
SINIX Open Desktop

Development System
C Language Guide Parti

Edition April 1990 (SINIX Open Desktop V1.0)

Order-No. U5754-J-Z95-1-7600
Printed in the Federal Republic of Germany
7110 AG 2900.5 (8890)

SINIX® Open Desktop
Copyright© Siemens AG 1990
All right reserved

Base:
OPEN DESKTOP™
© 1983 - 1989 The Santa Cruz Operation, Inc.

Delivery subject to availability;
right of technical modifications reserved.

Published by Bereich
Daten- und Informationstechnik
Postfach 830951, D-8000 München 83

Siemens Aktiengesellschaft

SCO UNIX’ System V/386

Development System

C User’s Guide

The Santa Cruz Operation, Inc.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.
All rights reserved.
Portions © 1989 AT&T.
All rights reserved.
Portions © 1983, 1984, 1985, 1986, 1987, 1988, 1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE -
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)
(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DFARS 52.227-7013. “ CONTRACTOR/ MANUFACTURER’’ IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.
DEC, PDP, VAX, and VT100 are trademarks of Digital Equipment Corporation.
Intel is a registered trademark of Intel Corporation.
UNIX is a registered trademark of AT&T.

SCO Document Number: 6-26-89-6.0/3.2.0

Contents

1 Introduction

Overview 1-1
About This Guide 1-2
New Features 1-4
Notational Conventions 1-6
Books about C 1-9

2 Compiling with the cc Command

Introduction 2-1
The Basics: Compiling and Linking C Programs 2-2
Using cc Options 2-6

3 Linking with the cc Command

Introduction 3-1
The Default Linking Process 3-2
Passing Linker Information: The -link Option 3-3

4 Running C Programs on System V

Introduction 4-1
Passing Command-Line Data to a Program 4-2

5 Working with Memory Models

Introduction 5-1
Near, Far, and Huge Addressing 5-4
Using the Standard Memory Models 5-6
Using the near, far, and huge Keywords 5-14
Creating Customized Memory Models 5-25
Setting the Data Threshold 5-30
Naming Modules and Segments 5-31
Specifying Text and Data Segments 5-34

6 Improving Program Speed

Introduction 6-1
Using Register Variables 6-2
Optimization Options and Pragmas 6-4
Choosing the Function-Calling Convention 6-7

Efficiency in Large Data Models 6-8
Efficiency in Large Code Models 6-10

7 Object and Executable File Formats

Introduction 7-1
iAPX......286 an d 386 System Architecture 7-2
The Intel Object Module Format 7-4
Definition of Terms 7-6
Module Identification and Attributes 7-9
Segment Definition 7-10
Segment Addressing 7-11
Symbol Definition 7-12
Indices 7-13
Conceptual Framework for Fixups 7-14
Self-Relative Fixups 7-19
Segment-Relative Fixups 7-20
Record Order 7-22
Introduction to the Record Formats 7-24
Numeric List of Record Types 7-50
Type Representations for Communal Variables 7-51
The Segmented x.out Format 7-54

8 C Language Compatibility with Assembly Language

Introduction 8-1
C Calling Sequence for 8086/80286 8-2
Entering an 8086/80286 Assembly Routine 8-3
8086/80286 Return Values 8-4
Exiting an 8086/80286 Routine 8-5
8086/80286 Program Example 8-6
80386 C-Language Calling Sequence 8-7
Entering an 80386 Assembly-Language Routine 8-8
80386 Return Values 8-9
Exiting an 80386Routine 8-11
80386 Program Example 8-12

9 Error Processing

Introduction 9-1
Using the Standard Error File 9-2
Using the ermo Variable 9-3
Printing Error Messages 9-4
Using Error Signals 9-5
Encountering System Errors 9-6

- n -

10 Common Object File Format (COFF)

The Common Object File Format (COFF) 10-1
Definitions and Conventions 10-3
File Header 10-5
Optional Header Information 10-7
Section Headers 10-9
Sections 10-12
Relocation Information 10-13
Line Numbers 10-15
Symbol Table 10-17
String Table 10-41
Access Routines 10-42

A Converting from Previous Versions of the Compiler

Introduction A-1
Differences between Versions 5.1 and 5.0 A-2
Differences between Versions 5.0and4.0 A-4
Differences between Versions 4.0and 3.0 A-8

B Writing Portable Programs

Introduction B-l
Program Portability B-3
Machine Hardware B-4
Compiler Differences B-11
Environment Differences B-16
Portability of Data B-l 7
Type-Size Summary B -18
Byte-Ordering Summary B-20

C Writing Programs for Read-Only Memory

Introduction C-1
System V Dependent Library Routines C-2

D C Error Messages and Exit Codes

Introduction D-1
Command-Line Error Messages D-2
Compiler Error Messages D-7

-lit-

Chapter 1

Introduction

Overview 1-1

About This Guide 1-2

New Features 1 -4

Notational Conventions 1 -6

Books about C 1-9

Overview

Overview
The C language is a powerful general-purpose programming language
that can generate efficient, compact, and portable code. The Microsoft® C
Optimizing Compiler (cc) for the UNIX System V® operating system is a
full implementation of the C language as defined by its authors, Brian W.
Kemighan and Dennis M. Ritchie, in The C Programming Language.
Microsoft is actively involved in the development of the ANSI (American
National Standards Institute) standard for the C language; this version of
Microsoft C for UNIX System V anticipates and conforms to the forth­
coming standard in many areas.

The Microsoft C Compiler offers several important features to help you
increase the efficiency of your C programs. You can choose among five
standard memory models (small, medium, compact, large, and huge) to
set up the combination of data and code storage that best suits your pro­
gram. For flexibility and even greater efficiency, the C Compiler allows
you to “ mix” memory models by using special declarations in your pro­
gram.

The C language itself does not provide such standard features as input and
output capabilities and string-manipulation features. These capabilities
are provided as part of the run-time library of functions that accompanies
the C Compiler.

Compared with other programming languages, Microsoft C is extremely
flexible concerning data conversions and nonstandard constructions. The
C Compiler offers several levels of warnings to help you control this
flexibility; programs in an early stage of development can be processed
using the full warning capabilities of the compiler to catch mistakes and
unintentional data conversions. An experienced C programmer can use a
lower warning level for programs that contain intentionally nonstandard
constructions. For more information about this feature, see the “ Compil­
ing with the cc Command” chapter in this guide.

Introduction 1-1

About This Guide

About This Guide
This guide explains how to use the C Compiler to compile, link, and run C
programs on UNIX System V. The guide assumes that you are familiar
with the C language and with UNIX System V, and that you know how to
create and edit a C-language source file on your system.

If you have questions about the C language, turn to the C Language Refer­
ence included in this package. The C Library Guide documents the run­
time library routines you can use in your C programs.

The remaining chapters of the C User’s Guide are described below:

Chapter 2, “ Compiling with the cc Command,” describes how to compile
a program using the cc compiler driver. This chapter describes the options
most commonly used to control preprocessing, compiling, and output of
files.

Chapter 3, “ Linking with the cc Command,” describes how to link object
files using the cc command. This chapter explains how the linker searches
for libraries, shows how to specify libraries for linking, and describes the
linker options that can be used for C programs.

Chapter 4, “ Running C Programs on UNIX System V,” explains how to
run your executable program file and discusses features specific to the
UNIX System V implementation of C. This chapter tells how to pass data
from UNIX System V to a program at execution time and how to return an
exit code from your program to UNIX System V.

Chapter 5, “ Working with Memory Models,” describes methods of
managing memory models. These methods are useful for writing pro­
grams that use more than 64K (kilobytes) of code or data. This chapter
also discusses “ mixed-model” programming (combining features from
the five standard memory models).

Chapter 6, “ Improving Program Speed,” gives suggestions and hints for
maximizing program speed.

Chapter 7, “ Object and Executable File Formats,” describes the system
architecture of the 80x86 microprocessor family, the object module for­
mat that the C compiler follows, and the format of the x.out file in a seg­
mented environment.

1-2 C User's Guide

About This Guide

Chapter 8, “ C Language Compatibility with Assembly Language,”
describes how you can embed assembly-language subroutines within C-
language programs.

Chapter 9, “ Error Processing,” describes how to process errors detected
in calls to the C library routines and explains the functions and variables a
program may use to respond to these errors.

Chapter 10, “ The Common Object File Format (COFF),” describes the
features and contents of COFF files.

Appendix A, “ Converting from Previous Versions of the Compiler,”
summarizes the differences between Version 5.1 of the C Compiler and
previous versions. This appendix gives instructions for converting pro­
grams written for versions prior to 5.1 to the format accepted by Version
5.1.

Appendix B, “ Writing Portable Programs,” lists some of the C-language
features that are implementation-dependent, and offers suggestions for
increasing program portability.

Appendix C, “ Writing Programs for Read-Only Memory,” gives informa­
tion about modifying start-up code and initializing floating-point support
for programs that will be put in read-only memory.

Appendix D, “ Error Messages and Exit Codes,” lists and describes the
error messages and exit codes generated by the C Compiler and by the cc
command. It also lists and explains run-time error messages produced by
executable programs written in C.

Introduction 1-3

New Features

New Features
Several useful features have been added to Version 5.1 of the C Compiler.
This section summarizes features added since Version 5.0. For informa­
tion about differences between Version 5.1 and versions prior to 5.0, see
the “ Converting from Previous Versions of the Compiler” appendix in
this guide.

New features include the following:

Feature Description

New cc options Option Action

-S Generates an assembly-language
source file for the Macro Assembler,
masm(C!P).

-xenix Produces object and/or executable
files using the Intel Object Module
Format (OMF).

-x2.3 Produces object and/or executable
files using the Intel Object Module
Format (OMF) and the XENIX Sys­
tem V/Release 2.3 run-time library.

New pragmas Pragma Action

comment Places a comment record in the
object file.

Data seg Specifies the data-segment name
used by functions that load their own
data segments. The named segment
also contains all data that would
normally be allocated in the DATA
segment.

linesize Sets the number of characters per
line in the source listing.

1-4 C User’s Guide

New Features

message Sends a message to the standard out­
put without terminating the compila­
tion.

page Places a formfeed character(s) in the
source listing.

pagesize Sets the number of lines per page in
the source listing.

skip Skips the specified number of lines
in the source listing. Places a com­
ment record in the object file.

subtitle Specifies a subtitle for the source
listing.

title Specifies a title for the source list­
ing.

Introduction 1-5

Notational Conventions

Notational Conventions
The following notational conventions are used throughout this guide

Example
of Convention

Description
of Convention

Examples The typeface shown in the left column is used
to simulate the appearance of information that
would be printed on the screen or by a printer.
For example, the following command line is
printed in this special typeface:

cc -Foout.o -DTRUE=1 file.c

Language elements

When this command line is discussed in text,
items appearing on the command line, such as
out.o, also appear in the special typeface.

Bold type indicates elements of the C language
that must appear in source programs as shown.
Text that is normally shown in bold type
includes operators, keywords, library functions,
commands, options, and preprocessor direc­
tives.

ENVIRONMENT,
VARIABLES,
and MACROS

Examples are shown below:

+= #if defined() int
if -Fa fopen
main sizeof

Bold capital letters are used for environment
variables, symbolic constants, and macros.

placeholders Words in italics are placeholders, representing
a variable that you must supply in command­
line examples, option specifications, and in the
text. Consider the following option:

-H number

1-6 C User’s Guide

Notational Conventions

Missing code

[optional items]

Note that number is italicized to indicate that it
represents a general form for the -H option. In
an actual command, you would supply a partic­
ular number for the placeholder number.

Occasionally, italics are also used to emphasize
particular words in the text.
Vertical ellipses are used in program examples
to indicate that a portion of the program is
omitted. For instance, in the following excerpt,
the ellipses between the statements indicate
that intervening program lines occur but are not
shown:

1

count = 0;

*pc++;
Brackets enclose optional fields in command­
line and option specifications. Consider the fol­
lowing option specification:

-D identifier[=[string]]

The placeholder identifier indicates that you
must supply an identifier when you use the -D
option. The outer brackets indicate that you are
not required to supply an equal sign (=) and a
string following the identifier. The inner brack­
ets indicate that you are not required to enter a
string following the equal sign, but if you do
supply a string, you must also supply the equal
sign.

Single brackets are used in C-language array
declarations and subscript expressions. For
instance, a[10] is an example of brackets in a C
subscript expression.

Introduction 1-7

Notational Conventions

Repeating
elements...

Horizontal ellipses are used in syntax examples
to indicate that more items having the same
form may be entered. For example, in the
Bourne shell, several paths can be specified in
the PATH command, as shown in the following
syntax:

Y*KYYl[=i]path[;path]...

{choice 1 \choice2} Braces and a vertical bar indicate that you have
a choice of two or more items. Braces enclose
the choices, and vertical bars separate them.
You must choose one of these items unless all
of them are also enclosed in square brackets.

For example, the -W (warning-level) compiler
option has the following syntax:

-W {0 1 1 1 2 1 3}

“ Defined terms’’

You can use -Wl, -W2. or -W3 to display
different levels of warning messages or -WO to
suppress all warning messages.

Quotation marks set off terms defined in the
text. For example, the term “ far’’ appears in
quotation marks the first time it is defined.

Some C constructs require quotation marks.
Quotation marks required by the language have
the form " " rather than “ For example, a
C string used in an example would be shown in
the following form:

"abc"

KEY+KEY Small capital letters are used for the names of
keys and key sequences, such as ENTER and
CTRL+C. Key sequences to be pressed simul­
taneously are indicated by the key names in
small caps separated by a plus sign (CTRL+C).

C User’s Guid<

Books about C

Books about C
The manuals in this documentation package provide a complete
programmer’s reference for C. They do not, however, teach you how to
program in C. If you are new to C or to programming, you may want to
familiarize yourself with the language by reading one or more of the fol­
lowing books:

Hancock, Les, and Morris Krieger. The C Primer. New York:
McGraw-Hill Book Co., Inc., 1982.

Hansen, Augie. Proficient C. Bellevue, Washington: Microsoft
Press, 1986.

Harbison, Samuel P., and Greg L. Steele. C: A Reference Manu­
al. Englewood Cliffs, New Jersey: Prentice-Hall Software
Series, 1987.

Kemighan, Brian W., and Dennis M. Ritchie. The C Program­
ming Language. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1978.

Kochan, Stephen. Programming in C. Hasbrouck Heights, New
Jersey: Hayden Book Company, Inc., 1983.

Plum, Thomas. Learning to Program in C. Cardiff, New Jersey:
Plum Hall, Inc., 1983.

Schildt, Herbert. C Made Easy. Berkeley, California: Osborne
McGraw Hill, 1985.

Schustack, Steve. Variations in C. Bellevue, Washington: Micro­
soft Press, 1985.

These books are listed for your convenience only.

Introduction 1-9

Chapter 2

Compiling with the
cc Command

Introduction 2-1

The Basics: Compiling and Linking C Programs 2-2
The cc Command 2-2

Using cc Options 2-6
Setting Processor and Memory Model (-M) 2-6
Specifying Source Files (-Tc) 2-8
Compiling without Linking (-c) 2-9
Naming the Object File (-Fo) 2-9
Naming the Executable File (-Fe) (-o) 2-10
Creating Listings 2-11
Controlling the Preprocessor 2-28
Checking for Program Errors 2-35
Preparing for Debugging (-Zi, -Od) 2-40
Optimizing 2-41
Enabling/Disabling Language Extensions (-Ze, -Za) 2-53
Packing Structure Members (-Zp) 2-54
Setting the Stack Size (-F) 2-56
Restricting the Length of External Names (-nl) 2-57
Labeling the Object File (-V) 2-57
Changing the Default char Type (-J) 2-58
Controlling the Calling Convention (-Gc) 2-58
Compiling Programs for DOS Environment (-dos, -FP) 2-60
Displaying Compiler Passes (-d, -z) 2-61
Producing OMF Object and Executable Files (-xenix) 2-62
Miscellaneous Pragmas 2-62
Predefined Macro Names 2-65

Introduction

Introduction
This chapter explains how to compile and link using the cc command and
discusses commonly used cc options. The cc command is the only com­
mand you need to compile and link your C source files. The cc command
executes the three compiler passes, then automatically invokes the linker,
Id, to link your files.

Using the cc options described in this chapter, you can control and modify
the tasks performed by the command. For example, you can direct cc to
create an object-listing file or a preprocessed listing. Options also let you
give information that applies to the compilation process; you can specify
the definitions for manifest (symbolic) constants and macros, and the
kinds of warning messages you want to see.

The cc command automatically optimizes your program. You never have
to give an optimizing instruction unless you want to change the way cc
optimizes, request more sophisticated optimizations, or disable optimiza­
tion altogether. For more information on these choices, see the “ Optimiz­
ing’ ’ section in this chapter.

“ The Basics: Compiling and Linking C Programs” explains the basic use
of the cc command to produce an executable program.

“ Using cc Options,” describes the cc options.

For information about linking object files and libraries using the cc com­
mand, see the “ Linking with the cc Command” chapter of this guide.

For a discussion of the cc options that control memory models, see the
“ Working with Memory Models” chapter in this guide.

For a summary of the cc command and its options, see the C Language
Reference.

Compiling with the cc Command 2-1

The Basics: Compiling and Linking C Programs

The Basics: Compiling and Linking C
Programs
This section explains how to use cc to compile and link C programs and
discusses the rules and conventions that apply to file names and options
used with cc.

The cc Command
The cc command has the following form:

cc [option]... file... [option... file...]...[-Ymk[link-libinfo]]

Each option is one of the command-line options described in the “ Using
cc Options” section, the “ Working with Memory Models” chapter, or the
“ Improving Program Speed” chapter of this guide.

Each file names a source or object file to be processed or a library to be
searched at link time. See the description on “ Specifying Source and
Object Files” later in this section for information about specifying source
and object files.

The cc command automatically specifies the appropriate library to be
used during linking. You can use the -link option with the optional link-
libinfo field to specify additional or different libraries, library search
paths, and options to be used during linking. You can also specify linker
options in the linkoptions field. For information about specifying different
libraries and linker options, see the “ Linking with the cc Command”
chapter of this guide.

You can give any number of options, file names, and library names on the
command line, provided that the command line does not exceed 128 char­
acters.

COFF and OMF

This version of the C Compiler can produce object and/or executable files
that use either of two different binary file formats: COFF (Common
Object File Format) and OMF (Intel Object Module Format). COFF is the
most widely used binary tile format. OMF files are produced using the

2-2 C User’s Guide

The Basics: Compiling and Linking C Programs

-xenix option with the compiler. SCO UNIX System V can execute either
file format by reading the file header and acting accordingly. Certain sys­
tem calls behave differently in OMF files because they follow UNIX Sys­
tem V rather than XENIX system conventions. The COFF and OMF for­
mats are described by their corresponding header files:
/usr/include/a.out.h and /usr/include/sys/x.out.h respectively.

Note

The default file name produced by the linker is a.out regardless of
the actual file format used. Any mention of x.out in this guide is
referring only to the format of OMF executable files.

Table 2.1 shows the tools used with various options to the Microsoft C
Compiler, and the type of object/executable file that results.

Table 2.1
Options, Tools, and Resulting Files

O p t io n M S C C o m p ile r A s s e m b le r L in k E d ito r o b j fo r m a t

none MS masm Id COFF
-c Creates linkable x.out object file masm n/a COFF
-S Creates assembly source listing masm n/a COFF
-Fa Creates assembly source listing masm Id COFF

-xenix Creates XENIX programs in OMF format masm Id OMF
-S -xenix Creates XENIX assembly source listing masm n/a OMF
-Fa -xenix Creates XENIX assembly source listing masm Id OMF

Specifying Source and Object Files

The cc command can process source files, object files, library files, or any
combination of these. It uses the file-name extension (the period plus any
letters that follow it) to determine what kind of processing the file needs,
as shown in the following list: •

• If the file has a .c extension, cc compiles the file.

Compiling with the cc Command 2-3

The Basics: Compiling and Linking C Programs

• If the file has a .o extension, cc processes the file by invoking the
linker.

• If the file has a .a extension, cc assumes the file is a library and
passes it to the linker to be searched, unless the -c option is given
to suppress linking. For a description of the -c option, see the sec­
tion on "‘Compiling without Linking” under the section “ Using cc
Options.”

• If the file has the .asm extension, it is passed to masm.

• If the extension is omitted,
cc assumes an extension of .o. If the extension is anything other
than .c , .o , or .a , cc assumes the file is an object file unless the file
name is specified in association with the -Tc option. If the file
name is specified with the -Tc option, cc assumes the file is a C
source file. For a description of the -Tc option, see the section on
“ Specifying Source Files” under the section “ Using cc Options.”

Examples

cc a.c b.c c.o d.o

This command line compiles the files a.c and b.c, creating object files
named a.o and b.o. These object files are then linked with the object files
c.o and d.o to form an executable file named a.out.

cc a.c b.c c.o -Tcd.src

This command performs the same operations as the preceding command
line, except that the -Tc option indicates that d.src is a source file, not an
object file. Thus, the files a.c, b.c, and d.src are compiled, creating object
files named a.o, b.o, and d.o. These object files are then linked with c.o to
form an executable file named a.out.

Creating Executable Files

When cc compiles source files, it creates object files. By default, these
object files use the COFF format and have the same base names as the
corresponding source files, but with the extension .0 instead of .c. (The
base name of a file extension is the portion of the name preceding the pe­
riod, but excluding the path specification, if any.) After compilation, cc
runs a conversion program, cvtomf, over the object file to convert it into
COFF format. For more information about the cvtomf conversion pro­
gram, refer to the manual page cvtomf (C). The converted object file can

2-4 C User’s Guide

The Basics: Compiling and Linking C Programs

now be linked using the AT&T link editor, Id. The -xenix option
suppresses the conversion.

Unless the -c option is given, cc links these object files, along with any .o
files you give on the command line, to form an executable file. If only .o
files are given on the command line, cc skips the compilation stage and
simply links the files.

Compiling with the cc Command 2-5

Using cc Options

Using cc Options
The cc command offers a large number of command options to control
and modify the compiler’s operation. Options begin with a dash (-) and
contain one or more letters.

Options can appear anywhere on the cc command line. In general, an
option applies to all files that follow it on the command line, and it does
not affect files preceding it. However, not all options follow this rule; see
the discussion of a particular option for information on its behavior. Keep
in mind that cc options apply only to the compilation process. Unless spe­
cifically noted, options do not affect any object files given on the com­
mand line. The remainder of this section describes many of the options
applicable to cc. For a concise list of all possible options, refer to the
manual page, cc(CP).

Setting Processor and Memory Model (-M)
The -M option sets the program configuration. This configuration defines
the program’s memory model, word order, and data threshold. It also
enables C-language enhancements such as the use of the full 286 instruc­
tion set and special keywords.

cc -M string special, c

The string contains the argument that defines the configuration. It may be
any combination of the following (though s, m, c, 1, h, and 0, 1, 2, 3 are
mutually exclusive):

s Create a small model program. This is the default,

m Create a middle model program,

c Create a compact model program.

1 Create a large model program,

h Create a huge model program.

2-6 C User’s Guide

Using cc Options

e Enable the keywords: far, near, huge, pascal and for­
tran. Also enables certain non-ANSI extensions neces­
sary to ensure compatibility with existing versions of the
C compiler.

0 Use only 8086 instructions for code generation. This is
the default on 8086/80186/80286 systems.

1 Use the extended 80186 instruction set.

2 Use the extended 80286 instruction set.

3 Use the extended 80386 instruction set. This is the
default on 80386 systems.

tnum Causes all static and global data items whose size is
greater than num bytes to be allocated to a new data seg­
ment. Num, the data “ threshold,” defaults to 32,767.
This option can only be used in large model programs
(-Ml). Its main use is to move data out of the near data
segment to allow room for the stack.

cc -Ml -Mtl2 recursive.c

d Do not assume (during compilation) that the registers SS
and DS will have the same contents at run time.
Warning: This option has no library or run-time support
on UNIX System V. It will not cause the stack to be put
in a separate segment. It may be of use for DOS cross­
development.

-M3 is the default on 80386 systems. Although it is usually advantageous
to enable the appropriate instruction set, you are not required to do so. If
you have an 80286 processor, for example, but you want your code to be
able to run on an 8086, you should not use the 80186/80188 or 80286
instruction set.

Note

The m, c, I, h, b, t, and d arguments are not compatible with the
-M3 option. The s and e arguments are compatible with -M0, -Ml,
-M2, o r -M3.

Compiling with the cc Command 2-7

Using cc Options

For a complete description of memory models and segment options, see
the “ Working with Memory Models” chapter in this guide.

The memory-model option you choose determines the name of the stan­
dard libraries that cc places in the object file it creates. These libraries are
then considered the default libraries, since the linker searches for them by
default.

Table 2.2 shows each memory-model option and the corresponding library
name that cc embeds in the object file.

Table 2.2
cc Options and Default Libraries

Memory-Model Default
Option Libraries

-Ms Slibc.a
Slibcfp.a

-Mm Mlibc.a
Mlibcfp.a

-Me Clibc.a
Clibcfp.a

-Ml or -Mh Llibc.a
Llibfp.a

Specifying Source Files (-Tc)
Option

-Tc sourcefile

The -Tc option tells the cc command that the given file is a C source file.
One or more spaces can appear between -Tc and the source-file name.

If this option does not appear, cc assumes that files with the extension .c
are C source files, files with the extension .a are libraries, and files with
any other extension or with no extension are object files. If you use the
-Tc option, cc treats the given file as a C source file, regardless of its
extension. A separate -Tc option must appear for each source file that has
an extension other than .c .

2-8 C User’s Guide

Using cc Options

If you have to specify more than one source file with an extension other
than .c , you must specify each source file in a separate -Tc option.

Example

cc main.c -Tc test.prg -Tc collate.prg print.prg

In this example, the cc command compiles the three source files main.c,
test.prg, and collate.prg. Since the file print.prg is given without a -Tc
option, cc treats it as an object file. Thus, after compiling the three source
files, cc links the object files main.o, test.o, collate.o, and print.prg.

Compiling without Linking (-c)
Option

■c

The -c (for “ compile-only”) option suppresses linking. Source files given
on the command line are compiled, but the resulting object files are not
linked, no executable file is created, and any object files specified on the
command line are ignored. This option is useful when you are compiling
individual source files that do not make up a complete program.

The -c option applies to the entire cc command line, regardless of the
option’s position in the command line.

Example

cc -c *.c

This command line compiles, but does not link, all files with the exten­
sion .c in the current working directory.

Naming the Object File (-Fo)
Option

-Foobjfile

By default, cc gives each object file it creates the base name of the corre­
sponding source file plus the extension .o. The -Fo option lets you give
different names to object files or create them in a different directory. If
you are compiling more than one source file, you can give the -Fo option
for each source file to rename the corresponding object file.

Compiling with the cc Command 2-9

Using cc Options

Keep the following rules in mind when using this option:

• The o b jf ile argument must appear immediately after the option,
with no intervening spaces.

• Each -Fo option applies to the next source file that appears on the
command line after the option.

You are free to supply any name and any extension you like for the
o b jf ile . However, it is recommended that you use the conventional .o
extension because the linker uses .0 as the default extension when pro­
cessing object files.

If you use the -Fo option (that is, if you do not give an object file name
with a base and an optional extension), cc names the object files accord­
ing to the following rule:

• If you give a directory specification following the -Fo option, cc
creates the object file in the given directory and uses the default
file name (the base name of the source file plus .0). Otherwise,
o b jf ile is created in the current directory. A .0 extension is added
if no extension is given.

To give a directory specification, it must end with a forward slash (/) so
that cc can distinguish between a directory specification and a file name.

Example

cc -Fo/cbjectl/ this.c ” -ac.c -Fo/src/'newthose those.c

In this example, the first -Fo option tells the compiler to create, in the
l o b je c t l directory, the object file th is .o (created as a result of compiling
th is .c) . The compiler also creates, in the current directory, the object file
th a t .o (created as a result of compiling th a t.c) . The second -Fo option tells
the compiler to create the object file named n e w th o s e .o (created as a
result of compiling th o se .c) in the Isrc directory.

Naming the Executable File (-Fe) (-o)
Option

-F e ex e file
-o ex e file

2-10 C User’s Guide

Using cc Options

By default, cc gives the name a.out to the executable file. In UNIX System
V, -Fe and -o are the same, except syntactically. The file name must
come immediately after -Fe, whereas blanks are permitted between -o
and the file name. Either option lets you give the executable file a
different name or create it in a different directory.

Since cc creates only one executable file, you can give the -Fe option
anywhere on the command line. If more than one -Fe option appears, cc
gives the executable file the name specified in the last -Fe option on the
command line.

The -Fe option applies only in the linking stage. If you specify the -c
option to suppress linking, -Fe has no effect.

Examples

cc -Fe/bin/process *.c
cc -o /bin/process *.c

These examples compile and link all source files with the extension .c in
the current working directory. The resulting executable file is named pro-
cess.out and is created in the directory /bin.

Creating Listings
A number of options are available with the cc command for creating list­
ings. You can create a source listing, a map listing, or one of several kinds
of object listings. You can also set the title and subtitle of the source list­
ing from the command line and control the length of source-listing lines
and pages.

These options are described in the following sections.

Note

Listings produced by the cc command may contain names that begin
with more than one underscore (for example,__chkstk) or that end
with the suffix QQ. Names that use these conventions are reserved
for internal use by the compiler, and should not be used in your pro­
grams, except for those documented in the C Library Guide. More­
over, you should avoid creating global names that begin with an
underscore. Since the compiler automatically adds another leading
underscore, these names will have two leading underscores and
might conflict with names reserved by the compiler.

Compiling with the cc Command 2-11

Using cc Options

Types of Listings (-Fs, -Fl, -Fa, -Fc, -Fm -S)

Options

-Fs [listfiles]
-FI [listfile]
-Fa[listfile]
-Fc [listfile]
-Fm [mapfile]

Source listing
Object listing
Assembly listing
Combined source and object listing
Map file that lists segments, in order
Assembly listing-S

This section describes how to use command-line options to create list­
ings. For an example of each type of listing and a description of the infor­
mation it contains, see the section on “ Formats for Listings.”

When using an option described in this section, the listfile argument, if
given, must follow the option immediately, with no intervening spaces.
The listfile may be a file specification or a path specification. It may also
be omitted.

When you give just a path specification as the listfile argument, the
path specification must end with a forward slash (/) so that cc can
distinguish it from an ordinary file name.

When you give a path specification as the argument to a listing option, or
if you omit the argument altogether, cc uses the default file name for the
listing type. Table 2.3 gives the default names used for each type of list­
ing. The table also shows the default extensions, which are used when you
give a file-name argument that lacks an extension.

Note

2-12 C User’s Guide

Using cc Options

Table 2.3
Default File Names and Extensions

Option Listing Type
Default
File Name1

Default 9Extension

-Fs Source Base name of source file
plus .S

.S

-FI Object Base name of source file
plus .L

.L

-Fa Assembly
(masm)

Base name of source file
plus .asm

.asm

-Fc Combined
source-object

Base name of source file
plus .L

.L

-Fm Map Prints to standard output.

-S Assembly
(masm)

Base name of source file
plus .asm

.asm

Notes:

1 The default file name is used when the option is given with no argument or with a
path specification as the argument.

2 The default extension is used when a file name lacking an extension is given.

3 The assembly-language listing produced by the -Fa, -Fc, and -S options uses m asm
directives.

4 The -Fa and -S options produce the same output, except that you cannot specify the
list file with the -S option.

Since you can process more than one file at a time with the cc command,
the order in which you give listing options and the kind of argument you
give for each option (file specification or path specification) affect the
result. Table 2.4 summarizes the effects of each option with each type of
argument.

Compiling with the cc Command 2-13

Using cc Options

Table 2.4
Arguments to Listing Options

Option
File-Name
Argument

Path
Argument1

No
Argument

-Fa, -Fc,
-FI, -Fs

Creates a
listing for the
next source
file on the
command
line; uses
default
extension if
no extension
is supplied

Creates listings
in the given
location for
every source
file listed after
the option on
the command
line; uses
default names

Creates listings in
the current direc­
tory for every
source file listed
after the option on
the command line;
uses default names

-Fm Uses given
file name for
the map file;
uses default
extension if
no extension
is supplied

Creates map
file in the given
directory; uses
default name

Uses default name

-S File name
argument is
not allowed

Path argument
is not allowed

Uses default name

Notes:

1 When you give just a path specification as the argument, the path specification must
end with a forward slash (/) so that cc can distinguish it from an ordinary file name.

Only one type of object or assembly listing can be produced for each
source file. The -Fc option overrides the -Fa and -FI options and produces
a combined listing. If you apply both the -Fa and the -FI options to one
source file, only the last listing specified on the command line is pro­
duced. If you specify both the -Fa and the -Fs options to one source file, a
combined listing is produced. The -Fs option may be used with any other
option.

2-14 C User’s Guide

Using cc Options

N o te

The cc command optimizes by default, so listing files reflect the
optimized code. Since optimization may involve rearrangement of
code, the correspondence between your source file and the machine
instructions may not be clear, especially when you use the -Fc
option to mingle the source and assembly codes. To produce a list­
ing without optimizing, use the -Od option (discussed in “ Preparing
for Debugging” later in this section) with the listing option.

The map file is produced during the linking stage. If linking is suppressed
with the -c option, the -Fm option has no effect.

Examples

cc -Fshello.src -Fchello.cmb hello.c

In this example, cc creates a source listing called h e llo .s r c and a com­
bined source and object listing called h e llo .c m b . The object file has the
default name h e llo .o . However, it is removed if the link was successful.

cc -Fshello.src -Fshello.lst -Fchello.cod hello.c

This command produces a source listing called h e l lo . ls t rather than
h e llo .s r c , since the last name provided has precedence. This example also
produces a combined source and object listing file named h e llo .c o d . The
object file in both of these examples has the default name h e llo .o .

Setting Titles (-St) and Subtitles (-Ss)

Options

-St "title"
-Ss "subtitle"

The -St and -Ss options set the title and subtitle, respectively, for source
listings. The quotation marks ("") around the t it le or su b ti t le argument
can be omitted if the title or subtitle does not contain space or tab charac­
ters. The space between -St or -Ss and its argument is optional.

The title appears in the upper left comer of each page of the source list­
ing. The subtitle appears below the title.

Compiling with the cc Command 2-15

Using cc Options

The -St or -Ss option applies to the remainder of the command line or
until the next occurrence of -St or -Ss on the command line. These
options do not cause source listings to be created. They take effect only
when the -Fs option is also used to create a source listing.

Examples

cc -St "Income Tax" -Ss 4-14 -Fs tax*.c

This command compiles and links all source files beginning with tax and
ending with the default extension (.c) in the current working directory.
Each page of the source listing contains the title Income Tax in the upper
left comer. The subtitle 4-14 appears below the title on each page.

cc -c -Fs -Fa -St"Calc Prcg" -Ss"oount" ct.c -Ss"sort" srt.c

In this command, cc compiles two source files and creates two source list­
ings. Each source listing has a unique subtitle, but both listings have the
title Calc Prog.

Formats for Listings

The rest of this section describes and shows examples of the five types of
listings available with the cc command. For information on how to create
these listings, see “ Types of Listings” earlier in this section.

Source Listing

Source listings are helpful for debugging programs as they are being de­
veloped. These listings are also useful for documenting the structure of a
finished program.

The source listing contains the numbered source-code lines of each pro­
cedure in the source file, along with any diagnostic messages that were
generated. If the source file compiles with no errors more serious than
warning errors, the source listing also includes tables of local symbols,
global symbols, and parameter symbols for each function. If the compiler
is unable to finish compilation, it does not generate symbol tables.

At the end of the source listing is a summary of the segment sizes in your
program. This summary is useful for analyzing the program's memory
requirements.

2-16 C User’s Guide

Using cc Options

Any error messages that occurred during compilation appear in the listing
after the line that caused the error, as shown in the following example:

1 char hexvalue[10];
2
3 main()
4 {
5 long htoi () ;
6 printf ("Please enter the hex value you want to ocnvert:\n") ;
7 scant("%s", hexvalue);
8 printf ("The integer value of the hex value is %ld\n", htoi (hexvalue));
9 }
10
11 long htoi(hexvalue)
12 char *hexvalue;
13 {
14 register char *ptr=hexvalue;
15 int i=0;
16 long n=0;
17 long expl6 () ;
18 while (*ptr != '\0') {
19 if (*ptr >= ' a ' && *ptr <= 'f')
20 *ptr -= 87;
21 else if (*ptr >= 'A' && *ptr <= 'F')
22 *ptr -= 55;
23 else
24 *ptr -= 48;
25 ptrt;
bomb.c(25) : error C2059: syntax error :
26 }

The line number given in the error message corresponds to the number of
the source line immediately above the message in the source listing.

Compiling with the cc Command 2-17

Using cc Options

The following example shows the source listing for a simple C program:

Hex to ASCII
2/25/87
Line# Source Line

PAffi i 02-25-87
10:44:23

C Cptimizing Catpiler Version 5.10
char hexvalue [10];

3 min()
5 long htoi ();
6 printf ("Please enter the hex value you uont to convert :0);7 scanf("%s", hexvalue);8 printf ("Ihe integer value of the hex value is %ld0, htoi(hexvalue)
10
ii long htoi(hexvalue)12 char *hexvalue;
13 {14 register char *ptr=hexvalue;
15 int i=0;
16 long n=0;
17 long expl6();
18 while (*ptr != ' ') {
19 if (*ptr >= ' a ' && *ptr <= ' f')
20 *ptr -= 87;
21 else if (*ptr >= 'A' && *ptr <= 'F')22 *ptr -= 55;24 *ptr -= 48;
25 pt r++;
26 }27 ptr -= 1;
28 while (ptr>=hexvalue)
29 {30 n+= (*ptr*expl6 (i));
31 i++;
32 ptr— ; 33 }
34 return(n);
35 }htoi Local Syrrbols

Name Class Type Size Offset Register
iauto -0008
ptr . *** si
n . . -0004
hexvalue.
36

param 0004
37
38
39
40
41
42
43
44
45

long expl6(exp)
int exp;

=1 ;long result=
int j ;
for (j=1; j<=exp; j++)

result *= 16;
return(result);

2-18 C User’s Guide

Using cc Options

Hex to A
2/25/87 02-25-87

10:44:23
C Optimizing Compiler Version 5.10

expl6 Local Symbols
Name Class Type Size Offset Register
j -0006
result. . -0004
exp . . . 0004

Global Symbols
Name Class Type Size Offset
expl6 . . near function ★ * * OOae
hexvalue. struct/array 10 k k k
htoi. . . near function * * * 0038
main. . . near function ★ ★ ★ 0000
printf. . near function * * -k •k k k
scanf . . . extern near function k k k k k k

Code size = 00e8 (232)
Data size = 005f (95)
Bss size = 0000 (0)
No errors detected

At the end of each function, a table of local symbols is given, as shown in
the following example for the function htoi:

htoi Local Symbols

Name Class Type Size Offset Register

i auto -0008
p t r auto *** si
n auto -0004
hexvalue........... param 0004

Compiling with the cc Command 2-19

Using cc Options

The following list shows the contents of each column in the symbol table:

Column Contents

N a m e The name of each local symbol in the function.

C la s s Either a u to if the symbol is a nonstatic local variable, or
p a r a m if the symbol is a formal parameter.

O ffse t The symbol’s offset address relative to the frame pointer
(that is, the BP register). The O ffse t number is positive for
p a r a m symbols and negative for a u to symbols with auto
storage class.

R e g is te r Blank unless the variable is stored in a register, in which
case, this column indicates the register (SI or DI).

At the end of the source code, a table of global symbols is given, as
shown in the following example:

Name Class Type Size Offset

expl6 global near function ★ ★ ★ OOae
hexvalue. common struct/array 10 ★ * k

htoi....... . . . global near function * ★ * 0038
main....... near function *** 0000
printf. extern near function *** ★ * *
scanf extern near function k k k

The following list shows the contents of each column:

Column Contents

N a m e Each global symbol, external symbol, and statically allo­
cated variable declared in the source file.

C la s s Either g lo b a l , c o m m o n , e x te rn , or s ta t ic , depending on how
the symbol was defined in the source file.

T yp e A simplified version of the symbol’s type as declared in
the source file.

2-20 C User’s Guide

Using cc Options

For functions, this entry is either n e a r fu n c t io n ox f a r f u n c ­
tio n , depending on which memory model was used and
how the function was declared. For a pointer, this entry is
n e a r p o in te r , f a r p o in te r , or h u g e p o in te r . For enumeration
variables, this entry is in t. For structures, unions, and
arrays, this entry is s tru c t!a r ra y .

S iz e Used only for variables. Specifies the number of bytes of
storage allocated for the variable. Since the amount of
storage allocated for an external array may not be known,
its S ize entry may be undefined.

O ffse t Used only for symbols with an entry of g lo b a l or s ta t ic in
the C la s s column.

For variables, this entry gives the relative offset of the
variable’s storage in the logical data segment for the pro­
gram file being compiled. Since the linker usually com­
bines several logical data segments into a physical seg­
ment, this number is useful only for determining the rela­
tive position of storage of variables. For functions, this
entry gives the relative offset of the start of the function in
the logical code segment. For small-model programs, the
linker combines logical code into a single physical seg­
ment, so this entry is useful for determining the relative
positions of different functions defined in the same source
file. However, for medium-, large-, and huge-model pro­
grams, each logical code segment becomes a unique physi­
cal segment. In these cases, this entry gives the actual
offset of the function in its run-time code segment.

The last table in the source listing shows the segments used and their size,
as in the following example:

Code size = 0103 (259)
Data size = 005f (95)
Bss size = 0000 (0)

The number of bytes in each segment is given first in hexadecimal, and
then in decimal (in parentheses).

Object Listing

The -FI option produces an object listing. The object listing contains the
instruction encoding and assembly code for your program. The line num­
bers are shown in the listing as comments. The instruction encoding is on
the left and the assembly code on the right, as shown in the following
example:

Compiling with the cc Command 2-21

Using cc Options

; Line 4
PUBLIC main

main PROC LEAR
*** CO 3000 55 push bp
* * * 0 0 0 0 01 8b ec mov bp,sp
*** C0C003 33 cO xor ax, ax
* * * 000 0 C 5 e8 00 00 call chkstk

; Line 6
*** 000008 b8 00 00 mov ax,OFFSET DGROU?:$S G12
*** 00000b 50 push ax
*** 03000c e8 00 00 call orir.cf
* * * 000 0 C f 83 c4 02 add sp,2

Assembly Listing

The -Fa and -S options produce an assembly listing using directives suit­
able for assembly using the Macro Assembler, masm. It contains the
assembly code corresponding to your C source file, as shown in the fol­
lowing example:

; Line 4
PUBLIC _main

_main PROC NEAR
push bp
mov bp,sp
xor ax,ax
call __chkstk

; Line 6
mov ax,OFFSET DGR0UP:$SG12
push ax
call _printf
add sp,2

Note that the example shows the same code as in the object listing exam­
ple, except that the instruction encoding is omitted.

The listing generated by the -Fa option in Versions 5.0 and later of the C
Compiler can be used as input to masm.

Combined Source and Object Listing

The -Fc option produces a combined source and object listing. This shows
each line of your source program followed by the corresponding line (or
lines) of machine instructions, as shown in the following example:

2-22 C User’s Guide

Using cc Options

TEXT SEGMENT
• | * * * char hexvalue[10];

. | * * *

; | * * * main ()

. | * * ★
{

; Line 4

PUBLIC main
main PROC NEAR

* * * 000000 55 push bp
* * * 000001 8b ec mov bp,sp
* * * 000003 33 cO xor ax, ax
* * * 000005 e8 00 00 call chkstk

• | ★ -k ★ long htoi () ;

• j ★ * * printf ("Please enter the hex value you want to convert:0);
; Line 6

* * * 000008 b8 00 00 mov ax,OFFSET DGROUP: $ SGI2
* * * 00000b 50 push ax
* * * 00000c e8 00 00 call printf
* * * 00000f 83 c4 02 add sp, 2

. | ★ * * scanf ("%s", hexvalue) ;

Note that this sample is like the object-listing sample, except that the
source-program line is provided in addition to the line number.

When you examine a listing file, you will notice that the names of glo­
bally visible functions and variables begin with an underscore, as shown
in the following example. This part of the listing is the same for all three
kinds of listings:

EXTRN printf:NEAR
EXTRN scanf: NEAR
EXTRN chkstk:NEAR
EXTRN aNlmul: NEAR
EXTRN aNNalshl: NEAR
EXTRN hexvalue: TBYTE

The C Compiler automatically prefixes an underscore to all global names.
If you write assembly-language routines to interface with your C pro­
gram, this naming convention is important; see the section on “ Control­
ling the Preprocessor” for more information.

The listing may also contain names that begin with more than one under­
score (for example,__chkstk). Identifiers with more than one leading
underscore are reserved for internal use by the compiler, and should not
be used in your programs, except for those documented in the C Library
Guide. Moreover, you should avoid creating global names that begin

Compiling with the cc Command 2-23

Using cc Options

with an underscore. Since the compiler automatically adds another lead­
ing underscore, these names will have two leading underscores and might
conflict with the names reserved by the compiler.

Listing Pragmas

There are several pragmas that allow you to control the page formatting
of the listings produced with the various list options. These pragmas are:

Pragma Action

linesize Sets the number of characters per line in the source list­
ing.

page Places a formfeed character(s) in the source listing,

pagesize Sets the number of lines per page in the source listing,

skip Skips he specified number of lines in the source listing,

subtitle Specifies a subtitle for the source listing,

title Specifies a title for the source listing.

The remainder of this section discusses each of the preceding pragmas.

The linesize Pragma

The linesize pragma sets the number of characters per line in the source
listing. The syntax of this pragma is:

tpragma linesize{[characters])

In this syntax, the optional parameter characters is an integer constant in
the range 79-132 that specifies the number of characters you wish each
line of the source listing to have. If characters is absent, the compiler
uses the value specified in the -SI option or, if that option is absent, the
default value of 79 characters per line. Note that linesize takes effect in
the line after the line in which the pragma itself appears.

The following example uses the pragma to produce a source listing with a
132-character line length:

#pr\iqma 1 inesi z e (12 2)

2-24 C User’s Guide

Using cc Options

The page Pragma

The page pragma generates a formfeed (page eject) character in the
source listing at the place where the pragma appears. The pragma has the
following syntax:

#pragma page{\pages])

The optional parameter pages is an integer constant in the range 1-127
that specifies the number of pages to eject. If pages is absent, the pragma
uses a default value of 1, in which case the next line in the source file
appears at the top of the next listing page.

The pagesize Pragma

The pagesize pragma sets the number of lines per page in the source list­
ing. The pragma has the following syntax:

♦pragma pagesize([//««])

The optional parameter lines is an integer constant in the range 15-255
that specifies the number of lines that you wish each page of the source
listing to have. If this parameter is absent, the pragma sets the page size
to the number of lines specified in the -Sp command-line option or, if that
option is absent, to a default value of 63 lines.

The following example uses the pagesize pragma to set the number of
lines per page of the source listing to 66 lines:

♦pragma pagesize(66)

The skip Pragma

The skip pragma generates a newline (carriage retum/line feed) in the
source listing, at the point where the pragma appears. The pragma has the
following syntax:

♦pragma skip ([lines])

The optional parameter lines is an integer constant in the range 1-127 that
specifies the number of lines that you wish to skip. If this parameter is
absent, skip defaults to one line.

Compiling with the cc Command 2-25

Using cc Options

The subtitle Pragma

The subtitle pragma sets a subtitle in the source listing. The pragma has
the following syntax:

#pragma subt it le.{subtitlename)

The required parameter subtitlename is a string literal containing the sub­
title for subsequent pages in the source listing. The subtitle appears below
the title on each page of the listing.

If you supply a null string ("") as the subtitlename parameter, subtitle
removes any subtitle that was previously set. The subtitlename parame­
ter can be a macro that expands to a string literal, and you can concaten­
ate such macros with string literals in any combination.

The following statement sets the subtitle to Error handler for subsequent
pages in the source listing:

#pragma subtitle ("Error handler")

The title Pragma

The title pragma sets a title for the source listing. The pragma has the
following syntax:

#pragma title (titlenam e)

The required parameter titlename is a string literal containing the title for
the source listing. The title appears in the upper left comer of each page
of the listing.

If you supply a null string ("") as the titlename parameter, title removes
any title that was previously set. The titlename parameter can be a macro
that expands to a string literal, and you can concatenate such macros with
string literals in any combination.

The following statement sets the title to File HO Module in the source
listing:

If pragma subtitle ("File I/O Module")

2-26 C User’s Guide

Using cc Options

Map File

The -Fm option produces a map file. The map file contains a list of seg­
ments in order of their appearance within the load module. As an exam­
ple, consider the following:

The information in the Start and Stop columns shows the 20-bit address
(in hexadecimal) of each segment, relative to the beginning of the load
module. The load module begins at location zero. The Length column
gives the length of the segment in bytes, the Name column gives the name
of the segment, and the Class column gives information about the seg­
ment type.

The starting address and name of each group appear after the list of seg­
ments. An example of a group listing follows:

Origin Group
01EA:0 DGROUP

In this example, DGROUP is the name of the data group. DGROUP is
the only group used for data segments by programs compiled with the C
Compiler, Version 5.1.

The following map file contains two lists of global symbols: the first list
is sorted in ASCII-character order by symbol name and the second is by
symbol address. A maximum of 2048 symbols can be sorted in each list.
(To increase the number of sorted symbols, you must specify the -MAP
linker option with the number argument to create the map file; see the
“ Linking with the cc Command” chapter of this guide for details.) The
notation Abs appears next to the names of absolute symbols (symbols con­
taining 16-bit constant values that are not associated with program
addresses).

Many of the global symbols that appear in the map file are symbols used
internally by the C Compiler. These usually begin with one or more lead­
ing underscores or end with QQ.

Start Stop Length Name
00000H 01E9FH 01EA0H _TEXT
01EA0H 01EA0H 00000H C ETEXT

Class
CODE
ENDCODE

Compiling with the cc Command 2-27

Using cc Options

A.: Publics by Name
0 0 9 6 -

0047 1D 8 6 br 2.-.1
o c o r 0 45 0 0 aa t a
0 0 4 7 0 910 _er.c

0047 C O - ~ abrkp
004^ 00 00 abrktb
0047 CO F0 abrbt.be
003F 9376 .Abs acrcmsg
0000 5376 Abs acrtesed

0047 02 4 0 arge
0047 0242 argv

Address Publics by Value

0 0 3 F 0 C10 main
00 3F 0047 htci
0 0 3 F u ̂ 1- A ext 1 6

InOO 0115 cr.kszk
003F 0 ‘ A 3 aszarzG p *3 V - - - - .• ^ _ r - t r

The addresses of the external symbols are in the “ selector ‘.offset" format,
showing the location of the symbol relative to zero (the beginning of the
load module).

Following the lists of symbols, the map file gives the program entry point,
as shown in the following example:

r'rc::ri~ er.trv rccint at 003F: 0129

Controlling the Preprocessor
'Fhe cc command provides several options that control the operation of
die C preprocessor. You can define macros and manifest (symbolic) con­
stants from the command line, change the search path for include tiles,
and stop compilation of a source file after the preprocessing stage to pro­
duce a preproccssed source-file listing.

2-28 C User's Guide

Using cc Options

The C preprocessor recognizes only preprocessor directives. It treats the
source file as a text file, processing substitutions and definitions as
directed. The preprocessor can be run on a file at any stage of develop­
ment, whether or not the file is a complete C source file. In fact, the
preprocessor is not restricted to processing C files; it can be run on any
kind of file. However, input files to the preprocessor must follow the
preprocessor rules; therefore, not all arbitrary text files may be suitable
for use with the preprocessor. See the C Language Reference for a com­
plete discussion of C preprocessor directives and the format expected for
preprocessor input.

Defining Constants and Macros (-D)

Option
-D identifier[—[string]]

The -D option lets you define a constant or macro used in your source file.
The identifier is the name of the constant or macro and string is its value
or meaning. Note that spaces are permitted (but not required) between -D
and the identifier.

If you leave out both the equal sign and string, the given constant or
macro is assumed to be defined, and its value is set to 1. For example,
-DSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or
macro is considered defined; its definition is the empty string. This
definition effectively removes all occurrences of the identifier from the
source file. For example, to remove all occurrences of register, use the
following option:

-Dregister=

Note that the identifier register is still considered to be defined.

The effect of using the -D option is the same as using a preprocessor
#define directive at the beginning of your source file. The identifier is
defined in the source file being compiled either until an #undef directive
removes the definition or until the end of the file is reached.

You can supply a command-line definition for an identifier that is also
defined within the source file. However, you must use #undef to remove
the source-file definition, unless the source-file definition is identical to
the command-line definition. The command-line definition remains in
effect until the identifier is removed with an #undef directive.

Compiling with the cc Command 2-29

Using cc Options

The -D option is especially useful with the #if and #ifdef directives
because you can control conditional-compilation directives in the source
file from the command line.

Examples
cc -D NEED=2 main.c

This example defines the manifest constant NEED in the source file
main.c. This definition is equivalent to placing the directive at the top of
the source file as shown in the following example:

#define NEED 2

For the next example, suppose a source file named other.c contains the
following fragment:

#if defined(NEED)

#endif

Suppose further that other.c does not explicitly define NEED (that is, no
#define directive for NEED is present). Then all statements between the
#if and the #endif directives are compiled only if you supply a definition
of NEED by using -D. For instance, the following command is sufficient
to compile all statements following the #if directive:

cc -DNEED main.c

Note that NEED does not have to be set to a specific value to be con­
sidered defined. The following command, in contrast, causes the state­
ments in the #if block to be ignored (not compiled):

cc main.c

Predefined Identifiers (Manifest Defines)

The compiler defines several identifiers that are useful in writing portable
programs. These are known as “ manifest defines.” You can use these
identifiers to compile code sections conditionally, depending on the pro­
cessor and operating system being used. They begin with “ M_” for
"manifest.” The predefined identifiers and their functions are as follows:

2-30 C User’s Guide

2
 g

Using cc Options

Identifier

M 186

MSYS3

MSYS5

M BITFIELDS

M WORDSWAP

M_UNIX

M _ I az86

M I86mM

CHAR UNSIGNED

Function

This is an Intel processor.

This is Unix System m compatible.

This is Unix System V compatible.

This compiler supports bitfields.

The word-within-a-longword order is
swapped with respect to the
DEC PDP-11.

Always defined, this identifies the tar­
get operating system as an implemen­
tation of UNIX System V.

Depending on -MO, -Ml, -M2, or
-M3, M_I386 is defined with 386
compiler unless -dos is used.

Always defined, this identifies the
memory model, where m is either S
(small model), C (compact model), M
(medium model), L (large model), or
H (huge model). If huge model is
used, both M I86LM and M I86HM
are defined. Small model is the
default. Memory models are dis­
cussed in the “ Working with Memory
Models” chapter.

This is defined only when the -J
option is given to make the char type
unsigned by default. For more infor­
mation, see the section on “ Changing
the Default char Type.”

SDATA or M_LDATA Depending on -MO, -Ml, or -M2.
STEXT or M LTEXT

Compiling with the cc Command 2-31

Using cc Options

Removing Definitions of Predefined Identifiers (-U, -u)

Options

-U identifier
-u

The -U (for “ undefine”) option turns off the definition of one of the
predefined identifiers discussed in the previous section. One or more
spaces may separate the -U and identifier. You can specify more than one
-U option on the same command line. The -u option turns off all
definitions.

Example

cc -UM UNIX -UM 186 work.c

This example removes the definitions of two predefined identifiers. Note
that the -U option must be given for each removal.

Producing a Preprocessed Listing (-P, -E, -EP)

Options

-P Writes preprocessed output to a file
-E Writes preprocessed output to standard

output; includes #line directives
-EP Writes preprocessed output to a file and standard output

The -P, -E, and -EP options produce listings of preprocessed files. These
options allow you to examine the output of the C preprocessor.

The preprocessed listing file is identical to the original source file except
that all preprocessor directives are carried out, macro expansions are per­
formed, and comments are removed. All three options suppress compila­
tion. No object file or listing is produced, even if you specify the -Fo
option or a listing-file option on the cc command line.

The -P option writes the preprocessed listing to a file with the same base
name as the source file, but with a .: extension.

The -E option copies the preprocessed listing to the standard output (usu­
ally your terminal). It places a #line directive in the output at the

2--)2 C User’s Guide

Using cc Options

beginning and end of each included file and around lines removed by
preprocessor commands that specify conditional compilation.

The -E option is useful when you want to resubmit the preprocessed list­
ing for compilation. The #Iine directives renumber the lines of the prepro­
cessed file, so that errors generated in later stages of processing refer to
the original source file rather than to the preprocessed file.

The -EP option combines features of the -E and -P options; the file is
preprocessed and copied both to a new file and to the standard output, but
no #line directives are added.

Examples

cc -P main.c

This example creates the preprocessed file main.i from the source file
main.c.

cc -E add.c > preadd.c

This command creates a preprocessed file with inserted #line directives
from the source file add.c. The output is redirected to the file preadd.c.

cc -EP add.c

The command shown here produces the same preprocessed output as the
second example, but without the #line directives. The output appears on
the screen and is copied to a new hie.

Preserving Comments (-C)

Option

-C

Normally, comments are stripped from a source file in the preprocessing
stage, since they do not serve any purpose in later stages of compiling.
The -C (for “ comment”) option preserves comments during prepro­
cessing. The -C option is valid only when the -E, -P, or -EP option is also
used.

Example

cc -P -C sample .c

Compiling with the cc Command 2-33

Using cc Options

The example produces a listing named sa m p le .i . The listing file contains
the original source file, including comments, with all preprocessor direc­
tives expanded or replaced.

Searching for Include Files (-1, -X)

Options

-I d ir e c to r y
-X

The -I and -X options temporarily override the default search paths for
include files. (The default path is lu sr l in c lu d e .)

You can add to the list of directories searched by using the -I (for
“ include”) option. This option causes the compiler to search the direc­
tory or directories you specify before searching the default path
lu sr l in c lu d e . The space between -I and d ir e c to r y is optional. You can add
more than one include directory by giving the -I option more than once in
the cc command. The directories are searched in order of their appearance
in the command line.

The directories are searched only until the specified include file is found.
If the file is not found in the given directories or the standard places, the
compiler prints an error message and stops processing. When this occurs,
you must restart compilation with a corrected directory specification.

You can prevent the C compiler from searching the default paths for
include files by using the -X (for “ exclude”) option. When cc sees the -X
option, it considers the list of standard places to be empty. This option is
often used with the -I option to define the location of include files that
have the same names as include files found in other directories, but that
contain different definitions.

Examples

cc -I /include -I/alt/include main.c

In this example, cc looks for the include files requested by m a in .c in the
following order: first in the directory /in c lu d e , then in the directory
alt! in c lu d e , and finally in the default directory lu sr l in c lu d e .

cc -X -I /alt/inclurie main.c

2-34 C User’s Guide

Using cc Options

As shown in this example, the compiler looks for include files only in the
directory /alt/include. First the -X option tells cc to consider the list of
standard places empty; then the -I option specifies one directory to be
searched.

Checking for Program Errors
You may encounter several different kinds of error messages when you
compile, link, and run a C program.

Several cc options are available to control the types of warnings gen­
erated at compile time, help with syntax checking, and verify compatibil­
ity between the actual arguments and formal parameters of a function
during the early stages of program development. This section describes
these options.

Understanding Error Messages

Error messages can appear at different stages of program development:
• In the compiling stage, the compiler generates a broad range of

error and warning messages to help you locate errors and potential
problems in your source files.

• During the linking stage, the linker is responsible for generating
error messages.

• During program execution, any error messages you see are run­
time error messages. This category includes messages about core
dumps, segmentation violations, and floating-point exceptions,
which are errors generated by an 8087, 80287, or 80387 copro­
cessor.

Other utilities included in this package, such as the UNIX System V Link
Editor (Id), and the make program-maintenance utility, generate their
own error messages.

When you are compiling and linking using the cc command, you may see
both compiler and linker messages. Compiler messages have numbers
preceded by the letter C, and linker messages have numbers preceded by
the letter L.

You can also distinguish the type of a message by its format. See the
“ Error Messages and Exit Codes” appendix in this guide for a descrip­
tion of compiler error-message formats, a list of actual compiler error
messages, and explanations of the circumstances that cause them.

Compiling with the cc Command 2-35

Using cc Options

Compiler error messages are sent to the standard output, which is usually
your terminal. If you are using the C-shell, you can redirect the messages
to a file by using the standard redirection symbols at the end of your com­
mand line:

If you are using the Bourne shell, you can redirect the messages to a file
by using the standard redirection syntax:

cmd > outputfile 2>&1

Example

Assume the following source file is named rm.c:

#include <stdio.h>

main(arge, argv)
int arge;
char argv[] ;

{
register int i;
char ‘name;

f o r (i = 1; i < a r c ; - - i)
if (unlink (name = argv[i])) {

printf ("eculdn't delete %s : " , name) ;
p e r r o r (" ") ;
}

}

The following C-shell command line redirects error messages to a file
named rm.err.

c c r m . c >& r m . e r r

In the previous command, only output that ordinarily goes to the console
screen is redirected. The error-message file rm.err contains the following
information:

rm.c (11): e r r o r C20:' -: ' : undef i ned
rm.c {12) : warn irr; C-i M : : d iffe r e n t le v e ls o f in d irec tio n

2-36 C User’s Guide

Using cc Options

Based on the errors generated, you can correct rm.c as shown below:

♦include <stdio.h>
main(arge, argv)

int arge;
char *argv[]; /* corrects warning C4047 */
{
register int i;
char *name;
for (i = 1; i < arge; ++i) /* corrects error C2065 */

if (unlink(name = argv[i])) {
printf("couldn't delete %s : ", name);
perror ("");
}

}

Setting the Warning Level (-W, -w)

Option

-W {0111213}
-w

You can suppress warning messages produced by the compiler by using
the -W (for “ warning”) option. Compiler warning messages are any mes­
sages beginning with C4\ see the “ Error Messages and Exit Codes,”
appendix for a full listing. Warnings indicate potential problems (rather
than actual errors) with statements that may not be compiled as you
intend. The -W options affect only source files given on the command
line, they do not apply to object files.

The -WO option turns off warning messages. This option is useful when
you compile programs that deliberately include questionable statements.
The -WO option applies to the remainder of the command line or until the
next -W option on the command line. The -w option has the same effect
as the -WO option.

The -W1 option (the default) causes the compiler to display most warning
messages.

Compiling with the cc Command 2-37

Using cc Options

The -W2 option causes the compiler to display an intermediate level of
warning messages. Level 2 warnings may or may not indicate serious
problems. They include the following:

• Use of functions with no declared return type

• Failure to put return statements in functions with non-void return
types

• Data conversions that would cause loss of data or precision

The -W3 option displays the highest level of warning messages, including
warnings about the uses of non-ANSI features and extended keywords and
about function calls before the appearance of function prototypes in the
program.

Note that the warning messages in the “ Error Messages and Exit Codes”
appendix indicate the warning level that must be set (that is, the number
for the appropriate -W option) for the message to appear.

Example

cc -W3 crunch.c print.c

This example enables all possible warning messages when the crunch.c
and print.c source files are compiled.

Checking Syntax (-Zs)

Option

-Zs

The -Zs option causes the compiler to perform only a syntax check on the
source files that follow the option on die command line. This option pro­
vides a quick way to find and correct syntax errors before you try to com­
pile and link a source file.

When you give the -Zs option, the compiler does not generate code or
produce object files, object listings, or executable files. However, the
compiler does display error messages if the source file has syntax errors.
You can specify the -Fs option on the same command line to generate a
source listing that shows these error messages. For more information
about the -Fs option, see the section on “ Types of Listings.”

2-38 C User’s Guide

Using cc Options

Example

cc -Zs test*.c

This command causes the compiler to perform a syntax check on all
source files in the current working directory that begin with test and end
with the default extension (.c). The compiler displays messages for any
errors found.

Generating Function Declarations (-Zg)

Option

Zg

The -Zg option generates a function declaration for each function defined
in the source file. You can use the -Zg option with multiple source files.
The function declaration includes the function return type and an argu­
ment type list created from the types of the formal parameters of the func­
tion. Any function declarations already encountered are ignored.

The generated list of declarations is written to the standard output. It can
be saved in a file using shell redirection.

When the -Zg option is used, the source file is not compiled. As a result,
no object file or listing is produced.

The list of declarations is helpful for verifying that actual arguments and
formal parameters of a function are compatible. You can save the list and
include it in your source file to cause the compiler to perform type­
checking. The presence of a declared argument-type list for a function
“ turns on” the compiler’s type-checking between actual arguments to a
function (given in the function call) and the formal parameters of a func­
tion.

This type-checking can be a helpful feature in writing and debugging C
programs, especially when working with older C programs. Argument
type-checking is a recent addition to the C language, so many existing C
programs will not have argument-type lists. See the C Language Refer­
ence for more information about function declarations and argument-type
lists.

Compiling with the cc Command 2-39

Using cc Options

You can use the -Zg option even if your source program already contains
some function declarations. The compiler accepts more than one occur­
rence of a function declaration, as long as the declarations do not conflict.
No conflict occurs when one declaration has an argument-type list and
another declaration of the same function does not, as long as the return
types are identical.

Note

If you use the -Zg option and your program contains formal parame­
ters that have structure, enumeration, or union type (or pointers to
such types), then the declaration for each structure, enumeration, or
union type must have a tag. For example, use the following form:

struct tagA {

} A;

Example

cc -Zg file.c > filedecls.h

This command causes the compiler to generate argument-type lists for
functions defined in file.c. The list of declarations is redirected to
filedecls.h.

Preparing for Debugging (-Zi, -Od)
Options

-Zi Creates object file for use with the source-level
debugger, sdb and CodeView

-Od Disables code optimization to help with debugging

The -Zi option produces an object file containing full symbolic-
debugging information for use with the source-level debugger. This
object file includes full symbol-table information and line numbers. If the
-Zi option is given with no explicit -O options, all optimizations involv­
ing code motion and rearrangement are suppressed, although simple
optimizations are still performed. If any explicit -0 options are given, all
requested optimizations are performed.

2-40 C User’s Guide

Using cc Options

The -Od option tells the compiler not to perform most optimizations.
Some peephole optimizations and other simple optimizations are still per­
formed. (Without the -Od option, the default is to optimize.) You may
want to use this option when you plan to use a symbolic debugger with
your object file, since optimization can involve rearrangement of instruc­
tions that make it difficult for you to recognize and correct your code
when debugging. However, taming off optimizations may increase the
size of the code generated to the point where it might not be possible to
link your program.

Other optimization options are discussed in the section on “ Optimizing.”

Example

cc -Zi -Od test.c

This command produces an object file named test.o that contains line
numbers corresponding to the line numbers of test.c. A source-listing file
test.1st is also created. Limited optimization is performed.

Optimizing
The optimizing capabilities available with the C Compiler can reduce the
storage space or execution time required for a program. This is achieved
by eliminating unnecessary instructions and rearranging code. The com­
piler performs some optimizations by default. You can use the -O options,
the loop_opt pragma (described in the section on “ Loop Optimization”),
the intrinsic pragma, and the function pragma (described in the section
“ Generating Intrinsic Functions”) to exercise greater control over the
optimizations performed. In addition, you can use the -Gs option or
checkstack pragma to reduce program size and speed up execution.

Controlling Optimization (-0 Options)

Option

-0 string
#pragma loop_opt([on|ofT])
#pragma intrinsic!/unctionl[/unction2] , ..)
#pragma function!/unctionl [Junction2]...)

Compiling with the cc Command 2-41

Using cc Options

The -O options give you control over the optimization procedures that the
compiler performs. One or more of the letters in string following the -0
let you choose how the compiler performs optimization:

Letter Optimizing Procedure

none Performs optimization equivalent to -Oct

a Relaxes alias-checking

c Eliminates common expressions

d Disables optimization

i Expands certain intrinsic functions inline

1 Enables loop optimization

p Improves consistency of floating-point results

s Favors code size during optimization

t Favors execution speed during optimization

x Maximizes optimization (equivalent to -Oatcli)

The letters can appear in any order; for example, -Oat and -Ota have the
same effect. More than one -0 option can be given; the compiler uses the
last -0 option given if any conflict arises. Each option applies to all
source files following that option on the command line.

The following sections discuss the various optimization options and their
effects.

Relaxing Alias Checking (-Oa)

The a option letter can be used with the 1, s, or t option letter to relax the
assumptions the compiler makes about the use of “ aliases” in the pro­
gram. Aliases are multiple names (that is, symbolic references) for the
same memory location in a program. Most commonly, aliases occur as a
result of code similar to that shown in the following example:

2-42 C User’s Guide

Using cc Options

func ()
{int x, *p;
p = &x; /* now "x" and "*p" refer to the same */

/* memory location */

}

Use of the -Oa option can reduce the size of executable files and speed
program execution. Its use is especially recommended when you also
specify the -Ol option, since the compiler can detect a number of loop
optimizations when the -Oa option is in effect that it cannot detect when
-Oa is not in effect. However, before you specify -Oa, you must make
sure that your program does not use aliases either directly or indirectly.

Note

Exercise caution when using the -Od option, because responsibility
for alias checking is trasferred to the programmer from the com­
piler.

The use of aliases is important only if both names are actually used to
reference the memory location. The following example illustrates the use
of aliases:

Compiling with the cc Command 2-43

Using cc Options

func ()
{

int x, *p;
P = &x;

/* ...expressions involving only *p */

Since all access to the memory location labeled x is through the pointer p,
x has no significance in the function. To illustrate, func could be rewritten
as the following pair of functions:

fund ()
{

int x;
func2(&x);

}
func2(p)
int *p;
{

/* ...expressions involving *p */

In this equivalent form, the alias created in fu n d is insignificant, since
the memory location is not referenced at all and func2 does not use
aliases since jt is not even in the scope of the function. The -Oa option
can be safely specified in compiling either of these equivalent forms.

In addition to the obvious cases discussed above, aliases can be created
through the use of pointers in other, more subtle ways. Two such cases
involving the use of pointers as function arguments are illustrated in the
following example:

2-44 C User’s Guide

Using cc Options

int x;
func(p)
int *p;
{

/* ...expressions involving *p and x */

}

In this example, x is a communal variable, so the function can be called
with func(&x). The -Oa option can be used safely only if it is known that
func is never invoked with the address of x as an argument.

func(pi, p2)
int *pl, *p2;
{

/* ...expressions involving *pl and *p2 */

}

In this example, the function may be invoked with the same value for
both arguments (that is,func(p,p) or func(&x,&x)). Thus, the -Oa option
can be safely specified only if it is known that the function is always
called with distinct values for the two arguments.

One use of aliases occurs so frequently that a special provision has been
made for it. When the compiler encounters a call to a function with
address-type arguments, it always assumes that all variables whose
addresses are passed to the function are modified. If such function calls
appear in a program, the -Oa option can be specified safely even though
the function call results in an alias for each variable whose address is
passed. The following example illustrates how the compiler handles this
case:

Compiling with the cc Command 2-45

Using cc Options

fund ()
{

inc x, y, a, b;

x = a + b ;

func2(&a);
y = a + b ;

}

As shown, when the compiler encounters the function call func2(&a), it
assumes that the function modifies a, even if the -Oa option has been
specified. The compiler generates code to evaluate each instance of the
expression a + b, rather than eliminating a common subexpression
incorrectly.

Although you should convert programs that use aliases if you plan to
compile them with the -Oa option, it is helpful to know the units of a pro­
gram where the optimizations affected by the use of -Oa are applied. This
information indicates where the uses of aliases are most likely to cause
incorrect optimizations if -Oa is specified. The following list describes
the program units where such optimizations are performed:

• All of the C optimizations, except for loop optimizations, that may
be affected by the incorrect use of -Oa are applied at the level of
basic blocks. In the C Compiler, the -Oa option can generally be
used even if aliases are employed, provided no memory location is
referenced by more than one name within any basic block. (A
“ basic block” is a contiguous sequence of statements, with a
unique entry point and exit point and no branching in between. In
C programs, basic blocks most often appear as the clauses of if
statements, switch statements, loop bodies, or function bodies,
although they may also occur as sequences of statements delimited
by user labels.) •

• Loop optimizations are applied at the level of whole loop bodies.
Thus, if loop optimization is enabled, -Oa can generally be used
even if aliases are employed, provided that no memory location is
referenced by more than one name within any basic block or loop
body.

2-46 C User’s Guide

Using cc Options

Disabling Optimization (-Od)

The -Od option turns off most optimizations. This is useful in the early
stages of program development to avoid optimizing code that will later be
changed. Because optimization may involve rearrangement of instruc­
tions, you may also want to specify the -Od option when you use a
debugger with your program or when you want to examine an object-file
listing. If you optimize before debugging, it can be difficult to recognize
and correct your code. However, note that turning off or restricting optim­
ization of a program usually increases the size of the generated code. If
your program contains a module that is close to the 64K limit on com­
piled code, turning off optimization may cause the module to exceed the
limit.

Generating Intrinsic Functions (-Oi)

The -Oi option tells the compiler to generate intrinsic functions instead of
function calls for certain functions. Intrinsic functions may be in-line
functions, may use special argument-passing conventions, or (in some
cases) may do nothing. Programs that use intrinsic functions are faster
because they do not include the overhead associated with function calls.
However, they may be larger because of the additional code that is gen­
erated.
The following functions have intrinsic forms:

• memset, memcpy, and memcmp

• strset, strcpy, strcmp, and strcat

• outp

• rotl, rotr, lrotl, and lrotr

• min, max, and abs

Note

Intrinsic versions of the memset, memcpy, and memcmp functions
in compact- and large-model programs cannot handle huge arrays or
huge pointers. To use huge arrays or huge pointers with these func­
tions, you must compile your program with the huge memory model
(that is, using the -Mh option on the command line).

Compiling with the cc Command 2-47

Using cc Options

You can use the intrinsic pragma to generate intrinsic functions only for
selected functions. This pragma has the following format:

#pragma intrinsic (fu n c tio n l [f u n c t i o n l]...)

The intrinsic pragma affects the specified functions from the point where
the pragma appears until either the end of the source file or the next func­
tion pragma specifying any of the same functions. The function pragma
has the following format:

#pragma function (fu n c tio n l [f u n c t io n 2]...)

Note that you can also use the function pragma selectively to generate
function calls instead of intrinsic functions when you compile a program
with the -Oi option.

Loop Optimization (-01)

The -01 option tells the compiler to perform loop optimizations. For best
performance, the -01 option should be specified along with the a option
letter (-Oal), since the compiler can detect more loop optimizations when
it relaxes its assumptions about the use of aliases.

You can use the loop_opt pragma to turn loop optimization on or off for
selected functions. When you want to turn off loop optimization, put the
following line before the code on which you don’t want to perform loop
optimization:

#pragma loop_opt (off)

Note that the preceding line disables loop optimization for all code that
follows it in the source file, not just the routines on the same line. To rein­
state loop optimization, insert the following line:

#pragma loop_opt (on)

If no argument is given to the loop_opt pragma, loop optimization reverts
to the behavior specified on the command line: enabled if the -Ox or -01
option is in effect, and disabled otherwise. The interaction of the loopopt
pragma with the -01 and -Ox options is explained in greater detail in
Table 2.5.

2-48 C User’s Guide

Using cc Options

Table 2.5
Using the loopopt Pragma

Syntax
Compiled with
-Ox or -Ol? Action

#pragma Ioop_opt() no Turns off optimiza­
tion for loops that
follow

#pragma loop opt() yes Turns on optimiza­
tion for loops that
follow

#pragma loop opt (on) yes or no Turns on optimiza­
tion for loops that
follow

#pragma loop opt (off) yes or no Turns off optimiza­
tion for loops that
follow

Achieving Consistent Floating-Point Results (-Op)

The -Op option is useful when floating-point results must be consistent
within a program. This option changes the way in which the program han­
dles floating-point values.

Ordinarily the compiler stores each floating-point value in an 80-bit regis­
ter. In subsequent references to that value, the compiler reads the value
from the register. When the final value is written to memory, it is trun­
cated, since floating-point types are allocated fewer than 80 bits of
storage (32 bits for the float type and 64 bits for the double type). Thus,
the value stored in the register may actually be more precise than the
same value stored in a floating-point variable. Since the value is truncated
each time it is written to memory, over the course of the program the
value stored in the machine register may become quite different from the
value that is written to memory.

If you use the -Op option, when floating-point values are referenced, the
compiler reloads them from floating-point variables rather than from
registers. Using -Op gives less precise results than using registers, and it
may increase the size of the generated code. However, it gives you more
control over the truncation (and hence the consistency) of floating-point
values.

Compiling with the cc Command 2-49

Using cc Options

Optimizing for Speed and Code Size (-Ot, -Os)

When you do not give a -O option to the cc command, it automatically
uses -Ot, meaning that program-execution speed is favored in the optimi­
zation. Wherever the compiler has a choice between producing smaller
(but perhaps slower) and larger (but perhaps faster) code, the compiler
generates faster code. For example, when the -Ot option is in effect, the
compiler generates intrinsic functions to perform shift operations on long
operands.

To cause the compiler to favor smaller code size instead, use the -Os
option. For example, when the -Os option is in effect, the compiler uses
function calls to perform shift operations on long operands.

Producing Maximum Optimization (-Ox)

The -Ox option is a shorthand way to combine optimizing options to pro­
duce the fastest possible program. Its effect is the same as using the fol­
lowing options on the same command line:

-Oatcli

That is, the -Ox option relaxes alias checking, generates all intrinsics for
the functions listed in the section “ Generating Intrinsic Functions,” per­
forms loop optimizations, favors execution time over code size, and
removes stack probes. Note that the interactions between the -Ox option
and the loop_opt pragma are the same as those described in Table 2.5. For
more information about stack probes and ways of controlling their use,
see the following section, “ Removing Stack Probes.”

Examples

cc -Oal file.c

This command tells the compiler to perform loop optimizations and relax
alias-checking when it compiles file.c. The compiler favors program
speed over program size, since the -Ot option is also specified by default.

cc -c -Os file.c

2-50 C User’s Guide

Using cc Options

This command favors code size over execution speed when file.c is com­
piled.

cc -Od * .c

This command compiles and links all C source files with the default
extension (.c) in the current directory and disables optimization. This
command is most useful during the early stages of program development,
since it improves compilation speed.

Removing Stack Probes (-Gs)

Options

-Gs
#pragma check_stack([on|off|)

You can reduce the size of a program and speed up execution slightly by
removing stack probes. You can do this either with the -Gs option or with
the check_stack pragma.

A “ stack probe” is a short routine called on entry to a function to verify
that there is enough room in the program stack to allocate local variables
required by the function. The stack probe routine is called at every func­
tion entry point. Ordinarily, the stack probe routine generates a stack
overflow message when it determines that the required stack space is not
available. When stack-checking is turned off, the stack probe routine is
not called, and stack overflow can occur without being diagnosed (that is,
no error message is printed).

Use the -Gs option when you want to turn off stack-checking for an entire
module if you know that the program does not exceed the available stack
space. For example, stack probes may not be needed for programs that
make very few function calls, or that have only modest local variable
requirements. In the absence of the -Gs option, stack-checking is on.

Use the check_stack pragma when you want to turn stack-checking on or
off only for selected routines, leaving the default (as determined by the
presence or absence of the -Gs option) for the rest. When you want to turn
off stack-checking, put the following line before the definition of the
function you don’t want to check:

#pragma check_stack (off)

Compiling with the cc Command 2-51

Using cc Options

Note that the preceding line disables stack-checking for all routines that
follow it in the source file, not just the routines on the same line. To rein­
state stack-checking, insert the following line:

tpragma check_stack (on)

For earlier versions of C, the check_stack pragma had a different
format: check_stack+ to enable stack-checking and checkstack-
to disable stack-checking. Although the C Compiler still accepts
this format, its use is discouraged, since it may not be supported in
future versions.

If no argument is given for the checkstack pragma, stack-checking
reverts to the behavior specified on the command line: disabled if the -Gs
option is given, or enabled otherwise. The interaction of the check_stack
pragma with the -Gs option is explained in greater detail in Table 2.6.

Note

Table 2.6
Using the checkstack Pragma

Syntax
Compiled with
-Gs Option? Action

#pragma checkstackQ yes Turns off stack­
checking for rou­
tines that follow

#pragma check stackQ no Turns on stack­
checking for rou­
tines that follow

#pragma check stack(on) yes or no Turns on stack­
checking for rou­
tines that follow

#pragma check stack(off) yes or no Turns off stack­
checking for rou­
tines that follow

2-52 C User’s Guide

Using cc Options

Note

The -Gs option should be used with care. Although it can make pro­
grams smaller and faster, it may mean that the program will not be
able to detect certain execution errors.

Example

cc -Oals -Gs file.c

This example optimizes the file file.c by removing stack probes with the
-Gs option. The letters specified with the -O option tell the compiler to
relax alias-checking (a), perform loop optimization (1), and favor code
size over program speed (s). If you want stack-checking for only a few
functions in file.c, you can use the check_stack pragma around the
definitions of functions you want to check. Similarly, if you want to per­
form loop optimization on only a few functions in file.c, you can use the
loop_opt pragma around the definitions of functions on which you want
to perform loop optimization.

Enabling/Disabling Language Extensions (-Ze,
-Za)
Option

-Ze Enables language extensions (default)
-Za Disables language extensions (strict ansi specifications)

The C Compiler is moving to support the ANSI C standard. In addition, it
offers a number of features beyond those specified in the ANSI C standard.
These additional features are enabled when the -Ze (default) option is in
effect and disabled when the -Za option is in effect. They include the fol­
lowing:

• The cdecl, far, fortran, huge, near, and pascal keywords

• Use of casts to produce values, as in this example:

int *p;
((long *)p)++;

Compiling with the cc Command 2-53

Using cc Options

The preceding example could be rewritten to conform with ANSI C
as shown here:

p = (int *) ((char *)p + sizeof(long));

• Redefinitions of extern items as static, as follows:

extern int foo();
static int foo()
U

• Use of trailing commas (,) without ellipses (,...) in function
declarations to indicate variable-length argument lists, such as:

int printf (char *,);

• Benign typedef redefinitions within the same scope, like this:

typedef int INT;
typedef int INT;

• Use of mixed character and string constants in an initializer, for
instance:

char arr[5] = {'a', 'b', "cde"};

• Use of bit fields with base types other than unsigned int or signed
int

Use the -Za option if you will be porting your program to other environ­
ments. The -Za option tells the compiler to treat extended keywords as
simple identifiers and disable the other extensions listed previously.

Packing Structure Members (-Zp)
Option

-Zp[{l|2|4}]
#pragma pack([{l|2|4}])

When storage is allocated for structures, structure members are ordinarily
stored as follows:

• Items of type char or unsigned char, or arrays containing items of
these types, are byte-aligned.

2-54 C User’s Guide

Using cc Options

• Structures are word-aligned; structures of odd size are padded to
an even number of bytes.

• All other types of structure members are word-aligned.

To conserve space, or to conform to existing data structures, you may
want to store structures more or less compactly. The -Zp option and the
pack pragma control how structure data are “ packed” into memory.

Use the -Zp option when you want to specify the same packing for all
structures in a module. When you give the -Zp[/z] option, where n is 1,2,
or 4, each structure member after the first is stored on n-byte boundaries,
depending on the option you choose. If you use the -Zp option without an
argument, structure members are packed on 1-byte boundaries.

On some processors, the -Zp option may result in slower program execu­
tion because of the time required to unpack structure members when they
are accessed. For example, on an 8086 processor, this option can reduce
efficiency if members with int or long type are packed in such a way that
they begin on odd-byte boundaries.

Use the pack pragma when you want to specify packing other than that
specified on the command line for particular structures. Give the pack(rt)
pragma, where n is 1, 2, or 4, before structures that you want to pack
differently. To reinstate the packing given on the command line, give the
pack() pragma with no arguments.

Table 2.7 shows the interaction of the -Zp option with the pack pragma.

Table 2.7
Using the pack Pragma

Compiled with
Syntax -Zp Option? Action
#pragma pack() yes Reverts to packing

specified on the
command line for
structures that fol­
low'

#pragma pack() no Reverts to default
packing for struc­
tures that follow

Compiling with the cc Command 2-55

Using cc Options

#pragma pack(n) yes or no Packs the following
structures to the
given byte boundary
until changed or
disabled

Example

cc -Zp prog.c

This command causes all structures in the program prog.c to be stored
without extra space for alignment of members on int boundaries.

Setting the Stack Size (-F)
Option

-F hexnum

The -F option sets the size of the program stack. A space must separate
the -F and hexnum. (This option applies only to the 286 compiler.)

The hexnum is a hexadecimal value representing the stack size in bytes.
The value must be less than OxFFFF hexadecimal (65,535 decimal).

If you do not specify this option, the start-up routine in the standard C
library sets the default stack size to 2K.

If you get a stack-overflow message, you may need to increase the size of
the stack. In contrast, if your program uses the stack very little, you may
save some space by decreasing the stack size.

The -F option is a linking option that affects executable files only; it does
not have any effect on source or object files.

Example

cc -F COO *.o

This example sets the stack size to COO hexadecimal (3K decimal) for the
program created by linking all of the object files in the current working
directory.

2-56 C User’s Guide

Using cc Options

Restricting the Length of External Names (-nl)
Option

-nl number

The cc command allows you to restrict the length of external (public)
names by using the -nl option. The number is an integer specifying the
maximum number of significant characters in external names. The space
between -nl and number is optional.

When you use the -nl option, the compiler considers only the first number
characters of external names used in the program. The program may con­
tain external names longer than number characters, but the extra charac­
ters are simply ignored.

The -nl option is typically used to conserve space or to aid in creating
portable programs. The C Compiler imposes no restrictions on the length
of external names (although it uses only the first 31 characters), but other
compilers or linkers may produce errors when they encounter names
longer than a predetermined limit.

Labeling the Object File (-V)
Option

-V string

Use the -V (for “ version”) option to embed a text string in an object file.
The string must be enclosed in double quotation marks (" ") if it contains
white-space characters or embedded double quotation marks. A backslash
(\) must precede any embedded double quotation marks.

A typical use of the -V option is to label an object file with a version
number or copyright notice.

Example

cc -V "C Compiler Version 5.1" main.c

This command places the following string in the object file main.o:

C Compiler Version 5.1

Compiling with the cc Command 2-57

Using cc Options

Changing the Default char Type (-J)
Option

-J

In C, the char type is signed by default, so if a char value is widened to
int type, the result is sign-extended. You can change this default to
unsigned with the -J option, causing the char type to be zero-extended
when widened to int type. However, if a char value is explicitly declared
signed, the -J option does not affect it, and the value is sign-extended
when widened to int type.

When you specify -J, the compiler automatically defines the identifier
CHAR UNSIGNED.

Controlling the Calling Convention (-Gc)
Options

-Gc
fortran
pascal
cdecl

The -Gc option and the fortran, pascal, and cdecl keywords allow you to
control the function-calling and naming conventions so that your C pro­
grams can call and be called by functions that are written in FORTRAN
and Pascal.

Because C, unlike other languages such as Pascal and FORTRAN, allows
you to write functions that take variable numbers of arguments, it must
handle function calls differently. Languages such as Pascal and FOR­
TRAN normally push actual parameters to a function in left-to-right
order, with the last argument in the list being the last one pushed on the
stack. In contrast, C functions do not always know the number of actual
parameters, so they must push their arguments from right to left, with the
first argument in the list being the last one pushed.

Additionally, the calling function must remove the arguments from the
stack in C (rather than having the called function do it, as in Pascal and
FORTRAN). If the code for removing arguments is in the called function
(as in Pascal and FORTRAN), it appears only once; if it is in the calling

2-58 C User’s Guide

Using cc Options

function (as in C), it appears every time there is a function call. Since
function calls are more numerous than individual functions, the
Pascal/FORTRAN method is slightly smaller and more efficient.

The C Compiler has the ability to generate the Pascal/FORTRAN calling
convention in one of several ways. The first is through the use of the pas­
cal and fortran keywords. When these keywords are applied to functions,
or to pointers to functions, they indicate a corresponding Pascal or FOR­
TRAN function. Therefore, the correct calling convention must be used.
In the following example, sort is declared as a function using the alterna­
tive calling convention:

short pascal sort(char *, char *);

The pascal and fortran keywords can be used interchangeably. Use them
when you want to use the left-to-right calling sequence for selected func­
tions only.

The second method for generating the Pascal/FORTRAN calling conven­
tion is to use the -Gc option. If you do this, the entire module is compiled
using the alternative calling convention. You might use this method to
make it possible to call all the functions in a C module from another lan­
guage, or to gain the performance and size improvement provided by this
calling convention. When you use -Gc to compile a module, the compiler
assumes that all functions called from that module use the
Pascal/FORTRAN calling convention, even if the functions are defined
outside that module. Thus, using -Gc would normally mean that you can­
not call or define functions that take variable numbers of parameters, and
that you cannot call functions such as the C library functions that use the
C calling sequence.

To overcome these restrictions, the cdecl keyword has been added to C.
This keyword is the “ inverse” of the fortran and pascal keywords. When
applied to a function or function pointer, it indicates that the associated
function is to be called using the normal C calling convention. This
allows you to write C programs which take advantage of the more
efficient calling convention while still having access to the entire C
library, other C objects, and even user-defined functions that can take
variable-length argument lists.

If you compile with the -Gc option, either you must declare the main
function in the source program with the cdecl keyword, or you must
change the start-up routine so that it uses the correct naming and calling
conventions when calling main.

Run-time library functions all use the C calling convention. Therefore,
care must be taken to declare them cdecl functions.

Compiling with the cc Command 2-59

Using cc Options

Use of the pascal and fortran keywords, and the -Gc option also affects
the naming convention for the associated item or items; the name is con­
verted to uppercase (capital letters), and the leading underscore that C
normally prefixes is not added. The pascal and fortran keywords can be
applied to data items and pointers, as well as functions. When applied to
data items or pointers, these keywords force the naming convention
described above for that item or pointer.

The pascal, fortran, and cdecl keywords, like the near, far, and huge
keywords, are disabled by use of the -Za option. If this option is given,
these names are treated as ordinary identifiers rather than keywords.

Examples

int cdecl varjprint(char*,. . .) ;

In this example, varjprint is allowed to have a variable number of argu­
ments by declaring it as a function using the normal right-to-left C func­
tion calling convention and naming conventions. The cdecl keyword
overrides the left-to-right calling sequence set by use of the -Gc option
when compiling the source file in which this declaration appears. If this
file is compiled without the -Gc option, cdecl has no effect since it is the
same as the default C convention.

float *pascal nroot(number, root)

This instruction declares nroot to be a function returning a pointer to a
value of type float. The function nroot uses the default calling sequence
(left-to-right) and naming conventions for FORTRAN and Pascal pro­
grams.

long pascal index

This example simply changes the naming convention for the data item
index: it is included in the object file in all capital letters and without a
leading underscore.

Compiling Programs for DOS Environment (-dos,
-FP)
The C compiler is capable of compiling programs that will execute in the
DOS environment.

2-60 C User’s Guide

Using cc Options

The -dos option instructs the compiler to use the set of libraries in
/usr/lib/dos and to use a different linker. Note that programs compiled
with -dos will not run in the UNIX System V environment. Also note that
many UNIX System V system calls are not supported in DOS.

There are a variety of -FP options that can be used along with -dos to
control floating-point operations. For more information on -FP and on
DOS cross-development in general, see “ The DOS-OS/2 Development
Guide” in the Developer’s Guide, and the chapter “ C Language Portabil­
ity” in this guide.

Displaying Compiler Passes (-d, -z)
The cc command is actually a driver program which executes a series of
compiler passes, perhaps an assembler pass, and a linker. It collects the
various options and files on its command line and distributes them to the
proper pass or to the linker. The C compiler is conceptually a four-pass
compiler. The function of the various compiler passes is outlined below:

Pass 0
Pass zero of the compiler is comprised of the preprocessor and parser. The
preprocessor handles file inclusion, macro expansion, and text substitu­
tion, and allows you to define constructs for conditional compilation. The
parser performs two functions: (1) building a context-free grammar tree to
pass to Pass 1; and (2) constructing a symbol table.

Pass 1
Pass two generates code. It walks the grammar tree constructed by pass
0, applies semantic rules to each syntactic construct, and produces the
binary code indicated by the semantic rules.

Pass 2
The third pass provides post-generation optimization. It analyzes the
code generated by pass 1 and applies optimization rules to alter the code
for better performance (such as elimination of redundant code, rearrange­
ment, etc.). It creates the object code and outputs listing files (if
requested).

The -d option displays the various passes and their arguments before they
are executed. The -z option shows the passes but does not execute them.

Compiling with the cc Command 2-61

Using cc Options

Producing OMF Object and Executable Files
(-xenix)
By default, cc produces object and executable files using the COFF for­
mat, which is the same format used by the AT&T development system.
The -xenix option causes cc to produce object and executable files that
use the OMF format, which is compatible with the XENIX System V de­
velopment system tools. When the -xenix option is used with any of the
options that produce assembly-language output, the warning message nor­
mally issued (masm directives) is suppressed. Note that UNIX System V
can execute programs that use either COFF or OMF formats.

Miscellaneous Pragmas

The following pragmas allow you to embed comments in the object or
executable file or to send a string to the standard output:

Pragma_______ Action____________________________________
comment Places a comment record in the object file.
Message Sends a message string to the standard output.

The comment pragma

The comment pragma allows you to place a comment record in an object
file or executable file. The pragma has the following syntax:

#pragma comment (commenttype [, commentstring])

The required parameter commenttype specifies the type of comment
record. The optional commentstring parameter is a string literal that pro­
vides additional information for some comment types. The following
table lists and describes the types of comment records accepted by the
comment pragma.

2-62 C User’s Guide

Using cc Options

Record Description

compiler Places the name and version number of the com­
piler into the object file. This comment record is
ignored by the linker. If you supply a comment­
string parameter for this record type, the compiler
generates a warning message.

exestr Places the string specified in commentstring into
the object file. At link time, this string is placed
into the executable file. The string is not loaded
into memory when the executable file is loaded;
however, it can be found with a program that finds
printable strings in files. One use for this
comment-record type is to embed a version
number or similar information in an executable
file.

lib Places a library-search record into the object file.
This comment type must be accompanied by a
commentstring containing the name (possibly
including the path) of the library that you want the
linker to search for. Since the library name pre­
cedes the default library-search records in the
object file, the linker searches for this library just
as if you had named it on the command line. You
can place multiple library-search records in the
same source file. Each record appears in the
object file in the same order it is encountered in
the source file.

user Places a general comment into the object file. The
commentstring parameter contains the text of the
comment. This comment record is ignored by the
linker.

The following examples illustrate some of the uses of the comment
pragma. The following pragma causes the linker to search for the library
mylibry.a. The linker searches first in the current working directory and
then in the path specified in the LIB environment variable:

#pragma comment(lib,mylibry)

The following pragma causes the compiler to place the name and version
number of the compiler in the object file:

Compiling with the cc Command 2-63

Using cc Options

#pragma comment(compiler)

For comments that take a commentstring parameter, you can use a macro
in any place where you would use a string literal, provided that the macro
expands to a string literal. You can also concatenate any combination of
string literals and macros that expand to string literals. For example, the
following statement is acceptable:

fpragma comment (user, "Compiled on " __DATE_ _ "at " __TIME__)

The message Pragma

The message pragma sends a string to the standard output. The pragma
has the following syntax:

tpragma message (messagestring)

The messagestring parameter is a string literal that contains the message
that you wish to send to the standard output. This pragma does not cause
termination of the compilation. A typical use of message is to display in­
formational messages at compile time.

The following code fragment uses message to display a message during
compilation:

#if M_I86MM
#pragma message ("Medium memory model")

#endif

The messagestring parameter can be a macro that expands to a string
literal, and you can concatenate such macros with string literals in any
combination. For example, the following statement displays the name of
the file being compiled and the date and time when the file was last
modified:

fpragma m essage("Compiling " __ FILE__ " . L ast m odified : " ____TIMESTAMP___)

2-64 C User’s Guide

Using cc Options

Predefined Macro Names
The C Compiler supports all of the predefined macro names found in the
ANSI proposed standard for the C language. These provide a convenient
means for obtaining the date and time of the compilation and for indicat­
ing whether the compiler purports to conform fully to the proposed ANSI
standard. T h e __ TIMESTAMP__ identifier offers a capability not
found in the proposed ANSI standard. The following list explains each of
these names:

Macro Name Description

DATE

FILE

LINE

The date of compilation, expressed as a
string literal in the form: Mmm [d]d yyyy.

The file name, expressed as a string literal.

The program line number where the
__ LINE__ macro was used.

STDC__ The integer constant 0. If equal to 1, this
macro indicates full conformity with the
ANSI proposed standard for the C program­
ming language.

TIME__ The time of compilation, expressed as a
string literal in the form: hh:mm:ss.

__ TIMESTAMP__ The date and time of the last modification of
the source file, expressed as a string literal
in the form:

Ddd Mmm [d]d hh:mm:ss yyyy

T h e __ TIMESTAMP__ macro name is not ANSI standard. Note that
its time and date indicate the last modification of the source file, whereas

_DATE__ a n d ___ TIME__ indicate the time of compilation. You
can find additional information about the ANSI-compatible predefined
id en tifie rs__ DATE__ a n d ___ TIME__ in the C Language Refer­
ence.

Compiling with the cc Command 2-65

Using cc Options

The following code fragment uses three predefined macros with the
#message pragma to display informational messages at the time of com­
pilation.

♦pragma message ("Compilation date: "__ DATE__)
♦pragma message ("Compiling: "__ FILE__)
♦pragma message ("Last modification: "__ TIMESTAMP__)

Here is the output you might see from the preceding code fragment:

Compilation date: Dec 2 1987
Compiling: sample.c.
Last modification: Mon Dec 1 12:02:51 1987

2-66 C User’s Guide

Chapter 3

Linking with
the cc Command

Introduction 3-1

The Default Linking Process 3-2

Passing Linker Information: The -link Option 3-3
Specifying Libraries 3-3
Specifying Linker Options 3-5

Introduction

Introduction
Since the cc command controls linking as well as compiling, you can
specify linker options and libraries other than the default combined
library to be linked with your object files on the cc command line.

Linking with the cc Command 3-1

The Default Linking Process

The Default Linking Process
When the cc command compiles a source file, it encodes the name of the
appropriate library in the object file. The library name embedded in the
library file is determined by the memory-model (-M) option you give on
the cc command line.

If you use the default memory-model option (-Ms), cc encodes the name
of the standard library that corresponds to the defaults.

When an object file is linked, the linker looks for libraries matching the
names encoded in the object file.

The result is that you do not ordinarily need to give library names on the
cc command line. For descriptions of the situations that require you to
specify libraries on the cc command line, see the “ Specifying Libraries”
section in this chapter.

The linker used is /bin/ld, which by default produces object files in the
COFF format. If the object file uses the OMF format, you have two
choices:

1. Use cvtomf to convert the object file to COFF format. This occurs
automatically if you do not use the -xenix option.

2. Direct the linker, /bin/ld, to link the file and produce an executable
file using the x.out format. This occurs automatically if you use the
-xenix option.

The remainder of this section applies only to the XENIX System V linker,
ld(CP). The AT&T linker is also described on the manual page, ld(CP).

3-2 C User’s Guide

Passing Linker Information: The -link Option

Passing Linker Information: The
-link Option
To pass linker options or nondefault library names to the linker, give the
following options on the cc command line after any source- and object-
file names and cc options:

-link

Use the rest of the command line to specify linker options, libraries, and
library search paths. Note that library names can also be specified with
source- and object-file names before the -link option on the command
line, as long as the library names have the .a extension. These library
names are searched before library names specified after the -link option.
Refer to the following sections for more information:

• “ Specifying Libraries,” to learn about specifying libraries and
library search paths

• “ Specifying Linker Options,” for descriptions of the linker
options that apply to C.

If you use the -link option with the cc command, it must be the last option
on the command line.

Specifying Libraries
To link object files with libraries other than the default library, give the
names of the nondefault libraries on the cc command line. Library names
appearing before -link must have the .a extension; library names appear­
ing after -link may have blank extensions or no extensions.

Since the object file already contains the names of the correct combined
library, you do not need to specify libraries unless you want to do any of
the following:

Linking with the cc Command 3-3

Passing Linker Information: The -link Option

• Link with additional libraries

• Look for libraries in different locations

• Override the use of the default library

Linking with Additional Libraries

If you specify additional libraries to cc, the linker searches the libraries
you specify before it searches the default library to resolve external refer­
ences in the object files. It searches the libraries you specify in their order
of appearance on the command line.

If a library name includes a path specification, the linker searches only
that path for the library.

If you specify only a library name (without a path specification), the
linker searches in the following locations to find the given library file:

• The current working directory

• Any path specifications that you give, in their order of appearance
on the command line

• The default location /lib or /lib/386

If a library name without an extension appears after the -link option, the
linker automatically supplies the .a extension. If you want to link a library
file with an extension other than .a, you must specify the complete library
name.

Looking in Different Locations for Libraries

You can tell the linker to look in different locations for libraries by giving
a path specification on the cc command line.

The linker looks for the default libraries in the same order as it looks for
libraries given on the command line.

3-4 C User’s Guide

Passing Linker Information: The -link Option

Specifying Linker Options
When you use the cc command to invoke the linker, any linker options
you specify (other than those supported by cc options such as -F and -Fm)
must appear after the -link option on the command line. All options begin
with the dash (-).

The following sections outline the rules for specifying linker options on
the cc command line.

Abbreviations

Since linker options are named according to their functions, some of these
options are quite long. You can abbreviate the options to save space and
effort. Be sure that your abbreviation is unique, so that the linker can
determine which option you want. The minimum legal abbreviation for
each option is indicated in the syntax of the option.

Abbreviations must begin with the first letter of the option and must be
continuous through the last letter typed. No gaps or transpositions are
allowed.

Numerical Arguments

Some linker options take numerical arguments. A numerical argument
can be any of the following:

• A decimal number from 0 to 65,535

• An octal number from 0 to 0177777. A number is interpreted as
octal if it starts with 0. For example, the number 10 is a decimal
number, but the number 010 is an octal number, equivalent to 8 in
decimal

• A hexadecimal number from 0 to OxFFFF. A number is interpreted
as hexadecimal if it starts with Ox or OX. For example, 0x10 is a
hexadecimal number, equivalent to 16 in decimal

Linker Options

This section summarizes some of the linker options that can be used with
C programs. Note that this section does not describe all available linker
options. For a complete list, refer to the ld(CP) manual page in the
Programmer’s Reference.

Linking with the cc Command 3-5

Passing Linker Information: The -link Option

The following linker option is most commonly used with C programs:

-SE[GMENTS] ‘.number
Controls the number of segments that the linker allows a program to
have. The default is 128, but you can set number to any value
(decimal, octal, or hexadecimal) in the range 1-1024 (decimal).

For each segment, the linker must allocate some space to keep track
of segment information. When you set the segment limit higher than
128, the linker allocates more space for segment information. For
programs with fewer than 128 segments, you can keep the storage
requirements of the linker at the lowest level possible by setting
number to reflect the actual number of segments in the program. The
linker displays an error message if the number of segments allocated
is too high for the amount of memory the linker has available.

The following linker options can be used with C programs, but they per­
form the same actions as cc options. Therefore, you do not need to use
them unless you are compiling and linking in separate steps.

-M[AP] [’.number]
Creates a map file. This option is equivalent to using the -Fm option
with the cc command, except that you can give a number argument
with the -M option. The number argument is any positive integer
(decimal, octal, or hexadecimal) up to 65,535 (decimal) specifying
how many symbols are sorted in the map listing. If no number argu­
ment is given, a maximum of 2048 symbols is sorted. (In practice,
the number of sorted symbols is limited by the amount of free heap
space.) If a number argument is given, the alphabetical list of sym­
bols does not appear in the map file.

-LI[NENUMBERS]
Creates a map file and includes the line numbers and associated
addresses of the source program. This option is equivalent to using
the -Zd option with the cc command. For more information about the
-Zd option, see the “ Compiling with the cc Command” chapter of
this guide.

-ST[ACK] ‘.number
Specifies the size of the stack for your program, where number is any
positive value (decimal, octal, or hexadecimal) up to 65,535
(decimal) representing the size, in bytes, of the stack. This option is
equivalent to using the -F option of the cc command. For more infor­
mation about the -F option, see the “ Compiling with the cc Com­
mand” chapter of this guide.

3-6 C User’s Guide

Chapter 4

Running C Programs
on System V

Introduction 4-1

Passing Command-Line Data to a Program 4-2

Introduction

Introduction
After compiling and linking a program with the C Compiler and linking
with the linker, you will have an executable file that can be run from the
shell prompt.

System V uses the PATH environment variable to find executable files.
You can execute your program from any directory, as long as the execut­
able program file is in one of the directories on the path set in the PATH
environment variable.

Your program can also be executed by other programs, and you can write
it so that it will be capable of executing other programs. The exec and
system routines provided in the run-time library allow your program to
execute other programs. See the C Library Guide for a description of
these routines.

System V has several other unique capabilities that your program can use
if you write the program to take advantage of them. Among these capabil­
ities are the following:

• Receiving arguments from the command line

• Reading information from the environment

• Sending a message to the shell by returning an exit code

This chapter explains how to write programs to take advantage of these
features, and how to use them once your program is completed.

Running C Programs on System V 4-1

Passing Command-Line Data to a Program

Passing Command-Line Data to a
Program
Your C program can access data from a command line or from the
environment. You can use the Bourne shell (or C-shell) commands to
place data in the environment table. Command-line data are arguments
that appear on the same line as the program name when you execute the
program.

To pass data to your program on the command line, give one or more
arguments after the program name when you execute the program. Each
argument must be separated from the arguments around it by one or more
spaces or tab characters, and may be enclosed in quotation marks (" "). If
you want to give a single argument that includes spaces or tab characters,
enclose the argument in quotation marks. For example, if your C program
is called try, you might give it the following command line:

try 42 "de f" 16

In this case, the program will be executed and three arguments will be
passed: 42, de /, and 16.

For a C program to read the data from the command line, the program
should declare two variables as arguments to the main function. These
variables and their contents are as follows:

Variable Contents

arge Number of arguments passed

argv Array of strings containing arguments

By declaring these variables as arguments to main, you make them avail­
able as local variables in the main function. The following example illus­
trates how to declare these arguments:

main (arge, argv)
int arge;
char *argv[];

The number of arguments appearing on the command line is passed as the
integer variable arge, and the command line is passed to the program as
the array of strings indicated by argv.

4-2 C User’s Guide

Passing Command-Line Data to a Program

The first argument of any command line is the name of the program to be
executed. Therefore, the program name is the first string stored in a r g v , at
a r g v [0], Since a program name must be given to run the program, the
integer value of a r g e is always at least 1. Therefore, if you pass two argu­
ments to your program, a r g e will have a value of 3 (two arguments and
the program name).

The first argument following the program name is stored at a r g v [1], the
second is stored at a r g v [2], and so on, to the last argument. There is a
third argument passed to the main function: e n v p , a pointer to the
environment table. This argument is an extension provided by the C Com­
piler to support code ported from UNIX System V and other UNIX-like
systems. When specified, it follows a r g v and is declared as follows:

char *envp[];

Although you can use this pointer to access the value of environment set­
tings, this usage is nonstandard and not recommended. The putenv and
getenv routines from the C run-time library accomplish the same task,
and are easier and safer to use. Using the putenv routine may change the
location of the environment table in memory, depending on memory
requirements. Therefore, the value given to e n v p at the beginning of the
program’s execution may not be valid throughout. In contrast, the putenv
and getenv routines access the environment table properly, even when its
location changes. These routines use the global variable environ
(described in the C L ib r a r y G u id e), which always points to the correct
table location.

Example

myprog ABC "abc e" 3 8

This command line executes the program named m y p r o g and passes the
four command-line arguments to the main function. The arguments are
stored as null-terminated strings, and the number of arguments is stored in
a r g e . To access the last argument, for example, you would use an expres­
sion like the following:

argv[arge - 1]

Since the value of a r g e is 5 (counting the program name as an argument),
this expression is equivalent to a r g v [4] , or the fifth string of the array.

Running C Programs on System V 4-3

V__^

Chapter 5

Working with Memory Models

Introduction 5-1
Memory Model Considerations 5-2

Near, Far, and Huge Addressing 5-4

Using the Standard Memory Models 5-6
Porting Considerations 5-7
Creating Small-Model Programs 5-7
Creating Medium-Model Programs 5-9
Creating Compact-Model Programs 5-9
Creating Large-Model Programs 5-10
Creating Huge-Model Programs 5-11
Segmentation Errors 5-12

Using the near, far, and huge Keywords 5-14
Library Support for near, far, and huge 5-16
Declaring Data with near, far, and huge 5-16
Declaring Functions with the near and far Keywords 5-20
Pointer Conversions 5-22

Creating Customized Memory Models 5-25
Code Pointers 5-26
Data Pointers 5-26
Setting Up Segments 5-27
Library Support for Customized Memory Models 5-29

Setting the Data Threshold 5-30

Naming Modules and Segments 5-31

Specifying Text and Data Segments 5-34

Introduction

Introduction
Expanding the computing power of microcomputers often means giving
the computer more “ space” to work in. The Intel family of micropro­
cessors (8080, 8086, 80286, and 80386) is a good example of such growth.
Each new processor was capable of addressing more memory space than
its predecessor.

The 8080 processor could address 64 kilobytes (64K) of memory, using
16-bit-wide address registers. For the 8086 processor, the address space
was expanded to one-megabyte (1M). However, rather than expand the
size of the address registers, a second set of “ segment” registers was
added. These registers select 64K blocks of memory, known as segments,
within the one-megabyte address space. The 16-bit address registers then
select an offset from the beginning of a segment through a hardware
operation equivalent to shifting the segment register 4 bits (multiplying
by 16) and adding that to the offset value. This allows the 8086 to have a
larger address space, yet retain the 16-bit registers of the 8080 for back­
ward compatibility.

The same architecture is used for the 80286 processor, except that in the
processor’s “ protected mode” the 16-bit segment base values are shifted
over 8 bits instead of 4 as in the 8086 or in the 80286’s “ real mode.” The
80286 thus uses a 24-bit address, capable of addressing up to 16 mega­
bytes of memory.

This segmented architecture can complicate the development of large
programs under UNIX System V/86 and UNIX System V/286 Operating
Systems. The 80386 processor with its 32-bit registers is not restricted by
64K segments; its segment size is 4096 Mbytes. It is therefore much
more like non-segmented architectures such as the Motorola 68000.

However, a substantial amount of software development is done in the
UNIX System V/86 and UNIX System V/286 environments. Understand­
ing the potential stumbling blocks in the 80286 world is necessary to de­
velop large programs effectively. Error messages such as “ DGROUP
allocation exceeds 64K,” “ Not enough core,” and “ Too big” can be
incomprehensible without an understanding of segment usage under
UNIX System V.

There are two types of segments under UNIX System V. Text segments
(also called code segments) contain the actual machine instructions for
the program. Data segments contain all of the program’s data, such as

Working with Memory Models 5-1

Introduction

global variables and the stack. Under UNIX System V, the program’s
stack is included in the first data segment. A program’s “ memory
model’’ determines how many text and data segments the program is
allowed to have.

Memory Model Considerations
If you do not specify a memory model for 286 programs, cc uses the small
memory model by default. This is sufficient for most programs.

You cannot use the small memory model if your program meets one or
more of the following three conditions:

1. Your program has more than 64K of code.

2. Your program has more than 64K of data.

3. Your program contains individual arrays that need to be larger than
64K.

If you decide that the small memory model will not be adequate for your
program, you have four options for larger memory models:

1. You can specify one of the other standard memory models
(medium, compact, large, or huge) using one of the -M options.

2. You can create a mixed-model program using the near, far, and
huge keywords.

3. You can create your own customized memory model using the
-Mstring option.

4. Method 2 can be combined with either method 1 or method 3.

5-2 C User’s Guide

Introduction

Note

The only memory models supported for 80386 code are pure and
impure small model. It is important to note that all other memory
models apply to only 8086 and 80286 processors. Large and huge
model programs will not run on an 8086, and any program for the
8086 or 80286, of any model, will run on an 80386, although the
segment size is still limited to 64K.

When generating code specifically for the 80386 processor under
System V, the C compiler supports only “ small” model programs,
but without the 64K limit, since 80386 registers are all 32 bits wide,
and its segments are over four billion bytes long. All models are
supported for 86/286 code.

Choosing a memory model for a program is a trade-off between size and
speed. Programs of all memory models have one “ near” data segment
that is addressed through the processor’s DS segment register. References
to data in this segment require only a 16-bit address calculation. Large
and huge model programs may have one or more additional segments.
However, addressing data in these “ far” segments requires loading a seg­
ment register in addition to calculating the offset within the segment.

Working with Memory Models 5-3

Near, Far, and Huge Addressing

Near, Far, and Huge Addressing
Understanding the terms “ near,” “ far,” and “ huge” is crucial to under­
standing the concept of memory models. These terms indicate how data
can be accessed in the pre-386 segmented architecture of the 80x86 fam­
ily of microprocessors (8086, 80186, 80286).

System V loads the code and data allocated by your program into “ seg­
ments” of physical memory. Each segment is up to 64K long. With the
exception of impure small model programs, separate segments are always
allocated for the program code and data. Impure small model programs
fit all data and code into one segment. Except for this case, the minimum
number of segments allocated for a program is two; these two segments,
required for every program, are called “ the default segments.” The small
memory model uses only the two default segments. The other memory
models discussed in this chapter allow more than one code segment per
program, more than one data segment per program, or both.

In the 80x86 family of microprocessors, all memory addresses consist of
two parts:

1. A 16-bit number that represents the base address of a memory
segment

2. Another 16-bit number that gives an offset within that segment

The architecture of the 80x86 microprocessor is such that code can be
accessed within the default code or data segment using just the 16-bit
offset value. This is possible because the segment addresses for the
default segments are always known. This 16-bit offset value is called a
“ near” address, and can be accessed with a “ near” pointer. Since only
16-bit arithmetic is required to access any near item, near references to
code or data are smaller and more efficient.

When data or code lies outside the default segments, the address must use
both the segment and offset values. Such addresses are called “ far”
addresses, and can be accessed by using “ far” pointers in a C program.
Accessing far data or code items is more expensive in terms of program
speed and size, but using them allows your programs to address all mem­
ory, rather than just a 64K piece.

There is a third type of address in Microsoft C: the “ huge” address. A
huge address is similar to a far address in that each consists of a segment
value and an offset value; but the two differ in the way address arithmetic
is performed on pointers. Because items (both code and data) referenced

5-4 C User’s Guide

Near, Far, and Huge Addressing

by far pointers are still assumed to lie completely within the segment in
which they start, pointer arithmetic is done only on the offset portion of
the address. This gain in pointer arithmetic efficiency is achieved, how­
ever, by limiting the size of any single item to 64K. Huge pointers over­
come this size limitation by performing pointer arithmetic on all 32 bits
of the data item’s address, thus allowing data items referenced by huge
pointers to span more than one segment, provided they conform to the
rules outlined in the section on “ Creating Huge-Model Programs.”

The rest of this chapter deals with the various methods you can use to
control whether your program makes far, near, or huge calls to access
code or data.

Working with Memory Models 5-5

Using the Standard Memory Models

Using the Standard Memory Models
The standard libraries provided with the UNIX System V Development
System support five standard memory models. Using the standard mem­
ory models is the simplest way to control how your program accesses
code and data in memory.

When you use the standard memory models, the compiler handles library
support for you. The library corresponding to the memory model you
specify is used automatically. Each memory model has its own library,
except for the huge memory model, which uses the large-model library.

The advantage of using standard models for your programs is simplicity.
In the standard models, memory management is specified by compiler
options; since the standard models do not require the use of extended key­
words, they are the best way to write code that can be ported to other sys­
tems (particularly systems that do not use segmented architectures).

The disadvantage of using standard memory models exclusively is that
they may not produce the most efficient code. For example, if you have an
otherwise small-model program containing a large array that pushes the
total data size for your program over the 64K limit for small-model, it
may be to your advantage to declare the one array with the far keyword,
while keeping the rest of the program small model, as opposed to using
the standard compact-memory model for the entire program. For max­
imum flexibility and control over how your program uses memory, you
can combine the standard-memory-model method with the near, far, and
huge keywords described in the “ Using the near, far, and huge Key­
words” section.

The -M option for cc is used to specify one of the five standard memory
models (small, medium, compact, large, or huge) at compile time. These
options are discussed in the next five sections.

5-6 C User’s Guide

Using the Standard Memory Models

Note

In the following sections, which describe in detail the different
memory-model addressing conventions, it is important to keep in
mind two common features of all five models:

1. No single source module can generate 64K or more of code.

2. No single data item can exceed 64K, unless it appears in a
huge-model program or it has been declared with the huge
keyword.

Porting Considerations
When porting software to UNIX System V on Intel processors from other
operating systems or other processors, it is important to recognize the
differences that arise from the Intel-segmented architecture. One com­
mon assumption is that an integer occupies the same number of bytes as a
pointer. While this is true for small models, it is not true for middle and
large models, and can cause many problems. Another common practice is
to use the integer 0 to denote a null pointer. For large and huge model
programs, 0 must be typecast to an appropriate pointer (typically a pointer
to a char, such as (char *)0 to assure that operations with pointers work
correctly.

Creating Small-Model Programs
Option

-Ms

The small-model option tells the compiler to create a program that occu­
pies one segment for both code and data. (Impure Small Model)

Working with Memory Models 5-7

Using the Standard Memory Models

Impure small-model programs are typically C programs that are short or
have a limited purpose. Since code and data for these programs are lim­
ited to 64K, the total size of a small-model program can never exceed
64K. Most programs fit easily into this model. Using the -i flag, you can
create a pure small-model program. A pure small-model program has one
segment of code and one segment of data for a total of 128K.

The default in small-model programs is that both code and data items are
accessed with near addresses. You can override the default for data by
using the far or huge keyword, and the default for code by using the far
keyword. The huge keyword is relevant only to data items—specifically
arrays and pointers to arrays.

The compiler creates small-model programs by default when you do not
specify a memory model. The -Ms option is provided for completeness;
you need never give it explicitly.

Impure Small Model

An “ impure” program is one in which both text and data occupy the
same physical segment. Impure programs can be created for the 8086,
80186, 80286, or 80386 processor. The maximum program size is 64K for
all except the 80386. The cc program creates impure small-model pro­
grams by default on 8086/80286 systems. They can also be created using
the -Ms option.

Pure Small Model

A “ pure” program is one where text and data are in separate segments.
The text is read-only and may be shared by several processes at once. On
8086/80186/80286 processors, the maximum program size is 128K (64K
code + 64K data). On the 80386 processor, the maximum program size is
8 gigabytes (4G code plus 4G data). Pure small-model programs are cre­
ated using the -i option. In this context, -i stands for “ instruction” rather
than “ impure” . This is the default on 80386 systems.

5-8 C User’s Guide

Using the Standard Memory Models

Creating Medium-Model Programs
Option

-Mm

The medium-model option provides a single segment for program data,
and multiple segments for program code. Each source module is given its
own code segment.

Medium-model programs are typically C programs that have a large num­
ber of program statements (more than 64K of code), but a relatively small
amount of data (less than 64K). Program code can occupy any amount of
space and is given as many segments as needed; total program data can­
not be greater than 64K. The medium model provides a useful trade-off
between speed and space, since most programs refer more frequently to
data items than to code.

Creating Compact-Model Programs
Option

-Me

The compact-model option directs the compiler to allow multiple seg­
ments for program data but only one segment for the program code.

Compact-model programs are typically C programs that have large
amounts of data, but relatively small numbers of program statements. Pro­
gram data can occupy any amount of space and are given as many seg­
ments as needed.

The default in compact-model programs is that code items are accessed
with near addresses and data items are accessed with far addresses. You
can override the default by using the near and huge keywords for data,
and the far keyword for code.

Working with Memory Models 5-9

Using the Standard Memory Models

Note

Note that in medium and compact models, NULL must be used
carefully in certain situations. In memory models where code and
data pointers are the same size, it can be used with either. NULL
only represents a null data pointer in medium and compact models.
Consider the following example:

void fund (char *dp)
(

}

void func2(char (*fp) (void))
{

main ()
{
fund (NULL) ;
func2(NULL);
}

This example passes a 16-bit pointer to both fu n d and fu n d if
compiled in medium model, and a 32-bit pointer to bolh. fu n d and
fu n d if compiled in compact model, unless prototypes are added to
the beginning of the program to indicate the types, or an explicit
cast is used on the argument to fu n d (compact model) or fu n d
(medium model).

Creating Large-Model Programs
Option

-Ml

The large-model option allows the compiler to create multiple segments
as needed for both code and data.

5-10 C User’s Guide

Using the Standard Memory Models

Large-model programs are typically very large C programs that use a
large amount of data storage during normal processing.

The default in large-model programs is that both code and data items are
accessed with far addresses. You can override the default by using the
near and huge keywords for data, and the near keyword for code.

Creating Huge-Model Programs
Option

-Mh

The huge-model option is similar to the large-model option, except that
the restriction on the size of individual data items is removed for arrays.

However, some size restrictions apply to elements of huge arrays where
they are larger than 64K. To provide efficient addressing, array elements
are not permitted to cross segment boundaries. This has the following
implications:

1. No array element can be larger than 64K.

2. For any array larger than 128K, all elements must have a size in
bytes equal to a power of 2 (that is, 2 bytes, 4 bytes, 8 bytes, 16
bytes, and so on). However, if the array is 128K or smaller, its ele­
ments may be any size, up to and including 64K.

In huge-model programs, care must be taken when using the sizeof opera­
tor or when subtracting pointers. The C language defines the value
returned by the sizeof operator to be an unsigned int value, but the size in
bytes of a huge array is an unsigned long value. To solve this
discrepancy, the Microsoft C Compiler produces the correct size of a
huge array when a type cast like the following is used:

(unsigned long)sizeof(huge_item)

Similarly, the C language defines the result of subtracting two pointers as
an int value. When subtracting two huge pointers, however, the result
may be a long int value. The Microsoft C Compiler gives the correct
result when a type cast like the following is used:

(long)(huge_ptrl - huge_ptr2)

Working with Memory Models 5-11

Using the Standard Memory Models

Segmentation Errors
When compiling a small- or medium-model program, the compiler places
all data in the data segment. However, the compiler cannot know how
much total data is allocated in the segment. This is not determined until
link time, when data from all the object modules are combined by the
linker. If the linker finds that more than 64K have been allocated by the
compiler, the linker will return the error message:

DGROUP allocation exceeds 64K

Errors with Small- and Medium-Model Programs

If this error occurs with a small- or medium-model program, there are
three alternatives:

• Reduce the amount of data used by the program.

• Switch to the large-memory model.

• Create a hybrid-model program.

Hybrid models are created by declaring data using the far keyword and
compiling with the -Me flag. The compiler then allocates additional seg­
ments for the far data. Care must be taken when referencing data
declared in this manner. Since all the library functions will be expecting
near data, far data must be transferred into a near data buffer before being
passed to any library function, such as printfQ. The hybrid model is best
suited for programs with one or more large, seldom-used arrays or data
structures where the rest of the program uses less than 64K of data.

Errors with Large-Model Programs

For large-model programs, the compiler divides different kinds of data
into different segments. All initialized data is placed in DATA segments.
Uninitialized data is placed in BSS (Blank Storage Space) segments. A
large-model program may have as many DATA and BSS segments as
needed, but only one near DATA segment (the segment addressed by the
CPU DS register). For maximum efficiency, the compiler allocates as
much data as possible to the first DATA segment. However, since the
total amount of data is not known until all the object modules are linked
together, more than 64K of data might be allocated for the first DATA
segment. Thus, it is still possible to get the error DGROUP allocation
error from the linker even with a large-model program.

5-12 C User’s Guide

Using the Standard Memory Models

One possible solution to this problem is to reduce the amount of initial­
ized data in the program by declaring it uninitialized, then initializing at
run time. Another possibility is to use the -Mt flag to force the compiler
to move some data out of the DATA segment. Normally, the compiler
places any initialized data item (single variable, array, or structure) in the
first data segment if its size is less than 32767 bytes. The -Mt flag will
lower this limit. For example, -Mtl024 tells the compiler to place any
data item larger than 1024 bytes in its own segment. The drawback to
this solution is that, at run time, a segment register must be loaded for
each access to that data. This may affect performance of the program.
This method is most appropriate if the program contains a few large
arrays or structures.

Another method of reducing the size of the first DATA segment is the use
of the -ND compiler flag. (See “ Setting Up Segments” in the “ Creating
Customized Memory Models” section in this chapter.) When a module is
compiled with this flag, all the data in the module will be placed in its
own data segment. Modules compiled using this flag should contain data
only, or data and functions that do not use any data items declared in
other modules.

80286 programs allocate their maximum stack size at run time; the
default size is 4K. Since the stack must also fit in the first data segment, a
problem will arise if there is not enough space in the first data segment to
fit both the data and the stack. If the size of the data plus the size of the
stack exceeds 64K, then, even if the linker will successfully link a pro­
gram, the program’s first data segment will be too large for the program to
run. This problem will be reported by the C shell with the message “ Not
enough core.” The Bourne shell will report the error with the message
“ too big.” The two possible solutions to this problem are to reduce the
stack size, or to reduce the amount of data in the first data segment. The
latter method is recommended, since reducing the stack size may cause
the program to run out of stack space.

Determining Segment Size

There are three utilities that are useful for finding and correcting prob­
lems related to program segmentation. The size utility size(CP) takes one
or more executable or object file names as arguments, and prints the size
in bytes of the text, DATA, and BSS segments. This information is helpful
in determining exactly how much data is used by a program, and how it is
divided between the DATA and BSS segments. The hdr(CP) utility prints
other information about an executable file, such as its memory model and
stack size. The fixhdr(CP) utility can be used (among other things) to
alter the stack size of any executable. This is useful for experimenting
with different stack sizes without the need to relink, or for cases where the
source code is not available.

Working with Memory Models 5-13

Using the near, far, and huge Keywords

Using the near, far, and huge
Keywords
One limitation of the predefined memory-model structure is that, when
you change memory models, all data and code address sizes are subject to
change. However, the Microsoft C Compiler lets you override the default
addressing convention for a given memory model and access items with a
near, far, or huge pointer. This is done with the near, far, and huge key­
words. These special type modifiers can be used with a standard memory
model to overcome addressing limitations for particular data or code
items, or to optimize access to these items, without changing the address­
ing conventions for the program as a whole. Table 5.1 explains how the
use of these keywords affects the addressing of code or data, or pointers to
code or data.

Note

The near, far, and huge keywords are not standard parts of the C
language; they are meaningful only for systems that use a seg­
mented architecture similar to that of the 80x86 microprocessors.
Keep this in mind if you want your code to be ported to other sys­
tems.

5-14 C User’s Guide

Using the near, far, and huge Keywords

Table 5.1
Addressing of Code and Data

Declared with near, far, and huge

Key- Pointer or
word Data Function Arithmetic

near Reside in default
data segment; refer­
enced with 16-bit
addresses (Pointers
to data are 16 bits)

far May be anywhere in
memory, not
assumed to reside in
current data segment;
referenced with 32-
bit addresses
(Pointers to data are
32 bits)

Assumed to be in Uses 16 bits
current code seg­
ment; referenced
with 16-bit addresses
(Pointers to functions
are 16 bits)

Not assumed to be in Uses 16 bits
current code seg­
ment; referenced
with 32-bit address
(Pointers to functions
are 32 bits)

huge May be anywhere in Not applicable to
memory, not code
assumed to reside in
current data segment;
individual data items
(arrays) can exceed
64K in size; refer­
enced with 32-bit
addresses (Pointers
to data are 32 bits)

Uses 32 bits for
data

In the Microsoft C Compiler, the near, far, and huge keywords are
enabled by default. To treat these keywords as ordinary identifiers, you
must give the -Za option at compile time. This option is useful if you are
concerned with porting C programs from environments in which these are
not keywords, especially if you are porting a program in which one of
these words is used as a label. For further information about the use and
effects of the -Za option, see the “ Compiling with the cc Command”
chapter of this guide.

Working with Memory Models 5-15

Using the near, far, and huge Keywords

Library Support for near, far, and huge
When using the near, far, and huge keywords to modify addressing con­
ventions for particular items, you can usually use one of the standard
libraries (small, compact, medium, or large) with your program. The
large-model libraries are also appropriate for use with huge-model pro­
grams. However, you must use care when calling library routines. In gen­
eral, you cannot pass far pointers, or the addresses of far data items, to a
small-model library routine. Of course, you can always pass the value of a
far item to a small-model library routine. For example:

long far time_val;
time(&time_val); /* Illegal */
printf("%ld\0, time_val); /* Legal */

If you use the near, far, or huge keyword, it is strongly recommended
that you use function prototypes with argument-type lists to ensure that
all pointer arguments are passed to functions correctly. See the section on
“ Pointer Conversions’’ for more information.

To learn more about library routines and memory models, see the C
Library Guide.

Declaring Data with near, far, and huge
The near, far, and huge keywords modify either objects or pointers to
objects. When using them to declare data or code (or pointers to data or
code), keep the following rules in mind:

• The keyword always modifies the object or pointer immediately to
its right. In complex declarations, think of the far keyword and the
item to its right as being a single unit. For example, in the case of
the declaration:

char far* *p;

p is a pointer (whose size depends on the specified memory model)
to a far pointer to char. See the C Language Reference for com­
plete rules governing the use of special keywords in complex
declarations.

• If the item immediately to the right of the keyword is an identifier,
the keyword determines whether the item will be allocated in the
default data segment (near) or a separate data segment (far or
huge). For example:

5-16 C User’s Guide

Using the near, far, and huge Keywords

char far a;

allocates a as an item of type char with a far address.

• If the item immediately to the right of the keyword is a pointer, the
keyword determines whether the pointer will hold a near address
(16 bits), a far address (32 bits), or a huge address (also 32 bits).
For example,

char far *p;

allocates p as a far pointer (32 bits) to an item of type char.

Examples

The examples in this section show data declarations using the near, far,
and huge keywords.

char a [3000]; /* small-model program */
char far b [30000];

The first declaration in the example allocates the array a in the default
data segment. By contrast, the array b in the second declaration may be
allocated in any far data segment. Since these declarations appear in a
small-model program, array a probably represents frequently used data
that was deliberately placed in the default segment for fast access. Array
b probably represents seldom used data that might make the default data
segment exceed 64K and force the programmer to use a larger memory
model if the array were not declared with the far keyword. The second
declaration uses a large array, because it is more likely that a programmer
would want to specify the address allocation size for items of substantial
size.

char a [3000]; /* large-model program */
char near b[3000];

In this example, access speed would probably not be critical for array a.
Even though it may or may not be allocated within the default data seg­
ment, it is always referenced with a 32-bit address. Array b is explicitly
allocated near to improve speed of access in this memory model (large).

char huge a [70000]; /* small-model program */
char huge *pa;

In this small-model program, a must be declared as huge because it is
larger than 64K. Using the huge keyword instead of the standard huge
memory model means that the price for using huge data is only paid for
this one large item. Other data can be accessed quickly within the default

Working with Memory Models 5-17

Using the near, far, and huge Keywords

segment. The pointer pa could be used to point to a. Any pointer arith­
metic for pa (such as pa++) would be performed using 32-bit arithmetic.

char *pa; /* small-model program */
char far *pb;

The pointer pa is declared as a near pointer to char in the example. The
pointer is near by default since the example appears in a small-model pro­
gram. By contrast, pb is allocated as a far pointer to char; pb could be
used to point to, and step through, an array of characters stored in a seg­
ment other than the default data segment. For example, pa might be used
to point to array a in the first example, while pb might be used to point to
array b.

char far * *pa; /* small-model program */
char far * *pa; /* large-model program */

The pointer declarations in the example illustrate the interaction between
the memory model chosen and the near and far keywords. Although the
declarations for pa are identical, in a small-model program, pa is declared
as a near pointer to an array of far pointers to type char, while in a large-
model program, pa is declared as a far pointer to an array of far pointers
to type char.

char far * near *pb; /* any model */
char far * far *pb;

In the first declaration in the example, pb is declared as a near pointer to
an array of far pointers to type char; in the second declaration, pb is
declared as a far pointer to an array of far pointers to type char. Note
that, in this example, the far and near keywords override the model-spe­
cific addressing conventions shown in the preceding example. The
declarations for pb would have the same effect, regardless of the memory
model. The examples in the following table illustrate the far and near
keywords as used in declarations in a small-model program. It also gives
the size in bits of the address and the value and the type of the value.

5-18 C User’s Guide

Using the near, far, and huge Keywords

Table 5.2
Uses of 8086/80186/80286 near and far Keywords

Declaration
Size of

Address
Size of
Value Type of Value

char c; 16 8 data

char far d; 32 8 data

char *p; 16 16 near pointer

char far *q; 16 32 far pointer

char * far r, 32 16 near pointer1

char far * far s; 32 32 far pointer2

int foo(); 16 16 integer function

int far foo(); 32 16
a

integer function

Notes
1 This example of a near 16-bit pointer which may lie in a far data segment is unlikely

to be useful; it is shown for syntactic completeness only.

2 This is similar to accessing data in a large-model program.

3 This example leads to trouble in most environments. The far call changes the CS
register, and makes run time support unavailable.

The following example is from a middle-model compilation:

int near foo();

This allows a near call to the routine foo in a program where calls are nor­
mally far.

If you are using one of the keywords, it would be advisable to check the
type of item in separate source files as the compiler does not do this.

If the -M3e option is used, the near keyword can address items in the pro­
gram segment itself. The near keyword defines an item with a 32-bit
address (relative to DS).

These keywords override the normal address length generated by the
compiler for variables and functions. In pure small-model programs, far
lets you access data and functions in segments outside the TEXT and
DATA segments.

Working with Memory Models 5-19

Using the near, far, and huge Keywords

The examples in the table that follows show near and far keywords used
in declarations of pure small- and mixed-model programs configured with
the -M3e option:

Table 5.3
Uses of 80386 near and far Keywords

Declaration Address Size Allocation Size
char c; near (32 bits) 8 bits (data)

char far d; far (48 bits) 8 bits (data)

char *p; near (32 bits) 32 bits (near pointer)

char far *q; near (32 bits) 64 bits (far pointer)

char * far r; far (48 bits) 32 bits (near pointer)
_

char far * far s; far (48 bits) 64 bits (far pointer)

int foo(); near (32 bits) function returning 32 bits

int far foo(); far (64/48 bits) function returning 32 bits'3

Notes
1 This example is shown for syntactic completeness only.

2 This resembles accessing data in a large-model program.

3 This example creates problems in most environments. The far call changes the CS
register, and makes run-time support unavailable.

Declaring Functions with the near and far
Keywords
The rules for using the near and far keywords for functions are similar to
those for using them with data, as specified in the following list:

• The keyword always modifies the function or pointer immediately
to its right. For more information about rules for evaluating com­
plex declarations, see the C Language Reference.

• If the item immediately to the right of the keyword is a function,
then the keyword determines whether the function will be allo­
cated as near or far. For example:

5-20 C User’s Guide

Using the near, far, and huge Keywords

char far fun ();

defines fun as a function called with a 32-bit address and returning
type char.

• If the item immediately to the right of the keyword is a pointer to a
function, then the keyword determines whether the function will be
called using a near (16-bit) or far (32-bit) address. For example:

char (far * pfun)();

defines pfun as a far pointer (32 bits) to a function returning type
char.

• Function declarations must match function definitions.

• The huge keyword cannot be applied to functions.

Examples

void char far fun (void);
void char far fun(void)

. {

}

/* small model */

In this example, fun is declared as a function returning type char. The
far keyword in the declaration means that fun must be called with a 32-
bit call.

static char far * near fun(
static char far * near fun (

{

}

) ; /* large model */
)

In the large-model example, fun is declared as a near function that returns
a far pointer to type char. Such a function might be seen in a large-model
program as a helper routine that is used frequently, but only by the rou­
tines in its own module. Since all routines in a given module share the
same code segment, the function could always be accessed with a near

Working with Memory Models 5-21

Using the near, far, and huge Keywords

call. However, you could not pass a pointer to fun as an argument to
another function outside the module in which fun was declared.

void far *fun(void); /* small model */
void (far * pfun) () = fun;

The small-model example declares pfun as a far pointer to a function that
has a void return type, and then assigns the address of fun to pfun. In fact,
pfun could be used to point to any function accessed with a far call. Note
that if the function indicated by pfun has not been declared with the far
keyword, or if it is not far by default, then calling that function through
pfun would cause the program to fail.

double far * (far fun)(); /* compact model */
double far * (far *pfun)() = fun;

In this final example, pfun is declared as a far pointer to a function that
returns a far pointer to type double, and then assigns the address of fun to
pfun. This might be used in a compact-model program for a function that
is not used frequently and thus does not need to be in the default code
segment. Both the function and the pointer to the function must be
declared with the far keyword.

Pointer Conversions
Passing pointers as arguments to functions may cause automatic conver­
sions in the size of the pointer argument, since passing a pointer to a func­
tion forces the pointer size to the larger of the following two sizes:

• The default pointer size for that type, as defined by the memory
model used during compilation

For example, in medium-model programs, data-pointer arguments
are near by default, and code-pointer arguments are far by default.

• The size of the type of the argument

If a function prototype with argument types is given, the compiler per­
forms type-checking and enforces the conversion of actual arguments to
the declared type of the corresponding formal argument. However, if no
declaration is present or the argument-type list is empty, the compiler
will convert pointer arguments automatically to the default type or the
type of the argument, whichever is larger. To avoid mismatched argu­
ments, you should always use a prototype with the argument types.

5-22 C User’s Guide

Using the near, far, and huge Keywords

Examples

/* This program produces unexpected results in compact-,
** large-, or huge-model programs.
*/

main ()
{int near *x;
char far *y;
int z = 1;
test_fun(x, y, z); /* x will be coerced to far

** pointer in compact, large,
** or huge model
*/

}

int test_fun(ptrl, ptr2, a)
int near *ptrl;
char far *ptr2;
int a;
{
printf("Value of a = %d\n", a);}

If the preceding example is compiled as a small-model program (with no
memory-model options or the -Ms option on the cc command line) or
medium-model program (-Mm option), then the size of pointer argument
x is 16 bits, the size of pointer argument y is 32 bits, and the value printed
for a is 1. However, if the preceding example is compiled with the -Me,
-Ml, or -Mh option, both x and y are automatically converted to far
pointers when they are passed to testjun. Since ptrl, the first parameter
of test Jun, is defined as a near-pointer argument, it takes only 16 bits of
the 32 bits passed to it. The next parameter, ptr2, takes the remaining 16
bits passed to p tr l, plus 16 bits of the 32 bits passed to it. Finally, the
third parameter, a, takes the leftover 16 bits from ptr2, instead of the
value of z in the main function. This shifting process does not generate an
error message, since both the function call and the function definition are
legal, but in this case the program does not work as intended, since the
value assigned to a is not the value intended.

To pass ptrl as a near pointer, you should include a forward declaration
that specifically declares this argument for testjun as a near pointer, as
shown in the following example:

Working with Memory Models 5-23

Using the near, far, and huge Keywords

/* First, declare test fur. so the compiler
** about the near pointer argument:
*/
int test fun(int near*, char far *, int);

knows in advance

main ()
{
int near *x;
char far *y;
int z = 1;
test fun(x, y, z); /* now, x will not be coerced

** to a far pointer; it will be
** passed as a near pointer,
** r.o matter what memory
** model is used
*/

}
int test fun(ptrl, ptr2, a)

int near *ptrl;
char far *ptr2;
int a;
{
printf("Value of a = %d\n", a);

Note that it would not be sufficient to reverse the definition order for
testjun and main in the first example to avoid pointer coercions; the
pointer arguments must be declared in a forward declaration, as in the
second example.

5-24 C User’s Guide

Creating Customized Memory Models

Creating Customized Memory
Models
A third method of managing memory models is to combine features of the
standard memory models to create your own customized memory model.
You should have a thorough understanding of C memory models and the
architecture of 8086 and 80286 processors before creating your own non­
standard memory models, since there is no library support—other than the
C start-up routines—for nonstandard memory models.

The -Mstring option lets you change the attributes of the standard mem­
ory models to create your own memory models. The three letters in string
correspond to the code-pointer size, the data-pointer size, and the stack-
and data-segment setups. Because the letter allowed in each field is
unique to that field, you can give the letters in any order after -M. All
three letters must be present.

The standard-memory-model options (-Ms, -Mm, -Me, -Ml, and -Mh)
can be specified in the -Mstring form. As an example of how to construct
memory models, the standard-memory-model options are listed with their
standard equivalents:

Standard Custom Equivalent

-Ms -Msnd

-Mm -Mind

-Me -Msfd

-Ml -Mlfd

-Mh -Mlhd

As an example of the use of customized models, you might want to create
a huge-compact model. This model would allow huge data items, but only
one code segment. The option for specifying this model would be -Mshd.

An even more common use of customized models is to set up segments.
(See the section on “ Setting Up Segments,” for more information.)

If you use a customized memory model for a program that includes both
far and near functions, be aware of the following issues:

Working with Memory Models 5-25

Creating Customized Memory Models

• The chkstk library function should be called only in functions that
are compiled in the same model as the library being used. (For
compatibility with UNIX System V, the chkstk function name can­
not be model-encoded.)

• The interfaces to floating-point function calls are not model
encoded, so functions containing floating-point calls must be com­
piled with the same model as the library being used.

Code Pointers
Options

-Msxr Near code pointers
-Mlxv Far code pointers

Note

For the purposes of the descriptions that follow, the letters 1 (for
“ long”) and s (for “ short”) are used as code pointers to distinguish
them from the letters for data pointers in the memory-model string.

The letter s tells the compiler to generate near (16-bit) pointers and
addresses for all code items. This is the default for small- and compact-
model programs.

The letter 1 means that far (32-bit) pointers and addresses are used to
address all code items. Far pointers are the default for medium-, large-,
and huge-model programs.

Data Pointers
Options

-Mn.v.v Near data pointers
-Mf.v.v Far data pointers
-Mhxv Huge data pointers

5-26 C User's Guide

Creating Customized Memory Models

Three sizes are available for data pointers: near, far, and huge. The letter
n tells the compiler to use near (16-bit) pointers and addresses for all
data. This is the default for small- and medium-model programs.

The letter f specifies that all data pointers and addresses are far (32-bit).
This is the default for compact- and large-model programs.

The letter h specifies that all data pointers and addresses are huge
(32-bit). This is the default for huge-model programs.

When far data pointers are used, no single data item may be larger than a
segment (64K) because address arithmetic is performed only on 16 bits
(the offset portion) of the address. When huge data pointers are used, indi­
vidual data items can be larger than a segment (64K) because address
arithmetic is performed on the entire 32 bits of the address.

Setting Up Segments
Options

-Mdxx Sets SS = DS
-Mu[xr] Sets SS != DS; DS reloaded on function entry
■Mw[xx] Sets SS != DS; DS not reloaded on function entry

The letter d tells the compiler that the segment addresses stored in the SS
and DS registers are equal; that is, the stack segment and the default data
segment are combined into a single segment. This is the default for all
programs. In small- and medium-model programs, the stack plus all data
must occupy less than 64K; thus, any data item is accessed with only a
16-bit offset from the segment address in the SS and DS registers.

In compact-, large-, and huge-model programs, initialized global and
static data are placed in the default data segment. The address of this seg­
ment is stored in the DS and SS registers. All pointers to data, including
pointers to local data (the stack), are full 32-bit addresses. This is impor­
tant to remember when passing pointers as arguments in large-model pro­
grams. Although you may have more than 64K of total data in these
models, there can be no more than 64K of data in the default segment.
The -Gt and -ND options can be used to control allocation of items in the
default data segment if a program exceeds this limit. (For more informa­
tion about these options, see the sections on “ Setting the Data Thresh­
old,” and “ Naming Modules and Segments.”)

The letter u allocates different segments for the stack and the data seg­
ments. Each object file (module) is allocated its own segment for global
and static data items. Note that the -ND option, described in “ Naming

Working with Memory Models 5-27

Creating Customized Memory Models

Modules and Segments,” must be specified along with the letter u to allo­
cate data segments other than the default. When the letter u and -ND are
specified, the address in the DS register is saved upon entry to each func­
tion, and the new DS value for the module in which the function was
defined is loaded into the register. The previous DS value is restored on
exit from the function. Therefore, only one data segment is accessible at
any given time. The -ND option can be used to combine these segments
into a single segment.

If a standard memory-model option precedes it on the command line, the
-Mu option can be specified without any letters indicating data- or code­
pointer sizes. In this case, the program uses the specified memory model,
but different segments are set up for the stack and data segments.

A single segment must be allocated for the stack, and its address must be
stored in the SS register. The stack segment does not change during the
execution of the program.

The letter \v, like the letter u, sets up a separate stack segment, but does
not automatically load the DS register at each module entry point. This
option is typically used when writing application programs that interface
with an operating system or with a program running at the operating-
system level. The operating system or the program running under the op­
erating system actually receives the data intended for the application pro­
gram and places that data in a segment. Then the operating system or
program must load the DS register with the segment address for the appli­
cation program.

As with the -Mu option, the -Mw option can be specified without data-
and code-pointer letters if a standard memory-model option precedes it on
the command line. In this case, the program uses the specified memory
model, but different segments are set up for the stack and data segments,
and the DS register is not reloaded at each module entry point.

Even though u and w set up a separate segment for the stack, the stack’s
size is still fixed at the default unless this is overridden with the -F com­
piler option.

5-28 C User’s Guide

Creating Customized Memory Models

Library Support for Customized Memory Models
Most C programs make function calls to the routines in the C run-time
library. Library support is provided for the five standard memory models
(small, medium, compact, large, and huge) through four separate run-time
libraries. (Huge and large models both use the large-model library.) When
you write mixed-model programs, you are responsible for determining
which library (if any) is suitable for your program and for ensuring that
the appropriate library is used.

Library support is provided for customized memory models where the
stack and default data segments are combined into a single segment
(-Mdxv), but not for customized memory models where these segments
are different (-Muxv, -Mwxv, -Mu, and -Mw). In the latter cases, you
probably need to create a customized library to be used with your custom­
ized memory model. Specify the library files and object files you want to
use when linking. Be sure to use the start-up routine from the appropriate
library for your memory model. Table 5.4 shows the libraries from which
to extract the start-up routine for each customized memory model.

Table 5.4
Start-Up Routines for

Customized Memory Models

Memory-Model Option Use Start-Up from Library

-Msilv; -MS plus -Mr1 /usr/lib/286/Sseg.o

-Msf.v; -Mshu; -MC1
plus -Mv

/usr/lib/286/Cseg.o

-MIilv; -MM plus -Mv1 /usr/lib/286/Mseg.o

-Mlfv; -Mlh_v; -ML plus
-Mv; -MH plus -Mv'

/usr/lib/286/Lseg.o

“ 1” in the above table indicates a condition where x must be either u or
w.

In general, library functions do not support customized memory models,
since a particular run-time routine may in turn call another library routine
that conflicts with your customized model.

Working with Memory Models 5-29

Setting the Data Threshold

Setting the Data Threshold
Option

-Gt [number]

By default, the compiler allocates all static and global data items within
the default data segment in the small and medium memory models. In
compact-, large-, and huge-model programs, only initialized static and
global data items are assigned to the default data segment. The -Gt option
causes all data items whose sizes are greater than or equal to number
bytes to be allocated to a new data segment. When number is specified, it
must follow the -Gt option immediately, with no intervening spaces.
When number is omitted, the default threshold value is 256. When the -Gt
option is omitted, the default threshold value is 32,767.

You can use the -Gt option only with compact-, large-, and huge-model
programs, since small- and medium-model programs have only one data
segment. The option is particularly useful with programs that have more
than 64K of initialized static and global data in small data items.

5-30 C User’s Guide

Naming Modules and Segments

Naming Modules and Segments
Options

-NM modulename
-NT textsegment
-ND datasegment

“ Module” is another name for an object file created by the C compiler.
Every module has a name. The compiler uses this name in error messages
if problems are encountered during processing. The module name is usu­
ally the same as the source-file name. You can change this name using the
-NM (for “ name module”) option. The new modulename can be any
combination of letters and digits. The space between -NM and modu­
lename is optional.

A “ segment” is a contiguous block of binary information (code or data)
produced by the C compiler. Every module except impure small has at
least two segments: a text segment containing the program instructions,
and a data segment containing the program data. Each segment in every
module has a name. The linker uses this name to define the order in which
the segments of the program appear in memory when loaded for execu­
tion. The segments in the group named DGROUP are an exception.

Text and data segment names are normally created by the C compiler.
These default names depend on the memory model chosen for the pro­
gram. For example, in small-model programs, the text segment is named
_TEXT and the data segment is named _DATA. These names are the
same for all small-model modules, so all text segments from all modules
are loaded as one contiguous block, and all data segments from all
modules form another contiguous block.

In medium-model programs, the text from each module is placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix _TEXT. The data segment is named DATA,
as in the small model.

In compact-model programs, the data from each module are placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix _DATA. The exception to this is initialized
global and static data, which are put in the default data segment DATA.
The code segment is named TEXT, as in the small model.

In large- and huge-model programs, the text and data from each module
are loaded into separate segments with distinct names. Each text segment

Working with Memory Models 5-31

Naming Modules and Segments

is given the name of the module plus the suffix _TEXT. The data from
each segment is placed in a private segment with a unique name (except
for initialized global and static data placed in the default data segment).
The naming conventions for text and data segments are summarized in
Table 5.5.

Table 5.5
Segment-Naming Conventions

Model Text Data Module

Small TEXT DATA filename

Medium module_ TEXT DATA filename

Compact TEXT DATA1 filename

Large module TEXT DATA1 filename

Huge module TEXT DATA1 filename

“ 1” in the above table indicates the name of default data segment; other
data segments have unique private names.

You can override the default names used by the C compiler (thus overrid­
ing the default loading order) by using the -NT (for “ name text”) and
-ND (for “ name data”) options. These options set the names of the text
and data segments in each module being compiled to the given name. The
textsegment argument used with the -NT option and the datasegment
argument used with the -ND option can be any combination of letters and
digits. The space between -NT and textsegment, like the space between
-ND and datasegment, is optional.

If you use the -ND option to change the name of the default data segment,
your program can no longer assume that the address contained in the
stack segment register (SS) is the same as the address in the data segment
register (DS). You must therefore compile your program either with the
-Mstring form of the memory-model option and the u option for the
segment-setup letter, or with the -M option for a standard memory model
followed by the -Mu option, as in the following example:

cc -Ms -Mu -ND DATA1 progl.c

Use of the -Mu option forces the compiler to generate code to load DS
with the correct data-segment value on entry to the code. See the section
on “ Creating Customized Memory Models,” for more information on the

5-32 C User’s Guide

Naming Modules and Segments

options. All modules whose data segments have the same name have
these segments combined into a single segment named DATA1 at link
time.

Working with Memory Models 5-33

Specifying Text and Data Segments

Specifying Text and Data Segments
Pragmas

#pragma aIloc_text (textsegment, functionl[, function!]...)
#pragma same_seg (variable![, variable!]...)
#pragma data_seg ([[segmentname]])

The alloc_text pragma gives you source-level control over the segment to
which particular functions are allocated. The same_seg pragma provides
information the compiler can use to generate better code. The dataseg
pragma allows you to specify the name of the data segment that subse­
quent load-DS functions use.

If you use overlays or swapping techniques to handle large programs,
alloc_text allows you to tune the contents of their text segments for max­
imum efficiency. The alloc_text pragma must appear before the
definitions of any of the specified functions, but it may appear either
before or after the functions arc declared or called. Any functions
specified in an alloc_text pragma must be either explicitly declared with
the far keyword or assumed to be far because of the memory model used
(medium, large, or huge).

The same_seg pragma tells the compiler to assume that the specified
external variables are allocated in the same data segment. You are respon­
sible for making sure that these variables are put in the same data seg­
ment; one way to do this is to specify the -ND option when you compile
the program. The same_seg pragma must appear before any of the
specified variables is used in executable code and after the variables are
declared. Variables specified in a same_seg pragma must be explicitly
declared with extern storage class, and they must either be explicitly
declared with the far keyword or assumed to be far because of the mem­
ory model used (compact, large, or huge).

The data_seg pragma specifies the name of the data segment that subse­
quent load-ds functions should use. A ioad-ds” function loads its own
data segment upon entry. For more information about load-ds see Appen­
dix A of this manual. In addition, data_seg causes the named segment to
contain all data that would otherwise be allocated in the DATA segment
(all subsequent initialized static and global data). If you omit the seg­
mentname parameter, the compiler uses the segment name specified in the
-ND option, or, if that option is absent, the default group DGROUP, since
DGROUP is not a segment.

5-34 C User’s Guide

Chapter 6

Improving Program Speed

Introduction 6-1

Using Register Variables 6-2

Optimization Options and Pragmas 6-4
Default Optimization 6-4
Generating Intrinsic Functions 6-4
Relaxing Alias-Checking 6-5
Performing Loop Optimizations 6-5
Removing Stack Probes 6-6
Maximum Optimization 6-6

Choosing the Function-Calling Convention 6-7

Efficiency in Large Data Models 6-8
Changing Addressing with near, far, and huge Keywords 6-8
Setting the Data Threshold 6-9
Controlling Segments Used for Allocation 6-9

Efficiency in Large Code Models 6-10

Introduction

Introduction
This chapter describes a number of ways that you can improve the execu­
tion speed of programs compiled with the C Compiler. These techniques
include:

• Using register variables

• Using optimization options and pragmas

• Choosing function-calling conventions

• Choosing and adjusting memory models

Where applicable, this chapter discusses the interactions between these
techniques and the trade-offs involved in using them.

Improving Program Speed 6-1

Using Register Variables

Using Register Variables
One common way to write a program for maximum speed is to declare
selected local (auto) variables with register storage class. The declara­
tion of a register variable requests the compiler to use machine registers
when allocating space for the variable, if possible. The register storage
class can be specified for any variable, but some classes of variables, such
as structures, cannot be stored in registers.

Up to two register variables may be allocated per function. In lexical
order, the 8086 and 80286 compilers take the first two variables with
register storage class that meet the size criteria. The 80386 compiler
takes the first three variables. Any later requests for register storage class
are ignored, so be sure to declare the most important register variables
first. The compiler deallocates the register when the variable is no longer
being used. You may also want to declare register variables in parallel
scope to achieve the effect of having more than two register variables per
function.

The C Compiler automatically uses registers for variables within loops.
Using register declarations for such variables may interfere with optimal
loop code; you can experiment with various combinations of register and
nonregister declarations to determine which combinations give the best
results.

Register declarations can be used effectively for values, especially
pointers, that appear outside of loops. Since a certain amount of code is
required to save and restore registers, register declarations must be
applied to values that are accessed at least three times within a function
to cause any improvement in program speed.

6-2 C User’s Guide

Using Register Variables

Example

find_string(arr_of_chars, string)
char *string;
char *arr_of_chars[];
{

int ix = 0;
register char *q;
while (* (q = string)) { /* string is not null */
{

register int i = ix;
/* search for entry whose first character
* matches first character of string, if any
*/

while (i < MAX_ARR_SIZE && *arr_of_chars[i] != *q)
i++;

if (i = MAX_ARR_SIZE)
return(1); /* no matching entry */

ix = i;
}
/* we've found an entry in arr_of_chars which
* might match string */

{
register char *p = arr_of_chars[ix];
while (*p && *q && *p++ = *q++)
if ((*p - *q) = 0)

return(0) /* they match, return 0 */
/* otherwise continue checking for possible
* matches
*/

}
}

}

In this example, the function named find_string actually has three register
variables: q, i, and p. The function can use all three variables because i
is through being used by the time p is needed. Introducing the ix variable
to save the pointer from block-to-block speeds execution considerably
because most work is being done in register variables.

Improving Program Speed 6-3

Optimization Options and Pragmas

Optimization Options and Pragmas
The cc compiler/linker driver provides a number of optimization options
(-0, followed by one or more letters) that can improve program speed. In
addition, the C Compiler includes several pragmas that allow you to con­
trol some of these optimizations on a local basis within a source program.
The following sections outline these cc options and pragmas and their
effects.

Default Optimization
If no -O option is given, the compiler uses the -Ot option, which opti­
mizes programs for execution speed. However, this option does not
enable loop optimizations or intrinsics. Some optimizations, such as long
shifts, may be performed in line rather than using helper functions.

Generating Intrinsic Functions
The -Oi option generates intrinsic forms of the following functions:

• memset, memcpy, memcmp

• strset, strcpy, strcmp, strcat

• inp, outp

• _rotl, rotr, lrotl, Jrotr,

• min, max, abs

Intrinsics may be generated as in-line code or with different calling
sequences. In general, using intrinsics increases program size but
improves program speed. Note that the intrinsic forms of some functions
may have slightly different semantics: for example, the intrinsic form of
the memcpy function in compact- and large-model programs cannot han­
dle huge arrays, but the function form can.

As with -Ot, this option may increase program size due to the additional
code generated in line for each function. However, program execution is
faster because no instructions for calling and returning from functions
need to be performed.

6-4 C User’s Guide

Optimization Options and Pragmas

The intrinsic pragma can be used to specify intrinsic functions on a local
basis for any of the functions listed above. For information about the use
of the intrinsic pragma, see the “ Compiling with the cc Command’’
chapter of this guide.

Relaxing Alias-Checking
The a option letter can be used with the 1, s, or t option letter to relax the
assumptions the compiler makes about the use of “ aliases” in the pro­
gram. Use of the -Oa option can reduce the size of executable files and
speed program execution. This is especially recommended when you also
specify the -01 option, since the compiler can detect a number of loop
optimizations when the -Oa option is in effect that it cannot detect when
-Oa is not in effect. However, before you specify -Oa, you must make
sure that your program does not use multiple aliases to refer to the same
memory location either directly or indirectly. For example, a program
might do this indirectly in functions that operate on a communal variable
and a pointer argument, or on multiple pointer arguments.

The -Oa option can be specified safely for programs that include calls to
functions with address-type arguments. In this case, the compiler assumes
that all variables whose addresses are passed to the function are modified,
even if -Oa is specified.

In the cases noted above, the use of -Oa is most likely to cause incorrect
optimizations within basic blocks (where most optimizations are applied)
and within whole loop bodies (where loop optimizations are applied). In
these cases, -Oa can still be specified safely even if aliases are used in the
program, provided that no memory location is referenced by more than
one name within any basic block or (if loop optimization is enabled) any
loop body.

For more information and specific examples, see the “ Compiling with the
cc Command” chapter of this guide.

Performing Loop Optimizations
The -01 option tells the compiler to perform loop optimizations. For best
performance, use -01 in conjunction with the a option letter (-Oal), which
relaxes the assumptions the compiler makes about the use of aliases in the
program. Using -Oal instead of just -01 allows the compiler to detect
many loop optimizations that it could not otherwise detect. For informa­
tion about possible restrictions on the uses of the -Oa option, see the
“ Compiling with the cc Command” chapter of this guide.

Improving Program Speed 6-5

Optimization Options and Pragmas

You can control loop optimization on a local basis by specifying the
loop_opt pragma. Loop optimization is turned off for any functions fol­
lowing #pragma loop opt(off) and turned on for any functions following
#pragma loop opt(on) in a source program. This pragma overrides any
loop optimization specified on the cc command line.

Removing Stack Probes
The -Gs option, described in the “ Compiling with the cc Command’’
chapter of this guide, speeds program execution slightly by removing
calls to stack-checking routines known as “ stack probes.” Stack probes
verify that a program has enough stack space to allocate required local
variables. The potential disadvantage in removing stack probes is that
stack-overflow errors may occur without generating a diagnostic message.
However, this technique can be useful for programs that are known not to
exceed the available stack space.

You can also control stack checking on a local basis by specifying the
check_stack pragma. Stack checking is turned off for any functions fol­
lowing a #pragma check stack(off) pragma and turned on for any func­
tions following a #pragma check_stack(on) pragma in the source pro­
gram. This pragma overrides the removal of stack checking specified on
the cc command line.

Maximum Optimization
The -Ox option combines the -Of, -Oi, -Oa and -01 optimization options
described in this section. Provided that the restrictions outlined for each
optimization option do not apply, you can use the -Ox option to create the
fastest possible program.

6-6 C User’s Guide

Choosing the Function-Calling Convention

Choosing the Function-Calling
Convention
Because C functions can accept variable numbers of arguments, argu­
ments passed to these functions must be pushed on the stack from right to
left, with the first argument in the list being the last one pushed. In addi­
tion, the calling function, rather than the called function, is responsible
for removing arguments from the stack.

This convention results in somewhat slower programs than the alternative
convention used by FORTRAN and Pascal. In the FORTRAN/Pascal con­
vention, arguments are pushed on the stack from left to right, in the order
in which they are passed to the function, and the called function removes
arguments from the stack. Since the code for removing arguments appears
only once (in the called function) for the FORTRAN/Pascal convention,
rather than multiple times (every time a function is called) as in the C
convention, and since most programs have fewer functions than function
calls in a program, the FORTRAN/Pascal calling convention usually
results in smaller, faster programs.

You can specify the FORTRAN/Pascal calling convention for all func­
tions in a module by compiling with the -Gc option. The trade-off for
improved program speed is that you cannot call functions that use the C
calling convention or take variable numbers of arguments unless you
declare these functions, or pointers to these functions, with the cdecl key­
word, which specifies the normal C calling conventions for these func­
tions.

If you do not want to specify the FORTRAN/Pascal convention for a
whole module, you can declare individual functions or pointers to func­
tions with the pascal or fortran keyword. Either of these keywords tells
the compiler that the function uses the FORTRAN/Pascal calling conven­
tions.

Improving Program Speed 6-7

Efficiency in Large Data Models

Efficiency in Large Data Models
Programs are most efficient when their data reside in the default data seg­
ment, that is, when the data can be accessed with 16-bit (near) addresses.
The C Compiler provides two standard memory models in which all data
reside in the default data segment: the small (default) model and the
medium model. The customized memory models that use near data
pointers (-Mnxr) also restrict program data to the default data segment.
Programs compiled with these models are restricted to 64K of total data.

For programs compiled with the compact, large, and huge memory
models, the compiler creates a default data segment containing all initial­
ized global and static data and creates an additional data segment for
each program module. Since accessing data outside the default data seg­
ment is slower than accessing data within the default data segment, pro­
grams will run faster if as many of their variables as possible are declared
in such a way that they are allocated in the default data segment. One
way to accomplish this is to initialize variables at the time you declare
them. This section discusses other ways of controlling the allocation of
data for large data models.

Changing Addressing with near, far, and huge
Keywords
The near, far, and huge keywords allow you to specify explicitly the
addressing used for particular data items and functions. These keywords
override the default addressing conventions specified by the program’s
memory model. Thus, you can use them to improve the speed of access to
program data. For example, you can tell the compiler to allocate data
items in the default data segment for a compact-, large-, or huge-model
program by declaring the items (or pointers to the items) with the near
keyword. Alternatively, if a program has a small amount of code and data
except for one particularly large array, you could compile the program
with the small or medium memory model and declare the array with the
far or huge keyword.

The disadvantage of using these keywords is that they are specific to the
MS-DOS/UNIX implementation of C and, thus, are not portable to other
operating environments.

For more information about near, far, and huge and for examples of their
use, see the “ Working with Memory Models” chapter in this guide.

6-8 C User’s Guide

Efficiency in Large Data Models

Setting the Data Threshold
Another way to control allocation in large data models is to set a data
threshold by compiling with the -Gt option. This option is especially use­
ful if your program uses more than 64K of initialized static and global
data and does not fit in the default data segment. Any data items larger
than the value you specify are allocated to their own data segments.

Controlling Segments Used for Allocation
If programs compiled with large data models use external far data items,
you can tell the compiler which items reside in the same far data segment
by using the same_seg pragma. The variables you specify in this pragma
help the optimizer recognize common subexpressions involving data
loads. Note that you must also compile your program with the -ND option
to ensure that the variables you specify are allocated in the same segment.

For a description of the -ND option and the same_seg pragma, see the
“ Working with Memory Models” chapter of this guide.

Improving Program Speed 6-9

Efficiency in Large Code Models

Efficiency in Large Code Models
One linker option, -T, can result in smaller and faster executable files and
improved program-load times for programs that explicitly or implicitly
use far function calls.

The -T option tells the linker to optimize far calls to procedures that lie in
the same segment as the caller. When you specify the -T option, the
linker optimizes 32-bit calls to procedures in the same segment as the cal­
ling procedure. Since the segment addresses of the calling and called pro­
cedures are the same, only a 16-bit call is required. If the -T option is
given, the linker removes the far call and replaces it with code that first
places CS on the stack, then makes a near call. The called procedure still
returns with a far (32-bit) return instruction. However, because both the
code segment (stored in CS) and the near address are on the stack, the far
return is done correctly. The linker also adds a NOP instruction so that
the five-byte far call is replaced by exactly five bytes of instructions.

Note

You may not want to use the T option if your program includes
system-level assembly language routines or if you are linking object
files that were compiled with a different C compiler.

6-10 C User’s Guide

Chapter 7

Object and Executable
File Formats

Introduction 7-1

iAPX-286 and -386 System Architecture 7-2
Memory Management 7-2
Logical Address Space 7-2
Logical-to-Physical Address Translation 7-2

The Intel Object Module Format 7-4

Definition of Terms 7-6

Module Identification and Attributes 7-9

Segment Definition 7-10

Segment Addressing 7-11

Symbol Definition 7-12

Indices 7-13

Conceptual Framework for Fixups 7-14
LOCATION Types 7-15

Self-Relative Fixups 7-19

Segment-Relative Fixups 7-20

Record Order 7-22

Introduction to the Record Formats 7-24
Title and Official Abbreviation 7-24
The Boxes 7-24
Rectyp 7-24
Record Length 7-25
Name 7-25

Number 7-25
Repeated or Conditional Fields 7-25
Chksum 7-25
Bit Fields 7-26
T-Module Name 7-26
Name 7-27
Seg Attr 7-27
Segment Length 7-29
Segment Name Index 7-30
Class Name Index 7-30
Overlay Name Index 7-30
Group Name Index 7-31
Group Component Descriptor 7-31
Name 7-32
Eight-Leaf Descriptor 7-32
Public Base 7-34
Public Name 7-35
Public Offset 7-35
Type Index 7-36
External Name 7-36
Type Index 7-37
Line-Number Base 7-38
Line-Number 7-38
Line Number Offset 7-38
Segment Index 7-39
Enumerated Data Offset 7-39
Data 7-39
Segment Index 7-39
Iterated Data Offset 7-40
Iterated Data Block 7-40
Repeat Count 7-40
Block Count 7-40
Content 7-41
Thread 7-42
Fixup 7-43
Mod Type 7-46
Comment Type 7-48
Comment 7-49

Numeric List of Record Types 7-50

Type Representations for Communal Variables

The Segmented x.out Format 7-54
General Description of x.out 7-54
Example of File Layout 7-56

7-51

Iterated Segments 7-56
Non-Iterated Segments and Implicit bss 7-57
Large Model 7-58
Special Header Fields 7-58
Symbol Table 7-58
UNIX System V Executable Format 7-59
Selected Portions of Include Files 7-60

Introduction

Introduction
This chapter describes the object and executable file formats used by
UNIX System V/386 release 3.2.

When the -xenix option is used with cc, the file format used is the Intel
Object Module Format, or OMF. When cc is used without the -xenix
option, the file format used is the AT&T Common Object File Fomiat, or
COFF.

This chapter is divided into four sections. The first provides you with a
brief introduction to the architecture of the iAPX-286 and -386 pro­
cessors.

The second section discusses OMF which is used by all Microsoft lan­
guage tools. The implementation of this format makes it possible to com­
pile programs that run in the UNIX System V, XENIX and MS-DOS
environments.

The third section provides a brief description of our implementation of
the x.out format in a segmented environment. For detailed information,
see the x.out header file (/usr/include/x.out.h).

The fourth section describes the Common Object Module Format (COFF)
used by the AT&T development system. You can find additional informa­
tion in the a.out header file (/usr/include/a.out.h).

Object and Executable File F ormats 7-1

iAPX-286 and -386 System Architecture

iAPX-286 and -386 System
Architecture
UNIX System V runs on the 80386 processor in protected mode. This sec­
tion provides a general introduction to the architecture of protected-mode
operation. It does not discuss the various 80386 paging mechanisms. For
an in-depth discussion of the iAPX-286 and iAPX-386, refer to the appro­
priate programmer’s reference manual published by Intel.

Memory Management
Memory management provides a mapping from the logical addresses used
within a program to physical machine addresses. This serves two pur­
poses:

• Programs are not tied to any particular physical address.
• Access permissions to particular areas of memory can be con­

trolled.

Logical Address Space
The mapping of virtual addresses to physical addresses is achieved by
means of descriptor tables which are themselves resident in memory. At
any given moment, there are two alternate descriptor tables available: the
Global Descriptor Table (GDT) and the Local Descriptor Table (LDT).

The UNIX System V kernel uses the GDT to map the kernel’s virtual
address space. Each user process has its own LDT as part of its per-pro­
cess data which maps the logical address space of the process.

Each entry in a descriptor table specifies the base address, length, and
access permissions of a particular segment of physical memory.

Logical-to-Physical Address Translation
Logical addresses consist of two parts: a segment selector used to select a
particular descriptor table entry, and an offset added to the base address
found in the descriptor table to give a physical memory address.

7-2 C User’s Guide

iAPX-286 and -386 System Architecture

The segment selector is a 16-bit number containing three pieces of infor­
mation:

1. The Request Privilege Level (RPL) is encoded as the low-order
two bits of the selector. The RPL is a feature of the system archi­
tecture protection scheme. Segment selectors in user processes
always have both of these bits set to indicate RPL 3, the lowest
privilege level.

2. The Table Indicator (TI) is encoded as the next most significant bit
(bit 2). The TI indicates whether address translation will use the
GDT (TI = 0) or the LDT (TI = 1). User processes can only access
the LDT; therefore the TI for a segment selector in a user process
is always 1.

3. The Index field is encoded as the high-order 13 bits of the selector.
This is used to index into the appropriate descriptor table and
select a particular entry.

When a descriptor table entry has been selected, the offset is added to the
base address in physical memory to form a physical address.

Depending on the characteristics of the segment, as defined in the
descriptor table, the offset may be a 16- or 32-bit number. The offset will
be 16 bits on an 80286 processor or in a 16-bit segment on an 80386 pro­
cessor. The 32-bit offsets apply only to the 80386.

Object and Executable File F ormats 7-3

The Intel Object Module Format

The Intel Object Module Format
This section presents the object record formats that define the relocatable
object language for the iAPX-86 family of microprocessors. The 8086
object language is the output of all language translators that have the
8086 as their target processor and are linked by the link editor. The 8086
object language is input and output for object language processors such as
linkers and librarians.

Note

Except where otherwise noted, references to the 8086 in this docu­
ment refer to the 8086/80286/80386 processors. In general, the
8086/80286 references are made to 16-bit offsets and 64K segment
offsets, which do not apply to the 80386.

The 8086 object module formats permit you to specify relocatable
memory images that may be linked together. The formats allow efficient
use of the memory-mapping facilities of the 8086 microprocessor.

The following record formats, as described in this chapter, are supported.
Those formats preceded by an asterisk (*) deviate from the Intel
specification.

7-4 C User’s Guide

The Intel Object Module Format

Object Module Record Formats

T-Module Header Record
List of Names Record
^Segment Definition Record
*Group Definition Record
*Type Definition Record
* Public Names Definition Record
^External Names Definition Record
*Line Numbers Record
Logical Enumerated Data Record
Logical Iterated Data Record
Fixup Record
^Module End Record
Comment Record

Object and Executable File F ormats 7-5

Definition of Terms

Definition of Terms
The following terms are fundamental to the 8086 relocation and linkage.

OMF
Object Module Formats

MAS
Memory Address Space. Note that the MAS is distinguished from
actual memory’, which may occupy only a portion of the MAS.

MODULE
An “ inseparable” collection of object code and other information.

T-MODULE
A module created by a translator, such as C, Pascal, or FORTRAN.
The following restrictions apply to object modules:

• Every module needs a name. Translators provide names for
T-Modules, giving a default name (possibly the filename or
a null name) if neither source code nor user specifies other­
wise.

• Every T-Module in a collection of linked modules must
have a different name so that symbolic debugging systems
can distinguish the various line numbers and local symbols.
This restriction is not required by Id.

FRAME
A contiguous region of MAS that can be addressed using a single
segment register. This concept is useful because the content of the
four 8086 segment registers defines four (possibly overlapping)
FRAMES. No 16-bit address in the 8086 code can access a
memory location outside of the current four FRAMEs. On an
8086, a FRAME must begin on a paragraph boundary (that is, a
multiple of 16 bytes). On 80286 and 80386 processors, this
restriction does not apply. On an 80386, a FRAME is a region of
up to (2**32) bytes addressed by a single segment register.

LSEG
Logical Segment. A contiguous region of memory whose contents
are determined at translation time (except for address-binding).
Neither size nor location in MAS is necessarily determined at
translation time. Size, although partially fixed, may not be final
because the LSEG may be combined at LINK time with other

7-6 C User’s Guide

Definition of Terms

LSEGs, forming a single LSEG. On 8086/80286 processors, an
LSEG must not be larger than 64K, so that it can fit in a FRAME.
This means that any byte in an LSEG may be addressed by a 16-bit
offset from the base of a FRAME covering the LSEG. An 80386
LSEG may be as much as (2**32) bytes in size and any byte in it
may be addressed by a 32-bit offset from the base of the FRAME
containing the LSEG.

PSEG
Physical Segment. This term is equivalent to FRAME. Some peo­
ple prefer PSEG to FRAME because the terms PSEG and LSEG
reflect the physical and logical nature of the underlying segments.

FRAME NUMBER
This term is only used in reference to 8086 processors, or
80286/80386 processors operating in real address mode. Every
FRAME begins on a paragraph boundary. The paragraphs in MAS
can be numbered from 0 through 65535. These numbers, each of
which defines a FRAME, are called FRAME NUMBERS.

PARAGRAPH NUMBER
This term is equivalent to FRAME NUMBER.

PSEG NUMBER
This term is equivalent to FRAME NUMBER.

GROUP
A collection of LSEGs defined at translation time, whose final
locations in MAS are constrained such that there is at least one
FRAME that covers (contains) every LSEG in the collection.
The notation Gr A(X,Y,Z) means that LSEGs X, Y, and Z form a
group whose name is A. The fact that X, Y, and Z are all LSEGs in
the same group does not imply any ordering of X, Y, and Z in
MAS, nor does it imply any contiguity between X, Y, and Z.
The link editor does not currently allow an LSEG to be a member
of more than one group. The link editor ignores all attempts to
place an LSEG in more than one group.

CANONIC
Any location in the 8086 MAS is contained in exactly 4096 dis­
tinct FRAMEs, but one of these FRAMES can be distinguished
because it has a higher FRAME NUMBER. This distinguished
FRAME is called “ the canonic FRAME” of the location. The
canonic FRAME of a given byte is the FRAME so chosen that the
byte’s offset from that FRAME lies in the range 0 to 15 (decimal).
Thus, if FOO is a symbol defining a memory location, one may
speak of the “ canonic FRAME of FOO,” or of “ FOO’s canonic

Object and Executable File F ormats 7-7

Definition of Terms

FRAME.” By extension, if S is any set of memory locations, then
there exists a unique FRAME that has the lowest FRAME
NUMBER in the set of canonic FRAMEs of the locations in S.
This unique FRAME is called the canonic FRAME of the set S.
Thus, we may speak of the canonic FRAME of an LSEG, or of a
group of LSEGs.

SEGMENT NAME
LSEGs are assigned segment names at translation time. These
names serve two purposes:

• They play a role at LINK time in determining which LSEGs
are combined with other LSEGs.

• They are used in assembly source code to specify groups.

CLASS NAME
LSEGs may optionally be assigned class names at translation time.
Classes define a partition on LSEGs: two LSEGs are in the same
class if they have the same class name.
The link editor applies the following semantics to class names.
The class name “ CODE” or any class name whose suffix is
“ CODE” implies that all segments of that class contain only code
and may be considered read-only. Such segments may be overlaid
if the user specifies the module containing the segment as part of
an overlay.

OVERLAY NAME
LSEGs may optionally be assigned overlay names. The overlay
name of an LSEG is ignored by Id (version 2.40 and later ver­
sions), but it is used by Intel relocation and linkage products.

COMPLETE NAME
The complete name of an LSEG consists of the segment name,
class name, and overlay name. LSEGs from different modules are
combined if their complete names are identical.

7-8 C User’s Guide

Module Identification and Attributes

Module Identification and Attributes
A module header record is always the first record in a module and pro­
vides the module name.

In addition to a name, a module may have the attribute of being a main
program and may have a specified starting address. When you are linking
multiple modules together, only one module with the main attribute
should be given.

In summary, modules may or may not be main and may or may not have a
starting address.

Object and Executable File F ormats 7-9

Segment Definition

Segment Definition
A module is a collection of object code defined by a sequence of records
produced by a translator. The object code represents contiguous regions
of memory whose contents are determined at translation time. These
regions are called LOGICAL SEGMENTS (LSEGs). A module defines
the attributes of each LSEG. The SEGMENT DEFINITION RECORD
(SEGDEF) is the vehicle by which all LSEG information (name, length,
memory alignment, and so on) is maintained. The LSEG information is
required when multiple LSEGs are combined and when segment addres­
sability is established. (See “ Segment Addressing” .) The SEGDEF
records must follow the first header record.

7-10 C User’s Guide

Segment Addressing

Segment Addressing
The 8086/80286 addressing mechanism provides segment base registers
from which a 64-Kbyte region of memory, called a FRAME, may be
addressed. There are one code-segment base register (CS), two data-
segment base registers (DS, ES), and one stack-segment base register
(SS). The 80386 has two additional segment registers: FS and GS, and
can address up to (2**32) bytes of memory from each segment register.

The greatest possible number of LSEGs that may make up a memory
image far exceeds the number of available base registers. Thus, base
registers may require frequent loading. This would occur in a modular
program with many small data and/or code LSEGs.

Since such frequent loading of base registers is undesirable, it is a good
strategy to collect many small LSEGs together into a single unit that fits
in one memory frame so that all the LSEGs may be addressed using the
same base register value. This addressable unit is a GROUP. See the sec­
tion “ Definition of Terms” in this chapter.

To have addressability of objects within a GROUP, each GROUP must be
explicitly defined in the module. The GROUP DEFINITION RECORD
(GRPDEF) provides a list of constituent segments either by segment
name or by segment attribute such as “ the segment defining symbol
FOO” or “ the segments with class name ROM.”

The GRPDEF records within a module must follow all SEGDEF records
because GRPDEF records can reference SEGDEF records when defining
a GROUP. The GRPDEF records must also precede all other records
except header records, as the linker must process them first.

Object and Executable File F ormats 7-11

Symbol Definition

Symbol Definition
The Id command supports three different types of records that fall into the
class of symbol definition records. The two most important types are
PUBLIC NAMES DEFINITION RECORDS (PUBDEFs) and EXTER­
NAL NAMES DEFINITION RECORDS (EXTDEFs). These types are
used to define globally visible procedures and data items and to resolve
external references. In addition, TYPDEF records are used by Id for the
allocation of communal variables. (See the section “ Type Representa­
tions for Communal Variables ’ ’ later in this chapter.)

7-12 C User’s Guide

Indices

Indices
“ Index” fields appear throughout this document. An index is an integer
that selects some particular item from a collection of such items. Some
examples are NAME INDEX, SEGMENT INDEX, GROUP INDEX,
EXTERNAL INDEX, and TYPE INDEX.

In general, indices must assume values quite large (that is, much larger
than 255). Nevertheless, a great number of object files will contain no
indices with values greater than 50 or 100. Therefore, indices will be
encoded in one or two bytes, as required.

The high-order (left-most) bit of the first, and possibly the only, byte
determines whether the index occupies one byte or two. If the bit is 0,
then the index is a number between 0 and 127, occupying one byte. If the
bit is 1, then the index is a number between 0 and 32K-1, occupying two
bytes, and is determined as follows: the low-order 8 bits are in the second
byte, and the high-order 7 bits are in the first byte.

Object and Executable File F ormats 7-13

Conceptual Framework for Fixups

Conceptual Framework for Fixups
A “ fixup” is some modification to object code, requested by a translator,
performed by Id, achieving address-binding.

Note

This definition of “ fixup” accurately represents the viewpoint
maintained by Id. Nevertheless, the link editor can be used to
achieve modifications of object code (that is, “ fixups”) that do not
conform to this definition. For example, the binding of code to
either hardware floating-point or software floating-point subroutines
is a modification to an operation code, where the operation code is
treated as if it were an address. The previous definition of “ fixup”
is not intended to disallow or disparage object code modifications. * •

8086 translators specify a fixup with four data items:

• The place and type of a LOCATION to be fixed up.

• One of two possible fixup MODES.

• A TARGET, which is a memory address to which LOCATION
must refer.

• A FRAME defining a context within which the reference takes
place.

There are 5 types of LOCATION: a POINTER, a BASE, an OFFSET, a
HIBYTE, and a LOBYTE.

The vertical alignment of the following figure illustrates four points.
(Remember that the high-order byte of a word in 8086 memory is the byte
with the higher address.) The Id command does not require the presence
of the high- or low-order complement of these items. (For instance, in the
case of HIBYTE, a high-order word, it doesn’t matter if the low-order
word is present.)

• A BASE is the high-order word of a pointer.

• An OFFSET is the low-order word of a pointer.

7-14 C User’s Guide

Conceptual Framework for Fixups

• A HIB YTE is the high-order half of an OFFSET.

• A LOB YTE is the low-order half of an OFFSET.

HIBYTE | LOBYTE

OFFSET BASE

P O I N T E R

LOCATION Types

A LOCATION is specified by two data: (1) the LOCATION type, and (2)
where the LOCATION is. The first is specified by the LOC subfield of the
LOCAT field of the FIXUP record; the second is specified by the DATA
RECORD OFFSET subfield of the LOCAT field of die FIXUP record.

The link editor supports two fixup MODEs: “ self-relative” and
“ segment-relative. ’ ’

Self-Relative fixups support the 8- and 16-bit oflsets that are used in the
CALL, JUMP and SHORT-JUMP instructions. Segment-Relative fixups
support all other addressing modes of the 8086.

The TARGET is the location in MAS being referenced. (More explicitly,
the TARGET may be considered the lowest byte in the object being refer­
enced.) A TARGET is specified in one of eight ways. There are four
“ primary” ways, and four "secondary" ways. Each primary way of speci­
fying a TARGET uses two kinds of data: an INDEX-or-FRAME-
NUMBER ‘X’, and a displacement ‘D’.

• (TO) X is a SEGMENT INDEX. The TARGET is the Dth byte in
the LSEG identified by the INDEX.

• (TI) X is a GROUP INDEX. The TARGET is the Dth byte in the
LSEG identified by the INDEX.

• (T2) X is an EXTERNAL INDEX. The TARGET is the Dth byte
following the byte whose address is (eventually) given by the
External Name identified by the INDEX.

• (T3) X is a FRAME NUMBER. The TARGET is the Dth byte in
the FRAME identified by the FRAME NUMBER (that is, the
address of TARGET is (X*16)+D).

Object and Executable File F ormats 7-15

Conceptual Framework for Fixups

Each secondary way of specifying a TARGET uses only one data item:
the INDEX-or-FRAME-NUMBER X. An implicit displacement equal to
zero is assumed.

• (T4) X is a SEGMENT INDEX. The TARGET is the Oth (first)
byte in the LSEG identified by the INDEX.

• (T5) X is a GROUP INDEX. The TARGET is the 0th (first) byte in
the LSEG in the specified group that is eventually LOCATEd
lowest in MAS.

• (T6) X is an EXTERNAL INDEX. The TARGET is the byte
whose address is the External Name identified by the INDEX.

• (T7) X is a FRAME NUMBER. The TARGET is the byte whose
20-bit address is (X*16).

Note

The link editor does not support methods T3 and T7.

The following nomenclature is used to describe a TARGET:

TARGET: SI (<segment name>), <displacement> [TO]
TARGET: GI (<group name>), <displacement> [Tl]
TARGET: EI (<symbol name>), <displacement> [T2]
TARGET: SI (<segment name>) [T4]
TARGET: GI (<group name>) [T5]
TARGET: EI (<symbol name>) [T6]

The following examples illustrate how this notation is used:

TARGET: SI(CODE), 1024 The 1025th byte in the segment
“ CODE” .

TARGET: GI(DATAAREA) The location in MAS of a group
called “ DATAAREA” .

TARGET: EI(SIN) The address of the external subrou­
tine “ SIN” .

7-16 C User’s Guide

Conceptual Framework for Fixups

TARGET: EI(PAYSCHEDULE), 24 The 24th byte following the location
of an EXTERNAL data structure
called “ PAYSCHEDULE” .

Every 8086 memory reference is to a location contained within some
FRAME, where the FRAME is designated by the content of some seg­
ment register. For Id to form a correct, usable memory reference, it must
know what the TARGET is, and to which FRAME the reference is being
made. Thus, every fixup specifies such a FRAME in one of six ways.
Some use data X, which is in INDEX-or-FRAME-NUMBER, as above.
Others require no data.

The six methods of specifying frames are:

1. (F0) X is a SEGMENT INDEX. The FRAME is the canonic
FRAME of the LSEG defined by the INDEX.

2. (Fl) X is a GROUP INDEX. The FRAME is the canonic
FRAME defined by the group (that is, the canonic FRAME
defined by the LSEG in the group that is eventually LOCATEd
lowest in MAS).

3. (F2) X is an EXTERNAL INDEX. The FRAME is determined
when the External Name’s public definition is found. There are
three cases:

• (F2a) The symbol is defined relative to some LSEG, and
there is no associated GROUP. The LSEGs canonic
FRAME is specified.

• (F2b) The symbol is defined absolutely, without reference
to an LSEG, and there is no associated GROUP. The
FRAME is specified by the FRAME NUMBER subfield of
the PUBDEF record that gives the symbol’s definition.

• (F2c) Regardless of how the symbol is defined, there is an
associated GROUP. The canonic FRAME of the GROUP
is specified. (The group is specified by the GROUP
INDEX subfield of the PUBDEF Record.)

4. (F3) X is a FRAME NUMBER (specifying the obvious FRAME).

5. (F4) No X. The FRAME is the canonic FRAME of the LSEG
containing LOCATION.

6. (F5) No X. The FRAME is determined by the TARGET. There
are four cases:

Object and Executable File F ormats 7-17

Conceptual Framework for Fixups

• (F5a) The TARGET specifies a SEGMENT INDEX: in
this case, the FRAME is determined as in (F0).

• (F5b) The TARGET specifies a GROUP INDEX: in this
case, the FRAME is determined as in (FI).

• (F5c) The TARGET specifies an EXTERNAL INDEX: in
this case, the FRAME is determined as in (F2).

• (F5d) The TARGET is specified with an explicit FRAME
NUMBER: in this case the FRAME is determined as in
(F3).

Note

The link editor does not support frame methods F2b, F3, or F5d.

Nomenclature describing FRAMES is similar to the above nomenclature
for TARGETS.

FRAME SI (<segment name>) [F0]
FRAME GI (<group name>) [FI]
FRAME El (<symbol name>) [F2]

FRAME LOCATION [F4]
FRAME TARGET [F5]

FRAME NONE [F6]

For an 8086 memory reference, the FRAME specified by a self-relative
reference is usually the canonic FRAME of the LSEG containing the
LOCATION, and the FRAME specified by a segment relative reference is
the canonic FRAME of the LSEG containing the TARGET.

7-18 C User’s Guide

Self-Relative Fixups

Self-Relative Fixups
Self-relative fixups can be applied to LOCATIONS which are either 16-
or 32-bit OFFSETS or they are LOBYTES. The result of applying a self­
relative fixup to any other type of LOCATION is undefined.

Both the LOCATION and the TARGET must lie within the FRAME
specified for the fixup.

The value to be used in the fixup is defined as the displacement from the
byte in memory following the LOCATION to the TARGET.

If the LOCATION to be fixed-up is a LOBYTE, the fixup value must lie
in the range -128 to 127.

If the LOCATION to be fixed up is a 16-bit OFFSET, the fixup value must
lie in the range -32768 to 32767.

The fixup value is added to the existing contents of the LOCATION,
ignoring any overflow.

Self-relative fixups are typically applied to the relative displacement
values used in instructions such as conditional jumps.

Object and Executable File F ormats 7-19

Segment-Relative Fixups

Segment-Relative Fixups
Segment-relative fixups can be applied to any type of LOCATION.

The way in which a LOCATION containing a BASE component (that is, a
BASE or a POINTER) is fixed up depends on whether the code is to run
in real or virtual address mode. The contents of the BASE portion of a
LOCATION must ultimately be capable of being loaded into a segment
register; therefore, in real address mode this will be a paragraph number
and in virtual address mode this will be a selector value.

Fixup values for the BASE and OFFSET components of a LOCATION
are calculated as follows:

1. In real address mode:
The base fixup value (FBVAL) is defined as the FRAME
NUMBER of the FRAME specified in the fixup.
The offset fixup value (FOVAL) is defined as the offset of the TAR­
GET from the start of the FRAME specified in the fixup. This
offset must be > 0 and < FFFF.

2. In protected mode:
The base fixup value (FBVAL) is defined as the segment selector
of the FRAME specified in the fixup.
The offset fixup value (FOVAL) is defined as the offset of the TAR­
GET from the start of the FRAME specified in the fixup. This
offset must be > 0 and < the maximum segment size implied by the
segment selector for the FRAME; that is, (2** 16)-1 for 80286 seg­
ments and 16-bit 80386 segments, or (2**32)-1 for 32-bit 80386
segments.

The fixup values for BASE and OFFSET are applied to the LOCATION
as follows:

1. If the LOCATION is a BASE or a POINTER, then FBVAL is
stored in the BASE component of the LOCATION.

2. If the LOCATION is a POINTER, or a 16- or 32-bit OFFSET, or a
LOBYTE, then the offset fixup value (FOVAL) is added to the
existing contents of the OFFSET component of the LOCATION
ignoring any overflow.

7-20 C User's Guide

Segment-Relative Fixups

3. If the LOCATION is a HIBYTE, then FOVAL is divided by 256
and the result is added to the LOCATION, ignoring overflow.

Object and Executable File F ormats 7-21

Record Order

Record Order
An object code file must contain a sequence of one or more modules or a
library containing zero or more modules. A module is defined as a collec­
tion of object code defined by a sequence of object records. The follow­
ing syntax shows the valid orderings of records to form a module. In
addition, the given semantic rules provide information about how to inter­
pret the record sequence.

Note

The syntactic description language used below is defined in
WIRTH: CACM, November 1977, vol.#20, no.#ll, pp.#822-823.
The character strings represented by capital letters above are not
literals, but are identifiers that are further defined in the section
describing the record formats.

object file
tmodule
seg_grp
component
data

= tmodule
= T H E A D R seg-grp {component} modtail
- {LNAMES} {SEGDEF} {TYPDEFI E X T D E F I GRPDEF}
= data I debug_record
= content_def I thread_def I T Y P D E F I P U B D E F I E X T D E F

debug_record
content_def
thread_def
data_record
modtail

= L I N N U M
= data_record {FIXUPP}
= FIXUPP (containing only thread fields)
= LIDATA I L E D A T A
= M O D E N D

7-22 C User’s Guide

Record Order

The following rules apply:
• A FIXUPP record always refers to the previous D A T A record.
• All L N A M E S , SEGDEF, GRPDEF, TYPDEF, and E X T D E F records

must precede all records that refer to them.
• C O M E N T records may appear anywhere in a file, except as the first or

last record in a file or module, or within a content_def.

Object and Executable File F ormats 7-23

Introduction to the Record Formats

Introduction to the Record Formats
The following pages present diagrams of record formats in schematic
form. Here is a sample record format, to illustrate the various conven­
tions.

SAMPLE RECORD FORMAT
(SAMREC)

REC REC O R D C H K
TYP LENGTH N A M E N U M B E R S U M
xxH

| ¢= repeated =>

Title and Official Abbreviation
At the top is the name of the record format described, with an official
abbreviation. To promote uniformity among various programs, including
translators and debuggers, the abbreviation should be used in both code
and documentation. The record format abbreviation is always six letters.

The Boxes
Each format is drawn with boxes of two sizes. The narrow boxes
represent single bytes. The wide boxes represent two bytes each. The
wide dashed boxes represent a variable number of bytes, one or more,
depending upon content. The wide solid boxes represent 4-byte fields.

Rectyp
The first byte in each record contains a value between 0 and 255, indicat­
ing the record type. For records that have both 16- and 32-bit versions,
the low-order bit of the record type indicates the type: 0=16-bit, 1=32 bit.

7-24 C User’s Guide

Introduction to the Record Formats

Record Length
The second field in each record contains the number of bytes in the
record, exclusive of the first two fields.

Name
Any field that indicates a “ NAME” has the following internal structure:
the first byte contains a number between 0 and 127, inclusive, that indi­
cates the number of remaining bytes in the field. The remaining bytes are
interpreted as a byte string.

Most translators constrain the character set to be a subset of the ASCII
character set.

Number
A 4-byte NUMBER field represents a 32-bit unsigned integer, where the
first 8 bits (least-significant) are stored in the first byte (lowest address),
the next 8 bits are stored in the second byte, and so on.

Repeated or Conditional Fields
Some portions of a record format contain a field or a series of fields that
may be repeated one or more times. Such portions are indicated by the
“ repeated” or “ rpt” brackets below the boxes.

Similarly, some portions of a record format are present only if some given
condition is true; these fields are indicated by similar “ conditional” or
“ cond” brackets below the boxes.

Chksum
The last field in each record is a check sum, which contains the 2’s com­
plement of the sum (modulo 256) of all other bytes in the record. There­
fore, the sum (modulo 256) of all bytes in the record equals 0.

Object and Executable File F ormats 7-25

Introduction to the Record Formats

Bit Fields
Descriptions of contents of fields will sometimes be at the bit level.
Boxes with complete vertical lines drawn through them represent bytes or
words; the partial vertical lines indicate bit boundaries; thus the byte
represented below, has three bit-fields of 3-, 1-, and 4-bits.

1 bit 4 bits

T-MODULE HEADER RECORD
(THEADR)

REC RECORD T-MODULE C H K
TYP LENGTH N A M E S U M
80H

Every module output from a translator must have a T-MODULE
HEADER RECORD.

T-Module Name
The T-MODULE NAME provides a name for the T-MODULE.

LIST OF NAMES RECORD
(LNAMES)

REC
TYP
96H

RECORD
LENGTH N A M E

C H K
S U M

| ¢= repeated =>

This record provides a list of names that may be used in following SEG-
DEF and GRPDEF records as the names of Segments, Classes, and/or
Groups.

7-26 C User’s Guide

Introduction to the Record Formats

The ordering of LNAMES records within a module, together with the ord­
ering of names within each LNAMES Record, induces an ordering on the
names. Thus, these names are considered to be numbered: 1,2, 3, 4, ...
These numbers are used as “ Name Indices” in the Segment Name Index,
Class Name Index, and Group Name Index fields of the SEGDEF and
GRPDEF Records.

Name
NAME is a repeatable field which provides a name and which may have
zero length.

SEGMENT DEFINITION RECORD
(SEGDEF)

REC
TYP RE C O R D SEG SEGM E N T SEGM E N T CLASS

O V E R ­
LAY C H K

98H LENGTH ATTR LENGTH N A M E N A M E N A M E S U M
99H INDEX INDEX INDEX

SEGMENT INDEX values 1 through 32767, which are used in other
record types to refer to specific LSEGs, are defined implicitly by the
sequence in which SEGDEF Records appear in the object file.

In the REC TYP field, 98H and 99H describe 16- and 32-bit segments,
respectively.

Seg Attr
The SEG ATTR field provides information on various attributes of a seg­
ment, and has the following format:

ACBP F R A M E OFFSET
N U M B E R

¢ = conditional = }
repeat

Object and Executable File F ormats 7-27

Introduction to the Record Formats

The ACBP byte contains four numbers which are the A, C, B, and P attri­
bute specifications. This byte has the following format:

"A" (Alignment) is a 3-bit subfield that specifies the alignment attribute of
the LSEG. The semantics are defined as follows:

A=0 S E G D E F describes an absolute LSEG.
A=1 S E G D E F describes a relocatable, byte-aligned LSEG.
A=2 S E G D E F describes a relocatable, word-aligned LSEG.
A=3 S E G D E F describes a relocatable, paragraph-aligned LSEG.
A=4 S E G D E F describes a relocatable, page-aligned LSEG.
A=5 S E G D E F describes a relocatable, double-word-aligned LSEG.

(386 O M F only)

If A=0, the FRAME NUMBER and OFFSET fields will be present. Using
Id, absolute segments may be used for addressing purposes only. For
example, the starting address of a ROM and the symbolic names for
addresses within the ROM may be defined in this way. Id will ignore any
data specified as belonging to an absolute LSEG.

“ C” (Combination) is a 3-bit subfield that specifies the combination attri­
bute of the LSEG. Absolute segments (A=0) must have combination zero
(C=0). For relocatable segments, the C field encodes a number (0,1,2,4,5,6
or 7) that indicates how the segment can be combined. The interpretation
of this attribute is best given by considering how two LSEGs are com­
bined:

• Let X,Y be LSEGs, and let Z be the LSEG resulting from the com­
bination of X,Y.

• Let LX and LY be the lengths of X and Y, and let MXY denote the
maximum of LX, LY.

• Let G be the length of any gap required between the X- and Y-
components of Z to accommodate the alignment attribute of Y.

• Let LZ denote the length of the (combined) LSEG Z; let dx
(0<=dx<LX) be the offset in X of the (combined) LSEG Z; let dx
(0<=dx<LX) be the offset in X of a byte, and let dy similarly be the
offset in Y of a byte.

7-28 C User’s Guide

Introduction to the Record Formats

The following table gives the length LZ of the combined LSEG Z, and the
offsets dx’ and dy’ in Z for the bytes corresponding to dx in X and dy in Y.
Intel additionally defines alignment types 5 and 6 and also processes code
and data placed in segment with align-type.

Combination Attribute Example

C LZ dx’ dy’

2 LX+LY+G dx dy+LX+G Public
5 LX+LY+G dx dy+LX+G Stack
6 MXY dx dy Common

The table has no lines for C=0, C=l, C=3, C=4, and C=7. C=0 indicates
that the relocatable LSEG may not be combined; C=1 and C=3 are
undefined. C=4 and C=7 are treated like C=2. Cl, C4, and C7 all have
different meanings according to the Intel standard.

“ B” (Big) is a 1-bit subfield which, if 1, indicates that the Segment
Length is exactly 2**16 (2**32 in the case of 32-bit segments). In this
case the SEGMENT LENGTH field must contain zero.

The “ P” field must always be zero. The “ P” field is the “ Page
resident’ ’ field according to the Intel standard.

The FRAME NUMBER and OFFSET fields (present only for absolute
segments, A=0) specify the placement in MAS of the absolute segment.
The range of OFFSET is constrained to be between 0 and 15 inclusive. If
a value larger than 15 is desired for OFFSET, then an adjustment of the
FRAME NUMBER should be done.

Segment Length
The SEGMENT LENGTH field gives the length of the segment in bytes.
The length may be zero; if so, Id will not delete the segment from the
module. The SEGMENT LENGTH field is two bytes for a 16-bit segment
(Rectyp 98) and four bytes for a 32-bit segment (Rectyp 99). This is large
enough for numbers up to (2** 16)-1 and (2**32)-1, respectively. The B
attribute bit in the ACBP field (see SEG ATTR section) must be used to
indicate a length of (2**16) or (2**32).

Object and Executable File F ormats 7-29

Introduction to the Record Formats

Segment Name Index
The Segment Name is a name the programmer or translator assigns to the
segment. Examples: CODE, DATA, STACK, TAXDATA,
MODULEN AME_CODE. This field provides the Segment Name, by
indexing into the list of names provided by the LNAMES Record(s).

Class Name Index
The Class Name is a name the programmer or translator can assign to a
segment. If none is assigned, the name is null, and has length 0. The pur­
pose of Class Names is to allow the programmer to define a “ handle”
used in the ordering of the LSEGs in MAS. Examples: RED, WHITE,
BLUE; ROM FASTRAM, DISPLAYRAM. This field provides the Class
Name, by indexing into the list of names provided by the LNAMES
Record(s).

Overlay Name Index

Note

This is ignored in Id versions 2.40 and later, but supported in all ear­
lier versions. However, semantics differ from Intel semantics.

The Overlay Name is a name the translator and/or Id, at the programmer’s
request, applies to a segment. The Overlay Name, like the Class Name,
may be null. This field provides the Overlay Name, by indexing into the
list of names provided by the LNAMES Record(s).

Note

The “ Complete Name” of a segment is a 3-component entity
comprising a Segment Name, a Class Name, and an Overlay Name.
(The latter two components may be null.)

7-30 C User’s Guide

Introduction to the Record Formats

GROUP DEFINITION RECORD
(GRPDEF)

REC RE C O R D G R O U P G R O U P C H K
TYP LENGTH N A M E C O M P O N E N T S U M
9AH INDEX DESCRIPTOR

| ¢ = repeated = > |

Group Name Index
The Group Name is a name by which a collection of LSEGs may be refer­
enced. The important property of such a group is that, when the LSEGs
are eventually fixed in MAS, there must exist some FRAME which “ cov­
ers’ ’ every LSEG of the group.

The GROUP NAME INDEX field provides the Group Name, by indexing
into the list of names provided by the LNAMES Record(s).

Group Component Descriptor
Each GROUP COMPONENT DESCRIPTOR has the following format:

SI SEGM E N T
(FFH) INDEX

The first byte of the DESCRIPTOR contains OFFH; the DESCRIPTOR
contains one field, which is a SEGMENT INDEX that selects the LSEG
described by a preceding SEGDEF record.

Intel defines 4 other group descriptor types, each with its own meaning.
They are OFEH, OFDH, OfBH, and OfAH. The link editor will treat all of
these values the same as OFFH (i.e., it always expects OFFH followed by
a segment index, and it does not check to see if the value is actually OFF).

Object and Executable File F ormats 7-31

Introduction to the Record Formats

TYPE DEFINITION RECORD
(TYPDEF)

REC RECORD NAME EIGHT LEAF CHK
TYP
8EH

LENGTH (usually NULL) DESCRIPTOR SUM

| ¢ = repeated =>

The link editor uses TYPDEF records only for communal variable alloca­
tion. This is not Intel’s intended purpose. See “ Type Representations for
Communal Variables.’’

As many “ EIGHT LEAF DESCRIPTOR’’ fields as necessary are used to
describe a branch. (Every such field except the last in the record
describes eight leaves; the last such field describes from one to eight
leaves.)

TYPE INDEX values 1 through 32767, which are contained in other
record types to associate object types with object names, are defined
implicitly by the sequence in which TYPDEF records appear in the object
file.

Name
Use of this field is reserved. Translators should place a single byte con­
taining 0 in it (the representation of a name of length zero).

Eight-Leaf Descriptor
This field can describe up to eight Leaves.

EN LEAF
DESCRIPTOR

¢= repeated =>

The EN field is a byte: the 8 bits, left to right, indicate if the following 8
Leaves (left to right) are Easy (bit=0) or Nice (bit= 1).

7-32 C User’s Guide

Introduction to the Record Formats

The LEAF DESCRIPTOR field, which occurs between 1 and 8 times, has
one of the following formats:

The first format (single byte), containing a value between 0 and 127,
represents a Numeric Leaf whose value is the number given.

The second format, with a leading byte containing 129, represents a
Numeric Leaf. The number is contained in the following two bytes.

The third format, with a leading byte containing 132, represents a
Numeric Leaf. The number is contained in the following three bytes.

The fourth format, with a leading byte containing 136, represents a
Signed Numeric Leaf. The number is contained in the following four
bytes, sign extended if necessary.

PUBLIC NAMES DEFINITION RECORD
(PUBDEF)

REC
TYP RECORD PUBLIC PUBLIC PUBLIC TYPE CHK
90H
91H

LENGTH BASE NAME OFFSET INDEX SUM

4= ... repeated ... =>

This record provides a list of one or more PUBLIC NAMEs; for each one,
three data are provided: (1) a base value for the name, (2) the offset value
of the name, and (3) the type of entity represented by the name.

Object and Executable File F ormats 7-33

Introduction to the Record Formats

In the RECORD TYPE field, 90H and 91H describe 16- and 32-bit public
definition records, respectively.

Public Base
The PUBLIC BASE has the following format:

GROUP SEGMENT FRAME
INDEX INDEX NUMBER

<= conditional =>

The GROUP INDEX field has a format given earlier, and provides a
number between 0 and 32767 inclusive. A non-zero GROUP INDEX
associates a group with the public symbol, and is used as described in the
section of this chapter titled “ Conceptual Framework for Fixups,” case
(F2c). A zero GROUP INDEX indicates that there is no associated group.

The SEGMENT INDEX field has a format given earlier, and provides a
number between 0 and 32767, inclusive.

A non-zero SEGMENT INDEX selects an LSEG. In this case, the loca­
tion of each public symbol defined in the record is taken as a non­
negative displacement (given by a PUBLIC OFFSET field) from the first
byte of the selected LSEG, and the FRAME NUMBER field must be
absent.

A SEGMENT INDEX of 0 (legal only if GROUP INDEX is also 0) means
that the location of each public symbol defined in the record is taken as a
displacement from the base of the FRAME defined by the value in the
FRAME NUMBER field.

The FRAME NUMBER is present if both the SEGMENT INDEX and
GROUP INDEX are zero.

A non-zero GROUP INDEX selects some group; this group is taken as the
“ frame of reference” for references to all public symbols defined in this
record; that is, Id will perform the following:

1. Any fixup of the form:
TARGET: EI(P)
FRAME: TARGET

7-34 C User’s Guide

Introduction to the Record Formats

(where “ P” is a public symbol in this PUBDEF record) will be
converted by Id to a fixup of the form:

TARGET: SI(L),d
FRAME: GI(G)

where “ SI(L)” and “ d” are provided by the SEGMENT INDEX
and PUBLIC OFFSET fields. (The “ normal” action would have
the frame specifier in the new fixup be the same as in the old fixup:
FRAME: TARGET.)

2. When the value of a public symbol, as defined by the SEGMENT
INDEX, PUBLIC OFFSET, and (optional) FRAME NUMBER
fields, is converted to a {base,offset} pair, the base part will be
taken as the base of the indicated group. If a non-negative 16-bit
offset cannot then complete the definition of the public symbol’s
value, an error occurs.

A GROUP INDEX of zero selects no group. Id will not alter the FRAME
specification of fixups referencing the symbol, and will take, as the base
part of the absolute value of the public symbol, the canonic frame of the
segment (either LSEG or PSEG) determined by the SEGMENT INDEX
field.

Public Name
The PUBLIC NAME field gives the name of the object whose location in
MAS is made available to other modules. The name must contain one or
more characters.

Public Offset
The PUBLIC OFFSET field is a 16-bit value (Rectyp=90H), or a 32-bit
value (Rectyp=91H), which is either the offset of the Public Symbol with
respect to an LSEG (if SEGMENT INDEX > 0), or the offset of the Public
Symbol with respect to the specified FRAME (if SEGMENT INDEX = 0).

Object and Executable File F ormats 7-35

Introduction to the Record Formats

Type Index
The TYPE INDEX field identifies a single preceding TYPDEF (Type
Definition) Record containing a descriptor for the type of entity
represented by the Public Symbol. This field is ignored by Id.

EXTERNAL NAMES DEFINITION RECORD
(EXTDEF)

REC RECORD EXTERNAL TYPE CHK
TYP
8CH

LENGTH NAME INDEX SUM

< = repeated=>

This record provides a list of external names, and for each name, the type
of object it represents. Id will assign to each External Name the value
provided by an identical Public Name (if such a name is found).

External Name
This field provides the name, which must have non-zero length, of an
external object.

Inclusion of a Name in an External Names Record is an implicit request
that the object file be linked to a module containing the same name
declared as a Public Symbol. This request obtains whether or not the
External Name is referenced within some FIXUPP Record in the module.

The ordering of EXTDEF Records within a module, together with the ord­
ering of External Names within each EXTDEF Record, induces an order­
ing on the set of all External Names requested by the module. Thus,
External Names are considered to be numbered 1, 2, 3, 4, These
numbers are used as “ External Indices” in the TARGET DATUM and/or
FRAME DATUM fields of FIXUPP Records to refer to a particular Exter­
nal Name.

7-36 C User’s Guide

Introduction to the Record Formats

Note

8086 External Names are numbered positively: 1,2,3,- This is a
change from 8080 External Names, which were numbered starting
from zero: 0,1,2,... This conforms with other 8086 Indices (Seg­
ment Index, Type Index, etc.) which use 0 as a default value with
special meaning.

External indices may not reference forward. For example, an external
definition record defining the kth object must precede any record referring
to that object with index k.

Type Index
This field identifies a single preceding TYPDEF (Type Definition) record
containing a descriptor for the type of object named by the External Sym­
bol.

The TYPE INDEX is used only in communal variable allocation by the
link editor.

LINE NUMBERS RECORD
(LINNUM)

REC
TYP
94H
95H

RECORD
LENGTH

LINE
NUMBER

BASE

LINE
NUMBER

LINE
NUMBER
OFFSET

CHK
SUM

| < = repeated==>

This record provides the means by which a translator may pass the
correspondence between a line number in source code and the
corresponding translated code.

In the RECORD TYPE field, 94H and 95H describe 16- and 32-bit line
number records, respectively.

Object and Executable File F ormats 7-37

Introduction to the Record Formats

Line-Number Base
The LINE-NUMBER BASE has the following format:

GROUP INDEX SEGMENT
(ignored) INDEX

The SEGMENT INDEX determines the location of the first byte of code
corresponding to some source line number.

Line-Number
A line number between 0 and 32767, inclusive, is provided in binary by
this field. The high-order bit is reserved for future use and must be zero.

Line Number Offset
The LINE-NUMBER OFFSET field is either a 16-bit value (Rectyp=94H)
or a 32-bit value (Rectyp=95H) that is the offset of the line number with
respect to an LSEG (if SEGMENT INDEX > 0).

LOGICAL ENUMERATED DATA RECORD
(LEDATA)

REC
TYP
AOH
A1H

RECORD
LENGTH

SEGMENT
INDEX

ENUMERATED
DATA

OFFSET

DATA CHK
SUM

repeat

This record provides contiguous data from which a portion of an 8086
memory image may be constructed.

In the RECORD TYPE field. AOH and A1H describe 16- and 32-bit
LEDATA records, respectively.

7-38 C User’s Guide

Introduction to the Record Formats

Segment Index
This field must be non-zero and specifies an index relative to the SEG­
MENT DEFINITION RECORDS found previous to the LEDATA
RECORD.

Enumerated Data Offset
This field specifies either a 16-bit offset (Rectype=AOH) or a 32-bit offset
(Rectyp=AlH) that is relative to the base of the LSEG specified by the
SEGMENT INDEX and defines the relative location of the first byte of
the DAT field. Successive data bytes in the DAT field occupy succes­
sively higher locations of memory.

Data
This field provides up to 1024 consecutive bytes of relocatable or abso­
lute data.

LOGICAL ITERATED DATA RECORD
(LIDATA)

REC
TYP RECORD SEGMENT ITERATED ITERATED CHK
A2H LENGTH INDEX DATA DATA SUM
A3H OFFSET BLOCK

(¢= repeated =>j

This record provides contiguous data from which a portion of an 8086
memory image may be constructed.

In the RECORD TYPE field, A2H and A3H describe 16- and 32-bit
LIDATA records, respectively.

Segment Index
This field must be non-zero and specifies an index relative to the SEG-
DEF records found previous to the LIDATA RECORD.

Object and Executable File F ormats 7-39

Introduction to the Record Formats

Iterated Data Offset
This field specifies either a 16-bit offset (Rectype=A2H) or a 32-bit offset
(Rectyp=A3H) that is relative to the base of the LSEG specified by the
SEGMENT INDEX and defines the relative location of the first byte in
the ITERATED DATA BLOCK. Successive data bytes in the ITERATED
DATA BLOCK occupy successively higher locations of memory.

Iterated Data Block
This repeated field is a structure specifying the repeated data bytes. The
structure has the following format:

REPEAT BLOCK CONTENT
COUNT COUNT

Note

The link editor cannot handle LIDATA records whose ITERATED
DATA BLOCK is larger than 512 bytes.

Repeat Count
This field specifies the number of times that the CONTENT portion of
this ITERATED DATA BLOCK is to be repeated. REPEAT COUNT
must be non-zero.

Block Count
This field specifies the number of ITERATED DATA BLOCKS that are to
be found in the CONTENT portion of this ITERATED DATA BLOCK. If
this field has value zero, then the CONTENT portion of this ITERATED
DATA BLOCK is interpreted as data bytes. If non-zero, then the CON­
TENT portion is interpreted as that number of ITERATED DATA
BLOCKS.

7-40 C User’s Guide

Introduction to the Record Formats

Content
This field may be interpreted in one of two ways, depending on the value
of the previous BLOCK COUNT field.

If BLOCK COUNT is zero, then this field is a 1-byte count followed by
the indicated number of data bytes.

If BLOCK COUNT is non-zero, then this field is interpreted as the first
byte of another ITERATED DATA BLOCK.

Note

From the outermost level, the number of nested ITERATED DATA
BLOCKS is limited to 17, i.e., the number of levels of recursion is
limited to 17.

FIXUP RECORD
(FIXUPP)

REC
TYP RECORD THREAD CHK
9CH LENGTH or SUM
9DH FIXUP

¢= repeated => |

This record specifies 0 or more fixups. Each fixup requests a modification
(fixup) to a LOCATION within the previous DATA record. A data record
may be followed by more than one fixup record that refers back to it.
Each fixup is specified by a FIXUP field that specifies four data: a loca­
tion, a mode, a target, and a frame. The frame and the target may be
specified totally within the FIXUP field, or may be specified by reference
to a preceding THREAD field.

A THREAD field specifies a default target or frame that may subse­
quently be referred to in identifying a target or a frame. Eight threads are
provided: four for frame specification and four for target specification.
Once a target or frame has been specified by a THREAD, it may be
referred to by following FIXUP fields (in the same or following FIXUPP
records), until another THREAD field with the same type (TARGET or
FRAME) and Thread Number (0 - 3) appears (in the same or another FIX­
UPP record).

Object and Executable File F ormats 7-41

Introduction to the Record Formats

In the RECORD TYPE field, 9CH and 9DH describe 16- and 32-bit FIX-
UPP records, respectively.

Thread
THREAD is a field with the following format:

TRD INDEX]
<= conditional => j

The TRD DAT (ThReaD DATa) subfield is a byte with this internal struc­
ture:

0 D Z METHOD THRED

The “ Z” is a 1-bit subfield, currently without any defined function, that is
required to contain 0.

The “ D” subfield is one bit that identifies what type of thread is being
specified. If D=0, then a target thread is being defined; if D=l, then a
frame thread is being defined.

METHOD is a 3-bit subfield containing a number between 0 and 3 (D=0)
or a number between 0 and 6 (D=l).

If D=0, then METHOD = (0, 1, 2, 3, 4, 5, 6, 7) mod 4, where the 0, ..., 7
indicate methods TO, ..., T7 of specifying a target. Thus, METHOD indi­
cates what kind of INDEX or FRAME NUMBER is required to specify
the target, without indicating if the target will be specified in a primary or
secondary way. Note that methods 2b, 3, and 7 are not supported by Id.

If D=l, then METHOD = 0, 1, 2, 4, 5, corresponding to methods F0, ..., of
specifying a frame. Here, METHOD indicates what kind (if any) of Index
is required to specify the frame. Note that methods 3 and 5d are not sup­
ported by Id.

THRED is a number between 0 and 3, and associates a Thread Number to
the frame or target defined by the THREAD field.

7-42 C User’s Guide

Introduction to the Record Formats

INDEX contains a Segment Index, Group Index, or External Index
depending on the specification in the METHOD subfield of the TRD field.
This subfield will not be present if F4 or F5 are specified by METHOD.

Fixup
FIXUP is a field with the following format:

LOCAT FIX FRAME TARGET TARGET
DAT DATUM DATUM DISPLACEMENT

<= conditional => <= conditional => ¢ = conditional =>

LOCAT is a byte pair with the following format:

¢= lo byte=> | hi bytez=$> |

1 M LOC DATA RECORD OFFSET

M is a 1-bit subfield that specifies the mode of the fixups: self-relative
(M=0) or segment-relative (M=l).

Note

Self-Relative fixups may not be applied to LIDATA records.

LOC is a four-bit subfield indicating the type of location that is to be
fixed up:

Object and Executable File F ormats 7-43

Introduction to the Record Formats

0 8 bit lobyte
1 16 bit offset
2 16 bit base
3 32 bit pointer
4 8 bit hibyte
5 16 bit offset (linker resolved)
9 32 bit offset
11 48 bit pointer
13 32 bit offset (linker resolved)

LOC values 9,11, and 13 are only valid in 32-bit FIXUPP records (record
type 9D). All values not mentioned are invalid.

The DATA RECORD OFFSET is a number between 0 and 1023,
inclusive, that gives the relative position of the lowest order byte of
LOCATION (the actual bytes being fixed up) within the preceding DATA
record. The DATA RECORD OFFSET is relative to the first byte in the
data fields in the DATA RECORDS.

Note

It is possible for the value of DATA RECORD OFFSET to designate
a “ location” within a REPEAT COUNT subfield or a BLOCK
COUNT subfield of the ITERATED DATA field. Such a reference
is an error. The action of Id on such a malformed record is
undefined.

FIX DAT is a byte with the following format:

F FRAME T P TARGT

Note

Frame method 2b, F3, and F5d are not supported. Target method T3
and T7 are not supported.

7-44 C User’s Guide

Introduction to the Record Formats

F is a 1-bit subfield that specifies whether the frame for this FIXUP is
specified by a thread (F=l) or explicitly (F=0).

FRAME is a number interpreted in one of two ways as indicated by the F
bit. If F is zero, FRAME is a number between 0 and 5 and corresponds to
methods F0, ..., F5 of specifying a FRAME. If F=l, then FRAME is a
thread number (0-3). It specifies the frame most recently defined by a
THREAD field that defined a frame thread with the same thread number.
(Note that the THREAD field may appear in the same, or in an earlier
FIXUPP record.)

“ T” is a 1-bit subfield that specifies whether the target specified for
this fixup is defined by reference to a thread (T=l), or is given explicitly
in the FIXUP field (T=0).

“ P” is a 1-bit subfield that indicates whether the target is specified in a
primary way (requires a TARGET DISPLACEMENT, P=0) or specified in
a secondary way (requires no TARGET DISPLACEMENT, P=l). Since a
target thread does not have a primary/secondary attribute, the P bit is the
only field that specifies the primary/secondary attribute of the target
specification.

TARGT is interpreted as a 2-bit subfield. When T=0, it provides a
number between 0 and 3, corresponding to methods TO, ..., T3 or T4, ...,
T7, depending on the value of P (P can be interpreted as the high-order bit
of TO, ..., T7). When the target is specified by a thread (T=l), then
TARGT specifies a thread number (0-3).

FRAME DATUM is the “ referent” portion of a frame specification, and
is a Segment Index, a Group Index, or an External Index. The FRAME
DATUM subfield is present only when the frame is specified neither by a
thread (F=0) nor explicitly by methods F4 or F5 or F6.

TARGET DATUM is the “ referent’ ’ portion of a target specification, and
is a Segment Index, a Group Index, an External Index, or a Frame
Number. The TARGET DATUM subfield is present only when the target
is not specified by a thread (T=0).

TARGET DISPLACEMENT is the displacement required by “ primary”
methods of specifying TARGETS. This field is 2 bytes long in 16-bit FIX­
UPP records (Rectyp=9CH) and 4 bytes long in 32-bit FIXUPP records
(Rectyp=9DH). This subfield is present if P=0.

Object and Executable File F ormats 7-45

Introduction to the Record Formats

Note

All these methods are described in the section of this chapter titled
“ Conceptual Framework for Fixups.”

MODULE END RECORD
(MODEND)

REC
TYP RECORD MOD START CHK
8AH
8BH

LENGTH TYP ADDRS SUM

(¢= conditional =>

This record serves two purposes. It denotes the end of a module and indi­
cates whether the module just terminated has a specified entry point for
initiation of execution. If the latter is true, the execution address is
specified.

In the RECORD TYPE field, 8AH and 8BH describe 16- and 32-bit
MODEND records, respectively.

Mod Type
This field specifies the attributes of the module. The bit allocation and
associated meanings are as follows:

MATTR Z Z Z Z Z L

7-46 C User’s Guide

Introduction to the Record Formats

MATTR is a 2-bit subfield that specifies the following module attributes:

MATTR MODULE ATTRIBUTE_______________

0 Non-main module with no START ADDRS
1 Non-main module with START ADDRS
2 Main module with no START ADDRS
3 Main module with START ADDRS

“ L” indicates whether the START ADDRS field is interpreted as a logi­
cal address that requires fixing up by Id (L=l). Note that with Id, L
must always equal 1.

“ Z” indicates that this bit has not currently been assigned a function.
These bits are required to be zero.

Physical start addresses (L=0) are not supported.

The START ADDRS field (present only if MATTR is 1 or 3) has the fol­
lowing format:

START ADDRS

END FRAME TARGET TARGET
DAT DATUM DATUM DISPLACEMENT

<=: conditional => | conditional = $ | ¢ = conditional =>

The starting address of a module has all the attributes of any other logical
reference found in a module. The mapping of a logical starting address to
a physical starting address is done in exactly the same manner as mapping
any other logical address to a physical address as specified in the discus­
sion of fixups and the FIXUPP record. The above subfields of the START
ADDRS field have the same semantics as the FIX DAT, FRAME
DATUM, TARGET DATUM, and TARGET DISPLACEMENT fields in
the FIXUPP record. Only “ primary” fixups are allowed. Frame method
F4 is not allowed.

The TARGET DISPLACEMENT field is 2 bytes in a 16-bit MODEND
record (Rectyp=8AH) and 4 bytes in a 32-bit MODEND record
(Rectyp=8BH).

Object and Executable File F ormats 7-47

Introduction to the Record Formats

COMMENT RECORD
(COMENT)

REC RECORD COMMENT CHK
TYP
88H

LENGTH TYPE COMMENT SUM

This record allows translators to include comments in object text.

Comment Type
This field indicates the type of comment carried by this record. This
allows comments to be structured for those processes that wish to selec­
tively act on comments. The format of this field is as follows:

NP NL Z Z z z z z COMMENT
CLASS

The NP (NOPURGE) bit, if 1, indicates that it is not able to be purged by
object file utility programs which implement the capability of deleting
COMENT record.

The NL (NOLIST) bit, if 1, indicates that the text in the COMMENT field
is not to be listed in the listing file of object file utility programs which
implement the capability of listing object COMMENT records. In the
above diagram, “ Z” indicates no value and must equal zero.

The COMMENT CLASS field is defined as follows:

0 Language translator comment.
1 Intel copyright comment. The NP bit must be set.

2-155 Reserved for Intel use. (See Note 1 below.)

156-255 Reserved for users. Intel products will apply no
semantics to these values. (See Note 2 below.)

7-48 C User’s Guide

Introduction to the Record Formats

NOTES:

1. Class value 159 is used to specify a library to add to the link
editor’s library search list. The comment field will contain the
name of the library. Note that unlike all other name specifications,
the library name is not prefixed with its length. Its length is deter­
mined by the record length.

2. Class value 156 is used to specify a DOS level number. When the
class value is 156, the comment field will contain a two-byte
integer specifying a DOS level number.

3. Class value 161 is used to indicate that the module contains UNIX
System V extensions to OMF, such as the various 32-bit record
types.

Comment
This field provides the commentary information.

Object and Executable File F ormats 7-49

Numeric List of Record Types

Numeric List of Record Types

*6E RHEADR *92 LOCSYM
*70 REGINT *93 MLOC386
*72 REDATA 94 LINNUM

•X
- RIDATA 95 MLIN386

*76 OVLDEF 96 LNAMES
*78 ENDREC 98 SEGDEF
*7A BLKDEF 99 MSEG386
*7C BLKEND 9A GRPDEF
*7E DEBSYM 9C FIXUPP
80 THEADR 9D MFIX386
*82 LHEADR *9E (none)
*84 PEDATA AO LEDATA
*86 PIDATA A1 MLED386
88 COMENT A2 LIDATA
8A MODEND A3 MLID386
8B H386END *A4 LIBHED
8C EXTDEF *A6 LIBNAM
8E TYPDEF *A8 LIBLOC
90 PUBDEF *AA LIB DIC

91 MPUB386

Note

The record types marked with an asterisk are not supported by the
link editor. They will be ignored if they are found in an object
module.

7-50 C User’s Guide

Type Representations for Communal Variables

'type Representations for Communal
Variables
This section defines the UNIX System V standard for communal variable
allocation on the 8086 and 80286.

A communal variable is an uninitialized public variable whose final size
and location are not fixed at compile time. Communal variables are simi­
lar to FORTRAN common blocks in that if a communal variable is
declared in more than one object module being linked together, then its
actual size will be the largest size specified in the several declarations. In
the C language, all uninitialized public variables are communal. The fol­
lowing example shows three different declarations of the same C commu­
nal variable:

char foo [4] ; /* In file a . c */
char foo [1]; /* In file b . c */
char foo[1024]; /* In file c . c */

If the objects produced from a.c, b.c, and c.c are linked together, then the
linker will allocate 1024 bytes for the char array “ foo.”

A communal variable is defined in the object text by an external
definition record (EXTDEF) and the type definition record (TYPDEF) to
which it refers.

The TYPDEF for a communal variable has the following format:

REC RECORD EIGHT LEAF CHK
TYP
8EH

LENGTH 0 DESCRIPTOR SUM

The EIGHT LEAF DESCRIPTOR field has the following format:

EN LEAF
DESCRIPTOR

Object and Executable File F ormats 7-51

Type Representations for Communal Variables

The EN field specifies whether the next 8 leaves in the LEAF DESCRIP­
TOR field are EASY (bit = 0) or NICE (bit = 1). This byte is always zero
for TYPDEFS for communal variables.

The LEAF DESCRIPTOR field has one of the following two formats.
The format for communal variables in the default data segment (near
variables) is as follows:

NEAR VAR LENGTH VAR
62H TYP IN BITS SUBTYP

¢ = optional = $

The VAR TYP field may be either SCALAR (7BH), STRUCT (79H), or
ARRAY (77H). The VAR SUBTYP field (if any) is ignored by Id. The
format for communal variables not in the default data segment (far vari­
ables) is as follows:

FAR VAR NUMBER OF ELEMENT
61H TYP ELEMENTS TYPE

77H INDEX

The VARiable TYPe field must be ARRAY (77H). The length field
specifies the NUMBER OF ELEMENTS, and the ELEMENT TYPE
INDEX is an index to a previously defined TYPDEF whose format is that
of a near communal variable.

The format for the LENGTH IN BITS or NUMBER OF ELEMENTS
fields is the same as the format for the LEAF DESCRIPTOR field,
described in the TYPDEF record format section of this chapter.

Link Time Semantics

All EXTDEFs referencing a TYPDEF of the previously described formats
are treated as communal variables. All others are treated as externally
defined symbols for which a matching public symbol definition (PUB-
DEF) is expected. A PUBDEF matching a communal variable definition
will override the communal variable definition. Two communal variable
definitions are said to match if the names given in the definitions match.
If two matching definitions disagree as to whether a communal variable is
near or far, the linker will assume the variable is near.

7-52 C User’s Guide

Type Representations for Communal Variables

If the variable is near, then its size is the largest specified for it. If the
variable is far, then the link editor issues a warning if there are conflicting
array element size specifications; if there are no such conflicts, then the
variable’s size is the element size times the largest number of elements
specified. The sum of the sizes of all near variables must not exceed 64K

^ytes. The sum of the sizes of all far variables must not exceed the size
of the machine’s addressable memory space.

“ Huge” Communal Variables

A far communal variable whose size is larger than 64K bytes will reside
in segments that are contiguous (8086) or have consecutive selectors
(80286). No other data items will reside in the segments occupied by a
huge communal variable.

If the linker finds matching huge and near communal variable definitions,
it issues a warning message, since it is impossible for a near variable to
be larger than 64K bytes.

Object and Executable File F ormats 7-53

The Segmented x.out Format

The Segmented x.out Format
This section describes the executable object file format used in XENIX
System V and in UNIX System V when the -xenix option is used. The for­
mat used is an extension to the existing x.out format, specifically
enhanced for the segmented architecture of the 286 CPU. Note that x.out
is a name for the format of the file, the actual executable file will be
called a.out by default.

The UNIX System V linker (Ibin/ld, see the “ Linking with the cc Com­
mand” chapter) will link the Intel 86 Relocatable Object Module Format
into the executable format described in this section.

The UNIX System V product supports a subset of segmented OMF. Other
parts are specified here for use by other vendors, and to reserve their
meaning for possible future use. Those parts supported in this release of
UNIX System V are:

• The x.out header
• The x.out extended header
• The file segment table
• Multiple non-iterated text segments
• Multiple non-iterated data segments
• Symbol table segments in the format described herein

Note specifically that the machine-dependent table is not supported. The
iterated text/data feature is supported by the kernel, but the UNIX System
V linker will expand iterated records.

General Description of x.out
The following is a general description of the x.out object file format,
extended to handle segmentation. It implements iterated text and data
segments, huge, large, middle, and small model, as well as block align­
ment to improve the efficiency of loading executable files.

7-54 C User’s Guide

The Segmented x.out Format

Note

The default file name produced by the linker is a.out regardless of
the actual file format used. Any mention of x.out in this guide is
referring only to the format of OMF executable files. * •

The extensions to the existing format consist of adding a file segment
table that describes and points to various (possibly block-aligned) file
segments. A file segment may contain a memory image, may indicate
how to construct a memory image (iterated text or data), or may contain
symbols or other non-executable information. In addition to the file seg­
ment table, there is an optional machine-dependent table.

The header must be first item in the object file, and the extended header
must immediately follow the header. The extended header indicates the
segment and (optional) machine-dependent tables’ sizes and positions.
Although the segment table is not block aligned, individual entries will
line up on a multiple of 32 bytes (the size of a segment table entry). The
segment table indicates the sizes and positions of the remaining file seg­
ments. The file segments may be aligned on a boundary that is a multiple
of 512 bytes, with that multiple stored in the extended header, or at loca­
tion zero if the file segments are not block aligned.

The segment table is an array of records describing the file segments,
each containing:

• A segment type: text, data, symbols, etc.
• Segment attributes, specific to the type of segment.
• A file pointer to the (possibly iterated) text/data for this segment.
• A physical size, the size of the segment in the file.
• A virtual size, the size the segment will occupy in memory.
• A location counter, this segment’s current base address, usually 0.

A sample of a segment table entry is shown below. The xs fields in this
data structure are referred to throughout the remaining discussion in this
section.

Object and Executable File F ormats 7-55

The Segmented x.out Format

Segment table entry

struct xseg {
unsigned shortxs..type;
unsigned short xs_attr;
unsigned short xs_seg;
unsigned short xs_sres;
long xs_filpos;
long xs_psize;
long xs_vsize;
long xs_rbase;
long xs_lres;
long xs_lres2;

/* x.out segment table entry */
/* segment type */
/* segment attributes */
/ * segment number */
/* unused */

/* file position */
/* physical size (in file) */
/* virtual size (in core) */
/* relocation base address */
/* unused */
/* unused */

The segment table is a contiguous array of the above structures. Each file
segment has a corresponding segment table entry that describes the
segment’s position xsjilpos and physical size xsjpsize in the file. If there
is no associated file segment, both fields must be set to zero.

The kernel’s local descriptor table (LDT) can be built from the virtual
size, the segment type, and segment attribute fields.

Example of File Layout
This section provides an example of the layout of an x.out file where:

• The segment table has two entries (segments).

• The file page size is 512 bytes.
• Both file segments are smaller than 512 bytes.
• The second file segment contains iterated data.

Accessing the machine-dependent table and the file segment table must
always be done through the absolute file pointers in the extended header.
The ordering of the two tables and file segments shown above is not
required to be consistent with the x.out UNIX System V specification.

Iterated Segments
The data structure for an iterated sesiment is shown below:

7-56 C User’s Guide

The Segmented x.out Format

struct xiter {
long xi size; /* byte count */
long xi rep;/* replication count */
long xi offset; /* destination offset in segment */

};

If the segment contains iterated text/data (indicated by a bit in the xs_attr
field), the xsJilpos field is the file position of some number of iteration
records mixed with the text/data to be iterated. If any part of a segment is
iterated, then all of that segment is represented as iterated; non-iterated
portions may be represented by an iteration record with a replication
count of one.

The format of the text/data to be iterated is:

<iteration record> <text/data> citeration record> <text/data> ...

where each <iteration record> is of the above “ struct xiter” data struc­
ture. Each iteration record is followed by xi_size bytes of text/data that
are to be placed in the current segment at the specified offset xi_offset
x i je p times. When xs_psize bytes of iteration records and text/data have
been expanded, the iteration is complete.

Under UNIX System V, areas of memory that are initialized by more than
one iteration record will have the contents of those memory areas
undefined. Areas of memory that are not initialized by any iteration
records will be zeroed out. An iteration byte count xi_size of zero will
not result in any iteration. Portions of a segment that are to be bss sec­
tions should use an iteration record with a non-zero byte count and repli­
cate one or more zeroed data bytes. For more information on bss sec­
tions, see the chapter on the Common Object File Format in this book.

This representation of iterated text/data will handle iterations that contain
very large replication counts and/or very large non-iterated sizes.

Non-Iterated Segments and Implicit bss
If the iteration bit in xs_attr is not set, no iterations are required to initial -
ize the segment. If the implicit bss bit in the xs_attr field is set and the
virtual size is greater than the physical size, then the rest of the segment
(up to xs_vsize bytes) is filled with zeros by the kernel loader. This impli­
cit bss definition means that small and middle model executables ’ single
data segments may still contain unexpanded bss without the use of
explicit iteration records.

Object and Executable File F ormats 7-57

The Segmented x.out Format

Segments made up entirely of implicit “ C” bss need only set the physical
size to zero, and set the implicit bss bit. This eliminates the need for any
file segment containing data or iteration records. If there are no iterations
and no implicit bss, the virtual size of the segment xs_vsize must be the
same as the physical size xs__psize, and a single copy of the text/data
located at xsjtlpos is all that is required to initialize the segment.

Large Model
With x.out format, large model is supported by allowing multiple logical
text and/or data segments. Middle and small models are simpler cases,
with perhaps single logical segments for data (or both text and data).
Iterated segments are independent of memory model.

Special Header Fields
The model bits in the x_renv field of the main header, XE_LDATA and
XE_LTEXT, usually indicate the default size of data and text pointers used
in the executable code. The kernel depends on these two bits to indicate
the size of data and text pointers passed in system calls. However, since
multiple segments are allowed in small and middle model, there can be
little other meaning attached to these bits. Passing near data and/or text
pointers implies use of the first data and text segments, respectively.

Also in the x_renv field, the absolute bit, XE_ABS, identifies a standalone
executable file. When this bit is set, the extended header stack size field
is used as the default physical load address. The UNIX System V kernel
loader will not load a binary if the XE_ABS bit is set. The UNIX System
V boot loader will not load a binary unless the XE_ABS bit is set. See the
manual page on ld(CP) for information about how to set the XE_ABS bit
and the physical load address.

Symbol Table
The data structure for the x.out symbol table is shown below:

7-58 C User’s Guide

The Segmented x.out Format

struct sym { /* x.out symbol table entry */
unsigned short s_type;
unsigned short s_seg;
long s_value;

};

The symbol table differs from the previous x.out format only in that the
s_seg field now holds the selector of the segment that defines the symbol.
If the symbol is absolute, the value field holds the symbol’s value; other­
wise, it holds the offset in the indicated segment to which the symbol
refers.

The symbol name trails the above “ struct sym” data structure in the form
of a null terminated string. The type field values are defined in
/usr! include! sys/relsym.h.

The use of the xs_seg field in the segment table is undefined for symbol
table segments. Its use may be defined by the particular symbol table for­
mat used.

UNIX System V Executable Format
UNIX System V does not execute binaries that make use of selectors
below 0x3f or selectors that do not have the low 3 bits set (LDT, ring 3).
UNIX System V also requires that the first data selector be after the last
text selector. Binaries are allowed to have zero length segments or
“ holes” (unused selectors) in text or data, but holes in text may not con­
tain data selectors, and holes in data may not contain text selectors.

The fields, xext.xe_eseg:xexec.x_entry, must contain the initial cs:ip
addresses of the user process, csrip are the addresses of the starting seg­
ments of the program to be run.

Small-model impure binaries (text and data combined into a single seg­
ment) must have a single file segment, of type data, with a selector of at
least 0x47. It must contain all text, followed by all data, followed by bss.
The sizes of each must be stored in the x_text, x_data, and x_bss fields of
the main header. UNIX System V uses the value stored in the
xext.xe_eseg field as the text selector, which must be at least 0x3f and
less than the data selector. All text/data/bss binaries are executable
through the text selector, and all text/data/bss binaries are readable and
writable through the data selector. UNIX System V maps the text selector
to the same memory as the data selector.

Object and Executable File F ormats 7-59

The Segmented x.out Format

In addition to the above, the linker, Id, generates binaries that conform to
the following:

• Text selectors start at 0x3f.
• Data selectors start at the first free selector past text.
• All text selectors are contiguous.
• All data selectors are contiguous.
• Small-model impure binaries conform to the above specification,

with 0x47 as the data selector. In the symbol table, the selector
0x47 is associated with data symbols, and the selector 0x3f is asso­
ciated with text symbols, to allow adb and nm to present con­
sistent data to the user.

Selected Portions of Include Files
The following are selected portions of the usr/include/sys/x.out.h and
usr/include/sys/relsym.h include files:

struct xexec {
/* X.out header */
unsigned shortx magic;

/* magic number */
unsigned shortx ext;

/* size of header extension */
long x text;

/* size of text segment */
long x data;

/* size of initialized data */
long x bss;

/* size of uninitialized data */
long x syms;

/* size of symbol fable */
long x reloc;

/* relocation table length */
long x entry;

/* entry offset, see xe eseg */
char x cpu;/* cpu type & byte/word order */
char x relsym;

/* relocation & symbol format */
unsigned short x renv;

/* run-time environment */

7-60 C User’s Guide

The Segmented x.out Format

struct xext {/* X out header extension */
long xe_trsize;

/* size of text relocation */
long xe drsize;

/* size of data relocation */
long xe drsize;

/* size of data relocation */
long xe_dbase;

/* data relocation base */
long xe stksize;

/* stack size (if XE FS set) */
long xe segpos;

/* segment table position */
long xe segsize;

/* segment table size */
long xe mdtpos;

/* machine dependent table position */
long xe mdtsize;

/* machine dependent table size */
char xejndttype;

/* machine dependent table type */
char xe_pagesize;

/* file pagesize, in multiples of 512 */
char xe ostype;

/* operating system type */
char xe osvers;

/* operating system version */
unsigned short xe eseg;

/* entry segment (hardware dependent) */
unsigned short xe sres;

};
/* reserved */

/*
k Definitions for xexec.x renv (short).
★ w version compiled for★ XX extra (zero)* s set if segmented x.out★ a set if absolute (set up for physical address)
k i set if segment table contains iterated text/data
k h set if huge model data
k f set if floating point hardware required
k t set if large model text★ d set if large model data★ o set if text overlay
k f set if fixed stack
k p set if text pure
k s set if separate I & D
k

*/
e set if executable

Object and Executable File F ormats 7-61

The Segmented x.out Format

#define XE__V2 0x4000
/* up to and including 2.3 */

♦define XE_V3 0x8000 '
/* after version 2.3 */

♦define XE_VERS OxcOOO
/* version mask */

♦define XE_SEG 0x0800
/* segment table present */

♦define XE_ABS0x0400
/* absolute memory image (standalone) */

♦define XEJETER 0x0200
/* iterated text/data present */

♦define XE_HDATA. 0x0100
/* huge model data */

♦define XE_FPH0x0080
/* floating point hardware required *,/

♦define XE_LTEXT 0x0040
/* large model text */

♦define XE_LDMA 0x0020
/* large model data */

♦define XEOVER 0x0010
/* text overlay */

♦define XE_FS 0x0008
/* fixed stack */

♦define XE_PURE 0x0004
/* pure text */

♦define XE_SEP0x0002
/* separate I & D */

♦define XE_EXEC 0x0001
/* executable */

struct xseg {
/* x.out segment table entry */
unsigned shortxs_type;

/* segment type */
unsigned shortxs_attr;

/* segment attributes */
unsigned short xs_seg;

/* segment number */
unsigned short xs_sres;

/* unused */
long xs_filpos;

/* file position */
long xs_psize;

/* physical size (in file) */
long xs_vsize;

/* virtual size (in core) */
long xs_rbase;

/* re location , base add ress */
long >is I re s ;

/* unused */
long xs lre s2 ;

/■' unused */

7-62 C User’s Guide

The Segmented x.out Format

struct xiter {
/* x.out iteration record */
long xi_size;

/* byte count */
long xi_rep;

/* ♦ of repetitions */
long xi_offset;

/* destination offset in segment */
};

struct sym {
/* x.out symbol table entry */
unsigned short s_type;
unsigned short s_seg;
long s_value;

};

/*
* Definitions for xe_mdttype
*/
#defineXE_MDTNCNE 0

/* no machine dependent table */
#defineXE_MDT28 6 1

/* 1APX286 LDT */

/*
* Definitions for xe_ostype
*/
♦define XE_OSNCNE 0
#defineXE_OSUNlX Systan V 1

/* UNIX Systan V */
♦defineXEOSRMX 2

/* iRMX */

/*
* Definitions for xe_osvers
*/
♦de f ine XE_0SXV3 1

/* UNIX System V */

/*
* Definitions for xs_type:
* Values fron 64 to 127 are reserved.
*/
♦defineXS TNULL 0 /* unused segment */
♦defineXS TTEXT 1 /* text segment */
♦defineXS TDMA 2 /* data segment */
♦defineXS TSYMS
♦defineXS TREL4

3 /*
/*

symbol table segment */
relocation segment */

Object and Executable File F ormats 7-63

The Segmented x.out Format

/*
* Definitions for xs attr:
* Tr.e top bit is set if the file segment represents
* a memory image. The other 15 bits' definitions
* depend or: the type of file segment.
♦define XS_Ai'-ZM 0x8000

/* segment represents a memory image */
♦define XS_AK-.SK 0x7fff

/* type specific field mask */

/*
* Definitions for xs_attr, built by or'ing the following
* bit patterns: these values are valid for XS_TTEXT and
* XS_TDAZA file segments only.
•k i

♦define XS_AITEE 0x0001
/* contains iteration records */

♦define XS_AHUC-E 0x0002
/* contains huge element */

♦define XS_ABSS 0x0004
/* contains implicit bss */

♦define X3_APUF£ 0x0008
/* is read-only, may be shared */

♦define XS_AEDOWN 0x0010
/* segment expands downward */

/*
* Definitions for :-:s_attr.
* These values are valid for XS_TSYMS file segments only.
V
♦define XS_SXSZG CxOOOl

/* x.out segmented format */

When using the xs_seg field, note that if the XS_AMEM bit is set in the
xs_attr field, the file segment represents a memory image, and the value
placed in this field should be the segment number as used by the hardware
to reference the segment. This is the actual value placed in the segment
register. For the 286, it is simply an LDT selector (under UNIX System V,
if the privilege level is not 3, the file will not be executed). Otherwise the
segment is not a memory image, and the contents of the field are not
defined. File segments other than memory images may define and use
this field as needed.

There are two bits in the xexec.xjcpu field that are used to indicate the
CURRENT byte and word ordering of the non-character data fields of the
header, extended header, segment table, and symbol table. These bits,
X C _B S W A P and XC _W S W AP . do not indicate the byte and word ordering
of the target C P U . XC_CPU.

The segment table is not block aligned. No individual segment table
entry may straddle a block boundary.

7-64 C User’s Guide

Chapter 8

C Language Compatibility
with Assembly Language

Introduction 8-1

C Calling Sequence for 8086/80286 8-2

Entering an 8086/80286 Assembly Routine 8-3

8086/80286 Return Values 8-4

Exiting an 8086/80286 Routine 8-5

8086/80286 Program Example 8-6

80386 C-Language Calling Sequence 8-7

Entering an 80386 Assembly-Language Routine 8-8

80386 Return Values 8-9

Exiting an 80386 Routine 8-11

80386 Program Example 8-12

Introduction

Introduction
This chapter explains how to use 8086/286/386 assembly-language rou­
tines with C-language programs and functions. In particular, it explains
how to call assembly-language routines from C-language programs and
how to call C-language functions from an assembly-language routine.

This assembly-language interface is especially useful for those
assembly-language programmers who wish to use the functions of the
standard C library and other C libraries.

Note

Two different calling conventions are available. The 8086/80286
calling convention is established by configuring C-language pro­
grams with the -MO, -Ml, or -M2 option. The 80386 calling con­
vention is established by configuring C-language programs with the
-M3 option.

C Language Compatibility with Assembly Language 8-1

C Calling Sequence for 8086/80286

C Calling Sequence for 8086/80286
To receive values from C-language function calls or to pass values to C
functions, assembly-language routines must follow the C argument pass­
ing conventions. C-language function calls pass their arguments to the
given functions by pushing the value of each argument onto the stack.
The call pushes the value of the last argument first and the first argument
last. If an argument is an expression, the call computes the expression’s
value before pushing it onto the stack.

Arguments with char, int, or unsigned type occupy a single word (16
bits) on the stack. Arguments with long type occupy a double word (32
bits) with the value’s high-order word occupying the first word pushed
onto the stack. Arguments with float type are converted to double type
(64 bits). Note that char type arguments are zero-extended to int type
before being pushed on the stack.

If an argument is a structure, the function call pushes the last word of the
structure first and each successive word in turn until the first word is
pushed.

After a function returns control to a routine, the calling routine is respon­
sible for removing arguments from the stack.

8-2 C User’s Guide

Entering an 8086/80286 Assembly Routine

Entering an 8086/80286 Assembly
Routine
Assembly-language routines that receive control from C function calls
should preserve the contents of the BP, SI, and DI registers and set the
BP register to the current SP register value before proceeding with their
tasks. The following example illustrates the recommended instruction
sequence for entry to an assembly-language routine:

This is the same sequence used by the C compiler.

If this sequence is used, the last argument passed by the function call
(which is also the first argument given in the call’s argument list) is at
address “ [bp+4]” . Subsequent arguments begin at address “ [bp+6]” or
“ [bp+8]” depending on the size of the first argument.

This sequence is strongly recommended even if the SI and DI registers
are not modified, since it allows backtracing with the adb program during
program debugging.

entry:
push
mov
push
push

bp
bp, sp
di
si

C Language Compatibility with Assembly Language 8-3

8086/80286 Return Values

8086/80286 Return Values
Assembly-language routines that wish to return values to a C-language
program or receive return values from C functions must follow the C
return value conventions. C functions place return values that have int,
char, or unsigned type in the AX register. They place values with long
type in the AX and DX registers, with the high order word in DX.

To return a structure or a floating point value, C functions place the
address of the given value in the AX register. The structure or floating
point value must be in a static area in memory. Long addresses are
returned in the AX and DX registers with the segment selector in DX.

8-4 C User’s Guide

Exiting an 8086/80286 Routine

Exiting an 8086/80286 Routine
Assembly-language routines that return control to C programs should
restore the values of the BP, SI, and DI registers before returning control.
The following example illustrates the recommended instruction sequence
for exiting a routine:

pop si
pop di
mov sp, bp
pop bp
ret

This sequence does not change the AX, BX, CX, or DX registers or any of
the segment registers. It also does not remove arguments from the stack.
This is the responsibility of the calling routine.

C Language Compatibility with Assembly Language 8-5

8086/80286 Program Example

8086/80286 Program Example
To illustrate the assembly-language interface, consider the following
example of a C function:

add(i,j)
int i , j ;
{

return (it j) ;
}

If written as an assembly-language routine, this function must save the
proper registers, retrieve the arguments from the stack, add the argu­
ments, place the return value in the AX register, then restore registers and
return control. The following is a example of how the routine can be
written:

add :
push bp
mov bp, sp
push di
push si

mov ax,[bp+4
add ax,[bp+6

pop si
pop di
mov sp, bp
pop
ret

bp

If, on the other hand, the C function is to be called by an assembly-lan­
guage routine, the routine must contain instructions that push the argu­
ments on the stack in the proper order, call the function, and clear the
stack. It may then use the return value in the AX register. The following
is an example of the instructions that can do this:

push <j value>
push <i value>
call __add
add sp,* 4

Note that the C compiler does not preserve ES over calls. Assembly-lan­
guage routines need not preserve ES and should not assume that it will be
preserved if they make calls to routines written in C.

8-6 C User's Guide

80386 C-Language Calling Sequence

80386 C-Language Calling Sequence
To receive values from 80386 C-language function calls, or to pass values
to 80386 C-language functions, assembly-language routines must follow
the 80386 C-language argument-passing conventions.

C-language function calls pass arguments to the function by pushing each
argument onto the stack. The call pushes the last function argument first
and the first function argument last onto the stack. If an argument is an
expression, the call computes the expression’s value before pushing it
onto the stack.

Arguments with char, int, unsigned, short, or long type occupy a dou­
bleword (32 bits or 4 bytes) on the stack. Arguments with float type are
converted to double type (64 bits or 8 bytes). Note that char, unsigned
char, short, and unsigned short type arguments are sign extended or
zero extended, respectively, to int type before being pushed onto the
stack.

If an argument is a structure, the function call pushes the last word of the
structure first and each successive word in turn until the first word of the
structure is pushed onto the stack.

After a function returns control to the calling routine, the calling routine
is responsible for removing all function arguments from the stack.

C Language Compatibility with Assembly Language 8-7

Entering an 80386 Assembly-Language Routine

Entering an 80386 Assembly-
Language Routine
Assembly-language routines that receive control from 80386 C function
calls should preserve the contents of the EBP, ESI, EDI, and EBX regis­
ters. In addition, the routines should set the EBP register to the current
ESP register value before proceeding with their tasks. The following
example illustrates a recommended instruction sequence for entry to an
assembly-language routine:

entry :
push ebp
mov ebp, esp
push edi
push esi
push ebx

Note that this is the same routine that the compiler uses after pushing the
function arguments onto the stack.

If this sequence is used, the last function argument pushed by the function
call (which is also the first argument in the function’s argument list) is at
address “ [ebp+8]” . Subsequent arguments are at address “ [ebp+12]” or
“ [ebp+16]” , depending on the size of the argument pushed onto the stack
at “ 8[ebp]” .

C User’s Guide

80386 Return Values

80386 Return Values
Assembly-language routines that return values to an 80386 C-language
program or receive return values from 80386 C-language functions must
follow the 80386 C-language return-value conventions. C-language func­
tions place return values that have int, char, unsigned, short, and long
types in the EAX register.

Floating-point values are returned to the top of the ndp 80287 stack. The
following example shows the recommended instruction sequence for
passing floating-point values:

float func(),f;
f = func(f)

fid DWORD PTR f
sub esp, 8
fstp QWORD PTR [esp]
call func ; result in ST(0)
add esp, 8
fstp DWORD PTR f

The following example shows the recommended instruction sequence for
returning floating-point values:

float fvalue;
return (fvalue) ;

fid fvalue ; result in ST(0)
pop edx
pop esi
pop edi
leave
ret

C-language structure returns are returned to a buffer whose address is
passed as a hidden first parameter.

The following example shows the recommended instruction:

C Language Compatibility with Assembly Language 8-9

80386 Return Values

struct shape
int stuff, tc, fill, it, with;

} in, out, tnem();
out = them(in) ;

sub esp,20
mov edi, esp
lea edi,in ; structure copy input
mov ecu, 5 ; struct onto stack
rep movsd
lea eax,out ; pass address of
push eax ; assignment as extra "hidden"
call them /parameter
add esp,24

The following example shows the recommended instruction sequence for
returning C-language structure returns:

shape source;
shape;
mov edi,[ebp+8]
mov esi,source
mov ecx, 5
rep movsd
pop ebx
pop esi
pop edi
leave
ret

8-10 C User’s Guide

Exiting an 80386 Routine

Exiting an 80386 Routine
Before returning control from an assembly-language routine to an 80386
C-language program, restore the EBP, ESI, EDI, and EBX registers. The
following example illustrates the recommended instruction sequence for
exiting a routine:

pop ebx
pop esi
pop edi
leave
ret

This sequence does not save the EAX, ECX, or EDX register. These
registers are scratch registers for use by the compiler. If the routine
modifies segment register ES, SS, or DS, the routine must preserve the
modified segment registers. The sequence does not remove arguments
from the stack. This is the responsibility of the calling routine.

C Language Compatibility with Assembly Language 8-11

80386 Program Example

80386 Program Example
The following example illustrates an 80386 C-language function that can
be written as an assembly-language routine. The function takes two
integer arguments and adds them together, returning the resultant value.

int add(i, j)
int i, j;
{
return (i + j) ;
}

If written as an assembly-language routine, this function must save the
proper registers, retrieve the arguments from the stack, add the argu­
ments, place the return value in the EAX register, then restore the proper
registers and return control to the calling routine. The following is an
example of how the routine can be written:

add:
push ebp
mov ebp,esp
push edi
push esi
push ebx

mov eax,[ebp+8]
add eax,[ebp+12]

pop ebx
pop esi
pop edi
mov esp, ebp
pop
ret

ebp

Note

In the above assembly-language routine, it is not necessary to save
the contents of the ESI, EDI, and EBX registers because the routine
does not modify their contents. If the ESI, EDI, or EBX register
was modified by the routine, its contents must be saved.

8-12 C User’s Guide

80386 Program Example

If the C-language function is to be called by an assembly-language rou­
tine, the routine must contain instructions that push the arguments onto
the stack in the proper order, call the function, and clear the stack. It can
then use the return value in the EAX register. The following is an exam­
ple of the instructions that perform this task:

push <j value>
push <i value>
call _add
add esp,8

C Language Compatibility with Assembly Language 8-13

Chapter 9

Error Processing

Introduction 9-1

Using the Standard Error File 9-2

Using the ermo Variable 9-3

Printing Error Messages 9-4

Using Error Signals 9-5

Encountering System Errors 9-6

Introduction

Introduction
System V automatically detects and reports errors that occur when using
standard C library functions. Errors range from problems with accessing
files to allocating memory. In most cases, the system simply reports the
error and lets the program decide how to respond. System V terminates a
program only if a serious error has occurred, such as a violation of mem­
ory space.

This chapter explains how to process errors, and describes the functions
and variables a program may use to respond to errors.

Error Processing 9-1

Using the Standard Error File

Using the Standard Error File
The standard error file is a special output file that can be used by a pro­
gram to display error messages. The standard error file is one of three
standard files (standard input, output, and error) automatically created for
the program when it is invoked. Note that this feature is only available
under the Bourne shell (/bin/sh).

The standard error file, like the standard output, is normally assigned to
the user’s terminal screen. Thus, error messages written to the file are dis­
played on the screen. The file can also be redirected by using the shell’s
redirection symbol (>). For example, the following command redirects
the standard error file to the file errorlist under Bourne shell:

dc 2>errorlist

The standard error file, like the standard input and standard output, has
predefined file pointer and file descriptor values. The file pointer stderr
may be used in stream functions to copy data to the error file. The file
descriptor 2 may be used in low-level functions to copy data to the file.
For example, in the following program fragment, stderr is used to write
the message “ Unexpected end of file.” to the standard error file.

if ((c=getchar()) == EOF)
fprintf(stderr, "Unexpected end of file.Xn");

The standard error file is not affected by the shell’s pipe symbol (I). This
means that even if the standard output of a program is piped to another
program, errors generated by the original program will still appear at the
terminal screen (or in the appropriate file if the standard error is
redirected).

9-2 C User’s Guide

Using the errno Variable

Using the errno Variable
The errno variable is a predefined external variable which contains the
error number of the most recent System V system function error. Errors
detected by system functions, such as access permission errors and lack of
space, cause the system to set the errno variable to a number and return
control to the program. The error number identifies the error condition.
The variable may be used in subsequent statements to process the error.

The file en-no.h contains manifest constant definitions for each error num­
ber, and the external declaration of errno. These constants may be used
in any program in which the line:

#include <errno.h>

is placed at the beginning of the program. The meaning of each manifest
constant is described in the manual page, intro(S).

The errno variable is typically used immediately after a system function
has returned an error. In the following program fragment, errno is used to
determine the course of action after an unsuccessful call to the open func­
tion:

if ((fd=open("accounts", 0_RD0NLY)) == -1)
switch (errno) {

case(EACCES):
fd = open ("/usr/tmp/accounts",0_RD0NLY);
break;

default:
exit(errno);

}

In this example, if errno is equal to EACCES (a manifest constant), per­
mission to open the file accounts in the current directory is denied, so the
file is opened in the directory lusrltmp instead. If the variable is any other
value, the program terminates.

Error Processing 9-3

Printing Error Messages

Printing Error Messages
The perror function copies a short error message describing the most
recent system function error to the standard error file. The function call
has the form:

perror (5);

where s is a pointer to a string containing additional information about
the error.

The perror function places the given string before the error message and
separates the two with a colon (:). Each error message corresponds to the
current value of the errno variable. For example, in the following pro­
gram fragment, perror displays the message:

accounts: Permission denied.

if errno is equal to the constant EACCES:

if (errno == EACCES) {
perror("accounts");
fd = open ("/usr/tmp/accounts", 0_RD0NLY);

}

All error messages displayed by perror are stored in an array named
sys_errno, an external array of character strings. The perror function
uses the variable errno as the index to the array element containing the
desired message. For more information on the perror function, see the
perror(S) manual page.

9-4 C User’s Guide

Using Error Signals

Using Error Signals
Some program errors cause System V to generate error signals. These sig­
nals are passed back to the program that caused the error and normally
terminate the program. The most common error signals are SIGBUS, the
bus error signal; SIGFPE, the floating point exception signal; SIGSEGV,
the segment violation signal; SIGSYS, the system call error signal; and
SIGP1PE, the pipe error signal. Other signals are described in the
signal(S) manual page.

A program can, if necessary, catch an error signal and perform its own
error processing by using the signal function. This function, as described
in the “ Using Signals” chapter of the Programmer’s Guide, can set the
action of a signal to a user-defined action. For example, the function call:

signal(SIGBUS, fixbus);

sets the action of the bus error signal to the action defined by the user-
supplied function fixbus. Such a function usually attempts to remedy the
problem, or at least display detailed information about the problem before
terminating the program.

For details about how to catch, redefine, and restore these signals, see
“ Signals and Interrupts” in the Programmer’s Guide.

Error Processing 9-5

Encountering System Errors

Encountering System Errors
Programs that encounter serious errors, such as hardware failures or inter­
nal errors, generally do not receive detailed reports on the cause of the
errors. Instead, UNIX operating systems treat these errors as “ system
errors,” and report them by displaying a system error message on the sys­
tem console. This section briefly describes some aspects of System V
system errors and how they relate to user programs.

Most system errors occur during calls to system functions. If the system
error is recoverable, the system will return an error value to the program
and set the errno variable to an appropriate value. No other information
about the error is available.

Although the system lets two or more programs share a given resource, it
does not keep close track of which program is using the resource at any
given time. When an error occurs, the system returns an error value to all
programs regardless of which caused the error. No information about
which program caused the error is available.

System errors that occur during routine I/O operations initiated by the
System V system itself generally do not affect user programs. Such errors
cause the system to display appropriate system error messages on the sys­
tem console.

Some system errors are not detected by the system until after the corre­
sponding function has returned successfully. Such errors occur when data
written to a file by a program has been queued for writing to disk at a
more convenient time, or when a portion of data to be read from disk is
found to already be in memory and the remaining portion is not read until
later. In such cases, the system assumes that the subsequent read or write
operation will be carried out successfully and passes control back to the
program along with a successful return value. If operation is not carried
out successfully, it causes a delayed error.

When a delayed error occurs, the system usually attempts to return an
error on the next call to a system function that accesses the same file or
resource. If the program has already terminated or does not make a suit­
able call, then the error is not reported.

9-6 C User’s Guide

Chapter 10

Common Object File Format (COFF)

The Common Object File Format (COFF) 10-1

Definitions and Conventions 10-3
Sections 10-3
Physical and Virtual Addresses 10-3
Target Machine 10-4

File Header 10-5
Magic Numbers 10-5
Flags 10-6
File Header Declaration 10-6

Optional Header Information 10-7
Standard UNIX System a.out Header 10-7
Optional Header Declaration 10-8

Section Headers 10-9
Flags 10-10
Section Header Declaration 10-11
.bss Section Header 10-11

Sections 10-12

Relocation Information 10-13
Relocation Entry Declaration 10-14

Line Numbers 10-15
Line Number Declaration 10-16

Symbol Table 10-17
Special Symbols 10-18
Inner Blocks 10-19
Symbols and Functions 10-21
Symbol Table Entries 10-21

Symbol Names 10-22
Storage Classes 10-24
Storage Classes for Special Symbols 10-25
Symbol Value Field 10-26

Section Number Field 10-27
Section Numbers and Storage Classes 10-28
Type Entry 10-28
Type Entries and Storage Classes 10-30
Structure for Symbol Table Entries 10-32

Auxiliary Table Entries 10-33
File Names 10-34
Sections 10-34
Tag Names 10-35
End of Structures 10-35
Functions 10-36
Arrays 10-37
End of Blocks and Functions 10-37
Beginning of Blocks and Functions 10-38
Names Related to Structures, Unions,

Enumerations 10-38
Auxiliary Entry Declaration 10-39

String Table 10-41

Access Routines 10-42

The Common Object File Format (COFF)

The Common Object File Format
(COFF)
This chapter describes the Common Object File Format (COFF) used on
your computer with UNIX System V COFF is the format of the output file
produced by the UNIX System assembler, as, and link editor, Id. This is
the default format used by cc without the -xenix option.

The following list describes key features of COFF:

• Applications can add system-dependent information to the object
file without causing access utilities to become obsolete.

• Space is provided for symbolic information used by debuggers and
other applications.

• Programmers can modify the way the object file is constructed by
providing directives at compile time.

The object file supports user-defined sections and contains extensive in­
formation for symbolic software testing. An object file contains

f

• a file header

• optional header information

• a table of section headers

• data corresponding to the section headers

• relocation information

• line numbers

• a symbol table

• a string table

Common Object File Format (COFF) 10-1

The Common Object File Format (COFF)

Figure 10-1 shows the overall structure of a COFF object file.

Figure 10-1 Object File Format

FILE HEADER
Optional Information

Section 1 Header

Section n Header
Raw Data for Section 1

Raw Data for Section n
Relocation Info for Sect. 1

Relocation Info for Sect, n
Line Numbers for Sect. 1

Line Numbers for Sect, n
SYMBOL TABLE
STRING TABLE

The last four sections (relocation, line numbers, symbol table, and the
string table) may be missing if the program is linked with the -s option of
the Id command, or if the line number information, symbol table, and
string table are removed by the strip command. The line number infor­
mation does not appear unless the program is compiled with the -g option
of the cc command. Also, if there are no unresolved external references
after linking, the relocation information is no longer needed and is absent.
The string table is also absent if the source file does not contain any sym­
bols with names longer than eight characters.

An object file that contains no errors or unresolved references is con­
sidered executable.

10-2 C User’s Guide

Definitions and Conventions

Definitions and Conventions
Before proceeding further, you should become familiar with the following
terms and conventions.

Sections
A section is the smallest portion of an object file that is relocated and
treated as one separate and distinct entity. In the most common case,
there are three sections named .text, .data, and .bss. Additional sections
accommodate comments, multiple text or data segments, shared data seg­
ments, or user-specified sections. However, the operating system loads
only .text, .data, and .bss into memory when the file is executed.

Note

It a mistake to assume that every COFF file will have a certain num­
ber of sections, or to assume characteristics of sections such as their
order, their location in the object file, or the address at which they
are to be loaded. This information is available only after the object
file has been created. Programs manipulating COFF files should
obtain it from file and section headers in the file.

Physical and Virtual Addresses
The physical address of a section or symbol is the offset of that section or
symbol from address zero of the address space. The term physical
address as used in COFF does not correspond to general usage. The phy­
sical address of an object is not necessarily the address at which the
object is placed when the process is executed. For example, on a system
with paging, the address is located with respect to address zero of virtual
memory and the system performs another address translation. The section
header contains two address fields, a physical address, and a virtual
address; but in all versions of COFF on UNIX Systems, the physical
address is equivalent to the virtual address.

Common Object File Format (COFF) 10-3

Definitions and Conventions

Target Machine
Compilers and link editors produce executable object files that are
intended to be run on a particular computer. In the case of cross-
compilers, the compilation and link editing are done on one computer,
with the intent of creating an object file that can be executed on another
computer. The term, target machine, refers to the computer on which the
object file is destined to run. In the majority of cases, the target machine
is the same computer on which the object file is being created.

10-4 C User’s Guide

File Header

File Header
The file header contains the 20 bytes of information shown in Table 10.1.
The last 2 bytes are flags that are used by Id and object file utilities.

Table 10.1
File Header Contents

Bytes Declaration Name Description
0-1 unsigned short fm agic Magic number
2-3 unsigned short fnscns Number of sections
4-7 long int ftim dat Time and date stamp

indicating when the
file was created,
expressed as the
number of elapsed
seconds since
00:00:00 GMT, Janu­
ary 1, 1970

8-11 long int fsym ptr File pointer contain­
ing the starting
address of the symbol
table

12-15 long int fnsym s Number of entries in
the symbol table

16-17 unsigned short fopthdr Number of bytes in
the optional header

18-19 unsigned short fflags Flags (see Table
10.2.)

Magic Numbers
The magic number specifies the target machine on which the object file is
executable.

Common Object File Format (COFF) 10-5

File Header

Flags
The last 2 bytes of the file header are flags that describe the type of the
object file. Currently defined flags are found in the header file filehdr.h
and are shown in Table 10.2.

Table 10.2
File Header Flags

Mnemonic Flag Meaning
F_RELFLG 00001 Relocation information

stripped from the file
F_EXEC 00002 File is executable (i.e., no

unresolved external refer­
ences)

F_LNNO 00004 Line numbers stripped
from the file

F_LSYMS 00010 Local symbols stripped
from the file

F_AR16WR 0000200 16-bit byte reversed word
F_AR32WR 0000400 32-bit byte reversed word

File Header Declaration
The C structure declaration for the file header is given in Figure 10-2.
This declaration may be found in the header file filehdr.h.

Figure 10-2 File Header Declaration

s t r u c t f i l e h d r
{

u n s i g n e d short f magic; /* magic number */
u n s i g n e d short f nscns; /* number of section */
l o n g f t imdat; /* time and date stamp */
l o n g f symptr; /* file ptr to symbol table */
l o n g f nsyms; /* number entries in t h e symbol
u n s i g n e d short f c p t h d r ; /* size of optional h e a d e r */
u n s i g n e d short f f l a g s ; /* flags */

#d e t i n e FILHDR s t r u c t f i l e h d r
d e f i n e F ILHS Z s i z e o f (F I L H D R)

10-6 C User’s Guide

Optional Header Information

Optional Header Information
The template for optional information varies among different systems that
use COFF. Applications place all system-dependent information into this
record. This allows different operating systems access to information that
only that operating system uses without forcing all COFF files to save
space for that information. General utility programs (for example, the
symbol table access library functions, the disassembler, etc.) are made to
work properly on any common object file. This is done by seeking past
this record using the size of optional header information in the file header
field f opthdr.

Standard UNIX System a.out Header
By default, files produced by the link editor for a UNIX System always
have a standard UNIX System a.out header in the optional header field.
The UNIX System a.out header is 28 bytes. The fields of the optional
header are described in Table 10.3.

Table 10.3
Optional Header Contents

Bytes Declaration Name Description
0-1 short magic Magic number
2-3 short vstamp Version stamp
4-7 long int tsize Size of text in bytes

8-11 long int dsize Size of initialized
data in bytes

12-15 long int bsize Size of uninitialized
data in bytes

16-19 long int entry Entry point
20-23 long int textstart Base address of text
24-27 long int datastart Base address of data

Whereas the magic number in the file header specifies the machine on
which the object file runs, the magic number in the optional header sup­
plies information telling the operating system on that machine how that
file should be executed. The magic numbers recognized by UNIX System
V are given in Table 10.4.

Common Object File Format (COFF) 10-7

Optional Header Information

Table 10.4
UNIX System V Magic Numbers

Value Meaning
0407 Text segment is not write-protected or

sharable; data segment is contiguous
with the text segment.

0410 Data segment starts at the next segment
following the text segment and the text
segment is write-protected.

0413 Text and data segments are aligned
within a.out so it can be directly paged.

0443 Defines a.out to be a target shared
library.

Optional Header Declaration
The C language structure declaration currently used for UNIX System’s
a.out file headers is given in Figure 10-3. This declaration may be found
in the header file aouthdr.h.

Figure 10-3 aouthdr Declaration
typedef struct aouthdr
{

short magic; /* magic number */
short vstâ p̂; /* version stamp */
long tsize; /*

★
★

text size in bytes, padded
to full word boundary

f
initialized data size */long dsize; /*

long bsize; /* uninitialized data size */
long entry; /* entry point */
long text start; /* base of text for this file */
long

AOUTHDR;
data start /* base of data for this file */

10-8 C User’s Guide

Section Headers

Section Headers
Every object file has a table of section headers to specify the layout of
data within the file. The section header table consists of one entry for
every section in the file. The information in the section header is
described in Table 10.5.

Table 10.5
Section Header Contents

Bytes Declaration Name Description
0-7 char snam e 8-character null pad­

ded section name
8-11 long int s_paddr Physical address of

section
12-15 long int svaddr Virtual address of

section
16-19 long int ssize Section size in bytes
20-23 long int sscnptr File pointer to raw

data
24-27 long int srelptr File pointer to reloca­

tion entries
28-31 long int slnnoptr File pointer to line

number entries
32-33 unsigned

short

snreloc Number of relocation
entries

34-35 unsigned

short

snlnno Number of line
number entries

36-39 long int s flags Flags (see Table
10.6)

The size of a section is padded to a multiple of 4 bytes. File pointers are
byte offsets that can be used to locate the start of data, relocation, or line
number entries for the section. They can be readily used with the
fseek(S) system call.

Common Object File Format (COFF) 10-9

Section Headers

Flags
The lower 2 bytes of the flag field indicate a section type. The flags are
described in Table 10.6.

Table 10.6
Section Header Flags

Mnemonic Flag Meaning
STYP_REG 0x00 Regular section (allocated, relo­

cated, loaded)
STYP_DSECT 0x01 Dummy section (not allocated, relo­

cated, not loaded)
STYP_NOLOAD 0x02 Noload section (allocated, relocated,

not loaded)
STYP_GROUP 0x04 Grouped section (formed from input

sections)
s t y p p a d 0x08 Padding section (not allocated, not

relocated, loaded)
STYP_COPY 0x10 Copy section (for a decision function

used in updating fields; not allocated,
not relocated, loaded, relocation and
line number entries processed nor­
mally)

s t y p t e x t 0x20 Section contains executable text
STYP_DATA 0x40 Section contains initialized data
STYP_BSS 0x80 Section contains only uninitialized

data
STYP_lNFO 0x200 Comment section (not allocated, not

relocated, not loaded)
STYP_OVER 0x400 Overlay section (relocated, not allo­

cated, not loaded)
STYP_LIB 0x800 For .lib section (treated like

STYPJNFO)

10-10 C User’s Guide

Section Headers

Section Header Declaration
The C structure declaration for the section headers is described in Figure
10-4. This declaration may be found in the header file scnhdr.h.

Figure 10-4 Section Header Declaration
struct scnhdr
{

char s name [8]; /* section name */
long s paddr; /* physical address */
long s vaddr; /* virtual address */
long s size; /* section size */
long s scnptr; /* file ptr to section raw data V
long s relptr; /* file ptr to relocation */
long s lnnoptr; /* file ptr to line number */
unsigned short s nreloc; /* number of relocation entries */
unsigned short s nlnno; /* number of line number entries */

};
long s flags; /* flags */

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

.bss Section Header
The one deviation from the normal rule in the section header table is the
entry for uninitialized data in a .bss section. A .bss section has a size and
symbols that refer to it, and symbols that are defined in it. At the same
time, a .bss section has no relocation entries, no line number entries, and
no data. Therefore, a .bss section has an entry in the section header table
but occupies no space elsewhere in the file. In this case, the number of
relocation and line number entries, as well as all file pointers in a .bss
section header, are 0. The same is true of the STYP_NOLOAD and
STYPDSECT sections.

Common Object File Format (COFF) 10-11

Sections

Sections
Figure 10-1 shows that section headers are followed by the appropriate
number of bytes of text or data. The raw data for each section begins on a
4-byte boundary in the file.

Link editor SECTIONS directives allow users to do the following, among
other things:

• describe how input sections are to be combined

• direct the placement of output sections

• rename output sections.

If no SECTIONS directives are given, each input section appears in an
output section of the same name. For example, if a number of object files,
each with a .text section, are linked together, the output object file con­
tains a single .text section made up of the combined input .text sections.

10-12 C User’s Guide

Relocation Information

Relocation Information
Object files have one relocation entry for each relocatable reference in
the text or data. The relocation information consists of entries with the
format described in Table 10.7.

Table 10.7
Relocation Section Contents

Bytes Declaration Name Description
0-3 long int rvaddr (Virtual) address of

reference
4-7 long int r_symndx Symbol table index
8-9 unsigned short rtype Relocation type

The first 4 bytes of the entry are the virtual address of the text or data to
which this entry applies. The next field is the index, counted from 0, of
the symbol table entry that is being referenced. The type field indicates
the type of relocation to be applied.

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the
input section are treated. The currently recognized relocation types are
given in Table 10.8.

Common Object File Format (COFF) 10-13

Relocation Information

Table 10.8
Relocation Types

Mnemonic Flag Meaning
R_ABS 0 Reference is absolute; no reloca­

tion is necessary. The entry will
be ignored.

RJDIR16 * 01 Direct, 16-bit reference to a
symbol’s virtual address.

R_REL16 * 02 "PC-relative", 16-bit reference to
a symbol’s virtual address. Rela­
tive references occur in instruc­
tions such as jumps and calls.

R_DIR32 06 Direct 32-bit reference to the
symbol’s virtual address.

R_SEG12* 011 Direct, 16-bit reference to the
segment-selector bits of a 32-bit
virtual address.

R. PCRLONG t 024 "PC_relative", 32-bit reference to
a symbol’s virtual address.

* 80286 Computer only,
t 80386 Computer only.

Relocation Entry Declaration
The structure declaration for relocation entries is given in Figure 10-5.
This declaration may be found in the header file reloc.h.

Figure 10-5 Relocation Entry Declaration

s t r i c t r e lo c

lo n g r v a d d r ;
lo n g r symndx
u n s ig n e d sih c r t r ty p e ;

d ef in o REIaX s t r u c t r e lo c
d e f in e RELcZ 10

/* v i r t u a l address of reference */
/* index into symbol table */
/* r e lo c a t io n type */

10-14 C User's Guide

Line Numbers

Line Numbers
When invoked with the -g option, the cc and f77 commands cause an
entry in the object file for every source line where a breakpoint can be
inserted. You can then reference line numbers when using a software
debugger like sdb. All line numbers in a section are grouped by function
as shown in Table 10.9.

Table 10.9
Line Number Grouping

symbol index 0
physical address line number
physical address line number

symbol index 0
physical address line number
physical address line number

The first entry in a function grouping has line number 0 and has, in place
of the physical address, an index into the symbol table for the entry con­
taining the function name. Subsequent entries have actual line numbers
and addresses of the text corresponding to the line numbers. The line
number entries are relative to the beginning of the function and appear in
increasing order of address.

Common Object File Format (COFF) 10-15

Line Numbers

Line Number Declaration
The structure declaration currently used for line number entries is given
in Figure 10-6.

Figure 10-6 Line Number Entry Declaration

struct lineno
;

union
{

long l_symndx;
long l_paddr;

} l_addr;
unsigned short l_lnno;

} ;
♦define LINENO struct lineno
♦define LINESZ 6

/* symtbl index of func name *
/* paddr of line number */
/* line number */

10-16 C User’s Guide

Symbol Table

Symbol Table
Because of symbolic debugging requirements, the order of symbols in the
symbol table is very important. Symbols appear in the sequence shown in
Figure 10-7.

Figure 10-7 COFF Symbol Table

filename 1
function 1

local symbols
for function 1

function 2
local symbols
for function 2

statics

filename 2
function 1

local symbols
for function 1

statics

defined global
symbols

undefined global
symbols

The word statics in Figure 10-7 means symbols defined with the C lan­
guage storage class static outside any function. The symbol table consists
of at least one fixed-length entry per symbol with some symbols followed
by auxiliary entries of the same size. The entry for each symbol is a
structure that holds the value, the type, and other information.

Common Object File Format (COFF) 10-17

Symbol Table

Special Symbols
The symbol table contains some special symbols that are generated by as
and other tools. These symbols are given in Table 10.10.

Table 10.10
Special Symbols in the Symbol Table

Symbol Meaning
.file filename
.text address of .text section
.data address of .data section
.bss address of .bss section
.bb address of start of inner block
.eb address of end of inner block
.bf address of start of function
.ef address of end of function
.target pointer to the structure or union

returned by a function
afake dummy tag name for structure,

union, or enumeration
.eos end of members of structure,

union, or enumeration
etext next available address after the

end of the output section .text
edata next available address after the

end of the output section .data
end next available address after the

end of the output section .bss

Six of these special symbols occur in pairs. The .bb and .eb symbols indi­
cate the boundaries of inner blocks; a .bf and .ef pair brackets each func­
tion. An _vfake and .eos pair names and defines the limit of structures,
unions, and enumerations that were not named. The .eos symbol also
appears after named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the compiler
invents a name to be used in the symbol table. The name chosen for the
symbol table is afake, where .v is an integer. If there are three unnamed
structures, unions, or enumerations in the source, their tag names are
.Ofake, .lfake, and .2fake. Each of the special symbols has different in­
formation stored in the symbol table entry as well as the auxiliary entries.

10-18 C User’s Guide

Symbol Table

Inner Blocks
The C language defines a block as a compound statement that begins and
ends with braces, { and }. An inner block is a block that occurs within a
function (which is also a block).

For each inner block that has local symbols defined, a special symbol .bb
is put in the symbol table immediately before the first local symbol of that
block. Also a special symbol .eb is put in the symbol table immediately
after the last local symbol of that block. The sequence is shown in Figure
10- 8.

Figure 10-8 Special Symbols (.bb and .eb)

Jbb________
local symbols
for that block
.eb

Common Object File Format (COFF) 10-19

Symbol Table

Because inner blocks can be nested by several levels, the .bb-.eb pairs
and associated symbols may also be nested (see Figure 10-9).

Figure 10-9 Nested blocks

{ /*biock 1*/
inti;
chare;

{ /*block 2*/
longa;

{ /*block 3*/
intx;

} /*biock 3*/
} /*block 2*/
{ /*block 4*/

longi;
} /*block 4*/

} /*block 1*/

The symbol table would look like Figure 10-10.

Figure 10-10 Example of the Symbol Table

.bb for block 1
______i______
_____ c______
.bb for block 2

a
.bb for block 3
_____ x_____
,eb for block 3
.eb for block 2
.bb for block 4

i
.eb for block 4
.eb for block 1

10-20 C User’s Guide

Symbol Table

Symbols and Functions
For each function, a special symbol .bf is put between the function name
and the first local symbol of the function in the symbol table. Also, a spe­
cial symbol .ef is put immediately after the last local symbol of the func­
tion in the symbol table. The sequence is shown in Figure 10-11.

Figure 10-11 Symbols for Functions

function name
.bf

local symbol
.ef

Symbol Table Entries
All symbols, regardless of storage class and type, have the same format
for their entries in the symbol table. The symbol table entries each con­
tain 18 bytes of information. The meaning of each of the fields in the
symbol table entry is described in Table 10.11. It should be noted that
indices for symbol table entries begin at 0 and count upward. Each auxi­
liary entry also counts as one symbol.

Common Object File Format (COFF) 10-21

Symbol Table

Table 10.11
Symbol Table Entry Format

Bytes Declaration Name Description
0-7 (see text below) n These 8 bytes contain

either a symbol name
or an index to a sym­
bol

8-11 long int nvalue Symbol value;
storage class depen­
dent

12-13 short n scnum Section number of
symbol

14-15 unsigned short ntype Basic and derived
type specification

16 char nsclass Storage class of sym­
bol

17 char n numaux Number of auxiliary
entries

Symbol Names

The first 8 bytes in the symbol table entry are a union of a character array
and two longs. If the symbol name is eight characters or less, the (null-
padded) symbol name is stored there. If the symbol name is longer than
eight characters, then the entire symbol name is stored in the string table.
In this case, the 8 bytes contain two long integers, the first is zero, and the
second is the offset (relative to the beginning of the string table) of the
name in the string table. Since there can be no symbols with a null name,
the zeroes on the first 4 bytes serve to distinguish a symbol table entry
with an offset from one with a name in the first 8 bytes as shown in Table
10. 12.

10-22 C User’s Guide

Symbol Table

Table 10.12
Name Field

Bytes Declaration Name Description
0-7 char n name 8-character null-

padded symbol name
0-3 long nzeroes Zero in this field indi­

cates the name is in
the string table

4-7 long noffset Offset of the name in
the string table

Special symbols generated by the C Compilation System are discussed
earlier in the section “ Special Symbols” in this chapter.

Common Object File Format (COFF) 10-23

Svmbol Table

Storage Classes

The storage class field has one of the values described in Table 10.13.
These #define’s may be found in the header file storclass.h.

Table 10.13
Storage Classes

Mnemonic Value Storage Class
C_EFCN -1 physical end of a function
C_NULL 0 -
C_AUTO automatic variable
C_EXT external symbol
C_STAT ->J static
C_REG 4 register variable
C_EXTDEF 5 external definition
C_LABEL 6 label
CJJLABEL 7 undefined label
C_MOS 8 member of structure
C_ARG 9 function argument
C_STRTAG 10 structure tag
C_MOU 11 member of union
C_UNTAG 12 union tag
C_TPDEF 13 type definition
C_U STATIC 14 uninitialized static
CJENTAG 15 enumeration tag
C_MOE 16 member of enumeration
C_REGPARM 17 register parameter
C_FIELD 18 bit field
C_BLOCK 100 beginning and end of block
C_FCN 101 beginning and end of function
C_EOS 102 end of structure
C_FILE 103 file name
CJLINE 104 used only by utility programs
C_ALIAS 105 duplicated tag
C_HIDDEN 106 like static,

used to avoid name conflicts

All of these storage classes except for C_ALIAS and CJHIDDEN are
generated by the cc or as commands. The compress utility, cprs, gen­
erates the C_ALIAS mnemonic. This utility (described in the
P ro g ra m m e r 's R e fe re n c e M an u a l) removes duplicated structure, union,
and enumeration definitions and puts alias entries in their places. The
storage class C_HIDDEN is not used by any UNIX System V tools.

10-24 C User’s Guide

Symbol Table

Some of these storage classes are used only internally by the C Compila­
tion Systems. These storage classes are C_EFCN, C_EXTDEF,
CJJLABEL, CJJSTATIC, and C_LINE.

Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes. They are
given in Table 10.14.

Table 10.14
Storage Class by Special Symbols

Special Symbol Storage Class
.file C_FILE
.bb C_BLOCK
.eb C_BLOCK
.bf C_FCN
.ef C_FCN
.target C_AUTO
afake C_STRTAG, CJJNTAG, C_ENTAG
.eos C_EOS
.text C_STAT
.data C_STAT
.bss C_STAT

Also some storage classes are used only for certain special symbols.
They are summarized in Table 10.15.

Table 10.15
Restricted Storage Classes

Storage Class Special Symbol
C_BLOCK .bb, .eb
C_FCN .bf, .ef
C_EOS .eos
CJFILE .file

Common Object File Format (COFF) 10-25

Symbol Table

Symbol Value Field

The meaning of the value of a symbol depends on its storage class. This
relationship is summarized in Table 10.16.

Table 10.16
Storage Class and Value

Storage Class Meaning of Value
C_AUTO stack offset in bytes
C_EXT relocatable address
C_STAT relocatable address
C_REG register number
C_LABEL relocatable address
C_MOS offset in bytes
C_ARG stack offset in bytes
C_STRTAG 0
C_MOU 0
CJJNTAG 0
CJTPDEF 0
C_ENTAG 0
C_MOE enumeration value
C_REGPARM register number
C_FIELD bit displacement
CJBLOCK relocatable address
C_FCN relocatable address
C_EOS size
C_FILE (see text below)
C_ ALIAS tag index
C_HIDDEN relocatable address

If a symbol has storage class C_FILE, the value of that symbol equals the
symbol table entry index of the next .file symbol. That is, the .file entries
form a one-way linked list in the symbol table. If there are no more .file
entries in the symbol table, the value of the symbol is the index of the first
global symbol.

Relocatable symbols have a value equal to the virtual address of that
symbol. When the section is relocated by the link editor, the value of
these symbols changes.

10-26 C User’s Guide

Symbol Table

Section Number Field

Section numbers are listed in Table 10.17

Table 10.17
Section Number

Mnemonic Section Number Meaning
N_DEBUG -2 Special symbolic debug­

ging symbol
N_ABS -1 Absolute symbol
NJJNDEF 0 Undefined external symbol
NJSCNUM 1-077777 Section number where

symbol is defined

A special section number (-2) marks symbolic debugging symbols,
including structure/union/enumeration tag names, typedefs, and the name
of the file. A section number of -1 indicates that the symbol has a value
but is not relocatable. Examples of absolute-valued symbols include
automatic and register variables, function arguments, and .eos symbols.

With one exception, a section number of 0 indicates a relocatable exter­
nal symbol that is not defined in the current file. The one exception is a
multiply-defined external symbol (i.e., FORTRAN common or an unini­
tialized variable-defined external to a function in C). In the symbol table
of each file where the symbol is defined, the section number of the symbol
is 0, and the value of the symbol is a positive number giving the size of
the symbol. When the files are combined to form an executable object
file, the link editor combines all the input symbols of the same name into
one symbol with the section number of the .bss section. The maximum
size of all the input symbols with the same name is used to allocate space
for the symbol and the value becomes the address of the symbol. This is
the only case where a symbol has a section number of 0 and a non-zero
value.

Common Object File Format (COFF) 10-27

Symbol Table

Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to certain sec­
tion numbers. They are summarized in Table 10.18.

Table 10.18
Section Number and Storage Class

Storage Class Section Number
C_AUTO N_ABS
C_EXT N_ABS, N JJNDEF, N_SCNUM
C_STAT N_SCNUM
C_REG N_ABS
C_LABEL N_UNDEF, N_SCNUM
C_MOS N_ABS
C_ARG N_ABS
C_STRTAG N_DEBUG
C_MOU N_ABS
CJJNTAG N_DEBUG
C_TPDEF N_DEBUG
c_en ta g N_DEBUG
C_MOE N_ABS
C_REGPARM N_ABS
C_FIELD N_ABS
C_BLOCK N_SCNUM
C_FCN N_SCNUM
C_EOS N_ABS
C_FILE N_DEBUG
c_a l ia s N_DEBUG

Type Entry

The type field in the symbol table entry contains information about the
basic and derived type for the symbol. This information is generated by
the C Compilation System only if the -g option is used. Each symbol has
exactly one basic or fundamental type but can have more than one
derived type. The format of the 16-bit type entry is:

10-28 C User’s Guide

Symbol Table

d6 d5 d4 d3 d2 dl typ

Bits 0 through 3, called typ, indicate one of the fundamental types given
in Table 10.19.

Table 10.19
Fundamental Types

Mnemonic Value Type
T_NULL 0 type not assigned
T_ARG 1 Function argument

(used only by compiler)
T_CHAR 2 character
T_SHORT 3 short integer
TJN T 4 integer
T_LONG 5 long integer
T_FLOAT 6 floating point
T_DOUBLE 7 double word
TJSTRUCT 8 structure
T_UNION 9 union
T_ENUM 10 enumeration
T_MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T_USHORT 13 unsigned short
T_UINT 14 unsigned integer
T_ULONG 15 unsigned long

Common Object File Format (COFF) 10-29

Symbol Table

Bits 4 through 15 are arranged as six 2-bit fields marked dl through d6.
These d fields represent levels of the derived types given in Table 10.20.

Table 10.20
Derived Types

Mnemonic Value Type
DT_NON 0 no derived type
d t p t r 1 pointer
DT_FCN 2 function
DT_ARY 3 array

The following examples demonstrate the interpretation of the symbol
table entry representing type.

char *func ();

Here func is the name of a function that returns a pointer to a character.
The fundamental type of func is 2 (character), the dl field is 2 (function),
and the d2 field is 1 (pointer). Therefore, the type word in the symbol
table for func contains the hexadecimal number 0x62, which is inter­
preted to mean a function that returns a pointer to a character.

short *tabptr[10][25][3];

Here tabptr is a three-dimensional array of pointers to short integers.
The fundamental type of tabptr is 3 (short integer); the dl, d2, and d3
fields each contains a 3 (array), and the d4 field is 1 (pointer). Therefore,
the type entry in the symbol table contains the hexadecimal number 0x7f3
indicating a three-dimensional array of pointers to short integers.

Type Entries and Storage Classes

Table 10.21 shows the type entries that are legal for each storage class.

10-30 C User’s Guide

Symbol Table

Table 10.21
Type Entries by Storage Class

Storage
Class

d Entry
typ Entry
Basic TypeFunction? Array? Pointer?

C_AUTO no yes yes Any
T_MOE

except

C_EXT yes yes yes Any
T_MOE

except

C_STAT yes yes yes Any
T_MOE

except

c_reg no no yes Any
T_MOE

except

C_LABEL no no no T_NULL
C_MOS no yes yes Any

T_MOE
except

C_ARG yes no yes Any
T_MOE

except

C_STRTAG no no no T_STRUCT
C_MOU no yes yes Any

T_MOE
except

C_UNTAG no no no TJLJNION
C_TPDEF no yes yes Any

T_MOE
except

C_ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C_REGPARM no no yes Any

T_MOE
except

C_FIELD no no no T ENUM,
T UCHAR,
T USHORT,
T UNIT,
T ULONG

CJBLOCK no no no T_NULL
C_FCN no no no T_NULL
C_EOS no no no T_NULL
C_FILE no no no T_NULL
C_ALIAS no no no T STRUCT,

T UNION,
T_ENUM

Conditions for the d entries apply to dl through d6, except that it is
impossible to have two consecutive derived types of function.

Common Object File Format (COFF) 10-31

Symbol Table

Although function arguments can be declared as arrays, they are changed
to pointers by default. Therefore, no function argument can have array as
its first derived type.

Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry is given
in Figure 10-12. This declaration may be found in the header file syms.h.

Figure 10-12 Symbol Table Entry Declaration
struct syment
{

union
{
char
struct

{
long _n_zerces;
long _n_offset;

} _n_n;
char *_n_nptr[2];

1 _n'‘unsigned long n_yalue;
short njscnum;
unsigned short n_type;
char n_sclass;
char njnumaux;

};
♦define n_narre
♦define n_zeroes
♦define n_offset
♦define n_nptr
♦define SYf-NCEN 8
♦define SYhESZ

/* syrrfool narre*/

/* syrrfool name */
/* location in string table */

/* allows overlaying */

/* value of syrrfool */
/* section nunfoer */
/* type and derived */
/* storage class */
/* nunfoer of aux entries */

n._n_narre
_n -_n_n ._n_zeroes
n ._n_n. _n_offset

n. n nptr[l]

18 /* size of a syrrfool table entry */

n narre [S'xMfMLEN] ;

10-32 C User’s Guide

Symbol Table

Auxiliary Table Entries
An auxiliary table entry of a symbol contains the same number of bytes as
the symbol table entry. However, unlike symbol table entries, the format
of an auxiliary table entry of a symbol depends on its type and storage
class. They are summarized in Table 10.22.

Table 10.22
Auxiliary Symbol Table Entries

Storage
Class

Type Entry
Auxiliary

Entry FormatName dl typ
.file C_FILE DT_NON T_NULL file name
.text,.data,
.bss

C_STAT DT_NON T_NULL section

tagname C STRTAG
C UNTAG
C_ENTAG

DTJNON T_NULL tag name

.eos C_EOS DT_NON T_NULL end of struc­
ture

fcname C EXT
C_STAT

DT_FCN (Note 1) function

arrname (Note 2) DT_ARY (Note 1) array
.bb,.eb c_block DT_NON T_NULL beginning and

end of block
.bf,.ef C_FCN DT_NON T_NULL beginning and

end of func­
tion

name related
to structure,
union,
enumeration

(Note 2) DT PTR,
DT ARR,
DT NON

T STRUCT,
T UNION,
T ENUM

name related
to structure,
union,
enumeration

Notes to Table 10.22:

1. Any except T_MOE.

2. C_AUTO, C_STAT, C_MOS, C_MOU, CJTPDEF.

Common Object File Format (C.OFF) 10-33

Symbol Table

In Table 10.22, tagname means any symbol name including the special
symbol afake, and fcname and arrname represent any symbol name for a
function or an array respectively. Any symbol that satisfies more than
one condition in Table 10.22 should have a union format in its auxiliary
entry. It is a mistake to assume how many auxiliary entries are associated
with any given symbol table entry. This information is available and
should be obtained from the n numaux field in the symbol table.

File Names

Each of the auxiliary table entries for a file name contains a 14-character
file name in bytes 0 through 13. The remaining bytes are 0.

Sections

The auxiliary table entries for sections have the format as shown in Table
10.23.

Table 10.23
Format for Auxiliary Table Entries for Sections

Bytes Declaration Name Description
0-3 long int x scnlen section length
4-5 unsigned short x nreloc number of relocation entries
6-7 unsigned short x nlinno number of line numbers
8-17 - - unused (filled with zeroes)

10-34 C User’s Guide

Symbol Table

Tag Names

The auxiliary table entries for tag names have the format shown in Table
10.24.

Table 10.24
Tag Names Table Entries

Bytes Declaration Name Description
0-5 - - unused (filled with

zeroes)
6-7 unsigned short xs ize size of structure,

union, and enumera­
tion

8-11 " “ unused (filled with
zeroes)

12-15 long int xendndx index of next entry
beyond this structure,
union, or enumera­
tion

16-17 “ “ unused (filled with
zeroes)

End of Structures

The auxiliary table entries for the end of structures have the format shown
in Table 10.25.

Common Object File Format (COFF) 10-35

Symbol Table

Table 10.25
Table Entries for End of Structures

Bytes Declaration Name Description
0-3 long int x tagndx tag index
4-5 " “ unused (filled with

zeroes)
6-7 unsigned short xsize size of structure,

union, or enumera­
tion

8-17 “ “ unused (filled with
zeroes)

Functions

The auxiliary table entries for functions have the format shown in Table
10.26.

Table 10.26
Table Entries for Functions

Bytes Declaration Name Description
0-3 long int x tagndx tag index
4-7 long int xfsize size of function (in

bytes)
8-11 long int x lnnoptr file pointer to line

number
12-15 long int x endndx index of next entry

beyond this point
16-17 unsigned short x tvndx index of function’s

address in the
transfer vector table
(not used in UNIX
System V.)

10-36 C User’s Guide

Symbol Table

Arrays

The auxiliary table entries for arrays have the format shown in Table
10.27. Defining arrays with more than four dimensions produces a warn­
ing message.

Table 10.27
Table Entries for Arrays

Bytes Declaration Name Description
0-3 long int x tagndx tag index
4-5 unsigned short x Inno line number of

declaration
6-7 unsigned short x size size of array
8-9 unsigned short x dimen[0] first dimension
10-11 unsigned short x_dimen[l] second dimension
12-13 unsigned short x dimen[2] third dimension
14-15 unsigned short x_dimen[3] fourth dimension
16-17 “ " unused (filled with

zeroes)

End of Blocks and Functions

The auxiliary table entries for the end of blocks and functions have the
format shown in Table 10.28.

Table 10.28
End of Block and Function Entries

Bytes Declaration Name Description
0-3 - - unused (filled with

zeroes)
4-5 unsigned short xlnno C-source line number
6-17 “ " unused (filled with

zeroes)

Common Object File Format (COFF) 10-37

Svmbol Table

Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and functions have
the format shown in Table 10.29.

Table 10.29
Format for Beginning of Block and Function

Bytes Declaration Name Description
0-3 - - unused (filled with

zeroes)
4-5 unsigned short x lnno C-source line number
6-11 " “ unused (filled with

zeroes)
12-15 long int xendndx index of next entry

past this block
16-17 * ” unused (filled with

zeroes)

Names Related to Structures, Unions, and Enumerations

The auxiliary table entries for structure, union, and enumeration symbols
have th^ format shown in Table 10.30.

Table 10.30
Entries for Structures, Unions, and Enumerations

Bytes Declaration Name Description
0-3 long int x tagndx tag index
4-5 " “ unused (filled with

zeroes)
6-7 unsigned short x size size of the structure,

union, or enumera­
tion

8-17 “ unused (filled with
zeroes)

10-38 C User’s Guide

Symbol Table

Aggregates defined by typedef may or may not have auxiliary table
entries. For example,

typedef struct people STUDENT;
struct people
{

char name[20];
long id;

};
typedef struct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the symbol table,
but the symbol STUDENT will not because it is a forward reference to a
structure.

Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry
is given in Figure 10-13. This declaration may be found in the header file
syms.h.

Figure 10-13 Auxiliary Symbol Table Entry (1 of 2)

union auxent
{

struct
{

long x_tagndx;
union
{

struct
{

unsigned short x_lnno;
unsigned short x_size;

} x_lns z ;
long x_fsize;

} x_misc;
union
{

struct
{

long x_lnnoptr;
long x_endndx;

} x_fob­
struct

Common Object File Format (COFF) 10-39

Symbol Table

Figure 10-13 Auxiliary Symbol Table Entry (Sheet 2 of 2)

{
unsigned short x_dimen[DIMNUM];

} x_fcnary;
unsigned short x_tvndx;

} x_sym;
struct
{

char x_fnajme [FILNMLEN] ;
} x_file;
struct
{

long x_scr.ien;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;
struct
{

long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

} x_tv;
}
#define FILNMLEN 14
#define DIMNUM 4
#define AUXENT un
#define AUXESZ 18

10-40 C User’s Guide

String Table

String Table
Symbol table names longer than eight characters are stored contiguously
in the string table with each symbol name delimited by a null byte. The
first four bytes of the string table are the size of the string table in bytes;
offsets into the string table, therefore, are greater than or equal to 4. For
example, given a file containing two symbols (with names longer then
eight characters, longjname and another_one) the string table has the
format as shown in Figure 10-14:

Figure 10-14 String Table

T ‘o’ ‘n’ ‘g’

‘n’ ‘a’ ‘m’

‘e’ ‘NO’ ‘a’ ‘n’

‘o’ ‘t’ ‘h’ ‘e’

‘r’ ‘o’ ‘n’

‘e’ ‘\0 ’

The index of long_name in the string table is 4 and the index of
another one is 14.

Common Object File Format (COFF) 10-41

Access Routines

Access Routines
UNIX System V contains a set of access routines that are used for reading
the various parts of a common object file. Although the calling program
must know the detailed structure of the parts of the object file it pro­
cesses, the routines effectively insulate the calling program from the
knowledge of the overall structure of the object file.

The access routines can be divided into four categories:

1. functions that open or close an object file

2. functions that read header or symbol table information

3. functions that position an object file at the start of a particular sec­
tion of the object file

4. a function that returns the symbol table index for a particular sym­
bol

These routines can be found in the library libld.a and are listed in the
System Services section of the Programmer s Reference Manual.

10-42 C User’s Guide

Appendix A

Converting from Previous
Versions of the Compiler

Introduction A-l

Differences between Versions 5.1 and 5.0 A-2
New Features for the System V Release of C A-2
New Pragmas A-3

Differences between Versions 5.0 and 4.0 A-4
Enhancements and Additions A-4
Changes to the Language Syntax A-4
New Features for the Microsoft Implementation of C A-6

Differences between Versions 4.0 and 3.0 A-8
Enhancements and Additions A-8
Changes in the Language Syntax A-8
New Features for This Implementation of C A-l 1

Introduction

Introduction
This appendix describes differences between Version 5.1 and Version 5.0,
between Version 5.0 and Version 4.0, and between Version 4.0 and Ver­
sion 3.0, of the System V Microsoft C Compiler. If you have an earlier
version of the compiler, or if you have written programs for an earlier ver­
sion, this chapter can help you convert your previous source code. The
actions necessary to convert source code depend on which of the earlier
versions you have used.

Version 5.1 is an update of Version 5.0. Code written for Version 5.0
should compile without change on the Version 5.1 compiler. The primary
changes are new pragmas, new keywords, and new command-line
changes. Version 5.0 is an update of Version 4.0. Generally, the two ver­
sions are compatible: most C source code written for Version 4.0 should
compile without change on Version 5.0, although there are erroneous C
constructs allowed in Version 4.0 that are not allowed in Version 5.0, and
changes in the emerging ANSI C standard may force changes in source
programs. For more information, see the C Language Reference. In some
cases you may be able to enhance your programs by revising them to take
advantage of new library functions and other features available with Ver­
sion 5.0.

Converting from Previous Versions of the Compiler A -1

Differences between Versions 5.1 and 5.0

Differences between Versions 5.1 and
5.0
Changes in Version 5.1 since Version 5.0 fall into the following
categories:

• New compiler options

• New pragmas

• New keywords

New Features for the System V Release of C
The following new options have been added to the System V implementa­
tion of the Microsoft C Compiler:

Option Effect

-S Generates assembly-language output. The resulting file
is intended for the Macro Assembler, masm(CP).

-xenix Produces OMF-formatted object files using the language
development tools and (if applicable) an x.out format
executable file. It also suppresses warning messages
about masm directives in any assembly language output
files.

A-2 C User’s Guide

Differences between Versions 5.1 and 5.0

New Pragmas
The following new pragmas have been added to Version 5.1 of the C com
piler:

Pragma Effect

comment Places a comment record in the object file.

linesize Sets the number of characters per line in the source list­
ing.

message Sends a message to the standard output without ter­
minating the compilation.

page Skips the specified number of pages in the source listing.

pagesize Sets the number of lines per page in the source listing.

skip Skips the specified number of lines in the source listing.

subtitle Specifies a subtitle for the source listing.

title Specifies a title for the source listing.

The pragmas are described in Chapter 2.

Converting from Previous Versions of the Compiler A-3

Differences between Versions 5.0 and 4.0

Differences between Versions 5.0 and
4.0
Changes in Version 5.0 since Version 4.0 fall into the following
categories:

• Enhancements and additions to the compiler software to allow for
more flexible programming, improved code generation, and
increased support for the developing ANSI standard

• Changes in the language syntax

• Changes in function operations, primarily to conform to the specif­
ications for these functions in the ANSI standard

These features and the changes required to take advantage of them are
discussed in the following sections.

Enhancements and Additions
Enhancements for Version 5.0 include the following:

• Improved code generation, including loop optimization; improved
large-model code generation; and intrinsic functions

• Faster compilation speed

• Support for code that will be loaded into read-only memory (ROM)

• New error-message numbering

Changes to the Language Syntax
Some Version 5.0 changes were made to the C-language syntax to make it
conform more closely to the new ANSI standard. Most of these changes do
not affect source code written for the Version 4.0 compiler. The changes
are summarized as follows: •

• Full function prototyping is supported in Version 5.0. A function
prototype is a forward declaration containing the types and, option­
ally, names of the parameters (if any) expected in the function call.

A-4 C User’s Guide

Differences between Versions 5.0 and 4.0

It can also include identifiers for the arguments, though they go out
of scope at the end of the prototype. Prototypes allow the compiler
to perform type checking on the actual arguments passed when the
function is called. If the compiler does not find a prototype, the
first occurrence of the function (definition or call) is used as the
basis of a prototype for that function. That prototype is used to per­
form type checking against subsequent calls, subsequent declara­
tions, or the definition. For more information about function proto­
typing, see the C Language Reference.

• The const and volatile type specifiers have been implemented for
Version 5.0. The const type specifier declares an object as an
unmodifiable value. It can be used for objects of any fundamental
or aggregate type or for pointers to objects of any type. The vola­
tile type specifier is implemented syntactically, but not semanti­
cally. For more information, see the C Language Reference.

Note

Programs that currently use const or volatile as identifiers must be
recoded to use other names. •

• In Version 5.0, variables of enum type are treated as if they are of
int type in all cases. Therefore, enum variables can be used in
indexing expressions and as operands of all relational and arith­
metic operators.

• String concatenation is supported in Version 5.0. This feature
causes adjacent string literals to be concatenated into a single
string literal. This means, for example, that instead of using a
backslash before a new-line character to indicate continuation of a
long string literal, the literal can simply be broken into two or
more quoted string literals on separate lines. For more information,
see the C Language Reference.

• New preprocessor features in Version 5.0 include the stringizing
operator (#), which allows arguments in macro expansions to be
expanded into a string literal containing the expanded argument;
and the concatenation operator (##), which concatenates the
tokens on either side of the operator into a new token in macro
expansions. For more information, see the C Language Reference.

Converting from Previous Versions of the Compiler A-5

Differences between Versions 5.0 and 4.0

Note

Previous versions of C allowed expansion of macro formal argu­
ments appearing in string literals and character constants. Programs
that rely on this feature must be recoded to use the stringizing
operator. For information, see the discussion of string literals in the
C Language Reference.

• The long double data type is now supported; the long float data
type is no longer supported.

• The three-digit forms of hex escape sequences (\xddd) and octal
escape sequences (\ddd) are now supported.

• The unary plus (+) operator is allowed, but ignored semantically.

New Features for the Microsoft Implementation of
C

The following new cc command options have been added to the Microsoft
C Compiler for Version 5.0:

Option Effect

-Oi Enables intrinsic code generation for all available
functions

-Ol Enables loop optimizations for an entire program

-Op Forces consistent precision in floating-point math opera­
tions

-SI Specifies the line width for source listings

-Sp Specifies the number of lines per page for source listings

-Ss Specifies subtitles for source listings

-St Specifies titles for source listings

A-6 C User’s Guide

Differences between Versions 5.0 and 4.0

-Tc Tells the compiler that the following hie is a C source
hie

-Zp Packs structures on one-, two-, or four-byte boundaries

The following new pragmas have been added to the Microsoft C Com
piler for Version 5.0 to control the specified features on a local basis:

Pragma Effect

loopopt Turns loop optimizations on and off

pack Specihes packing alignment for structures

intrinsic Specihes which functions are compiled as intrinsic func­
tions

function Specihes which functions are compiled as standard
function calls

same_seg Tells the compiler to assume that specified variables are
allocated in the same far data segment

alloc_text Specifies modules to be grouped into a specified far text
segment

Note that the existing check_stack pragma uses the following new format
for specifying arguments:

#pragma check_stack([{onloff}])

Converting from Previous Versions of the Compiler A-7

Differences between Versions 4.0 and 3.0

Differences between Versions 4.0 and
3.0
Changes between Versions 4.0 and 3.0 fall into the same categories as
those between Versions 5.0 and 4.0.

• Enhancements and additions to the compiler software to allow for
more flexible programming, improved code generation, and
increased support for the developing ANSI standard

• Changes in the language syntax

These features and the changes required to take advantage of them are
discussed in the following sections.

Enhancements and Additions
Enhancements for Version 4.0 include the following:

• New options for cc and xld

• Improved code optimization

• New memory models (compact and huge)

• Source listings

• Numbered error messages

• Huge arrays, allowing a single array to be larger than 64K

These changes should have no effect on Version 3.0 source code.

For information on changes to the syntax of the cc command line, see the
“ Compiling with the cc Command” chapter of this guide.

Changes in the Language Syntax
Some Version 4.0 changes were made to the C-language syntax to make it
conform more closely to the developing ANSI standard. Most of these
changes do not affect source code written for the Version 3.0 compiler.
The changes are summarized as follows:

A-8 C User’s Guide

Differences between Versions 4.0 and 3.0

• The \a escape sequence represents the bell (or alert) character in
Version 4.0.

You can make your source code more portable by using \a instead
of \x7. For more information, see the C Language Reference.

• The signed keyword was added to improve portability.

The signed keyword can be used to specify signed items. This key­
word is particularly useful for declaring signed char types in pro­
grams compiled with the -J option. (-J changes the default mode
for the char type to unsigned.) For more information on signed
types, see the C Language Reference.

• The syntax was changed for making function calls with a variable
number of arguments.

The following two declarations contrast the Version 3.0 form and
the Version 4.0 form:

int func (int,); /* Forward declaration in
** Version 3.0 syntax
*/

int func (int,...); /* Forward declaration in
** Version 4.0 syntax
*/

This change was made to conform to changes in the ANSI standard
for the C language. Both forms are supported in Version 4.0 of the
C Compiler. Microsoft recommends the use of the Version 4.0
form in all programs.

• Prior to Version 4.0, the compiler allowed arbitrary strings of char­
acters after a syntactically correct preprocessor command. To con­
form to the developing ANSI standard, this was disallowed in Ver­
sion 4.0.

Beginning with Version 4.0, the following usage, for example,
causes the compiler to generate a warning message:

#endif Block ends here

In Versions 4.0 and later, such strings must be enclosed in com­
ment delimiters, as in the following example:

#endif /* Block ends here */

Converting from Previous Versions of the Compiler A-9

Differences between Versions 4.0 and 3.0

• Names of types defined with typedef are not keywords in Version
4.0, as they were in Version 3.0. In Version 4.0, these names are in
the same naming class as names of functions and variables, and
can be redefined in a nested block.

For more information, see the C Language Reference.

• Beginning with Version 4.0, the #pragma directive is supported.

A “ pragma” is an instruction to the compiler. Its syntax is similar
to the syntax of preprocessor directives, but its purpose is different.
The syntax is as follows:

#pragma charstring

The only pragma instruction supported in the C Compiler, Version
4.0, is the check_stack pragma. This pragma is specific to System
V, and is discussed in greater detail in the “ Compiling with the cc
Command” chapter of this guide.

• Hexadecimal and octal integer constants are handled differently in
Version 4.0 than they are in Version 3.0.

For more information, see the C Language Reference.

• The extended keywords fortran, pascal, cdecl, near, and huge are
enabled by default in Version 4.0. They can be disabled by giving
the -Za option on the command line.

• Two new reserved words, const and volatile, were added but not
implemented for Version 4.0.

• In Version 3.0, when a near pointer is converted to type long int, it
is first converted to type short int, then to long int; as a result, in
Version 3.0 the expression in the if statement evaluates as true in
the following fragment:

char *ptr = NULL;
long i;

i = (long) ptr;
if (i == OL) {

}

In Version 4.0, the conversion order of near pointers to long
integers was changed so that it conforms to the order in which the

A -10 C User’s Guide

Differences between Versions 4.0 and 3.0

compiler does all other conversions that increase the length of a
variable: first the size, then the mode. (For example, the compiler
converts a variable with type char to type unsigned long by first
converting it to signed long, then to unsigned long.) Because of
this change, the preceding code now converts ptr to a far pointer
by loading the appropriate segment register value, then changing
that to a long integer. The expression following the if statement
would most likely be false in Version 4.0, since the segment regis­
ters do not usually contain 0.

New Features for This Implementation of C
The following features were added to the C compiler for Version 4.0:

• Two new memory models: huge and compact

• The huge, signed, and cdecl keywords

• A pragma (check_stack) to control stack checking

• The - J option to change the default mode for the char type to
unsigned

• The -Gc option to specify the alternative calling sequence and
naming conventions used in Pascal and FORTRAN

These features are discussed in the “ Working with Memory Models”
chapter. In most cases, they will not affect existing Version 3.0 source
code. However, you may be able to improve your existing programs by
modifying them to take advantage of the new memory models or the huge
keyword.

Converting from Previous Versions of the Compiler A - 11

Appendix B

Writing Portable Programs

Introduction B-l

Program Portability B-3

Machine Hardware B-4
Byte Length B-4
Word Length B-4
Storage Alignment B-5
Byte Order in a Word B-6
Bit Fields B-7
Pointers B-7
Address Space B-9
Character Set B-9

Compiler Differences B -ll
Signed/Unsigned char and Sign Extension B -ll
S hift Operations B -ll
Identi her Length B -12
Register Variables B -l2
Type Conversion B -l2
Functions with a Variable Number of Arguments
Side Effects and Evaluation Order B-14

Environment Differences B-l6

Portability of Data B -l7

Type-Size Summary B -l8

Byte-Ordering Summary B-20

B-14

V _ y

Introduction

Introduction
The standard definition of the C programming language leaves many
details to be decided in specific implementations of the language. These
unspecified features of the language detract from its portability and must
be studied when attempting to write portable C code.

Most of the issues affecting C portability arise from differences either in
target-machine hardware or in compilers. C was designed to compile
efficient code for the target machine (initially a Digital Equipment Cor­
poration PDP-11®), so many of the language features not precisely
defined are those that reflect a particular machine’s hardware characteris­
tics.

This appendix highlights the various aspects of C that may not be portable
across different machines and compilers. It also briefly discusses the por­
tability of a C program in terms of its environment. The environment is
determined by the system calls and library routines a program uses during
execution, file path names it requires, and other items not guaranteed to
be constant across different systems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from small eight-bit micropro­
cessors to large mainframes. This appendix is concerned with the porta­
bility of C code in the MS-DOS, XENDC, and System V programming
environments. This is a more restricted problem to consider, since all
MS-DOS, System V, and XENIX operating systems to date run on hard­
ware with the following basic characteristics:

• ASCII character set

• Eight-bit bytes

• Two-byte or four-byte integers

• Two’s-complement arithmetic

These features are not formally defined for the language and may not be
found in all implementations of C. However, the remainder of this appen­
dix is devoted to those systems where these basic assumptions hold.

The C-language definition contains no specification of how input and out­
put are performed. These specifications are left to system calls and
library routines on individual systems. Within the System V and XENIX
systems there are system calls and library routines that can be considered

Writing Portable Programs B-l

Introduction

portable. This version of the C Compiler includes system calls and
library routines that can be considered portable across System V, XENIX,
and MS-DOS systems. The run-time library for the System V C Compiler
for MS-DOS is composed primarily of System V and XENIX compatible
routines. By restricting the use of XENIX and System V routines to those
included in the MS-DOS library, the System V programmer can develop
MS-DOS programs in the System V environment; C programs written on
MS-DOS are easily portable to XENIX or System V.

B-2 C User’s Guide

Program Portability

Program Portability
A program is “ portable” if it can be compiled and run successfully on
different machines without alteration. There are many ways to write port­
able programs. One way is to avoid using inherently nonportable lan­
guage features. Another is to isolate any nonportable interactions with
the environment, such as I/O to nonstandard devices. For example, pro­
grams should avoid hard-coded path names unless a path name is com­
mon to all systems.

Files required at compile time (such as include files) may also introduce
nonportability if the path names used are not the same on all machines.
In some cases, include files containing machine-specific definitions can
be used to make the source code itself portable.

Writing Portable Programs B-3

Machine Hardware

Machine Hardware
Differences in the hardware of the various target machines and differences
in the corresponding C compilers cause the greatest number of portability
problems. This section lists problems commonly encountered.

Byte Length
By definition, the char data type in C must be large enough to hold as
positive integers all members of a machine’s character set. For the ma­
chines described in this appendix, the char size is an eight-bit byte.

Word Length
The size of the basic data types for a given implementation are not for­
mally defined in the C language. Therefore, they often follow the most
natural size for the underlying machine. It is safe to assume that short is
no longer than long. Beyond that, no assumptions are portable. For
example, on some machines short is the same length as int, whereas on
others long is the same length as int.

Two areas where different int sizes affect program portability are the fol­
lowing:

1. Array indexing. For very large arrays, a variable of type int may
not be long enough to store the indices of the highest-numbered
array elements.

2. Pointer subtraction. On some machines, an int variable may not be
long enough to store the results of pointer subtraction. See the sec­
tion on “ Pointers” in this appendix for more information about
this problem.

Programs that need to assume the size of a particular data type should
avoid hard-coded constants where possible. Such information can usually
be written in a fairly portable way. For example, the maximum positive
integer (on a two’s-complement machine) can be obtained with the fol­
lowing directive:

f d f c f i n e MAXPOS ((i n t) (((u n s i g n e d) - 1) >> 1))

B-4 C User’s Guide

Machine Hardware

This is preferable to the following code:

#ifdef PDP11
#define MAXPOS 32767
#else

#endif

To find the number of bytes in an int, use sizeof(int) rather than 2, 4, or
some other nonportable constant.

Storage Alignment
The C language defines no particular layout for storage of data items rela­
tive to each other. The layout for storage of structure elements, or unions
within the structure or union, is also left undefined by the language.

Some processors require that data types longer than one byte be aligned
on even-byte address boundaries. Others, such as the 8086/8088, have no
such hardware restriction. However, even with these machines, most
compilers generate code that aligns words, structures, arrays, and long
words on even addresses or on even long-word addresses. Therefore, the
following code sequence may give different results, depending on specific
alignment requirements on different machines:

struct s_tag {
char c;
int i;
} ;

printf ("%d\n",sizeof(struct s_tag)) ;

This variation in data storage has two major implications: data accessed
as nonprimitive data types are not portable, and code that makes assump­
tions about the layout on a particular machine is not portable.

Therefore, unions containing structures are nonportable if the union is
used to access the same data in different ways. Unions are only likely to
be portable if they are used exclusively to store different data in the same
space at different times. For example, if the following union were used to
obtain four bytes from a long word, the code would not be portable to
some machines:

Writing Portable Programs B-5

Machine Hardware

u n i o n {
c h a r c [4] ;
long lw;
} u;

The sizeof operator should always be used when reading and writing
structures, as follows:

struct s_tag st;

write(fd, &st, sizeof(st));

Using the sizeof operator ensures portability of the source code, but does
not produce a portable data file. Portability of data is discussed in the
“ Portability of Data” section in this appendix.

Byte Order in a Word
The variation in byte order in a word affects the portability of data more
than the portability of source code. However, any program that makes
use of knowledge of the internal byte order in a word is not portable. For
example, on some XENIX or System V systems there is an include file,
misc.h, that contains the following structure declaration:

/*
* structure to access an
* integer in bytes
*/
struct {

char lobyte;
char hibyte;
} ;

With certain less-restrictive compilers, this declaration could be used to
access the high- and low-order bytes of an integer separately and in a
completely nonportable way. The correct way to do this is to use mask
and shift operations to extract the required byte, as shown in the follow­
ing example:

#define LOBYTE(i) (i & Oxff)
tdefine HIBYTE(i) ((i » 8) & Oxff)

These definitions provide a portable way to extract the least-significant
and the next-least-significant bytes of an integer. Since the int type can
be either two or four bytes, depending on the machine, even these
definitions do not provide a completely portable way to access the bytes
of an int.

B-6 C User’s Guide

Machine Hardware

One result of the byte-ordering problem is that the following code
sequence will not always perform as intended:

int c = 0;
read(fd, &c, 1);

On machines where the low-order byte is stored first, the value of c is the
byte value read. On other machines, the byte is read into some byte other
than the low-order one, so the value of c is different.

Bit Fields
Bit fields are not implemented in all C compilers. The C Compiler imple­
ments bit fields and allows them to have any length up to the size of a
long. However, in many implementations no bit field may be larger than
an int, and no bit field can overlap an int boundary. If necessary, the com­
piler will leave gaps and move to the next int boundary. To ensure porta­
bility no individual field should exceed 16 bits.

The C language makes no guarantees about whether bit fields are
assigned left to right or right to left. Therefore, although bit fields may be
useful for storing flags and other small data items, their use in unions to
dissect bits from other data is definitely nonportable.

Pointers
The C language is fairly generous in allowing manipulation of pointers, to
the extent that most compilers do not generate warnings for nonportable
pointer operations. A common nonportable use of pointers is the use of
casts to assign one pointer to another pointer of a different data type. This
practice usually makes some assumption about the internal byte ordering
and layout of the data type, and is therefore nonportable. In the following
code, the byte order in the array c is not portable:

char c [4];
long *lp;

lp = (long *)&c [0];
*lp = 0xl2345678L;

Code like this is usually unnecessary or invalid. It is acceptable, however,
when the malloc function is used to allocate space for variables that do
not have char type. The routine is declared as type char *, and the return
value is cast to the type to be stored in the allocated memory. If this type
is not char *, then a compiler may issue a warning concerning illegal

Writing Portable Programs B-7

Machine Hardware

type conversion. In addition, the malloc function is designed always to
return a starting address suitable for storing all types of data. A compiler
may not know this, so it may give an additional warning about possible
data-alignment problems. In the following example, malloc is used to
obtain memory for an array of 50 integers:

extern void *malloc();
int *ip;

ip = (int *)malloc(50 * sizeof (int)) ;

This example will elicit a warning message from some compilers.

The C Language Reference states that a pointer can be assigned (or cast)
to an integer large enough to hold it. Note that the size of the int type
depends on the given machine and implementation. This type is long on
some machines and short on others. The size may also be modified by
near and far declarations. In general, do not assume that the following
statement is always true:

sizeof(char *) == sizeof(int)

For example, the following construction is nonportable, assuming that the
function identifier func is not previously declared:

int p;
p = (char *)func();

This example assumes that a char pointer has the same length as an int.

Another consequence of different-sized int types on different machines is
that pointer subtraction may not give the expected results. As an example
of this case, subtracting pointers to the beginning and end of a very large
array may give a result that is too large to store in an int variable, as
shown in the following example:

int arr[20000], *b = arr, *e = &arr[20000];
int diff;
diff = e - b; /* result too large to store in

m t variable diff */

To correct this problem, coerce the result of the pointer subtraction long
type, then assign the result to a variable of unsigned int type, as shown in
the following example:

unsigned int udiff;
udiff = (long) ((int huge *)e - (int huge *)b);

B -8 C User’s Guide

Machine Hardware

In most implementations, the null pointer value NULL is defined to be
the int value 0. The length of the 0 value can lead to problems for func­
tions that expect pointer arguments longer than an int. For portable code,
always use the following form to pass a NULL value of the correct size:

func((char *)NULL);

Address Space
The address space available to a program varies considerably from sys­
tem to system. Some small processors allow only 64K for program text
and data combined. Others allow up to 64K of data and 64K of program
text. Larger machines may allow considerably more text and possibly
more data as well.

Large programs, or programs that require large data areas, may have por­
tability problems on small machines.

Character Set
The C language does not require the use of the ASCII character set. In fact,
the only character-set requirements are that all characters must fit in the
char data type, and all characters must have positive values.

In the ASCII character set, all characters have values between 0 and 127
and therefore can be represented in seven bits. On an eight-bits-per-byte
machine they are all positive, regardless of whether char is treated as
signed or unsigned.

A set of character-classi fication macros is included as part of the run-time
library for the C Compiler. These macros should be used for most tests on
character quantities. The macros are defined in the include file ctype.h,
and are described in the C Library Guide.

The character-classification macros provide insulation from the internal
structure of the character set. In addition, the names of the macros are
often more meaningful than the equivalent line of code. Compare the fol­
lowing two lines:

if(isupper (c))
if ((c >= 'A') && (c <= ' Z '))

Writing Portable Programs B-9

Machine Hardware

With some of the other macros, such as isxdigit to test for a hexadecimal
digit, the advantage is even greater. Also, the internal implementation of
the macros makes them more efficient than an explicit test with an if
statement.

B -10 C User’s Guide

Compiler Differences

Compiler Differences
There are a number of C compilers running under various operating sys­
tems. The main areas of differences between compilers are outlined in
this section.

Signed/Unsigned char and Sign Extension
The current state of the signed versus unsigned char problem is best
described as unsatisfactory. The sign-extension problem is a serious bar­
rier to writing portable C, and the best solution at present is to write
defensive code that does not rely on particular implementation features.

Shift Operations
The left-shift operator («) shifts its operand a number of bits left, filling
vacated bits with zeros. This is called a logical shift. When the right-shift
operator (») is applied to an unsigned quantity, it performs a logical-
shift operation; when it is applied to a signed quantity, the vacated bits
may be filled with zeros (logical shift) or with sign bits (arithmetic shift).
The decision is implementation dependent, and code that assumes a par­
ticular implementation is nonportable.

With compilers that use arithmetic right shift, it is necessary to shift and
mask the appropriate number of high-order bits to avoid sign extension, as
follows:

char c;

c = (c >> 3) & Oxlf;

You can also avoid sign extension by using the divide operator (/) as fol­
lows:

char c;
c = c / 8 ;

Writing Portable Programs B -ll

Compiler Differences

Identifier Length
The use of long symbols and identifier names will cause portability prob­
lems with some compilers. To avoid these problems, a program should
keep the following symbols as short as possible:

• C preprocessor symbols

• C local symbols

• C external symbols

Some loaders also place restrictions on the number of unique characters
in C external symbols. Symbols unique in the first six characters are
unique to most C-language processors.

In some C implementations, the case of letters in identifiers is not signifi­
cant.

Register Variables
The number and type of register variables in a function depend on the ma­
chine hardware and the compiler. Excess and invalid register declarations
are treated as nonregister declarations and should not cause a portability
problem. On an 8086, 8088 or 80286 processor, up to two register declara­
tions are significant, and they must be applied to types of size int or
smaller. On the 80386 processor, three register declarations are signifi­
cant.

Since the compiler ignores excess variables of register type, the most
important register-type variables should be declared first. In this way,
register variables that the compiler ignores will be those that are the least
important.

Type Conversion
The C language has some rules for implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is
a potential problem whenever something of type char is compared with
an int.

B -12 C User’s Guide

Compiler Differences

The following example will never evaluate true on a machine that sign-
extends char types but treats hexadecimal numbers as unsigned:

char c;

if(c == 0x80) {

}

The following construction is also nonportable:

char c;
unsigned int u;

if (u == (unsigned)c) {

}

Two problems can arise in the preceding example:

1. The char type may be considered either signed or unsigned,
depending on the implementation.

2. For implementations that consider the char type to be signed, two
different methods of carrying out the conversion are possible: the
char value may be sign extended to int type first, then converted to
unsigned type; or the char type may be converted to an unsigned
type of the same size, then zero extended to int length.

The only safe comparison between char type and int is the following:

int c;

if (c == 'x') {

}

This comparison is reliable because C guarantees all character constants
to be positive.

Writing Portable Programs B -13

Compiler Differences

Type conversion also occurs when arguments are passed to functions.
Types char and short become int. Extending the char type can produce
unexpected results. For example, the following program yields a result of
-128 on some machines:

char c = 12 8;
printf ("%d\n ", c) ;

The unexpected negative value is produced because c is converted to int
when it is passed to the printf function. The function itself has no
knowledge of the original type of the argument and is expecting an int.
The correct way to handle this situation is to code defensively and allow
for the possibility of sign extension, as in the following example:

char c = 128;
printf("%d\n", c & Oxff) ;

Functions with a Variable Number of Arguments
Functions with a variable number of arguments present a particular porta­
bility problem if the type of the arguments is also variable. In such cases
the code is dependent on the size of various data types. For portability,
these cases should be avoided.

Side Effects and Evaluation Order
The C language makes few guarantees about the order of evaluation of
operands in an expression or arguments to a function call. Therefore, the
following statement is not portable:

func(i++, i++);
Even the following statement is unwise if func is ever likely to be
ieplaced by a macro, since the macro may use i more than once:

func(i++);
Certain System V- and XENIX-compatible macros commonly appear in
user programs; some of these use their argument only once, and therefore
can safely be called with a side-effect argument. To determine whether a
macro handles side effects correctly, examine the code for that macro to
see whether or not the argument is evaluated more than once.

Operands to the following operators are guaranteed to be evaluated left to
right:

& & II

B-14 C User’s Guide

Compiler Differences

Note that the comma operator here is a separator for two C statements. A
list of items separated by commas in a declaration list is not guaranteed to
be processed left to right. Therefore, the following declaration on an 8086
or 8088 processor, where only two register variables may be declared,
could give any two of the four variables register type, depending on the
compiler:

register int a, b, c, d;
To give register storage to the most important variables, use separate
declaration statements and declare the most important variables first. The
order of processing of individual declaration statements is guaranteed to
be sequential in the following statements:

register int a;
register int b;
register int c;
register int d;

Writing Portable Programs B -15

Environment Differences

Environment Differences
Most programs make system calls and use library routines for various ser­
vices. This section indicates some of those routines that are not always
portable and those that particularly aid portability.

System calls specific to an operating system are not portable if they are
not present on all other operating-system implementations of C. Most of
the system calls defined in the UNIX System V run-time library are com­
patible with DOS system calls and are therefore portable to a DOS
environment.

Any program is nonportable that contains hard-coded path names to files
or directories, or that contains user identifier numbers, log-in names, ter­
minal lines, or other system-dependent parameters. These types of con­
stants should be in header files, passed as command-line arguments, or
obtained from the environment.

Note that the members of the printf and scanf families of functions,
including fprintf, fscanf, printf, sprintf, scanf, vfprintf, vprintf,
vsprintf, and sscanf, have evolved in several ways, and some features are
not completely portable. Some of the format-conversion characters have
changed their meanings, in particular those relating to uppercase and
lowercase in the output of hexadecimal numbers and the specification of
long integers on 16-bit word machines. The C specifications for these
routines are given in the C Library Guide.

Users should be wary of porting object files that reference the setjmp or
longjmp functions from System V or XENIX to MS-DOS, unless these
object files were compiled with the -dos option. The MS-DOS versions of
these functions use a larger buffer size and may cause memory to be
overwritten. Such object files can be ported from MS-DOS to System V
without problems, and the corresponding source files can be ported in
either direction.

B -16 C User’s Guide

Portability of Data

Portability of Data
Data files are almost always nonportable across different central-pro­
cessing-unit (CPU) architectures. As mentioned above, structures, unions,
and arrays have varying internal layout and padding requirements on
different machines. In addition, byte ordering within words and actual
word length may differ.

The only way to achieve data-file portability is to write and read data files
as one-dimensional character arrays. This procedure prevents alignment
and padding problems if the data are written and read as characters, and
interpreted that way. Thus ASCII text files can usually be moved between
different machine types without significant problems.

Writing Portable Programs B -17

Type-Size Summary

Type-Size Summary

Table B.l summarizes the sizes of the various data types as defined in the
C Compiler, Version 5.1.

Table B.l
C Type Sizes

Type Name
(Alternate Names) Storage Range of Values

char
(signed char)

1 byte -128 to 127

int
(signed)
(signed int)

Implementation
dependent (2 bytes
in UNIX C 5.1)

(-32,768 to 32,767 for
UNIX C Version 5.1)
(-2,147,483,648 to
2,147,483,647 for 386)

short
(short int)
(signed short)
(signed short int)

2 bytes -32,768 to 32,767

long
(long int)
(signed long)
(signed long int)

4 bytes -2,147,483,648 to
2,147,483,647

unsigned1 char 1 byte 0 to 255

unsigned
(unsigned int)

Implementation
dependent (2 bytes
in C 5.1)

(0 to 65,535
for C 5.1)
(0 to 4,294,967,295 for
386)

unsigned short
(unsigned short int)

2 bytes 0 to 65,535

B -18 C User’s Guide

Type-Size Summary

Table B.l
C Type Sizes

Type Name
(Alternate Names) Storage Range of Values

unsigned long
(unsigned long int)

4 bytes 0 to 4,294,967,295

enum Implementation
dependent (2 bytes
in C 5.1)

(0 to 65,535 for
C 5.1)
(0 to 4,294,967,295 for
386)

float 4 bytes Approximately
3.4E-38 to 3.4E+38
(7-digit precision)

double 8 bytes Approximately
1.7E-308 to 1.7E+308
(15-digit precision)

long double Implementation
dependent (8 bytes
in C 5.1)

Approximately
1.7E-308 to 1.7E+308
(15-digit precision)

1 Any type size modified by the u n sign ed keyword can be modified by the signed key­
word instead. The signed keyword is useful if the -J option has been used to change
the default sign of the char type.

Writing Portable Programs B -19

Byte-Ordering Summary

Byte-Ordering Summary
Tables B.2 and B.3 summarize byte ordering for short and long types,
respectively. The following conventions are used in these tables:

1. The lowest physically addressed byte of the data item is aO: al has
the byte address aO + 1. and so on.

2. The least-significant byte of the data item is bO; bl is the next
least significant, and so on.

Since byte ordering is machine specific, any program that actually makes
use of the following information is guaranteed to be nonportable:

Table B.2
Byte Ordering for Short Types

CPU_____________Byte Order

8086 bO bl

80286 bO bl

PDP-11® bO bl

VAX-11® bO bl

M68000 bl bO

Z8000® bl bO

B -20 C User's Guide

Byte-Ordering Summary

Table B.3
Byte Ordering for Long Types

CPU_____________Byte Order

8086 bO bl b2 b3

80286 bO bl b2 b3

PDP-11® b2 b3 bO bl

VAX-11® bO bl b2 b3

M68000 b3 b2 bl bO

Z8000® b3 b2 bl bO

Writing Portable Programs B-21

Appendix C

Writing Programs
for Read-Only Memory

Introduction C-l

System V Dependent Library Routines C-2

Introduction

Introduction
This appendix presents information for developers who will be download­
ing code written with the C Compiler into read-only memory (ROM).
Code of this type is more commonly known as “ ROMable” code. Infor­
mation is given about the run-time library routines that directly interface
with System V.

Writing Programs for Read-Only Memory C-l

System V Dependent Library Routines

System V Dependent Library
Routines
Because ROMable programs are often run outside a System V environ­
ment, they cannot include calls to run-time library routines that perform
their operations through calls to System V functions. Table C.l lists the
library routines that call System V functions.

Table C.l
System V Dependent Library Routines

abort exit
access ifclose
chdir fgetc
chmod fgetchar
chsize fgets
close flush
creat fopen
dup fprintf
dup2 fputc
eof fputchar
execl fputs
execle fread
execl p freopen
execl pe fscanf
execv fseek
execve fstat
execvp ftell
execvpe ftime

fwrite read
getch rmdir
getcwd scanf
getpid sopen
gets sprintf
getw sscanf
labs stat
localtime system
locking tell
lseek time
mkdir tmpfile
mktemp unlink
open utime
perror vfprintf
printf vprintf
putch vsprintf
puts write
putw

A program containing calls to any of these routines cannot run in a non-
System V environment unless you do one of the following:

• Write replacements for these System V-dependent routines as
needed.

• Edit the program to remove the calls to the listed routines.

• Obtain the library source files from System V and edit them so that
they do not include System V function calls, and write functional
equivalents of the System V functions that can be called from your
program.

C-2 C User’s Guide

System V Dependent Library Routines

Note that certain functions that are not listed above may call System V
functions indirectly: that is, they may be part of a series of nested calls
that call routines in the list.

Writing Programs for Read-Only Memory C-3

Appendix D

C Error Messages and Exit Codes

Introduction D-l

Command-Line Error Messages D-2
Command-Line Fatal-Error Messages D-2
Command-Line Error Messages D-2
Command-Line Warning Messages D-4

Compiler Error Messages D-7
Fatal-Error Messages D-8
Compilation-Error Messages D -l4
Warning Messages D-29
Compiler Limits D-39

Compiler Exit Codes D-41

Introduction

Introduction
This appendix lists error messages you may encounter as you develop a
program, and gives a brief description of actions you can take to correct
the errors. It also describes the exit codes returned by the compiler.

C Error Messages and Exit Codes D -1

Command-Line Error Messages

Command-Line Error Messages
Messages that indicate errors on the command line used to invoke the
compiler have one of the following formats:

command line fatal error Dlxxx: messagetext (fatal error)
command line error D2xxx: messagetext (error)
command line warning D4xxx: messagetext (warning error)

If possible, the compiler continues operation, printing a warning message.
In some cases, command-line errors are fatal and the compiler terminates
processing.

Command-Line Fatal-Error Messages
The following messages identify fatal errors. The compiler driver cannot
recover from a fatal error; it terminates after printing the error message.

D1000 UNKNOWN COMMAND LINE FATAL ERROR
The compiler detected an unknown fatal-error condition.

D1001 could not execute 'filen a m e'
The compiler could not find the given file in the current working
directory or any of the other directories named in the PATH vari­
able.

D1002 too many open files, cannot redirect f i le n a m e '
No more file descriptors were available to redirect the output of the
-P option-to a file.

Command-Line Error Messages
When the compiler driver encounters any of the errors listed in this sec­
tion. it continues compiling the program (if possible) and outputs addi­
tional error messages. However, no object file is produced.

D2 000 UNKNOWN COMMAND LINE ERROR
The compiler detected an unknown error condition.

D-2 C User’s Guide

Command-Line Error Messages

D2001 too many symbols predefined with -D
Too many symbolic constants were defined using the -D option on
the command line.

The limit on command-line definitions is normally 16; you can use
the -U or -u option to increase the limit to 200.

D2002 a previously defined model specification has
been overridden
Two different memory models were specified; the model specified
later on the command line was used.

D2003 missing source file name
You did not give the name of the source file to be compiled.

D2007 bad o p tio n flag, would overwrite 's tr in g 1 ' with
's tr in g 2 '
The specified option was given more than once, with conflicting
arguments string 1 and string2.

D2008 too many o p tio n flags, 's tr in g '
Too many letters were given with the specified option (for example,
with the -O option).

D2 00 9 unknown option c h a r a c te r in 'o p tio n s tr in g '
One of the letters in the given option was not recognized.

D2012 too many linker flags on command line
You tried to pass more than 128 separate options and object files to
the linker.

D2013 incomplete model specification
Not enough characters were given for the -Astring option. The
option requires all three letters (to specify the data-pointer size,
code-pointer size, and segment setup).

D2014 -ND not allowed with -Ad
You cannot rename the default data segment unless you give the
-Aiixx option (SS != DS, load DS) on the command line.

D2016 -Gw and -ND n a m e are incompatible
You tried to rename the default data segment to the given name
when you specified the -Gw option.

Renaming the default data segment is illegal in this case because the
-Gw option requires the -Awxt option.

C Error Messages and Exit Codes D-3

Command-Line Error Messages

D2017 -Gw and -Au flags are incompatible
You tried to specify the -Auxt option (SS != DS, load DS) with the
-Gw option.

Specifying -Auxr with -Gw is illegal because the -Gw option
requires the -Awxv option.

D2019 cannot overwrite the source file, 'n a m e '
You specified the source file as an output-file name.

The compiler does not allow the source file to be overwritten by one
of the compiler output files.

D2020 -Gc option requires extended keywords to be
enabled (-Ze)
The -Gc option and the -Za option were specified on the same com­
mand line.

The -Gc option requires the extended keyword cdecl to be enabled if
library functions are to be accessible.

D2021 invalid numerical argument 's tr in g '
A non-numerical string was specified following an option that
required a numerical argument.

D2023 invalid model specification - small model
only

D2024 : -Gm and -ND are incompatible options
You compiled with both the -Gm and -ND compiler options. These
options are incompatible because -Gm indicates that string literals
and near const data items should be allocated in the CONST seg­
ment, while the -ND option attempts to allocate the same items in a
different, named segment.

Command-Line Warning Messages
The messages listed in this section indicate potential problems but do not
hinder compilation and linking.

DIG 0 0 UNKNOWN COMMAND LINE WARNING
An unknown fatal condition has been detected by the compiler.

D4C01 listing has precedence over assembly output
Two different listing options were chosen; the assembly listing is not
created.

D-4 C User’s Guide

Command-Line Error Messages

D4002 ignoring unknown flag 's tr in g '
One of the options given on the command line was not recognized
and is ignored.

D4003 80186/286 selected over 8086 for code
generation
Both the -GO option and either the -G1 or -G2 option were given;
-G1 or -G2 takes precedence.

D4004 optimizing for time over space
This message confirms that the -Ot option is used for optimizing.

D4006 only one of -P/-E/-EP allowed, -P selected
Only one preprocessor output option can be specified at one time.

D4007 -C ignored (must also specify -P or -E
or -EP)
The -C option must be used in conjunction with one of the prepro­
cessor output flags, -E, -EP, or -P.

D4008 non-standard model -- defaulting to small
model libraries
A nonstandard memory model was specified with the option. The
library search records in the object model were set to use the small-
model libraries.

D4009 threshold only for far/huge data, ignored
The -Gt option cannot be used in memory models that have near
data pointers. It can be used only in compact, large, and huge
models.

D4011 preprocessing overrides source
listing
Only a preprocessor listing was generated, since the compiler cannot
generate both a source listing and a preprocessor listing at the same
time.

D4012 function declarations override source
listing
The compiler cannot generate both a source-listing file and the func­
tion prototype declarations at the same time.

D4013 combined listing has precedence over object
listing
When -Fc is specified along with either -FI or -Fa, the combined list­
ing (-Fc) is created.

C Error Messages and Exit Codes D-5

Command-Line Error Messages

D4014 invalid value n u m b e r for ' s t r in g ' . Default n u m b e r
is used
An invalid value was given in a context where a particular numerical
value was expected.

D4017 conflicting stack checking options - stack
checking disabled
Both the -Ge and the -Gs flags are given in one compile command
(-Ge enables stack checking, -Gs disables it).

D-6 C User’s Guide

Compiler Error Messages

Compiler Error Messages
The error messages produced by the C compiler fall into three categories:

1. Fatal-error messages

2. Compilation-error messages

3. Warning messages

The messages for each category are listed below in numerical order, with
a brief explanation of each error. To look up an error message, first deter­
mine the message category, then find the error number. All messages give
the file name and line number where the error occurs.

Fatal-Error Messages

Fatal-error messages indicate a severe problem, one that prevents the
compiler from processing your program any further. These messages have
the following format:

filename(line) : fatal error Clxxx: messagetext

After the compiler displays a fatal-error message, it terminates without
producing an object file or checking for further errors.

Compilation-Error Messages

Compilation-error messages identify actual program errors. These mes­
sages appear in the following format:

filename(line) : error C2xxx: messagetext

The compiler does not produce an object file for a source file that has
compilation errors in the program. When the compiler encounters such
errors, it attempts to recover from the error. If possible, it continues to
process the source file and produce error messages. If errors are too
numerous or too severe, the compiler stops processing.

C Error Messages and Exit Codes D-7

Compiler Error Messages

Warning Messages

Warning messages are informational only; they do not prevent compila­
tion and linking. These messages appear in the following format:

filenome(line) : warning C4xxx: messagetext

You can use the -W option to control the level of warnings that the com­
piler generates. This option is described in the “ Compiling with the cc
Command“ chapter of this guide.

Fatal-Error Messages
The following messages identify fatal errors. The compiler cannot
recover from a fatal error; it terminates after printing the error message.

CIO0 0 UNKNOWN FATAL ERROR
An unknown error condition has been detected by the compiler.

C1001 Internal Compiler Error
The compiler detected an internal inconsistency.

Note that the file name refers to an internal compiler file, not your
source file.

C1002 out of heap space
The compiler has run out of dynamic memory space. This usually
means that your program has many symbols and/or complex expres­
sions.

To correct the problem, divide the file into several smaller source
files, or break expressions into subexpressions.

C1003 error count exceeds«; stopping compilation
Errors in the program were too numerous or too severe to allow
recovery, and the compiler must terminate.

D-8 C User’s Guide

Compiler Error Messages

C1004 unexpected EOF
This message appears when you have insufficient disk space for the
compiler to create the temporary files it needs. The space required is
approximately two times the size of the source file. This message
can also occur when a comment does not have a closing delimiter
(*/), or when an #if directive occurs without a corresponding closing
#endif directive.

C1005 string too big for buffer
A string in a compiler intermediate file overflowed a buffer.

C1006 write error on compiler intermediate file
The compiler was unable to create the intermediate files used in the
compilation process.

The following conditions commonly cause this error:

1. A system file or the inode table is full at time of compilation

2. Not enough space on a device containing a compiler inter­
mediate file

C1007 unrecognized flag 's tr in g ' in 'o p tio n
The string in the command-line option was not a valid option.

C1009 compiler limit possibly a recursively
defined macro
The expansion of a macro exceeds the available space.

Check to see if the macro is recursively defined, or if the expanded
text is too large.

C1010 compiler limit : macro expansion too big
The expansion of a macro exceeds the available space.

C1012 bad parenthesis nesting - missing 'c h a r a c te r '
The parentheses in a preprocessor directive were not matched; char­
acter is either a left or right parenthesis.

C1013 cannot open source file 'filename'
The given file either did not exist, could not be opened, or was not
found. Make sure your environment settings are valid and that you
have given the correct path name for the file.

C Error Messages and Exit Codes D-9

Compiler Error Messages

C1014 too many include files
Nesting of #include directives exceeds 10 levels. ^

C1016 #if[n]def expected an identifier
You must specify an identifier with the #ifdef and #ifndef directives.

C1017 invalid integer constant expression
The expression in an #if directive must evaluate to a constant.

C1018 unexpected '#elif'
The #elif directive is legal only when it appears within an #if, #ifdef,
or #ifndef directive.

C1019 unexpected r#else' ^
The #else directive is legal only when it appears within an #if,
#ifdef, or #ifndef directive.

C1020 unexpected '#endif'
An #endif directive appears without a matching #if, #ifdef, or
#ifndef directive.

C1021 bad preprocessor command 's tr in g '
The characters following the number sign (#) do not form a valid
preprocessor directive.

C1022 expected '#endif'
An #if, #ifdef, or #ifndef directive was not terminated with an
#endif directive.

C1026 parser stack overflow, please simplify your program
Your program cannot be processed because the space required to
parse the program causes a stack overflow in the compiler.

To solve this problem, try to simplify your program.

C1027 DGROUP data allocation exceeds 64K
More than 64K of variables was allocated to the default data seg­
ment.

For compact-, medium-, large-, or huge-model programs, use the -Gt
option to move items into separate segments.

D -10 C User’s Guide

Compiler Error Messages

C1032 cannot open object listing file 'f ilen a m e'
One of the following statements about the file name or path name
given (filename) is true:

1. The given name is not valid.

2. The file with the given name cannot be opened for
lack of space.

3. A read-only file with the given name already exists.

C1033 cannot open assembly-language output file
f i le n a m e '
One of the conditions listed under error message C1032 prevents the
given file from being opened.

C1034 cannot open source file f i le n a m e '
One of the conditions listed under error message C1032 prevents the
given file from being opened.

C1035 expression too complex, please simplify
The compiler cannot generate the code for a complex expression.
Break the expression into simpler subexpressions and recompile.

C1036 cannot open source listing file f i le n a m e '
One of the conditions listed under error message C l032 prevents the
given file from being opened.

C1037 cannot open object file f i le n a m e '
One of the conditions listed under error message C l032 prevents the
given file from being opened.

C1039 unrecoverable heap overflow in Pass 3
The post-optimizer compiler pass overflowed the heap and could not
continue.

Try recompiling with the -Od option (see “ Compiling with the cc
Command”) or try rewriting the function containing the line that
caused the error.

C1040 unexpected EOF in source file f i le n a m e '
The compiler detected an unexpected end-of-file condition while
creating a source listing or mingled source/object listing.

This error probably occurred because the source file was edited dur­
ing compilation.

C Error Messages and Exit Codes D -ll

Compiler Error Messages

C1041 cannot open compiler intermediate file - no
more files
The compiler could not create intermediate files used in the compila­
tion process because no more file descriptors were available.

C1042 cannot open compiler intermediate file - no
such file or directory
The compiler could not create intermediate files used in the compila­
tion process because the /tmp directory did not exist.

C1043 cannot open compiler intermediate file
The compiler could not create intermediate files used in the compila­
tion process. The exact reason is unknown.

C1044 out of disk space for compiler intermediate
file
The compiler could not create intermediate files used in the compila­
tion process because no more space was available.

To correct the problem, make more space available on the disk and
recompile.

C1045 floating point overflow
The compiler generated a floating-point exception while doing con­
stant arithmetic on floating-point items at compile time, as in the fol­
lowing example:

float fp_val = l.OelOO;

In this example, the double-precision constant l.OelOO exceeds the
maximum allowable value for a floating-point data item.

C1047 too many o p tio n flags, 's tr in g '
The option appeared too many times. The string contains the occur­
rence of the option that caused the error.

C1048 Unknown option 'c h a r a c te r ' in 'o p tio n s tr in g '
The character was not a valid letter for optionstring.

C10 4 9 invalid numerical argument 's tr in g '
A numerical argument was expected instead of string.

CIO50 code segment 's e g m e n tn a m e ' too large
A code segment grew to within 36 bytes of 64K during compilation.

A 36-byte pad is used because of a bug in some 80286 chips that can
cause programs to exhibit strange behavior when, among other con­
ditions, the size of a code segment is within 36 bytes of 64K.

D -12 C User’s Guide

Compiler Error Messages

C1052 too many #if/#ifdef's
You have exceeded the maximum nesting level for #if/#ifdef direc­
tives.

C1053 compiler limit : struct/union nesting
Structure and union definitions were nested to more than 10 levels.

C1054 compiler limit : initializers too deeply
nested
The compiler limit on nesting of initializers was exceeded. The limit
ranges from 10 to 15 levels, depending on the combination of types
being initialized.

To correct this problem, simplify the data type being initialized to
reduce the levels of nesting, or assign initial values in separate state­
ments after the declaration.

C1056 compiler limit : out of macro expansion space
The compiler has overflowed an internal buffer during the expansion
of a macro; reduce the complexity of the macro.

C1057 unexpected EOF in macro expansion;
(missing ')'?)
The compiler has encountered the end of the source file while gath­
ering the arguments of a macro invocation. Usually this is the result
of a missing closing parenthesis ()) on the macro invocation.

C1059 out of near heap space
The compiler has run out of storage for items that it stores in the
“ near” (default data segment) heap. This usually means that your
program has too many symbols or complex expressions. To correct
the problem, divide the file into several smaller source files, or break
expressions into smaller subexpressions.

C1060 out of far heap space
The compiler has run out of storage for items that it stores in the
“ far” heap. Usually this is the result of too many symbols in the
symbol table.

C1064 : too many text segments
You defined more than 10 distinct text segments with the alloc_text
pragma.

C Error Messages and Exit Codes D -13

Compiler Error Messages

Compilation-Error Messages
The messages listed below indicate that your program has errors. When
the compiler encounters any of the errors listed in this section, it contin­
ues parsing the program (if possible) and outputs additional error mes­
sages. However, no object file is produced.

C2000 UNKNOWN ERROR
The compiler detected an unknown error condition.

C2001 newline in constant
A new-line character in a character or string constant was not in the
correct escape-sequence format (\n).

C2002 out of macro actual parameter space
Arguments to preprocessor macros exceeded 256 bytes.

C2003 expected 'defined id'
The identifier to be checked in an #if directive was not enclosed in
parentheses.

C2004 expected 'defined(id)'
An #if directive caused a syntax error.

C2005 #line expected a line number, found ’to k en
A #line directive lacked the required line-number specification.

C2006 #include expected a file name, found ’to k en
An #include directive lacked the required file-name specification.

C2007 #define syntax
A #define directive caused a syntax error.

C2008 'c h a r a c te r ' : unexpected in macro definition
The given character was used incorrectly in a macro definition.

C2 00 9 reuse of macro formal ' id e n tif ie r '
The given identifier was used twice in the formal-parameter list of a
macro definition.

C2010 'c h a r a c te r ' : unexpected in formal list
The given character was used incorrectly in the formal-parameter
list of a macro definition.

C2011 ' id e n tifie r ' : definition too big
The given macro definitions exceeded 256 bytes.

D -14 C User’s Guide

Compiler Error Messages

C2012 missing name following '< '
An#include directive lacked the required file-name specification.

C2013 missing '> '
The closing angle bracket (>) was missing from an #include direc­
tive. '

C2014 preprocessor command must start as first
non whitespace
Non-white-space characters appear before the number sign (#) of a
preprocessor directive on the same line.

C2015 too many chars in constant
A character constant containing more than one character or escape
sequence was used.

C2016 no closing single quote
A character constant was not enclosed in single quotation marks.

C2017 illegal escape sequence
The character or characters after the escape character (\) did not
form a valid escape sequence.

C2018 unknown character '0x c h a r a c te r '
The given hexadecimal number does not correspond to a character.

C2019 expected preprocessor command, found 'c h a r a c te r '
The given character followed a number sign (#), but it was not the
first letter of a preprocessor directive.

C2 02 0 bad octal number 'c h a r a c te r '
The given character was not a valid octal digit.

C2021 expected exponent value, not 'c h a r a c te r '
The given character was used as the exponent of a floating-point
constant but was not a valid number.

C2022 'n u m b er' : too big for char
The number was too large to be represented as a character.

C2023 divide by 0
The second operand in a division operation (/) evaluated to zero, giv­
ing undefined results.

C2024 mod by 0
The second operand in a remainder operation (%) evaluated to zero,
giving undefined results.

C Error Messages and Exit Codes D -15

Compiler Error Messages

C2025 ' id e n tif ie r ' : enum/struct/union type redefinition
The given identifier had already been used for an enumeration, struc­
ture, or union tag.

C2 02 6 ' id e n tif ie r ' : member of enum redefinition
The given identifier had already been used for an enumeration con­
stant, either within the same enumeration type or within another
enumeration type with the same visibility.

C2028 struct/union member needs to be inside a struct/un
Structure and union members must be declared within the structure
or union.

This error may be caused by an enumeration declaration that con­
tains a declaration of a structure member, as in the following exam­
ple:
enum a {

january,
february,
int march; /* structure declaration:

** illegal
*/

C2029 ' id e n tif ie r ' : bit-fields allowed only in structs
Only structure types may contain bit fields.

C2030 ' id e n tif ie r ' : struct/union member redefinition
The i d e n t i f i e r was used for more than one member of the same struc­
ture or union.

C2031 ' id e n tif ie r ' : function cannot be
struct/union member
The given function was declared to be a member of a structure.

To correct this error, use a pointer to the function instead.

C2032 ' id e n tif ie r ' : base type with near/f ar/huge
not allowed
The given structure or union member was declared with the near,
far, or huge keyword.

C2033 ' id e n tif ie r ' : bit-field cannot have indirection
The given bit field was declared as a pointer (*), which is not
allowed.

D -16 C User’s Guide

Compiler Error Messages

C2034 ' id e n tif ie r ' : bit-field type too small for num­
ber of bits
The number of bits specified in the bit-field declaration exceeded the
number of bits in the given base type.

C2035 enum/struct/union ' id e n tif ie r ' : unknown size
The given structure or union had an undefined size.

C2036 left of 'm e m b e r ' must have struct/union type
The expression before the member-selection operator (->) was not a
pointer to a structure or union type, or the expression before the
member-selection operator (.) did not evaluate to a structure or
union. In this message, member is a member designator in one of the
following forms:

-> id en tif ie r
. iden tifier

C2037 left of ' - > ' or ' . ' specifies undefined
struct/union ' id e n tif ie r '
The expression before the member-selection operator (-> or .)
identified a structure or union type that was not defined.

C2038 ' id e n tifie r ' : not struct/union member
The given identifier was used in a context that required a structure or
union member.

C2039 ' - > ' requires struct/union pointer
The expression before the member-selection operator (->) was a
structure or union name, not a pointer to a structure or union as
expected.

C2040 ' . ' requires struct/union name
The expression before the member-selection operator (.) was a
pointer to a structure or union, not a structure or union name as
expected.

C2041 keyword 'enum' illegal
The enum keyword appeared in a structure or union declaration, or
an enum type definition was not formed correctly.

C2042 signed/unsigned keywords mutually exclusive
The signed and unsigned keywords may not appear in the same
declaration.

C2043 illegal break
A break statement is legal only when it appears within a do, for,
while, or switch statement.

C Error Messages and Exit Codes D -17

Compiler Error Messages

C2044 illegal continue
A continue statement is legal only when it appears within a do, for,
or while statement.

C204 5 ' id e n tif ie r ' : label redefined
The given label appeared before more than one statement in the
same function.

C2046 illegal case
The case keyword may appear only within a switch statement.

C2047 illegal default
The default keyword may appear only within a switch statement.

C2048 more than one default
A switch statement contained more than one default label.

C2049 cast has illegal formal parameter list
A formal parameter list was given in a type-cast expression.

C2050 non-integral switch expression
A switch expression was not integral.

C2051 case expression not constant
Case expressions must be integral constants.

C2052 case expression not integral
Case expressions must be integral constants.

C2053 case v a l u e n u m b er already used
The given case value was already used in this switch statement.

C2 0 54 expected ' (' to follow 'id en tifie r '
The context requires parentheses after the function identifier.

C2055 expected formal parameter list, not a type list
An argument-type list appeared in a function definition instead of a
formal parameter list.

C 2 0 5 6 i l l e g a l e x p r e s s i o n
An expression was illegal because of a previous error. (The previous
error may not have produced an error message.)

C 2 0 57 e x p e c t e d c o n s t a n t e x p r e s s i o n
The context requires a constant expression.

C 2 0 5 8 c o n s t a n t e x p r e s s i o n i s n o t integral
The context requires an integral constant expression.

D -18 C U s e r ’s G u id e

Compiler Error Messages

C2059 syntax error : ' to k en '
The given token caused a syntax error.

C2060 syntax error : EOF
The end of the file was encountered unexpectedly, causing a syntax
error. This error can be caused by a missing closing curly brace (}) at
the end of your program.

C2061 syntax error : identifier ' id e n tifie r '
The given identifier caused a syntax error.

C2 0 62 type ' ty p e ' unexpected
The given type was misused.

C2063 ' id e n tifie r ' : not a function
The given identifier was not declared as a function, but an attempt
was made to use it as a function.

C2064 term does not evaluate to a function
An attempt was made to call a function through an expression that
did not evaluate to a function pointer.

C2 0 65 ' id e n tifie r ' : undefined
The given identifier was not defined.

C2066 cast to function returning . . . is illegal
An object was cast to a function type.

C2067 cast to array type is illegal
An object was cast to an array type.

C2068 illegal cast
A type used in a cast operation was not a legal type.

C2069 cast of 'void' term to non-void
The void type was cast to a different type.

C2070 illegal sizeof operand
The operand of a sizeof expression was not an identifier or a type
name.

C2071 'c la s s ' : bad storage class
The given storage class cannot be used in this context.

C2072 ' id e n tifie r ' : initialization of a function
An attempt was made to initialize a function.

C Error Messages and Exit Codes D-19

Compiler Error Messages

C2073 ' id e n tifie r ' : cannot initialize array in function
An attempt was made to initialize the given array within a function.
Arrays can be initialized only at the external level.

C2074 cannot initialize struct/union in function
An attempt was made to initialize the given structure or union within
a function. Structures and unions can be initialized only at the exter­
nal level.

C2075 ' id e n tif ie r ' : array initialization needs
curly braces
The braces ({ }) around the given array initializer were missing.

C207 6 ' id e n tifie r ' : struct/union initialization needs
curly braces
The braces ({}) around the given structure or union initializer were
missing.

C2077 non-integral field initializer 'id en tifie r '
An attempt was made to initialize a bit-field member of a structure
with a nonintegral value.

C2078 too many initializers
The number of initializers exceeded the number of objects to be ini­
tialized.

C207 9 'e x p r e ss io n ' uses undefined struct/union
The given identifier was declared as a structure or union type that
had not been defined.

C2082 redefinition of formal parameter 'id en tifie r '
A formal parameter to a function was redeclared within the function
body.

C2083 array ' id e n tifie r ' already has a size
The dimensions of the given array had already been declared.

C2084 function 'id en tifie r ' already has a body
The given function had already been defined.

C2085 'id en tifie r ' : net in formal parameter list
The given parameter was declared in a function definition for a
nonexistent formal parameter.

/:2086 'id en tifie r ' : redefinition
The given identifier was defined more than once.

D - 2 0 C U s e r ’s G u id e

Compiler Error Messages

C2087 ' id e n tifie r ' : missing subscript
The definition of an array with multiple subscripts was missing a
subscript value for a dimension other than the first dimension, as in
the following example:

int func(a)
char a [10] []; /* Illegal */
{

}

int func(a)
char a [] [5]; /* Legal */
{

C2088 use of undefined enum/struct/union 'id en tifie r '
The given identifier referred to a structure or union type that was not
defined.

C2089 typedef specifies a near/far function
The use of the near or far keyword in a typedef declaration
conflicted with the use of near or far for the declared item, as in the
following example:

typedef int far FARFUNC();
FARFUNC near *fp;

C2090 function returns array
A function cannot return an array. (It can return a pointer to an
array.)

C2091 function returns function
A function cannot return a function. (It can return a pointer to a func­
tion.)

C2092 array element type cannot be function
Arrays of functions are not allowed; however, arrays of pointers to
functions are allowed.

C Error Messages and Exit Codes D-21

Compiler Error Messages

C2093 cannot initialize a static or struct with
address of automatic vars
You cannot use the address of an auto variable in the initializer of a
static item.

C20 94 label 'id en tifie r ' was undefined
The function did not contain a statement labeled with the given
identifier.

C2095 f u n c t io n : actual has type void: parameter n u m b er
An attempt was made to pass a void argument to a function. Formal
parameters and arguments to functions cannot have type void; they
can, however, have type void * (pointer to void).

C2096 strucc/union comparison illegal
You cannot compare two structures or unions. (You can, however,
compare individual members within structures and unions.)

C2097 illegal initialization
An attempt was made to initialize a variable using a nonconstant
value.

C2098 non-address expression
An attempt was made to initialize an item that was not an lvalue.

C2099 non-constant offset
An initializer used a nonconstant offset.

C2100 illegal indirection
The indirection operator (*) was applied to a nonpointer value.

C2101 on constant
The address-of operator (&) did not have an lvalue as its operand.

C2102 requires lvalue
The address-of operator must be applied to an lvalue expression.

C2103 on register variable
An attempt was made to take the address of a register variable.

C 2 1 04 V o n b i t - f i e l d
An attempt was made to take the address of a bit field.

D-22 C U s e r ’s G u id e

Compiler Error Messages

C2105 'o p e r a to r ' needs lvalue
The given operator did not have an lvalue operand.

C2106 'o p e r a to r : left operand must be lvalue
The left operand of the given operator was not an lvalue.

C2107 illegal index, indirection not allowed
A subscript was applied to an expression that did not evaluate to a
pointer.

C2108 non-integral index
A nonintegral expression was used in an array subscript.

C2109 subscript on non-array
A subscript was used on a variable that was not an array.

C2110 '+' : 2 pointers
An attempt was made to add one pointer to another.

C2111 pointer + non-integral value
An attempt was made to add a nonintegral value to a pointer.

C2112 illegal pointer subtraction
An attempt was made to subtract pointers that did not point to the
same type.

C2113 ' - ' : right operand pointer
The right operand in a subtraction operation (-) was a pointer, but
the left operand was not.

C2114 'o p e r a to r : pointer on left; needs integral
right
The left operand of the given operator was a pointer; the right
operand must be an integral value.

C2115 ' id e n tif ie r ' : incompatible types
An expression contained incompatible types.

C2116 'o p e r a to r ' : bad le ft (or r ig h t) operand
The specified operand of the given operator was illegal for that
operator.

C2117 'o p e r a to r ' : illegal for struct/union
Structure and union type values are not allowed with the given
operator.

C2118 negative subscript
A value defining an array size was negative.

C Error Messages and Exit Codes D-23

Compiler Error Messages

C2119 'typedefs' both define indirection
Two typedef types were used to declare an item and both typedef
types had indirection. For example, the declaration of p in the fol­
lowing example is illegal:

typedef int *?_INT;
typedef short *P_SHORT;
/* this declaration is illegal */
P_SHORT P_INT p;

C2120 'void' illegal with all types
The void type was used in a declaration with another type.

C2121 typedef specifies different enum
An attempt was made to use a type declared in a typedef statement
to specify both an enumeration type and another type.

C2122 typedef specifies different struct
An attempt was made to use a type declared in a typedef statement
to specify both a structure type and another type.

C2123 typedef specifies different union
An attempt was made to use a type declared in a typedef statement
to specify both a union type and another type.

C2125 id e n tif ie r : allocation exceeds 64K
The given item exceeds the size limit of 64K.

The only items that are allowed to exceed 64K are huge arrays.

C2126 id e n tif ie r : automatic allocation exceeds 32K
The space allocated for the local variables of a function exceeded
the limit of 32K.

C2127 parameter allocation exceeds 32K
The storage space required for the parameters to a function exceeded
the limit of 32K.

C2128 id e n tif ie r : huge array cannot be aligned to seg­
ment boundary
The given array violated one of the restrictions imposed on huge
arrays; see the “ Working with Memory Models” chapter for more
information on these restrictions.

D-24 C User’s Guide

Compiler Error Messages

C2129 static function ' id e n tif ie r ' not found
A forward reference was made to a static function that was never
defined.

C2130 #line expected a string containing the file
name, found ’to k en
A file name was missing from a #line directive.

C2131 attributes specify more than one
near/far/huge
More than one near, far, or huge attribute was applied to an item, as
in the following example:

typedef int near NINT;
NINT far a; /* Illegal */

C2132 syntax error : unexpected identifier
An identifier appeared in a syntactically illegal context.

C2133 array ' id e n tif ie r ' : unknown size
An attempt was made to declare an unsized array as local variable,
as in the following example:

int mat_add(array1)
int arraylf]; /* Legal */
{
int array2[]; /* Illegal */

}

C2134 id e n tif ie r : struct/union too large
The size of a structure or union exceeded the compiler limit (232
bytes). This limit is 64K on 80286 systems.

C2135 missing ')' in macro expansion
A macro reference with arguments was missing a closing parenthesis
0).

C2137 empty character constant
The illegal character constant' ' was used.

C2138 unmatched close comment ' / * '
The compiler detected an open-comment delimiter (/*) without a
matching close-comment delimiter (*/).

This error usually indicates an attempt to use illegal nested com­
ments.

C Error Messages and Exit Codes D-25

Compiler Error Messages

C2139 type following ' ty p e ' is illegal
An illegal type combination such as the following was used:

long char a;

C2140 argument type cannot be function
returning .. .
A function was declared as a formal parameter of another function,
as in the following example:

int fund (a)
int a (); /* Illegal */

C2141 value out of range for enum constant
An enumeration constant had a value outside the range of values
allowed for type int.

C2142 ellipsis requires three periods
The compiler detected the token and assumed that was
intended.

C2143 syntax error : missing 'tokenl' before 'token2'
The compiler expected tokenl to appear before token2. This message
may appear if a required closing curly brace (}), right parenthesis ()),
or semicolon (;) is missing.

C2144 syntax error : missing 'token before type 'type'
The compiler expected the given token to appear before the given
type name. This message may appear if a required closing curly
brace (}), right parenthesis ()), or semicolon (;) is missing.

C2145 syntax error : missing 'token before
identifier
The compiler expected the given token to appear before an identifier.
This message may appear if a semicolon (;) does not appear after the
last declaration of a block.

C 2 1 4 6 s y n t a x e r r o r : m i s s i n g ’to k en ' before i d e n t i f ­
i e r 'id en tifie r '
The compiler expected the given token to appear before the given
identifier.

(J214 7 array : unkr:v;n size
An attempt was made to increment an index or pointer to an array
whose base type has not \et been declared.

D - 2 6 C U s e r ’s G u id e

Compiler Error Messages

C2148 array too large
An array exceeded the maximum legal size (232 bytes).

C2149 identifier : named bit-field cannot have 0 width
The given named bit field had a zero width. Only unnamed bit fields
are allowed to have zero width.

C2150 identifier : bit-field must have type int, signed
int, or unsigned int
The ANSI C standard requires bit fields to have types of int, signed
int, or unsigned int. This message appears only if you compiled
your program with the -Za option.

C2151 more than one cdecl/f ortran/pascal
attribute specified
More than one keyword specifying a function-calling convention
was given.

C2152 identifier : pointers to functions with different
attributes
An attempt was made to assign a pointer to a function declared with
one calling convention (cdecl, fortran, or pascal) to a pointer to a
function declared with a different calling convention.

C2153 hex constants must have at least 1 hex digit
At least one hexadecimal digit must follow the “ x” . The hexadeci­
mal constants Ox and OX are illegal.

C2154 'name' : does not refer to a segment
The name was the first identifier given in an alloc_text pragma argu­
ment list and it is already defined as something other than a segment
name.

C2155 'name' : already in a segment
The function name appears in more than one alloc_text pragma.

C2156 pragma must be at outer level
Certain pragmas must be specified at a global level, outside a func­
tion body, and there is an occurrence of one of these pragmas within
a function.

C2157 'name' : must be declared before use in
pragma list
The function name in the list of functions for an alloc_text pragma
has not been declared prior to being referenced in the list.

C Error Messages and Exit Codes D-27

Compiler Error Messages

C 2 1 5 8 'n a m e' : i s a f u n c t i o n
Name was specified in the list of variables in a same_segment
pragma, but was previously declared as a function.

C2159 more than one storage class specified
Illegal declaration—only one storage class is allowed.

C2160 ## cannot occur at the beginning of a
macro definition
A macro definition cannot begin with a token-pasting (##) operator.

C2161 ## cannot o c c u r at the end of a
macro definition
A macro definition cannot end with a token-pasting (##) operator.

2162 expected macro formal parameter
The token following a stringizing operator (#) must be a formal
parameter name.

2163 's tr in g : not available as an intrinsic
A function specified in the list of functions for an intrinsic or func­
tion pragma is not one of the functions available in intrinsic form.

C2165 'k e y w o r d ' : cannot modify pointers to data
Bad use of fortran, pascal or cdecl keyword to modify pointer to
data.

C 2 1 6 7 'n a m e ' : too m a n y actual parameters for
intrinsic
A reference to the intrinsic function name contains too many actual
parameters.

C2168 'n a m e ' : too few actual parameters for
intrinsic
A reference to the intrinsic function name contains too few actual
parameters.

C2169 'n a m e ' : is an intrinsic, it cannot be defined
An attempt was made to provide a function definition for a function
already declared as an intrinsic.

C2170 id e n tif ie r : intrinsic not declared as a function
You tried to use the intrinsic pragma for an item other than a func­
tion, or for a function that does not have an intrinsic form.

C2177 constant too big
Information was lost because a constant value was too large to be
represented in the type to which it was assigned. (1)

D-28 C User’s Guide

Compiler Error Messages

C2171 'o p e r a to r ' : bad operand
Illegal operand type for the specified unary operator.

C2187 : cast of near function pointer to far func­
tion pointer
You attempted to cast a near function pointer as a far function
pointer.

C2189 : constant item, -Gm and data_seg pragma are incompatible
You compiled with the -Gm option and allocated a string literal or
near const data item within the scope of a data_seg pragma. The
-Gm option indicates that the data item should be allocated in the
CONST data segment, while the data_seg pragma indicates that the
same item should be allocated in a different, named segment.

Warning Messages
The messages listed in this section indicate potential problems but do not
hinder compilation and linking. The number in parentheses at the end of
each warning-message description (if any) gives the minimum warning
level that must be set for the message to appear.

C4000 UNKNOWN WARNING
The compiler detected an unknown error condition.

C4 001 macro ' id e n tif ie r ' requires parameters
The given identifier was defined as a macro taking one or more argu­
ments, but it was used in the program without arguments. (1)

C4002 too many actual parameters for macro ' id e n tifie r '
The number of actual arguments specified with the given identifier
was greater than the number of formal parameters given in the macro
definition of the identifier. (1)

C4003 not enough actual parameters for macro
' id e n tifie r '
The number of actual arguments specified with the given identifier
was less than the number of formal parameters given in the macro
definition of the identifier. (1)

C Error Messages and Exit Codes D-29

Compiler Error Messages

C 4 0 0 4 m i s s i n g c l o s e p a r e n t h e s i s after 'defined'
The closing parenthesis was missing from an #if defined phrase. (1)

C4005 ' id e n tif ie r ' : redefinition
The given identifier was redefined. (1)

C4006 #undef expected an identifier
The name of the identifier whose definition was to be removed was
not given with the #undef directive. (1)

C4009 string too big, trailing chars truncated
A string exceeded the compiler limit on string size. To correct this
problem, break the string into two or more strings. (1)

C4011 identifier truncated to ' id e n tifie r '
Only the identifier's first 31 characters are significant. (1)

C4014 ' id e n tif ie r ' : bit-field type must be unsigned
The given bit field was not declared as an unsigned type.

Bit fields must be declared as unsigned integral types. A conversion
has been supplied. (1)

C4015 ' id e n tif ie r ' : bit-field type must be integral
The given bit field was not declared as an integral type.

Bit fields must be declared as unsigned integral types. A conversion
has been supplied. (1)

C4016 ' id e n tif ie r ' : no .function return type
The given function had not yet been declared or defined, so the
return type was unknown.

The default return type (int) is assumed. (2)

C 4 0 1 7 c a s t o f i n t e x p r e s s i o n t o f a r pointer
A far pointer represents a full segmented address. On an 8086/8088
processor, casting an int value to a far pointer may produce an
address with a meaningless segment value. (1)

1 4 0 2 0 too many actual p a r a m e t e r s
The number of arguments specified in a function call was greater
than the number of parameters specified in the argument-type list or
function definition. (1)

D - 3 0 C U s e r ’s G u id e

Compiler Error Messages

C4021 too few actual parameters
The number of arguments specified in a function call was less than
the number of parameters specified in the argument-type list or func­
tion definition. (1)

C4022 pointer mismatch : parameter«
The pointer type of the given parameter was different from the
pointer type specified in the argument-type list or function
definition. (1)

C4024 different types : parameter«
The type of the given parameter in a function call did not agree with
the type given in the argument-type list or function definition. (1)

C4025 function declaration specified variable
argument list
The argument-type list in a function declaration ended with a
comma or a comma followed by ellipsis dots (,...), indicating that the
function could take a variable number of arguments, but no formal
parameters were declared for the function. (1)

C4026 function was declared with formal argu­
ment list
The function was declared to take arguments, but the function
definition did not declare formal parameters. (1)

C4027 function was declared without formal argu­
ment list
The function was declared to take no arguments (the argument-type
list consisted of the word void), but formal parameters were declared
in the function definition or arguments were given in a call to the
function. (1)

C4028 parameter« declaration different
The type of the given parameter did not agree with the correspond­
ing type in the argument-type list or with the corresponding formal
parameter. (1)

C4029 declared parameter list different from
definition
The argument-type list given in a function declaration did not agree
with the types of the formal parameters given in the function
definition. (1)

C Error Messages and Exit Codes D-31

Compiler Error Messages

C4030 first parameter list is longer than
the second
A function was declared more than once with different argument-
type lists in the declarations. (1)

C4031 second parameter list is longer than
the first
A function was declared more than once with different argument-
type lists. (1)

C4032 unnamed struct/union as parameter
The structure or union type being passed as an argument was not
named, so the declaration of the formal parameter cannot use the
name and must declare the type. (1)

C4033 function must return a value
A function is expected to return a value unless it is declared as void.
(2)
C4034 sizeof returns 0
The sizeof operator was applied to an operand that yielded a size of
zero.(1)

C4035 id e n tif ie r : no return value
A function declared to return a value did not do so. (2)

C4036 unexpected formal parameter list
A formal parameter list was given in a function declaration. The for­
mal parameter list is ignored. (1)

C4037 ' id e n tif ie r ' : formal parameters ignored
No storage class or type name appeared before the declarators of for­
mal parameters in a function declaration, as in the following exam­
ple:

int *f (a, b, c) ;
The formal parameters are ignored. (1)

C4038 ' id e n tif ie r ' : formal parameter has bad
storage class
The given formal parameter was declared with a storage class other
than auto or register. (1)

C4039 ' id e n tif ie r ' : function used as an argument
A formal parameter to a function was declared to be a function,
which is illegal. The formal parameter is converted to a function
pointer. (1)

D-32 C User’s Guide

Compiler Error Messages

C4040 near/far/huge on ' id e n tif ie r ' ignored
The near or far keyword has no effect in the declaration of the given
identifier and is ignored. (1)

C4041 formal parameter ' id e n tif ie r ' is redefined
The given formal parameter was redefined in the function body,
making the corresponding actual argument unavailable in the func­
tion. (1)

C4042 ' id e n tifie r ' : has bad storage class
The specified storage class cannot be used in this context (for exam­
ple, function parameters cannot be given extern class). The default
storage class for that context was used in place of the illegal class.
(1)

C4043 ' id e n tifie r ' : void type changed to int
An item other than a function was declared to have void type. (1)

C4044 huge on ' id e n tif ie r ' ignored, must be an array
The huge keyword was used to declare the given nonarray item. (1)

C404 5 ' id e n tif ie r ' : array bounds overflow
Too many initializers were present for the given array. The excess
initializers are ignored. (1)

C4046 on function/array, ignored
An attempt was made to apply the address-of operator (&) to a func­
tion or array identifier. (1)

C4047 'o p e r a to r ' : different levels of indirection
An expression involving the specified operator had inconsistent lev­
els of indirection. (1)

The following example illustrates this condition:

char **p;
char *q;

p = q;

C Error Messages and Exit Codes D-33

Compiler E rro r Messages

C 4 0 4 8 array's declared subscripts different
An array was declared twice with different sizes. The larger size is
used.(1)

C4 04 9 'o p e r a to r ' : indirection to different types
The indirection operator (*) was used in an expression to access
values of different types. (1)

C4051 data conversion
Two data items in an expression had different types, causing the type
of one item to be converted. (2)

C4052 different enum types
Two different enum types were used in an expression. (1)

C4053 at least one void operand
An expression with type void was used as an operand. (1)

C4056 overflow in constant arithmetic
The result of an operation exceeded 0x7FFFFFFF. (1)

C4057 overflow in constant multiplication
The result of an operation exceeded 0x7FFFFFFF. (1)

C4058 address of frame variable taken, DS 1= SS
The program was compiled with the default data segment (DS) not
equal to the stack segment (SS), and the program tried to point to a
frame variable with a near pointer. (1)

C4059 segment lost in conversion
The conversion of a far pointer (a full segmented address) to a near
pointer (a segment offset) resulted in the loss of the segment address.
(1)

C4060 conversion of long address to short address
The conversion of a long address (a 32-bit pointer) to a short address
(a 16-bit pointer) resulted in the loss of the segment address. (1)

C4061 long/short mismatch in argument:
conversion supplied
The base types of the actual and formal arguments of a function were
different. The actual argument is converted to the type of the formal
parameter. (1)

D-34 C User’s Guide

Compiler Error Messages

C4062 near/far mismatch in argument: conver­
sion supplied
The pointer sizes of the actual and formal arguments of a function
were different. The actual argument is converted to the type of the
formal parameter. (1)

C4063 ' id e n tif ie r ' : function too large for
post-optimizer
The given function was not optimized because not enough space was
available. To correct this problem, reduce the size of the function by
dividing it into two or more smaller functions. (0)

C4064 procedure too large, skipping description optim­
ization and continuing
Some optimizations for a function were skipped because not enough
space was available for optimization. (0)

To correct this problem, reduce the size of the function by dividing it
into two or more smaller functions.

The description in this message may appear as any cf the following:

loop inversion
branch sequence
cross jump

C4065 recoverable heap overflow in post-optimizer
- some optimizations may be missed
Some optimizations were skipped because not enough space was
available for optimization. To correct this problem, reduce the size
of the function by dividing it into two or more smaller functions. (0)

C4066 local symbol table overflow - some local
symbols may be missing in listings
The listing generator ran out of heap space for local variables, so the
source listing may not contain symbol-table information for all local
variables.

C Error Messages and Exit Codes D-35

Compiler E rro r Messages

C4 0 67 unexpected characters following 'd ir e c tiv e '
directive - newline expected
Extra characters followed a preprocessor directive, as in the follow­
ing example (1):

#endif NO_EXT_KEYS

This is accepted in Version 3.0, but not in Versions 4.0 and 5.0. Ver­
sions 4.0 and 5.0 require comment delimiters, such as the following:

#endif /* NO_EXT_KEYS */

C4068 unknown pragma
The compiler did not recognize a pragma and ignored it. (1)

C4069 conversion of near pointer to long integer
A near pointer was converted to a long integer, which involves first
extending the high-order word with the current data-segment value,
not 0 as in Version 3.0. (1)

C4 071 'identifier' : no function prototype given
The given function was called before the compiler found the corre­
sponding function prototype. (3)

C4072 Insufficient memory to process debug­
ging information
You compiled the program with the -Zi option, but not enough mem­
ory was available to create the required debugging information. (1)

C4073 scoping too deep, deepest scoping merged
when debugging
Declarations appeared at a static nesting level greater than 13. As a
result, all declarations will seem to appear at the same level. (1)

C407 4 non standard extension used - 'extension'
The given nonstandard language extension was used when the -Ze
option was in effect. These extensions are given in the “ Compiling
with the cc Command’’ chapter of this guide. (If the -Za option is in
effect, this condition generates an error.) (3)

D-36 C User’s Guide

Compiler Error Messages

C4075 size of switch expression or case constant
too large - converted to int
A value appearing in a switch or case statement was larger than an
int. The compiler converts the illegal value to an int. (1)

C407 6 'type' : may be used on integral types only
The type modifiers signed and unsigned can be combined only with
other integral types.

C4077 unknown check_stack option
Unknown option given when using the old form of the check_stack
pragma. The option must be empty, +, or -.

C4 07 9 unexpected char 'c h a r a c te r '
Unexpected separator character found in argument list of a pragma.

C4080 missing segment name
The first argument in the argument list for the alloc_text pragma is
missing a segment name. This happens if the first token in the argu­
ment list is not an identifier.

C4081 expected a comma
There is a missing comma (,) between two arguments of a pragma.

C4082 expected an identifier
There is a missing identifier in list of arguments to a pragma.

C4083 missing '('
There is a missing opening parenthesis (() in the argument list for a
pragma.

C4084 expected a pragma keyword
The token following the pragma keyword is not an identifier.

C4085 expected [onloff]
Bad argument given for new fonn of check_stack pragma.

C4086 expected [11214]
Bad argument given for pack pragma.

C4 087 'n a m e ' : declared with v o id p a r a m e te r l is t
The function name was declared as taking no parameters, but a call
to the function specifies actual parameters.

C4090 different 'c o n s t' attributes
The program passed a pointer to a const item to a function where the
corresponding formal parameter is a pointer to a non-const item,
which means the item could be modified by the function undetected.

C Error Messages and Exit Codes D-37

Compiler E rro r Messages

C4091 no symbols were declared
An empty declaration was detected. (2)

C4092 untagged enum/struct/union declared no symbols
An empty declaration was detected that used an untagged
enum/struct/union. (2)

C4093 unescaped newline in character constant in
non-active code
The constant expression of an #if, #elif, #ifdef, or #ifndef prepro­
cessor directive evaluated to 0, making the following code inactive,
and a new-line character appeared between a single or double quota­
tion mark and the matching single or double quotation mark in that
inactive code.

C4094 unexpected newline
A new-line character appeared in a pragma where a comma, right
parenthesis, or identifier was expected, as in the following examples:

i p r a g m a i n t r i n s i c (m e m s e t
» p r a g m a i n t r i n s i c (m e m s e t ,

C4095 too many arguments for pragma
More than one argument was given for a pragma that can take only-
one argument.

C4106 : pragma requires integer between 1 and 127
You must supply an integer constant in the range 1-127, inclusive,
for the given pragma.

C4107 : pragma requires integer between 15 and 255
You must supply an integer constant in the range 15-255, inclusive,
for the given pragma.

C4108 : pragma requires integer between 79 and 132
You must supply an integer constant in the range 79-132, inclusive,
for the given pragma.

C4 109 : unexpected identifier ’to k en
The designated line contains an unexpected token.

C U 10 : unexpected token 'int constant'
The designated line contains an unexpected integer constant.

C4111 : unexpected token string
The designated line contains an unexpected string.

D-38 C User’s Guide

Compiler Error Messages

C4112 : macro name ’n a m e is reserved, ’c o m m a n d ’ ignored
You attempted to define a predefined macro name or the prepro­
cessor operator defined. This warning error also occurs if you
attempt to undefine a predefined macro name. If you attempt to
define or undefine a predefined macro name using command-line
options, ’command’ will still be either #define or #undef.

Compiler Limits
To operate the C Compiler, you must have sufficient disk space available
for the compiler to create temporary files used in processing. The space
required is approximately two times the size of the source file.

Table D.l summarizes the limits imposed by the C compiler. If your pro­
gram exceeds one of these limits, an error message will inform you of the
problem.

Table D.l
Limits Imposed by the C Compiler

Program Item Description Limit

String literals Maximum length of a
string, including the ter­
minating null character
(NO)

4k bytes

Constants Maximum size of a con­
stant is determined by its
type; see the C
Language Reference for
a discussion of constants

Identifiers Maximum length of an
identifier

31 bytes (addi­
tional characters
are discarded)

Declarations Maximum level of nest­
ing for structure/union
definitions

10 levels

C Error Messages and Exit Codes D-39

Compiler E rro r Messages

Preprocessor
directives

Maximum size of a
macro definition

512 bytes

Maximum number of
actual arguments to a
macro definition

8 arguments

Maximum length of an
actual preprocessor
argument

256 bytes

Maximum level of nest­
ing for #if, #ifdef, and
#ifndef directives

32 levels

Maximum level of nest­
ing for include files

10 levels

The compiler does not set explicit limits on the number and complexity of
declarations, definitions, and statements in an individual function or in a
program. If the compiler encounters a function or program that is too
large or too complex to be processed, it produces an error message to that
effect.

D-40 C User’s Guide

Compiler Exit Codes

Compiler Exit Codes
All the programs in the C Compiler package return an exit code (some­
times called an “ errorlevel” code) that can be used by other programs
such as make. If the program finishes without errors, it returns a code of
0. The code returned varies depending on the error encountered.

Code Meaning

0 No fatal error

2 Program error (such as compiler error)

4 System level error (such as out of disk space or compiler
internal error)

C Error Messages and Exit Codes D-41

Index

Special Characters

{) (braces) 1-6
[] (brackets) 1 -6
! (bar) 1-6
- (dash) option character

linker 3-5
- (hyphen) option character, cc 2-6
_ (underscore), in names 2-12, 2-23

A

Address space B-9
Addresses

components 5-4
far 5-4
huge 5-4
near 5-4

Alignment See Storage alignment
alloc_text pragma 5-33
arge variable 4-2
Argument type list 2-39
Arguments

linker options 3-5
listing options 2-13
main function See main function
variable number of 6-6, B-14

argv variable 4-2
Assembly language

interface 8-12
return values 8-9
routines

entry 8-8
exit 8-11

Assembly-language interface, described 8-1
Assembly-listing files

creating 2-11,2-12
extensions 2-13
format 2-22

B

Bar (I) 1-6
BASE 7-14
Bibliography 1-9
Bit fields B-7
Bold font 1-6
Braces ({ }) 1-6
Brackets ([]) 1-6
Byte length B-4
Byte order B-20, B-6

c
C calling conventions

described 8-1
C compiler

impure small model 5-8
M option 2-6
manifest defines 2-30
model and segment options 2-6
pure small model 5-8

C language
calling sequence 8-7
interface with assembly language 8-12
return values 8-9

-c option 2-9
-C option 2-33
Call sequence 8-2
Calling conventions

C 6-6
FORTRAN/Pascal 6-6

Calling sequence
assembly language 8-7
C language 8-7

Canonic Frame 7-8
Capital letters

small 1-6
use of 1-6

cc command
file processing 2-3
format 2-2

cc options
assembly listing 2-11,2-12
-c 2-9
-C 2-33
command line, order 2-6
comments, preserving 2-33
constants and macros, defining 2-29

1-1

In d e x

cc options (c o n t in u e d)
-D 2-29
data segments, naming 5-31,5-34. 6-9
data threshold, setting 5-30
default libraries 2-8
differences from linker options 3-5
-E 2-32
-EP 2-32
-F 3-6
-Fa 2-12, 2-22
-Fc 2-12
-Fe 2-11
-FI 2-12
-Fm 2-12
-Fo 2-9
format 2-6
-Fs 2-12
function declarations, generating 2-39
-Gs 6-6
-Gt 5-30
-I 2-34
include files, searching for 2-34
line numbers 2-40
-link 2-2, 3-2
linker information, passing 3-2
listing 2-6
-M 5-25, 5-26, 5-27
-Me 5-9
memory models

code-pointer size 5-26
compact 5-9
data-pointer size 5-26
default libraries 2-6
huge 5-11
large 5-10
medium 5-9
mixed 5-25, 5-26, 5-27
segments, setting up 5-27
small 5-7

-Mh 5-11
-Ml 5-10
-Mm 5-9
-Ms 5-7
naming

executable files 2-11
modules 5-31
object files 2-9

-ND 5-31,5-34, 6-9
-NM 5-31
-NT 5-31
-o 2-! 1
-Oa 6-5
object files

naming 2-9

cc options (continued)
object files (continued)

specifying 2-3
object listing 2-11,2-12
-Od 2-40
-Oi 6-4
-Ol 6-5
optimization

alias checking, relaxing 6-5
disabling 2-40
execution time 6-4
intrinsic functions 6-4
loops 6-5
-Oi 6-4
program speed 6-3

option character
hyphen (-) 2-6

-Ot 6-4
-P 2-32
predefined identifiers, removing

definitions of 2-32
preprocessed listing 2-32
preprocessor

-C 2-33
-D 2-28
-U and -u 2-32

-S 2-12, 2-22
source files, specifying 2-3, 2-8
source listing 2-12
source/object listing 2-12
special keywords, disabling 5-15
-Ss 2-15
-St 2-15
stack probes, removing 6-6
standard places, ignoring 2-34
subtitle 2-15
suppressing

linking 2-9
syntax checking 2-38
-Tc 2-4, 2-8
text segments, naming 5-31
titles 2-15
-U and -u 2-32
Version 4.0, new for A -11
Version 5.0, new for A-6
-W0, -W l, -W2, and -W3 2-37
warning level 2-37
-X 2-34
-Za 5-15
-Zd 3-6
-Zg 2-39
-Zi 2-40
-Zs 2-38

cdecl keyword

1-2

In d e x

cdecl keyword (continued)
-Gc option, used with 6-7

Character
classification, macros B-9
set B-9
types

signed B -l 1
unsigned B - l 1

check_stack pragma 6-6
Class name, LSEG 7-8
Code pointers, mixed memory models 5-26
COFF 2-2
Combination Attribute 7-29
Command line

arguments
executable file 4-2

cc 2-2
error messages D-2
length, maximum 2-2

Commands
notational conventions 1-6

COMMENT 7-48
RECORD 7-48

Comments, preserving 2-33
Common Object File Format 2-2
Compact memory models See Memory models
Compilation

error messages D-7
Compiler

differences, other compilers
portability problems B -l 1

differences, Version 4.0
cc options A - l 1
enhancements and additions A-8
language changes A-8

differences, Version 5.0
enhancements and additions A-4
language changes A-4
new cc options A-6
pragmas, new A-7

documentation 1-2
error messages See Error messages,

compiler
naming conventions 2-23
stopping 2-2

Compiler, converting from previous versions
See Compiler differences

Compiler guide, organization 1-2
Compiler options See cc options
Complete name, LSEG 7-8
Conditional compilation 2-29
Constants

defining 2-29
manifest See Constants, symbolic

Constants (continued)
symbolic 2-29

Controlling
linker 3-5
preprocessor 2-32
segments 3-6
stack size 3-6

Conventions, notational 1 -6
Conversion

near pointers to long integers A -10
pointer arguments 5-22

Correctable error messages D-7
ctype.h macros B-9
Customized memory models See Mixed

memory models

D

-D option 2-29
Dash (-)

linker option character 3-5
Data

passing to programs 4-2
portability B-17
segment

data threshold, setting 5-30
default, contents 5-30
default name 5-31
mixed memory models 5-27
naming 5-31

types, size o f B-4
Data pointers, mixed memory

models 5-26
_DATA segment 5-31
Data Structures

x.out symbol table 7-58
Data threshold, setting 5-30
data_seg pragma 5-33
Debugging, preparing for

-Z i and -Od options 2-40
Default libraries

object files, used in 3-3
DGROUP group 5-31
Differences from previous versions See

Compiler differences
Directory names, notational

conventions 1-6
Documentation, compiler 1-2
DS register 5-27

1-3

In d e x

E

-E option 2-32
EAX register 8-9, 8-11
EBP register 8-8, 8-11
EBX register 8-11
ECX register 8-11
EDI register 8-8, 8-11
EDX register 8-9, 8-11
EIGHT

LEAF
DESCRIPTOR 7-32

EIGHT LEAF DESCRIPTOR 7-32
Ellipses, use o f 1-6
environ variable 4-3
Environment

portability problems B-16
table

pointer to 4-3
variable names, notational conventions 1-6
variables

INCLUDE 2-34
LIB 3-4
PATH 4-1
SET 4-2

envp variable 4-3
-EP option 2-32
ermo variable

defined 9-3
described 9-3

Error messages
compiler

command line D-2
compilation D-7
correctable D-7
fatal D-7, D-8
identifying 2-35
redirecting 2-35
warning D-29, D-8

format See Error messages, compiler
source listings 2-16
warning messages, setting level of 2-37

Errors
catching signals 9-5
delayed 9-6
ermo variable 9-3
error constants 9-3
error numbers 9-3
printing error messages 9-4
processing 9-1
routine system I/O 9-6
sharing resources 9-6
signals 9-5

Errors (c o n tin u e d)
standard error file 9-2
system 9-6

ESI register 8-8, 8-11
ESP register 8-8
Evaluation order B-14
exec function 4-1
Executable files

cc command and 2-5
command-line arguments 4-2
extensions 2-11
naming, default 2-11
naming with cc 2-11
passing data to 4-2
running 4-1

Executable Format 7-59
Execution-time optimization 6-4
Extensions

executable files 2-11
listing files, defaults for 2-12
map files 2-13
object files 2-10
object-listing files 2-13
source-listing files 2-13
source/object-listing files 2-13

F

-F option 3-6
-Fa option 2-12, 2-22
Far keyword 5-20
far keyword

default addressing conventions 5-14
effects

data declarations 5-16. 6-8
function declarations 5-20

library routines, used with 5-16
small-model programs, used in 5-8

Far pointers 5-14
Fatal-error messages D-7, D-8
-Fc option 2-12
-Fe option 2-11
File names

notational conventions 1 -6
Files

assembly listing 2-12. 2-22
executable See Executable files
listing, preprocessed 2-32
map

creating 2-12, 2-15, 3-6
default names 2-13
listing formats 2-27

1-4

In d e x

Files (continued)
map (continued)

-MAP linker option 3-6
object

cc command, used with 2-3, 2-4
listing 2-12.2-13,2-21

source 2-3
source listing See Source-listing files
source/object listing See Source/'object-listing

files
FIXUP

RECORD 7-41
FIXUPP 7-41
Fixups

definition 7-14
segment-relative 7-15,7-20
self-relative 7-15, 7-19

-FI option 2-12
-Fm option 2-12
-Fo option 2-9
fortran keyword 6-7
FRAME

definition 7-6
specifying 7-17

FRAME NUMBER 7-7
-Fs option 2-12
Functions

arguments, variable number of 6-6, B-14
calling conventions

C6-6
FORTRAN/Pascal 6-6

declarations
generating 2-39
near and far keywords 5-20

G

getenv function 4-3
Global symbols See Public symbols
GROUP 7-7
Group Definition Record 7-31
GRPDEF 7-31
-Gs option 6-6
-Gt option 5-30

H

Hardware Reference Numbers 7-64
HIBYTE 7-15
Huge arrays 5-11
huge keyword

data declarations, effects in 5-16. 6-8
default addressing conventions 5-14
library routines, used with 5-16
small-model programs, used in 5-8

Huge memory model See Memory models
Huge pointers 5-14
Hyphen (-), cc option character 2-6

I

-I option 2-34
iAPX-286, -386

address translation
logical to physical 7-2

descriptor tables 7-2
GDT 7-2
LD T 7-2

logical address space 7-2
memory management 7-2
pointers

to logical addresses 7-2
protected mode 7-2
segment selector 7-2

INDEX field 7-2
RPL field 7-2
T I field 7-2

system architecture 7-2
Identifier length See Names, length
Identifiers

predefined
listed 2-30
M J 8 6 2-30
M_I86xM 2-30
M _XENIX 2-30
removing definitions o f 2-32

Im plicit bss 7-57
Include files

directory specification 2-34
portability problems B-3
search path 2-34

INCLUDE variable
overriding 2-34

Index fields 7-13
Indices 7-13
Intel Object Module Format 2-2

1-5

In d e x

Italics 1-6
Iterated Segments 7-56

K

Key sequences, notational conventions 1-6
Keywords

cdecl 6-7
far 5-20
fortran 6-7
near 5-20
pascal 6-7
Version 4.0, new for A -11

L

Large memory model See Memory models,
large

Large Model 7-58
LIB variable 3-3, 3-4
Libraries

default
-A options 2-8
-M options 3-2
overriding 3-4

mixed-model programs 5-29
names in object files 3-2
search

path 3-3, 3-4
specifying 3-3
standard places 3-4

Library
routines

exec 4-1
getenv 4-3
putenv 4-3
system 4-1
system dependent C-2

LIDATA 7-39
LINE

NUMBERS
RECORD 7-37

-LINENUMBERS (-L1) linker option 3-6
linesize pragma 2-24
-link option 2-2, 3-2
Linker

error messages 2-35
Linker options

abbreviations 3-5

Linker options (continued)
cc options, differences from 3-5
line numbers, displaying 3-6
-LINENUMBERS (-L I) 3-6
map file 3-6
-MAP (-M) 3-6
numerical arguments 3-5
rules 3-5
segments

number o f 3-6
-SEGMENTS (-SE) 3-6
stack size, setting 3-6
-STACK (-ST) 3-6
-T 6-9
translating far calls 6-9

L IN N U M 7-37
List o f Names Record 7-26
Listing files

assembly 2-11, 2-12, 2-22
map 2-12
object 2-11,2-12, 2-21
preprocessed 2-32
source 2-11, 2-12, 2-16
source/object 2-12, 2-22

listing pragmas 2-24
LNAMES 7-26
LOBYTE 7-15
LOCATION, types 7-14
LOGICAL

ITERATED
DATA

RECORD 7-39
Logical Segment 7-7
Long pointers See Far pointers
Loop optimization 6-5
loop_opt pragma 2-41, 6-5
LSEG 7-7

M

-M option 5-25, 5-26, 5-27
M option

cc 2-6
Macros

character classification B-9
defined 2-29
notational conventions 1 -6

main function
arguments to 4-2

Manifest constants, notational
conventions 1-6

Manifest defines

1-6

In d e x

Manifest defines (continued)
C compiler 2-30

Map files
creating 2-12, 2-15, 3-6
extensions 2-13, 3-6
-Fm option 2-15
format 2-27
-MAP linker option 3-6
program entry point 2-28
segment lists 2-27
symbol tables 2-27

-MAP linker option 3-6
MAS 7-6
-Me option 5-9
Medium memory model See Memory models
Memory Address Space 7-6
Memory addresses See Addresses
Memory models

compact 5-9
default 5-2, 5-8
huge 5-11
large 5-10
medium 5-9
mixed See Mixed memory models
options

code-pointer size 5-26
compact model 5-9
data-pointer size 5-26
default libraries 2-8
huge model 5-11
large model 5-10
medium model 5-9
segment setup 5-27
small model 5-7

small 5-2, 5-7, 5-19
standard

advantages 5-6
common features 5-6
disadvantages 5-6

Version 4.0, new for A - l 1
Memory models, customized See Mixed mem­

ory models
-Mh option 5-11
M_I86 identifier 2-30
M_I86xM identifier 2-30
Mixed memory models

code pointers 5-26
creating 5-25
data pointers 5-26
library support 5-29
near, far, huge keywords 5-14
segment setup options 5-27

-M l option 5-10
-Mm option 5-9

MODE 7-15
MODEND 7-46
MODULE 7-6

END
RECORD 7-46

Module header record 7-9
Modules, naming 5-31
-Ms option 5-7
M _X E M X identifier 2-30

N

Names
executable files 2-11
global 2-12,2-23
length B-12
modules, changing 5-31
object files 2-9
segments, changing 5-31
underscores (_), using in 2-12, 2-23

Naming conventions
compiler 2-23
segments 5-32

-ND option 5-31, 5-34, 6-9
Near keyword 5-20
near keyword

data declarations, effects in 5-16, 6-8
default addressing conventions 5-14
function declarations, effects in 5-20
library routines, used with 5-16

Near pointer 5-14
-NM option 5-31
Non-Iterated Segments 7-57
Notational conventions 1-6
-NT option 5-31
Numeric record types 7-50

o
-O (optimization) options 2-41
-o option 2-11
-Oa option, cc 6-5
object file format 2-2
Object File Format

Executable 7-54
Object files

cc command 2-3, 2-4
default extension 2-3, 2-8
extensions 2-10

1-7

I n d e x

Object files (continued)
library names in 3-2
naming 2-9
specifying to cc 2-3

Object listing See Object-listing files
Object Module Format 2-2
Object Module Formats 7-5,7-6
Object-listing files

creating 2-12
extensions 2-13
format 2-21

-Od option 2-40
OFFSET 7-14
-Oi option 6-4
-01 option 6-5
OMF 2-2, 7-6
omf Subset 7-54
Optimization

alias checking, relaxing 6-5
default 2-1
disabling 2-40
execution time 6-4
intrinsic pragmas 6-4
listing files 2-14
loops 6-5
options 2-41
stack probes, removing 6-6

Optimizing See Optimization
Optional fields, notational conventions 1-6
Options, cc See cc options
Options, linker See Linker options
-Ot option 6-4
Overlay Name, LSEG 7-8
Overview 1-1

P

-P option 2-32
page pragma 2-25
pagesize pragma 2-25
PARAGRAPH NUMBER 7-7
pascal keyword 6-7
Path names

notational conventions 1-6
portability problems B-3

PATH variable 4-1, 4-2
perror function 9-4
Physical Segment 7-7
Placeholders 1-6
Pointers

arguments, size conversion 5-22
code 5-26

Pointers (continued)
far 5-14, 5-26
huge 5-14
manipulation B-7
near

conversion to long integers A -10
customized memory models 5-26
near keywords, used with 5-14

subtracting in huge-model
programs 5-11

Portability
address space B-9
bit fields B-7
byte length B-4
byte order B-20, B-6
case distinctions B-12
character set B-9
data B-17
data types, size of B-4
environment differences B-16
evaluation order B -14
functions with variable number of

arguments B-14
guidelines B-2
hardware B-4
identifier length B-12
include files B-3
path names B-3
pointer manipulation B-7
register variables B-12
shift operations B - l 1
side effects B-14
sign extension B - l 1
signed and unsigned char types B -l 1
storage alignment B-5
type conversion B-12
word length B-4

Pragmas
alloc_text 5-33
check_stack 6-6
data_seg 5-33

pragmas
linesize 2-24
listing 2-24

Pragmas
loop_opt 2-41, 6-5

pragmas
page 2-24
pagesize 2-24

Pragmas
same_seg 5-33, 5-34, 6-9

pragmas
skip 2-24
skip page 2-24

1-8

I n d e x

pragmas (continued)
subtitle 2-24
title 2-24

Pragmas
Version 4.0, new for A - l 1
Version 5.0, new for A-7

Preprocessor
options

comments, preserving 2-33
-D 2-29
predefined identifiers, removing definitions

of 2-32
use 2-28

Product names, notational conventions 1-6
Prompts 1-6
PS EG

definition 7-7
NUMBER 7-7

PUBDEF 7-33
PUBLIC

NAMES
DEFINITION

RECORD 7-33
Public names See Public symbols
Public symbols, listing 2-15, 3-6
putenv function 4-3

Q
Quotation marks, use of 1 -6

R

Record format, sample 7-24
Record formats 7-4
Record order 7-22
Record types 7-51

numeric 7-50
Register variables 6-1. B -12
Registers

E A X8-9, 8-11
EBP 8-8, 8-11
EBX 8-11
ECX8-11
EDI 8-8, 8-11
EDX 8-9. 8-11
ESI 8-8,8-11
ESP 8-8

Relocatable memory images 7-4

Return values 8-4
assembly language 8-9

Routine entry sequence 8-3
Routine exit sequence 8-5
Routines

assembly language
entry 8-8
exit 8-11

Run file See Executable file

s
-S option 2-12, 2-22
same_seg pragma 5-33, 5-34, 6-9
Sample x.out File 7-56
Search paths

changing
include files 2-34
libraries 3-4

include files 2-34
libraries 3-3, 3-4

SEGDEF 7-27
Segment addressing 7-11
Segment definition 7-10
Segment definition record 7-27
Segment lists

map files 2-27
source listings 2-21

Segment Name, LSEG 7-8
Segment Numbers 7-64
Segment registers 8-11
Segment-Relative fixups 7-15
Segment-Relative Fixups 7-20
Segments

data
default name 5-31
mixed memory models 5-27
names 5-31
naming 5-31
threshold, effect o f 5-30

default 5-4
defined 5-4
names, changing 5-31
naming conventions 5-32
number allowed 3-6
setting up 5-27
source listing 2-21
stack 5-27
text

default name 5-31
naming 5-31

-SEGMENTS (-SE) linker option 3-6

F-9

I n d e x

Self-Relative fixups 7-15, 7-19
SET variable 4-2
Shift operations B -l 1
Short pointers See Near pointers
Side effects B-14
Sign extension B -l 1
Signals

catching 9-5
on program errors 9-5

Signed char type B -l 1
sizeof operator 5-11
skip pragma 2-25
Small capitals, use o f 1-6
Small memory model See Memory models
Small model 5-19

impure 5-8
pure 5-8

Source files
default extension 2-3, 2-8
specifying to cc 2-3

Source listing See Source-listing files
Source-listing files

creating 2-12
described 2-11
error messages 2-16
extensions 2-13
format 2-16, 2-17
segment lists 2-21
subtitles 2-15
symbol tables 2-19
titles 2-15

Source/object-listing files
creating 2-12
extensions 2-13
format 2-22

Special Header Fields 7-58
Special keywords, disabling 5-15
-Ss option 2-15
SS register 5-27
-St option 2-15
Stack

probes 6-6
segments, mixed memory models 5-27
size

setting 3-6
Stack order 8-2
-STACK (-ST) linker option 3-6
Standard files

redirecting 9-2
Standard places

changing 2-34
ignoring 2-34
libraries 3-4

stderr, the standard error file 9-2

Storage alignment B-5
Strings

notational conventions 1-6
subtitle pragma 2-26
Subtitles, source listings 2-15
Switches See Options
Symbol definition 7-12
Symbol Table 7-58
Symbol tables

map files, used in 2-27
object files, used in (-Zi option) 2-40
source listings, used in 2-19

Syntax conventions See
Notational conventions

sys_ermo array, described 9-4
System errors

described 9-6
reporting 9-6

system function 4-1

T

-T linker option 6-9
TARGET 7-15
-Tc option 2-4, 2-8
_TEXT segment 5-31
Text segments

default name 5-31
naming 5-31

THEADR 7-26
title pragma 2-26
Titles, source listings 2-15
T-M ODULE 7-6
T-Module Header Record (THEADR) 7-26
TYPDEF 7-32
Types

checking 2-39
conversion B - l2

u
-U and -u options 2-32
Underscore (_) in names 2-12, 2-23
Unsigned char type B -l 1
Uppercase letters, use of 1-6

I n d e x

V

Variables, register See Register variables
Vertical bar (I) 1-6

w
-WO, -W 1, -W2, and -W3 options 2-37
Warning error messages 2-37, D-29, D-8
W ild card

characters 2-9

X

-X option 2-34
x.out

file layout 7-56
general description 7-54
im plicit bss 7-57
iterated segments 7-56
large model 7-58
non-iterated segments 7-57
special fields 7-58
symbol table 7-58

x.out Examples 7-60
x.out Executable Format 7-59
x.out Format 7-54
x.out Include Files 7-60
x.out Segmented OMF Specification 7-54

z
-Za option 5-15
-Zd option 3-6
-Zg option 2-39
-Zi option 2-40
-Zs option 2-38

[-11

Suggestions - Criticisms - Corrections
Are you happy with this manual ? If so, let us know.
If not, help us improve it by informing us
• where you have noticed mistakes

() • where the content is unclear.

From:

Name

Company/department

Address

Postal Code

Telephone !

Local Siemens
office

Contact person.

Siemens AG
Dl ST QM2
Manualredaktion
Otto-Hahn-Ring 6
Postfach 830951

D-8000 München 83

From:

Name

Company/department

Address

w Postal Code

Telephone :

Local Siemens
office

Contact person.

Siemens AG
Dl ST QM2
Manualredaktion
Otto-Hahn-Ring 6
Postfach 83 09 51

D-8000 München 83

Manual title:

Page Problem:

SINIX Open Desktop V1.0, U5754-J-Z95-1-7600

lam Da programmer I use the manual □ frequently
□ a system administrator □ occasionally for reference
□ an ordinary user □ _____________________
□ __________________

Manual title:

Page Problem:

SINIX Open Desktop V1.0, U5754-J-Z95-1-7600

lam Da programmer
□ a system administrator
□ an ordinary user
□ ____________

I use the manual □ frequently
□ occasionally for reference
□ _______________

	Top
	C User’s Guide
	Contents
	1 Introduction
	2 Compiling with the cc Command
	3 Linking with the cc Command
	4 Running C Programs on System V
	5 Working with Memory Models
	6 Improving Program Speed
	7 Object and Executable File Formats
	8 C Language Compatibility with Assembly Language
	9 Error Processing
	10 Common Object File Format (COFF)
	A Converting from Previous Versions of the Compiler
	B Writing Portable Programs
	C Writing Programs for Read-Only Memory
	D C Error Messages and Exit Codes
	Index
	Bottom

