The CPU280

When 8 Bits Aren’t Enough

By Tilmann Reh

The History

When Zilog first introduced the Z800 MPU in their 1983/
84 data book, I was working with a homebrew Z80 system
based on ECB-bus EuroCards (a well-established standard
here in Europe these days). My system was running with the
usual 4 MHz clock, but my CP/M-Plus BIOS already had
some very nice advantages. For example, | had developed the
AutoFormat system, a technique which supports a wide vari-
ety of disk formats automatically. The basic principle is the
same as what MS-DOS uses: the disk contains a parameter
block which holds all information necessary to process it.
Another feature was the automatic installation of and adap-
tation to various peripherals. Since several some people
around here had similar machines, none of them had to con-
figure hardware parameters (as long as they didn’t need very
special things).

When | had a look at the “preliminary’ specifications of
the Z800, I began thinking about some performance improve-
ments for my system. So | waited for this chip to become
available. I was still waiting in 1985 when Hitachi’'s HD
64180 suddenly appeared. This processor had much of what
the Z800 was supposed to offer, but it was actually available!
So | gave up waiting any longer and developed a 64180-
based single board computer. It had the 64180 MPU (with
both serial channels used), 32 KB EPROM and 512 KB
DRAM, a 765-type floppy controller for up to four drives,
and an ECB bus interface on a EuroCard. The clock fre-
quency was 9.216 MHz, which made an effective Z80 speed
of about 11 to 12 MHz. Since the ECB bus cannot handle
these frequencies, the bus clock was only half the CPU clock
(4.6 MHz), with timing signals stretched to meet standard
Z80 peripheral requirements. My new ‘CPU180" system did
the work of three of the older boards: the CPU, the memory,
and the floppy controller board.

The new single-board design brought the advantage of
direct access to all basic 1/O, so the BIOS could rely on these
facilities and use them. The CP/M-Plus implementation I
wrote for that system was more comfortable than the former
Z80 multi-board version. For example, it
automatic disk exchange recognition. The high processor
performance was amazing compared to the 4 MHz Z80.

introduced

Then came the IBM-PCs. At that time CP/M was system-
atically forced to death here in Europe. The special German
computer syndrome became, “it has to be always the newest,
biggest, and fastest machine,” and the computer magazines
followed that slogan. So, after a while I was the only one
around here who was still active with CP/M. That was the
reason why the CPU180 was built exactly once: | was work-
ing with the prototype board, and no one else seemed to be
interested. (By the way, Wayne and Paul, if you had known
that back in 1985/86, you wouldn’t have had to design the
YASBEC!)

At the end of 1988 Uwe Herczeg, another ‘lone CP/M
user’ in Germany, placed an ad in a major computer maga-
zine asking for other CP/M users to come forward. This
brought the remaining activists together. But most of them
were still using 4 or 6 MHz Z80 systens, often also based on
ECB-bus EuroCards, and some were very interested in my
CPU180 system. So we began thinking about a redesign of
that board with state-of-the-art technology. One of those new
friends suggested using the Z280 instead of the Z180. Z280? |
ordered the data sheet and what did I find but the late incar-
nation of the old Z800 idea. Unbelievable but true, the Z280
was really available! So we decided to use the Z280, for this
CPU has a far more powerful instruction set than the Z180.

The Hardware Design

Basics and Memory

As the hardware and software concepts of the CPU180
had proven themselves very well, all basic principles were
carried over to the CPU280 design. As it was with the
CPU180, the highest priority design rule was to get the
absolute maximum performance out of the MPU with the
absolute minimum circuit expense and parts cost. For the
printed circuit board that meant using a standard double-
sided PCB (no multi-layer) with normal wire thickness (0.25
mm) and no SMD parts at all. Just the good old sort of
computer boards: reliable and easy to maintain.

In order to get the full power of the Z280, it must be run
in the 16-bit Z-bus mode, with cache and burst-mode en-
abled, with no RAM wait states, and with the highest pos-

Tilmann Reh is an electronics engincer at the Center for Sensor Systems of the
University of Siegen, Germany. In addition, he owns a small company which
develops custom specific problem solutions, often using microcontrollers or
microprocessors. He has been active with CP/M since 1983, changed to CP/M-Plus
in 1985, and has developed a number of ECB-bus boards. Tilmann can be reached by
regular mail at ‘In der Grossenbach 46, W-5900 Siegen, Germany’ or by e-mail

(Internet/bitnet) at ‘tilmann.rch@hrz.uni-siegen.dbp.de’.

The Computer Journal / #53

sible clock frequency (12.5 MHz). The
on-board memory interface is 16 bits
wide.

Main memory is built with dynamic
RAM. There are eight sockets for 1 M-
bit or 4 M-bit chips (with 4 bit data
width). Chips must be used in groups
of four to fit the 16-bit data bus. So the
possible memory capacities are 512 KB

3

fritz
Kommentar
These text is extracted from "The Computer Journal (TCJ)" and you can get all pdf-files from Bill Kibler / Kibler Electronics.

Go to http://www.kiblerelectronics.com/ and on the left click onto TCJ support.

Thanks to Bill for his archive and all who made TCJ possible.

and 1, 2, or 4 MB. This directly accessible memory should be
enough for just about any circumstances. The standard con-
figuration is with eight 1 M-bit chips (1 MB total). To save
space and because of the availability of exactly pin-compat-
ible 1 and 4 M-bit memory chips, ZIP-cased RAM is used.

Having had very good experience with synchronous
DRAM timing (the CPU180 memory worked absolutely
error-free for many years), [built a fully synchronous timing
chain for the DRAMs again. This uses an HCT175 as a four-
bit shift register and a GAL (gate array logic) containing the
CAS decoding and selection logic. The DRAM interface also
supports the processor’s burst mode, using a GAL to sweep
the lowest address bits during the burst (we can’t use nibble-
mode RAM’s, as these are not available with 4-bit width!).
The RAM timing is designed to meet all specifications of the
2280 at 12.5 MHz and RAMs with 100 ns access time.
However, as the prices for 100 ns and 80 ns types are
identical, we normally take the latter for safety.

Since the memory interface is far too fast for the ECB bus,
external memory is not supported. Additional reasons for
this decision were the data bus width (16 bit vs. 8) and the
different timing and status signals (Z-bus vs. Z80). Support
for external memory with burst-mode is absolutely impos-
sible, as the ECB bus doesn’t have strobing signals which
could do that job. Interfacing the fast 16-bit internal data bus
to the slow 8-bit ECB bus would require a large amount of
circuitry, and that would violate our main design rule. So, if
someone really needs more than 4 MB RAM, please connect
an external 1/0-accessed RAM-disk via ECB (DMA support
is no problem).

The boot software is placed in two 27C256 or 27C512
EPROM, so the boot capacity is 64 KB or 128 KB. For easy
handling, ordinary 28-pin DIP sockets carry the EPROMs. As
this memory usually is needed only during boot-up, burst-
mode is not supported, and to accommodate slower memory
chips up to three wait states may be added.

The 7280 is able to use different memory timings when
accessing the lower or upper half of its 16 MB address space.
The EPROM is decoded into the lower half (8 MB, what a
waste!) and the RAM into the upper half. This way, it is
possible to use the RAM with zero wait-states and burst
mode while the EPROM uses up to three wait-states and
doesn’t support burst mode. Mapping any desired memory
configuration to the CPU’s logical 64k address space is done
with the PMMU (Paged Memory Managing Unit) internal to
the Z280.

I/O Basics and Bus Interface

In order to take advantage of widely available Z80 periph-
erals, the ECB bus clock and corresponding timing signals
really should not exceed 6 MHz. As the CPU clock frequency
is 12.288 MHz (for easy baud rate generation, it should be an
integer multiple of 2.4576 MHz), it is convenient to use half
the CPU clock frequency. This results in a bus clock of 6.144
MHz, which requires Z80B or Z80-6 components. With the
internal wait-state generator of the Z280 programmed to in-
sert four wait-states every 1/0 transaction (the maximum
value), the duration of the 1/0 cycles exactly matches the
divided clock. The clock divider is implemented by a single
flip-flop (HCT74) and is reset at the beginning of each trans-
fer to produce the correct phase relationship between bus
clock and timing signals. Since the Z-bus control and timing
signals cannot be used for the ECB bus, they are converted

into the appropriate Z80-type signals with a GAL.

Since the external peripherals use Z80-type vectored
interrupts, the bus interface must be able to generate the
correct interrupt acknowledge and RETI timings. Interrupt-
acknowledge is treated as an 1/O transaction and stretched
by the Z280, but the RETI instruction consists of two memory
cycles, which are too fast for the peripherals (besides the fact
that the memory control signals do not appear on the ECB
bus). Last but not least, the Z280 has a new interrupt mode
(mode 3) which uses another return instruction (RETIL). So a
slow RETI timing can be simulated using special accesses to
on-board 1/0 locations, with a GAL generating the correct
signals for the ECB bus. This way, vectored external
interrupts are supported, although the clock speeds are very
different.

The Z280 supports 24-bit I/O addresses as opposed to the
8/16-bit addresses of the Z80. The upper eight /O address
bits are accessed via the ‘I/O Page Register’ within the MPU.
For full access to the 256 I/O addresses which are specified
for the ECB bus, the bus interface is decoded to have an 1/0
page of its own. Another page is used for the on-board 1/0,
and two pages are reserved for the internal 1/0 registers of
the Z280. Decoding of the [/O pages and addresses is done
within GALs.

Internal and On-Board 1/O

The Z280 comes with a serial interface (UART), three 16-
bit counter/timer circuits, and four DMA channels on-chip.
To avoid an external baud rate generator for the UART, one
of the timers is used. The 12.288 MHz clock allows standard
baud rates up to 38400 to be generated. Higher, but non-
standard, baud rates are also possible.

The internal UART is completed with two handshake sig-
nals which are not supplied by the MPU. A second serial
interface is provided by a Twenty-Pin-UART (TPUART)
COMB81C17 by SMC (it includes its own on-chip baud rate
generator). Both interfaces are buffered and shifted to RS-
232C levels with a 5V-only line driver and receiver, the
LT1134.

The CPU280 contains a real-time-clock (RTC) with 50
bytes of nonvolatile RAM, the Dallas DS 1287. Since this part
already contains the lithium battery, no external circuitry is
required. The RTC is able to generate interrupts at a specified
date and/or time (alarm) or periodically. The NVRAM is
ideal for storing configuration parameters.

Floppy disk I/0 is handled by a WD/SMC 37Cé5 floppy
disk controller (FDC). This neat chip, cased in a 44-pin PLCC,
contains the complete controller. Just connect the CPU bus to
some pins and the disk drives to some other (and don't
forget the quartz crystal), and everything is running. Floppy-
related data transfer may be handled by one of the Z280's
DMA chanrnels.

Simple TTL chips (HCT367, HCT259) are used to imple-
ment one 6-bit input port and one 8-bit output port. One bit
of each port is used for the handshake signals for the first RS-
232C interface. The other outputs drive some FDC control
lines and three LED's for status display. Some of the inputs
are connected to jumpers so that they can be used for con-
figuration purposes.

There are four 16V8 type GALs on the CPU280 board.
They contain memory address and CPU state decoding, 1/0
decoding, RAM timing and CAS decoding, and some ‘glue’

logic. Since nearly all signals are processed with only one

The Computer Journal / #53

logic stage, the standard ‘slow’ 25 ns GALSs are fast enough.

The entire CPU280 circuit is designed using CMOS tech-
nology. The internal logic is made with the 74HCT series,
which is fast enough for nearly every signal. The bus inter-
face and one timing-critical function in the DRAM interface
use 74ACT chips. All LSI also are CMOS, and the GALs
should be taken from the ‘Q’ series (quarter-power). As a
result, the complete CPU280 board—fully operating at maxi-
mum clock speed—draws only about 350 mA from a single
5V power supply. No other voltages are required. The 32
chips nearly exactly fill the board space of the EuroCard,
with just enough space left to avoid a multilayer PCB. (Hey,
Wayne and Paul, why did you need SMD for just 23 chips?)

As with every good single-boarder, you just need to con-
nect a power supply, at least one disk drive of any kind and
size, and a terminal to complete the CP/M-Plus workstation.
However, by connecting the CPU280 to a standard ECB
backplane, you are free to use nearly any available ECB 1/0
board.

The Software

The best hardware doesn’t produce anything without the
right software. With this in mind, | adapted my CPU180
BIOS to the CPU280, now using the powerful Z280 instruc-
tion set, of course. As with the circuit design, the basic prin-
ciples and structures of the BIOS were taken directly from the
CPU180. However, | completely redefined and enhanced the
AutoFormat system and added a menu-driven hardware
configuration program to the boot loader (this was impos-
sible with the CPU180, as it had no NVRAM). Of course,
some further improvements were made based on the experi-
ence of four years of CPU180 operation.

Normally, the complete system (boot loader, CCP, BDOS,
and BIOS) is booted directly out of the EPROM. As a result,
you can boot up your machine in two seconds without any
noise or mechanical action. (For testing new system versions,
of course, booting from disk is also possible by pressing a
button during RAM-test.)

With all functional enhancements fully compliant with
CP/M-Plus definitions, all CP/M-Plus and most CP/M-2.2
software can be run on the CPU280 without any problems.
By the way, the operating system runs in the Z280's system
mode, while all user programs run in user mode. This is
done mainly to achieve easy bank switching (which the
MMU does automatically in this case), but it also increases
system security. Unfortunately, CP/M-Plus must have the
BIOS entry vector and some data structures in common
memory, so you cannot absolutely prevent user programs
from damaging the system software. But since we don’t have
any better (and still compatible!) operating system, we have
to live with that fact.

The Power

What is the real performance of a Z280 running with ev-
ery booster switched on? The answer, unfortunately, is not as
clear as you would probably like it to be. First, the Z280 is a
pipelined CPU. So you really can’t say how many clock
cycles any instruction will take; it depends on the last few
previous instructions. In addition, some instructions (jumps
and calls, for example) flush the pipeline and thus are rela-
tively ‘slow’. Second, effective CPU speed depends on the
‘hit ratio’ of the cache controller. Small loops will run much
faster than ‘spaghetti code’. Third, the 16-bit arithmetic unit
of the Z280 (opposed to the 4-bit one of the Z80) processes

The Computer Journal / #53

indexing and math operations with greater speed gain than
with other instruction types. So the more a program makes
use of these instructions, the greater the effective speed.

Although it is impossible to specify exactly the power of
the Z280, you can say that with normal 8080 or Z80 software
it will have the power of a Z80 running at 16 to 20 MHz. Of
course, using the new instructions (there are more than 600!)
further increases the performance (while loosing Z80 com-
patibility, of course). As the Z280 is used more and more, |
hope we will soon see the first real Z280 programs or the first
real Z280 operating system (which could could get rid of the
annoying 62 KB TPA limit of CP/M-Plus...).

The Development History

After the first version of the CPU280 ran stably in March,
1990, I made a redesign of the PCB layout with slight changes
in parts of the circuit. In June, 1990, | ordered the first run of
PCBs, and in November, 1990, | sent them along with all
semiconductors and special parts to about 25 people here in
Germany. A few other people around the world got a PCB
without the part set. I had to wait until November because
that was the time when the 12.5 MHz version of the Z280
became available, and we didn’t want to take the slower ver-
sion first and upgrade a few months later. As of early 1991,
many of the machines were running very well, as far as |
have been informed by the users. The CPU280 has proved
itself to be very fast and very reliable. Our ‘PD and ZCPR
Mar’, Helmut Jungkunz, likes the machine for its flexible
method of processing different disk formats; that's why he
uses it for nearly all disk distribution he has to do. Of course,
he likes the raw power, too.

But the CPU280 is not our only project here in Germany.
In a future column I would like to introduce my next board,
an IDE controller which connects standard (PC) AT-Bus
harddisks to any ECB-bus based CP/M system. The board
also contains an active termination of all bus signals, a Cen-
tronics printer interface, a four-LED power monitor, and two
system control buttons for reset and NMI (which, with the
CPU280, forces a warm system reboot). This board nicely
matches the CPU280 and allows one to build a really high
power CP/M workstation.

A friend of mine is developing an LCD terminal. Together
with a low-power Z180 single-boarder (based on my
CPU180) it makes a powerful CP/M-Plus laptop! My newest
project, which is coming along very well, is a high-perform-
ance CRT terminal for text and graphics at an unbeatable
price. Wait and see! Needless to say, all three of these boards
are EuroCard size. My friends and [look forward to describ-
ing these projects in future issues of TCJ.

How to Get a CPU280

Some of you may be wondering how you can get a
CPU280 of your own. Well, overseas shipment costs would
be too high for sending complete kits as we did here in Ger-
many. I think the easiest way to make the CPU280 available
in the USA (and elsewhere outside Germany) is for a local
dealer to provide my PCB together with locally obtained
components. For the US market, who could do that job better
than Sage Microsystems East? So, if you are interested in the
board, the semiconductors, or both, please contact Jay Sage.
Kits will include a disk with the complete system software, a
hardware manual describing the circuit details, and a brief
software description (I still haven't found the time to com-
plete a real software manual). @

TCJ Center Fold

CPU280

Tilmann Reh

Now it’s been exactly four years since I described the CPU280
in TCJ issue #53. In that early article, I described the
circuit principles and also some details, but we didn’t in-
clude a schematic of the board (though in TCJ #54, a
photograph of the CPU280 board was printed (p.6), which
was taken at our club meeting in Germany). Now Dave, our
new editor, has suggested to include these drawings as the
Centerfold of this TCJ issue, to give you an example of
current 8-bit computer technology.

So you should now see the circuit drawing of the CPU280,
along with the PCBs part layout and some accompanying
information like bus connector pinout and GAL contents,
on these Centerfold pages.

To give our new readers a first impression: the CPU280 is
a powerful single-board computer using the Z280 proces-
sor, which is an enhanced Z80 core with extended instruc-
tion set (about twice as much instructions and addressing
modes) and many on-chip peripherals. The CPU280 is
build on a standard EuroCard (100x160 mm, or about 4x6.2
inches) and connects to the ECB bus (a european standard
8-bit bus using VME-type connectors).

As mentioned in that early description, the circuit design of
the CPU280 is really straightforward, though it might not
seem so at the first glance. The drawing might appear
rather complex because it is all combined on a single sheet,
while the functional circuit blocks are much simpler. We
might devide the circuit into five parts:

1. CPU basics

2. Memory interface
3. Onboard I/0

4. ECB bus interface
5. Glue logic & GALs

1. CPU basics

On the CPU280, the Z280 processor is used in 16-bit mode.
This means we’ll have a 16-bit multiplexed address/data
bus, and “Z-bus” type control signals (as used by the Z8000).
So we definitely have to latch the 16 lower address bits on
each memory or I/0O access (IC2,IC3) to get a static 24-bit
address, and we also have to decode the Z-bus lines (espe-
cially its status lines STO0..3) to get appropriate access sig-
nals. Upon reset, some basic operating parameters of the
Z280 processor can be sct up by asserting /WAIT during the
rising edge of /RESET and placing the configuration data

The Computer Journal / #77

on the lower data bus. After /WAIT is released, the proces-
sor starts operation. This configuration is done by the
circuit around ICS, with /WAIT delayed by R1/CS, while
RN2, RN6, and R4..7 supply the configuration data to the
processor (depending on the jumpers J1..4). Note that the
reset signal to the Z280 itself is fed through a GAL to
satisfy the CPUs rise time needs. The Z280 chip also
contains a serial interface (UART) and a four-channel DMA
controller, which are used within the CPU230.

2. Memory interface

All memory accessible by the Z280 is located onboard.
Since the Z280 supports different timing for two memory
areas, EPROM memory and RAM memory each use a dif-
ferent area. There are two EPROMs (IC9..10) to hold the
16 bits of data, while four 4-bit RAMs are connected “in
parallel” for 16 bit. Interfacing to the EPROM s is as simple
as can ever be, however the RAM circuit is somewhat more
complex. It uses a fully synchronous timing chain (IC30,I1C4)
and some glue logic contained in GALs (IC21..22) to pro-
vide the necessary signals for the dynamic RAMs (IC11..18)
and their address multiplexers (IC19..20). (The principle
of the timing chain is that a logic ‘1’ is shuffled through the
chain with each clock pulse during memory accesses.) To
support the Z280s burst mode (used to fill up the internal
cache memory), the GALs also contain logic to increment
the lower address bits and generate separate /CAS pulses
for each in-burst access.

3. Onboard 1/0

The I/0 circuit is rather simple again. All decoding is done
in a GAL, which provides differently sized address areas for
each sclect signal. The on-board I/O consists of the floppy
controller .(IC28), a second serial interface (IC31), and a
real-time clock with non-volatile RAM (IC27). There fur-
ther are two general purpose ports for bitwise input and
output, GPI resp. GPO (IC26,IC25). The floppy controller
uses one channel of the Z280s DMA controller to transfer
data to/from memory.

4. ECB bus interface

The interface to the ECB bus supports 1/0 transactions
only. Due to the speed limits of the bus, I/O accesses are
stretched to meet the standard 6 MHz Z80 timing, while
appropriate Z80-type control signals are generated. The
processor clock is also divided by two for the bus, and the

Center Fold Section 25

[
R HIH EHEHYE §EEEB, 25
BO0EEEEHE BEERE
:1 NG 3 S Snd -
u-“"fvg © N R—fﬂ OO g
XXXXX «
s;gvvv : N 8
E g B E gERARYTRAQ)YgE Rl —— - s
298 i —M)a " Sl il at
3c uls €31 Ex|s e ° ()
REe ol [t EglE
£ 52 4255 S° R%esamszmad = e
DD NIREEE & T I ﬁ - L
] - q “255 -
%4, ik*@h@@@é&ﬂ St Y 8% 0y
S (£[8 § 544 %% 5|8
s g[8 P % E85885838 %0
] s g{(ﬁ's»iﬁi alsls ofTe SR &
----- o]] =] =uv~o-J-T-r usésavogn:ss;la i%gs;g 584, g 8
R 33 S PRRERARRAR I
g22 = 28 | 8K ceeta o %
VBN I bl O - -] Llefo]o]n]ole L
=] 0| -
QL!%L!BL{[alslaialslel %l,‘m‘ §§9§§§§§5§F .
sfe(e(efa(a(eal sl Qle[ee[el(E(NS W GEeed
el M 2% edpeq ©
REEBLRAR BSEEZR2D ! 2=l T
1 o131 1] 141 P a
ZIS/98ZI4Z 01631 Biwan [~62 ‘Ug‘/ﬂ] < <
peooseebeeziisely 85|z18| 3|8I313| BIBIZZ) Z131E|3
e~ [T:la"a _LI_
Mmle|vin] MmIv]vin] @lrlvoin] MvleIn
L!!g;-‘FEti EL :“ z ':vn:ﬁ ‘:5:?:? ‘25:?:? uexgﬁ:na
- ZW
(¢ B s §§ : ‘ o,_:
L'! [) »"
:f: ;: E [2 9!“
E C1 bt
co il — .
=~ Y 0
E T aB :_J___jﬁd" o
e 3] = v ™ weve Lo
ﬁu -4 Tt w §§§s :‘:’:5
5 (] zi_ﬂ v oW 2282R
N =
yy §88% &

DeAN=O

T ITTTIT

'nNFENEEFQQSErEQ D
SEGEEE s 8ls

Oniviole
cfei] o] =i

&l¥¥|ssls) sl
- H] 2]
B5HBZR2D JIIEFERT

Center Fold Section The Computer Journal / #77

ECB-bus pinout:

Physical ‘connector: VME-type 64-pin; rows a+c .used.

A7
D8 (A16)
- IEl
09 (A17/A19)

D1
L os12v
. TEO0
. A10
D13 (A16)

The 13 pms marked w1th an astensk have dlﬁ'erent mean-
ing, depending on the maker of the boards. The original

Note that Kontron dcfmed the bts' with |
. data lines. When more memory address
 forZ80-based computers; people simply
. from A16 up, using some of the “free™ b
_ nately, each maker took different ones. M
o * of the (common) philosophy to prevent ba
L D10 (A18/A20/ 12V)

: Lucklly most of the more simple
- need the bus only for simple tasks; hke th
. only the common subset of the bus so th‘ r
- where no problems arise.

Tust Tot info
. reserved those hlgh-order data lmw '

 from. So for tmung and mean gﬁ
- refer to the Z80 CPU data sheet. Bes!
_ “additional signal lines are just the pnonty-cha_

meaning defined by Kontron (the company which i
duced the ECB-bus) is always printed first. Additio:
redefinitions by other makers are prmted in
The differences concern three signal types" i

dnﬁerent makers are combmed'

purchasmg anythmg from another maker

rupts (IEIIIEO) and DMA (BAI/BAO/RD'

N =
— AdAd X X
CN3 D14@ CK22 e T glao
V.24 i 1l1ca 1c2 i L
I D21¢) 353 353 BNZ C A
o613 X oare LIS g —1
K1 020 L R R? —
ey 1134]
4 1C? —_—
ox1gy 245 —_
856 — | Z
Z
N = I1Cé6
N ﬁ bz« %— o
1c8 —
[N o§ ﬁ 1214 —
ND 9z —lg AN B I - — | o
oN -1uF1 % = 1C2 W
L TK1S % 16U8 (RAM —
82 E—n—cm ~ —
wo [=) 1C23 —
ice —cio g VI (sver % —]
2 Szl |28] (Be Re %g—
= 1C32 == ==l == 0 k6
4 R
12 8L JRRERRERNME =
R2 (SO -Omo 1151811815181 (815 (3|8 —
S(EILENEILEEILEIEN, | =
5T ollo|L|ollv|l|v]|p|liv]|lo] |Se e |
1 =1, N ——
ICS n:;o 1 T T T 32
7705
i o BRISISIENR (BIS] 18]5] 2 L
C c3 o EJ EJ o :J ollo O ﬂ)
2E BE BE 3 L
The Computer Journal / #77 Center Fold Section 27

divider flipflop is synchronized for every I/O access to CPU280 GAL EQUATIONS

exactly reproduce the Z80s phase relationship between con-

Iy . TITLE CcPU2 -TIMI NI
trol signals and clock. To provide support for external aurvon O L2muN ey TUING AND NIBBLEMOOE 1C21
interrupts from the bus, some extras were added (/M1 to ~ S¥eANY R S 1o 50

simulate interrupt acknowledge, special I/0O decoding to

simulate RETI instruction fetch for the bus). External

interrupts might use external vectors (Z80 peripherals) or §3<.03 A B2 A TE O OF Moo Sha FrR vee

an internal (fixed) vector. The non-maskable interrupt also
. is connected to the bus. Note that there also is a refresh

signal (BRF) generated for the bus, although there is no [- ;“w',/ﬂg S MOA * /MUX * AT + NUX ¢ /MAD

external memory support. This signal is to support I/O- MA1 := /NGA * A4 + NGA JMUX * A2 + MUX * MAD + MUX * MA1

CHIP Z280RAM PALCE16V8

EQUATIONS

/FFR = JE * DS * wMQD

based RAM-disks built with dynamic RAM. CPURES = RES

S. Glue logic & GALs
TITLE CPU280 CAS-DECODER 1C22
AUTHOR TILMANN REH

‘Looking at the four GALSs containing all the “glue logic”, ~ Jo¥PANY R e, 062

I must admit that it took some time to design this part of the
circuit. When designing a complex circuit like the CPU280,
I first make drafts of all the main functions I need, and Ju¥ BN 5y RFSH 40 A8 AZ0 A2t A22 OGN0 o1n vee
don’t care much about the glue logic which is necessary to
make them work. After all functional blocks are designed,

I collect all the glue logic and try to combine it in a senseful /8% = '/‘gf: ° oA
manner. This results in some standard TTL parts (like

CHIP Z280CAS PALCE16V3

EQUATIONS

JCASOL = MUX * /RFSH * /A22 * [A21 * |A20 * [/A18 * BW * A0

ﬂipﬂ?p.s, multiplexers, inverters, buffers etc.) and some 4 MUX * JRFSH * JA22 * A21 * JA20 * JA1Q * /BW *
remaining “glue” which I then try to fit in as few GALs as (CLK + NCK + /AW) + RFSH * /MUX * MOA

possible. I could also have used a larger PLD, but I still /CASOH “;xugxlarésfgu/;zygz §p/A21 2 IA20 + IA1D - BN+ [AO
prefer thq smalle(GALSs for some reasons. Sq after I knew (CLK + NCK + /AW) + Arsa's ,.’,UX o - !

the functions which should be programmed into GALS, I 4o . wx « /arsn /22 « A2t * /A20 * A19 * B * A
started puzzling inputs and outputs to need a minimum + MUX * /RFSH * /A22 * /A21 * [A20 * A1D * /W *

. . . . N RW .
number of GALs. This surely is more work than is obvious (CLKCe NGKe JRW) ¢ RESH = /WX = WA
= MUX * /RFSH * JA22 * JA21 * /A20 * A10 < BW * JAO

. 1 : JCASTH
when seeing the final result! Though much more versatile PR S i SV AT o P Ll

than PALs, GALs are restricted in what you can do, mostly (CLK + NCK + /RW) + RFSH * /MUX * MOA
because there are only eight outputs per chip. Some times

I thought I had found the optimum combination just to .., . CPU280 SYSTEM-SIGNALS 1623
realize that one of the GALs would need nine output lines ~ AuTHoR TILMANN REH

for it (of course two outputs were free at another GAL then, Sare R 2 sneo

.oreven some inputs at the particular one!). One of the main ;. ,oc0cve paicereve
rules when optimizing GAL circuits is to connect any given
signal to a minimum number of GALs. For this, you 3;2 %ﬁ NAs 353 éfo"ﬁf‘é}sﬁzﬁuﬁ’s“x%"vcc
sometimes have to “cascade” two or more GALs, like I did o ar10ns
with the I/O decoder on the CPU280: the system decoder
GAL (IC23) decodes that there is an on-board I/O access, NS = xS

while the /O decoder GAL (IC24) uses this signal to fur- /3 = 513 7 /423 * I‘g';‘ « (/AS + NAS + NNAS)
ther decode which 1/0 device was selected. (When cascad- + [ST3 * /ST2 * /ST1 * STO * (/AS + NAS + NNAS)
ing GALs, however, you must keep an eye on the overall sy M ‘,‘g?s o JST2 * /8T1 * $TO
timing.) During GAL optimization, sometimes you also /810 7 /818 T [372.% 84 T /370 = /A28 = /A22 * /AZ1 * /DS
modify the functional block circuits to make more efficient /x10 = /ST3 » /ST2 * STt = /STO * /A23 < /A22 * A21
use of the glue logic. At that point, you have to enter the ju1 = Jo1s « a1ooe ja11 + jarg | 20 " A2 /A2

4 /ST3 * /ST2 * ST1 * /STO * /A23 * JA22 * A21

loop again and restart collecting and optimizing all “glue”

needed. I did this with the CPU280 several times, before

the circuit made perfect use of all TTL parts and GALs, rrre CPU280 10-ADRESS-DECODER 1G24
- minimizing total chip count. But the result can be seen, at 200K, TILEANE REM
least in my opinion: With four cheap standard GALs, the oat 24.03.1892

total parts costs are much lower, the PCB layout much cuip 228010 PALCE16VE
easier, and support is much better, than with a single large . . /10 0s a6 as A7 o€ 1€ N0

PLD' NC UART GPO GP1 RTC DACK LDOR LDRSR FDC vCC
EQUATIONS
Tilmann Reh, Dec 1995 [RTC = JXIO * /A7 * /A6
/FDC = /XIO * /A7 * A6 * /AS
. . . DACK = /XIO * . .
Ed: Just after Tilmann sent me this, Zilog announced that ;LBSSR TIXI0 < AT A s
i i /L = [XIO * A7 * /A6 * AS
they would stop making the Z280 in early 1996. TURRT = IX10 * A7 + Ae s /ag
/GPI = /XI0O * A7 * A6 * AS * /IE * /DS
/GPO = /XIO * A7 * A6 * A5 * /OE * /DS

28 Center Fold Section The Computer Journal / #77

Connecting IDE Drives to 8-Bit Systems

By Tilmann Reh

Interfacing Systems
Intermedate Skills

8 - Bit Construction

1 recently went to a IDE drive on my own
system. Since then I have been wonder-
ing about their technical side. Although
Tilmann is interested mostly in their 8-
Bit data usage, the information presented
here will help with any system. So
Tilmann can I hook this to my NOVIX
system? Read on and see for yourself.
BDK

Most of us know about the features of a
hard disk compared to floppy disk op-
eration. You get much higher storage
capacity while dropping access times
down to a few milliseconds. Before in-
stalling a hard disk, I was used to copy-
ing all files for the current project to the
RAM disk of my CPU280 and then copy-
ing all changed files back to floppy when
I was finished working for the day. Al-
though this is much better than working
with floppy disks only, it is not compa-
rable to using a hard disk. With a hard
disk, you just work on your projects,
which can now use files that would not
fit on a floppy or RAM disk, and you
don’t have to copy files around the drives.
In addition, the access times are almost
as fast as those of a RAM disk. Last but
not least, you are freed from changing
floppies like a D.J., since all files are
accessible without mechanical action on
your part.

The Technology Decision

When thinking about connecting a hard
disk to a given computer system, the
main decision that must be made is which
interface technology should be used. The
old ST-412/506 interface is not up to
date (I think it is impossible to buy new,
small drives with that interface), and the
hardware expense for this type of con-
troller is great. Additionally, these con-

The Computer Journal / #56

trollers have some critical analog cir-
cuits which have to be adjusted very
carefully.

The next technological step was the ESDI
interface, which is quite similar to ST-
412/506, except that data is transmitted
in parallel and with higher(but still fixed)
data rates. The ESDI controllers are more
complex and the drives more expensive
than the ST-506 components. So ESDI
is not interesting for our use.

The SCSI interface is a universal pe-
ripheral interface that is often used for
hard disk connection. Some machines
(Apple Macintosh, NeXT) even support
no other interface for this purpose. SCSI
is a very powerful and good interface,
and SCSI drives are well established and
available at acceptable prices. For the
host interface (that is the controller) there
are some chips available that do the
complete bus protocol work in hardware
and software and deliver raw data for the
host processor.

Another alternative is the IDE interface
(also known as the AT Bus interface).
This interface is used in almost all IBM
clones these days. Like the SCSI drives,
the IDE drives contain the complete hard
disk controller on the drive (this is where
the name comes from: IDE means *‘In-
tegrated Drive Electronics’’). But these
drives are connected to the standard PC-
AT bus system and are accessed just as
with the normal PC-AT hard disk con-
troller. So, in effect, you don’t need a
controller any more but just some inter-
face electronics that simulates an AT
bus. The IDE drives are slightly cheaper
than similar SCSI drives, and since the
interface is simpler, I chose this one for
my project.

However, it must be said that this deci-
sion was made with only the hard disk
connection in mind. If someone wants to
connect more peripheral devices (i.c.,
scanners, CD ROM, etc.) or more than
two hard disks (which is the IDE limit),
the SCSI interface is preferable (one
interface for all devices).

The Interface Circuit

The greatest problem when interfacing
an IDE disk to an 8-bit computer system
is the differing bus width. While the
control registers of the IDE drive are
still eight bits wide, the data transfer is
done word-wise (16 bits each transfer).
So we need an interface which maps the
16-bit data register to the 8-bit bus.

There are two basic approaches to doing
that. The first (and easiest) one is to map
the two halves of the 16-bit data into two
different /O addresses. The strobe for
the IDE drive would have to be gener-
ated with the read signal for the lower
half and with the write signal for the
upper half. The control registers would
then be accessed by always reading the
LSB and writing the MSB. However,
although only simple hardware is re-
quired, this method has a very great dis-
advantage: since two different /O ad-
dresses must be accessed alternately, you
cannot use string instructions (such as
the Z80 INIR/OTIR) or a DMA control-
ler for data transfer. Thus, the transfer
rate would be relatively slow and the
programming not very elegant.

The other approach is to map the 16-bit
data onto two consecutive accesses to the
same [/O address. This way, some cir-
cuit expense is necessary to switch the
right data halves to the data bus and to

11

handle the 8-bit accesses to the control
registers. However, with this slightly
more complex hardware, we get great
software advantages. With this technique,
using string instructions or DMA is the
normal way to transfer the data to or
from the disk drive.

Of course, we need some circuitry to
remember which half is to be processed
next, in order to select the correct data
path and generate the correct strobes for
the drive. As we have to distinguish only
two cases, one flip-flop is enough. Since
I planned to use a GAL (generic array
logic) for address decoding and bus in-
terface anyhow, I used one of the GAL
macrocells to make the flip-flop. The
clock pulse for the flip-flop is generated
each time any register is accessed, and
the data is set to zero when other than
the data register is selected. This way,
accesses to any control register also reset
the state flip-flop, thus ensuring proper
conditions when the data transfer is
started.

The rest of the interface circuit is self-
explanatory: one half of the 16-bit data
is always processed directly, while the
other half is stored in a latch or register.
For the control registers, the latch be-
comes transparent. The strobes and se-
lect signals for latches, buffers, and drive
- are generated with the GAL mentioned
above.

Slack Space On Board

The IDE interface itself would easily fit
twice (or even three or more times) on a
standard EuroCard-sized PCB. To avoid
wasting board space, I filled the free
space with some useful circuits which
would serve the CPU280 very especially
well but also make sense with other sys-
tems. The first additional circuit is an
active termination for the complete ECB
Bus, which is absolutely necessary with
bus clocks of 4 MHz or more and a
backplane of some length. With still more
space left, I added two control buttons
for hardware reset and NMI (non-mask-
able interrupt) generation and four LEDs
as a power-control monitor. Last but not
least, I finished the design with a
Centronics-type parallel printer interface.
The decoding signals for this interface

12

are generated using components that were
already there for the IDE interface, so this
involved almost no additional circuit ex-
pense. Of course, if someone needs only
the IDE interface, they can just leave the
rest of the board unused!

How To Get One

If you are interested in the interface, I
think it will again be the best to contact
Jay Sage for the availability of PCBs, pro-
grammed GALs, driver software, etc.

Tillmann Reh is an electronic engineer
at the University of Siegen, Germany.
He also owns a small company that
develops custom solutions using em-
bedded controllers or microcomputers.
Tillmann has been active with CP/M
since 1983 and developed a number of
ECB-bus boards. He can be reached
by regular mail at 'In der Grossenbach
46, W-5900 Siegen, Germany' or by E-
mail (international/bitnet) at
tilmann.reh@hrz.uni-siegen.dbp.de'.

TITLE IDE/CENTRONICS INTERFACE GAL IC1
AUTHOR TILMANN REH

COMPANY REHDESIGN

DATE 22.03.1992

; Accesses to the hard disk are always with LH = high. So this signal

; has complementary meanings when reading resp. writing. To access the
, drive with the first data read, the LH flipflop has to be set before

; the real data transfer begins (one dummy-read of the data register).

CHIP IDE PALCE20V8

CK A7 A4ASIORQ A6 WR A0 A1 A2 A3 GND

OE M1 CLK LH CS0 RD16 SEL WRLO WR16 RDHI RD VCC

, Base address (BASE) to be changed only here! The lower nibble of the
, addresses are partly fixed by the hardware design.

STRING BASE ‘(A7 * /A6 * /AS * /A4)'

STRING PARSEL ‘(BASE * /A3 * A2* /A1 * AO)

STRING CS1ADR ‘(BASE * /A3 * A2* A1)’

STRING DATADR ‘(BASE * A3 * /A2 * /A1 * /AQ)

. Base Address 80h

; Centronics Adr. x5
: CS1 Adr. x6..x7
, CS0/Data Adr. x8

STRING TFRADR '(BASE * A3 * (A2 + A1 + AQ))' ; CSO/Task Adr.x9..xF

STRING IDEADR '(CS1ADR + DATADR + TFRADR)'

EQUATIONS

/CSO = TFRADR
+ DATADR * LH

/SEL = (PARSEL + IDEADR) * /IORQ * M1
/CLK = (DATADR + TFRADR) * /IORQ
LH:=/LH* /TFRADR

WRLO = DATADR * /IORQ * WR * /LH

+ (TFRADR + CS1ADR) * /IORQ * /WR
/WR16 = IDEADR * /IORQ * /WR

/RD16 = DATADR * /IORQ */RD* LH
+ (TFRADR + CS1ADR) * /IORQ * /RD

/RDH! = DATADR * /IORQ * /RD * /LH

; all IDE-Addresses

; Task File Access
; Data Write MSB / Read LSB

. Board Access
: LH-Clock: Data & Task File

; FlipFlop: LSB/MSB Toggle
. Reset if Task File Access

; write Data LSB in latch
, transparent for all others

; MSB and latched LSB to IDE

; read Data LSB, latch MSB
; all others transparent

; read Data MSB from latch

The Computer Journal / #56

IDE-Inter face

Ter minier ungs-Kider stande

R Tl RN3 -> DO..D7
BD433 RN4 -> AD..A7
220392 TR sg: ! ——> ux PN5 - AB..AIS
o .LC:’ [12 AN6 -> MRO, I0RQ, RD, UR, M1, RFSH, CLK, 2CLK
12 s = 80434 R6..R3 -> INT,NNI,WAIT,BUSRG
—J20s 14 I" Y
A Sc 2
" lsa 3 n T O (= (P (a(=(o (B (2 o (= (R(a (2 NI TITIER
M7. 2 o o ala DEC'Q ESSSQEOD olojolojolale|o
A5 Ga 3
Y]
; Jue 11 -
el (173 10 0elol~]2 oYa[5f0]2]x o PN N A 2o o]2] [
] 77 3 1 re 11 o
ol PR\ 8 ? Ics 1cs
bec 4 x LED-3 7 19 4 1 374 1 244
wov 15 LT 02 5 FE E FE
RIl 3300 o3} 23 16 nfr|o|= = |~ 1 G i ol o1 O £ L 01 LN 5 G 1 Gl £
R12 1
sy |15 = 330R) 4 04] E]
15¢ 1k 3
n[s-&zj:“_c?_'e_--_J %335 SIES 838 ﬁﬁ% BIELB&SSELB %8332%58
31 11 3
/RESIN ?c-‘—:-l—g- 1C2 1
ol 13] 244 |I
A2
m JE< 1;
Isc
ol P73 4 IC12
Rl 7730 I > o2 123 (2 o
ey X0 B > 5 3 13
i T R g @ e °F 3
. —)(3—17—||%| —-)(z—lléﬂ%{ l[2;1!!2‘24,25:30:40‘
3c 9
% I 8] & A ‘
06 I 71 ©) (I X 13
gf [fa | s 12 /FE L’ U2 1c40 Elm_:, g}m
03 :‘ f 7 13
D2 1: 3 14 6
g IC3 5 5
oo J€ 21245 16 4
e 17 ANt
1 —
NNL Clis 244 _v*vwr\mm —— =
— X X X x*
QNN N
&
@ ¥war >z | CENTRONICS
[’d < wWad 2
AN [)
NMY I - RiOF CK2 CK3 .{ c a[’_.
§§§§ I ant + 1C6 + 1C3 & 1
4 _R12 I 373 245
o e —0 —
Fa [k K13
T]l T]lcs8 M —
244 374 Ty —
x| O] pE——
CK? —
+ 1C7 .
244 — .
I (8]
nwm Z I — w
;E, Y L—
e IC1 2L —
& Eoua iE N —
p4 1 T [ad pu—
o | 5 CK14
: CK8 ™ —
i ~ + I1C2 L —
| 2 244 — z
e O — Q
CKS _;.D‘ -
- - 12 L (s —
3 2 D434 T 32 —_
T a— - H
L 6 —
5 2 L —EK o ol | —
0 IC14 K18 T 1C5 5 S| —
00 oF 139 3= —32
ckisie []

The Computer Journal / #56

CONNECTING IDE DRIVES

by Tilmann Reh

Special Feature
Intermediate Users

Part 2: IDE Basics

Now it has been already one year since I described my 8-bit
ECB-bus-based IDE interface here in TCJ. The delay in con-
tinuing with my description was caused by difficulties with the
communication path between me and Bill Kibler. Since then,
some questions have come up which were not covered by that
article. So here is the missing information, I hope.

Remembering the Basics

Let us first have a short look at the drives we want to use. When
discussing the different hard disk interfaces in my last article,
I already pointed out that IDE drives of the AT-type, thus often
called AT-bus drives (Bill Kibler calls them ATA drives, but
this abbreviation is not the usual one, at least in Europe), are
the ones with the best price/performance ratio one can get. This
is even more the case now. So IDE drives still are the very first
choice if you are looking for a good and cheap hard disk for
your computer.

But what’s special with those drives? I already mentioned that
the IDE drive contains the complete hard disk controller. It is
accessed with a system-bus interface compatible with the PC/
- AT (ISA) bus and offers control and data registers still com-
patible with the very first PC/AT hard disk controller (based on
the WD 1010 controller chip). But even if those specifications
come from something I don’t like at all, why not use the low-
price components for real computing (i.e., with a CPU280)?

Bringing the hard disk controller into the drive electronics
offers some advantages. One of the main features is that you
don’t have a serial data stream with fixed bit rate between
controller and drive. Thus, there’s no need for conditioning the
signals for the interface, and you can use any bit rate. As a
result, the hard disk performance is limited by the drive tech-
nology, not by the interface’s bit rate. This is one reason why
today’s drives are so much faster than the older ones. And
technologies like Seagate’s ZBR (Zone Bit Recording) are
possible with hardware-independent interfaces.

There is another main feature of bringing the controller into
the disk drive. Today’s drives have very extensive checks for
data security. They store error correction codes (ECC) together
with the sector data and automatically correct single-bit errors,
so the sector need not be re-read in those cases. Additionally,
if a sector is found to be too unreliable, it is internally marked

The Computer Journal / #63

as bad and the data is mapped to a spare sector (usually there
is one spare sector per track). All this is absolutely transparent
to the user. So you now know the reason why today’s intelligent
drives don’t have ‘‘defect lists’’ any more.

Since the PC’s have such bad software (and hardware, t00),
there is another thing the integrated controller can do: translate
virtual addressing information into physical. That means that
the IDE drive is able to emulate another drive with different
parameters (cylinder count, number of heads, and sectors per
track). For the PC this is necessary because many PCs don’t
support drives with other than the historical 17 sectors per
track, and many do not support free configuration of the drive
parameters (only selection from a table is allowed). Also, some
PCs mask off some bits of the cylinder number, since the first
controller only had a 10-bit cylinder register -- so nearly every
IDE drive still supports an emulation mode with less than 1024
cylinders and 17 sectors per track.

The IDE Interface

As mentioned above, the IDE interface is almost completely
identical with a subset of the PC/AT expansion bus, so the
drive can be connected (almost) directly to that. The only
things required externally are two select signals (I/O address
decoding). This gives us some information about how the
interface works. In a PC the drive is accessed directly by the
CPU via I/O accesses to registers internal to the drive. The disk
data is transferred via the 16-bit data bus, but for compatibility
to the older systems (again!) only 8 bits are used for command
and status information. Besides the data bus, there are the
standard Intel-type data strobe signals (/IORD and /IOWR), a
few address lines, and some special signals. The connector is
a 40-pin header, not to be confused with the XT-type IDE
interface connector, which is also a 40-pin header but needs
somewhat different hardware and totally different software!

The IDE interface allows connection of two drives with one
cable. The second drive (slave) is then chained to the first one
(master). However, [heard about problems when trying to
connect different drives from different manufacturers. And the
capacities of today’s drive are so high that a single drive will

29

always be enough for an 8-bit personal computer system! So,
I never tried this option.

To understand the interface in detail, let’s have a closer look
at the IDE interface connector and its signals;

1 /RES 2 GND

3 D7 4 DS

5 D6 6 D9

7 DS 8 DIO

9 D4 10 D11

11 D3 12 DI2

13 D2 14 DI3

15 Dl 16 D14

17 DO 18 DIS

19 GND 20 No Pin
21 /IOCHRDY 22 GND
23 /IOWR 24 GND
25 /IORD 26 GND
27 /IOCHRDY 28 ALE
29 No Connection 30 GND
31 IRQ 32 /IOl16
33 Al 34 /PDIAG
35 A0 36 A2

37 /CSO 38 /CS1
39 /ACT 40 GND

The signals of the IDE interface can be collected in several
groups: The general control signals are /RES (Reset) and /
PDIAG (Passed Diagnostics). The data bus consists of 16 data
lines (D0..D15). The access control lines are three address
lines (A0..A2), the select signals /CSO and /CS!1 (Chip Select
0/1). and the strobe signals /IORD and /IOWR (and eventually
ALE, the address strobe). The remaining signals (IOCHRDY,
IRQ, /ACT, /1016) are status signals.

Now Let’s Go Into Details.

The reset signal normally is active-low. However, [heard about
drives with an active-high reset signal, but I never saw one (or
read such specifications). The /PDIAG pin carries a bidirec-
tional signal used for chaining two IDE drives (master/slave).
It normally can also be lcft open.

The data bus carries the 16-bit data words to and from the host.
However. when accessing the control and status registers of the
IDE drives, only data bits O through 7 are used (8-bit transfer).
The data bus lines arc tri-state lines that may be connected
directly to the host’s data bus. However, to meet the host bus
specs and to avoid noise problems caused by the interface cable,
a bus driver IC should be used to decouple the IDE bus and the
host bus.

The drive is accessed using the selection signals /CSO and /
CS1. This also has historical (compatibility) reasons. Together
with the three address lincs. there could be two-times-eight
addresses being occupicd by an IDE drive. However, while the
main register sct really has cight registers and is accessed with

30

/CSO active, the other set (with /CS1) has only two valid
addresses. We will have a deeper look at all the registers later.
The data transfer is always strobed by the timing signals /IORD
and /IOWR, for reading and writing, respectively. The address
strobe (ALE) is often unused in the drive; it should be pulled
high for static address lines (non-multiplexed busses).

The status signals are not absolutely needed to use IDE drives.
Some of these signals are not commonly delivered at all (for
example, /IOCHRDY (I/0 Channel Ready), which is a WAIT
signal for the host when the drive is much slower than the host
processor in terms of interface access times). The /IO16 line
informs the host of 16-bit transfers. Since we already know that
data transfers are always 16-bit and everything else is always
8-bit, this is redundant (however. nceded in the PC/ATs for
their ISA bus). Line /ACT (Active) is an output which can be
used for driving a drive-busy LED. Line IRQ is an interrupt
request line that goces active on some internal events (if enabled
by software).

Most IDE drives contain some jumpers that allow some options
1o be sclected. This normally includcs at least master/slave
selection. Sometimes the /ACT signal may also be jumpered as
an output signalling the presence of a second (slave) drive. The
default state of the jumpers normally need not be changed
(single drive, no special situation).

All interface lines carry CMOS-TTL-compatible signal levels.
However, some signals (IRQ, /PDIAG, /1016, /ACT) are able
to drive higher currents. Those dctails should be looked up in
cach drive’s specifications (for example, the /ACT output sinks
20 mA on my Conner drive. morc than enough for an LED).

Accessing the drive is done with the following sequence of
operations: First, thc address lines and the chip selects must
be set according to the desired rcgister address. After some
time (a minimum of 25 ns), /IORD or /IOWR is activated. This
causes the data to appear on the data lines (when reading) or
to be written to the drive (with the trailing edge of /IOWR, but
there are setup and hold times to take care of). After a mini-
mum of 80 ns, the strobe signal has to be removed. There are
some more timing requirements, but these are the main ones.

The above timing details might differ from drive to drive.
Alwavs kecp in mind that the IDE definition follows the PC/
AT system expansion bus and that official standards were not
specificd until two years ago, when the IEEE finally defined
some specifictions (which many PC manufacturers are not
following).

Unfortunately. I found that the drives do not match their own
specs in cvery dctail. For cxamplc, | found that the address
lines of my Conner drive (a CP-3044 with 42 MB) must be kept
stablc for much more than the specified sctup time. In addition,
the drive is very scnsitive (o spike noisc on the address lines.
even if the noise appears long before an access is initiated. |

The Computer Journal / #63

spent a great deal of time struggling with such unlucky details
(fixing other people’s bugs).

IDE Interface Registers

Now that we’ve covered the interface signals and their mean-
ing and usage, let’s look at the registers of the interface. We
saw that there are eight addresses being accessed through /CSO0
and two addresses through /CS1. The following is a list of all
the internal registers of an IDE drive:

Write Function

/CSO /CS1 A2 A1 A0 Addr. Read Function

0 1 0 0 O 1F0 Data Register Data Register

0 1 0 0 1 1F1 Error Register (Write Precomp Reg.)
0 1 0 1 0 1F2 Sector Count Sector Count

0 1 0 1 1 1F3 Sector Number Sector Number

0 1 1 0 0 1F4 Cylinder Low Cylinder Low

0 1 1 0 1 1F5 Cylinder High Cylinder High

0 1 1 1 0 1F6 SDH Register SDH Register

0 1 1 1 1 1F7 Status Register Command Register
1 0 1 1 0 3F6 Alternate Status Digital Output

1 0 1 1 1 3F7 Drive Address Not Used

The above addresses are those used in the PC/AT. Of course
they are dependent on the decoding of the chip-select signals.
The registers accessed via /CS1 might differ depending on the
manufacturer of the drive. As far as | know, they don’t always
follow the compatibility principle with the first hard disk
controller of the PC/AT.

The registers being accessed with /CSO are also called the
““Task File”’, so sometimes the IDE is also referenced to as
““Task File Interface’’.

The error register can only be read. It contains valid informa-
tion only if the error bit in the status register is set. Only five
of the eight bits are used. They have the following meaning:
Bit 7 Bad block. This bit is set when the requested sector’s
ID contained a bad block mark (can be set when formatting the
disk).

Bit 6: Uncorrectable data error. Set when the sector data
can’t be recreated (even with ECC).

Bit4: Requested sector ID not found (wrong sector number).

Bit 2: Command was aborted due to drive status error or invalid
command.

Bit 1: Track O has not been found when recalibrating.

The unused bits are always read as zero. However, I guess it’s
best not to rely on that!

The write precompensation register was previously used to set

the starting cylinder for write precompensation (a slight shift
of the serial data stream pulses to compensate for some mag-

The Computer Journal / #63

netic effects on the disk surface). Since IDE drives handle all
that internally, this function is not needed any more. Today,
this register is often used as a parameter register for enabling
or disabling look-ahead reading. We’ll have a deeper look at
that when talking about the various commands of IDE drives.

The sector-count register defines the number of sectors to be
read or written with the next read/write command. A zero
value causes 256 sectors to be processed, so the count varies
from 1 to 256. This register is also used during drive initial-
ization to specify the number of sectors per track (remember
the emulation capability).

The sector-number register contains the starting sector number
for any disk access. After a sector is processed, and after the
command is completed, this register is updated. When an error
occurs, this register contains the ID number of the erroneous
sector. Normally, the sector numbers start with 1 and increase
with each sector. However, by reformatting the disk, this order
and the values may be changed.

The cylinder-low and cylinder-high registers contain the 10-bit
cylinder number to be accessed. Sincc many drives have more
than 1024 cylinders today, the cylinder-high register is often
expanded to more than two bits. Like the sector-number reg-
ister, these registers are updated after command completion
and after errors. They are also used during drive initialization
as the number-of-cylinders parameter.

The SDH register is a special register serving several functions.
SDH is an abbreviation for ‘‘Sector size, Drive and Head’’. The
bits of this register are arranged as follows:

Bit 7: Historical: Extension Bit. When zero, CRC data is
appended to the sector’s data fields. When set to one, no CRC
data is appended. Since today’s drives always use ECC error
correction, this bit must always be set (no CRC).

Bit 6-5: Sector Size. Since today’s drives always have 512-byte
sectors (unchangeable by the user) because PCs are not able to
support other sizes, these bits must always be 0-1.

Bit4: Drive. This bit distinguishes between the two connected
drives when using the master-slave chain. Single drives are
always accessed with the drive bit set to zero.

Bit 3-0: Head number. These four bits contain the head
number (that is, the disk surface number) for all following
accesses. Similar to the cylinder and sector number, these bits
are updated by the drive. The head number field is also used
for drive initialization to specify the number of heads.

The read-only status register contains eight single-bit flags. It
is updated at the completion of each command. If the busy bit
is active, no other bits are valid. The index bit is valid indepen-
dent of the applied command. The bit flags are:

Bit 7: Busy flag. When this flag is set, the task file registers

31

must not be accessed due to internal operations.

Bit6: Drive ready. Thisbit is set when the drive is up to speed
and ready to accept a command. When there is an error, this
bit is not updated until the next read of the status register, so
it can be used to determine the cause of the error.

Bit 5: Drive write fault. Similar to “‘drive ready’’, this bit is
not updated after an error.

Bit4: Drive seek complete. This bit is set when the actuator
of the drive’s head is on track. This bit also is updated similarly
to ‘‘drive ready’’.

Bit 3: Data request. This bit indicates that the drive is ready
for a data transfer.

Bit 2: Corrected data flag. Sct when there was a correctable
data error and the data has been corrected.

Bit 1: Index. This bit is active once per disk revolution. May
be used to determine rotational speed.

Bit0: Error flag. This bit is set whenever an error occurs. The
other bits in the status register and the bits in the error register
will then contain further information about the cause of the
€rror.

The command register is used to pass commands to the drive.
There are many commands, not always using all parameters in
the task file. Command execution begins immediately after the
command is written to this register. Since this article is already
quite long, I will cover the commands, their parameters, and
their usage in another article, probably in the next TCJ issue.

The alternate status register contains the same information as
the status register in the task file. The only difference is that

reading this register does not imply interrupt acknowledge to
resct a pending interrupt (as the main status register does).

The digital output register contains only two valid data bits. Bit
2 1s the software reset bit, which causes a drive reset when
being set, and bit 1 is the interrupt enable flag.

The drive-address register simply loops back the drive select bit
and head select bits of the currently sclected drive. This infor-
mation normally is of no use for the programmer or user.

Last Words

Now that we had a look at the IDE intcrface, we also see the
physical limits of this interface dcfinition. With a fully ex-
panded cylinder-high register, we arc able to address up to
65536 cylinders. with up to 16 heads and up to 256 sectors per
track. This results in a maximum addressable drive capacity of
128 gigabytes. I think this should be enough for
microcomputing!! However, even if the PC/AT BIOS limi-
tations are encountered, we could address 1024 cylinders with
16 heads and 64 sectors per tracks. giving 512 megabytes
maximum capacity. This is also not bad, at least for small (8-
bit) computer systems, where complete application software
packages require only about 100 kilobytes of disk space.

Next time [would like to talk about the applicable commands
of IDE drives and give examples of how to write software that
accesses those drives. Pcrhaps I will also return to describing
my IDE interface board for the 8-bit ECB bus in more detail.
If you have questions or details about which you would like to
read more, contact me at the following addresses:

Tilmann Reh
In der Grossenbach 46
D-57072 Siegen. Germany

e-Mail: tilmann.reh@hrz uni-sicgen.d400.de

List of Abbreviations:
AT Advanced Technology
BIOS Basic I/O System
CMOS Complementary Metal-Oxid-Silicon
CRC Cyclic Redundancy Check
ECB m
ECC Error Correction Code
IDE Integrated Drive Electronics
IEEE Institute of Electrical and Electronics Engineers
/0 Input/Output
ISA Industry Standard Architecture
LED Light Emmitting Diode
(0N Operating System
PC Personal Computer
TTL Transistor-Transistor-Logic
XT eXtended Technology
ZBR Zone Bit Recording

Class of PC’s

Hardware-dependent part of OS
Semiconductor technology

Error detection code, sce also ECC
European standard 8-bit system bus
Additional data for security
Intelligent hard disk interface

(self-explanatory)

PC/AT expansion bus

Optoclectronical component

Software which makes computers usable
Synonym for the worst computer architecture
Digital component standard (74xx scries)
Class of PCs. previous to AT

Variable Density Recording Method

32

The Computer Journal / #63

CONNECTING IDE DRIVES

by Tilmann Reh

Special Feature
Intermediate Users

Part 3: IDE Commands

In Part II (printed in the previous issue of 7CJ) we covered the
basics of the IDE interface in terms of history, concept, hard-
ware, and register structure. This time we want to dig deeper
into the software side of those drives.

Terminology

Using common terminology, I often simply refer to the *‘drive’’
when, in fact, I am thinking of the integrated controller of an
IDE drive. However, when explicitly talking of an external
controller like the WD1010, I always refer to the *‘controller’’.

Register Accessing

Let us first recall the Task File. It consists of the data register,
a set of six parameter registers, and the command/status reg-
ister. For those who don’t have Part II lying nearby, here is a
shortform:

Relative Address Register Abbr.

0 Data Register D

1 Error Reg. / Write Precomp. Reg. E/ WP
2 Sector Count SC

3 Sector Number SN

4 Cylinder Low C

5 Cylinder High C

6 SDH (Sector Size, Drive, Head) D,H

7 Status Reg. / Command Reg.

Also remember that the data register is the only 16-bit register!

Every parameter register of the task file is freely accessible as
long as there is no active command. Before loading the com-
mand register, all related parameter registers must contain the
appropriate values. They may be loaded in any order. After the
command register is loaded, the issued command is immedi-
ately started. The original WD1010 hard disk controller chip
had a flag (bit 1 of the status register) which was set during
execution. With IDE drives, the BUSY flag of the status reg-
ister is simply set until the command execution is completed.

The WD1010 controller chip knew only 6 commands. How-
ever, some of the commands have option flags within them. To
support additional features, today’s drives have many more
commands. The following is a list of common commands,

The Computer Journal / #64

options, and needed parameters, with the WD1010 commands
marked by an asterisk and the manufacturer-dependent expan-
sions marked with a plus sign:

Command Type 76543210 Hex Parameters

Recalibrate * 0001 (Rate) 10-IF D

Read Sector *00100ML T20-27 SC,SN,C,DH
Write Sector *00110MLT30-37 SCSN,CDH
Scan ID / Verify * 0100000 T 4041 D,(SC,SN,C.H)
Write Format * 01010000 50 C,D,H,(SC,SN)
Seek * 0111 (Rate) 70-7F C,D,(H)
Exec Diagnostics 10010000 90 D

Set Drive Parametersl 001000 1 91 SC,(C),D,H
Read Multiple + 11000100 C4 SC,SN,C,D,H
Write Multiple + 11000101 C5 SC,SN,C,D,H
Set Multiple + 11000110 Cé6 SC,D

Power Commands+ 11100 x x x E0-E6 SCD

Read Sector Buffer 11100100 E4 D
Write Sector Buffer 11101000 E8 D
Identify Drive 11101100 EC D
CacheOn/Off + 11101111 EF D,WP
Power Save +11111xxx F8FD ?

Parameters in parentheses are needed with some drives and
ignored by others (depending on the manufacturer and age).
Any required parameters must be valid before a command is
started.

Although most of the commands are manufacturer-dependent,
this usually does not raise problems. For normal operation of
the drive, only the WD1010’s and few of the really common
commands are needed. Now let’s have a look at the options.

In the Restore and Seek commands, there is a four-bit rate field.
This was originally intended to specify the step rate for head
movements, with a zero value meaning 35 us per step and all
other values representing counts of 0.5 ms per step (so that the
range was from 0.5 to 7.5 ms). The hard disk controller had a
memory for each drive’s step rate, so the same value would be
used for implied seeks later. But very soon, even with later ST-
506 controller boards, this step-rate field became obsolete (due
to handshake mechanisms between controller and drive). With
today’s IDE drives, the four lower bits of those commands are
generally ignored.

25

The Read and Write commands originally had an option flag
(M) for multi-sector (mVs) transfers. Today this flag is nonex-
istent. For doing m/s transfers, the sector-count register is
simply set to the desired number of sectors to be processed.

But today’s drives have another flag which originally wasn’t
there: the ‘““Long’’ flag (L). When it is set, the ECC (error-
correction) data is transferred after the sector’s data field. I
assume this was meant for error correction when there are too
many errors for the drive to correct automatically. However,
there is a very odd characteristic: the ECC data is transferred
in bytes through the data register. This is the only case where
the data register doesn’t transfer word data! By the way, the
number of ECC bytes differs from drive to drive, but can be
read out using the Identify Drive command.

All generations of hard disk controllers and IDE drives support
the last option flag for Read/Write commands, the Retry Flag
(T). Normally, the drive retries to read/write a sector after non-
fatal errors. When this option flag is set, automatic retries are
disabled. The Scan ID command also supports this option.

The Commands

I will now explain the commands and their parameters in
detail. To do this, besides drawing on my own experience in
IDE interfacing, I collected detailed information and specifica-
tions from three different, independent sources. However, there
still might be some slightly different drives or controllers out
there. Please inform me if you encounter problems or differ-
ences with your disk.

One general feature of both the WD1010 controller and mod-
ern IDE drives is implied seeks. That means you don’t have to
explicitly move the read/write (r/w) heads to the desired cylin-
der before starting to read from or write to the disk. When the
command is issued and the actual cylinder number doesn’t
match that of the cylinder registers, an implied seek is per-
formed, transparent to the user. This applies to every command
where it may be needed (Read, Write, Verify, Format).

Recalibrate (1xh):

This command moves the r/w heads of the selected drive from
anywhere to cylinder 0. The controller waits for the drive to
complete the seek before the task file is updated and the busy
flag is reset. Upon successful completion of the command, the
error register and the cylinder registers are set to zero, while
SC, SN, and SDH remain unchanged.

Read Sectors (2xh):

This is probably the mostly used command. It will read from
1 t0 256 sectors of disk data as specified in the SC register (with
an SC value of 0 meaning 256 sectors to be read). The starting
sector is defined by SN, C, and H in the task file.

When the task file contains invalid parameters, an error occurs.

26

Otherwise, the r/w heads are moved to the requested cylinder
if they are not already there (implied seek). Then the data of
the starting sector is read into the sector buffer, and the DRQ
(data request) bit in the status register is then set. This informs
the host that the sector data can be read from the sector buffer.
When this is completed, DRQ is reset and the drive is ready
again,

For reading multiple sectors (SC>1), when the sector buffer is
completely read and DRQ is reset, the busy flag is set again
immediately, and the next sector’s data is read into the sector
buffer. When DRQ is set again, the next sector’s data can be
read from the buffer. This is repeated until the SC register
value reaches zero (this register is decremented with every
successfully read sector).

In any case, after successful completion of this command, the
SC register contains a zero value, and the other registers in the
task file are updated to contain the cylinder, head, and sector
number of the last-read sector. If an error occurs, the task file
will contain the parameters of the sector at which the error was
detected.

For the Read Sectors command, two options are possible. The
‘“M"’ option is valid only with the original WD1010 controller
(thus with old AT’s). When M was not set (0), the SC content
was ignored, and exactly one sector was read. When M was set
(1), the SC value was taken as the count of sectors to read.
Today things are different. With modern IDE drives, if the M
bit is set, an error occurs. So this bit must always be cleared!

The other option (‘‘L’’) is valid only with modern IDE drives.
“‘L’” stands for long and means that the additional ECC data,
which the drive automatically puts after each sector, is trans-
ferred after the net data of each sector. When this option is set,
the drive also does not check these ECC bytes, so it won’t detect
or correct errors. This provides a way to read a sector’s (re-
maining) data even if it is nonrecoverably damaged. When
using this option, remember that the ECC data is transferred
as bytes through the word-wide data register!

Write Sectors (3xh):

The Write Sectors command is very similar to the Read Sectors
command. Of course the data flow direction is different... This
command will write up to 256 sectors of data to the disk. All
parameters and options are similar to those of the Read Sectors
command. After writing the command to the command regis-
ter, the drive sets the DRQ flag, informing the host that the data
can be written into the sector buffer. When all data has been
transferred, DRQ is reset, and the drive starts writing the data
buffer contents to the disk. The busy flag is set as long as the
drive is physically writing to disk. The SC register is
decremented, and, if not zero thereafter, DRQ is set again for
the next sector. When using this command with the “L”
option, the drive will use the ECC bytes delivered by the host

Continued after Centerfold, page 33.

The Computer Journa! / #64

Continued from page 26.

and not generate any by itself. For the *“M’’ option, the details
described above apply.

Scan ID / Verify Sectors (4xh):

This is a very strange command. As far as I know, it is the only

one that is totally incompatible between the old AT’s hard disk
“controller and today’s IDE drives. It would appear that this

command was never used by common system implementation
" or application software...

For the WD1010 controller, this is the Scan ID command. It
takes no parameters at all (except for the drive and head which
originally had to be contained in a register external to the
WD1010). When the command is started, the controller scarches
for the next ID field and reads the contents into the task file.
This way the actual drive, head, cylinder, and sector size could
be examined. The sector number was also transferred into the
task file, so the sector numbering order could be figured out by
repeating this command fast enough.

For the IDE drives, this is a completely different command:
Verify Sectors. It is similar to the Read Sectors command
except that no data is transferred to the host, and the “L”
option is not supported. Thus, it needs all parameters in the
task file. Up to 256 sectors of data will be read into the sector
buffer, and their ECC bytes will be verified. The DRQ flag will
never be set. The completion status of the command can be read
from the status register.

It is interesting that both types of controller/drive support the
retry option - so this is the only compatibility of this command.

‘Format Track (5xh):

Originally, this command was used to physically format an
entire track of the hard disk, exactly as it’s done when format-
ting floppy disks. The Format Track command is started simi-
larly to the Write Sectors command: first the task file must be
set up, then the command written to the command register.
After that, the drive responds by setting the DRQ flag. The host
must then write data into the sector buffer until the DRQ flag
is reset. After that, the command is executed.

For the format command, the sector buffer must contain special
data. As with the index field array when formatting a floppy
disk, it must contain valid sector ID’s for every physical sector
of the track that will be formatted, beginning at the start of the
buffer. Each sector ID in the buffer consists of two bytes. The
unused remainder of the buffer is ignored by the format com-
mand, but must also be written for the DRQ signal to disap-

pear.

The first byte of each sector ID is a flag byte. The WD1010
knew only two different values for this descriptor:
00h = good sector,

The Computer Journal / #64

80h = bad sector.

Today’s IDE drives offer two more descriptor values:

40h = assign sector to alternate location,

20h = unassign alternate location for this sector.

We’ll look further at these values below.

The second byte of each ID is the sector-number byte. It
contains the number by which the related sector is referenced
later during normal r/w operation. The ID fields in the sector
buffer are assigned to the physical sectors (created through
formatting) in the order they are stored in the buffer. So it is
possible to define an interleave factor by appropriate physncal
sector numbering. Here is an example:

Addr. 00= 0001 0011 0002 00 12
08 = 0003 0013 0004 00 14
10= 8005 0015 0006 00 16
etc.

Here we see the first 12 (of 32) ID words. The starting sector
has number 1 (as usual). The interleave factor is two, since
each sector appears two sectors after its logical predecessor.
You can also see that sector number 5 (the 9th sector physi-
cally) is marked bad.

Due to surface errors on the hard disk, there are some positions
where the media won’t store magnetic information reliably
enough (if at all). The defect list for a particular drive then
shows the cylinder, head, and *‘BFI"’ (byte from index) value
of the defect. People then had to calculate the bad-sector
position and number from each of those BFI values. However,
it is not commonly known that the relationship between the
BFI value and the sector number depends not only on the sector
size but also on the interleave factor and the starting sector
number...

Again, things changed as the years went by... I already men-
tioned when introducing the features of modern IDE hard
disks, that those drives don’t have defect lists any more, due to
the usage of internal spare sectors. For compatibility reasons,
these drives still accept the Format Track command. However,
most drives only simulate its execution — internally they don’t
really format any track. Modern drives are ‘‘hard-sectored’’ by
the manufacturer, with the sector size unchangeable by the
user. But by virtually formatting a track, one can assign new
sector numbers (for example, starting with 0 instead of 1).
However, the sector numbering order is often ignored. Because
IDE drives commonly have built-in cache memories, the defi-
nition of an interleave factor would make no sense. So, the
drive always uses the fixed sector ordering which gives maxi-
mum performance in combination with the cache.

To make things still more complicated, the Format Track
command of IDE drives allows for the assignment of data
sectors to the spare sectors and for the release of those assign-
ments (look at the descriptor bytes above). All IDE drives have
some spare sectors to which the data of defective sectors is
automatically mapped. Normally, there is one spare sector per
track, resulting in about 2-3% spare capacity. This is more than

31

enough. When a sector appears too unreliable during normal
operation, the drive simply marks that sector as bad internally
and moves the data to the nearest free spare sector. As long as
not all spare sectors are assigned, the user won’t notice any-
thing. However, these assignments can also be done explicitly
by use of the Format Track command. But it is strongly recom-
mended not to do that! First, one will normally get no defect
list for an individual IDE drive containing the BFI positions.
Second, even if a sector which was assigned to one of the spares
* is marked good again, the related spare sector can not be used
again! So with every unassignment of a spare sector, you loose
that irretrievably.

So we come to this result: with standard (i.e., ST-506) drives
and external controller (i.e., WD1010) it makes sense to format
the drive in order to freshen the surface magnetism, to get a
defined state (sector numbering and order), and to mark defect
sectors as bad (so that the operating system can behave accord-
ingly). With IDE drives, it’s best to leave them just as they are
coming from the factory!

Seek (7xh):

This command is used to move the r/w heads to a particular
cylinder explicitly. For normal operation of the drive, it is
usually not necessary, since all r/w commands perform implied
seeks. However, this command can easily be used for bench-
marks to determine the drive’s seek times. With the WD1010
controller, the four lower bits of the command byte contain the
step rate (described above). IDE drives simply ignore these four
bits.

Execute Diagnostics (90h):

. This command is common to all IDE drives but not available
with the WD1010 controller. When issued, the drive performs
an internal self-test. If the drive is a master drive, and a slave
drive is connected to it, the master also waits a limited time for
the slave to complete its self-test. During all this time, it is busy
(the according flag in the status register is set). After finishing
the test procedure, its results are placed in the error register. In
this special case, the content of the error register has to be
considered as a single byte value, not as several bit flags. There
are the following error codes:

0l1h no error detected,

03h sector buffer error.

(These codes are supported by Conner drives. Maybe other
manufacturers use more or different codes.)

If the slave drive diagnostics failed, the MSB of the error
register is set, leading to values of 8xh. However, even with

single drive configurations this bit sometimes is accidently sct.
It may be ignored then.

Set Drive Parameters (91h):

An IDE-only command again. After power-up or reset, the
drive can immediately be used in its default mode. However,

32

the drive’s logical parameters can be changed by setting them
with this command. This way, the drive can be set up to
different modes in order to emulate the parameters of another
common drive. The task file registers which are used with this
command, and the way in which they are used, may differ.
Some drives are really flexible and allow any parameters that
result in no more than the drive’s real capacity. Other drives
(for example, my Conner CP-3044) support only two or three
modes with fixed parameters. So for their selection, only part
of the task file’s registers are needed. Most, if not all, drives
will accept this command with valid parameters in the SC, C,
and H registers (even if not all the parameters are required),
defining the number of sectors per track, cylinders, and heads.

Because of the differences, it is advisable to first collect de-
tailed information about the supported emulation modes of a
particular drive, before defining its operating parameters.
Normally, it’s best to operate a drive in its native mode (so the
logical parameters equal the physical ones). However, there’s
another strange detail: there are drives which don’t support the
native mode! My Conner drive again serves as example: the
drive has 1053x2x40 sectors (cylinders by heads by sectors)
physically, but supports only a pseudo-native mode with
526x4x40 sectors, and an emulation mode with 981x5x17
sectors (which is for compatibility with older 40 MB drives).
Additionally, depending on the internal software version, the
drive defaults to the emulation mode or to the pseudo-native
mode.

As a result, it is recommended that the operating parameters
always be defined after power-up or reset. And to define them,
you must have detailed information about the drive you want
to use. There is a ‘‘Product Manual’’ for every drive type,
describing all those details. Unfortunately, these manuals are
hard to get. Most dealers are not willing to give them to their
customers (and some even don’t have them in stock). The other
way is to try out some parameters, starting with the information
delivered by the Identify Drive command.

The break - a sample program

I realize that I’ve already filled quite a few pages again. So I'll
make a break here and continue the command descriptions in
Part IV of the *“‘Connecting IDE Drives’’ article series. Instead
of continuing now, I'll show you a short program which reads
the ID information of an IDE drive within a PC/AT. This
sample program was written with Turbo Pascal 5.5 but may
easily be used with any version above 4.0.

You can try out this program on your AT (if you have one with
an IDE drive) and play with it until receiving the next issue of
TCJ with Part IV of the article. That part will finish the
command descriptions and will also contain some more pro-
gramming examples and shortform tables as a programmer’s
overview of the IDE interface definition.

The Computer Journal / #64

Abbreviation list:
Byte From Index (position of surface defect)

DRQ commonly used for Data Request (bit flag or signal line)
Integrated Drive Electronics (hard disk interface type)

BFI

IDE

/O

Input/Output

PC/AT , Personal Computer/Advanced Technology (a
class of computers)

r’'w

read/write

-ST-506 older hard disk interface standard, used between
separate controllers and MFM/RLL drives

program Get_IDE_ID;
(* Q&D 930903 Tilmann Reh *)
(* 930905 MSDOS *)
{* Reads the 1D information of IDE drives and displays it. *)
(* Should run with every IDE/AT harddisk drive. *)

uses c't;
const

(* Data types and variables:

type

var

SignOn = *mAj'Read IDE ID Info V0.1 TR 930905*m"j;
(* VO addresses and IDE commands: *)

IDE_Data
IDE_Error
IDE_SecCnt
IDE_SecNum
IDE_CylLow
IDE_CylHigh
IDE_SDH
IDE_CmdStat
CMD_|dentify

WorkStr
BufType
IDRecord
Config
NumCyls
NumCyls2
NumHeads
BytesPerTrk
BytesPerSec
SecsPerTrack
d1,d2,d3
SerNo
CtriType
BfrSize
ECCBytes
CtriRev
CtriMod!
SecsPerint
DbiwordFlag
WrProtect
end;

SecBuf

IDR

Secs

ij

= $1F0;

= $1F1;

= $1F2;

= $1F3;

= $1F4;

= $1F5;

= $1F6;

=$1F7;

= $EC;

*)

= string[80};

= array[0..255) of word;
= record

- integer;

. integer,

: integer,;

- integer,;

. integer,

:integer;

. integer,

s integer;

: array [0..19] of char;
- integer,;

: integer,

- integer;

s array [0..7] of char,

: array [0..39] of char;
- integer;

. integer;

:integer;

: BufType,

: IDRecord absolute SecBuf;
s real;

> integer;

(* Convert byte/word values to hexadecimal strings: *)
function HexByte(x:byte):WorksStr;
Nib : array[0..15] of char = '0123456789ABCDEF’,

const
begin

HexByte:=Nib[x shr 4]+Nib[x and 15}

end;

function HexWord(x:word):WorkStr,

begin

HexWord:=HexByte(hi(x))+HexByte(lo(x));

end;

(* Swaps the bytes of each “word" in string for correct reading. *)
function SwapStr(s:WorkStr):WorkStr;

var s1 : WorksStr;
i : byte,
begin
s1(0):=s[0};

The Computer Journal / #64

for i:=0 to pred(length(s)) do s1[i+1]:=s[(i xor 1)+1},
SwapStr;='>'+s1+'<’,
end;
(* Show error codes: status register and error register. *)
procedure Error(s:WorkStr);
begin
writeln(' ‘,s,"; Status: ‘,HexByte(port[IDE_CmdStat)),
"' HexByte(port[IDE_Error])).
halt; end;
(* Wait until drive is ready. *)
procedure WaitReady;
const TimeOut = 5000;
var i : word;
begin
i.=0;
while (port[IDE_CmdStat}>128) and (i<TimeOut) do begin
delay(1);
inc(i);
end,
if i=TimeOut then Error(‘WaitReady TimeOut’);
end;
(* Wait for data request (DRQ). *)
procedure WaitDRQ;
const TimeOut = 5000;
var i - word;
begin
i:=0,
while (port[IDE_CmdStat] and 8=0) and (i<TimeOut) do begin
delay(1);
inc(i);
end;
if i=TimeOut then Error('WaitDRQ TimeOut');
end;
(* Send command to drive. *)
procedure IDEcommand(Cmd:byte),
begin
WaitReady,
port[IDE_CmdStat]:=Cmd,
WaitReady;
end,
(* Read sector buffer of drive. *)
function ReadSecBuf(var Buf:BufType):boolean;
var i : word;
begin
WaitDRQ;
for i:=0 to 255 do Buf[i):=portw[IDE_Data];
ReadSecBuf:=port{IDE_CmdStat] and $89=0;
end;

(* MAIN: read drive's ID information. *)
begin
writeln(SignOn),
IDEcommand(CMD_ldentify);
if not ReadSecBuf(SecBuf) then Error(‘Read Identify’);
with IDR do begin
writeln(‘'ID constant . ',Config,' (',HexWord(Config),")’);
writeln('fixed cylinders - NumCyls);
writeln(‘removable cylinders : ', NumCyls2);
writeln(‘number of heads : ',NumHeads),
writeln(‘phys. bytes per track : ‘,BytesPerTrk);
writein('phys. bytes per sector : ‘,BytesPerSec),

writeln(‘sectors per track :',SecsPerTrack),
writeln(‘serial number . ' SwapStr(SerNo)),
writeln(‘controller revision : ‘,SwapStr(CtriRev));

writeln(‘buffer size (sectors) : ‘,BfrSize);

writeln('number of ECC bytes ., ECCBytes);

writeln(‘controlier model - ', SwapStr(CtriModl));

Secs := int(NumCyls+NumCyls2) * NumHeads *
SecsPerTrack;

writeln(‘total sectors .. Secs:1.0),
writeln(‘capacity (MBytes) : ‘,Secs/2048:1:1);
end:

end.

33

CONNECTING IDE DRIVES

by Tilmann Reh

In part II we covered the basics of the IDE interface in terms
of history, concept, hardware, and register structure. In part I1I
I started describing the various commands and parameters of
IDE drives. This time I will finish that command description
and offer some sample driver routines.

I must apologize!

Sorry for the badly formatted Pascal listing printed with part
111 in the previous issue of TCJ. Bill had to delete all the empty
lines in order to compress it to a single page. Now I know that
this doesn’t make a program more readable or easier to under-
stand, even if it’s written in Pascal. We will try to do this better
in the future.

Commands Continued...

We already covered most of the manufacturer-independent
commands in the previous part. However, there are three
commands not explained yet. Let’s get started with the com-
mand which was already used in the sample program printed
‘with the previous part -- so you’ll now know what you really
did there (in case you ran that program).

Identify Drive (ECh):

This command reads some detailed parameter information
from the IDE drive. Again, it’s invalid for the older (external)
controllers. It is started by writing the command code into the
command register, and then it executes like a Read Sectors
command. The DRQ Flag will be set, declaring that data can
be read. After having read a complete ‘‘sector’’ (256 words,
512 bytes) of data, the DRQ flag will be reset and the drive will
be ready again. The data consists of the following fields:

Word Byte

Adr. Adr. Type Content

0 0 word Configuration/ID word

1 2 word Number of fixed cylinders

2 4 word No. of removable cylinders

3 6 word No. of heads

4 8 word No. of unformatted bytes per
physical track

5 10 word No. of unformatted bytes per sector

6 12 word No. of physical sectors per Track

7 14 word No. of bytes in the inter-sector

gaps

The Computer Journal / #66

8 16 word No. of bytes in the sync fields
9 18 word 0
10-19 20-39 20char Serial number
20 40 word Controller type
21 42 word Controller buffer size (in sectors)
22 44 word No. of ECC bytes on “long"
commands
23-26 46-53 8char Controller firmware revision
27-46 54-93 40char Model number
47 94 word No. of sectors/interrupt
(0 = no support)
48 96 word Double word transfer flag
(1 = capable)
49 98 word Write protected
50-255 100-511 - reserved (read as zero values)

Some of these fields have special meanings. The configuration/
ID word consists of 16 single-bit flags. However, I don’t know
for sure if their meaning is really manufacturer-independent.
The “‘controller type’” word is encoded as a number represent-
ing a particular type.

Configuration/ID word bit flags:

15 Non-magnetic drive

14 Format speed tolerance gap required
13 Track offset option available

12 Data strobe offset option available

11 Rotational frequency tolerance > 0.5%
10 Data transfer rate > 10 MB/s

Data transfer rate > S MB/s, <= 10 MB/s
Data transfer rate <= S MB/s
Removable disk

Non-removable disk

Spindle motor can be switched off
Head switching time > 15 us

Not MFM encoded

Soft sectored

Hard sectored

reserved

O = N WbHh Wwnoo Jow\o

Controller type word values:

0 Not specified

1 Single ported, single sector buffer

2 Dual ported, multiple sector buffer

3 = 2, with look-ahead read capabilities

The string-type data fields (character arrays) contain plain text
information about the serial number, controller model, and
firmware revision of the drive. Each word holds two characters,

which must be displayed with the high-byte character first in
order to get readable results.

As far as I know, most IDE drives follow the data field descrip-
tion above. However, there still are many things which are
manufacturer-dependent. Fortunately, these details are not criti-
cal. To give you some examples: The controller model field of
.Conner drives contains plain text with the complete drive
description like

‘“‘Conner Peripherals 40 MB - CP3044°’.

Seagate’s IDE drives offer only a short cryptic ID string, which
sometimes doesn’t even contain the drive type.

A very interesting difference, even between drives of the same
manufacturer, shows up with the *‘Number of cylinders/heads/
sectors’’ fields. Some drives show their physical values there,
independent of the active emulation mode (for example, my
CP-3044 does so). Other drives always show the parameters of
the active emulation, or those of the default emulation mode.
Surprising especially with my drive is that the physical param-
eters can’t be used for drive operation! As a result, the data
delivered by this command must be considered carefully. How-
ever, it’s normally possible to extract useful information by
reading the drive’s ID information for several different active
emulation modes.

Read/Write Sector Buffer (E4h/E8h):

These are the last two common IDE commands. With these
commands it’s possible to read or write the drive’s sector buffer
directly. I haven’t found any use for these yet, but probably
there is (at least was) one. In my opinion, these commands are
useless for normal operation.

Block Mode Commands (Read/Write/Set Multiple, C4..C6h):

By the use of these commands, one can access disk data in
larger blocks than the physical sector size. Several sectors are
grouped together and handled as a block of data. However,
many drives don’t support this mode. I don’t have detailed
information regarding the parameters. If a particular drive
supports the block mode, the details will surely be printed in
its user manual.

Power Commands (EO..E6h, except E4h):

The power commands are not supported by every IDE drive.
However, if they are, they are normally compatible. The power
commands are commonly used within portable computers
(laptops, notebooks, handhelds, or whatever the names are).
They allow for automatic or manual changing between nor-
mally four operation modes:

Read/Write Mode (4.2 W) complete drive circuitry operating
Idle Mode (2.0 W) motor running, r/w circuitry turned off while
no command is active

30

Standby Mode (0.5 W) motor stopped, r/w circuitry turned off,
interface active
Sleep Mode (n/a) everything stopped, exit only with reset

The power requirements mentioned in this table are those of
my Conner 42-MB drive. While no r/w operation is in progress,
the drive normally is in idle mode (also when being reset).
Read/write mode is always automatically entered when a r/w
command is issued; after completion of that command, the
drive enters idle mode again.

When the drive is put into standby mode (manually or auto-
matically, see below), the drive (motor, r/w circuit) is shut
down while the host interface remains active. So when a
command is issued which requires motor or r/w operation, the
appropriate circuitry is automatically switched on again.

Once the sleep mode is entered, there is no way out except for
resct by means of hardware or software. This is because even
the drive’s local processor and interface controller are stopped,
so there is no way to communicate with the drive. (However,
the task file can still be read.)

As mentioned above, there are six power commands:
Set Standby Mode (EOh), Set Idle Mode (Elh):

The drive will enter the desired mode immediately. There are
no parameters required. If the drive already is in that mode, the
command will have no effect.

Set Standby (E2h) or Idle (E3h) Mode with Auto-Power-Down:

These commands take a parameter in the sector count register.
If that parameter is non-zero, the Auto-Power-Down (APD)
feature is enabled (with a zero value, APD is disabled). When
one of these commands is issued, the drive immediately enters
the desired mode. If APD is enabled, the drive will automati-
cally enter standby mode after being in idle mode without
activities for a given period of time. This delay can be specified
by means of the parameter for these two commands: the SC
register must contain the delay time in counts of 5 seconds. The
minimum delay of 60 seconds will be set if the SC register
contents is smaller than 12. With a maximum value of 220, the
maximum delay is about 18 minutes. These limits again apply
to my particular drive; other drives may have other specifica-
tions.

Read Power Mode (ESh):

This command reads the actual mode. If the motor is spinning
(meaning that the drive is in idle mode), the value FFh will be
returned in the SC register. Else (when in standby mode or just
spinning up) a zero value will be placed in the SC register.

Set Sleep Mode (E6h):

This command puts the drive into sleep mode immediately.

The Computer Journal / #66

Every internal activity is terminated and all circuitry switched
off.

There are some more power-related commands, having the
command codes F8..FDh (except FCh). Their general meaning
is similar to the power commands described above (E0..ESh),
except that the time delays are specified more exactly (in
counts of 0.1 seconds). However, I have not yet seen a drive
which supported these commands, and I don’t have detailed
information about them.

Cache On/Off (EFh):

This is the last command which I will explain here. It is used
for enabling or disabling the automatic read-ahead feature
(read cache) of the drive. The write precompensation register
(WP) is (mis-)used as a parameter register for this command
(today, this is the only use of the WP register). If the WP
register contains AAh, the feature is enabled; with 55h, it is
disabled. Every other value will result in an aborted command
error. After reset, the drive defaults to read-ahead feature
enabled.

Whew -- this was a lot of stuff! (I hope it was not too hard.)
However, now you should know about IDE commands in detail
(if you didn’t fall asleep while reading). Before we start prac-
tical work, here, for the programmers, are the short-form tables
that I promised.

Table 1: Task File Registers (as printed in part 11)

/CSO/CS1 A2 A1 AO Addr. Read Function Write Function

0 1 0 0 O 1F0 Data Register Data Register

o 1 0 0 1 1F1 Error Register (Write Precomp Reg.)
o 1 0 1t 0 1F2 Sector Count Sector Count

o 1 0 1 1 1F3 Sector Number Sector Number

o 1 1 0 O 1F4 Cylinder Low Cylinder Low

o 1 1 0 1 1F5 Cylinder High Cylinder High

o 1 1 1 0 1F6 SDH Register SDH Register

o 1 1 1 1 1F7 Status Register Command Register

1 0 1 1 0 3F6 Alternate Status Digital Output

1 0 1t 1 1 3F7 Drive Address Not Used

Table 2: Error Register

Bit Flag Meaning
BBK Bad block mark detected
UNC Uncorrectable data error

IDNF Sector ID not found

ABRT Command aborted (status error or invalid
ommand)

TKO Track O not found during recalibration

ONWEOLOON

o —

The Computer Journal / #66

Table 3: SDH Register

Bit Flag
7 EXT
6-5 SIZE
4 DRV
3-0 HEAD

Meaning

Extension Bit. Always 1.

Sector Size. Always 01 (512 byte sectors).
Drive bit. Master/single drive = 0, slave = 1.
Head field. Binary head number 0..15.

Table 4: Status Register, Alternate Status Register

it Flag
BSY
DRDY

O\llm

DWF
DSC
DRQ
CORR

NWbHOM

IDX
ERR

o -

_Meaning
Drive busy. Task file cannot be accessed.

Drive ready (up to speed and ready

for command).

Drive write fault.

Drive seek complete (actuator on track).
Data request (ready for data transfer).
Corrected data (bit is set when data has
been recovered by use of ECC).

Index. Active once per disk revolution.
Error. See other bits and error register.

Table 5: Digital Output Register

Bit Flag
2 SRST
1 JIEN

Meaning
Software reset (active when set to 1).

Interrupt enable (active when set to 0).

Table 6: Drive Address Register

Bit Flag
7 -

6 WTG
5-2 /HSx
1 /DS
0 /DSO

Meaning

not driven (for PC floppy compatibility)
Write gate (active when 0)

Head select 3..0, one's complement of
active head

Drive 1 selected (active when 0)

Drive O selected (active when 0)

Table 7. Commonly needed Commands with Parameters

Code _Command Parameters
1x Recalibrate D

20 Read Sectors with retry SC,SN,C,D.H
30 Wirite Sectors with retry SC,SN,C,.DH
40 Verify Sectors with retry SC,SN,C,D,H
50 Format Track C,DH

7x Seek CD

90 Exec Diagnostics D

91 Set Drive Parameters SC,(C),DH
Ex Power Commands, see below

E4 Read Sector Buffer D

E8 Write Sector Buffer D

EC Identify Drive D

EF Cache On/Off D.WP

31

Power Commands:

EO Standby Mode -
E1 Idle Mode -
E2 Standby Mode with APD SC
E3 \dle Mode with APD SC
ES Read Power Mode (SC)
E6 Sleep Mode -

Table 8: Error Conditions

. When an error occurs, the error flag in the status register
(ERR) is always set. For the different groups of commands, the
following status/error flags are valid then:

Recalibrate ABRT,TKO,DRDY,DWF,DSC
Read, Verify BBK,UNC,IDNF ABRT,DRDY,
DWF,DSC,CORR
Read Long, Write, Write Long BBK,IDNF,ABRT,DRDY,DWF,DSC
Format, Seek IDNF ABRT,DRDY,DWF,DSC
Diagnostics, Initialize, R/W Buffer,Identify, Set Cache
ABRT
Invalid command ABRT

Table 9: Interrupt Conditions

The drive generates an interrupt (if enabled) under the follow-
ing conditions:

Recalibrate after successfully reaching track 0

Read each time DRQ is set

Write when DRQ is set, from second sector on
(only when multiple sectors are written)

Verify after completion for all sectors

Format Track after completion

.'Seek, Initialize, Power Commands (except Sleep)

after command is issued/initiated
when drive is in sleep mode
when data is ready for reading

Set Sleep Mode
Read Buffer, Identify

Now let’s come to the example routines for accessing an IDE
drive. These examples are given as Turbo-Pascal (3.0) source
(based on my IDE test program). They apply to the use of my
IDE interface board (described in TCJ #56), so there always are
512 data bytes transferred instead of 256 data words.

In all examples, named constants are used for accessing the
IDE registers at their particular I/O addresses. These named
constants must be declared elsewhere. Their names are derived
from the related IDE register names and IDE commands.

The examples are programmed in a very modular fashion so
that they are easy to understand. For implementation in a
system BIOS, for example, most of the subroutines will contain
so little code that the complete read/write routines will nor-
mally be coded inline. In addition, a real implementation,
unlike these examples, will have time-out functions in most
loops. If someone is interested in the IDE driver of my CPU280
system BIOS, please contact me (however note, it’s Z280
assembly language and commented in German).

32

1. General access: Wait for drive ready / wait for data request

In Pascal, two small procedures serve this purpose. In assembly
language, I use two macros instead, because the subroutine
calling overhead would be too much.

procedure Wait_Ready;

begin

repeat until port[IDE_CmdStat]<=128,;
end;

procedure Wait_DRQ);

begin

repeat until port[IDE_CmdStat] and 8<>0;
end;

2. General access: Command issue

procedure IDE_Command(Cmd:byte),
begin

Wait_Ready;
port[IDE_CmdStat]:=Cmd;

end,

3. General access: Reading/Writing the sector buffer

In the Pascal implementation, the two functions return a Bool-
ean value which is true if there were no errors during r/w of the
buffer.

Both routines require the drive to be ready for data transfer!

function Read_SecBuf(var Buf:BufType):boolean;

var i : integer;

begin

Wait_DRQ;

i:=port[IDE_Data]; (* specific to my IDE interface board *)
for i:=0 to 511 do Bufi]:=port[IDE_Data],
Read_SecBuf:=port[IDE_CmdStat] and $89=0;

end;

function Write_SecBuf(var Buf:BufType):boolean;
var i : integer,

begin

Wait_DRQ;

for i:=0 to 511 do port[IDE_Data]:=Bufli];
Wait_Ready;

Write_SecBuf:=port[IDE_CmdStat] and $89=0;
end;

The Computer Journal / #66

4. General access: First access, initialization

procedure HD_Init(Cyls,Heads,Secs:integer),

begin

port[Dig_Out]:=6;
delay(10);

_ port[Dig_Out]:=2;
Wait_Ready;
port[IDE_SecCnt):=Secs;
port[IDE_CylLow]:=lo(Cyls);
port[IDE_CylHigh]:=hi(Cyls);
port[IDE_SDH]:=pred(Heads)+$A0;
IDE_Command(Cmd_Initialize);

"end,

(* Drive Software Reset *)

5. Data access: Single sector read

function HD_ReadSector(Cyl,Head,Sec:integer; var
Buf:BufType):boolean;

begin

Wait_Ready;

port[IDE_SecCnt]:=1;

port[IDE_SecNum]:=Sec;

port[IDE_CylLow]:=lo(Cyl);

port[IDE_CylHigh]:=hi(Cyl);

port[IDE_SDH]:=$A0+Head;

IDE_Command(Cmd_ReadSector);
HD_ReadSector:=Read_SecBuf(Buf);
end;

7. Data access: Single sector write

function HD_WriteSector(Cyl,Head,Sec:integer; var
Buf:BufType);

begin

Wait_Ready;

port[IDE_SecCnt]:=1;
port[IDE_SecNum]:=Sec;
port[IDE_CylLow]:=lo(Cyl);
port[IDE_CylHigh]:=hi(Cyl),
port[IDE_SDH]:=$A0+Head,
IDE_Command(Cmd_WriteSector);
HD_WriteSector:=Write_SecBuf(Buf);
end;

Now we have reached the end of the ‘‘behind IDE’’ article
series. In another column I will describe my revised IDE
interface board for the 8-bit ECB bus in somewhat more detail
than in TCJ #56. This will include a TTL equivalent of the
GAL contents, for those who are inexperienced in reading a
Boolean equation design, or who want to build it up using
discrete logic.

For a list of abbreviations, see parts II and III of this article.

The Computer Journal / #66

33

CONNECTING IDE DRIVES

by Tilmann Reh

Intermediate

Generic Z80 IDE Interface
(plus a few words about the LittleNet interface)

Discussions about connecting IDE devices like hard disks or even-
tually CD-ROM have grown during the last months. Seemingly we
triggered something with the articles about the interface basics and
my interface board for the ECB-Bus. Another actual development
was the single-chip IDE interface by Claude Palm (of Palmtech in
Australia) who also offered an S-100 board draft containing his chip.

This in turn started a discussion between TCJ columnist “Dr. S-100”
(Herb Johnson), Johnathan Taylor from England (with whom I dis-
cussed Wayne Sung’s interface version for the QX-10 before), and
me. Our main theme was how to reduce the total cost of an IDE
interface so it will be of more general interest than the relatively
expensive S-100 board.

I finally made a circuit and PCB draft for an interface which will
directly connect to a Z80 processor. This has two great advantages:
First, the board is very small, thus PCB prices wiil be much lower
than for an S-100 board. Second. the direct connection to the Z80
processor sockct opens the way to ALL Z80 computers, not only
those based on the S-100 bus (or ECB-Bus, like my interface de-
scribed earlier in TCJ). Sc we might get a larger volume, further
‘reducing PCB costs. Of course, it also has a disadvantageous side:
the mechanical construction is left to the end user.

However, it has to be made clear that this is only a draft yet. We are
now trying to determine if there is enough interest in this generic
interface to build a prototype and produce a run after it really works.
But before we go further on this, here are some technical details:

The new interface (I call it GIDE, for Generic IDE) consists of a GAL
chip (Generic Array Logic, a smaller programmable logic device)
and a few TTLs. Its size is about 60 x 70 mm (2.4 x 2.8 in), including
all connectors. It plugs directly into the Z80 socket via two pin strips,
or onto a cable which plugs into the Z80 socket. The processor itself
will normally be plugged in the appropriate socket on the interface
board. The interface is 'O mapped, with user selectable base ad-
dress (in increments of 10h). The IDE drive will be connected via flat
cable. This cable and of course the hard disk drive will not be
included with the interface.

Quoting Herb (from a message he placed in the nets): “It would be
encouraging to all involved with this design to know who would buy
it, what they would require for support, and how much they would
pay for it. Clearly, this is not a very “commercial” venture: there are
too few Z80 systems around, and few Z80 or CP/M vendors for
“reselling” for a commercial effort.

The Computer Journal / #71

But, to avoid losing money and to get a reasonable quantity pro-
duced, we need to set a fair and acceptable price. Too cheap a price
will make it unreasonable to make; too large, unreasonable to buy.
Please use your honest judgment and suggest what YOU would
spend, and what you would expect.”

Meanwhile, Herb and Johnathan started lists of interested people
who responded to their messages in the nets. We also discussed how
to handle further support like board testing (for those who would like
a kit) and driver software (example routines, test programs etc.). But
before we spend more time and money on this topic, we really should
know if there is enough interest to justify all those expenses. So all
you who are interested, please contact one of us (see addresses
below) with the above requested information. We really would be
glad to make this board! If there is interest, I could also offer to
describe this new interface in another article here in TCJ.

For those who are already active in getting used and/or cheap hard
disks, here is an advice: I strongly recommend Conner drives, since
those drives have the lowest power consumption and also generate
the least noise. Some other makers like Quantum and Sony are
comparable in noisc emissions. Scagate drives are horrible in both
terms, and additionally have slightly different timing specifications
which sometimes may lead to problems. So if you have the choice,
try to get Conner drives.

Actual state of the LittleNet development:

Since my circuit draft for the isolated RS-485 interface converter was
printed in TCJ #69 (in the column of Rick Rodman), we further
discussed some technical details of this interface. Soon I will finish
a PCB draft which probably will be single-sided, so the PCB will be
easy to make in home cellars. The parts costs will also be very low.
We will surely inform you about further results and also print the
PCB artwork in TCJ. If any of you have some suggestions or ques-
tions, please contact Rick or me as soon as possible, so we can
consider your thoughts in PCB layout and/or software details.

Contacts:

Tilmann Reh, Am Rueckelchen 5a, 57078 Siegen, Germany
InterNet: tilmann.reh@hrz.uni-siegen.d400.de

Fax (at work): +49 271 484520

Herbert R. Johnson, CN5256 #105, Princeton, NJ 08543, USA
InterNet: hjohnson@pluto.njcc.com

Voice/FAX +1 609 771 1503 (8am-11pm EDT)

Johnathan Taylor, UK

Internet: jet@centron.com, Fidonet: 2:2501/307.9

Rick Rodman, USA

InterNet: rickr@aib.com

29

GIDE
by Tilmann Reh

IDE again, plus words about the LittleNet interface

In TCJ issue #71 I already gave a brief description of my
current “tiny-hardware” project, the Generic IDE interface
board (GIDE). After building up a prototype and getting it
running, I was told about some additional wishes of many (yet
potential) users. And, as usual with hardware developments, it
was necessary to modify the circuit due to a (probably common)
oddity of the computer I used for testing the new interface (this
was a Triumph-Alphatronic PC-8, a german Z80-based
homecomputer running a ROM-BASIC and CP/M-2.2. Hope-
fully, I will report this development history and the current
circuit in more details later - for now, another short description
must be enough. As like most developers, I have just too little
time for too much work...

Just to give you newcomers an impression about what we’re
discussing now: The GIDE board is a small (yes, small) PCB
which plugs directly into any Z80 CPU socket and contains an
I/O-mapped interface for connection to any IDE harddisk
drive. The Z80 processor must be removed from the socket and
plugged into the interface (daughter-) board. There should be
‘an original-sized drawing of the PCB layout (parts locations)
somewhere around this article.

For those that cannot remove the processor because it is di-
rectly soldered in, or if there’s no sufficient space to plug in the
GIDE board, another method of connection is provided. Just
solder a DIP socket onto the processor (first case only), and
connect it to the interface by a flat ribbon cable which is
plugged into a header on the solder side of the IDE interface.
However, care should be taken to make that cable as short as
possible! And for some computers, it might be necessary to cut
a PCB trace on the motherboard and connect a flying lead to
the interface board.

Though I can’t fully describe the current circuit now, let me say
something about my design criterias. In the previous issue of
TCJ, Claude Palm wrote about PLDs and mentioned that he
prefers to put all logic circuitry into the PLD. I don’t share this
viewpoint. In my experience, it is most often better to combine
PLDs and “discrete” logic. This has some advantages: First,
the result normally is much cheaper (especially for small
quantities); second, by using smaller PLDs you get cheaper
development tools and are not dependent on any PLD manu-

10

facturer; third, you have more PCB layout flexibility since you
can locate the small ICs at different locations. I agree that
sometimes, especially for large-volume products, it can make
sense to use a larger PLD which contains it all - but for this
purpose the small ones are definitely better.

The GIDE design uses two standard GALs and two standard
74-series bidirectional registers (74 HCT 646). That’s all. For
those who want an additional real-time clock (RTC), a socket
is provided for it, with a fully decoded chip-select signal. The
RTC can be battery-backed by connecting a battery to a 3-pin
header. The main design rule was to keep it simple and cheap.
Hopefully you agree we met the goal!

One of the two GALs (20V8) does all the address decoding,
and provides the necessary chip-select signals for the IDE drive
and the RTC. The interface occupies 11 I/O-addresses out of a
16-bitaddress area. The base address (upper four address bits)
can be selected by four jumpers. We also could have fixed the
base address by GAL programming (it would have been a 16V8
instead of a 20V8 then). But we decided that the user-selectable
base address is a real must for this interface - we can’t provide
differently programmed GALs all around the world!

The second GAL (16V8) contains the complete IDE-interface
state machine. Its content is roughly comparable to that used
in the IDE interface for the ECB bus (described in TCJ #56).

When 1 first introduced the GIDE project, I included the
information that we needed some expressed requests before it
makes sense to produce PCBs. There are rather high fixed costs
for making PCBs, so a minimum number is required to keep
costs reasonable low. From our requests at different networks
and user groups, we have about 40 people who are interested
in getting a board. Most of them mentioned reasonable prices

The Computer Journal / #73

they would pay, so here we are: the board will surely be made,
and I can offer it at the following prices:

bare PCB DM 29 $22
PCB & programmed GALs DM 43 $32
complete kit, w/o RTC DM 69 $ 51
complete kit, with RTC DM 84 $62
assembled unit, w/o RTC DM 84 $62
" assembled unit, with RTC DM 99 $73

These prices are calculated on the base of DM, assuming
today’s exchange ratio of about DM 1.35 per US-$ (which is
the lowest ratio we ever had!). Probably Herb Johnson will
import some bare boards into the USA, and get the other parts
there - this will reduce import fees and exchange losses. Hope-
fully, Herb will be able to offer the same prices and still get
some handling fee. And, if the number of orders grows, the
price will get lower (remember PCB fixed costs). However,
then I need to know this before I order the PCBs (this means:
today when you read this!).

If you are interested, or want to place an order, send mail to
Herb Johnson, Johnathan Taylor, or me (for addresses see
below).

Now lets talk a bit about software aspects. The GIDE interface
will physically allow access to the IDE drive, but some software
is also needed to put the proper data into the drive’s registers
and to transfer disk data to and from the drive. I will offer my
IDETEST software (which hopefully will be somewhat en-
hanced soon) which enables direct access to the harddisk drive
and also contains some test routines for the drive (like linear
and random read/write etc.). This will be good for some fun-
“damental tests of the controller and the drive itself. When all
IDETEST checks are passed without errors, the hardware can
be assumed to be perfectly running.

You'll then need some software which brings IDE access to
your operating system. For CP/M (which is most common for
Z30 computers), this means related BIOS routines. I will
provide sample routines which show how to initialize and
access the IDE drive in terms of physical-sector BIOS routines.
It will be up to you to implement them into your BIOS.
Especially for the more common computer types, there surely
will be someone which does this for the whole community. I (or
Herb, or Johnathan) might perhaps serve as a “knowledge-
base” of what implementations already are done.

Not all Z80-CP/M computer owners have the sources of their
BIOS, or the system generation tools required to create a
bootable system from the sources. Then the only reasonable
way to support any additional disk device, is by using a loadable
driver which relocates straight below the operating system and
stays resident there (those PeeCee people call this “TSR” -
terminate and stay resident). However, this principle has major
drawbacks. The worst is that you can’t use anything of the
existing BIOS, so the complete deblocking routines and the
sector buffers must be implemented again, significantly reduc-

The Computer Journal / #73

ing TPA size. But I hope that someone will write such a generic
IDE driver as CP/M-2.2 TSR - I can’t provide this by myself
since I am using CP/M-Plus only.

Eventually such a generic loadable driver will only be used to
check out the new “harddisk feeling” and perhaps will moti-
vate someone to disassemble the original BIOS routines. Once
you have the BIOS sources, you are free - everything else is
available in the public domain! For keeping track about what's
done in this concern, please always inform one of us about
current developments|

Finally, some new words about the LittleNet adaptor board:

I promised to do a PCB layout which contains the LittleNet
adaptor (an isolated RS-232 to RS-485 converter) which was
introduced as a draft in 7CJ #69. After some discussions with
Rick Rodman about the optimum connector types for both sides
of the adaptor, we decided to use standard ITT-Cannon DE-9
connectors (one male, one female). The pinout of the RS-232
side will match a standard PC/AT serial connector, and the
pinout of the RS48S5 side allows for using twisted-pair ribbon
cable with crimped connectors (though it’s better to use round
shielded twisted-pair cable and solder it to the connectors). All
adaptors are supplied via the network cable, by YAWT (yet
another wall transformer) delivering something between 8 and
20 volts DC.

The original-sized artwork and the placeplan of the single-
sided PCB should be printed somewhere near this, along with
the current schematics. If there is sufficient interest in PCBs,
I could also make a run. If you are interested, contact Rick or
me.

Contacts:

Tilmann Reh, Am Rueckelchen 5a, 57078 Siegen, Germany
InterNet: tilmann.reh@hrz. uni-siegen.d400.de
Fax (at work): +49 271 484520

Herbert R. Johnson, CN5256 #105, Princeton, NJ 08543, USA
InterNet: hjohnson@pluto.njcc.com
Voice/FAX +1 609 771 1503 (8am-11pm EDT)

Johnathan Taylor, UK
InterNet: jet@centron.com
Fidonet: 2:2501/307.9

Rick Rodman, USA

InterNet: rickr@aib.com
BBS: +1 703 330 9049 (24h)

11

GIDE LAYOUT (actual size) F Lrreener ™V B3

ADAPTOR 1
@) O - [
4
m
—
CNi
280-CPU [
} 3
\ 2
Trh
[\
iﬁ aul::gz '6(014139
5 | T —
3 ""'%%i’gﬁ
8 5 o S—— {EE3
w w 4 J.< s
B a % ,gggg
= ® —pRL ”@
A 6 — -
@
T.REH 950317 —
L J Q
CN2
Litt]l eNet
LittleNet isolated RS-485 converter
960421 Tilmann Reh
D1_.4148
omams |2 > 02 —
3l 1 |1 9 §
R6 1k5 1602 |o 5 1148
! 4% o 3,
RS 3|7 LTcees
66k €2, 100n 2| Yy td 8le
AL
ﬁg 16 18 14 r ° = 70,
z 3 ructiza 131le 1
(Tel.Basd n 3
— L
]) @

12 The Computer Journal / #73

	The CPU280 - When 8 Bits Aren’t Enough | TCJ #53
	The History
	The Hardware Design
	I/O Basics and Bus Interface
	Internal and On-Board I/O
	The Software
	The Power
	The Development History
	How to Get a CPU280

	CPU280 TCJ - Center Fold | #77
	1. CPU basics
	2. Memory interface
	3. Onboard I/O
	4. ECB bus interface
	5. Glue logic & GALs

	Connecting IDE Drives to 8-Bit Systems | TCJ #56
	The Technology Decision
	The Interface Circuit
	Slack Space On Board
	How To Get One
	IDE-Interface

	Connecting IDE Drives Part 2 - IDE Basics | TCJ #63
	Remembering the Basics
	The IDE Interface
	Now Let’s Go Into Details
	IDE Interface Registers
	Last Words

	Connecting IDE Drives Part 3 - IDE Commands | TCJ #64
	Terminology
	Register Accessing
	The Commands

	Connecting IDE Drives Part 4 - IDE Commands | TCJ #66
	IDE Commands
	Identify Drive (ECh)
	Read/Write Sector Buffer (E4h/E8h)
	Power Commands (E0..E6h, except E4h)
	Set Standby Mode
	Cache On/Off (EFh)

	Connecting IDE Drives Part 5 - GENERIC IDE | TCJ #71
	GIDE - IDE Part 6 | TCJ #73

