 7
Raw device 10-6

and character-special interface 10-6
definition of 10-6

Raw disk space 10-6
compared with cooked space 10-6
definition 3-12
description of 10-5
how to allocate 11-5
in data storage 10-3
rationale for using 10-7
steps for allocating 10-7

Raw-disk management 1-5
RA_PAGES parameter

description of 35-34
purpose of 14-35
reading a page from disk 14-37

RA_THRESHOLD parameter
description of 35-34
purpose of 14-35

RDBMS 1-3
Read-ahead

description of 14-35
number of pages 35-34
RA_PAGES parameter 14-35
RA_THRESHOLD parameter 14-35
threshold for 35-34
using onstat to monitor 14-36
when it occurs 14-37
when used 14-35

30 Index

Read-only mode
description of 7-4

Ready queue
description of 12-14
moving a thread to 12-14,12-15

Reception buffer 25-9
Recovery

by two-phase commit protocol 32-10
fast, description of 22-3
from media failure 23-5

Recovery mode, description of 7-4
Recovery threads

off-line 35-31
on-line 35-32

Redundant array of inexpensive disks
(RAID)

mirroring alternative 23-6
Referential constraints 16-4
Regular buffers

and big buffers 14-27
description of 14-23
events that prompt flushing 14-39
how big 14-24
monitoring status of 14-23

Relational database management system
(RDBMS) 1-3

Relay Module, version 5.0
example 4-29

Relay module, version 5.0
description of 4-29

Relay module, version 6.0
description of 4-26
example 4-26
example with three servers 4-28

Release notes Intro-9,9
Remainder page, description of 40-36
Remote client 4-9
Remote computer 4-9
Remote hosts 4-9
Replication server

See Data replication.
Reserved pages

archive information 40-7
checking with oncheck 37-11
checkpoint information 40-6
data-replication information 40-7
dbspace information 40-7
description of 40-6

location in root dbspace 40-4
optimal storage 10-35
organization in pairs 40-6
role in checkpoint processing 40-8
validating with oncheck 27-4
viewing of contents 40-7
when updated 40-6

RESIDENT parameter
changing 15-15
description of 35-35
during initialization 9-9
mentioned 3-25

Resident segment of shared memory 9-6
Resident shared memory

setting configuration parameters 15-7
turning on/off residency 15-15

Resource planning for OnLine 3-4
Revert database to 5.0 format 37-35
Roll back

in fast recovery 22-8
mentioned 1-7

Roll forward
in fast recovery 22-7
mentioned 1-7

Root dbspace
and temporary tables 10-17
calculating size of 10-27
description of 10-17
disk layout

for production environment 10-30
initial chunk 35-36
location of logical-log files 18-8
mentioned 3-20
mirroring 24-6,35-27
specified by ROOTNAME parameter

35-35
structure 40-4
using a link 35-36

ROOTNAME parameter
description of 35-35
mentioned 3-20,10-17
multiple residency 6-5
relationship to DBSPACETEMP 35-13
used by PHYSDBS 35-33

ROOTOFFSET parameter
description of 35-36
mentioned 3-20,10-17
multiple residency 6-5
when is it needed 11-6

Index 31

ROOTPATH parameter
description of 35-36
in a production environment 3-19
in learning environment 3-14
mentioned 3-20,10-17
multiple residency 6-5
specifying as a link 35-36

ROOTSIZE parameter
description of 35-36
mentioned 3-20

Row
accomodating large rows 40-39
data row storage 40-35
displaying contents with oncheck

37-12
effects of deletion on index 40-52
effects of modifying 40-39
linking of sections 40-36
maximum in a page 40-32
storage location 40-36

Rowid
and SMI 36-5
as component of index item 40-44
description of 40-33
effect of page compression 40-33
effects of changing 40-33
elements of 40-32
format 40-34
functions as forward pointer 40-34
locking information derived from

37-59
relation to slot table 40-32
stored in index pages 40-34
structure 40-33
where stored 40-34

RSAM task control block 29-29

S
Sample onconfig.std file 42-10
Scans

of indexes 14-35
of sequential tables 14-35

Schema file
created by dbexport 31-13
definition 31-10
modify when moving data 31-13
moving data from SE 31-16

Secondary database server 25-4
Security

C2-level secure auditing Intro-13
how enforced 1-8
isolating applications 5-3
network 4-9
of database server 1-8
risks with shared-memory

communications 4-4
Segment

See Chunk. 17
Segment identifier (shared-memory)

14-12
Semaphore, UNIX parameters 15-5
SERVERNUM parameter

and calculating key value 14-12
and multiple O nline's 14-12
and multiple residency 5-4, 6-4, 6-5
description of 35-37
how used 14-11
in a learning environment 3-15
in a production environment 3-19
mentioned 3-20

servicename field in sqlhosts file
choosing an appropriate name 4-15
description of 4-15
with IPX/SPX 4-16
with shared memory 4-16

Service, in IPX/SPX 4-16
Session

and active tblspace 14-21
and dictionary cache 14-28
and locks 14-21
and shared memory 14-27
and stored procedure cache 14-29
control block 12-10
description of 12-10
information in SMI tables 36-16, 36-17
monitoring 29-29
primary thread 14-27
shared-memory pool 14-26
sqlexec threads 12-5
stack and heap 14-26
threads 12-5

Session control block 12-10
description of 14-27
shared memory 14-27

32 Index

SET CONSTRAINTS statement 31-14
SET ISOLATION statement 31-14
SET LOCK MODE TO statement 31-15
SET LOG statement 31-14
Share lock (buffer), description of 14-31
Shared data 14-5
Shared memory

adding segment with oumode 37-34
allocating 14-26
amount for sorting 14-29
and blobpages 14-52
and critical sections 14-46
and multiple OnLine's 14-14
and SERVERNUM parameter 14-11
and SHMBASE parameter 14-11
attaching additional segments 14-12,

14- 13
attaching to 14-10
base address 35-38
buffer allocation 14-19
buffer locks 14-31
buffer pool 14-23, 20-8
buffer table 14-18
buffer, frequency of flushing 35-22
changing residency with onmode

15- 15,37-30
checkpoint 14-47
chunk table 14-19
communication 4-14
communications portion 14-29
connection 4-4,4-6
copying to a file 29-12
created during initialization 9-6
data-replication buffer 25-9
dictionary cache 14-28
dumps 35-17,35-18
during initialization 9-6
effect of UNIX kernel parameters 15-3
eliminating resource bottlenecks

30-11
examining with SMI 36-4
first segment 14-12
for interprocess communication 14-5
global pool 14-29
header 14-13,14-17
heaps 14-28
how much 14-10
how utilities attach 14-11
how virtual processors attach 14-11
identifier 14-12
initializing 9-3,37-16

initializing structures 9-7
key value 14-11,14-12
largest allocation of resident portion

14-23
latches 14-30
locating a page 14-36
lock table 14-20
logical-log buffer 14-24
lower boundary address problem

14-14
message segments, mentioned 9-6
mirror chunk table 14-19
monitoring 29-13,37-46
mutexes 14-30
OnLine requirements 14-11
operating system segments 14-10
page-cleaner table 14-21
performance 14-5
performance advantages 1-6
physical-log buffer 14-25,35-32
pools 14-26
portions 14-8
purposes of 14-5
re-initializing 15-14
residency 15-15
resident portion, flag 35-35
resident segment, mentioned 9-6
saving copy of with onstat 37-61
segment identifier 14-12
segments, dynamically added, size of

35-37
session control block 14-27
session data 14-27
setting configuration parameters 15-3
SHMADD parameter 14-26
SHMTOTAL parameter 14-10
SHMVIRTSIZE parameter 14-26
size displayed by onstat 14-10,37-48
size of virtual portion 14-26
sorting 14-28
stacks 14-28
STACKSIZE parameter 14-28
stored procedures cache 14-29
synchronizing buffer flushing 14-39
tables 14-18
tblspace table 14-21
thread control block 14-27
thread data 14-27
thread isolation and buffer locks 14-31
total size 14-13
transaction table 14-22
use of SERVERNUM parameter 35-37

Index 33

user table 14-23
virtual portion 14-25,14-26
virtual segments, mentioned 9-6
virtual segment, initial size 35-39

Shared-memory buffer, maximum
number 35-9

Shared-memory connection
example 4-20
how a client attaches 14-10
in nettype field 4-14
in servicename field 4-16
message 12-27
message buffers 14-29
virtual processor 12-24

SHM virtual processor 12-24
SHMADD parameter

description of 14-26
specifying value 35-37

SHMBASE parameter
attaching first shared-memory

segment 14-12
description of 14-12,35-38
mentioned 3-24
warning 14-13

shmem file
and assertion failures 27-6
and DUMPSHMEM parameter 35-19

shmem.xxx file 42-8
shmkey

attaching additional segments 14-13
description of 14-12

SHMTOTAL parameter
description of 14-10
specifying value 35-38

SHMVIRTSIZE parameter
description of 35-39
specifying size of virtual shared

memory 14-26
Shutdown

graceful 8-5
immediate 8-5
mode, description of 7-4
taking off-line 8-6

Shutdown script
multiple residency 6-8
steps to perform 3-29

Single processor computer 12-17
SINGLE_CPU_VP parameter

and single processor computer 12-17

description of 35-40
Situations to avoid 28-3
Sizing guidelines

logical log 18-6
physical log 20-5

Sleep queues, description of 12-14
Sleeping threads

forever 12-15
types of 12-14

Slot table
description of 40-32
entry number 40-32
entry reflects changes in row size

40-33,40-39
location on a dbspace page 40-30
relation to rowid 40-32

SMI table
aborted table build 9-9
during initialization 9-9
monitoring buffer use 29-19
monitoring buffer-pool 29-22
monitoring checkpoints 29-12
monitoring chunks 29-50
monitoring data replication 29-60
monitoring databases 29-36
monitoring dbspaces 29-46
monitoring latches 29-23
monitoring locks 29-25
monitoring log buffer use 29-43
monitoring logical-log files 29-39
monitoring sessions 29-32
monitoring shared memory 29-15
monitoring virtual processors 29-29
preparation during initialization 9-9

SOC virtual processors 12-24
Sockets

connecting with 12-24
in nettype field 4-13

Sorting
and shared memory 14-28
parallel 30-8
PSORT_NPROCS environment

variable 30-8
SPL statement recognized only by

O nline 31-15
Split read 23-8
SPX virtual processors 12-24
SQL statement

ALTER INDEX 11-21

34 Index

branches recognized only by OnLine
31-14, 31-15

segments recognized only by OnLine
31-15

SQLEXEC environment variable,
example 4-27

Sqlexec thread
and client application 12-10
as user thread 12-5
role in client/server connection 12-26

sqlhosts file 3-8
and client redirection 25-22
dbservername field 4-12
defining multiple network addresses

12-29
description of 4-3,4-10
entries for multiple interface cards

12-30
example 4-11
for initialization 3-26
in a learning environment 3-15
local loopback example 4-21
mentioned 1-4,42-8
multiple connection types, example

4-18
multiple dbservemames 35-12
multiple residency 6-6
nettype field 4-12
network connection example 4-21
servicename field 4-15
shared-memory example 4-20
specifying network poll threads 12-25
syntax rules 4-12

SQLRM environment variable 4-27
SQLRMDIR environment variable 4-27
Stack

and thread control block 12-13
description of 12-12
INFORMIXSTACKSIZE

environment variable 14-28
monitoring stack size 29-30
pointer 12-13
size of 14-28
STACKSIZE parameter 14-28
thread 14-28

STACKSIZE parameter
changing the stack size 14-28
description of 35-41

STAGEBLOB parameter 35-41
Standard database server 25-4
Starting OnLine

and initializing disk space 3-27
in a learning environment 3-16
using oninit 37-16

Startup script
multiple residency 6-8
multiple version of OnLine 3-29

Statistics See onstat utility
status_vset_volnum.itgr file 42-9
Steps

for preparing a production
environment 3-17

for using dbexport/dbimport 31-13
Steps for preparing multiple residence

6-4
Stored procedures cache 14-29
stores6 demonstration database

copying Intro-10,10
creating on INFORMIX-OnLine

Intro-10,10
overview Intro-9,9

Structured Query Language 1-4
Structured query language.

See also SQL statement.
Switching between threads 12-13
Symbolic link

using with TAPEDEV 35-42
Symmetric multiprocessing, description

of 12-3
Synonym Name segment 31-15
Synonym, moving 31-12
sysfail.pidnum file 42-9
Sysmaster database

description 36-3
functionality of 36-3
initialization 3-9
list of topics covered by 36-5
SMI tables 36-4
types of tables 36-3
warning 36-4
when created 36-4

System catalog tables
and dictionary cache 14-28
disk space allocation for 40-63
how tracked 40-63
location of 10-20

Index 35

optimal storage of 10-36
tracking a new database 40-63
tracking a new table 40-65
validating with oncheck 27-4

System failure, defined 22-3
System monitoring interface (SMI)

See also SMI table
accessing SMI tables 36-5, 36-6
and locking 36-7
and SPL 36-6
and triggers 36-6
description 36-3
SMI tables map 36-21
tables

list of supported 36-7
sysadtinfo 36-8
sysaudit 36-9
syschkio 36-9
syschunks 36-10
sysdatabases 36-11
sysdbspaces 36-12
sysdri 36-13
sysextents 36-13
sy slocks 36-13
syslogs 36-14
sysprofile 36-15
sysptprof 36-16
syssesprof 36-17
sysseswts 36-20
systabnames 36-20
sysvpprof 36-21

using to monitor OnLine 29-8
using to obtain onstat information

36-24
viewing tables with dbaccess 36-5

System startup script, multiple residency
6-8

System timer 12-30

T
Table

creating, what happens on disk 40-63,
40-64

description of 10-21
high-use 10-34
identifying its dbspace 40-19
isolating high-access 10-31
management of 11-21
migration

See Migration

monitoring with SMI 36-20
moving, using onunload/onload 31-8
placing in a specific dbspace 10-22
pseudo- tables 36-4
purpose of 10-21
recommendations for storage 10-33
relationship to extent 10-21
SMI tables 36-4
spreading across disks 10-33
storage on middle partition of disk

10-34
temporary 10-23

cleanup during shared-memory
initialization 10-24

effects of creating 40-67
message reporting cleanup 38-12
storage of explicit 10-24
storage of implicit 10-25

Table Name segment 31-15
Tape device

block size 35-23
in learning environment 3-14

Tape management 3-30
TAPEBLK parameter

description of 35-41
mentioned 3-23

TAPEDEV parameter
description of 35-42
in a learning environment 3-14
in a production environment 3-19
mentioned 3-23, 3-26
using a symbolic link 35-42
with onunload/onload 31-7

TAPESIZE parameter
description of 35-44
mentioned 3-23

TBCONFIG environment variable 42-7
Tblspace

description of 10-25
displaying information with onstat

37-65
identifying its dbspace 40-19
maximum open 35-44
monitoring active tblspaces 29-26
monitoring with SMI 36-16
number 40-19
number displayed 37-66
number elements 40-19
purpose of 10-25

36 Index

temporary tblspace during
initialization 9-8

types of pages contained in 10-25
Tblspace number

components of 40-19
description of 40-19
displaying with onstat -t 37-66
includes dbspace number 40-19
retrieving it from systables 40-19

Tblspace table
contents of 14-21
description of 14-21
hash table 14-22

Tblspace tblspace
bit-map page 40-20
description of 40-17
location in a chunk 40-13
location in root dbspace 40-4
size 40-20
structure and function 40-17
tracking new tables 40-65

TBLSPACES parameter
description of 35-44
mentioned 3-24
purpose of 14-22
tuning for performance 30-18

TCP/IP communication protocol
in hostname field 4-15
in nettype field 4-14
in servicename field 4-16
support of 1-8
using 4-8

tctermcap archive attributes file 42-9
Template file for configuration 3-8
Template for ONCONFIG file 42-7
Temporary dbspace

advantages of 10-18
and data replication 25-31,26-6
and DBSPACETEMP 10-18
and performance 10-19
described 10-18

Temporary disk space
operations requiring 10-23
recommendations for using 30-7

Temporary table
DBSPACETEMP parameter 35-13
description of 10-23
during initialization 9-8
explicit 10-23
implicit 10-23

rules for use 35-13
where stored 10-24
with oninit utility 37-17

TERM environment variable 3-9
TERMCAP environment variable 3-9
TERMINFO environment variable 3-9
TEXT data type

Dirty Read isolation 14-51
migrating from INFORMIX-SE 31-16
migrating to INFORMIX-SE 31-14
requires 4-bit bit map 40-23,40-25
storage on disk 10-16

Text editor
setting performance configuration

parameters 15-13
setting shared memory parameters

15-8,15-11
setting virtual processor parameters

13-5
Thread

accessing shared buffers 14-32
and heaps 14-28
and stacks 14-28
concurrency control 14-30
context of 12-10
control block 12-10,14-27
description of 12-5
for client applications 12-4
for primary session 12-10
for recovery 12-5
how virtual processors service 12-9
internal 12-5,12-16
kernel asynchronous I/O 12-22
migrating 12-14
mirroring 12-5
monitoring 29-29
multiple concurrent 12-10
ON-Monitor 12-5
onstat information 37-69
page cleaner 12-5,14-39
relationship to a process 12-5
scheduling and synchronizing 12-10
session 12-5,12-16
sleeping 12-15,14-38
supporting data replication 25-13
switching between 12-13
user 12-5
waking up 12-14
yielding 12-10

Index 37

Thread control block 14-27
Time-out condition 37-54
Timestamp

blob pair 14-50
blob timestamps on a blobpage 40-61
description of 14-50
location

blobspace blobpage 40-60,40-61
dbspace blob page 40-57,40-57
dbspace page 40-30

page-header and page-ending pair
14-50,40-31

role in
data consistency 14-50
flushing physical-log buffer 14-42
synchronizing buffer flushing

14-41
TLI. See Transport-level interface
Transaction

factors which prevent closure 18-14
global

definition of 32-5
determining if implemented

consistently 33-4
identification number, GTRID 33-7
tracking 32-27

kill with onmode -Z 37-32
maximum open 35-45
monitoring 29-33
pending 37-68
piece of work, definition of 32-5
two-phase commit, examples 32-7

Transaction logging. See Logging
Transaction table

description of 14-22
tracking with onstat 14-22

TRANSACTIONS parameter
description of 35-45
mentioned 3-24

Transport-level interface
connecting with 12-24
in nettype field 4-13
virtual processors 12-24

Tuning
large number of users 35-29
use of NETTYPE parameter 35-28

Two-phase commit protocol
automatic recovery 32-9

administrator's role 32-10

mechanisms for coordinator
recovery 32-10

mechanisms for participant
recovery 32-14

race condition 32-17
configuration parameters for 32-34
coordinator definition 32-5
coordinator recovery mechanism

32-11
description of 32-3,32-5
errors messages for 32-27
global transaction definition 32-5
global transaction identification

number 33-7
heuristic decisions

heuristic end-transaction 32-25
heuristic rollback 32-21
types of 32-20

independent action
definition of 32-18
resulting in error condition 32-19
resulting in heuristic decisions

32-20
results of 32-19
what initiates 32-18

logical-log records for 32-28
messages 32-6
participant recovery 32-14
participant, definition of 32-5
piece of work, definition of 32-5
post-decision phase 32-6, 32-9
precommit phase 32-6
presumed-abort optimization 32-10,

32-17
requirements for flushing logical log

records 32-29
role of current server 32-5
use of DEADLOCKJTIMEOUT 32-34
use of TXTIMEOUT 32-34

TXTIMEOUT parameter
and onmode -Z 32-26
description of 32-34,35-45
in two-phase commit protocol 32-34
mentioned 3-25
role in automatic recovery 32-11,

32-14, 32-17
Types of buffer writes 14-42

u
Udates

disk 3-21

38 Index

Unbuffered transaction logging.
SeeLogging

unique id 18-8
Units of storage 10-3
UNIX devices

creating a link to a pathname 11-6
ownership, permissions on

character-special 11-5
when are offsets needed 11-5

UNIX files
ownership, permissions on cooked

files 11-4
using for data storage 10-8

UNIX kernel parameters
description of 15-3
initial values 3-27
lower boundary address parameter

14-14
UNIX link command 11-6
UNIX shutdown script 3-29
UNLOAD statement

and NLS 31-10
using 31-10,31-11
with dbload utility 31-12

Update
database performance 30-7
effects of mass updates on

performance 30-11
Upgrading OnLine from an earlier

version 3-7
USEOSTIME parameter

affect on performance 30-20
description of 30-20,35-46

User guidelines to improve performance
30-10

User session
monitoring 29-29
monitoring with SMI 36-18
status codes 37-66

User table
description of 14-23
maximum number of entries 14-23

User thread
acquiring a buffer 14-36
description of 12-5
in critical sections 14-46
monitoring 14-23
tracking 14-23

User-specified ID and passwd 4-9
Users, number of, in NETTYPE

parameter 35-28
USERTHREADS parameter

and communications portion (shared
memory) 14-30

and shared-memory buffers 14-19
mentioned 3-24
tuning for performance 30-18
use by ON_RECVRY_THREADS

35-32
use in NETTYPE parameter 35-28
used by OFFJRECVRY THREADS

parameter 35-31
Utilities

attaching to shared-memory 14-11
gcore 35-17,35-18
oncheck 37-6
oninit 37-16
onload 37-18
onlog 37-23
onmode 37-27
onparams 37-37
onspaces 37-40
onstat 37-46
ontape 37-70
onunload 37-77

v
VARCHAR data type

byte locks 14-21
changing locale 31-17
implications for data row storage

40-35
indexing considerations 40-54
requires 4-bit bit map 40-23,40-25
storage considerations 40-33

Version
connecting to different 4-26

Version 5.0 Relay Module. See Relay
Module, version 5.0

Version 6.0 Relay Module. See Relay
Module, version 6.0

View Name segment 31-15
View, moving 31-12
Virtual portion (shared memory)

adding a segment 15-16
contents of 14-25,14-26
global pool 14-29

Index 39

mentioned 9-6
setting configuration parameters 15-9
size of 14-26
stacks 14-28
stored procedures cache 14-29

Virtual processor
adding and dropping 12-9
add/remove with onmode 37-34
ADM class 12-14,12-30
ADT class 12-31
advantages 12-6
AIO class 12-23
AIO, how many 12-23
as multithreaded process 12-5
attaching to shared-memory 14-11
binding to CPUs 12-9
classes of 12-5,12-16
CPU class 12-16
description of 12-4
disk I/O 12-20
dropping (CPU) in on-line mode 13-9
during initialization 9-7
how threads serviced 12-9
LIO class 12-21
LIO, how many 12-21
logical-log I/O 12-21
memory and resources 12-7
monitoring 29-27
moving a thread 12-7
network 12-24,12-25
number in AIO class 35-30
number in CPU class 35-31
OPT (optical) class 12-30
parallel processing 12-8
physical log I/O 12-22
PIO class 12-21
PIO, how many 12-22
priority aging 35-30
setting configuration parameters 13-3
sharing processing 12-7

VP class in NETTYPE parameter 12-25,
35-28

VP.servemame.xxC file 42-9

w
Wait queue

and buffer locks 14-31
description of 12-15

Waking up threads 12-14
Warning

buildsmi script 36-4
files on NIS systems 4-9
interpreting after running oncheck -cc

27-5
Whitespace in ONCONFIG file 35-6
WORM devices 1-8
Write types

chunk write 14-43
efficiency trade-off between LRU and

chunk writes 30-14
foreground write 14-43
LRU write 14-43

Y
Yielding threads

at predetermined point 12-11
description of 12-10
on some condition 12-11

ypcat hosts, UNIX command 4-9
ypcat services, UNIX command 4-9

Symbols
$INFORMIXDIR/etc/sqlhosts.

sqlhosts file
Informix file

mentioned 3-30,42-5
multiple residency 6-8

.infos.dbserveraname file
regenerate 37-36

.infos.dbservername file
description of 42-6
regenerate 37-36

.inf.servicename file 42-6

.netrc file 4-9

.rhosts file 4-9
/ dev/null

in learning environment 3-14
/etc/hosts file

and client redirection 25-23
multiple residency 6-6

/etc/hosts.equiv file 4-9,35-43
/etc/passwd file

mentioned 4-9

40 Index

/etc/services file
and client redirection 25-23
multiple residency 6-6

/etc/shadow file
mentioned 4-9

/.rhosts file 35-43

Index 41

Sammelboxen / Organizer cases
Für Handbücher des vorliegenden Formates bieten wir zweiteilige Sammelboxen in
zwei unterschiedlichen Größen an. Der Bestellvorgang entspricht dem für Handbücher.
Two-part organizer cases are available in two sizes for storing manuals in the present
format. The ordering procedure is the same as for manuals.

Breite: ca. 5 cm
Bestellnummer: U3775-J-Z18-1

Width: approx. 5 cm
Order No.: U3775-J-Z18-1

Breite: ca. 10 cm
Bestellnummer: U3776-J-Z18-1 Width: approx. 10 cm

Order No.: U3776-J-Z18-1

H e ra u s g e g e b e n von / P u b lis h e d by
S iem e n s N ix d o r f In fo rm a t io n s s y s te m e AG
D -3 3 0 9 4 P ad e rb o rn
D -8 1 7 3 0 M ü n c h e n

B e s te l l-N r . /O rd e r N o . U9636-J-Z265-2-7600
P rin te d in th e Fede ra l R e p u b lic o f G e rm an y
4 6 1 0 AG 0 4 9 4 1 .8 (7 6 6 0) F

Das P a p ie r d ie s e r B ro s c h ü re e r fü l l t
u n se re F o rd e ru n g e n na ch e in e m u m w e lt
f re u n d lic h e n P ap ie r. D as R o h p a p ie r w ir d
au s c h lo r fr e i g e b le ic h te m Z e l ls to f f
h e rg e s te l l t .

T h is b ro c h u re is p r in te d on e n v ir o n m e n
ta l ly f r ie n d ly pape r, c e l lu lo s e t re a te d
w it h c h lo r in e - f re e b le a c h .

9Y505830

