
SINIXOpen Desktop
Development System
CodeView Debugger

Edition April 1990 (SINIX Open Desktop V1.0)

Order No. U5760-J-Z95-1-7600
Printed in the Federal Republic of Germany
4460 AG 2900.5 (5580)

SINIX® Open Desktop
Copyright © Siemens AG 1990
All right reserved

Base:
OPEN DESKTOP™
©1983-1989 The Santa Cruz Operation, Inc.

Delivery subject to availability:
right of technical modifications reserved.

Published by Bereich
Daten- und Informationstechnik
Postfach 83 09 51, D-8000 München 83

Siemens Aktiengesellschaft

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.
All rights reserved.
Portions © 1989 AT&T.
All rights reserved.
Portions © 1983, 1984, 1985, 1986, 1987, 1988, 1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE -
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)
(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DFARS 52.227-7013. “ CONTRACTOR/ MANUFACTURER” IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

SCO Document Number: 6-26-89-6.0/3.2.0

Contents

1 Introduction

Introduction 1-1
About this Manual 1 -2

2 Getting Started

Introduction 2-1
Restrictions 2-2
Preparing Programs for the CodeView Debugger 2-3
Starting die CodeView Debugger 2-11
Using CodeView Options 2-14

3 The CodeView Display

Introduction 3-1
Using Window Mode 3-2
Using Sequential Mode 3-22

4 Using Dialog Commands

Introduction 4-1
Entering Commands and Arguments 4-2
Format for CodeView Commands and Arguments 4-4

5 CodeView Expressions

Introduction 5-1
C Expressions 5-2
Assembly Expressions 5-7
Line Numbers 5-10
Registers and Addresses 5-11
Memory Operators 5-15

6 Executing Code

Introduction 6-1
Trace Command 6-3

-l-

7 Examining Data and Expressions

Introduction 7-1
Display Expression Command 7-2
Examine Symbols Command 7-9
Dump Commands 7-13

8 Managing Breakpoints

Introduction 8-1
Breakpoint Set Command 8-2
Breakpoint Clear Command 8-5
Breakpoint Disable Command 8-7
Breakpoint Enable Command 8-9
Breakpoint List Command 8-10

9 Managing Watch Statements

Introduction 9-1
Setting Watch-Expression and Watch-Memory Statements 9-3
Setting Watchpoints 9-7
Setting Tracepoints 9-10
Deleting Watch Statements 9-15
Listing Watchpoints and Tracepoints 9-17
Assembly Examples 9-19

10 Examining Code

Introduction 10-1
Set Mode Command 10-2
Unassemble Command 10-4
V ie w Command 10-7
Current Location Command 10-10
Stack Trace Command 10-12

11 Modifying Code or Data

Introduction 11-1
Assemble Command 11-2
Enter Commands 11-6

- i t -

12 Using CodeView System-Control Commands

Introduction 12-1
Help Command 12-2
Quit Command 12-3
Radix Command 12-4
Redraw Command 12-7
Screen Exchange Command 12-8
Search Command 12-9
Shell Escape Command 12-12
Tab Set Command 12-14
Option Command 12-15
Redirection Commands 12-17

- i n

Introduction

Chapter 1

Introduction 1-1

About this Manual 1-2

Introduction

Introduction
Welcome to the CodeView® debugger. This is an executable program
that helps you debug software written with the C and Macro Assembler
languages.

The CodeView debugger is a window-oriented tool that enables you to
track down logical errors in programs; it allows you to analyze a program
as the program is actually running. The CodeView debugger displays
source code or assembly code, indicates which line is about to be exe­
cuted, dynamically watches the values of variables (local or global),
switches screens to display program output, and performs many other
related functions. The debugger can be easily learned and used, by assem­
bly and high-level language programmers alike.

To use CodeView, you first create an executable file from compiled object
files. (When a program is made into an executable file, it is in the form
that can be loaded and executed by the system.) This executable file must
be compiled and linked with the correct options so that it contains the
line-number information and a symbol table needed by CodeView. You
can use the C compiler, or cc, which calls the linking program, Id, The
correct options for compiling and linking for use with CodeView are
described in Chapter 2, “ Getting Started.”

Introduction 1-1

About this Manual

About this Manual
This manual explains the use of the CodeView debugger. Commands,
display, and interface of the debugger are presented here.

The manual is comprised of the following chapters:

• Chapter 2, “ Getting Started,” explains how to create a C or assem­
bly program that can be run with the CodeView debugger; it also
explains how to start the debugger and select various command­
line options.

• Chapter 3, “ The CodeView Display,” discusses the CodeView dis­
play screen and interface, including function keys and keyboard
commands.

• Chapter 4, “ Using Dialog Commands,” presents the general form
of CodeView commands.

• Chapter 5, “ CodeView Expressions,” describes how to build com­
plex expressions for use in commands.

• Chapter 6, “ Executing Code,” explains the CodeView commands
that execute code from within a program.

• Chapter 7, “ Examining Data and Expressions,” discusses several
data-evaluation commands.

• Chapter 8, “ Managing Breakpoints,” explains how to use break­
points to suspend execution.

• Chapter 9, “ Managing Watch Statements,” describes the use of
watch statement commands to set, delete, and list watch state­
ments.

• Chapter 10, “ Examining Code,” discusses several commands that
let you examine program code or data related to code.

• Chapter 11, “ Modifying Code or Data,” explains how to alter
code temporarily for testing in the CodeView debugger.

• Chapter 12, “ Using CodeView System-Control Commands,”
discusses commands that control the operation of the CodeView
debugger.

1-2 The CodeView Debugger

Getting Started

Chapter 2

Introduction 2-1

Restrictions 2-2

Preparing Programs for the CodeView Debugger 2-3
Programming Considerations 2-3
CodeView Compile Options 2-4
CodeView Link Options 2-5
Preparing C Programs 2-6
Preparing Assembly Programs 2-8

Starting the CodeView Debugger 2-11

Using CodeView Options 2-14
Starting with a Black-and-White Display 2-15
Specifying Start-Up Commands 2-16
Enabling Sequential Mode 2-17
Working with Older Versions of the Assembler 2-18

w

Introduction

Introduction
Getting started with the CodeView debugger requires several simple
steps. First you must prepare a special-format executable file for the pro­
gram that you wish to debug; then you can invoke the debugger. You may
also wish to specify options that affect the debugger’s operation.

This chapter describes how to produce executable files in the CodeView
format using C or assembly language, and how to load a program into the
CodeView debugger. This chapter lists restrictions and programming
considerations with regard to the debugger, which you may want to con­
sult before compiling or assembling. Finally, this chapter describes how
to use the debugger with the Macro Assembler.

Getting Started 2-1

Restrictions

Restrictions
You cannot use the CodeView debugger to debug source code in include
files. This restriction applies generally to the use of the CodeView
debugger, regardless of the language being used.

2-2 The CodeView Debugger

Preparing Programs for the CodeView Debugger

Preparing Programs for the
CodeView Debugger
You must compile and link with the correct options, in order to use a pro­
gram with the CodeView debugger. These options direct the compiler and
the linker to produce an executable file, which contains line-number in­
formation and a symbol table, in addition to the executable code.

Note

For the sake of brevity, this section and its three subsections use the
term “ compiling” to refer to the process of producing object
modules. However, almost everything said about compiling in this
section applies equally well to assembling. Exceptions are noted in
the section “ Preparing Assembly Programs” in this chapter.

Not all compiler and linker versions support CodeView options. Consult
the specific language documentation for information about compiler ver­
sions. If you try to debug an executable file that was not compiled and
linked with CodeView options, or if you use a compiler that does not sup­
port these options, then you are only able to use the debugger in assembly
mode. This means that the CodeView debugger does not display source
code or understand source-level symbols, such as symbols for functions
and variables.

The two CodeView basic display modes are source mode, in which the
program is displayed as source lines, and assembly mode, in which the
program is displayed as assembly-language instructions. These two
modes can be combined in mixed mode, in which the program is dis­
played with both source lines and assembly-language instructions.

Programming Considerations
Any source code that is legal in C, or Macro Assembler can be compiled
or assembled to create an executable file, and then debugged with the
CodeView debugger. However, some programming practices make
debugging more difficult.

Getting Started 2-3

Preparing Programs for the CodeView Debugger

The C and Macro Assembly languages permit you to put code in separate
include files, and to read the files into your source file by using an include
directive. However, you cannot use the CodeView debugger to debug
source code in include files. The preferred method of developing pro­
grams is to create separate object modules, and then link the object
modules with your program. The CodeView debugger supports the debug­
ging of separate object modules in the same session.

Also, the CodeView debugger is more effective and easier to use if you
put each source statement on a separate line. A number of languages per­
mit you to place more than one statement on a single line of the source
file. This practice does not prevent the CodeView debugger from func­
tioning. However, the debugger must treat the line as a single unit; it can­
not break the line down into separate statements. Therefore, if you have
three statements on the same line, you cannot put a breakpoint or freeze
execution on the individual statements. The best you are able to do is
freeze execution at the beginning of the three statements, or at the begin­
ning of the next line.

The C and Macro Assembly languages support a type of macro expansion.
However, the CodeView' debugger does not help you debug macros in
source mode. You need to expand the macros yourself before debugging
them; otherwise, the debugger treats them as simple statements or instruc­
tions.

CodeView Compile Options

When you compile a source file for a program you want to debug, you
must specify the -Zi option on the command line. The -Zi option instructs
the compiler to include line-number and symbolic information in the
object file. You can also use -g, which is synonymous with -Zi.

If you do not need complete symbolic information in some modules, you
can compile those modules with the -Zd option instead of -Zi. The -Zd
option writes less symbolic information to the object file, so using this
option saves disk space and memory. For example, if you are working on
a program made up of five modules, but only need to debug one module,
you can compile that module with the -Zi option and the other modules
with the -Zd option. You are able to examine global variables and see
source lines in modules compiled with the -Zd option, but local variables
are unavailable.

2-4 The Codeview Debugger

Preparing Programs for the CodeView Debugger

In addition, if you are working with a high-level language, you probably
want to use the -Od option, which turns off optimization. Optimized code
may be rearranged for greater efficiency and, as a result, the instructions
in your program may not correspond closely to the source lines. After
debugging, you can compile a final version of the program with the
optimization level you prefer.

Note

The -Od option has no effect when used with the Macro Assembler.

You cannot debug a program until you compile it successfully. The Code­
View debugger cannot help you correct syntax or compiler errors. Once
you successfully compile your program, you can then use the debugger to
locate logical errors in the program.

Compiling examples are given in the sections below on compiling and
linking with specific languages.

CodeView Link Options
If you use Id separately to link an object file or files for debugging, you
should specify the -g option. This option instructs the linker to incor­
porate addresses for symbols and source lines into the executable file.

Note that if you use a driver program that automatically invokes the
linker (such as cc with C), then the linker is automatically invoked with
the -g option whenever you specify -Zi on the command line.

Although executable files prepared with the -g option can be executed
from the command line like any other executable files, they are larger
because of the extra symbolic information in them. To minimize program
size, you may want to use the strip command or recompile and link your
final version without the -Zi option when you finish debugging a program.
See the Programmer s Reference for information about the strip com­
mand.

Linking examples are given in the sections below on compiling and link­
ing C and assembly language programs.

Getting Started 2-5

Preparing Programs for the CodeView Debugger

Preparing C Programs
In order to use the CodeView debugger with a program written in C, you
need to compile it with the C Compiler. Early versions of the compiler do
not support the CodeView compile options. Please see the Development
System Release Notes for more information.

Writing C Source Code

The C language supports the use of include files, through the use of the
#include directive. However, you cannot debug source code put into
include files. Therefore, you should reserve the use of include files for
#define macros and structure definitions.

The C language permits you to put more than one statement on a line.
This practice makes it difficult for you to debug such lines of code. For
example, the following code is legal in C:

code = buffer[count]; if (code == '\n') ++lines;

This code is made up of three separate source statements. When placed on
the same line, the individual statements cannot be accessed during debug­
ging. You could not, for example, stop program execution at ++lines;.
The same code would be easier to debug in the following form:

code = buffer[count];
if (code == '\n')

t+lines;

This makes code easier to read and corresponds with what is generally
considered good programming practice.

You cannot easily debug macros with the CodeView debugger. The
debugger cannot break down the macro for you. Therefore, if you have
complex macros with potential side effects, you may need to write them
first as regular source statements.

Compiling and Linking C Programs

The -Zi, -Zd, and -Od options are all supported by the C Compiler. (For a
description of these options, see the section “ CodeView Compile
Options.”) The options are accepted by the cc driver.

2-6 The Codeview Debugger

Preparing Programs for the CodeView Debugger

The CodeView debugger supports mixed-language programming. For an
example of how to link a C module with modules from other languages,
see the section “ Preparing Assembly Programs” in this chapter.

Examples

cc -Zi -Od -o example example.c
cc -c -Zi -Od example.c
cc -g -o example example.o

cc -Zi -Od -c modi.c
cc -Zd -Od -c mod2.c
cc -Zi modl.o mod2.o

In the first example, cc is used to compile and link the source file
example.c The cc command creates an object file in the CodeView for­
mat, example.o, and then automatically invokes the linker with the -g
option. The second example demonstrates how to compile and link the
source file, example.c, by using the -c option with cc. Since cc -c does
not invoke the linker, you must enter cc a second time to link the object
file. These examples result in an executable file, example, which has the
line-number information, symbol table, and unoptimized code required by
the CodeView debugger.

In the third example, the source module modl.c is compiled to produce
an object file with full symbolic and line information, while mod2.c is
compiled to produce an object file with limited information. Then, cc is
used again to link the resulting object files. (This time, cc does not recom­
pile, because the arguments have a .o extension.) Typing -Zi on the com­
mand line causes the linker to be invoked with the -g option. The result is
an executable file, called a.out, in which one of the modules, mod2.c is
harder to debug. It contains less symbolic information, such as the names
of local variables. However, the executable file takes up substantially less
space on disk than it would if both modules were compiled with full sym­
bolic information.

Getting Started 2-7

Preparing Programs for the CodeView Debugger

Preparing Assembly Programs
In order to use all the features of the CodeView debugger with assembly
programs, you need to assemble with Macro Assembler. (The section
“ Working with Older Versions of the Assembler” in this chapter
discusses how to use earlier versions the Macro Assembler with the
debugger.)

Writing Assembler Source Code

If you have Version 2.3 or later of the Macro Assembler, then you can use
the simplified segment directives. Use of these directives ensures that
segments are declared in the correct way for use with the CodeView
debugger. (These directives also aid mixed-language programming.) If
you do not use these directives, then you need to make sure that the class
name for the code segment is CODE.

You cannot trace through macros while in source mode. Macros are
treated as single instructions unless you are in assembly or mixed mode,
so you do not see comments or directives within macros. Therefore, you
may want to debug code before putting it into a macro.

The Macro Assembler also supports include files, but you cannot debug
code in an include file. You are better off reserving include files for
macro and structure definitions.

Because the assembler does not have its own expression evaluator, you
have to use the the C-expression, evaluator. C is the closest to assembly
language. To make sure that the expression evaluator recognizes your
symbols and labels, you should observe the following guidelines when
you write assembly modules:

• The assembler has no explicit way to declare real numbers. How­
ever, it passes the correct symbolic information for reals and
integers if you initialize each real number with a decimal point and
each integer without a decimal point. (The default type is integer.)
For example, the following statements correctly initialize REAL-
SUM as a real number and COUNTER as an integer:

REALSUM DD 0.0
COUNTER DD 0

2-8 The CodeView Debugger

Preparing Programs for the CodeView Debugger

You must initialize real number data in data definitions. If you use
?, then the assembler considers the variable an integer when it gen­
erates symbolic information. The CodeView debugger, in turn,
does not properly evaluate the value of the variable.

• Avoid the use of special characters in symbol names.

• Assemble with -Mx or -Ml to avoid conflicts due to case when you
do mixed-language programming. By default, the assembler con­
verts all symbols to uppercase when it generates object code. C,
however, does not do this conversion. Therefore, the CodeView
debugger does not recognize that var in a C program and var in an
assembly program are the same variable, unless you leave Case
Sense off when using the debugger.

Assembling and Linking

The assembler supports the -Zi and -Zd assemble-time options. The -Od
option does not apply, and so is not supported.

If you link your assembly program with a module written in C (which is
case sensitive), you probably need to assemble with -Mx or -Ml.

After assembling, link with the -g option to produce an executable file in
the CodeView format.

Examples

masm -Zi example.asm
cc -g example.o
masm -Zi modi.asm
masm -Zd mod2.asm
cc -g modi.o mod2.o

The first example assembles the source file example.asm and produces
the object file example.o which is in the CodeView format. The linker is
then invoked by entering cc with the -g option and produces an execut­
able file, called a.out, containing the symbol table and line-number infor­
mation required by the debugger.

Getting Started 2-9

Preparing Programs for the CodeView Debugger

The second example produces the object file modl.o which contains sym­
bol and line-number information, and the object file mod2.o which con­
tains line-number information but no symbol table. The object files are
then linked. The result is an executable file, called a.out, in which the
second module is harder to debug. The second module contains less sym­
bolic information, such as the names of local variables. This executable
file, however, is smaller than it would be if both modules were assembled
with the -Zi option.

2-10 The Codeview Debugger

Starting the CodeView Debugger

Starting the CodeView Debugger
Before starting the debugger, make sure all the files it requires are avail­
able in the proper places. The following files are recommended for
source-level debugging:

File Location

lusrlbinlcv The CodeView program file is located in the
/usr/bin directory.

iusr/lib/cv.hlp The CodeView help file is located in the directory
/usrllib. If the CodeView debugger cannot find
the help file, you can still use the debugger, but
you see an error message if you use one of the
help commands.

program The executable file for the program that you wish
to debug must be in the current directory or in a
directory that you specify by including its path­
name when you type the CodeView command
line. The CodeView debugger displays an error
message and does not start unless the executable
file is found.

source.ext (extension depends on language)
Normally, source files should be in the current
directory. However, if you specify a file
specification for the source file during compila­
tion, that specification becomes part of the sym­
bolic information stored in the executable file. For
example, if you compiled with the command line
argument demo.ext, the CodeView debugger
expects the source file to be in the current direc­
tory. However, if you compiled with the command
line argument with the pathname
I source! demo.ext, then the debugger expects the
source file to be in directory /source. If the
debugger cannot find the source file in the direc­
tory specified in the executable file (usually the
current directory), the program prompts you for a

Getting Started 2-11

Starting the CodeView Debugger

new directory. You can either enter a new direc­
tory, or you can press the <Retum> key to indicate
that you do not want a source file to be used for
this module. If no source file is specified, you
must debug in assembly mode.

If the appropriate files are in the correct directories, you can enter the
CodeView command line at the command prompt. The command line has
the following form:

cv [options] executable file [arguments]

The options are one or more of the options described in the section
“ Using CodeView Options” in this chapter. The executable file is the
name of an executable file to be loaded by the debugger. If you try to load
a nonexecutable file, the following message appears:

Not an executable file

The optional arguments are parameters passed to the executable file. If the
program you are debugging does not accept command-line arguments,
you do not need to pass any arguments.

If the file is not in the CodeView format, the debugger starts in assembly
mode and displays the following message:

No symbolic information

You must specify an executable file when you start the CodeView
debugger. If you omit the executable file, the debugger displays a mes­
sage showing the correct command-line format.

When you give the debugger a valid command line, the executable pro­
gram and the source file are loaded, the address data are processed, and
the CodeView display appears. The initial display is in window mode.

For example, if you wanted to debug the program benchmrk, you could
start the debugger with the following command line:

cv benchmrk

2-12 The CodeView Debugger

Starting the CodeView Debugger

If you give this command line, window mode is selected automatically.
The display looks like the following screen example:

File View Search Run Watch Options
stats.for

Language Calls Help F8=Trace F5=Go

1 :
2 :
3:
4:
5:
6 :

7 :

8 :
9:
10
11
12
13
14
15
16
17
18

J
If sequential mode is selected, the following lines appear:

Microsoft (R) CodeView (R) Version 2.0
(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved.
Portions (C) Copyright The Santa Cruz Operation, Inc. 1989
>

You can use CodeView options, as described in the section “ Using Code­
View Options” in this chapter, to override the default start-up mode.

If your program is written in a high-level language, the CodeView
debugger is now at the beginning of the start-up code that precedes your
program. In source mode, you can enter an execution command (such as
Trace or Program Step) to execute automatically through the start-up code
to the beginning of your program. At this point, you are ready to start
debugging your program, as described in Chapters 4-12.

Microsoft (R) CodeView (R) Version 2.0
(C) Copyright Microsoft Corp. 1986, 1987. All rights reserved

^Portions (C) Copyright The Santa Cruz Operation, Inc. 1989

stats.c

Calculates simple statistics (minimum, maximum, mean, median,
variance, and standard deviation) of up to 50 values.

int dat[50], file, n, i;
file=open("datafile", 0_RD0NLY);

n=0;
for (i=0; i<50; i++)

Getting Started 2-13

Using CodeView Options

Using CodeView Options
You can change the start-up behavior of the debugger by specifying
options in the command line.

An option is a sequence of characters preceded by a dash (-). Unlike
compiler command-line options, CodeView command-line options are not
case sensitive.

A file whose name begins with a dash must be renamed before you use it
with the CodeView debugger, so that the debugger does not interpret the
dash as an option designator. You can use more than one option in a com­
mand line, but each option must have its own dash, and spaces must
separate each option from other elements of the line. The following list
suggests some situations in which you might want to use an option. If
more than one condition applies, you can use more than one option (in
any order). If none of the conditions applies, you need not use any
options.

2-14 The CodeView Debugger

Using CodeView Options

Condition Option

You have a two-color monitor, a color -B
graphics adapter, and an IBM or IBM-
compatible computer.

You want the CodeView debugger to -C commands
automatically execute a series of com­
mands when it starts up.

You wish to debug in sequential mode -T
(for example, with redirection).

The CodeView options are described in more detail in the following sec­
tions.

Starting with a Black-and-White Display

Option

-B

The -B option forces the CodeView debugger to display in two colors
even if you have a color adapter (CGA, EGA, or compatible). By default,
the debugger checks on start-up to see what kind of display adapter is
attached to your computer. If the debugger detects an MA, it displays in
two colors. If it detects a color adapter, it displays in multiple colors.

If you use a two-color monitor with a CGA or EGA, you may want to dis­
able color. Monitors that display in only two colors (usually green and
black, or amber and black) often attempt to show colors with different
cross-hatching patterns, or in gray-scale shades of the display color. In
either case, you may find the display easier to read if you use the -B
option to force black-and-white display. Most two-color monitors still
have four color distinctions: background (black), normal text, high-
intensity text, and reverse-video text.

Getting Started 2-15

Using CodeView Options

Example

cv -B calc calc.dat

The example above starts the CodeView debugger in black-and-white
mode. This is the only mode available if you have an MA. The display is
usually easier to read in this mode if you have a CGA and a two-color
monitor.

Specifying Start-Up Commands

Option

-Ccommands

The -C option allows you to specify one or more commands that is exe­
cuted automatically upon start-up. You can use these options to invoke
the debugger from a shell script file or make file. Each command is
separated from the previous command by a semicolon.

If one or more of your start-up commands have arguments that require
spaces between them, you should enclose the entire option in double quo­
tation marks. Otherwise, the debugger interprets each argument as a
separate CodeView command-line argument rather than as a debugging-
command argument.

Note

Any start-up option that uses the less-than (<) or greater-than (>)
symbol must be enclosed in single or double quotation marks even
if it does not require spaces. This ensures that the redirection com­
mand are interpreted by the CodeView debugger rather than by the
shell.

2-16 The Codeview Debugger

Using CodeView Options

Examples

cv -CGmain calc calc.dat

The example above loads the CodeView debugger with calc as the exe­
cutable file and calc.dat as the argument. Upon start-up, the debugger
executes the high-level-language start-up code with the command
Gmain. Since no space is required between the CodeView command (G)
and its argument (main), the option is not enclosed in double quotation
marks.

cv "-C;S&;G INTEGRAL;DS ARRAYX L 20" calc calc.dat

The example above loads the same file with the same argument as the first
example, but the command list is more extensive. The debugger starts in
mixed source/assembly mode (S&). It executes to the routine INTEGRAL
(G INTEGRAL), and then dumps 20 short real numbers, starting at the
address of the variable ARRAYX (DS ARRAYX L 20). Since several of the
commands use spaces, the entire option is enclosed in double quotation
marks.

cv "-C<input.fil" calc calc.dat

The example above loads the same file and argument as the first example,
but the start-up command directs the debugger to accept input from the
file input.fil rather than from the keyboard. Although the option does not
include any spaces, it must be enclosed in double quotation marks so that
the less-than symbol is read by the CodeView debugger rather than by the
shell.

Enabling Sequential Mode

Options

-T

The CodeView debugger can operate in window mode or in sequential
mode. Window mode displays up to four windows, enabling you to see
different aspects of the debugging-session program simultaneously.
M003 You can also use a mouse in window mode. Window mode

Getting Started 2-17

Using CodeView Options

requires a console. Sequential mode works with any computer and is use­
ful with redirection commands. Debugging information is displayed
sequentially on the screen.

The behavior of each mode is discussed in detail in Chapter 3, “ The
CodeView Display.”

Note

Although window mode is more convenient, any debugging opera­
tion that can be done in window mode can also be done in sequen­
tial mode.

Examples

cv -T sieve

The example above starts the debugger in sequential mode. You might
want to use this option if you have a specific reason for using sequential
mode. For instance, sequential mode usually works better if you are
redirecting your debugging output to a remote terminal.

Working with Older Versions of the Assembler
You can run the CodeView debugger with files developed using prior ver­
sions of the Macro Assembler. Since older versions do not write line
numbers to object files, some of the CodeView debugger’s features are
unavailable when you debug programs developed with the older assem­
blers. The following considerations apply, in addition to the considera­
tions mentioned in the section “ Preparing Assembly Programs” in this
chapter.

The procedure for assembling and debugging executable files by using
older versions of the assembler is summarized below.

1. In your source file, declare public any symbols, such as labels and
variables, that you want to reference in the debugger. If the file is
small, you may want to declare all symbols public.

2-18 The CodeView Debugger

Using CodeView Options

2. As mentioned earlier, make sure that the code segment has class
name CODE.

3. Assemble as usual. No special options are required, and all assem­
bly options are allowed.

4. Use Id. Refer to the Development System Release Notes for infor­
mation about which version of Id to use. Use the -g option when
linking.

5. Debug in assembly mode (this is the start-up default if the
debugger fails to find line-number information). You cannot use
source mode for debugging, but you can load the source file into
the display window and view it in source mode. Any labels or vari­
ables that you declared public in the source file can be displayed
and referenced by name instead of by address. However, they can­
not be used in expressions because type information is not written
to the object file.

Getting Started 2-19

Chapter 3

The CodeView Display

Introduction 3-1

Using Window Mode 3-2
Executing Window Commands 3-4
Using Menu Selections 3-10
Using the Help System 3-20

Using Sequential Mode 3-22

Introduction

Introduction
The CodeView screen display can appear in two different modes—
window and sequential. Either mode provides a useful debugging
environment, but the window mode is the more powerful and convenient
of the two. The CodeView debugger accepts either window commands or
dialog commands. Dialog commands are entered as command lines fol­
lowing the CodeView prompt (>) in sequential mode. They are discussed
in Chapter 4, “ Using Dialog Commands.”

You probably want to use window mode. In window mode, the pull-down
menus and function keys offer fast access to the most common com­
mands. Different aspects of the program and debugging environment can
be seen in different windows simultaneously. Window mode is described
in the section “ Using Window Mode” in this chapter.

Sequential mode is sometimes useful when redirecting command input or
output. Sequential mode is described in the section “ Using Sequential
Mode’ ’ in this chapter.

The CodeView Display 3-1

Using Window Mode

Using Window Mode
The elements of the CodeView display marked in the figure on the next
page include the following:

1. The display window shows the program being debugged. It can
contain source code (as in the example), assembly-language
instructions, or any specified text file.

2. The current location line (the next line the program will execute)
is displayed in reverse video or in a different color. This line may
not always be visible, because you can scroll to earlier or later
parts of the program.

3. Lines containing previously set breakpoints are shown in high-
intensity text.

4. The dialog window is where you enter dialog commands. These
are the commands with optional arguments that you can enter at
the CodeView prompt (>). You can scroll up or down in this win­
dow to view previous dialog commands and command output.

5. The cursor is a thin, blinking line that shows the location at which
you can enter commands from the keyboard. You can move the
cursor up and down, and place it in either the dialog or display
window.

3-2 The Codeview Debugger

Using Window Mode

10 11 7

‘ile View Search Run Watch Options Language Cal Is Help F8=Trace F5=Go \

0) n : 4
1̂) sum : 0.00000000000
2) chance : 0.08333333

28
29
30
31
32
IS
34:
35:
,36:
37:
38:

Watchpoint...
Tracepoint...
Delete Watch... Ctrl+U
Delete All Watch

sum = sum + roll(n);
{
chance = roll(n);
higher = irake(n),
sum = sum + (chance * higher);
printf ("%s %2d ", strl, n);
printf (" %s %f0 ", str2, higher * 100);

/;->DB 100 L 6459AD:0060 65 20 67 61-6D 65 20 61 72 65 20 00
59AD:0070 0A 0A 00 25 73 20 25 66-0A 00 25 73 20 25 66 00 .
59AD:0080 01 00 02 00 03 00 04 00-05 00 06 00 05 00 04 oo

59AD:0090 03 00 02 00 01 00 4F 64-64 73 20 6F 66 20 77 69 .
59AD:00A0 6E 6E 69 6E ni

e gam
%s %f.

AX = 0196
BX = 1142
CX = 01FD
DX = 00B0
SP = 1152
BP = 1174
SI = 019E
DI = 1162
DS = 59AD
ES = 59AD
SS = 59AD
CS = 553A
IP = 0119

NV UP
El PL
NZ NA
PO NC

SS:1172
0004

6. The display/dialog separator line divides the dialog window from
the display window.

7. The register window shows the current status of processor registers
and flags. This is an optional window that can be opened or closed
with one keystroke. The register window also displays the effective
address at the bottom of the window; the effective address shows
the actual location of an operand in physical memory. It is useful
when debugging in assembly mode.

8. The optional watch window shows the current status of specified
variables or expressions. It appears whenever you create watch
statements.

9. The menu bar shows titles of menus and commands that you can
activate with the keyboard. Trace and Go represent commands; the
other titles are all menus.

10. Menus can be opened by specifying the appropriate title on the
menu bar. On the sample screen, the Watch menu has been opened.

The CodeView Display 3-3

Using Window Mode

11. The menu “ highlight” is a re verse-video or colored strip indicat­
ing the current selection in a menu. You can move the highlight up
or down to change the current selection.

12. The scroll bar (not shown) is the vertical bar on the right side of
the screen. This bar graphically represents the ratio of read to
unread portions as you scroll through the file.

13. Dialog boxes (not shown) appear in the center of the screen when
you choose a menu selection that requires a response. The box
prompts you for a response and disappears when you enter your
answer.

14. Message boxes (not shown) appear in the center of the screen to
display errors or other messages.

The screen elements are described in more detail in the rest of this
chapter.

Executing Window Commands

The most common CodeView debugging commands, and all the com­
mands for managing the CodeView display, are available with window
commands. Window commands are one-keystroke commands that can be
entered with function keys, <CTL> key combinations, <ALT> key combi­
nations, or the direction keys on the numeric keypad. The window com­
mands available from the keyboard are described by category in the fol­
lowing sections.

Moving the Cursor with Keyboard Commands

The following keys move the cursor or scroll text in the display or dialog
window.

Key Function

F6 Moves the cursor between the display and dialog
windows.

If the cursor is in the dialog window when you
press F6, it moves to its previous position in the
display window. If the cursor is in the display
window, it moves to its previous position in the
dialog window.

3-4 The Codeview Debugger

Using Window Mode

<CTL>g

<CTL>t

UP ARROW

DOWN ARROW

<PgUp>

<PgDn>

<HOME>

Makes the size of the dialog or display window
grow.

This works for whichever window the cursor is in.
If the cursor is in the display window, then the dis-
play/dialog separator line moves down one line. If
the cursor is in the dialog window, then the
separator line moves up one line.

Makes the size of the dialog or display window
smaller.

This works for whichever window the cursor is in.
If the cursor is in the display window, then the dis­
play/dialog separator line moves up one line. If
the cursor is in the dialog window, then the
separator line moves down one line.

Moves the cursor up one line in either the display
or dialog window.

Moves the cursor down one line in either the dis­
play or dialog window.

Scrolls up one page.

If the cursor is in the display window, the source
lines or assembly-language instructions scroll up.
If the cursor is in the dialog window, the buffer of
commands entered during the session scrolls up.
The cursor remains at its current position in the
window. The length of a page is the current num­
ber of lines in the window.

Scrolls down one page.

If the cursor is in the display window, the source
lines or assembly-language instructions scroll
down. If the cursor is in the dialog window, the
buffer of commands entered during the session
scrolls down. The cursor remains at its current
position in the window. The length of a page is the
current number of lines in the window.

Scrolls to the top of the file or command buffer.

If the cursor is in the display window, the text
scrolls to the start of the source file or program

The CodeView Display 3-5

Using Window Mode

instructions. If the cursor is in the dialog window,
the commands scroll to the top of the command
buffer. The top of the command buffer may be
blank if you have not yet entered enough com­
mands to fill the buffer. The cursor remains at its
current position in the window.

<END> Scrolls to the bottom of the file or command
buffer.

If the cursor is in the display window, the text
scrolls to the end of the source file or program
instructions. If the cursor is in the dialog window,
the commands scroll to the bottom of the com­
mand buffer, and the cursor moves to the Code­
View prompt (>) at the end of the buffer.

Changing the Screen

The following keys change the screen or switch to a different screen.

Key Function

FI Displays initial on-line help screen.

The help system is discussed in the section “ Using the
Help System.” You can also take advantage of the help
system by using the Help menu, as mentioned in the sec­
tion “ Using Menu Selections” in this chapter.

F2 Toggles the register window.

The window disappears if present, or appears if absent.
You can also toggle the register window with the Regis­
ter selection from the View menu, as described in
“ Using Menu Selections.”

F3 Switches between source, mixed, and assembly modes.

Source mode shows source code in the display window,
whereas assembly mode shows assembly-language
instructions. Mixed mode shows both. You can also
change modes with the Source, Mixed, and Assembly
selections from the View menu, as described in “ Using
Menu Selections.”

3-6 The CodeView Debugger

Using Window Mode

F4 Switches to the output screen.

The output screen shows the output, if any, from your
program. Press any key to return to the CodeView
screen.

Controlling Program Execution

The following keys set and clear breakpoints, trace through your program,
or execute to a breakpoint.

Key Function

F5 Executes to the next breakpoint or to the end of the pro­
gram if no breakpoint is encountered.

This keyboard command corresponds to the Go dialog
command when it is given without a destination break­
point argument.

F7 Sets a temporary breakpoint on the line with the cursor,
and executes to that line (or to a previously set break­
point or the end of the program if either is encountered
before the temporary breakpoint).

In source mode, if the line does not correspond to code
(for example, data declaration or comment lines), the
CodeView debugger sounds a warning and ignores the
command. This window command corresponds to the
Go dialog command when it is given with a destination
breakpoint.

F8 Executes a Trace command.

The CodeView debugger executes the next source line
in source mode or the next instruction in assembly
mode. If the source line or instruction contains a call to
a routine or interrupt, the debugger starts tracing through
the call (enters the call and is ready to execute the first
source line or instruction). This command will not trace
into function calls.

F9 Sets or clears a breakpoint on the line with the cursor.

If the line does not currently have a breakpoint, one is
set on that line. If the line already has a breakpoint, the
breakpoint is cleared. If the cursor is in the dialog

The CodeView Display 3-7

Using Window Mode

window, the CodeView debugger sounds a warning and
ignores the command. This window command corre­
sponds to the Breakpoint Set and Breakpoint Clear dia­
log commands.

F10 Executes the Program Step command.

The CodeView debugger executes the next source line
in source mode, or the next instruction in assembly
mode. If the source line or instruction contains a call to
a routine or interrupt, the debugger steps over the entire
call (executes it to the return) and is ready to execute the
line or instruction after the call.

Note

You can usually interrupt program execution by pressing either
<CTLXBREAK > or . These key combinations can be used to
exit endless loops or to interrupt loops that are slowed by the
Watchpoint or Tracepoint commands (see Chapter 9, “ Managing
Watch Statements”). The <CTL><BREAK> or keystrokes
may not work if your program has a special use for one or both of
these key combinations.

Selecting from Menus with the Keyboard

This section discusses how to make selections from menus with the key­
board. The effects of the selections are in the section ‘ Using Menu Selec­
tions.”

The menu bar at the top of the screen has eleven titles: File, View,
Search, Run, Watch, Options, Language, Calls, Help, Trace, and Go. The
first nine titles are menus, and the last two are commands.

The four steps for opening a menu and making a selection are:

1 . To open a menu, press the <ALT> key and the mnemonic (the first
letter) of the menu title. This can be accomplished by holding
down the <ALT> key and then pressing the letter. For example,
press <ALT>s. to open the Search menu. The menu title is
highlighted, and a menu box listing the selections pops up below
the title.

3-8 The CodeView Debugger

Using Window Mode

You can type either an uppercase or lowercase letter to open any of
the menus.

2. There are two ways to make a selection from an open menu:

a. Press the DOWN ARROW key on the numeric keypad to
move down the menu. The highlight follows your
movement. When the item you want is highlighted,
press the <RETURN> key to execute the command. For
example, press the DOWN ARROW once to select Find
from the Search menu.

You can also press the UP ARROW key to move up the
menu. If you move off the top or bottom of the menu,
the highlight wraps around to the other end of the menu.

b. Press the key corresponding to the menu-selection
mnemonic. The mnemonic is simply a single letter that
represents the selection. In color displays, this letter is
in red; in black-and-white displays, this letter is in bold.
In most cases, but not all, the letter is simply the first
letter of the name of the selection. You can type either
an uppercase or lowercase letter for the same selection.

3. After a selection is made from the menu, one of three things hap­
pens:

a. For most menu selections, the choice is executed
immediately.

b. The items on the View, Options, and Language menus
have small double arrows next to them if the option is
on, or no arrows if the option is off. Choosing the item
toggles the option. The status of the arrows is reversed
the next time an option is chosen.

c. Some items require a response. In this case, there is
another step in the menu-selection process.

4. If the item you select requires a response, a dialog box opens when
you select a menu item. Type your response to the prompt in the
box and press the <RETURN> key. For example, the Find dialog
box asks you to enter a regular expression.

If your response is valid, the command is executed. If you enter an
invalid response, a message box appears, telling you the problem
and asking you to press a key. Press any key to make the message
box disappear.

The CodeView Display 3-9

Using Window Mode

A t any point during the process o f se lectin g a m enu item , you can press
the <ESC> k ey to cancel the m enu. W hile a m enu is open, you can press
the LEFT ARROW or RIGHT ARROW k ey to m o v e from one m enu to an
adjacent m enu, or to one o f the com m and titles on the m enu bar. Pressing
<RETURN> w ithout entering any characters in response to a m essa g e box
also cancels the m enu.

Using Menu Selections
This section describes the selections on each of the CodeView menus.
These selections can be made with the keyboard, as described in the sec­
tion “ Executing Window Commands.”

Note that although the Trace and Go commands appear on the menu bar,
they are not menus.

The File Menu

The File menu includes selections for working on the current source or
program file. The File menu selections are explained below.

Selection Action

Open... Opens a new file.

When you make this selection, a dialog box
appears asking for the name of the new file you
want to open. Type the name of a source file, an
include file, or any other text file. The text of the
new file replaces the current contents of the dis­
play window (if you are in assembly mode, the
CodeView debugger switches to source mode).
When you finish viewing the file, you can reopen
the original file. The last location and breakpoints
are still marked when you return.

You may not need to open a new file to see source
files for a different module of your program. The
CodeView debugger automatically switches to the
source file of a module when program execution
enters that module. Although switching source
files is never necessary, it may be desirable if you
want to set breakpoints or execute to a line in a
module not currently being executed.

3-10 The CodeView Debugger

Using Window Mode

Note

If the debugger cannot find the source file when it switches
modules, a dialog box appears asking for a file specification for the
source file. You can either enter a new file specification if the file is
in another directory, or press the <RETURN> key if no source file
exists. If you press the <RETURN> key, the module can only be
debugged in assembly mode.

Shell Exits to a shell. This brings up the standard
screen, where you can execute operating system
commands or executable files. To return to the
CodeView debugger, type exit at the operating
system command prompt. The CodeView screen
reappears with the same status it had when you
left it.

Exit Terminates the debugger and returns to the sys­
tem.

The View Menu

The View menu includes selections for switching between source and
assembly modes, and for switching between the debugging screen and the
output screen. The corresponding function keys for menu selection are
shown on the right side of the menu where appropriate. The View menu
selections are explained below.

The CodeView Display 3-11

Using Window Mode

Note

The terms “ source mode” and “ assembly mode” apply to Macro
Assembler programs as well as to high-level-language programs.
Source mode used with assembler programs shows the source code
as originally written, including comments and directives. Assembly
mode displays unassembled machine code, without symbolic infor­
mation.

The use of one mode or another affects Trace and Program Step
commands, as explained in Chapter 6, “ Executing Code.”

At all times only one of the following selections has a small double arrow
to the left of the name: Source, Mixed, and Assembly. This arrow indi­
cates which of the three display modes is in use. If you select a mode
when you are already in that mode, the selection has no effect. The
Registers selection may or may not have a double arrow to the left,
depending on whether or not the register window is being displayed.

Selection Action

Source Changes to source mode (showing source lines
only).

Mixed Changes to mixed mode (showing both unassem­
bled machine code and source lines).

Assembly Changes to assembly mode (showing only
unassembled machine code).

Registers Selecting this option toggles the register window
on and off. You can also turn the register on and
off by pressing the F2 key.

Output Selecting this option displays the output screen.
The entire CodeView display temporarily disap­
pears, but come back as soon as you press any key.
The Output command can also be selected with
the F4 key.

3-12 The Codeview Debugger

Using Window Mode

The Search Menu

The Search menu includes selections for searching through text files for
text strings and for searching executable code for labels. The Search
menu selections are explained below.

Selection Action

Find... Searches the current source file or other text file
for a specified regular expression. (This selection
can also be made without pulling down a menu,
simply by pressing <CTL>f.

When you make this selection, a dialog box opens,
asking you to enter a regular expression. Type the
expression you want to search for and press the
<RETURN> key. The CodeView debugger starts at
the current or most recent cursor position in the
display window and searches for the expression.

If your entry is found, the cursor moves to the first
source line containing the expression. If you are in
assembly mode, the debugger automatically
switches to source mode when the expression is
found. If the entry is not found, a message box
opens, telling you the problem and asking you to
press a key to continue.

Regular expressions are a method of specifying
variable text strings. This method is similar to the
standard method of using wild cards in file names.

You can use the Search selections without under­
standing regular expressions. Since text strings are
the simplest form of regular expressions, you can
simply enter a string of characters as the expres­
sion you want to find. For example, you could
enter count if you wanted to search for the word
“ count.”

The following characters have a special meaning
in regular expressions: backslash (\), asterisk (*),
left bracket ([), period (.), dollar sign ($), and caret
Q . In order to find strings containing these char­
acters, you must precede the characters with a
backslash; this cancels their special meanings.

The CodeView Display 3-13

Using Window Mode

Next

For example,
with C, you would use *ptr to find *ptr.

The Case Sense selection from the Options menu
has no effect on searching for regular expressions.

Searches for the next match of the current regular
expression.

This selection is meaningful only after you have
used the Search command to specify the current
regular expression. If the CodeView debugger
searches to the end of the file without finding
another match for the expression, it wraps around
and starts searching at the beginning of the file.

Previous Searches for the previous match of the current
regular expression.

This selection is meaningful only after you have
used the Search command to specify the current
regular expression. If the debugger searches to the
beginning of the file without finding another
match for the expression, it wraps around and
starts searching at the end of the file.

Label... Searches the executable code for an assembly-lan­
guage label.

If the label is found, the cursor moves to the
instruction containing the label. If you start the
search in source mode, the debugger switches to
assembly mode to show a label in a library routine
or an assembly-language module.

The Run Menu

The Run menu includes selections for running your program. The Run
menu selections are explained below.

Selection Action

Start Starts the program from the beginning and runs it.

Any previously set breakpoints or watch state­
ments are still in effect. The CodeView debugger
runs your program from the beginning to the first

3-14 The Codeview Debugger

Using Window Mode

breakpoint, or to the end of the program if no
breakpoint is encountered. This has the same
effect as selecting Restart (see the next selection),
then entering the Go command.

Restart Restarts the current program, but does not begin
executing it.

You can debug the program again from the begin­
ning. Any previously set breakpoints or watch
statements are still in effect.

Execute Executes in slow motion from the current instruc­
tion.

This is the same as the Execute dialog command
(e). To stop execution, press any key.

Clear Breakpoints
Clears all breakpoints.

This selection may be convenient after selecting
Restart if you don’t want to use previously set
breakpoints. Note that watch statements are not
cleared by this command.

Note

Although Start Restart retain breakpoints, along with pass count and
arguments (see Chapter 6, “ Executing Code,”), any instructions
entered with the Assemble command will be overwritten by the ori­
ginal program.

The Watch Menu

The Watch menu includes selections for managing the watch window.
Selections on this menu are also available with dialog commands. The
Watch menu selections are explained below.

The CodeView Display 3-15

Using Window Mode

Selection

Add Watch...

Watchpoint...

Tracepoint...

Action

Adds a watch-expression statement to the watch
window. (This selection can also be made
directly, by pressing <CTL>w.)

A dialog window opens, asking for the source-
level expression (which may be simply a variable)
whose value you want to see displayed in the
watch window. Type the expression and press the
<RETURN> key The statement appears in the
watch window in normal text. You cannot specify
a memory range to be displayed with the Add
Watch selection as with the Watch dialog com­
mand.

You can specify the format in which the value is
displayed. Type the expression, followed by a
comma and a CodeView format specifier. If you
do not give a format specifier, the CodeView
debugger displays the value in a default format.
See Chapter 8, “ Examining Data and Expres­
sions,” for more information about format
specifiers and the default format. See the section
“ Setting Watch-Expression and Watch-Memory
Statements” in Chapter 9 for more information
about the Watch command.

Adds a watchpoint statement to the window.

A dialog window opens, asking for the source-
level expression whose value you want to test.
The watchpoint statement appears in the watch
window in high-intensity text when you enter the
expression. A watchpoint is a conditional break­
point that causes execution to stop when the
expression becomes nonzero (true). See the sec­
tion “ Setting Watchpoints” in Chapter 9 for more
information.

Adds a tracepoint statement to the watch window.

A dialog window opens, asking for the source-
level expression or memory range whose value
you want to test. The tracepoint statement appears
in the watch window in high-intensity text when
you enter the expression. A tracepoint is a condi­
tional breakpoint that causes execution to stop

3-16 The Codeview Debugger

Using Window Mode

when the value of a given expression changes.
You cannot specify a memory range to be tested
with the Tracepoint selection as you can with the
Tracepoint dialog command.

When setting a tracepoint expression, you can
specify the format in which the value is displayed.
After the expression type a comma and a format
specifier. If you do not give a format specifier, the
CodeView debugger displays the value in a
default format. See Chapter 7, “ Examining Data
and Expressions,” for more information about for­
mat specifiers and default. See the section “ Set­
ting Tracepoints” in Chapter 9 for more informa­
tion about tracepoints.

Delete Watch... Deletes a statement from the watch window. (This
selection can also be made directly, by pressing
<CTL>u).

A dialog window opens, showing the current
watch statements. If you are using a mouse, move
the pointer to the statement you want to delete and
click either button. If you are using the keyboard,
press the UP ARROW or DOWN ARROW key to
move the highlight to the statement you want to
delete, then press the <RETURN> key.

Delete All Watch
Deletes all statements in the watch window.

All watch, watchpoint, and tracepoint statements
are deleted, the watch window disappears, and the
display window is redrawn to take advantage of
the freed space on screen.

The Options Menu

The Options menu allows you to set options that affect various aspects of
the behavior of the CodeView debugger. The Options menu selections are
explained below. Selections on the Options menu have small double
arrows to the left of the selection name when the option is on. The status
of the option (and the presence of the double arrows) is reversed each
time you select the option. By default, the Save Output and Bytes Coded
options are on when you start the CodeView debugger. Depending on
which language your main program is in, the debugger automatically
turns Case Sense on (if your program is in C) or off (if your program is in
another language) when you start debugging.

The CodeView Display 3-17

Using Window Mode

The selections from the Options menu are discussed below.

Selection Action

Save Output When this option is on, which is the default set­
ting, the output from your debugged program is
saved. When it is off, any program output is not
saved.

Bytes Coded When on (the default), the instructions, instruction
addresses, and the bytes for each instruction are
shown; when off, only the instructions are shown.

This option affects only assembly mode. The fol­
lowing display shows the appearance of sample
code when the option is off:

27: name = gets(namebuf);
LEA AX,Word Ptr [namebuf]
PUSH AX
CALL gets (03E1)
ADD SP,02
MOV Word Ptr [name],AX

Case Sense

The following display shows the appearance of
the same code when the option is on:

27: name = gets(namebuf);
32AF:003E 8D46DE LEA AX,Word Ptr [namebuf]
32AF:0041 50 PUSH AX
32AF:0042 E89C03 CALL gets (03E1)
32AF:0045 83C402 ADD SP,02
32AF:0048 8946DA MOV Word Ptr [name],AX

When the selection is turned on, the CodeView
debugger assumes that symbol names are case
sensitive (each lowercase letter is different from
the corresponding uppercase letter); when off,
symbol names are not case sensitive.

This option is on by default for C programs, and
off by default for assembly programs. You prob­
ably want to leave the option in its default setting.

3-18 The Codeview Debugger

Using Window Mode

The Language Menu

The Language menu allows you either to select the expression evaluator,
or to instruct the CodeView debugger to select it for you automatically.
The Language menu selections are explained below.

As with the Options menu, the selection that is on is marked by double
arrows. Unlike the Options menu, however, exactly one item (and no
more) on the Language menu is selected at any given time.

The Auto selection causes the debugger to select automatically the
expression evaluator each time a new source file is loaded. The debugger
examines the extension of the source file in order to determine which
expression evaluator to select. The Auto selection uses the C expression
evaluator if the current source file does not have a .has, .f, .for, or .pas
extension.

If you change to a source module with an .asm extension, then Auto
causes the debugger to select the C expression evaluator, but not all of the
C defaults are used; system radix is hexadecimal, case sensitivity is
turned off, and the register window is displayed.

When a language expression evaluator is selected, the debugger uses that
evaluator, regardless of what kind of program is being debugged.

The Calls Menu

The Calls menu is different from other menus in that its contents and size
change, depending on the status of your program. The Calls menu is
explained below.

The mnemonic for each item in the Calls menu is a number. Type the
number displayed immediately to the left of a routine in order to select it.
You can also use the UP ARROW or DOWN ARROW key to move to your
selection, and then press the <RETURN> key.

The effect of making a selection from the Calls menu is to view a routine,
'fhe cursor goes to the line at which the selected routine was last execut­
ing. For example, selecting main causes CodeView to display main, at
the point at which main made a call to calc (the function immediately
above it). Note that selecting a routine from the Calls menu does not (by
itself) affect program execution. It simply provides a convenient way to
view previously called routines.

The CodeView Display 3-19

Using Window Mode

The Calls menu shows the current routine and the trail of routines from
which it was called. The current routine is always at the top. The routine
from which the current routine was called is directly below. Other active
routines are shown in the reverse order in which they were called. With C
programs, the bottom routine should always be main. (The only time
when main will not be the bottom routine is when you are tracing through
the standard library’s start-up or termination routines.)

The current value of each argument, if any, is shown in parentheses fol­
lowing the routine. The menu expands to accommodate the arguments of
the widest routine. Arguments are shown in the current radix (the default
is decimal). If there are more active routines than fit on the screen, or if
the routine arguments are too wide, the display expands to both the left
and right. The Stack Trace dialog command (K) also shows all the rou­
tines and arguments.

The Help Menu

The Help menu lists the major topics in the help system. For help, open
the Help menu and then select the topic that you want to view.

Each topic may have any number of subtopics. You must go to the major
topic first. Information on how to move around within the help system is
provided in the next section.

The bottom selection on the Help menu is the About command. When you
make this selection, the debugger displays a small box at the center of the
screen that gives the name of the product and the version number.

Using the Help System
The CodeView on-line help system uses tree-structured menus to give
you quick access to help screens on a variety of subjects. The system uses
a combination of menu access and sequentially linked screens, as
explained below.

The help file is called cv.hlp and is located in the /usr/lib directory. If this
file is not found, the CodeView debugger still operates, but you cannot
use the help system. An error message appears if you try to use a help
command.

When you request help, either by pressing the FI key, by using the H dia­
log command, or by selecting the Help menu, the first help screen
appears. You can select N for Next and P for Previous to page through the
screens. The screens are arranged in a circular fashion, so that selecting

3-20 The Codeview Debugger

Using Window Mode

Next on the last screen get you to the first screen. Select C for Cancel to
return to the CodeView screen. Pressing the <PgDn>, <PgUp>, and <ESC>
keys achieves the same results as selecting Next (N), Previous (P), and
Cancel (C).

You can enter the help system at a particular topic by selecting the topic
from the Help menu. Once into the system, use Next (N) and Previous (P)
to page to other screens.

The CodeView Display 3-21

Using Sequential Mode

Using Sequential Mode
Sequential mode is useful when you are using redirected CodeView input
and output. In sequential mode, the CodeView debugger’s input and out­
put always move down the screen from the current location. When the
screen is full, the old output scrolls off the top of the screen to make room
for new output appearing at the bottom. You can never return to examine
previous commands once they scroll off, but in many cases, you can
reenter the command to put the same information on the screen again.

Most window commands cannot be used in sequential mode. However,
the following function keys, which are used as commands in window
mode, are also available in sequential mode.

Command Action

FI Displays a command-syntax summary.

F2 Displays the registers.

This is equivalent to the Register (R) dialog command.

F3 Toggles between source, mixed, and assembly modes.

Pressing this key rotates the mode between source,
mixed, and assembly. You can achieve the same effect
by using the Set Assembly (S-), Set Mixed (S&), and Set
Source(S+) dialog commands.

F4 Switches to the output screen, which shows the output of
your program.

Press any key to return to the CodeView debugging
screen. This is equivalent to the Screen Exchange (\)
dialog command.

F5 Executes from the current instruction until a breakpoint
or the end of the program is encountered.

This is equivalent to the Go dialog command (G) with
no argument.

F8 Executes the next source line in source mode, or the
next instruction in assembly mode.

3-22 The CodeView Debugger

Using Sequential Mode

If the source line or instruction contains a function, pro­
cedure, or interrupt call, the CodeView debugger exe­
cutes the first source line or instruction of the call and is
ready to execute the next source line or instruction
within the call. This is equivalent to the Trace (T) dialog
command.

F9 Sets or clears a breakpoint at the current program loca­
tion.

If the current program location has no breakpoint, one is
set. If the current location has a breakpoint, it is
removed. This is equivalent to the Breakpoint Set (BP)
dialog command with no argument.

F10 Executes the next source line in source mode, or the
next instruction in assembly mode.

If the source line or instruction contains a function, pro­
cedure, or interrupt call, the call is executed to the end,
and the CodeView debugger is ready to execute the line
or instruction after the call. This is equivalent to the Pro­
gram Step (P) dialog command.

The CodeView Watch (W), Watchpoint (WP), and Tracepoint (TP) com­
mands work in sequential mode, but since there is no watch window, the
watch statements are not shown. You must use the Watch List command
(W) to examine watch statements and watch values. See Chapter 9,
“ Managing Watch Statements,” for information on Watch Statement
commands.

All the CodeView commands that affect program operation (such as
Trace, Go, and Breakpoint Set) are available in sequential mode. Any
debugging operation done in window mode can also be done in sequential
mode.

The CodeView Display 3-23

Chapter 4

Using Dialog Commands

Introduction 4-1

Entering Commands and Arguments 4-2
Using Special Keys 4-2
Using the Command Buffer 4-3

Format for CodeView Commands and Arguments 4-4

Introduction

Introduction
CodeView dialog commands can be used in sequential mode or from the
dialog window. In sequential mode, they are the primary method of
entering commands. In window mode, dialog commands are used to enter
commands that require arguments or that do not have corresponding win­
dow commands.

Many window commands have duplicate dialog commands. Generally,
the window version of a command is more convenient, but the dialog ver­
sion is more powerful. For example, to set a breakpoint on a source line
in window mode, put the cursor on the source line and press F9. The dia­
log version of the Breakpoint command (BP) requires more keystrokes,
but it allows you to specify an address, a pass count, and a string of com­
mands to be taken whenever the breakpoint is encountered.

The rest of this chapter explains how to enter dialog commands.

Using Dialog Commands 4-1

Entering Commands and Arguments

Entering Commands and Arguments
Dialog commands are entered at the CodeView prompt (>). Type the
command and arguments, and then press the <RETURN> key.

In window mode, you can enter commands whether or not the cursor is at
the CodeView prompt. If the cursor is in the display window, the text you
type appears after the prompt in the dialog window, even though the cur­
sor remains in the display window.

Using Special Keys
When entering dialog commands or viewing output from commands, you
can use the following special keys:

Key

<CTL>s

<BKSP>

Action

Stops the current output or cancels the current
command line. For example, if you are watching a
long display from a Dump command, you can
press to interrupt the output and return to
the CodeView prompt. If you make a mistake
while entering a command, you can press
to cancel the command without executing it. A
new prompt appears, and you can reenter the com­
mand.

Pauses during output of a command. You can
press any key to continue output. For example, if
you are watching a long display from a Dump
command, you can press <CTL>s when a part of
the display appears that you want to examine
more closely. Then press any key when you are
ready for the output to continue scrolling.

Deletes the previous character on the command
line and moves the cursor back one space. For
example, if you make an error while typing a com­
mand, you can use the <BKSP> key to delete the
characters back to the error-then retype the rest of
the command.

4-2 The CodeView Debugger

Entering Commands and Arguments

Using the Command Buffer
In window mode, the CodeView debugger has a command buffer where
the last 2-4 screens of commands and command output are stored. The
command buffer is not available in sequential mode.

When the cursor is in the dialog window, you can scroll up or down to
view the commands you have entered earlier in the session. The com­
mands for moving the cursor and scrolling through the buffer are
explained in Chapter 3, “ The CodeView Display.”

Scrolling through the buffer is particularly useful for viewing the output
from commands, such as Dump or Examine Symbols, whose output may
scroll off the top of the dialog window.

If you have scrolled through the dialog buffer to look at previous com­
mands and output, you can still enter new commands. When you type a
command, it appears to be overwriting the previous line where the cursor
is located, but when you press the <RETURN> key, the new command is
entered at the end of the buffer. For example, if you enter a command
while the cursor is at the start of the buffer and then scroll to the end of
the buffer, you see the command you just entered. If you scroll back to
the point where you entered the command, you see the original characters
rather than the characters you typed over the originals.

When you start the debugger, the buffer is empty except for the copyright
message. As you enter commands during the session, the buffer is gradu­
ally filled from the bottom to the top. If you have not filled the entire
buffer and you press the <HOME> key to go to the top of the buffer, you do
not see the first commands of the session. Instead you see blank lines,
since there is nothing at the top of the buffer.

Using Dialog Commands 4-3

Format for CodeView Commands and Arguments

Format for CodeView Commands
and Arguments
The general format for CodeView commands is shown below:

"<command> [<arguments>] [\<command2>]"

The command is a one-, two-, or three-character command name, and
arguments are expressions that represent values or addresses to be used
by the command. The command is not case sensitive; any combination of
uppercase and lowercase letters can be used. However, arguments con­
sisting of source-level expressions may or may not be case sensitive.
(Case sensitivity can be affected by the language selected for expression
evaluation, in the Options menu.) Usually, the first argument can be
placed immediately after command with no space separating the two
fields.

The number of arguments required or allowed with each command varies.
If a command takes two or more arguments, you must separate the argu­
ments with spaces. A semicolon (;) can be used as a command separator
if you want to specify more than one command on a line.

Examples

>DB 100 200 ;* Example 1
>U Labell ;* Example 2, C variable as argument
>U sum; DB ;* Example 3, multiple commands

In Example 1, DB is the first command (for the Dump Bytes command).
The arguments to the command are 100 and 200 . The second command on
this line is the Comment command (*). A semicolon is used to separate
the two commands. The Comment command is used throughout the rest
of the manual to number examples.

In Example 2, U is the first command (for the Unassemble command), and
the C language variable Labell is a command argument.

Example 3 consists of three commands, separated by semicolons. The first
is the Unassemble command (U) with the C variable sum as an argument.
The second is the Dump Bytes command (DB) with no arguments. The
third is the Comment command (*).

4-4 The CodeView Debugger

Chapter 5

CodeView Expressions

Introduction 5-1

C Expressions 5-2
C Symbols 5-4
C Constants 5-5
C Strings 5-6

Assembly Expressions 5-7

Line Numbers 5-10

Registers and Addresses 5-11
Registers 5-11
Addresses 5-12
Address Ranges 5-13

Memory Operators 5-15
Accessing Bytes (BY) 5-15
Accessing Words (WO) 5-16
Accessing Double Words (DW) 5-17

v — ■/

Introduction

Introduction
CodeView command arguments are expressions that can include symbols,
constant numbers, operators, and registers. Arguments can be simple ma­
chine-level expressions that directly specify an address or range in mem­
ory, or they can be source-level expressions that correspond to operators
and symbols used in C or the Macro Assembler. CodeView has an
expression evaluator for C that computes the value of source-level
expressions.

Each of the expression evaluators has a different set of operators and rules
of precedence. However, the basic syntax for registers, addresses, and line
numbers is the same regardless of the language. You can always change
the expression evaluator. If you specify a language other than the one
used in the source file, then the expression evaluator still recognizes your
program symbols, if possible.

If the Auto option is on, then the debugger examines the file extension of
each new source file you trace through. Both C and assembly modules
cause the debugger to select C as the expression evaluator.

This chapter deals first with the expressions specific to each language.
Line-number expressions are presented next; they work the same way
regardless of the language. Then, register and address expressions are
presented; generally, these do not have to be mastered unless you are
doing assembly-level debugging. Finally, the chapter describes how to
switch the expression evaluator.

Note

When you use a variable in an expression where that variable is not
defined, the CodeView debugger displays the message UNKNOWN
SYMBOL. For example, the message appears if you reference a
local variable outside the function where the variable is defined.

CodeView Expressions 5-1

C Expressions

C Expressions
The C expression evaluator uses a subset of the most commonly used C
operators. It also supports the colon operator (:), which is described in the
section “ Addresses” in this chapter, and the three memory operators (BY,
WO, and DW), which are discussed in the section “ Memory Operators”
in this chapter. The memory operators are primarily useful for debugging
assembly source code. The CodeView C-expression operators are listed
in Table 5.1 in order of precedence.

5-2 The Codeview Debugger

C Expressions

Table 5.1
CodeView C-Expression Operators

Precedence Operators_________________

(Highest)

1 () [] - > •

2 ! ' - (type) ++ — *

3 * / % :

4 + -

5 < > < = > =

6 = = !=

7 &&

8 II

9 = + = - = *= /= %=

10 BY WO DW

& sizeof

(Lowest)

The minus sign with precedence 2 is the unary minus indicating the sign
of a number; the minus sign with precedence 4 is a binary minus indicat­
ing subtraction. The asterisk with precedence 2 is the pointer operator;
the asterisk with precedence 3 is the multiplication operator. The amper­
sand with precedence 2 is the address-of operator. The ampersand as a
bitwise AND operator is not supported by the CodeView debugger.

See the C Language Referece for a description of how C operators can be
combined with identifiers and constants to form expressions. With the C-
expression evaluator, the period (.) has its normal use as a member selec­
tion operator, but it also has an extended use as a specifier of local vari­
ables in parent functions. The syntax is shown below:

<function>.<variable>

CodeView Expressions 5-3

C Expressions

The function must be a high-level-language function, and the variable
must be a local variable within the specified function. The variable can­
not be a register variable. For example, you can use the expression
main.argc to refer to the local variable arge when you are in a function
that has been called by main.

The type operator (used in type casting) can be any of the predefined C
types. The CodeView debugger limits casts of pointer types to one level
of indirection. For example, (char *)sym is accepted, but (char **)sym
is not.

When a C expression is used as an argument with a command that takes
multiple arguments, the expression should not have any internal spaces.
For example, count+6 is allowed, but count + 6 may be interpreted as
three separate arguments. Some commands (such as the Display Expres­
sion command) do permit spaces in expressions.

C Symbols

Syntax

<name>

A symbol is a name that represents a register, a segment address, an offset
address, or a full 32-bit address. At the C source level, a symbol is a vari­
able name or the name of a function. Symbols (also called identifiers) fol­
low the naming rules of the C compiler. Note that although CodeView
command letters are not case sensitive, symbols given as arguments are
case sensitive (unless you have turned off case sensitivity with the Case
Sense selection from the Options menu).

In assembly language output or input from the Examine Symbols com­
mand, the CodeView debugger displays some symbol names in the
object-code format produced by the C Compiler. This format includes a
leading underscore. For example, the function main is displayed as
_main. Only global labels (such as procedure names) are shown in this
format. You do not need to include the underscore when specifying such a
symbol in CodeView commands. Labels within library routines are some­
times displayed with a double underscore (__chkstk). You must use two
leading underscores when accessing these labels with CodeView com­
mands.

5-4 The Codeview Debugger

C Expressions

C Constants

Syntax

<digits> Default radix
0<digits> Octal radix
0\<digits> Hexadecimal radix
On<digits> Decimal radix

Numbers used in CodeView commands represent integer constants. They
are made up of octal, hexadecimal, or decimal digits, and are entered in
the current input radix. The C-language format for entering numbers of
different radixes can be used to override the current input radix.

The default radix for the C expression evaluator is decimal. However,
you can use the Radix command (N) to specify an octal or hexadecimal
radix, as explained in “ Radix Command” in Chapter 12.

If the current radix is 16 (hexadecimal) or 8 (octal), you can enter decimal
numbers in the special CodeView format On digits. For example, enter 21
decimal as 0n21.

With radix 16, it is possible to enter a value or argument that could be
interpreted either as a symbol or as a hexadecimal number. The Code­
View debugger resolves the ambiguity by searching first for a symbol
(identifier) with that name. If no symbol is found, the debugger interprets
the value as a hexadecimal number. If you want to enter a number that
overrides an existing symbol, use the hexadecimal format (Oxdigits).

For example, if you enter abc as an argument when the program contains
a variable or function named abc, the CodeView debugger interprets the
argument as the symbol. If you want to enter abc as a number, enter it as
Oxabc.

Table 5.2 shows how a sample number (63 decimal) would be represented
in each radix.

CodeView Expressions 5-5

C Expressions

Table 5.2

Input Radix

C Radix Examples

Octal Decimal Hexadecimal
8 77 0n63 0x3F

10 Oil 63 0x3F

16 Oil 0n63 3F

C Strings

Syntax

" <null-terminated-string>"

Strings can be specified as expressions in the C format. You can
use C escape characters within strings. For example, double
quotation marks within a string are specified with the escape
character backslash double quotation mark (V).

Example

>EA message "This \"string\" is okay."

The example uses the Enter ASCII command (EA) to enter the given
string into memory starting at the address of the variable message.

5-6 The Codeview Debugger

Assembly Expressions

Assembly Expressions
The -Zi Macro Assembler option provides variable size information for
the CodeView debugger. This makes for correct evaluation of expressions
derived from assembly code (except with arrays, which are discussed
later in this section). If you have an early version of the Macro Assem­
bler, you need to use C type casts to get correct evaluation. See the
Release Notes for more information about Macro Assembler versions.

When a program assembles or when the Auto switch is on, source files
with an .asm extension cause CodeView to select the C-expression
evaluator. However, the following options are set differently from the C
default options:

• System radix is hexadecimal (not decimal).

• Register window is on.

• Case Sense is off.

The C-expression evaluator supports the memory operators described in
the section “ Memory Operators” in this chapter, and generally is the ap­
propriate expression evaluator to debug assembly with, because of its
flexibility.

However, you cannot always use the C-expression evaluator to specify an
expression exactly as it would appear in assembly code. The list below
describes the principal differences between assembler syntax and syntax
used with the C-expression evaluator.

Note

The examples below present expressions, not CodeView commands.
You can see the results of these expressions by using them as
operands for the Display Expression command (?), described in
Chapter 7, “ Examining Data and Expressions.”

In the following list, examples of assembly source code are shown in the
left-hand column. Corresponding CodeView expressions (with the C-
expression evaluator) are shown in the right-hand column.

CodeView Expressions 5-7

Assembly Expressions

1. Register indirection.

The C-expression evaluator does not extend the use of brackets to
registers. To refer to the byte, word, or double word pointed to by a
register, use the BY, WO, or DW operator.

BYTE PTR [bx]
WORD PTR [bp]
DWORD PTR [bp]

2. Register indirection with displacement.

To perform based, indexed, or based-index indirection with a dis­
placement, use the BY, WO, or DW operator along with addition in
a complex expression:

BYTE PTR [di+6]
BYTE PTR [si][bp+6]
WORD PTR [bx][si]

3. Taking the address of a variable.

Use the ampersand (&) to get the address of a variable with the
C-expression evaluator.

OFFSET var &var

4. The PTR operator.

With the CodeView debugger, C type casts perform the same func­
tion as the assembler PTR operator.

BYTE PTR var
WORD PTR var
DWORD PTR var

5. Accessing array elements.

Accessing arrays declared in assembly code is problematic,
because the Macro Assembler emits no type information to indi­
cate which variables are arrays. Therefore the CodeView debugger
treats an array name like any other variable.

In C, an array name is equated with the address of the first element.
Therefore, if you prefix an array with the address operator (&), the
C-expression evaluator gives correct results for array operations.

(char) var
(int) var
(long) var

BY di+6
BY si+bp+6
WO bx+si

BY bx
WO bp
DW bp

5-8 The Codeview Debugger

Assembly Expressions

string[12]
warray[bx+di]
darray[4]

(&string)[12]
(Swarray)(bx+di)/2
(Sdarray)[1]

In the second and third examples above, notice that the indexes
used in the assembly source-code expressions differ from the
indexes used in the CodeView expressions. This difference is
necessary because C arrays are automatically scaled according to
the size of elements. In assembly, the program must do the scaling.

CodeView Expressions 5-9

Line Numbers

Line Numbers
Line numbers are useful for source-level debugging. They correspond to
the lines in Macro Assembler source-code files In source mode, you see a
program displayed with each line numbered sequentially. The CodeView
debugger allows you to use these same numbers to access parts of a pro­
gram.

Syntax

. [<filename>:]<linenumber>

The address corresponding to a source-line number can be specified as
linenumber prefixed with a period (.). The CodeView debugger assumes
that the source line is in the current source file, unless you specify the
optional filename followed by a colon and the line number.

The CodeView debugger displays an error message if filename does not
exist, or if no source line exists for the specified number.

Examples

>V .100

The example above uses the View command (V) to display code starting
at the source line 100. Since no file is indicated, the current source file is
assumed.

>V .DEMO.C:301

The example above uses V to display source code starting at line 301 of
demo.c, respectively.

5-10 The Codeview Debugger

Registers and Addresses

Registers and Addresses
This section presents alternative ways to refer to objects in memory,
including values stored in the processor’s registers. Addresses are basic
to each of the expression evaluators. A data symbol represents an address
in a data segment; a procedure name represents an address in a code seg­
ment. All of the syntax in this section can be considered as an extension
to the C-expression evaluator.

Registers

Syntax

[@]<register>

You can specify a register name if you want to use the current value
stored in the register. Registers are rarely needed in source-level debug­
ging, but they are used frequently for assembly-language debugging.

When you specify an identifier, the CodeView debugger first checks the
symbol table for a symbol with that name. If the debugger does not find a
symbol, it checks to see if the identifier is a valid register name. If you
want the identifier to be considered a register, regardless of any name in
the symbol table, use the “ at” sign ((8)) as a prefix to the register name.
For example, if your program has a symbol called AX, you could specify
@AX to refer to the AX register. You can avoid this problem entirely by
making sure that identifier names in your program do not conflict with
register names.

The register names known to the CodeView debugger are shown in the
following table.

CodeView Expressions 5-11

Registers and Addresses

Table 5.3
Registers

Type Names
8-bit high byte AH BH CH DH

8-bit low byte AL BL CL DL

16-bit general purpose AX BX CX DX

16-bit segment CS DS ss ES

16-bit pointer SP BP IP

16-bit index SI DI

32-bit general purpose EAX EBX ECX EDX

32-bit pointer ESP EBP

32-bit index ESI EDI

Addresses

Syntax

[<segment>:]<offset>

Addresses can be specified in the CodeView debugger through the use of
the colon operator as a segmenf.offset connector. Both the segment and
the offset are made up of expressions.

A full address has a segment and an offset, separated by a colon. A partial
address has just an offset; a default segment is assumed. The default seg­
ment varies, depending on the command with which the address is used.
Commands that refer to data (Dump, Enter, Watch, and Tracepoint) use
the contents of the DS register. Commands that refer to code (Assemble,
Breakpoint Set, Go, Unassemble, and View) use the contents of the CS
register.

5-12 The CodeView Debugger

Registers and Addresses

Examples

>DB 100

In the example above, the Dump Bytes command (DB) is used to dump
memory starting at offset address 100. Since no segment is given, the data seg­
ment (the default for Dump commands) is assumed. In C, a variable might be
denoted as array [count].

>DB label+10

In the example above, the Dump Bytes command is used to dump mem­
ory starting at a point 10 bytes beyond the symbol label.

>DB ES :200

In the example above, the Dump Bytes command is used to dump mem­
ory at the address having the segment value stored in ES and the offset
address 200.

Address Ranges

Syntax

<startaddress> <endaddress>
<startaddress> L <count>

A range is a pair of memory addresses that bound a sequence of contigu­
ous memory locations.

You can specify a range in two ways. One way is to give the start and end
points. In this case the range covers startaddress to endaddress,
inclusively. If a command takes a range, but you do not supply a second
address, the CodeView debugger usually assumes the default range. Each
command has its own default range. (The most common default range is
128 bytes.)

CodeView Expressions 5-13

Registers and Addresses

You can also specify a range by giving its starting point and the number
of objects you want included in the range. This type of range is called an
object range. In specifying an object range, startaddress is the address of
the first object in the list, L indicates that this is an object range rather
than an ordinary range, and count specifies the number of objects in the
range.

The size of the objects is the size taken by the command. For example,
the Dump Bytes command (DB) has byte objects, the Dump Words com­
mand (DW) has words, the Unassemble command (U) has instructions,
and so on.

Examples

>DB buffer

The example above dumps a range of memory starting at the symbol
buffer. Since the end of the range is not given, the default size (128 bytes
for the Dump Bytes command) is assumed.

>DB buffer buffer+20

The example above dumps a range of memory starting at buffer and end­
ing at buffer+20 (the point 20 bytes beyond buffer).

>DB buffer L 20

The example above uses an object range to dump the same range as in the
previous example. The L indicates that the range is an object range, and
20 is the number of objects in the range. Each object has a size of 1 byte,
since that is the command size.

>U funcname-30 funcname

The example above uses the Unassemble command (U) to list the
assembly-language statements starting 30 instructions before funcname
and continuing to funcname.

5-14 The CodeView Debugger

Memory Operators

Memory Operators
Memory operators return the content of specific locations in memory.
They are unary operators that work in the same way regardless of the lan­
guage selected, and return the result of a direct memory operation. They
are chiefly of interest to programmers who debug in assembly mode, and
are not necessary for high-level debugging.

All of the operators listed in this section are part of the CodeView C-
expression evaluator and should not be confused with CodeView com­
mands. As operators, they can only build expressions, which in turn are
used as arguments in commands.

Note

The memory operators discussed in this section are only available
with the C-expression evaluator, and have lowest precedence of any
C operators.

Accessing Bytes (BY)
You can access the byte at an address by using the BY operator. This
operator is useful for simulating the BYTE PTR operation of the Macro
Assembler. It is particularly useful for watching the byte pointed to by a
particular register.

Note

The examples that follow in the section “ Memory Operators” make
use of the Display Expression (?) Command, which is described in
“ Display Expression Command” in Chapter 7. The x format
specifier causes the debugger to produce output in hexadecimal.

CodeView Expressions 5-15

Memory Operators

Syntax

BY <address>

The result is a short integer that contains the value of the first byte stored
at address.

Examples

>? BY sum
101

The example above returns the first byte at the address of sum.

>? BY bp+6
42

This example returns the byte pointed to by the BP register, with a dis­
placement of 6.

Accessing Words (WO)
You can access the word at an address by using the WO operator. This
operator is useful for simulating the WORD PTR operation of the assem­
bler. It is particularly useful for watching the word pointed to by a partic­
ular register, such as the stack pointer.

Syntax

WO <address>

The result is a short integer that contains the value of the first two bytes
stored at address.

Examples

>? WO sum
>13120

5-16 The CodeView Debugger

Memory Operators

The example above returns the first word at the address of sum.

>? WO sp,x
>2F38

This example returns the word pointed to by the stack pointer; the word
therefore represents the last word pushed (the “ top” of the stack).

Accessing Double Words (DW)
You can access the word at an address by using the DW operator. This
operator is useful for simulating the DWORD PTR operation of the Macro
Assembler. It is particularly useful for watching the word pointed to by a
particular register.

Syntax

DW <address>

The result is a long integer that contains the value of the first four bytes
stored at address.

Note

Be careful not to confuse the DW operator with the DW command.
The operator is only useful for building expressions; it occurs within
a CodeView command line, but never at the beginning. The second
use of DW mentioned above, the Dump Words Command, occurs
only at the beginning of a CodeView command line. It displays an
entire range of memory (in words, not double words) rather than
returning a single result.

Examples

>? DW sum
>132120365

CodeView Expressions 5-17

Memory Operators

The example above returns the first double word at the address of sum.

>? DW si,x
>3F880000

This example returns the double word pointed to by the SI register.

5-18 The CodeView Debugger

Chapter 6

Executing Code

Introduction 6-1

Trace Command 6-3

Program Step Command 6-6

Go Command 6-9

Execute Command 6-12

Restart Command 6-13

Introduction

Introduction
Several commands execute code within a program. Among the differences
between the commands is the size of step executed by each. The com­
mands and their step sizes are listed below.

Command Action

Trace (T) Executes the current source line in source
mode, or the current instruction in assembly
mode; traces into routines, procedures, or
interrupts

Program Step (P) Executes the current source line in source
mode, or the current instruction in assembly
mode; steps over routines, procedures, or
interrupts

Go (G) Executes the current program

Execute (E) Executes the current program in slow
motion

Restart (L) Restarts the current program

In window mode, the screen is updated to reflect changes that occur when
you execute a Trace, Program Step, or Go command. The highlight mark­
ing the current location is moved to the new instruction in the display
window. When appropriate, values are changed in the register and watch
windows.

In sequential mode, the current source line or instruction is displayed
after each Trace, Program Step, or Go command. The format of the dis­
play depends on the display mode. The three display modes available in
sequential mode (source, assembly, and mixed) are discussed in Chapter
10, “ Examining Code.”

If the display mode is source (S+) in sequential mode, the current source
line is shown. If the display mode is assembly (S-), the status of the regis­
ters and the flags and the new instruction are shown in the format of the
Register command (see Chapter 7, “ Examining Data and Expressions”).
If the display mode is mixed (S&), then the registers, the new source line,
and the new instruction are all shown.

Executing Code 6 - 1

Introduction

The commands that execute code are explained in the following sections.

Note

If you are executing a section of code with the Go or Program Step
command, you can usually interrupt program execution by pressing
<CTL><BREAK> or . This can terminate endless loops, or it
can interrupt loops that are delayed by the Watchpoint or Tracepoint
command (see Chapter 9, “ Managing Watch Statements”).

6-2 The CodeView Debugger

TYace Command

Trace Command
The Trace command executes the current source line in source mode, or
the current instruction in assembly mode. The current source line or
instruction is the one pointed to by the CS and IP registers. In window
mode, the current instruction is shown in reverse video or in a contrasting
color.

In source mode, if the current source line contains a call, the CodeView
debugger executes the first source line of the called routine. In this mode,
the CodeView debugger only traces into functions and routines that have
source code. For example, if the current line contains a call to an intrinsic
function or a standard C library function, the debugger simply executes
the function if you are in source mode, since the source code for standard
libraries is not available.

If you are in assembly or mixed mode, the debugger traces into the func­
tion. In this mode, if the current instruction is CALL, INT or REP, the
debugger executes the first instruction of the procedure, interrupt, or
repeated string sequence.

Note

When you debug Macro Assembler programs in source mode, the
paragraph above still applies. The debugger does not trace into an
INT or REP sequence when you are in source mode.

Use the Trace command if you want to trace into calls. To execute calls
without tracing into them, you should use the Program Step command (P)
instead. Both commands execute system calls without tracing into them.
There is no direct way to trace into system calls.

Keyboard

To execute the Trace command with a keyboard command, press the F8
key. This works in both window and sequential modes.

Executing Code 6-3

TVace Command

Dialog

To execute the Trace command using a dialog command, enter a com­
mand line with the following syntax:

T [<count>]

If the optional count is specified, the command executes count times
before stopping.

Example

The following example shows the Trace command in sequential mode. (In
window mode, there would be no output from the commands, but the dis­
play would be updated to show changes caused by the command.)

>S+ ;* FORTRAN exam ple
source
>.
9: CALL INPUT (DATA,N,INPFMT)
>T 3
34: OPEN (1,FILE='EXAMPLE . DA T',STATUS='OLD')
35: DO 100 1=1, N
36: READ (1,' (BN,110)',END=999) DATA (I)

The FORTRAN example above sets the display mode to source, and then
uses the Source Line command to display the current source line. (See
Chapter 10, “ Examining Code,” for a further explanation of the Set
Source and Source Line commands.) Note that the current source line
calls the subroutine INPUT. The Trace command is then used to execute
the next three source lines. These lines are the first three lines of the sub­
routine INPUT.

Debugging C and BASIC source code is very similar. If you execute the
Trace command when the current source line contains a C system call or a
BASIC subprogram call, then the debugger executes the first line of the
called routine.

6-4 The Codeview Debugger

Trace Command

>s-
assembly
>T
AX=0058 BX=3050
DS=4 9B7 ES=49B7
3FB0:0013 50

CX=000B
SS=4 9B7

DX=3FB0
CS=3FB0

SP=304C
IP=0013

AX

BP=3056
NV UP El

SI=00CC
PL NZ AC

DI—40E0
PO NC

The example above sets the display mode to assembly and traces the
current instruction. This example and the next example are the same as
the examples of the Program Step command in the section “ Program Step
Command” in this chapter. The Trace and Program Step commands
behave differently only when the current instruction is a CALL, INT, or
REP instruction.

>s&
mixed
>T
AX=0000 BX=319C CX=0028 DX=0000 SP=304C BP=3056 SI=00CC DI=40E0
DS=49B7 ES=49B7 SS=49B7 CS=3FB0 IP=003C NV UP EI PL NZ NA PO NC
8: IF (N.LT.l .OR. N.GT.1000) GO TO 100
3FB0:003C 833ECE2101 CMP W o r d P t r [21CE],+01 DS:21CE=0028

The example above sets the display mode to mixed and traces the current
instruction.

Executing Code 6-5

Program Step Command

Program Step Command
The Program Step command executes the current source line in source
mode, or the current instruction in assembly mode. The current source
line or instruction is the one pointed to by the CS and IP registers. In win­
dow mode, the current instruction is shown in reverse video or in a con­
trasting color.

In source mode, if the current source line contains a call, the CodeView
debugger executes the entire routine and is ready to execute the line after
the call. In assembly mode, if the current instruction is CALL, INT, or
REP, the debugger executes the entire procedure, interrupt, or repeated
string sequence. Use the Program Step command if you want to execute
over routine, function, procedure, and interrupt calls. If you want to trace
into calls, you should use the Trace command (T) instead. Both com­
mands execute system calls without tracing into them. There is no direct
way to trace into system calls.

Keyboard

To execute the Program Step command with a keyboard command, press
the F10 key. This works in both window and sequential modes.

Dialog

To execute the Program Step command with a dialog command, enter a
command line with the following syntax:

P [<count>]

If the optional count is specified, the command executes count times
before stopping.

6-6 The Codeview Debugger

Program Step Command

Example

This example shows the Program Step command in sequential mode. In
window mode, there would be no output from the commands, but the dis­
play would be updated to show changes.

> s + ;* FORTRAN/BASIC example
source
>.
9: CALL INPUT (DATA,N,INPFMT)
>P 3
10: CALL BUBBLE (DATA,N)
1 1 : CALL STATS (DATA.N)
12 : END
>

The example above (in FORTRAN or BASIC) sets the display mode to
source, and then uses the Source Line command to display the current
source line. (See Chapter 10, “ Examining Code,” for a further explana­
tion of the Set Source and Source Line commands.) Notice that the
current source line calls the subprogram INPUT. The Program Step com­
mand is then used to execute the next three source lines. The first program
step executes the entire subprogram INPUT. The next two steps execute
the subprograms BUBBLE and STATS, also in their entirety.

The same program, written in C, would behave exactly the same way with
the Program Step command. The Program Step command does not trace
into a C system call.

>s-
assembly
>P
AX=0058 BX=3050 CX=000B DX=3FB0 SP=304C BP=3056 SI=00CC DI=40E0
DS = 49B7 ES=49B7 SS=49B7 CS=3FB0 IP=0013 NV UP EI PL NZ AC PO NC
3FB0:0013 50 PUSH AX

The example above sets the display mode to assembly and steps through
the current instruction. This example and the next example are the same
as the examples of the Trace command in the section “ Trace Command”
in this chapter. The Trace and Program Step commands behave
differently only when the current instruction is a CALL, INT, or REP
instruction.

Executing Code 6-7

Program Step Command

>S&
mixed
>P
AX=0000 BX=319C CX-0028 DX=0000 SP=304C BP-3056 SI-OOCC DI-40E0
DS-49B7 ES-49B7 SS-49B7 CS-3FB0 IP-003C NV UP EI PL NZ NA PO NC
8: IF (N.LT.l .OR. N.GT.1000) GO TO 100
3FB0:003C 833ECE2101 CMP Word Ptr [21CE],+01 DS:21CE=0028

The example above sets the display mode to mixed and steps through the
current instruction.

6-8 The Codeview Debugger

Go Command

Go Command
The Go command starts execution at the current address. There are two
variations of the Go command, Go and Goto. The Go variation simply
starts execution and continues to the end of the program or until a break­
point set earlier with the Breakpoint Set (BP), Watchpoint (WP), or Tra-
cepoint (TP) command is encountered. The other variation is a Goto
command, in which a destination is given with the command.

If a destination address is given but never encountered (for example, if
the destination is on a program branch that is never taken), the CodeView
debugger executes to the end of the program.

If you enter the Go command and the debugger does not encounter a
breakpoint, the entire program is executed and the following message is
displayed:

Program terminated normally (num ber)

The number in parentheses is the value returned by the program (some­
times called the exit or “ errorleveT ’ code).

Keyboard

To use a keyboard command to execute the Go command with no destina­
tion, press the F5 key. This works in both window and sequential modes.

To execute the Goto variation of the Go command, move the cursor to the
source line or instruction you wish to go to. If the cursor is in the dialog
window, first press the F6 key to move the cursor to the display window.
When the cursor is at the appropriate line in the display window, press the
F7 key. The highlight marking the current location moves to the source
line or instruction you pointed to (unless a breakpoint is encountered
first). The CodeView debugger sounds a warning and take no action if you
try to go to a comment line or other source line that does not correspond
to code.

If the line you wish to go to is in another module, you can use the Load
command from the Files menu to load the source file for the other
module. Then move the cursor to the destination line and press the F7
key.

Executing Code 6-9

Radix Command

In the example above, the same number is entered in different radixes, but
the i format specifier is used to display the result as a decimal integer in
all three cases. See Chapter 7, “ Examining Data and Expressions,” for
more information on format specifiers.

12-6 The CodeView Debugger

Go Command

>S& ;* C example (mixed mode)
mixed
>G .22
AX=02F 4 BX=0002 CX=00A8 DX=0000 SP=3036 BP=3042 SI=0070 DI=40E0
DS=49B7 ES = 4 9B7 SS=49B7 CS=3FB0 IP = 0141 NV UP EI PL NZ NA PO NC
22: x[i] = x [j];
3FB0:0141 8B7608 MOV SI,Word Ptr [BP+08] SS:304A=0070

The example above passes execution control to the program at the current
address and executes to the address of source line 22. If the address with
the breakpoint is never encountered (for example, if the program has less
than 22 lines, or if the breakpoint is on a program branch that is never
taken), the CodeView debugger executes to the end of the program.

Note

Mixed and source mode can be used equally well with all three lan­
guages. The examples alternate languages in this chapter simply to
be accessible to more users.

>s-
assembly
>G #2A8
AX=004 9 BX=004 9 CX=028F DX=0000 SP=12F2 BP=12F6 SI=04BA DI=1344
DS=5DAF ES=5DAF SS=5DAF CS=58BB IP=02A8 NV UP EI PL NZ NA PE NC
58BB:02A8 98 CBW

The example above executes to the hexadecimal address CS:2A8. Since
no segment address is given, the CS register is assumed.

Executing Code 6-11

Execute Command

Execute Command
The Execute command is similar to the Go command with no arguments,
except that it executes in slow motion (several source lines per second).
Execution starts at the current address and continues to the end of the pro­
gram or until a breakpoint, tracepoint, or watchpoint is reached. You can
also stop automatic program execution by pressing any key.

Keyboard

To execute code in slow motion with a keyboard command, press <ALT>r
to open the Run menu, and then press <ALT>e to select Execute.

Dialog

To execute code in slow motion with a dialog command, enter a com­
mand line with the following syntax:

E

You cannot set a destination for the Execute command as you can for the
Go command.

In sequential mode, the output from the Execute command depends on the
display mode (source, assembly, or mixed). In assembly or mixed mode,
the command executes one instruction at a time. The command displays
the current status of the registers and the instruction. In mixed mode, it
also shows a source line if there is one at the instruction. In source mode,
the command executes one source line at a time, displaying the lines as it
executes them.

Important

The Execute command has the same command letter (E) as the
Enter command. If the command has at least one argument, it is
interpreted as Enter; if not, it is interpreted as Execute.

6-12 The CodeView Debugger

Restart Command

Restart Command
The Restart command restarts the current program. The program is ready
to be executed just as if you had restarted the CodeView debugger. Pro­
gram variables are reinitialized, but any existing breakpoints or watch
statements are retained. The pass count for all breakpoints is reset to 1.
Any program arguments are also retained, though they can be changed
with the dialog version of the command.

The Restart command can only be used to restart the current program. If
you wish to load a new program, you must exit and restart the CodeView
debugger with the new program name.

Keyboard

To restart the program with a keyboard command, press <ALT>r to open
the Run menu, and then press either <ALT>r to select Restart or <ALT>s
to select Start. The program is restarted. If the Restart selection is chosen,
the program is ready to start executing from the beginning (but not actu­
ally running). If the Start selection is chosen, the program starts executing
from the beginning and continues until a breakpoint or the end of the pro­
gram is encountered.

Dialog

To restart the program with a dialog command, enter a command line with
the following syntax:

L [<arguments>]

When you restart using the dialog version of the command, the program is
ready to start executing from the beginning. If you want to restart with
new program arguments, you can give optional arguments. You cannot
specify new arguments with the keyboard version of the command.

Executing Code 6-13

Restart Command

Note

The command letter L is a mnemonic for Load, but the command
should not be confused with the Load selection from the File menu,
since that selection only loads a source file without restarting the
program.

Examples

>L
>

The example above restarts the current executable file, retaining the same
breakpoints, watchpoints, tracepoints, and command line arguments.

>L 6
>

The example above restarts the current executable file, but with 6 as the
new program argument.

6-14 The Codeview Debugger

Chapter 7

Examining Data and Expressions

Introduction 7-1

Display Expression Command 7-2

Examine Symbols Command 7-9

Dump Commands 7-13
Dump 7-15
Dump Bytes 7-15
Dump ASCII 7-16
Dump Integers 7-17
Dump Unsigned Integers 7-18
Dump Words 7-18
Dump Double Words 7-19
Dump Short Reals 7-20
Dump Long Reals 7-21
Dump 10-Byte Reals 7-22

Compare Memory Command 7-24

Search Memory Command 7-26

Register Command 7-28

8087 Command 7-30

Introduction

Introduction
The CodeView debugger provides several commands for examining
different kinds of data, including expressions, symbols, memory, and
registers. The data-evaluation commands discussed in this chapter are
summarized below.

Command Action

Display Expression (?) Evaluates and displays the value of
symbols or expressions

Examine Symbol (X?) Displays the addresses of symbols

Dump (D) Displays sections of memory con­
taining data (with variations for
examining different kinds of data)

Compare Memory (C) Compares two blocks of memory,
byte by byte

Search Memory (S) Scans memory for specified byte
values

Register (R) Shows the current values of each
register and each flag

8087 (7) Shows the current value in the
80387 or 80287 register

Examining Data and Expressions 7-1

Display Expression Command

Display Expression Command
The Display Expression command displays the value of a CodeView
expression.

Each of the expression evaluators (C, FORTRAN, BASIC, and Pascal)
accepts a different set of symbols, operators, functions, and constants, as
explained in Chapter 5, “ Code View Expressions.” The resulting expres­
sions can contain the intrinsic functions listed for the FORTRAN- and
BASIC-expression evaluators. They may also contain functions that are
part of the executable file. The simplest form of expression is a symbol
representing a single variable or routine.

Note

FORTRAN subroutines and BASIC subprograms do not return values
as functions do. They can be used in expressions, and in fact may be
useful for observing side effects. However, the value returned by the
expression is meaningless.

In addition to displaying values, the Display Expression command can
also set values as a side effect. For example, with the C-expression
evaluator you can increment the variable n by using the expression ++n
with the Display Expression command. With the FORTRAN-expression
evaluator you would use N=N+1, and with the BASIC-expression evalua­
tor you would use LET N=N+1. After being incremented, the new value
is displayed.

You can specify the format in which the values of expressions are
displayed by the Display Expression command. Type a comma after the
expression, followed by a CodeView format specifier. The format
specifiers used in the CodeView debugger are a subset of those used by
the C printf function. They are listed in table 7.1.

7-2 The Codeview Debugger

Display Expression Command

Table 7.1
CodeView Format Specifiers

d

i Signed decimal integer

u Unsigned decimal integer

o Unsigned octal integer

x or X Hexadecimal integer

f Signed value in floating­
point decimal format
with six decimal places

e or E Signed value in
seiend fic-notation format
with up to six decimal
places (trailing zeros and
decimal point are trun­
cated)

g or G Signed value with
floating-point decimal
format (f) or scientific-
notation format (g or G),
whichever is more com­
pact

c Single character

s Characters printed up to
the first null character

? 4 0 0 0 0 , d 4 0 0 0 0

7 4 0 0 0 0 , i 4 0 0 0 0

7 4 0 0 0 0 , u 4 0 0 0 0

7 4 0 0 0 0 , o 1 1 6 1 0 0

7 4 0 0 0 0 , x 9 c 4 0

73 . / 2 . , f 1 . 5 0 0 0 0 0

1 3 . / 2 . , e 1 . 5 0 0 0 0 0 e + 0 0 0

7 3 . / 2 . , g 1 . 5

7 6 5 , c A

? " S t r i n g " , s S t r i n g

Output Sample Sample
Character Format Expression Output

Signed decimal integer

FORTRAN and BASIC have no unsigned data types. Using an unsigned
format specifier has no effect on the output of positive numbers, but
causes negative numbers to be output as positive values.

Hexadecimal letters are uppercase if the type is X and lowercase if the
type is x.

The “ E” is uppercase if the type is E or G; lowercase if the type is e or g.

The s string format is used only with the C-expression evaluator; it prints
characters up to the first null.

Examining Data and Expressions 7-3

Display Expression Command

If no format specifier is given, single- and double-precision real numbers
are displayed as if the format specifier had been given as g. (If you are
familiar with the C language, you should note that the n and p format
specifiers and the F and H prefixes are not supported by the CodeView
debugger, even though they are supported by the C printf function.)

The prefix h can be used with the integer format specifiers (d, o, u, x, and
X) to specify a two-byte integer. The prefix 1 can be used with the same
types to specify a four-byte integer. For example, the command
7100000,Id produces the output 100000. However, the command
?100000,hd evaluates only the low-order two bytes, producing the output
-31072.

When calling a FORTRAN subroutine that uses alternate returns, the value
of the return labels in the actual parameter list must be 0. For example,
the subroutine call CALL PROCESS (s-ll,*10,j,*20,*30) must be called
from the debugger as ?PROCESS(IARG1,0,IARG2,0,0). Using other
values as return labels cause the error Type c l a s h i n f u n c ­
t i o n a rg u m e n t or Unknown sy m b o l.

Note

Do not use a type specifier when evaluating strings in FOR­
TRAN, BASIC, or Pascal. Simply leave off the type specifier,
and the expression evaluator displays the string correctly. The s
type specifier assumes the C language string format, with
which other languages conflict; if you use s, then the debugger
simply displays characters at the given address until a null is
encountered.

Keyboard

The Display Expression command cannot be executed with a key­
board command.

7-4 The Codeview Debugger

Display Expression Command

Dialog

To display the value of an expression using a dialog command, enter
a command line with the following syntax:

? <expression>[,<format>]

The expression is any valid CodeView expression, and the optional
format is a CodeView format specifier.

The remainder of this section first gives examples that are relevant
to all languages, and then gives examples specific to C, FORTRAN,
BASIC and Pascal.

If you are debugging code written with the assembler, you use the
C-expression evaluator by default. Consult the section “ Assembly
Expressions” in Chapter 5 for guidelines on how to use the C-
expression evaluator with assembly code.

Examples

>? amount
500
>? amount,x
If 4
>? amount,o
764
>

The example above displays the value stored in the variable amount, an
integer. This value is first displayed in the system radix (in this case,
decimal), then in hexadecimal, and then in octal.

>? 92,x
5 c
>? 109*(35+2),o
7701
>? 118,c
V
>

The example above shows how the CodeView debugger can be used as a
calculator. You can convert between radixes, calculate the value of con­
stant expressions, or check ASCII equivalences.

Examining Data and Expressions 7-5

Display Expression Command

>? chance,f
0.083333
>? chance,e
8 .333333e-002
>? chance,E
8 .333333E-002

The example above shows a double-precision real number, chance, dis­
played in three formats. The f format always displays six digits of preci­
sion. The e format uses scientific notation. Note that the E format yields
essentially the same display as e does.

The rest of the examples in this section are specific to particular lan­
guages.

C Examples

The following examples assume that a C source file is being debugged,
and that it contains the following declarations:

char *text = "Here is a string.";
int amount;
struct {

char name[20];
int id;
long class;

} student, *pstudent;
int square(int);

Assume also that the program has been executed to the point where the
above variables have been assigned values, and that the C-expression
evaluator is in use.

>? text, X
13F3
>DA Oxl 3F3
3D83:13F0 Here is a string.
>? text,s
Here is a string.
>

The example above shows how to examine strings. One method is to
evaluate the variable that points to the string, and then dump the values at
that address (the Dump commands are explained in the section “ Dump
Commands” in this chapter). A more direct method is to use the s type
specifier.

7-6 The CodeView Debugger

Display Expression Command

>? student.id
19643
>? pstudent->id
19643
>

The example above illustrates how to display the values of members of a
structure. The same syntax applies to unions.

>? amount
500
>? ++amount
501
>? amount=600
600
>

The example above shows how the Display Expression command can be
used with the C-expression evaluator to change the values of variables.

>? square(9)
81
>

The example above shows how functions can be evaluated in expressions.
The CodeView debugger executes the function square with an argument
of 9, and displays the value returned by the function. You can only display
function values after you have executed into the function main.

Assembly Examples

By default, the C-expression evaluator is used for debugging assembly
modules. However, some C expressions are particularly helpful for
debugging assembly code. Some typical examples are presented below.

>? BY bx
12
>

The example above displays the first byte at the location pointed to by
BX, and is equivalent to the assembly expression BYTE PTR [bx].

>? WO bp+8
9359
>

The example above displays the first word at the location pointed to by
[bp+8].

Examining Data and Expressions 7-7

Display Expression Command

>? DW si+12
12555324
>

The example above displays the first double word at the location pointed
to by [si+12].

>? (char) var
5
>? (int) var
1005
>

The last two examples use type casts, which are similar to the assembler
PTR operator. The expression (char) var displays the byte at the address
of var, in signed format. The expression (int) var displays the word at the
same address, also in signed format. You can alter either of these com­
mands to display results in unsigned format simply by using the u format
specifier.

>? (char) var,u

>? (int) var,u

7-8 The CodeView Debugger

Examine Symbols Command

Examine Symbols Command
The Examine Symbols command displays the names and addresses of
symbols, and the names of modules, defined within a program. You can
specify the symbol or group of symbols you want to examine by module,
procedure, or symbol name.

Keyboard

The Examine Symbols command cannot be executed with a keyboard
command.

Dialog

To view the addresses of symbols with a dialog command, enter a com­
mand line in one of the following formats,

X*
X
X? [<module>\] [<routine>.] [<symbol>] [*]

in which routine is in a program unit, such as a C function or a BASIC
subprogram, capable of having its own local variables.

The syntax combinations are listed in more detail below.

Syntax Display

X?<module>! <routine>.<symbol>
The specified symbol in the specified
routine in the specified module

X?<module>!<routine>.* All symbols in the specified routine in
the specified module

X?<module>!<symbol> The specified symbol in the specified
module (symbols within routines are
not found)

Examining Data and Expressions 7-9

Examine Symbols Command

X?<module>!* All symbols in the specified module

X?<routine>.<symbol> The specified symbol in the specified
routine (looks for routine first in the
current module, and then in other
modules from first to last)

X?<routine>.* All symbols in the specified routine
(looks for routine first in the current
module, and then in other modules
from first to last)

X?<symbol> Looks for the specified symbol in this
order:

1. In the current routine
2. In the current module
3. In other modules, from first to last

X?* All symbols in the current routine

X* All module names

X All symbolic names in the program,
including all modules and all symbols

Note

When you debug an assembly module, you cannot use the routine
field; you must use the module field. Therefore, the only versions of
this command that work with assembly modules are the following:

X? <module>*
X ? <module>! <symbol>

C Examples

For the following examples, assume that the program being examined is
called pi, and that it consists of two modules: pi.c and math.c. The
p i . c module is a skeleton consisting only of the main function, whereas
the math.c module has several functions. Assume that the current func­

7-10 The CodeView Debugger

Examine Symbols Command

tion is div within the math module.

>X* ;*Example 1
Pimath
/lib/slibc. a(chkstk)
/lib/slibc. a(crtO)

/lib/slibc. a(itoa)
/lib/slibc. a(unlink)
>

Example 1 lists the two user-created modules of the program, as well as
the library modules used in the program.

>X?* ;*Example 2
DI int
[BP-0006] int
SI int
[BP-0002] int
[BP+0004] int

b
quotient
i
remainder
divisor

Example 2 lists the symbols in the current function (div). Local variables
are shown as being stored either in a register (b in register DI) or at a
memory location specified as an offset from a register (divisor at location
[BP+0004]).

>X?pi!* Exam ple 3
3 D 3 7 :19B2 int scratchO 3 D 3 7 :0A10 char _ P N
3 D 3 7 :2954 int scratchl 3 D 3 7 7 :19B4 char _t[]
3 D 3 7 :2956 int scratch2 3 D 3 7 7 :19B0 int _q
3A7 9:0010 int mai n () 3A7 9:0010 int m a i n ()
3 D 3 7 :1 9B2 int scratchO
3 D 3 7 :OA10 char P U
3 D 3 7 :2954 int scratchl
3 D 3 7 :1 9B4 char t[]
3 D 3 7 :2956 int scratch2
3 D 3 7 :1 9B0 int q

Example 3 shows all the symbols in the pi.c module.

Examining Data and Expressions 7-11

Examine Symbols Command

>X?math!div.* ;*Example 4
3A79:0264 int div()

DI
[BP-0006]
SI
[BP-0002]
[BP+0004]

int
int
int
int
int

b
quotient
i
remainder
divisor

>

Example 4 shows the symbols in the div function in module math.c. You
wouldn’t need to specify the module if math.c were the current module,
but you would if the current module were pi.c.

Variables local to a function are indented under that function.

>X?math!arctan.s ;* Example 5
3A7 9:00FA int arctan ()

Example 5 shows one specific variable (s) within the arctan function.

[BP+0004] int s
>

7-12 The Codeview Debugger

Dump Commands

Dump Commands
The CodeView debugger has several commands for dumping data from
memory to the screen (or other output device). The Dump commands are
listed below.

Command Command Name

D Dump (size is the default type)

DB Dump Bytes

DA Dump ASCII

DI Dump Integers

DU Dump Unsigned Integers

DW Dump Words

DD Dump Double Words

DS Dump Short Reals

DL Dump Long Reals

DT Dump 10-Byte Reals

Keyboard

The Dump commands cannot be executed with keyboard commands.

Dialog

To execute a Dump command with a dialog command, enter a command
line with the following syntax:

D [<type>] [<address> \ <range>]

The type is a one-letter specifier that indicates the type of the data to be
dumped. The Dump commands expect either a starting address or a range

Examining Data and Expressions 7-13

Dump Commands

of memory. If the starting address is given, the commands assume a
default range (usually determined by the size of the dialog window) start­
ing at address. If range is given, the commands dump from the start to the
end of range. The maximum size of range is 32K.

If neither address nor range is given, the commands assume the current
dump address as the start of the range and the default size associated with
the size of the object as the length of the range. The Dump Real com­
mands have a default range size of one real number. The other Dump
commands have a default size determined by the size of the dialog win­
dow (if you are in window mode), or a default size of 128 bytes other­
wise.

The current dump address is the byte following the last byte specified in
the previous Dump command. If no Dump command has been used during
the session, the dump address is the start of the data segment (DS). For
example, if you enter the Dump Words command with no argument as the
first command of a session, the CodeView debugger displays the first 64
words (128 bytes) of data declared in the data segment. If you repeat the
same command, the debugger displays the next 64 words following the
ones dumped by the first command.

Note

If the value in memory cannot be evaluated as a real number, the
Dump commands that display real numbers (Dump Short Reals,
Dump Long Reals, or Dump 10-Byte Reals) display a number con­
taining one of the following character sequences: #NAN, #INF, or
#IND. NAN (not a number) indicates that the data cannot be
evaluated as a real number. INF (infinity) indicates that the data
evaluates to infinity. IND (indefinite) indicates that the data evalu­
ates to an indefinite number.

The following sections discuss the variations of the Dump commands in
order of the size of data they display.

7-14 The CodeView Debugger

Dump Commands

Dump

Syntax

D [<address> I <range>]

The Dump command displays the contents of memory at the specified
address or in the specified range of addresses. The command dumps data
in the format of the default type. The default type is the last type specified
with a Dump, Enter, Watch Memory, or Tracepoint Memory command. If
none of these commands has been entered during the session, the default
type is bytes.

The Dump command displays one or more lines, depending on the
address or range specified. Each line displays the address of the first item
displayed. The Dump command must be separated by at least one space
from any address or range value. For example, to dump memory starting
at symbol a, use the command D a, not Da. The second syntax would be
interpreted as the Dump ASCII command.

Dump Bytes

Syntax

DB [<address> I <range>]

The Dump Bytes command displays the hexadecimal and ASCII values of
the bytes at the specified address or in the specified range of addresses.
The command displays one or more lines, depending on the address or
range supplied.

Each line displays the address of the first byte in the line, followed by up
to 16 hexadecimal byte values. The byte values are immediately followed
by the corresponding ASCII values. The hexadecimal values are separated
by spaces, except the eighth and ninth values, which are separated by a
dash (-). ASCII values are printed without separation. Unprintable ASCII
values (less than 32 or greater than 126) are displayed as dots. No more
than 16 hexadecimal values are displayed in a line. The command dis­
plays values and characters until the end of the range or, if no range is
given, until the first 128 bytes have been displayed.

Examining Data and Expressions 7-15

Dump Commands

Example

>DB 0 36
3D5E:0000 53 6F 6D 65 20 6C 65 74-74 65 72 73 20 61 6E 64 Some letters and
3D5E:0010 20 6E 75 6D 62 65 72 73-3A 00 10 EA 89 FC FF EF numbers:.......
3D5E:0020 00 F0 00 CA E4 -

The example above displays the byte values from DS:0 to DS:36 (36
decimal is equivalent to 24 hexadecimal). The data segment is assumed if
no segment is given. ASCII characters are shown on the right.

Dump ASCII

Syntax

DA [<address> I <range>]

The Dump ASCII command displays the ASCII characters at a specified
address or in a specified range of addresses. The command displays one
or more lines of characters, depending on the address or range specified.

If no ending address is specified, the command dumps either 128 bytes or
all bytes preceding the first null byte, whichever comes first. Up to 64
characters per line are displayed. Unprintable characters, such as carriage
returns and line feeds, are displayed as dots. ASCII characters less than 32
and greater than 126 in number are unprintable.

Examples

>DA 0
3D7C:0000 Some letters and numbers:
>

The example above displays the ASCII values of the bytes starting at
DS:0. Since no ending address is given, values are displayed up to the first
null byte.

>DA 0 36
3D7C:0000 Some letters and numbers:...........
>

7-16 The CodeView Debugger

Dump Commands

In the example above, an ending address is given, so the characters from
DS:0 to DS:36 (24 hexadecimal) are shown. Unprintable characters are
shown as dots.

Dump Integers

Syntax

DI [<address> I <range>\

The Dump Integers command displays the signed decimal values of the
words (two-byte values) starting at address or in the specified range of
addresses. The command displays one or more lines, depending on the
address or range specified. Each line displays the address of the first
integer in the line, followed by up to eight signed decimal words. The
values are separated by spaces. The command displays values until the
end of the range or until the first 64 two-byte integers have been dis­
played, whichever comes first.

Note

In this manual an integer is considered a two-byte value, since the
CodeView debugger assumes that mteger size.

Example

>DI 0 36
3 D 5 E :0000 28499 25965 27680 29797 25972 29554 24864 25710
3 D 5 E : 0010 28192 28021 25954 29554 58 -5616 -887 -4097
3D5E : 0020 -4096 -13824 2532

The example above displays the byte values from DS: to DS:36 (24 hexa­
decimal). Compare the signed decimal numbers at the end of this dump
with the same values shown as unsigned integers in the following section.

Examining Data and Expressions 7-17

Dump Commands

Dump Unsigned Integers

Syntax

DU [<address> I <range>]

The Dump Unsigned Integers command displays the unsigned decimal
values of the words (two-byte values) starting at address or in the
specified range of addresses. The command displays one or more lines,
depending on the address or range specified. Each line displays the
address of the first unsigned integer in the line, followed by up to eight
decimal words. The values are separated by spaces. The command dis­
plays values until the end of the range or until the first 64 unsigned
integers have been displayed, whichever comes first.

Example

>DU 0 36
3 D 5 E :0000
3 D 5 E :0010
3 D 5 E :0020

28499 25965
28192 28021
61440 51712

27680 29797
25954 29554
2532

25972 29554
58 59920

24864 25710
64649 61439

The example above displays the byte values from DS:0 to DS:36 (24 hexa­
decimal). Compare the unsigned decimal numbers at the end of this dump
with the same values shown as signed integers in the section “ Dump
Integers” in this chapter.

Dump Words

Syntax

DW [<address> I <range>]

The Dump Words command displays the hexadecimal values of the words
(two-byte values) starting at address or in the specified range of
addresses. The command displays one or more lines, depending on the
address or range specified. Each line displays the address of the first word

7-18 The CodeView Debugger

Dump Commands

in the line, followed by up to eight hexadecimal words. The hexadecimal
values are separated by spaces. The command displays values until the
end of the range or until the first 64 words have been displayed, which­
ever comes first.

Example

>DW 0 36
3D5E:0000 6F53 656D 6C20 7465 6574 7372 6120 646E
3D5E:0010 6E20 6D75 6562 7372 003A EA10 FC89 EFFF
3D5E:0020 F000 CA00 09E4
>

The example above displays the word values from DS:0 to DS:36 (24
hexadecimal). No more than eight values per line are displayed.

Dump Double Words

Syntax

DD [<address]> I <range>]

The Dump Double Words command displays the hexadecimal values of
the double words (four-byte values) starting at address or in the specified
range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the first double word in
the line, followed by up to four hexadecimal double-word values. The
words of each double word are separated by a colon. The values are
separated by spaces. The command displays values until the end of the
range or until the first 32 double words have been displayed, whichever
comes first.

Examining Data and Expressions 7-19

Dump Commands

Example

>DD 0 36
3D5E:0000 656D:6F53 7465:6C20 7372:6574 646E:6120
3D5E:0010 6D75:6E20 7372:6562 EA10:003A EFFF:FC89
3D5E:0020 CA00:F000 6F73:09E4
>

The example above displays the double-word values from DS:0 to DS:36
(24 hexadecimal). No more than four double-word values per line are dis­
played.

Dump Short Reals

Syntax

DS [<address> I <range>]

The Dump Short Reals command displays the hexadecimal and decimal
values of the short (four-byte) floating-point numbers at address or in the
specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point num­
ber in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The
hexadecimal values are separated by spaces.

The decimal value has the following form:

[-]<digit>.<digits>E{+ | -<exponent>

If the number is negative, it has a minus sign; positive numbers have no
sign. The first digit of the number is followed by a decimal point. Six
decimal places are shown following the decimal point. The letter E fol­
lows the decimal digits, and marks the start of a three-digit signed
exponent.

The command displays at least one value. If a range is specified, all
values in the range are displayed.

7-20 The CodeView Debugger

Dump Commands

Example

>DS SPI
5E68:0100 DB OF 49 40 3.141593E+000
>

The example above displays the short-real floating-point number at the
address of the variable SPI. Only one value is displayed per line.

Dump Long Reals

Syntax

DL [<address> I <range>]

The Dump Long Reals command displays the hexadecimal and decimal
values of the long (eight-byte) floating-point numbers at the specified
address or in the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point num­
ber in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The
hexadecimal values are separated by spaces.

The decimal value has the following form:

[-]<digit>.<digits>E[+ | -}<exponent>

If the number is negative, it has a minus sign- positive numbers have no
sign. The first digit of the number is followed by a decimal point. Six
decimal places are shown following the decimal point. The letter E fol­
lows the decimal digits, and marks the start of a three-digit signed
exponent.

The command displays at least one value. If a range is specified, all
values in the range are displayed.

Examining Data and Expressions 7-21

Dump Commands

Example

>DL LPI
5 E 6 8 :0200 11 2D 44 54 FB 21 OS 40 3 .141593E+000
>

The example above displays the long-real floating-point number at the
address of the variable LPI. Only one value per line is displayed.

Dump 10-Byte Reals

Syntax

DT [<address> I <range>]

The Dump 10-Byte Reals command displays the hexadecimal and
decimal values of the 10-byte floating-point numbers at the specified
address or in the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point num­
ber in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The
hexadecimal values are separated by spaces.

The decimal value has the following form:

[-]<digit>.<digits>E{+ | - }<exponent>

If the number is negative, it has a minus sign; positive numbers have no
sign. The first digit of the number is followed by a decimal point. Six
decimal places are shown following the decimal point. The letter E fol­
lows the decimal digits, and marks the start of a three-digit signed
exponent.

The command displays at least one value. If a range is specified, all
values in the range are displayed.

7-22 The CodeView Debugger

Dump Commands

Example

>DT TPI
5 E 6 8 :0300 DE 87 68 21 A2 DA OF C9 00 40 3 .141593E + 000

The example above displays the 10-byte floating-point number at the
address of the variable TPI. Only one number per line is displayed.

Examining Data and Expressions 7-23

Compare Memory Command

Compare Memory Command
The Compare Memory command provides a convenient way for compar­
ing two blocks of memory, specified by absolute addresses. This com­
mand is primarily of interest to programmers using assembly mode; how­
ever, it can be useful to anyone who wants to compare efficiently two
large areas of data, such as arrays.

Keyboard

The Compare Memory command cannot be executed with a keyboard
command.

Dialog

To compare two blocks of memory, enter a command line with the fol­
lowing syntax:

C <rangel start> <rangelend> <rangel star t> <address>

The bytes in the memory locations specified by range are compared with
the corresponding bytes in the memory locations beginning at address. If
one or more pairs of corresponding bytes do not match, each pair of
mismatched bytes is displayed.

Examples

>C 100 01 FF 300 ;* hexadecimal radix assumed
39BB:0102 0A 00 39BB:0302
39BB:0108 0A 01 39BB:0308
>

The first example (in which hexadecimal is assumed to be the default
radix) compares the block of memory from 100 to IFF with the block of
memory from 300 to 3FF. It indicates that the third and ninth bytes differ
in the two areas of memory.

>C arrl[0] L 100 arr2[0] ;* C not a t i o n used.

7-24 The Codeview Debugger

Compare Memory Command

The example compares the 100 bytes starting at the address of arrl[0],
with the 100 bytes starting at address of arr2[0]. The CodeView
debugger produces no output in response, so this indicates that the first
100 bytes of each array are identical.

Note

You can enter the Compare Memory command using any radix you
like; however, any output is still in hexadecimal format.

Examining Data and Expressions 7-25

Search Memory Command

Search Memory Command
The Search Memory command (not to be confused with the Search com­
mand discussed in Section 11.6) scans a specified area of memory, look­
ing for specific byte values. It is primarily of interest to programmers
using assembly mode, and to users who want to test for the presence of
specific values within a range of data.

Keyboard

The Search Memory command cannot be executed with a keyboard com­
mand.

Dialog

To search a block of memory, enter the Search Memory command with
the following syntax:

S <range> <list>

The debugger searches the specified range of memory locations for the
byte values specified in the list. If bytes with the specified values are
found, then the debugger displays the addresses of each occurrence of
bytes in the list.

The list can have any number of bytes. Each byte value must be separated
by a space or comma, unless the list is an ASCII string. If the list contains
more than one byte, then the Search Memory command looks for a series
of bytes that precisely match the order and value of bytes in list. If found,
then the beginning address of each such series is displayed.

Examples

>S buffer L 1500 "error"
2BBA:0404
2BBA:05E3
2BBA:0604
>

The first example displays the address of each memory location contain­
ing the string error. The command searches the first 1500 bytes at the

7-26 The CodeView Debugger

Search Memory Command

address specified by buffer. The string was found at the three addresses
displayed by the CodeView debugger.

>S DS:100 200 OA ;* hexadecimal radix assumed
3CBA:0132
3CBA:01C2
>

The second example displays the address of each memory location that
contains the byte value OA in the range DS:0100 to DS:0200 (hexadec­
imal). The value was found at two addresses.

Examining Data and Expressions 7-27

Register Command

Register Command
The Register command has two functions. It displays the contents of the
central processing unit (CPU) registers. It can also change the values of
the registers. The display features of the Register command are explained
here. The modification features of the command are explained in Chapter
11, “ Modifying Code or Data.”

The flag register display colors are significant; if a flag bit is set, the two-
letter code for that condition is displayed as BRIGHT (for monochromatic
monitors) or RED (for color monitors). If the flag is clear, the two-letter
code for that cleared flag is displayed as NORMAL_INTENSITY (for
monochromatic monitors) or CYAN (for color monitors).

Keyboard

To display the registers using a keyboard command in window mode,
press the F2 key. The register window appears on the right side of the
screen. If the register window is already on the screen, the same com­
mand removes it.

In sequential mode, the F2 key displays the current status of the registers.
(This produces the same effect as entering the Register dialog command
with no argument.)

Dialog

To display the registers in the dialog window (or sequentially in sequen­
tial mode), enter a command line with the following syntax:

R

The current values of all registers and flags are displayed. The instruction
at the address pointed to by the current CS and IP register values is also
shown. (The Register command can also be given with arguments, but
only when used to modify registers, as explained in Chapter 11, “ Modify­
ing Code or Data.”)

If the display mode is source (S+) or mixed (S&) (see “ Set Mode Com­
mand” in Chapter 10 for more information), the current source line is
also displayed by the Register command. If an operand of the instruction
contains memory expressions or immediate data, the CodeView debugger
evaluates operands and show the value to the right of the instruction. This

7-28 The CodeView Debugger

Register Command

value is referred to as the “ effective address,” and is also displayed at the
bottom of the register window. If the CS and IP registers are currently at a
breakpoint location, the register display indicates the breakpoint number.

In sequential mode, the Trace (T), Program Step (P), and Go (G) com­
mands show registers in the same format as the Register command.

Examples

>s&
m i x e d
>R
AX= 0 0 0 5 BX=2 99E
DS=5067 ES=5067
35:
4 6 8 4 :014F 8B5E06

CX= 0 0 0 0 D X =0000 SP=3800 B P = 3 8 0 E SI=0070 DI=40D1
SS=5067 CS=4684 IP=014F N V UP EI PL NZ N A PO NC

VARI A N = (N*SUMXSQ-SUMX* * 2) / (N-I)
M O V B X , W o r d Ptr [BP+06] ;BR1 SS:38 1 4 = 2 9 9 E

The example above displays all register and flag values, as well as the
instruction at the address pointed to by the CS and IP registers. Because
the mode has been set to mixed (S&), the current source line is also
shown. The example is from a FORTRAN program, but applies equally
well to BASIC and C programs.

>s-
a s sembly
>R
AX= 0 0 0 5 BX=299E
DS=5067 ES=5067
4 6 8 4 :014F 8B5E06

C X =0000 DX= 0 0 0 0 SP=3800 BP= 3 8 0 E S I=0070 DI=40D1
SS=5067 CS=4684 IP=014F N V UP EI PL NZ N A PO NC

M O V B X , W o r d Ptr [BP+06] ;BR1 S S : 3 8 1 4 = 2 9 9 E

In the example above, the display mode is set to assembly (S-), so no
source line is shown. Note the breakpoint number at the right of the last
line, indicating that the current address is at Breakpoint 1.

Examining Data and Expressions 7-29

8087 Command

8087 Command
The 8087 command dumps the contents of the 8087 registers. If you do
not have an 8087, 80287, or 80387 coprocessor chip on your system, then
this command dumps the contents of the pseudoregisters created by the
operating system’s floating point emulator.

Note

This section does not attempt to explain how the registers of the
Intel 8087, 80287, and 80387 processors are organized or how they
work. In order to interpret the command output, you must learn
about the chip from an Intel reference manual or other book on the
subject. Since emulator routines mimic the behavior of the 8087
coprocessor, these references apply to emulator routines as well as
to the chips themselves.

Keyboard

The 8087 command cannot be executed with a keyboard command.

Dialog

To display the status of the math co-processor chip (or floating-point emu­
lator routines) with a dialog command, enter a command line with the fol­
lowing syntax:

7

The current status of the chip is displayed when you enter the command.
In window mode, the output is to the dialog window.

The following example shows a display for this command.

7-30 The Codeview Debugger

8087 Command

8087 Example

>7
Control 037F

Status 6004
Tag A1FF
Stack
ST (3) special
ST(2) special
ST (1) valid
ST (0) zero

(Projective closure, R o u n d nearest, 64-bit precision)
iem=0 pm=l um=l om=l zm=l dm=l im=l

cond=1000 top=4 pe=0 ue=0 oe=0 ze=l de=0 ie=0
i n s t r u c t i o n = 5 9 3 8 0 o p e r a n d = 5 9 3 6 0 op c o d e = D 9 E E
Exp M a n t i s s a Value
7FFF 80000 0 0 0 0 0 0 0 0 0 0 0 = + Infinity
7FFF 01010101 0 1 0 1 0 1 0 1 = + Not a Num b e r
4000 C 9 0 F D A A 2 2 1 6 8 C 2 3 5 = + 3 .1 4 1 5 9 2 2 6 5 1 1 0 3 9 0 E + 0 0 0
0000 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E + 0 0 0

In the example above, the first line of the dump shows the current closure
method, rounding method, and the precision. The number 037F is the
hexadecimal value in the control register. The rest of the line interprets
the bits of the number. The closure method can be either projective (as in
the example) or affine. The rounding method can be either rounding to the
nearest even number (as in the example), rounding down, rounding up, or
using the chop method of rounding (truncating toward zero). The preci­
sion may be 64 bits (as in the example), 53 bits, or 24 bits.

The second line of the display indicates whether each exception mask bit
is set or cleared. The masks are interrupt-enable mask (iem), precision
mask (pm), underflow mask (urn), overflow mask (om), zero-divide mask
(zm), denormalized-operand mask (dm), and invalid-operation mask
(im).

The third line of the display shows the hexadecimal value of the status
register (6004 in the example), and then interprets the bits of the register.
The condition code (cond) in the example is the binary number 1000. The
top of the stack (top) is register 4 (shown in decimal). The other bits
shown are precision exception (pe), underflow exception (ue), overflow
exception (oe), zero-divide exception (ze), denormalized-operand excep­
tion (de), and invalid-operation exception (ie).

The fourth line of the display first shows the hexadecimal value of the tag
register (A1FF in the example). It then gives the hexadecimal values of
the instruction (59380), the operand (59360), and the operation code, or
opcode, (D9EE).

Examining Data and Expressions 7-31

8087 Command

The fifth line is a heading for the subsequent lines, which contain the con­
tents of each 8087, 80287, or 80387 stack register. The registers in the
example contain four types of numbers that may be held in these regis­
ters. Starting from the bottom, register 0 contains zero. Register 1 con­
tains a valid real number. Its exponent (in hexadecimal) is 4000 and its
mantissa is C90FDAA22168C235. The number is shown in scientific
notation in the rightmost column. Register 2 contains a value that cannot
be interpreted as a number, and register 3 contains infinity.

7-32 The CodeView Debugger

Chapter 8

Managing Breakpoints

Introduction 8-1

Breakpoint Set Command 8-2

Breakpoint Clear Command 8-5

Breakpoint Disable Command 8-7

Breakpoint Enable Command 8-9

Breakpoint List Command 8-10

Introduction

Introduction
The CodeView debugger enables you to control program execution by
setting breakpoints. A breakpoint is an address that stops program execu­
tion each time the address is encountered. By setting breakpoints at key
addresses in your program, you can “ freeze” program execution and
examine the status of memory or expressions at that point.

The commands listed below control breakpoints:

Command Action

Breakpoint Set (BP) Sets a breakpoint and, optionally, a
pass count and break commands

Breakpoint Clear (BC) Clears one or more breakpoints

Breakpoint Disable (BD) Disables one or more breakpoints

Breakpoint Enable (BE) Enables one or more breakpoints

Breakpoint List (BL) Lists all breakpoints

In addition to these commands, the Watchpoint (WP) and Tracepoint (TP)
commands can be used to set conditional breakpoints (see Chapter 10,
“ Examining Code,” for information on these two commands).

Managing Breakpoints 8-1

Breakpoint Set Command

Breakpoint Set Command
The Breakpoint Set command (BP) creates a breakpoint at a specified
address. Any time a breakpoint is encountered during program execution,
the program halts and waits for a new command.

The CodeView debugger allows up to 20 breakpoints (0 through 19). Each
new breakpoint is assigned to the next available number. Breakpoints
remain in memory until you delete them or until you quit the debugger.
They are not canceled when you restart the program. Because breakpoints
are not automatically canceled, you are able to set up a complicated
series of breakpoints, then execute through the program several times
without resetting.

If you try to set a breakpoint at a comment line or other source line that
does not correspond to code, the CodeView debugger displays the follow­
ing message:

No code at this line number

Keyboard

To set a breakpoint with a keyboard command in window mode, move the
cursor to the source line or instruction where you want to set a breakpoint.
You may have to press the F6 key to move the cursor to the display win­
dow. When the cursor is on the appropriate source line, press the F9 key.
The line is displayed in high-intensity text, and remains so until you
remove or disable the breakpoint.

In sequential mode, the F9 key can be used to set a breakpoint at the
current location. You must use the dialog version of the command to set a
breakpoint at any other location.

Dialog

To set a breakpoint using a dialog command, enter a command line with
the following syntax:

BP [<address> [<passcount>] [<commands>]]

If no address is given, a breakpoint is created on the current source line in
source mode, or on the current instruction in assembly mode. You can

8-2 The Codeview Debugger

Breakpoint Set Command

specify the address in the segment'.offset format or as a source line, a rou­
tine name, or a label. If you give an offset address, the code segment is
assumed.

The dialog version of the command is more powerful than the mouse or
keyboard version in that it allows you to give a passcount and a string of
commands. The passcount specifies the first time the breakpoint is to be
taken. For example, if the pass count is 5, the breakpoint is ignored the
first four times it is encountered, and taken the fifth time. Thereafter, the
breakpoint is always taken.

The commands are a list of dialog commands enclosed in quotation marks
(" ") and separated by semicolons (;). For example, if you specify the
commands as ?code;T" ", the CodeView debugger automatically displays
the value of the variable code and then execute the Trace command each
time the breakpoint is encountered. The Trace and Display Expression
commands are described in Chapter 6, “ Executing Code,” and Chapter 7,
“ Examining Data and Expressions,” respectively.

In window mode, a breakpoint entered with a dialog command has
exactly the same effect as one created with a window command. The
source line or instruction corresponding to the breakpoint location is
shown in high-intensity text.

In sequential mode, information about the current instruction is displayed
each time you execute to a breakpoint. The register values, the current
instruction, and the source line may be shown, depending on the display
mode. See Chapter 10, “ Examining Code,” for more information about
display modes.

When a breakpoint address is shown in the assembly-language format, the
breakpoint number is shown as a comment to the right of the instruction.
This comment appears even if the breakpoint is disabled (but not if it is
deleted).

Examples

>BP .19 10
>

The example above creates a breakpoint at line 19 of the current source
file (or if there is no executable statement at line 19, at the first execut­
able statement after line 19). The breakpoint is passed over nine times
before being taken on the 10th pass.

Managing Breakpoints 8-3

Breakpoint Set Command

>BP STATS 10 " ?COUNTER = COUNTER + 1;G"
>

The example above creates a breakpoint at the address of the routine
STATS. The breakpoint is passed over nine times before being taken on
the 10th pass. Each time execution stops for the breakpoint, the quoted
commands are executed. The Display Expression command increments
COUNTER, then the Go command restarts execution. If COUNTER is set to
0 when the breakpoint is set, this has the effect of counting the number of
times the breakpoint is taken.

>S- ; * fortran example - uses FORTRAN hexadecimal notation
assembly
>BP#0a94
>G
AX=0006 BX=304A CX=000B DX=465D SP=3050 BP=3050 SI=00BB DI=40D1
DS=5064 ES=5064 SS=5064 CS=46A2 IP=0A94 NV UP EI PL NZ NA PE NC
46A2:0A94 7205 JB __ chkstk+13 (0A9B) ;BR1

The example above first sets the mode to assembly, and then creates a
breakpoint at the hexadecimal (offset) address #0A94 in the default (CS)
segment. (The same address would be specified as 0x0A94 with the C-
expression evaluator, and as &H0A9 with the BASIC-expression evalua­
tor.) The Go command (G) is then used to execute to the breakpoint. Note
that in the output to the Go command, the breakpoint number is shown as
an assembly-language comment (;BR1) to the right of the current instruc­
tion. The Go command displays this output only in sequential mode; in
window mode no assembly-language information appears.

8-4 The Codeview Debugger

Breakpoint Clear Command

Breakpoint Clear Command
The Breakpoint Clear command (BC) permanently removes one or more
previously set breakpoints.

Keyboard

To clear a single breakpoint with a keyboard command, move the cursor
to the breakpoint line or instruction you want to clear. Breakpoint lines
are shown in high-intensity text. Press the F9 key. The line is shown in
normal text to indicate that the breakpoint has been removed.

To remove all breakpoints using a keyboard command, press <ALT>r to
open the Run menu, and then press <ALT>c to select Clear Breakpoints.

Dialog

To clear breakpoints using a dialog command, enter a command line with
the following syntax:

BC <!ist>
BC *

If list is specified, the command removes the breakpoints named in the
list. The list can be any combination of integer values from 0 to 19. You
can use the Breakpoint List command (BL) if you need to see the numbers
for each existing breakpoint. If an asterisk (*) is given as the argument,
all breakpoints are removed.

Managing Breakpoints 8-5

Breakpoint Clear Command

Examples

>BC 0
>

The example

>BC *
>

The example

4 8

above removes breakpoints 0,4, and 8.

above removes all breakpoints.

8-6 The Codeview Debugger

Breakpoint Disable Command

Breakpoint Disable Command
The Breakpoint Disable command (BD) temporarily disables one or more
existing breakpoints. The breakpoints are not deleted. They can be
restored at any time using the Breakpoint Enable command (BE).

When a breakpoint is disabled in window mode, it is shown in the display
window with normal text; when enabled, it is shown in high-intensity
text.

Note

All disabled breakpoints are automatically enabled whenever you
restart the program being debugged. The program can be restarted
with the Start or Restart selection from the Run menu, or with the
Restart dialog command (L). See Chapter 6, “ Executing Code.”

Keyboard

The Breakpoint Disable command cannot be executed with a keyboard
command.

Dialog

To disable breakpoints with a dialog command, enter a command line
with the following syntax:

BD <list>
BD *

If list is specified, the command disables the breakpoints named in the
list. The list can be any combination of integer values from 0 to 19. Use
the Breakpoint List command (BL) if you need to see the numbers for
each existing breakpoint. If an asterisk (*) is given as the argument, all
breakpoints are disabled.

The window commands for setting and clearing breakpoints can also be
used to enable or clear disabled breakpoints.

Managing Breakpoints 8-7

Breakpoint Disable Command

Examples

>BD 0 4 8
>

The example above disables breakpoints 0,4, and 8.

>BD *
>

The example above disables all breakpoints.

8-8 The CodeView Debugger

Breakpoint Enable Command

Breakpoint Enable Command
The Breakpoint Enable command (BE) enables breakpoints that have
been temporarily disabled with the Breakpoint Disable command.

Keyboard

To enable a disabled breakpoint using a keyboard command, move the
cursor to the source line or instruction of the breakpoint, and then press
the F9 key. The line is displayed in high-intensity text, and remains so
until you remove or disable the breakpoint. This is the same as creating a
new breakpoint at that location.

Dialog

To enable breakpoints using a dialog command, enter a command line
with the following syntax:

BE <list>
BE *

If list is specified, the command enables the breakpoints named in the list.
The list can be any combination of integer values from 0 to 19. Use the
Breakpoint List command (BL) if you need to see the numbers for each
existing breakpoint. If an asterisk (*) is given as the argument, all break­
points are enabled. The CodeView debugger ignores all or part of the
command if you try to enable a breakpoint that is not disabled.

Examples

> BE 0 4 8
>

The example above enables breakpoints 0,4, and 8.

> B E *
>

The example above enables all disabled breakpoints.

Managing Breakpoints 9

Breakpoint List Command

Breakpoint List Command
The Breakpoint List command (BL) lists current information about all
breakpoints.

Keyboard

The Breakpoint List command cannot be executed with a keyboard com­
mand.

Dialog

To list breakpoints with a dialog command, enter a command line with
the following syntax:

BL

The command displays the breakpoint number, the enabled status (e for
“ enabled’ ’, d for “ disabled’ ’), the address, the routine, and the line num­
ber. If the breakpoint does not fall on a line number, an offset is shown
from the nearest previous line number. The pass count and break com­
mands are shown if they have been set. If no breakpoints are currently
defined, nothing is displayed.

Example

>BL
0 e 56C4:0105
1 d 56C4:01IE
2 e 56C4:00FD

ARCTAN:10
'ARCTAN: 19
'ARCTAN: 9 + 6

(pass = 10) "T;T"

In the example above, breakpoint 0 is enabled at address 56C4:0105. This
address is in routine ARCTAN and is at line 10 of the current source file.
No pass count or break commands have been set.

8-10 The CodeView Debugger

Breakpoint List Command

Breakpoint 1 is currently disabled, as indicated by the d after the break­
point number. It also has a pass count of 10, meaning that the breakpoint
is not taken until the 10th time it is encountered. The command string at
the end of the line indicates that each time the breakpoint is taken, the
Trace command is automatically executed twice.

The line number for breakpoint 2 has an offset. The address is six bytes
beyond the address for line 9 in the current source file. Therefore, the
breakpoint was probably set in assembly mode, since it would be difficult
to set a breakpoint anywhere except on a source line in source mode.

Managing Breakpoints 8-11

Chapter 9

Managing Watch Statements

Introduction 9-1

Setting Watch-Expression and Watch-Memory Statements 9-3

Setting Watchpoints 9-7

Setting Tracepoints 9-10

Deleting Watch Statements 9-15

Listing Watchpoints and Tracepoints 9-17

Assembly Examples 9-19

Introduction

Introduction
Watch Statement commands are among the CodeView debugger’s most
powerful features. They enable you to set, delete, and list watch state­
ments. Watch statements describe expressions or areas of memory to
watch. Some watch statements specify conditional breakpoints, which
depend upon the value of the expression or memory area. The Watch
Statement commands are summarized below:

Command Action

Watch (W) Sets an expression or range of memory to be
watched

Watchpoint (WP) Sets a conditional breakpoint that is taken
when the expression becomes nonzero (true)

Tracepoint (TP) Sets a conditional breakpoint that is taken
when a given expression or range of mem­
ory changes

Watch Delete (Y) Deletes one or more watch statements

Watch List (W) Lists current watch statements

Watch statements, like breakpoints, remain in memory until you specifi­
cally remove them or quit the CodeView debugger. They are not canceled
when you restart the program being debugged. Therefore, you can set a
complicated series of watch statements once, and then execute through
the program several times without resetting.

In window mode, Watch Statement commands can be entered either in
the dialog window or with menu selections. Current watch statements are
shown in a watch window that appears between the menu bar and the
source window.

In sequential mode, the Watch, Tracepoint, and Watchpoint commands
can be used, but since there is no watch window, you cannot see the
watch statements and their values. You must use the Watch List command
to examine the current watch statements.

Managing Watch Statements 9-1

Introduction

Note

In order to set a watch statement containing a local variable, you
must be in the function where the variable is defined. If the current
line is not in the function, the CodeView debugger displays the mes­
sage UNKNOWN SYMBOL. When you exit from a function contain­
ing a local variable referenced in a watch statement, the value of the
statement is displayed as UNKNOWN SYMBOL. When you reenter
the function, the local variable again has a value. With the C
expression evaluators, you can avoid this limitation by using the pe­
riod operator to specify both the function and the variable. For
example, enter main.x instead of just x.

9-2 The Codeview Debugger

Setting Watch-Expression and Watch-Memory Statements

Setting Watch-Expression and
Watch-Memory Statements
The Watch command is used to set a watch statement that specifies an
expression (watch-expression statement) or a range of addresses in mem­
ory (watch-memory statement). The value or values specified by this
watch statement are shown in the watch window. The watch window is
updated to show new values each time the value of the watch statement
changes during program execution. Since the watch window does not
exist in sequential mode, you must use the Watch List command to exam­
ine the values of watch statements.

When setting a watch expression, you can specify the format in which the
value is displayed. Type the expression followed by a comma and a for­
mat specifier. If you do not give a format specifier, the CodeView
debugger displays the value in a default format. See “ Display Expression
Command” in Chapter 7 for more information about type specifiers and
the default format.

Keyboard

To set a watch-expression statement with a keyboard command, press
<ALT>w to open the Watch menu, and then type A (uppercase or lower­
case) to select Add Watch. You can also select the Add Watch command
directly by pressing <CTL>w. A dialog box appears, asking for the
expression to be watched. Type the expression and press the <RETURN>
key.

You cannot use the keyboard version of the command to specify a range
of memory to be watched, as you can with the dialog version.

Dialog

To set a watch-expression statement or watch-memory statement with a
dialog command, enter a command line with the following syntax:

W? <expression>[,<format>] Watch expression
W[<rype>] <range> Watch memory

Managing Watch Statements 9-3

Setting Watch-Expression and Watch-Memory Statements

An expression used with the Watch command can be either a simple vari­
able or a complex expression using several variables and operators. The
expression should be no longer than the width of the watch window. The
characters permitted for format correspond to format arguments used in a
C printf function call. See “ Display Expression Command” in Chapter 7
for more information on format arguments.

When watching a memory location, type is a one-letter size specifier from
the following list:

Specifier Size

None Default type

B Byte

A ASCII

I Integer (signed decimal word)

U Unsigned (unsigned decimal word)

W Word

D Double word

S Short real

L Long real

T 10-byte real

If no type size is specified, the default type used is the last type used by a
Dump, Enter, Watch Memory, or Tracepoint Memory command. If none
of these commands has been used during the session, the default type is
byte.

The data is displayed in a format similar to that used by the Dump com­
mands (see “ Display Expression Command” in Chapter 7 for more infor­
mation on format arguments). The range can be any length, but only one
line of data is displayed in the watch window. If you do not specify an
ending address for the range, the default range is one object.

9-4 The CodeView Debugger

Setting Watch-Expression and Watch-Memory Statements

Examples

The following three examples display watch statements in the watch win­
dow.

W? n

The example above displays the current value of the variable n.

W? higher * 100

The example above displays the value of the expression higher * 100.

WL chance

The example above displays the double-precision floating-point chance,
first showing exactly how it is stored in memory. (The command W?
chance would display the value of chance but not any actual bytes of
memory.)

These commands, entered while debugging a C program, produce the
watch window in the following figure.

File View Search Run Watch Options Language Calls Help I F8=Trace F5=Go
I dice.C I

0) n : 4
1) higher * 100 : 33.33333333333333
2) chance : 5958:115A 55 55 55 55 55 55 B5 3F + 8 .333333333333E-002
3) higher > chance : 1
4) n==7 || n==ll : 0
5) sum : 0.00000000000000
6) 5958:1172 04 .

30: sum = sum + roll(n);
31: else {
3 2 : chance = roll(n);
3 3 :_______________________higher = make (n)_____
34: suit = sum + (chance * higher) :
35: printf("%s %2d ", strl, n) ;

>W? n
>W? higher * 100
>WL chance
>WP? higher > chance
>WP? n==7 || n==ll
>TP? sum
>TPB n

The first three items in the watch window are simple watch statements.
They display values but never cause execution to break.

Managing Watch Statements 9-5

Setting Watch-Expression and Watch-Memory Statements

The next two items are watchpoints; they cause execution to break when­
ever they evaluate to true (nonzero). The fourth item breaks execution
whenever higher is greater than chance, and the fifth item breaks execu­
tion whenever n is equal to 7 or 11. Setting watchpoints is described in
detail later in this chapter.

The last two items are tracepoints, which cause execution to break when­
ever any bytes change within a specified area of memory. The sixth item
breaks execution whenever the value of sum changes; the seventh item
breaks execution whenever there is a change in the first byte at the
address of n. Setting tracepoints is described in detail later in this
chapter.

9-6 The CodeView Debugger

Setting Watchpoints

Setting Watchpoints
The Watchpoint command is used to set a conditional breakpoint called a
watchpoint. A watchpoint breaks program execution when the expression
described by its watch statement becomes true. You can think of watch­
points as “ break when” points, since the break occurs when the specified
expression becomes true (nonzero).

A watch statement created by the Watchpoint command describes the
expression that is watched and compared to 0. The statement remains in
memory until you delete it or quit the CodeView debugger. Any valid
CodeView expression can be used as the watchpoint expression as long as
the expression is not wider than the watch window.

In window mode, watchpoint statements and their values are displayed in
high-intensity text in the watch window. In sequential mode, there is no
watch window, so the values of watchpoint statements can only be dis­
played with the Watch List command (see the section “ Listing Watch­
points and Tracepoints ’ ’ for more information).

Although watchpoints can be any valid CodeView expression, the com­
mand works best with expressions that use the relational operators (such
as < and > for C. Relational expressions always evaluate to false (zero) or
true (nonzero). Care must be taken with other kinds of expressions when
used as watchpoints, because the watchpoints breaks execution whenever
they do not equal precisely zero. For example, your program might use a
loop variable I, which ranges from 1 to 100. If you entered I as a watch -
pcint, then it would always suspend program execution, since I is never
equal to 0. However, the relational expression I>90 (or I.GT.90) would
not suspend program execution until I exceeded 90.

Keyboard

To execute the Watchpoint command with a keyboard command, press
<ALT>w to open the Watch menu, and then press <ALT>w to select
Watchpoint. A dialog box appears, asking for the expression to be
watched. Type the expression and press the <RETURN> key.

Managing Watch Statements 9-7

Setting Watchpoints

Dialog

To set a watchpoint using a dialog command, enter a command line with
the following syntax:

WP? <expression>[,<format>]

The expression can be any valid CodeView expression (usually a rela­
tional expression). You can enter a format specifier, but there is little rea­
son to do so, since the expression value is normally either 1 or 0.

Examples

The following dialog commands display two watch statements (watch-
points) in the watch window:

WP? higher > chance ;* C example

The examples above instruct the CodeView debugger to break execution
when the variable higher is greater than the variable chance. After set­
ting this watchpoint, you could use the Go command to execute until the
condition becomes true.

WP? n==7 | | n==ll ;* C exaitple

The example above instructs the CodeView debugger to break execution
when the variable n is equal to 7 or 11.

Note

C displays a numerical result in response to a Boolean expression (0
being equivalent to false, nonzero to true).

9-8 The Codeview Debugger

Setting Watchpoints

Note

Setting watchpoints significantly slows execution of the program
being debugged. The CodeView debugger checks if the expression
is true each time a source line is executed in source mode, or each
time an instruction is executed in assembly mode. Be careful when
setting watchpoints near large or nested loops. A loop that executes
almost instantly when run normally can take many minutes if exe­
cuted from within the debugger with several watchpoints set.

Tracepoints do not slow CodeView execution as much as watch­
points, so you should use tracepoints when possible. For example,
although you can set a watchpoint on a Boolean variable (WP? mov­
ing), a on the same variable (TP? moving) has essentially the same
effect and does not slow execution as much.

If you enter a seemingly endless loop, press to exit. You
soon learn the size of loop you can safely execute when watchpoints
are set.

Managing Watch Statements 9-9

Setting Tracepoints

Setting Tracepoints
The Tracepoint command is used to set a conditional breakpoint called a
tracepoint. A tracepoint breaks program execution when the value of a
specified expression or range of memory changes.

The watch statement created by the Tracepoint command describes the
expression or memory range to be watched and tested for change. The
statement remains in memory until you delete it or quit the CodeView
debugger.

In window mode, tracepoint statements and their values are shown in
high-intensity text in the watch window. In sequential mode, there is no
watch window, so the values of tracepoint statements can only be dis­
played with the Watch List command (see the section “ Listing Watch-
points and Tracepoints” in this chapter for more information).

An expression used with the Tracepoint command must evaluate to an
“ lvalue.” In other words, the expression must refer to an area of memory
rather than a constant. Furthermore, the area of memory must be not more
than 128 bytes in size. For example, i==10 would be invalid because it is
either 1 (true) or 0 (false) rather than a value stored in memory. The
expression syml+sym2 is invalid because it is the calculated sum of the
value of two memory locations. The expression buffer would be invalid if
buffer is an array of 130 bytes, but valid if the array is 120 bytes. Note
that if buffer is declared as an array of 64 bytes, then the Tracepoint com­
mand given with the expression buffer checks all 64 bytes of the array.
The same command given with the C expression buffer[32], means that
only one byte (the 33rd) is checked.

9-10 The CodeView Debugger

Setting Tracepoints

Note

Register variables are not considered lvalues. Therefore, if i is
declared as reg ister in t i , the command TP? i is invalid. However,
you can still check for changes in the value of i. Use the Examine
Symbols command to learn which register contains the value of i.
Then learn the value of i. Finally, set up a watchpoint to test the
value. For example, use the following sequence of commands:

>X?i
3A79:0264 int div()

SI int i
>?i
10
>WP? @SI!=10
>

When setting a tracepoint expression, you can specify the format in which
the value is displayed. Type the expression followed by a comma and a
type specifier. If you do not give a type specifier, the CodeView debugger
displays the value in a default format. See “ Display Expression Com­
mand” in Chapter 7 for more information about type specifiers and the
default format.

Keyboard

To set a tracepoint-expression statement with a keyboard command, press
<ALT>w to open the Watch menu, and then press <ALT>t to select Trace
point. A dialog box appears, asking for the expression to be watched.
Type the expression and press the <RETURN> key.

You cannot use the keyboard version of the command to specify a range
of memory to be watched, as you can with the dialog version.

Managing Watch Statements 9-11

Setting Tracepoints

Dialog

To set a tracepoint with a dialog command, enter a command line with
one of the following forms of syntax:

TP? <expression>,[<format>] @Tracepoint expression
TP[<type>] <range> @Tracepoint memory

An expression used with the Tracepoint command can be either a simple
variable or a complex expression using several variables and operators.
The expression should not be longer than the width of the watch window.
You can specify format using a C printf type specifier if you do not want
the value to be displayed in the default format (decimal for integers or
floating point for real numbers). See “ Display Expression Command” in
Chapter 7 for more information on format arguments.

In the memory-tracepoint form, range must be a valid address range and
type must be a one-letter memory-size specifier. If you specify only the
start of the range, the CodeView debugger displays one object as the
default.

Although no more than one line of data is displayed in the watch window,
the range to be checked for change can be any size up to 128 bytes. The
data is displayed in the format used by the Dump commands (see “ Dis­
play Expression Command,’ ’ in Chapter 7 for more information on format
arguments). The valid memory-size specifiers are listed below:

Specifier Size

None Default type

B Byte

A ASCII

I Integer (signed decimal word)

U Unsigned (unsigned decimal word)

W Word

D Double word

S Short real

9-12 The CodeView Debugger

Setting Tracepoints

L Long real

T 10-byte real

The default type used if no type size is specified is the last type used by a
Dump, Enter, Watch Memory, or Tracepoint Memory command. If none
of these commands has been used during the session, the default type is
byte.

Examples

The two dialog commands below display watch statements (tracepoints)
in the watch window.

TP? sum

The example above instructs the CodeView debugger to suspend program
execution whenever the value of the variable sum changes.

TPB n

The example above instructs the CodeView debugger to suspend program
execution whenever the first byte at the address of n changes; the address
of this byte and its contents are displayed. The value of n may change
because of a change in the second byte at the address of n; but that change
(by itself) would have no effect on this tracepoint.

Managing Watch Statements 9-13

Setting Tracepoints

Note

Setting tracepoints significantly slows execution of the program
being debugged. The CodeView debugger has to check to see if the
expression or memory range has changed each time a source line is
executed in source mode or each time an instruction is executed in
assembly mode. However, tracepoints do not slow execution as
much as do watchpoints.

Be careful when setting tracepoints near large or nested loops. A
loop that executes almost instantly when run from the operating sys­
tem can take many minutes if executed from within die debugger
with several tracepoints set. If you enter a seemingly endless loop,
press to exit. Often you can tell how far you went in the loop
by the value of the tracepoint when you exited.

9-14 The CodeView Debugger

Deleting Watch Statements

Deleting Watch Statements
The Watch Delete command enables you to delete watch statements that
were set previously with the Watch, Watchpoint, or Tracepoint command.

When you delete a watch statement in window mode, the statement disap­
pears and the watch window closes around it. For example, if there are
three watch statements in the window and you delete statement 1, the
window is redrawn with one less line. Statement 0 remains unchanged,
but statement 2 becomes statement 1. If there is only one statement, the
window disappears.

Keyboard

To execute the Delete Watch command with a keyboard command, press
<ALT>w to open the Watch menu, and then type D (uppercase or lower­
case) to select Delete Watch. You can also select the Delete Watch com­
mand directly by pressing <CTL>u. A dialog box appears, containing all
the watch statements. Use the UP and DOWN arrow keys to move the cur­
sor to the statement you want to delete, and then press the <RETURN>
key. The dialog box disappears, and the watch window is redrawn without
the watch statement.

You can also delete all the statements in the watch window at once, sim­
ply by selecting the Delete All selection. Do this by pressing L (uppper-
case or lowercase) after the Watch menu is open.

Dialog

To delete watch statements with a dialog command, enter a command line
with the following syntax:

Y <number>

When you set a watch statement, it is automatically assigned a number
(starting with 0). In window mode, the number appears to the left of the
watch statement in the watch window. In sequential mode, you can use
the Watch List (W) command to view the numbers of current watch state­
ments.

You can delete existing watch statements by specifying the number of the
statement you want to delete with the Delete Watch command. (The Y is
a mnemonic for “ yank.”)

Managing Watch Statements 9-15

Deleting Watch Statements

You can use the asterisk (*) to represent all watch statements.

Examples

>Y 2
>

The command above deletes watch statement 2.

>Y *
>

The command above deletes all watch statements and closes the watch
window.

9-16 The CodeView Debugger

Listing Watchpoints and Tracepoints

Listing Watchpoints and Tracepoints
The Watch List command lists all previously set watchpoints and with
their assigned numbers and their current values.

This command is the only way to examine current watch statements in
sequential mode. The command has little use in window mode, since
watch statements are already visible in the watch window.

Keyboard

The Watch List command cannot be executed with a keyboard command.

Dialog

To list watch statements with a dialog command, enter a command line
with the following syntax:

W

The display is the same as the display that appears in the watch window
in window mode.

Example

>w
0) code,c : I
1) (float)letters/words,f : 4.777778
2) 3F65:0B20 20 20 43 4F 55 4E 54 COUNT
3) lines==ll : 0
>

Managing Watch Statements 9-17

Listing Watchpoints and Tracepoints

Note

The command letter for the Watch List command is the same as the
command letter for the memory version of the Watch command
when no memory size is given. The difference between the com­
mands is that the Watch List command never takes an argument.
The Watch command always requires at least one argument.

9-18 The Codeview Debugger

Assembly Examples

Assembly Examples
By default, assembly source modules are debugged with the C-expression
evaluator. Therefore, refer to the C examples for appropriate syntax for
entering watch expressions.

In addition, however, certain C expressions tend to be more useful for
debugging assembly modules. The following examples show some typical
cases used with watch and tracepomt commands.

Examples

>ww sp L 8
>ww A - ? L 8

WO bp+4,• d
>w; by Dp-2,.d
>7PV» arr L :i

The first two examples watch a range of memory. The watch command
WW sp L 8 is particularly useful because it causes the debugger to watch
the stack dynamically; the debugger continually displays the first eight
words on the top of the stack as items are pushed and popped. The expres­
sion WW bp L 8 is similar; it causes the debugger to watch the first eight
words in memory pointed to by BP (the framepointer).

The third example, W? wo bp+4,d, is useful if you are using the stack to
pass parameters. In this case, the position on the stack four bytes above
BP holds one of three integer parameters. The WO operator returns the
same value as the assembler expression WORD PTR [bp+4]; the result is
displayed in decimal.

You must use the expression bp+4 in order to watch this parameter; you
cannot specify a parameter by name. The assembler does not emit sym­
bolic information for parameters. The fourth command, W? by bp-2,d, is
similar to the third, but instead of watching a parameter, this command
watches a local variable. The operator BY returns the same value as the
assembler expression BYTE PTR [bp-2].

Managing Watch Statements 9-19

Assembly Examples

The final example sets a tracepoint on a range of memory, which corre­
sponds to the first five words of the array arr. Range arguments for tra­
cepoint and watch expressions are particularly useful for large data struc­
tures, such as arrays. The five examples above produce the following
screen, when entered in a CodeView debugging session:

File View Search Run Watch Options Language Calls Help I F8=Trace F5=Go

0)
1)
2)
3)
4)

----------------------------------- 1 test
sp L 8 : 5 31C:09A2 0044 09B4 0037
bp L 8 : 5 31C:09A4 09B4 0037 0005
wo b p + 4 ,d : 5
by bp-2,d : 60

531F:0006 01 00 02 00 03.....

ASM | ------------------------
0005 000F 001B 000F 0005
000F 001B 000F 0005 001B

AX = 001B
BX = 09A2
CX = 0044
DX = 00B0
SP = 09A2
BP = 09A4

70 ; First parameter largest SI = 0098
71 ; DI = 0A8C
72 mov BYTE PTR [bp-2],l ; Load indicator value DS = 531C
73 ; of 1 into local variabl ES = 531C
74 jmp SHORT finished ; and finish up SS = 531C
75 next t e s t : CS = 52D7
76 mov ax,[bp+8] ; Load 3rd p arm into ax IP = 005D
77 cmp [bp+6],ax If 2nd parm <= 3rd parm ■
78:: jle last_test go to last test N V UP
79:: ; EIN G

NZ AC
>WW sp L 8
>WW bp L 8

PECY

>W? wo bp+4,d S S :09AA
>W? by bp-2,d
>TPB arr L 5

000F

9-20 The Codeview Debugger

Chapter 10

Examining Code

Introduction 10-1

Set Mode Command 10-2

Unassemble Command 10-4

View Command 10-7

Current Location Command 10-10

Stack Trace Command 10-12

Introduction

Introduction
Several CodeView commands allow you to examine program code or data
related to code. The following commands are discussed in this chapter:

Command Action

Set Mode (S) Sets format for code displays

Unassemble (U) Displays assembly instructions

View (V) Displays source lines

Current Location (.) Displays the current location line

Stack Trace (K) Displays routines or procedures

Examining Code 10-1

Set Mode Command

Set Mode Command
The Set Mode command sets the mode in which code is displayed. The
two basic display modes are source mode, in which the program is dis­
played as source lines, and assembly mode, in which the program is dis­
played as assembly-language instructions. These two modes can be com­
bined in mixed mode, in which the program is displayed with both source
lines and assembly-language instructions.

In sequential mode, there are three display modes: source, assembly, and
mixed. These modes affect the output of commands that display code
(Register, Trace, Program Step, Go, Execute, and Unassemble).

In window mode, these same display modes are available, but affect what
kind of code appears in the display window.

Source and mixed modes are only available if the executable file contains
symbols in the CodeView format. Programs that do not contain symbolic
information are displayed in assembly mode.

Keyboard

To change the display mode with a keyboard command, press the F3 key.
This rotates the mode to the next setting; you may need to press F3 twice
to get the desired mode. This command works in either window or
sequential mode. In sequential mode, the word source, mixed, or assembly
is displayed to indicate the new mode.

Dialog

To set the display mode from the dialog window, enter a command line
with the following syntax:

S[+ I - 1 &]

If the plus sign is specified (S+), source mode is selected, and the word
source is displayed.

If the minus sign is specified (S-), assembly mode is selected, and the
word assembly is displayed. In window mode, the display includes any
assembly options, except the Mixed Source option, previously toggled on
from the Options menu. The Mixed Source option is always turned off by
the S- command.

10-2 The Codeview Debugger

Set Mode Command

If the ampersand is specified (S&), mixed mode is selected, and the word
mixed is displayed. In window mode, the display includes any assembly
options previously toggled on from the Options menu. In addition, the
Mixed Source option is turned on by the S& command.

If no argument is specified (S), the current mode (source, assembly, or
mixed) is displayed.

The Unassemble command in sequential mode is an exception in that it
displays mixed source and assembly with both the source (S+) and mixed
(S&) modes. When you enter the dialog version of the Set Mode com­
mand, the CodeView debugger outputs the name of the new display
mode: source, assembly, or mixed.

Examples

>s+
source
>S-
assembly
>S&
mixed
>

The examples above show the source mode being changed to source,
assembly, and mixed. In window mode, the commands change the format
of the display window. In sequential mode, the commands change the out­
put from the commands that display code (Register, Trace, Program Step,
Go, Execute, and Unassemble). See the sections on individual commands
for examples of how they are affected by the display mode.

Examining Code 10-3

Unassemble Command

Unassemble Command
The Unassemble command displays the assembly-language instructions
of the program being debugged. It is most useful in sequential mode,
where it is the only method of examining a sequence of assembly-lan­
guage instructions. In window mode it can be used to display a specific
portion of assembly-language code in the display window.

Note

Occasionally, code similar to the following is displayed:

FE30 ??? Byte Ptr [BX + SI]

If you attempt to unassemble data, then the CodeView debugger
may display meaningless instructions.

Keyboard

The Unassemble command has no direct keyboard equivalent, but you
can view unassembled code at any time by changing the mode to assem­
bly or mixed (see the section “ Set Mode Command” in this chapter for
more information).

Dialog

To display unassembled code using a dialog command, enter a command
line with the following syntax:

U [<address> I <range>]

The effect of the command varies depending on whether you are in
sequential or window mode.

In sequential mode, if you do not specify address or range, the disassem­
bled code begins at the current unassemble address and shows the next
eight lines of instructions. The unassemble address is the address of the

10-4 The Codeview Debugger

Unassemble Command

instruction after the last instruction displayed by the previous Unassem­
ble command. If the Unassemble command has not been used during the
session, the unassemble address is the current instruction.

If you specify an address, the disassembly starts at that address and shows
the next eight lines of instructions. If you specify a range, the instructions
within the range are displayed.

The sequential mode format of the display depends on the current display
mode (see “ Set Mode Command” for more information). If the mode is
source (S+) or mixed (S&), the CodeView debugger displays source lines
mixed with unassembled instructions. One source line is shown for each
corresponding group of assembly-language instructions. If the display
mode is assembly, only assembly-language instructions are shown.

In window mode, the Unassemble command changes the mode of the dis­
play window to assembly. The display format reflects any options previ­
ously set from the Options menu. There is no output to the dialog window .
If address is given, the instructions in the display window begin at the
specified address. If range is given, only the starting address is used. If no
argument is given, the debugger scrolls down and displays the next screen
of assembly-language instructions.

Note

The 80286 protected-mode mnemonics (also available with the
80386) cannot be displayed with the Unassemble command.

Examples

>s&
mixed
>U 0x11
49D0 :0011 35068E XOR AX, sqrt jmptab+8cd4 (8E06)
4 9D0:0014 189A230 SBB Byte Ptr [BP+SI+0023], BL
4 9D0:0018 FC CLD
49D0:0019 49 DEC CX
4 9D0:001A CD351ED418 INT 35 ;FSTP DWord Ptr |[fpinit+ee
4 9D0:001F CD3D INT 3D ;FWAIT
7 : A = oo

4 9D0:0021 CD35EE INT 35 ;FLDZ

Examining Code 10-5

Unassemble Command

The sequential mode example above sets the mode to mixed and
unassembles eight lines of machine code, plus whatever source lines are
encountered within those lines. The display would be the same if the
mode were source.

The example demonstrates sequential mode.

>s-
assembly
>U Oxll
4 9D0:0011 35068E XOR AX, sqrtjmptab+8cd4 (8E06)
49D0:0014 189A2300 SBB Byte Ptr [BP+SI+0023],BL
49D0:0018 FC CLD
49D0 : 0019 49 DEC CX
49D0:001A CD351ED418 I NT 35 ;FSTP DWord Ptr [fpinit+ee
49D0 : 001F CD3D INT 3D ;FWAIT
4 9D0:0021 CD35EE INT 35 ;FLDZ

The sequential mode example above sets the mode to assembly and
repeats the same command.

10-6 The CodeView Debugger

View Command

View Command
The View command displays the lines of a text file (usually a source
module or include file). It is most useful in sequential mode, where it is
the only method of examining a sequence of source lines. In window
mode, the View command can be used to page through the source file or
to load a new source file.

Keyboard

To load a new source file with a keyboard command, press <ALT>f to
open the File menu, then press L to select Load. A dialog box appears,
asking for the name of the file you wish to load. Type the name of the file,
and press the <RETURN> key. The new file appears in the display win­
dow.

The paging capabilities of the View command have no direct keyboard
equivalent, but you can move about in the source file by first putting the
cursor in the display window with the F6 key, then pressing the <PgUp>,
<PgDn>, <HOME>, <END>, UP ARROW, and DOWN ARROW keys. See
“ Controlling Program Execution with Keyboard Commands” in Chapter
3 for more information.

Dialog

To display source lines using a dialog command, enter a command line
with the following syntax:

V [<expression>]

Since addresses for the View command are often specified as a line num­
ber (with an optional source file), a more specific syntax for the command
would be as follows:

V [.[<filename>:]<linenumber>]

The effect of the command varies, depending on whether you are in
sequential or window mode.

Examining Code 10-7

View Command

In sequential mode, the View command displays eight source lines. The
starting source line is one of the following:

• The current source line if no argument is given.

• The specified linenumber. If filename is given, the specified file is
loaded, and the linenumber refers to lines in it.

• The address that expression evaluates to. For example, expression
could be a procedure name or an address in the segment'.ojfset for­
mat. The code segment is assumed if no segment is given.

In sequential mode, the View command is not affected by the current dis­
play mode (source, assembly, or mixed); source lines are displayed
regardless of the mode.

In window mode, if you enter the View command while the display mode
is assembly, the CodeView debugger automatically switches back to
source mode. If you give linenumber or expression, the display window
are redrawn so that the source line corresponding to the given address
appears at the top of the source window. If you specify a filename with a
linenumber, the specified file is loaded.

If you enter the View command with no arguments, the display scrolls
down one line short of a page; that is, the source line that was at the bot­
tom of the window is at the top.

Note

The View command with no argument is similar to pressing the
<PgDn> key. The difference is that pressing the <PgDn> key enables
you to scroll down one more line.

10-8 The CodeView Debugger

View Command

Examples

>v . math .c :30 ;* Example 1, C source code
30 register int j;
31
32 for (j = q; j >= 0; j —)33 if (t [j] + F [j] > 9)
34 P [j] += t [j]35 Ptj- 1] += 1;
36 } else
37 P [j] += t [j]>

Example 1 loads the source file math.c and displays eight source lines
starting at line 30.

Examining Code 10-9

Current Location Command

Current Location Command
The Current Location command displays the source line or assembly-lan­
guage instruction corresponding to the current program location.

Keyboard

The Current Location command cannot be executed with a keyboard
command.

Dialog

To display the current location line using a dialog command, enter a com­
mand line with the following syntax (a period only):

In sequential mode, the command displays the current source line. The
line is displayed regardless of whether the current debugging mode is
source or assembly. If the program being debugged has no symbolic infor­
mation, the command is ignored.

In window mode, the command puts the current program location
(marked with reverse video or a contrasting color) in the center of the dis­
play window. The display mode (source or assembly) is not affected. This
command is useful if you have scrolled through the source code or
assembly-language instructions so that the current location line is no
longer visible.

10-10 The Codeview Debugger

Current Location Command

For example, if you are in window mode and have executed the program
being debugged to somewhere near the start of the program, but you have
scrolled the display to a point near the end, the Current Location com­
mand returns the display to the current program location.

Example

>.
MINDAT = 1.0E6
>

The example above illustrates how to display the current source line in
sequential mode. The same command in window mode would not produce
any output, but it could change the text that is shown in the display win­
dow.

Examining Code 10-11

Stack Trace Command

Stack Trace Command
The Stack Trace command allows you to display routines that have been
called during program execution (see note below). The first line of the
display shows the name of the current routine. The succeeding lines (if
any) list any other routines that were called to reach the current address.
The dialog version of the Stack Trace command also displays the source
lines where each routine was called.

For each routine, the values of any arguments are shown in parentheses
after the routine name. Values are shown in the current radix (the default
is decimal).

The term “ stack trace” is used because, as each routine is called, its
address and arguments are stored on (pushed onto) the program stack.
Therefore, tracing through the stack shows the currently active routines.
With C programs, the main routine is always near the bottom of the stack.
Only routines called by the main program are displayed.

Note

This discussion uses the term “ routines,” which is a general term
for functions, subroutines, procedures, subprograms, and function
procedures. Each of which uses the stack to transfer control to an
independent program unit. In assembly mode, the term “ procedure”
may be more accurate.

If you are using the CodeView debugger to debug assembly-lan­
guage programs, the Stack Trace command works only if you call
procedures with the calling convention appropriate to the
procedure’s language.

Keyboard

To view a stack trace with a keyboard command, press <ALT>c to open
the Calls menu. The menu shows the current routine at the top, and other
routines below it in the reverse order in which they were called; for
example, the first routine called is at the bottom. The values of any rou­
tine arguments are shown in parentheses following the routine.

10-12 The CodeView Debugger

Stack Trace Command

If you want to view one of the routines that was previously called, select
the routine by moving the cursor with the arrow keys and then pressing
<RETURN> , or by typing the number or letter to the left of the routine.
The effect of selecting a routine in the Calls menu is to cause the
debugger to display that routine. The cursor is on the last statement that
was executed in the routine.

Dialog

To display a stack trace with a dialog command, enter a command line
with the following syntax:

K

The output from the Stack Trace dialog command lists the routines in the
reverse order in which they were called. The arguments to each routine
are shown in parentheses. Finally, the line number from which the routine
was called is shown.

You can enter the line number as an argument to the View or Unassemble
command if you want to view code at the point where the routine was
called.

In window mode, the output from the Stack Trace dialog command
appears in the dialog window.

C Example

>K
analyze (67,0), line 94
countwords(0,512), line 73
main(2,5098)
>

The example above shows the routines on the stack in the reverse order in
which they were called. Since analyze is on the top, it has been called
most recently; in other words, it is the current routine.

Each routine is shown with the arguments it was passed, along with the
last source line that it had been executing. Note that main is shown with
the command line arguments arge (which is equal to 2) and argv (which
is a pointer equal to 5098 decimal). Since the language is C, main is
always on the bottom of the stack.

Examining Code 10-13

Chapter 11

Modifying Code or Data

Introduction 11-1

Assemble Command 11-2

Enter Commands 11 -6
Enter Command 11-9
Enter Bytes Command 11-10
Enter ASCII Command 11-11
Enter Integers Command 11-11
Enter Unsigned Integers Command
Enter Words Command 11-13
Enter Double Words Command 11-
Enter Short Reals Command 11-15
Enter Long Reals Command 11-16
Enter 10-Byte Reals Command 11-

Fill Memory Command 11-18

Move Memory Command 11 -20

Register Command 11-22

11-12

14

16

Introduction

Introduction
The CodeView debugger provides the following commands for modifying
code or data in memory:

Command Action

Assemble (A) Modifies code

Enter (E) Modifies memory, usually data

Register (R) Modifies registers and flags

Fill Memory (F) Fills a block of memory

Move Memory (M) Copies one block of memory to another

These commands change code temporarily. You can use the alterations
for testing in the CodeView debugger, but you cannot save them or per­
manently change the program. To make permanent changes, you must
modify the source code and recompile.

Modifying Code or Data 1-1

Assemble Command

Assemble Command
The Assemble command assembles 8086-family (8086, 8087, 8088,
80186, 80287, and 80286 unprotected) instruction mnemonics and places
the resulting instruction code into memory at a specified address. The
only 8086-family mnemonics that cannot be assembled are 80286
protected-mode mnemonics. In addition, the debugger also assembles
80386 instructions.

Note

The effects of the Assemble command are temporary. Any instruc­
tions that you assemble are lost as soon as you exit the program.

The instructions you assemble are also lost when you restart the
program with the Start or Restart command, because the original
code is reloaded on top of memory you may have altered.

To test the results of an Assemble command, you may need to mani­
pulate the IP register (and possibly the CS register) to the starting
address of the instructions you have assembled. If you do this, you
must use the Current Line command (.) to reset the debugger’s inter­
nal variables so that it traces properly.

Keyboard

The Assemble command cannot be executed with a keyboard command.

Dialog

To assemble code using a dialog command, enter a command line with
the following syntax:

A [<address>]

If address is specified, the assembly starts at that address; otherwise the
current assembly address is assumed.

11-2 The CodeView Debugger

Assemble Command

The assembly address is normally the current address (the address pointed
to by the CS and IP registers). However, when you use the Assemble com­
mand, the assembly address is set to the address immediately following
the last assembled instruction. When you enter any command that exe­
cutes code (Trace, Program Step, Go, or Execute), the assembly address is
reset to the current address.

When you type the Assemble command, the assembly address is dis­
played. The CodeView debugger then waits for you to enter a new
instruction in the standard 8086-family instruction-mnemonic form. You
can enter instructions in uppercase, lowercase, or both.

To assemble a new instruction, type the desired mnemonic and press the
<RETURN> key. The CodeView debugger assembles the instruction into
memory and displays the next available address. Continue entering new
instructions until you have assembled all the instructions you want. To
conclude assembly and return to the CodeView prompt, press the
<RETURN> key only.

If an instruction you enter contains a syntax error, the debugger displays
the message ~ S y n t a x e r r o r , redisplays the current assembly
address, and waits for you to enter a correct instruction. The caret symbol
in the message points to the first character the CodeView debugger could
not interpret.

The following eight principles govern entry of instruction mnemonics:

1. The far-retum mnemonic is RETF.

2. String mnemonics must explicitly state the string size. For exam­
ple, MOVSW must be used to move word strings, and MOVSB
must be used to move byte strings.

3. The CodeView debugger automatically assembles short, near, or
far jumps and calls, depending on byte displacement to the destina­
tion address. These may be overridden with the NEAR or FAR
prefix, as shown in the following examples:

The NEAR prefix can be abbreviated to NE, but the FAR prefix
cannot be abbreviated. The examples above use the C notation for
hexadecimal numbers.

4. The CodeView debugger cannot determine whether some operands
refer to a word memory location or to a byte memory location. In

JMP
JMP
JMP

0x502
NEAR 0x505
FAR 0x50A

Modifying Code or Data 11-3

Assemble Command

these cases, the data type must be explicitly stated with the prefix
WORD PTR or BYTE PTR. Acceptable abbreviations are WO and
BY. Examples are shown below:

MOV WORD PTR [BP],1
MOV BYTE PTR [SI-1], symbol
MOV WO PTR [BP],1
MOV BY PTR [SI-1], symbol

5. The CodeView debugger cannot determine whether an operand
refers to a memory location or to an immediate operand. The
debugger uses the convention that operands enclosed in square
brackets refer to memory. Two examples are shown below:

MOV AX,0x21
MOV AX, [0x21]

The first statement moves 21 hexadecimal into AX. The second
statement moves the data at offset 0x21 hexadecimal into AX.

6. The CodeView debugger supports all forms of indirect register
instructions, as shown in the following examples:

ADD BX,[BP+2].[SI-1]
POP [BP+DI]
PUSH [SI]

7. All instruction-name synonyms are supported. If you assemble
instructions and then examine them with the Unassemble com­
mand (U), the CodeView debugger may show synonymous instruc­
tions, rather than the ones you assembled, as shown in the follow­
ing examples:

LOOPZ 0x100
LOOPE 0x100
JA 0x200
JNBE 0x200

8. Do not assemble and execute 8087 or 80287 instructions if your
system is not equipped with one of these math coprocessor chips. If
you try to execute the WAIT instruction without the appropriate
chip, for example, your system will crash.

11-4 The Codeview Debugger

Assemble Command

Example

>U 0x40 L 1
3 9B0:0040
>A 0x40

8 9C3 MOV BX, AX
39B0:0040
39B0:0042
>U 0x40 L 1

MOV CXAX

39B0:0040 8 9C1 MOV CX, AX
>

The Unassemble command (U) is used to show the instruction before and
after the assembly.

You can modify a portion of code for testing, as in the example, but you
cannot save the modified program. You must modify your source code and
recompile.

Modifying Code or Data 11-5

Enter Commands

Enter Commands
The CodeView debugger has several commands for entering data to mem­
ory. You can use these commands to modify either code or data, though
code can usually be modified more easily with the Assemble command
(A). The Enter commands are listed below:

Command Command Name

E Enter (size is the default type)

EB Enter Bytes

EA Enter ASCII

El Enter Integers

EU Enter Unsigned Integers

EW Enter Words

ED Enter Double Words

ES Enter Short Reals

EL Enter Long Reals

ET Enter 10-Byte Reals

Keyboard

The Enter commands cannot be executed with keyboard commands.

Dialog

To enter data (or code) to memory with a dialog command, enter a com­
mand line with the following syntax:

E [<type>\ <address> [<list>]

11-6 The CodeView Debugger

Enter Commands

The type is a one-letter specifier that indicates the type of the data to be
entered. The address indicates where the data is entered. If no segment is
given in the address, the data segment (DS) is assumed.

The list can consist of one or more expressions that evaluate to data of the
size specified by type (the expressions in the list are separated by spaces).
This data is entered to memory at address. If one of the values in the list
is invalid, an error message is displayed. The values preceding the error
are entered; values at and following the error are not entered.

The expressions in the list are evaluated in the current radix, regardless of
the size and type of data being entered. For example, if the radix is 10 and
you give the value 10 in a list with the Enter Words command, the
decimal value 10 is entered even though word values are normally
entered in hexadecimal. This means that the Enter Words, Enter Integers,
and Enter Unsigned Integers commands are identical when used with the
list method, since two-byte data are being entered for each command.

If list is not given, the CodeView debugger prompts for values to be
entered to memory. Values entered in response to prompts are accepted in
hexadecimal for the Enter Bytes, Enter ASCII, Enter Words, and Enter
Double Words commands. The Enter Integers command accepts signed
decimal integers, while the Enter unsigned Integers command accepts
unsigned decimal integers. The Enter Short Reals, Enter Long Reals, and
Enter 10-Byte Reals commands accept decimal floating-point values.

With the prompting method of data entry, the CodeView debugger
prompts for a new value at address by displaying the address and its
current value. As explained below, you can then replace the value, skip to
the next value, return to a previous value, or exit the command.

• To replace the value, type the new value after the current value.

• To skip to the next value, press the <SPACE> bar . Once you have
skipped to the next value, you can change its value or skip to the
following value. If you pass the end of the display, the CodeView
debugger displays a new address to start a new display line.

• To return to the preceding value, type a backslash (\). When you
return to the preceding value, the debugger starts a new display
line with the address and value.

• To stop entering values and return to the CodeView prompt, press
the <RETURN> key. You can exit the command at any time.

Modifying Code or Data 11-7

Enter Commands

Examples

>EW PLACE 16 32

The example above shows how to enter two word-sized values at the
address PLACE.

>EWPLACE

3DA5:0B20 00F3._

The example above illustrates the prompting method of entering data.
When you supply the address where you want to enter data but supply no
data to be entered there, the CodeView debugger displays the current
value of the address and waits for you to enter a new value. The under­
score in this example and the examples below represents the CodeView
cursor. You change the value F3 to the new value 16 (10 hexadecimal) by
typing 10 (without pressing the <RETURN> key yet). The value must be
typed in hexadecimal for the Enter Words command, as shown below:

>EWPLACE

3DA5:0B20 00F3.1O_

You can then skip to the next value by pressing the <SPACE> key. The
CodeView debugger responds by displaying the next value, as shown
below:

>EWPLACE

3DA5:0B20 OOF3.10 4F20._

You can then type another hexadecimal value, such as 30:

>EWPLACE

3DA5:0B20 OOF3.10 4F20.30_

To m ove to the next value, press the <SPACE> key.

>EWPLACE

3DA5:0B20 OOF3.10 4F20.30 3DC1.

11-8 The Codeview Debugger

Enter Commands

Assume that you realize that the last value entered, 30, is incorrect. You
really wanted to enter 20. You could return to the previous value by typ­
ing a backslash. The CodeView debugger starts a new line, starting with
the previous value. Note that the backslash is not echoed on the screen:

>EW PLACE

3DA5:0B20 OOF3.10 4F20.3O 3DC1.
3DA5:0B22 0030._

Type the correct value, 20:

>EW PLACE

3DA5:0B20 OOF3.10 4F20.30 3DC1.
3DA5:0B22 0030.20_

If this is the last value you want to enter, press the <RETURN> key to stop.
The CodeView prompt reappears, as shown below:

>EW PLACE

3DA5:0B20 OOF3.10 4F20.30 3DC1.
3DA5:0B22 0030.20
>

Enter Command

Syntax

E <address> [<list>]

The Enter command enters one or more values into memory at the
specified address. The data are entered in the format of the default type,
which is the last type specified with a Dump, Enter, Watch Memory, or
Tracepoint Memory command. If none of these commands has been
entered during the session, the default type is bytes.

Use this command with caution when entering values in the list format;
values are truncated if you enter a word-sized value when the default type
is actually bytes. If you are not sure of the current default type, specify
the size in the command.

Modifying Code or Data 11-9

Enter Commands

Note

The Execute command and the Enter command have the same com­
mand letter (E). The difference is that the Execute command never
takes an argument; the Enter command always requires at least one
argument.

Enter Bytes Command

Syntax

EB <address> [<list>]

The Enter Bytes command enters one or more byte values into memory at
address. The optional list can be entered as a list of expressions separated
by spaces. The expressions are evaluated and entered in the current radix.
If list is not given, the CodeView debugger prompts for new values, which
must be entered in hexadecimal.

The Enter Bytes command can also be used to enter strings, as described
in the section “ Enter ASCII Command” in this chapter.

Examples

>EB 256 10 20 30
>

If the current radix is 10, the above example replaces the three bytes at
DS:256, DS:257, and DS:258 with the decimal values 10, 20, and 30.
(These three bytes correspond to the hexadecimal addresses DS:0100,
DS:0101, and DS:0102.)

>EB 256

3DA5:0100 130F.A
>

11-10 The Codeview Debugger

Enter Commands

The example above replaces the byte at DS:256 (DS:0100 hexadecimal)
with 10 (OA hexadecimal).

Enter ASCII Command

Syntax

EA <address> [<list>]

The Enter ASCII command works in the same way as the Enter Bytes
command (EB) described in the section “ Enter Bytes Command” in this
chapter. The list version of this command can be used to enter a string
expression.

Example

>EA message "File cannot be found"
>

In the example above, the string F i l e c a n n o t b e f o u n d is
entered starting at the symbolic address message. (Note that the double
quotation marks are CodeView string delimiters.)

You can also use the Enter Bytes command to enter a string expression, or
you can enter nonstring values using the Enter ASCII command.

Enter Integers Command

Syntax

El <address> [<list>]

The Enter Integers command enters one or more word values into mem­
ory at address using the signed-integers format. With the CodeView
debugger, a signed integer can be any decimal integer between -32,768
and 32,767.

Modifying Code or Data 11-11

Enter Commands

The optional list can be entered as a list of expressions separated by
spaces. The expressions are entered and evaluated in the current radix. If
list is not given, the CodeView debugger prompts for new values, which
must be entered in decimal.

Examples

>EI 256 -10 10 -20
>

If the current radix is 10, the example above replaces the three integers at
DS:256, DS:258, and DS:260 with the decimal values -10, 10, and -20.
(The three addresses correspond to the three hexadecimal addresses
DS:0100, DS:0102, and DS:0104.)

>EI 256

3DA5:0100 130F.-10
>

The example above replaces the integer at DS:256 (hexadecimal address
DS:0100) with -10.

Enter Unsigned Integers Command

Syntax

EU <address> [<list>]

The Enter Unsigned Integers command enters one or more word values
into memory at address using the unsigned-integers format. With the
CodeView debugger, an unsigned integer can be any decimal integer
between 0 and 65,535. The optional list can be entered as a list of expres­
sions separated by spaces. The expressions are entered and evaluated in
the current radix. If list is not given, the CodeView debugger prompts for
new values, which must be entered in decimal.

11-12 The Codeview Debugger

Enter Commands

Examples

>EU 256 10 20 30
>

If the current radix is 10, the example above replaces the three unsigned
integers at DS:256, DS:258, and DS:260 with the decimal values 10, 20,
and 30. (These addresses correspond to the hexadecimal addresses
DS:0100, DS:0102, and DS:0104.)

>EU 256

3DA5:0100 130F.10
>

The example above replaces the integer at DS:256 (DS:0100 hexadeci­
mal) with 10.

Enter Words Command

Syntax

EW < a d d r e s s > [< lis t>]

The Enter Words command enters one or more word values into memory at
a d d r e s s .

The optional l is t can be entered as a list of expressions separated by spaces. The
expressions are entered and evaluated in the current radix. If l is t is not given, the
CodeView debugger prompts for new values, which must be entered in hexadec­
imal.

Examples

>EW 256 10 20 30
>

If the current radix is 10, the example above replaces the three words at
DS:256, DS:258, and DS:260 with the decimal values 10, 20, and 30.
(These addresses correspond to the hexadecimal addresses DS:0100,
DS:0102, and DS:0104.)

Modifying Code or Data 11-13

Enter Commands

>EW 256

3DA5:0100 130F.A
>

The example above replaces the integer at DS:256 (DS:0100 hexadeci­
mal) with 10 (0A hexadecimal).

Enter Double Words Command

Syntax

ED <address> [</«£>]

The Enter Double Words command enters one or more double-word
values into memory at address. Double words are displayed and entered
in the segmennoffset address format; that is, two words separated by a
colon (:). If the colon is omitted and only one word entered, only the
offset portion of the address is changed.

The optional list can be entered as a list of expressions separated by
spaces. The expressions are entered and evaluated in the current radix. If
list is not given, the CodeView debugger prompts for new values, which
must be entered in hexadecimal.

Examples

>ED 256 8700:12008
>

If the current radix is 10, the example above replaces the double words at
DS:256 (DS:0100 hexadecimal) with the decimal address 8700:12008
(hexadecimal address 21FC:2EE8).

>ED 256

3DA5:0100 21FC:2EE8.2EE9
>

11-14 The CodeView Debugger

Enter Commands

The example above replaces the offset portion of the double word at
DS:256 (DS:0100 hexadecimal) with 2EE9 hexadecimal. Since the seg­
ment portion of the address is not provided, the existing segment (21FC
hexadecimal) is unchanged.

Enter Short Reals Command

Syntax

ES <address> [<list>]

The Enter Short Reals command enters one or more short-real values into
memory at address.

The optional list can be entered as a list of real numbers separated by
spaces. The numbers must be entered in decimal, regardless of the current
radix. If list is not given, the CodeView debugger prompts for new values,
which must be entered in decimal. Short-real numbers can be entered
either in floating-point format or in scientific-notation format.

Examples

>ES 256 23.479 1/4 -1.65E+4 235
>

The example above replaces the four numbers at DS:256, DS:260,
DS:264, and DS:268 with the real numbers 23.479, 0.25, -1650.0, and
235.0. (These addresses correspond to the hexadecimal addresses
DS:0100, DS:0104, DS:0108, and DS:0112.)

>ES PI
3DA5:00 64 42 79 74 65 7.215589E + 022 3.141593

The example above replaces the number at the symbolic address PI with
3.141593.

Modifying Code or Data 11-15

Enter Commands

Enter Long Reals Command

Syntax

EL <address> [<list>]

The Enter Long Reals command enters one or more long-real values into
memory at address.

The optional list can be entered as a list of real numbers separated by
spaces. The numbers must be entered in decimal, regardless of the current
radix. If list is not given, the CodeView debugger prompts for new values,
which must be entered in decimal. Long-real numbers can be entered
either in floating-point format or in scientific-notation format.

Examples

>EL 256 23.479 1/4 -1.65E+4 235
>

The example above replaces the four numbers at DS:256, DS:264,
DS:272, and DS:280 with the real numbers 23.479, 0.25, -1650.0, and
235.0 (These addresses correspond to the hexadecimal addresses
DS:0100, DS:0108, DS:0110, and DS:0118.)

>EL PI
3DA5:0064 42 79 74 65 DC OF 49 40 5 .012391E + 001 3.141593

The example above replaces the number at the symbolic address PI with
3.141593.

Enter 10-Byte Reals Command

Syntax

ET <address [list]>

11-16 The CodeView Debugger

Enter Commands

The Enter 10-Byte Reals command enters one or more 10-byte-real
values into memory at address.

The optional list can be entered as a list of real numbers separated by
spaces. The numbers must be entered in decimal, regardless of the current
radix. If list is not given, the CodeView debugger prompts for new values,
which must be entered in decimal. The numbers can be entered either in
floating-point format or in scientific-notation format.

Examples

>ET 256 23.479 1/4 -1.65E+4 235
>

The example above replaces the four numbers at DS:256, DS:266,
DS:276, and DS:286 with the real numbers 23.479, 0.25, -1650.0, and
235.0. (These addresses correspond to the hexadecimal addresses
DS:0100, DS:010A, DS:0114, and DS:01 IE.)

>ET PI
3DA5:C 0 64 42 79 74 65 DC OF 49 40 IF BD -3.2926C1E-193 3.141593
>

The example above replaces the number at the symbolic address PI with
3.141593.

Modifying Code or Data 11-17

Fill Memory Command

Fill Memory Command
The Fill Memory command provides an efficient way of filling up a large
or small block of memory, with any values you specify. It is primarily of
interest to assembly programmers because the command enters values
directly into memory. However, you may find it useful for initializing
large data areas such as an array or structure.

You can enter arguments to the Fill Memory command using any radix.

Keyboard

The Fill Memory command cannot be executed with a keyboard com­
mand.

Dialog

To fill an area of memory with values you specify, enter the Fill Memory
command as follow:

F <range> <list>

The Fill Memory command fills the addresses in the specified range with
the byte values specified in list. The values in the list are repeated until
the whole range is filled. (Thus, if you specify only one value, the entire
range is filled with that same value.) If the list has more values than the
number of bytes in the range, then the command ignores any extra values.

Examples

>F 100 L 100 0 ;* hexadecimal radix assumed
>

The first example fills 255 (100 hexadecimal) bytes of memory starting at
DS:0100 with the value 0. This command might possibly be used to reini­
tialize the program’s data without having to restart the program.

11-18 The Codeview Debugger

Fill Memory Command

>F table L 64 42 79 74 ;* hexadecimal radix assumed
>

The second example fills the 100 (64 hexadecimal) bytes starting at table
with the following hexadecimal byte values: 42, 79, 74. These three
values are repeated until all 100 bytes are filled.

Modifying Code or Data 11-19

Move Memory Command

Move Memory Command
The Move Memory command enables you to copy all the values in one
block of memory directly to another block of memory of the same size.
This command is of most interest to assembly programmers, but can be
used by anyone who wants to do large data transfers efficiently. For exam­
ple, you can use this command to copy all the values in one array to the
elements of another.

Keyboard

The Move Memory command cannot be executed with a keyboard com­
mand.

Dialog

To copy the values in one block of memory to another, enter the Move
Memory command with the following syntax:

M <range> <address>

The values in the block of memory specified by range are copied to a
block of the same size beginning at address. All data in range are
guaranteed to be copied completely over to the destination block, even if
the two blocks overlap. However, if they do overlap, some of the original
data in range is altered.

To prevent loss of data, the Move Memory command copies data starting
at die source block’s lowest address whenever the source is at a higher
address than the destination. If the source is at a lower address, then the
Move Memory command copies data beginning at the source block’s
highest address.

11-20 The Codeview Debugger

Move Memory Command

Example

>M arrl(l) L arsize arr2(l) ;* FORTRAN example
>

In the example above, the block of memory beginning with the first ele­
ment of arrl, and arsize bytes long, is copied directly to a block of the
same size beginning at the address of the first element of arr2. In C, this
command would be entered as M arrl[0] L arsize arr2[0].

Modifying Code or Data 11-21

Register Command

Register Command
The Register command has two functions: it displays the contents of the
central processing unit registers, and it can also change the values of
those registers. The modification features of the command are explained
in this section. The display features of the Register command are
explained in Section 6.7.

Keyboard

The registers cannot be changed with keyboard commands.

Dialog

To change the value of a register with a dialog command, enter a com­
mand line with the following syntax:

R [<registername>[[=\<expression>]]

To modify the value in a register, type the command letter R followed by
registername. The CodeView debugger displays the current value of the
register and prompts for a new value. Press the <RETURN> key if you only
want to examine the value. If you want to change it, type an expression
for the new value and press the <RETURN> key.

As an alternative, you can type both registername and expression in the
same command. You can use the equal sign (=) between registername
and expression, but a space has the same effect.

The register name can be any of the following names: AX, BX, CX, DX,
CS, DS, SS, ES, SP, BP, SI, DI, IP, or F (for flags). If you have a 386-based
machine, then the register name can be one of the 32-bit register names
shown in Table 5.11.

To change a flag value, supply the register name F when you enter the
Register command. The command displays the current value of each flag
as a two-letter name.

At the end of the list of values, the command displays a dash (-). Enter
new values after the dash for the flags you wish to change, then press the
<RETURN> key. You can enter flag values in any order. Flags for which
new values are not entered remain unchanged. If you do not want to
change any flags, simply press the <RETURN> key.

11-22 The CodeView Debugger

Register Command

If you enter an illegal flag name, an error message is displayed. The flags
preceding the error are changed; flags at and following the error are not
changed.

The flag values are shown in Table 11.1.

Table 11.1
Flag-Value Mnemonics

Flag Name Set Clear
Overflow OV NV

Direction DN UP

Interrupt El DI

Sign NG PL

Zero ZR NZ

Auxiliary carry AC NA

Parity PE PO

Carry CY NC

Examples

>R IP 256
>

The example above changes the IP register to the value 256 (0100 hexa­
decimal).

>R AX
AX OEOO

The example above displays the current value of the AX register and
prompts for a new value (the underscore represents the CodeView cursor).
You can now type any 16-bit value after the colon.

Modifying Code or Data 11-23

Register Command

>R AX
AX 0E00
:256
> _

The example above changes the value of AX to 256 (in the current radix).

>R F UP El PL

The example above shows the command-line method of changing flag
values.

> R F
NV(OV) UP(DN) EI(DI) PL(NG) NZ(ZR) A C (NA) PE(PO) N C (CY) -O V DI ZR
> R F
OV(NV) UP(DN) DI(EI) PL(NG) ZR(NZ) AC(NA) PE(PO) NC(CY) -

With the prompting method of changing flag values (shown above), the
first mnemonic for each flag is the current value, and the second
mnemonic (in parentheses) is the alternate value. You can enter one or
more mnemonics at the dash prompt. In the example, the command is
given a second time to show the results of the first command.

11-24 The Codeview Debugger

Chapter 12

Using CodeView System-Control
Commands

Introduction 12-1

Help Command 12-2

Quit Command 12-3

Radix Command 12-4

Redraw Command 12-7

Screen Exchange Command 12-8

Search Command 12-9

Shell Escape Command 12-12

Tab Set Command 12-14

Option Command 12-15

Redirection Commands 12-17
Redirecting CodeView Input 12-17
Redirecting CodeView Output 12-18
Redirecting CodeView Input and Output 12-19
Commands Used with Redirection 12-20
Comment Command 12-21
Delay Command 12-22
Pause Command 12-23

—̂ y

Introduction

Introduction
This chapter discusses commands that control the operation of the Code
View debugger. The commands in this category are listed below:

Command Action

Help (H) Displays help

Quit (Q) Returns to System V

Radix (N) Changes radix

Redraw (@) Redraws screen

Screen Exchange (\) Switches to output screen

Search (/) Searches for regular expression

Shell Escape (!) Starts new shell

Tab Set (#) Sets tab size

Option (0) Views or sets CodeView options

Redirection and related commands
Control redirection of CodeView out
put or input

The system-control commands are discussed in the following sections.

Using CodeView System-Control Commands 12-1

Help Command

Help Command
The CodeView debugger has two help systems: a complete on-line-help
system available only in window mode, and a syntax summary available
with sequential mode.

Keyboard

If you are in window mode, press the FI key to enter the complete on­
line-help system. If you are in sequential mode, a syntax-summary screen
appears when you press F I .

Dialog

If you are in window mode, you can view the complete on-line-help sys­
tem with the following command:

H

If you are in sequential mode, this command displays a screen containing
all CodeView dialog commands with the syntax for each. This screen is
the only help available in sequential mode.

12-2 The Codeview Debugger

Quit Command

Quit Command
The Quit command terminates the CodeView debugger and returns con­
trol to the operating system.

Keyboard

To quit the CodeView debugger with a keyboard command, press <ALT>f
to open the File menu, and then press X to select Exit. The CodeView
screen is replaced by the operating system screen, with the cursor at the
operating system prompt.

Dialog

To quit the CodeView debugger with a dialog command, enter a com­
mand line with the following syntax:

Q

When the command is entered, the CodeView screen is replaced by the
standard screen, with the cursor at the shell prompt.

Using CodeView System-Control Commands 12-3

Radix Command

Radix Command
The Radix command changes the current radix for entering arguments
and displaying the value of expressions. The default radix when you start
the CodeView debugger is 10 (decimal). Radixes 8 (octal) and 16 (hexa­
decimal) can also be set. Binary and other radixes are not allowed.

The following seven conditions are exceptions; they are not affected by
the Radix command:

1. The radix for entering a new radix is always decimal.

2. Format specifiers given with the Display Expression command or
any of the Watch Statement commands override the current radix.

3. Addresses output by the Assemble, Dump, Enter, Examine Sym­
bol, and Unassemble commands are always shown in hexadecimal.

4. In assembly mode, all values are shown in hexadecimal.

5. The display radix for Dump, Watch Memory, and Tracepoint Mem­
ory commands is always hexadecimal if the size is bytes, words, or
double words, and always decimal if the size is integers, unsigned
integers, short reals, long reals, or 10-byte reals.

6. The input radix for the Enter commands with the prompting
method is always hexadecimal if the size is bytes, words, or double
words, and always decimal if the size is integers, unsigned
integers, short reals, long reals, or 10-byte reals. The current radix
is used for all values given as part of a list, except real numbers,
which must be entered in decimal.

7. The register display is always in hexadecimal.

Keyboard

You cannot change the input radix with a keyboard command.

12-4 The Codeview Debugger

Radix Command

Dialog

To change the input radix with a dialog command, enter a command line
with the following syntax:

N[<radixnumber>]

The radixnumber can be 8 (octal), 10 (decimal), or 16 (hexadecimal). The
default radix when you start the CodeView debugger is 10 (decimal),
unless your main program is written with the Macro Assembler, in which
case the default radix is 16 (hexadecimal). If you give the Radix com­
mand with no argument, the debugger displays the current radix.

Examples

>N10
>N
10
>? prime
107
>

> N 8
>? prime
0153

>N16 ;
>? prime
0x006b

The example aboves show how 107 decimal, stored in the variable prime,
would be displayed with different radixes.

> N 8
>? 34,i
28
>N10
>? 28,i
28
>N16
>? 1C,i
28
>

Using CodeView System-Control Commands 12-5

Go Command

Dialog

To execute the Go command with a dialog command, enter a command
line with the following syntax:

G [<breakaddress>]

If the command is given with no argument, execution continues until a
breakpoint or the end of the program is encountered.

The Goto form of the command can be given by specifying breakaddress.
The breakaddress can be given as a symbol, a line number, or an address
in the segmentioffset format. If the offset address is given without a seg­
ment, the address in the CS register is used as the default segment. If you
give breakaddress as a line number, but the corresponding source line is a
comment, declaration, or blank line, the following message appears:

No code at this line number

Examples

The following examples show the Go command in sequential mode. In
window mode there would be no output from the commands, but the dis­
play would be updated to show changes caused by the command.

>G

Program terminated normally (0)
>

The example above passes control to the instruction pointed to by the
current values of the CS and IP registers. No breakpoint is encountered, so
the CodeView debugger executes to the end of the program, where it
prints a termination message and the exit code returned by the program (0
in the example).

>S+ ;* FORTRAN/BASIC example (source mode)
source
>G BUBBLE
17: A = B + C
>

In the example above, the display mode is first set to source (S+). (See
Chapter 10, “ Examining Code,” for information on setting the display
mode.) When the Go command is entered, the CodeView debugger starts
program execution at the current address and continues until it reaches
the start of the subprogram BUBBLE.

6-10 The Codeview Debugger

Redraw Command

Redraw Command
The Redraw command can be used only in window mode; it redraws the
CodeView screen. This command is seldom necessary, but you might
need it if the output of the program being debugged disturbs the Code­
View display temporarily.

Keyboard

You cannot redraw the screen using a keyboard command.

Dialog

To redraw the screen with a dialog command, enter a command line with
the following syntax:

Using CodeView System-Control Commands 12-7

Screen Exchange Command

Screen Exchange Command
The Screen Exchange command allows you to switch temporarily from
the debugging screen to the output screen.

The CodeView debugger uses either screen flipping or screen swapping to
store the output and debugging screens. See Chapter 2, “ Getting
Started,” for an explanation of flipping and swapping.

Keyboard

To execute the Screen Exchange command with a keyboard command,
press the F4 key. Press any key when you are ready to return to the debug­
ging screen.

Dialog

To execute the Screen Exchange command from the dialog window, enter
a command line with the following syntax:

\

The output screen appears. Press any key when you are ready to return to
the debugging screen.

12 The CodeView Debugger

Search Command

Search Command
The Search command allows you to search for a regular expression in a
source file. The expression being sought is specified either in a dialog box
or as an argument to a dialog command. Once you have found an expres­
sion, you can also search for the next or previous occurrence of the
expression.

Regular expressions are patterns of characters that may match one or
many different strings. The use of patterns to match more than one string
is similar to the shell method of using wild-card characters in file names.

You can use the Search command without understanding regular expres­
sions. Since text strings are the simplest form of regular expressions, you
can simply enter a string of characters as the expression you want to find.
For example, you could enter COUNT if you wanted to search for the
word “ COUNT” in the source file.

The following characters have special meanings in regular expressions:
backslash (\), asterisk (*), left bracket ([), period (.), dollar sign ($), and
caret Q . To find strings containing these characters, you must precede the
characters with a backslash; this cancels their special meanings.

For example, you would use * to find x*y. The periods in the relational
operators must also be preceded by a backslash.

The Case Sense selection from the Options menu has no effect on
searches for regular expressions.

Note

When you search for the next occurrence of a regular expression,
the CodeView debugger searches to the end of the file, and then
wraps around and begins again at the start of the file. This can have
unexpected results if the expression occurs only once. When you
give the command repeatedly, nothing seems to happen. Actually,
the debugger is repeatedly wrapping around and finding the same
expression each time.

Using CodeView System-Control Commands 12-9

Search Command

Keyboard

To find a regular expression with a keyboard command, press <ALT>s to
open the Search menu, and then press F to select Find. A dialog box
appears, asking for the regular expression to be found. Type the expres­
sion and press the <RETURN> key. The CodeView debugger starts search­
ing at the current cursor position and puts the cursor at the next line con­
taining the regular expression. An error message appears if the expression
is not found. If you are in assembly mode, the debugger automatically
switches to source mode when the expression is found.

After you have found a regular expression, you can search for the next or
previous occurrence o f the expression. Press <ALT>s to open the Search
menu and then press N to select Next or P to select Previous. The cursor
moves to the next or previous match of the expression.

You can also search the executable code for a label (such as a routine
name or an assembly-language label). Press <ALT>s to open the Search
menu and then press L to select Label. A dialog box appears, asking for
the label to be found. Type the label name and press the <RETURN> key.
The cursor moves to the line containing the label. This selection differs
from other search selections because it searches executable code rather
than source code. The CodeView debugger switches to assembly mode, if
necessary, to display a label in a library routine or assembly-language
module.

Dialog

To find a regular expression using a dialog command, enter a command
line with the following syntax:

l[<regularexpression>]

If regularexpression is given, the CodeView debugger searches the source
file for the first line containing the expression. If no argument is given, the
debugger searches for the next occurrence of the last regular expression
specified.

In window mode, the CodeView debugger starts searching at the current
cursor position and puts the cursor at the next line containing the regular
expression. In sequential mode, the debugger starts searching at the last
source line displayed. It displays the source line in which the expression
is found. An error message appears if the expression is not found. If you
are in assembly mode, the CodeView debugger automatically switches to
source mode when the expression is found.

12-10 The CodeView Debugger

Search Command

You cannot search for a label with the dialog version of the Search com­
mand, but you can use the View command with the label as an argument
for the same effect.

Using CodeView System-Control Commands 12-11

Shell Escape Command

Shell Escape Command
The Shell Escape command allows you to exit from the CodeView
debugger to a command shell. You can execute system commands or pro­
grams from within the debugger, or you can exit from the debugger to the
system while retaining your current debugging context.

Keyboard

To open a shell with a keyboard command, press <ALT>f to open the File
menu, and then press D to select Shell. When you are ready to return to
the debugging session, type the command exit. The debugging screen
appears with the same status it had when you left it.

Dialog

To open a shell using a dialog command, enter a command line with the
following syntax:

! [<command>]

If you want to exit to the system and execute several programs or com­
mands, enter the command with no arguments. The standard screen
appears. You can run programs or shell commands. When you are ready to
return to the debugger, type the command exit. The debugging screen
appears with the same status it had when you left it.

If you want to execute a program or shell command from within the Code­
View debugger, enter the Shell Escape command (!) followed by the
name of the command or program you want to execute. The output screen
appears, and the debugger executes the command or program. When the
output from the command or program is finished, the message Press
any key to continue. . . appears at the bottom of the screen. Press
a key to make the debugging screen reappear with the same status it had
when you left it.

12-12 The Codeview Debugger

Shell Escape Command

Examples

> !

In the above example, the CodeView debugger saves the current debug­
ging context. The standard screen appears, and you can enter any number
of commands. To return to the debugger, enter exit.

>!Is /tmp

In the example above, the command Is is executed with the argument
I tmp. The directory listing is followed by a prompt telling you to press
any key to return to the CodeView debugging screen.

Using CodeView System-Control Commands 12-13

Tab Set Command

Tab Set Command
The Tab Set command sets the width in spaces that the CodeView
debugger fills for each tab character. The default tab is eight spaces. You
might want to set a smaller tab size if your source code has so many lev­
els of indentation that source lines extend beyond the edge of the screen.
This command has no effect if your source code was written with an edi­
tor that indents with spaces rather than with tab characters.

Keyboard

You cannot set the tab size by using a keyboard command.

Dialog

To set the tab size with a dialog command, enter a command line with the
following syntax:

#<number>

The number is the new number of characters for each tab character. In
window mode, the screen is redrawn with the new tab width when you
enter the command. In sequential mode, any output of source lines reflect
the new tab size.

Example

>.
32: IF (X (I)) .LE. X(J)) GOTO 301
>#4
> .
32: IF (X(I)) .LE. X(J)) GOTO 301
>

In the example above, the Source Line command (.) is used to show the
source line with the default tab width of eight spaces. Next the Tab Set
command is used to set the tab width to four spaces. The Source Line
command then shows the same line.

12-14 The Codeview Debugger

Option Command

Option Command
The Option command allows you to view the state of options in the
Option menu (Save Output, Bytes Coded, and Case Sense), and to turn
any of the these options on or off.

For each different kind of source module that you debug, there is a
different set of default settings. However, the use of the Option command
overrides any of these settings.

Keyboard

To view the state of the Options menu with a keyboard command, press
<ALT>o to open the Options menu. Each option is then displayed. Those
options that are turned on have a double arrow immediately to the left.
Options that are turned off have no double arrow.

To change one of the Option settings, press the letter key corresponding to
the option’s mnemonic. This reverses the state of the option. (An option
that was on is turned off and vice versa.) You can also reverse an option
by moving the highlight down with the arrow key, and then pressing
<RETURN> .

Dialog

To view or change options with a dialog command, enter a command line
with the following syntax:

O [<option> [+ I -]]

In the above display, option is one of the following characters: F, B, C, or
3. If used, there must be no spaces between the character and the O.
These characters correspond to options as shown below:

Using CodeView System-Control Commands 12-15

Option Command

Command Correspondence

OF Save Output option

OB Bytes-Coded option

OC Case-Sense option

O All options

The O form of the command (all options) takes no arguments. It simply
displays the state of all four options. The other forms of the command
(OF, OB, and OC) can be used either with no arguments (in which case
they simply display the state of the option) or they can take the argument
+ o r- .

The + argument turns the option on. The - argument turns the option off.

Examples

>o
Save Output on
Bytes Coded on
Case Sense off
>0F
Save Output on
>0F-
Save Output off

In the example above, the 0 and OF commands are used simply to view
the current state of an option. The OF- command modifies an option and
then reports the results of the modification.

The dialog version of the Option command is particularly useful for
redirected CodeView commands (which cannot access menus) and for
making CodeView startup with certain options. For example, the follow­
ing shell-level command line brings up CodeView with the Bytes Coded
off:

CV /c"OB-" test

This command line could be put into a shell script for convenient execu­
tion.

12-16 The Codeview Debugger

Redirection Commands

Redirection Commands
The CodeView debugger provides several options for redirecting com­
mands from or to devices or files. Furthermore, the debugger provides
several other commands, which are relevant only when used with
redirected files. The redirection commands and related commands are dis­
cussed in the following sections.

Keyboard

None of the redirection or related commands can be executed with key­
board commands.

Dialog

The redirection commands are entered with dialog commands, as shown
in the following sections.

Redirecting CodeView Input

Syntax

< devicename

The Redirected Input command causes the CodeView debugger to read
all subsequent command input from a device, such as another terminal or
a file.

Examples

></dev/ttyla

The example above redirects commands from the device (probably a
remote terminal) designated as /dev/ttyla to the CodeView terminal.

Using CodeView System-Control Commands 12-17

Redirection Commands

x i n f ile . txt

The example above redirects command input from file infile.txt to the
CodeView debugger. You might use this command to prepare a Code­
View session for someone else to run. You create a text file containing a
series of CodeView commands separated by carriage-return-line-feed
combinations or semicolons. When you redirect the file, the debugger
executes the commands to the end of the file. One way to create such a
file is to redirect commands from the CodeView debugger to a file (see
the section “ Redirecting CodeView Input and Output”) and then edit the
file to eliminate the output and add comments.

Redirecting CodeView Output

Syntax

[T]>[>] <devicename>

The Redirected Output command causes the CodeView debugger to write
all subsequent command output to a device, such as another terminal, a
printer, or a file. The term “ output” includes not only the output from
commands, but the command characters that are echoed as you type them.

The optional T indicates that the output should be echoed to the Code­
View screen. Normally, you want to use the T if you are redirecting out­
put to a file, so that you can see what you are typing. However, if you are
redirecting output to another terminal, you may not want to see the output
on the CodeView terminal.

The second greater-than symbol (optional) appends the output to an exist­
ing file. If you redirect output to an existing file without this symbol, the
existing file is replaced.

12-18 The Codeview Debugger

Redirection Commands

Examples

>>/dev/ttyla

In the example above, output is redirected to the device designated as
/dev/ttyla (probably a remote terminal). You might want to enter this
command, for example, when you are debugging a graphics program and
want CodeView commands to be displayed on a remote terminal while
the program display appears on the originating terminal.

>T>outfile.txt

>>/dev/tty

In the example above, output is redirected to the file outfile.txt. You might
want to enter this command in or^er to keep a permanent record of a
CodeView session. Note that the optional T is used so that the session is
echoed to the CodeView screen as well as to the file. After redirecting
some commands to a file, output is returned to the console (terminal) with
the command >/dev/tty.

>T>>outfile.txt

If, later in the session, you want to redirect more commands to the same
file, use the double greater-than symbol, as in the example above, to
append the output to the existing file.

Redirecting CodeView Input and Output

Syntax

= <devicename>

Using CodeView System-Control Commands 12-19

Redirection Commands

The Redirected Input and Output command causes the CodeView
debugger to write all subsequent command output to a device and simul­
taneously to receive input from the same device. This command is practi­
cal only if the device is a remote terminal.

Redirecting input and output works best if you start in sequential mode
(using the -T option). The CodeView debugger’s window interface has
little purpose in this situation, since the remote terminal can act only as a
sequential (nonwindow) device.

Example

>=/dev/ttyla

In the example above, output and input are redirected to the device desig­
nated as /dev/ttyla. This command would be useful if you wanted to
enter debugging commands and see the debugger output on a remote ter­
minal, while entering program commands and viewing program output on
the terminal where the debugger is running.

Commands Used with Redirection
The following commands are intended for use when redirecting com­
mands to or from a file. Although they are always available, these com­
mands have little practical use during a normal debugging session.

Command Action

Comment (*) Displays comment

Delay (:) Delays execution of commands from a redirected file

Pause (") Interrupts execution of commands from a redirected
file until a key is pressed.

12-20 The CodeView Debugger

Redirection Commands

Comment Command

Syntax

*<comment>

The Comment command is an asterisk (*) followed by text. The Code­
View debugger echoes the text of the comment to the screen (or other
output device). This command is useful in combination with the redirec­
tion commands when saving a commented session, or when writing a
commented session that is redirected to the debugger.

Examples

> T > o u t p u t .t xt
>* Dump first 20 bytes of screen buffer
>D # B 8 0 0 :0 L 20
B 8 0 0 : 0000 54 17 6F 17 20 17 72 17 65 17 74 17 75 17 72 17 T.o. .r.e.t.u.r.
B800 : 0010 6E 17 20 17 n. .

In the example above, the user is sending a copy of a CodeView session to
file output.txt. Comments are added to explain the purpose of the com­
mand. The text file contains commands, comments, and command output.

* Dump first 20 bytes of screen buffer
D #B800:0 L 20

< /dev/tty

The example above illustrates another way to use the Comment com­
mand. You can put comments into a text file of commands that are exe­
cuted automatically when you redirect the file into the CodeView
debugger. In this example, an editing program was used to create the text
file called input.txt.

Using CodeView System-Control Commands 12-21

Redirection Commands

xinput . txt
>* Dump first 20 bytes of screen buffer
>D #3800:0 L 20
B800 :0000 54 17 6F 17 20 17 72 17 65 17 74 17 75 17 72 17 T.o. .r.e.t.u.r.
B800:0010 6E 17 20 17 n. .

></dev/tty

When you read the file into the debugger by using the Redirected Input
command, you see the comment, the command, and then the output from
the command, as in the example above.

Delay Command

Syntax

The Delay command interrupts execution of commands from a redirected
file and waits about half a second before continuing. You can put multiple
Delay commands on a single line to increase the length of the delay. The
delay is the same length, regardless of the processing speed of the com­
puter.

Example

: ;* That was a short delay...
::::: ;* That was a longer delay...

In the example above from a text file that might be redirected into the
CodeView debugger, the Delay command is used to slow execution of the
redirected file.

12-22 The Codeview Debugger

Redirection Commands

Pause Command

Syntax

The Pause command interrupts execution of commands from a redirected
file and waits for the user to press a key. Execution of the redirected com­
mands begins as soon as a key is pressed.

Example

* Press any key to continue

In the example above from a text file that might be redirected into the
CodeView debugger, a Comment command is used to prompt the user to
press a key. The Pause command is then used to halt execution until the
user responds.

>* Press any key to continue
>"

The example above shows the output when the text is redirected into the
debugger. The next CodeView prompt does not appear until the user
presses a key.

Using CodeView System-Control Commands 12-23

Index

Special Characters

* (asterisk)
Comment command 12-21

@ (at sign)
Redraw command 12-7
register prefix 5-11

: (colon)
Delay command 12-22
operator 5-12

- (dash)
option designator 2-4, 2-14

= (equal sign)
Redirected Input and Output command 12-20

! (exclamation point), Shell Escape command
12-12

/ (forward slash)
Search command 12-10

> (greater-than sign)
CodeView prompt 3-2, 3-4,4-2
Redirected Output command 12-18

< (less-than sign), Redirected Input command
12-17

(number sign)
NAN (not a number) 7-14
Tab Set command 12-14

. (period)
Current Location command 10-10
operator

C 5-3
" (quotation marks)

Pause command 12-23
(underscore), symbol names, used in 5-4

8087
coprocessor 11-4

A

A (Assemble command) 11 -2
Accessing bytes 5-15
Addresses

arguments, used in 5-12
Arguments

CodeView
dialog commands 4-0, 4-4

program 2-12
routine 3-20, 10-12

ASCII characters, displayed by CodeView 7-15,
7-16

Assemble command 11-2
Assembly

address 11-2
mode

display options 3-17
example 10-5
setting 10-2
using 2-19

programs
rules 11-3

At sign (@)
Redraw command 12-7
register prefix 5-11

B

-B CodeView option 2-15
Backslash (\), Screen Exchange command 12-8
BC (Breakpoint Clear) 8-5
BD (Breakpoint Disable command) 8-7
BE (Breakpoint Enable command) 8-9
<BKSP> key 4-2
Black-and-white display

CodeView 2-15
BL(Breakpoint List command) 8-10
BP

Breakpoint Set command
Breakpoint Clear command

Run menu selection 3-15, 8-11
using 8-5

Breakpoint Disable command 8-7
Breakpoint Enable command

using 8-9
Breakpoint List command 8-10
Breakpoint Set command

F9 function key 3-7, 3-23
using 8-2

Breakpoints
conditional 3-16, 8-1
defined 8-0
deleting 8-5
displaying 3-2
listing 8-10

Buffer, CodeView command 3-5,4-3
BY operator 5-15

I - i

I n d e x

c
-C CodeView option 2-16
C compiler
C language

CodeView, case sensitivity 5-4
constants 5-5
expressions 5-2
operators 5-2
programs

CodeView, preparing for 2-6
compiling and linking 2-6
macros 2-6
writing source 2-6

strings 5-6
symbols 5-4

Calling conventions 10-12
Calls

menu 3-19
tracing into 6-3

Case sensitivity
C symbols 5-4
CodeView 3-18,4-4

cc
CodeView, used with

Macro Assembler example 2-9
cc driver 2-7
CodeView

case sensitivity 4-4
colon (:) operator 5-12
command line 2-12
compatibility 2-18
compiler options

-Od 2-5
-Zd 2-4
-Zi 2-4
-Zi, -g 2-4

defaults 7-14
display
executable files 2-3, 2-5, 2-11
interrupt program execution 6-2
language support

C 2-6
Macro Assembler 2-8

link option (-g) 2-19
linker option (-g) 2-5
menus
mixed-language support 2-9
operators

BY 5-15
DW 5-17
memory 5-15
WO 5-16

CodeView (continued)
optimization, effect of 2-5
options

-B 2-15
-C 2-16
command line, used in 2-12
summary 2-14
-T 2-17

parameters, program 2-12
period operator (.) 5-3
restrictions 2-2
source-module files, location of 2-11, 3-11
start-up

command line 2-12
commands 2-16
file configuration 2-11

symbolic information 2-5
symbols 5-4
syntax, summary 12-2
variables, local 5-1

CodeView menus
Colon (:)

Delay command 12-22
operator 5-12

Command buffer 3-5,4-3
Command line

CodeView 2-12
Commands, CodeView

Assemble 11-2
Breakpoint Clear

Run menu selection 3-14, 3-15
using 8-5

Breakpoint Disable 8-7
Breakpoint Enable 8-9
Breakpoint List 8-10
Breakpoint Set

F9 function key 3-7, 3-23
using 8-2

calls
tracing through 6-3

command buffer 4-3
Comment 12-21
Current Location 10-10
cursor

move down 3-5
move up 3-5

Delay 12-22
dialog commands 3-4,4-1, 9-10
Display Expression 7-2
Dump

ASCII 7-16
Bytes 7-15
default size 7-13,7-15

Enter

1-2

I n d e x

Commands, CodeView (continued)
Enter (continued)

ASCII 11-11
Bytes 11-10
default size 11-9
Double Words 11-14
Integers 11-11
Long Reals 11-16
Short Reals 11-15
Unsigned Integers 11-12
using 11-6
Words 11-13

<ESC> key 3-10
Examine Symbols 7-9
Execute 3-15
Exit 3-11
Expression 7-2
Go

F5 function key 3-7, 3-22
Goto

F5 function key 3-7
grow (increase) window size 3-4
Help 3-22

FI function key 3-6
menu 3-20
using 12-2
window mode 3-20

input, redirecting 12-17
mnemonic keys 3-9
Option 12-15
Output 3-12
output, redirecting 12-18
Pause 12-23
Program Step

F10 function key 3-8, 3-23
Quit 12-3
Radix

setting 12-4
Redirected Input and Output 2-16, 12-17,

12-20
Redraw 12-7
Registers

F2 function key 3-6, 3-22
View menu selection 3-12

Restart
Run menu selection 3-15

Screen Exchange
F4 function key 3-7, 3-22
using 12-8

scroll
page down 3-5
page up 3-5
to bottom 3-6
to top 3-5

Commands, CodeView (continued)
Search

menu selections 3-13
using 12-9

Set Mode 3-12
dialog command 10-2
F3 function key 3-6, 3-22
View menu selection 3-12

Shell Escape
File menu selection 3-11
using 12-12

Stack Trace
display contents 3-19
using 10-12

T (Trace command) 6-4
Tab Set 12-14
tiny (reduce) window size 3-5
Trace

F8 function key 3-7, 3-22
using 6-3

Tracepoint
sequential mode 3-23

tracing through calls 6-3
Unassemble 10-4
View 10-7
Watch

menu selections 3-16
sequential mode 3-23

Watch Delete 3-17, 9-15
Watch Delete All 3-17
Watch expression 9-3
Watch List 3-23,9-17
Watchpoint

sequential mode 3-23
setting 9-7
Watch menu selection 3-16

window 4-1
Comment command 12-21
Comment lines, source code 8-2
Compiler errors

and CodeView 2-5
Compiler options

-Od 2-5
-Zd 2-4
-Zi 2-4
-Zi, -g 2-4

Conditional breakpoints 3-16, 8-1, 9-0
Constant numbers

C 5-5
<CTLxBREAK> 3-8,6-2
<CTL>f (Find command) 3-13
<CTL>g (grow window size) 3-4
<CTL>s 4-2
<CTL>t (tiny window size) 3-5

1-3

I n d e x

<CTL>u (Delete Watch command) 3-17
<CTL>w (Add Watch command) 3-16
Current Location command 10-10
Current location line 3-2
Cursor, CodeView 3-2, 4-2
cv, location of 2-11
cv.hlp, location of 2-11, 3-20

D

D (Dump command) 7-15
DA (Dump ASCII command) 7-16
Dash (-)

option designator 2-4, 2-14
DB (Dump Bytes command) 7-15
Decimal notation

C 5-5
Defaults, CodeView

address-range size 7-14
assembly-mode format 3-17
expression format 9-3
radix 10-12, 12-4, 12-5
segment 5-12
start-up behavior 2-12
type

Dump command 7-15
Enter command 11-9
Watch command 9-4, 9-13

 3-8,4-2,6-2,9-9
Delay command 12-22
Dialog

box 3-4, 3-9
commands 3-4,4-1, 9-10
window 3-2

Display, CodeView
assembly inode 10-2, 10-5
<CTL>g (grow window size) 3-4
<CTL>t (tiny window size) 3-5
cursor 3-2, 4-2
dialog box 3-4, 3-9
display mode 6-1, 10-8
DOWN ARROW key (cursor down) 3 5
<END> key (scroll to bottom) 3-6
highlight 3-4
<HOME> key (scroll to top) 3-5
menu bar 3-3
message box 3-4, 3-9
output screen 12-8
<PgDn> key (scroll page down) 3-5
<PgUp> key (scroll page up) 3-5
register window 3-3, 3-6
scroll bar 3-4

Display, CodeView (continued)
separator line 3-2
set mode command 3-6
UP ARROW key (cursor up) 3-5
window 3-2, 3-4

Display Expression command 7-2
Display mode 6-1, 10-5, 10-8
Double Words (units of memory) 5-17
DOWN ARROW key (cursor down) 3-5
Drivers

cc 2-7
Dump address 7-14
Dump commands

ASCII 7-16
Bytes 7-15
default size 7-15
using 7-13

DW operator 5-17

E

\ (backslash). Screen Exchange command 12-8
E commands

Enter 11 -9
EA (Enter ASCII command) 11-11
EB (Enter Bytes command) 11-10
Echo, redirection, used with 12-18
ED (Enter Double Words command) 11-14
El (Enter Integers command) 11-11
EL (Enter Long Reals command) 11-16
<END> key (scroll to bottom) 3-6
Enter commands

ASCII 11-11
Bytes 11-10
default size 11 -9
Double Words 11-14
Integers 11-11
Long Reals 11-16
Short Reals 11-15
Unsigned Integers 11-12
using 11-6
Words 11-13

Equal sign (=)
Redirected Input and Output command 12-20

Errors, logic and syntax 2-5
ES (Enter Short Reals command) 11-15
<ESC> key 3-10
EU (Enter Unsigned Integers command) 11-12
EW (Enter Words command) 11-13
Examine Symbols command 7-9
Exclamation point (!), Shell Escape command

12-12

1-4

I n d e x

Executable files
CodeView

format 2-3, 2-5
start-up, required for 2-12

command line, used in 2-12
location of 2-11

Execute command 3-15
Exit, command 12-12
Exit, Shell command 3-11
Expression evaluation

CodeView requirement 5-1
Display Expression command 7-2

Expressions
C5-2
regular

searches, used in 3-13, 12-9
Extensions

auto option 5-1

F

FI key (Help) 3-6, 3-22, 12-2
F10 key (Program Step) 3-8, 3-23
F2 key (Register) 3-6, 3-22
F3 key

(Set source/assembly) 3-22, 10-2
(Set source/mixed/assembly) 3-6

F4 key (Screen Exchange) 3-7, 3-22
F5 key (Go) 3-7, 3-22
F6 key (switch cursor) 3-4
F7 key (Goto) 3-7
F8 key (Trace) 3-7, 3-22, 6-3
F9 key

(Breakpoint Clear) 8-5
(Breakpoint Enable) 8-9
(Breakpoint Set) 3-7, 3-23

Far-retum mnemonic (RETF) 11 -3
Files

menu
Exit 3-11
Open 3-10
Shell 12-12
Shell command 3-11

Format specifiers
prefixes 7-4
summary 7-2

Forward slash (/)
Search command 12-10

Function keys
FI (Help) 3-6,3-20, 12-2
F10 (Program Step) 3-8, 3-23
F2 (Register) 3-6, 3-22

Function keys (continued)
F3 (Set source/assembly) 3-22, 10-2
F3 (Set source/mixed/assembly) 3-6
F4 (Screen Exchange) 3-7, 3-22
F5 (Go) 3-7, 3-22
F6 (switch cursor) 3-4
F7 (Goto) 3-7
F8 (Trace) 3-7, 3-22,6-3
F9 (Breakpoint Clear) 8-5
F9 (Breakpoint Enable) 8-9
F9 (Breakpoint Set) 3-7, 3-23

Functions
examining 7-9
viewing 3-20

G

-g compiler option 2-4
-g link option 2-19
-g linker option 2-5
Go command

F5 function key 3-7, 3-22
Goto command

F5 function key 3-7
Graphics programs, debugging 12-19
Greater-than sign (>)

CodeView prompt 3-2, 3-4,4-2
Redirected Output command 12-18

H

H (Help command) 12-2
Help command

FI function key 3-6, 3-22
help file 3-20
Shell command, used with 12-2
using 12-2
view menu selection 3-12
window mode 3-20

Help menu
About command 3-20
described 3-20

Hexadecimal notation
C 5-5

Highlight 3-4
<HOME> key (scroll to top) 3-5

1-5

I n d e x

I

Identifiers
C 5-4

Immediate operand 11-4
Include files

assembly programs 2-8
C programs 2-6
CodeView 2-2

#IND (indefinite) 7-14
Indentation 12-14
Indirect register instructions 11-4
Indirection levels, CodeView 5-4
INF (infinity) 7-14
Infinity 7-14
Instruction, current 6-3
Instruction-name synonyms 11-4
Interrupt, system calls 6-3

K

K (Stack Trace command) 10-13

L

Labels, finding 3-14, 12-9
Less-than sign (<), Redirected Input command

12-17
Levels of indirection, CodeView 5-4
Line numbers, in source-level debugging 5-10
Local variables 2-4,5-1, 9-2
Logical error 2-5
Long reals

entering with CodeView 11-16
Loops

tracepoints, used with 9-14
watchpoints, used with 9-9

Lvalue 9-10

M

Memory (continued)
operators 5-15

Menu bar 3-3
Menus, CodeView

Calls
using 3-19

defined 3-3
File

Exit 3-11
Open 3-10
Shell 12-12
Shell command 3-11

Help
About selection 3-20
using 3-20

keyboard, selection from 3-8
Options

Bytes Coded 3-18
Case Sense 3-18
Save Output 3-18

Run
Clear Breakpoints 3-15
Execute 3-15
Restart 3-15
Start 3-14

Search
Find 3-13, 12-9
Label 3-14,12-9
Next 3-14,12-9
Previous 3-14, 12-9

View
Assembly 3-12
Mixed 3-12
Output 3-12
Registers 3-12
Source 3-12

Watch
Add Watch 3-16, 9-3
Delete All 3-17
Delete Watch 3-17
Tracepoint 3-16,9-11
Watchpoint 3-16,9-7

Message box 3-4, 3-9
Mixed mode 10-2
Mixed-language programming, CodeView 2-9
Mnemonic keys, CodeView 3-9
Modules, examination 7-9

Macro Assembler
assembling and linking 2-9
older versions, using CodeView with 2-18

Macros, in C programs 2-6
Memory

1-6

I n d e x

N

N (Radix command) 12-5
NAN (not a number) 7-14
Number sign (#), Tab Set command 12-14

o

Q

Q (Quit command), CodeView 12-3
Quotation marks (")

Pause command 12-23

O (Option Command) 12-15
Object ranges, arguments, used as 5-14
Octal notation

C 5-5
-Od compiler option 2-5
Operators

C 5-2
memory, CodeView 5-17

Optimization, and CodeView 2-5
Option command 12-15
Output screen, CodeView 12-8
Output, View menu selection 3-12

P

Parameters, program 2-12
Pass count 8-3, 8-11
Pause command 12-23
Period (.)

Current Location command 10-10
operator

C 5-3
<PgDn> key (scroll page down) 3-5. 10-8
<PgUp> key (scroll page up) 3-5
Precedence of operators

C 5-2
Prefixes, format specifiers, used with 7-4
printf type specifiers 9-7, 9-11
Procedure calls

tracing into 6-3
Procedures 7-9, 10-12
Program Step command

F10 function key 3-8, 3-23
Prompt, CodeView, (>) 3-2, 3-4, 4-2
Protected-mode (80286) mnemonics 10-5, 11-2
Public symbols

Macro Assembler 2-18

R

Radix
command

using 12-4
current

C 5-5
effect on display 3-20
effect on unassemble 10-12

Ranges, arguments, used as 5-13
Redirection

commands 12-17
start-up commands, used in 2-16

Redraw command 12-7
Register

argument, used as 5-11
command

F2 function key 3-6, 3-22
View menu selection 3-12

prefix (@) 5-11
variables 5-3, 9-11
window 3-3

Regular expressions
searches, used in 3-13, 12-9
searching for 3-13

Relational expressions 9-7
Restart command

Run menu selection 3-15
Restrictions, CodeView 2-2
Routines

and CodeView 10-12
arguments, value of 10-12

Run menu
Clear Breakpoints 3-15
Execute 3-15
Restart 3-15
Start 3-14

1-7

I n d e x

s
S (Set Mode command) 10-2
Screen

exchange
command 12-8
F4 function key 3-7, 3-22

movement commands 3-5
Scroll bar, defined 3-4
Search

command
menu selections 3-13
using 12-9

menu
Find 3-13, 12-9
Label 3-14, 12-9
Next 3-14, 12-9
Previous 3-14, 12-9

Separator line 3-2
Sequential mode

CodeView 3-0
redirection, used with 12-20
starting 2-17

Set Mode command
dialog command 3-12
F3 function key 3-6, 3-22
using 10-2
View menu selection 3-12

Shell Escape command
File menu selection 3-11
using 12-12

Short reals
CodeView, entering with 11-15

Souice
file, line-number arguments, used with 5-10
mode 10-2

Source-module files, location 2-11.3-1!
Stack Trace command

displav contents 3-19
using 10-12

Stan-up
code 2-13
file configuration. CodeView 2-11

Strings
arguments

C 5-6
mnemonics I ! -3

Subprogram calls
tracing into 6-'

Symbols
C 5-4
examining 7-9
underscore (_). in names 5 -1

Syntax
CodeView summary 12-2
error 2-5

System calls
tracing into 6-3

<SYSTEM-REQUEST> key 3-8

T

-T CodeView option 2-17
T (Trace command) 6-4
Tab Set command 12-14
Text strings, finding 3-13, 12-9
Trace command

dialog command 6-3
F8 function key 3-7, 3-22

Tracepoint command
sequential mode 3-23
setting 9-10
Watch menu selection 3-16

Tracepoint, defined 9-10
Two-color graphics display, CodeView 2-15
Type specifiers 9-3, 9-7, 9-11

u
U (Unassemble command) 10-4
Underscore (__), symbol names 5-4
UP ARROW key (cursor up) 3-5

V

V (View command) 10-7
Variables

locai 2-4.5-1.9-2
View

command 10-7
menu

Assembly 3-! 2
Mixed 3-12
Output 3 12
Registers 3-i 2
Source 3 12

1-8

I n d e x

w
W commands

Watch 9-3
Watch List 3-23,9-17

WAIT instruction 11 -4
Watch

expression statement 9-3
memory statement 9-3
menu

Add Watch 3-16
Delete All 3-17
Delete Watch 3-17
Tracepoint 3-16
Watchpoint 3-16

statements
commands 9-0
defined 3-3
deletion 9-15
listing 9-17
summary 9-0

window 3-3, 9-1
Watch command

menu selections 3-16
sequential mode 3-23
setting Watch statement 9-3

Watch Delete All command 3-17
Watch Delete command 3-17, 9-15
Watch List command 3-23, 9-17
Watchpoint command

sequential mode 3-23
setting 9-7
Watch menu selection 3-16

Watchpoint, defined 9-7
Window commands 3-4, 4-1
Window mode

CodeView 3-0
WO operator 5-16
Words (units of memory) 5-16
WP (Watchpoint command) 9-8

Y

Y (Watch Delete command) 9-15

z

-Zd compiler option 2-4
-Zi compiler option 2-4

X

X (Examine Symbols command) 7-9

1-9

Suggestions - Criticisms - Corrections
Are you happy with this manual ? If so, let us know.
If not, help us improve it by informing us
• where you have noticed mistakes
• where the content is unclear.

From:
i ----------

Name

Company/department

Address

Postal Code

Telephone :

Local Siemens
office

Contact person.

Siemens AG
Dl STQM2
Manualredaktion
Otto-Hahn-Ring 6
Postfach 830951

D-8000 München 83

From:

Name

Company/department

Address

Postal Code

Telephone {______________ 1

Local Siemens
o f f i c e ________________

Contact person.

Siemens AG
Dl ST QM2
Manualredaktion
Otto-Hahn-Ring 6
Postfach 830951

D-8000 München 83

Manual title: SINIX Open Desktop V1.0, U5760-J-Z95-1-7600

Page Problem:

A

I am □ a programmer I use the manual □ frequently
□ a system administrator □ occasionally for reference
□ an ordinary user □ _________________ __
□ __________________

Manual title: SINIX Open Desktop V1.0, U5760-J-Z95-1 -7600

Page Problem:

lam D a programmer
□ a system administrator
□ an ordinary user
□ _ ______________

I use the manual □ frequently
□ occasionally for reference
□ ________________-

	CodeView Debugger
	Contents
	1 Introduction
	2 Getting Started
	3 The CodeView Display
	4 Using Dialog Commands
	5 CodeView Expressions
	6 Executing Code
	7 Examining Data and Expressions
	8 Managing Breakpoints
	9 Managing Watch Statements
	10 Examining Code
	11 Modifying Code or Data
	12 Using CodeView System-Control Commands
	Index
	Bottom

