TABLE OF CONTENTS

DEMON MONITOR CHECKOUT ... cecececacacncccacses i
CHECKOUT INSTRUCTIONS ..cccovescccscscscscsoncns 3
APPENDICES

I. HOW TO HAND-ASSEMBLE JOLT PROGRAMS

II. NOTES, HINTS AND RECOMMENDATIONS FOK
USING YOUR JOLT MICROCOMPUTER

III. DETAILED DESCRIPTION OF DEMON

IV. THE MCS 6502 INSTRUCTION SET

V. CHART OF BRANCHES: DECIMAL TO HEXADECIMAL
VIi. LISTING OF DEMON MONITOR
VII. LISTINGS OF DIAGNOSTIC PROGRAMS

SYSTEM EXERCISER
MEMORY ADDRESS TEST

DEMON MONITOR CHECKOUT

You are now ready to check out your JOLT DEMON
monitor. The instructions which follow assume that your
JOLT is connected to a suitable power supply and a tele-
type or other serial computer terminal. A detailed des-
cription of the DEMON monitor is in Appendix III. Here
is a summary of its features:

DEMON is the DEbug MONitor program for the JOLT
Microcomputer. It is supplied in read-only memory (ROM)
as part of the 6530 multi-function chip on the JOLT CPU
board. Because the DEMON code is non volatile, it is
available at system power-on and cannot be destroyed
inadvertantly by user programs. Furthermore, the user is
free to use only those DEMON capabilities which he needs
for a particular program. Both interrupt types, interrupt
request (IRQ) and non-maskable interrupt (NMI) may be set
to transfer control to DEMON or directly to the user's
program.

DEMON communicates with the user via a serial full-
duplex port (using ASCII codes) and automatically adjusts
to the speed of the user's terminal. Any speed--even non-
standard ones--can be accommodated. If the user's terminal
has a long carriage return time, DEMON can be set to perform
the proper delay. Commands typed at the terminal can

direct DEMON to start a program, display or alter registers

and memory locations, set breakpoints, and load or punch
programs. If available in the system configuration, a
high-speed paper tape reader may be used to load programs
through a parallel port on the 6530 chip. Programs may be
punched in either of two formats--hexadecimal (assembler
output) or BNPF (which is used for programming read-only
memories). On loading or modifying memory, DEMON performs
automatic read-after-write verification to iunsure that
addressed memory exists, is read/write type, and is responding
correctly. Operator errors and certain hardware failures
may thus be detected using DEMON.

DEMON also provides several subroutines which may be
called by user programs. These include reading and writing
characters on the terminal, typing a byte in hexadecimal,
reading from high-speed paper tape, and typing a carriage-
return, line-feed sequence with proper delay for the carriage
of the terminal being used. Program tapes loaded by DEMON
may also specify a start address so that programs may be

started with a minimum of operator action.

CHECKOUT INSTRUCTIONS

() 1. Turn power on, or if the power is on, perform a
RESET operation. Type a carriage-return on the terminal.
DEMON should respond with:
* 7052 30 18 FF 01 FF

(Exact values may vary, although the first and last values
should be as shown). If no response or a garbled response
occurs, RESET and try again. In case of continued trouble,
refer to the diagnostic section of the CPU Assembly Manual.

The "* 7052 30 18 FF 01 FF" printout is DEMON's
standard breakpoint message format. It consists of an
asterisk "*" to identify the breakpoint printout, followed
by the CPU register contents in this order: PC, P, A, X,
Y, and S, i.e. Program Counter, Processor Status, Accummulator,
X index, Y index and Stack Pointer. Note that all DEMON
inputs and outputs are in base 16 which is referred to as
hexadecimal, or just hex. In hexadecimal, the "digits" are
0,1,2...,A,B,C,D,E,F. After printing the CPU registers,
DEMON is ready to receive commands from you, the operator.
DEMON indicates this "ready" status by typing the prompting

character "." on a new line.

() 2. DEMON's response to RESET is to wait for a carriage-
return and then print the user's registers. DEMON uses
this carriage return-character to measure the terminal line

speed. If you have a settable-rate terminal, change the

rate (any speed between 10 and 30 cps will work) and repeat

Step 1. DEMON should respond at the new terminal speed.

() 3. The user's CPU registers may also be displayed
with the R command. Type an R. The monitor should respond
as above, but without the asterisk. Presence of the asterisk
indicates that an interrupt or break instruction caused the
printout.

R 7052 30 418 FF 01 FF
() 4. Displayed values may be modified using the Alter
(:) command. To modify register contents, type a colon (:)
followed by the new values. For example:

.R 7052 30 18 FF 01 FF
.T 0100 00 00 00 00 FF

.R 0100 00 00 00 00 FF
Notice that DEMON automatically types spaces to separate
data fields. (Note: Characters typed by you, the user, are
underlined in this document for clarity. Everything else is
typed by the computer.) Examine your registers (R command)
to verify the changes.

Memory may be examined and modified, as above, using

the M and : commands. Try this:

.M 0100 00 66 23 EE 01 A2 41 6E

The memory command (M) causes DEMON to type the contents of
the first eight bytes of memory. (Memory data will be random
on startup). Alter and verify these bytes using the Alter

command, as above:

.M 0100 00 66 23 EE 01 A2 41 6E

0100 00 01 02 03 04 05 06 07

If only part of a line is to be altered, items to be left

unchanged can be skipped over by typing blanks, and carriage-

return (). Try this:

.M 0100 ©00 01 02 03 04 05 06 07
.+ 0100 FF _ PP EF)
.M 0100 FF 01 FF FF 04 05 06 07

() 5. Try to alter a location in DEMON ROM:

.M 7000 85 F9 A9 23 DO 58 A9 16

7000 002

DEMON verifies all changes to memory. Since locations 7000
through 7007 are in read-only memory, alteration is not pos-
sible. DEMON signals write failure with a question mark.

Similarly, the monitor will notify you of an attempt to alter

a non-existant location:

.M 9000 90 90 90 90 90 90 90 90

9000 00?

Note that attempts to read non-existant memory will normally

yield the high-order byte of the address read.

() 6. There are three hardware facilities which may be used
to stop a running (or run-away) program without the program

itself calling DEMON. These are the hardware inputs RESET,

IRQ, and NMI. To test this feature enter the following

program at location 0000:

location contents instruction
0000 4C LOOP JMP LOOP
0001 00
0002 00

(Use the M and : commands.)

Now, set the program counter (PC) to this location using
the R and : commands. Finally, tell DEMON to start executing
your program using the GO (G) command:

-4 0000 PF 11 1} 11 91 B1L 7L B8l

0000 4C 00 00

.M 0000 4C 00 00 11 91 91 71 91
.R 0000 30 00 00 00 FF

.2 0000 ¥

.G

The computer should now be executing the program. It will
continue to run until interrupted. Using the interrupt request
line (IRQ), interrupt the processor. It should respond with:

* 0000 30 00 00 00 FF

Try the same experiment with non-maskable interrupt (NMI). The
result should be the same except for a "#" character preceeding,
which identifies the NMI printout. Finally, try it with RESET.
RESET, however, forces JOLT to branch to DEMON, loosing the old
PC and other register contents. Thus NMI is the preferred means

for manually interrupting program execution. IRQ may also be

cccc
¢ccco

0001
clcc
ol1Cc3
ClCs
0107
C1cCs
C1uB
C1CD
c110
Cl12
Cl15

Cl1é

2C
AG
g5

A5
€S
FD
C
EE
4C
CcC

4C

used unless it is required for other functions such as periph-

eral interrupts.

() 7. Use M and : to enter the following test program called
CHSET because it prints the character-set on the terminal.
Note that Alter (:) commands may be repeated without intervening

M commands to set sequential locations:

;CHECKCUT PRCGRAM -=- PRINT THE CHARACTER SET CN USER TERMINAL
CRLF =$7284 ;ACCRESS CF FENMCN CRLF ROUTINE
WRT =472C¢6 ;ADDRESS CF DEMCN WRITE RCUTINE
=(;VARIABLE STCRAGCE IN PAGE ZERC
CHAR ®=3+] ;STORAGE FOR CFARACTER
#=$01C0 ;PRCGRANM STARTS CN PAGE CNE
8A 72 CHSET JSR CRLF sCC CARRIAGE RETURN & LINE FEEC
20 LCA #$20 ;FIRST CHAR IS A SPACE
ce STA CFAR JINITIALIZE
00 LCCP LCA CHAR $CET CHARACTER
6C CMP #$6C ;CHECK FOR LIMIT
0 BEQ CONE ;DONE IF 60
. %
ce 12 JSR WRT sPRINT CHAR
ao INC CHAR sNEXT CHAR CCCE
€7 C1 JVF LOCP s CCNT INUE
CONE BRK ;STOP & RETURN TO DENMCN MCNITCR
C0 C1 JMP CHSET ;00 IT AGAIN

.M 0100 20 8D 72 20 EC 72 8D 26
. 0100 20 8a 72 A9 20 85 00 A5
s i 0108 00 C2 60 FO 08 20 cCé6 72
s 0110 E6 00 4C 07 01 00 4C 00

0118 01 3

Now run the program. Do this by setting the PC to 0100

and using the G command. The listing should look like this:

.R 0000 30 00 00 0Q FF
T 0100 Y

G
TUUSR& (I k+,-./0123456789:5<=>2@ABCDEFGHIJKLMN@PRRSTUVWXYZIN\]t~
* 0116 33 60 00 00 FF

The program may be continued, causing it to execute again, by

typing G:

-G
1"#872&" (D%+,-./012345678923<=>?@0ABCDEFGHI JKLMNCPARSTUVWXYZIN]t~
0116 33 60 00 00 FF

L]
=l %

IM#BZ&" ()%+,-0/0123456789:3<=>7@0ABCDEFGHIJKLMN@PQRSTUVWXYZIN]t~
0116 33 60 00 OO0 FF

-l %

P"#3Z2&" (I)%+5-./0123456789:3<=>?@ABCDEFGHIJKLMNECPARSTUVWXYZ[\] 1~
0116 33 60 00 00 FF

*

The CHSET program uses two DEMON monitor functions: CRLF
is the DEMON function which causes a carriage-return and line-
feed to be typed on the terminal. WRT is the routine which
prints the character whose code is in the A register at the

time of the call.

() 8. Save the CHSET program on paper tape (if your

terminal has a punch) as follows: First, punch some leader
tape with the terminal in local mode. Then return to line
mode and enter:

.WH 0100 0118)

Turn the punch on after typing the second address, but before
typing carriage-return. Then type carriage-return to punch
the tape. When punching stops, turn the terminal back to local
and type:

200
and some blank trailer. This is a zero-length record which
terminates your tape. See Appendix III for more information on

tape formats.

() 9. Try re-loading your program using the LH command:

.LH
Now start the reader to load the program. The tape will be
read and printed simultaneously. Stop the tape when the end is
reached. (Before loading, you may wish to destroy the program

in memory to verify that loading from tape actually works.)

() 10. Use the M and : commands to load the following program:

¢ccce
SCOL
3G01

ull?2

cleL
¢ id2
C1Ce
gicse

c1es
J1CC

C1CF
o111
Cl13
0115
c11v
Cila
Cl1C

Cl1lE

AS
Ce
gc
AS
C
Cé
1C

4C

EA 12

-
]
-
(§8]

o 01

:CHFECKQUT PROGRAM —— PRINT BINARY UF TYPEN CHARACTER

9

BINARY -

CCUNT

*

CRLF
WRT
RCT
SPACE

PEIN

-s

’
PBLCCP

PRINT

N
[T TRT
-6
+ +
—

o

ks

$L

1CC

=$728A
=472C¢
=$72F9
=§7277

JER
J SR
ST 2
JER

LCA
STA

LCA
ASL
BES

LCA
JER
CEC
BFL

Jvep

CRLF
ROY
BINARY
SPACE

#8
COUNT

4#°0
BINARY
PRINT
Hel
WRT
CCUNT
FBLCCF

PEIN

=-10-

sVARIARBLF STCRAGE IN PACE ZERO
3 STCRACE FCR CHAR CURINC CISSECTICN
:COLNT CF RITS REMAINING TC FPRINT

sPRCGRAM BEGINS CN PACE CNE

sCENMCN
s CEMCUN
3 CEMCN
sNENMCA

sPRINT
;GET A

CRLF RCLTINE
WRITE RCLTINE
REAC RCUTINE
SPACE RCULTINMNE

CARRIACE RETURN € LINE FEEC
CHARACTER
;SAVE FCR [ISSECTICN

sPRINT & SFACE

sINITIRALIZE

s ASSUME ZERC:

;C=NEXT BIT
5PRINT ZERO

sLCAD ASCII

;PRINT EBINARY CIGIT
sCOUNT BIT PRINTED
sCC NEXT BIT

Hs

BIT CCUNT

'11!!

IT ALL AGATN

LCAC ASCITI "oO"

-11-

.M 0100 20 8D 72 A9 20 85 00
.: 0100 20 8A 72 20 E9 72 85
0108 20 77 73 A9 08 85 01
0110 30 06 00 BO 02 A9 31
0118 C6 72 C6 01 10 F1l 4C
.x 0120 01

o o o
SIS 188 &

|‘- I-

The purpose of this program is to print the binary rep-
resentation of an ASCII input character on the terminal.
Run the program by starting it at location 0100. Try typing
‘some characters:

.R 0116 33 60 00 00 FF
0100

Q[

101010101
101111011
110011101

(i oI [

There is obviously something wrong with the program. Bits
which should be printed as 1l's are 0's and vice versa. (Refer
to your 6500 reference card for character codes.) Looking at
the program, the problem is that the branch after PBLOOP goes
the wrong way! It should be BCC, Branch if Carry Clear (or
alternatively, the 1 and 0 loads could be interchanged). Thus,
when a one-bit is shifted out of the character, a one should
be printed.

Patch the program and try again (the code for BCC is 90).

12.

.M 0113 BO 02 A9 31 20 C9 72 Cé6
;0113 90

.R 7052 31 FC FF 01 FF

.z 0100 ¥

-

U 010101010

B 010000100

1 001100010

There is, alas, still an error--one too many bits is
being printed. The cause of this is a little less obvious.
(Do you see it?) To investigate the problem, set a breakpoint
at location 0llE. Do this by replacing the instruction there

with a BRK (code of 00). Then run the program:

M 011E 4C 00 01 EF 4C 00 01 00

.: O0LlE 00 Y

.R 7052 31 FC FF 0l FF
= 0100 }

-G

U 010101010

% 0llF BO 00 00 AA FF

Once the break has occurred, you are free to investigate
the state of the program using DEMON. In particular, check the
value in location COUNT:

.M 0000 00 FF 1B 2E 31 EA FO FA

Aha! Although COUNT starts out with a value of 8, it is going
one step too far (FF is minus 1). This is because the test

instruction, BPL PBLOOP is testing to see whether the count is

greater than or equal to zero.

-13-

Replace it with BNE

(code DO0),

replace your breakpoint with the original contents at that

location,

and try the program again.

.M 01lC 10

0l11C DO
.R 011F BO
-: 0100 }

U 01010101

B 01000010

100110001
I 01001001
W 01010111
0 01001111
R 01010010
K 01001011
S 01010011

F1l 00

00 01
y
AA FF

EF

4C

ccec
CCCC
CCCl1

o
<«
[a%]

C1ccC
c1032
ClCe
C:lC 8

Clce
clCC

ClLCF
0111
0113
0115
117
cl1a
Cl1C

Ol1lE

2C
20
85
ZC

AG
Ce
SC

AS
eC
cé
DC

4C

gA 72
ES 72
cC

17 173

21
Ce 72
Cl
F1

CC 01

-14-

sCFECKOLT PROGRAM -- PRINT BIMNARY CF TYFEC CHARACTER
=C tVARIABLE STCRACE IN PACE ZERC
BINARY "= +1 s STCRAGE FCR CHAR CURINC CISSECTICN
CCUNT =s+] sCOULNT OF BITS REMAINING TC PRINT
v =¢C1CC sPRCGRAM BEGINS CN PAGE CNE
CRLF =f728A sCEMOCN CRLF RCUTINE
WRT =$72C¢ ;DEMCN WRITE RCUTINF
RCT =$72E9 sCEMCN REAC RCUTINE
SPACE =¢72717 sCEMON SFACE RCUTINE
PRIN JSR CRLF yPRINT CARRIACE RETURN & LINE FEED
JER RDT SGET A CHAKACTER
STA BINARY ;SAVE FCR CISSECTICA
JSR SFPACE sPRINT A SFEACE
LC2 48 SINITIALIZE EIT CCOUNT
STA CCUNT
PRLCCP LCA #1990 s ASSUME ZERC: LCAC ASCII nwQow
ASL BINARY sC=NEXT BIT
ECC PRINT sPRINT ZERC
H
LCA 471 sLCAD ASCIT "1v
PRINT JIR WRTY SFRIMNT EBINARY CIGIT
DEC CCUNT sCOULNT BIT PRINTED
BNE PBLCCP sCC NEXT BIT
3
JMP PEIN sCO IT ALL AGAIN

CORRECTED PBIN

PROGRAM

sl Bl

¢) Ll Save the corrected program using the WH command.
Before punching the terminating record (as above in step 8),
turn off the punch and set the PC to the start address of the
program (0100). Then punch lLocations 00F6 and 00F7 on the
tape, then the terminator (;00), and finally, some trailer:

.R 1052 30 37 FF 0L FFP

: 0100 ¥
.WH O00F6 O00F7 1}
;0200F6000101A2

.;00
The resulting tape can be loaded and then started as follows:
.LH

(program loads in)

Locations 00F6 and 0O0F7 contain the starting address for pro-
grams. You may assemble and load your starting address into
these locations to make tapes which can be started with a min-
imum of operator action. The carriage-return delay time may

also be set in this manner. See Appendix III.

() 12. It is also possible to punch BNPF-format tapes using

DEMON. BNPF is the format used by some ROM programmers. The
command is similar to that for writing hex tapes:

.WB 0100 0127 }

This command would punch the corrected PBIN program in BNPF

-16-

format. Try punching a BNPF tape. (Note that DEMON will not
load tapes in this format--use hex format (WH) for saving

programs for later loading into your JOLT.)

() 13. If you have a high-speed paper tape reader attached
to your J6LT system, you can use it to load programs in hex
format. The H command switches the load device to and from
the high speed reader. If you have a high speed reader, try

loading a tape as follows:

Note that control will not return to the user terminal until a

terminator record (;00) is read.

THIS COMPLETES STEP-BY-STEP CHECKOUT
OF THE DEMON MONITOR

APPENDIX I

HOW TO HAND-ASSEMBLE JOLT PROGRAMS

If you do not use an assembler to convert your JOLT
programs to machine language (hexadecimal), you will have
to convert your programs manually. Here 1is a suggested
procedure.

The procedure consists of four steps:

STEP 1: Decide which variables and subroutines
are to be placed in page zero and assign fixed locations

to them.

STEP 2: Look up each instruction in the 6502 code
chart and record the operation code in hexadecimal, noting

how many bytes of memory are required by each instruction.

STEP 3: Determine the location in hexadecimal of

each labelled instruction or variable.

STEP 4: Fill in all remaining values, using the

locations determined in Step 3.

When writing a program for hand assembly, it is
desirable to split your code into small routines which
can be assembled separately. Since you will be loading and
debugging your program by hand, you should leave some space
for changes so that complete reassembly is not required to

fix small problems.

By way of illustration, the PBIN program (used in the

Monitor Checkout section) will be hand-assembled:

; CHECKOUT PROGRAM —-- PRINT BINARY OF TYPED CHARACTER
*=() s VARIABLE STORAGE IN PAGE ZERO
BINARY *=%+] ; STORAGE FOR CHAR DURING DISSECTION
COUNT #=%+] ;COUNT OF BITS REMAINING TO PRINT
*=30100 ; PROGRAM BEGINS ON PAGE ONE
CRLF =$728A ; DEMON CRLF ROUTINE
WRT =$72C6 ; DEMON WRITE ROUTINE
RDT =$72E9 ; DEMON READ ROUTINE
SPACE =$7377 ; DEMON SPACE ROUTINE
PBIN JSR CRLF ; PRINT CARRIAGE RETURN & LINE FEED
JSR RDT ;GET A CHARACTER
STA BINARY ;SAVE FOR DISSECTION
JSR SPACFE ; PRINT A SPACFE
LDA #8 ; INITIALIZE BIT COUNT
STA COUNT
PBLOOF LDA #'0 ;ASSUME ZERO: LOAD ASCII "O"
ASI. BINARY ;C=NEXT BIT
BCC PRINT ; PRINT ZERO
LDA #'1 ;LOAD ASCITI "1"
PRINT JSR WRT ; PRINT BINARY DIGIT
DEC COUNT ;COUNT BIT PRINTED
BNE PBLOOP ;DO NEXT BIT

JMP PBIN ;DO IT ALL AGAIN

Step 1

Decide which variables and subroutines are to be placed

in page zero and assign fixed locations to them.

Page zero contains locations 0000 to OO0OFF. The variables
that are to reside in page zero must be identified prior to
assembling the rest of the program since the mode and length

of some instructions depend on whether their operands are in

page zero. The sample program has two variables in page zero.
They are simply assigned locations sequentially:

Loc Contents Instruction

0000 XX BINARY *=#*+1 ; STORAGE FOR CHAR DURING DISSECTION
0001 XX COUNT *=*+1 ; COUNT OF BITS REMAINING TO PRINT

The program does not specify initial values of these loca-
tions, so the contents position is marked with X's, indicating
that no values will have to be loaded there. In this example,
there are no subroutines or other instructions to be assembled
in page zero. It will be more convenient for hand assembly if
such code, when it occurs, is placed after the variables. Then
the position of variables will not depend on the length of pre-

ceding instructions.

Step 2

Look up each instruction in the 6502 code chart and record

the operation code in hexadecimal, noting how many bytes of

memory are required by each instruction.

The length and code of each instruction is determined by
its mode. Some instructions, such as JSR and BNE, have only
one possible mode, and thus present no difficulty. The mode
for other instructions depends on the operand. For example,
immediate mode is indicated by a pound sign (#) followed by a
value. Instructions of this type use the operation code from
the immediate columns of the code chart. The value following

the pound sign is put in the second byte of the instruction.

For example:

Contents Instruction
A9 08 LDA #8
A9 31 LDA #'1l ;ASCII "1"

Instructions which have a zero page mode may be assembled
in that mode if the operand is in fact in page zero:

85 01 STA COUNT

The same operation with a non-zero page operand would
occupy three bytes:

8D o STA ADDR

Since symbols other than page zero (and certain pre-
assigned addresses like WRT) do not have locations yet, we must
leave blank spots to fill in later. Do mark the correct number
of spaces for the unknown bytes, since the length of instruc-
tions determines the position of instructions which follow.
Similarly, branch instructions will have their second bytes

blank at this point:

DO BNE PBLOOP

Thus far, the partially assembled program looks like this:

Location Contents Instruction
: CHECKOUT PROGRAM -- PRINT BINARY
*=0
0000 XX BINARY #=%+1
0001 XX COUNT *=%+1
*=50100
CRLF =$728A
WRT =5$72C6
RDT =$72E9
SPACE =§$7377
20 8A 72 PBIN JSR CRLF
20 E9 72 JSR RDT
85 00 STA BINARY
20 77 73 JSR SPACE
A9 08 I.LDA #8
85 01 STA COUNT
A9 30 PBLOOP LDA #'0
06 00 ASIL BINARY
920 BCC PRINT
A9 31 LDA #'l
20 C6 72 PRINT JSR WRT
c6 01 DEC COUNT
DO BNE PBLOOP
4cC JMP PBIN

Step 3

Determine the location in hexadecimal of each labelled

instruction.

It is now possible to fill in the location column, because
the length of each instruction is known. Count in hex (0,1,2,...,

9,A,B,C,D,E,F) and write in the locations (of the first bytes)

of instructions and variables which have labels:

Location Contents Instruction
; CHECKOUT PROGRAM -- PRINT BINARY
*:0
0000 XX BINARY #*=%+1
0001 XX COUNT *=%+]1
*=50100
CRLF =$728A
WRT =$72C6
RDT =$72E9
SPACE =$57377
0100 20 8A 72 PBIN JSR CRLF
20 E9 72 JSR RDT
85 00 STA BINARY
20 77 73 JSR SPACE
A9 08 LDA #8
85 01 STA COUNT
010F A9 30 PBLOOP ILDA #'0
06 00 ASI, BINARY
90 BCC PRINT
A9 31 LDA #'1
0117 20 Ce 72 PRINT JSR WRT
ce 01 DEC COUNT
DO BNE PBLOOP
ac JMP PBIN
Step 4

Fill in the remaining values, using the locations determined

in Step 3.

Locations of variables not already entered may now be filled

in. Be sure to enter the low half first and the high half second.

For example, location PBIN is at address 0100. It is recorded
as:

4C 00 01 JMP PBIN
Branches can now be completed by counting the number of bytes
from the instruction to the target address. When going forward,
count beginning with the first byte following the instruction,

up to but not including the first byte at the target address.

Thus, the boxed bytes are all that are counted in this example:

90 BCC PRINT
A9 3] LDA #'l
30 ¢°8 72 PRINT JSR WRT

When branching backwards, count those bytes from the end of the
branch instruction itself (counting both bytes) to and including

the first byte of the instruction at the target address. Thus:

STA COUNT
010F A9 BPLOOP LDA #'0
ASL BINARY
BCC PRINT
B9 LDA #'l

0117 €é PRINT JSR WRT

£el 1] DEC COUNT
@l Q BNE PRLOOP

4C 00 01 JMP PBIN

Although you could count in hexadecimal, it is easier to
count in decimal (base 10). When counting in decimal, count
up whether going forward or backward, and look up the correct
hexadecimal value on the Branch Chart shown on the next page
and also in Appendix V. (If you do count in hexadecimal,
backward counts need to be negated. Do this by subtracting the
count from 100 hexadecimal. Forward hexadecimal counts may be
used without modification.)

The assembly (page I-10) is now complete and ready to be

loaded into JOLT.

CHART OF BRANCHES: DECIMAL TO HEXADECIMAL

FORWARD
MSD + 0 1 2 3 4 5 6 /)
YLSD¥
0 4+ | 16| 32| 48| 64| 80 96 | 112 —
3 1| 17| 33| 49| 65| 81 97 | 113 F
2—=——2]| 18 | 34 | 50 | 66 | 82 98 | 114 E
3 3| 19| 35| 51| 67 | 83 99 | 115 D
4 4| 20| 36| 52| 68| 84 | 100 | 116 C
5 5| 21| 37| 53| 69 | 85 | 101 | 117 B
6 6 | 221 38} 54| 70| 86 | 102 | 118 A
7 71 231! 39| 55| 71! 87 | 103 | 119 9
8 8| 24| 40| 56| 72| 88 | 104 | 120 8
9 9| 25| 41| 57| 73| 89 | 105 | 121 7
A 10| 26| 42| 58| 74| 90 | 106 | 122 6
B 11| 27| 43| 59| 75| 91 | 107 | 123 5
e 12| 28| 44| 60| 76| 92 | 108 | 124 4
D 13| 29| 45| 61| 771 93 | 109 | 125 3
E 14| 30| 46| 62| 78| 94 | 110 | 126 2
F 15h—31 147 631 791 95 {111 12]
— U6 | 32| 48| 64| 80| 96 | 112 | — 0
+LSD4
]
F E D c B A 9 8 « MSD
BACKWARD

Location Contents Instruction
;CHECKOUT PROGRAM --— PRINT BINARY
*=O
0000 XX BINARY #*=#%+1
0001 XX COUNT *=%+1
*=350100
CRLF =$728A
WRT =$72C6
RDT =$72E9
SPACF =5$7377
0100 20 8Aa 72 PBIN JSR CRLF
20 E9 72 JSR RDT
85 00 STA BINARY
20 77 73 JSR SPACE
A9 08 LDA #8
85 01 STA COUNT
010F A9 30 PBLOOP LDA #'0
06 00 ASL BINARY
90 02 BCC PRINT
A9 31 LDA #'1
0117 20 C6 72 PRINT JSR WRT
ce 01 DEC COUNT
DO F1 BNE PBLOOP

4c 00 01 JMP PBIN

APPENDIX IT

NOTE, HINTS, & RECOMMENDATIONS
FOR USING YOUR JOLT MICROCOMPUTER

Storage Allocation

Some care in selecting locations for programs will
save programming time and memory space. Page zero storage
(0000 to OOFF) is a special resource in your system since
it can be used for indirect references (to tables or
routines) and since direct references to page zero loca-
tions require shorter instructions (2 instead of 3 bytes)
for most instructions. Therefore, you will probably want
to give priority to putting variables and data in page
zero. Be sure to avoid locations at the high end of the
page, however, since these are used by DEMON (00E3 to
00FF) .

Code and data may also be placed in page one (0100
to 01FF). Be careful, however, to leave sufficient space
for the stack (which, with DEMON's initialization, fills
from the high end of the page downward, from location
01FF towards location 0100). You should allow at least
three bytes for each level of nested subroutine call or
interrupt possible in your program, plus space for all data
you push onto the stack, plus an additional 20lO bytes for
DEMON. Failure to leave enough space may cause part of
your program or data to be overwritten by the stack, with

unpredictable results.

IT-2

6502 Processor

1. Addresses for the 6502 processor are always stored
low-order byte first, high-order byte second. Thus the lower
part of an address is in the location having the lower-
numbered address.

2. BRK acts as a two-byte instruction. When entered
via BRK, DEMON adjusts the PC so as to make BRK in effect,
operate as a one-byte instruction. Users who elect to
handle BRK themselves (by changing the hardware IRQ interrupt
vector) should be aware of this difference and program
accordingly.

3. Certain undefined operation codes will cause the
6502 CPU to "hang up". When in this "hung up" state, the
CPU can only be stopped with reset. NMI will not work.

All other undefined codes may have unpredictable effects.
Undefined codes should be avoided.

4., Attempting to read non-existent memory locations
will usually yield the high-order part of the address as
data. However, this is not true in all cases (indexed loads

may respond differently), and should not be relied upon.

The JOLT CPU Board

1. User PIA's are not fully address decoded, which
means that each PIA uses 1K of address space. Thus, each
PIA register appears every 4 locations in the 1K space used

by that PIA. See the JOLT memory map in Appendix III.

II-3

2. Unless debouncing is provided for an NMI button,
several interrupts can occur when this button is pressed.
The result is that DEMON is interrupted in the process of
servicing the original interrupt, and the users CPU reg-
isters are lost. With proper debouncing, however, CPU
registers printed by DEMON after NMI will correctly reflect

the state of the machine when the first interrupt occurred.

DEMON Commands '

Appendix III

DETAILED DESCRIPTION OF DEMON

Command

)

[

.M addr

.: ADDR data

Description

Set line speed. After RESET, a carriage
return is typed to allow DEMON to measure

the line speed.

Display user registers. The format is:
PC P A X Y S
where:

PC is the program counter

is the processor status

is the A {accumulator) register
is the X (index) register

is the Y (index) register

n o ox P

is the stack pointer low byte (high
byte is always 01)

Go. Begin execution at user PC location (see

R command) .

Memory examine. DEMON will display the eight

bytes beginning at address addr.

Alter registers or memory. DEMON allows the
user to alter registers (if R command pre-
cedes) or memory (if M command precedes).
Values for registers or memory locations

which are not to be changed need not be typed

=
'Characters typed by the user are underlined. All other charac-
ters are typed by the computer.) means carriage return.

IITI-2

—these fields may be skipped by typing
spaces instead of data. The remainder of
the fields in a line may be left unchanged
by typing carriage return. The : command
may be repeated to alter subsequent memory
locaticns without the necessity of typing
intervening M commands. Note that DEMON
antomatically fypes spaces to separate data

f:1lds.

Load Hexadecimal. DEMON responds with car-
riage return, line-feed and loads data in
assembler output format from the terminal or
high-speed paper tape reader. The format is:

Zero or more leading characters except

";" (usually blank leader)

Any number of records of the form:
;ccaaaadddd. ...ddssss
where:

cc 1s the number of bytes in the
record in hex

aaaa is the hex address to store the
first byte of data

dddd....dd is the data (two hex digits
per byte)

ssss is the check-sum, which is the
arithmetic sum, to 16 bits, of all
the count, address and data bytes re-
presented by the record

A terminating record of zero length,

either: ;00 or ;1

.WH addl addh}

.WB addl addh}

ILT=3

Note that read-after-write and check-sum
tests are performed. An error will result
in a "?" being typed at the point the error
occurred. Data from records with bad check-
sums is deposited in memory as received,

prior to the error stop.

High-speed/low-speed reader switch. This
command switches the load device from the
user's terminal to the high-speed reader

or vice versa.

Write Hexadecimal. An assembler-format tape
is generated at the user's terminal. Format
is as described above in the LH command des-—
cription. Note that the address range must
be specified with the lower address first.
As in the Alter command, DEMON types the

space between the address fields.

Write BNPF. A BNPF format tape is generated
at the user's terminal. Format is one Or
more records as follows:

aaaa Bddddddddr Bddddddddr BddddddddFr Bddddddddr

where:

aaaa is the address of the first of the
four bytes specified in the record.

(Note: BNPF conventions require that

the letter "B" never occur in the address
field. Blanks are substituted by DEMON.)

ITI-4

B is the letter "B", meaning begin data.

dddddddd is eight data bits—P for logical
true, N for logical false.

F is the letter "F", meaning finish.
Note that the BNPF format is output as multiples
of four bytes. Thus, a multiple of four bytes
will always be punched even if a non-multiple

of four bytes is specified.

Iy Cancel Command. While typing any command, its
further effect may ndrmally be terminated by
tvwing one or two carriage returns, as redquired.
During alter (:), carriage return means that no

further bytes (or registers) are to be altered.

DEMON Interrupt and Breakpoint Action

BRK

The BRK instruction causes the CPU to interrupt execution,
save PC and P registers on the stack. and branch through a vec-
tor at locations FFFE and FFFF. DEMON initialiées this vector
to point to itself on RESET. Unless the user modifies this vec-
tor, DEMON will gain control when a BRK instruction is executed,
print an asterisk "*" and the registers (as in R command), and
wait for user commands. Note that after a BRK which vectors to
DEMON, the user's PC points to the byte following the BRK; how-

ever, users who choose to handle BRK instructions themselves

III-5

should note that BRK acts as a two-byte instruction, leaving

the PC (on return via RTI) two bytes past the BRK instruction.

IRQ

interrupt Regquest is also vectored through location FFFE.
The CPU traps (as with BRK) through this vector when IRQ goes
low, provided interrupts are not inhibited. Since this vector
is the same as for BRK, DEMON examines the BRK bit in the P
register after this type of interrupt. If a BRK did not cause
the interrupt, then DEMON will pass control through the UINT
vector. Users should normally put the address of their in-
terrupt service routine in the UINT vector locétion. If an
IRQ occurs and UINT has not been set by the user, DEMON reports

the unexpected interrupt in the same way as an NMI (see below) .

NMI
Non-Maskable Interrupts vector through location FFFA. DEMON
initializes this vector at RESET to point to itself. If an NMI
occurs, a pound-sign character (#) precedes the asterisk and CPU
registers printout. This action is the same for IRQ's if the

user has not set this vector to point to his own routine.

RESET or POWER-UP

Oon RESET or POWER-UP, DEMON takes control, initializes itself
and the system, sets defaults for interrupt vectors and waits for
a carriage-return input from the user to determine terminal line

speed. After carriage-return is typed, control is passed to

the user as 1in BRK.

DEMON Monitor Calls

N 1

and Special Locations

Call Address

JSR WRT

JSR RDT

JSK CRLF

JSR SPACE

JSR WROB

JSR RDHSR

Function

Start Addres

CR-LF Delay

UINT
NMI Vector
RESET Vector

IRQ Vector

72C6

72E9

728A

7377

72Bl

733D

S

Type

Read

Type

Type

Action Arg. Result
a character A None

a character Nonie A
CR-LF and delay None None

a space None None

character

Notes

A,¥ cleared
Y preserved

X cleared
Y not preserved

A,X cleared
Y preserved

A,X,Y prescrved

Zoro means 256 bits-

Type a byte in hex A None A,X cleared
Y preserved
Read a charact.: from None X—char Y presecrved
high-speed paper tape read
reader A—char
tr immed
to 7 bits
Locations Notes
00¥6,00F7 Set with hex tape on lecad
00E3 Set on load or with user program (in bit
times, minimum of 1.
time delay) .
FEFH User IRQ vector
FEFFA Hardware NMI vector
FFFC Hardware RESET vector
FFFE Hardware IRQ vector

ITI-8

JOLT SYSTEM MEMORY MAP

The memory map on the following pages explains what func-
tions have been assigned to each segment of the JOLT address
space. It is recommended that users respect this space alloca-
tion when adding memory and peripherals to their JOLT systems.
Space has been reserved for 32K bytes of user RAM or ROM, seven
additional PIA devices, and up to 512 user I/O device registers.
Other areas are reserved for JOLT expansion, i.e., new JOLT
peripherals and memory options will use these spaces. Users are
advised to not use JOLT expansion space unless absolutely neces-
sary.

Note that some areas used by the JOLT CPU board and PIA
boards have more space indicated than there are registers or
locations in the device occupying them. This is because these
devices do not decode all address bits, or use some of the
address bits for special functions. For example, the 6530 timer
determines the time scale and interrupt enable/disable by the
address used to access it. Thus, these "partly filled" areas

are actually entirely used and are not available for other uses.

(1)

ITI-9

INTERRUPT VECTORS @

6530 (:)
B

Sy ! INTERRUPT VECTORS B!
F3CO | RAM (1)
F3BF
RESERVED
: FOR
JOLT EXPANSION
C000
BFFF
USER ROM AND RAM AREA
? (RECOMMENDED LOCATION FOR
ADDITIONAL RAM BOARDS)
8000
7FFF
. DEMON MONITOR
: (RGM)
7000 (1)
6FFF
RESERVED FOR JOLT PERIPHERALS
6E40
6E3F
: 6530 I/0 TIMER
6200 (1)
61FF
RESERVED FOR USER I/0
6000
L CPUPIA________ (1)
[USER PIAs
4000
3FFF
USER RAM AREA
: (RECOMMENDED LOCATIONS FOR
FIRST THREE 4K RAM BOARDS)
1000
uEnE SPARE RAM SPACE
0200 i (NORMALLY UNUSED)
O1LFF :
i USER AREA AND STACK (1)
8885 USER AREA AND DEMON (1)

USER PIAs
C

PAGE ONE (:)

Standard

on JOLT CPU board.

PAGE ZLRO _{Ez)

INTERRUPT

VECTORS
@

ITI-10

6530

Standard on JOLT CPU board.

Available to user—not used by DEMON.

To get enable-interrupt address, add 0008

address with corresponding functions.

16

FFFE,FFFF | HARDWARE IRQ VECTOR
FFFC,FFFD |HARDWARE RESET VECTOR
FFFA,FFFB | HARDWARE NMI VECTOR
FFF8,FFF9 DEMON UINT VECTOR
FFF7
UNUSED
USER RAM N
| FFCO S ¢ 1Y
E3
OE3F TIMER CONTROL, & 6E05
ENABLE INTERRUPT ., BERSY
TIMER CONTROL, B
DISABLE INTERRUPT 6207
53]
& 6E06
& 6EO05
6E04
6E03
, 6E02
L_ 6530 PIA PORT
6E00] 6EOL
6E00

] DATA REG A

READ INT FLAG
; (BIT. 7)

READ COUNT

SET COUNT (1024 T)

SET COUNT (64 T)

SET COUNT (1 T)

DIRECTION

R -

DATA REG B (4)

s |
REG B(4ﬂ

S—

DIRECTION REG A

to disable-interrupt

Reserved for DEMON use—TTY control and reset functions.

<:) USER PIAs

(§>;7PAGE ONE

g M B

5C03
5Cc02
5col

5C00

O1FF

01EB

5C00 | PIA ON JOLTCPU BOARD

5800

5400

— ADDITIONAL

_____ s b1 —_

AERE USER PIAs

4800

4400

4000

O1FF STACK

¥
USER SPACE

0100
| O0FF
| 00E3 DEMON RESERVED SPACE
i 00E2

(:) PAGE ZERO

USER PAGE ZERO

SPACE

D0F7
00Fr6

| 00E3

CONTROL B

DIRECTION/DATA B

CONTROL A

DIRECTION/DATA A

MINIMUM
ALLOCATION
20

10 BYTES
FOR DEMON

PCH

PCL

CRDLY

III-7

DEMON Memory Usage

DEMON uses the top 29lO bytes of page zero (locations 00E3
through O00FF). The user is advised to avoid these iocations,
except as noted above, 1f return to DEMON or use of DEMON sub-
routines is required before RESETing the processor. DEMON also
uses the hardware stack when it is in control. Provided the
user does not alter the stack pointer during a break, and pro-
vided the stack does not overflow, DEMON will restore the stack
to its original status before returning to the user's program.
The user is advised to use page 1 (the stack page) cautiously,
leaving at least 20lo bytes for DEMON use during a break or when

using other DEMON functions.

Appendix IV

MCS 6502 INSTRUCTION SET SUMMARY

The following symbols are used in this summary:

A Accumulator

X.Y Index Registers

M Memory

P Processor Status Register
S Stack Register

L,LOC Absolute Location

Z Zero-Page Location

X Affected

- Not Affected

+ Sum

A Logical AND

- Difference

¥ Logical Exclusive Or
1 Transfer From Stack

b Transfer To Stack
oy Transfer To

< Transfer To

v Logical OR

PE Program Counter

PCH Program Counter High
PCL Program Counter Low

Immediate Addressing Mode

Iv-2

“NOWHQ butsn jou uaym s33Ag om3 ST UDTUM Nd 3deoxdy

ssaxppe 3o 3axed ybTtH c0 TUOTIONIISUT 3yl
ssoIppe Jo 3aed mo] LY Jo s93Aq pPATYI PuUP puoodss ayl ut
93nTosqe ¥ pPeOT I03 9p0OD av T ¥al £ ST Pess=200' elep 2Yl JO SS2appe 9L ALNTOSIVY
‘passo00® B3RP 29Ul JO 0oxaz abed
oxoz 2bed uo ssaappe 3sed S/ uo ssoippe 9U3} ST (AIIeD JINOYJTM)
X Aq 193s5Thax x Syl Jo sjusjuod oyl snld A AE QAXAANT
poxeput abed oisz I0I 8pPOD ag A'Z ¥a1 Z UOT3ONIJSUT 2Y3 JO 93AQ PuUODSS aylL I9¥d O9dZ
‘posseooe BlEp a2yl jo oxaz abed
oxaz =2bed uo ssaippe ased Sl Uo Ss2ippe 9yl ST (AxIed 3nOylTM)
X Ag 1o3st1hax ¥ 9yl Jo sjusiuod 2yl suld ¥ Ad QIXAIANI
pexepuT abed oxoz I0J SPOD sd X'7 ¥aA1 Z UOT3IONIISUT BYl JO 831AJ PUODIS YL 99Yd O"4dZ
‘UOT3IONIJZSUT 2yl JO
oxsz obed uc ssaippe Jo 3xed Mol St 231AQq puooas 8yl UT ST PasSsSo00r Blep
sbed oxsz ¥ pROT I0J IPOD G¥Y Z ¥d1 z 2y3 Jo ox=oz abed urylTm sSSaIppe 2UL TOVd OddZ
2SN 031 JUBISUOD €0 *UOT3IONIJISUT 92Uz JO 23AQ
21eTPAUMT ¥ PeROT I0J 9pOD 6Y c# YAl z puooas 2yl uT ST pPoOSsS900R Blep 3yl FIVIATWWT
193sthox y
¥ 339 2383101 I0I WPOD VZ ¥ 104 T @®y3 uodn pswiaojaad sT uorjexado a8yl HOLYINWNDDY
‘uUOT3IONIISUT 22Ul AQ
¥ 01 ¥ I9FsueIl I0J @pPOD VY AT A § patrdut sT pswxojaad uorjexado oYL aa I TdWI
aTduexy CERYV.G uotadrIosag 2POK
#

SOpPOW DHbUTSS2IPPY

AAVHNWAS IHS NOILONILSNI Z0S9 SOW

IV-3

sopeu T dwnl syl yotym 03

ssaappe 1o02xTpuTr J0 3xed ybtH Z0 SssaJppe 2yl JO SsS21ppe 24yl ST
SS2IppE 309aTPUT FO 3xed MOT LY UOT3IONAJSUT 22Uy JO s23Ag paATU]

joeatput dunl x03 89pod 09 (D01) dWr € pue pucoos Syl Ul S$S2appe oyl JWNL LOAYIANI
*SSaIppe youeaq

peaye s23Aq uaa3s L0 03} (S923AQ UT) 39SJJ0O DYyl SUTPIUOD HONYIG

Tenbs JT youeaq I03 3poD 0dJ 201 0ad % UoT3onI3suT 9yl Jo 934g puodss SyL AATILVY TS
*passoooe
e3lep 243 JO S$SaJIppe 2yl sT I3
-sThax X a8yl Jo s3iualjuos ayz sntd

oxoz 92bed jo ssoappe ased oL ‘UOT3IONAISUT BY3 UT 33AQq PuUODISS A Rd

& Aq psxsput-3sod 2y} Aq petjitoads ssaippe 2349 QIXIANI-ISOd

103ITPUT ‘Y pPEOT IOF 3pOo) 9 &' (Z) &A1 Z -om3 o019z abed a2yl IO S3UL3UOD BYJ LOTAIANT
*pass900e BIRp 9yl JO
SSaJIppe 23Ag-om3} 2yl Jo oxoz obed

oxaz abed uo sssappe aseqg Sl Uo SSaIppe 2yl ST (AIIBRD 3INOUITM) ¥ Ad

X AQ psxeput x93sTbox ¥ 2y3 10 s3jusjuod aylx snid AXAANT -THd

-2xd 302aTPUuT ‘Y pPEROT I0I 2pOD ¥ (X'Z) va<l zZ UOT32oNIFSUT 2y3z Jo 234Aq puocdss ayg LOTIIANT
‘p9ssadoe elEp 28Ul JO SSoIppe
ssaippe 9seq jo 3xed ybty zZ0 92Uyl ST x@3sTbeaa X a8yl JO SIULIUOD
ssaippe aseq Jo jaed MmOT] L ay2 snTd ‘uor3lonIlsur a8yl Jo s2a1iq

A AQ psxapuT Y peOT IOJ IPOD 6d A'T ¥al € PATY3 PUR pUODSS 3Yl] UT SS=2Ippe 3yL A A9 QIXIAANT
"pessa00or BlEP 2U3 JO SS2IppPER
ssaappe aseq jo jxed uybtH Z0 @2y3 sT I=3sTbeax ¥ 2y3 JO Siusljuod
ssaippe 9seq Jo 3xed mol LY ayyz snid ‘uoT3ionijzsur ayl Jo so3Ag

X AQ pexopurl ¥ PEOT I0J 3pOD ag X' v¥al € pPITY3 puUB pUODaS dYl3 UT SS2Ippe 2yl ¥ A9 QAXIANI

o Tduexy sol1Akg uotadTIaosaqg 2DOK

#

IvV-4

yeaaq 20104 -
i A I T i 00 +d +Dd 3dnIIejUT PLOOI0J
snTd nsai uo yosueaqg
R - 1d 31 u _—
0 = N uo ysueig
oI5z 730U JTNSSI U youeaq
w o Ll e i = | o= oa aANd
0 = 7 uo youeiqg
snuTw 3INSaI Uo youedqd
sl el o lfef= Of 1 = N uo ysueig T
9 / JOojeTNUNOOE YITm AZowsuw UT SITQ ISITL g
W= =] =] & |Lw T4 e A< I N o« LW Wy V¥ .
ox9z 1TNS8l1 U0 UYdueBIg
e 0d I = 7 uo youeig Oag
12s AIiied UuoO youexg N
ol i A A 0d 1 = D uo youerg R
Iealo Axaeo uo youead
LT T 06 0 = D uo youeig 004
103eT
- == s x| x 471! 90 91| 90 Y0 -nunooe Io AJowew) 3TQ 9uO 3IST IFTUS | ISV
o » [olt[z]el®w]s]ole] - 2
- T€|T2 acfaz Ge|sz|6C I0IBIMUNDIE UITH. ATOWSHL ,ANT. anvy
=] 6t Ve WYY
| tol 6l or sl 5 i AITes YaTm I03eTnunooe 03 AJIouLu ppy av
¥ 1~ * O at Y e D+ W+ ¥
“ A S A A A S I =R A =
alajrioz B AI S % x| 8 x| X B85 uotydrIosad ajsul
w | id Pomd
Sapo
pPoD I

UOTITPUOD

AIVHWAS LIS NOILONYLSNI 20589 SO

IV-5

U0 AQ ¥ XopuTl JUSUSIDD
- = =! ¢! % 1740 q puT . . Xdd
¥« 1T - X
auo Aq AJowaw JUSWDIDO]
B B B q3a 3o 9dj 92 . oaa
W<« T-W
A Xopul pue Azowsu axedwod
=1 =1 e o« x 40 2| 00 g xdD
W - X
¥ Xoput pur Azowauw 2xeduo)
= - x| x| x od Pd| o4 XNdD
W - X
IojeTnunoor pue Azxowaw 2Ixedwo)
il Il I 3 ™ 1a; 10| 6djad |dd Sd; 2| 60 W o— y dWD
be MOTII2A0 I3
o2t 2t ad 3 T3 T ATD
A< 0
be1y o sTp 3dnixsijut JIes
“lol=1-1- 8¢ J 9TYesTP L 10 15
I+ 0
be Spou TRWIODSp IeaTd
gt =t =1 =1 = ed 3 =P TewTO2pP T T
a-« o
be13y Axzxeo zes)d
={ =] Qf =q= 8T 2 21
2+ 0
189S MOTJISA0 UO youexg
0L T = A Uuo yosuexg SR
IeaTD MOTFI2A0C UO Youeag
0s 0 = A UO youeag SR
HIEIE |F|S S |a || o gy
a|I(D|Z|N|3F m”x T | &= BT el Bl 5 uotTadraosag I3sur
vA —
Sa2pPOoD opow

UOTIFRIOD

AIVWWAS LIS NOILOOYLSNI Z0S9 SOW

IV-6

AJouiouw U31m J Xopul pro]
- =] - = od| O¥ d| ¥V¥| 0¥ AdT
A+« N
Azouwaw Y3TM ¥ XI9pUT prO]
= = ¥ dd d¥| 9d 9% ¢¥ ' xAdT
X« N
Azowsu y3jTm IO0jRTOUOIOE PROT
-1 -1 -1 = Td|I¥|6d| dd] d¥ gd| 6¥| 6¥ g . a1l
sSSHIppe
UIN319I bUTABS UOT3RD0T Mau o3 dunp
- - - = 0z ' . yso
od « (2 + od)
10d « (I + 2d) “t € + Dd
uoT3ieoo] Mau 03 dunp
| w) =] = 09 oF HOd « (2 + Od) dwr
TDd « (T + D2d)
U0 AQ X X9PUT JUL2WSIDU
S I 8o 9 A put 3 L INT
A+« 1+ A
auo A ¥ X9pul juswuL2Ioul
={ =] =1z gd 4 B . KNI
X<« 1 + X
i auo Aq Azowsuw JUusSwWSIOUT —
-1 =] -] =% qd| 34 94| 94 W< T+H
IoleTnUNOOE YITM AJowsuw ,,I0-SATSOTOXI,
ST 15 | 1% | 65| as|av SGiGv|6Y weWAY | OB
suo AQ x XSpUuTr 3juawaIdag
= = b | 88 < T -x& Add
ol R =R =1 el A T e T -
i) E ~ |~ 5 |~ z ’
altl|lolz Z 8 = Tl | % o Tt 5 BRI B uotadraonsad I3sur
—A —
Sic)elels} ;
SPAN AIYWWNS IdS NOILONILSNI Z0G9 SOW

UOT3ITPUOD

Iv-17

2UTINOIONS WOIF UINIDN
= N R 09 03 q 3 o ST
2d « 1 + O2d v 2d
21dNIA93IUT WOAF uanIoy
}oelg wWoxjg (037 . , 114
pod o L d
_ (F03e [nu
_ —nooe IO Alowsw) 33IST 3T SUC J3P10Y
- - - gg| 3¢ 9¢| 9¢ \4 = - e 109
” | > 5 - [O[UellTs o —
“ v a0 W *
| L
2p)S WOAI sniels Josssnodd 1104
NOB}S WoId 8¢ ! ’ ' | atd
A}
¥2oBR1S WOoil IojeTnunodoe 1Ind
= = I 89 ¥1d
v ¥
oP3s U0 snyels aossado0xd ysng
T cll [l SR 80 . % dH4
t d
¥OE1S U0 IOJIR[NUNIOE Ysnd
= = 8F YHd
L -
JOJRTNUMODR U3 TM ATouwsau 40,
- e I A 1T 10| 61} @T{ @0l |sT|S0|60 . 8 VO
¥ - WA ¥
- - - - - v uoT3PIado ON dON
(a03e [nu
- - -1 x| ag| 9w 96| oF A7) -nooe 10 Azowsw) 3T auo 3ybra 31143 ¥ST
A - O EBLE] « o
H| WlE (B0 M N 8 HD R
2 S (e e s 2 =
a|{I|d2|2z &1 B|: I R IR R ElR B uoT3dTraIosag TFSUT
TA —
=EYolole
7 PO
UOT3TPUOD

AIYWRWAS LIS NOLILOAYLSNI Z0S9 SOW

¥ Xoput 03 I9jutod YOorlsS ISFsued]
X « S

A XOpUT 03 JIOJRTNUNODE I3ISURL]
A« ¥

¥ ¥X9puTl 01 I03eTnumooe Isjsued]
X « ¥

Azowsu UT X X2pUT 3I101S
W <« A

Azowsuw uT ¥ XSpPUT BI0AS
W<+ X

i 16

AZowsw UT IOJETNUNMDOE 21015
W« ¥

Iv-8

be1s 2T1gesTp 3dniaisjur 19§
I« 1

beT3 opow TeWIDdap 335
a«T

peTy Aazeo 388

O« I

MOIIOq

U3TA JO3ERTOUMDOE WO AJowsw IDeI3qNsg
moaxog = D 930N

¥«d-W-¥Y

N

NI

A (T)

SdvY
00Y
dWT

(X'1)

uotaydixosag

AYHWNS LAdS MOILOOUMLSNI ZO0G9

Iv-9

| |
i
- -leAa-:lli- 1i-J-||I‘i=1‘* I
| v O I03BTNUWNDOE O} X X9pUul ISJSUBRIL

86 VAL
7 ¥ o« X

. zoautod oejls 03 ¥ XOpul Iajsuer]
Y6 7 F s % SXL

103PTRUNDOR 03 X XIpUuT IDISUBRI],

il Bl . i Y VXL,
” ﬁi* _“ 8 ¥ « X
! _
_—.
1o SIS R E R I
%ﬁ_%H _umm NI BT el=|=x|p]«| x S| 8| 5 uotadTaosag I3sur
< | —
L1 _

SapPoD
UOTFTPUOD Sas XIVWWNNS LAS NOILONULSNI 2059 SOW

Appendix V

CHART OF BRANCHES: DECIMAL TO HEXADECIMAL

FORWARD
MSD —+ 0 1 2 3 4 5 6 7
YLSDY
0 = 16 32 48 64 80 96 112 ==
i 1 17 33 49 65 81 g7 113 E
2 2 18 34 50 66 82 98 114 E
3 3 e 35 51 67 83 99 115 D
4 4 20 36 52 68 84 100 116 G
5 5 21 37 53 69 85 101 117 B
6 6 22 38 54 70 86 102 118)\
7 7 23 39 55 71 87 103 119 9
8 8 24 40 56 72 88 104 120 8
9 9 25 41 57 73 89 105 121 7
A 10 26 42 58 74 90 106 122 6
B 11 27 43 59 73 91 107 1.2.3 5
C 12 28 44 60 76 92 108 124 4
D 13 29 45 61 77 93 109 125 3
E 14 30 46 62 78 94 | 110 126 2
F 15 31 47 63 79 95 111 127 1
— 16 32 48 64 80 96 112 — 0
tLSD*
F E D C B A 9 3 < MSD
BACKWARD

Forward Branches

Count in decimal from the end of the branch instruction
to target address. Do not count bytes in either the branch or
target instruction. Find the count in the center of the chart.
Use the Most-Significant-Digit at the top of the column, and

the Least-Significant-Digit at the left of the row.

Reverse Branches

Count in decimal from the end of the branch to the begin-

ning of the target instruction. Count all bytes in both instruc-

tions. Find the count in the center of the chart. Use the

Most-Significant-Digit at the bottom of the column, and the

Least-Significant-Digit at the right of the row.

Example

Forward 10 gives 0A. Backward 10 gives F6.

Chart Idea Credit

Ray Boaz, Homebrew Computer Club Newsletter, Volume 1,

Number 7, September 1975.

