

SINIX Open Desktop

Development System
Device Driver Writer’s Guide

Edition April 1990 (SINIX Open Desktop V1.0)

Order-No. U5753-J-Z95-1 -7600
Printed in the Federal Republic of Germany
7760 AG 2900.5 (9700)

SINIX® Open Desktop
Copyright© Siemens AG 1990
All right reserved

Base:
OPEN DESKTOP™
© 1983 - 1989 The Santa Cruz Operation, Inc.

Delivery subject to availability;
right of technical modifications reserved.

Published by Bereich
Daten- und Informationstechnik
Postfach 830951, D-8000 München 83

Siemens Aktiengesellschaft

SCO UNIX* System V/386

Development System

Device Driver Writer’s Guide

The Santa Cruz Operation, Inc.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.
All rights reserved.
Portions © 1989 AT&T.
All rights reserved.
Portions © 1983, 1984, 1985, 1986, 1987, 1988, 1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE -
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)
(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DEARS 52.227-7013. “ CONTRACTOR/ MANUFACTURER’' IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET. P.O. BOX 1900. SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of AT&T.
COMPAQ DESKPRO 386 and COMPAQ DESKPRO 386/20 are trademarks of
Compaq Computer Corporation.
COMPAQ and COMPAQ DESKPRO are registered trademarks of Compaq Computer
Corporation.

SCO Document Number: 6-26-89-6.0/3.2.0

Contents

1 Introduction

About This B ook 1 -1
The Driver Development Package 1 -5

2 Writing a Device Driver

Introduction 2-1
Kernel Environment 2-13
Memory Management 2-19
Direct Memory Access (DMA) 2-28
Kemel Routine Summary 2-36
Driver Development Considerations 2-39
Sample Drivers 2-43

3 Block Device Drivers

Introduction to Block Devices 3-1
Example Block Driver Code 3-14

4 Character Device Drivers

Introduction to Character Devices 4-1
Example Character Driver Code 4-14
Code Fragments from a Line Printer Driver 4-15
Code Fragments rrom a Terminal Driver 4-21

5 Video Adapter Device Drivers

Writing a Video Adapter Driver 5-1
Video Driver Structures 5-8
Adapter Driver Routines 5-15

6 Compiling and Linking Drivers

Compiling, Configuring, and Linking Drivers 6-1
Driver Debugging 6-6
Notes On Preparing a Driver for Binary Distribution 6-11

-l-

7 Writing a SCSI Driver

Introduction 7-1
Driver Overview 7-5
Request Block 7-8
Writing a SCSI Device Driver 7-11
Installing a SCSI Device or Host Adapter Driver 7-18
Host Adapter Driver 7-20

8 Line Disciplines

Introduction 8-1
tty Structure 8-7
The xxproc Routine 8-12
ttiocom Routine 8-16

9 STREAMS

Overview 9-1
STREAMS Driver Overview 9-4
STREAMS Loop Back Driver 9-8
STREAMS Test Program 9-16

A Migrating XENIX Drivers to the System V Operating System

Introduction A-1
Binaries A-2
Change in the Device Number A-3
Changes in Structure Definitions A-4
Changes in Kernel Routines A-8
Obsolete Kernel Routines A-12
General Notes A-14
Converting IDD s A-17

B Sample Block Driver

Overview B-l
Block Driver Header File B-2
Block Driver B-4

C Section (K) Manual Pages

Manual Page Overview C-1

Chapter 1

Introduction

About This Book 1 -1
What is a Device Driver? 1-1
Scope 1-1
Audience 1-2
Contents Overview 1-2
Naming Conventions 1-4

Guide Conventions 1-4
Section (K) Manual Pages Conventions 1-4
Header Files Conventions 1-4

The Driver Development Package 1-5

About This Book

About This Book
This guide describes how to write or maintain a device driver. Included
are descriptions of the various driver categories that you are likely to see
in the device driver spectrum. In addition, the section (K) manual pages
at the end of this guide provide a set of routines you can use to write a
driver.

This guide provides you with the instructions for creating and installing a
device driver. Information is also given about the routines that you write
and those provided for you. The routines provided in System V are all
contained in your binary copy of System V; no further installation is
required to create and install a driver using System V.

NOTE: If you are porting drivers from XENIX, read Appendix
A, "Migrating XENIX Drivers to the System Y Operat
ing System" for more information.

What is a Device Driver?
For each peripheral device (such as a terminal) there must be a device
driver to provide the software interface between the device and the oper
ating system. A device driver is:

• A set of routines that communicates with a hardware device and
provides a uniform interface to the operating system kernel.

• A manager of data flow and control between a user program and a
peripheral device.

• A user-defined section of the kernel that allows a program or a
peripheral device to appear as a Idev device to the rest of the
computer’s software.

Scope
This guide provides information about developing or maintaining a driver
using only the SCO System V/386 operating system software; applicabil
ity to other vendor’s System V operating system software is outside the
scope of this guide.

Introduction 1-1

About This Book

Audience
This guide is meant as a reference for the experienced C Language devel
oper who wishes to use previously unsupported hardware. Writing a de
vice driver is complex. You must have a technical reference for both the
device you wish to support and for the computer containing the driver and
device.

Contents Overview
The contents of this guide are as follows:

Chapter 1 — Introduction
A description of this book.

Chapter 2 — Writing a Device Driver
A description of driver development information. This
chapter includes both conceptual and practical informa
tion about writing or maintaining a device driver. The
chapter discusses driver concepts, a description of the
kernel environment, how to manage memory, how to use
direct memory access, considerations for driver develop
ment, a summary of the kernel routines in section (K),
and a description of the sample drivers provided in the
software that accompanies this guide.

Chapter 3 — Block Device Drivers
A description of the routines that you write when creat
ing or maintaining a block device driver. A block de
vice driver handles interaction with disk and tape de
vices, for example, a floppy disk drive. Included in this
chapter are fragments from a sample disk driver.

Chapter 4 — Character Device Drivers
A description of the routines that you write when creat
ing or maintaining a character device driver. A charac -
ter driver handles interaction with devices such as termi
nals and printers. Included in this chapter are fragments
from two character drivers, a line printer driver and a
terminal driver.

1-2 Device Driver Writer’s Guide

About This Book

Chapter 5 — Video Adapter Device Drivers
A description of the routines that you write when creat
ing or maintaining a video adapter driver. A video
driver works with monochrome (mono), CGA, EGA, and
VGA controllers on a computer to provide the func
tionality necessary to display intricate graphics and/or
high-speed displays.

Chapter 6 — Compiling and Linking Drivers
A description of how to make your driver source code
part of the System V kernel. Described are the methods
for compiling a driver and how to use the Link Kit to
create a new kernel. A section on debugging shows how
to get a driver to run correctly, and what to do if it does
not.

Chapter 7 — Writing a SCSI Driver
A description of the small computer systems interface
(SCSI) adapter code supplied with your system and how
to write a SCSI driver to interact with this code.

Chapter 8 — Line Disciplines
A description of the concepts and procedures for writ
ing, maintaining, and installing a line discipline.

Chapter 9 — STREAMS
A description of STREAMS followed by a complete
working driver for a loop back device.

Appendix A — Migrating XENIX Drivers to System V
A description of how to port XENIX drivers to System V.

Appendix B — Sample Block Driver
A sample working floppy disk driver and its header file.

Appendix C — Section (K) Manual Pages
The manual pages for the section (K) kernel routines.

Introduction 1-3

About This Book

Naming Conventions
Naming conventions for the information shown in this book is described
in the following tables.

Guide Conventions

The following conventions are used in this guide to show computer
names:

structures,
structure members,
filenames, pathnames

Italics

routine names,
section (K) routine names

Bold

code ex am p les C o u r ie r

Section (K) Manual Pages Conventions

In the manual pages in section (K), the following conventions are used:

structures,
structure members,
filenames, pathnames

Bold

routine names,
section (K) routine names

Italics

code ex am p les C o u r i e r

The two exceptions to these guidelines for section (K) are that the Syntax
section is all in bold, and the See Also section is all in regular type.

Header Files Conventions

In System V, header files are located in the /usrlinclude/sys directory. In
this guide, references to header file pathnames are abbreviated to
sy si filename.h. For example, video adapter driver information is located
in the sys/vid.h header file.

1-4 Device Driver Writer’s Guide

The Driver Development Package

The Driver Development Package
The driver development package supplied with your software includes
these parts:

• Device Drivers Writer’s Guide — This guide provides information
about developing and installing a driver, and includes the section
(K) manual pages at the end of the book. All section (K) manual
pages are accessible with the man(C) user command when the K
section is specified, for example, use man K Intro to list the
introduction section (K) manual page.

• Driver Development Sample Drivers — A series of working
drivers provided with the SCO System V/386 development system
software. Use these drivers and the installation script provided in
the software to examine a driver, install it, and test its use on your
system. These drivers contain examples of the routines and con
cepts described in this guide. The sample drivers are described in
more detail in Chapter 2 in the "Sample Drivers" section.

• SCO System V/386 Documentation and Online Manual Pages —
The operating system and development system manual pages and
reference manuals that are provided with your system documenta
tion. Of special interest to driver developers are the following
manual pages that can be listed with the man(C) user command,
and relevant manuals:

Driver Development

• Line Discipline Drivers — termio(M)

• Video Drivers — multiscreen(M), mvdevice(F),
screen(HW)

• STREAMS Drivers — clone(STR), streamio(STR), and the
STREAMS System manual.

Installation and Debugging

• Installation — cc(CP), configure(ADM), custom(ADM),
fixperms(ADM), masm(CP), mdevice(M), mtune(F), sde-
vice(F), stune(F)

• Debugging — crash(ADM), ps(C)

Introduction 1-5

Chapter 2

Writing a Device Driver

Introduction 2-1
Driver Design 2-2
Routines in a Device Driver 2-3
Block and Character Devices 2-7
Differences Between a Driver and an Application Program 2-9
Special Device Files 2-11

Kernel Environment 2-13
What is an Interrupt? 2-13
Modes of Operation 2-13
Context Switching 2-14
The System-Mode Stack 2-14
Task-Time Processing 2-16
Interrupt-Time Processing 2-16
Interrupt Routine Guidelines 2-18

Memory Management 2-19
Physical Memory Allocation 2-19
Allocating Dynamic Memory 2-20
Memory-Mapped I/O Allocation 2-24
Allocating Memory to Share With User Processes 2-25

Direct Memory Access (DMA) 2-28
Allocating Memory for DMA Physical I/O 2-28
DMA Routines Provided In the Kemel 2-30
DMA Transfer 2-31

Managed DMA (Non-Queued) 2-31
Queued DMA Transfer 2-33

Kemel Routine Summary 2-36

Driver Development Considerations 2-39
What To Do and What Not To Do 2-39
How Data is Passed To a Driver 2-41
Sharing Interrupt Vectors 2-42

Sample Drivers 2-43

Introduction

Introduction
This chapter contains background information about writing a device
driver. This information is useful for writing a driver for the first time or
maintaining an existing driver. Both conceptual and practical informa
tion are presented including descriptions of drivers and a high-level
description of the kernel routines used when coding a driver.

The topics described in this chapter are:

• Introduction — Concepts of driver development

• Kernel Environment — Aspects of the kernel that support driver
development

• Memory Management — Concepts and practical information
about managing memory in a driver

• Direct Memory Access (DMA) — How to use DMA in a device
driver

• Kernel Routines Summary — Routines that are used to write or
maintain a device driver; an introduction to the section (K) rou
tines described in detail at the end of this book

• Driver Development Considerations — Ideas to consider when
developing a driver, information about parameters are passed to a
driver, and a description of how to share interrupts in a driver

• Sample Drivers — Descriptions of the sample drivers provided
with your development system software

If you are an experienced driver writer, you may wish to skip the concep
tual information at the front, but the rest of the chapter should be read for
applicability to your driver.

NOTE: If you are porting drivers from XENIX, read Appendix
A, "Migrating XENIX Drivers to the System V Operat
ing System" for more information.

Writing a Device Driver 2-1

Introduction

Driver Design
The implications of a device driver are numerous, some are as follows:

• When writing a device driver, you are given an opportunity to
design a section of the kernel to fit your needs.

• Because you are adding to the existing supported kernel, ensure
that the code you write does not corrupt existing applications or
alter the way the kernel behaves.

• Only use the functionality described in this guide; this ensures that
your driver is portable and one that can be supported readily.

• Always backup existing software before implementing a device
driver.

• Provide tunable parameters to give end users access to the capabil
ities and features of your driver. In addition, provide I/O control
capability and document parameters and controls both in the code
and in the header file.

• Thoroughly document a device driver including its purpose and
operation.

• Thoroughly test your driver to ensure that it works correctly.

• Create an installation package so that your driver can be installed
easily. Ensure that the installation process is well documented and
tested.

2-2 Device Driver Writer’s Guide

Introduction

The following diagram shows the relationship between a driver and the
operating system:

Routines in a Device Driver

A driver consists of kernel routines and driver routines. Kernel routines
are provided in the operating system and are described in the section (K)
manual pages that are in this guide.

Driver routines are routines that you write. The names of these routines
have a two-part format: a two-, three-, or four-character prefix that is
unique to your driver, and a routine name suffix. In this guide, this format
is expressed as xxroutine-name, for example, the driver read routine is
called xxread. "xx" is a generic prefix name. Your driver’s prefix should
be unique and relevant to the device you are accessing, such as ramd for
a RAM disk driver.

Driver routines are described in many of the chapters in this guide by the
type of device that the driver is servicing — block, character, video, or
STREAMS.

Writing a Device Driver 2-3

Introduction

A device driver is written for either block or character devices:

— Data conveyed between a block device and the operating system is
buffered in uniform blocks of bytes.

— Data conveyed from a character device is in arbitrary amounts and
may or may not be buffered.

Examples of block devices are disk or tape drives. Examples of character
devices are terminals, printers, and network cards.

The following table describes the routines that you need to write when
creating a driver for a block, character, or video driver (however, not all
driver routines are required by all drivers):

Block Device Driver Routines

Routine Purpose
xxopen Start access to a block device
xxclose End access to a block device
xxstrategy Perform buffered I/O with device
xxprint Display message on the console
xxread Perform raw reads on a block device
xxwrite Perform raw writes to a block device
xxioctl Perform I/O control commands
xxbreakup Size I/O request into usable chunks
xxd proc Perform queued DMA request
xxinit Initialize the device when the system boots
xxintr Handle interrupt from a block device
xxstart Access device-speci fic I/O ports

The first set of routines in this table are entry points required by the ker
nel. The second set is routines used in physical I/O. The third set is
optional driver-specific routines. Block device driver routines are
described in Chapter 3, "Block Device Drivers." The xxd_proc routine is
described the "Direct Memory Access (DMA)" section in this chapter.

2-4 Device Driver Writer’s Guide

Introduction

Character Device Driver Routines

Routine Purpose
xxopen Start access to a character device
xxclose End access to a character device
xxread Transfer data from internal buffers to user space
xxwrite Transfer data from user space to internal buffers
xxioctl Perform I/O control commands
xxinit Initialize the device when it is booted
xxhalt Executed when the computer is shut down
xxintr Executed when an interrupt occurs
xxstart Interact directly with the device
xxpoll Executed on each clock tick
xxproc Perform device-dependent line discipline I/O

The first set of routines is the entry point routines required in a character
driver. The other set is optional driver-specific routines. Character de
vice driver routines are described in Chapter 4, "Character Device
Drivers." The xxproc routine is described in Chapter 8, "Line Discip
lines."

Video Adapter Device Driver Routines

Routine Purpose
xxadapctl Support video adapter functionality
xxclear Clear any portion of the screen
xxcmos Determine if a video card is the primary video card
xxcopy Copy data between screen areas
xxinit Called when the system is booted
xxinitscreen Called each time a multiscreen is created
xxioctl Perform I/O control commands
xxpchar Write data beginning at the current cursor position
xxscroll Scroll the screen up or down
xxscurs Update hardware cursor position
xxsgr Support ANSI terminal functionality

All routines shown in this table are entry points for a video adapter device
driver. These routines are described in Chapter 5, "Video Adapter Device
Drivers."

Writing a Device Driver 2-5

Introduction

SCSI Device Drivers

Routine Purpose
xxopen Start access to SCSI devices
xxclose End access to SCSI devices
xxstrategy Manage buffers to be sent or

received from devices
xxprint Display error messages
xxread Build read request blocks
xxwrite Build write request blocks
xxioctl Control adapter-speci fic features
xxstart Send request blocks to the dev

ice and process any returned
error information

The first set of routines are the entry point routines that are required for a
device driver. The second set of routines perform physical I/O. The last
set are specialized routines. SCSI device driver routines are described in
Chapter 7, "Writing a SCSI Driver."

SCSI Host Adapter Drivers

Routine Purpose
xxopen Start access to a SCSI bus
xxclose End access to a SCSI bus
xxioctl Control adapter-speci fic features
xxintr Handle SCSI bus interrupts
xxinit Initialize SCSI access
xx entry Common entry point to SCSI

device drivers for communica
tion with a host adapter driver.

The first set of routines are the entry point routines that are required for a
host adapter driver. Other entry point routines normally used in a block
driver are stubbed out so that NULL is returned when called. The second
set are specialized routines. Host adapter driver routines are described in
Chapter 7, "Writing a SCSI Driver."

2-6 Device Driver Writer’s Guide

Introduction

STREAMS Drivers

Routine Purpose
xxopen Open a STREAMS device or module
xxclose Discontinue device or module access
xxput Put messages on a queue
xxsrv Service messages on a queue

The first set of routines replace the entry point routines for the STREAMS
character driver. The second set of routines are used when accessing
messages on a STREAMS read or write queue. STREAMS drivers are
described in Chapter 9, "STREAMS."

Block and Character Devices

In general, any device with a randomly addressable set of fixed-size
records is a block device; any other type of device is a character device.
For example, disk drives are block devices, while terminals and line
printers are character devices. The operating system presents a uniform
interface to user programs by coding device dependent issues inside the
device drivers. User processes can access devices just as they would a
regular file. The kernel and the associated device driver perform the
necessary transformations to change a user request, such as read(S), to an
I/O request for the device. Thus, character and block devices look alike to
the user program.

Character Device Drivers

Character-device drivers can communicate directly with the user pro
gram. Driver access begins when a user program requests a data transfer
of some number of bytes between a section of its memory and a specific
device. The operating system transfers control to the appropriate device
driver. The user program supplies the parameters for the request to the
device driver, which in turn performs the work. Thus, the operating sys
tem has minimal involvement in the request; the data transfer is a private
transaction between the user process and the device driver.

Writing a Device Driver 2-7

Introduction

Block Device Drivers

Block device drivers require more involvement from the operating system
to perform their tasks. Part of this reason for this additional involvement
is because block devices transfer data in fixed-size blocks, and are usually
capable of random access. (The device does not need to be capable of
random access.)

In a block driver, data transferred between the kernel and the device
resides in BSIZE blocks of memory that are managed by buffer headers;
together, the blocks of memory form a linked list. Each buffer header is
an instance of the buf data structure. A field in the buffer header points to
the data blocks and to the next and last elements of the linked list. Other
fields provide status information. A complete description of the buf struc
ture is provided in Chapter 3, "Block Device Drivers."

The buffer mechanism simplifies the overhead on a driver. Because the
buffers are provided in the system, specific allocation and memory man
agement routines are not necessary. In addition, the system transfers the
data to and from the device.

Special kernel routines are provided for block drivers that handle each
function described in the previous list.

Frequently, block devices support character interfaces for performing raw
I/O in which data is transferred between a user program and the device
without relying on a buffering mechanism. Raw I/O is typically used by
disk backup programs that copy data sector by sector from a disk.

The two factors that distinguish block I/O from character I/O are:

• The size of data-transfer requests from the kernel to the device is
always a multiple of the system-block size (called BSIZE), regard
less of the size of the user process’ original request. A single
user-process request can generate many system requests to the
driver. BSIZE is defined in sys/fs/sSparam.h and varies by file sys
tem size. The device’s physical block size may be smaller than
BSIZE, in which case the device driver initiates multiple physical
transfers to transfer a single logical block.

• Transfers are never done directly into a user process’ memory area.
They are always staged through a pool of BSIZE buffers, commonly
known as the buffer cache. Program I/O requests are satisfied
directly from the buffers. System V instructs the device driver to
read and write from the buffers as necessary. The kernel manages
these buffers to perform sendees such as blocking and unblocking
of data and disk cache access.

2-8 Device Driver Writer’s Guide

Introduction

Differences Between a Driver and an Application
Program

Writing a device driver is quite different from writing an application pro
gram. When you write a driver, you are confronted with different
methods for writing the code, the routines are different, and the method
for making the driver "executable" is different. About the only similarity
is that both a driver and an application are written in the C programming
language. Writing a driver is a complex task. Not only do the differences
make the task difficult, but the tools for creating a driver demand a great
deal of innovation and persistence.

A device driver varies from an applications program in these ways:

• Output file — An application is compiled into an executable a.out
file that has boundaries that are observed by the kernel when the
program executes. Similarly, the whole kernel is an a.out file and
the driver is only a part of this larger file. When a driver is com
piled, it is only taken as far as an object file. When the kernel is
linked, all the drivers and the other parts of the kernel such as the
scheduler, the swapper, and so on, are collected together to form
the new kernel.

• Format — An application is a series of routines subordinate to a
main routine. A driver, conversely, does not have a main routine.
The kernel acts as the main routine and a driver acts as a subrou
tine of the larger kernel "program."

• Execution —- An application is executed sequentially by a single
process. Because a driver is a part of the kernel and is always
available, it is executed by many processes. Driver code must be
written to be able to respond to many requests. While applications
create an image of the executable image for each caller, kernel
requests work with one image of the kernel that is not replicated.

Writing a Device Driver 2-9

Introduction

• Routine execution — Subroutines that comprise an application
program are executed from user space sequentially by instructions
in the main routine and routines subordinate to it. Most of the rou
tines in a driver are executed on demand when system calls are
executed from user programs. After a driver is installed and a de
vice file created to address the driver, a user program opens the de
vice file. The kernel takes the open request and passes it to the
driver. The driver contains a routine for opening the device. The
driver’s open routine contains the code you define for opening the
device and for initializing access to the device. Similarly, a driver
contains routines for reading, writing, I/O control commands, and
for closing access to the device being addressed.

• Timing — An application program executes its system calls and
routines without having to be concerned with how long an instruc
tion takes to execute or having to be concerned with the interaction
of interrupts. In a driver, each kernel routine can affect the timing
of a driver, especially kernel routines that write to the console like
cmn_err(K) and printf(K). In addition, the driver timing can even
change when routines such as these are removed.

• Interrupts — In a driver, if the device for which the driver is writ
ten has interrupts, you should provide two mechanisms for han
dling interrupts. The first is an interrupt handling routine that you
write. Secondly, you should protect code that must not be inter
rupted by surrounding the critical code section with the necessary
spI(K) kernel routines. These kernel routines let you selectively
mask out interrupts from other devices.

• Re-entrant processing — On a multitasking system like System V,
the kernel is capable of tracking many processes at the same time.
Each individual process has its own local variables; hence, device
driver code should always be reentrant. This means that the driver
must be capable of being invoked again before the previous
request has been satisfied. For instances when kernel execution
must be limited to a single process, see the discussion of interrupt
support routines in this chapter.

2-10 Device Driver Writer’s Guide

Introduction

Special Device Files
To a System V user, a device can be treated like a file. A file consists of
an ordered sequence of bytes. Files that contain data are called regular
files, and files that represent devices are called special device files. Each
file has at least one name; the names of special device files are, by con
vention, placed in the directory named /dev.

Each special device file has a device number that uniquely identifies the
device. The device number consists of two parts, the major number and
the minor number. The major number tells the kernel which device driver
will handle requests for this special file. The minor number can be used
by the driver to provide more information about a particular unit of the
devices that it controls (such as the unit number). For example, all the
ports on an eight-port serial card have the same major device number, but
they would have eight separate minor device numbers. The minor device
number part of the device number usually encodes the unit number. How
ever, a device driver can dedicate some of the bits in the minor number to
indicate special options, such as to use double density in the case of a
floppy disk.

Examining the Device Number

Before the user process can request input or output, the process must first
have opened a special device file. A special device file looks like an ordi
nary disk file, except that it was created by the utility program,
mknod(C), described in the User’s Reference manual. The file appears in
a directory and has owner and permission fields, as does any regular file,
but it contains no file size data. Instead, it has the major and minor num
bers associated with it. The Is -1 command displays numbers like these:

brw----- 2 sysinfo sysinfo 1, 15 Aug 21 05:34 /dev/bdOl
crw-rw-rw- 1 bin bin 5, 0 Aug 7 18:20 /dev/ttyla
crw-rw-rw- 1 bin bin 5, 1 Aug 10 17:33 /dev/ttylb

Here the /dev/ttyla file has a major device number of 5 and a minor de
vice number of 0 . /dev/ttylb has a major device number of 5 and a minor
device number of 1. The /dev/hdOl file has a major device number of 1
and a minor device number of 15.

Writing a Device Driver 2-11

Introduction

Accessing a Device

When a user process opens the special device file, the kernel recognizes
that it is a special device file and uses the major number to index a table
of entry points. If the special device file designates a character device, it
uses the cdevsw table; if it designates a block device, it uses the bdevsw
table. These two tables are defined in the sysiconf.h file.

When a user process uses the open(S) or fopen(S) system service on a
file, the kernel calls the device driver’s open entry-point through the
cdevsw or bdevsw table, supplying the device number (both the major and
minor numbers) as an argument. Upon entry to the xxopen driver routine,
the driver uses the minor(K) macro to extract the minor number from the
device number.

These special device files should have meaningful names and should
reside in the /dev directory.

2-12 Device Driver Writer’s Guide

Kernel Environment

Kernel Environment
This section briefly discusses a few functional aspects of the operating
system: modes of operation, context switching, system-mode stack use,
task-time processing, and interrupt-time processing. It also describes the
services provided to device drivers by the kernel, and the rules that device
drivers are required to obey.

What is an Interrupt?
An interrupt is a signal from a device that tells the kernel that an action
has been completed or that the sending process or device requires
immediate attention. The System V kernel depends on interrupts to sched
ule processing efficiently. Interrupts are processed by a programmable
interrupt controller (PIC) on the mother board. When a device is ready to
perform an action, a signal is sent to the CPU.

Modes of Operation
When a process is executing instructions in the user program, it is said to
be in user mode', when executing kernel instructions, it is said to be in
system mode or kernel mode. An interrupt causes the kernel to switch to
system mode if it was in user mode and passes control to the interrupt
routine of the appropriate device driver. After processing the interrupt,
control of the process returns to the kernel picking up processing where it
was at the time the interrupt occurred. The code that was executed to
handle the interrupt is called interrupt-time processing. All other pro
cessing, execution in user programs, and execution in the kernel resulting
from system calls, is called task-time processing.

Although all processes originate as user programs, a given process may
run in either user or system mode. In system mode, a process executes
kernel code and has privileged access to I/O devices and other services. In
user mode, a process executes users’ program code, and has no special
privileges. In fact, System V provides a high level of protection for pro
cesses in user mode to prevent a program from inadvertently damaging
the system or other programs. A process voluntarily enters system mode
when it makes a system call. If an interrupt or trap is received while a
process is executing in user mode, the process will switch into system
mode to handle the interrupt.

Writing a Device Driver 2-13

Kernel Environment

Upon return from an interrupt to user mode, the process may lose control
of the CPU, and the kernel may decide to switch control, or context
(described in the following section), to a different process.

Context Switching
Context switching occurs when the kernel transfers control of the CPU
from the currently executing process to a different process.

The kernel makes a context switch whenever:

• The process’ time slice expires (only in user mode).

• The user process makes a system call that cannot be completed
immediately, as in the case of a read from a slow input device,
such as a disk or a tape. When this happens, the device driver may
call the kernel routine sleep(K).

• An interrupt is received that lets a sleeping process continue. This
case will occur when the process has been sleeping at high priority,
waiting for the interrupt handler to call wakeup(K) to indicate a
completed I/O request. If the priority at which the process is sleep
ing is higher than that of the currently running process, a context
switch occurs.

In system mode, a context switch is always voluntary, by way of a call to
the sleep routine. Interrupts can still arrive while the kernel is in system
mode (they can be locked out for short periods of time, if necessary), but
when the interrupt-service routine returns, control passes back to the
interrupted process.

The System-Mode Stack
Each process has a special area of memory associated with it, called the
u-area. The u-area is not directly accessible to a user process (that is, it is
not in the process’ user address space). It contains the information the
kernel needs to manage the process while it is running, and contains space
for a system-mode stack. The u-area is an instance of the user structure
defined in sys/user.h.

When any process makes a system call, its registers are preserved in its
u-area, and the stack pointer is moved to the beginning of its system
mode stack area. When the system call has completed, the registers are
restored from the u-area, the stack pointer is restored to the process’
stack, and control is returned to the process. Since each process in the

2-14 Device Driver Writer’s Guide

Kernel Environment

system has its own u-area, a system running n processes has n user stacks
and n system stacks.

The System V operating system (and therefore the task-time portions of
the device drivers) uses a fixed-size, kernel stack in the u-area. In System
V, the size of this per-process stack is 4096 bytes.

Interrupt service routines (xxintr and subordinate routines) make use of
whatever system stack was set up at the time of the interrupt. If the inter
rupt occurs while the currently running process is in user mode, the
interrupt-service routine will have the entire kernel stack area for its use.
However, if the interrupt takes place while the process is in system mode,
the interrupt-service routine will be sharing the kernel stack area. For this
reason, interrupt-service routines must minimize their frame-variable
declarations, keeping their frame requirements to as few bytes as possi
ble. In addition, all interrupt routines should be kept as small as possible.
This is especially true when an interrupt routine is servicing many inter
rupts. The longer the interrupt routine, the greater the chance that an
interrupt will be missed.

The following diagram depicts the relationship of the stack, task-time and
interrupt-time processing:

User space User process

Kernel space
User area -------System
(u-area) J mode

stack

Driver
xxread
xxwrite routines
x x i o c 11 . . .
xxstrategy

Task time
(user context)

interrupt
service routines

Interrupt time
(interrupt context)

A
V

Device

Writing a Device Driver 2-15

Kernel Environment

Task-Time Processing
The operating system manages a number of processes, each correspond
ing to a user program. Any particular process may be running in system
mode or user mode at any given time. When a process makes a system
call to request a kernel service, the process switches to system mode and
starts running kernel code. When the kernel is executing code at the
request of a user program, it is doing task-time processing.

Each time a driver is invoked, it services only the specific system call
that the user process requested. The active process’ u-area is mapped into
the kernel’s address space during task-time, so when kernel code is exe
cuting it has information about the request and process that it is serving.

Often the kernel cannot service a request immediately. The request may
require I/O, or the request itself could be an instruction to wait a while.
When a process in system mode sleeps (blocks), awaiting some event, the
system scheduler schedules some other process, which may be in either
user or system mode. The system continues operations but switches from
the execution of a sleeping process to an active one.

I/O requests from user processes are passed by means of system calls to
the device driver. Some parameters of the request, such as byte count and
transfer address, are kept in the u-area. The task-time portions of the
driver can reference and perhaps modify the u-area, since the currently
running process’ u-area is mapped into the kernel’s address space at that
time.

Interrupt-Time Processing
When a device interrupt is received, the tasks performed as a result of the
interrupt are referred to as interrupt-time processing. When an interrupt
arrives, any of the active processes on the system may be executing. That
is, the system may be running in the context of any current active process.
This process may or may not be the process that is expecting the interrupt.
In fact, it is highly unlikely that the currently running process will be the
process expecting the interrupt.

Even if the incoming interrupt signals the completion of a user process’
request, the interrupt-service routine can take no direct action. Typically,
a process will be asleep, waiting for I/O, and the interrupt from the device
indicates that the I/O request is complete or that data is ready to be
transferred. The interrupt routine needs to transfer the data to kernel
buffers and wakeup the user process. Then, at task time, the data can be
transferred to the user process. Any data or status that the interrupt-
service routine wants to return to the task-time portion of the driver (and

2-16 Device Driver Writer's Guide

Kernel Environment

hence to the requesting user program) must also be passed by means of
static variables.

The task-time portion of the device driver keeps the automatic variables
in its system-mode stack, which is in the u-area. This u-area is not
mapped into the kernel’s address space at interrupt time. In this case, the
u-area there belongs to another process. The correct u-area might even be
out on the swap disk. Thus, the interrupt-service routine must never
attempt to store data in the u-area or in user memory, and the I/O device
itself must not transfer directly into the user’s memory area. An interrupt
routine can make no assumptions about the u-area.

Usually, this is not a problem. Character devices typically make use of
small, system-supplied buffers called character lists (clists). Block de
vices use BSIZE buffers in the system-buffer pool. The task-time portion
of the driver transfers the data from the buffers into user memory as fol
lows:

• Typically, the task-time portion of the device driver issues a
sleep(K) call after it makes the initial I/O request.

• The interrupt-service routine (xxintr) must decide if an interrupt is
valid and any action to be taken as a result of the interrupt. The
interrupt routine must be able to decide if it needs to notify the
task-time portion of the driver as opposed to issuing another I/O
command.

• If the task time portion of the driver should be notified, the inter
rupt routine puts any status information into static data and issues a
wakeup(K) call to the task-time portion.

• The interrupt-service routine then returns to the operating system,
which in turn returns control to the interrupted context.

• The system scheduler eventually reschedules the running process
so that the newly awakened process is executed.

• The task-time portion of the device driver finds that it has returned
from the sleep call and that there are status and data bytes waiting
in static variables.

Access to static variables that can be modified at interrupt time is inter
locked with the spl(K) system priority level routines. These routines
raise the interrupt priority of the CPU so that interrupts that might cause
data or a data structure to change are locked out until the splx(K) routine
is called. This period must be kept as short as possible.

Writing a Device Driver 2-17

Kernel Environment

Device drivers that use the standard interfaces to the kernel have a
method for passing information between the interrupt-time portion of a
driver and the task-time portion. Standard I/O device drivers for block de
vices note the outcome of the data transfer in the buffer headers associ
ated with the transfer. The header for the list of transfers that the driver is
working on is defined in sys/iobuf.h. The header for the buffer associated
with the current transfer is defined in sys/buf.h. Standard character I/O
device drivers use the per-device tty structure (defined in sys/tty.h) to pass
information about the I/O request. The tty structure is described in
Chapter 8, "Line Disciplines."

Interrupt Routine Guidelines
An interrupt service routine operates in a more restricted environment
than a task-time routine, since it cannot make any assumptions about the
state of the system or about the presence of particular user processes or
user data in system memory.

The key things to remember are that the user process is mapped into
memory, and its u-area is mapped into the kernel’s address space, only at
task time. Task-time processing occurs whenever the user-program code
is executing (user mode) or the operating system is executing and per
forming services for the program (system mode).

Do not assume that the u-area is mapped into memory during the execu
tion of an interrupt routine. No interrupt routine, nor any routine that may
be called at interrupt time, may make any reference to user memory, the
u-area, or nonstatic memory locations. This means that the task-time por
tion of the driver must not try to pass addresses of its stack (automatic)
variables and buffers to devices and interrupt-service routines. Those
locations are valid only when that individual user process is executing.

Device Driver Writer’s Guide

Memory Management

Memory Management
This section describes the many memory management techniques avail
able in System V. Much of the information is taken from the section (K)
manual pages and is grouped together by purpose. Topics described in
this section are:

• Allocating Physical Memory at Initialization Time

• Allocating Dynamic Memory

• Designating an Address for Memory-Mapped I/O

• Memory Shared With User Processes

Physical Memory Allocation
Drivers that require physically contiguous memory must allocate it when
the system is brought up to ensure adequate supply. The memget(K) rou
tine is provided for this purpose.

The memget(K) Routine

The memget routine is used to obtain permanent, contiguous memory for
a driver at initialization time. It is intended for memory that the driver
will always have and use. Its argument is the size of memory in pages.
Use the macro btoc(K) to calculate the number of pages from the number
of bytes required, memget’s return value is also in pages, so the ctob(K)
macro must be used to translate the return value of memget into a kernel
virtual address. Both ctob and btoc are defined in the file sys/sysmacros.h.

NOTE: This routine is intended for use in a driver’s initialization
routine (xxinit) for use before any user processes have
been run. Calling memget in other routines can result in a
caller sleeping forever. If physically contiguous memory is
not immediately available, memget goes to sleep with pe
riodic checks, but never rearranges pages to obtain the
memory. Thus if the memory is not available during a
check, memget returns to sleep, and may never find avail
able memory.

Writing a Device Driver 2-19

Memory Management

The return value is a page frame number of the first frame of memory
allocated.

The memget(K) Routine Syntax

int
memget(pages)
int pages;

pages is the number of pages to allocate.

To obtain a permanent 4K buffer for a driver, use the following code state
ment:

char *always;
always = (char *) ctcb (iremget (btoc (0x1000))) ;

Allocating Dynamic Memory
In the course of a driver’s activity it must allocate and release memory for
use as buffers and local storage. The sptalloc(K) and sptfree(K) routines
are provided for allocating and releasing dynamic memory.

The sptalloc(K) Routine

The sptalloc routine is used to obtain temporary memory for use by de
vice drivers, or to map a device into memory for memory mapped I/O.
Memory is obtained from the system’s virtual memory pool. When the
driver is through with the memory, the memory should be released via
sptfree(K). This routine returns a virtual address usable by any kernel or
driver routine.

Memory allocated by sptalloc is not physically contiguous, sptalloc han
dles all links between segments. The memory allocated is never swapped
out, and it only belongs to the driver that allocated it until the memory is
freed with sptfree(K).

2-20 Device Driver Writer’s Guide

Memory Management

The usual way to call sptalloc is as follows:

vaddr = sptalloc (p a g e s , PG_P, 0, 1) ;

Where vaddr is the returned virtual address, pages are the number of
requested pages, PG_P indicates "page present," 0 (zero) indicates that
requested memory is taken from the kernel memory pool, and 1 indicates
to return immediately if memory is not available.

Because sptalloc may sleep, it should not be used at interrupt time
(xxintr routine).

This routine returns the kernel virtual address of the memory allocated.
NULL is returned if map space is not available. The size of the map is
determined by the constant sptmap which is configurable using the Link
Kit.

Although vasbind(K) provides a more generalized method of sharing
memory between the kernel and a user process, sptalloc with mode set to
PG_P I PGJRW I PGJJS may be used instead of vasbind, but the results
are different.

A mapping performed with vasbind creates a region of memory shared
only between the kernel and a specific user process, sptalloc creates a
mapping accessible by the kernel and all processes. However, only those
processes that have been told the virtual address returned from sptalloc,
will know the address at which to access the memory.

Writing a Device Driver 2-21

Memory Management

The sptalloc(K) Routine Syntax

#include "sys/immu.h"

caddrt
sptaüoc(pages, mode, base, flag)
int pages, mode, base, flag;

The parameters are:

pages the number of requested pages

mode page descriptor table entry field mask. Possible values
are defined in sys/immu.h and are:

• PG_P — page-present bit. This flag must be
present for driver use. PG_P causes the present
bit to be set in the page table entry. The CPU
uses the present bit to differentiate between pages
that have to be faulted in and pages that are
already there.

• PG_RW — make segment usable for either read
ing or writing. If this flag is not ORed into mode,
than the segment is read-only. This flag only has
meaning when used with PG_US to indicate if a
user can access the segment for both reading and
writing. (Kernel processes can read or write any
present page whether write access is "permitted’
or not.)

• PG_US — identify owner of memory. If ORed in,
memory is allocated for a user process, if omit
ted, memory is for a kernel process. If selected,
any user process can access the page. Use with
PG_RW if write permission is required; without
PG_RW, the page is read-only. To use this capa
bility, a driver must pass the return value from
sptalloc back to the user process for it to "know"
where the memory is, but this doesn’t limit its use
to that process.

base set to 0 (zero) to allocate from previously allocated ker
nel memory, or set to an physical address pointing to
previously allocated memory elsewhere.

2-22 Device Driver Writer’s Guide

Memory Management

flag Set to 1 to return immediately if memory is not avail
able. Set to 0 (zero) to sleep until memory is available.
If only one page is being requested, and memory is not
available, sleep occurs however flag is set. When sleep
ing is requested, sptalloc sleeps with a priority of 0
(zero) and is not affected by signals.

The sptfree(K) Routine

The sptfree routine frees memory obtained from sptalloc(K). The argu
ments are the pointer returned by sptalloc, the size of the memory (same
as passed to sptalloc) and a flag which denotes whether you want this
freed memory to go back into the free page list. For drivers which use this
to free memory obtained from sptalloc, the flag must always be 1.

For example, to release the memory obtained by the sptalloc above, and
free it completely, use the following statement:

sptfree(va, npages, 1);

Writing a Device Driver 2-23

Memory Management

sptfree(K) Syntax

void
sptfree(va, npages, freeflg)
char *va;
int npages;
int freeflg;

The argument va is the virtual address returned from a previous call to
sptalloc.

The value of npages is the number of pages to free. This should be thje
same number of pages allocated by a previous call to sptalloc.

The argument freeflg indicates whether to actually free the memory' pages
or not. If freeflg is not set, the memory pages are not freed. This is used,
for example, when freeing memory-mapped I/O space.

Memory-Mapped I/O Allocation
The sptalloc(K) is used to allocate an address for memory-mapped I/O.
Refer to the description in the last section for more information about
sptalloc and its companion routine sptfree.

To use sptalloc for allocating memory-mapped I/O, use sptalloc with the
following format:

vaddr = sptalloc (1, PG_P, p h y s ic a l-a d d re ss , 1);

This requests one page that is present in the kernel at physical-address
(the base argument), and that sptalloc return immediately if memory' is
not available.

2-24 Device Driver Writer’s Guide

Memory Management

To release a memory-mapped I/O space, use sptfree(K) with the follow
ing format:

sptfree (v ir tu a l-a d d re ss , 1, 0) ;

This releases one page, but does not actually free the memory page from
kernel memory.

Allocating Memory to Share With User Processes
The vas routines are provided for allocating memory to be shared with
user processes. This type of memory allocation is frequently used for
video adapter drivers so that user processes can access memory for creat
ing screen displays.

The vas(K) Routines

These routines allow a driver to map physical memory so that it can be
read from or written to by both a driver and a calling user process. These
routines are generally used to allow user processes to directly access
video adapter memory. Memory that has been mapped using these rou
tines is visible to the kernel and to a calling process. However, the map
ping is not globally visible to all processes.

vasmalloc allocates virtual memory. Use this routine to obtain virtual
address space that is not currently in use. vasmalloc can only allocate
four megabytes of virtual address space on each call. Requests less than
this amount are rounded up to four megabytes; requests larger than this
amount cause an error to occur, vasmalloc returns an address to virtual
user memory; no actual physical memory is allocated by this routine. The
nbytes argument can be specified as 1 to allocate four megabytes, but 0
(zero) or not specifying this argument is not permissible.

vasbind binds a specified virtual address to a physical address. This rou
tine ensures that a problem will not occur with the bound memory being
swapped out and causing a page fault and panic in the kernel. Before
using vasbind, call vasmapped to determine if memory has already been
mapped for the calling process.

The physical address supplied to vasbind may be the address of an I/O
address space, for example, a memory-mapped I/O address. Or specify -1
to request that the memory be allocated from the kernel free memory
pool.

Writing a Device Driver 2-25

Memory Management

When vasbind completes, the driver must pass the virtual address back to
the user process using copyout(K) or another similar routine. Calls to
vasbind must not specify an address in the text, data, or shared data seg
ments of a user process.

The upper limit for user virtual memory is set at KVBASE; above this is
the kernel virtual address space. The virtual address supplied to vasbind
must be in user virtual memory (below KVBASE), and must not be in use
by the current process.

vasmapped determines if a mapping is already in place,

vasunbind undoes a mapping.

These routines cannot be called from a driver’s interrupt routine (xxintr).

vasbind returns -1 if an error occurs or if an error is found in u.u_error.
vasmalloc returns a virtual address, vasunbind returns -1 if an error is
found in u.u_error, or if the virtual address could not be found,
vasmapped returns the virtual address at which the supplied physical
address is bound, or 0 (zero) if the physical address is not bound.

The vas(K) Routine Syntax

int
vasbind(paddr, vaddr, nbytes)
paddrt paddr;
caddrt vaddr;
unsigned int nbytes;

caddrt
vasmal!oc(paddr, nbytes)
paddr t paddr;
unsigned int nbytes;_________

2-26 Device Driver Writer’s Guide

Memory Management

caddrt
vasmapped(paddr, nbytes)
paddr t paddr;
unsigned int nbytes;

int
vasunbind(vaddr, nbytes)
caddr t vaddr;
unsigned int nbytes;______

Parameters:

nbytes number of bytes of memory to allocate, bind, or
unbind. For vasmalloc, nbytes can be specified as
1 to allocate four megabytes, but 0 (zero) or not
specifying this argument is not permissible.

paddr Physical address at which the specified virtual
address is to be bound. When calling vasbind,
paddr can be set to -1 to indicate that the
requested user virtual memory is to be allocated.

vaddr Virtual address to bind or unbind to or from physi
cal memory

Writing a Device Driver 2-27

Direct Memory Access (DMA)

Direct Memory Access (DMA)
This section describes how to effectively use DMA routines for transfer
ring data with your system’s Direct Memory Access (DMA) controller.
After the discussion on using the DMA routines, a section is provided
describing the syntax and purpose of each DMA routine.

DMA provides a means of offloading disk I/O from the CPU to free it for
other tasks. DMA consists of a controller chip set that conveys data
between memory and a disk controller. The DMA controller contains
separate channels that are allocated, used for I/O transfer, and then
released. Because a finite number of channels exist, their use must be
managed effectively. Channels are identi fied by the number of bits in the
data path, either 8 or 16 bits. System V provides four 8-bit channels and
three 16-bit channels. The channel selected for your device depends on
the capabilities of the device itself. A driver selects a channel by hard
ware dependencies and by avoiding using a channel already reserved for
use by another device.

Refer to sys/dma.h for channel and structure definitions used when per
forming DMA.

Allocating Memory for DMA Physical I/O
When performing DMA during physical I/O, contiguous physical memory
must be allocated for storing the data being transferred to the device and
also for data that is being transferred from the device. The kernel pro
vides the db_alloc(K) routine for allocating contiguous physical memory.
The db_free(K) routine is used to release physical memory, db alloc
cannot be used in either an initialization routine, or an interrupt routine.
Use memget(K) to allocate contiguous physical memory in an initializa
tion routine. Refer to either the "Memory Management" section in this
chapter, or the section (K) manual pages for more information on these
routines.

The db alloc(K) and db free(K) Routines

The db_al!oc routine allocates one block of physically contiguous mem
ory. Contiguous memory is necessary for performing DMA transfers.
Memory for all other uses should be allocated using standard memory
allocation routines for your machine.

2-28 Device Driver Writer’s Guide

Direct Memory Access (DMA)

db_free releases the previously allocated memory.

The db alloc(K) and db free(K) Routine Syntax

int
dballoc(dv)
struct devbuf *dv;

int
dbfree(dv)
struct devbuf *dv;

dv points to an instance of the devbuf structure.

The devbuf structure is:

Type Field Description
paddr_t bufptr; /* pointer to start of buffer */
paddr_t bufend; /* pointer to end of buffer */
long size; /* size of buffer */
paddr_t head; /* put buffer data here */
paddr_t tail; /* get buffer data here */

Set size to the block size before calling db_alloc. All other fields in the
structure are read only.

db_alloc must not be used during the driver’s initialization function. The
memget(K) function can be called to obtain contiguous memory during
driver initialization. Reading from and writing to memory areas allocated
using db_alloc(K) must be performed using the db_read(K) and
db_write(K) routines only. db_read conveys data from the allocated
memory to a user process, and db_write conveys data from a user process
to the allocated memory.

The db_alloc routine returns zero (0) if no memory is available; other
wise, 1 is returned. db_free always returns zero (0) for normal comple
tion.

The following example allocates a single 120K buffer:

struct devbuf dv;
dv.size = (long) (120 * 1024) /* 120 times IK */
if (db_alloc (&dv) == 0) {

crm_err (CE_MHE, "db_alloc failed") ;
return (-1) ;

}

Writing a Device Driver 2-29

Direct Memory Access (DMA)

The following example releases previously allocated memory:

struct devbuf dv;
db_free (&dv) ;

When transferring data from the allocated memory, use db_read(K) to
transfer the data to user space, and db_write(K) to transfer data from user
space. Refer to section (K) for more information on these routines. The
dbjread and db write routines can only be used for transferring data
during physical I/O. Use at any other time causes a panic.

DMA Routines Provided In the Kernel

The kernel provides the following routines for DMA:
• db_aIIoc(K) — Allocate contiguous physical memory for a DMA

transfer
• dbfree(K) — Release allocated memory
• db_read(K) — Transfer data from allocated memory to a user pro

cess
• db_write(K) — Transfer data from a user process to allocated

memory
• dma_alloc(K) — Allocate a channel for non-queued DMA
• dma_breakup(K) — Break up a physical I/O request into block-

size units
• dma_enable(K) — Perform a DMA transfer
• dma_param(K) -— Enable a DMA channel for access
• dma_relse(K) -— Release an allocated DMA channel
• dma_resid(K) — Return the number of bytes not transferred
• dma_start(K) — Allocate a channel for queued DMA

These routines are described in the section (K) of manual pages in this
manual and their use is summarized in the sections that follow.

2-30 Device Driver Writer’s Guide

Direct Memory Access (DMA)

DMA Transfer
Two methods of DMA transfer are provided in the kernel:

• Managing DMA requests in a driver. This method requires that you
allocate a channel with dma_alloc(K). You have the choice of
using dma_alloc either at task time in which processes unable to
get a channel sleep until a channel is available, or at interrupt time
so that an immediate return occurs if a channel is unavailable.

• Queueing DMA requests so that they are executed whenever the
requested channel is free. This method is performed with the
dma_start(K) routine. dma_start requests that a channel be allo
cated, and when available, calls the driver’s xxd_proc routine that
contains other DMA kernel routines for enabling access to the
channel and for transferring data between memory and the DMA
controller. This method requires that the driver provide an
instance of the dmareq structure in which to set parameters to
describe the transfer. When the transfer is complete, the driver
then releases the channel. The queueing mechanism can be used at
task time or at interrupt time.

Managed DMA (Non-Queued)

This form of DMA transfer is summarized in the following diagram:

dma enable
I/O requests DMA

chip
set

Disk

After a channel is allocated using dma_alloc, the dma_param routine is
used to enable access to the channel. Then the actual DMA transfer is
performed by the dma_enable routine with the DMA chip set. When
done, the dma_relse routine is called to release the channel. The DMA
chip set interacts with the disk to move data to and from it directly.

The steps required to perform this type of DMA transfer are as follows:

• dma_alloc(K) is called to allocate a DMA channel to the driver.

• Once the channel has been allocated, the driver must set up the
parameters of the transfer by calling dma_param(K) with the ap
propriate parameters.

Writing a Device Driver 2-31

Direct Memory Access (DMA)

• After the parameters have been set, the driver begins the actual
transfer by calling dma_enable(K).

• After the transfer is complete, the routine dmajresid(K) may be
called to find out the amount of data that was not transferred.

• Another DMA transfer must be initiated to complete the request.
Once the transfer is completed, the driver must call dma_relse(K)
to release the channel for use by other drivers.

The following routine demonstrates the use of the DMA routines. It
accepts a buffer and a byte count, and writes the data in the buffer to
DMA channel 1 (DMA_CH1):

tinclude "sys/dra.h"

alicia_<±na(buf, count)
paddrjt buf;
lcng count;
{

lcng leftover;
if (dra_alloc (EMA_CH1, EMA_BLCCK) = 0) {

printf ("Error: oouldn't allocate DMA channel") ;
} else {

draj?aram(EMA_CHl, EJyP_Wrmode, buf, count) ;
dra_enable() ;
/* driver nust now wait for the device to signal V
/* that the DMA request is cxnplete. This can be */
/* dene via an interrupt, or status register */
/* driver routine that waits for signal from device */
wait_EMV() ;
leftover = <±ra_resid() ;
if (leftover > OL) {

printf ("Error: DMA request not carpleted, ") ;
printf("%ld bytes not transferred\n", leftover);

1
<±a_relse(IMV_CH1)'•;

}
}

2-32 Device Driver Writer’s Guide

Direct Memory Access (DMA)

Queued DMA Transfer

Using the kernel’s DMA request queue requires a slightly different pro
cedure than given in the last transfer discussion. The following diagram
depicts queued DMA:

The procedure is as follows:

• To submit a request, the driver routine calls dma_start(K), passing
to it a dmareq structure defining the DMA request. The driver’s
routine must have initialized the structure with the following infor
mation:

djchan: channel to perform the request
djnode : direction of the transfer (read or write)
d addr. physical address from which or to which to transfer
d_cnt: number of bytes to transfer
d_proc: address of the routine to do the transfer
djparams: parameter to the routine pointed to by d_proc

• The djproc element should point to the routine to be called by the
kernel when it is time to service this particular request. This rou
tine will be called with the DMA channel already allocated, so it
should call dmaparam, dma enable, dma resid if desired, and
dma_relse. The routine should be as short as possible, since it
may be called during another driver’s interrupt routine. When this
service routine is called, the kernel also passes to it a single argu
ment, a pointer to the dmareq structure given by the call to
dma_start. This pointer is then used to get the particulars of the
DMA request. •

• Note that the service routine must call dma_relse to release the
DMA channel.

Writing a Device Driver 2-33

Direct Memory Access (DMA)

The following two routines demonstrate how to queue and service a DMA
request using the kernel’s DMA queue:

♦include "sys/am_err.h"
♦include "sys/dm.h"
static long leftover; /* nunber of bytes not */

/* transferred in request */
queue_dna(buf, count)
paddr_t buf;
long count;
{

struct drareq dp;
int service_c±ta() ;
/* set up EtFi request structure */
dp.d_chan = EMA_CH2;
dp.djnode = IlFtWrirode;
dp.d_addr = buf;
dp.d_cnt = count;
dp.djproc = service_dia;
dp.djparams = "EtFi request from queue_dia";
/* Cdeue EtFV request. If the request is ocnpleted */
/* inrrediately, then return, otherwise, sleep */
/* until servioe_IMV says transfer is carplete. */
if (dra__start(&dp))

return (0) ;
else {

/* go to sleep until transfer is ocnpleted */
sleep (&leftover, PZEK>H) ;

}
if (leftover > 0L) {

am_err (CEJXMT, "Error: EtFi not ocnpleted,") ;
am_err(CEJXNT,"%ld bytes not transferred\n", leftover);

}
return (0);

}

2-34 Device Driver Writer’s Guide

Direct Memory Access (DMA)

The routines in this section interface with the DMA controller. They are
individually discussed in detail in the (K) reference manual section.

Writing a Device Driver 2-35

Kernel Routine Summary

Kernel Routine Summary
This section describes the functional categories for the kernel routines
that are provided for driver development. The following list describes
how the section (K) kernel routines are used in a driver:

• Address conversion — btoc, btoms, ctob, ktop, ptok, vtop

• Block driver routines (buffer management) — brelse, clrbuf,
disksort, getablk, geteblk, iodone, iowait, paddr, physck, physio

• Block driver routines not interacting with buffers — btoc,
btoms, cmn_err, ctob, db_alloc, dbjree, db_read, db_write, dev-
err, dma_alloc, dma ̂ breakup, dma._ena.ble, dma jparam,
dmaj'else, dma_resid, dmastart, printcfg, scsi_get_gen_cmd,
scsi_getdev, scsi_mkadr3, scsi__s2tos, scsi_s3tol, scsi_stok,
scsi_stol, scsi_swap4, sleep, splO, sp ll, spl2, spl3, spl4, spl5, spl6,
spl7, splbuf, splhi, splx, sptalloc, sptfree, suser, timeout, untimeout,
vtop, wakeup

• Character driver routines — bcopy, btoc, btoms, ctob, bzero,
canon, cmn_err, copyin, copyio, copyout, cpass, delay, deverr,
emdupmap, emunmap, fubyte, fuword, getc, getcb, getcbp, getcf,
getchar, inb, ind, inw, ktop, longjmp, major, memget, minor, outb,
outd, outw, panic, passe, printf, printcfg, psignal, ptok, putc, putcb,
putef, putchar, repinsb, repinsd, repinsw, repoutsb, repoutsd,
repoutsw, selfailure, selsuccess, selwakeup, signal, splO, sp ll, spl2,
spl3, spl4, spl5, spl6, spl7, splbuf, splcli, splhi, splni, splpp, spltty,
splx, ttclose, ttin, ttinit, ttiocom, ttiwake, ttopen, ttout, ttowake,
ttread, ttrdchk, ttrstrt, ttselect, tttimeo, ttwrite, ttxput, ttyflush,
ttywait, vasbind, vasmalloc, vasnnbind, vtop, wakeup

• Character list (clist) management — getc, getcb, getcbp, getcf,
putc, putcb, putef

• Clear memory — bzero, clrbuf

2-36 Device Driver Writer’s Guide

Kernel Routine Summary

Copy data between kernel addresses — bcopy, copyio

Copy kernel data to user space — copyio, copyout, passe, subyte,
suword, ttread

Copy user data to kernel space — copyio, copyin, epass, fubyte,
fuword, ttwrite

Delays — delay, timeout, untimeout

Direct Memory Access (DMA) — db_alloc, dbjree, db_read,
db_write, dma_alloc, dma_breakup, dma_enable, dma_param,
dma reise, dma res id, dma start

Device number conversion — major, minor

End current system call with error — longjmp

Flush the translate lookaside buffer (TLB) before reading from
or writing to an I/O port — flushtlb

Get a character from console — getchar

International character set mapping — emdupmap, emunmap

I/O port input — inb, ind, inw, repinsb, repinsd, repinsw

I/O port output — outb, outd, ouP\!, repoutsb, repoutsd, repoutsw

Memory Management — db_alloc, dbjree, db_read, db_write,
memget, sptalloc, sptfree, vasmalloc, vasbind, vasunbind

• Message display — cmn_err, deverr, printf, printefg, putchar

Writing a Device Driver 2-37

Kernel Routine Summary

• Panic the system — cmn_err, panic

• Permissions (check for super user) — suser

• Programmed I/O — piojbreakup

• select(S) access — selsuccess, sclfailure, selwakeup, ttiocom

• Set priority level (spl) — splO. spll, spI2, spl3, spl4, spl5, spl6,
spl7, splbuf, spiel i, spl hi, splni, splpp, spl tty, splx

• Sleep and wake up processes — sleep, wakeup

• Small computer systems interface (SCSI) — scsi_get_gen_cmd,
scsigetdev, scsi_mkadr3, scsi_s2tos, scsi_s3tol, scsi_stok,
scsi_stol, scsi_swap4

• Signal process(es) -— psignal, signal

• Timing — delay, timeout, untimeout

• TTY Routines — canon, ttclose, ttin, ttinit, ttiocom, ttiwake, tto-
pen, ttout, ttowake, ttread, ttrdchk, ttrstrt, ttselect, tttimeo, ttwrite,
ttxput, tty flush, ttywait

• Video adapter driver routines — DISPLAYED, viddoio, vidin-
itscreen, vidmap, vidresscreen, vidsavsereen, vidumapinit, vidun-
map

2-38 Device Driver Writer's Guide

Driver Development Considerations

Driver Development Considerations
This section provides conceptual information used when developing a
driver. The topics are:

• What To Do and What Not To Do — A description of the pitfalls
and limitations of driver development

• How Data is Passed To a Driver — A description of how informa
tion is passed from a calling user program to a device driver

• Sharing Interrupt Vectors — A description of how to share inter
rupt vectors between devices.

What To Do and What Not To Do
The following guidelines can help you avoid problems when writing a de
vice driver:

• Make interrupt time processing (xxintr routine) as short as possi
ble.

• Protect buffer and cl ist processing with the appropriate spl calls.

• Avoid busy waiting whenever possible.

• Never use floating-point arithmetic operations in device driver
code. Floating-point support is not provided in the kernel.

• If any assembly language device driver sets the direction flag
(using std), it must clear it (using cld) before returning.

• Keep the local (stack) data requirements for your driver very
small.

• In interrupt routines, ensure that the spl calls are never less than
the spl level for the device. In addition, use of spl6, sp!7, spltty,
and splhi should be kept as minimal as possible and the code they
surround should also be kept minimal because these functions
block clock interrupts. When the clock is blocked for more than a
clock tick, the accuracy of the clock is degraded.

Writing a Device Driver 2-39

Driver Development Considerations

• The user structure is read-only except for u.u_error, u.u_count,
u.u base, u.u_offset, u.u ttyp, and u.ujsegflg.

• The proc structure is completely read-only.

• The buf structure is also read-only except for b_flags, bjerror,
bjesid , and b_start. The bjiags field must be treated with care in
that values can only be ORed in or the same values ANDed out.

• Do not call these section (K) routines in an interrupt routine
(xxintr): canon, copyin, copy out, copyio, delay, fubyte, fuword,
geteblk, iowait, longjmp, physck, sleep, sptalloc, sptfree,
subyte, suser, ttclose, ttiocom, ttioctl, ttopen, ttread, ttwrite,
ttywait, or any of your driver routines that access the user struc
ture or call sleep.

• When accessing an I/O port with an address above 0x1000, call
flushtlb(K) to prevent corruption of the I/O address. In addition,
protect the flushtlb call with spl7/splx calls (both spl routines are
discussed on the spl(K) manual page). Refer to the flushtlb manu
al page for an example.

2-40 Device Driver Writer’s Guide

Driver Development Considerations

How Data is Passed To a Driver
The task-time portion of the device driver has access to the user’s u-area,
since this is mapped into the kernel’s address space. The kernel routines
that process the user process’ I/O request place information describing the
request into the process’ u-area. The following diagram illustrates how
u-area parameters are passed to a driver:

The parameters passed in the u-area are:

Parameter Contains

u.u base Specifies the address in user data to read/write
data for transfer

u.u count Specifies the number of bytes to transfer

u.u offset Specifies the 'start address within the
transfer

file for

u.u_segflg Indicates the direction of the transfer. Possible
values are 0 to indicate a transfer between the ker
nel and user data space, 1 to indicate a transfer in
kernel space between kernel addresses, and 2 to
indicate a transfer between the kernel and user
instruction space.

Writing a Device Driver 2-41

Driver Development Considerations

In addition to the parameters passed in the u-area, the kernel I/O routines
pass the device number, containing the major and minor device numbers,
as a parameter to the driver when it is called. Thus, the driver has all the
information it needs to perform the request: the target device, the size of
the data transfer, the starting address on the device, and the address in the
process’ data.

Only device drivers that do not use standard-character and block I/O inter
faces in the kernel need to examine the parameters in the u-area. Kernel
routines that provide these standard interfaces have converted the values
passed in the u-area into values that the driver expects. In the case of the
standard block I/O interface, these parameters are set in the buffer header
that describes the data transfer.

Device drivers using the standard-character I/O interface use the clist-
buffering scheme and the routines that manipulate the clist to effect the
data transfers.

Sharing Interrupt Vectors
I/O devices can only share interrupt vectors if there is a way to poll each
device using the shared vector to determine whether that device has
posted an interrupt. This feature is hardware dependent and only works
when a controller can "float" an interrupt, that is, to keep an interrupt in a
neutral state on the bus rather than holding it high or low. Use config-
ure(ADM) with the -T2 or -T3 options to establish a shared interrupt.
See the configure manual page for more information.

2-42 Device Driver Writer’s Guide

Sample Drivers

Sample Drivers
This book is designed to accompany a series of sample working drivers
that are provided with your software. The drivers are contained in
separate directories located under the /usr!lib/samples!pack.d directory.
The driver directories and files are as follows:

Directory File Description
blck blck.c Floppy disk driver described in

Appendix B
blck.h Header file
makefile Compilation makefile for this driver

exbm ev exbusmouse.c Build event structure and queue an
event

event.c Display events as they enter the
queue

exbmouse.c Example bus mouse driver
makefile Compilation makefile for this driver

exst exst.c STREAMS driver described in
Chapter 9

makefile Compilation makefile for this driver
strtest.c User program to test exst.c

exvd exvd.c CGA video driver example
m6845.c Additional routines for ex\>d.c
m6845.h Header file for m6845.h
vidloops.c Additional routines for exvd.c

When examining the video software, refer to the video(K) manual page
for more information on the video routines. The exvd.c driver calls rou
tines that are described on the video manual page.

In addition, sample installation scripts are provided in the following
directory:

I usr! lib! samples! scripts

Writing a Device Driver 2-43

Chapter 3

Block Device Drivers

Introduction to Block Devices 3-1
Character Interface to Block Devices 3-2
Block Device Driver Routines 3-4

Sorting I/O Requests and the xxtab Structure 3-6
Block Device Driver Routines Descriptions 3-7

Example Block Driver Code 3-14

Introduction to Block Devices

Introduction to Block Devices
Block devices are those that should be addressed in terms of fixed-size
blocks of data, rather than individual bytes. Disks fall into this category,
as do some magnetic tape systems. System V file systems always reside
on block devices. However, block devices do not have to be used solely in
this way.

The kernel maintains a pool of buffers, also called blocks, and keeps track
of what data is in them, and whether the buffer is dirty (has been modified
and therefore needs to be written out to disk). When a user process issues
a transfer request to a block device, the kernel buffer routines check the
buffer pool to see if the data is already in memory. If it is not, a request is
passed to the driver to get the data. The driver only sees fixed-size
requests (BSIZE bytes long) coming in from one source, regardless of the
size of the process’ I/O request. Large requests are broken down into
BSIZE blocks and handled individually, since some may be in memory
and some may not.

BSIZE is a manifest constant defined in the sys/fs/s5param.h file. This
constant varies by file system size.

When a process issues a read request, this generally translates into one or
more disk blocks. The kernel checks to see which of these is already in
memory, and requests that the driver get the remainder. The data from
each buffer filled by the driver is copied into the process’ memory by the
kernel.

In the case of a write request, the kernel copies the data from the user pro
cess’ memory into the buffer pool. If there are insufficient free buffers, the
kernel has the driver write some out to disk using a selection algorithm
designed to reduce disk traffic. When all the data is copied out of user
space, the kernel can reschedule the process. Note that all the data may
not yet be out on a disk; some may be in memory buffers, marked to be
written out at a later time.

The steps that occur in block I/O are as follows:

1. The driver gets an empty block. The kernel assigns the address
and the block number fields.

2. The xxstrategy routine converts the logical block to a physical
location on the disk (cylinder, track).

Block Device Drivers 3-1

Introduction to Block Devices

3. Sort the requests for optimal disk performance using disksort(K).

4. When disksort returns, the xxstrategy routine calls xxstart.
xxstart checks to see if the device is busy, if not, takes the next
request from the sorted queue, copies the buffer header contents
into the controller registers (cylinder, head, start sector, number of
sectors, physical address of buffer), and then sends a start-pro
cessing command to the device.

5. Wait for an interrupt to signal the completion of the transfer.

6. When the interrupt occurs indicating that the I/O request is com
pleted, signify that I/O is done with iodone(K).

7. Release completed buffers by marking them not busy. This is
accomplished by ANDing out B_BUSY from bJiags. These
buffers may be used again by the driver before eventually being
returned to the free list. The kernel handles the release and freeing
of buffers for a driver.

8. If an error occurred during I/O, send a message to the user process
(by setting u.u_error which is returned to the user in the err no
variable) and display a message on the console using cmn_err(K).

Character Interface to Block Devices
Sometimes block device drivers provide a character I/O interface as well
as one for block I/O. Characters are transferred to and from the device
without the use of buffers. The character interface to a driver is called
raw I/O or physical I/O because data is read or written without character
processing or intermediate buffering using character lists (clists) or BSIZE
blocks.

To create a character interface to a block device, a separate special device
file is made to access the device through the character device switch table
in the kernel. The character device file is created with mknod(C) and has
the same major and minor number as the block special device file for this
device. A block device driver must provide an xxread and an xxwrite
routine to provide entry points to implement character I/O.

When a block device is accessed through a character interface, data
transfer takes place directly between the device and the process’ memory
space. The driver receives the request exactly as the process sent it, for
whatever size was specified. There is no kernel support to break the job
into BSIZE blocks. Raw I/O has some advantages for certain types of pro
grams.

3-2 Device Driver Writer’s Guide

Introduction to Block Devices

Programs that need to read or write an entire device can do so more
efficiently through the character interface, since the device can be
accessed sequentially and large transfers can be used. There is also less
copying of data between buffers than is used in the block interface. Thus,
disk backup programs, or utilities that copy entire volumes, operate
through this interface.

The cost of this extra efficiency is that the process has to be locked in
memory during the transfer, since the driver has to know where to buffer
the data. physio(K), called by the xxread and xxwrite driver routines,
locks the process in memory (core) for the duration of the data transfer.

The following drawing sketches the character interface and how both the
xxread and xxwrite routines use the character interface for accessing
xxstrategy:

Block Device Drivers 3-3

Introduction to Block Devices

Block Device Driver Routines
This section describes routines that comprise the interface between the
kernel and the block device driver. Some of the following routines are
supplied by the kernel, and some must be supplied by the driver writer
within the device driver.

When writing a block device driver, you should supply the following
driver routines:

Routine Purpose
xxopen Start access to a block device
xxclose End access to a block device
xxstrategy Perform buffered I/O with device
xxprint Display a message on the console
xxread Perform raw reads on a block device
xxwrite Perform raw writes to a block device
xxioctl Perform I/O control commands
xxbreakup Size I/O request into usable chunks
xxd_proc Perform queued DMA request
xxinit Initialize the device when the system boots
xxintr Handle interrupt from a block device
xxstart Access device-speci fic I/O ports

The following kernel routines, described in the section (K) manual pages
in this guide are used in a block driver:

Routine Purpose
brels e(bp) Release buffer to free list
deverr {iobuf-ptr ,cmd,status,device) Display console error message
disksort(xxra/?, bp) Add I/O request to queue
dma_breakup(rowfm<?, bp) Size DMA data into 512-byte

blocks
getablk() Get an empty buffer
geteblkf) Get an empty buffer
iodone(hp) Signal block I/O completion
iowait(frp) Wait for block I/O completion

3-4 Device Driver Writer’s Guide

Introduction to Block Devices

Routine Purpose
paddr(Z?p) Access buffer data
physck(n£>/0c&s, rwflag) See if I/O request is valid
physio(rown>ze, bp, dev,flg) Call routine for raw I/O
pio_breakup(r0«rme, bp, size) Size programmed I/O

data into specified units

A block device appears to the kernel as a randomly addressable set of
records of size BSIZE. The kernel inserts a layer of buffering software
between user requests for block devices and the device driver. This
buffering improves system performance by acting as a cache, allowing
read-ahead and write-behind on block devices.

Each buffer in the cache contains an area for BSIZE bytes of data and has
a header associated with it of type struct buf, that contains information
about the data in the buffer. When an I/O request is passed to the task
time portion of the block device driver, all of the information needed to
handle the data transfer request has been stored in the buffer header. This
information includes the disk address, and whether a read or a write is to
be done. The file sys/buf.h describes the fields in the buffer header. The
fields most relevant to the device driver are:

Field

b Jiags

bjdev

bbcount

b_blk.no

b error

Contains

The buffer status. Always use OR when setting;
never clear. Possible values are B_BUSY (buffer is
being used), B_DONE (I/O transfer complete),
B_ERROR (error occurred during I/O), B_PHYS
(buffer header is being used for physical I/O).
(Physical I/O is also known as direct or raw I/O.)

The major and minor numbers of the device. This
field is read-only.

The number of bytes to transfer. This field is
read-only.

The block number on the device. This field is
read-only.

The error flag. Set if an error occurred during the
transfer.

b resid The number of bytes left to be transferred.

Block Device Drivers 3-5

Introduction to Block Devices

The following diagram sketches how an address of a buffer is taken from
the free buffer pool (as a result of a call to geteblk), used in the xxstra-
tegy routine, handed to disksort(K) via the xxtab structure, and finally
released:

Buffers

The driver validates the transfer parameters in the buffer header, and then
queues the buffer on a doubly linked list of pending requests.

Sorting I/O Requests and the xxtab Structure

In each block device driver, a header named xxtab (of type struct iobuf)
points to this chain of requests. The sys/iobuf.h file describes the fields in
the request queue header. The requests in the list are kept sorted using
the disksort(K) routine. The device interrupt routine takes its work from
this list.

3-6 Device Driver Writer’s Guide

Introduction to Block Devices

When a transfer request is placed in the list, the process making the
request sleeps until the transfer is completed. When the process is awak
ened, the driver checks the status information from the device interrupt
routine. Status is checked by looking at the bjerror field of the buf struc
ture. If the transfer completes successfully, returns a success code to the
kernel.

The kernel buffer routines are responsible for correlating the completion
of an individual buffer transfer with particular user process requests.

Block Device Driver Routines Descriptions
The interface between the kernel and the block device driver consists of
the routines described in the following list:

Syntax: xxinit()

Description: The xxinit routine initializes the device when the ker
nel is first booted. If present, it is called if you place
an "i" in the second column table defined in the kernel
configuration file letclconflcf.dlmdevice. The init rou
tine should display a message on the console indicat
ing that the associated device has been initialized.
(To ensure consistency in xxinit routine startup mes
sages, use the printcfg(K) kernel routine for display
ing the console message.) The xxinit routine cannot
contain calls to sleep(K), or access any user structure
fields. If timeout(K) is called, the actual timing does
not commence until the clock is initialized for use.
Do not call any of these section (K) routines in an
xxinit routine: delay, geteblk, iowait, longjmp,
physck, sleep, sptfree.

Syntax: xxstart()

Description: This routine is used to interact directly with the de
vice’s I/O ports using inb(K) and outb(K). xxstart is
often called by both task-time and interrupt-time por
tions of the driver, xxstart checks whether the device
is ready to accept another transfer request, and when
ready, starts the device, usually by sending it a control
word.

H see Drivers 3-7

Introduction to Block Devices

Syntax:

Description:

Parameters:

xxopen(dev,flag,id)
dev t dev;
int flag, id;

The xxopen routine is called each time the device is
opened. This routine initializes the device and per
forms any error or protection checking.

The following values are passed to the driver when
the driver routine is called by the kernel:

The value of dev specifies the major and minor device
numbers.

The values for flag may be:

• FAPPEND — open device for appended writes

• FEXCL — open device for exclusive access

• FNDELAY — open device without delay

• FREAD — open device for reading

• FSTOPIO — prevent further I/O (initiated by a
security feature)

• FSYNC — open for synchronous writes

• FWRITE — open device for writing

The values for id may be:

• OTYP_BLK — open device for block I/O

• OTYP_CHR — open device for raw I/O

• OTYP_MNT — open device for file system
mount •

• OTYP_SWP — open as swap device

3-8 Device Driver Writer’s Guide

Introduction to Block Devices

Syntax:

Description:

Parameters:

Syntax:

Description:

xxclose(dev, flag)
devt dev;
int flag;

The xxclose routine is called on the last close on a de
vice. xxclose is responsible for any cleanup that may
be required, such as disabling interrupts, clearing de
vice registers, and ejecting media.

The value of dev specifies the major and minor device
numbers.

Refer to the xxopen routine for the possible values for
flag-

xxstrategy(bp)
struct buf *bp;

The kernel calls the xxstrategy routine to queue an
I/O request, xxstrategy must make sure the request is
for a valid block, and then insert the request into the
queue. Usually the driver calls disksort(K) to insert
the request into the queue. The disksort routine takes
two arguments: a pointer to the head of the queue, and
a pointer to the buffer header to be inserted. Before
xxstrategy is called, the kernel assigns values to
these fields of the buf structure that are important to a
block device driver:

bp->b_un . b_addr (buffer address)
bp->b_blkno (logical block number)

The xxstrategy routine converts the logical block to a
physical location and then calls disksort(K) to sort
the requests for optimal disk performance. When
disksort returns, xxstrategy calls xxstart to see if the
device is busy. If the device is not busy, xxstart takes
the next request from the sorted queue, copies the
buffer header contents into the controller registers
(cylinder, head, start sector, number of sectors,

Block Device Drivers 3-9

Introduction to Block Devices

Parameters:

Syntax:

Description:

Parameters:

Syntax:

Description:

Parameters:

physical address of the buffer), then sends a start-pro-
cessing command to the device.

The bp argument specifies a pointer to a buffer header.

xxprinl(dev, string)
de v t dev;
char *string;

The kernel calls the xxprint routine to display a mes
sage on the console when an error occurs on a block
device. The routine need only consist of a
cmn_err(K) call and a mechanism to check for the
number of occurrences on a particular device. If a de
vice is causing repeated error messages, other actions
may be required.

The dev argument is the device number (both major
and minor device numbers).

The string argument is the string to be displayed on
the console.

xxintr(vecnum)
int vecnum;

The xxintr routine is called whenever the device
issues an interrupt. Depending on the meaning of the
interrupt, it may mark the current request as complete,
start the next request, continue the current request,
report a bad block, or retry a failed operation.

The routine examines the device status information,
and determines whether the request was successful.
The block buffer header is updated to reflect this. The
interrupt routine checks to see if the device is idle
and, if it is, starts it up before exiting.

The value of vec num is an integer that specifies the
interrupt vector number of the device that originated
the interrupt.

3-10 Device Driver Writer’s Guide

Introduction to Block Devices

Note

Often a block device driver provides a character device driver inter
face, called raw //(9, so that the device can be accessed without
going through the structuring and buffering imposed by the kernel’s
block device interface. For example, a program might wish to read
magnetic tape records containing multiple block sizes, or read large
portions of a disk directly. The use of the term raw I/O emphasizes
the unstructured nature of the action. Adding the character device
interface to a block device requires the xxread, xxwrite and xxioctl
routines.

Syntax: xxread(dev)
devt dev;

Description: The xxread routine calls physck(K) and physio(K)
with the appropriate arguments. This is the only
action xxread performs.

Parameters: The value of dev specifies the major and minor device
numbers.

Syntax: xxwrite(dev)
dev t dev;

Description: The xxwrite routine calls physck(K) and physio with
the appropriate arguments. This is the only action
xxwrite performs.

Parameters: The value of dev specifies the major and minor device
numbers.

Block Device Drivers 3-11

Introduction to Block Devices

Syntax: xxioctl(dev, cmd, arg, mode)
dev t dev;
int cmd, mode;
caddr t arg;

Description: The kernel calls the xxioctl routine when a user pro
cess makes an ioctl(S) system call for the specified
device. This routine performs hardware-dependent
functions such as parking the heads of a hard disk, set
ting a variable to indicate that the driver is to format
the disk, or telling the driver to eject the media when
the close routine is called.

Parameters: The value of dev specifies the major and minor device
numbers.

The cmd argument specifies the command passed to
the ioctl(S) system call.

The arg argument specifies the argument passed to
the ioctl system call.

The mode argument specifies the flags set on the
open(S) system call for the specified device.

3-12 Device Driver Writer’s Guide

Introduction to Block Devices

Syntax:

Description:

Parameter:

xxbreakup(bp)
struct buf *bp;

This routine is called to size the data in an I/O request
into units that are usable by the type of controller
being accessed. If the controller is a Direct Memory
Access (DMA) controller, the size is generally set to
512-byte blocks. If the controller uses Programmed
I/O (PIO), then the data is sized to an arbitrary value.
The xxbreakup routine is called from xxread or
xxwrite for performing raw I/O. When accessing a
DMA controller, call dmaJbreakup(K); when using
programmed I/O, call pio_breakup(K). If neither of
these access methods are being used, xxbreakup is
not needed. The two kernel breakup routines reformat
the data in the I/O request and then call xxstrategy to
perform raw I/O with the device.

The bp argument is a pointer to the buffer header.

Block Device Drivers 3-13

Example Block Driver Code

Example Block Driver Code
The code examples presented here are for an intelligent controller that is
attached to one or more disk drives. The controller can handle multiple
sector transfers that cross track and cylinder boundaries.

Each segment of code is followed by general comments that describe the
routines and explain key lines in the program.

IMPORTANT: These are not complete working drivers and
should not be expected to be comprehensive.
These example code fragments are meant to
demonstrate implementations of individual items
within a working driver. A complete working
driver is listed in Appendix B, "Sample Block
Driver."

For convenience, these code fragments are identified and referred to by
line numbers.

Note also that the device drivers distributed in the /etc!conflpack.d direc
tories may differ in design from those described in this document. When
writing device drivers for the target system, you should follow these
guidelines rather than examining the distributed drivers.

3-14 Device Driver Writer’s Guide

Example Block Driver Code

1 /*
2 * hd - prototype hard disk driver
3
4

*/
5 ♦include "sys/poram.h"
6 ♦include "sys/buf.h"
7 ♦include "sys/icbuf.h"
8 ♦include "sys/dir.h"
9 ♦include "sys/ccnf.h"
10 ♦include "sys/user.h"
11
12 /* disk parameters */
13 ♦define NHD 4 /* nunber of drives */
14 ♦define NPÄKES 8 /* ♦ partiticns/disk */
15 ♦define NCPD 600 /* ♦ cylinders/disk */
16 ♦define NIPC 4 /* ♦ tracks/cylinder */
17 ♦define NSPT 10 /* ♦ sectors/track */
18 ♦define NBPS 512 /* ♦ bytes/sector */
19 ♦define NSPB (BSIZE/NEPS) /* sectors/block */
20 ♦define NE3PC (NIPC*NSPT/NSPB) /* blocks/cylinder */
21 ♦define NSPC (NSPB/NBPC) /* sectors/cylinder */
22 /* addresses of ccntroller registers */
23 ♦define RBASE 0x00 /* base of all registers */
24 ♦define RQO (RBASE+0) /* cartrrand register */
25 ♦define RSTAT (RBASE+1) /* status - nonzero = error */
26 ♦define RCYL (RffiSE+2) /* target cylinder */
27 ♦define R1RK (RBASE+3) /* target track */
28 ♦define RSEE (RBASE+4) /* target sector */
29 #def ine RAEDRL. (RBASE+5) /* target mem addr lo 16 bits*/
30 ♦define RACDRH (RBASE+6) /* target msn addr hi 8 bits*/
31 ♦define RQJT (RBASE+7) /* nurtber of sectors to xfer */
32
33 /* bits in RCMD register V
34 ♦define CKEMD 0x01 /* start a read */
35 ♦define CWRITE 0x02 /* start a write */
36 ♦define CRESET 0x03 /* reset the ccntroller */
37
38 /*
39 ** minor nurtber layout is ooo

40 ** where d is the drive mnber and ppp is the partition
41 */
42 ♦define drive (d) (minor (d) » 3)
43 ♦define part (d) (minor (d) & 0x07)
44
45 /* partition table */
46 struct partab {
47 daddr t len; /* ♦ of blocks in partiticn */
48 int cyloff; /* starting cylinder of partition */
49
50

Block Device Drivers 3-15

Example Block Driver Code

The code is defined as follows

Line no. Definition

13: NHD defines the number of drives to which the con
troller can be attached.

14: NPARTS defines the number of partitions that can be
configured on a single drive.

15-20: Each disk drive attached to the controller has NCPD
cylinders; each cylinder has NTPC tracks; and each
track has NSPT sectors. The sectors are NBPS bytes
long and each cylinder has NBPC blocks.

23-31: The controller registers occupy a region of contiguous
address space starting at RBASE and running through
RBASE+7. To make the controller perform some
action, the registers that describe the transfer (RCYL,
RTRK, RSEC, RADDRL, RADDRH, RCNT) are set to
the appropriate values.

34-36: The bit representing the desired action is written into
the RCMD register.

42-43: The drive and part macros split out the two parts of
the minor number. Bits 0 through 2 represent the par
tition on the disk, and the remaining bits specify the
drive number. Thus, the minor number for drive 1,
partition 2 would be 10 decimal.

46-50: Large disks typically are broken into several parti
tions of a more manageable size. The structure that
specifies the size of the partitions specifies the length
of the partition in blocks, and the location of the start
ing cylinder of the partition.

3-16 Device Driver Writer’s Guide

Example Block Driver Code

hd sizes: Lines 51 to 74

The following source code defines the partitions used for the device
driver. The partition divides the disk into four separate areas.

51 int hdreadO, hdwriteO, hdintr(), bdstrategyO;
52
53 struct partab bd sizes[8] = {
54 NCPD*NBPC, o, /* whole disk */
55 FOOISZ*NEf>C, o, /* root arm */
56 SWAPSZ*NBPC, FCOTSZ, /* swap arm */
57 USERSZ*NBPC, USPCFS, /* user arm */
58 Oo /* spare */
59 oo /* spare */
60 oo /* spare */
61 oo /* spare */
62 };
63
64 struct icbuf hdtab; /* start of request queue */
65 struct buf rhdbuf; /* header for raw I/O */
66 /*
67 ** Strategy Routine:
68 ** Arguments:
69 ** Pointer to buffer structure
70 ** Function:
71 ** Check validity of request
72 ** Queue the request
73 ** Start up the device if idle
74 */

The code is defined as follows:

Line no. Definition

54-57: This driver splits a disk into up to eight partitions, but
at present only four are used. The first partition cov
ers the whole disk. The remaining three split the disk
three ways, one partition for each of root, swap, and
user areas.

64: The buffer headers representing requests for this
driver are linked into a queue, with hdtab forming the
head of the queue. (hdtab is an example of the xxtab
structure described previously in this chapter, hdtab
is an instance of the iobuf structure described in
sys/iobuf.h.) In addition, information regarding the
state of the driver is kept in hdtab.

Block Device Drivers 3-17

Example Block Driver Code

65: Each block driver that wants to allow raw I/O allo
cates one buffer header for this purpose.

hdstrategy: Lines 75 to 105

The hdstrategy routine is called by the kernel to queue a request for I/O.
The single argument is a pointer to the buffer header which contains all of
the data relevant to the request. The xxstrategy routine is responsible for
validating the request, and linking it into the queue of outstanding
requests.

75
76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

int hdstrategy(bp)
register struct buf *bp;
{ register int dr, pa; /* drive and partition numbers */

daddr_t sz, bn;
int x;
dr = drive(bp->b_dev);
pa = part(bp->b_dev);
bn = bp->b_blkno * NSPB;
sz = (bp -> b_bcount + BMASK) » BSHIFT;
if (dr < NHD && pa < NPARTS && bn >= 0

&& bn < hd_sizes[pa].len &&
((bn + sz < hd_sizes[pa].len) |]
(bp->b_flags & B_READ)))

{ if (bn + sz > hd_sizes[pa].len) {
sz = (hd_sizes[pa].len - bn) * NBPS;
bp->b_resid = bp->b_bcount - (unsigned) sz;
bp->b_bcount = (unsigned) sz;

}} else {
bp->b_flags |= B_ERROR;
iodone (bp);
return;

}bp->b_cylin = (bp->b_blkno / NBPC) + hd_sizes[pa].cyloff;
bp->b_sector = (daddr_t) bp->b_cylin & OxFFFF;

x = splbuf();
disksort(&hdtab, bp)
if (bp->b_active = = NULL)

hdstart();
splx (x);

}

3-18 Device Driver Writer’s Guide

Example Block Driver Code

The code is defined as follows

Line no. Definition

81-84: First, compute various useful numbers that will be
used repeatedly during the validation process.

85-96: If the request is for a nonexistent drive or a nonex
istent partition, if it lies completely outside the
specified or is a write, and ends outside the partition,
the B_ERROR bit in the b Jlags field of the header is
set to indicate that the request has failed. The request
is then marked “ complete.” This is done by calling
iodone(K) with the pointer to the header as an argu
ment. If the request is a read, and ends outside the
partition, it is truncated to lie completely within the
partition.

97 and 98: Provide a field for disksort(K) to sort the I/O request
so as to optimize disk head movement. In the case of
these lines of code, the b_cylin and b sector fields
while not equal conceptually, can still be equated for
the purpose of providing a basis for sorting as both
express a linear grouping of disk information. There
fore, b cylin is computed and then b sector is set to
the value of bjcylin. Because bjcylin is an unsigned
short integer and b_sector is a signed long integer,
care must be taken to ensure that sign extension does
not occur. For future use, however, use of b cylin
should be curtailed as it is provided in this release of
System V as a compatibility feature.

99: Block interrupts to prevent the interrupt routine from
changing the queue of outstanding requests.

100: Sort the request into the queue by passing it and the
head of the queue to the disksort routine.

101: If the controller is not already active, start it up.

102: Re-enable interrupts and return to the user process.

Block Device Drivers 3-19

Example Block Driver Code

hdstart: Lines 106 to 139

The hdstart routine calculates the physical address on the disk, and starts
the transfer.

106 /*
107 ★ Startup Routine:
108 ★ Arguments:
109 ★ None
110 ★ Function:
111 ★ Ccrrpute device-dependent parameters
112 •k Start up devioe
113 k Indicate request to I/O monitor routines
114 */
115 hdstart ()
116 {
117 register struct buf *fcp; /* buffer pointer */
118 register unsigned sec;
119
120 if ((fcp = hdtab.b actf) = = NULL) {
121 bdtab.b active = 0;
122 return;
123 }
124 hdtab.b active = 1;
125
126 sec = ((unsigned) bp~>blkno * NSPB);
127 outb (RCYL, sec / NSPC); /* cylinder */
128 sec %= NSPC;
129 outb (KIRK, sec / NSPT); /* track */
130 outb (RSBC, sec % NSPT); /* sector */
131 outb (RCNT, tp->b ocunt / NEPS); /* oount */
132 outb (RDRV, drive (fcpo>b dev)); /* drive */
133 outb (RACCKL, paddr (fcp) & OxFFFF); /* mem addr lo */
134 outb (RfCCE?H, paddr (fcp) » 16); /* mem addr hi * /
135 if (tp>->b flags & B READ)
136 outb (KM), CREAD);
137 else
138 outb (RCMD, CWRTIE);
139 }

3-20 Device Driver Writer’s Guide

Example Block Driver Code

The code is defined as follows:

Line no. Definition

120-122: If there are no active requests, mark the state of the
driver as idle, and return.

124: Mark the state of the driver as active.

126-130: Calculate the starting cylinder, track, and sector of the
request, and load the controller registers with these
values.

132-134: Load the controller with the drive number, and the
memory address of the data to be transferred.

135-139: If the request is a read request, issue a read command;
otherwise, issue a write command.

Block Device Drivers 3-21

Example Block Driver Code

hdintr: Lines 140 to 174

The hdintr is called by the kernel whenever the controller issues an inter
rupt.

14C
141 /*
142 * Interrupt routine:
143 ★ Check ocnpletion status
144 k Indicate ccnpletion to I/O monitor routines
145 ★ log errors
146 k Restart (cn error) or start next request
147 */
148 hdintr ()
149 {
150 register street buf *bp;
151
152 if (hdtab.b active = = 0)
153 return;
154
155 hp = hdtab.b actf;
156
157 if inb(RSIAI) != 0)
158 outb (RCMD, CRESET);
159 if (tthdtab.b errent <= EERLIM) {
160 hdstart ();
161 return;
162 }
163 tp->to flags |= B ERROR;
164 deverr (&hdtab, hp, inb (FSIAI), 0);
165 }
166 /*
167 * Flag current request carplete, start next one
168 V
169 hdtab.b errent = 0;
170 hdtab.b actf = hp->av forw;
171 bp->b resid = 0;
172 iodene (bp);
173 bdstart ();
174 }

The code is defined as follows:

Line no. Definition

152-153: If an unexpected call occurs, just return.

155: Get a pointer to the first buffer header in the chain;
this is the request that is currently being serviced.

3-22 Device Driver Writer’s Guide

Example Block Driver Code

157-165: If the controller indicates an error, and the operation
hasn’t been retried ERRLIM times, try it again. If it
has been retried ERRLIM times, assume it is a hard
error, mark the request as failed, and call deverr(K)
to print a console message about the failure.

169-174: Mark this request complete, take it out of the request
queue, and call hdstart to start on the next request.

hdread: Lines 175 to 195

The hdread routine is called by the kernel when a process requests raw
read on the device. All it has to do is call physio, passing the name of the
xxstrategy routine, a pointer to the raw buffer header, the device number,
and a flag indicating a read request. The physio routine does all the prel
iminary work, and queues the request by calling the device xxstrategy
routine.

175 /* raw read routine:
176 •k This routine calls physio(K) which computes
177 k and validates a physical address from the
178 k current logical address.
179 *

180 * Arguments
181 * Device number
182 * Functions :
183 k Call physio to do the raw (physical) I/O
184 ★ The arguments to physio are:
185 ★ pointer to the xxstrategy routine
186 * buffer for raw I/O
187 * device number
188 k read/write flag
189 */
190 hdread(dev)
191 dev t dev;
192 {
193
194 physio(hdstrategy, Srhdbuf, dev, B READ);
195 }

Block Device Drivers 3-23

Example Block Driver Code

hdwrite: Lines 196 to 208

The hdwrite routine is called by the kernel when a process requests a raw
write on the device. Its responsibilities and actions are the same as
hdread, except that it passes a flag indicating a write request.

196
197 / *
198 k Raw write routine:
199 * Arguments(to hdwrite):
200 k Poll device ranter
201 ★ Functions:
202 k Call physio viiich does actual raw (physical) I/O
203 * /
204 hdwrite (dev)
205 dev t dev;
206 {
207 physio (hdstrategy, &rhdtef, dev, B WRTIE);
208 }

3-24 Device Driver Writer’s Guide

Chapter 4

Character Device Drivers

Introduction to Character Devices 4-1
Character Device Driver Routines 4-2
Character Device Driver Interrupt Routine 4-8
Character List and Character Block Architecture 4-8
Terminal Device Drivers 4-10
Other Character Devices 4-12

Example Character Driver Code 4-14

Code Fragments from a Line Printer Driver 4-15

Code Fragments From a Terminal Driver 4-21

Introduction to Character Devices

Introduction to Character Devices
This chapter describes character device drivers, and provides sample
character driver code examples. Other chapters in this book describe
character drivers for specific applications. Once you have studied the
concepts described in this chapter and examined the sample code at the
end of the chapter, refer to the following chapters for information about
other types of character drivers:

• Chapter 5 — Video Device Drivers

• Chapter 6 — Compiling and Linking Drivers

• Chapter 8 — Line Disciplines

• Chapter 9 — STREAMS

Character devices conform to the file model. Their data consists of a
stream of bytes delimited only by the beginning and end of file. The oper
ating system provides programs with direct access to devices through the
special device files. For more information on special device files, see the
section in Chapter 2 entitled, “ Special Device Files.”

Most character device drivers in the kernel are designed around the spe
cial requirements of terminal devices. There are facilities provided for
programming functions on input and output (such as character erase, line
kill, and tab functions), and for setting line options such as speed. Other
character-oriented devices such as line printers use the same program
interface as terminals, but with a different driver.

Character Device Drivers 4-1

Introduction to Character Devices

Character device drivers use “ clists” for transferring relatively small
amounts of data between the driver and the user program. A cl ist is an
instance of struct clist defined in sys/tty.h. For more information about
clists, see the section in this chapter entitled, “ Character List and Charac
ter Block Architecture.”

Character Device Driver Routines
The following table lists the driver routines that can be used in a charac
ter driver:

Routine Purpose
xxopen Start access to a character device
xxclose End access to a character device
xxread Transfer data from internal buffers to user space
xxwrite Transfer data from user space to internal buffers
xxioctl Perform I/O control commands
xxinit Initialize the device when is booted
xxhalt Executed when the computer is shut down
xxintr Executed when an interrupt occurs
xxstart Interact directly with the device
xxpoll Executed on each clock tick
xxproc Perform device-dependent line discipline I/O

The xxproc routine is described in Chapter 8, "Line Disciplines." Refer to
the "Kernel Routines" section in Chapter 2 for information on the kernel
routines used in a character driver.

The task-time portion of the character device driver is called when a user
process requests a data transfer to or from a device under the control of
the driver. The system determines which device is being called by read
ing the major device number of the device that the user wishes to use for
I/O. The driver’s job is to take the user process’ requests, check the
parameters supplied, and set up the necessary information to enable the
device interrupt or poll routine to perform the I/O.

In the case of a write to a slow device (that is, one using clists), the driver
copies the data from the user space into the output clist for the device. In
the case of direct I/O between the device and user memory (for example,
magnetic tapes), the driver simply sets up the I/O request. The routines
that provide the interface between the kernel and character device drivers
are described as follows, xx is a prefix that refers to the device type.

4-2 Device Driver Writer’s Guide

Introduction to Character Devices

The following section provides more information about each driver rou
tine:

Syntax: xxinit()

Description: The xxinit routine initializes the device when the ker
nel is first booted. If present, it is called if you place
an "i" in the second column table defined in the kernel
configuration file /etc!conficf.d/mdevice. The init rou
tine should display a message on the console indicat
ing that the associated device has been initialized.
(To ensure consistency in xxinit routine startup mes
sages, use the printcfg(K) kernel routine for display
ing the console message.) The xxinit routine cannot
contain calls to sleep(K), or access any user structure
fields. If timeout(K) is called, the actual timing does
not commence until the clock is initialized for use.
Refer to Intro(K) for information on which kernel
routines can be used in an initialization routine. * •

Syntax: xxopen(dev, flag, id)
devt dev
int flag, id;

Description: The xxopen routine prepares the device for the I/O
transfers and performs any error or protection check
ing. It is called each time the device is opened.

Parameters: The following values are passed to the driver when
the driver routine is called by the kernel:

The value of dev specifies the major and minor device
numbers.

The values for flag can be:

• FAPPEND — open device for appended writes

• FEXCL — open device for exclusive access

• FNDELAY — open device without delay

• FREAD — open device for reading

Character Device Drivers 4-3

Introduction to Character Devices

Syntax:

Description:

Parameters:

• FSTOPIO — prevent further I/O (initiated by a
security feature)

• FSYNC — open for synchronous writes

<* FWRITE — open device for writing

The values for id can be:

• OTYP_CHR — open device for character I/O

• OTYPJLYR — open device context layer for
use with layers(C)

• OTYP_MNT — open device for file system
mount

• OTYP_SWP — open as swap device

xxc!ose(dev, flag)
dev t dev;
int flag;

The xxclose routine is responsible for any cleanup
that may be required, such as disabling interrupts and
clearing device registers. It is called on the last close
on a device.

The value of dev specifies the major and minor device
numbers.

The flag argument is the oflag argument passed to the
last open system call.

4-4 Device Driver Writer’s Guide

Introduction to Character Devices

Syntax: xxstart()

Description: This routine is used to interact directly with the de-
vice’s I/O ports (registers) using inb(K) and outb(K).
This routine checks whether the device is ready to
accept or send data, and if so, initiates the transfer,
usually by sending a control word to the I/O port,
xxstart is often called by both task-time and
interrupt-time portions of the driver, xxstart is gen
erally not used by device drivers that control tty de
vices.

Syntax: xxhalt()

Description: The xxhalt routine, if present, is called when the sys-
tern is shut down. This routine should be used to set
or clear device registers so that devices will be ready
for initialization after a warm boot. Care should be
taken that all hardware and hardware controllers are
reset as they would be by a power cycle.

Syntax: xxintr(vec num)
int vec num;

Description: The kernel calls the xxintr routine when the device
issues an interrupt. Since the interrupt typically indi-

Parameters:

cates completion of a data transfer, the interrupt rou
tine must determine the appropriate action: perhaps
taking the received character and placing it in the
input buffer, or removing the next character from the
output buffer and starting the transmission. Refer to
Intro(K) for information on which kernel routines can
be used in an interrupt routine.

The value of vecjium is an integer that specifies the
interrupt vector number of the device that originated
the interrupt.

Character Device Drivers 4-5

Introduction to Character Devices

Syntax:

Description:

Parameters:

Syntax:

Description:

Parameters:

xxread(dev)
devt dev;

The xxread routine is called when a user program
makes a read system call. The xxread subroutine
transfers data to the user’s address space. Use copy-
out, dbread, passe, subyte, suword, or ttread in
xxread to transfer data to the user.

The value of dev specifies the major and minor device
numbers.

xxwrite(dev)
dev t dev;

The xxwrite routine is called when a user program
makes a write system call. This routine transfers data
from the user’s address space. Use copyin(K),
cpass(K), dbwrite, fubyte, fuword, or ttwrite in
xxwrite to transfer data from the user.

The value of dev specifies the major and minor device
numbers.

4-6 Device Driver Writer’s Guide

Introduction to Character Devices

Syntax: xxpoll(ps)
int ps;

Description: The xxpoll routine, if present, is called by the system
clock at sp!6(K) during every clock tick. It is useful
for repriming devices that constantly lose interrupts.

Parameters: The value of ps is an integer that indicates the previ-

Warnings

ous process’ priority when it was interrupted by the
system clock. The macro USERMODE(p.s) (ps),
defined in sys/param.h, can be used to determine if the
interrupted process was executing in user mode.

Only call xxpoll if your interrupt priority level is set
at spl6(K) or higher. Otherwise, you will miss the
interrupts at spl6 described above.

Syntax: xxproc(tp, cmd)
struct tty *tp;
int cmd;

Description: This routine provides hardware-dependent code in a

Parameters:

line discipline. Refer to "xxproc Routine" in Chapter
8, "Line Disciplines" for a description of this routine.

The tp argument is a pointer to an instance of the tty
structure for a device.
The cmd argument specifies the process to be per
formed.

Syntax: xxioctl(dev, cmd, arg, mode)
dev t dev;
int cmd, mode;
caddr t arg;

Description: The kernel calls the xxioctl routine when a user pro
cess makes an ioctl(S) system call for the specified
device. This routine performs hardware-dependent
functions, such as setting the data rate on a character
device.

Character Device Drivers 4-7

Introduction to Character Devices

Parameters: The value of dev specifies the major and minor device
numbers.

The value of cmd is an integer that specifies the com
mand passed to the system call.

arg specifies the argument passed to the system call.

The mode argument specifies the flags passed on the
open(S) system call for the device.

Character Device Driver Interrupt Routine
The device interrupt routine is entered whenever a device associated with
the driver raises an interrupt. Note that in general one driver may control
several devices, but that all interrupts are vectored through a single rou
tine entry point, usually called xxintr, where xx is a prefix that refers to
the device type. It is the driver’s responsibility to decide which device
caused the interrupt.

When a device raises an interrupt, it makes available some status infor
mation to indicate the reason for the interrupt. The driver interrupt rou
tine decodes this information. If it indicates a transfer just completed, the
wakeup(K) routine alerts any process waiting for the transfer to com
plete. It then makes a check to see if the device is idle and, if so, looks for
more work to start up. Thus, in the case of output to a terminal, the inter
rupt routine looks for more work in the clists each time a transfer com
pletes. Refer to the interrupt routines shown in the driver fragments at the
end of this chapter.

Character List and Character Block Architecture
The character list (clist) structure provides a general character buffering
system for use by character device drivers. The mechanism is designed
for buffering small amounts of data from relatively slow devices, particu
larly terminals.

The kernel has a pool of character blocks called cblocks. Each cblock
contains a link to the next cblock and an array of characters. A clist is a
header to a linked-list queue of cblocks,.

The getc(K) and putc(K) routines put characters into and remove charac
ters from a clist. Drivers using clists can use these routines. Note that the
routines are not the same as the standard I/O library routines of the same
name.

4-8 Device Driver Writer’s Guide

Introduction to Character Devices

The static buffer header for each clist contains three fields:

• a count of the number of characters in the list (c_cc)

• a pointer to the first cblock in the list (c_cf)

• a pointer to the last cblock in the list (c_cl)

The clist buffers form a single linked list as shown in the following
diagram:

struct {

int c_cc:

struct cblock *c_cf;

struct cblock *c_cl;
} clist;

A protocol is defined for use with the clists to prevent a particular process
or driver from consuming all available resources. Two constants for the
clist high- and low-water marks are defined in the file named sys/tty.h. A
process can issue write requests until the corresponding clist hits the
high-water mark. The process is then suspended and I/O performed.
When the list reaches the low-water mark, the process is awakened. Read
requests use a similar protocol.

Character Device Drivers 4-9

Introduction to Character Devices

Terminal Device Drivers
Terminal device drivers use clists extensively. For each terminal line
(each minor device number), the driver declares static cl ist headers for
three clists. These clists are the:

• Raw input queue, t_rawq

• Canonical queue, t_canq

• Output queue, t_outq

When a process writes data to a terminal device, the task-time portion of
the driver puts the data into the output queue, and the interrupt routine
transfers it from the queue to the device.

When a process requests a read of data from the terminal, the situation is
slightly more complicated. This is because the operating system provides
for some processing of characters on input, at the option of the requesting
process. For example, in normal input the <Bksp> key is interpreted as
“ delete the last character input,” and the line-kill character means
“ delete the whole current line.” Certain special characters, such as
<Bksp>, have to be treated in context; that is, they depend upon surround
ing characters. To handle this, drivers use two queues for incoming data.

These two queues are the raw queue and the canonical queue. Data
received by the interrupt routine is placed in the raw queue with no data
processing. At task time, the driver decides how much processing to do.
The user process has the option of requesting raw input, in which it
receives data directly from the raw queue. Cooked (the opposite of raw)
input refers to the input after processing for ERASE, line kill, DELETE,
and other special treatment. In this case, a task-time routine, canon(K),
transfers data from the raw queue to the canonical queue. This performs
(BKSP) and line-kill functions, according to the options set by the process
using the ioctl(S) system call.

In System V, the direct clist processing for tty device drivers is normally
handled by the specific line discipline. (Line disciplines are described in
detail in Chapter 8, "Line Disciplines.") A line discipline is a set of ker
nel and driver routines that process data received from a tty device, such
as a terminal. The processing generally follows the guidelines described
on the termio(M) manual page, but can be customized as needed.

4-10 Device Driver Writer’s Guide

Introduction to Character Devices

The only processing that the device driver needs to perform is interrupt
level control. The device driver provides interrupt level control by emp
tying and filling structures called character-control blocks (ccblock).
Each tty structure has a ccblock for transmitter (tjbu f) control and a
ccblock for receiver (t_rbuf) control. The ccblock structure has the fol
lowing format:

struct ccblock {
caddr_t c_ptr; /^buffer address*/
ushort_t c_count; /*character count*/
ushort_t c_size; /*buffer size*/

} ;

At receiver interrupt time, the driver fills a receiver ccblock with charac
ters, decrements the character count, and calls the line-discipline routine
l input. At transmitter interrupt time, the driver calls xxproc and the
line-discipline routine, l_output, to get a transmitter ccblock, and then
outputs as many characters as possible.

The basic flow of data through the system during terminal I/O is shown in
the following diagram:

Character Device Drivers 4-11

Introduction to Character Devices

There are two slight complications to the scheme presented in the preced
ing diagram. These are output character expansion, and input character
echo.

Output expansion occurs lor a few special characters. In cooked mode,
tabs may be expanded into spaces, and the NEWLINE character is mapped
into RETURN plus LINEFEED. There is a facility for producing escape
sequences for upper case terminals, and delay periods for certain charac
ters on slow terminals. Note that all of these are simple expansions, or
mapping single characters, and so do not require a second list, as is the
case for input. Instead, all the expansion is performed by the xxproc rou
tine before placing the characters in the output clist.

Character echo is an option required by most user processes. With this
option, all input characters are immediately echoed to the output stream
without waiting for the user process to be scheduled. Character expan
sion is performed for echoed characters, as it is for regular output. Char
acter echo takes place at interrupt time, so that a user typing at a terminal
gets fast echo, regardless of whether his program is in memory and run
ning, or is swapped out to a disk.

Other Character Devices
The following are common character devices:

• the console

• terminals

• line printers

• magnetic tape drives

The system console driver has two sections: a generic device-independent
section that can talk to any of the many varieties of video adapters, and a
device-specific section that a driver writer provides with information
about a single video adapter. See Chapter 5, "Video Adapter Device
Drivers," for more information.

Terminals receive a lot of special attention in the operating system. Line
printers and magnetic tape drives tend to use existing kernel facilities
with little special handling.

4-12 Device Driver Writer’s Guide

Introduction to Character Devices

Line Printers

Line printers are relatively slow, character-oriented devices. The drivers
use the clist mechanism for buffering data. However a line printer driver
is generally simpler than a terminal driver because there is less pro
cessing of output characters to do, and there is no input.

Magnetic Tape Drives

Magnetic tape is a special case. The data is arranged on the physical
medium in blocks, as on a disk. However, it is almost always accessed
serially. Furthermore, there is generally only one program accessing a
tape drive at a time. Thus, the management scheme of the kernel buffer is
not applicable to tapes. Nor is the clist mechanism applicable, because of
the large amount of data involved.

Usually tape drivers provide two interfaces: a block and a character inter
face. The character interface is used for raw, or physical, I/O directly
between the device and the user process’ address space. The block inter
face makes use of the kernel buffer pool and buffer manipulation routines
to store data in transit between device and process. For more information
on providing the facility for raw I/O, see the section in Chapter 3, “ Char
acter Interface to Block Devices.”

Character Device Drivers 4-13

Example Character Driver Code

Example Character Driver Code
This section provides code fragments from example drivers for a line
printer and a terminal. Each segment of code is followed by general com
ments that describe the routines and explain key lines in the program.

IMPORTANT: These are not complete working drivers and
should not be expected to be comprehensive.
These example code fragments are meant to
demonstrate implementations of individual items
within a working driver.

For convenience, these code fragments are identified and referred to by
line numbers.

Note also that the device drivers distributed in the /etc/conf/pack.d direc
tories may differ in design from those described in this document. When
writing device drivers for the target system, you should follow these
guidelines rather than examining the distributed drivers.

4-14 Device Driver Writer’s Guide

Code Fragments from a Line Printer Driver

Code Fragments from a Line Printer
Driver
The examples presented here are part of a driver providing a single, paral
lel interface to a printer. The driver transfers characters, one at a time,
buffering the output from the user process through the use of character
blocks (cblocks).

1
2

/*
** lp - prototype line printer driver

3 */
4 ♦include "sys/param.h"
5 ♦include "svs/dir.h"
6 ♦ include "sys/a.out.h"
7 ♦include "sys/user.h"
8 ♦include "sys/file.h"
9 ♦include "sys/tty.h"
10 ♦include "sys/conf.h"
11
12
13 ♦define LPPRI PZERO+5
14 ♦define LOWAT 50
15 ♦define HIWAT 150
16
17 /* register definitions */
18
19 ♦define RBASE 0x00 /* base address of registers */
20 ♦define RDATA (RBASE + 0) /* place character here */
21 ♦define RSTATUS (RBASE + 1) /* non zero means busy */
22 ♦define RCNTRL (RBASE + 2) /* write control here */
23
24 /* control definitions */
25 ♦define CINIT 0x01 /* initialize the interface */
26 ♦define CIENABL 0x02 /* interrupt enable */
27
28 /* flags definitions */
29 ♦define FIRST 0x01
30 ♦define ASLEEP 0x02
31 ♦define ACTIVE 0x04
32
33 struct clist lp queue;
34 int lp flags = 0;
35
36 int IpopenO, lpcloseO, lpwriteO, lpintrO;
37
38

Character Device Drivers 4-15

Code Fragments from a Line Printer Driver

The code is defined as follows:

Line no. Definition

13: LPPRI is the priority at which a process sleeps when it needs
to stop. Since the priority is greater than PZERO, a signal
sent to the suspended process will awaken it.

14: LOWAT is the minimum number of characters in the buffer.
If there are fewer than LOWAT characters in the buffer, a
process that was suspended (because the buffer was full) can
be restarted.

15: HIWAT is the maximum number of characters in the queue.
If a process fills the buffer up to this point, it will be
suspended by means of sleep until the buffer has drained
below LOWAT.

19-22: The device registers in this interface occupy a contiguous
block of address, starting at RBASE, and running through
RBASE+2. The data to be printed is placed in RDATA, one
character at a time. Printer status can be read from
RSTATUS, and the interface can be configured by writing
into RCNTRL.

29-31: The flags defined in these lines are kept in the Ip_flags vari
able. FIRST is set if the interface has been initialized.
ASLEEP is set if a process is asleep, waiting for the buffer to
drain below LOWAT. ACTIVE is set if the printer is active.

33: Ipjjueue is the head of the linked list of cblocks that forms
the output buffer.

34: IpJiags is the variable in which the aforementioned flags
are kept.

4-16 Device Driver Writer’s Guide

Code Fragments from a Line Printer Driver

lpopen: Lines 39 to 48

The lpopen routine is called when some process makes an open(S) sys
tem call on the special file that represents this driver. Its single argument,
dev, represents the major and minor device numbers. Since this driver
supports only one device, the device number is ignored.

39
40 lpopen (dev)
41 dev t dev;
42 {
43 if ((lp flags & FIRST) = = 0) {
44 lp flags |= FIRST;
45 outb(RCNTRL, CRESET);
46 }
47 outb(RCNTRL, CIENABL);
48 }

The code is defined as follows:

Line no. Definition

43-45: If this is the first time (since the system was booted)
that the device has been touched, the interface is ini
tialized by setting the CRESET bit in the control regis
ter.

47: Interrupts from this device are enabled by setting the
CIENABL bit in the control register.

lpclose: Lines 49 to 53

The lpclose routine is called on the last close of the device; that is, when
the current close(S) system call results in zero processes referencing the
device. No action is taken.

49
50 lpclose(dev)
51 dev_t dev;
52 {
53 }

Character Device Drivers 4-17

Code Fragments from a Line Printer Driver

Ipwrite: Lines 54 to 73

The Ipwrite routine is called to move the data from the user process to
the output buffer.

54 Ipwrite (dev)
55 dev t dev;
56 {
57 register int c;
58 int x;
59
60 while ((c = cpassO) >= 0) (
61 x = splcliO;
62 while (lp queue.c cc > HIWAT) {
63 Ipstart();
64 lp flags |= ASLEEP;
65 sleep(&lp queue, LPPRI);
66 }
67 putc(c, &lp queue);
68 sp'lx (x) ;
69 }
70 x = splcli ();
71 Ipstart();
72 splx (x);
73 }

The code is defined as follows:

Line no. Definition

60: While there are still characters to be transferred, do
what follows.

61-68: Raise the processor priority so the interrupt routine
cannot change the buffer. If the buffer is full, make
sure the printer is running, note that the process is
waiting, and put it to sleep. When the process wakes
up, check to make sure the buffer has enough space,
then go back to the old priority and put the character
in the buffer.

70-71: Make sure the printer is running by locking out inter
rupts and calling Ipstart.

4-18 Device Driver Writer’s Guide

Code Fragments from a Line Printer Driver

Ipstart: Lines 74 to 81

The Ipstart routine ensures that the printer is running. It is called twice
from lpwrite and serves simply to avoid duplicate code.

74
75 Ipstart()
76 {
77 if (lp flags & ACTIVE)
78 return; /* interrupt chain is keeping printer going */
79 lp flags != ACTIVE;
80 lpintr(0);
81 }

The code is defined as follows:

Line no. Definition

77-80: If the printer is running, just return; otherwise, set
ACTIVE, and call lpintr to start the transfer of char
acters.

lpintr: Lines 82 to 105

The lpintr routine is called from two places: Ipstart, and from the kernel
interrupt-handling sequence when a device interrupt occurs.

82
83
84 lpintr(vec)
85 int vec;
86 {
87 int tmp;
88
89 if ((lp_flags & ACTIVE) = = 0)
90 return; /* ignore spurious interrupt */
91
92 /* pass chars until busy */
93 while (inb(RSTATUS) = = 0 && (tmp = getc(&lp_queue)) >= 0)
94 outb(RDA3A, tmp);
95
96 /* wakeup the writer if necessary */
97 if (lp_queue.c_cc < LOWAT && lp_flags & ASLEEP) {
98 lp_flags &= 'ASLEEP;
99 wakeup(&lp_queue);
100 }

Character Device Drivers 4-19

Code Fragments from a Line Printer Driver

■ 101
102 /* wakeup writer if waiting for drain */
103 if (lp queue.c cc <= 0)
104 lp flags &= '.ACTIVE;
105 }

The code is defined as follows:
Line no. Definition
89-90: If lpintr is called unexpectedly, or the driver does not

have anything to do, it just returns.
93-94: While the printer indicates it can take more characters

and the driver has characters to give it, the characters
come from the buffer through getc(K) and pass to the
interface by writing to the data register.

97-99: If the buffer has fewer than LOWAT characters in it and
some process is asleep waiting for room, wake it up.

103-104: If the queue is empty, turn off the ACTIVE flag. Note that
the interrupt that completes the transfer and empties the
buffer is in some sense “ spurious,” since it will occur
with the ACTIVE flag reset.

4-20 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

Code Fragments From a Terminal
Driver
The following examples are from a driver that supports one serial termi
nal on a hypothetical universal asynchronous receiver-transmitter (UART)
type interface. Note that this is not the entire driver and that the situation
is hypothetical.

Character Device Drivers 4-21

Code Fragments From a Terminal Driver

1 /*
2 * td - terminal device driver
3 V
4 ♦include "sys/param.h"
5 ♦include "sys/dir.h"
6 #include "sys/user.h"
7 ♦include "sys/file.h"
8 ♦include "sys/tty.h"
9 #include "sys/ocnf.h"
10
11
12 /* registers */
13 #define RRDATA 0x01 /* received data */
14 #define KIDATA 0x02 /* transmitted data */
15 #define RSTA3US 0x03 /* Status */
16 #define FCNIRL 0x04 /* control */
17 #define R3HS1ABL 0x05 /* interrupt enable */
18 #define R.SPEFD 0x06 /* data rate */
19 #define RI IR 0x07 /* interrupt identification */
20
21 /* Status register bits */
22 #define SRRDY 0x01 /* received data read/ */
23 #define SIRDY 0x02 /* transmitter ready */
24 #define SCERR 0x04 /* received data overrun */
25 #define SPERR 0x08 /* received data parity error */
26 #define SFERR 0x10 /* received data framing error */
27 ♦define 33SR 0x20 /* status of dsr (ad)*/
28 #define SCIS 0x40 /* status of clear to send */
29
30 /* control register */
31 #define CBITS5 0x00 /* five bit chars */
32 #define CBITS6 0x01 /* six bit chars */
33 #define CBITS7 0x02 /* seven bit chars */
34 #define CBITS8 0x03 /* eight bit chars */
35 #define CDIR 0x04 /* data terminal read/ */
36 #define CRIS 0x08 /* request to send */
37 #define CSTCP2 0x10 /* two step bits */
38 ♦define CPARITY 0x20 /* parity cn */
39 ♦define CEVEN 0x40 /* even parity otherwise odd */
40 ♦define CBEEAK 0x80 /* set xmitter to space */
41

4-22 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

42 /* interrupt enable */
43 #define EXMIT 0x01 /* transmitter ready */
44 #define ERECV 0x02 /* receiver ready */
45 #define EM3 0x04 /* iroden status change */
46
47 /* interrupt ident */
48 ♦define IREEV 0x01
49 ♦define IXMIT 0x02
50 ♦define HE 0x04
51
52 ♦define NIEEVS 2
53 ♦define VEXJTO 3
54 ♦define VECT1 5

The code is defined as follows:

Line no. Definition

13-19: The interface for each line consists of seven registers.
The values that would be defined here represent
offsets from the base address, which is defined in line
101. The base address differs for each line. The data
to be transmitted is placed one character at a time into
the RTDATA register. Likewise, the received data is
read one character at a time from the RRDATA regis
ter. You can determine the status of the UART by
examining the contents of the RSTATUS register.
Then you can adjust the UART configuration by
changing the contents of the RCNTRL register. Inter
rupts are enabled or disabled by setting the bits in the
RIENABL register. The data rate is set by changing
the contents of the RSPEED register. Interrupts are
identified by setting the bits in the RIIR register.

31-40: The two low-order bits of the control register deter
mine the length of the character sent. The next two
bits control the data-terminal-ready and request-to-
send lines of the interface. The next bit controls the
number of stop bits, the next controls whether parity
is generated, and the next controls whether generated
parity is even or odd. Finally, the most significant bit,
if it is set, forces the transmitter to continuous spac
ing.

43-45: The three low-order bits of the interrupt enable regis
ter control whether the device generates interrupts
under certain conditions. If bit 0 is set, an interrupt is

Character Device Drivers 4-23

Code Fragments From a Terminal Driver

generated every time the transmitter becomes ready
for another character. If bit I is set, an interrupt is
generated every time a character is received. If bit 2
is set. an interrupt is generated every lime tire data-
set-ready line changes state.

48-50: After an interrupt, the value in the interrupt-
identification register will contain one of three values,
indicating the reason for the interrupt.

td speeds: Lines 55 to 80

The array of integers, t d sp e ecJ s , defines the data rates available to the de
vice.

55 int tdcpenO, tdcloseO tdread(), tdwrite (), tdioctl (),
tdintr ();

56
57
58
59 /* data rates */
60 int td speeds[] = {
61 /* B0 */ o,
62 /* B50 V 2304,
63 /* B75 V 1536,
64 /* B110 */ 1047,
65 /* B134 */ 857,
66 /* B150 */ 768,
67 /* B200 */ o,
68 /* B300 */ 384,
69 /* B600 */ 192,
70 /* B1200 */ 96,
71 /* B1800 */ 64,
72 /* B2400 */ 48,
73 /* B4800 V 24,
74 /* B9600 */ 12,
75 /* EXTA */ 6, /* 19.2k kps */
76 /* EXTB */ 58 /* 2000 kps V
77 };
78
79 struct tty td tty [N3DEVS];
80 int td addr[NTDEVSj = { 0x00, 0x10 };

4-24 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

The code is defined as follows:

Line no. Definition

59-77: These lines define the values to be loaded into the
RSPEED register in order to get various data rates.

79: Each line must have a tty structure allocated for it.

80: Here, the base addresses of the registers are defined
for each line.

tdopen: Lines 81 to 123

The tdopen routine is called whenever a process makes an open(S) sys
tem call on the special file corresponding to this driver.

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

tdqpen(dev, flag)
dev_t dev, flag;
{

register struct tty *tp;
int addr;
tdproc;
int x;
dev = minor (dev) ;
if (UNKDEM(dev) >= NUEVS) {

seterror (ENXIO);
return;

}
tp = &td_tty[UtMXEM(dev)] ;
addr = td_addr [UMCDEM(dev)] ;
if ((tp->t_lflag & XCLUDE) && ! suser) {

seterror (EBUSY) ;
return;

}
if ((tp->t_state&(ISCPEN|WTEN)) = = 0)(

ttinit (tp) ;
tp->t_proc = tdproc;
tp->t_oflag = CPOST|CNI£R;
tp->t_iflag = ICNIRL | ISIKEP | DOt;
tp->t_lflag = ECHO | IÖNCN | ISIG | ECHOE | ECHCK;
t($aram(dev) ;

1

Character Device Drivers 4-25

Code Fragments From a Terminal Driver

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123 }

x = splcli () ;
if (ISIXCDQXI(dev) | |

tp->t cflag & CÜ0CAL | |
tdrodem (dev, IURNCN))

tp->t state |= CARR CN;
else

tp->t state &= "CARR CN;
if (! (f lag&FtOELAY))

while ((tp->t state&CARR CN) = =0) {
tp->t state |= W C F E N ;

sleqs ((caddr t)&tp~>t canq, TT1PRI);
}

(*linesw[tp->t line] .1 cpen) (tp) ;
splx (x);

The code is defined as follows:

Line no. Definition

90: convert the device number (contains both a major and
a minor number) to just a minor number using the
minor(K) kernel routine (described on the major(K)
manual page).

91-93: If the minor number indicates a device that does not
exist, indicate the error and return.

97-99: If the line is already open for exclusive use, and the
current user is not the superuser, indicate the error and
return.

101-107: If the line is not already open, initialize the tty struc
ture by means of a call to ttinit(K), set the value of
the proc field in the tty structure, initialize the input
and output mode flags, and configure the line by cal
ling tdparam. Note that the flags are initialized so
that the terminal will behave in a reasonable manner
if used as the console in single-user mode.

109: Defer interrupts so the interrupt routines cannot
change the state while it is being examined.

110-115: If the line is not using modem control, or if it is not
turning on the data-terminal-ready and request-to-
send signals (which results in carrier-detect being
asserted by the remote device), indicate that the

4-26 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

116-119:

carrier signal is present on this line. Otherwise, indi
cate that there is no carrier signal.

If the open is supposed to wait for the carrier, wait
until the carrier is present.

121: Call the l_open routine indirectly through the linesw
table. The line discipline switch table, linesw, is
described in more detail in Chapter 8, "Line Discip
lines." This completes the work required for the
current line discipline to open a line.

122: Allow further interrupts.

tdclose: Lines 124 to 136

The tdclose routine is called on the last close on a line.

124 tdclose(dev)
125 dev_t dev;
126 {
127
128
129
130
131
132
133
134
135
136 }

register struct tty *tp;
dev = minor(dev); /* get minor device num */
tp = &td_tty[UNMODEM(dev)];
(*linesw[tp->t line].l close)(tp) ;
if (tp->t_cflag & HUPCL)

tdmodem(dev, TURNOFF);
tp->t_lflag &= 'XCLUDE; /* turn off exclusive */
/* use bit, and turn off interrupts */
outbftd addr[UNMODEM(dev)] + RIENABL, 0);

The code is defined as follows:

Line no. Definition

128: Get the minor number from the device number (which
contains both the major and minor device numbers).

130: Call the ttclose routine through the linesw table to do
the work required by the current line discipline.

131-132: If the “ hang up on last close” bit is set, drop the
data-terminal-ready and request-to-send signals.

Character Device Drivers 4-27

Code Fragments From a Terminal Driver

133: Reset the exclusive-use bit.

135: To prevent spurious interrupts, disable all interrupts
for this line.

tdread and tdwrite: Lines 137 to 148

The tdread and tdwrite routines call the relevant routine by means of the
linesw table. The called routine performs the appropriate action for the
current line discipline.

137 tdread(dev)
138 dev t dev;
139 {
140 dev = minor(dev);
141 (*linesw[tp->t line] .1 read)(&td tty[UNMODEM(dev)]);
142 }
143 tdwrite(dev)
144 dev t dev;
145 {
146 dev = minor(dev);
147 (*linesw[tp->t line] .1 write)(&td tty[UNMODEM(dev)]);
148 }

tdparam: Lines 149 to 184

The tdparam routine configures the line to the mode specified in the ap
propriate tty structure.

4-28 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

149
150
151
152
153
154
155
156
157

158
159
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

tdparam(dev)
dev_t dev;
{

register int cflag;
register int addr;
register int temp, speed, x;
dev = minor(dev);
addr = td_addr[UNMODEM(dev)];
cflag = td_tty[UNMODEM(dev)].t_cflag;

/* if speed is BO, turn line off */
if ((cflag & CBAUD) = = BO){
outb (addr + RCNTRL, inb(addr+RCNTRL) &

'CDTR & 'CRTS);
return;

}
/* set up speed */
outb (addr + RSPEED, td_speeds[cflag & CBAUD]);

/* set up line control */
temp = (cflag & CSIZE) >> 4; /* length */
if (cflag & CSTOPB)

temp |= CSTOP2;
if (cflag & PARENB) {

temp |= CPARITY;
if ((cflag & PARODD) = = 0)

temp |= CEVEN;
}
temp |= CDTR I CRTS;
outb (addr + RCNTRL, temp);

/* setup interrupts */
temp = EXMIT;
if (cflag & CREAD)

temp I = ERECV;
outb(addr + RENABL, inb(RENABL) i temp);

}

The code is defined as follows:

Line no. Definition

156-157: Get the base address and flags for the referenced line.

159-161: The speed B0 means “ hang up the line.”

165-184: The remainder of the tdparam routine simply loads
the device registers with the correct values.

Character Device Drivers 4-29

Code Fragments From a Terminal Driver

tdmodem: Lines 185 to 203

The tdmodem routine controls the data-terminal-ready and request-to
send line signals. Its return value indicates whether data-set-ready signal
(carrier detect) is present for the line.

185 tdmodem (dev, cmd)
186 dev_t dev;
187 int cmd;
188 {
189 register int addr;
190 dev = minor(dev);
191 addr = td_addr[UNMODEM(dev)];
192 switch(cmd){
193 case TURNON: /* enable modem interrupts,

set DTR & RTS true */
194 outb(addr + RENABL, inb(RENABL) I EMS);
195 outb (addr + RCNTRL, inb(RENABL)

I CDTR | CRTS);
196 break;
197 case TURNOFF: /* disable modem interrupts,

reset DTR, RTS */
198 outb (addr + RENABL, inb(RENABL) & 'EMS);
199 outb(addr + RCNTRL, inb (RENABL) &'(CDTR I CRTS)) ;
200 break;
201 }
202 return (inb (addr + RSTATUS) & SDSR) ;
203 }

The code is defined as follows:

Line no. Definition

193-196: If cmd was TURNON, turn on modem interrupts, and
assert data-terminal-ready and request-to-send.

197-200: If cmd was TURNOFF, disable modem interrupts, then
drop data-terminal-ready and request-to-send.

202: Return a zero value if there is no data-set-ready on
this line; otherwise return a nonzero value.

4-30 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

tdintr: Lines 204 to 230

The tdintr routine determines which line caused the interrupt and the rea
son for the interrupt, and calls the appropriate routine to handle the inter
rupt.

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230

tdintr(vec)
int vec;
{

register int iir, dev;

switch (vec) {
case VECT0:

dev = 0;
break;

case VECT1:
dev = 1;
break;

default:
printf("tdint: wrong level

interrupt (%x)\n",vec);
return;

}

while ((iir = inb(td_addr[dev]+RIIR)) != 0)
if ((iir & IXMIT) != 0)

tdxint(dev);
if ((iir & IRECV) != 0)

tdrint(dev);
if ((iir & IMS) != 0)

tdmint(dev);
}

{

The code is defined as follows:

Line no. Definition

211-221: Different lines will result in different interrupt vectors
being passed as the tdintr routine’s argument. Here,
the minor number is determined from the interrupt
vector that was passed to tdintr.

222-230: While the interrupt-identification register indicates
that there are more interrupts, call the appropriate
routine. When the condition that caused the interrupt
is resolved, the UART will reset the bit in the register
by itself.

Character Device Drivers 4-31

Code Fragments From a Terminal Driver

tdxint: Lines 231 to 251

The tdxint routine is called when a transmitter ready interrupt is
received. It may issue a CSTOP character to indicate that the device on
the other end must stop sending characters. It may issue a CSTART char
acter to indicate that the device on the other end may resume sending
characters, or it may call tdproc to send the next character in the queue.

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

tdxint (dev)
dev_t dev;
{

register struct tty *tp;
register int addr;
dev = minor(dev);
tp = &td_tty[UNMODEM(dev)];
addr = td_addr[UNMODEM{dev)];
if (inb(addr + RSTATUS) & STRDY)
{

tp->t_state &= 'BUSY;
if (tp->t_state & TTXON) {

outb (addr + RTDATA, CSTART);
tp->t_state &= 'TTXON;

} else if (tp->t_state & TTXOFF) {
outb(addr + RTDATA, CSTOP);
tp->t_state &= 'TTXOFF;

} else
tdproc (tp, T_OUTPUT) ;

}
}

The code is defined as follows:

Line no. Definition

239-241: If the transmitter is ready, disable the busy state.

242-244: If the line is to be restarted, send a CSTART, and reset
the state indicator.

245-247: If the line is to be stopped, send a CSTOP, and reset
the state indicator.

248-249: Otherwise, call tdproc and ask it to send the next
character in the queue.

4-32 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

tdrint: Lines 252 to 317

The tdrint routine is called when a receiver interrupt is received. All it
has to do is pass the character, along with any errors, to the appropriate
routine by means of the linesw table.

252 tdrint(dev)
253 dev t dev;
254 {
255 register int c, status;
256 register int addr;
257 register struct tty *tp;
258 dev = minor(dev);
259 tp = &td tty[UNMODEM(dev)];
260 addr = td addr[UNMODEM(dev)]
261
262 /* get char and status */
263 c = inb(addr + RRDATA);
264 status = inb(addr + RLSR);
265
266 /*
267 * Were there any errors on input ?
268 */
269 if (status & SOERR) /* overrun error */
270 c |= OVERRUN;
271 if (status & SPERR) /* parity error */
272 c |= PERROR;
273 if (status & SFERR) /* framing error */
274 c |= FRERROR;
275
276 if (tp->t rbuf.c ptr == NULL)
277 return;

Character Device Drivers 4-33

Code Fragments From a Terminal Driver

278 fig = tp->t i flag;
279 if (flg&IXON) {
280 register int ctmp;
281 ctmp = c & 0177;
282 if (tp->t _state & TTSTOP) {
283 if (; ctmp == CSTART | | flg&IXANY)
284 (*tp->t_proc)(tp, T_RESUME);
285 } else {
286 if (; ctmp == CSTOP)
287 (*tp->t_proc)(tp, T SUSPEND)
288 }
289 if (ctmp == CSTART || ctmp == CSTOP)
290 return;
291 }
292 if (c&PERROR && ! (flg&INPCK))
293 c &= "PERROR;
294 if (c&(FRERROR|PERROR|OVERRUN)) {
295 if ((C&0377) == 0) {
296 if (; flg&IGNBRK)
297 return;
298 if (; flg&BRKINT) {
299 (*linesw[tp->t line].l input
300 (tp, L BREAK);
301 return;
302 }
303 } else {
304 if (; flg&IGNPAR)
305 return;
306 }
307 } else {
308 if (flg&ISTRIP)
309 c & == 0177;
310 else {
311 c & == 0377;
312 }
313 }
314 * tp ->t rbuf.c pt r = c;
315 tp- >t rbuf.c count--;
316 (*1 inesw[tp->t line] .1 input) (tp, L BUF) ;
317 }

The code is defined as follows:

Line no. Definition

262-264: Get the character and status.

269-274: If any errors were detected, set the appropriate bit in
c .

4-34 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

279-291: This code determines whether the character is XON
and, if output is stopped, it restarts it. If the character
is XOFF, output is suspended.

292-313: Further error checking is then carried out and charac
ters in error are discarded. The character is then
placed in the queue.

314-315: This code stores the character into the received buffer
and decrements the character count.

316: Finally, character and errors are passed to the l input
routine for the current line discipline.

tdmint: Lines 318 to 345

The tdmint routine is called whenever a modem interrupt is caught.

318 tdmint(dev)
319 dev t dev;
320 {
321 register struct tty *tp;
322 register int addr,c;
323 dev = minor(dev);
324 tp = &td tty(UNMODEM(dev)];
325 if (tp- >t cflag & CLOCAL) {
326 return;
327 }
328 addr = td addr[UNMODEM(dev)];
329
330 if (inb(addr + RSTATUS) & SDSR) {
331 if ((tp->t state & CARR ON)= =0) {
332 tp->t state |= CARR ON;
333 wakeup (&tp->t canq) ;
334 }
335 } else {
336 if (tp->t state & CARR ON) {
337 if (tp->t state & ISOPEN) {
338 signal (tp->t pgrp, SIGHUP);
339 tdmodem(dev, TURNOFF);
340 ttyflush (tp, (FREAD|FWRITE)) ;
341 }
342 tp->t state &= 'CARR ON;
343 }
344 }
345 }

Character Device Drivers 4-35

Code Fragments From a Terminal Driver

The code is defined as follows:

Line no. Definition

325-326: If there is no modem support for this line, just return.

330-333: If a data-set-ready is present for this line, and it did
not exist before, mark the line as having a carrier, and
wake up any processes that are waiting for the carrier
before their tdopen call can be completed.

335-344: If no data-set-ready is present for this line, and one
existed before, send a hangup signal to all of the pro
cesses associated with this line, call tdmodem to
hang up the line, flush the output queue for this line
by calling ttyflush(K), and mark the line as having no
carrier.

tdioctl: Lines 346 to 355

The tdioctl routine is called when some process makes an ioctl(S) system
call on a device associated with the driver. It just calls ttiocom, which
returns a nonzero value if the hardware must be reconfigured.

346 tdioctl(dev, cmd, arg, mode)
347 dev_t dev;
348 int cmd;
349 caddr_t arg;
350 int mode;
351 {
352 dev = minor(dev);
353 if (ttiocom(&td_tty[UNMODEM(dev)] , cmd,arg,mode))
354 tdparam(dev);
355 }

tdproc: Lines 356 to 433

The tdproc routine is called to effect some change on the output, such as
emitting the next character in the queue, or halting or restarting the out
put.

4-36 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

tdproc(tp, cmd)
register struct tty *tp;
{

register c;
register int addr;
extern ttrstrt;
addr = td_addr[tp - td_tty];
switch (cmd) {
case T_TIME:

tp->t_state &= 'TIMEOUT;
outb(addr + RCNTRL,

inb(addr + RCNTRL) & 'C3REAK);
goto start;

case T_WFLUSH:
tp->t_tbuf.c_size -= tp->t_tbuf.c_count;
tp->t_tbuf.c_count = 0;

case T_RESUME;
tp->t_state &= 'TTSTOP;
goto start;

case T_OUTPUT:
start:

if (tp->t_state&(TIMEOUT|TTSTOP|BUSY))
break;

{
register struct ccblock *tbuf;
tbuf = &tp->t_tbuf;
if (tbuf->c_ptr == NULL ||

tbuf->c_count == 0) {
if (tbuf->c_ptr)

tbuf->cj>tr -= tbuf->c_size
- tbuf->c_count;

if (! (CPRES &
(*linesw[tp->t_line] .l_output) (tp)))

break;
}
tp->t_state 1= BUSY;
outb(addr + RTHR, *tbuf->c_ptr++);
tbuf->c_count--;

}break;
case T_SUSPEND:

tp->t_state 1= TTSTOP;
break;

Character Device Drivers 4-37

Code Fragments From a Terminal Driver

4 07 case T BLOCK:
4 08 tp->t state &= 'TTXON;
409 tp->t state |= TBLOCK;
410 if (tp->t statesBUSY)
411 tp->t state |- TTXOFF;
412 else
413 outb(addr + RTDATA, CSTOP);
414 break;
415
416 case T RFLUSH:
417 if (! (tp->t state&TBLOCK))
418 break;
419 case T UNBLOCK:
420 tp->t state &= '(TTXOFFITBLOCK);
421 if (tp->t state&BUSY)
422 tp->t state |= TTXON;
423 else
424 outb(addr + RTDATA, CSTART);
425 break;
426
427 case T BREAK:
428 outb (addr + RCNTRL,

inb(addr + RCNTRL) | CBREAK);
429 tp->t state |= TIMEOUT;
430 timeout(ttrstrt, tp, HZ/4);
431 break;
432 }
433 }

The code is defined as follows:

Line no. Definition

366: The cmd argument determines the action taken.

368-375: The time delay for outputting a break has finished.
Reset the flag TIMEOUT, which indicates there is a
delay in progress and stop sending a continuous
space. Then, restart output by jumping to start. A
WFLUSH command resets the character-buffer
pointers and the count.

376-378: Either a line on which output was stopped is restart
ing, or someone is waiting for the output queue to
drain. Reset the flag TTSTOP, indicating that output
on this line is stopped, and start the output again by
jumping to start (line 381).

380-383: Try to output another character. If some delay is in
progress (TIMEOUT), or the line output has stopped
(TTSTOP), or a character is in the process of being
output (BUSY), just return.

4-38 Device Driver Writer’s Guide

Code Fragments From a Terminal Driver

384-399:

403-405:

407-414:

416-418:

419-425:

427-431:

This code manipulates the character queue in order to
output either a block of characters (by calling the
l_output routine) or perform a single-character-
output operation (in this example, the outb(K) rou
tine).

Note that if the device is capable of outputting more
than one character in a single operation, then this
should be done, and the buffer pointer (c_ptr) and the
count (c_count) should be adjusted appropriately.

To stop the output on this line, since there is no way
to stop the character we have already passed to the
controller, just flag the line stopped, and drop through.

To tell the device on the other end to stop sending
characters, reset the flag asking to stop the line, and
mark the line stopped. If the line is already busy, set
the flag; otherwise, output a CSTOP character.

A process is waiting to flush the input queue. If the
device hasn’t been blocked, just return. Otherwise,
drop through and unblock the device.

To tell the device on the other end to resume sending
characters, adjust the flags. If the controller is send
ing a character, set the flag to send a CSTART later;
otherwise, send the CSTART now.

To send a break, set the transmitter to continuous
space, mark the line as waiting for a delay, and sched
ule output to be restarted later.

Character Device Drivers 4-39

Chapter 5

Video Adapter Device Drivers

Writing a Video Adapter Driver 5-1
Text and Non-Text Modes 5-3
What the Video Driver Provides 5-3
Hardware and Software Cursors 5-4
How a Character Is Inserted 5-4
Multiscreen Switching 5-5
Memory Management in a Video Driver 5-6
How a Video Driver is Installed 5-6
Video Driver Notes 5-7

Video Driver Structures 5-8
Multiscreen Structure 5-8
Adapter Structure 5-11
Keyboard Group Structure 5-13

Adapter Driver Routines 5-15
Routine Descriptions 5-15

Writing a Video Adapter Driver

Writing a Video Adapter Driver
The device driver for the console, vid.c, contains a series of calls to
eleven device-specific routines that a driver written for a video adapter
must include. These routines perform initialization, character display,
and special functionality. This chapter explains the functionality for each
routine.

NOTE: This chapter should be used in conjunction with the sample
video driver provided in the System V distribution soft
ware for the development system. The files are all in the
lusrlliblsamples!pack.d/exvd directory and are described as
follows:

File Description
exvd.c Video adapter driver for a CGA board
m6845.c Video controller-specific routines for exvd.c
m6845.h Header file for the controller-speci fic routines
vidloops.c Additional routines used by exvd.c

In addition, you should also examine the console header file, sys/vid.h for
more information on the structures and variables discussed in this chapter.

In this chapter, the video console driver is called the video driver. The
driver that you are writing or maintaining for the video adapter is called
an adapter driver.

The video driver contains generic, device-independent routines. Separate
adapter drivers provide device-specific functionality for the monochrome,
CGA, EGA, and VGA adapters. If you have a video adapter card that uses
another display medium or is non-standard, your driver only need include
the device-specific routines. All other functionality for writing a video
driver is handled for you by the video driver.

Video Adapter Device Drivers 5-1

Writing a Video Adapter Driver

The following example shows the relationship between the user, the ker
nel, the video driver, the adapter driver, and the hardware:

Adapter Driver Routines Overview
Eleven predefined entry points are provided for adapter drivers. These
routines are as follows:

• Initialization Routines — xxemos, xxinit, and xxinitscreen
• Data Handling Routines — xxscroll, xxclear, xxcopy, and

xxpehar
• Special Routines — xxscurs, xxioctl, xxsgr, and xxadapctl

5-2 Device Driver Writer’s Guide

Writing a Video Adapter Driver

As with all device drivers, you replace the xx prefix with the unique two-,
three-, or four-letter identifier for your particular driver. As previously
stated, there are supplied adapter drivers for standard monochrome
(mono), CGA, EGA and VGA adapters.

Text and Non-Text Modes
When describing how the video system works, two modes are used: text
and non-text. Text mode is used for displaying normal text and allows
switching between multiscreens. Non-text mode is used for bit-mapped
graphics and do not allow multiscreen switches.

Routines Required for Each Mode

The following table shows which adapter routines are required for each
mode:

Routine Text Mode Non-Text M
xxadapctl required required
xxclear required not used
xxcmos required required
xxcopy required not required
xxinit required required
xxinitscreen required required
xxioctl required required
xxpchar required not required
xxscroll required not required
xxscurs required not required
xxsgr required not required

What the Video Driver Provides
The video driver contains the normal character driver routine interface:
xxread, xxwrite, xxioctl, xxopen, and xxclose. Requests to the xxwrite
routine are processed by an ANSI parser. The parser calls the adapter
driver routines to change the text display, move the cursor, change text
color, and so on.

The console video driver uses the multiscreen number to index into an
array of struct mscrn to find the address of the current multiscreen struc
ture - msp. Assuming that the screen is in text mode it proceeds, other
wise it drains and discards the output without generating an error.

Video Adapter Device Drivers 5-3

Writing a Video Adapter Driver

Hardware and Software Cursors
Two cursors are discussed in this chapter, a software cursor, and a hard
ware cursor. The hardware cursor is the blinking underbar or block that
is displayed on the screen. The software cursor is designated by the
mvrow and mv_coI fields of the mscrn structure.

When text is displayed by a call to the adapter driver, the software cursor
becomes the output point for displaying text. When the video driver calls
the xxpchar routine of the adapter driver, the buffer of characters passed
to xxpchar is displayed in successive positions on the screen, The soft
ware cursor is updated only by the video driver, but not by the adapter
driver.

When the video driver completes an xxwrite request and at other special
times like after cursor motion or an escape sequence, the xxscurs routine
of the adapter driver is called to update the hardware cursor with the soft
ware cursor position.

To give the hardware cursor the same value as the software cursor,
mv row and mv_col are set, and xxscurs is called to update the display.

How a Character Is Inserted

To illustrate how an adapter driver works in conjunction with the video
driver, this section describes how a character is inserted using an adapter
driver. The adapter driver is called by the video driver. In the described
example, a character is inserted at the current position into the fifth mul
tiscreen, on a computer that has two video adapters. The sequence is as
follows:

1. The console video driver uses the multiscreen minor device num
ber to index into an array of struct mscrn to find the address of the
current multiscreen structure — msp. Assuming that the screen is
in text mode it proceeds, otherwise it drains and discards the out
put without generating an error.

2. The software cursor position is contained in the mv_row and
mv_col fields of the mscrn structure.

3. The value of msp is stored in mv_adapter->v_curscrn so that the
adapter routines can determine if this multiscreen is being dis
played or not.

5-4 Device Driver Writer's Guide

Writing a Video Adapter Driver

4. xxcopy is called to move the characters beginning at mv_row,
mv_col one position to the right.

5. The character is drawn on the screen by a call to xxpchar and the
cursor is moved by a call to xxscurs.

Multiscreen Switching
This dialogue of the video driver and the adapter driver is similar for each
function handled by the video driver. In a similar fashion, a multiscreen
switch occurs as follows:

1. The video driver uses the multiscreen number to index into an
array of struct mscrn to find the address of the current multiscreen
structure — msp. The video driver then tests to see if the screen is
in text mode, and if it is, proceeds as explained in the steps that
follow; otherwise the video driver announces an error by causing
the speaker to beep.

2. The video driver allocates a screen save area. Screen save areas
are allocated at screen initialization time, are always available for
use by adapter drivers, and are reallocated on mode switches
because the size of the screen may change. (Mode switches cause
screen data to be cleared.)

3. The current screen display is copied to the save area when the
video driver calls the adapter driver with this statement:

(* (my_adapter->v_adapctl)) (msp, AC_SAVSCPN, arg)

The arg argument points to the save memory area.

4. The saved image of the video screen for the newly selected mul
tiscreen is copied into display RAM when the video driver calls the
adapter driver with this statement:

(* (mv_adapter->v_ad3pctl)) (msp, AC_RESSCRN, arg)

The arg argument points to the save memory area.

Video Adapter Device Drivers 5-5

Writing a Video Adapter Driver

Memory Management in a Video Driver
The vas routines described on the vas(K) manual pages are used to share
memory with a user process, for example, so that the user process has the
video frame buffer in its user address space.

The sptalloc(K) routine is used to map video adapters into memory space.
For example, to map a card into memory, the following sptalloc call is
used:

sptalloc (1, PG_P, 0xB8000, 1) ;

This call maps 1 memory page at address 0xB8000 and it indicates that
the page should always be present, not swappable (PG_P). The fourth
argument, 1, has no elfect. If memory is not available, sptalloc sleeps
until it is available.

How a Video Driver is Installed
A video driver is installed using the following procedure:

1. Compile your program to create an object file using the informa
tion described in Chapter 6.

2. Copy the driver object file to the letclconflpack.d directory.

3. Edit /etc/conf/cf.d/mvdevice. Refer to mvdevice(F) for informa
tion.

4. Edit /etc/conf/cf.d/mdevice. Refer to mdevice(F) for information.

5. Edit I etc! confi sdevice.d/<dnveT-name>. Refer to sdevice(F) for in
formation.

6. Run linkjm ix to build a new kernel. Refer to Chapter 6 for more
information.

5-6 Device Driver Writer’s Guide

Writing a Video Adapter Driver

Video Driver Notes

1. The adapter driver can and does write directly into the mscrn
structure, as it can for any other structures held by the video driver.
These structures are described in sys/vid.h, and the principle struc
tures for multiscreens, adapter drivers, and keyboard groups are
described in the section "Video Driver Structures" in this chapter.

2. The xxadapctl, xxclear, xxcopy, xxpchar, xxscroll, xxscurs, and
xxsgr routines can be called at interrupt time (due to echo and
screen switches being done at interrupt time. The xxcmos, xxinit,
and xxinitscreen routines are called from an xxinit routine, and
the xxioctl routine is called from user context only.

3. The video driver allocates the amount of screen memory that was
allocated during a previous call to xxadapctl with the
AC_SAVSZQRY command. This memory is available at the
multiscreen’s save-screen pointer and is always available.

5

Video Adapter Device Drivers 5-7

Video Driver Structures

Video Driver Structures
The video driver uses main structures in which an adapter driver can read
or write. These structures are:

• Multiscreen structure (msern) — Contains state information for
each multiscreen. One instance of the structure is required for
each multiscreen.

• Adapter structure (adapter) — Contains pointers for each adapter
driver routine. One instance of the structure is required for each
adapter driver.

• Keyboard group structure (kbgrp) — Contains pointers for each
keyboard directly attached to the computer (not to serial lines).
One instance of the structure is required for each keyboard.

The interaction in the adapter driver depends heavily on access of the
multiscreen data structure, msern. The members of this structure are as
follows:

Multiscreen Structure

Type and Field Description
struct kbgrp *m_grp;
int m_num;
struct tty *m_tty;
struct adapter *mv_adapter;
vseg_t irw_savscm;
unsigned iw_savsz;
faddr_t mv_STBp;
uchar_t rrry_fcnt;
ushert mvjcrpool;
ushort mv_rcw, mv_ool;
ushort mv_rsz, mv_csz;
ushort mv_csstate;
ushort iwjzsparamfNCSPARAMS] ;
uchar_t mvyesindex;
uebarjt mv_cstyp;

/* Multiscreen group header */
/* Screen nurrber */
/* tty structure */
/* Ptr to the screen's adapter */
/* Save screen RfiM */
/* Size of save screen used */
/* Font value translation table */
/* ANSI font, one of 0, 1, or 2 */
/* Used by ANSI */
/* Cursor position */
/* Text screen size */
/* Ctl sequence state */
/* Ctl sequence paxaneters */
/* Ctl sequence parameter index */
/* Cursor type */

5-8 Device Driver Writer’s Guide

Video Driver Structures

Type and Field_________
struct colors mv norm,

mv_rev,
mv_grfc;

uchar_t mv_ovscan;
char mk_qstr [Î XFK] ;
stri>qp_t mk_strix;
strtafcpjt mk_strtab;
uchar_t rrk_keylock;
ushort irb_time;
ushort rrt>_freq;
ushort mfjsavrtw;
ushort mf_savaol;
ushort mf_snd_rcw;
ushort mf_srd_col;
ushort mf_status;
ushort mf_xtracpenf;
uchar_t adp_area [32] ;

Description
/* Normal attributes */
/* Reverse video attributes */
/* Graphic character attributes */
/* Border color */
/* Work space for func. key ocnf */
/* Functicn key string table pointer */
/* Function key string text table */
/* Caps/num/scroll lock */
/* Bell duration 1/10 secs */
/* Bell frequency (pitch) */
/* ~[[7 save current row & col */
/* ~[[8 restore row & col */
/* Row for sendscreen */
/* Colurm for sendscreen */
/* Terminal status bit field */
/* Flags for systty support */
/* See note that follows */

NOTE: adp area provides hardware fields for each multiscreen for use
by adapter drivers. This area can be used in any manner.

struct mscrn is a structure that is replicated for each individual mul
tiscreen. Each structure contains state information for the multiscreen
(current color, mode, and so on) and a series of pointers.

mscrn contains a pointer to struct kbgrp, the keyboard group that the mul
tiscreen belongs to. Note that all multiscreens on the main system moni
tor have the same keyboard group, mscrn also contains mv_savscrn which
points to the RAM memory location where the screen image is saved
when the multiscreen is not active. Also of interest in mscrn is a pointer
to struct adapter which contains information about the adapter driver.

Video Adapter Device Drivers 5-9

Video Driver Structures

The relationship between s t r u c t m s e r n and the other parts of the driver is
shown in the following diagram:

struct msern

save
screen

kbgrp

savsern

adapter —

state info

struct adapter
adapsw[]

xx driver

5-10 Device Driver Writer’s Guide

Video Driver Structures

Adapter Structure
struct adapter is a structure that is replicated for each adapter driver and
contains pointers to each of the eleven routines that an adapter driver
should have, and other pointers to the struct mscrn of the current mul
tiscreen and to the video RAM of the card associated with the adapter
driver.

Type and Field Description
char *v name;
ushort v type;
ushort v oem;
struct mscm *v curscm;
ushort v initrc;
int (*v init) () ;
int (*v ones) () ;
int (*v initscreen) () ;
void (*v scroll) () ;
void (*v copy) ();
void (*v clear) () ;
void (*v_pchar) () ;
void (*v scurs) () ;
void (*v sgr) () ;
int (*v ioctl) () ;
int (*v adapctl) ();
vseg t v videoram;
paddr t vjpaddr;
uleng t v size;

/* Name of the adapter ie "0GA" */
/* Basic type such as M3SD, CGA,... */
/* Ncn-standand vendor name */
/* Pointer to the current screen */
/* Saved return value of v init */
/* Init the adapter driver */
/* Extra ones type checking */
/* Init a multiscreen cn the adapter */
/* Scroll screen up or dewn */
/* C o p y data between screen areas */
/* Clear any portion of the screen */
/* Put a string of characters */
/* Set the active and cursor position */
/* Set graphic rendition; see * 1 X.64 */
/* Adapter specific ioctl handler */
/* Adapter specific misc other stuff */
/* Kernel pointer to video ram */
/* Physical address of video ram */
/* Size of of video ram in bytes */

Video Adapter Device Drivers 5-11

Video Driver Structures

The following is a graphical representation of the relationship between
s t r u c t a d a p t e r and the other hardware and software that comprise the
video system:

struct adapter

struct
mscrn[]

<

xx driver

displayed screen

video R A M -----

Eleven xx routine pointers

> xx board
ran

5-12 Device Driver Writer’s Guide

Video Driver Structures

Keyboard Group Structure
struct kbgrp defines a keyboard group. This structure is replicated for
every keyboard attached directly to your computer. (Keyboards on termi
nals attached via serial lines are not included.) The struct kbgrp has a
pointer to each multiscreen that accepts input from the keyboard, a
pointer to struct adapter, a variable indicating the current multiscreen,
and any pertinent keyboard data.

Type and Field________________
struct mscm *kg_mO;
struct adapter *kg_aO;
int (*kg_in) () ;
struct map *kg_m3tirap;
short kg_dtoa [MAXADÄPTERS] ;
short kg_curscm;
short kgjraxscm;
struct keyrtap *kg_keyrrap;
char kg_rabuf [MAXRA] ;
ucharjo *kg_rafp;
uchar_t *kg_rafcp;
ucharjt kgjoreak;
short kgjdown;
ucharjt kgjstate;
ucharjt kg_gblklk;
ucharjt kg_kbmode;
int (*kg_scrsend) () ;
int (*kg_scrdrain) () ;
int (*kg_scrgetkey) () ;
int (*kg_scrmode) () ;
int (*kg_bell) () ;
int kg_extrrode;
int kg_altseq;

Description
/* nultiscreens[] for the keyboard grp */
/* adaptsw[] for the keyboard grp */
/* keybd grp line displn in() routine */
/* keybd grp nultiscreen save area map */
/* device # to adapter index table */
/* current screen */
/* iraximm valid screen in keyboard grp */
/* scan code translation map */
/* keyboard scan code read ahead buffer */
/* read ahead buf front pointer */
/* read ahead buf back pointer */
/* was last scan code a break? */
/* which state keys are down? */
/* local keyboard state */
/* global key lock keyboard state */
/* keyboard mode A T vs. X T */
/* Jdo carmand sender (leds) */
/* clear any keyboard data */
/* fetch key from keyboard */
/* put kb in A T or X T mode */
/* activate bell */
/* extended mode flag */
/* ALT’ key sequence */

Video Adapter Device Drivers 5-13

Video Driver Structures

The following picture is graphic representation of the relationship
between s t r u c t k b g r p and the other software for the video driver:

struct kbgrp
struct
mscrn[]

<— — multiscreens

adapter switch

current screen

keyboard data

struct
adapsw[]

> xx driver

5-14 Device Driver Writer’s Guide

Adapter Driver Routines

Adapter Driver Routines
The following is a description of the eleven driver routines that you pro
vide when writing an adapter driver. The following table indicates in
which context each routine must be equipped to operate:

Interrupt or
User Context

Only User
Context

Initialization
Only

xxadapctl
xxclear
xxcopy
xxpehar
xxscurs
xxsgr

xxioctl xxemos
xxinit
xxinitscreen

Routine Descriptions

Syntax: xxcmos(prip, seep)
int *prip;
int *secp;

Purpose: This routine reads the hardware characteristics and
specify whether the video card in question is present
and should be designated as the primary card. This
routine is required except for monochrome and CGA
adapter drivers. The adapter driver (your code) sets
the driver type in the word pointed to by *prip.

In addition, you can use this routine to do any other
checks or start-up operations you desire. For exam
ple, the EGA driver uses egaemos to determine if the
EGA card is present and if it is, to read the switches
on the card. If the switches indicate that the card is
present and that the card should be set to be the pri
mary card, then "EGA" is returned in the word pointed
to by *prip.

Video Adapter Device Drivers 5-15

Adapter Driver Routines

If a serial console is not attached to the system, the
system boot message appears on the primary adapter
and all multiscreens are attached to the primary
adapter.

Parameters: The pointers prip and seep point to the primary and
secondary video devices to be used. Your driver can
designate itself as the primary device by assigning the
adapter type (v_type) from the adapter structure into
prip. Likewise, you can also assign your driver to be
secondary by assigning its value to seep.

Syntax: xxinit(adp)
struct adapter *adp;

Purpose: This routine is called only once; at driver initializa
tion time. Use this routine to do any initialization to
your hardware that needs to be done.

Parameters: adp points to the adapter that is to be initialized.

Return: This routine can return two flags: AI_PRESENT and
AI_COLOR, masked together in a bitwise OR.
AI_PRESENT indicates that device is present, and
AI_COLOR indicates that color is to be supported.

Syntax: xxinitscreen(msp)
struct msern *msp;

Purpose: This routine is called when moving a multiscreen to a
new adapter, at system initialization time, and at the
last close of a multiscreen when in graphics mode.

Parameters: msp points to the multiscreen that is being initialized.

5-16 Device Driver Writer’s Guide

Adapter Driver Routines

Syntax: xxscroll(msp, ent)
struct msern *msp;
int ent;

Purpose: This routine scrolls the screen up or down. Upward
scrolling is obtained by specifying ent as a positive
integer. Downward scrolling is obtained by specify
ing ent as a negative integer. In either case, the
integer value of ent is the number of lines to be
scrolled.

Parameters: msp points to the multiscreen that is being scrolled.
ent is the number of lines to be scrolled.

Syntax: xxclear(msp, drow, dcol, ent)
struct msern *msp;
int drow, dcol, ent;

Purpose: This routine clears any portion of the screen from one
character to the entire screen. The symbol positions
are cleared with the space (0x20) font character using
the current attributes (such as reverse video.)

Parameters: msp points to the multiscreen that is being cleared.
drow and dcol are the destination row and column.
ent specifies the number of displayed symbols to be
cleared.

Syntax: xxcopy(msp, drow, dcol, srow, scol, ent)
struct msern *msp;
int drow, dcol, srow, scol, ent;

Purpose: This routine copies data from one portion of the
screen to another. For example, if a word on the
screen is deleted, perhaps by an editor command, this
routine implements the escape sequence the editor
would use to move the remaining text over, filling in
the blank space. Attributes (if any) are also copied.

Video Adapter Device Drivers 5-17

Adapter Driver Routines

Parameters: msp points to the multiscreen that is being copied.
draw is the row where receiving is to begin, deal is
the column (space) where receiving is to begin, srow
is the source row from where the copied data is to be
drawn, scol is the source column (space) in srow
from where the information is to be drawn, ent is the
number of characters to be copied.

Syntax: xxpchar(msp, bp, ent)
struct mscrn *msp;
char *bp;
int ent;

Purpose: This routine writes data beginning at the current soft
ware cursor position. This routine does not move the
hardware cursor; the xxscurs routine is used for this
purpose.

Parameters: msp points to the multiscreen that is being written to.
bp is the buffer pointer supplying the data, ent is the
number of characters to be written.

Syntax: xxscurs(msp)

Purpose:

struct mscrn *msp;

This routine updates the hardware cursor to be the
same value as that of the software cursor. The posi
tion of the software cursor is contained in the mv_col
and mv row fields of the mscrn structure.

Parameters: msp points to an instance of mscrn that contains the
position of the software cursor.

5-18 Device Driver Writer’s Guide

Adapter Driver Routines

Syntax: xxsgr(msp, sgr)
struct mscrn *msp;
int sgr;

Purpose: This routine provides support for the ANSI standard
video functionality, sgr stands for set graphics rendi
tion. In this case, a “ rendition” means a video effect,
such as reverse video, underlining, or blinking. You
should write this routine to accept ANSI standard
video instructions and convert them to whatever
codes your hardware requires to perform the standard
video functions.

Parameters: msp points to the multiscreen receiving the instruc
tions. sgr is the ANSI code for the desired graphics
rendition.

Standard values of sgr that are passed to your xxsgr
routine are: (missing values are not supported)

SGR_NORMAL 0 /* return attributes to normal */
SGR_BOLD 1 /* also called INTENSE */
SGR_PRCOLORS 2 /* PR’s set the normal colors
SGRJPRBLKCTL 3 /* PR’s blink bit control */
SGRJJNDERL 4 /* underline */
sgr_blink 5 /* blink */
SGR_REVERSE 7 /* reverse video */
SGR_CONCEALED 8 /* hide characters */
SGR_FONT 10 /* fonts 0 through 9 w/ 10-19 */
SGR_RES 1 26 /* ANSI reserved */
SGR_FORECOLOR 30 /* ANSI foreground */

/* colors: 30 to 37 */
SGR_RES2 38 /* ANSI reserved */
sgr_backcolor 40 /* ANSI background */

/* colors: 40 to 47 */
SGR_RES3 48 /* ANSI reserved */

Foreground and background colors are defined in the ANSI color table in
formation on the screen(HW) manual page.

Video Adapter Device Drivers 5-19

Adapter Driver Routines

Syntax:

Purpose:

Parameters:

xxioctl(msp, cmd, arg, mode)
struct mscrn *msp;
int cmd;
char *arg;
int mode;

This routine provides support for any I/O control com
mands (ioctls) that you may want to support. In prac
tice, you can use this routine to support standard
ioctls for your hardware or you can create your own
ioctls.

msp points to the multiscreen receiving the instruc
tions. cmd is the ioctl command. The standard ioctls
are CONS_GET and MAPCONS. These stand for CON
SOLE GET and MAP CONSOLE, arg is any arguments
to the ioctl command, mode is the new mode (such as
graphics or text) for your card. See the screen(HW)
manual page for any additional ioctls you may need to
support.

5-20 Device Driver Writer’s Guide

Adapter Driver Routines

Syntax: xxadapctl(msp, cmd, arg)
struct mscrn *msp;
int cmd, arg;

Purpose: This routine provides support for adapter specific
functionality between the video driver and your
adapter driver.

Parameters: msp points to the multiscreen receiving the instruc
tions. cmd is the ioctl command, arg is any argu
ments to the ioctl command. Standard values of cmd
passed to your routine are:

ac_blinkb 0 /* clear or set the blink bit */
AC_FONTCHAR 1 /* display font character */
AC_DEFCSR 2 /* define cursor type */
AC_BOLDBKG 3 /* turn on intense bg color */
AC_DEFNF 10 /* define normal foreground */
AC_DEFNB 11 /* define normal background */
AC_ONN 12 /* begin using normal colors */
AC_DEFRF 13 /* define reverse foreground */
ACJDEFRB 14 /* define reverse background */
AC_ONR 15 /* turn on reverse colors */
AC_DEFGF 16 /* define graphic foreground */
AC_DEFGB 17 /* define graphic background */
AC_ONG 18 /* turn on graphic colors */
AC_SETOS 30 /* set overscan colors */
AC_PRIMODE 100 /* return primary text mode */
AC_S AV SZQR Y 101 /* return size (bytes) of state */
AC_SAVSCRN 102 /* save screen */
AC_RESSCRN 103 /* restore screen */
AC_CSRCTL 104 /* arg=0 hide cursor, arg=l show cursor */
AC_U S ERF ONT 105 /* load or dump the soft font */
ACJOPRIVL 106 /* grant or revoke I/O privilege */
AC_SOFTRESET 107 /* reset text mode (keep colors)*/
AC_SENDSCRN 108 /* write screen chars to stdin */

The arguments to the above commands will be such values as are appro
priate. For example, an argument to ACJFONTCHAR would be the new
font to be used.

Video Adapter Device Drivers 5-21

Chapter 6

Compiling and Linking Drivers

Compiling, Configuring, and Linking Drivers 6-1
Selecting a Prefix 6-1
Compiling a Device Driver 6-2
System Configuration 6-2
Linking The Kernel 6-5

Driver Debugging 6-6
Booting the New Kernel 6-6
General Debugging Hints 6-7
Vector Collision Considerations 6-9
Note on ps 6-10

Notes On Preparing a Driver for Binary Distribution 6-11
Naming Guidelines 6-11
Style Issues for User Prompting 6-11
Shielding Against Configuration Changes 6-12
Preparing Drivers to Use custom(C) 6-13
Driver Installation Script Overview 6-15

Compiling, Configuring, and Linking Drivers

Compiling, Configuring, and Linking
Drivers
To make your driver source code part of the kernel, a series of steps
should be followed. This chapter describes each step in greater detail.
The steps are:

Step Purpose Completed?
1 Select a unique prefix
2 Compile the driver source
3 Ensure that the device is installed
4 Adjust kernel tunable parameters
5 Check for address or interrupt vector conflicts
6 Get the next available major number
7 Alter configuration files
8 Relink the kernel
9 Create a device node
10 Invoke the new kernel

Selecting a Prefix
The prefix is a two-, three-, or four-character unique name used to identify
a driver. The prefix name is used to preface all routine names in a driver.
The configure(ADM) command does not permit a driver to be installed if
its prefix is already in use. Display the letclconflcf.dlmdevice file to see
the existing prefix names. You should select a prefix name that represents
the device your driver is associated with. If you are installing a driver
that has a conflicting prefix, you can adjust the prefix with configure -h.
(configure is in letclconflcf.d\ change directory to run configure.)

Compiling and Linking Drivers 6-1

Compiling, Configuring, and Linking Drivers

Compiling a Device Driver
Use the C compiler to compile C source code, or the assembler to create
an object module from assembler source. Use the cc(CP) or masm(CP)
commands.

The cc command line must contain the following switches:

-c Create a linkable object file.

-K Disable stack probes.

-Zp4 Align program on quad-word boundaries.

-DINKERNEL Required for conditional code in standard header files

It should also contain -M3 for the 80386 processor.

For device driver subroutines written in macro-assembler language, the
masm command line should contain the following switch:

-Mx Preserves lower case in output. Required for the
linker to be able to resolve external declarations to C
functions.

An appropriate cc or masm command line produces a corresponding “ .o”
module. For example, scsi.c becomes the object module scsi.o.

System Configuration
System configuration is the process of placing references to your driver’s
main functions in various tables. Since the existing parts of the kernel do
not know what the functions in your new driver are called, driver func
tions are referenced by indirect calls into the configuration tables.

Composing the driver’s configuration command is discussed in config-
ure(ADM). configure insulates you from potential changes to the config
uration files, and allows you to use the same procedure to configure your
driver as the end-user who receives your driver in binary form, (config
ure is in letclconf/cfd\ change directory to run configure.)

6-2 Device Driver Writer’s Guide

Compiling, Configuring, and Linking Drivers

Determining the Vector Number

You must determine your interrupt vector number so you can inform the
kernel that your driver should be called when an interrupt is pending on
that vector. This information is highly machine and configuration depen
dent.

For the 80386 mapped kernel, your peripheral device can interrupt on one
of the request lines of either a master interrupt controller or single slave
interrupt controller. The slave controller is connected to master request
line 2. Your vector number does not correspond directly to the bus
request numbers. Instead, it is mapped to logical vector numbers which
allow for the presence of slave interrupt controllers connected to the main
one.

The index of the appropriate vector is determined as follows:

1. If the vector used is on the master controller, just use the vector
number directly. These numbers range from 0 to 7.

2. If it is on a slave controller (only one is currently supported for the
80386, on master request line 2), take the request line used on the
slave controller and add decimal 7. The result is used in
/etc!conftcf.dlsdevice file.

For example, if your device uses request line 3 on the slave controller,
you would specify decimal 10 in the sdevice file. The slave controller
vector numbers are:

Slave
Controller
Request

Line

Specify this
Vector Number

In the
sdevice File

1 8
2 9
3 10
4 11
5 12
6 13
7 14
8 15

Compiling and Linking Drivers

Compiling, Configuring, and Linking Drivers

Vector Manipulation for Preconfigured Device Drivers

In preconfigured drivers, entry points have been provided for all neces
sary routines (xxopen, xxclose, and so on) except for the interrupt
handler. The interrupt handler can be configured with the config-
ure(ADM) command if a vector conflict occurs; otherwise, the interrupt
vector that you establish when you create your driver should suffice. A
vector conflict can be detected with the configure -V option.

See the section entitled “ Vector Collision Considerations” for more in
formation on the selection of interrupt vectors.

Using configure

Before configure can be run, you need to know an unused major device
number for your device, the vector or vectors on which your device inter
rupts, and the list of routines in your driver that must be added to the con
figuration tables.

The configure utility enforces the rules that all routines in the driver
begin with a common prefix and that the prefix be two-, three-, or four-
letters long. If your driver prefix is incorrect or inconsistent, change it.

Please read configure(ADM) and “ Adding Device Drivers with the Link
Kit” in the System Administrator’s Guide. This chapter contains a
detailed description of how to create a configure command line for a
driver binary. Authors of drivers have an advantage in that they do not
have to discover the names of the routines; the names that must be
presented to configure are those chosen for the routines that have so far
been described, such as the name of a character driver’s write routine,
(configure is in letclconflcf.d; change directory to run configure.) Main
tain a backup copy of the /etc/conf/cf.d/mdevice file, and the I etc! conftsde-
vice.d and I etc I conf/pack, d directories. If a mistake occurs restore the old
files or reinstall the Link Kit.

Also note that configure requires that block drivers have a xxtab struc
ture, and indeed, the vast majority of block drivers do. If you are writing
a block driver without an interrupt routine, simply declare a struct iobuf
xxtab within your driver.

6-4 Device Driver Writer’s Guide

Compiling, Configuring, and Linking Drivers

Linking The Kernel
Your Link Kit contains the t etc! conficf.dl linkjinix shell script for linking
the kernel.

Before linking your driver, ensure that your driver’s object file is in the
/etclconf/pack.d directory, and then change directory to letclconflcf.d.

Link your driver into the kernel by entering:

./link unix

Compiling and Linking Drivers 6-5

Driver Debugging

Driver Debugging
The following sections contain information on getting a driver to run, and
what to look for if it doesn’t.

Booting the New Kernel
Halt your system by entering:

/etc/shutdown

You see the “ ** Normal System Shutdown **” message. Press return to
see the boot prompt:

If you press RETURN, or simply do nothing, the new operating system
image is loaded and started. Bring up the new kernel at the Boot: prompt
by entering unix:

Boot
: unix

The system boots from the “ new” kernel. If you need to recover the old
kernel, enter unix.old at the Boot: prompt:

r Boot

Boot
: unix.old

6-6 Device Driver Writer’s Guide

Driver Debugging

General Debugging Hints
Debugging a device driver is more an art than a science. This section
touches on some of the more useful techniques to try if your driver isn’t
working.

1. Make sure that you are actually talking to your driver.

If you get errors such as “ no such device” (ENODEV) when you
try to access your driver, the problem can be the device node itself.

Check your major device number correspondence.

2. Make sure your device registers are where you think they are.

The effect of accessing a nonexistent port address varies from ma
chine to machine, but, for example, on the IBM XT or AT you can
read values using inb(K) from nonexistent hardware and receive
no error code, just a random value.

Since at least some of the I/O ports on most peripheral controllers
are both read and write, you should make sure that you can write to
one of your device’s registers using outb(K), then read back the
value you’ve written using inb(K). Even when none of the regis
ters are read/write, as is true on some mouse controllers, you can at
least read from one of the status registers using inb(K), and make
sure that the result is reasonable.

3. Work towards getting simple I/O from the driver first, complex I/O
later.

Character devices are usually easier to write to than to read from.
For a serial or a printer driver, your first test will probably be to
echo “ hello, world” to the device, or something equally simple
and traditional.

Block devices are generally easier to read from than to write to,
since you have to read back the block you’ve written to know if
you’ve written it successfully. Many block devices have a “ get
drive parameters” command, or something similar, which is even
more basic than either reading or writing.

4. Use kernel printf(K) or cmn_err(K) for debugging, except when
in an interrupt routine. In an interrupt routine, put your debug mes
sages in a static structure and then display them to the console in
task time.

Compiling and Linking Drivers 6-7

Driver Debugging

Although you shouldn't overuse printf (in a finished driver, printf
should only be used for unrecoverable errors), it can be an invalu
able debugging tool.

Coupling printf with #ifdef DEBUG statements and a global
“ debug level’ ’ flag, you can tailor the verbosity of your debug out
put to the situation at hand.

For example, you may have two debug levels:

#ifdef DEBUS
if (myddDugflg > 0)
printf ("got to rnycpen () \n") ;
if (rrydebugflg > 2)
printf("open parameters: dev=%x", dev);
printf("flag=%x bc=%x\n",flag, be) ;

#endif

There are occasional situations where a printf can change peri
pheral timing enough to change the behavior in question, but these
cases are fairly rare.

5. Use getchar(K) to stop kernel output and to set debug levels.

Kernel getchar is similar, though not quite the same, as the stan
dard I/O library routine of the same name. Kernel getchar returns
a single character from the keyboard. The character is automati
cally echoed. The only other processing done on this character is to
map RETURN to RETURN/LINE FEED on output. When you have
many lines of kernel printf(K) output, inserting getchar state
ments into your driver is one of the better ways to regulate the
printf output flow.

A second use of getchar is to set the level of debugging. For exam
ple, in the example above, you could place two lines of code such
as:

mydebugflg = getchar();
mydebugflg -= ' 0 ' ;

shortly after the beginning of the open routine, to set the current
value of mydebugflg to anywhere between 0 and 9.

Note that getchar may not work at interrupt time for interrupt rou
tines of certain priorities.

6. Poll before you use interrupts. Polled drivers are best first approxi
mations for block devices such as disks. For serial drivers, a polled
interface may help you decide how to write to the device.

6-8 Device Driver Writer's Guide

Driver Debugging

However, be forewarned that performing polled reads will make
the system unusably slow.

Often the hardest driver routine to get right is the interrupt routine.
You can expedite this process by first writing a polled driver: one
that busy-waits until the request you made has completed, and then
returns status. However, do not leave any busy-wait loops in the
finished driver!

7. Use spI7(K) as a debugging aid. Ensure that the use of spl7 is for
debug purposes only. Remember that any code protected by sp!7
is also blocking the clock ticks from occuring. Always use any spl
routine in conjunction with splx. All spl routines are described on
the spl(K) manual page in this guide.

Sometimes, a driver can be difficult to debug because higher prior
ity interrupts get in the way. A call to spl7 shields driver code
from any interruptions by the other devices on the system.

8. Be patient. Drivers are complex. So much so, that writing a 300-
line device driver takes even an experienced driver-writer several
times longer than a utility program of the same length. Don’t
worry if your driver takes a while to perfect.

Vector Collision Considerations
Design a driver with care when selecting a hardware interrupt vector,
because conflicts can occur between drivers over interrupt vector usage.

80386-based systems use 2 8259 programmable interrupt controllers. The
mapped kernel currently leaves only vectors 9-12 and 15 (bus leads
IRQ9-12 and IRQ 15) unused. These vectors are also safe to use for de
vices whose drivers are written using spl5.

If it is necessary to use one of the other vectors, there are two configura
tion alternatives:

1. Replace the device driver already using the vector.

2. Provide a special-purpose interrupt handler that “ knows” that the
vector is shared and takes appropriate precautions.

The first alternative is recommended, but is not always possible. There
are problems with the second alternative, because there is no way to
prevent the loss of interrupts which can occur when competing with an
arbitrary device.

Compiling and Linking Drivers 6-9

Driver Debugging

The problem is that the . 8259 interrupt controller detects an interrupt
request only when the request line changes state from off to on (called
edge-triggered mode). If all sources for the interrupt request line are not
off at the same time after entry to the interrupt service routine, no further
rising edge on the request signal is detected, and so no more interrupts are
seen on that vector until all the sources for the interrupt request line are
turned off. The state of the interrupt request line cannot be determined
directly from the interrupt controller chip, so the determination must be
made by device-specific means for all devices sharing the vector.

However, sharing is possible for those devices that interrupt only follow
ing a request from the CPU. Disk drivers, tape drivers, and other such de
vice drivers can “ time out” , using timeout(K), when waiting for a
response to a request, and, upon time out, examine the device to deter
mine if the operation is complete. This approach saves your driver from
lost interrupts, but the device with which you share a vector is only
immune if it is written using timeout as well.

This approach is far from practical for use with devices such as serial
communication lines, which can cause interrupts at any time, out of the
control of the system using the device. The granularity of control avail
able with timeout is far too slow for all but the slowest of communication
lines (approximately 110 to 200 baud).

This does not mean, however, that each serial line requires its own inter
rupt vector. Some serial boards provide enough pollable state informa
tion to allow the serial interrupt routine to loop until none of its con
trolled devices is posting an interrupt. In this example, the key is that a
single interrupt routine controls all of the multiple devices on a single
vector.

Note on ps
If you change to an alternate name for your kernel, such as unix.new,
ps(C) does not work correctly unless you specify the -n flag and the path
name of the kernel you are using.

During debugging it is useful for the device driver writer to display the
address argument of sleep(K). Use the shell command ps -el to identify
which processes are sleeping in your driver by examining the values
reported in the WCHAN column.

See ps(C) in the User’s Reference manual for more information.

6-10 Device Driver Writer’s Guide

Notes On Preparing a Driver for Binary Distribution

Notes On Preparing a Driver for
Binary Distribution

Naming Guidelines
The two- to four-letter name that prefixes all of your driver’s routines
should describe what kind of a driver it is, as best as is possible in such
limited space. For example, die current serial I/O driver uses routines
beginning with “ sio” , and the parallel driver uses routines beginning with
“ pa” .

Preconfigured drivers have had their names reserved in advance. If you
are writing a driver for a device that a user might have more than one of,
such as an add-on hard disk driver, you might want to be a bit more
obscure to prevent later naming conflict. For example, the driver for a
techno-babble hard disk might begin its routines with the prefix “ tbhd” .

Style Issues for User Prompting
Most currently configured devices print out a short message in their ini
tialization routines using printcfg(K) to notify the user that they are
installed. This message must be terse. All the extra drivers that a user
could possibly want, combined, should not generate enough messages to
scroll the boot-up copyright message off the screen.

For example, this is an appropriate message:

Device Address Vector diH Gcnment

serial 0x3F8-0x3EF 04 -- type=std ports=l

Note that the labels (Device, Address, Vector, and so on) are provided at
boot time; you need only supply a line with information specific to your
driver. Refer to the printcfg(K) manual page for more information on the
format of an initialization message

Compiling and Linking Drivers 6-11

Notes On Preparing a Driver for Binary Distribution

Shielding Against Configuration Changes
Do not write a driver that relies on particular configuration parameters,
for example a certain major device number or interrupt vector. Avoiding
such “ hardcoded” assumptions helps prevent collisions with other
drivers, and insulates the driver from system configuration changes.

Drivers should not, and do not need to be aware of their own major device
number. However, the device number contains the major number if you
want to display it. Use major(K) to extract the major number from the
device number.

Very few drivers have ever needed to know this information, but those
that did fell into two categories: drivers performing some form of physi
cal I/O that used the major device number to determine the type of I/O,
and block device drivers that needed to know if the device they controlled
was the root or the swap device.

Drivers doing physical I/O now differentiate it either by using the
block/character parameter of the combined open routine, or by marking
the transfer in the b_dev field of the transfer’s buffer. Drivers needing to
know if they are the root device can find out using the following or some
thing similar:

♦include "sys/ccnf.h"
♦include "sys/cmn_err.h"
extern struct bdevsw bdevsw[];

if (bdevsw[major(rootdev)].d_cpen == xxopen) {
cmn err(CE CONT,"the xx driver is the root device\n");

Drivers also should not and do not need to know the vector on which they
interrupt. The underlying hardware determines the vectors on which a de
vice is capable of interrupting. When the hardware is only capable of
interrupting on one vector, there is little a driver writer can do beyond the
timeout schemes discussed previously. If the vector is configurable on
the card, some cards allow you to query the vector number directly.

Preconfigured drivers can simply check to see if someone else has already
claimed that vector. Other drivers should encourage users to reconfigure
when interrupts appear to get lost.

6-12 D e v i c e D r i v e r W r i t e r ’s G u i d e

Notes On Preparing a Driver for Binary Distribution

Using configurable port addresses poses similar issues. Like an advisory
locking scheme, two drivers should usually be able to mitigate the port
addresses and interrupt vectors between them, but a poorly written driver
can cause problems for the whole system, sometimes making it look like
some other driver is at fault.

Preparing Drivers to Use custom(C)
The best thing you can do for the end user is to supply a driver installation
shell script for use with custom. With such a script, a user has only to
type custom and select options from the menus.

The custom utility extracts the contents of your driver installation floppy,
using them to control the custom installation procedure, custom requires
the presence of the following:

• On each floppy volume, a product identification file whose name is
derived from the driver package name, the volume, and a machine
identification string

• The object module containing your device driver

• A permlist, or a file containing the file permissions for the other
files and what volumes and packages they belong to.

• The driver installation shell script that forms the table entries bind
ing driver and kernel.

All files on the driver installation floppy should be given by relative path
name, starting at the root. For example, if /bin/ls were on the floppy, its
name on the floppy should be ./bin/ls .

The product identification file has a name of the following form:

. /tmp/_lbl,/prd=sidd/typ=386AT/rel=l. 0.0/vol=01

where sidd is the driver’s prefix (in this case, it stands for Sample Install
able Device Driver), and 386AT is a machine-type specifier. To find the
type specifier for your machine, check the file /etc!perms!inst on your sys
tem. If you are developing for a different system, check the /etc/perms!inst
file on that system for the type identifier for that machine.

In the above example, 1.0.0 is the software release number of the driver,
and 01 is the volume number of the floppy containing the driver. Note
that there is no volume 0: volume numbers must start at 01 and be con
secutive.

Compiling and Linking Drivers 6-13

Notes On Preparing a Driver for Binary Distribution

This hlc must exist on each volume of your driver installation set (incre
menting the volume number). It can be an empty file; its contents are
ignored.

The permlist is a file containing a list of the files on the floppy, their per
missions. and their packages. It will be used by custom both as an argu
ment to fixperm(ADM) and to determine which driver files belong to
which package. This makes it easy for the user to install one driver in a
driver suite containing many. The permlist must live in .Itmplperms.
Below is a sample permlist:

#
ti Copyright (C) 1986-1989 The Santa Cruz Operation, Inc.
Copyright (C) 1986-1989 AT&T
Copyright (C) 1986-1989 Microsoft Corp.
All Rights Reserved.
#
#prd=sidd
#typ=386AT
#rel=i.0.0
#set="Sample Installable Device Driver"
#
User id's:
#
uid root 0
#
Group id's:
#
gid root 0
#
#
#! SIDD 11 Sample Installable Device Driver
#
Fields are: package [d,f,x]mode, user/group, links,
path, volume

SIDD F644 root/root 1 ./tmp/perms/sidd 01
SIDD F755 root/root 1 ./tmp/init.sidd 01
SIDD F644 root/root 1 ./etc/conf/pack .d/sidd/Driver.o 01

Some of the fields are self-explanatory and can be copied verbatim. The
prd, typ, rel, and set fields are comments to fixperm but are meaningful to
custom. They must agree with the prd, typ, and rel entries in the
filename, above. The set field is used by custom when it prompts for the
users choice of packages to install.

6 - 1 4 Device Driver Writer’s Guide

Notes On Preparing a Driver for Binary Distribution

Fields starting with ‘#!’ are package specifiers. At least one must be
present so that custom has something to prompt for. The ’l l ’ in the
#!SIDD field above is the size, in 512 byte blocks, (as reported by du(C))
of all the files in the package. The comment following the size is also
used in custom(ADM) prompting.

The final section contains the package specifier, file type and permission,
ownership, link count, file name and volume for each file on the distribu
tion. The file type is d for directory, x for executable file, and f for nor
mal file. If the file type is capitalized, the file is optional, and custom will
not complain if it is missing. The files section is explained in more detail
in fixperm(ADM).

Driver Installation Script Overview
A driver installation shell script should have the following duties:

• Check to see if the Link Kit is present, and install it if it isn’t.

• Add the new driver entry points to the kernel using configure.

• Change directory to letclconflcf.d, and then run linkjinix to link
the kernel.

• Make the device nodes in I dev.

Refer to the sample installation script provided in the
/usr/lib!samples/scripts directory in your software. The scripts provided
there can be used as models for an installation script that you write.

Compiling and Linking Drivers 6-15

Chapter 7

Writing a SCSI Driver

Introduction 7-1
About This Chapter 7-2
SCSI Devices 7-3

SCSI Device Configurations 7-3
SCSI Commands 7-4

Driver Overview 7-5
Host Adapter Communication With a Driver 7-5
Driver Structures 7-6

Structure Initialization 7-6
Local Structures 7-6
Configuration Table 7-6

Request Block 7-8
Request Block Format 7-8

Writing a SCSI Device Driver 7-11
xxopen 7-12
xxioctl 7-13
xxbreakup 7-13
xxread and xxwrite 7-14
xxstrategy 7-15
xxstart 7-16
xxintr 7-17

Installing a SCSI Device or Host Adapter Driver 7-18
Editing the mscsi File 7-19

Host Adapter Driver 7-20
Initialization 7-20
The xx_entry Routine 7-20
I/O Control Command Routine 7-20
Host Adapter Interrupt Routine 7-21

Introduction

Introduction
This chapter describes how to write or maintain a driver for a device on
the Small Computer Systems Interface (SCSI). The following diagram
illustrates the interface:

I

The SCSI kernel routines are contained in the development system soft
ware, and provide a vehicle for creating or maintaining SCSI device
drivers and host adapter drivers. A host adapter is a card that converts
computer-independent SCSI communications protocol to computer-spe
cific information that your computer can process. A SCSI bus is a cable
connecting a host adapter to a series of SCSI controllers and their associ
ated devices.

The SCSI software provided with your development system consists of a
host adapter driver, a disk driver, a tape driver, and kernel routines that
you can use when creating your SCSI device or host adapter drivers. The

Writing a SCSI Driver 7-1

Introduction

provided host adapter driver contains an optional I/O control command
(ioctl) interface that permits pass-through control to the hardware on a
SCSI bus. No additional software needs to be installed to start writing
SCSI drivers.

SCSI is defined by the American National Standards Institute (ANSI), and
the provided SCSI software is compatible with the ANSI X3.131-1986 and
X3T9.2/85-52 Rev 4.B standards.

About This Chapter
This chapter covers the following topics:

• Introduction — An introduction to SCSI devices, device configura
tions, and SCSI commands.

• Driver Overview — Information about how the host adapter com
municates with a driver, driver structures, structure initialization,
local structures, and the configuration table.

• Request Blocks — A SCSI driver uses request blocks to convey
commands and data to and from the device. This mechanism is the
heart of a SCSI driver’s interaction with a device.

• Driver Routines — A discussion of routines used in a SCSI device
driver.

• Installing a SCSI Device Driver — A procedure for installing a de
vice driver into the kernel.

• Host Adapter Driver — A discussion of the components of the host
adapter driver and how it is installed into the kernel.

7 - 2 Device Driver Writer's Guide

Introduction

SCSI Devices
The small computer systems interface provides a computer with device
independence within a class of devices. One class of device is disk
drives, another class is tape drives, and so on. Using this interface, The
following device classes can be added to a host computer without requir
ing modification to generic system hardware or software:

Device Description
CD-ROM SCSI cartridge disk, read-only memory
Communications SCSI communications device
Disk Either a SCSI "Bootable rootable" hard

disk drive, or a SCSI disk drive
Media Changer SCSI robot device for changing

storage media
Optical SCSI optical memory device
Processor SCSI processor device
Scanner SCSI scanner device
Tape SCSI tape drive
WORM SCSI Write-Once-Read-Many drive

The SCSI bus is a local I/O bus that can be operated at data rates of up to
5 megabytes per second.

The small computer systems interface uses logical rather than physical
addressing for all data blocks. A logical unit may coincide with all or part
of a peripheral device.

SCSI Device Configurations

Up to seven SCSI device controllers can be on a bus with each controller
being able to address eight peripheral devices, making a possible total of
up to 56 devices. With the two possible buses, the number can reach 112
devices. Multiple devices contending for the bus are handled by a prior
ity system that awards interface control to the highest priority device.

Communication on the SCSI bus is only allowed between two devices at a
time, the initiator and the target. The software provided with your system
assigns the host adapter to be the initiator.

SCSI protocol provides for the connection of multiple initiators; that is,
devices that can initiate an operation, and multiple targets. The supported
arrangement is single-initiator, multiple-target.

Writing a SCSI Driver 7-3

Introduction

SCSI Commands
A request to a peripheral device is performed by sending a command
descriptor biock (CDB) to the target. The CDB consists of an operation
code byte, a logical unit number (LUN), command parameters, if any, and
a control byte.

The operation code byte has a group code field and a command code field.
There are eight different group codes and thirty-two different commands
per group yielding 256 different operation codes.

Group codes are divided as follows:
• Group 0 - six-byte commands.
• Group 1 - ten-byte commands.
• Group 2 - reserved.
• Group 3 - reserved.
• Group 4 - reserved.
• Group 5 - twelve-byte commands.
• Group 6 - vendor unique.
• Group 7 - vendor unique.

7 - 4 Device Driver Writer’s Guide

Driver Overview

Driver Overview
A SCSI driver communicates with the host adapter server instead of
directly with the hardware. The host adapter driver contains normal de
vice driver entry points. The SCSI device driver contains a subset of the
normal driver routines; usually those routines required just for opening
and closing the device, and for reading, writing, and processing informa
tion.

Each host and device driver has a unique major device number. Each
driver is installed the same as any other driver, but the device driver in
formation is also put in the letclconflcf.d/mscsi file. When a new kernel is
built, the build software creates a configuration table from the informa
tion in mscsi that indexes each SCSI device to its respective controller
and host adapter.

Host Adapter Communication With a Driver
The device driver communicates with the host adapter server via a
request block. The request block contains the SCSI command block,
relevant addresses and data lengths, and the interrupt function to call
when the adapter server is finished with the request.

A device driver contains all routines necessary to operate a device. These
include xxopen, xxclose, xxread. xxwrite, xxstrategy, xxioctl, xxpoll,
xxstart, xxintr, and xxhalt, and xxinit driver routines. Guidelines for
what each routine should include are described in Chapters 3 and 4 of this
guide, and in the following sections if applicable.

A host adapter driver includes these routines: xxinit, xxioctl, and xxintr.
The driver controls all initial setup of a host adapter, processes requests
on behalf of other device drivers for access to SCSI devices, and allows
user control of certain adapter-specific parameters.

Writing a SCSI Driver 7-5

Driver Overview

Driver Structures
This section describes generic and local structures that are required in a
SCSI driver.

Structure Initialization

At system initialization time, a device driver searches its configuration
table and initializes all needed data structures. Information contained in
the configuration tables accessed by the device driver includes the host
adapter base address, the ID of the SCSI controller, and a device logical
unit number (LUN).

A SCSI driver uses the configuration information to determine how the
tunable parameters for a controller are set and how to work with these
values.

Local Structures

If your driver is for a disk, you need an instance of the diskinfo structure
defined in sysldisk.h. This structure is quite lengthy and should be studied
in the header file. As with other disk drivers, you need an xxtab structure
which is an instance of the iobuf structure, xxtab is described in Chapter
3, "Block Drivers."

Your driver should also have structures for maintaining drive and control
ler status, and a structure for disk sizes.

Configuration Table

A driver must provide one or more arrays for storing device information
called the configuration tables. These tables are created automatically as
described in the section entitled. "Installing a SCSI Driver." However, if
your driver cannot conform to the naming convention established by the
installation interface, you can create your own configuration tables.
When creating your own configuration tables, you must also write your
own version of the letclconflbinlidscsi program called by the Link Kit
software, and you must inform users of your driver access information for
your device. All of this extra overhead is provided in the Link Kit and
should be used initially to ensure that your driver can be brought up and
tested before you create your own system.

The SCSI configuration tables are used to map SCSI devices to each SCSI
bus.

7 - 6 D e v i c e D r i v e r W r i t e r ' s G u i d e

Driver Overview

Configuration tables can be extended to provide additional features such
as scatter-gather, linkable SCSI commands, zero latency reads, extended
SCSI messages, and adapter target mode.

Configuration tables are defined as being device-specific or adapter-spe
cific.

The device-specific configuration table includes information on SCSI ID
and LUN (logical unit number) values, host adapter number, device name,
and a pointer to the adapter entry function.

The adapter-specific configuration table contains the host adapter base
address, the host adapter number, the interrupt and DMA channels, and a
pointer to an adapter entry routine.

When the system is initialized configuration information is provided by
the system based on data in the mscsi file of the Link Kit.

The configuration table is an instance of the scsi_dev_cfg structure
defined in sys/scsi.h and must be terminated with OxFF.
The fields of the scsi_dev_cfg structure are:

Field______________
int index;
char *dev_name;
dev_t devnum;
unsigned char ha_num;
unsigned char id;
unsigned char lun;
int (*adapter_entry)();
struct exten *dext;

Description______________________
/* major number - filled in by kernel */
/* device prefix */
/* device number */
/* host adapter number (0, 1, 2 , ...) */
/* SCSI priority and address */
/* logical unit number of device */
/* host adapter entry point */
/* extensions to SCSI spec */

Each driver passes arguments to the host adapter driver via the
adapter_entry entry point. This call is referred to elsewhere in this
chapter as the xx_entry routine.

Writing a SCSI Driver 7 - 7

Request Block

Request Block
Writing a SCSI driver is different from other drivers for a disk or tape unit
in that a SCSI driver mainly builds information blocks that are sent to a
device and then evaluated.

The SCSI device driver can only communicate with the SCSI hardware via
the host adapter device driver. A request block is constructed with a
request type. The only request type currently supported is REQ_SEND. All
other request types are not supported and the request type values ranging
from 1 to 50 are reserved for future use. Request types of 51 and above
are undefined.

The logic for a routine in a SCSI driver centers on these steps:
1. Get a request block (a request block is described in the next sec

tion)
2. Populate the request block with command information
3. Send the request to the device
4. Examine the data that is returned.

Request Block Format
A request block is a structure used to communicate with the host adapter
driver. This structure is named s c s i jo je q , is also called REQ_IO, and is
defined in scsi.h.

All fields in the request block can be written to except host_sts, host
status, target_sts, target status, and req_status, the request status at inter
rupt time. All other field values must be set before sending the request to
the host adapter driver. Some fields may not be implemented in all host
adapter drivers. The request block structure contains information needed
by a wide variety of host adapter drivers. As an example, the supported
host adapter driver does not support linked commands at present. Thus the
link_ptr and link_id fields are not accessed by the host adapter driver sup
plied with your software. Future support for the link command capability
is possible; set these fields to 0 (zero) to ensure that conflicts do not
occur.

7-8 Device Driver Writer’s Guide

Request Block

The fields that are generic to any SCSI driver are:

Field Description
unsigned short req_type;

struct scsi_io_req *req_forw;

struct exten *ext_p;

char opcode;
char id;
char lun;
char ha_num;
char dir;
char cmdlen;
paddr_t data_len;
paddr_t data_ptr;
paddr_t data_blk;
paddr_t link_ptr;
char link_id;
char host_sts;
char target_sts;
union scsi_cdb scsi_cmd;
char sense_len;
paddr_t scsi_sense;
paddr_t req_id;

/* one of the classes of calls to
the adapter driver module */

/* forward pointer to next
scsi_io request block */

/* normally reserved, ptr to
SCSI extensions structure */

/* operation code */
/* device ID */
/* logical unit number */
/* host adapter number */
/* direction of transfer */
/* command length */
/* data length */
/* data pointer */
/* logical block */
/* link pointer */
/* ID of linked block */
/* host status */
/* target status */
/* command information */
/* length of sense command */

/* request block ID */

Writing a SCSI Driver 7-9

Request Block

The following fields of the request block structure must be tailored for
each driver type and are device-specific:

Field_________
char use_J1ag;
char internal;
char jq;
char ctlr;
char req_status;
char adapter;
char r_count;
char hacmd;
struct buf *rbuf;
int (*io_intr)();

Description _______
/* zero if available */
/* driver intml req if non-zero */
/* job queue index */
/* controller address */
/* req blk status in xxintr */
/* adapter base address */
/* retry count */
/* host adapter command */
/* request per this buf if non zero */
/* device driver intr handler */

typedef struct scsi_io_req REQ_IO;

The command information (scsi_cdb) member varies by the length of
command and is defined as follows:

union scsi_cdb {
stru ct SixQnd {

unsigned char opcode;
unsigned char m isc:5;
unsigned char lun:3;
unsigned char d a ta [3];
unsigned char control;

} six;
stru ct TenChd {

unsigned char opcode;
unsigned char m isc:5;
unsigned char lun:3;
unsigned long block;
unsigned char reserved;
unsigned short length;
unsigned char control;

} ten;
stru ct TwelveQrd {

unsigned char opcode;
unsigned char m isc:5;
unsigned char lun:3;
unsigned long block;
unsigned long length;
unsigned char reserved;
unsigned char con tro l;

} twalve;
unsigned char raw [12+ sizeof(struct sc s i_ se n se)];

7 - 1 0 Device Driver Writer’s Guide

Writing a SCSI Device Driver

Writing a SCSI Device Driver
During the xxopen phase of the driver, errors and permissions are
checked, and the device driver completes initialization.

The xxread and xxwrite routines call the xxstrategy routine directly or
through the kernel’s physio(K) routine.

The xxstrategy routine builds and queues a request taking care to check
for possible errors. In addition, the request contains a pointer to an inter
rupt handler routine to call at interrupt time. This request is started by
sending it to the host adapter driver via the configured xx_entry routine.
The host adapter driver builds an adapter-specific request packet and
sends it to the hardware.

At interrupt time, the host adapter driver handles the interrupt, determines
the device that caused the interrupt, and passes the interrupt along with
appropriate data structure pointers to the device driver’s xxintr routine.
This routine then processes the information and passes it back to the cal
ling user process.

Generally, it is not necessary for a SCSI device driver to have an xxinit
routine since most initialization tasks need only be done by the adapter
driver. The SCSI device driver can get by with a ''firsttime" flag in the
xxopen routine. The advantage to this approach is that by open time,
interrupts are enabled so that it is easier to handshake with the host
adapter driver.

An xxinit routine should only be used for buffer management initializa
tion, and data structure initialization. Talking to the hardware at xxinit
time is not advised; do so during the first call to xxopen.

Each driver routine is described in the sections that follow. The logic in
formation provided is based on the needs of a disk driver. Refer to
Chapters 3 and 4 for more information about each routine in the context
of a block driver or a character driver depending on your driver type. If
you are writing a STREAMS driver, refer to Chapter 9. The SCSI driver
routines follow.

Writing a SCSI Driver 7-11

Writing a SCSI Device Driver

xxopen

The xxopen routine opens the device for access.

Syntax:

#include "sys/scsi.h"

int
xxopen(dev, rw, be)
dev t dev;
int rw, be;

The logic is as follows:

1. Extract the minor device number. If the number exceeds the num
ber of allowable devices, set u.u_error to ENXIO and return.

2. Call scsigetdev(K) to get device information from the SCSI con
figuration table. If information is not found, set u.u_error to ENO-
DEV and return.

3. Wake up each device served by your driver by sending a command
and checking the resulting error codes.

4. Perform any additional setup tasks.

5. Exit the routine by releasing the last request block, turning off the
flag to indicate that you are opening the device, waking up any
sleeping processes waiting to open a device, and then calling splx
to restore any previously set interrupts.

7-12 Device Driver Writer's Guide

Writing a SCSI Device Driver

xxioctl

Establish conditional modules for each I/O control command.

Syntax:

#include "sys/scsi.h"

int
xxioctl(dev, cmd, arg, mode)
dev t dev;
int cmd, mode;
caddr t arg;

The logic is as follows:

1. Call scsi_getdev to ensure that the dev argument is for a legitimate
device. If not, set u.u_error to ENODEV and return. Then check
that the device is present. If not, set u.u_error to ENODEV and
return.

2. Provide for any other ioctls to fit your needs. If an improper com
mand is specified, set u.u_error to EINVAL, and return.

xxbreakup

This routine breaks up a raw I/O request into smaller units for transfer to
a direct memory access (DMA) controller It contains only a call to
xxstrategy in this driver.

Writing a SCSI Driver 7-13

Writing a SCSI Device Driver

xxread and xxwrite

These routines initiate raw I/O to or from a device.

Syntax:

#include "sys/scsi.h"

int
xxread(dev)
d e v t dev;

int
xxwrite(dev)
dev t dev;

These routines contain these logic steps:

1. Extract the minor device number for use by physio(K) when per
forming physical I/O.

2. Check the device number against the information in the configura
tion table. If it is improper, set u.u_error to ENODEV and return.

3. Get the size of the device from a local driver array of disk sizes.

4. Call physck(K) to ensure that the I/O is correct for the device size.

5. Call physio. This routine calls xxbreakup which then calls
xxstrategy to perform the raw I/O.

7 - 1 4 D e v i c e D r i v e r W r i t e r ' s G u i d e

Writing a SCSI Device Driver

xxstrategy

This routine schedules I/O and manages the buffer cache for driver I/O.

Syntax:

#include "sys/scsi.h"

int
xxstrategy(bp)
struct buf *bp;

The logic is as follows:

1. Check the configuration table for the device pointed to by
bp->b_dev. If it is improper, set u.u error to ENXIO and return.

2. Check bp->b_blkno and if less than zero, set b_flags to an error
condition, call iodone(K) and return.

3. Check that the I/O request is reasonable. If not, set an error condi
tion, call iodone and return.

4. Get an empty request block; sleep if necessary to obtain one.

5. Call spl5 and then call disksort(K) to put the buffer pointed to by
bp into the proper spot in the request queue.

6. Call xxstart to start the request on the queue for the logical unit.
When done, restore the previously set spl level and return.

Writing a SCSI Driver 7-15

Writing a SCSI Device Driver

xxstart

This routine is used to take the passed request block and determine the
exact track and sector for the read or write request and to then send the
request to the device specified in the request block. Most SCSI devices
handle bad track lockouts at the disk level, thus rendering driver-level
checking obsolete.

Syntax:

#include "sys/scsi.h"

inf
xxstart(reqp)
REQ IO *req p;

The logic is:

1. Return immediately if the queue is empty or the device is busy.

2. Compute the proper track and sector coordinates and get the physi
cal address from which data is being moved or to which data is
being moved. Plug this information into the request block.

3. Complete building the request block for I/O and send it to the de
vice.

7-16 Device Driver Writer’s Guide

Writing a SCSI Device Driver

xxintr

This routine handles interrupts. Interrupts raised by SCSI devices are
caught by the host adapter which, in turn, calls the driver’s interrupt rou
tine via request block information. The interrupt routine is also used to
wake up processes that are sleeping waiting for a free request block.

When the interrupt is finished, xxstart is called to process any remaining
queued requests.

Syntax:

#include "sys/scsi.h"

int
xxintr(req_p)
REQ IO *req_p;

1. Determine which device called the interrupt. Display a message
on the console if the interrupt is spurious, and return.

2. Check the status flags for the host adapter and device. If an error
occurred, put error information in the driver’s xxtab structure. Oth
erwise, put I/O completion and status information in xxtab. In both
cases, call iodone and then clear the request block.

3. Call xxstart to handle any outstanding requests.

Writing a SCSI Driver 7-17

Installing a SCSI Device or Host Adapter Driver

Installing a SCSI Device or Host
Adapter Driver
Installing a SCSI driver is performed as follows:

1. For SCSI device drivers (not host adapter drivers), the software
provided with your system contains a system for installing drivers
that simplifies creating configuration tables. SCSI depends on a
series of configuration tables to access the proper device. To use
this simplified system, your driver must be named with reserved
names that reflect the type of device be used, and information must
be added to the mscsi file described in this section. If this system
is not workable for your needs, the configuration tables can be built
manually with a custom example of the letclconflbin/idscsi. The
possible names for drivers using the simplified system are:

Driver
Name

SCSI Device

hd "Bootable rootable" hard disk drive
Sdsk Hard disk drive
Smed Robot device for changing storage media
Sopt Optical memory device
Spr Processor device
Srom Cartridge disk, read-only memory (CD-ROM)
Sscn Scanner device
Stp Tape drive
Stty Communications device
Swim Write-once-read-many (WORM) drive

2. Again, just for device drivers, add an entry to the
letclconflcf.dlmscsi file for each SCSI device. Instructions for edit
ing this file are described in this section.

3. For both types of drivers, compile your driver into an object file
using the cc(CP) commands shown in Chapter 6.

4. For both types of drivers, copy the driver object file to the
letclconflpack.d directory.

5. For both types of drivers, add information about your driver into
the letc/conf/cf.dlmdevice and letclconflcf.dlsdevice. Refer to the
mdevice(F) and sdevice(F) manual pages for more information
about the fields in each file.

7-18 Device Driver Writer’s Guide

Installing a SCSI Device or Host Adapter Driver

6. For both types of drivers, create a new kernel with the link_unix
program described in Chapter 6. All necessary tables required for
SCSI are built by the programs called by link_unix.

Editing the mscsi File
Enter one entry for each device driver in the letclconflcf.dlmscsi file.
These entries need not be grouped consecutively. This file has five fields
with the information separated by either spaces or tabs. The fields are:

1 2 3 4 5

Host Supported Host SCSI bus SCSI bus
adapter device adapter device ID device
driver driver number number LUN
prefix name (0 or 1)

The fields are:
Host adapter driver prefix

The two-, three-, or four-letter host adapter driver prefix name.
This name is stored in the mdevice file associated with the host
adapter driver. The prefix name given here must be the same as
that in the mdevice file. Refer to the mdevice(F) manual page
for more information.

Supported device driver name
The name of the device driver. The name must be one of the pre
viously described SCSI driver names.

Host adapter number
The number of host adapter card(s) that will be instailed on the
system when it is in use. Two host adapters from the same ven
dor can be supported. The possible values are 0 (zero) or 1. The
host adapter card(s) do not have to be present in the computer
until the driver is actually being executed.

SCSI bus device ID number
The identification number for a specific controller. The possible
values range from 0 (zero) to 7.

SCSI bus device LUN
The identification number for a specific device on a controller.
The device number is commonly referred to as a logical unit
number (LUN). The possible values range from 0 (zero) to 7.

Writing a SCSI Driver 7-19

Host Adapter Driver

Host Adapter Driver
The host adapter driver is a more complicated piece of software than the
device driver because it must be specific enough to use the features of the
hardware for which it was intended, yet be generic enough to be able to
field as-yet-unwritten SCSI device driver requests.

Initialization
The host adapter driver may have an initialization routine to probe the
hardware for configuration information, and do initial board setup. The
host adapter driver does not normally have an xxopen routine.

The xx entry Routine
The xx_entry host adapter entry routine is the common entry point for all
SCSI device drivers. In this routine the driver writer must build his
adapter-specific command blocks with information garnered from the
SCSI request block. These command blocks, or whatever data structure is
appropriate (maybe just bytes, or words), are then sent to the host adapter
hardware.

Most device drivers will not queue their I/O requests. It is up to the host
adapter driver writer to handle these requests as they come in, and
perhaps to internally queue the requests. For example, the supported host
adapter has an internal buffer that can handle at least 16 outstanding
requests. The host adapter driver makes use of this fact to send requests as
quickly as possible to the host adapter.

I/O Control Command Routine
The xxioctl routine allows the user to control some adapter tunable
parameters, such as, bus-on/off time, and the number of adapter specific
data structures.

7 -2 0 D ev ice D riv e r W rite r’s G u id e

Host Adapter Driver

Host Adapter Interrupt Routine
The host adapter interrupt routine handles the interrupt from the host
adapter hardware, determines which device needs service, sets up the
returned information in an appropriate data structure if needed, and calls
the appropriate SCSI device interrupt routine. All SCSI device driver
interrupt routines normally expect a pointer to a SCSI request block. In
formation such as data address, device and host adapter status, data
length, and error status are contained in a request block.

The host adapter driver, after servicing a completion interrupt, determines
the target SCSI unit and communicates back to the calling device driver
via the io_intr routine specified in the scsi_io_req structure. The adapter
passes a pointer to a s c s i jo je q structure to communicate information
back to the device.

Writing a SCSI Driver 7-21

Chapter 8

Line Disciplines

Introduction 8-1
What Is a Line Discipline? 8-1
Provided Line Disciplines 8-2
Line Discipline Routines 8-4
Writing a Line Discipline 8-6

tty Structure 8-7

The xxproc Routine 8-12

ttiocom Routine 8-16
Syntax 8-16

Description 8-17

Introduction

Introduction
A line discipline is a set of routines that examine data received from a
character device and take a pre-de fined action when special characters
are received. The special characters can be anything required for your
driver. If your driver is a terminal handler, the special characters might
be <Retum>, <Break>, <Bksp>, or a control character. A line discipline
is like a user level filter in that the input is translated to form an alterna
tive output. However, unlike a filter, only one line discipline can be
active at a time; line disciplines cannot be stacked together. If your
driver requires modular, stackable line disciplines, STREAMS should be
used. Refer to Chapter 9, "STREAMS" for more information.

The design of a line discipline is based on handling data from a terminal
device in which text characters are combined with control characters, and
other characters available on the keyboard. With the advent of interna
tional character sets, a line discipline can translate characters that are
outside the ASCII character scope. Traditionally, the line discipline was
designed when hardware was relatively limited and software had to han
dle a greater share of the character translation. Today, however, hardware
controllers can all but eliminate the need for lengthy line disciplines, and
software can be limited.

What Is a Line Discipline?
A line discipline consists of a number of routines that work together tak
ing data from the terminal or other serial device, to process out the non
text characters and give it to the user program. Another set handles the
output side of device interaction, taking characters from the user process,
and handing them ultimately to the device output mechanism, such as the
screen on a terminal. The interaction between the routines is handled by
a series of five buffers or queues that are used to store data so that another
routine can access it.

When line disciplines are included in a device driver, a user process can
select among the installed line discipline packages using the ioctl(S) sys
tem call. Behavior of each line discipline package can be configured with
additional ioctl calls. Although there are several line discipline packages
available, try to use line discipline zero (0) to maintain a traditional tty
user interface. Many of the details of line discipline zero are documented
in the termio(M) and ttv(K) manual pages.

Line Disciplines 8-1

Introduction

Some hardware, such as “ smart” controllers, may implement various
character processing logic in firmware or hardware, but the driver writer
should code the driver to maintain the ability to switch between line dis
ciplines with user ioctls.

Typically, line disciplines provide the following capabilities:

• Keyboard input functions with character processing which
includes editing, signals, and flow control

• Output display including character translations, expansions, and
delays

• Buffering between task time requests and interrupt routines

• Disparity of device responses from user process requests

• Ability to coordinate driver timing and process control

• Implementation of a controlling terminal for process group control

• Posting of keyboard signals

• A standard programmable interface for user process configuration
through ioctls

• Support for non-English character sets

Provided Line Disciplines
The line disciplines provided by your system are referred to by numbers
starting with zero, with a maximum of up to 255. Three line disciplines
are provided in the kernel. Line discipline zero is for terminal (tty) de
vices, line discipline one is for shl(C) shell layers. Line discipline two is
used by the mouse driver.

8-2 Device Driver Writer’s Guide

Introduction

A line discipline is an instance of the linesw structure defined in
sys/conf.h. The line discipline switch table has the following fields:

extern struct linesw linesw [];

In the kernel, all of the line disciplines are listed in the
/etc/conf,1pack.dtkernel!space.c file. In this file, each routine in the line
discipline is declared as external, listed in the linesw structure definition,
and the total number of line disciplines is assigned to the linecnt variable.
If a routine is not required for the driver, nulldev is coded into the posi
tion. When executed, nulldev returns a NULL to the calling process. The
index into linesw is stored in the t_line member of the tty structure.

Getting a line discipline recognized by the kernel is easy by comparison
to the designing, coding, testing, linking, and debugging required to pro
duce it. Updating the kernel!space.c file and correctly installing the line
discipline routines are the only requirements.

L in e D isc ip lin e s 8 -3

Type Field Description
/* Initialize a tty device */
/* Discontinue tty device access */
/* Gcpy data to a user process */
/* Ccpy user process data to kernel */
/* Cpen, close, or change a line discipline */
/* Get input an receive data interrupt */
/* Sand output to device cn interrupt */
/* Process mcdsn-generated. interrupt */

int (*l_cpen) () ;
int (*l_close) () ;
int (*l_read) ();
int (*l_write) () ;
int (*l_ioctl) () ;
int (*l_irput) () ;
int (*l_output) ();
int (*l_nt±nint) ();

Introduction

Line Discipline Routines
Each line discipline is a set of eight routines that provide the following
device functions: open, close, read, write, I/O control (ioctl), receive
data, transmit data, and modem interrupt. The routines are called through
the linesw members, l open, I close, I read, I write, l ioctl, l input,
l_output, and l_mdmint, respectively. The following picture depicts how
the line discipline routines are used to move data between a device and a
user program:

8-4 Device Driver Writer’s Guide

Introduction

A typical call to a line discipline routine is:

(*linesw[tp->t_line] .l_ioctl) (tp, LDOPEN, 0, mode);

Where tp is an instance of the tty structure associated with a device,
t_line is the index value of which line discipline is being called,
l_ioctl is the line discipline routine for I/O control commands, and
tp, LDOPEN, 0, and mode are arguments passed to the l_ioctl rou
tine.

Most line disciplines, including those provided in the kernel do not pro
vide a modem interrupt handler. However, this functionality can be
added if the need exists.

All provided line disciplines require an xxproc driver routine for han
dling special tasks required by the line disciplines. This routine is called
by all of the routines in line discipline zero and contains code to handle
the tasks required of it. Detailed information is provided in the "xxproc
Routine" section of this chapter.

The line discipline members, the arguments with which each is called,
and the driver routine from which each is called are shown as follows:

Line
Discipline
Routine

Called
By Purpose

lopen(rp) xxopen open a device
1 clos e(tp) xxclose close a device
l read (tp) xxread convey processed data to

user process
Iwrit e(tp) xxwrite convey data from user pro

cess to the output queue
1 ioctI(/p, cmd, arg, mode) t device I/O control command
1 input(tp, code) xxintr get data from a device
loutput(rp) xxintr output data to a device
lmdmint(rp) called by xxintr to service

an interrupt generated by a
modem (not currently used)

t The driver xxioctl routine calls the ttiocom(K) routine which
then calls the 1 ioctl routine.

Line Disciplines 8-5

Introduction

Writing a Line Discipline
The stages involved in writing a line discipline vary from using existing
routines and having little or no choice over how data is interpreted to
writing a full line discipline and having complete control. Either end of
the line discipline spectrum is complicated and difficult to program.

Examining the /etc/conf/pack.d/kernel/space.c file reveals the extent to
which the provided line disciplines used references to the line discipline
zero routines, put nulldev into unneeded positions, created custom rou
tines, or mixed and matched.

The existing line disciplines are:

linesw
Member 0 - tty driver

t line Index Values

1 - shell layers 2 - mouse driver
l_open ttopen nulldev moopen
l close ttclose nulldev moclose
l read ttread nulldev moread
l write ttwrite nulldev ttwrite
l ioctl ttioctl nulldev moioctl
l input ttin sxtin moin
l output ttout sxtout ttout
l mdmint nulldev nulldev nulldev

As you can see, the shell layers driver only needed routines for receiving
data and transmitting it. All other functionality was nulled out. The
mouse driver, required all of the line discipline functionality but was able
to use the line discipline zero write and transmit data routines instead of
writing new routines.

A complete description of the line discipline zero routines is provided on
the tty(K) manual page.

8-6 Device Driver Writer’s Guide

tty Structure

tty Structure
The tty structure is the central point of a line discipline and is used by a
line discipline to point to I/O buffers and to store flags, states, and condi
tions used when handling data from a tty device, sys/tty.h contains the
definition for this structure. Refer to tty.h for descriptions of the cblock,
ccblock, and clist structures used in the tty structure’s description.

The fields in the tty structure are:

Type Field
clist t rawg;
struct clist t canq;
struct clist t outq;
struct ccblock t tbuf;
struct ccblock t rbuf;
int (* tjoroc) ()
ushort t iflag;
usbort t oflag;
ushort t cflag;
ushort t Iflag;
short t state;
short t_pgrp;
char t line;
char t delct;
char t term;
char t tmflag;
char t col;
char t rew;
char t vrew;
char t lrcw;
char t hqcnt;
char t dstat;
unsigned char t cc[NCC+5]
unsigned char t schar;

Description
/* Raw input queue */
/* Canonical queue */
/* Cutput queue */
/* Transmit control block */
/* Receive control block */
/* Routine for device functions */
/* Input modes */
/* Output modes V
/* Control modes */
/* Line discipline modes */
/* Internal state */
/* Process group name */
/* Line discipline index */
/* Delimiter count */
/* Terminal type */
/* Terminal flags */
/* Current column */
/* Current new */
/* Variable rew */
/* last physical row */
/* Number of high queue */
/* Packets cn t_outq */
/* Used by terminal handlers */
/* and line disciplines */
/* Settable control chars */
/* Save timeout character */
/* instead of using t_lflag */

Line Disciplines 8-7

tty Structure

The following fields of this structure are significant for driver develop
ment:

• t_rawq points to the first cblock in the device’s raw input character
queue where data is placed after being received from the device by
ttin(K). This field is read only.

• t canq points to the first cblock in the device’s processed character
queue. The data placed here is processed depending on the setting
of the ICANON flag following the conventions described in
termio(M). Data is placed in this queue by the canon(K) routine.
This field is read only.

• t_outq points to the first cblock in the device’s output queue. Data
is placed here by either ttxput(K) or ttwrite(K). Data is conveyed
out of this queue by ttout(K) when a transmit data interrupt is ser
viced. This field is read only.

• t_tbuf points to the first character control block for a device’s data
transmit buffer. A character control block points to the data field
in a cblock. Data is placed in this buffer by ttout(K) and taken out
of the buffer by the terminal controller. The driver can set the
fields in the ccblock.

• t_rbuf points to the first character control block for a device’s data
receive buffer. Data is placed into the receive buffer by the de
vice-dependent input routine or from the device controller, and
taken out by ttin(K). The driver can set the fields in the ccblock.

• t_proc is the name of the driver’s xxproc routine. This field is set-
able by a driver and must be set to the name of the driver’s xxproc
routine.

• t_iflag, t_oflag, t_cflag, and t_lflag are mode flags. Refer to the
descriptions in termio(M) and substitute "c_" for "t_" when
referencing the descriptions. For example, t_iflag is described on
the manual page as c_iflag. These fields are read only. Set values
in the termio structure, and then use the TCSETA ioctl of
ttiocom(K) to write to the flag fields of the tty structure. Similarly,
use the TCGETA ioctl of ttiocom to move values from the tty struc
ture into the termio structure for reading. •

• t state is the line discipline status field. Values can be ORed into
this field. Use AND only when removing a previously set value;
never clear t state. Possible values are described following this
list.

8 - 8 Device Driver Writer’s Guide

tty Structure

• t_pgrp the process group ID for the terminal device. This field is
read only.

• t_line is the number of the current line discipline for the terminal
device. This field is writable by the driver.

• The remaining fields are used internally in the line discipline zero
routines and are read only. A description of t_cc can be found on
the termio(M) manual page listed under c_cc.

The possible values for t_state are:

BUSY Output is in progress

CARR_ON Carrier is present

CLESC Last processed character was <Escape>

EXTPROC A peripheral device or routine is responsible for pro
cessing characters. In line discipline zero, EXTPROC
is called on input in the ttin routine for processing by
a KMC controller and in the ttxput routine for map
ping characters for other international character sets
on output.

IASLP Processes are sleeping waiting for characters to
appear in the raw input queue, t_rawq.

ISOPEN The device is open and can be accessed. This flag
must be disabled before calling the l_close routine to
permit a device close to occur.

OASLP Processes are sleeping waiting for characters to
appear in the output queue, t_outq.

RTO A timeout is in progress (tttimeo has been called) for
a device operating in raw input mode where no canon
ical processing is taking place. This state occurs
when the VTIME value is specified. Refer to the
description on the termio(M) manual page.

TACT A timeout is in progress for the device (tttimeo has
been called to wait until characters are received on
input).

Line Disciplines 8-9

tty Structure

TBLOCK

TIMEOUT

mow

TTSTOP

TTXOFF

Transmission from the terminal is blocked. This state
is used to control the backlog of input that’s been read
but not yet handled. If a user types more input than
the system can handle before any process intervenes
to read it in, then the input buffers are flushed. How
ever, if a process capable of understanding <Ctrl>-s
and <Ctrl>-q sequences is generating the input,
TBLOCK is set in the driver to block transmission.
The NOT state of TBLOCK is set to release transmis
sion. When a driver’s xxproc routine finds TBLOCK
set, the driver must set t_state to BUSY and then use
outb(K) to tell the controller to halt data transmis
sion.

Indicates that a time out condition is in effect and that
further processing should not occur. This condition is
set by ttywait(K) to let the asynchronous
receiver/transmitter (UART) drain of characters, and
by the driver’s xxproc routine when a <Break> char
acter is received.

Processes are sleeping waiting for completion of out
put to the terminal. Processes setting this flag must
sleep on the address of t_oflag at TTOPRI. Processes
put to sleep using TTIOW are awaken by either
ttyflush when flushing read buffers, or by ttout when
no characters remain in the output queue, t_outq.
This flag is cleared by some kernel drivers and should
not be counted on for new development.

Output has been stopped by a <Ctrl>-s character
received from the terminal. This flag is set and
cleared by the driver’s xxproc routine only, and is
generally set in the T_SUSPEND case.

Input data has hit the high water mark and must be
retrieved by a user process before more data is
received. This flag is set and cleared by the driver’s
xxproc routine only. When this state occurs, the
driver should use outb(K) to tell the controller to stop
sending data. This flag is generally set in the xxproc
routine’s T_BLOCK case.

8-10 Device Driver Writer’s Guide

tty Structure

TTXON

WOPEN

Input data has hit the low water mark due to the data
being received and processed. The device needs to
send more data. This flag is set and cleared by the
driver’s xxproc routine only. When detected, the
driver should use outb to tell the controller to send
data. This flag is generally set in the xxproc routine’s
TJJNBLOCK case.

The driver is waiting for an open to complete. This
flag is set in a driver, but cleared by ttopen(K) when a
device is open.

Line Disciplines 8-11

The xxproc Routine

The xxproc Routine
The driver’s xxproc (procedure) routine is an integral part of the routines
that comprise line discipline zero. If your driver uses ttopen(K),
ttclose(K), ttread(K), ttwrite(K), ttioctl(K), ttin(K), or ttout(K) in line
discipline zero, or canon(K), ttiocom(K), ttrstrt(K), or ttyflush(K), then
you must have an xxproc routine to sendee the calls from the kernel rou
tines.

The syntax for xxproc is:

int
xxproc(tp, command)
struct tty *tp;
int command;

Where tp is a pointer to a tty structure and command is a command name
described in sys/tty.h. The logic shown below for each command choice
is applicable to many types of drivers, even those that are accessing a de
vice. A driver that doesn’t access a device can still use the tty structure
and its queue and pointer format.

Possible values for command, in alphabetic order, are:

T_BLOCK Send a command to prohibit further input.
T_BLOCK is generally called when the number of
characters placed in t_rawq is greater than the
high water mark. From line discipline routines,
this command is called by ttin.

TJBREAK Send a break signal to a tty device.

T_DISCONNECT Send a command to a terminal controller request
ing that carrier be dropped.

T_INPUT Initiate input to a device.

T_OUTPUT Initiate output to a device if it is not busy or
suspended.

8 - 1 2 Device Driver Writer’s Guide

The xxproc Routine

T_PARM Change tty structure parameters.

T_RESUME Resume terminal output because a <Ctrl-q> has
been received.

T_RFLUSH Send command to terminal controller to flush ter
minal input queue.

T_SUSPEND Send command to terminal controller to suspend
output because a <Ctrl-s> has been received.

T_SWTCH Switch between shl(C) layers because the
VSWTCH character has been received.

T_TIME Delay timing corresponding to use of VTIME has
completed.

T_UNBLOCK Send a command to the terminal controller to start
sending characters because the current input has
fallen below the high water mark.

TJWFLUSH Send a command to the terminal controller to
flush the output queue.

An xxproc routine, in form, is like a driver’s xxioctl routine in that
xxproc is composed of a series of case statements switched on the com
mand argument to the routine.

Line Disciplines 8-13

The xxproc Routine

In the following example of an xxproc routine from a serial device driver, the
xx_start routine is a device-specific routine that sends commands to the I/O
ports of the device.

1 xx_proc (tp, and)
2 register struct tty *tp;
3 {
4 int ttrstrt () ;
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

switch (and) {
case T_SUSPHSD:

/* suspended with a ~S fror, the user */
tp->t_state |= TISICP;
break;

case T_WFUJSH:
if (tp->t_tfcuf. c_ptr)

tp->t_tbuf .c_ptr -=
tp->t_tbuf .c_size -

tp->t_tbuf. c_oount ;
(*linesw[tp->t_line] .l_output) (tp) ;
s=spl7();
tp->t_state &= 'TISTOP;
xx_start (dev) ;
splx (s) ;
break;

case T_RESUyE:
/* "Q or other resume character */
/* fron the keyboard */
s=spl7 () ;
tp->t_state &= “TISTCP;
xx_start (dev) ;
splx (s) ;
break;

case T_TIME:
s=spl7 () ;
tp->t_state &= 'THECUT;
xx_start (dev) ;
splx (s) ;
break;

case T_PFUUSH:
/* flush read queue. If the process is
* blocked because it is nearing TTYB1G,
* send it "Q to wake it up again in unblock.
* the rawq/canq flush is done separately.
*/
s = spl7 () ;
xx_start (dev) ;
splx (s) ;
if ((tp->t_state & TELCCK) = 0)

break;
/* fall throu<̂ i */

8-14 Device Driver Writer's Guide

The xxproc Routine

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

c a s e T J X E U X K :

/ * b l o c k a n d u n b l o c k a r e u s e d t o o c n t r o l

* t h e b a c k l o g o f i n p u t t h a t ' s b e e n r e a d ,

* b u t n o t y e t d i s p e r s e d . I f a u s e r t y p e s

* m e r e i n p u t t h a n t h e s y s t e m c a n h a n d l e

* b e f o r e a n y p r o c e s s s t e p s u p t o r e a d i t

* i n , t h e i n p u t i s f l u s h e d . H o w e v e r , i f a

* p r o c e s s c a p a b l e o f u n d e r s t a n d i n g “ S / ' Q

* s e q u e n c e s i s g e n e r a t i n g t h e i n p u t , w e u s e

* b l o c k a n d u n b l o c k t o s e n d " S / ' Q ' s o u t a n d

* o c n t r o l e x c e s s i n p u t , c u i s c n e u t i l i t y

* t h a t d o e s t h i s . T h e i n p u t m o d e b i t I X C F F

* d e t e r m i n e s w h e t h e r o r n o t t h e t e r m i n a l

* s h o u l d b e f e d ~ S / ~ Q ' s .

*/
s = s p l 7 () ;

t p - > t _ s t a t e & = ~ (T B L O C K | T T X C E F) ;

t p - > t _ s t a t e | = T T X C N ;

x x _ s t a r t (d e v) ;

s p l x (s) ;

b r e a k ;

c a s e T _ B D X K :

s = s p l 7 () ;

t p - > t _ s t a t e & = ~ T I X C N ;

t p - > t _ s t a t e | = (T E D X K | T T X C E F) ;

x x _ s t a r t (d e v) ;

s p l x (s) ;

b r e a k ;

c a s e T _ B R E Ä K :

t p - > t _ s t a t e | = TTM EXX7T;

t i m e o u t (t t r s t r t , (c a d d r _ t) t p , H z / 4) ;

b r e a k ;

c a s e T _ P Ä F M :

x x _ p a r a m (d e v) ;

b r e a k ;

d e f a u l t :

b r e a k ;

}

Line Disciplines 8-15

ttiocom Routine

ttiocom Routine
The ttiocom(K) routine is used by many user processes and the xxioctl
routine to alter the state of the tty and tennio structures. The information
provided in this section is the same as that provided on the ttiocom manu
al page and is included here for ease of reference.

Syntax

#include "sys/types.h"
#include "sys/file.h"
#include "sys/tty.h"

int ttiocom(tp, cmd, arg, mode)
struct tty *tp;
int cmd, arg, mode;

Parameters

tp Pointer to an instance of the tty structure for a tty device

cmd I/O control command passed through from the user pro
gram

arg argument to the I/O control command, also passed
through from the user program

mode indicates the mode by which the file was opened. The
modes are assigned by the kernel and are interpreted
into flag values that are defined in sys/file.h. Possible
values are FNDELAY, FREAD, FSTOPIO, FWRITE.

8-16 Device Driver Writer’s Guide

ttiocom Routine

Description
ttiocom sends an I/O control command to the tty device. Valid com
mands (the cmd argument to ttiocom) are:

• IOC_SELECT — determine if a character can be read from or writ
ten to a tty device without blocking (going to sleep in the process).
mode can be SELREAD or SELWRITE. NOTE: IOC_SELECT must
not be called from an interrupt routine and sleep must not be called
just prior to calling this I/O control command. IOC_SELECT calls
ttselect.

• IOCTYPE — return the name of the last I/O control command
called. u.u_rvall is set to the value of TIOC. IOCTYPE must not
be called from an interrupt routine.

• TCSETAF, TCSETAW, TCSETA, TCGETA, TCSBRK, TCXONC,
TCFLSH — explained on the termio(M) manual page. TCSETAW
and TCSETAF call tty wait. TCSETAF calls ttyflush. TCSETA calls
ttioctl when opening a new line discipline and when changing the
value of the line discipline flag, tjflag. TCSBRK calls ttywait.
TCXONC calls the driver xxproc routine with varying arguments
depending on the arg argument to ttiocom. TCFLSH calls ttyflush.
TCGETA sets u.ujerror to EFAULT if a paging error occurs while
trying to return the requested tty structure. TCXONC sets u.u_error
to EINVAL if arg is not 0, 1,2, or 3. TCFLSH sets u.u_error to EIN-
VAL if arg is not 0, 1, or 2. TCSETA sets u.u_error to EFAULT if
the tty structure cannot be set, or to EINVAL if the requested line
discipline is less than zero or greater than the maximum, xxproc is
called by TCXONC as follows: •

arg
value

xxproc
argument

0 (zero)
1
2
3

T_SUSPEND
T_RESUME
T_BLOCK
T_UNBLOCK

• FIORDCHK — check to sec if characters are waiting to be read. 1
is returned if characters are waiting in t_canq. If ICANON is set, it
is also possible for 1 to be returned when characters are not in
t_canq, but there are characters in t_delct. If there are no charac
ters in t_canq and ICANON is not set, and if there are characters in
t_rawq, 1 is returned. If none of the queues have characters, 0
(zero) is returned. FIORDCHK causes ttrdchk to be called.

Line Disciplines 8-17

ttiocom Routine

• XCSETAW — wait for the universal asynchronous
receiver/transmitter (UART) to empty (waits 11 bit times depend
ing on the terminal’s baud rate). XCSETAW is a POSIX termio
extension.

• XCSETAF — wait until the UART empties and then flush all read
and write buffers (calls ttyflush). XCSETAF is a POSIX termio
extension.

• XCSETA — set terminal parameters from the tty structure specified
by the arg argument to ttiocom. XCSETA is a POSIX termio
extension.

• XCGETA — get terminal parameters from a terminal’s tty structure
and put into the tty structure specified by the arg argument to
ttiocom.

8-18 Device Driver Writer’s Guide

Chapter 9

STREAMS

Overview 9-1
STREAMS Overview 9-1

STREAMS Driver Overview 9-4
STREAMS Driver Routines 9-4
xxput Routine — Put Messages 9-5
xxsrv Routine — Service Messages 9-6
xxopen Routine — Open Device/Module 9-6
xxclose Routine — Close the Device/Module 9-7

STREAMS Loop Back Driver 9-8

STREAMS Test Program 9-16

Overview

Overview
This chapter describes STREAMS and contains a sample STREAMS driver
for a half-duplex pipe, described in terms of a loop back driver. At the
end of the driver is a C program to test the driver.

The following diagram illustrates the parts of the STREAMS system:

STREAMS Overview
STREAMS was added to System V to improve the shortcomings of line
disciplines. Line discipline routines require a great deal of interaction
with all the component routines and are complex, difficult to write, and
difficult to debug. In addition, only a single line discipline can be active
at a time. STREAMS is designed so that you can create modular building
blocks to connect a wide variety of hardware and software configurations.

STREAMS 9-1

Overview

STREAMS offers a system of linked lists of kernel data structures that
combined with special routines to access the structures provide a full-
duplex data path between a user process and a device. Each linked list of
structures is referred to as a Stream. A Stream is comprised of at least
one STREAMS driver and an interface to the user process, called the
Stream head. A Stream may also include one or more pushable modules
that a user can add or remove from the linked list. A module in its sim
plest form is two queues. A queue is an instance of the queueJ data
structure. Unlike a driver, a module does not have an associated device
file, and does not have user context. A Stream head is an interface pro
vided for you in the STREAMS system and is standardized. Refer to the
STREAMS System manual for more information.

The queue J data structure, referenced on line 84 of the example driver
and described in sys/stream.h, is the central point of a Stream. A
STREAMS module and driver contains two queuej structures, one for
each data flow direction. A queuej structure contains pointers to the
members of the linked list.

The queuej structure is as follows:

Type Field Description
stru ct q in it *q_qinfo; /* procs and lim its fo r queue V
stru ct msgb * q _ fir st; /* f i r s t data block */
stru ct msgb *q la s t ; /* la s t data block V
stru ct queue *q next; /* queue o f next stream V
stru ct queue *q lin k ; /* t o next queue fo r scheduling */
caddr t q per; /* t o p r iv a te data stru ctu re V
ushort q count; /* number o f b locks cn queue */
ushort q_flag; /* queue s ta t e */
short qjninpsz; /* min packet s iz e accented by t h i s module */
short qjraxpsz; /* max packet s iz e accepted by t h i s module */
■ushort q hiwat; /* queue h igh water mark V
ushort q lowat; /* queue lew water mark */

typedef struct, queue queuejt;

A user process builds a Stream to meet its needs by pushing and/or
removing modules from a Stream using the ioctl(S) system call. This is
demonstrated in the sample driver in the last section of this chapter start
ing in line 45.

STREAMS programming is based on a flow of information up and down a
Stream, that taken together is called a message. Transferred data, control
information, queue commands, and errors and signals are some of the
many messages that can be sent through a Stream. Messages are defined
in the sys/stream.h header file as a series of #defines. Messages are
passed between modules with the put routines described later in this

9-2 Device Driver Writer’s Guide

Overview

chapter. A message is composed of one or more message blocks. A mes
sage block is a linked three-way unit consisting of the msgb and datab
structures, and a variable-length buffer block. The message block struc
ture, msgb provides a uniform mechanism for message exchange in a
Stream.

The msgb structure, also called m b lk j is shown as follows:

Type Field Description
struct msgb *b next; /* next message cn queue */
struct msgb *b_prev; /* previous message cn queue */
struct msgb *b cent; /* next message block cn queue */
unsigned char *b rptr; /* first unread byte in buffer */
unsigned char *b wptr; /* first unwritten byte in buffer V
struct datab *b datap; /* data block pointer V

typedef struct msgb nfclk t;

The data block structure contains more information to describe each mes
sage. The data block structure, datab, also called dblkj, includes fields
that describe a message and the number of messages pointing to the data
block.

The structure of the data block is as follows:

Type Field Description
struct datab *cfo freep; /* used internal1y */
unsigned char *cb base; /* first byte of buffer */
unsigned char *db lim; /* last byte +1 of buffer */
unsigned char db ref; /* cont of messages V

/* pointing to this block */
unsigned char db type; /* message type V
unsigned char db class; /* used internally */

typedef struct datab dblkjt;

STREAMS 9-3

STREAMS Driver Overview

STREAMS Driver Overview
A STREAMS driver is conceptually cleaner in design than a comparable
tty driver because the line discipline code is built into one or more
modules. This frees the driver from having intricate input and output rou
tines, thus focusing its functionality on its design and not that of character
translation.

A driver requires three structures:

• module Jnfo — Describes the specifics of a module. This structure
is shown on line 40 of the sample driver.

• qinit — Describes what routines and structures comprise each side
of a full-duplex Stream. An instance of the structure is required
for each queue. Two qinit structures are used in the example driver
and are referenced on lines 53 and 63. The routines pointed to by
qinit are: xxput, xxsrv, xxopen, and xxclose. These are described
in the next section.

• streamtab — Describes the names of the qinit structures and two
NULL pointers for future use of multiplexing drivers. The stream -
tab structure described on line 72, is an entry in the character
driver switch table (cdevsw). The cdevsw is defined in the
sys/conf.h header file and provides entry points for kernel access of
a character driver. A STREAMS driver is so indicated by the place
ment of a non-NULL value in the d_str field of the cdevsw. This
tells the kernel to determine a STREAMS entry point routine from
the streamtab definition in the driver.

STREAMS Driver Routines
Because STREAMS drivers use different entry points than other character
drivers, the STREAMS driver routines differ to meet the needs of access
ing the equally different structures and facilities.

The syntax and description for each of the STREAMS driver routines is
shown in the listings that follow. Refer to the STREAMS System manual
for more information.

9-4 Device Driver Writer’s Guide

STREAMS Driver Overview

xxput Routine — Put Messages

Syntax:

int
xxput(qp, mp)
qu eu e t *qp;
mblk t *mp;

Where qp is a pointer to an instance of the queue structure, and mp is a
pointer to an instance of the msgb structure.

The xxput routine has the following functions:

• Passing messages either up or downstream (the Stream head is the
highest point upstream and the driver, the lowest point down
stream)

• Deleting messages if required by the command

• Error detection

The xxput routine follows the format of an xxioctl routine in that it is a
series of case conditions, switched on the type of message being sent:

switch (mp->b_datap->db_type) {

Two xxput routines are required for a Stream, one for the read queue,
called xxrput, and the other for writing, called xxwput. Requests han
dled by the respective xxput routines happen immediately; no scheduling
is performed. A message is moved along the Stream queues by the
head/module/driver calling the xxput routine of the head/module/driver in
the direction of desired flow with the putnext macro described in the
STREAMS System manual.

STREAMS 9-5

STREAMS Driver Overview

xxsrv Routine — Service Messages

Syntax:

int
xxsrv(queue-ptr)
queuet *queue-ptr;

Where queue-ptr is an instance of the queue structure. The xxsrv routine
has these functions:

• Retrieve messages

• Pass messages up or down the Stream

The xxsrv routine is shown in line 156 of the sample driver. This routine
schedules the message interaction. Otherwise, it is identical in nature to
an xxput routine.

xxopen Routine — Open Device/Module

Syntax:

int
xxopen(queue-ptr, dev, flag, sflag)
queue t *queue-ptr;
dev t dev;
int flag, sflag;

Where queue-ptr is a pointer to an instance of the queue J structure, dev
is the device number, flag is the same as the regular xxopen routine
described in Chapter 4, and sflag is the Stream open flag.

9-6 Device Driver Writer’s Guide

STREAMS Driver Overview

The values of sflag can be:

• 0 (zero) for a normal driver open

• MODOPEN to open a module

• CLONEOPEN to indicate that the minor device number must be
sought in an array implemented in your driver. Refer to lines 109
through 113 in the sample driver for more information on how a
minor device number is selected. Also refer to the STREAMS Sys
tem manual for more information on cloning. The sample driver
sets exstjo as an instance of exst on line 92. devcnt is the max
imum number of minor numbers for a STREAMS device.
CLONEOPEN is a feature of a system of dynamically allocate de
vice nodes. Rather than having a series of pre-allocated device
nodes taking system overhead, STREAMS permits device nodes to
be implemented as needed. The clone driver (may not be imple
mented on all systems, contact your system administrator for
details) creates inodes to meet the needs of the minor device being
requested. These inodes do not have an associated /dev file, they
are only accessible via STREAMS.

An xxopen routine must return a number greater than or equal to zero if
the open is successful, or OPENFAIL if not (as shown in line 116 of the
sample driver). This routine has user context, can sleep, but only below
PZERO, and must handle a signal internally instead of just returning.

xxclose Routine — Close the Device/Module

Syntax:

xxclose(queue-ptr)
queue t *queue-ptr;

Where queue-ptr is an instance of the queue structure, xxclose closes
access to the device or module.

STREAMS 9-7

STREAMS Loop Back Driver

STREAMS Loop Back Driver

The following table lists the line numbers of the driver routines:

Routine Line Description
exstopen(q, dev, flag, sflag) 103 open pseudo-device
exstclose(q) 135 close device
exstsrv(q) 156 service device queue
exstioctl(q, bp) 211 I/O control commands

The following routines in the loop back driver are described in the
STREAMS System manual:

Routine Line Description
allocb 226 Allocate a message block
canput 167 Test for room in a queue
flushq 148 Flush a queue
freeb 262 Free a message block
freemsg 191 Free all message blocks in a message
getq 165 Get a message from a queue
putbq 168 Return a message to the beginning of

a queue
putctl 289 Put a control message
putq 64 Put a message on a queue
qreply 188 Send a message on a stream in the

reverse direction
RD 167 Get pointer to the read queue
unlinkb 261 Remove a message block from the

head of a message
WR 128 Get pointer to the write queue

"Line" is the first occurrence of the routine.

9-8 Device Driver Writer’s Guide

STREAMS Loop Back Driver

1 /*
2 * Copyright (C) 1989 The Santa Cruz Operation, Inc.
3 *
4 * The following code is a working exanple of a
5 * STREAMS loop back driver. This driver illustrates
6 * functions, structures, and utilities that are
7 * described in detail in STREAMS System manual.
8 *

9 * This is a pseudo-driver designed to loop data from
10 * cne open Stream to another open Stream. The user
11 * processes view the associated files as a
12 * half-diuplex pipe. This driver is a sirrple
13 * imltiplexer which passes messages fron cne
14 * STREAMS' write queue to the same STREAMS' read
15 * queue. This driver also illustrates a SIREAMS'
16 * ioctl() function.
17 *
18 * This driver does not include:
19 *
20 * - an interrupt routine
21 V
22 /* necessary include files */
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include
#include
#include
♦include
♦include
♦include
♦include
♦include
♦include
♦include
♦include
♦include
♦include
♦include

"sys/types .h"
"sys/param.h"
"sys/sysmacros .h"
"sys/ermo.h"
"sys/stream.h"
"sys/strcpts .h"
"sys/dir.h"
"sys/signal.h"
"sys/page.h"
"sys/seg.h"
"sys/user.h"
"sys/ermo.h"
"sys/strlog.h"
"sys/log.h"

37 /* function declarations */
38 intnodev(), exstcpen(), exstclose(), exstsrv();

39 /* streams structure declarations */
40 static struct nodule info exstm info = {
41 40, /* module ID number V
42 "exst", /* module name V
43 o, /* min packet V
44 256, /* max packet */
45 512, /* hurwater mark V
46 256 /* lo-water nark */
47 };

STREAMS 9-9

STREAMS Loop Back Driver

48 /*
49 Service procedure structure for the read nodule.
50 There is not a putq because the write procedure
51 loops it back.
52 V

53 static struct qinit exstrinit = {
54 NULL, /* put procedure */
55 exstsrv, /* service procedure V
56 exstcpen, /* called an each cpen or push V
57 exstclose, /* called cn last close */
58 NULL, /* reserved for future use */
59 &exstm info, /* information structure *,/
60 NULL /* statistics structure */
61 };
62 /* Service procedure structure for the write module */
63 static struct qinit exstwinit = {
64 putq, /* put procedure */
65 exstsrv, /* service procedure */
66 exstcpen, /* called cn each cpen or push */
67 exstclose, /* called cn last close V
68 NULL, /* reserved for future use */
69 &exstm info, /* information structure */
70 NULL /* statistics structure */
71 };
72 struct streamtab exstinfo = {
73 &exstrinit, /* defines read queue */
94 Sexstwinit, /* defines write queue */
75 NULL, /* for multiplexing drivers */
76 NULL /* for multiplexing drivers */
7 7 };
78 /*
79 Private data structure, one per minor device nurber
80 Used to create a private array of stream blocks.
81 */

82 struct exst {
83 unsigned exst state; /* driver state flag, see belcw
84 queue t *exst rdq; /* queue pointer */
85 };
86 /* Driver state values. */
87 tdefine EXSTCPEN 01 /* device is opened */
88 #define EXSTFML 02 /* cpen failed */
89 #define EXSIVQTF 04
30 #define NEXST 4 /* nurtber of stream blocks */
91 /* Allocate streams blocks */
S2 struct exst exst lo[NEXST];

9 - 1 0 Device Driver Writer’s Guide

STREAMS Loop Back Driver

93 /* used to check the nunber of stream blocks */
94 int exstcnt = NEXST;
95 /* Locp back driver ioctl requests */
96 #define I_N3ARG 20
97 #define I_INIARG 21
98 #define I_ERFNAK 23
99 tdefine I_ERBCR 25
100 #define EXSTSIP1EST 32
101 #define I_SEH©NG 42
102 #define I_SEIERR 43
103 exstcpen (q, dev, flag, sflag)
104 queuejt *q;
105 {
106 struct exst *lp;
107 dev - minor(dev);
108 /* If CLCNEXPEN, pick a minor devioe number to use. V
109 if (sflag = CKNETPEN) {
110 for (dev = 0; dev < exstcnt; dev++)
111 if (! (exst_lo[dev] .exst_state & EXSTCPEN))
112 break;
113 }
114 /* check to see if vre have a good device number */
115 if ((dev < 0) | | (dev >= exstcnt))
116 return (CPENFAIL); /* default = ENXIO */
117 Ip = &exst_lo [dev] ;
118 /* check state V
119 if (lp->exst_state & EXSTEAIL) {
120 /* clear fail flag so it can be recpened later */
121 lp->exst_state &= TNSIEAIL;
122 return (CPENFAIL) ;
123 }
124 /* Setup data structures */
125 if (! (lp->exst_state & EXSTCPEN)) {
126 lp->exst_rdq = q;
127 q->q_ptr = (caddr_t) Ip;
128 WR (q) ->q_ptr = (caddr_t) Ip;
129 return (dev) ;
130 }
131 else
132 if (q != lp->exst_rdq)
133 return (CPENFAIL); /* only cne stream at a time! */
134 }

STREAMS 9-11

STREAMS Loop Back Driver

135
136
137
138
139
140
141
142
143
144

exstclose (q)
queue_t *q;

V

If we are oonnected to a stream, break the
linkage, and send a hang up massage.
The hangup message causes the stream head to fail
writes, allow the queued data to be read ocnpletely,
and then return BCF on subsequent reads

145
146
147
148
149

((struct exst *) (q->q_ptr)) ->exst_rdq = NULL;
f lushq (WR (q), 1) ;
q̂ >qj3tr = NULL;

((struct exst *) (q-Xj_ptr)) ->exst_state &=
'(EXSTCPEN | EXSIWCFF);

150 }

151 /*
152 * Service routine takes messages off write queue and
153 * sends them back up the read queue, processing them
154 * along the way.
155 */
156 exstsrv(q)
157 queuejt *q;
158 {
159 rrtolkjt *hp;

160 /* if exstsrv called from read */
161 /* side set q to write side */

162 q = ((q) ->q_f lag&QREACR ? WR(q) : q) ;
163 /* if upstream queue full, prooess */
164 /* only priority messages */
165 virile ((bp = getq(q)) != NULL) {
166 if ((bcK>b_datap->db_type) < CPCIL
167 && ! canput (PD (q) ->q_next)) {
168 putbq(q, Ip) ;
169 return;
170

171
172
173
174
175
176

sw itch (bco>b_dat3p->cfa_type) {
case M IOCTL:

exstioctl(q, bp);
if (((struct exst *)(q->q_ptr))->exst_state

& EXSTCSIPTEST)
return;

break;

9-12 Device Driver Writer’s Guide

STREAMS Loop Back Driver

178 /* if testing offset, calculate and */
179 /* place at start of data message. */
180 case M DATA.:
181 if (((struct exst *) (q-Xj_ptr)) ->exst state
182 & EXSTWCFF)
183 (* (short *) (kp->b rptr)) =
184 (short) (kp->b rptr - kp->b datap-Xb :
185 /* flew through */
186 case M PROTO:
187 case M PCPROTD:
188 qreply(q, kp) ;
189 break;
190 case M CIL:
191 freemsg (kp) ;
192 break;
193 case M FLUSH:
194 if (*kp->b rptr & FLUSHW) {
195 flukTq(q, FLDSHALL);
196 *kp->b rptr &= ~FLUSHW;
197 }
198 if (*kp->b_rptr & ELÜSHR)
199 qreply(q,kp) ;
200 else freansg (kp);
201 break;
202 default:
203 freansg (kp) ;
204 break;
205 }
206 }
207 }
208 /*
209 This routine tests the error ioctl ccmrands
210 */

211 exstioctl(q, kp)
212 queue t *q;
213 rrblk t *kp;
214 {
215 register s;
216 int i, n;
217 nblk t *tnp;
218 struct iocblk *io<±p;
219 struct streptions *so;

STREAMS 9-13

STREAMS Loop Back Driver

220 /* test for no offset in ioctl */
221 if ((((struct exst *) (q-Xjjptr)) ->exst state & EXSIVCFF)
222 && (kp->b rptr != bp->b datap-Xäb base)) {
223 fcp->b dataj>->db type = M ICCNAK;
224 qreply(q, fcp);
225 ((struct exst *) (q->q_ptr))->exst state &= ~EXSIWCFF;
226 if ((fcp=alloc±> (sizeof(struct strqpticns))) =
227 NULL) {
228 printf ("exstsrv couldn't allocate data block\n"
229 return;
230 }
231 hp->b datap->db type = M SEJKPTS;
232 so = (struct strcpticns *)kp->b rptr;
233 fcp->b wptr += sizeof (struct strqpticns) ;
234 so->so flags = 90 WCFF;
235 so->so wroff = 0;
236 qreply(q, fcp) ;
237 return;
238 }
239
240 /*
241 Each particular ioctl has a special function
242 for testing the S3KESM3 error mechanian.
243 V
244 ioctp = (struct iocblk *)tp->b rptr;

245 switch (ioctp->ioc_crrd) {

246 case I NQARG:
247 kp-^o dataj^Xb type = M IOG?QC;
248 qreply(q, tp) ;
249 return;

250 case I INIARG:
251 /*
252 * Send integer argurent back as return
253 * value
254 */
255 if (kp->b cent = NULL) {
256 freemsg (fcp) ;
257 return;
258 }
259 ioc±p->ioc rval =
260 *((int *)fcp->b ocnt-5b rptr) ;
261 tnp = unlinkb(fcp) ;
262 f reeb (tnp) ;
263 icx±p->ioc count = 0;
264 fcp-̂ D datap-Xfo type = M IOCPCK;
265 qreplytq, fcp) ;
266 return;

9-14 Device Driver Writer's Guide

STREAMS Loop Back Driver

267
268
269
270
271
272
273
274

case I_ERRCR:
/*
* Verify that error return works.
*/
ioctp->ioc_error = EPEFM;
hp->b_datap->cb_type = M_I0CBCK;
qnepiy(q, tp);
return;

275
276
277
278
279
280
281
282

case I_ERRNRK:
/*
* Send a NÄK back with an error value.
V
icx±p->ioc_error = EPEFM;
hp->b_datap->db_type = MJEOCNSK;
qreply(q> bp);
return;

283 case I_SEIHANG:
284 /*
285 * Send PCK followed by M_H£NGÜP upstream.
286 */
287 bp->b_datap->db_type = M_ICC?£K;
288 qreply(q, bp);
289 putctl (FD (q) ->q_next, M_HANQUP) ;
290 return;
291
292
293
294
295
296
297
298
299
300
301
302
303

case I_SEIERR:
/*
* Send K K followed by M_ERRCR upstream.
* Value is sent in second message block.
V
tnp = unlinkb (bp) ;
bp->b_datap->cb_type = M_I0CfiCK;
((struct icxdolk *)fcp->b_rptr)->ioc_count =

0;
qr̂ 5ly(q, bp) ;
tnp->b_datap->db_type = M_ERRCR;
qreply(q, tup) ;
return;

304 default:
305 /*
306 * M anything else
307 V
308 bp->b datap->db type
309 qreply(q, bp) ;
310 return;
311 1
312 }

STREAMS 9-15

STREAMS Test Program

STREAMS Test Program
1 /*

2 Copyright (C) 1989 The Santa Cruz Cperation, Inc.
3 */
4 /* standard include files */
5 #include <erxno.h>
6 #include <fcntl.h>
7 #include <stdio.h>
8 #include <sys/strcpts.h>

9 /* Locp back driver ioctl() ocmrends */

V

*/
V
V
*/
*/

16 /* global iocti command structure */
17 struct striocti ioc;

10 ♦define I NOffiRG 20 /* no argument test
11 ♦define I_INIARG 21 /* return integer test
12 ♦define I ERRNRK 23 /* send NfiK with error
13 ♦define I ERRCR 25 /* error return test
14 ♦define I_SEIHfiN3 42 /* PCK w/upstream M HMSCUP
15 ♦define I SHJIEER 43 /* K K w/upstream M ERROR

18 rrain()
19 {
20 int fd, i;
21 char buf[BÖFSIZ];
22 /*
23 Cpen the locp back device. Note defined as /dev/cxst
24 when configured into the kernel.
25
26 */
27 if ((fd=cpen("/dev/exst", 0_FCWR, 0777)) =-1) {
28 pernor("cpen failed\n");
29 exit (1) ;
30 }

9-16 Device Driver Writer’s Guide

STREAMS Test Program

31 /* Try writing and reading to the locp tack device */
32 printf ("Enter a string to write to ") ;
33 printf ('‘the STKEMi's locp tack device\n");
34 if ((fgets (buf, BUFSIZ, stdin)) = MILL) {
35 perror("fgets failed");
36 exit (1) ;
37 }
38 /*
39 * function calls to read and
40 * write to the locp tack device
41 */
42 strwrite(fd,buf);
43 strread(fd);

44 /* Test the ioctl calls */
45 strioctl (fd, I_NQARG, 0,0,NULL) ;
46 strwrite(fd,buf);
47 strread(fd);
48 strioctl (fd, IJNTRRG, 30,0, NULL) ;
49 strwrite(fd,buf);
50 strread(fd);
51 strioctl (fd, I_ERRNAK, 0,0,NULL) ;
52 strwrite (fd,buf) ;
53 strread(fd);
54 strioctl (fd, I_ERBCR, 0,0,NULL) ;
55 strwrite (fd, buf);
56 strread(fd);
57 strioctl (fd, I_SEfflfiNG, 0,0, NULL) ;
58 strwrite (fd,buf) ;
59 strread(fd) ;

60 strioctl (fd, I_SEHEKR, 0,0,NULL) ;
61 strwrite (fd,buf);
62 strread(fd) ;
63 close (fd) ;
64 exit (0) ;
65 }
66 strwrite (fd, s)
67 int fd;
68 char *s;
69 {
70 int count;

STREAMS 9-17

STREAMS Test Program

71 /* Try writing to the loop back device */
72 printf("XnWriting to loop back device") ;
73 if ((count = write(fd,s,BUFSIZ)) < 0) {
74 pernor("\nStream write failed");
75 exit (2) ;
76)
77)
78 strread(fd)
79 int fd;
80 {
81 char buf [BÜFSIZ];
82 /* Try reading the locp back device */
83 if ((read (fd,buf,BÜFSIZ)) < 0) {
84 perror("Stream read failed");
85 exit (3) ;
86 }
87 /* print the read */
88 printf ("\nFeading fron locp back device\n");
89 printf ("String = %s\n",buf);
90 }
91 strioctl (fd,arg,tirre, len, s)
92 int fd;
93 int arg;
94 int time;
95 int len;
96 char *s;
97 {
98 int i;
99 char *p;
100 ioc.ic_and = arg;
101 ioc.icjtimeout = tine;
102 ioc.ic_len = len;
103 ioc.icjdp = s;
104 switch (arg) {
105 case I_NCÄRG ; p = "i_ncarg";
106 break;
107 case I_EPRNAK ; p = "i_ermak";
108 break;
109 case I_EBPCR : p = "i_emor";
110 break;
111 case I_SETH?M3 ; p = "i_settang”;
112 break;
113 case I_SETERR : p = "i_seterr";
114 break;
115 default : p = "unknown ioctl";
116 break;

9-18 Device Driver Writer’s Guide

STREAMS Test Program

117 }
118 printf (" \ r i l r y i n g ioctl call %s # %d\n",p,arg) ;
119 if ((i = ioctl (fd, I_STR, &ioc)) < 0) {
120 perror("ioctl failed");
121 printf ("return cede = %d ioctl errd - %d\n", i,arg) ;
122 }

123 printf("ioctl() return code - %d\n",i);
124 sleep (3) ;
125 }

STREAMS 9-19

Appendix A

Migrating XENIX Drivers to the Sys
tem V Operating System

Introduction A-1

Binaries A-2

Change in the Device Number A-3

Changes in Structure Definitions A-4
Structure Header Files A-4
Changes to the buf Structure A-4
user Structure A-6
cblock Structure A-6
devbuf Structure A-7

Changes in Kernel Routines A-8
physio(K) A-8
disksort(K) A-9
xxopen, xxclose, xxread, xxwrite, xxioctl A-9
major(K), minor(K) Device Number Macros A-9
cmn_err(K) A-10
sptalloc(K) and sptfree(K) A-11

Obsolete Kernel Routines A-12

General Notes A-14
Halt Routines and Interrupts A-14
Include Files A-14
cram.h A-14
Near and Far Keywords A-14
xxprint Driver Routine A-15
machdep.h A-15
Compiler Directives A-15
#ifdef M_S_UNIX A-15
disk.c A-16
Interrupt Vectors A-16
Possible Problem Areas A-16

Converting IDDs A-17
Overview A-17
XENIX Files Relocated Under System V A-17
Summary of XENIX vs. System V Directory Structures A-l 8
Converting Installation Scripts A-19

Introduction

Introduction
This appendix outlines the substantive changes that must be made in all
XENIX version 2.3 drivers to allow them to be compiled under the System
V release 3.2 environment. The necessity of some changes is decided by
the CPU type. It is indicated in the text where this is the case.

Since the System V environment is different from the XENIX environ
ment, read this document closely and note necessary changes to your
drivers. There may be more changes required for some drivers than for
others. As much as possible has been preserved of the old XENIX inter
face for reasons of backwards compatibility. By making the changes
described in this paper, you should be able to bring your drivers to full
System Y 3.2 compatibility.

Because System V release 3.2 contains the merged XENIX product, the
information presented below will contain references to this product where
necessary.

This document includes information provided by Microsoft for device
driver conversion from Microsoft XENIX drivers to the merged System V
drivers.

This appendix describes the changes required to bring the driver code in
line with the merged System V code standard. System V release 3.2 han
dles these changes and preserves older code with the pre-processor direc
tives #ifdef and #ifndef and the conditional compiling of the code that
these statements imply. Under System V release 3.2, two source code
syntaxes are accepted: the syntax of XENIX release 2.3 and the syntax of
System V.

Migrating XENIX Drivers to the System V Operating System A -1

Binaries

Binaries
Under System V release 3.2, the kernel always runs 386 binaries.

In System V, both COFF and x.out 286 binaries are supported by the
!binli286emul and /bin/x286emul user-level emulators. i286emul and
x286emul trap system calls issued by a 286 program and either handle the
system calls internally or perform the necessary argument conversions
before issuing a 386 system call. Therefore, the device driver code that
was used to support system calls from a 286 binary is no longer necessary.

System V has kernel support routines available for device drivers that
handle 286 system calls. For example, Idtalloc(K), ldtfree(K),
cvtoint(K), and cvtoaddr(K) are provided as stubs to help facilitate com
pilation. These stubs may be removed in any future release of System V.
Refer to the "Obsolete Kernel Routines" section in this appendix for in
formation on other stubbed or dropped kernel routines.

A-2 Device Driver Writer’s Guide

Change in the Device Number

Change in the Device Number
In System V, the device number now contains both the major and the
minor number and is a short integer of type dev_t. Use the major(K) ker
nel routine to extract the major device number; use the minor kernel rou
tine to extract the minor device number. These two routines are described
on the major(K) manual page in the section (K) manual pages in this
guide.

Migrating XENIX Drivers to the System V Operating System A-3

Changes in Structure Definitions

Changes in Structure Definitions

Structure Header Files
In System V, driver-related header files are in /usr/include!sys. Use of the
old path for header files is supported, but all new drivers should be written
to take advantage of the new path. Header files included in a driver with
the following syntax access header files in the new path:

#include " sy si filename.h"
#include <sys!filename.h>

Changes to the buf Structure
The following changes were made to the buf structure in System V:

Field Description

bjblkno This field is now in units of 512 bytes instead of
1024 bytes. This field is read only (cannot be set
by a driver).

b_cylin This field is no longer being used by disksort(K)
for sorting requests. The preferred field is the new
b_sector field because b_sector is a longer (signed
long) field. (bjcylin is a ushort and is read only.)
CAUTION: Assigning b_sector to b_cylin can
cause sign extension. Use the following call when
converting:

kr^>b_sector = (daddr_t)tp->b_cylin & Oxtit'r

bJlags New flag values have been added and two flags
have been dropped, but neither the added or
dropped flags have any bearing on drivers. The
added flags are: B_VEREFY, B.FORMAT,
B_REMOTE, B_S52K, and B_PRIVLG. The
dropped flags are B_NOCROSS and B_FLUSH.

A-4 Device Driver Writer’s Guide

Changes in Structure Definitions

b_paddr

b sector

b start

Refer to sys/buf.h for more information. The
bjiags field is driver setable, but must never be
cleared.

This field has been replaced in the buf structure by
the b_un union that has these read-only fields:

caddr_t b_addr; /* low order core address */
int *b_words; /* words for clearing */
daddr_t *b_daddr /* disk blocks */

The b_paddr field under XENIX stored a physical
address. The b_un.b_addr field stores a virtual
address. Use paddr(K) to access this field. Note
that paddr now returns a virtual address. The fol
lowing call returns a physical address:

paddr = ktop(paddr(bp));
as does:

vtop(paddr(bp), b_proc);

Replace occurrences of b_paddr with calls to
ktop(K) or vtop(K) where appropriate.

This field is new in System V and is the physical
sector of the disk request. This field is typed as
daddrj (long) and is read only. Be careful of sign
extension when replacing b_cylin references with
b_sector. The following call prevents sign exten
sion:

bp->b_sector = (daddr_t) bp->b_cylin & OxFFFF

This field is new in System V and is the request
start time. This field is typed as time_t, and can
be set by a driver.

Migrating XENIX Drivers to the System V Operating System A-5

Changes in Structure Definitions

bjyroc This field is new in System V and is a pointer to a
user processes proc structure. This field is an
instance of struct proc and is read only.

bjeltim e This field is new in System V and is the previous
release time. This field is typed as an unsigned
long and is read only.

b_want This field is new in System V and stores the
B_WANTED flag. The comment for this field
states: "Need this field to hold the B_WANTED
flag in order to avoid a race in the updating of
b Ja g s. A process with a buffer locked assumes it
can do whatever it likes with bjiags, while a pro
cess wanting a busy buffer sets the B_WANTED bit
without having the buffer locked. Moving it to a
separate word avoids problems with simultaneous
updates."

In addition, the buf structure has been typedef-ed as struct b u fj.

user Structure
Under System V, the user structure no longer supports the u_cpu field. A
new field in the user structure, u_renv, contains the same information as
u_cpu in bits 16-23.

The XENIX u baseu field is now called u base.

cblock Structure
In System V, there is no longer a dJlags field in the cblock structure. This
affects line discipline drivers that use delays.

A-6 Device Driver Writer’s Guide

Changes in Structure Definitions

devbuf Structure
The devbuf structure (as defined in /usr/include/sysldevbuf.h) has changed
as follows:

• bufptr and bufend are now offsets (because the kernel has been
relocated into a higher address space).

In XENIX, if bufptr = 4, then the block actually started at 4*512 =
2K. In System V, bufptr and bufend (as well as head and tail) are
now physical addresses. If bufptr =1K, it is physically IK bytes
into RAM starting from RAM address 0.

• In System V, only one devbuf structure can be allocated with
dballoc(K), in XENIX up to 30 devbuf structures could be allo
cated in a single call to db_alloc.

Example

struct devbuf dbuf [2]; /* XENIX */

db_aHoc (Sdbuf, 2) ;

struct devbuf dbuf, *dptr; /* Systsn V */

dptr = &dbuf;
db_alloc (dptr) ;

Migrating XENIX Drivers to the System V Operating System A-7

Changes in Kernel Routines

Changes in Kernel Routines

physio(K)
The physio routine lias changed. XENIX checked to see if a buffer passed
to physio was busy. If it was, physio allocated a private buffer for the
driver. In System V, you must make sure that the buffer is not busy
(B J B U S Y is set in bJiags), before calling physio. If a busy buffer is
given to physio, a catastrophe results. To get physio-owned buffers, use
the following call format:

physio {xxbreakup, (struct buf *) NULL, dev, rwflag) ;

Setting the second argument to NULL instructs physio to allocate its own
buffers.

In System V, the xxread and xxwrite routines should first call the
physck(K) routine to validate the requested transfer. The syntax is:

int physckfnblocks, rw);
daddr t nblocks;

In this example, nblocks is the number of sectors that the device has. The
routine knows the size of the user’s request because it examines the fields
u.u_offset and u.ujcount. So only the total size of the device needs to be
supplied.

Next, call physio with a pointer to the device driver’s xxbreakup routine,
xxbreakup should then call the system breakup routine with a pointer
back to the xxstrategy routine. The system breakup routine is one of
either dmaJbreakup(K), pio_breakup(K), or a user supplied breakup
routine. The pio breakup routine should generally be used to break a
request across page boundaries.

A - 8 Device Driver Writer’s Guide

Changes in Kernel Routines

The following floppy driver example illustrates the breakup conventions
under System V:

f lread (dev)
dev_t dev;
{
register int size;

size = flElktosec(flsize[sizeindx(dev)]); /* size in sectors V
if (physck (size, B_READ))
physio (flbreakup, NULL, dev, B_READ) ;
}

flbreakup (bp)
struct buf *bp;
{
int flstrategyO;

dre_breakup(flstrategy, bp);
}

disksort(K)
Under System V, the disksort routine uses the b_sector field of the buf
structure to sort requests. The b sector field is a 32 bit field, which gives
better resolution than the 16 bit b_cylin field. Under XENIX, disksort uses
the b_cylin field.

xxopen, xxclose, xxread, xxwrite, xxioctl
Under System V, the xxopen, xxclose, xxread, xxwrite, and xxioctl rou
tines are called with the entire device number. XENIX calls these rou
tines with the minor device number only.

major(K), minor(K) Device Number Macros
When converting drivers, you can extract either the major or the minor
device numbers by using the major and minor macros to mask out the
unneeded portions. The major macro returns the major device number,
while the minor macro returns the minor number. To ascertain the entire
device number, use the instruction:

minornum = minor(dev);
majornum = major(dev);
dev = makedev(majornum, minornum,);

Migrating XENIX Drivers to the System V Operating System A-9

Changes in Kernel Routines

cmnerr(K)
Tine first argument to cmn err has been dropped for 3.2. Also there is no
CE_INFO arg to System V cmn err as there was for XENIX cmnerr.
For example:

XENIX:

am_err("serial", CE_WARN, "interrupt vector collision");
Systan V:
am err(CE_WAFN, "serial: interrupt vector collision");

Note

cmn_err causes a panic if the wrong version is used.

A -10 Device Driver Writer’s Guide

Changes in Kernel Routines

sptalloc(K) and sptfree(K)
Both sptalloc and sptfree have changed. For example:

XENIX: char *sptalloc (size)
int size;
/* size is in bytes */
sptfree (ptr, size, flag)
char *ptr;
int size, flag;
/* to actually free pages, flag always = 1 */

Systan V: sptalloc (size, mode, base, flag)
int size, mode, base, flag;
/* size is in clicks (pages) */
/* mode is defined in imtu.h */
/* for base and flag, see sptalloc (K) manual page */
sptfree (vaddr, size, flag)
char *vaddr;
int size, flag;
/* size is in pages */
/* flag is always 1 to free pages */

In System V, sptalloc(K) is used for mapping device registers to I/O
mapped memory. For example, to map the device registers of a card to
address OxB8000, use this sptalloc call:

vaddr = sptalloc(1, PG_P, 0xB8000, 1);

Migrating XENIX Drivers to the System V Operating System A -11

Obsolete Kernel Routines

Obsolete Kernel Routines
The following kernel routines are no longer necessary nor are they docu
mented in the manual pages section in this guide. These routines, unless
indicated differently, are available in the kernel, but only return errors
when called and are only provided for compatibility purposes. The rou-
tines are:

Routine Notes

cvttoaddr Convert far address to 286 virtual address. Reason for
being deleted: not applicable on 386. It is no longer
necessary to use cvttoaddr to convert an 8086/80286
address to a valid 386 kernel virtual address because
every binary is considered to be a 386 binary by the
System V kernel. An emulator determines if the
binary in question is actually a 286 or 86 binary.
Although a stub for cvttoaddr has been provided, it
may be removed in a later release.

evttoint Extract low 16 bits from a 286 far pointer. Reason for
being deleted: not applicable on 386.

dscraddr Get physical address. Replaced by sptalloc(K).

dscralloc Allocate GDT descriptor. Reason for being deleted:
not applicable on a 386.

dserfree Free GDT descriptor. Reason for being deleted: not
applicable on a 386.

ftoof Convert a number from an address to an offset. This
routine is not available in the System V kernel in any
form. Reason for being deleted: not needed on a 386.

ftoseg Convert a number from an address to a segment. This
routine is not available in the System V kernel in any
form. Reason for being deleted: not needed on a 386.

getebe Return the first character of a cblock. This routine is
not available in the System V kernel in any form. The
functionality of this routine is handled by the getc(K)
routine.

A - 12 Device Driver Writer's Guide

Obsolete Kernel Routines

in Read a 16-bit word from a physical address. This rou
tine is not available in the System V kernel in any
form. Replaced by inb(K).

IS386 Determine if a process is being run on a 386 com
puter. No replacement. System V only runs on a 386
computer. This routine is still usable, but is unneces
sary.

ldtalloc Allocate free user mapping descriptors. Reason for
being deleted: not applicable on a 386.

ldtfree Release allocated descriptor. Reason for being
deleted: not applicable on a 386.

mapphys Map physical address to a kernel virtual address.
Replaced by the vas(K) routines and sptalloc(K).

mapptov Map physical addresses to specific virtual addresses.
Replaced by the vas(K) routines.

out Write a 16-bit word from a physical address. This
routine is not available in the System V kernel in any
form. Replaced by outb(K).

putcbc Copy characters to a clist. This routine is not avail
able in System V in any form. The functionality of
this routine is handled by the putc(K) routine.

setjmp The setjmp(K) routine is no longer documented. Use
of this routine can cause system corruption or panic.
This routine is not similar in any way to the
setjmp(S) system call.

sotofar Converts segment and offset numbers. This routine is
not available in System V in any form. Reason for
being deleted: not necessary on a 386.

unmapphys Unmap an address previously mapped with mapphys.
Replaced by the vas(K) routines and sptfree(K).

Migrating XENIX Drivers to the System V Operating System A -13

General Notes

General Notes

Halt Routines and Interrupts
Any driver that controls hardware should check for pending interrupts on
its channel before running any xxhalt routine defined in io_halt[]. When
there are no interrupts pending, interrupts should be suspended. Then, the
xxhalt routine may be executed and interrupts may be enabled again.

Include Files
All XENIX include lines of the form:

#include ".. /h/file.h"

must be changed to the form:

#include "sys/file.h"

or

#include <sys/file.h>

cram.h
There is a new include file, sys/cram.h that contains #define statements
dealing w'ith programming the CMOS.

Near and Far Keywords
All references to the near and far keywords must be removed for System
V. In addition faddr_t references should be changed to caddr_t, even
though the latter is provided for compatibility purposes in sys!types.h.

A -14 Device Driver Writer’s Guide

General Notes

xxprint Driver Routine
For future compatibility, all block device drivers should have an xxprint
routine. The following example shows a sample xxprint routine for a
floppy diskette driver:

x>qprint (dev, str)
dev_t dev;
char *str;
{

}

am_err (CE_N3IE, "%s cn floppy diskette unit= %d, minor= %d",
str, unitbits (dev), minor (dev)) ;

In the previous example, unitbits is a macro used only by the floppy disk
driver for determining which device is selected. The macro is defined as
follows:

tdefine unitbits(dev) ((dev) & 0x3)

machdep.h
There is no machdep.h file in System V. This file has been split up into
the driver-specific .h files in the lusrlinclude!sys directory.

Compiler Directives
The compiler directives -Di386 and -Dunix are enabled in this release.
Using the -Dunix compiler directive is required in order to compile for
System V.

#ifdef M S UNIX
Use the statement #ifdef M_S_UNIX in System V drivers that will be used
in both XENIX and System V. Place the #ifdef statements around System
V specific code.

Migrating XENIX Drivers to the System V Operating System A -15

General Notes

disk.c
disk.c has changed as follows:

• b_klk.no is now in units of 512 bytes instead of IK bytes.

• maxvec is now equal to the integer variable nintr, in XENIX it was
equal to the constant “ MAXVEC.”

• nswap under System V is in 512 byte blocks, in XENIX it was in
IK byte blocks.

Interrupt Vectors
The numbering of interrupt requests (IRQ’s) on the slave chip has
changed. All numbers shown are in decimal. The values are:

XENIX: master 0-7 System V: master 0-7
slave 24-31 slave 8-15

Tire above table is in reference to the indices into vecintsw and ivect in
XENIX and System V respectively. Note that vecintsw does not exist in
System V.

Possible Problem Areas

• Sign extension problems may occur, due to the kernel being moved
to a much higher address space. This is because the kernel has the
high bit of all its virtual addresses set to “ on.” •

• Physical versus virtual addresses: in System V, ptok and ktop must
be used to convert from physical to kernel virtual addresses, and
from kernel virtual to physical addresses. Under XENIX, these
macros had no effect and were sometimes omitted; this is not the
case under System V.

A -16 Device Driver Writer’s Guide

Converting IDDs

Converting IDDs

Overview
When converting a XENIX installable device driver (IDD) to System V,
note that the organization of the System V file system structure differs
from XENIX. Some XENIX files have been logically split up into func
tionally separate files. For example, the file master has been split into
mdevice and mtune to separate device information from tunable variable
information. There is also a much more liberal use of directories to keep
functionally different files separate. There are several key differences
where there is a mapping of functionality from XENIX to System V.

XENIX Files Relocated Under System V
Below are the major functional groups of files. Under each group there
are examples of XENIX files and their functionality in relation to their
System V counterparts.

XENIX________ System V_________
Reconfiguration root directory:
lusrlsysl letclconfl

Executable files:
conf/configure cfA! configure
conf/link_xenix cfAllinkjinix

Configuration files:
conf/master cfA/mdevice

cfA/mtune
conf/xenixconf cfA/sdevice

cfA/stune

Driver specific files:
io/sioconf.o pack A/siolDriver, o
iolsioconf.h packA/siolsioconf.h

Migrating XENIX Drivers to the System V Operating System A -17

Converting IDDs

Summary of XENIX vs. System V Directory
Structures
Below are the relevant directory structures of both XENIX and System V.
On the left is the directory name and on the right a brief explanation of its
contents.

XENIX

/usr/sys/
lusr/sys/confl

lusrlsyslhl
/usr/sys/io/

/usr/sys/mdep/
/usr/sys/sys/

System V

Root reconfiguration directory.
Configuration dependent files
and installable device commands.
Include files used in recompilation.
I/O driver object files, libraries
and structure definitions.
Machine dependent library.
System library.

letclconfl
letclconflbinl

letclconflcf.dl
/etc/conf/pack.dl

I etc! conf/pack.d/ {DSP _prefix}/

letclconflrc.dl

letclconfl sd.dl

letc/conflsdevi ce. dl

letclconfl node.dl

letclconfl Init.dl

I etc/ conf/mfsys. dl

letclconflsfsys.dl

lusrl include! sys!

Root reconfiguration directory.
Stores ATT style installable
device commands.
Configuration dependent files.
Contains one directory per Driver
Software Package (DSP).
Driver object files and structure
definitions.
Startup for each DSP. Linked
to etc/idrc.d.
Shutdown for each DSP. Linked
to etc/idsd.d.
Contains one file with all configuration
entries for each type of device.
ATT style device node definitions
for each DSP.
Contains "/etc/inittab" entries for
each DSP.
One FS master data file per file
system type add-on.
One FS system data file per file
system type add-on.
Include files used in recompilation.

A -18 Device Driver Writer’s Guide

Converting IDDs

Converting Installation Scripts
In addition to the new directory structure, the System V approach stresses
modularity. To simplify conversion, these aspects of the installation are
hidden by the extended functionality of the new configure(ADM) com
mand.

For converting an installation, here is a list of appropriate corresponding
XENIX and System V commands followed by an optional description or
explanation of each command:

Extracting files:

XENIX: custom
System V: custom

Follow the menu to extract the files in the package.

Check to see if the device is already installed:

XENIX: configure -j {device prefix}
System V: configure -j {device prefix}

Returns 1 if no conflicting device name is found.

Adjust tunable kernel parameters:

XENIX: configure {resource} = {value}
System V: configure {resource}-{value}

Resource is the name of the tunable parameter.

Migrating XENIX Drivers to the System V Operating System A -19

Converting IDDs

Check for address or interrupt vector conflicts:

XENIX: vectorsinuse
System V: configure -V [vector]
System V: configure -A {lowjiddrcss, high_address]

vectorinsuse prints out a list of vector numbers currently in use. To check
for address conflicts, awk(C) is generally used to interrogate the master
file, configure -V returns non-zero if there is a conflict, configure -A
returns non-zero if there is an address conflict within the given range.

Find the next available major number:

XENIX: configure -j NEXTMAJOR
System V: configure -j NEXTMAJOR

Change configuration files:

XENIX: configure -b -c -m [majjdevjutm]
-v {interrupt vector number)
-a {list of routines}
-1 {interrupt priority level}

System V: configure -b -c -m [majjdevjmm]
-v [interrupt vector number}
-a {list of routines]
-1 {interrupt priority' level}
-h {device prefix)
-Y

Note that -b and -c denote block and/or character devices.

The differences to be noted are the -h option followed by the device prefix
and -Y to include this configuration into the new kernel under System V.

Edit link xenix:

XENIX: sed or vi
System V: The linkjunix script is not edited.

Under XENIX you add the names of all the new object files to the Id com
mand line in this file. This is not necessary under System V.

A-20 Device Driver Writer’s Guide

Converting IDDs

Relink the kernel:

XENIX: linkxenix
System V: linkunix

Create a device node:

XENIX: mknod {name} {(b)lock or (c)haracter) {major number) {minor
number)
System V: mknod {name} {(b)lock or (c)haracter) {major number)
{minor number)

Install kernel in default location:

XENIX: hdinstall
System V: No corresponding command.

Under System V, hdinstall is accomplished through link_unix.

Invoke the new kernel:

X£7V/X:shutdown
System V: shutdown

Migrating XENIX Drivers to tb<= System V Operating System A-21

Appendix B

Sample Block Driver

Overview B-l

Block Driver Header File B-2

Block Driver B-4

Overview

Overview
This appendix contains a sample block driver for a 96 tracks per inch (tpi)
double-sided high-density (dshd) floppy disk drive. This driver provides
read and write acces to raw and block data, but does not provide any for
matting capabilities.

Use the index at the end of this book to locate structures and routines pro
vided in the example driver. The following table lists the line numbers on
which each driver routine appears:

Routine Line Description
blckopen(dev, mode, flag) 187 Open device
blckclose(dev, mode, flag) 202 Close device
blckstrategy(bp) 240 Access buffer header
blckprint(dev, str) 1000 Print error message
blckinit() 173 Initialize device
blckstart() 275 Interact with device
blckhalt() 974 Called on shutdown
blckintr() 356 Interrupt handler
blckbreakup() 730 Break up I/O request
blckioctl(dev, cmd, uargp, flag) 218 IO control commands
blckread(dev) 735 Raw I/O read
blckwrite(dev) 741 Raw I/O write
blck dma() 548 DMA d_proc routine

Sample Block Driver B-l

Block Driver Header File

Block Driver Header File
1 /*
2 *

3 * Copyright (C) 1989 The Santa Cruz Cperation, Ine.
4 *
5 */
6 Ictefine FL ERROR -1
7 Ictefine WP ERROR -2
8 Ictefine WR PBCT 0x40 /* write protect bit of drive stat*/

9 /* Floppy Disk Controller port addresses */

10 Idefine P FLCTL 0x03f2 /* FDC control register (write)*/
11 Ictefine P FLMSR 0x03F4 /* EDC main status register */
12 Idefine P FLDCR 0x03F5 /* EEC data control register */
13 Idefine P FLDCT 0x0 3F7 /* EEC control register (write)*/
14 Idefine P Film 0x0112 /* CtvA data port */
15 Ictefine P_FLTC 0x0140 /* E m terminal count port */

16 Ictefine FDC ENB 0x04 /* high (EEC enable) low (reset) */
17 Idefine FL ENB DI 0x08 /* enable floppy E m & interrupts V
18 /* M5R bits for Floppy */
19 #define DA_BU5Y 0x01 /*
20 Ictefine DB_BUSY 0x02 /*
21 Idefine DC_BUSY 0x04 /*
22 Idefine DD_BUSY 0x08 /*
23 Idefine CB 0x10 /*
24 Idefine NCNjm 0x20 /*
25 Idefine DIO 0x40 /*
26 Idefine F£M 0x80 /*
27 /*
28 Ictefine S D R V K D Y 0x20 /*
29 Ictefine SWR_FFOT 0x40 /*
30 /*

B-2 Device Driver Writer’s Guide

Drive A seeking */
Drive B seeking */
Drive C seeking */
Drive D seeking */
FDC busy */
Non E m node */
Data I/O: lew (write) high (read) */
Bequest for master - polled */
before writing control bytes */
Drive ready bit of status byte 3 */
Write protected bit */
of status byte 3 */

Block Driver Header File

31 /* Floppy oonrand icodes */
32 #define FD TRK (0x02) /* Read a track (floppy) */
33 #define SPECIFY (0x03) /* Specify */
34 #define SENS EH (0x04) /* Sense drive status */
35 ♦define WR DATA (0x05) /* Write data */
36 ♦define FD DATA (0x06) /* Read data */
37 ♦define FECAL (0x07) /* Etecalibrate */
38 ♦define SENS INIR (0x08) /* Sense interrupt status */
39 ♦define WR DEL DATA (0x09) /* Write deleted data */
40 ♦define RDJD (OxQA) /* Read ID */
41 ♦define RD EEL DATA (OxOC) /* IRead deleted data */
42 ♦define SEEK (OxQF) /* Seek */
43 ♦define ECFFAT (OxQD)
44 ♦define MT 0x80 /* multi-track */
45 ♦define FF 0x40 /* EM mode=0,FEM=l (cbl density) */
46 ♦define SK 0x20 /* skip deleted data nark */
47 /* Table for number of control writes and status reads */
48 ♦define tODS 16 /* Nunber of camands */
49 ♦define FAX WR 9 /* Ffexinun nurrber of control writes */
50 ♦define FAX RD 7 /* Fbxirtun nunber of control reads */
51 /* Next defines are indexes into and array elements below */
52 ♦define NON WR 0 /* Nunber of control writes element */
53 ♦ctefine NLM ED 1 /* Nunber of status reads element */
54 ♦define EXEC 2 /* If and has execution phase *,/
55 /* with resulting interrupt */

56 /* Floppy table */

57 int fl_ord[NCMDS] [3] = {
58 /* Cocte Write Read Execute */
59
60 /* Invalid */ {0, 0, 0},
61 /* Invalid */ {0, 0, 0},
62 /* RD IRK */ {9, 7, 1},
63 /* SPECIFY */ 13, 0, 0},
64 /* SENS DR */ {2, 1, 0},
65 /* WR DATA */ {9, 7, 1},
66 /* RD DATA */ {9, 7, 1},
67 /* RECAL */ {2, 0, 1},
68 /* SENS INIR */ {1, 2, 0},
69 /* WR DEL DATA */ {9, 7, 1},
70 /* RD_ID V (2, 7, 1},
71 /* Invalid */ {0 , 0, 0},
72 /* RD DEL DATA */ {9, 7, 1},
73 /* ECFFAT */ {6, 7, 1},
74 /* Invalid */ {0, 0, 0},
75 /* SEEK */ {3, 0, 1}
76 };

Sample Block Driver B-3

Block Driver

Block Driver
Use the index at the end of this book to locate routines and structure
names in this driver.

1 /*
2 *
3

4
* Copyright (C) 1989 The Santa Cruz Operation, Inc.

5
6

k

* This driver is designed for the NBC 765A
7 * (Intel 8272A) controller. 96 tpi, and 15 sectors
8 * per track is supported.
9 V

1 0 tdefine near /* no 'near' keyword */
1 1 #include "sys/param.h"
1 2 #include "sys/types .h"
13 tinclude "sys/sysmacros. h"
14 tinclude "sys/systm.h"
15 tinclude "sys/buf .h"
16 tinclude "sys/icbuf .h"

17 tinclude "sys/cram.h"

18 tinclude "sys/dir.h"
19 tinclude "sys/file.h"
2 0 tinclude "sys/signal. h"
2 1 tinclude "sys/seg.h"
2 2 tinclude "sys/page.h"
23 tinclude "sys/inmnh" /* most ccme before region.'
24 tinclude "sys/region.h"
25 tinciuda "sys/proc.h"
26 tinclude "sys/x.out.h"
27 tinclude "sys/user.h"
28 tinclude "sys/errno.h"
29 tinclude "sys/cpen.h"
30 tinclude "sys/flccpy.h"
31 tinclude "sys/ccnf.h"
32 tinclude "sys/crm err.h"
33 tinclude "sys/dra.h"
34 tinclude "sys/vendor.h"
35 tinclude "blck.h"

B-4 Device Driver Writer’s Guide

Block Driver

36 ♦define CE ERBCR CE WARN
37 ♦define MAXREIRY 12
38 ♦define OCRL WR(x) outb(P FLCTL, x) /* write control port */
39 ♦define FLCHANGE 2
40 ♦define TKJE -1
41 ♦define FAIL3E 0
42 /*
43 * a bit set in recalstat means that the drive
44 * has been recalibrated since the last reset;
45 * bit clear means recalibration rrust be dene.
46 */
47 int recalstat = 0 ;

48 struct diareq efra q; /* EKA. request structure ■V
49 /* current state in floppy operation - should V
50 /* be an blcktab variable? V
51 int flstate == -1 ;

52 /* defines for the above state variable V
53 ♦define SIKESET 0
54 ♦define SIRECAL 1
55 ♦define STSEEK 2
56 ♦define STIO 3
57 ♦define SIFM3EEK 4
58 ♦define STMOICR 6
59 int flinitflg = TRUE, /* hardware setup rrust be dene */
60 flerreset = FALSE,r /* rrust do reset for error */
61 /* recovery */
62
63 leng fl na; /* Lfechine address (leng */
64 /* physical address) */
65 unsigned fl lsn, /* logical sector nrntoer */
66 fl tn, /* track nunber V
67 fl sn, /* sector nunber * /
68 fl eat; /* last sector number */
69 int fl to, /* motor timeout flags */
70 fl job;
71 unsigned fltranscnt,r /* number of bytes in this transfer*/
72 flresidcnt,r /* number of bytes remaining to * /
73 /* transfer */
74 fltmsferred, /* total number of bytes * /
75 /* already transferred * /
76 dor = 0; /* memory image of DCR * /

77 ♦define ELSECSZ 512 /* sector size in bytes * /
78 ♦define FL34ASK 511
79 ♦define FISHUT !9

Sample Block Driver B-5

Block Driver

80 /*
81 * If a transfer crosses a 64k boundary in manory, EMk it
82 * in/out of kernel data and ocpy it to/from user irerory.
83 V

84 int fllocaltransfer; /* flag th is transfer as */
85 /* a local one V
86 char fllocalbuf [FLSEESZ]; /* buffer used for transfer V
87 paddrjt fltnpaddr; /* hold paddr during local transfer */
88 /* convert bytes to sectors */
89 #define flbtos(x) (((x) tFLSECSZ-1) »FLSHIFT)
90 /* convert sectors to bytes */
91 #define flstdo(x) ((x) «FLSHIFT)
92 char fl_crrds [>®X_WR]; /* Buffer for blckccmTHrd bytes */
93 char fl_stats [EftX_RD]; /* Buffer for status reads */
94 struct icbuf blcktab; /* icbuf defined in sys/icbuf .h */
95 struct buf iblckbuf; /* buf is defined in sys/buf .h */
96 /* minor device encoding */
97 #define SIZEBITS 0x3C
98 ♦define TPI96BIT 0x20 /* 1=>80 tracks */
99 ♦define SECBITS 0x18 /* 10->15 sectors/track */
100 ♦define DSBIT 0x04 /* l=>double sided */
101 ♦define USJITBITS 0x03 /* physical drive V
102 ♦define unitbits (dev) ((dev) & 0x3)
103 ♦define sizebits(dev) (((dev) » 2) & OjF)
104 ♦define secbits(dev) (((dev) » 3) & 0x3)
105 ♦define fl cnecyl(dev) ((dev & DSBIT ? 2 : 1) * 15)
106 unsigned flhead; /* head number, 0 or 1 */
107 /* defines for block/char specification to blckcpen */
108 ♦define CHRDEV OTYP CHR /* 3rd parameter to device V
109 ♦define BLKDEV OTYP HUC /* cpen routine specifying */
110 /* block or char device V

111 unsigned Lot flccpened = 0, /* count of opens */
112 flbcpened = 0; /* count of cpens */

113 /*
114 * format buffer is to be used for a collection of desired
115 * address fields for the track. Each field is composed of
116 * 4 bytes, (C,H,R,N), where C = Track number,
117 * H = Head number, R = Sector number,
118 * N = number of bytes per sector (02=512)
119 * 'There rrust be one entry for every sector on the track.
120 * This information is used to find the requested sector
121 * during read/write access.
122 */

B-6 Device Driver Writer’s Guide

Block Driver

123 struct sctrbdr {
124 char sc trk; /* track number */
125 char sc hd; /* head nunber (0 or 1) */
126 char sc sec; /* sector number (1-18) */
127 char sc nb; /* numbytes/sector */
128 } fl_fimtbuf[18]; /* format byte field buffer */
129 /* defines and structs for ioctl calls */
130 #define FliBÜSY 1 /* device busy */
131 #define Fffl» 2 /* device not opened for writing */
132 ♦define FL3XUN 3 /* illegal track number */
133 ♦define FLNOIDS 4 /* not double sided, */
134 /* illegal side referenced */
135 ♦define FLICERR 5 /* device error during */
136 /* requested eperatien */
137 struct firtfl { /* ioctl struct format flcppy */
138 char fin trk; /* track number */
139 char fin hd; /* side number */
140 char fin sec; /* sector number (future use) */
141 char fin size; /* code: bytes/sector-future use */
142 char fin il; /* interleave */
143 char fin status; /* return status, 0 good V
144 };
145 /* ocntroller/flcppy parameters */
146 struct flptab {
147 char fl spcl; /* 1st spec byte */
148 char fl spc2; /* 2nd spec byte */
149 char fl meet; /* motor-cn delay time (16 ms) */
150 char fl moft; /* motor-off delay time (sec) */
151 char fl ribs; /* bytes/sector code */
152 char fl dtl; /* special sector length code */
153 char fl gpl; /* gap length */
154 char fl gplf; /* gap length for format */
155 char fl_filf; /* filler byte for format */
156 };

Sample Block Driver B-7

Block Driver

157 h
158 * Default floppy hardware parameters.
159 V
160 struct flptab flparam = {
161 /* spcl */ 0 1 1 (OxOF),
162 /* spc2 */ (0x08«l) | (0x00), ' /* 16ms HUT */
163 /* mont */ 8, /* 8 * 1/8 sec = 1 second */
164 /* mo ft */ 3, /* 3 seoonds */
165 /* nhs */ 2, /* 512 bytes */
166 /* dtl */ OxFF,
167 /* gpl */ OxlB,
168 /* gpif */ 0x54,
169 /* filf V 0xF6
170 };
171 static char fl name[] = blck";

172 int bldcintr () ;
173 blckinit ()
174 {
175 int base, offset, type;
176 extern int (*ivect[]) ();
177 extern int nintr;
178 base = 0x03f2;
179 offset = 0x05;
180 prinfccfg(fl_name, base, offset, 6, 2, "unit=0 %s",
181 "sartple blck 96tpi") ;
182 }
183 /*
184 * blckcpen () - Increnent open count and check
185 * for various errors.
186 */
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

blckcpen (dev, mode, flag)
(

switch (flag)
{

case CHFDEV:
flocpenedrH-;
break;

case BLKDEV:
flbcpened++;
break;

}

/*
* blckcloseO - Set qoon count to 0 for device
*/

B-8 Device Driver Writer’s Guide

Block Driver

202 blckclose (dev, mode, flag)
203 {
204 switch(flag)
205 {
206 case CHFEEV:
207 flccpened = 0;
208 break;
209 case ELKDEV:
210 flbcpened = 0;
211 break;
212 }
213 }
214 /*
215 * blckioctlO
216 ★
217 */
218 blckioctl (dev, and, uargp, flag)
219 caddr t uargp;
220 {
221 struct fintfl sfintfl;
222 switch (and)
223 {
224 case FLIOCSIZE:
225 sfintfl.fei trk = 80;
226 sfintfl.fin hd = 2;
227 sfintfl.fin sec = 15;
228 sfintfl.fin size = flparam.:
229 sfintfl.fin il = 1;
230 sfintfl.fin status - 0;
231 if (ccpyout (Ssfintfl, uargp,
232 sizeof sfintfl) = -(
233 u.u error = EEADLT;
234 break;
235 default:
236 u.u error = EINVAL;
237 break;
238 }
239 }

Sample Block Driver B-9

Block Driver

240
241
242
243
244
245
246
247
248
249
250
251

blckstrategy (bp)
register struct buf *bp;

/* Check valid block */
if ((tp->b_blkno < 0) | | (bp->b_bIkno > 2400))
{

bp->b_flags |= B_ERBCR ;
bp->fo_error = ENXIO ;
bfa->b_resid = bp->b_bcqunt ;
iodcne (bp) ;
return;

}

252
253
254
255
256
257
258
259
260
261
262
263
264

/* EOT case - starting block is just at end */
if (lp->b_blkno = 2400)
{ hp->b_resid = kp-ab_boount ;

if ((bp~>b_flags & B_READ) = 0)
{

bp->b_flags |= B_EI!BCR. ;
bp->b_error = E3SKI0 ;

}
icdcne (bp) ;
return ;

}
devque (bp) ;

B -10 Device Driver Writer’s Guide

Block Driver

265 /*
266 * blckstartQ - Part of the state machine is here and
267 * part is in blck±ntr(). blckstartQ needs to set
268 * variables for rrulti-block transfers. Note that
269 * the "first time reset" is here based cn initflg)
270 * rather than start or cpen; this is because the reset
271 * generates an interrupt and it is preferable to have
272 * the I/O variables for the transfer already set up.
273 * Motor is turned cn here if necessary.
274 */

275
276
277
278
279
280

blckstart ()
{

register struct buf *bp ;
register overflew; /* riurber of sectors a */

/* raw transfer overflows */
extern blck_timeout ();

281 /*
282 * if "previous" request was a floppy, make sure
283 * the timeout chain is running; this covers the
284 * case of a ficppy timeout error where a delay
285 * is still desired prior to turning off motors__
286 */
287 if(flto = 0)
288 {
289 timeout (blck_timeout, 0, Hz);
290 flto = 1;
291 }
292
293
294
295
296
297

if ((fcp = blcktab.b_actf) = NULL)
{

dra_relse (EMV__CH2) ;
bldctab.b_active = 0;
return;

}

298 blcktab.b_active = 1;
299 fl_lsn = ip̂ >b_bIkno;
300 /* use vtcp instead of ktep; paddr (kp) can be a */
301 /* user address such as when called by physio */
302 fljna = vtcp (paddr (kp), kp>->b_proc);

303 blckmapQ ; /* set flhead, fl_sn, fl_tn */

Sample Block Driver B -ll

Block Driver

304 /* Bad start ing block and BOfc" ware checked in
305 * strategy. fhe ability to do only a partial
306 * transfer of a record (raw) is checked here.
307 */
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

overflew = fl_lsn + flbtos (fcp->b_boount) - 2400;
flresidcnt = fcpK>b_bcount ;
if (overflow > 0)

flresidcnt -= flstcfo (overflew) ;
fltranscnt = 0 ;
fit msferred = 0 ;
if (flinitflg)
{

/* initial reset hasn't been dene */
flinitflg = 0 ;
flstate = SIBESEET ;
blckresetO ;
return; /* enter state machine an interrupt */

}

if (flerreset)
{

flerreset = 0; /* last transfer had an error */
flstate = SIFESEEE ;
blckresetO ;
return ; /* enter state machine cn interrupt */

}

if (motorcnO == 0)
{

timeout(blckstart, 0,
(flparam. fl_mcnt * Hz) / 8) ;

return;
}

/* check if a recalibrate is necessary */
if (recalstat = 0)
{

flstate = STEECAL ;
blckocmTHnd(RE)CAL) ;
return;

}

347 flstate = SISEEK
348 blckoonrand (SEEK)
349 return ;
350 }

B -12 Device Driver Writer’s Guide

Block Driver

351 /* blck±ntr() : if returning fron a recalibrate, seek, or
352 * reset oornand, issue a sense interrupt status ocmrand
353 * to check for errors. Cn ccctrrands such as read and
354 * write that have a result phase, use ardresult () .
355 */
356 blckintrO
357 {
358 register struct buf *ip;
359 register int stat ;
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

if ((hp = blcktab.b_actf) = NULL)
{

if (fljto = 0)
{

extern int blckjcimeout () ;
timeout (blckjtimeout, 0, Hz) ;
fljtotf ;

}
if (flstate - STOESET)

blckcamand (SPECIFY) ;
return ;

}
if (flstate - SITO)
{

if (an±result((tp->b_flags & B_READ)
? FD_DMA : WRJQMA)

= FL_ERBCR)
goto error ;

if (cmd_status() = FL_ERRCR)
{

if ((fl_stats[l]&0xEF) != 0x80)
goto error;

}
/*
* if transfer is local, local routine
* picks it up and kicks it off again.
*/
if (fllocaltransfer) {

blcklocal (hp);
return;

}
flresidcnt -= fltranscnt ;
fltmsferred -f= fltranscnt ;
if (flresidcnt = 0) /* no more left */

goto dene ;
395 /* continue transferring */
396 fl ma +=
397 fl lsn +=
398 blckmapO
399 goto seek
400 }

fltranscnt ;
flbtos(fltranscnt) ;
; /* set fl_sn, fl_tn, flhead */

(Continued on next page.)

Sample Block Driver B -13

Block Driver

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

B - 14

/* if floppy driver controller caused interrupt */
if (flstate != SUCTCR)
{

blckcatnand (SENS_INIR) ;
/* read/ change on a reset canrand is ak */
stat = ard_status () ;
/* stat return on FESET nust be QffiME */
/* any other ncn-zero stat is an error */
if (flstate = SERESFT)
{

if (stat != FL_CH3NGE)
goto error ;

}
else
{

if (stat)
goto error ;

}
}

switch(flstate)
{

case SIHESEI:
blckccratHnd (SPECIFY) ;
if (motorcnO = 0)
{

timeout (hlckintr, 0,
(fIparam. fl_ncnt

* Hz) / 8) ;
flstate = SIM0ICR;
return;

}
/* fall throu^r ... */

case SIM0TCR:
flstate = STKEEÄL ;
if (blckocnirBrid(RE)CÄL) =

FL_ERFCR)
goto error;

return ;

('Continued on next page.)

D ev ice D riv e r W rite r’s G u id e

Block Driver

439
440 seek :

case SIRECÄL:
441 flstate = STSEEK ;
442 if (blckoarmand (SEEK) =
443 FL ERROR)
444 goto error;
445 return;

446 case SESEEK ;
447 flstate = STIO;
448 stat = blckxf er(bp);
449 if (stat = WP ERROR)
450 {
451 bp->b flags |= B ERROR
452 flerreset = 1HJE ;
453 goto dene;
454 }
455 if (stat = FL ERROR)
456 {
457 goto error;
458 }
459 return ;
460 default:
461
462 }

goto error;

('Continued on next page.)

Sample Block Driver B-15

Block Driver

463 error ;
464 if (fllocaltransfer) {
465 fl ira = fltnpaddr;
466 fllocaltransfer = 0;
467 }
468 if (-Hblcktab.b errcnt < Î XRh'iKY)
469 {
470 flstate = SUsESET;
471 blckreset () ;
472 return ;
473 }
474 /* hard error */
475 fcp->b flags |= B EKRCR ;
476 /* have to do reset before next transfer
477 flerreset = 1HJE ;
478 done
479
480
481
482
483
484
485 }

-̂k-k-k-k-k-k-k-k-kî -k-k-k-k-k-k-k-kic-k-k'k'k-k'k-k-k-k-k-k-k'k'k-k-k-k-k-k'k-k-k-k-̂ -k-k-k-k-k-k-k-k

487 * Driver Utilities
488 *
489 */

490 /*
491 * blckmapO - routine to set the glcbals fl_tn,
492 * fl_sn, and flhead fron the global fl_lsn.
493 * Called from start and intr.
494 */
495 blckmapO
496 { fl_tn = fl_lsn/30 ;
497 fl sn = fl_lsn%30 ; /* offset into cylinder */
498 flhead = fl_sn/15 ;
499 if (fl_sn >= 15)
500 fl_sn -= 15 ;
501 }

blcktab.b_actf = bp->av_forw ;
blcktab.b_errcnt = 0 ;
blcktab.b_active = 0 ;
kp->b_resid =)go->b_boount - fltmsferxed ;
iodcne (bp) ;
blckstartO ;

B - 16 Device Driver Writer’s Guide

Block Driver

502 /*
503 * blckxfer is called to start a transfer and
504 * calculate if byte count crosses a track boundary.
505 */
506 blckxfer (bp)
507 struct buf *hp;
508 {
509 unsigned short limitjcnt;
510 if (blckccrrrrand (SENS_DR) = FL_ERRCR)
511 return (FL_ERPCR) ;
512
513
514
515
516
517
518
519
520

/* Write protect check; caller must check */
if ((fl_stats [0] &WR_FRQT)

&& ! (fcp->b_flags & B_READ))
{

am_err (CE_ERFCR,
"%s: disk is write protected",
fl_name) ;

return (WP_ERRCR) ;
}

521 fl_eot = fljsn + flbtos(flresidcnt);
522 fltranscnt = flresicfcrt;
523 if (fl_eot > 15)
524 { fl_eot = 15;
525 fltranscnt = flstcfo (15 - fl_sn);
526 }
527 /*
528 * Keq? transfer fron crossing 64K boundary.
529 * transfer up to the boundary, hlcklocalO the
530 * 512 which cross it, then pick it up again.
531 */

532 limit_cnt = -fl_ma;
533 if (limitjcnt < fltranscnt && limit_cnt) {
534 if (limitjcnt < FLSE2SZ)
535 return (blcklocal (kp)) ;
536 else
537 fltranscnt = limitjcnt & OxFEOO;
538 }

539 if (blck_doI0 (hp) == FL_ERRCR) {
540 return (FL_ERRCR) ;
541 }
542 return (0);
543 }

Sample Block Driver B -17

Block Driver

544 /*
545 * blck_dra(), a DMA d_proc routine
546 * that actually does the DMA transfer
547 */

548 blckjdra()
549 {
550 dra_param (drajq.djchan, diajq.d_mode,
551 drajq.d_addr, dtB_q.d_cnt) ;
552 drajanable (drajq.djchan) ;
553 }

554 /*
555 * blckjdoIO does the DMA transfer, setting up the DMA
556 * and then issuing the controller ccmand (read/write)
557 */

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

blckjdoIO (bp)
struct buf *hp;
{

if (tp->b_flags&B_FEAD) /* Read or write */
{

drajq.djchan = EMAJ8H2;
drajq.djrode = EMJPdiDde;
dra_q.d_addr = fl_na;
drajq.djcnt = (lcng) (fltranscnt -1) ;
c±rajq. d_proc = blck_cha;
blckjdraO ;
if (blckccnirBrd(RD_DAIA) = FL_ERRCR)

return (FL_ERRCR) ;

}
else /* write protect was checked in blckstrategy */
{

dra_q.d_chan = DMA_CH2;
dra_q. djrode = DtyR_Wrmode;
dra_q.d_addr = fljia;
drajq.djcnt = (lcng) (fltranscnt -1) ;
drajq.djDroc = blckjdra;
blckjdraO ;
if (blckocrmand (WR_DAIA) = FL_EFRCR)

return(EL_ERRCR) ;
}
return (0) ;

B -18 Device Driver Writer’s Guide

Block Driver

588 /*
589 * blckocrrmandO - send a ocrrmand to the ocntroller.
590 * The fljards array in the header file describes the control
591 * bytes written for a ccrtrrand and hew many bytes are read
592 * to find the result. If the carmand has no execution
593 * phase, for exanple, sense drive status, then the results
594 * are read here; otherwise, a sense interrupt status
595 * oenmand is issued in blckintrO
596 */
597 blckcaTrtand(func)
598 unsigned int func;
599 {
600 struct buf *kp;
601 unsigned int errant, ardent, nmr_rd,
602 num_wr, exeeflag, rdent;
603 bp = blcktab.b_actf;
604 fl_jcbf+; /* for motor off/error timeout */
605 switch (func)
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

case WR DATA:
case FD_DA3A: /* set up blckocmmand code */

blckioset () ;
break;

default:
break;

case RECAL:
blckrecalset() ;
break;

case SENEMNIR:
blcklSsetO ;
break;

case SPECIFY:
blck^ecset () ;
break;

case SENS_ER:
blckDSset () ;
break;

case SEEK:
blckseekset () ;
break;

(Continued on next page.)

Sample Block Driver B -19

Block Driver

629
630
631
632

633
634
635

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654 }

B-20

errcnt = crndcnt = 0;
num_wr = fl_ard[func] [NUMWR];
num_rd = fl_cmd[func] [NtM_PD] ;
execflag = fl__and[func] [EXBC] ;
if (IOshakeO = FLERRCR) {

return (FL_ERBCR) ;
}

/* output blckoamand parameters */
while (ardent < num_wr)
{ if(WRshake() == FL_ERRCR)

++errcnt;
outb (P_F1DCR, fl_ards [art±nt++]) ;

}
if (execflag = FALSE) /* If no executicn phase */
{ rdent = 0;

vhile(rdent < num_rd)
{ if (BDshakeO = FL_ERBCR)

-Herrcnt;
fl_stats [rdent++] = inb (P_F1DCR) ;

}
}
if (errent) {

return (FL_ERBCR) ;
}
return (0) ;

Device Driver Writer’s Guide

Block Driver

655
656
657
658

* andresult () : do the handshaking to read the
* results of a read or write ccrmand
V

659
660
661
662
663
664

andresult (func)
int func;

struct buf *hp;
int nun_rd;
int ardent, i;

665
666

667

668
669
670
671
672
673

ardent = 0;
fcp = blcktab.b_actf;
num_rd = fl_ard[func] [NCM_FD];
while (ardent < num_rd) /* Do the reads */
{ if (FDshake () = FL_ERRCR)

return (FL_ERFCR) ;
fl_stats [andent+t] = irib (P_FLDCR) ;
/* arbitrary delay locp */
for (i = 0 ; i < 5 ; i++);

674
675
676
677
678

if (! inb (P_ETM3R) &CB)
break;

}
return (0);

Sample Block Driver B-21

Block Driver

679
680
681
682
683
684
685
686
687

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

B-22

! *********★ ***********★ **★ -*★ ★ ★ *********■*■**★ ★ ★ ★ ■*:*★ ★ ★ ★ *★ ★ ★
* The following routines are called fron blckccmrand ()
* to set up the fl_atds[] array (line 92) with the
* sequence of bytes for that camend. blckoaTrtBnd()
* does the actual vork of writing to the ocntroller.
*/

blckioset ()
{

struct buf *bp;
bp - blcktab.b_actf;
fl_ards [0] = ((bp->b_f]ags&3_READ)

? (PD_DAm|MF|SK) : (WR_DKTA.|MF)) ;
fl_cnrds[l] = 0 | (flhead « 2) ;
fl_cmds[2] = fl_tn;
fl_cmds[3] = flhead ;
fl_cnds[4] = fl_sn + 1;
fl_ands[5] = flparam. fl_nbs;
fl_ards[6] = fl_eot;
fl_atds[7] = flparam. fl_gpl;
fl_cmds[8] = flparam. fl_dtl;

}

blckDSsetO
{

fl_ards [0] = SENS_ER;
fl_cmds[l] = 0 ;

}

blcklSset ()
{

fl_ands [0] = SENS_I3Srm;
}

blckrecalset ()
{

fl_ords [0] = REGAL;
fl_atds [1] = 0;
recalstat = 1; /* set bit saying this */

} /* drive is recalibrated */
blckseekset ()

fl_cmds[0] = SEEK;
fl_ords[l] = 0 ;
fl_cmds [2] = fl tn;

Device Driver Writer’s Guide

Block Driver

721 blckspecset ()
722 {
723 fl_cmds[0] = SPECIFY;
724 fl_atds[l] = flparam.fi spcl
725 fl ands[2] = flparam.fi spc2,
726 }
727 /*
728 * Raw interface routines
729 */
730 blckbreakup (kp)
731 struct buf *kp;
732 {
733 <±iH_breakup (blckstrategy, kp) ;
734 }

735 blckread (dev)
736 devt dev;
737 {
738 if (physck ((daddrjt) 2400, B_READ))
739 physio (blckbreakup, &rblckbuf, dev, B__KEAD) ;
740 }
741 blckwrite (dev)
742 dev_t dev;
743 {
744 if (physck ((daddrjt) 2400, B_WRITE))
745 physio (blckbreakup, Siblckbuf, dev, B_WRTIE) ;
746 }

Sample Block Driver B-23

Block Driver

" ~ J ^ ★ * * * ★ ★ * * ★ ★ * ★ * ■ *★ * ★ ★ ★ :* : * * * * • ★ ★ ★ * ★ ★ ★ ★ ★ * * * * ** ★ ■ * •* ★ ★ ★ ★ * ★ ★ ★ ★ ★ ★ ★ ★

748 * Miscellaneous utility routines
749 */

750 /*
751 * cmd_status() - interpret returned status register 0
752 */

753 and_status()
754 {
755 register int ic, us;
756 ic = (fl_stats[0] » 6) & 0x03; /* interrupt aode */
757 us = fl stats[0] & 0x03; /* u n i t select */
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773

switch(ic)
{ case 0;

return (0) ;
case 1:
case 2:

return (FL_ERRCR) ;
case 3:

if ((us = 0)
| | (flstate = SIRESET))
return (FL_Q©NG£) ;

break;
default:

break;
return (0) ;

774 /* handshake rou tin es fo r reading * /
775 /* and w ritin g th e data r e g is te r s * /

776 WRshakeO
777 {
778 unsigned in t sta tu s;
779 unsigned short tim eout;

780 tim eout = 0;
781 v ir ile (((sta tu s = inb (P_FIM3R)) & (POUDIO)) != EQtf)
782 { if (— timeout == 0)
783 return (FL_ERRCR) ;
784 }
785 return (0) ;
786 }

B-24 Device Dnver Writer’s Guide

Block Driver

787 RDshakeO
788 {
789 unsigned int status;
790 long timeout;
791
792
793
794
795
796
797
798
799

t i m e o u t = 0 x 4 F E E F ;

while (((status = irib (P EOyER)) &R£H) != FQ4)
if (— -timeout
{
}

return (0) ;

0)

return (EL ERROR);}

800
801
802
803
804
805
806
807
808
809

IOshake ()
{

/* Whit for controller not busy */
unsigned short timeout;
timeout = 0;
while (inb (P_ELM3R) &CB)
{ if (— timeout = 0)

return (EL_ERRCR) ;
}
return (0) ;

810
811
812
813
814
815

/*
* blckresetO - send a reset contend. This occurs
* both during initialization and for errors. In
* the latter case, we should attaipt to preserve
* motor on and select bits, rather than sending a 0.
*/

816
817
818
819
820
821
822
823
824
825

blckreset ()
{

dor = 0 | FL_ENB_DI;
flstate = STRESEI;
recalstat = 0;
QsfIRL_WR(dor) ;
dor |= EDC_ENB;
CNIEL_WR(dor) ;
return;

/* drive nust be recalibrated */
/* reset */
/* clear reset, and send out */

Sample Block Driver B-25

Block Driver

826 /*
827 * notoronO - if the motor of flunit is already
828 * on, return 1. Otherwise tum it on, and
829 * return 0. There is no additional head load wait.
830 */
831 motoronO
832 {
833 ushort delay;
834 dor &= '0x03;
835 switch (0) {
836 case 0:
837 delay = dor
838 dor |= OxlC,
839 break;
840 default:
841 break;
842 }
843 CNIRL WR(dor) ;
844 return (delay);
845 }

/* mask the drive select bits */

& 0x10;

B-26 Device Driver Writer’s Guide

Block Driver

846 /*
847 * blckjtimeout () - check to see if a motor should be turned
848 * off, or if an operation has hung. Hie fl_jcb variable
849 * gets incranented in blckoarrrand () . This routine is
850 * called only by timeout () calls in strategy (), intr(),
851 * or fron blckjtimeout itself. This routine provides
852 * the only way to detect that a floppy drive door is open;
853 * a timeout occurs because an interrupt never happens.
854 */
855 blck_timeout(t)
856 {
857 int pri;
858 register struct buf *bp;
859 static ofl_jcb = 0;
860 int mtr;
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

bp = blcktab.b_actf; /* present bp */
if (ofl_jc±> == fl_jcb)
{

if(t < flparam.fl_moft)
timeout(blckjtimeout, ++t, Hz);

else {
flto = 0;
pri = spl5 ();
if (bp && blcktab.b_active) {

am_err (CE_OCNr,
"%s: insert disk or close floppy door\n",

fl_name) ;
bp->b_flags |= B_ERRCR;
blcktab.b_errcnt= 0;
hp->b_resid = 0;
blcktab.b_active = 0;
blcktab.b_actf = bpr->av_forw;

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

iodone (bp) ;
flerreset = TRUE ;
blckstart () ;
splx (pri) ;
return;

}
splx (pri) ;
/* turn motors off */
mtr = 0x10;
dor &= 'mtr;
CNIRL_WR (dor) ;
return;

}
else
{

ofl_jcb = fl_jcb;
timeout (blckjtimeout, 0,Hz) ;

Sample Block Driver B-27

Block Driver

898 /*
899 + blcklocal - do 'local.' transfer - if the I/O requested
900 * crosses a 64k boundary, the Dt«A. wraps. Transfer up to
901 * the offensive sector and then DM^ fran/to kernel chta
902 * and copy in/out to user. After this, the transfer is
903 * picked up as usual. This routine doubles as cne which
904 * sets up the transfer and the interrupt handler for such
905 * transfers, although in the interrupt case, errors have
906 * already been checked by the main interrupt handler.
907 */

908 blcklocal (bp)
909 register struct buf *fcp;
910 {
911 if (fllocaltransfer) {
912 /* if so, its interrupt time */
913 fllocaltransfer = 0;
914 if (bp->b_flags & B_READ) /* copy out? */
915 {
916 ccpyio(fltnpaddr, (caddr_t) filocalbuf,
917 FLSECSZ, U_WKD);
918
919
920
921
922
923
924
925
926
927
928
92 S
930
931
932
933

f l ma = fltrrpaddr + FLSECSZ; /* reset vars*/
f lr e s id c n t - FLSECSZ;
f l tm s fe r r e d += FLSECSZ;
f l_ ls n += 1;
/* done w ith lo c a l, f in is h * /
/* w ith tr a n sfe r l ik e normal * /

e l s e {
blckmapO ;
f l s t a t e = STSEEK;
i f (blckocnmand (SEEK) = FLJ3RRCR)

i f (f lr e s id c n t = 0)
goto localdcne;

return;
goto loca lerror;

934 localerror:
935
936
937
938
939
940
941
942
943
944

if (++ blcktab.b_errcnt < LRXREHBY)

f l s t a t e = SIFESET ;
b lck xese t () ;
return ;

/* hard error * /
tp->b_flags |= B_EFRCR ;
fierreset = TRIE ;
/* w il l h a w t o do reset before next x fer +/

{Continued on next page.)

B-28 Device Driver Writer/s Guide

Block Driver

945 localdcne:
946 blcktab.b actf = kp->av forw ;
947 blcktab.b errcnt = 0 ;
948 blcktab.b active = 0 ;
949 fcp->b nssid = hp->b bcount - fltmsferxed ,
950 iodcne (fcp) ;
951 blckstart () ;
952 } eise { /* set up transfer */
953 /* renerrfoer real address */
954 fltnpaddr = fl na;
955 /* LM\ into kernel data */
956 fl na = ktcp(fUocalbuf);
957 if ((bp->b flags
958 & B_REM0) = 0) /* write? */
959 {
960 cqpyio (fltnpaddr, (caddr t) fllocalbuf,
961 ELSEXSZ, U RKD) ;
962 }
963 fltranscnt = FISEICSZ; /* just cne sector ’
964 /* flag for interrupt tine */
965 fllocaltransfer = 1;
966 if (blck doIO(tp) = EL ERBS31) /* do it 1
967 return (EL ERRCR);
968 return (0);
969 }
970 }

971 /*
972 * blckbalt - called fron dbalt() at system shutdown.
973 V

974 blckbalt ()
975 {
976 CNIKL WR(EX ENB); /* motors off, de-select, */
977 /* disable EMVinterrupts */
978 }

Sample Block Driver B-29

Block Driver

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

/* queue the request to the blckstart() routine. */
/* start the device if necessary. */
devque (fcp)
register struct buf *fcp;
{

register dev, lev;
dev = hp->b_dev;

bp->b_sector = bp->b_blkno;
kp->b_flags &= “BJXNE; /* reset dene flag */
lev = spl5 () ;
disksort (Sblcktab, hp) ;
while (blcktab.b_active = 0)
{

<±TB_alloc (EMA_CH2 , IMi_B]J3CK) ;
if (blcktab.b_active = 0) {

blckstart () ;
break;

}
splx (lev) ;

blckprint (dev, str)
dev_t dev;
char *str;
{

arn__err (CE_J>J0QE,
"%s cn floppy diskette unit %d, minor %d",
str, unitbits (dev), minor (dev)) ;

/*
** fiepen - provided for call fron kernel
•k-k

*/
fiepen (dev, mode, flag)
{

blckcpen (dev, mode, flag) ;
}

B-30 Device Driver Writer’s Guide

Appendix C

Section (K) Manual Pages

Manual Page Overview C-l

Manual Page Overview

Manual Page Overview
The section (K) routines listed in this appendix are provided in the kernel
for writing a device driver.

Section (K) Manual Pages C-l

C ontents

K e rn e l R o u tin es (K)

Intro
bcopy
brelse
btoc, btoms, ctob
bzero
canon
cm nerr
copyin, copyout
copyio
cpass, passe
db alloc, db free
dbread

db_ write
delay
deverr
disksort
dmaalloc
dmabreakup
dmaenable
dmaparam
dmarelse
dmaresid

dmastart
emdupmap
emunmap
flushtlb
fubyte
fuword
getc, getcb,
getebp, getef
getchar
geteblk, getablk
inb, outb
ind, outd
inw, outw

lists manual page references
copies bytes in kernel space
releases a block buffer
converts between bytes and clicks (memory pages)
sets memory locations to 0 (zero)
processes raw input data from tty device
displays message or panics the system
copies bytes between user and kernel space
copies bytes to and from a physical address
passes character between user space and the kernel
allocates and frees physically contiguous memory
transfers data from physical memory to a user
address
transfers from a user address to contiguous memory
delays process execution for specified time
prints a device error message on the console
adds a block I/O request to a device’s queue
allocates a DMA channel
sizes DMA request into 512-byte blocks
begins DMA transfer
sets up a DMA controller chip for DMA transfer
releases previously allocated DMA channel
returns the number of bytes not transferred during a
DMA request
queues DMA request
duplicates channel mapping
disables mapping on a channel
flushes the translation lookaside buffer
gets a character from user data space
gets one 32-bit word from user data space

read clist buffers
gets one character of input
gets a buffer from the block buffer pool
reads a byte from or writes a byte to an I/O address
reads, writes a 32-bit word to a physical I/O address
reads, writes a 16-bit word from or to a physical I/O
address

l

iodone
iowait
longjmp
major, makedev,
minor

memget
paddr
panic
physio, physck
piobreakup
printcfg
printf
psignal
ptok, ktop
putc, putcb,
putcbp, putcf
putchar
repins: repinsb,
repinsw, repinsd,
repoutsb,
repoutsw,
repoutsd
scsi:
scsigetgen cm d ,
scsigetdev,
scsi_mkadr3,
scsi_s2tos,
scsi_s3tol,
scsistok,
scsistol,
scsi_swap4
select: selsuccess,
selfailure,
selwakeup
seterror
signal
sleep
spl: splO, spll,
sp!2, spl3, spl4,
spl5, spl6, spl7,
splbuf, splcli,
splhi, splni, splpp,
spltty, splx

signals I/O completion
wait for I/O completion
ends current system call with error

returns major, new device number, or minor device
number
allocates contiguous memory at initialization
returns virtual address pointer to block data
halts the system
raw I/O for block drivers
breaks up programmed I/O requests
displays driver initialization message
print a message on the console
sends signal to a process
converts virtual and physical addresses

write to clists
prints a character on the console

reads and writes streams of device data

SCSI routines

kernel routines supporting select(S)
sets u.u_error with error code
sends a signal to a process
suspends processing temporarily

block/permit interrupts

n

sptalloc

sptfree
subyte
suser
suword
timeout,
untimeout
ttiocom
tty: ttclose, ttin,
ttinit, ttiwake,
ttopen, ttout,
ttowake, ttread,
ttrdchk, ttrstrt,
ttselect, tttimeo,
ttwrite, ttxput,
ttyflush, ttywait
vas: vasbind,
vasmalloc,
vasmapped,
vasunbind
video:
DISPLAYED,
viddoio,
vidinitscreen,
vidmap,
vidresscreen,
vidsavscreen,
vidumapinit,
vidunmap
vtop
wakeup

allocates temporary memory or maps a device into
memory
releases memory previously allocated with sptalloc
stores a character in user data space
determines if current user is the super-user
stores a 32-bit word in user data space

schedules a time to execute a routine
interpret tty driver I/O control commands

tty driver routines

virtual address space memory routines

supports video adapter driver development
convert a virtual address to a physical address
wakes up a sleeping process

INTRO (K) INTRO (K)

Intro____________
lists manual page references

Description

This section describes the manual page on which each kernel routine
is found.

The following table summarizes the kernel routines. The columns
indicate the routine name, the manual page on which the routine
appears, a description, and a code that indicates the following values:

Letter Meaning
B Use this routine only in a block driver
C Use this routine only in a character driver
G General; can be used in a block or character driver
I Routine can be called from an initialization routine
X Routine can be called from an interrupt routine
M Macro
A Written in Assembly language

The section (K) routines are summarized in the following table:

Kernel
Routine

Manual
Page Description Code

bcopy bcopy Copies bytes in kernel space GAIX
brelse brelse Releases a block buffer B
btoc btoc Returns number of pages (clicks) GMIX
btoms btoc Returns number of sectors GMIX
bzero bzero Sets memory locations to 0 (zero) GAIX
canon canon Processes raw input data from tty

device
CA

cmn err cmn err Displays message or panics the
system

GIX

copyin copyin Copies bytes from user to kernel
space

GA

copyio copyio Copies bytes to/from physical
address

G

copyout copyin Copies bytes from kernel to user
space

GA

cpass cpass Passes character to user G
ctob btoc Returns number of bytes GMIX

June 26, 1989 INTRO-1

INTRO (K) INTRO (K)

Kernel
Routine

Manual
Page Description Code

db alloc db alloc Allocates physically contiguous
memory

GI

db free db alloc Frees physically contiguous
memory

GI

dbread dbread Transfers data from kernel virtual
to physical address

G

db write db write Transfers data from physical to
kernel virtual address

G

delay delay Delays process execution for
specified time

G

deverr deverr Prints message on console B
disksort disksort Adds block I/O request to

device’s queue
BX

DISPLAYED video Returns TRUE if screen displayed CIX
dma alloc dma alloc Allocates a DMA channel GIX
dmabreakup dmabreakup Sizes request into 512-byte

blocks
B

dma enable dma enable Begins DMA transfer GIX
dma param dma_param Sets up a DMA controller chip for

DMA transfer
GIX

dmarelse dmarelse Releases previously allocated
DMA channel

GIX

dma resid dma_resid Returns bytes not transferred for
DMA request

G

dma start dma start Begins DMA transfer G
emdupmap emdupmap Duplicates channel mapping G
emunmap emunmap Disables mapping on a channel G
flushtlb flushtlb Flushes the translate lookaside

buffer
GAIX

fubyte fubyte Gets a character from user data
space

GA

fuword fuword Gets a 32-bit word from user data
space

GA

getablk geteblk Gets empty buffer from free list B
getc getc Gets a character from a clist C
getcb getc Gets cblock from clist C
getcbp getc Gets characters from a clist C
getcf getc Gets a cblock from free list C
getchar getchar Gets one character of input G
geteblk geteblk Gets emptv buffer from free list B
inb inb Reads a byte from an I/O address GAIX
ind ind Reads double words from an I/O

address
GAIX

June 26, 1989 INTRO-2

INTRO (K) INTRO (K)

Kernel
Routine

Manual
Page Description Code

inw inw Reads a 16-bit word from a phy
sical I/O address

GAIX

iodone iodone Signals I/O completion BIX
iowait iowait Wait for I/O completion B
ktop ptok Returns physical address from

kernel
GMIX

longjmp longjmp Restores previously saved pro
cess context

GA

major major Returns major number from the
device number

GM

makedev major Returns device number from
major and minor numbers

GM

memget memget Allocates contiguous memory at
initialization

GI

minor major Returns minor device number
from the device number

GM

outb inb Writes a byte to an I/O address GAIX
outd ind Writes double words to a physi

cal I/O address
GAIX

outw inw' Writes a 16-bit word to a physi
cal I/O address

GAIX

paddr paddr Returns virtual address pointer
to block data

BIX

panic panic Halts the system GIX
passe epass Passes character between user

space and the kernel
G

physck physio Verifies I/O request size B
physio physio Performs physical I/O B
piobreakup piojbreakup Breaks up programmed I/O

requests
B

printefg printefg Displays driver initialization
message

GI

printf printf Print a message on the console GIX
psignal psignal Sends signal to a process CIX
ptok ptok Returns kernel address from

physical
GMIX

putc putc Puts character on clist C
putebp putc Puts characters on clist C
putcb putc Puts cblock on clist C
putef putc Puts cblock on free list C
putchar putchar Prints a character on the console G
repinsb

repinsb Moves bytes to memory from

I/O address
GA

June 26: 1989 INTRO-3

INTRO (K) INTRO (K)

Kernel
Routine

Manual
Page Description Code

repinsd repinsb Moves words to memory from
I/O address

GA

repinsw repinsb Moves double words to memory
from I/O address

GA

repoutsb repinsb Moves bytes from memory to
I/O address

GA

repoutsd repinsb Moves words from memory to
I/O address

GA

repoutsw repinsb Moves double words from
memory to I/O address

GA

scsi get gen cmd scsi Fills a command block GIX
scsi getdev scsi Gets SCSI device number GIX
scsi mkadr3 scsi Makes 3-byte address GIX
scsi s2tos scsi Converts 2 bytes to short GIX
scsi_s3toI scsi Converts 3 bytes to long GIX
scsi stok scsi Converts 3 bytes to address GIX
scsi_swap4 scsi Swaps 4 bytes GIX
selfailure select Fails condition G
selsuccess select Okays condition G
selwakeup select Okays failed condition G
seterror seterror Sets u.u error with error code G
signal signal Sends a signal to a process CIX
scsistol scsi Converts 4 bytes to long GIX
sleep sleep Suspends processing temporarily G
splO spl Permits all interrupts GAIX
spll spl Blocks context switch interrupts GAIX
sp!2 spl Blocks level 2 interrupts GAIX
spl3 spl Blocks level 3 interrupts GAIX
spl4 spi Blocks level 4 interrupts GAIX
spI5 spl Blocks block device interrupts GAIX
spl6 spl Blocks character device and the

clock’s interrupts
GAIX

sp!7 spl Blocks all interrupts GAIX
splbuf spl Blocks buf access interrupts GAIX
splcli spl Blocks clist access interrupts GAIX
spihi spl Blocks all interrupts GAIX
splni spl Blocks network interrupts GAIX
splpp spl Blocks ports board interrupts GAIX
spltty spl Blocks tty interrupts GAIX
splx spl Enables previous spl level GAIX
sptalloc sptalloc Allocates temporary memory or

maps a device into memory
GI

sptfree sptfree Releases memory previously
allocated with sptalloc

GI

June 26, 1989 INTRO-4

INTRO (K) INTRO (K)

Kernel
Routine

Manual
Page Description Code

subyte subyte Stores a character in user data
space

GA

suser suser Determines if current user is the
super-user

G

suword suword Stores a 32-bit word in user data
space

GA

timeout timeout Schedules a time to execute a rou
tine

GX

ttclose tty Closes access to tty device C
ttin tty Gets data from receive buffer CX
ttinit tty Initializes line discipline C
ttiocom ttiocom Interpret tty driver I/O control

commands
C

ttiwake tty Awakens input requests CX
ttopen tty Opens tty device C
ttout tty Puts data into transmit buffer CX
ttowake tty Awakens output requests CX
ttrdchk tty Verifies characters to read C
ttread tty Copies tty data to user space C
ttrstrt tty Restarts tty access C
ttselect tty Ensures read or write without block C
tttimeo tty Times input request C
ttwrite tty Copies data from user C
ttxput tty Puts data into output queue C
ttvflush tty Releases queue contents C
ttywait tty Waits for UART to drain C
untimeout timeout Cancel scheduled timeout request GX
vasbind vas Binds virtual address to physical GI
vasmalloc vas Allocates virtual user memory GI
vasmapped vas Releases allocated memory GI
vasunbind vas Unbinds bound memory GI
viddoio video Supports I/O controls C
vidinitscreen video Initializes multiscreen Cl
vidmap video Maps memory CIX
vidresscreen video Restores screen CX
vidsavscreen video Saves screen CX
vidumapinit video Maps user memory Cl
vidunmap video Unmaps memory CIX
vtop vtop Convert a virtual address to a phy

sical address
GX

wakeup wakeup Wakes up a sleeping process GX

June 26, 1989 INTRO-5

BC O P Y (K) B C O P Y (K)

bcopy________
copies bytes in kernel space

Syntax

int
bcopyisrc, dst, ent)
caddr t sre, dst:
int ent;

Description

The argument sre is a pointer to the kernel address the data is
transferred from. The argument dst is a pointer to the kernel address
the data is transferred to. If the destination address is outside of ker
nel space, the system panics. The value of ent is the number of bytes
to transfer.

Do not use for moving data to user space; use copyin. copyio, or copy-
out instead.

See Also

copvin(K), copyio(K), copyout(K)

June 26, 1989 BCOPY-1

B R E L SE (K) B R E L S E (K)

brelse_______
releases a block buffer

Syntax

int
brelse(bp)
struct buf *bp;

Description

The brelse routine releases a block buffer to the free pool of buffers.
This routine is called by a block device driver to release a buffer. The
contents of the buffer are lost and the driver is not allowed to make
any further reference to the buffer. This routine is called by iodone{K)
at the completion of a block I/O request.

When the routine is first called, bp->b_flags is checked for an error
<B_ERROR is set). If it is, the following occurs:

• The B_STALE flag is set in bp->b_flags.

• The B_ERROR and B_DELWRI flags are removed from
bp->b_flags.

• The bp->b_error field is set to zero.

All processes asssociated with bp that are sleeping waiting for a buffer
header or a free buffer are awakened. On completion of brelse,
b_proc is set to zero to release the process’s ownership of the buffer.

Parameters

The bp argument is a pointer to the buffer header relating to the buffer
to be released.

Return Value

The buffer addressed by bp is returned to the free buffer poo!. No
errors are possible.

Notes

Note that this routine can only be called from block device drivers.

June 26, 1989 B R E L S E - l

BTOC (K) BTOC (K)

btoc, btoms, ctob______________
converts between bytes and clicks (memory pages)

Syntax

#include "sys/sysmacros.h"

unsigned
btoc(bytes)
unsigned bytes;

unsigned
btoms(bytes)
unsigned bytes;

unsigned
ctob(clicks)
unsigned clicks;

Description

The btoc and ctob macros convert between bytes and clicks (memory
pages), btoms is an alias for btoc. btoc (or btoms) returns the number
of memory pages that are needed to contain the specified number of
bytes. For example, if the page size is 4096 bytes, then btoc(5000)
returns 2.

ctob returns the number of bytes contained in the specified memory
pages. For example, if the page size is 4096 bytes, then ctob(2)
returns 8192.

btoc(0), btoms(O), or ctob(0) each return 0 (zero).

June 26, 1989 BTOC-1

BZERO (K) BZERO (K)

bzero_____________
sets memory locations to 0 (zero)

Syntax

int
bzero(address, bytes)
caddrt address;
int bytes;

Description

This routine clears a contiguous portion of memory by filling the
memory with zeros, address is an even-word address specifying the
beginning of the area to clear, bytes is an even-word value specifying
the number of bytes to clear.

June 26, 1989 BZERO-1

CANON (K) CANON (K)

c a n o n ______________
processes raw input data from tty device

Syntax

#include "sys/types.h"
#include "sys/tty.h"

int
canon(tp)
struct tty *tp;

Description

canon is called by ttread(K) to process characters received from a tty
device, indicated by the tp argument. The canon routine conveys
characters from the raw input queue, the tjrawq field, to the pro
cessed character queue, the t_canq field. The canon routine receives
characters until a delimiter is encountered in the input data. (All t_
fields shown on this manual page are members of the tty structure
described in sys/tty.h.)

When the delimiter is found, then the accumulated characters are pro
cessed and sent to the calling program. The t_delct delimiter count
field indicates that a delimiter character has been received. Until a
delimiter is received, canon can call sleep(K) to wait for characters to
be placed in the raw queue. The priority argument to sleep is TTIPRI.

canon processes characters as long as there is a carrier and as long as
FiNDELAY (no-delay mode) is not set.

The canon routine must not be called from a driver’s initialization or
interrupt routines.

The canon routine has two character processing modes. The first
mode is called the canonical processing mode. Canonical processing
means resolving special characters such as backspace or delete before
the received data is given to the calling program. The termio{M) man
ual page describes guidelines that are used when canonical processing
takes place. Refer to the description of the c_cc array on the termio
manual page for information about which characters are resolved by
canonical processing. Canonical processing mode is enabled by set
ting the ICANON flag in the t_Iflag field. In canonical processing
mode, international characters are translated, as are these termio con
stants: VERASE, VKILL, VEOF, VEOL, VEOL2, and XCASE.

June 26, 1989 CANON-1

CANON (K) CANON (K)

The second mode passes characters to a calling program after a time
requirement has been satisfied or after a minimum number of charac
ters have been received. This mode requires that ICANON not be set
and that the t_cc[VMIN] field be set to zero. This mode interacts with
the VMIN and VTIME constants which are described on the termio
manual page. After the time and minimum character requirements are
satisfied, characters are conveyed from t_rawq to t_canq. tttimeo{K)
is called in this mode to resolve VTIME.

If during the course of either processing modes, as long as characters
remain to be processed, if t_state is set to TBLOCIC, then the canon
routine calls the driver’s xxproc routine with the T_UNBLOCK argu
ment.

Notes

The canon routine must not be called from a driver’s initialization or
interrupt routines.

Parameters

tp a pointer to the struct tty data structure associated
with the device being accessed.

See Also

termio(M), ttiocom(K), tty(K)

June 26, 1989 CANON-2

CMN ERR (K) C M N E R R (K)

cmnerr_______________
displays message or panics the system

Syntax

#include "sys/cmn err.h"

int
cmn_err(severity, format, arguments)
char *format;
int severity, arguments;

Description

cmn err displays a message on the console and can additionally, panic
the system. This routine is an improvement over print/ in that
cmn_err automatically handles a variety of terminals such as bit
mapped graphics terminals (which print/ cannot handle), and cm nerr
permits grading messages into four categories by level of severity.
The levels are for continued messages, notice messges, warning mes
sages, and panic messages. If a panic message is called immediately
after another panic request, a “ double panic” results.

cmn_err is also used to store messages in putbu/ a circular array in
memory that can be accessed from crai//(ADM). All messages are
also stored in /usr/adm/messages (an error background program con
veys the messages to this file).

Warning

An incorrect severity argument value causes a system panic. Also,
this routine is not interrupt-driven and therefore suspends all other
system activities while executing.

Parameters

severity One of four different levels for indicating the
severity of the message. Use CE_NOTE to display
a message preceded with NOTICE:. Use
CE_WARN to display a message preceded with
WARNING:. Use CE_PANIC to panic the system
and to display a message preceded with PANIC:.
If two or more panic requests are called at the
same time, DOUBLE PANIC: is displayed. Use
CE_CONT to continue a previous message or to

June 26. 1989 CMN ERR-1

format

CM N E RR (K)

arguments

Example

You can use cmn

cmn_err(CE_NOTE,'
device);

cmn_err(CE_CONT,'

CM N_ERR (K)

display a message without a severity indicator
preceding the message. The severity argument
must be specified; if omitted, a panic results.

A message to be displayed. The destination of the
message is specified with the first character of for
mat. If the first character is an exclamation point
(!), then the message is stored in putbuf and not
displayed on the console. If the first character is a
carat Q , then the message is displayed on the con
sole and not stored in putbuf. Any other character
at the start of format sends the message to both
putbuf and the console. The message is appended
with a \n for all severity levels except for
CE_CONT. format accepts data type specifications
the same as printf{K) for displaying the arguments
passed to the message string. The supported spe
cifications are:

Type Description
%b two-digit hexadecimal byte
%c character
%d signed decimal
%o unsigned octal
%s string (character pointer)
%x hexadecimal (prints leading zeros)

Specifications can be indicated in either upper or
lower case. Field length specifications cannot be
used for arguments. For example, %9d is not per
mitted. Escaped characters such as \n, \t, \033, and
so on are C language features that are supported
by the C compiler and are thus supported in this
kernel routine.

optional variables to be displayed using the format
argument.

err to display messages on the console as follows:

xxioctl routine called - device number = %x",
this is not a problem.\n");

June 26, 1989 CMN ER R -2

COPYIN (K) COPYIN (K)

copyin, copyout___________
copies bytes between user and kerne! space

Syntax

int
copvin(src, dst, cnt)
caddrt src;
caddrt dst;
int cnt;

int
copyout(src, dst, cnt)
caddr t src;
caddr t dst;
int cnt;

Description

The copyin routine copies bytes from user space to kernel space. Tire
copyout routine copies bytes from kernel space to user space. After
completion of calls to these routines, increase u.u_base by the number
of bytes transferred, and decrease u.u_count by the number of bytes
transferred. If an error code is returned, call seterror(EFAULT) to
return EFAULT to the user process that is calling your driver. Because
these routines access a user process, neither can be used in an interrupt
or initialization routine. The driver is not required to supply word-
align addresses to these routines.

Parameters

For copyin, the argument src is a 32-bit pointer that contains the offset
of the user address the data is copied from. Often, src is obtained from
either u.ujbase or the third argument passed to a driver’s xxioctl rou
tine (arg).
The argument dst is a pointer to the kernel address (buffer address)
that the data is transferred to.
The argument cnt specifies the number of bytes to transfer.

For copyout, the argument src is a pointer to the kernel address (in the
buffer) that the data is transferred from.
The argument dst is a 32-bit pointer that contains the offset of the user
address the data is copied to.
The argument cnt specifies the number of bytes to transfer.

June 26, 1989 COPYIN-1

Return Value

COPYIN (K) COPYIN (K)

If successful, these routines perform the specified data transfer; other
wise, -1 is returned for one of the following reasons:

• A page fault occurred between a transfer to user space.

• The address in user space is invalid.

• An address was specified that would have resulted in data
being copied into the user block.

Example

Assuming arg is a pointer to a user data structure that was passed via
xxioctl, use copyin to copy from user data space to kernel data space.

xxioctl(dev, cmd, arg, mode)
dev_t dev;
int cmd, mode;
caddr_t arg;
{

struct foo dst;
other ioctl code

/* copy from arg to dst */
if (copyin(arg, &dst, sizeof(struct foo)) == -1)
{

u.u_error = EFAULT;
return;

}

June 26, 1989 COPYIN -2

COPYIN (K) COPYIN (K)

Assuming ari> is a pointer to a user’s data structure that was passed via
xxioctl, use copyout to copy from kernel data space to user data space.

xxioctl (dev, cnid, aig, mode)
dev_t dev;
int and, mode;
caddr_t arg;
{

struct too dst;

other ioctl code

/* copy from dst to arg */
if (copyout(&dst, arg, sizeof(struct foo)) == -1)
{

u.u__error = EFAULT;
return;

}

See Also

bcopy(K), copyio(K), seterror(K)

June 26, 1989 COPYIN -3

COPYIO (K) COPYIO (K)

copyio_______ ______ _
copies bytes to and from a physical address

Syntax ______

#include "sys/user.h"

int
copyio(paddr, caddr, bytes, mapping)
paddr t paddr;
caddrt caddr;
int bytes, mapping;

Description

The copyio routine copies bytes between kernel virtual addresses, and
between kernel addresses and user addresses. This routine has little
purpose other than to call bcopy(K) for tranfers between kernel
addresses, copyingK) for transfers from user space to the kernel, and
copyout{K) for transfers from the kernel to user space.

After completion of calls to copyio with the U_RUD or U_WUD map
pings, increase u.u_base by the number of bytes transferred, and
decrease u.u_count by the number of bytes transferred. If an error
code is returned, call seterror(EFAULT) to return EFAULT to the user
process that is calling your driver. Address values need not be word-
aligned.

Parameters

The argument paddr is a pointer to a virtual address to which or from
which data is to be transferred.

The argument caddr is a virtual address to which or from which data is
to be transferred.

The argument bytes is an integer that specifies the number of bytes of
data to transfer.

June 26, 1989 COPYIO-1

COPYIO (K) COPYIO (K)

The value of m a p p in g is an integer that designates the direction of the
transfer. The following possible mapping values are defined in
sys /u ser .h . Use of any other value causes a system panic.

li_RKD Kemel-to-kemel transfer from p a d d r to ca d d r using
b co p y

U_WKD Kemel-to-kemel transfer from ca d d r to p a d d r using
b co p y

UJRUD Kemel-to-user transfer from p a d d r to ca d d r using
co p y o u t

U_WUD User-to-kemel transfer from ca d d r to p a d d r using
co p y in

Warning

Always include user.h and select a correct m a p p in g value. Other
wise, a panic occurs with the message, "bad mapping in copyio." Be
sure to specify kernel addresses only for U_RKD and U_WKD. If a
user address is specified, the system will panic. The co p y io routine
called with the UJRUD and U_WUD m a p p in g s cannot be used from an
interrupt or initialization routine.

Return Value

If successful, this routine performs the specified data transfer; other
wise, -1 is returned for any mapping setting if the requested number of
bytes to transfer is 0 (zero). ITie following errors can also occur only
when co p y io is called with the U_RUD or U_WUD mappings:

• a page fault occurred between a transfer to user space

• the address in user space is invalid

• an address was specified that would have resulted in data being
copied into the user block

If U_RUD or U_WUD is set in m a p p in g and -1 is returned, call se terro r
to return EFAULT to the caller in user space.

See Also

bcopy(K), copyin(K), copyout(K), seterror(K)

June 26, 1989 C O P Y I O - 2

C P A S S (K) C P A S S (K)

cpass, passe___________________
passes character between user space and the kernel

Syntax

int
cpass()

int
passc(c)
int c;

Description

The cp a ss routine returns the next character in a user write request.
cp a ss calls fu b y te (K) . but provides a more usable interface than fu b y te
in that cp a ss automatically updates u.u_count, u.u_offset, and
u.u_base, and returns errors in u.u_error. If your data may contain a
-1, use copyin(K) instead of c p a ss because a -1 in the data causes
cp a ss (or fu b y te) to return an error.

The p a ss e routine passes a character to a user read request, p a ss e calls
su b y te{K), updates u.u count, u.u_offset, and u.ubase. and returns
errors in u.u_error. If your data may contain a -1, use copyout(K)
instead of p a ss e because a -1 in the data causes p a sse (or su b y te) to
return an error.

Neither of these routines can be called from a driver’s xxinit or inter
rupt routines.

Parameters

The character c is passed to the read request by p a ss e .

Return Value

The cp a ss routine returns a character. The -1 value may be returned if
no characters remain in the output request in u.u_count or if an error
occurred when transferring the data from user space. If an error
occurred, then EFAULT is set in u.u_error.

June 26, 1989 CPA SS-1

C P A S S (K) C P A S S (K)

The passe routine returns 0 normally and -1 when the user read request
has been satisfied.

See Also

fubyte(K), subyte(K)

June 26, 1989 C PA SS-2

DB_ALLOC (K) DB_ALLOC (K)

db_alloc, db_free_____________
allocates and frees physically contiguous memory

Syntax

int
dballoc(dv)
struct devbuf *dv;

int
dbfree(dv)
struct devbuf *dv;

Description

The d b _ a llo c routine allocates one block of physically contiguous
memory. Contiguous memory is necessary for performing DMA
transfers. Memory for all other uses should be allocated using standard
memory allocation routines for your machine, d v points to an instance
of the d e v b u f structure. Set the s ize field in the devbuf structure to the
block size before calling db a llo c .

d b j r e e releases the previously allocated memory.

The d e v b u f structure is:

Type Field Description
paddr_t bufptr; /* pointer to start of buffer */
paddr_t bufend; /* pointer to end of buffer */
long size; /* size of buffer */
paddr_t head; /* put buffer data here */
paddr_t tail; /* get buffer data here */

Except for size, all other fields in the devbuf structure are read-only.

Warning

d b _ a llo c must not be used during the driver’s initialization routine.
The m e m g e t(K) routine can be called to obtain contiguous memory
during driver initialization, Reading from and writing to memory
areas allocated using d b _ a llo c{K) must be performed using the
db_read{ K) and d b _ w r ite (K) routines only.

June 26, 1989 D B A LLO C -1

DB_ALLOC (K) DB ALLOC (K)

Return Value

For db_alloc, zero (0) is returned if no memory is available; other
wise, 1 is returned, dbjrec always returns zero (0). for normal com
pletion.

Examples

The following example allocates a single 120K buffer:

struct devbuf dv;
dv.size = (long) (120 * 1024); /* 120 times IK */
if (db_alloc (&dv) == 0) {

cmn_err(CE_NOTE, "db_alloc failed");
return(-1);

}

The following example releases previously allocated memory:

struct devbuf dv;
db_free(&dv) ;

See Also

db_read(K), db_write(K)

June 26, 1989 DB ALLOC-2

D B R E A D (K) DB_READ (K)

db_read________________________
transfers data from physical memory to a user address

Syntax

int
db_read(dv, va, count)
struct devbuf *dv;
caddr t va;
unsigned count;

Description

The db_read routine transfers data from physical contiguous memory
pointed to by dv to a virtual user address va. The amount transferred
is in count bytes. The physical memory must have been allocated by
db_alloc(K).

Warning

Only use this routine after the requested pages are locked into memory
by a previous call to physio{K). Use of db_read under any other cir
cumstances results in a panic.

Example ____ _______

For example, to transfer data from dv to a user buffer:

struct buf *bp;
struct devbuf dv;
db_read(&dv, paddr(bp), bp->b_count);

See Also

db_alloc(K), db_write(K), physio(K)

June 26, 1989 DB READ-1

DB_WRITE (K) DB_WRITE (K)

dbwrite______________________
transfers from a user address to contiguous memory

Syntax

int
db_write(dv, va, count)
struct devbuf *dv;
paddr t va;
unsigned count;

Description

The db_write routine transfers data from a virtual user address va to
physical contiguous memory pointed to by dv. The amount transferred
is in count bytes. The physical memory must have been allocated by
db_alloc{ K).

Warning

Only use this routine after the requested pages are locked into memory
by a previous call to physio{K). Use of db write under any other cir
cumstances results in a panic.

Example

For example, to transfer from a buffer to a dv:

struct buf *bp;
street devbuf dv;

d b _ w r ite(&dv, p a d d r(bp) , b p -> b _cou n t) ;

See Also

db_alloc(K), db_read(K), paddr(K)

June 26. 1989 DB WRiTE-1

DELAY (K) DELAY (K)

delay____________________
delays process execution for specified time

Syntax

int
delay(ticks)
int ticks;

Description

The delay routine uses the sleep(K) and wakeup(K) calls to delay the
current process for the specified number of clock ticks.

Parameters

ticks is an integer that specifies the number of clock ticks to delay.

Return Value

After the specified time, the delayed routine resumes running. No
value is returned.

Warning

delay cannot be called from an xxinit or interrupt routine.

See Also

timeout(K), sleep(K), wakeup(K)

June 26, 1989 DELAY-1

D E V E R R (K) D E V E R R (K)

deverr____________________
prints a device error message on the console

Syntax

#inelude "sys/cmn_err.h"

int
deverr(iobuf-ptr, cmd, status, dev)
struct iobuf *iobuf-ptr;
int cmd, status;
char *dev;

Description

The d e v e rr routine prints an error message on the system console
together with some device-specific information acquired from the
parameters passed to the routine. This routine can only be used in a
block device driver.

d e verr utilizes the following display call:

cmnjerr(CE_WARN, "error on dev %s (%u/%u), block=%D cmd=%x
status=%x\n", dev, major(bp->b_dev), minor(bp->b_dev),
bp->b_blkno, and, status);

bp is defined as follows: b p = io b u f -p tr -> b _ _ a c t£

This produces a warning message in the following format:

WARNING: error on dev dev (major1m inor) , block=blk
cmd=cmd status =status

Where:

d ev The dev (device name) argument to d e v e rr

m a jo r Major device number

m in o r Minor device number

b lk Block number

cm d The c m d argument to d everr

s ta tu s The s ta tu s argument to d e v e rr

June 26, 1989 DEVERR-1

D E V E R R (K) D E V E R R (K)

Parameters

The iobuf-ptr argument is a pointer to the head of the I/O request
queue for the device.

The cmd argument contains driver-specific information, such as the
controller information from the failed I/O operation.

The status argument contains driver-specific information, such as the
controller status information from the time of failure.

The dev argument is a pointer to a string containing the device name.

See Also

cmn_err(K), printf(K)

June 26, 1989 D EV ERR -2

D ISKSO RT (K) D ISKSO RT (K)

disksort__________________
adds a block I/O request to a device’s queue

Syntax

#include "sys/iobuf.h"

int
disksort(xxtab, bp)
struct iobuf *xxtab;
struct buf *bp;

Description

The disksort routine adds a block device I/O request to the queue of
such requests for a particular device. The device xxstrategy routine
normally calls disksort. The xxtab parameter points to the head of the
request queue, and the bp parameter addresses the buf structure con
taining the request. The queue of requests is sorted in ascending order
by the disksort routine to optimize disk head movement.

Parameters

The xxtab parameter is the address of an iobuf data structure declared
within the driver to form the head of the I/O request queue.

The bp argument is a buf * data structure that points to the I/O request
to be added to the queue.

Notes

This routine is only for use with block device drivers.

June 26, 1989 D ISKSORT-1

DMA_ALLOC (K) D M A A L L O C (K)

dm aalloc_____
allocates a DMA channel

Syntax

#include "sys/dma.h"

int
dma_alloc(chan, mod)
unsigned chan, mod;

Description

The dma_alloc routine allows dynamic allocation of a DMA channel.

Parameters

The chan argument specifies the channel to be allocated. Possible
values are:

8-Bit Channels: DMA_CH0, DMA_CH1, DMA_CH2, DMA_CH3

16-Bit Channels: DMA_CH5, DMA_CH6, DMA_CH7

Channel 4 is not available. Other channels may be permanently allo
cated by system drivers. Consult the /usr/adm/messages file for
which channels are in use. Use printcfg(K) in your driver initializa
tion routine to display the DMA channel that you select.
The mod argument can have one of two values:

DMA_BLOCK wait until the channel is available. If used, do
not call from an interrupt routine or an xxinit
routine.

DMA_NBLOCK return immediately with a return status of 0
(zero) if the channel was not free at this time.

If mod specifies blocking, the dma_alloc routine does not return until
the requested channel is available. It sleeps until the channel is
released and always returns non-zero. If mod specifies non-blocking,
the dma_alloc routine immediately returns non-zero if the channel is
available, and zero if it is not. The blocking option cannot be used at
interrupt time, but the non-blocking option can be.

June 26, 1989 D M A A LLO C -1

DMA ALLOC (K) DMA_ALLOC (K)

Make certain that your DMA channel has been allocated before begin
ning your operations.

Example

An example of how to use this routine is:

#include "sys/ermo.h"
#include "sys/dma.h"

extern struct dmareq d m a _ r e q u e s t ;

/* Allocate channel 1. If not */
/* currently available, wait. */
if (dma_alloc(DMA_CH1, DMA_BLOCK) == 0)
{

seterror(EIO);
return;

}

/* If channel is successfully allocated, */
/* then begin DMA streaming */
dma_start (&dma_request) ;

See Also

dma_param(K), dma_start(K), dma_relse(K), dma_enable(K),
dma_resid(K), printcfg(K)

June 26, 1989 DMA ALLOC-2

D M A B R E A K U P (K) DMA_BREAKUP (K)

dma_breakup___________
sizes DMA request into 512-byte blocks

Syntax

int
dma_breakup(xxstrategy, bp)
int (*xxstrategy)();
struct buf *bp;

Description

The dmajbreakup routine breaks up Direct Memory Access (DMA)
I/O requests into 512-byte units of contiguous memory to avoid limita
tions imposed by DMA controllers, dmajbreakup is called by the
physio(K) routine, indirectly. Place the dmajbreakup call in a subrou
tine and then call the name of that routine from physio.

dmajbreakup first determines the correct block number of the data
being passed.

If a read is being requested, xtstrategy is called to get a buffer header.
If a buffer header is not available from the call to xxstrategy,
dmajbreakup goes to sleep until one is free. While sleeping, the
request for a buffer is protected from signals, and from interrupts
occurring at or below spl6{K). When a buffer is free, data is read from
user space.

A write request is similar, except that the data is copied to a kernel
page from user space before x tstrategy is called. Again, sleep is
called to wait for a free buffer header.

After ensuring that a buffer header is free, DMA transfer starts. If an
error is caused by reaching the end of the media, ENXIO is returned.
During DMA transfer, xxstrategy is called to put the current buffer on
the buffering mechanism. Each time xxstrategy is called, sleep is also
called to wait until buffering occurs.

NOTE: Use splx(K) to save your spl setting before calling
dmajbreakup because dmajbreakup calls splO{K) and cancels all pre
viously set spl levels.

June 26, 1989 DMA BREAKUP-1

D M A B R E A K U P (K) D M A _BREA KU P(K)

dma breakup depends on the following fields of the user structure
that are set up by the kernel when the I/O request is passed to the
driver:

• u.u_base — the virtual base address for the calling program in
user space

• u.ucount — the number of bytes to be transferred

• u.u offset — offset into the file from/to which data is
transferred.

In addition, the driver should set bflags to indicate the type of
transfer. Possible values are B_READ or BJWRITE. dmajyreakup
calls sleep(K) and therefore can only be called from a non-interrupt
routine.

Parameters

The parameters to dmajbreakup are as follows:

xxstrategy The name of the xxstrategy driver routine.

bp A pointer to the buf structure.

Return Value * •

None. However, the following values may change:

• b_flags — if insufficient memory is available for allocation,
b_flags is ORed with B_ERROR and B_DONE, and b_error is
set to E AG AIN.

• b_un.b_addr — set to the virtual kernel address.

• bblkno — changed.

• bbcount — changed.

• u.usegflg — set to zero.

• u.ubase, u.u count, u.uoffset — u.ubase and u.uoffset
are incremented by the number of characters to be transferred;
u.u count is decremented.

June 26, 1989 DMA BREAKU P-2

DMA ENABLE (K) D M A _EN A B LE (K)

dma_enable
begins DMA transfer

Syntax

#include "sys/dma.h"

int
dmaenable(chan)
unsigned chan;

Description

This routine starts a DMA transfer. There is no return value. This rou
tine clears the mask register on the controller to let a DMA transfer
begin.

Parameters

The chan argument specifies the DMA channel to be used. Possible
values are:

8-Bit Channels: DMA_CH0, DMA_CH1, DMA_CH2, DMA_CH3

16-Bit Channels: DMA_CH5, DMA_CH6, DMA_CH7

Channel 4 is not available. Other channels may be permanently allo
cated by system drivers. Consult the /usr/adm/messages file for
which channels are in use. Use printcfg in your driver initialization
routine to display the DMA channel that you select.

See Also

dma_param(K), dma_start(K), dma_relse(K), dma_alloc(K),
dma_resid(K), printcfg(K)

June 26,1989 DMA ENABLE-1

DMA PARAM (K) DMA_PARAM (K)

dma param________________
sets up a DMA controller chip for DMA transfer

Syntax

#include "sys/dma.h"

int
dma_param(chan, mode, addr, cnt)
unsigned chan, mode;
paddrt addr;
long cnt;

Description

This routine sets up the controller chip for a DMA transfer. The
dma_param routine masks the DMA request line on the DMA control
ler. Only call dma_param after a DMA channel has been allocated for
the driver by dma_alloc(K) or dma_start(K). In the case of a driver
using dmajstart, dma_param is called by the routine pointed to by the
d_proc member of the dmareq structure. The dma_param routine has
no return value.

Parameters * •

The chan argument specifies the DMA channel to be used. Possible
values are:

8-Bit Channels: DMA_CH0, DMA_CH1, DMA_CH2, DMA_CH3

16-Bit Channels: DMA_CH5, DMA_CH6, DMA_CH7

Channel 4 is not available. Other channels may be permanently allo
cated by system drivers. Consult the /usr/adm/messages file for
which channels are in use. Use printcfg in your driver initialization
routine to display the DMA channel that you select.

The mode argument specifies whether this is a read or write transfer.
The options are:

• DMA_Rdmode (0x44). This option specifies a transfer from a
device to memory.

• DMA_Wrmode (0x48). This option specifies a transfer from
memory to a device.

June 26, 1989 DMA PARAM-1

D M A P A R A M (K) D M A P A R A M (K)

The addr argument specifies the address where the data is copied from
or to.

The cnt argument specifies the number of bytes or words to transfer.

Example

For example, the function mentioned in the example for dmajstart
foo_proc, might contain this code:

foo_proc(dp)
struct dmareq *dp;
{

dma_jparam (dp->d_chan, dp->d_mode,
dp->d_addr, dp->d_cnt);

dma_enable (dp->d_chan);

}

See Also

dma_enable(K), dma_start(K), dma_relse(K), dma_alloc(K),
dma_resid(K), printcfg(K)

June 26, 1989 DMA PARAM -2

DMA RELSE (K) DM A_RELSE (K)

dma_relse_______________
releases previously allocated DMA channel

Syntax

#include "sys/dma.h"

int
dmarelse(chan)
unsigned chan;

Description

The dma_relse routine releases a DMA channel previously allocated
with dma_alloc{K) or dma_start{K). This routine should be called dur
ing the interrupt signaling completion of the DMA transfer or as soon
as completion is detected (if polling is being used). This routine has
no return value. If you intend to share DMA channels, you should use
this routine. Sharing DMA channels is highly recommended.

If no dmareq structures are in the pending-request queue, dma_relse
releases the channel, wakes up any processes sleeping on the channel,
and exits. Otherwise it performs the next request on the queue by cal
ling the xxd_proc routine with a pointer to the dmareq structure as a
parameter. Because xxd_proc may be called during another driver’s
interrupt, the xxd_proc routine should be as minimal as possible to
accomplish its task.

Parameters

The argument chan is the DMA channel to be released. Possible
values are:

8-Bit Channels: DMA_CHO, DMA_CH1, DMA_CH2, DMA_CH3

16-Bit Channels: DMA_CH5, DMA_CH6, DMA_CH7

Channel 4 is not available. Other channels may be permanently allo
cated by system drivers. Consult the /usr/adm/messages file for
which channels are in use. Use printcfg in your driver initialization
routine to display the DMA channel that you select.

June 26, 1989 DMA RELSE-1

D M A R E L S E (K) DM A_RELSE (K)

Example

To release the channel that was allocated in the previous allocation
examples:

/* finished with DMA for now, release channel */
dma reise (DMA_CH1);

See Also

dma_enable(K), dma_start(K), dma_param(K), dma_alloc(K),
dma_resid(K), printcfg(K)

June 26, 1989 D M A R E L S E -2

dma_resid______________________
returns the number of bytes not transferred during a
DMA request

Syntax

DM A_RESID (K) DMA RESID (K)

#include "sys/dma.h"

long
dmaresid(chan)
unsigned chan;

Description

This routine returns the number of bytes not transferred by the DMA
request.

Parameters

The chan argument specifies the DMA channel to be queried. Possi
ble values are:

8-Bit Channels: DMA_CH0, DMA_CH1, DMA_CH2, DMA_CH3

16-Bit Channels: DMA_CH5, DMA_CH6, DMA_CH7

Channel 4 is not available. Other channels may be permanently allo
cated by system drivers. Consult the /usr/adm/messages file for
which channels are in use. Use printcfg in your driver initialization
routine to display the DMA channel that you select.

Return

The dma_resid routine returns the number of bytes that were not
transferred.

See Also

dma_enable(K), dma_start(K), dma_param(K), dma_alloc(K),
dma_relse(K), printcfg(K)

June 26, 1989 DMA RESID-1

DMA START (K) DMA_START (K)

dma_start
queues DMA request

Syntax

#include "sys/dma.h"

int
dmastart(arg)
struct dmareq *arg;

Description

The dma_start routine queues a DMA request for later execution when
the requested channel is available. dma_start can be used in initiali
zation or interrupt routines. The format of the dmareq structure is as
follows:

struct dmareq {
struct dmareq
unsigned short
unsigned short
paddr_t
long
int
char
};

The dmareq structure contains enough information to specify the
transfer, the address of a routine to call when the channel is available,
and an address of further data that may be needed by the xxd jvoc
routine (the d_proc field of the structure).

Possible values for d_chan are:

8-Bit Channels: DMA_CH0, DMA_CH1, DMA_CH2, DMA_CH3

16-Bit Channels: DMA_CH5, DMA_CH6, DMA_CH7

Channel 4 is not available. Other channels may be permanently allo
cated by system drivers. Consult the /usr/adm/messages file for
which channels are in use. Use printcfg in your driver initialization
routine to display the DMA channel that you select.

dma_start sets up the kernel to allocate the DMA channel for the
driver. By filling in the d_chan field with the channel you want, the
d_mode with the mode you want, and the xxd_proc with a pointer to
the routine to be called once the DMA channel is allocated, the driver
can request that the kernel allocate a channel.

d_nxt; / reserved */
d_chan; /* specifies channel */
d_mode; /* direction of transfer */
d_addr; /* physical src or dst */
d_cnt; /* number of bytes or words */
(*dj?roc)(); /* address of routine to call */
dj?arams; / pointer to params for d_proc */

June 26, 1989 DMA START-1

DMA_START (K) D M A S T A R T (K)

When the channel is allocated, the routine pointed to by xxdjjroc is
called with a pointer to the dmareq structure. At this point, the DMA
channel has been allocated as if the driver had done so with
dma_a!loc.

If the routine was not able to allocate the channel immediately, but
had to queue your request, this routine will return a 0.

Example

For example, to allocate DMA channel 1 for reading and with
foo_proc as the xxdfproc routine, use:

/* set up dma structure */
extern int foo_proc();

dmareq foo req = { /* DMA request structure; */
(struct dmareq *) 0, /* d nxt */
DMAjCHl, /* d chan */
DMA Rdmode, /* d mode */
(paddr t)0, /* d addr */
(long)0, /* d cnt */
foo proc, /* d_proc */
(char *)0, /* d_jparams */

} ;

dma_start(&foo_req);
/* we don't care if we are queued or not */
return;

Parameters

The arg argument is a pointer to the dmareq structure that specifies
the transfer that is required.

Return

If the channel is available, it is marked as “ busy,” and arg->d_proc is
called at spl6(K) with a pointer to arg as a parameter. The dma_start
routine then returns a non-zero value.

If the channel is not available, the structure *arg is linked to the end
of a list of pending requests, and dma_alloc{K) simply returns 0.

June 26, 1989 DMA START-2

DMA_START (K) DMA_START (K)

Note

The kernel routines contained in the xxd_proc routine are executed at
spl6{K) and should observe all the normal rules of an interrupt routine.
Specifically, this means that no assumptions about the currently run
ning process may be made. In addition, the interrupt priority level
should not be lowered, and sleep{K), delay{K), or other routines that
call sleep cannot be used.

See Also

dma_enable(K), dma_resid(K), dma_param(K), dma_alloc(K),
dma_relse(K)

June 26, 1989 DMA START-3

EM D U PM AP(K) EM D U PM A P (K)

emdupmap______
duplicates channel mapping

Syntax

#include "sys/tty.h"

int
emdupmap(tp, ntp)
struct tty *tp, *ntp;

Description

The emdupmap routine duplicates the mapping of a given channel for
a new channel.

Parameters

The tp parameter is a pointer to the tty structure for the line the map
ping should be duplicated from.

The ntp parameter is a pointer to the tty structure for the line where
the characters are to be placed.

Return Value

This routine has no return value, but the routine can return immedi
ately with no work done if both arguments point to the same tty struc
ture.

Notes

Note that this routine is for use only within character device drivers.

See Also

emunmap(K)

June 26, 1989 EMDUPMAP-1

EMUNMAP (K) EMUNMAP (K)

emunmap_________
disables mapping on a channel

Syntax

#include "sys/tty.h"

int
emunmap(tp)
struct tty *tp;

Description

The emunmap routine disables mapping on a channel.

Parameters

The tp parameter is a pointer to the tty structure of the mapped line
that is to have the mapping disabled.

Return Value

This routine has no return value.

Notes

Note that this routine can be used only with character device drivers.

See Also

emdupmap(K)

June 26, 1989 EMUNMAP-1

FLU SH TLB(K) FLUSHTLB(K)

flushtlb_______________
flushes the translation lookaside buffer

Syntax

void
flushtlb()

Description

When accessing an I/O port above 0x1000, a driver must flush the
translate lookaside buffer (TLB) to prevent corruption of the I/O
address. In addition, the call to flushtlb must be protected by a call to
spI7 to prevent interrupts from occurring while flushtlb is operating.

Example _________

The following example is for a driver routine that gets a byte from an
I/O port and checks the address before beginning processing. A driver
should also have a similar routine for writing data to an I/O port.

int
getbyte (port)
{

int x, ret;
/*
* If port address is less than hex 1000,
* get byte and return.
*/
if (port < 0x1000)

return (inb(port)) ;
/* else, */

X = sP17 () ; /* block all interrupts */
flushtlb () ; /* flush TLB */
ret = inb(port); /* get byte from port */
splx(x); /* reset previous spl */
return (ret); /* return byte to caller */

See Also

inb(K), spl(K)

June 26, 1989 FLUSHTLB-1

FU BYTE(K) FU BYTE(K)

fubyte________________
gets a character from user data space

Syntax

int
fubyte(src)
unsigned char *src;

Description

The fubyte routine retrieves (fetches) one character from the user’s
data space. If you are fetching data from u.u_base, consider using
cpassiK) in that u.u_count, u.u_offset, and u.u_base are updated for
you, and error handling is provided via u.u_error. If any chance
exists that a -1 may be contained in the data that you are receiving
from user space, use copyingK) instead of fubyte (or cpass). A -1 in
the data is usually associated as an error condition.

This routine must not be called from an interrupt or xxinit routine.

Parameters

The argument src points to the address from which the byte is to be
copied.

Return Value

The value of the retrieved byte is returned. If -1 is received, then an
error occurred and u.u_error should be set to EFAULT.

See Also

fuword(K), cpass(K)

June 26, 1989 FUBYTE-1

FUW ORD (K) FUW ORD (K)

fuword _______________
gets one 32-bit word from user data space

Syntax

int
fuword(src)
unsigned int *src;

Description

The fuword routine retrieves (fetches) one 32-bit word from the user’s
data space. This routine must not be called from an interrupt or an
xxinit routine.

Parameters

The argument src is an address in user space from which the word is
copied from.

Return Value

The value of the retrieved 32-bit word is returned. If an error occurs,
-1 is returned and you should set u.u_error to EFAULT.

See Also

fubyte(K)

June 26, 1989 FUWORD-1

GETC (K) GETC (K)

getc, getcb, getcbp, getcf
read clist buffers

Syntax

int
getc(cp)
struct clist *cp;

struct cblock*
getcb (cp)
struct clist *cp;

int
getcbp(p, cp, n)
struct clist *p;
char *cp;
int n;

struct cblock *
getcf()

Description

The getc routine moves one character from the clist buffer for each
call.

The getcb routine moves one cblock from the clist buffer for each call.

The getcbp routine copies characters from the specified clist, p, to the
buffer addressed by the cp argument.

The getcf routine takes a cblock from the freelist and returns a pointer
to it.

Parameters

cp specifies the clist buffer from which characters are moved by getc.

The pointer cp specifies the clist buffer the cblocks are moved from by
getcb.

The pointer p specifies the clist buffer the characters are copied from
by getcbp. The argument cp is a char * that addresses the buffer the
characters are copied to.

June 26, 1989 GETC-1

G ET C (K) GETC (K)

The value of n is the number of characters to be copied (which should
denote the maximum size of the available buffer).

Return Value

The getc routine returns the next character in the buffer or -1 if the
buffer is empty.

The getcb routine returns a pointer to the first cblock on the cl ist or
NULL if the clist is empty.

The getcbp routine returns the number of characters actually copied
(which is less than or equal to n).

getcf returns a pointer to a cblock if available. Otherwise, the routine
returns NULL.

Notes

Note that these routines can be used only within character device
drivers.

See Also

putc(K)

June 26, 1989 GETC-2

G ETCH AR (K) G ETCH AR (K)

getchar_________
gets one character of input

Syntax

int
getchar()

Description

getchar can be used to temporarily halt execution of the kernel, and
get input from a user.

Return Value

getchar returns the character typed at the keyboard.

Example:

debug = getchar();
debug -= 'O';

See Also

putchar(K)

June 26, 1989 GETCHAR-1

G ET EBLK (K) G ETEBLK (K)

geteblk, getablk________
gets a buffer from the block buffer pool

Syntax

struct buf *
getablk()

struct buf *
geteblk()

Description

The geteblk routine acquires a free buffer from the block buffer pool.
The pointer returned by this routine addresses a buffer that can be
used as required. The buffer can subsequently be returned to the buffer
pool by calling brelse(K) or iodone(K).

getablk calls geteblk directly, getablk is provided for compatibility
only and may go away in future releases.

OR the b_flags field of the buf structure with B_WANTED if geteblk
should sleep if a buffer is not available. When sleeping is requested, it
is performed below PZERO and is not affected by signals.

When a buffer is allocated, geteblk ORs b_flags with B_BUSY and
B_AGE, bback and b_forw are set to the same buffer pointer that is
returned, b_dev is set to NODEV, and bbcount is set to SBUFSIZE.
SBUFSIZE is defined in sys/fs/s5param.h and varies in size according
to the file system size.

Return Value

This routine returns a struct buf * that addresses the allocated buffer.

Notes

This routine may be used only by block device drivers. This routine
calls splO(K) to enable all interrupts. This may change previously set
interrupt levels.

See Also

brelse(K), iodone(K)

June 26, 1989 GETEBLK-1

INB (K) INB (K)

inb, outb______________________
reads a byte from or writes a byte to an I/O address

Syntax

int
inb(readaddr)
int readaddr;

int
outb(write_addr, value)
int writeaddr;
char value;

Description

The inb routine reads a byte from the I/O address specified by the
parameter read addr.

The outb routine writes the byte specified by value to the physical I/O
address specified by write addr.

Warning

If the specified read or write address is above 0x1000, call flushtlb(K)
before calling inb or outb. Refer to the flushtlb manual page for more
information.

Parameters

The value of read_addr is an integer specifying the physical I/O
address from which to read.

write addr is an integer specifying the physical I/O address to which
to write.

value is a byte to write to write_addr.

Return

inb returns a byte, physical I/O address specified by readjtddr is
returned, inb returns an integer whose high byte or bytes have been
cleared. Only the low byte is meaningful.

June 26, 1989 INB—1

INB (K) INB (K)

Example

To read a byte register at I/O address 0x300 you could use the follow
ing lines of code:

c h a r v a l ;
v a l = (c h a r) i n b (0:-:3 0 0) /

To write the 8-bit value OxF to a byte register at I/O address 0x300
you could use the following line of code:

o u t b (0 x 3 0 0 , O x F) ;

See Also

flushtlb(K), ind(K), inw(K), repinsb(K), copyin(K)

June 26, 1989 INB-2

IND (K) IND (K)

ind, outd______________________
reads, writes a 32-bit word to a physical I/O address

Syntax

int
ind(readaddr)
int readaddr;

int
outd (writeaddr, value)
int write addr, value;

Description

The ind function reads a 32-bit word from the physical I/O address
specified by read_addr.

outd writes a 32-bit value to the physical I/O address specified by
write_addr.

Warning _________________

If the specified read or write address is above 0x1000, call flushtlb(K)
before calling ind or outd. Refer to the flushtlb manual page for more
information.

Parameters

The value of read_addr is an integer that specifies the physical I/O
address to be read from.

write_addr is the physical I/O address being written to. value is the
32-bit word being written to write_addr.

Return

ind returns the 32-bit value read from the I/O address read_addr. outd
has no return value.

June 26, 1989 IND-1

IND (K) IND (K)

Example

To read a 32-bii value from I/O address 0x300 you could use the fol
lowing code:

i n t v a l ;
va i = ind (0x300) ;

To write the 32-bit value OxFFFFOO to I/O address 0x300 you could
use the following code:

outd(0x300 , OxFFFFOO);

See Also

flushtlb(K), inb(K), inw(K), repinsb(K), copyin(K)

June 26, 1989 IND-2

INW (K) INW (K)

inw, outw_____________________
reads, writes a 16-bit word from or to a physical I/O
address

Syntax _____________

int
inw(readaddr)
int readaddr;

int
outw (writeaddr, value)
int write addr, value;

Description

The inw function reads a 16-bit word from the physical I/O address
specified by read addr. outw writes a 16-bit word to the physical I/O
address specified by write_addr.

Warning ____

If the specified read or write address is above 0x1000, call flushtlb{K)
before calling inw or outw. Refer to the flushtlb manual page for more
information.

Parameters

read_addr is an integer that specifies the physical I/O address to be
read from.

write_addr is the physical I/O address being written to. value is the
16-bit word bring written to write_addr.

Return

A 32-bit integer whose high 2 bytes are set to zero is returned by inw.
ouPa> has no return value.

June 26, 1989 INW-1

INW (K) INW (K)

Example

To read a 16-bit register at I/O address 0x300 you could use the fol
lowing lines of code:

short int val;
val = (short int) inw(0>:300);

To write the 16-bit value OxFFO to I/O address 0x300 you could use
the following code:

outw(0x300, OxFFO);

See Also

flushtlb(K), inb(K), ind(K), repinsb(K), copyin(K)

June 26, 1989 INW-2

IODONE (K) IODONE (K)

iodone______
signals I/O completion

Syntax

int
iodone(bp)
struct buf * bp;

Description

The iodone routine completes a block driver’s I/O request and wakes
up all processes waiting completion of block I/O requests. This rou
tine is generally placed in a driver’s interrupt routine, iodone calls
brelse{K) to release the buffer, followed by wakeup to awaken the
sleeping processes, iodone ORs B_DONE into b Jlags.

Parameters

The bp argument specifies a struct buf * that addresses the buffer.

Notes

Note that this routine can be used only with block device drivers.

See Also

brelse(K), iowait(K)

June 26, 1989 IODONE-1

IOWAIT (K) IOWAIT (K)

iowait_______
wait for I/O completion

Syntax

int
iowait(bp)
struct buf * bp;

Description

The iowait routine is called by the higher levels of the kernel I/O sys
tem to wait for the completion of an I/O operation specified by the
buffer addressed by the bp parameter. This routine should not be
called within an interrupt routine since it may call the sleep(K) rou
tine.

iowait transfers any errors found in bp->b_error to u.u_error for the
process indicated in the buf header.

Parameters

The bp argument specifies a struct buf * that addresses the buffer
involved in the I/O operation.

Return Vaiue

There is no result returned. The calling process continues when the
I/O operation is complete.

Notes

Note that this routine may only be used with block device drivers.

See Also

iodone(K), brelse(K)

June 26, 1989 IOWAIT-1

LONGJMP (K) LONGJMP (K)

longjmp____________
ends current system call with error

Syntax

#include "sys/user.h"

int
longjmp(u.uqsav)
label t u.u qsav;

Description

The longjmp routine passes control of the current process to the end of
the current system call. The system call then returns to user space
with the external variable err no set to the EINTR error code. Each
time a driver is called by the kernel, registers are saved in u.u_qsav.
The longjmp routine restores these registers, sets u.u_error to EINTR,
and then jumps to the end of the current system call. The effect from a
driver’s perspective is that the jump returned control of the process
back to the calling user process with an error set.

This routine must never be called from an initialization or interrupt
routine.

longjmp is called by sleep(K) if a signal is received directed at the
sleeping process, and if the priority argument to sleep is not ORed
with PCATCH.

longjmp(K) differs from the user space longjmp{S) in three ways: the
intent is different, the arguments are different, and kernel longjmp is
not used in conjunction with a setjmp routine. Use of the setjmp ker
nel routine is not supported.

Parameters

u.u_qsav contains register information. This is the only argument that
should ever be passed to longjmp.

See Also

sleep(K), setjmp(S)

June 26, 1989 LONGJMP-1

MAJOR (K) MAJOR (K)

major, makedev, minor ________
returns major, new device number, or minor device
number

Syntax

#include "sys/sysmacros.h"

int
major(device-number)
de v t device-number;

dev t
makedev(major-num, minor-num)
int major-num, minor-num;

int
minor(device-number)
dev t device-number;

Description

The major macro returns the major device number from a device num
ber. minor returns the minor device number.

The makedev macro returns a new device number from major and
minor device numbers.

Parameters

device-number is a short integer device number that contains both the
major and minor device numbers.

June 26, 1989 MAJOR-1

MEMGET (K) M EM G ET (K)

memget__________________
allocates contiguous memory at initialization

Syntax

int
memget(pages)
int pages;

Description

The memget routine is used to obtain permanent, contiguous memory
for the driver at initialization time. It is intended for memory that the
driver will always have and use. Its argument is the size of memory in
pages. Use the macro btoc(K) to calculate the number of pages from
the number of bytes required, memget's return value is also in pages,
so the ctob{K) macro must be used to translate the return value of
memget into a kernel virtual address. Both ctob and btoc are defined in
the file /sys/sysmacros.h.

Parameters

pages is the number of pages to allocate.

Warning

This routine is intended for use in a driver’s initialization routine for
use before any user processes have been run. Calling memget in other
routines can result in a caller sleeping forever. If physically contigu
ous memory is not immediately available, memget goes to sleep with
periodic checks, but never rearranges pages to obtain the memory.
Thus if the memory is not available during a check, memget returns to
sleep, and may never find available memory.

Return Value

The page frame number of the first frame of memory allocated is
returned.

June 26, 1989 MEMGET-1

MEMGET (K) M EM G ET (K)

Example

To obtain a permanent 4K buffer for a driver, use the following code
statement:

char ’'always;
always = (char *) ctob(memget(btoc(0x1000)));

June 26, 1989 M EMGET-2

PADDR (K) PADDR (K)

paddr___________________
returns virtual address pointer to block data

Syntax

#include "sys/buf.h"

paddrt
paddr(bp)

Description

This macro returns a virtual address pointer to the data contained in a
block driver buffer header, paddr provides a pointer to the
b_un.b_addr member of the buf structure. Use this macro to ensure
portability between releases of System V.

Note

This macro returns a virtual address, not a physical address. This may
be misleading since the name of the macro implies a physical address.

Parameters

bp Pointer to a buffer header

Return Value

A virtual address pointing to the b_un.b_addr field of the buf struc
ture.

June 26, 1989 PADDR-1

PANIC (K) PANIC (K)

panic____
halts the system

Syntax

void
panic(string)
char * string;

Description

The panic routine takes a parameter string that points to a string and
prints the string on the system console and halts the system. It is
called whenever an unrecoverable kernel error is encountered. This
routine should be called only under extreme circumstances.

Parameters

The variable string is an address of a string that describes the reason
for the system failure.

Example

panic ("the cpu has melted down");

June 26, 1989 PANIC-1

PHYSIO (K) PHYSIO (K)

physio, physck
raw I/O for block drivers

Syntax

int
physck(nb!ocks, rwflag)
daddr t nblocks;
int rwflag;

int
physio(routine, bp, dev, rwflag)
int (*routine) ();
struct buf *bp;
int dev, rwflag;

Description

The physck routine ensures that a requested raw I/O request can be
serviced by the device being read from or written to. The nblocks
argument to physck is the maximum number of 512-byte blocks on the
device, or in the disk partition. The number of blocks is converted to
bytes to find the size limit and then compared with u.u_offset. If
u.u_offset is greater than the size limit, and rwflag is B_WRITE, then
u.u_error is set to ENXIO and a 0 (zero) is returned. If u.u_offset is
greater than or equal to the limit, and rwflag is B_READ, then 0 (zero)
is returned and no error is set. If u.uoffset plus u.u_count is greater
than the limit, then u.u_count is reduced by the number of bytes that
it differs from the limit and the test is completed, physio returns 1 on
all successful tests.

The physio routine provides a raw (direct) I/O interface for block-de
vice drivers. It validates the request, builds a buffer header, locks the
process in core, and calls a routine, to queue the request. The routine
usually called is one containing a call to dma_breakup(K), or routine
may be a call to an xxstrategy routine. Refer to Appendix B, "Sample
Block Driver" for an example of a physio call in an xxread routine
where a dma^breakup routine is called.

Warning

Before calling physio, make sure that the buffer is not busy (b_flags
contains B_BUSY).

June 26, 1989 PHYSIO-1

PHYSIO (K) PHYSIO (K)

Notes

If the data transfer crosses a 64K segment boundary, physio may break
the request into 3 pieces. If the data request crosses a 4K page bound
ary, the request is broken into BSIZE pieces. BSIZE is defined in
sys/fs/s5param.h and varies by file system size.

Parameters

nblocks the number of 512-byte blocks to be read from

rwflag

the device or written to the device.

an I/O flag. Set to B_READ for reading; set to
B JWRITE for writing.

routine the address of a routine to be executed, gen
erally xxbreakup or xxstrategy.

bp a pointer to the buffer header describing the
request to be filled. Ensure that the buffer is
not busy before calling physio. Set the bp
argument to NULL to have physio allocate a
buffer. The following example illustrates such
a call:

physio(xxbreakup, (struct buf *) NULL,
dev, B READ);

dev an integer specifying the device number
(includes both the major and minor device
numbers)

rwflag an I/O flag. Set to B_READ for reading; set to
BJWRITE for writing. The possible values are:
B_READ — read from disk to user memory,
and B_WRITE — write from user memory to
disk.

June 26, 1989 PHYSIO-2

PHYSIO (K) PHYSIO (K)

Note

The u.ubase , u.u_count , and u.u_offset values must be set up
prior to the physio call, and must point to the appropriate user-data
area.

See Also

db_read(K), db_write(K), dma_breakup(K), pio_breakup(K)

June 2 6 , 1989 PHYSIO -3

PIO_BREAKUP (K) PIO_BREAKUP (K)

piobreakup__________
breaks up programmed I/O requests

Syntax

int
pio_breakup(xxstrategy, bp, maxsecsz)
int (*xxstrategy)();
struct buf *bp;
int maxsecsz;

Description

This routine breaks up programmed I/O requests into maxsecsz pieces,
and either reads data from the user process or writes data to the user
process depending on how b_flags (pointed to by bp) is set. The
address in the user process from which data is read from or written to
is pointed to by the u.ubase field in the user structure. pio_breakup
is used to break up requests across page boundaries.

A buffer header is allocated and filled using information from the bp
buf pointer. Then the xxstrategy routine is called, sleepiK) is called
to wait until xxstrategy completes.

If an error occurs, the error code is passed from b_error to u.u error,
the allocated buffer is released, and pio breakup returns. In addition,
the following fields are set in the buffer header pointed to by bp:

• b_resid — Set to the original value of b_count from the passed
in buffer header

• b_flags — ORed with B_DONE and B_ERROR

• b_error — Set to the value of u.u_error

Notes

pio_breakup calls spIO(K) which may alter previously set spl levels in
your driver.

This routine adjusts u.ujbase, u.uoffset, and u.u count

piojbreakup must not be called from an interrupt or xxinit routine.

June 26, 1989 PIO BREAKUP-1

Parameters

PIO_BREAKUP (K) P IO_BREAKUP (K)

xxstrategy The name of the xxstrategy routine for a driver

bp Buffer header pointer

maxsecsz

Return Value

The maximum number of blocks to move in
each transfer. Typically, this value is 256, but
it varies by device.

None.

See Also

dma_breakup(K)

June 26, 1989 PIOBREAKUP-2

PRINTCFG (K) PRINTCFG (K)

printcfg
displays driver initialization message

Syntax

int
printcfg(name, base, offset, vec, dma, fmt, args)
char *name, *fmt;
unsigned base, offset;
int vec, dma;
void args;

Description

This routine displays configuration information for a device on the
console. The information is also stored in /usr/adm/messages by a
background error logging program. Use this routine when displaying
messages in the xxinit routine of a driver to maintain consistency with
other drivers’ initialization messages.

The following is displayed by printcfg'.

d e v i c e a d d r e s s v e c t o r d m a c o m m e n t

% n am e O x b a s e - O x e n d v e c d m a f m t

Where:

name Driver name

base The base of I/O addresses

end

dma

vec

The summed value of base + offset.

Interrupt vector (in octal)

Direct memory address (DMA) channel (in decimal)

Parameters

name A character string containing the driver name.
This string is required.

base A hexadecimal address indicating the base of
I/O addresses. Set to 0 (zero) to omit.

June 26, 1989 PRINTCFG-1

PRINTCFG (K) PRINTCFG (K)

offset

vec

dma

fmt

args

A hexadecimal value indicating the range of
I/O addresses from base. Set to 0 (zero) to
omit.

A two digit octal interrupt vector number
derived from switchable settings on the card.
Set to -1 to omit.

A decimal value indicating the direct memory
access (DMA) channel. Set to -1 to omit.

A string to be displayed similar to the format
argument to printfiS). fm t also accepts specifi
cations for displaying the arg variables. The
supported specifications are:

Type Description
%b two-digit hexadecimal byte
%c character
%d signed decimal
%o unsigned octal
%s string (character pointer)
%x hexadecimal (prints leading zeros)

The specification values can be indicated in
either upper or lower case. Field length spe
cifications cannot be used for arguments. For
example, %9d is not permitted. Escaped char
acters such as \n (new line), \t (tab), \r (return),
and so on are C language features supported by
the C compiler and thus are supported in this
kernel routine. A \n character is automatically
appended to the end of fmt.

Optional variables to be displayed using fmt.

This routine is not interrupt-driven and therefore suspends all other
system activities while executing.

Leading zeros are not displayed for the base value, but are displayed if
the %x or %b specifications are used in the fm t argument.

This routine does not function properly on consoles running layers{C).

See Also

cmn_err(K), printf(K), printf(S), layers(C)

June 26, 1989 PRINTCFG-2

PRINTF (K) PRINTF (K)

printf_____________
print a message on the console

Syntax

int
printf(format, argl, arg2,...)
char *format;
void argl, arg2;

Description

The kernel printf routine prints error messages and debugging infor
mation on the system console. In addition, all messages are stored in
/usr/adm/messages by a background program error handler, printf is
a simplified version of the standard C library printfiS) routine.

Parameters

The parameters are:

format A string to be displayed similar to the format
argument to printfiS). format also accepts spe
cifications for displaying the arg variables.
The supported specifications are:

Type Description
%b two-digit hexadecimal byte
%c character
%d signed decimal
%o unsigned octal
%s string (character pointer)
%x hexadecimal (prints leading zeros)

Specification values can be indicated in either
upper or lower case. Field length specifica
tions cannot be used for arguments. For exam
ple, %9d is not permitted. Escaped characters
such as \n (new line), \t (tab), \r (return), and
so on are C language features supported by the
C compiler and thus are supported in this ker
nel routine.

arg], argl Optional variables to be displayed using the
format.

June 26, 1989 PRINTF-1

PRINTF (K) PRINTF (K)

Notes

This routine is not interrupt-driven and therefore suspends all other
system activities while executing.

This routine is similar to standard C library function printf{S), except
that only the formats specified here are valid, and precision is not sup
ported.

This routine does not function properly on consoles running layers^C).
As it is impossible for a driver to know if a console is running layers,
use of printf{K) for other than debug purposes is not recommended.
Use cmn_err(K) instead.

Example

It is often useful to use printf for driver debug statements. For exam
ple in your xxioctl routine you might do this:

x x i o c t l (d e v , c m d , a r g , m o d e)

d e v _ t d e v ;

i n t c m d , a r g , m o d e ;

{

}

p r i n t f (" d e v = % x , c m d = % d , a d d r o f a r g = % x ,

d e v , c m d , a r g , m o d e) ;

m o d e = % x \ n " ,

See Also

cmn_err(K), printf(S)

June 26, 1989 PRINTF-2

PSIGNAL (K) PSIGNAL (K)

psignal________
sends signal to a process

Syntax

#include "sys/proc.h"
#include "sys/signal.h"

int
psignal(p, sig)
proc t *p;
int sig;

Description

The psignal routine sends the specified signal sig to the process speci
fied by p. proc_t is another name for the proc structure and is defined
in sys/proc.h.

Parameters

p is a pointer to the process to which the signal is sent. At task time it
is u.u_procp (see sys/user.h). If you want to be able to kill a process
at interrupt time you need to store u.u_procp in a global variable.

sig is the number of the signal to be sent. For more information about
possible signals, see the /sys/signal.h header file.

See Also

signal(K)

June 26, 1989 PSIGNAL-1

PTOK (K) PTOK (K)

ptok, ktop______________
converts virtual and physical addresses

Syntax

#include "sys/param.h"

int
ptok(x)
int x;

int
ktop(x)
int x;

Description

The ptok macro converts a physical address „t to a kernel virtual
address.

The ktop macro converts kernel virtual address x to a physical address.

Parameters

x is the address to be switched.

Return Value

The new kernel virtual address is returned by ptok. The new physical
address is returned by ktop.

June 26, 1989 PTOK-1

PUTC(K) PUTC (K)

putc, putcb, putcbp, putcf
write to clists

Syntax

int
putc(c, cp)
int c;
struct clist *cp;

int
putcb(cbp, cp)
struct cbiock *cbp;
struct clist *cp;

int
putcbp(p, cp, n)
struct clist *p;
char *cp;
int n;

int
putcf(cbp)
struct cbiock *cbp;

Description

The putc routine moves one character to the clist buffer for each call.
putc contains a "critical” section of code and should be protected from
interrupts when called.

The putcb routine moves one cbiock to the clist buffer for each call.

The putcbp routine appends characters from a buffer to the clist given
as an argument. If the current cbiock has no room for the requested
characters, putcbp gets new cblocks from the free list as needed.

The putcf routine puts the specified cbiock onto the freelist.

June 26, 1989 PUTC-1

PU TC(K) PUTC (K)

Parameters

The value of c is an integer that specifies the character to be moved.

A pointer cp specifies the clist buffer where the character is placed.

The pointer cbp specifies the cblock to be moved by putcb.

The pointer cp specifies the clist buffer to where the cblock is moved
by putcb.

The argument cbp specifies a pointer to a cblock.

Return Value

The putc routine returns 0 if it places the specified character in the
buffer, or returns -1 if there is no free space. The putcb routine returns
0 after placing the specified cblock in the buffer.

Notes

These routines can be used only with character device drivers.

See Also

getc(K)

June 26, 1989 PUTC-2

PU TCH AR(K) PUTCH AR(K)

putchar____________
prints a character on the console

Syntax

int
putchar(c)
char c;

Description

The putchar routine is used by the printf(K) and panic{K) routines.
This routine puts one character on the console, doing a “ busy wait“
rather than depending on interrupts. This means that all other system
activities are suspended while putchar is executing.

Parameters

c is the character that is printed on the console.

See Also

getchar(K)

June 26, 1989 PUTCHAR-1

REP IN S (K) REP IN S (K)

repins: repinsb, repinsw, repinsd,
repoutsb, repoutsw, repoutsd
reads and writes streams of device data

Syntax

#include "sys/types.h"

int
repinsb(dev_addr, kvaddr, cnt)
int devaddr, cnt;
caddrt kv addr;

int
repinsw(dev_addr, kv addr, cnt)
int dev addr, cnt;
caddr t kv addr;

int
repinsd(dev_addr, kv addr, cnt)
int dev addr, cnt;
caddr t kv addr;

int
repoutsb (dev addr, kv addr, cnt)
int dev addr, cnt;
caddr t kv addr;

int
repoutsw(dev_addr, kv addr, cnt)
int dev addr, cnt;
caddr t kv addr;

int
repoutsd(dev_addr, kv addr, cnt)
int dev addr, cnt;
caddr t kv addr;

Description

The repins routines are used to read streams of data from an I/O port
on a device to an array of size cnt whose base begins at the kernel vir
tual address specified by kv_addr. These routines are typically used
for reading from disk and SCSI devices. These routines assume that
the virtual address specified is a valid kernel address currentlv in
RAM.

June 26, 1989 REPINS-1

REPINS (K) REP INS (K)

repinsb reads a stream of bytes from an I/O address to a kernel virtual
address.
repinsw reads a stream of 16-bit words from an I/O address to a kernel
virtual address.
repinsd reads a stream of 32-bit words from an I/O address to a kernel
virtual address.

The repout routines are used to write streams of data to an I/O port on
a device from an array of size cut whose base begins at the kernel vir
tual address specified by kv_addr. These routines are typically used
for writing to disk and SCSI devices. These routines assume that the
virtual address specified is a valid kernel address currently in RAM.
repoutsb writes a stream of bytes to an I/O address from a kernel vir
tual address.
repout sw writes a stream of 16-bit words to an I/O address from a ker
nel virtual address.
repoutsd writes a stream of 32-bit words to an I/O address from a ker
nel virtual address.

Warning

If the specified read or write I/O port address is above 0x1000, call
flushtlb(K) before calling a repin or repout routine. Refer to the
flushtlb manual page for more information.

Parameters * •

dev_addr is the physical I/O address where reading begins.
kvjiddr is the kernel virtual address where the data will be stored. It
must be the base address of an array large enough to hold ent items.
The ent parameter is one of the following values:

• The number of bytes to be read by repinsb

• The number of 16-bit words to be read by repinsw

• The number of 32-bit words to be read by repinsd

For the repout routines, dev_addr is the physical I/O address where
writing begins.
Ic\’_addr is the kernel virtual address where the data is stored. It must
be the base address of an array of size ent items.

June 26, 1989 REP IN S-2

REP IN S (K) REP IN S (K)

The cnt parameter is one of the following values:
• the number of bytes to be written for repoutsb
• the number of 16-bit words to be written for

repoutsw
• the number of 32-bit words to be written for

repoutsd

Examples

The following three examples demonstrate how to use the repins rou
tines. In each case the variable dev_addr would need to be assigned
an appropriate value (I/O address) before being used as a parameter.
In these examples kv_addr specifies an array of memory declared
locally by the device driver but it could be any kernel virtual address.

/ * r e p i n s b * /

c h a r k v _ a d d r [5 0] ;

r e p i n s b (d e v _ a d d r , (c a d d r _ t) k v _ a d d r , 5 0) ;

/ * r e p i n s w * /

s h o r t i n t k v _ a d d r [5 0] ;

r e p i n s w (d e v _ a d d r , (c a d d r _ t) k v _ a d d r , 5 0) ;

/ * r e p i n s d * /

i n t k v _ a d d r [5 0] ;

r e p i n s d (d e v _ a d d r , (c a d d r _ t) k v _ a d d r , 5 0) ;

The following three examples demonstrate how to use the repout rou
tines. In each case the variable dev_addr would need to be assigned
an appropriate value (I/O address) before being used as a parameter.
In these examples kv_addr specifies an array of memory declared
locally by the device driver, but note that kv_addr can be any kernel
virtual address.

/ * r e p o u t s b * /

c h a r k v _ a d d r [5 0] ;

r e p o u t s b (d e v _ a d d r , (c a d d r _ t) k v _ a d d r , 5 0) ;

/ * r e p o u t s w * /

s h o r t i n t k v _ a d d r [5 0] ;

r e p o u t s w (d e v _ a d d r , (c a d d r _ t) k v _ a d d r , 5 0) ;

/ * r e p o u t s d * /

i n t k v _ a d d r [5 0] ;

r e p o u t s d (d e v _ a d d r , (c a d d r _ t) k v _ a d d r , 5 0) ;

See Also

flushtlb(K), inb(K), inw(K), ind(K), copyin(K)

June 26, 1989 R EP IN S-3

SE LE C T (K) SELECT (K)

select: selsuccess, selfailure,
selwakeup_______________
kernel routines supporting seiect(S)

Syntax

#include "sys/select.h"

void selsuccess()

void selfailure()

void selwakeup(proc-ptr, flags)
struct proc *proc-ptr;
char flags;

Description

The select^S) system call code sends a unique I/O control command to
the driver to ask whether or not a condition is satisfied for reading,
writing, or exceptional circumstances. The mode argument to the
xxioctl call indicates the condition being selected, and has these
values which are defined in sys/select.h: SELREAD, SELWRITE, and
SELEXCEPT. All drivers that support select must implement the
IOC_SELECT ioctl with code similar to that displayed in the example
section in this manual page.

Drivers supporting select{S) must include global declarations like the
following:

♦include "sys/select.h"
extern int selwait;
struct xx_selstr
{

struct proc *read;
struct proc *write;
struct proc ‘except;
char flags;

}
xxselstr[NUM_MINOR_DEVS];

A driver uses selfailure to indicate that the condition which the user
has selected is not true, and the process should block.

A driver uses selsuccess to indicate that the condition which the user
has selected is true, and the process should not block.

June 26, 1989 SELECT-1

S E L E C T (K) SE LE C T (K)

A driver uses selwakeup to indicate that the condition the user
selected which was not initially satisfied, is now true. The process
should now be awakened.

Parameters

procp is a pointer to a process table entry which is found in the
xxselstr data structure. Each time a process selects a condition that is
not immediately satisfied, a pointer to the process is stored in the data
structure. This pointer is passed to the select(S) system call by the
selwakeup call.

flags is a byte used to indicating if multiple processes are colliding by
selecting the same condition. Whenever more than one process selects
a condition, the driver must set the correct collision bit. The three bits
defined in sys/select.h are: READ_COLLISION, WRITE_COLLISION,
and EXCEPT_COLLISION, for selecting for reading, writing, and
exceptional conditions, respectively.

Examples

In the first example, a process issues the select(S) system call (read
case only): Note that the examples can be replicated identically sub
stituting write and except for all occurrences of read.

/ * *
* This routine from driver xx
* handles a select for read request.
* Note all requests come from
* the select system call individually.
*/

xxioctl(dev, cmd, mode, arg)
dev_t dev;
int cmd, mode, arg;
{

if (cmd == IOCJ3ELECT)
{
switch (mode)
{
case SELEEAD: xx_selread(dev);
break;

/*
* likewise for SELWRITE and SELEXCEPT
*/
}
return;
}

June 26, 1989 SELEC T -2

S E L E C T (K) SE LE C T (K)

/*
* Normal ioctl processing
*/

xx_selread(dev)
dev_t dev;
{

extern void selsuccess();
extern void selfailure () ;
struct proc *procp;
struct xx_selstr *ptr = Sxxselstr[dev];
if (xx_condition_is_satisfied_for_read[dev])
{

selsuccess ();
return;

}

/*
* Condition is unsatisfied; process will block.
*/

procp = ptr->read;
if (procp && procp->p__wchan == (char*) Sselwait)

ptr->flags |= READ_COLLISION;
else

ptr->read = u.u_procp;
selfailure ();

In the next example, the process has selected a condition and is
blocked. Then, the condition becomes satisfied (read case handled):

xxintr(level)
{

/*
* Driver first notices that the condition is now
* satisfied and computes minor dev
*/

xxwakeread(dev);

June 26, 1989 SELECT-3

SE LE C T (K) SE LE C T (K)

xxwakeread(dev)
dev_t dev;
{

struct xx_selstr *ptr = Sxxselstr[dev];

/*
* If a proc has selected the condition, awaken it.
*/

if (ptr->read)
{

selwakeup(ptr->read, ptr->flags
& READ_COLLISION);

ptr->read = (struct proc *) NULL;
ptr->flags &= ~READ_COLLISION;

}
}

June 26, 1989 SELEC T -4

SC S I (K) SC S I (K)

scsi: scsi_get gen cmd,
scsi getdev, scsi_mkadr3,
scsi_s2tos, scsi_s3tol, scsi_stok,
scsi_stol, scsi_swap4_________
SCSI routines

Syntax

#include "sys/scsi.h"

int
scsi_get_gen_cmd(request_ptr, command, arrayp, nelements)
REQIO requestptr;
int command, nelements;
paddr t *arrayp;

DEVCFG
scsi_getdev(unit, config-tbS, dev open, name)
int unit;
DEVCFG *config-tbl;
int (*dev_open)();
char *name;

int
scsi_mkadr3(str, adr)
char str[];
char adr[];

short
scsi_s2tos(adr)
char *adr;

long
scsi_s3tol(adr)
char adr[];

caddrt
scsistok(adr)
char adr[];

June 26, 1989 SCSI-1

SC S I (K) SC S I (K)

long
scsistol(adr)
char adr[];

int
scsi_swap4(adr)
char *adr;

Description

These routines are used when converting between different SCSI
addressing schemes, and for miscellaneous tasks. scsi_get_gen _cmd
is used to fill a command block; scsijgetdev gets a SCSI device num
ber. Refer to Chapter 7, "Writing a SCSI Driver" for conceptual infor
mation on the use of the scsi(K) routines. The conversion routines
are:

Routine Source Destination
scsi_mkadr3(str, adr)
Makes 3-byte address

adr str
2 1 0 2 1 0
a b c c b a

short = scsi s2tos(adr)
Converts 2 bytes to a short

adr short
1 0 1 0
a b b a

long = scsi s3tol(adr)
Converts 3 bytes to a long

adr long
2 1 0 3 2 1 0
a b c 0 c b a

kernel = scsi stok(adr)
Converts 3 bytes to a
kernel address

adr kernel
2 1 0 3 2 1 0
a b c 0 c b a

long = scsi stol(adr)
Converts 4 bytes to a long

adr long
3 2 1 0 3 2 1 0
a b c d d c b a

scsi swap4(adr)
Swaps 4 bytes

adr adr
3 2 1 I 0 3 2 1 0
a b c | d d c b a

June 26, 1989 S C S I-2

SC S I (K) SCS I (K)

Parameters

scs i g e t gen e m d re q u e s t_ p tr is a pointer to an instance of
the sc s i io req structure (SCSI I/O
request block). co m m a n d is:
TEST_CMD, SENSE_CMD, or
INQUIRY_CMD which are defined in
sc s i.h . a rra yp is a pointer to an array
containing the arguments to com m and ,
n e le m e n ts indicates the number of ele
ments in the array pointed to by arrayp .

scs i g e td ev u n it is a logical unit number, such as a
device number, co n fig -tb l is a pointer to
an configuration table (an array) in
which device information is stored that
is used to build a block or character de
vice switch table entry. The configura
tion table is an instance of the
sc s i d e v c fg structure defined in scsi.h
and must be NULL terminated. The
in d e x field of this structure is filled in by
the operating system and contains the
major number of the device. The
d e v o p en argument to s c s ijg e td e v is the
address of the x x o p e n routine for your
driver, n a m e is the address of an array
containing the name of the disk. For
example, for the SCSI disk driver sup
plied with your system, "Sdsk" is used.

scs i m ka d rd s tr is a pointer to a three-byte array; a p
points to a three-byte array for the
address to be created. The most signifi
cant byte of a d r is not used.

scsi s2 to s a d r in a pointer to a two-byte array.

scs i s3 to l a d r in a pointer to a three-byte array.

scs i s to k a d r in a pointer to a three-byte array.

sc s i_ s to l a d r in a pointer to a four-byte array.

scs i sw ap4 a d r in a pointer to a four-byte array.

June 26, 1989 SCSI-3

SC S I (K) SC S I (K)

Return Value

sc s i_ g e t_ g e n _ c m d has no return value under normal conditions, but -1
can be returned if c o m m a n d is not one of the three permissible values.

s c s i jg e td e v returns a pointer to the configuration table entry for the
device or NULL if the device cannot be found in the configuration
table. In addition to returning NULL, the following message is dis
played on the console and stored in the p u tb u f array in memory:

WARNING: No configuration information for device name

Where d e v ic e is the major device number and n a m e is the argument to
the routine.

sc s i_ s2 to s returns a short integer. sc s i_ s3 to l returns a long integer.
sc s i_ s to k returns a kernel address. sc s i_ s to l returns a long integer.

June 26, 1989 S C S I-4

SET E R R O R (K) SE T E R R O R (K)

seterror__________
sets u .u e r ro r with error code

Syntax

#include "sys/errno.h"

void
seterror(errno)
int errno;

Description

This routine sets u.u_error to the value specified in errno. Possible
values for errno are defined in sys/errno.h. This routine can only be
called from user context and not during system initialization.

Typically, the following error codes are used in drivers:

Value Description
EACCES Permission denied
EAGAIN No more processes
EBUSY Mount device busy
EFAULT Bad address
EINTR Interrupted system call
EINVAL Invalid argument
EIO I/O error
ENODEV No such device
ENOENT No such file or directory
ENOMEM Not enough core
ENOSPC No space left on device
ENXIO No such device or address
EPERM Not super-user

June 26, 1989 SETERRO R-1

SIGNAL (K) SIGNAL (K)

signal__________
sends a signal to a process

Syntax

#include "sys/signal.h"

int
signaKpgrp, signum)
int pgrp, signum;

Description

The signal routine sends the specified signal, signum, to all processes
in the process group identified by pgrp.

Parameters

The pgrp argument is an integer that specifies the process group num
ber. At task time pgrp is one of the two equivalent integers
u.u_procp->p_pgrp or u.u_ttyp->t_pgrp If you wished to be able to
terminate a process group at interrupt time you would need to store the
pgrp ID in a global variable.

The signum argument is an integer that specifies the signal to be sent.

See Also

psignal(K)

June 26, 1989 SIGNAL-1

S L E E P (K) S L E E P (K)

sleep______________
suspends processing temporarily

Syntax

#include "sys/param.h"

int
sleep(address, priority)
caddr t address;
int priority;

Description

sleep suspends task time processing in a driver. Its behavior and func
tionality is not at all like that of the sleep{S) system call. For a tem
porary halt in the execution of your driver use the delay(K) routine.
sleep should be used when it is necessary for the driver to wait until a
resource is available or an I/O request has completed before continu
ing task time execution. It is not guaranteed that when sleep returns,
the event or resource that the driver has been waiting for will have
occurred.

Notes

This routine must not be called at interrupt time or from the xxinit rou
tine.

Parameters

address is a number the system uses for identifying the sleeping pro
cess in the process table. This number should be chosen so that it is
unique to those processes put to sleep by your driver. A good method
for deriving a unique number is to use the address of a global variable
that has been declared in your driver. Addresses of static variables are
not guaranteed to be unique. During debugging it is useful for the de
vice driver writer to display this number, since it is possible to use the
shell command ps -el to identify which processes are sleeping in your
driver by examining the values reported in the WCHAN column.

priority determines the priority of the process when it awakens. This
value is used by the scheduler to determine execution order in the run
queue. A lower priority places the process nearer the top of the run
queue. In addition the value of priority! is also used to determine
whether the sleeping process can be interrupted by a software signal.
If priority> is less than PZERO, then the sleeping process cannot be

June 26, 1989 SLEEP-1

S L E E P (K) S L E E P (K)

interrupted by a software signal. A process should only sleep at a
priority less than PZERO if it is guaranteed that the event it is waiting
for will occur within a short time. In general, processes should sleep at
priorities greater than PZERO so that users are able to force termina
tion of their processes by a software signal if an error occurs.

Return Values

sleep returns 0 (zero) if a wakeup(K) routine has been called using the
same address that was specified in the sleep call, or it returns 1 if the
priority used has been ORed with PCATCH and the sleeping process
has been sent a software signal.

Note

If priority has not been ORed with PCATCH and the sleeping process
is interrupted by a software signal, sleep will not return control to the
device driver. Instead sleep will longjmp(K) back to the process state
just after the system call was made. The system call mvoked by the
user process will return -1 and errno will be set to EINTR. If the de
vice driver has set flags or temporarily allocated memory that should
be cleared or freed when sleep is interrupted, OR the PCATCH con
stant into priority. This causes control to return to the driver on a sig
nal. The driver should then restore any temporary resources it was
using, set u.u_error to EINTR, and return -1. See the example follow
ing the discussion of the wakeup routine for more information.

See Also

timeout(K), wakeup(K)

June 26, 1989 SLE E P -2

S P L (K) S P L (K)

spl: splO, sph, spl2, spl3, spl4, spl5,
spl6, spl7, splbuf, splcli, splhi, splni,
splpp, spltty, splx_______________
block/permit interrupts

Syntax

int int int int
splO() spl4() splbuf() splpp()

int int int int
spll() sP15() splcli() spltty()

int int int
sPI2() spI6() splhi()

int int int
spI3() sPI7() splni()

int
splx(previous)
int previous;

Description

In many drivers, a need exists to protect sections of code from an
interrupt occuring and causing a context switch. Protecting code sec
tions ensures the integrity of the kernel and its data structures. The
splJ, 577/2 , 577/5 , spl4, spl5, 577/6 , 5/7/7 , splbuf, splcli, splni, splpp and
spltty routines prevent specific levels of interrupts from occuring.

June 26, 1989 SPL-1

S P L (K) S P L (K)

The following table describes each of the spl routines:

Routine IPL Description
splO 0 Permit all interrupts to occur
spll 1 Prevent interrupts from context and

process switches
spl2 2 Prevent priority level 2 interrupts
spl3 3 Prevent priority level 3 interrupts
spl4 4 Prevent character device interrupts
spl5
splcli
splpp

5 Prevent interrupts from character
devices from a ports card, and from
tty devices.

spl6

splbuf
splni

6 Prevent interrupts from block devices,
network devices, and the clock.

spltty 7 prevent tty interrupts (and the clock)
spl7
splhi

8 prevent all interrupts

splx - restore interrupt level to a former level

IPL stands for interrupt priority level. The IPL value for a device is set
on its card.

splO permits all interrupts to occur, splx restores the interrupt level to
that specified by its argument oldspl. Use of splO is not encouraged
because by restoring all interrupts, you may undo a previously set
level by a kernel process or routine calling your driver. Use splx
whenever possible to restore a previously set level. When coding an
interrupt routine, only use splx.

The spl5 and splcli routines prevent interrupts associated with tty de
vices and those that use character lists (clists) to buffer data, spl5 is
provided for backward compatibility only. If you are writing a serial
device driver, use splcli whenever possible, splcli should be used to
protect critical sections of code which manipulate clist structures or
pointers. It is possible that a device driver’s xxpoll routine will
preempt another driver while it is manipulating clists. If your xxpoll
routine manipulates clist structures, you should exercise care to make
sure that your routine was not entered at an spl level higher than 5.
Otherwise you may corrupt the kernel cfreelist. Do not manipulate
clists in an interrupt routine. It is not necessary to use splcli before
calling any of the cblock or clist routines (the routines on the getc{K)
and putc(K) manual pages) because these routines raise the system
priority level before entering their critical sections and then restore it
to its previous value before they return. It is only necessary for you to
use splcli if you are directly manipulating fields in a clist structure or
the freelist. You should only do this if you have extensive experience
with character device drivers.

June 26, 1989 S P L - 2

SP L (K) SP L (K)

The splö, splni, and splbuf routines mask all interrupts except for those
from the serial device. These routines prevents block device interrupts
from occuring. These routines block the system clock and should be
used sparingly because if the code it is protecting takes longer than
two clock ticks to execute, the system clock is degraded.

The spiny routine blocks interrupts from a serial device.

The .sy)/7 and splhi routines disable all interrupts. Use this routine
only for extremely short periods when updating critical data structures
that could be accessed by a high priority device. These routines also
block the system clock and should not be allowed to execute longer
than a single clock tick.

The splx routine restores a previously set interrupt priority level.

Parameters

The integer oldspl specifies a previous spl level, it should only be set
by the return value of a previous spl routine.

Warnings

The interrupt priority level in an interrupt routine must not be dropped
below the level at which the interrupt occurred or the stack may
become corrupted causing a system panic or loss of data. Use of splO
is not recommended as it can lower previously set priority levels used
by other kernel processes. Always store the previous priority level
returned by the spl call and use splx to restore the previousl level at
the end of your critical code section.

Return Value * •

The previous spl value is returned. It should be saved and used to
restore the spl level by a subsequent call to splx.

The spl7 and splhi routines block all interrupts. While these routines
are in effect, the following happens:

• Clock interrupts do not occur.

• Characters are not echoed back to the console.

• The cap slock, numlock, and scroll lock indicators do not work.

• Multi-screens cannot be switched.

• If your driver hangs during this interval, the machine must be
power-cycled to regain control.

June 26, 1989 SPL-3

S P L (K) SP L (K)

Notes

Use of spl6, spl7, and splhi can cause the software clock to lose time
and prevents other device drivers’ xxpoll routines from being called.
This may have an unpredictable effect on the behavior of other device
drivers that require periodic execution of their xxpoll routines.

Example

The following code fragments show how to check an spl level in an
xxpoll routine and demonstrate the use of splcli in a task time routine.

/* * **
* This macro tells us if the previous spl level was "lev"
* or higher. PS_PRIMASK is defined in sys/param.h.
*/
♦define ATSPL(lev,ps) ((ps) >= lev)
xxpoll(ps)
{
/*
* If we were at spl5 or higher before the clock tick, leave!
*/

if (ÄTSPL(5,ps)) {
return;

}
/*
** end xxpoll fragment.
*/

/*
* xxread(), xxwrite(), xxopen(), xxclose, and
* xxioctl() are all examples of task time routines
*/

xxread(dev)
int dev;
{

int oldspl;

/* set new spl and save old level in oldspl */
oldspl = splcli();

/* perform clist operations *./
/* restore saved spl */
splx(oldspl);

/*
** end task time fragment. ★ /

June 26, 1989 SP L -4

SPTALLOC (K) SPTALLOC (K)

sptalloc______________________
allocates temporary memory or maps a device into
memory

Syntax

#include "sys/immu.h"

caddrt
sptalloc(pages, mode, base, flag)
int pages, mode, base, flag;

Description

The s p ta l lo c routine is used to obtain temporary memory for use by
device drivers, or to map a device into memory for memory mapped
I/O. Memory is obtained from the system’s virtual memory pool.
When the driver is through with the memory, the memory should be
released via s p tf r e e {K). The s p ta l lo c routine returns a virtual address
usable by any kernel or driver routine.

Memory allocated is virtually contiguous but not physically contigu
ous. The memory allocated is never swapped out, and it only belongs
to the driver that allocated it until the memory is freed with
s p tf r e e (K).

The usual way to call s p ta l lo c is as follows:

sptalloc [p a g e s , PG_P, 0, 1) ;

Where p a g e s are the number of requested pages, m o d e indicates "page
present," b a s e (zero) indicates that requested memory is taken from
the kernel memory pool, and f l a g (1) indicates to return immediately
if memory is not available.

To use s p ta l lo c for accessing memory mapped I/O, use sp ta l lo c as
shown for an imaginary device being installed at physical address
0xB8000:

sptalloc (1, PG_P, 0xB8000, 1);

Although v a s b in d (K) provides a more generalized method of sharing
memory between the kernel and a user process, s p ta l lo c with m o d e set
to PG_P I PG_RW I PG_US may be used instead of v a sb in d , but the
results are different.

June 26, 1989 SPTALLOC-1

SPTALLOC (K) SPTALLOC (K)

A mapping performed with vasbind creates a region of memory shared
only between the kernel and a specific user process, sptalloc creates a
mapping accessible by the kernel and all processes. However, only
those processes that have been told the virtual address returned from
sptalloc, will know the address at which to access the memory.

Parameters

pages the number of requested pages

mode page descriptor table entry field mask. Possible
values are defined in sys/immu.h and are:

• PG_P — page-present bit. This flag must be
present for driver use. PG_P causes the
present bit to be set in the page table entry.
The CPU uses the present bit to differentiate
between pages that have to be faulted in and
pages that are already there.

• PG_RW — make segment usable for either
reading or writing. If this flag is not ORed
into mode, than the segment is read-only.
This flag only has meaning when used with
PG_US to indicate if a user can access the seg
ment for both reading and writing. (Kernel
processes can read or write any present page
whether write access is "permitted' or not.)

• PG_US — identify owner of memory. If
ORed in, memory is allocated for a user pro
cess. if omitted, memory is for a kernel pro
cess. If selected, any user process can access
the page. Use with PG_RW if write permis
sion is required; without PGJRW, the page is
read-only. To use this capability, a driver
must pass the return value from sptalloc back
to the user process for it to "know" where the
memory is, but this doesn’t limit its use to that
process.

base set to 0 (zero) to allocate kernel memory, or set to an
physical address pointing to previously allocated
memory' elsewhere.

June 26, 1989 SPTALLOC-2

SPTALLOC (K) SPTALLOC (K)

flag Set to 1 to return immediately if memory is not
available. Set to 0 (zero) to sleep until memory is
available. If only one page is being requested, and
memory is not available, sleep occurs however flag
is set. When sleeping is requested, sptalloc sleeps
with a priority of 0 (zero) and is not affected by sig
nals.

Warning

Because sptalloc may sleep, do not use at interrupt time (from the
xxintr routine).

Return

This routine returns the kernel virtual address of the memory allo
cated. NULL is returned if map space is not available. The size of the
map is determined by the constant sptmap which is configurable using
the Link Kit.

See Also

sptfree(K), vas(K)

June 26, 1989 SPTALLOC-3

SP T F R E E (K) SP T F R E E (K)

sptfree_______________________
releases memory previously allocated with sptalloc

Syntax

void
sptfree(va, npages, freeflg)
char *va;
int npages;
int freeflg;

Description

The sptfree routine frees memory obtained from sptalloc{K). The
arguments are the pointer returned by sptalloc, the size of the memory
(same as passed to sptalloc) and a flag which denotes whether you
want this freed memory to go back into the free page list. For drivers
which use this to free memory obtained from sptalloc, the flag must
always be 1.

For example, to release the memory obtained by a call to the sptalloc
routine, and free it completely, use the following statement:

sptfree(va, npages, 1);

Parameters

The argument va is the virtual address returned from a previous call to
sptalloc.

The value of npages is the number of pages to free. This should be the
same number of pages allocated by a previous call to sptalloc.

The argument freeflg indicates whether to actually free the memory
pages or not. If freeflg is not set, the memory pages are not freed.
This is used, for example, when freeing memory-mapped I/O space.

See Also

sptalloc(K)

June 26, 1989 SPTFREE-1

S U B Y T E (K) S U B Y T E (K)

subyte_______________
stores a character in user data space

Syntax

int
subyte(addr, val)
unsigned char *addr, val;

Description

The subyte routine stores one character in the user’s data space. If you
are storing data in u.u_base, consider using passc{K) in that
u.u_count, u.uoffset, and u.ujbase are updated for you, and error
handling is provided via u.u_error. If any chance exists that a -1 may
be contained in the data that you are storing in user space, use
copyout(K) instead of subyte (or passe). A -1 in the data is usually
associated as an error condition.

This routine must not be called from an interrupt or xxinit routine.

Parameters

The argument addr is a pointer to the byte to be stored in the user’s
data space.

The argument val is the value to be stored.

See Also

fubyte(K), fuword(K), suword(K), passc(K)

June 26, 1989 S U B Y T E - 1

S U S E R (K) S U S E R (K)

suser___________________
determines if current user is the super-user

Syntax

int
suser()

Description

The suser routine determines whether the user associated with the
currently executing process is the super-user. This can be useful, for
example, in determining whether special device operations (such as
disk formatting) are allowed.

Return

suser returns 0 if the current user is not the super-user and 1 if the user
is the super-user.

June 26, 1989 SU SER -1

SUW ORD (K) SUW ORD (K)

suword________________
stores a 32-bit word in user data space

Syntax

int
suword(addr, val)
char *addr;
int val;

Description

The suword routine stores one 32-bit word in the user’s data space.

Parameters

The argument addr is a pointer to the beginning address in user space.
(The address does not have to be word-aligned.)

The argument val is the value to be set.

This routine must not be called from an interrupt or xxinit routine.

See Also

fubyte(K), fuword(K), subyte(K)

June 26, 1989 SUW ORD-1

TIMEOUT (K) TIMEOUT (K)

timeout, untimeout_____
schedules a time to execute a routine

Syntax

int
timeout(routine, arg, clockticks)
int (*routine) ();
caddr t arg;
int clock ticks;

void
untimeout(id)
int id;

Description

timeout schedules a routine to be executed at a specific time in the
future, timeout returns an integer identification number, untimeout
cancels a timeout request using the identfication number returned
from timeout.

Note

This routine can be used in an interrupt routine only if the interrupt
priority level does not block the clock interrupt. Do not use if the
level is at spl6, spl7, splhi, splni or spltty.

Parameters

timeout has the following arguments:

a routine to be executed after the specified
number of clock jicks has elapsed.

passed as a parameter to routine.

the number of clock ticks to wait before cal
ling routine.

The argument to untimeout is the integer identification number
returned from the timeout call that you wish to cancel.

routine

arg

clock ticks

June 26, 1989 TIMEOUT-1

T I M E O U T (K) T I M E O U T (K)

Notes

timeout should normally only be used al task time, however it can be
used in an xxinit routine with this caveat. Since the clock interrupts
may not be enabled before your xxinit routine is called, the timeout
may not elapse when specified, but will elapse no later than
(time_when clock started + clockjicks) times the length of one
clock tick.

Example

timeout(K), sleep(K) and wakeupiK) can be combined to provide a
“ busy, wait’’ function. The following code sample illustrates this
possible functionality:

d e f in e PERIOD 5 / * 5 c lo c k t i c k s * /
d e f in e BUSYPRI (PZERO -1) /* a r b it r a r y * /

/* D e c la r e r o u t in e t o u se in t im e o u t () . * /
i n t s t o p w a i t () ;

/* f l a g w hich i s u sed t o in d ic a t e * /
/* w hether t o c o n t in u e w a it in g . * /
i n t s t a t u s ;

i n t b u sy w a it() /* w a it u n t i l s t a t u s i s n o n -z e r o * /
{

w h ile (s t a tu s == 0) {
t im e o u t (s to p w a it , (cad d r_t) & sta tu s , PERIOD);
s l e e p (&s t a t u s , BUSYPRI);

}
}

i n t s t o p w a i t (arg)
ca d d r_ t arg;
{

i f (/* what I am w a it in g fo r h as happened * /)
s t a t u s = 1;

e l s e
w akeup(a r g) ;

}

A device driver should never loop while waiting for a status change
unless the delay is less than 100 microseconds. Also, setting a timeout
for fewer than three clock ticks may result in the sleep call happening
after the timeout has occurred. This results in a permanent sleep con
dition (hang).

See Also

sleep(K), wakeup(K), delay(K)

June 26, 1989 TIMEOUT-2

TTIOCOM (K) TTIOCOM (K)

ttiocom________________
interpret tty driver I/O control commands

Syntax

#include "sys/tvpes.h"
#include "sys/file.h"
#include "sys/tty.h"

int ttiocom(tp, cmd, arg, mode)
struct tty * *tp;
int cmd, arg, mode;

Description

t t i o c o m sends an I/O control command to the tty device. Valid com
mands (the c m d argument to t t i o c o m) are:

• IOC_SELECT — determine if a character can be read from or
written to a tty device without blocking (going to sleep in the
process), m o d e can be SELREAD or SELWRITE. NOTE:
IOC_SELECT must not be called from an interrupt routine and
s l e e p must not be called just prior to calling this I/O control
command. IOC_SELECT calls t t s e l e c t .

• IOCTYPE — return the name of the last I/O control command
called. u.u_rvall is set to the value of TIOC. IOCTYPE must
not be called from an interrupt routine.

June 26, 1989 TTIOCOM-1

TTIOCOM (K) TTIOCOM (K)

• TCSETAF, TCSETAW, TCSETA, TCGETA, TCSBRK, TCXONC,
TCFLSH — explained on the termio(M) manual page.
TCSETAW and TCSETAF call tty wait. TCSETAF calls ttyflush.
TCSETA calls ttioctl when opening a new line discipline and
when changing the value of the line discipline flag, t lflag.
TCSBRK calls ttywait. TCXONC calls the driver xxproc routine
with varying arguments depending on the arg argument to
ttiocom. TCGETA sets u.u_error to EFAULT if a paging error
occurs while trying to return the requested tty structure.
TCXONC sets u.u_error to EINVAL if arg is not 0, 1,2, or 3.
TCFLSH sets u.u_error to EINVAL if arg is not 0, 1, or 2.
TCSETA sets u.u_error to EFAULT if the tty structure cannot
be set, or to EINVAL if the requested line discipline is less than
zero or greater than the maximum. TCFLSH calls ttyflush.
xxproc is called by TCXONC as follows:

arg
value

xxproc
argument

0 (zero)
1
2
3

T SUSPEND
T RESUME
T BLOCK
T UNBLOCK

• FIORDCHK — check to see if characters are waiting to be read.
1 is returned if characters are waiting in t_canq. If ICANON is
set, it is also possible for 1 to be returned when characters are
not in t_canq, but there are characters in t_delct. If there are
no characters in t_canq and ICANON is not set, and if there are
characters in t_rawq, 1 is returned. If none of the queues have
characters, 0 (zero) is returned. FIORDCHK causes ttrdchk to
be called.

• XCSETAW — wait for the universal asynchronous
receiver/transmitter (UART) to empty (waits 11 bit times
depending on the terminal’s baud rate). XCSETAW is a POSIX
termio extension.

• XCSETAF — wait until the UART empties and then flush all
read and write buffers (calls ttyflush). XCSETAF is a POSIX
termio extension.

• XCSETA — set terminal parameters from the tty structure
specified by the arg argument to ttiocom. XCSETA is a POSIX
termio extension. •

• XCGETA — get terminal parameters from a terminal’s tty
structure and put into the tty structure specified by the arg
argument to ttiocom.

June 26, 1989 TTIOCOM-2

TTIOCOM (K) TTIOCOM (K)

Parameters

tp Pointer to an instance of the tty structure for a tty de
vice

cmd I/O control command passed through from the user
program

arg Argument to the I/O control command, also passed
through from the user program

mode Indicates the mode by which the file was opened.
The modes are assigned by the kernel and are inter
preted into flag values that are defined in sys/file.h.
Possible values are FNDELAY, FREAD, FSTOPIO,
FWRITE.

See Also

termio(M), canon(K), tty(K) (All other tt routines are described on the
tty(K) manual page.)

June 26, 1989 TTIOCOM-3

VAS (K) VAS (K)

vas: vasbind, vasmalloc,
vasmapped, vasunbind
virtual address space memory routines

Syntax

int
vasbind(paddr, vaddr, nbvtes)
paddrt paddr;
caddrt vaddr;
unsigned int nbytes;

caddrt
vasmalloc(paddr, nbytes)
paddr t paddr;
unsigned int nbytes;

caddrt
vasmapped(paddr, nbytes)
paddr t paddr;
unsigned int nbytes;

int
vasunbind(vaddr, nbytes)
caddr t vaddr;
unsigned int nbytes;

Description

These routines allow a driver to map physical memory so that it can
be read from or written to by both a driver and a calling user process.
These routines are generally used to allow user processes to directly
access video adapter memory. Memory that has been mapped using
these routines is visible to the kernel and to a calling process. How
ever, the mapping is not globally visible to all processes.

vasmalloc allocates virtual memory. Use this routine to obtain virtual
address space that is not currently in use. vasmalloc can only allocate
four megabytes of virtual address space on each call. Requests less
than this amount are rounded up to four megabytes; requests larger
than this amount cause an error to occur, vasmalloc returns an address
to virtual user memory; no actual physical memory is allocated by this
routine. The nbytes argument can be specified as 1 to allocate four
megabytes, but Ö (zero) or not specifying this argument is not permis
sible.

June 26, 1989 VAS-1

VAS (K) VAS (K)

vasbind binds a specified virtual address to a physical address. This
routine ensures that a problem will not occur with the bound memory
being swapped out and causing a page fault and panic in the kernel.
Before using vasbind, call vasmapped to determine if memory has
already been mapped for the calling process.

The physical address supplied to vasbind may be the address of an I/O
address space, for example, a memory-mapped I/O address. Or
specify -1 to request that the memory be allocated from the kernel free
memory pool.

When vasbind completes, the driver must pass the virtual address back
to the user process using copyout{K) or another similar routine. Calls
to vasbind must not specify an address in the text, data, or shared data
segments of a user process.

The upper limit for user virtual memory is set in the KVBASE constant
(defined in sys/immu.h); above KVBASE is the kernel virtual address
space. The virtual address supplied to vasbind must be in user virtual
memory (below KVBASE), and must not be in use by the current pro
cess.

vasmapped determines if a mapping is already in place.

vasunbind undoes a mapping.

These routines cannot be called from a driver’s interrupt routine
(xxintr).

Parameters

Notes

nbytes number of bytes of memory to allocate, bind,
or unbind. For vasmalloc, nbytes can be speci
fied as 1 to allocate four megabytes, but 0
(zero) or not specifying this argument is not
permissible.

paddr Physical address at which the specified virtual
address is to be bound. When calling vasbind,
paddr can be set to -1 to indicate that the
requested user virtual memory is to be allo
cated.

vaddr Virtual address to bind or unbind to or from
physical memory

June 26, 1989 VAS-2

VAS (K) VAS (K)

Return Value

vasbind returns -1 if an error occurs or if an error is found in
u.u_error. vasmalloc returns a virtual address, vasunbind returns -1
if an error is found in u.u_error, or if the virtual address couldn’t be
found, vasmapped returns the virtual address at which the supplied
physical address is bound, or 0 (zero) is physical address is not bound.

See Also

sptalloc(K), copyout(K)

June 26, 1989 VAS-3

TTY (K) TTY (K)

tty: ttclose, ttin, ttinit, ttiwake, tto-
pen, ttout, ttowake, ttread, ttrdchk,
ttrstrt, ttselect, tttimeo, ttwrite,
ttxput, ttyflush, ttywait__________
tty driver routines

Syntax

#include "sys/types.h"
#include "sys/tty.h"

int
ttclose(tp)
struct tty *tp;

int
ttin(tp, code)
struct tty *tp;
int code;

int
ttinit(tp)
struct tty *tp;

int
ttioctl(tp, cmd, arg, mode)
struct tty *tp;
int cmd, arg, mode;

int
ttiwake(tp)
struct tty *tp;

int
ttopen(tp)
struct tty *tp;

int
ttout(tp)
struct tty *tp;

June 26, 1989 TTY-1

TTY (K) TTY (K)

int
ttowake(tp)
struct tty *tp;

int
ttread(tp)
struct tty *tp;

int
ttrdchk(tp)
struct tty *tp;

int
ttrstrt(tp)
struct tty *tp;

int
ttselect(tp, rw)
struct tty *tp;
int rw;

int
tttimeo(tp)
struct tty *tp;

int
ttwrite(tp)
struct tty *tp;

int
ttxput(tp, ucp, ncode)
struct tty *tp;
int ncode;
union {

unsigned short ch;
struct cblock *ptr;

} ucp;

int
ttyflush(tp, rdwrt)
struct tty *tp;
int rdwrt;

int
ttywait(tp)
struct tty *tp;

June 26, 1989 TTY-2

Description

TTY (K) TTY (K)

The routines are:

t t c l o s e

t t in

t t i n i t

called by the line discipline zero l _ c l o s e routine to
remove access to a tty device from the process that
called it. t t c l o s e disables ISOPEN from the t_state
member of the tty structure, calls t t i o c t l with the
LDCLOSE argument, and disables XCLUDE from the
tlflag member of the tty structure.

called by the line discipline zero l _ i n p u t routine to
get characters from a TTY device, t t i n is called in a
driver’s interrupt routine to process and move char
acters from t_rbuf to the raw character queue,
t_rawq. t t in processes the t e r m i o (M) c_cc values of
VINTR, VQLTT, VSUSP, VSWTCH, VEOL, VERASE,
VKILL, and VEOF. In addition, t t i n checks that
ICANON is set when processing the c_cc VMIN and
VTIME values, t t in performs input escape mapping
for internationalization character processing. If the
c o d e argument to t t i n is L_BREAK, t t in sends the
SIGINT signal to all associated processes, t t in then
calls t t y f l u s h to release both read and write buffers,
and returns if no characters are found in trbuf. If
either ECHO is set or after processing international
character mapping, t t in calls the driver’s x x p r o c rou
tine with T_OUTPUT set. x x p r o c can also be called
with T_SWTCH set if VSWTCH is enabled and if
NOFLSH is disabled, t t in calls these other tty rou
tines: t t y f l u s h , t t x p u t , t t t i m e o , and t t iw a k e .

initializes the tty structure for line discipline 0
(zero). The following members of the tty structure
are initialized:

• t_line — line discipline index is set to
0 (zero)

• t_iflag — terminal input control is set to
0 (zero)

• t_oflag — terminal output control is set to
0 (zero) •

• tlflag — line discipline terminal control is
set to 0 (zero)

June 26, 1989 TTY-3

TTY (K)

t t i o c t l

t r iw a k e

t t o w a k e

t t r e a d

t t r d c h k

June 26, 1989

TTY (K)

• t_cflag — terminal hardware control is set to
these values: 1200 baud (SSPEED variable), 8
bits (CS8 variable), enable receiver (CREAD
variable), hang up on last close (HLIPCL vari
able)

used to allocate, deallocate, or move the contents of
terminal buffers. Called through the I j o c t l function
of the line switch table. The c m d argument to t t i o c t l
has the following values:

• LDOPEN — allocate a receive buffer, initial
ize several tr bu f members (c ptr, c count,
and c_size), and call the driver’s x x p r o c rou
tine with T_ENPUT as the argument.

• LDCLOSE — call the driver’s x x p r o c routine
with the T_RESUME argument; call t t y w a i t to
wait for data to clear the UART; and call
t t y f l u s h to empty the t_canq and t rawq
buffers, as well as the contents of t rbuf.

• LDCHG — move contents of the raw queue,
t rawq, to the canonical queue, t_canq.
LDCHG only works if ICANON is enabled.

called from an interrupt routine to wake up any pro
cesses that are asleep waiting for characters to
appear in the raw input queue, tjrawq. t t i w a k e only
works when IASLP is set in the t_state field of the
tty structure, t t i w a k e disables IASLP.

called from an interrupt routine to wake up any pro
cesses that are asleep waiting for characters to
appear in the output queue, t_outq. t t o w a k e only
works when OASLP is set in the t_state field of the
tty structure, t t o w a k e disables OASLP.

called from a driver’s x x r e a d routine indirectly
through the l _ r e a d line discipline switch function.
t t r e a d conveys characters processed by c a n o n from
the canonical queue, t_canq, to the user process.

returns a non-zero value if there are characters to be
read. If carrier is present (CARR_ON is enabled in
t_state), t t r d c h k tests t_canq for characters. t_canq
is the queue for characters that have been processed
by the c a n o n routine. If characters are present, a 1 is
returned. If characters are not present, and c a n o n is
being used to process characters from the terminal
(ICANON is set in t_lflag), then t t r d c h k tests the de
limiter count to see if a delimiter has been entered on

TTY-4

TTY (K) TTY (K)

the tty device. The delimiter count is held in t_delct
in the tty structure. If a delimiter was received, 1 is
returned. If characters are not present, but canon is
not being used to process characters, then the raw
character queue, t_rawq, is checked for characters.
If characters are waiting in the raw queue, 1 is
returned.

ttrstrt restart tty device output after a delay timeout, ttrstrt
performs only one task; it calls the driver’s xxproc
routine with arguments of tp and T_TIME. {tp is the
pointer to the tty structure passed through from the
argument to ttrstrt.)

ttselect ensure that a read or write can be performed with no
blocking. (If blocking occurs, the process will be put
to sleep until the I/O can be satisfied.) Do not call
sleep{K) before calling ttselect, and do not call
ttselect from an interrupt routine, ttselect has two
modes determined by its rw argument. These modes
are SELREAD and SELWRITE.

tttimeo satisfy VTIME timing requirement for data input.
tttimeo does not execute if ICANON is set, if VTIME
or VMIN are not set, or if there aren’t any characters
to process in the raw queue, t_rawq. tttimeo calls
timeout(K) for the time specified in VTIME times the
number of ticks per second (Hz) divided by 10.
While timeout is active, t_state is ORed with RTO
and TACT. When the timing finishes, ttiwake is
called to awaken any processes that are sleeping on
the raw input queue.

ttwrite called from the line discipline l_write function call
in a driver’s xxwrite routine to copy data from the
user program into the driver so that the data can be
displayed on a tty device. If there is no carrier,
ttwrite returns immediately, ttwrite requires user
context and therefore cannot be called from an inter
rupt routine. If a paging fault occurs while attempt
ing to get the data from user space, u.u_error is set
to EFAULT, In the course of the copy operation,
u.u_base and u.ucount are updated to reflect the
amount of data transferred, ttwrite calls ttxput to
write the data to the terminal.

Before data is fetched from user space, the number of
characters in the output queue, t_outq, are checked
to see if the count exceeds the high water mark. The
high water mark is the point at which tty input is
suspended so that the characters coming in don’t
overload the tty driver’s ability to process them and

June 26. 1989 TTY-5

TTY (K) TTY (K)

ttxpu t

echo them to output. If the count exceeds the high
water mark, the driver’s xxproc routine is called with
the T_OUTPUT argument, and the process is put to
sleep until the tty driver can handle I/O again. The
process sleeps on the address of t_outq at a priority
of TTOPRI (above PZERO) and can be awakened
prematurely by a signal. If a signal is sent to the
sleeping process, a longjmp(K) occurs, returning
control to the calling user process and putting EINTR
in u.u_error (errno in user space). If a write occurs
in the background, SIGTTOU is sent to all processes
in the current process group.

puts characters on the tty output queue (t_outq),
adds delays, expands tabs, and handles carriage
return and new line characters, ttxput is called from
both base level to output characters to a tty device
and from interrupt level for echoing characters read
in from the tty device. If the queue escape character,
denoted as QESC, is detected, it is put directly on the
output queue. The next character after QESC is
treated as a timer character if the octal value is
greater than 200. The timer character is used in a
timeout{K) call in ttout. If the character after QESC
is less than 200, it is treated as an ordinary character
to be output.

If t_state contains EXTPROC, but t lflag does not
contains XCASE, then no post processing is required.
Additionally in this state, characters can be interna
tionally mapped if requested, and shipped to the out
put queue for further processing. XCASE indicates
that special characters should be “ escaped” by
being preceded with a backslash. Refer to termio{M)
for a list of characters that are translated when
XCASE is specified. International character mapping
is requested if t_mstate is true. If XCASE processing
is required, then international character mapping can
also be requested, and processing for QESC is avail
able (QESC handling is not available when no post
processing is required).

ttxput processes characters with octal values greater
than 200 as special characters and performs delay
processing if t_state does not contain EXTPROC. If
EXTPROC is set, than delay processing is assumed to

June 26, 1989 TTY-6

TTY (K) TTY (K)

be handled by an external process. Characters that
may require translation and also need to indicate a
delay are shown in the following table:

Octal Value Description
0101 non-printing character
0202 backspace
0203 line feed
0204 tab
0205 vertical tab
0206 carriage return
0207 form feed

If delay handling is being provided by ttxput, then the
delay is calculated based on the value of t_oflag.
The ttout routine does the actual timed delay, ttxput
outputs the QESC character as well as the timing
value ORed with octal 0200.

ttyflush called to release character blocks to the free list from
the write buffer, t_outq, or from the two read buffers,
t_canq and t_rawq. The rdwrt argument to ttyflush
should be ANDed with either FREAD to release read
buffers, or with FWRITE to release the write buffer.
When the blocks in the write buffer are released, the
driver’s xxproc routine is called with the T_WFLUSH
argument. If t_state contains OASLP, any processes
sleeping on the address of t_outq are awakened and
OASLP is disabled, and if t_state contains TTIOW,
then TTIOW is disabled and all processes sleeping on
the address of t_oflag are awakened.

If the blocks in the read buffers are being released,
then the driver’s xxproc routine is called with the
TJRFLUSH argument. If t_state contains IASLP,
IASLP is disabled and all processes sleeping on
t_rawq are awakened.

ttywait called to drain the contents of the universal asyn
chronous receiver/transmitter (UART), ttywait waits
11 bit times for the UART to empty of all data. The

June 26, 1989 TTY-7

baud rate is taken from t_cflag&CBAUD and possi
ble values are (in bits per second): 0.5, 50, 75, 110,
134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
9600, 19200, or 38400. If upon entry to this routine,
characters are in t_outq, or t_state contains BUSY or
TIMEOUT, then t_state is ORed with TTIOW and the
process is put to sleep on the address of t_oflag at
TTOPRI. TTOPRI has a value above PZERO and
therefore can be prematurely awakened by a signal.
Should a signal occur, control returns to the user pro
gram and the EINTR error code is placed in
u.u_error and err no in the user program.

Parameters

TTY (K) TTY (K)

tp a pointer to the struct tty data structure
associated with the device being
accessed.

code used by ttin and can be set to L_BR£AK
to cause all processes associated with
the terminal to be sent a SIGINT signal,
and to have all character blocks on
t outq, t canq, and trawq queues be
released to the free list.

cmd, arg, or mode used by ttioctl to determine which I/O
control command is being requested.

rw used by ttselect to determine whether
the driver is testing for read or write
access without blocking. Possible
values are SELREAD or SELWRITE.

ucp, ncode used by ttxput. ucp describes a union of
a character or a pointer to a block of
characters, ncode is a flag used to indi
cate which value ucp contains; if ncode
is zero (0), ucp is a character; any other
value indicates that ucp is a pointer to a
cblock.

rdwrt used by ttyflush to indicate which
buffers to release to the free list. AND
with FREAD to indicate that the cblocks
in t_canq and trawq should be
released; AND with FWRITE to indicate
that the blocks in the t_outq should be
released.

June 26, 1989 TTY-8

TTY (K) TTY (K)

Notes

All routines on this manual page can be used only with character de
vice drivers.

See Also

termio(M), canon(K), ttiocom(K)

June 26, 1989 TTY-9

VIDEO (K) VIDEO (K)

video: DISPLAYED, viddoio, vidin-
itscreen, vidmap, vidresscreen, vid-
savscreen, vidumapinit, vidunmap
supports video adapter driver developm ent

Syntax

#include "sys/vid.h"

int
DISPLAYED(msp)
struct mscrn *mps;

int
viddoio(msp, arg, portlist)
struct mscrn *mps;
struct p or t i oarg *arg;
struct portrange *portlist;

int
vidinitscreen(msp)
struct mscrn *mps;

caddrt
vidmap(address, nbytes)
paddr t address;
int nbytes;

int
vidresscreen(msp)
struct mscrn *mps;

int
vidsavscreen(msp)
struct mscrn *mps;

int
vidumapinit(base, size)
int base, size;

int
vidunmap(address, nbytes)
caddr t address;
int nbytes;

June 26, 1989 VIDEO-1

VIDEO (K) VIDEO (K)

Description

The descriptions of the routines are as follows

DISPLAYED Returns TRUE if the screen is displayed.
DISPLAYED is a macro defined in sys/vid.h.
The m sp argument is a pointer to an instance
of the multiscreen mscrn structure.

v id d o io Supports input and output I/O control com
mands for the adapter driver. The adapter
driver passes the user’s port_io_arg pointer,
a rg , and a list of I/O ports. The port_io_arg
and portrange structures are documented in
sys/vid.h. The p o r t l i s t is terminated with a
portrange count field of zero. The m sp argu
ment is a pointer to an instance of the mul
tiscreen mscrn structure.

v id in its c re e n Initializes a multiscreen to 80 rows, 25 cols,
white on black, and so on. The m sp argument
is a pointer to an instance of the multiscreen
mscrn structure.

v id m a p Maps n b y t e s of physical memory a d d r e s s to
virtual memory. A kernel data pointer to the
virtual memory is returned. Unlike
memget(K), no physical memory is actually
added to the kernel address space: vidmap
simply translates a physical address pointer to
virtual.

v i d r e s s c r e e n Restores the screen. Calls the adapter driver
associated with a multiscreen to restore the
screen. The m s p argument is a pointer to an
instance of the multiscreen mscrn structure.

v i d s a v s c r e e n Saves the screen Calls the adapter driver
associated with a multiscreen to save the
screen. The m s p argument is a pointer to an
instance of the multiscreen mscrn structure

v i d u m a p i n i t Returns a user physical address mapped to
memory starting at virtual b a s e extending ror
s i z e bytes.

v i d u n m a p Unmaps n b y t e s of a previously mapped
a d d r e s s . This routine is the reverse of v id m a p .

June 26, 1989 VIDEO-2

VTOP (K) VTO P(K)

vtop______________________
convert a virtual address to a physical address

Syntax

#include "sys/types.h"

paddr t
vtop(vaddr, proc-ptr)
char *vaddr;
struct proc *proc-ptr;

Description

v to p returns a physical address associated with the specified virtual
address. Specify p r o c - p t r as either u.u procp or as bp->b_proc, where
b p is a pointer to the b u f structure, p r o c - p t r can be omitted if v to p is
called from user context. If v t o p is called with one argument, or with
u.u procp as the p r o c - p t r , then v t o p can only be called from user con
text and not from an interrupt routine.

Parameters

v a d d r virtual address to be translated

p r o c - p t r pointer to a p r o c structure (described in s y s / p r o c .h)

Return Value

Normally, a physical address is returned. -1 is returned if the speci
fied address is incorrect and v t o p is called from user context. 0 (zero)
is returned if the specified address is incorrect and v to p is called from
an interrupt routine. If the specified page of kernel memory is not
present, a panic results during the v to p call with the following mes
sage:

PANIC: s v i r t o p h y s - n o t p r e s e n t .

"s v i r t o p h y s " is a subroutine called by v to p .

June 26, 1989 VTOP-1

WAKEUP(K) WAKEUP(K)

wakeup__________
wakes up a sleeping process

Syntax ____________

int
wakeup(address)
caddrJ address;

Description

wakeup cau ses all p ro c e sse s w h ic h are s leep in g a t a w a it ch an n e l
eq u a l to address to b e tak en o ff th e s leep q u eu e an d p la c e d on the ru n
q u eu e , W h e n a p ro cess is aw ak en ed , the ca ll to sleep{K) re tu rn s a
v a lu e o f zero . It is still n e c e ssa ry to see w h e th e r th e e v e n t b e in g s lep t
on h as o ccu rred , as th e re is n o g u a ran tee th a t th e re so u rce b e in g
w a ited fo r is ac tu a lly free .

Parameters

address sh o u ld b e the sam e v a lu e u se d in a p re v io u s in v o c a tio n o f the
sleep ro u tin e . S in ce th is n u m b e r is n o t g u a ra n te e d to b e u n iq u e an d
m u ltip le p ro cesse s m ay h av e h av e b een aw ak en ed b y an y s in g le in v o
ca tio n o f the wakeup ro u tin e it is n o t g u a ra n te e d th a t th e e v e n t b e in g
w a ited fo r h as in fa c t o ccu rred .

Return Value

wakeup d o es n o t re tu rn a u se fu l value .

Example

T he fo llo w in g co d e frag m en ts d em o n s tra te on e p o ss ib le u se o f sleep
an d wakeup. In th is in s tan ce the d riv e r xxread ro u tin e a llo ca te s a te m
p o ra ry s to rag e area , q u eu es an I/O tran sfe r , an d th en p u ts the p ro cess
to s leep . T he xxintr ro u tin e is c a lled w h en the d ev ice is read y to do
the tran sfer, A fte r the tran sfe r is co m p le te the xxintr ro u tin e ex ecu te s
a wakeup.

June 26, 1989 WAKEUP=1

W AKEU P(K) W AKEU P(K)

/*
* declare variable which is used for address
V
char my_address;
/*
* First the xxreadO .
*/

xxread(dev)
int dev;
{
#define MYPRI PZERO+15 /* PZERO is defined in sys/param.h */

/* allocate temporary storage */

/ * s e t f l a g t o i n d i c a t e I / O t r a n s f e r i s i n p r o g r e s s * /

/ * s t a r t I / O t r a n s f e r * /

/*
* f l a g o n l y i n d i c a t e s t r a n s f e r i s d o n e i f w a k e u p O h a s

* b e e n c a l l e d b y m y x x i n t r Q .

*/
w h i l e (/ * f l a g i n d i c a t e s t r a n s f e r i s n o t d o n e * /) {

/*
* O R M Y P R I w i t h P C A T C H t o c l e a n t h i n g s u p i n s t e a d

* o f r e t u r n i n g d i r e c t l y t o u s e r s p a c e w i t h a n e r r o r .

* S e e l o n g j m p (K) f o r m o r e i n f o r m a t i o n .

7 *

i f (s l e e p (& m y _ a d d r e s s , M Y P R I | P C A T C H) — 1) {

/ * s t o p I / O t r a n s f e r * /

/ * c l e a r I / O t r a n s f e r f l a g * /

/ * f r e e t e m p o r a r y m e m o r y */
u . u _ e r r o r = E I N T R ;

r e t u r n (- 1) ;

}
} / * only get past here when transfer is done */
/* copy data from temporary storage to user address */
/ * f r e e t e m p o r a r y m e m o r y * /

r e t u r n (/ * n u m b e r o f b y t e s t r a n s f e r r e d * /) ;

} •

June 26, 1989 W AKEUP-2

W A KEU P(K) W AKEU P(K)

/*
* now for the xxintr()
*/

xxintr(interrupt)
int interrupt;
{

/* check that transfer is complete */

/* set flag to indicate transfer is complete */
/* wakeup sleeping process */
wakeup(&my_address);

}
/*
* Note that the preceding example does not take into
* account the possibility that multiple user processes
* may have queued requests for a single device.
*/

See Also

sleep(K), timeout(K), delay(K)

June 26, 1989 W AKEUP-3

Index

8259 interrupt controller 6-9

A

AC_* values 5-21
AC_RESSCRN

example 5-5
AC_S AV SCRN

example 5-5
AC_S AVSZQRY

screen memory allocation 5-7
adapctl routine

video driver 5-21
Adapter structure 5-8
adapter_entry 7-7
Address conversion 2-36
AI_COLOR 5-16
AI_PRESENT 5-16
Alignment 6-2
allocb 9-8
ANSI parser 5-3
ANSI SCSI standard 7-2
apd_area 5-9
Appended writes

block driver 3-8
character driver 4-3

Assembly language guideline 2-39
Automatic variables 2-17, 2-18

B

Backup programs
use of raw I/O 3-3

Bad tracking 7-16
b_addr 3-9
b_blkno 3-9
b_blkno Change A-4
B_BUSY 3-5
b_dev 6-12
bdevsw (block device switch table) 2-12
B_DONE 3-5
B_ERROR

B_ERROR (continued)
described 3-5
example 3-18, B-10

B_FLUSH flag A-4
B JFORMAT flag A-4
Binaries A-2
Binary distribution 6-11
Bit-mapped graphics 5-3
bkckrecalset B-22
blckbreakup call B-23
blck.c 2-43
blckclose B-9
blck command call B-12, B-13, B-14, B-15,

B-17, B-18, B-28, B-19
blck_dma call B-18
blck_doIO call B-17, B-29, B-18
blckDSset call B-19, B-22
blck.h 2-43
blckhalt B-29
blckinit B-8
blckintr

call B-14
declared B-8, B-13

blckioctl B-9
blckioset call B-19, B-22
blcklSset call B-19, B-22
blcklocal call B-13, B-17, B-28
blckmap call B -ll, B-13, B-28, B-16
blckopen call B-30, B-8
blckprint B-30
blckread B-23
blckrecalset call B-19
blckreset call B-12, B-16, B-28, B-25
blckseekset call B-19, B-22
blckspecset call B-19, B-23
blckstart call B-12, B-16, B-27, B-29,

B-30, B -ll
blckstrategy call B-23, B-10
blcktab B-6
blck_timeout call B -ll, B-13, B-27
blckxfer call B-15, B-17
BLKDEV

blckclose B-9
blckopen B-8, B-6

Block device
debugging 6-7
explained 2-7, 3-1
I/O 3-1

Block device driver
example 3-14
explained 2-4, 2-8
routines 2-36, 3-4, 3-7

Block on input 8-15

1-1

Index

B_NOCROSS flag A-4
Boot prompt 6-6
Bootable rootable 7-18
Booting the new kernel 6-6
B_PHYS 3-5
B_PRIVLG flag A-4
Break processing 8-15
Breakup routine (xxbreakup) 3-13
BJREMOTE flag A-4
B_S52K flag A-4
BSIZE3-1
BSIZE system block size 2-8
buf structure 2-8, 2-18

av_forw
example 3-22

b_addr 3-9
b_bcount 3-5
b_blkno 3-5,3-9

example 3-18, B-10
System V changes A-4, A-16

b_count
example 3-18, B-10

b_cylin
System V changes A-4

b_cylin field A-9
b_dev 3-5,6-12

example 3-20
b_error 3-5

example B-10
b_flags

described 3-5
example B-10
System V changes A-4
test for busy A-8

b_paddr
System V changes A-5

b_proc A-6
b_reltime A-6
b_resid

described 3-5
example 3-18, B-10

bisector
conversion from b_cylin A-4
System V changes A-5

b_sector field A-9
b_start A-5
buf_t A-6
b_un.b_addr A-5
b_un.b_daddr A-5
b_un.b_words A-5
b_want A-6
read-only members 2-40
use in block devices 3-5

bufend field A-7

Buffer cache 2-8
Buffers 3-1
bufptr field A-7
buf_t structure A-6
BUSY 8-9
Busy-Wait loops 6-9
B_VERIFY flag A-4
B_W ANTED flag A-6

c

Canonical queue 4-10
canput 9-8
Cards 6-12
CARR_ON 4-35, 8-9
CB B-2, B-21, B-25
CBITS5 4-22
CBITS6 4-22
CBITS7 4-22
CBITS8 4-22
cblock 4-8

System V changes A-6
CBREAK 4-22
CCB 7-23
ccblock structure 4-11
cc(CP)

driver use 6-2
c_count, c_ptr, c_size fields of ccblock 4-11
CDB 7-4, 7-10
cdevsw 2-12, 9-b
CD-ROM 7-3
CDTR 4-22
CE_ERROR B-5
CEVEN 4-22
Changes

buf structure A-4
device number A-3
kernel routines A-8
structure definitions A-4

Channels (DMA) 2-28
Character blocks 4-8
Character control block

data structure 4-11
Character control blocks

interrupt level control 4-10
Character device 2-7
Character device drivers 2-7, 2-17, 4-1
Character device driver routines 4-2

interrupt 4-8
Character driver code example 4-14
Character driver routines 2-36
Character expansion and echo 4-12

1-2

Index

Character insertion 5-4
Character interface to block devices 3-2
Character list and character block architecture

4-8
Character lists 4-2,4-8
CHRDEV

blckclose B-9
blckopen B-8, B-6

CIENABL 4-15
CINIT 4-15
clear routine

video driver 5-17
CLESC 8-9
clist

access in an interrupt routine 4-8
described 4-2, 4-8
use in I/O 4-2

clist management 2-36
clists 2-17,2-39,2-42
Clock 4-7
CLONEOPEN 9-7

example 9-11
Close routine

block driver 3-9
character driver 4-4
line printer driver 4-17
STREAMS driver 9-7
terminal driver 4-27

cmdresult B-21
cmd_status call B-13, B-14, B-24
cmos routine

video driver 5-15
CNTRLJWR

call B-25, B-26, B-27. B-29, B-5
COFF binaries A-2
Collision, vector 6-9
Command codes B-3
Command descriptor block 7-4
Compiler directives A-15
Compiling a driver 6-2
Configurable port addresses 6-13
Configuration changes 6-12
Configuration files A-20
Configuration table 7-6
configure(ADM)

execution 6-4
-h option 6-1
interrupts 6-4
-T option 2-42

configure(ADM) utility A-19
CONS_GET 5-20
Console driver 5-1
Console messages 2-37
Context switching 2-14

Contiguous memory 2-19
Control register 4-23
Controllers 4-5

8259 6-9
debugging 6-7
line discipline use 8-1

Converting IDDs A-17
Converting installation scripts A-19
Cooked data 4-10
Copy data between kernel addresses 2-37
Copy kernel data to user space 2-37
copy routine

video driver 5-17
Copy user data to kernel space 2-37
CPARITY 4-22
cram.'n header file A-14
CREAD 3-15
CRESET 3-15
Critical code section 2-10
CRTS 4-22
CSTOP2 4-22
Cursor, hardware and software 5-4
custom(C) 6-13
cvttoaddr routine A-12
cvttoint kernel routine A-12
CWRITE 3-15
cyloff3-15

D

DA_BUSY B-2
Data rates 4-24
db_ fields (struct datab) 9-3
DB BUSY B-2
DC_BUSY B-2
DD BÜSY B-2
DEBUG ifdef 6-8
Debugging 6-6
Defining registers 4-23
Delay timing $-13
Delays 2-37
DELETE character 4-10
devbuf structure 2-29, A-7
Device 6-11
Device driver 1-1

block devices 3-1
character devices 4-1, 4-10, 4-12
character interface 3-2
debugging 6-6
guidelines 2-39
interrupt routines 3-22,4-31, 4-32
I/O control 4-36

1-3

Index

Device driver 1-1 (continued)
line printers 4-13.4-15
magnetic tape 4-13
Modem routines 4-30
terminals 4-10, 4-21

Device driver routines
block devices 3-4
line printer 4-17

Device node. Create A-21
Device number 2-11, A-3
Device register

line printer 4-16
dev_name 7-7
devnum 7-7
devque B-30
dev_t A-3
DINKERNEL 6-2
DIO B-2, B-24
Direct memory access (DMA) 2-37

kernel routines 2-28
Dirty buffer 3-1
Disk sort routine 3-6
disk.c disk driver A-16
diskinfo structure 7-6
disksort A-9
DMA

channels 2-28
controller 2-28
dma_alloc routine 2-31
DMA_BLOCK example 2-32
dma_enable routine 2-32
dma_param routine 2-31
dma_relse routine 2-32
dmareq example 2-34
dmareq structure 2-33
dma_resid routine 2-32
dma_start routine 2-33
DMA_Wrmode example 2-32
d__proc routine 2-31
driver use 2-28
example 2-32
managed transfer 2-31
memory allocation 2-28
procedure 2-31
queued transfer 2-31
routines 2-30

DMA_CH2 B-18
dma_q B-5
DMA_Rdmode

example B-18
dmareq structure fields B-18
DMA_Wrmode

example B-18
d_proc routine 2-31, 2-33

drive macro 3-15
Driver design 2-2

guidelines 2-39
Driver development package 1 -5
Driver installation 6-5
Driver routines

block routines summary 2-4
character routines summary 2-5, 4-2
described 2-3
param

example 4-28
rint

example 4-33
SCSI device driver summary 2-6
SCSI host adapter driver summary 2-6
video routines summary 2-5, 2-7
xint

example 4-32
xxadapctl 5-3, 5-5, 5-21
xxbreakup 3-13

floppy disk driver B-23
SCSI driver 7-13, A-8

xxclear 5-3, 5-17
xxclose

block driver 3-9
character driver 4-4
floppy disk driver B-9
line printer driver 4-17
qinit reference 9-4
STREAMS driver 9-7,9-12
terminal driver 4-27, A-9

xxemos 5-3, 5-15
xxcopy 5-3, 5-5, 5-17
xxd_proc 2-31, 2-33

floppy disk driver B-18
xx_entry

SCSI driver 7-11,7-20
xxhalt 4-5

floppy disk driver B-29, A-14
xxinit 2-19, 5-3, 5-16

block driver 3-7
character driver 4-3
floppy disk driver B-8
SCSI driver 7-20

xxinitscreen 5-3, 5-16
xxintr 2-15, 2-17, 2-39, 5-7, 8-17

block driver 3-10
character driver 4-5
debugging 6-9
example in block driver 3-22
floppy disk driver B-13
line printer driver 4-19
SCSI driver 7-11,7-17,7-21
terminal driver 4-31

1-4

Index

Driver routines (continued)
xxioctl 5-3, 5-20

block driver raw I/O 3-12
character driver 4-7
floppy disk driver B-9
SCSI driver 7-13,7-20
STREAMS driver 9-13
terminal driver 4-36, A-9

xxopen 2-12
block driver 3-8
character driver 4-3
floppy disk driver B-8
line printer driver 4-17
qinit reference 9-4
SCSI driver 7-11,7-12
STREAMS driver 9-6, 9-11
terminal driver 4-25, A-9

xxpchar 5-3, 5-4, 5-5, 5-18
xxpoll 4-7
xxprint 3-10

floppy disk driver B-30, A-15
xxproc 4-7, 4-12, 8-10, 8-12

example 4-36, 8-14
example call 4-34
setting t_proc example 4-25

xxput
defined 9-5
qinit reference 9-4

xxread
block driver example 3-23
block driver raw I/O 3-11
character driver 4-6
floppy disk driver B-23
SCSI driver 7-11,7-14
terminal driver 4-28, A-9

xxscroll 5-3, 5-17
xxscurs 5-3, 5-4, 5-5, 5-18
xxsgr 5-3, 5-19
xxsrv

defined 9-6
qinit reference 9-4
STREAMS driver 9-12

xxstart
block driver 3-7

example 3-20
character driver 4-5
floppy disk driver B-l 1
line printer driver 4-19
SCSI driver 7-16

xxstrategy 3-9
example 3-18
floppy disk driver B-10
SCSI driver 7-11, 7-15, A-8

Driver routines (continued)
xxwrite

block driver example 3-24
block driver raw I/O 3-11
character driver 4-6
floppy disk driver B-23
line printer driver 4-18
SCSI driver 7-11,7-14
terminal driver 4-28, A-9

DSBIT B-6
dscraddr kernel routine A-12
dscralloc kernel routine A-12
dscrfree kernel routine A-12
d_str 9-4
Dynamic memory allocation 2-20

E

ECHO
example 4-25

Echoing characters 4-12
Edge-Triggered mode 6-10
EFAULT 8-17, B-9
EINVAL 7-13, 8-17, B-9
EMS 4-23
ENODEV 6-7, 7-12, 7-13, 7-14
Entry routine 7-20
ENXIO 7-12,7-15, 9-11, B-10
ERASE character 4-10
ERECV 4-23
ERRLIM 3-23
event.c 2-43
ev_exbusmouse.c 2-43
Example block driver code 3-14
exbmouse.c 2-43
Exclusive access

block driver 3-8
character driver 4-3

EXEC B-3
EXMIT 4-23
exst 9-10
exst.c 2-43
exstclose 9-12
EXSTFAIL 9-10

used 9-11
exstinfo 9-10
exstioctl 9-13
exst_lo 9-11
exstm_info 9-9
exstopen 9-11
EXSTOPEN 9-10

used 9-11

1-5

Index

exst__rdq 9-10
exstrinit 9-10
exstsrv 9-12
exst_state 9-10

tested 9-11
exstwinit 9-10
EXSTWOFF 9-10
EXTPROC 8-9
Extracting files A-19
exvd.c 2-43

F

faddr_t type specification A-14
FALSE B-5
far keyword A-14
FDCJENB B-2
file.h header file 8-16
FIORDCHK 8-17
fixperm(ADM) 6-14
FL ioctl calls B-7
flbopened

blckclose B-9
blckopen B-8, B-6

flbtos B-6
FLBUSY B-7
FL_CHANGE B-24, B-5
fi_cmd B-3
fi_cmds

values assigned B-22, B-6
ficopened

blckclose B-9
blckopen B-8, B-6

fl_dtl B-7
FL_ENB_DI B-2
fi_eot B-5
flerreset B-5
FL_ERROR B-13, B-14, B-15, B-17, B-18, B-2,

B-20, B-21. B-24, B-25, B-28, B-29
fl_filf B-7
fl_fmtbuf B-7
fl_gpl B-7
fi_gplf B-7
Ahead B-6
FLILLTN B-7
fiinitfig B-5
FLIOCSIZE B-9
FLIOERR B-7
AJob B-19, B-27, B-5
filocalbuf B-6
filocaltransfer B-6
AJsn B-5

fi_ma B-5 >
fi_moft B-7
fi_mont B-7
tLnamc B-8
fl„nbs B-7
FLNOTDS B-7
FLNOWR B-7
Floating-point arithmetic 2-39
fi_onecyl B-6
fiopen B-30
Floppy disk driver example B-l
Floppy drive command codes B-3
Floppy table B-3
fiparam B-8
fiptab

default parameters B-8
structure definition B-7

firesidcnt B-5
FLSECSZ B-5
FLSHIFT B-5
FLSMASK B-5
fi_sn B-5
fi_spc1 B-7
A_spc2 B-7
fistate B-5
fi_stats B-6
fistob B-6
fitmpaddr B-6
fl_tn B-5
fl_to B-5
fitranscnt B-5
fitmsferred B-5
Flush output queue 8-13
fiushq 9-8
fiushtlb 2-37
fm_hd B-7 ^
fm_il B-7
fm_sec B-7
fm_size B-7
fm_status B-7
fmtfl B-7
fm_trk B-7
FNDELAY, FREAD, FWRITE, FSTOPIO 8-16
FORMAT

default value B-3
defined B-3

Frames (memory) 2-15
FREAD, FWRITE, F fiags

block driver 3-8
character driver 4-3

freeb 9-8
freemsg 9-8
ftoof kernel routine A-12
ftoseg kernel routine A-12

1-6

Index

G I

Get driver parameters 6-7
getc 4-8
getcbc kernel routine A-12
getq 9-8
Group codes (SCSI) 7-4
Guidelines for driver writing 2-39

IASLP 8-9
ICANON 8-17

example 4-25
id (SCSI) 7-7
IDDs A-17
idscsi 7-6, 7-18
I ERRNAK 9-15
I ERROR 9-15

H ifdef DEBUG 6-8
ifdef M S UNIX A-15
IGNBRK 4-34

Half-Duplex pipe 9-8
Halt routine (xxhalt) 4-5
Handshake routines B-24
ha_num 7-7
Hard disk driver 3-14
Hard disk routines

hdintr 3-22
hdread 3-23
hdstart 3-20
hdstrategy 3-18
hdwrite 3-24

Hardware cursor 5-4
hdinstall command (obsolete) A-21
hdintr routine 3-22
hdread routine 3-23
hd_sizes 3-17
hdstart routine 3-20
hdstrategy routine 3-18
hdwrite routine 3-24
head, STREAMS 9-2
Header files

buf.h 2-18
iobuf.h 2-18
naming convention 1-4, A-4

High-water mark 4-9, 8-13
line printer definition 4-16

HIWAT 4-16
Host adapter 7-1
Host adapter driver 7-20
Host adapter drivers 2-6

I INTARG 9-14
IMS 4-23
in kernel routine A-13
Include files A-14
init routine

block driver 3-7
video driver 5-16

Initialization routine
memory allocation 2-19
SCSI host adapter driver 7-20
video driver 5-7
xxinit 4-3

initscreen routine
video driver 5-16

I_NOARG 9-14
Insert a character 5-4
Install kernel A-21
Installable device driver (IDD) A-17
Installation

video driver 5-6
Installation script 6-15
Installation scripts A-19
Installing a driver 6-5
Installing a SCSI driver 7-18
Intelligent controller example driver 3-14
International character set mapping 2-37
Interrupt controller chip 6-10
Interrupt enable register 4-23
Interrupt explained 2-13
Interrupt handler configuration 6-4
Interrupt identification register 4-24
Interrupt level control

character control blocks 4-10
Interrupt routine 2-18

block driver 3-10
example 3-22

character driver 4-5
line printer driver 4-19
SCSI driver 7-17
SCSI host adapter driver 7-21

1-7

Index

Interrupt routine 2-18 (continued)
terminal driver 4-31
terminal receive interrupt 4-33
terminal transmit interrupt 4-32
video driver 5-7

Interrupt service routines 2-15
Interrupt time processing 2-16
Interrupt vector conflicts A-20
Interrupt vectors 2-42,6-3, 6-12

collision 6-9, A-16
philosophy 6-12

Interrupts
poll first 6-8

Invoke the new kernel A-21
I/O port input 2-37
I/O port output 2-37
I/O ports 2-40, 6-7
iobuf structure 3-6, 6-4
IOC_ ttiocom(K) conditions 8-17
ioctl routine

block driver 3-12
character driver 4-7
SCSI driver 7-13
SCSI host adapter driver 7-20
video driver 5-20

ioctl(S) 4-7
IOshake call B-20, B-25
IRECV 4-23
IRQ bus leads 6-9
IRQ (interrupt request) A-16
IS386 kernel routine A-13
LSETERR 9-15
LSETHANG 9-15
ISOPEN 4-35,8-9
IXMIT 4-23

K

kbgrp structure 5-8
Kemel routines

btoc 2-19
canon 4-10,8-12
cmn_err 3-10

debugging use 6-7
example A-15, B-17, B-27, B-30, A-10

copyin 4-6
copyio

example B-28, B-29
copyout 4-6

example B-9
epass 4-6

example 4-18

Kemel routines (continued)
ctob 2-19
db_alloc 2-28, A-7
db_free 2-28
db_read 2-29, 4-6
db_write 2-29, 4-6
delay 3-7
described 2-3
deverr

example 3-22
disksort 3-6, 3-9

example 3-18, B-30
SCSI driver 7-15, A-9

dma_alloc 2-31
example B-30

dma_breakup 3-13
example B-23, A-8

dma_enable 2-31,2-32
example B-18

dma_param 2-31
example B-18

dma_relse 2-31, 2-32
example B-l 1

dma_resid 2-32
dma_start 2-33
flushtlb 2-37, 2-40
fubyte 4-6
fuword 4-6
getc 4-8

example 4-19
getchar

debug use 6-8
geteblk 3-7
inb

caveat 6-7
example 3-22, B-21, B-24

iodone
example 3-18. 3-22, B-10, B-16,

B-27, B-29
iowait 3-7
ktop

example B-29. A-16, A-5
longjmp 3-7
major A-9
memget 2-19
minor

example 3-15, A-15, A-9
minor(K) 2-12
obsolete routines A-12
outb

debugging 6-7
example 3-20. B-20

paddr
example 3-20, B-11. A-5

1-8

Index

Kemel routines (continued)
physck 3-7

example B-23, A-8
physio

example 3-23, B-23
use in raw I/O 3-3, A-8

pio_breakup 3-13, A-8
printcfg 3-7, 4-3

example B-8
initialization messages 6-11

printf
debugging use 6-7

ptok A-16
putc 4-8

example 4-18
scsi_getdev 7-13
seterror

example 4-25
signal

example 4-35
sleep 2-23,3-7,4-3,8-17

example 4-18
ps(C) interaction 6-10
PZERO usage 4-16

sleep(K) 2-14, 2-16,2-17
spl5

devices 6-9
example B-27

spl6 4-7
spl7

debugging use 6-9
example 8-14
line discipline use 8-14

splbuf
example 3-18

splcli
example 4-18

spl(K) 2-17,2-39
splx

debugging use 6-9
example 4-18

sptalloc 2-20, 2-24
video memory management 5-6, A-l 1

sptfree 2-23, 3-7, A-l 1, A-13
subyte 4-6
suword 4-6
timeout 3-7, 4-3

debugging use 6-10
example 4-38, 8-15, B -ll, B-12,

B-13, B-14, B-27
ttclose 8-6
ttin 8-6
ttinit 4-26

example 4-25

Kernel routines (continued)
ttiocom 8-12, 8-16

conditions 8-17
example 4-36

ttioctl 8-6
ttopen 8-6, 8-11
ttout 8-6, 8-10
ttread 4-6, 8-6
ttrstrt 8-12

example 4-38, 8-15
tttimeo 8-9
«write 4-6, 8-6
ttxput 8-9
tty 8-12
tty flush 8-10, 8-12

example 4-35
tty wait 8-10
vas 2-25

video memory management 5-6
vasbind 2-21, 2-25
vasmalloc 2-25
vasmapped 2-26
vasunbind 2-26
video 2-43
vtop A-5

example B -ll
wakeup 4-8

example 4-19
wakeup(K) 2-14, 2-17
xxinit restrictions

block driver 3-7
character driver 4-3

Kemel stack 2-15
kemel/space.c file 8-3
kg_* (stmct kbgrp) 5-13
Kill character 4-10
KVBASE 2-26

L

layers(C) 4-4
L3R EA K 4-34
l_close routine 4-27, 8-3
ldtalloc kernel routine A-13
ldtfree kernel routine A-13
len 3-15
Line discipline 9-1

creating one 8-6
explained 8-1
one 8-2
two 8-2
zero 8-2

1-9

Index

Line printer routines
device driver 4-10
interrupt routines 4-19
lpclose 4-17
lpintr 4-19
Ipopen 4-17
lpstart 4-19
lpwrite 4-18

Line printers 4-13
device driver 4-15

linecnt variable 8-3
linesw structure definition 8-3
Link kit 6-4
Linked list (STREAMS) 9-2
link_id and link_ptr 7-8
Linking a driver 6-5
link_unix 6-5
link_unix edit A-20
Linput routine 4-11,4-34, 8-3
Moctl routine 8-3
l_mdmint routine 8-3
Logical unit number 7-4
Logical vector number 6-3
Loop back driver 9-8
l_open routine 4-26, 8-3
l_output routine 4-11,4-37, 8-3, 8-14
LOWAT 4-16
Low-water mark 4-9

line printer definition 4-16
lpclose routine 4-17
lp_flags 4-16
lpintr routine 4-19
Ipopen routine 4-17
LPPRI sleep(K) priority 4-16
lp_queue 4-16
lpstart routine 4-19
lpwrite routine 4-18
l_read routine 4-28, 8-3
LUN 7-4
l_write routine 4-28, 8-3

M

m6845.c 2-43
m6845.h 2-43
machdep.h header file A-15
Magnetic tape drives 4-13
Mailboxes 7-23
Major device number 6-4
Major number 2-11

use 6-12, A-20
major(K) A-3

MAPCONS 5-20
mapphys kernel routine A-13
mapptov kernel routine A-13
masm(CP) 6-2
master file A-17
Master request line 6-3
MAXJRD B-3
MAXRETRY B-5
maxvec A-16
MAXJWR B-3
mb_* (struct mscm) 5-9
M_CTL 9-13
M_DATA 9-13
mdevice file 6-1

use with xxinit routine
block driver 3-7
character driver 4-3, A-17

memget routine 2-19
Memory allocation

contiguous 2-19
DMA use 2-28
dynamic 2-20
memory mapped I/O 2-24
physical 2-19
shared memory 2-25

Memory management 2-19, 2-37
video driver 5-6

Memory-mapped I/O 2-24
Message block 9-3
Message display 2-37
MF B-3

used B-22
mf_* (struct mscm) 5-9
M_FLUSH 9-13
Minor number 2-11
minor(K) A-3
MJOCTL9-12
mk_* (struct mscm) 5-9
mknod(C) command A-21
Modem interrupts 4-35
Modem routines 4-30
Modes of operation 2-13
MODOPEN 9-7
module, STREAMS 9-2
module_info 9-4
motor, turn off B-27
motoron call B-12, B-14. B-26
MJPCPR0T0 9-13
MJPROTO 9-13
mscm

described 5-8
insert a character 5-4
structure access 5-7
switch multiscreens 5-5

1-10

Index

mscm structure
relation to multiscreen number 5-3

mscsi file 7-19
msgb structure 9-3
msp

switch multiscreens 5-5
mspu

relation to multiscreen number 5-3
M_S_UNIX definition A-15
MT

defined B-3
mtune file A-17
Multiple initiators 7-3
Multiscreen

insert a character 5-4
Multiscreen number 5-3
Multiscreen switch 5-5
mv_* (struct mscm) 5-9
mv_col

software cursor 5-4
m vrow

software cursor 5-4
mv_savscm 5-9
mydebugflg 6-8

N

Naming a driver 6-11
Naming conventions 1-4
NBPC 3-16
NBPS 3-16
NCMDS B-3
NCPD3-16
Near and far keywords A-14
near keyword A-14
NEXST 9-10
NHD3-16
No delay open

block driver 3-8
character driver 4-3

No such device 6-7
NON_DMA B-2
Non-text mode 5-3
NPARTS 3-16
NSPC 3-15
NSPT3-16
nswap A-16
NTDEVS 4-23
NTPC 3-16
nulldev 8-3, 8-6
NUM_RD B-3
NUM_WR B-3

o

OASLP 8-9
Obsolete kernel routines A-12
ONLCR 4-25
Open device as swap device 4-4
Open flags

character driver 4-3
Open routine

block driver 3-8
character driver 4-3
line printer driver 4-17
SCSI driver 7-12
STREAMS driver 9-6
terminal driver 4-25

OPENFAIL 9-7
example 9-11

open(S) relationship to xxioctl 3-12
open(S) system call 2-12
Operation modes

kernel, system, or user mode 2-13
OPOST 4-25
OTYP_ identification values

block driver 3-8
character driver 4-4

out kernel routine A-13
Output queue 4-10

P

Packaging 6-15
paddr(K) routine A-5
Page present 2-22
Pages, memory 2-21
Panic the system 2-38
param routine 4-28, 8-15
Parameter passing to device drivers 2-41
parser 5-3
part macro 3-15
partab structure 3-15
pchar routine

video driver 5-18
Peripheral controllers 6-7
Permissions (check for super user) 2-38
permlist 6-13

sample 6-14
PERROR 4-34
P_FLCT B-2
P_FLCTL B-2

CNTRLJWR call B-25, B-26. B-27, B-29
in a marcro B-5

Index

P_FLDCR B-2
read B-2«, B-21
write B-20

Q

P FLDMAB-2
P_FLMSR B-2

read B-21, B-24, B-25
P FLTC B-2
PG_P, PG_RW, PG_US 2-22
Physical address A-5
Physical 1/0 2-28,6-12,7-14

described 3-2

qinit 9-4
default values 9-10

qreply 9-8
Quad-word boundary 6-2
queue, STREAMS 9-2
queue^t structure 9-2

Physical memory allocation 2-19
physio(K)

buffers A-8

R
use in raw I/O 3-3

PIC (programmable interrupt controller) 2-13
Pipe, STREAMS 9-8
Poll routine (xxpoll) 4-7
Pollable state information 6-10
Polling 6-8
Port addresses 6-7
Port addressing 6-13
POSIX ttiocom(K) extension 8-18
Possible problem areas A-16
Preconfigured drivers 6-11
Prefix naming 6-11
Prefix selection 6-1
Primary card 5-15
Print routine (xxprint) 3-10
Problem areas A-16
Proc routine

described 8-12
example 4-36

Proc routine (xxproc) 4-7
proc structure 2-40
Processes

system 2-13
u-area 2-14
user 2-13

Programmable interrupt controllers 6-9
Programmed I/O 2-38
ps(C) 6-10
put routine 9-3
Put routine 9-5
putbq 9-8
putc 4-8
putebe kernel routine A-13
putctl 9-8
putq 9-8
PZERO

example 2-34, 4-15

RADDRH 3-15
RADDRL 3-15
Raw input data vs. cooked data 4-10
Raw input queue 4-10
Raw I/O 2-8, 3-2

block driver routines 3-11
character interface 4-13
open device 3-8

RBASE
disk driver example 3-16
line printer driver register 4-16

rblckbuf B-6
RCMD 3-15
RCMD register 3-15
RCNT 3-15
RCNTRL 4-16,4-23
RCYL 3-15
RD 9-8
RDATA 4-16
RDJDATA 8-3

condition B-19
default value B-3
used B-18, B-22

RD_DEL_DATA B-3
default value B-3

RDJD B-3
default value B-3

RDshake call B-20, B-21, B-25
RD_TRK B-3

default value B-3
Read routine

block driver 3-11
example 3-23

character driver 4-6
SCSI driver 7-14
terminal driver 4-28

RECAL B-3
condition B-19
default value B-3
used B-12, B-14, B-22

1-12

Index

recalstat B-5
Receive interrupt routine 4-33
Re-entrant processing 2-10
Register

control 4-23
interrupt enable 4-23
interrupt identification 4-24

Register handshake routines B-24
Registers 6-7

defining 4-23
Relink the kernel A-21
REQ_IO structure 7-8
REQ_SEND 7-8
Request block 7-8
Request line 6-3
Required video routines 5-3
Resume terminal output 8-14
RIENABL 4-23
RIIR 4-23
rint routine 4-33
Rising edge 6-10
Root device 6-12
RQM B-2, B-24, B-25
RRDATA 4-23
RSEC 3-15
RSPEED 4-23,4-25
RSTAT 3-15
RSTATUS 4-16,4-23
RTDATA 4-23
RTO 8-9
RTRK 3-15

s
s5param.h

BSIZE reference 3-1
Sample drivers 2-43
Sample installation script 6-15
Save area 5-5
sc_hd B-7
sc_nb B-7
Screen save area 5-5
scroll routine

video driver 5-17
sc_sec B-7
SCSI

ANSI standard 7-2
bus device ID number 7-19
bus device LUN 7-19
CCB 7-23
CDB 7-4,7-10
commands 7-4

SCSI (continued)
communication on bus 7-3
configuration table 7-6
device configurations 7-3
device driver

breakup routine 7-13
init routine not needed 7-11
installation 7-18
interrupt routine 7-11, 7-17
ioctl routine 7-13
open routine 7-11, 7-12
read routine 7-11, 7-14
start routine 7-16
strategy routine 7-11,7-15
write routine 7-11,7-14

devices 7-3
diskinfo structure 7-6
driver names 7-18
group codes 7-4
host adapter

communication with a driver 7-5
described 7-20
entry routine 7-7, 7-11,7-20
explained 7-1
init routine 7-20
interrupt routine 7-21
ioctl routine 7-20
number 7-19
routine summary 2-6

host adapter driver
installation 7-18

idscsi 7-18
initiators 7-3
installing a driver 7-18
io_intr routine 7-10, 7-21
kernel routines 2-38
link_id and link_ptr 7-8
local structures 7-6
maximum number of devices 7-3
mscsi file 7-19
RECLSEND 7-8
request block 7-8
routine summary 2-6
SCSI bus explained 7-1
SCSI bus speed 7-3
SCSI described 7-1
scsi_cdb 7-10
scsi_dev_cfg structure 7-7
scsi_getdev 7-13
scsi_io_req 7-8, 7-21
structures 7-6
xx_entry routine 7-11

sctrhdr B-7
sc_trk B-7

1-13

Index

sen s 4-22
scurs routine

video driver 5-! X
sdevice tile 6-3
SDRV RDY 11-2
SDSR 4-22
seehits B-6
Security feature

use of FSTOPIO
block diivei 3-8
character driver 4-4

SEEK
condition B-19
default value B-3
defined B-3
used B-12, B-15. B-22, B-28

select(S) access 2-38
SELREA1) and SELWR1TE 8-17
SENS DR

condition B-19
default value B-3
defined B-3
used B-17. B-22

SENS_INTR
condition B-19
default value B-3
defined B-3
used B-14, B-22

Serial console 5-16
Serial device interrupts 6-10
Serial drivers 6-8
Service routine 9-6, 9-12
Set priority level (spl) 2-38
setjmp kernel routine A-13
SFERR 4-22
sgr routine

video driver 5-19
SGR * values 5-19
Shared interrupt vectors 6-9
Sharing interrupt vectors 2-42
shitC) 8-2. 8-13
Shutdown 6-6
shutdown(ADM) A-21
sidd 6-13
SIGHUP 4-35
Single initiator 7-3
si/.bits B-6
S1ZEB1TS B-6
SK

defined B-3
used B-22

Slave chip interrupts A-16
Slave controller 6-3
Small computer systems interlace (SCSI) 2-38

Smart controllers 8-2
SOFRR 4-22
Software cursor 5-4
Sorting I/O requests 3-6
Special device files 2-1 1
SPECIFY

condition B-19
default value B-3
defined B-3
used B-13, B-14, B-23

SPERR 4-22
sptalloc(K) routine 2-20, 2-24
sptfree(K) routine 2-23
sptmap 2-21
Spurious interrupt 4-20
SRRDY 4-22
srtest.c 2-43
srv routine 9-12
Stack

local 2-39
u-area 2-14

Start routine
block driver 3-7

example 3-20
character driver 4-5
line printer driver 4-19
SCSI driver 7-16

Static variables 2-17
Status register 6-7
STFMSEEK B-5
STIO B-5
STMOTOR B-14, B-5
Strategy routine 7-15
Strategy routine (xxstralegy) 3-9
STRDY 4-22
STREAMS

driver 9-2
head 9-2
module 9-2
overview' 9-1
queue 9-2

STREAMS driver 9-8
STREAMS service routine 9-12
streamtab 9-10
STRECAL B-15, B-5
STRESET B-14, B-5
strioctl 9-18
strread 9-18
STRSEEK B-15
Structure header files A-4
strwrite 9-17
S I SEEK B-5
Style issues for user prompts 6-1 1
Suspend output 8-14

1-14

Index

Swap device 6-12
Swap device open 4-4
Switch layers 8-13
Switch multiscreens 5-5
SWR_PROT B-2
Synchronous writes

block driver 3-8
character driver 4-4

System clock 4-7
System mode 2-13, 2-18
System mode stack 2-14
System processes 2-13

T

T_ conditions in xxproc 8-12
t_ members of the tty structure 8-7
TACT 8-9
Task-time

character driver 4-2
Task-time processing 2-16
TBLOCK 4-38,8-10
T_BLOCK

example 4-38
T_BLOCK xxproc condition 8-10
T_BREAK 4-38
TC ttiocom(K) conditions 8-17
t_canq 4-10, 8-8

example 4-26
t_cc 8-9
t_cflag 4-26, 8-8
TCGETA 8-8
TCSETA 8-8
TCXONC 8-17
tdclose routine 4-27
tdintr routine 4-31
tdioctl routine 4-36
tdmint routine 4-35
tdmodem routine 4-30
tdopen routine 4-25
tdparam 4-26
tdparam routine 4-28
tdproc routine 4-36
tdread routine 4-28
tdrint routine 4-33
td^speeds 4-24
tdwrite routine 4-28
tdxint routine 4-32

Terminal
block on input 8-15
break processing 8-15
canonical queue 4-10
data speeds 4-24
device driver sample 4-21
flush read queue 8-14
flush write queue 8-14
line discipline 8-1
output queue 4-10
raw input queue 4-10
resume output 8-14
suspend display 8-14
timeout 8-14

Terminal device drivers 4-10
Terminal drivers

tdioctl 4-36
tdmint 4-35
tdxint 4-32

Terminal handler 8-1
Terminal routines

tdclose 4-27
tdintr 4-31
tdmodem 4-30
tdopen 4-25
tdparam 4-28
tdproc 4-36
tdread 4-28
tdrint 4-33
tdwrite 4-28

Terminals
clist use 4-8

Text mode 5-3
multiscreen switch 5-5

t_iflag 4-25, 8-8
TIMEOUT 8-10. 8-14
Timing 2-38
TLB 2-37
tjflag 4-25,8-8

ttiocom 8-17
Mine 4-26, 8-3. 8-9
t_oflag 4-25.8-8
T_OUTPUT 4-37
t_outq 4-10, 8-8, 8-10
t_pgrp 8-9
TPI96BIT B-6
t_proc 8-8

example 4-25
Translate lookaside buffer (TLB) 2-37
Transmit interrupt routine 4-32
t_rawq 4-10. 8-8
t_rbuf 4-11. 8-8

fields set up 4-34

1-15

Index

T RESUME
example 4-37

T RFLUSH
example 4-38

TRIH3 B-5
l. state 8-8

example 4-26
ORing in values 4-37

T S US PEND
example 4-37

t tbut 4-1 1,8-8
field set up 4-37
flush output queue 8-14

T_TIME
example 4-37

TTIOW 8-10
TTOPRI 8-10
TTSTOP 4-37. 8-10

example 8-14
TTXOFF 4-38, 8-10
TTXON 4-38,8-11

example 8-15
tty drivers 4-10
TTY routines 2-38
tty structure 2-18, 8-7
TTYHOG 8-14
Tunable kernel parameters A -19
T UNBLOCK

example 4-38
T UNBLOCK xxproc condition 8-1 1
T WFLUSH

example 4-37

u

U-area 2-14. 2-16. 2-18. 2-37. 2-42
UART 4-21
UNITBITS B-6
unitbits macro A-15
unlinkb 9-8
unmapphys kernel routine A -13
User mode 2-13
User processes 2-13
User prompting 6-11
user structure

read-only members 2-40
System V changes A-6
u_base 2-41
u_count 2-41, A-8
u__offset 2-41. A-8
u segflg 2-41

USER MODE 4-7

V

v . * (struct adapter) 5-1 1
v adapell 5-5
vas(K) routines 2-25
v curscrn

msp value stored 5-4
vecintsw table A-16
VECT'O 4-23
VECT1 4-23
Vector collision 6-9
Vector number 6-3
Vectors 6-9
Vendor unique (SCSI) 7-4
vid.c console driver 5-1
Video driver

init routine 5-7
insert a character 5-4
interrupt routine 5-7
memory management 5-6
required routines 5-3

vidloops.c 2-43
Virtual memory 2-21,2-26
Virtual to physical address translation A-5
VSWTCH 8-13
VTIME8-9, 8-13
v type 5-16

w

wakeup 4-8
WOPEN 8-11
WORM drive 7-3, 7-18
WP ERROR B-15, B-17. B-2
WR 9-8
WR DATA B-3

condition B-19
default value B-3
used B-18, B-22

WR_DEL_DATA B-3
default value B-3

Write protect check B-17
Write routine

block driver 3-11
example 3-24

character driver 4-6
line printer driver 4-18
SCSI driver 7-14
terminal driver 4-28

Writing a line discipline 8-6

1-16

Index

WR_PROT B-2
WRshake call B-20, B-24

X

X3.131 ANSI standard 7-2
XCGETA 8-18
XCSETA 8-18
XCSETAF 8-18
XCSETAW 8-18
XENIX files relocated under System V A-17
XENIX vs. System V directory structures A-18
xinit

video driver 5-7
xint routine 4-32
XOFF 4-35
XON 4-35
x.out binaries A-2
xxadapctl

described 5-21
information 5-3
multiscreen switch 5-5

xxbreakup routine 3-13
floppy disk driver B-23
SCSI driver 7-13

xxclear 5-17
information 5-3

xxclose
block driver 3-9
character driver 4-4
floppy disk driver B-9
line printer driver 4-17
STREAMS driver 9-7
terminal driver 4-27

xxcmos 5-15
information 5-3

xxcopy 5-17
character insertion 5-5
information 5-3

xxd_proc 2-31
floppy disk driver B-18

xx_entry
SCSI driver 7-11,7-20

xxhalt 4-5
floppy disk driver B-29

xxinit 5-16
block driver 3-7
floppy disk driver B-8
information 5-3
SCSI driver 7-20

xxinitscreen 5-16
information 5-3

xxintr
block driver 3-10

example 3-22
character driver 4-5
floppy disk driver B-13
line printer driver 4-19
SCSI driver 7-11,7-17,7-21
terminal driver 4-31
video driver 5-7

xxioctl 5-20
block driver raw I/O 3-12
floppy disk driver B-9
information 5-3
SCSI driver 7-13,7-20
terminal driver 4-36

xxopen
block driver 3-8
character driver 4-3
floppy disk driver B-8
line printer driver 4-17
SCSI driver 7-11,7-12
STREAMS driver 9-6
terminal driver 4-25

xxpchar 5-18
character insertion 5-5
information 5-3
software cursor 5-4

xxpoll 4-7
xxprint 3-10

floppy disk driver B-30
xxproc 4-7

called by ttiocom TCXONC condition 8-17
example 4-36
section describing 8-12
T_BLOCK condition 8-10, 8-12

example 8-15
ttiocom call 8-17

T_BREAK condition, 8-12
example 8-15

T_DISCONNECT condition 8-12
TJNPUT condition 8-12
TOUTPUT condition 8-12

example 4-37
terminal driver call 4-32

T_PARM condition 8-13
example 8-15

TJRESUME condition 8-13
example 4-37, 8-14
terminal driver call 4-34
ttiocom call 8-17

TJRFLUSH condition 8-13
example 8-14

T_SUSPEND condition 8-108-13
example 4-37, 8-14

1-17

Index

xxproc 4-7 (continued)
T.SUSPEND condition 8-10 8-13

(continued)
terminal driver call 4-34
ttiocom call 8-17

T SWTCH condition 8-13
T TIME condition 8-13

example 4-37, 8-14
T UNBLOCK condition 8-118-13

example 8-15
ttioeom call 8-17

T_WFLUSH condition 8-13
example 4-37, 8-14

xxput 9-5
xxread

block driver
example 3-23

block driver raw I/O 3-11
character driver 4-6
floppy disk driver B-23
SCSI driver 7-11,7-14
terminal driver 4-28

xxscroll 5-17
information 5-3

xxscurs 5-18
character insertion 5-5
hardware cursor 5-4
information 5-3

xxsgr 5-19
information 5-3

xxsrv 9-6
xx start

example call 8-14
SCSI driver 7-16

xxstart routine
block driver 3-7

example 3-20
character driver 4-5
floppy disk driver B-l 1
line printer driver 4-19

xxstrategy
SCSI driver 7-1 1,7-15

xxstrategy routine 3-9
floppy disk driver B-10

xxtab structure 3-6, 6-4, 7-6, 7-17
example

declaration 3-17
field access 3-20

setting fields example B-16
xxwrite

SCSI driver 7-1 1,7-14
xxwrite routine

block driver
example 3-24

xxwrite routine (continuedi
block driver raw I/O 3-1 1
character driver 4-6
floppy disk driver B-23
line printer driver 4-1 8
terminal driver 4-28

1-18

514-000-051
24124

Manual title:

Page Problem:

SINIX Open Desktop V1.0, U5753-J-Z95-1-7600

W

am D a programmer
□ a system administrator
□ an ordinary user
□ _________________

use the manual □ frequently
□ occasionally for reference
□ __________________

Manual title: SINIX Open Desktop V1.0, U5753-J-Z95-1-7600

Page Problem:

lam D a programmer
□ a system administrator
□ an ordinary user
□ _____________

I use the manual □ frequently
□ occasionally for reference
□ _______________

Suggestions - Criticisms - Corrections
Are you happy with this manual ? If so, let us know.
If not, help us improve it by informing us

r \ • where you have noticed mistakes
• where the content is unclear.

From:

Name

Company/department

O '
Address

Postal Code

Telephone :

Local Siemens
office

Contact person.

Siemens AG
Dl ST QM2
Manualredaktion
Otto-Hahn-Ring 6
Postfach 830951

D-8000 München 83

From:

Name

Company/department

Address

w ____
Postal Code

Telephone :

Local Siemens
office

Contact person.

Siemens AG
Dl ST QM2
Manualredaktion
Otto-Hahn-Ring 6
Postfach 83 09 51

D-8000 München 83

	TOP
	Contents
	1 Introduction
	2 Writing a Device Driver
	3 Block Device Drivers
	4 Character Device Drivers
	5 Video Adapter Device Drivers
	6 Compiling and Linking Drivers
	7 Writing a SCSI Driver
	8 Line Disciplines
	9 STREAMS
	A Migrating XENIX Drivers to the System V Operating System
	B Sample Block Driver
	C Section (K) Manual Pages
	Contents

	Intro - lists manual page references
	Index
	Bottom

